\\ \title{
District Court\\ \title{
District Court \\ OF THE \\ \\ UNITED STATES \\ \\ UNITED STATES \\ WITHIN AND FOR THE DISTRICT OF ARIZONA
}

No. 12. IN EQUITY.

THE MINE AND SMELTER SUPPLI COMPANY, a Corporation,

Complainant.
vs.
ARIZONA COPPER COMPANY, a Corporation, Defendant.
\qquad
BOOK OF COMPLAINANT'S PAPER EXHIBITS, DRAWINGS AND PHOTOGRAPHS

FREDERICK S. NAVE,
Solicitor for Complainant. Globe, Arizona.
GEORGE L. HODGES,
D. EDGAR WILSON,

Of Counsel, Denver, Colo.
W. F. ROBINSON PTG. CO., DENVER.

Reand of \&L. S.Cuent cate of ciftict
-

District Court

OF THE

UNITED STATES

WITHIN AND FOR THE

DISTRICT OF ARIZONA

PAPER EXHIBITS, DRAWINGS AND PHOTOGRAPHS
INTRODUCED IN EVIDENCE ON BEHALF OF COMPLAINANT.

Appearances:
FREDERICK S. NAVE,
GEORGE L. HODGES, and
D. EDGAR WILSON,

For Complainant.
W. K. FLORA,
E. E. ELLENWOOD, ROBERT S. TAYLOR, and ELIVIN M. HULSE,

For Defendant.

INDEX

CHART-
Scobey's 102
568
DIAGRAMS-(See Assays, Blue-Prints,
Chart, Drawings and Sketches.)
Exhibit
No. Pages
DRATVINGS-(See also Assays, Blue- Prints, Chart, Sketches.)
Comparison Deister and Wilfley Tables 114 608
Deister Table No. 1452 606
Deister Table No. 2, Arizona Copper Co. Mill No. 6, Morenci, Arizona 5 11
Von Rittinger Table 444 No, 10,658 1 1
Wilfley Concentrating Table No. 10,- 658, cross-section 2
PATENTS-
Cammett, No. 713,747 $423-425$
Cammett and Shepard, No. 769,431 427-439
Cliristmann, No. 845,449 193-202
Dallemagne, No. 953,900 303-307
Deister, No. 895,168 235-237
Deister, No. 895,167 239-246
Deister, No. 895,169 249-252
Deister, No. 921,090 255-264
Dodd, No. 638,32t. 53-56
Dodd, No. 676,427. 63-65
Dodd, No. 716,205 133-139
Dodd, No. 794,928 169-171
Dodd, No. 694,005 335-338
Dodd, No. 666,002 341-344
Dodd, Design No. 33,011 347-348
Dynan, No. 676,534 391-396
Flood, No. 919,709 293-301
Ford, No. 830,425 377-388
Forster, No. 780,031 165-167
Fritsch, No. 671,276 95-101
Grannatt, No. 632,109 415-421
Hallett, No. 609,804 15-21
Hallett, No. 614,322 23-27
James, No. 633,265 29-38
James, No. 874,364 213-222
James, No. 906,433 281-291
Kemp, Loomis\&Fitzwater, No. 963,582 441-443
Kirksey, No. 906,535 267-272
Klein, No. 686,088 399-404
Kohlmann, No. 885,349 225-233
Lampert, No. 641,977 41-51
Lehritter, No. 696,058 75-83
Look, No. 678,793 309-312
Michelsen \& Borglum, No. 721,591 111-115

PHOTOGRAPHS-Continued.Wilfley Table (Photo No. 13), withriffles of equal length, ter-minating uniformly, feedone ton per hom........... 81489
Wilfley Table (Photo No. 14), 5½inches transverse inclina-tion, $3 / 4$-inch stroke, feedone-half ton per hour......82493
Wilfley Table (Photo No. 15), with uniformly tapering riffles of equal length, level longitudi- nally, $51 / 4$ inches transverse inclination, $3 / 4$-inch stroke. 83 497
Wilfley Table (Photo No. 16), with 14 uniformly tapering rif- fles of equal length, spaced $41 / 4$ inches 84 501
Wilfley Standard Commercial Table (Photo No. 17), with taper- ing riffles, feed one-half ton per hour 85 505
Whfley Standard Table (Photo No.18), with tapering riffles,feed one ton per hour. 86509
Wilfley Standard Table (Photo No. 19), with tapering riffles, feed one ton per hour 87 511
Wilfley Commercial Construction (Photo No. 20), feed one millimeter pulp, one ton per hour 88 515
Wilfley Standard Table (Photo No. 21), increased transverse in- clination, feed one ton per hour 89 519
Wilfley Standard Table (Photo No. 22), longitudinally inclined 90 523
Wilfley Standard Table (Plioto No. 23), transverse inclination increased 91 527
Wilfley Standard Table (Photo No. 24), longitudinally inclined, feed one-half ton per hour. 92 531
Wilfley Table (Photo No. 27), with Z-bar riffles terminating on a diagonal line, illustrating influence of riffle tips in ad- vance of physical termina- tion 93 535

PHOTOGRAPHS-Contimed.			VII
		Exhibit No.	Pa
Wilfley Table (Photo No. 28), with			
	Z-bar riffles, uniform height feed $3 / 4$ ton per hour.	94	537
Wilfley	Table (Photo No. 29), with Z-bar riffles of mniform height, feed one and one-half tons per hour	95	541
Wilfley	Table (Photo No. 30), with Z-bar riffles, uniform height, feed one-half ton per hour	96	545
Wilfley	Table (Photo No. 31), with Z-bar riffles, nniform height, feed one ton per hour.	97	549
Wilfley	Table (Ploto No. 32), with Z/bar riffles, uniform height, increased transverse inclination, feed one-half ton per hom	98	553
Wilfley	Table (Photo No. 36), with Z-bar riffles of uniform height, 1-16 inch high, terminating on a diagonal line	99	557
W'ilfley	Table (Photo No. 37), with Z-bar riffles of uniform height, 1-16 inch high, terminating on a diagonal line, with certain lines placed npon the surface..	100	561
Wilfley	Table (Photo No. 38), with Z-bar riffles of uniform height, 1-16 inch high, terminating on a diagonal line, with certain lines placed upon the surface shorving location from which material was taken from the table surface	101	565
Wilfley	Table Deck Photo No. 47), riffles Deister pattern.	110	595
Wilfley	Table Deck (Photo No. 48), riffles Deister pattern, decreased inclination C to B	111	599
W ${ }_{\text {illfley }}$	Table Deck (Photo No. 49), riffles Deister pattern, decreased inclination C to B .	112	603

Exhibit

No. Pages
SKETCHES-(See also Drawings) -
Deister Table No. 1452, deck........ 113606
Wilfley Table Deck, showing riffles
terminating at right angles....... 63
Wilfley Table Deck, showing riffles
terminating on a diagonal.......... 64
COMPLAINANT'S PHYSICAL EXHIBITS.
No. Description.
3 Model, Wilfley Table Deck.
6 Model, Deister Table No. 2, Arizona Copper Co. Mill No. 6, Morenci, Arizona.
7 Combination Model, Wilfley and Deister Tables.
65 Model, Wilfley Table with Z-bar riffles.
66 Model, Wilfley Commercial Table.
67 Model, Wilfley Table Deck with riffles terminating at right angles.
68 Full size Deister Table Deck.
107-B 1-32-inch riffles removed from Deister Concentrator No. 2, Shop No. 1452, as shown in Photograph No. 44.
110-B Sample.
110-C Sample.
110-D Sample.
110-E Sample.

Almon E. Hart, Special Examiner.

GROSS SEGTIONS OF WMFLEY CONGEAZRATUNG TAGLE NQ IO.65S


```
COMPLAINANTS' EXHIBIT No. }
    Wilfiey Patent in Su!t
    ALMON E. HART, Special Examiner
```


A. R. WILFLEY.
 ore concentrator.

Patented Sept. 28, 1897.

No. $590,675$.
Patented Sept. 28, 1897.

Jiventoz
siy A.F. Wilfley atrozney opsizion

United States Patent Office.

ARTHUR R. WILFLEY, OF DENVER, COLORADO.

ORE-CONCENTRATOR.

SPECIFICATION forming part of Letters Patent No. 590,075, dated September 28, 1897.

Adolicatioa flen Marck 16,1827. Serial No. 627,788. (Nomodel.,

To all wheon it may concern:
Beit known that I, Arthur R. Wilfley, a citizen of the United States of America, residing at Denver, in the county of Arapahoe and
and uscull Inpurements in Gre-Coucentra and uscful Improvements in Ore-Concentrstors; and I dodeclare the following to be a full, clear, and exact description of the invention. such as will enable others skilled in the art same, reference being liad to the accompanying druwings, and to the letters and figures of reference marked thereon, which form a part of this specification.

My invention relates to improvements in ore-concentrators; and it consists of the features hercinafter described and claimed, all of which will be filly understood by reference to the accompanying drawings, in which

In the dranings, Figure ! is a side elevation of the apparatus, partly in section. Fig. 2 is a top or plan view of the saine. Fig. 3 is a plan view of the table. Fig. 4 is a side
25 eleration of the same. Fig. 5 is a cross-section of the table. Fig. 6 is a detail view of a lever forming a part of the operating inechanism. Fig. 7 is a perspective view of one of the riffles detached.

Similar reference-characters indicate corresponding parts in the views.

Let the numeral 5 designate the table, provided with longitudinal riffes 8 , attached to its uppersurface Theserimesare of unequal 35 length and angular in cross-section. The vertical or upwardly-projecting part of the riffle is desiguated by the reference-character s^{2}, and the upper part, which lies parallel with the bed of the table, is designated by the
40 roference-character S^{\prime}. The iable tapers from the head tow ard the foot, where it is narrowest. It is transverscly inclined, (see Fig. 5,) the gangue being discharged at its lower odge and the minera! at the tail thereof. The
45 riffes increase in length from the upper eige of the table downuard, where they are longest. The lowermost riffle extends nearly the fall length of the table.

To the left of the riffle extremitics (see Fig.
503) there is a triangular portion A of the table, which is smooth or free from riffles. The
function of this smooth or unriffled portion of the table will be hereinafter described.

The table has a lougitudinal rociprocating movement and is suppurted on rollers 7, 55 mounted on a suitable stationary support.

The mechanlsm for actatiting the table will now be described.

The extremity of the table farthest to the left (see Figs. 1 to 4 of the drawings) will for 60 convedience of description in this specification be termed the "head," while the opposite extremity is termed the " tail" of the trble.

To the head end of the table is attached a keeper 9 , which is engaged by one extrenity 65 of a vertical lever 10 , fulcrumed at 12 on a support 13, mounted on the stationary frame 14. The upper arin of the lever 10 is slutted (see Fig. 6) to receive a loolt 1 st, which holds a block is in place on the lever. This block carries an antifrictional roller 17 , which engages the outer wall of the keeper 9 . The block 16 is adjustable for the purpose of changing the bearing-point on the beeper and thereby regulating the length of the table's stroke.
The lower arm of the lever 10 is provided with a bearing 18 , which is entraged by one extremity of a link 19. This link is conuected at 91 with a link 20 , forming a logglejoint. One extremity of the link 20 engages a bar 22, attached to the stationary frame. The pin 21 connecting the two toggle parts also passes through one extremity of a pitman 23, whose opposite extremity is connected with a wrist 24 on a crank 25 , carried by a 85 shaft $2 G$, journaled in an upright support $\because 7$, mounted on the stationary frame $1+$. The shaft 26 is provided with a pulley 28 , which may be connected with any sultaliesmotor for operating the mechanisin. The outer extremities of the toggle are open, being simply recessed or forked to engage the bearings 18 and 22, respectively. IIence as the shaft 26 is rotated the toggles only impart the backward movement to the table or move it toward the left. (See Fig. 3.) The forward or reverse inovement is effected or imparted by the recoil of a spring 29 , which is 00 m pressed or placed under teusion by the tshle duriag its backward movenent.

In the operation of the machine the material to be treated is discharged in the form of

 rersely is rnla - : , oer ine angula: : agitudnal rimes an a-lloef areed over thelumer
 trantrersels: is catent
 the ganguce is rot caught by the rifics aad under the \therefore fernce of the tisbies inetion is S carried longitudias. Y toward the fors of the table utli: rarutes t! es earther onrificel portion Io of the Livle, ulere it is actod on ty the wa'ce, whic! effecis a perfect of approximately perfect s paration of the gangoe from the minersl. As the material canght by the pimaracst and shortest rispe pasess to the irotirn 1 if :ine iup e the action of the Water, shich 3 ier to tie apper ecige of the tables marmae the gangus dosntanl to the 20 Dext rizte. u ...e tlet mineral remains on the smrm h portion A and is carried toward the tan! o! tie tau!e, where it is tir ally discharqed. it is expectel that soble of the mitaeral canght Ly'? e epperroos: and sortes: ripe 35 will be cart ext duwnward with the gengロe ic the dext rixie, rutch is lonzer After ? ing this last-nawed afle and passing :o the smooth or L.D:ifier prottion of the intle the *ater again acte on the waterial adi carries 30 the ganqued downwam to the nert rifise, iearing the cleat minemal on the smorth portion A of the table. If any mineral escapes with the gangue the second time, it will to eaught hy the rupe next below and again subjected 35 to the separatiog action of the mater as 5000 as it reaches the smonth portion A of the table. In this mander the roaterial is carried ransverseiy downward and longitndinally forward, the gangue being discharged at the isbed of im nimeral values, fuile the later are discharzed at ite foot or tail of the table. A portion of the gangue-that is to say, the lighter part thereoi-passes over each riffle in suacession froun the shortest or uppernast to the longest o: lowermost rime. The mineral and the heavier gangre are canght by the rifles and finally separated on the smooth portion A of the iable. This combina:ion, in length for eatching the mineral and a smooth, plain, of unrifled yortion at tue extremities of the riples, where the final separation is effected throngh the action of the water, is be55 lieved to be entirely new in au appara:us o: this class.

A ritle is the best means of catching minerah, white a smooth, plain, or carified surface is the best for ezecting the separation of 60 the mineral from the gangue canght with the mineral by the rifiles, the separation beiog $\in t$ fected oy the action of water.

While J prefer :o employ the angular ritule shown and deserited in this application, I do 65 not limit the inrention to any special con. shuction of rifo

The fuluction of the angulat rilles will now bedescriled is dctail.
lly alcoe to catch the larger and beavier purtieies of miveral, but some of the more ainute particles would be forcerl over the rifies and carried downaard sith the grancue and perhaps finally lost were it not for the part 5° of the riffes, which checiks this tenrlency and a^{11} ows suecific zravity to previnil, the same as in hand-panning. It is well kinowa that ille finest particles of mineral can be saved by hand panning. The specifie grarity of the finest particle cígold is, of course, the same as the lareest nugget, amd if the proper condl. tions exist the minute prarticie can be saver? as well as the nugzet. The object of ms angular rifftes is to prud uce the conditions necessary to save not only the largest bet also the finest minera! particies. Undergedinaryeonditions these Sue particles wher acted on by a cuitedt of water are carried a !ong with the water, an j morsenaen:ly asi with the garg gue. Tne apts, part $\vdots=$ of my riffechecks the tendedey of tiese ligh: particles :o pass over tie rixhes with the water. Hence they are confined by the led ot the iable below the part $5^{\text {s of }}$ of the zifles abore, while the part s* of the rifaes cherizs their doanward morement. 1Kence unje-the in innance of the table's moveznesi or vibration the mineral particles, both fice and enarse, are canght by the rifles.

It zill bes observect $b y$ an inspaction of my operating mecbanism that the length of the table's stroke may be regolated without changing, altering, or inteferlog with the quality of the movement imparied by the togale.

With oiher tozgle rooveinents as applied to this class of machines the lezgth of stroke is regulated by chansing the point where the lower extremity of the connecting-rod ar pit$m a n$ is attached to the toggle. Thisisequivalent to ehanging the length of the pitman and of course not ouly changes the length of the table's struke, but also the quality of the morement. For instance, if the pitman be made shorter the point where the loggielinks are connected mast move farther ugward, bet notso fardownward, and viceversa. In other words, by changing the length of the pitman (or changing the point where it is attisched to the toggle, which is the sancthing) the angle of the lirks bscomes greater when the tabie has reached ita limi: of morement in one direction and less when the table bas reached its limit of movement io tiae cpposite lirection. Hence in such constructions the ipeed of the table at a given point in its ztroke raries as the length of the strote is changed.
Haring thas described my invention, what I claim is-
A. A transversely-inclined concentrating-130 table having a movement whose tendency is to carry ibe material lozgitndinalir formard
toward the tail or foot of the table, said table being provioed with a number of riffles extending lougitndinally a portion of the distar efrom its head toward its foot, said 5 riffes varying in length for the purpose apecifed, the table baving a smooth, plain, or ue--iffed portion extending from the extremitios If the riffes toward the tail of the table, whereby the unserial 2.5 it leaves the riffes is
10 subjected to the action of the water on the smooth portion of the tatle :ad the final separation of the mueral frou the grague effected.
2. A transversely-inclided concentrating.
is table laving a aumber of longitudinal riffos extending a portion of ite table's length from the head toward the foct, said riftes being of unequal length, the uppermost being the shortest while the otber riffles incress6 in - length from the upper edge to the luwer edge of the table, the tribue having \& plain or unriffled portion lying at the extremities of the riffles and adapted to receive the material caught by the riffles.
3. The sombination of a transversely-inclined concentrating-table having a number of lon ritudinal rifles of unequal lengith extending from the bead toward the tail of the table, said riffes increasing in length from o the upper toward tho loner edye of the table, said table beivg profided with a plain or unriffled portion at the extremities of theriffes, and meansiurluparting to tho table a loneritodinally. reciprucating moverneut sumyris-
35 ing a toegle, an operating-pitmau, and a lever, ore link of the toggle engaging one arm of the lever, while the other arm of the lever is connected with the head of the table.
4. The combination of a transversely-iv-

40 clined concentrating-table having a number oflongitudidass; ffesertending from the head toward the foot of the table, the table being provided with a plain or uuriftied portion located at the extremities of the riffles, and
45 means for imparting to the table a lungitudinalreciprocating muvement comprising a tog-gle-joint, an pucrating-pitman and a lever, ode linh of the togale engaging one arm of the lever, while the other arm of the lever is
so connected with the table aud provided with su adjustable roller: adupted to eogage \& keeper carried by the table.
5. The eombination of a trangversely.ina
clined concentrantur-tab havide a ser: of longitudinal rift - stending from the head 55 toward the foot if cha iable, the tab, be ". "s provided with a plain ourifi th prom ex lending frola the riffe eatrethines th the fout of the table and mans for invarting to the table s lon-*udinally - reciprocating move Dient, sand a a eaus comrorisinz a tucerle-joint, ato operating-pitmar aid a lover, one link o! the togglo engagng one arm of the lever, while the other arin of the lever is connected with tha tsble and provided with wa adjust- 65 able rolıer, said rbller being mounted on a block adjustably attached to the lever.
6. The combivation of a transversely-1acliued concentrating-table having a Dunber of lon ritud usl rifflesestendieg from the bead towerd the tail of the table, the table being prorided with a plain or unriffled portion $10-$ cated at the extremities of the riffles, and means for impartiug to the table a longitudi-nally-reciprocating movement comprising a toggle-joint, an neverating-pitıan, and a lerer, one link of the toggle engaging one arm of the lever, while the other arnu of the lever is connected with the table and provided with a rertical slot, and a block held in place by a 80 bolt passing through the alot and carrying an antifrictional roller engagiog a keeper on the table.
7. The combination of a transversely-inclinot consentrating-table having a series of 85 rithes cutending longitudinally from tho head Wward the tail of the table, ssid riffles boing of unequal length, the uppermost being the ahortest and the riffes increasing in length from the uppar to the lower edge of the iable, the table being provided with a plain or unriffed portion of suitable arga lucatod at the extremities of the riffies, meaus for foeding the material to the upper portion of the thblo's head, means for discharging water on 9 the upper edge of the table, and suitable means for imparting to the ixble a longitudi-nally-reciprocsting movement of a character adaptod to move the matcrial fiom the bead toward the tail of the table.

In testimony whereof I sffx my signatare in presence of two witnesses.

ARTHUR R. WILFLEY.

Witnesses:
 Alfred J. O'Brien.
 G. J. Rollandet.

$-$
,
,
.
\qquad
\qquad
1
\qquad

Abstract

 ,
('omplainant's Exhibit No.s. Photograph Wilfley Table in Operation.
Amon E. Hart, Special Examiner.

COMPLAINANTS' EXHIBIT No. 9
S. I. Hallett Patent No. 609,804

ALMON E. HART, Special Examiner

No. 609,804 .
(No Model.)

Patented Aug. 30, 1898.
S. I. MALLET.

ORE CONCENTRATOR.
(Application filed Sept. 16, 1897.)
2 shapts-Sheet I.

Fig. 1.

Fig. 3

witnesses
(Thar. E. Qiordon
(Mmes) (Porch.

INVENTOR
Camel el trace to By dulia O. Sowed

Ne. 609,804 .
(No stiodel.)

Fig.o.

Wilinesses.
Whas. EC Chordow

S. I. HALLETT.

ORE CONCENTRATOR.
(Application flled Sant. 16, 1897.)
Patented Aug. 30, 1898.

2 Sheets-Sheet 2

United States Patent Office.

SAMUEL IRVING HALLETT, OF ASPEN, COLORADO, ASSIGNOR OF ONE-HALF TO DAVID M. HYMAN, OF CINCINNATI, OHIO.

ORE-CONCENTRATOR.

SPECIFICATION forming part of Letters Patent No. 609,804, dated August 30,1888.

Application filed September 16, 1897. Serial No, 651,877. (No model.)

To all whom it may concern:
Be it kuown that I, Samoel Irving HalLett, a citizen of the United States, residing at Aspen, in the county of Pitkin and State
5 of Colorado, have invented certain new and useful Improvements in Ore-Concentrators; and I do hereby declare the following to be a full, clear, and exact description of the invention, such as will enable others skilled in
10 the art to which it appertains to make and use the same.

My invention relates to ore-concentrators or that class of machines or apparatus employed for concentrating or separating and
15 grading mineral substances of different specific gravities, and more particularly to apparatis operating to carry ont the wet process of concentrating ores, whereby ores of various kinds may be washed and concen-
20 trated and the valuable minerals separated and graded with economy of time and labor.

The invention is especially designed for use in connection with ore-concentrators of that class in which the crusked ore is distributed
25 upon and caused to move or flow along a plane surface or table, to which is imparted a combination of shaking and rocking motions whereby the concentrates or particles of mineral settling on the surface of the ta-
30 ble are carried along and discharged in différent classes or grades at one end or side of tine table, while the gangine and refuse matter are carried off at the side or end of the table opposite the distributing-lannder.

The primary objects of my invention are to provide simple, inexpensive, and efficient means for separating the ore and for collecting the same in different grades or classes, so that in treating ores containing minerals of
40 different speclfic gravities the different minerals may be separated and coliceted in their respective classes or grades.

The invention will first be hereinafter more particularly described with reference to the
45 accompanying drawings, which form a part of this specification, and then pointed out in the claims at the end of the description.

Referring to the drawings, Figuro 1 reprosents a top or plan view of an ore-concentrat50 ing table and its attachments embodylng my invention. Fig. 2 is a side elevation of the
same with parts broken away to show the construction of parts which would otherwise be concealed from view by the broken-away portions. Fig. 3 is a detail front view of the distributing-launder. Fig. 4 is a vertical transverse section taken on the line IV IV of Fig. 1. Fig. 5 is a detail sectional view through a portion of the table, the section being taken on the line V V of Fig. 1. Fig. 6 is a top or plan riew, Fig. 7 a side elevation, and Fig. 8 an end view, of th3 sectional launder or trough for collecting the valuable metals separated from the gangue or tailings.

In the drawings, in which similar ietters of 65 reference are used to denote corresponding parts in different views, A denotes the table, which is suitably supported to adapt it to have imparted thereto by any suitable mechanism in common use a combination of shaking and rocking motions or any desired movement for accomplishing the desired results. As shown, it is monnted on posts or legs $b b$, the upper ends of which are pivotally connected to the under side of the table, while the lower ends thereof are pivotally connected with and rest upon suitable frame-pleces or bars B, which latter may rest upon a suitable support or frame C, as shown, or in any proper manner, suitable devices, as sorews or adjustable wedges c, belng interposed between the bars B and frame C for varying the incllation of the table. The legs or rocking arms that support the table act not alone as a support therefor, working on the are of a circle and glving the ore a slightly-pitching motion, but they also act as a guide for the table, allowing it to have no side movement whatever, which is a very important consideration in separating the ore. The surface of the table A is covered or provided with a metalle sheet or facing a, of metal, having an afflnity for the particular metai contained in the ore under treatment and which is the more valuable and desirable to be thoroughly separated-as, for instance, lead in treating lead ore or a silver sheet or coating in treating gold ore. This metallic surface or coverIng is provided with a series of longitudinal grooves, channels, or recesses a^{\prime}, which preferably extend from the rear end of the table toward the front or discharge end thereof
with a slight rearward inclination and terminate a sufficient distance from the receiving or discharge end or side of the table to leave a clear nnobstructed smooth surface extend-
ength of the table on the side thereof adjacent to the distributing-launders, as shown more clearly in Fig. 1. The grooves a^{\prime} taper from end to end-that is to say, they gradually decrease in depth from the front or 10 receiving end thereof to their opposite terminals, where they merge into the smooth unobstructed surface of the table-top.

At or near the receiving end or side of the table and on that portion thereof on which 5 the crushed ore or pulp is delivered from the distributing-launder I provide a removable wearing-plate A^{\prime}, which may consist of a sheet-metal or other suitable plate, having one edge or angle thereof secured to the framepiece or bar a^{2}, while the other portion or edge thereof overlaps and rests upon the surface of the table, as shown more clearly in Fig. 4. By this means when that portion of the table which is most subject to wear becomes worn and in need of repairs the wearing-plate may be removed and a new one substituted in its stead without necessitating the renewal of the entire metallic surface of the table or the substitution of a new table-top, as is usual in using ore-concentrators as heretofore constructed.

The distributing-launder D may be formed with two or more compartments $d d^{\prime}$, the compartment d being adapted to receire the pulp or crushed ore from a suitable conduit or pipe E, as indicated in Figs. 2 and 4, while the compartinent d^{\prime} is adapted to receive the water for washing the ore from a suitable conduit or pipe E', as shown in Fig. 2. The ore40 compartment d of the lannder D is provided on the discharge side thereof with a series of holes or perforations d^{2}, through which the pulp or ore mixed with water is permitted to escape on to the surface of the table. The upnearest the table is preferably notched or serrated, as at \AA^{8}, in order that the w ater used for washing the ore as it passes downward toward the front or lower end of the table may be more evenly and smoothly distributed without splashing or spurting onto the table in greater volume or with greater force at any one point than at other points along the table, thus insuring an even distribution and 55 smooth flow of the water across the table for the purpose of washing the ore and drawing off the lighter material and gangue into a water box or trough F, extending along underneath the edge of the table at that side chereof op-
6o posite the distribnting-launder.
At the front or discharge end of the table is placed a sectional trongh or launder G to receive the heavier particles of mineral or valuable metal separated from the cre. This
65 launder G may be constructed in two, three, or more sections, which are preferably telescopically arranged, so that the material
which is separated may be assorted and graded and collected in different grades or classesas; for instance, lead, iron, and zinc-according to the nature and character of the ore under treatment and the specific gravities of the minerals contained therein. In the form shown the launder G is constructed in three concave or semicylindrical sections g, g^{\prime}, and g^{2}, which are telescopically arranged and sup ported on the rods or bars H, which bars extend transversely of the table at the discharge end thereof and are rigidly secured at one end to a bracket H^{\prime} and at their opposite ends to the frame of the machine. The sections $g g^{\prime} g^{2}$ of the lannder are provided with discharge openings or spouts g^{3}, g^{4}, and g^{5}, respectively, and are supported, with capacity for longitudinal adjustment on the rods H H, by lateral lugs or hooks g^{8}, resting upon and overlying said rods, so that any one of the sections may be moved forward or back for the purpose of varying the extent or area of the surface of the section which is exposed to the discharge end of the table and adapted to receive the material therefrom, so as to adapt the same for use in treating different kinds of material or in classifying the material according to different requirements in use. Either of said secticns may be remored bodily by simply lifting the same from the rods, and, if desired, any suitable securing device may be employed for securing the several sections in the positions to which they may be adjusted for use and to prevent accidental displacement in use caused by the jarring or shaking of the table. From the discharge openings or spouts $g^{8} g^{4} g^{5}$ the material may be discharged into a, suitable receptacle or conducted through a suitable spout or conveyer to any desired point for further treatnient or shipment.

In the operation of the table the ore is fed into the compartment d of receiving launder or trough D, while the wash-water, which is located farther down the length of the table and which is used to wash the ore as it passes downward toward the discharge end, is fed into the compartment d^{\prime} and flows over the top or serrated edge d^{8} of said compartment, so as to secure an even distribution and gentle flow thereof without spurting. At the same time a reciprocating novement, differential in its action, with the strength of the longest throw or bump toward the dischargo end of the table, is imparted to tho table by any suitable mechanisin connecting with the pitman or rod I, which may be applied at either end of the table, so as to cause the ore to move along or over the surface of the table toward the discharge end thereof, whereby as the ore is moved along it is washed all the way at right angles by the water issuing from the compartment l^{\prime} of the launder, thus washing the lighter material and gangue toward the opposite side of the table and into the trough or box F , from which the gangue and wasto may flow uff into any suitable re-

[^0]eephele or eomfuit provided therefor. The heavier ore or valuable inaterial to be recovered reliains scattered along the smooth surface of the table alhove the terminals of the clurred er of the table into the section or some the receiviner- socder G , while the float-lead or lighter particles of mineral, that are not sized, as is the heavier a^{\prime} or particles, are caught in theres a^{\prime} and caused to gradually work backward and towarel the discharge end of the table, so as to be brought back into the plane of the body of ore or valuable metal which takes a position forward of an imaginary line running the length of the table outside of the terminals of the aforesaid grooves or slots, whereby the very fine float lead or other float mineral is separated and recovered with the larger particles of like kind and specific gravity instead of being carried over and discharged into a middlings receiver or receptacle, as heretofore, and conveyed bate to the distributing-launder to be again run over the
25 table, with consequent loss resulting from the fact that the material which is so finely pulverized as to le once discharged and again returned to the table will seek the same place as before and be run again and again into the 30 middliags-receptacle and veturned until worn by attrition so fine that it will pass off with the dirty water into the waste. The inclined sloping grooves, which run against the slant of the table, cause the float mineral to be car35 ried back to the place it should not have left, while allowing the waste to pass over it and off into the trough or receptacle to receive the same, thus saving the valuable float material with the heavier ore that lies along the upper
40 line or surface of the table beyond the terminals of the grooves. I thus avoid all intricate savings and returnings and accomplish what has hitherto been attempted to be accomplished by returning the same ore to be
45 run over two or more times. The mineral of less specific gravity and of a different class from that which is discharged into the first compartinent or section of the sectional launder will be carried farther across the table
50 and will be discharged into the second section or compartment, whlle the material of the next or third class will be discharged into the third section or compartment, the separating and collecting the different grades or
55 classes of material into two or more classes, the first of which, for instance, may be lead, the second iron, and the third zine, according to the ore under treatinent, the same rule applying to any minerals haviug different spe-
liy comstructing the surface of the trble of inctal having an affinity for the particular metal it is desired to recover from the ore under treatment the separation and collec-
65 tion thereof are greatly facilitated, and a more complete separation is effected than is possible under the usual conditions.

The alesired differential movement or bumping action nay be imparted to the table by any suitable mechanism, snch as has hera- to tofore been employed in devices of a simila. character and which it is unnecessary to illustrate or describe herein, inasmuch $a^{\prime \prime}$ my invention resides in the construction of the tirble and its attachments and not in the mechanisin for imparting the desired vibratory or reciprocating movements thereto.
I may mention, however, as a desirable movement that which has lecretofore been employed with what is known as the "Rittinger" table made in Germany many years ago and which has been in use in this conntry for many years, in which there is a side movement or bumping action combined with the transverse washing of the ore.

It will be understood, of course, that the form and construction of the parts hereinbefore described may be modified in a number of ways without departing from the spirit of my invention, and hence I do not desire to be limited to the exact construction shown and described.

The novel construction of table ievein shown and described is made thie subject of a separate divisional application, and henco claims to the same are omitted from the present case.
Having thus fully described my invention, what I claim as new, and desire to secure by Letters Patent of the United States, is-

1. In an ore-concentrator the conibination with the shaking-table, of a receiving-launder extending along the discharging side of the table and composed of sections independently adjustable to vary their individual lon- 105 gitudinal extent for receiving the ore from the table.
2. In an ore-concentrator the combination with theshaking-table, of a receiving-launder extending along the ore-discharging side of the table and composed of a series of overlapping sections independently adjustable in the direction of their length, substantially as and for the purpose described.
3. In an ore-concentrator, the combination 185 of a shaking-table, rods extending crosswise of the discharging end of said table, and a series of overlapping troughs together coustituting a sectional launder onnd separately supported on said rodis with provision for sep- 120 arate longitudinal adjustment, substantially as described.
4. In an ore-concentrator, the combination with the table, of a sectional laund er composed of a series of indspendent coöperatively-ar- 125 ranged longitudinally-adjustable and removable sections, substantially as described.
5. In combination with the table, the sectional launder or recoptacle composed of tele-scopically-arranged sliding sections each removably supported adjacent to the discharge end of the table to adapt the several sections to be separately adjusted and secured in different positions relatively to each other and 95

8


```
                            -
```

-

\qquad
10520

105

\square1105
\square
to bo readily romoved and replaced, substantially as clescribed.
6. Λ sectional launder comprising a series of independont concave sections or recepta5 cles telescopically arranged and adapted to slide longitudinally with respect to each other, oach laving lateral supporting fingers or lugs adapted to rest on suitable supports adjacent thereto, and provided at one end with a dis-- chargo-opening, substantially as described.
7. In an orceconcentrator, the combination with the table, of the sectional launder comprising a serics of concavo sections or receptacles telescopically arranged and adapted to
slide longitudinally with respect to each othor, 15 each having lateral supporting fingers or lugs and provided at one end with a dischargeopening, and longitudinally-arranged supporting rods or bars on which said sections are supported and adjustably secured adja- 20 cent to said table, substantially as described.

In testimony whereof I affix my signature in presence of two witnesses.

SAMUEL IRVING IIALLE'J'I.

Witnerses:
 Jesse J. May, Josepil IIt('кs.

COMPLAINANTS' EXHIBIT No. 10
Hallett Fatent 614,322
ALMON E. HART, Special Examiner
No. 614,322.
Patented Nov. 15, 1898.
S. I. HALLETT.

ORE CONCENTRATOR.
Applicetion filed Tan. 29, 1898.
'No Model.

Fig. 3.

Gew.O. Ourace, frr
Ghas. E Chindan
Gew.(Q. Ourrace, fry
Ghas. E Rindan
Gew.(Q. Ourrace, fry
Ghas. E Rindan
amventor

United States Patent Office.

sAMUEL IRVING HALLETT, OF ASPEN, COLORADO, ASSIGNOR OF ONE-HAJ.F TO DAVID M. HYMAN, OF CINCINNATI, OHIO.

ORE-CONCENTRATOR.

SPECFFICATION forming part of Letters Patent No. 614,322, dated November 15, 1898.
Original appliontion fled September 16, 1897, gerial No, 651,877. Divided and thie apphearion fled Janary 29,-1898. Serial No. 668,418, (Ko model)

To all whom it may concern:
lie it khown that I, Samuel Irving llalLETT, a citizen of the United States, residing at Aspen, in the county of Pitkin and State of

5

 proveronts in Ore-Concentwators; and I do hereby declare the following to be a fnll, clear, and exact description of the invention, such as will enable others skilled in the art to to which it appertains to make and use the saine.My invention relates to ore-concentrators, or that class of machines or apparatus omployod for concentrating or separating and 15 grading mineral substances of different specific gravities, and wore particularly to apparatus operating to carry out the wet process of ooncentrating ores, whereby ores of various kinds may be washed and concentrated 20 and the valuable minerals separated and graded with economy of time and labor.

The invention is especially designed for use In connection with ore-concentrators of that class in which the crushed ore is distributed plan and caused to moro or hong a plane surface or table to which is imparted a combination of shaking and rocking moions, whereby tha conceatrates or particles of mineral setthing on the surface of the table or grades at one end or side of the table, while the gangue and refuse matter are carried off at the side or ead of the table opposite the distributing-launder

The primary objects of my invention are to provide simple, inexpensive, and efficient means for separating the ore and for collecting the same in different grades or classes, so that in treating ores containing minerals 40 of different specific gravilies the difierent minerals may be separated and collected in their respective classes or grades, and to provide a table which shall efficiently separate and collect the finer or lighter and unsized the operation of concentrators as generally heretoforo constracted is either carried off with the gangue or collected in the form of " middlings" and returned to the feed-trongh
fed in to the feed-trough, with consequent loss of energy and waste of raluable metallic ss:bstances.

The invention will first be hereinafter more particularly described, with refereace to the accompanying drawings, whick form a part of this specification, and then pointed out in the claims at the end of the description.

Referring to the drawings, Figure I represents a top or plan view of an ore-concentrat- 60 ing table and its attachments emloolying my invention. Fig. 2 is a cross-sectional view taken on the line II II of Fig. 1. Fig. 3 is a detail front view of the distributing-launder. Fig. 3^{3} is a longitudinal sectional view taken 65 onl line III III of Fig. 1.
In the drawings, in which similar letters of reference are used to denote corresponding parts in differentriews, A clenutes the table, which is suitably supported to adapt it to have imparted thereto by any suitable meehanism in common use a combination of shaking and rocking motions or any desired move mont for accomplishing the desired results. As shown, it is momnted on posts or ?ego $i \vec{u}$, the upper eads of which are fivutall' connected to the under side of the tabic, while the lower ends thereot are pivotally u unnected with and rest upon suitable frame pieces or bars B , which. latter may rest mpon a suitable support or frame C, as shown, or in any proper manner, suitable devices, as screws or adjustable wedges c, being interposed between the bars B and frame C for varying the inclination of the table.
The table is provided with a riffled or grooved surface and with an unriffled or smooth surface, as shown, said riffles or grooves extending along the surface of the table transversely or obliquely to tho direction or line of movement of said table and tapering or diminishine in depth toward the unriffled portion. In the form shown in, the drawings the riffled and unriffled supfaces are obtained by providing the table with a motallic sheet or facing a, in which is formed a series of longitudinal grooves, channels, or recesses a^{\prime}, which preferably extend from the rear end of the table toward the front or discharge end thereof, with a slight rearward in-
\qquad
 60
\qquad 65

\qquad
clination, and terminate a sufficient distance from the receiving or discharge end or side
of the table to leave a clear unobstructed sinooth surface extending the length of the table on the side thereof adjacent to the dis-tributing-lunuders, as shown more clearly in Fig. 1.

The metallic surface or covering of the table preferably consists of a metal having an

table-top.

At or near the receiving end or side of the table and on that portion there of on which the crushed ore or pulp is delivered from the distributing-launder I provide a removable metal or othersuitable plate having one edge or angle thereof secured to the frame piece or bar a^{2}, while the other portion or edge thereof overlaps and rests upon the surface of the passes downward toward the front or lower end of the table may be more evenly and end of the table may be more evenly and
smoothly distributed without splashing or spurting on to the table in greater volume or spurting onto the table in greater volume or
60 with greater force at any one point than at other points along the table, thus insuring an
even distribution and sinooth flow of the waother points along the table, thusinsuring an
even distribution and sinooth flow of the water across the table for the pirpose of washing the ore and drawing off the lighter mateσ_{5} rial and gangue into a water box or trough F, extending along underneath the edge of the table at that side thereof opposite the disbe removed and a new one substituted in its stead withoat necessitating the renewal of the eutire metallic surface of the table or the
substitution of a new table-top, as is usual the eutire metallic surface of the table or the
substitution of a new table-top, as is usual in raing ore-concentrators as heretofore constrncted. The distributing-launder D may be formed with two or more compartinents $d d^{\prime}$, the compartment d being adapted to receive the pulp or crushed ore from a suitable cond nit or pipe E, as indicated in Fig. 2, while the compartment d^{r} is sdapted to receive the water for ment d is adspted to receive the water for pipe. The ore-compartment d of the launder pipe. The ore-compartment d of the launder with a series of holes or perforations d^{2}, through which the pulp or ore mixed with water is permitted to escape onto the surface of the table. The upper edge of that side of the table. The upper edge of that side of erably notched or serrated, as at d^{3}, in order that the water used for washing the ore as it table, as shown more clearly in Fig. 2. By which is most subject to wear becomes worn which in ueed of repairs the wearing-plate may
tribating-launder. At the front or discharge end of the table is placed a sectional trullgh or launder G to recoive the heavier particles of mineral or valuable metal separated from the ore.

In the operation of the table the ore is fed into the compartment d of receiving launder or trough D, while the wash-water, which is located farther down the length of the table and which is used to wash the ore as it passes downward toward the discharge end, is fed into the compartment d^{\prime} and flows over the top os serrated edge d^{3} of said compartment, so as to secure an even distribution and gentle flow thereof without spurting. At the same time a reciprocating movement differenttal in its action, with the strength of the longest throw or bump toward the discharge end of the table, is imparted to the table by any suitable mechanism connecting with the pitman I, which may be applied at either end of the table, 80 as to canse the ore to more along or over the surface of the table toward the discharge end thereof, whereby as the ore is moved along it is washed all the way at right angles by the water issuing from the compartment d^{\prime} of." the launder, thus washing the lighter material and gangne toward the opposite side of the table and into the trough or box F, from which the gangue and waste may flow off ínto any suitable receptacle or conduit provided therefor. The heavier ore or valuable material to be recovered remains scattered along the smooth surface of the table, above the terminals of the inclined grooves or channels a^{\prime}, and is discharged at the end of the table into the receiving-launder G, while the float-lead or lighter particles of mineral that are not sized, as is the heavier lead or particles, are canght in the grooves a^{\prime} and caused to gradually work back ward and toward the discharge eud of the table, so as to be brought back into the plane of the body of ore or valuable metal, which takes a position forwerd of an imaginary line running the leagth of the table outside of the terminals of the aforessid grooves or slote, whereby the very fine float-lead or other float-mineral is separated and recovered wlth the larger particles of llke kind and specific gravity instead of being carried over and discharged into a middllings receivor or receptacle; as heretofore, and conveye? back to the distributing-launder to be again run over the table, with consequent loss ressulting from the fact that the material which is so finely pulverized as to be once discharged and again returned to the table will seek tho same place as before and be run again and again into the middlings-receptacle aud returned until worn by attrition so fine that it will pass off with the dirty water into the waste. The inclined sloping riffles or grooves, which run agaiust the slant of the table, causie the float-mineral to be carried back to tile place it should not have left, while allowing the waste to pass over it and off iuth the - \rightarrow a
trough or receptacle to receive the sane, thus saving the valuable float inaterial with the heavier ore that lies aloug the upper line or surface of the table berond the terminals of
5 the grooves. I thus avoid all intricate savings and returnings and accomplish what has hitherto been attempted to be accomplished by returning the same ore to be ran over two or more times. The mineral of less speclfic 10 gravity and of a different class from that which is discharged into the first compartment or section of the sectional launder will be carried farther across the table and will be discharged into the second section or com3 partment, while the material of the next or third-class will be discharged into the third section or compartment, thas separating and collecting the different grades or classes of material into two or more classes, the first of 20 which, for instance, may be lead, the second iron, and the third zinc, according to the ore under treatwent, the same rule applying to any minerals having different specific gravities.

By constructing the surface of the table of metal having an affinity for the particular metal it is desired to recover from the ore under treatment the separation and collection thereof is greatly facilitated and a more
30 complete separation is effected thau is possible ander the usual conditions.

The desired differential movenent or bumpIng action may be imparted to the table by any suitable mechanism such as has hereto-
35 fore veen employed in devices of a similar character and which it is unnecessary to ilustrate or describe berein, inasmuch as iny invention resides in the construction of the table and its attachments and not in the mech-
10 anism for imparting the desired vibratory or reciprocating movements thereto. Imay mention, however, as a desirable movement that which has haretofore been employed with what is known as the "Rittinger" table, made
15 in Germany many years ago and which has been in use in this country for many years, in which there is a side movement or bumping action combined with the transverse washing of the ore. forin and constrstion of conrse, that fore described may be modified in a nuinber of ways without departing frem the spirit of my invention, and hence I do not desire to
55 be limited to the exact construction shown and described.

This application is a division of an original application filed by me September 16 , 1897, and in which the sectional receiving-
Go launder hereinbefore briefly referred to is made the subject of claims.

Having thus fully described my invention, what I claim as new, and desire to secure by Letters Patent of the United States, is -
55

1. In a concentrator, a table provided with tapered riffles which merge in to the table-surface along a line oblirue to said table.
2. Án ore-concentrating table adapted to tlie "wet". process of separating ores, having a smooth upper surface extending along the side thereof on which the ore and wator are received, aud a series of spaced grooves or channels extending over the surface thereof at one side of said smooth portlon toward its discharging end; the said grooves gradnally diminishing in depth from their receiving to their delivery ends and inclined toward and merging in said smooth surface, substantially as described.
3. In an ore-ooncentrator, the combination $8 c^{\circ}$ of an endwise-reciprocatory transversely-inclined table having a serios of grooves or ohannels in its surface extending toward the discharging end of the table and gradually diminishing in depth or tapering in a vertical 85 plane from their receiving ends and merging into a smooth unobstructed sarface of the table which exiends along the higher side of the latter and across its disoharging end; and means for distributing ore and water over the table from along its hlgher side.
4. In an ore-concentrator, the combination of an endwise reciprocatory transversely-inclined table having a series of diagonally-extending grooves or channels in its surface diminishing in depth or tapering in a vertical plane from their receiving ends toward the discharge end of the table and merging into a smooth unobstructed surface of the latter which extends along its higher side and across its discharging end; and means for distributing ore and water over the table atits higher side.
5. In a concentrator; a table provided with tapered riffles which extond along the tablesurface transversely or obliquely across the line of movernent of the table and terminate along a line oblique to said table.
6. In a concéntrator, a table provided with a riffled and an unriffled surface; said riffles 110 tapering toward the unriffled portion and extending in a direction oblique to the direction or line of movement of the table.
7. In a concentrator, a table provided with a riffed and an unriffled surface; the riffles exienting transversely or obliquely across the line of movement of the table, and tapering or diminishing in depth toward the unriffled portion.
8. A table for ore-concentrators flaving its 120 surface provided with a series of longitndinal grooves or riffies diminishing in height from the head toward the tail and exteuding obliquely acress the surface of the table and terminating on a line oblique to the table.
9. A table for ore-concentrators having its surface provided with tapered grooves or riffles diminishing in height from the lead to the tail; said riffles diminishing in length from the rear to the front or feed end uf said table, substantially as described.
10. In combination, a table for ore-concentrators groozed or rifled longitudinally from head to tail; said grooves being tapered and
\square
diminishing in height from the head owam the tail end of the table, and the feed near the head end of the bed arranged to discharge the pulp transverscly across the deeper paris 5 of the grooves, substantially as described.
11. In combination, a bed or table for concentrators grooved or corrugated longitndiarily from head to tail; sabl corruratimis be ing deerer at the head and diminishing in
feed near the head end of the bed arranged to discharge the pulp transversely across the deaper parts of the corrugations, substantially as described.
In testimony whereof I affix iny signature ig in prosence of tiro witnesses.

SAMUEL IRVING HALLETT.
Witnceses:
Elilas Cohs, ROBERT WOODRMIDGE.

COMPLAINANTS' EXHIBIT No. 11
James Patent No. 633,265
ALMON E. HART, Special Examiner

No. 633,265.
Patented Sept. 19, 1899.
U. S. JAMES.

CONCENTRATING TABLE.
(Application filed Jan. 11, 1899.)

U. S. JAMES. CONCENTRATING TABLE.
(Application filed Jan. 11, 1899.)

U. S. JAMES,
 CONCENTRATING TABLE

Application filed Jan. 11, 1899

研宅. 8.

cit thaluily

Ulyzees S. S. Games
By Danis DOnis.
Attorncys

No. 633,265.
U. S. JAMES. concentrating table.
(Application filed Jan. 11, 1899.)

United States Patent Office.

ULYSSES S. JAMES, OF IIELENA, MONTANA, ASSIGNOR OF ONE-IIALF TO ROBERT A BELL, OF SAME PLACE.

CONCENTRATING-TABLE.

S.PECIFICATION forming part of Letters Patent No. 633,265, dated September 19, 1899,

Application filed Janary 11, 1899. Sorisi No.701,811, (No model.)

To all whom it may concert:

Be it known thatI, Ulysses S. James, a citizen of the United States, residingat Melena, in the county of Jewis and Clarke and State of
5 ful Improvements in Concentrating-Tables, of which the following is a specification, reference being had therein to the accompanying drawings.
ro - This invention relates to an improved con-centrating-table for the separation of heary minerals from the gangue or quartz inatter iu ores that have been crusined or reduced to pulp; and it inas for its objects, briefly, to les-
15 sen the expense of separating the minerals and to save a higher percentum of mineral than is possible with similar appliances now in general use, as more fully liereinafter set forth.

In the drawings, Figrare 1 is a plan view of the table-supporting framas. Fig. 2 is a side elevation complete. Fig. 3 is a detail plan of the table: Fig. 4, a detail section on the line 44 of Fig. 3; Fig. 5, r detail section on the detail of one of the rocker-bearings for supporting the rocker-frame; Fig. 7, a perspective of the parts of one of the slide-hearings for supporting the table-top; Fig. 8, a cross-rocker-frame and base in position; Figs. 9, 10, and 11, views in detail of the mechanism for shakiug the table-top, and Figs. 12 and 13 details of the pitman.

Referring to tue drawings by letters, a designates a suitable base-frame, upon which is sapported a rocker-frame b, both of which frames are constructed of a suitable number of longitudinal and transverse beams, their frame 3 is supported upon the base by a series of bearings c, arranged along the lougitudinal center of the frame and bolted to the base, these bearings each having a concaved pivot or jonrmal d, bolted to in id jacent part of :3o rocker-frame. Thus supporting the rocker-frame it is free to be tilted in either direction transversely. Any suitable devices may beemployed to tilt th. . ipme; but I prefer the employment of a rork-shaft e, sup-
ported in suitable journals at one side of the base a and running the full length thereof and carrying at intervals eccentrics f, whose straps are connected to arms g, pivotally denending from the rocker-frame, said shaft being provided at one end with au operatinglever h. This simple arrangement enables the table-frane b to be readily tilted to the desired angle to suit the kind of ore being 6 treated, and when tilted it will remain in the adjusted position until readjusted.

By supporting the rocker-frame along its longitudinal center it will be ouserved that it may be readily tilted with the utmost ease and accuracy, which will be especially advantrgeons in connection with exceptionally long tables used for certain kinds of ores. It will be observed that the bearings c extend up hetween the transier'se beams, so as to hring the pivotal point at or near the upper face of the rocker-frame, whereby the rockerframe is nicely suspended or balineed on the pivors, cnabling the frame to be adjusted with a minimum of exertion. It will also be noted that tho center line of the pivotsthat is, a line rumning through the centers of the soverat circles of which the bearingpivets d.form ares-is approximately in line with the operating pitman c^{\prime}, counected to the forward end of the table inidway between the side edges thereof, whereby the table may be freely tilted withoutsubjecting the pitman to any torsional strain or lateral oscillation, which obvionsly contribues to the utility of 85 the apparatus.
Fastened at intervals along the longitudinal beams of the table-frame are slide-boxes i, each containing a sliding block i, upon which rests a slide-block l_{i}, secured to the under side of the table, tine table being proyided with one of these biocks for each of the siide-boxes, whereby tho table will be slidingly snpported thronghont its length and breadth. The slide-blocks F_{1} rest upon the slide-blocks i and are countined within the side flanges of tio boxes, whereby the reciprocating wovernents of the table will be guided and the table will be merented from sliding down sidewise in the direction of its 100 inclination.

The table st its forward end at one side is
provided with a forward extension l, fianger around its edge to forin a trough, into which the pulp is fed and alone which it must pass to reach the main portion of the table and 5 the riffes. The flange around this trough is continued across the forward edge of the table and along its apper fongitudinal edge. It will beevident that the shaking inotion of the table-top settles the no mineral to the to bottom and brings the corrse gangue on top before the material reaches the riffles, so that rhe gangue will nct pack at the points of the riffles and dam the fine mineral; but the tine miseral having settled at the botton will
15 gradually move along above the points of the riffes, while the coar'ser gangue will move down acruss the riffles and separate from the fine mineral. It will therefore be noted that this trongh-like extensi sh of the feed end of - the table-top is a ver, essential feature and that in order to be effective the exteasion must be snfficiently long to insure the settling of the fioe mineral before the inaterial reaches the riffles on the inain surface. As 25 a geaeral thing the leogth of the extension whould be a littlegrenter than one-third the length of the table.

The table-top is constructed of longitudinal strips m of selected wood, prefersbly matched - tongue-and-groove stuff, and bolod together by cross-battens n, fastened at intervals to the under side of the table-top. At a point coincldent with each of these battens the ta-ble-top is suwed entirely across, as at o, the 35 kerfs extending down a sufficient depth to give the desired flexibility to the table, preferably about half-way through the strips m. Secured on the surface of the strips is a covering of hesvy linoleum n ' or other thick flexi-- ble material, this covering extending over and covering the trausverse slits o. A table thus constructed is self-adjustiog by reason of its transrerse flexibility to all the slide-bearings, thereby practically abolishing vertica! vibra45 tiou, a great desideratum in this class of appiiances.

The riffles ψ run longitudinally of the table parallel with each other and with the lower edge of the table; and their upper edges in5o cline downward from their forward ends toward their rear ends, and they extend over that portion of the table-surface below a diagoual line ruaning from near the upper forward corner of the table to its lower rear
an, nakig thic field covered by the rimes a triangular one, although this lucation and arrangement of the riftles may be varied, if found desirable. The rittles are fastened in grooves formed in the upper surface of the liooleum cover and extend only partially therethrough, and they are of course sinfliclently flexible transversely to yield to the sinuons wo ements of the table caused by irregularities in the supporting - surfar. thereof.
65 This manner of fastening the rifles tu the table has peculiar advantages. It enables the rinles to be planed down to any desired de-
gree-in iact, actually to the table-surfacewithont lesuroging their strength, and, furthernore, it jrevents therithes braking loose and syminging np from the table-surface, whereby the life of : he riffles will be greatly increased and their function rendered more perfect. The fasteniñ ineans inust okvionsly be something uther than nails or screws or other devices passing down through the rifles. I prefer cement or glue that will not dissolve in water Where the rintles are highest, (at the forward end of the table,) they are more widely spaced, and as their height is reduced their number is increased by the iusertion of the short supplemental rifles p^{\prime} The reason of this is that where the riffles are low there is less tendency for the pulp to pack, and their number is increased in order to make a more continuous dam to resist or prevent wraste of inineral. It will also be observed that if the riffes were laid the fall leogth of the table extravagant agitation would be necessary to avoid packing the pulp, which would result in the fine mineral being beld in suspense in the water and lost by being passed off across the riffles with the tailings.
The shaking or panning morement by which the pulp is made to travel downward and rearward on the table way be imparted to the table by any suitable devices; but I prefer the devices showo, because by means of them the pulp can be made to travel along the table at the desired speed witbout varying the velocity of the fly-wheel or the length of the stroke of the pitriáa. These devices consist of a balance-wheel q, secured to the end of a drive-shaft mounted in the bearing r, bolted to a bod-plate s, this bed-plate being in turn bolted to the table-frame b and having an opening in its center iu which works said wheel q. Also fastened to the bed-plate is another long bearing t, in which is jourasied a supplemental shaft carrying a disk or wheel u at its inner end, this disk u being close to the balance-wheel and being connected therewith bs a pirotal link v. The shafts of the wheels q and u are supported in the same horizontal plane, and by reason of the lateral adjustability of the bearing t said shafts may be adjusted into exial alinement or out of axial alinement îor a purpose hereinafter stated. The bearing t is rendered adjustable upon the bed-plate by being secured to a slids w, which is adapted to be adjusted back and forth by a screw-shaft x, journated in a learing y at the rear edge of the base-filates. This slide is adarted to be clamped in its adjusted position by means of a clamp-plate z and screw u^{\prime}. On the other end of the shaft carrying wheel u is formed or secured an eccentric b^{\prime}, to which is convected the pitman c^{\prime}, which at its sear end is connected to the table. This pitman is provided with suitable adjusting and cuabionnig derices, as is nsoal, so that the pitman may be extended to suit the adjustinenty of the supplemental shaft carrying the eccentric. It will te observed

[^1]that when balancoarheel q is rotated wheel u and its shaft will be rotated and the table reciprocated. When the shafts are in axial alinement, as shown in Figs. 1, 10, and 11,
5 the wheel u will have a regular rotary motion imparted to it, this motion being in unison with the balance-wheel. When, however, the slide-bearing is adjusted away from the table forward to bring the shaft of wheel "out of 10 alinement with the driving-shaft, the rotary motion imparted to the eccentric-carrying shaft will be irregular-that is, accelerated at a certain point in each revolution, and this acceleration will be imparted to the table. By
15 properly arrangiog the eccentric upon the shaft the acceleration can be made to act on the table at the proper point in its forward or backward stroke or portions of both to accelerate the movement of the pulp along the - table. It will thus be observed that by this differential-operating inechanism the flow of the pulp along the table can be regulated to a nicety without varying the speed of the drive-shaft or the length of the pitman stroke.

IIaving thus fully described my invention, what I claim, and desire to secnre by Ietters l'atent, is--

1. A concentrating-table provided on its surface with a series of substantially parallel,
30 longitudinal riffles extending from the forward end rearward and terminating short of the rear end of the table, on a substantially diagonal line running downward and rearward, and a series of suppleinental riffles interposed between the rear extremities of the aforesaid riffles.
2. A concentrating-table having its feedpoint at its forward npper corner and provided on its face with a series of parallel rif40 fles tapering rearward and extonding from the forward end of the table to a line running diagonally across the table from near the feed-
point rearwald and downward, and a series of supplemental riffles interposed between the rear extremities of the aforesaid riffles, as and for the purpose set forth.
3. A concentrating-table provided with longitudinal riffles tapering rearward aud being inore numerous and more closely spaced toward their rear ends, the riffles extending across the line of travel of the lighter material, substantially as set forth.
4. A concentrating-table provided with transverse kerîs to render it flexible transversely and provided with a series of longitudinal riffies extending across said kerfs and being transversely flexible.
5. A concentrating-table rendered trai:sversely flexible by a series of kerfs extending across its upper surface, a flexible covering for said upper surface and kerfs, and a series of longitudinal riffles fastened to this coveriny and rendered transversely flexible.
6. A concent rating-table constructed of longitudinal wooden strips, cross-pieces binding 65 the strips together, grooves or cuts being formed across the table coincidently with said cross-pieces, a fiexible cover fastened to the table and covering said grooves or cuts, and riffles carried by said cover and made flex'ble transversely.
7. A concentrating-table rendered transversely flexible and provided on its upper surface with a fiexible covering, and transverselyfiexible riffles fastened in grooves in the face of said flexible covering, said grooves cxteuding only partially through tho covering.

In witness whereof I have hereunto affixed my signature, in the presence of two witnesses, this 3d day of Jannary; 1899.

ULYSSES S. JAMES.
Witnesses:
L. P. Benedic',

Jno. K. Scott.

COMPLAINANTS' EXHIBIT No. 12
Lampert Patent No. 641,977
ALMON E. HART. Special Examiner

No. 641,977.
J. LAMPERT.
\&Application filed Mar. 16, 1899.)
(No Model,)
Patented Jan. 23, 1900.
Pat

ORE CONCENTRATOR.

No. 641,977.
J. LAMPERT.

ORE CONCENTRATOR.

(No Model.)
Patented Jan. 23, 1900.

$$
\text { (Application filed Mar. 16, } 1899 . \text {) }
$$

No. 641,977.
J. LAMBERT.
ore concentrator.
Application filed Mar. 16, 1899.)
(No Model.)

Patented Jan. 23, 1900.

4 Sheots-Sheot 3

Inventor

No. 641,977.
d. LAMPERT.

ORE CONCENTRATOR.
(No Model.)

Patented Jan. 23, 1900.

United States Patent Office.

JACOB LAMPERT, OF HILL CITY, SOUTH DAKOTA.

ORE-CONCENTRATOR.

SPECIFICATION forming part of Letters Patent No. 641,977, dated January 23, 1900.

 Anplleation filed Maroh 16, 1899. Sertal Ko، 708,300. (Ho modal.)To all whom it may concern:
Be it known that I, Jacob Lampert, of Hill City, in the county of Pennington and State of South Dakota, have invented certain new and useful lmprovements in Ore-Concentrstors; and I bereby deolare that the following is a full, clear, and exact description thereof, reference being had to the axcompanying drawings, which form part of this specification.

This invention is an imprevement in oreconcentrators of the kind shown in my Pitent No. 533,362, of January 29,1895 , and the preseut invention is more particularly an improvement upon the concentrator shown in my 15 said patent; and it consists in the novel combinations and constructions of parts hereinafter summarized in the claims and illnstrated in the accompanying drawings and described with reference thereto, as follows.
Figure 1 is a plan vies of the complete concentrator. Fig. 2 is a front side olevation of the device. Fig. 3 is a transverse section on liue 3 3, Fig. 1. Fig. 4 is a longitudinal section thereof on line 2 2, Fig. 1. Fig. 5 is an 5 enlarged detail view of the vibrating mechanism. Figs. 6, 7, and 8 are details. Fig. 9 is a front elevation of the device, showing how a tier of concentrating-tables may beoperated by a single vibrating mechanisa; and Fig. 10 30 is a transverse section on line 1010, Fig. 9.
Λ desiguates the concentrating-table, which is preferably of the shape shown in Fig. 1, its opposite sides being parallel and its onds dingonal or beveled relatively to its sides, the 35 tail end being beveled at a much greater angle to the sides than the head end and the receiving or rear side being shorter than its dlscharge or front side. The ends and rear side of the table are provided with upstandof material therefrom, aud the rear sido of the table, which is the receiving end, is also provided with a lateral extension forming a receiving-box A^{\prime}, which box nay have a removable plate A^{2} in its bottom, preferably of copper. 'The box A' is preferably so arranged that when the table is slightly tilted the bottom of the box A^{\prime} will be about level, zad the metal plate A^{2} in the box is used for the par-- pose of recovering amalgam in free-gold-orer treatment. This plate is removable to allow
different plates to be replaced for differeut processes and different ores. The plate is preferably set in at recess in the top of the table or box and its edges turned up, so as to hold the recorered metals, which can from then to time be removed, as required, there. from. In ordiuary practice a feed-trough I is placed in this box over the plate A^{2}, ore boing fed into this irough B throngh a spont B^{\prime} and escaping from the trongh into the box th ongh a series of perforations b in the side of the trough, as shown. From the box A^{\prime} the material passes onto the table proper, which is proferably slightly inclined from the rear to the front side thereof, as indicated in Fig. 3. This table is provided with a series of parallel riffes a^{\prime}, preierably extendiog parallel with the feed-box and with the front edge of the table, as shown, the rifles increasing in longth toward the front edge of the table, as shown. This table is so mounted upou the main frame of the apparatus as to be capable of longitndinal vibratlon, and, as shown, it is preferably monnted by ball-bearings upon said frame, the table being provided on its under slde with inverted oblong ball-holders or saucers C, which it over bells c, resting in slmilar smaller saucers \mathbf{C}^{\prime}. Preferably the upper saucers C are larger than 80 the saucers C^{\prime} to keep dirt and drippings from the table out of the lower maucers, and thas keep the ball-beariogs clean. To provide for easy adjustment of this table without disturbing its bearings, the saucers C^{\prime} are fixed to a tiltable frame D, as indicated in the drawings, which frame cac oe tilted so as to properly adjust the inclination of the table. This frame may be hioged at its front side to the front side of the stationary main frame, and journaled in the main frame, near the rear aide thereof, is a shaft E, which is provided at one end with os ratchet E^{\prime}, engaged by a locking-pawl E^{2} on the main frame to lock the shaft in any position desired. On thls shaft E are keyed short arms e, carrying rollers e^{\prime}, which are adapted to contact with the transverse bars of frame D or the bottom af said frame, near the rear slde thereof, and tilt said frame more or less upward when shaft E is rocked, as indicated in Fig. 3. Thas by traing shaft E the fraine D can be tilted
and the table adjustet to any desired inclination. The shaft may be turned by a lever E^{3}. or by any suitable wrench-lever.

The table is vibrated by the following 5 means: To the nuder side of the table A, near the head end thereof, is attached a bracket A^{3}, to which is connected the inner end of a longitudinally-movable shaft, the onter end of which is guided in a proper bearing or mit free longitudinal movement of said shaft. This shaft passes through a standard f, provilled above the shaft with a vertically-adjustable block f^{\prime}, which ann be adjusted by neted to the block is connected to the tang g of an eccentricstrap G^{\prime}, fitted orer an eccentric G on the main shaft H of the machine, said shaft H bejournaled in saitable bentug H on the maic framo, near the head end of the table and above and at right angles to the shaft F, as shown. To the tang g is also connected one end of a long link F^{2}, the other end of said is connected to a block F, secured to aid shaft F neąr the onter end thereof. A spriug F^{3} is strung on shaft F and interposed between the standard f and an adjustablenut F^{4} on said shaft, snid spring tending to force links F^{2} and f^{3} form a toggle connection between the shaft F and bracket f, and if said toggle is deflected by the lifting of the eccen-tric-strap the shaft.F.will be forced longitu35 dinally inward, thereby pernitting the spring to push the table qulekly away from stand. ard f, and when the toggle is extended agail the table is drawn back towned the standard and the spring F^{3} is compressed. Pawer is 10 applied to the main shaft Hi through belt-pnllejs II' or any other suitable means, and when this shaft is rotated rapidly the eccentric G opens and closes the toggle-joint, thereby imparting vibratory movement to the table, as 45 described. The link f^{3} being shorter than the link F^{2}, It results, practically, that the inward movement of the shaft F is more rapid and is brought more to an abrupt stop than would be the case if the toggle-links were of equal length, and the abrupiness of the stop of the inward movement of the table can be measurably controlled by adjusting the block f^{\prime}. When it is lowered, the stop is made more quickly and abruptly. A further ad-
55 vantage of this form of toggle connection is that the strain upon the shaft E is almost entirely linear and very little strain is brought npon its beariugs in the outer journal-box F^{6}, and the lateral thrust on the shaft is also
60 ertirely obviaterl by this construction. The short link f^{3}, when the eccentric is turned half-way around from where it is shown in Fig. l, will, as shown by the dolted lines, stand at about an angle of forty-five degrees up-
65 ward or more, thus causing the sudden stop of the table, and this causes thes mineral thereon to move forward toward the tail end
thereof. The adjustable short link f^{3} of the toggle renders this table-operating device very sensitive, or, in other words, a vory fine adjustment of the stroke of the table can thereby be secured, and tho longer link F^{2} relieves the objectionable downtlirust of the shaft F^{\prime} on the box F^{6}.

The riffles a^{\prime}, as shown, do not extend entirely to the tail-end flange of the table, a smooth surface A^{7} of gradually-increasing width being left between the ends of the rifHes and the rear flange a^{\prime}, as shown. Tho apex of the tail end of the table is also cut off, as shown at A^{6}, and at this point should be placed the dividers J , by which the concentrated ores may be graded and directed into proper receivers, as in other machines of this class. A portion of the material on the table also escapes over thi front edge thereof, between the dividers and the end of the next riffle, and as such material is more or less imperfectly separated it is customay to return it to the table and pass it thereover ingin. In order to do this, I employ a catch-spout I, which is adapted to catch this material and returu it back noder the table to a pumpeasing I', within which is a rotary pump-propeller I^{2} which may be monnted on one end of the wain' sliaft II, as shown. This pump nnay be of any suitable fonstruction. It lass an ontlet at its upper end which discharges into a spont i, by which the material is led back into the box A^{2} at the head of the table, from whence it is passed again over the riffles, as before. Water may be supplied to the table as usual, and I employ the perforated supply-pipe K aloug the tail-end flange a^{\prime} to admit water to the smooth surface A^{7} at the tail end of the tabie. Ihis pipe K is connected to any suitable sonrce of supply and, as shown, is provided with a central vilve K^{\prime}, and its opposite ends are connceted by branches K^{2}, provided with valves K^{6}, with a main supply-pipe K^{3}. By weans of the various valves the water may be regulated and supplied in nore or less volume from the whole or either part of the pipg k to the table, as is evident.

Operation: In operation the pulpor crushed ore is fed from a spout or pipe to the trongh B, from which it is fed onto the metnl plate A^{2} and then over the riffles on the table, which is inclined toward its front or wider end. Λ reciprucating movement is imparted to the table by the togrgle and eccontric to move the mineral caught between the riflles forward to the tail end of the table, where in the smooth or anriffled portion A^{\top} the sand or refuse matter yetleftin the inineral inight be washed off. The mineral belng carried forward to the tail end is therecut out by the dividers Jinto one or more receivers, the separation being so perfect that if there are minerals of dif. ferent specific gravity in the ore they will come down in streaks, according to gravity, over to the end of tho table and can be easily separated. A yortion of the minorals not yet
perfectly cleaned from refuse escapes off the edge of the table, between the lowest part of the dividers and the end of the lowest riffle, Into spout I and is returned to the elevator
$5 \mathrm{I}^{\prime}$ and delivered back to the head of the table to be treated again, as shown.
In some cases where a great quantity of materisl is to be treated or where economy of room is desired the conceatrating-tables may and 10 . The tables would be daplicate the upper table being supported on the lower table by means of uprights A ${ }^{10}$, rigidly braced by the diagonal braces A^{11}, so that the two路 like the single table above described. In this case each table may be supplied wlth ore by separate feed-troughs, and the returns or tailings from the table may be returned by the
20 pump I, the ontlet from which may be provided with a branch pipe or .pipes $i b^{\prime}$, leading to the respective tables. By this means the capacity of the apparstus can be increased without material addition to the cost thereof than would a single table.

One of the particnlarly valuable and novel featurea of my conceutrator is the pecalias formation of the table with a beveled head o and tail ends provided with flanges.

The pulp or wet ore delivered on the table troves forward diagonally down and toward the tail end instead of passing directly down, and its movernent oarries the concentrates the easiest way to escape, and to prevent the water from directly escaping and to keep the water mixed'with the pulp for the better settling of concentrates the head end of my table 40 is cut diaganally and an upstanding flauge fastened thereto, thereby saving mnch water, which in many locations where water is scarce is a material advantage and improvement. The diagonal tall eld of the table, as shown, is of cient to accomplish the proper separatlon of the minerals from the refuse, and a larger triangular smooth surface or aquareended table is useless and sirnply increases the power necessary to operate the machine.
50 The object of the tail-end flange is to prevent the wash-water, which is turned on the table niearly over and in line with this flange, from slopping over or falling off and effects a large saving of water.
55 Having thus described my invention, what I therefore claim as new, and desire to secure by Letters Patent thereon, is-

1. In an ore-concentrator, the table having its head and tail ends beveled and each pro-
60 vided with upstanding flanges, a feed-trough at the rear side of the table, and longitndinal parallel rifles extending from the head-flange toward the tail-flange, said riffles gradually iucreasing in iength from the box toward the scribed.
2. In an ure-conceutrator, the combinatlor
of the table having its head and tatl enas bov. eled'and each provided with npatanding flanges, a laterally-projecting feod-box on the rear side of the table, and longitudinal parallel riffles extending from the head-flange toward the tail-flange and grad nally inoreasing in length from the box toward the front, eige of the table; with means for vibratling said 75 table, substantially as described.
3. In an ore-concentrator, a table naving parallel front and rear sides, its head cat on an obtuse angle to its sides, and fits tail out on an acute angle thereto, upstandlng flanges on its rear side and head and tail ends, and parallell longitudinsll y-disposed riffles extending from its head toward its tail end.
4. In an ore-concentrator, the comidnation of a table having parallel front and reari sides, and beveled head and tail ends, the tail-end angle being more scnte than the head angle, gach end boing provided with apstanding lianges, and a feed-box at the slde of tho table, and parallel longitndinally-disposed Fiflies on said table; wlth the removable amalgamat-ing-plate in said feed-box, and means for vibrating sald table longitudinally, and the ore and water feed and supply pipes.
5. In an ore-concentrator, the combination of a table having parallel front and rear sides, an obtuse-angled head end, an aonte-angled tail end, eald ends being provided with apstanding flanges, and a feed-boz at the rear side of the table, and parallel longitudinallydisposed riffles on said table extending from the iead toward the tail end of the table, of successively gredter length as they approsch the front side of the table, and terminating some distance from the tail end so as to leave a sinooth surface betwoen their extremitles and the tail-end flange; with means for vibrating said table longitudinally, and the ore and water foed and supply pipes, all substantially as described.
6. In an ore-concentrator, the comoination of a table having its head end cut on an obtuse angle, and its tail end cut on an aonte angle and provided with upstancing flanges, a series of parallel longitudinally-disposed riffles extending rrom the head toward the tail end of the table and of successively greater length as they approach the front side of the table, sald riffles terminstlag some distance from the fail end so as to leave a smooth surface between their extremities and the tail-end flange; in combination with the ore and water feed and sapply pipes, means for vibrating said table, and means for roturning partially-tneated ores back to the 125 feed-box.
7. In an ore-concentrator, the combinatlon of a table having parallel front and rear sides, an obtuse-sngled head end, an acute-angled tail end both ends being provided with apstanding flanges, a feed-box at the rear side of the table, and parallel longitudinally-disposed riffles on said table, extending from the head toward the tail end of the table and
being of successively greater length as they approach the discharge edge of the table; with the ore and water supply pipes leading to the feed-box, the wash-water-supply pipe along
5 the tril end of the table, means for vibrating said table, and the pipe and pump for returning partially-treated ores back to the feed-box.
8. In an ore-concentrator, the combination 10 of the concentrating-tables arranged one above the other and rigidly connected together, the adjustable laterally tiltiag frame sapporting said tables, means for imparting longitudinally-reciprocatory motion to said
tables, the ore arid watr: supply pipes for each table, a pump, \& pipe for collecting tailings for each table and returning the same to the pump, and the branch outlets from the pump for returning the tailings to the respective tables, for the purpose and substantially 8 o described.
In testimony that I claim the foregoing as my own I affix my signature in presence of iwo witnesses.

JACOB LAMIER'I.
Witnesses:-
E. II. Fansmith, Orlin II. Lampert.

No. 638,324 .

$$
\begin{gathered}
\text { W. G. DUD. } \\
\text { CONCENTRATING TABLE. }
\end{gathered}
$$ (Application filed May 8, 1899.)

(No Model.)

Witnesses. ofellentwerosy.
Dtaltorde (laws.

Patented Dec. 5, 1899.

United States Patent Office.

WILLIS G. DODD, UF SAN FRANCISCO. CALIFORNIA.
CONCENTRATINQ-TABLE.

SPECIFICATION forming part of Lettera Patent No. 638,324, dated December 5, 1899.
Application filed May 8, 1899. 8erial No. 715,813. (No model.)

To all whom it may concern:
Be it known that I, Willis G. Doodd, a citizen of the United States, residing at the city and in the county of San Francisco and State
of California, have invented certaln new and useful Improvements in Concentrating-Tables; and I do hereby declare that the following is a full, clear, and exact description thereof.
The present invention relates to a certain new and useful concentrating-table for use more especially in connection with that class of ore-concentrators employing transverselyinclined tables having longitudinally-vibrais tory movement which tends to carry the material to be concentrated longitudinally forward toward the foot or tail of the table; and it consists in the arrangement of parts and details of construction, as will be hereinafter set forth in the drawings and described and pointed out in the specification. Ordinarily the table or concentrating-surface of this class of concentrators has its working face provided with or covered with a series of riffles extends ing longitudinally from the head toward the foot of the table, the theory being that as the material to be separated, together with the water, is fed onto the table at its upperedge the downward travel or flow thereof across o the face of the table will be obstracted or arrested by the longitudinal riffles and the valuable or heavier particles or portions of the material being caught or settling in the riffles will, owing to the longitudinally-reciprocat5 ing motion imparted to the table, be diverted from vertical travel and cansed to move longitudinally toward the foot of the said table and be discharged at such poift into a receptacle provided for this parpose. In actualo working, however, complete recovery of all valuable particles or portions of the material fed onto the table does not take place under the operation just described and much of the lighter particles of the valuable portions is 5 not recovered, but instead carried off with the ganguo or waste material flowing or carried over the table. This is due to the fact that the material coming in contact with the riffles is moved or carried forward by the ac-
tion of the table, while the water, with which the materiss is mixed, not being sabjected to
the action of the table, flows downward over the riffles at the head of the table with such violent action as to carry with it a large per cent. of the valuable particles of the material into the waste-sluice and at the same time barring that portion of the material carried formard in the riffies in snch coudition as to require additional water-supply to assist in settling and soparating the valuable particles 6 contained therein.

The object of the present invention is to so construct the concentrating-table as to permit of the material to be treated and the water with which it is mixed to be moraevenly dis. 6 tributed over the worklag face of the table and to obtain foll sontrot of the material dnring the operation of effecting a separation of the valuable portions from the gangue, thereby providing against loss of the valuable particles or portions of the material, which have heretofore been carried or washed down by the current or flow of water passing over the working face of the table.
To comprebend the incention, reference must be had to the accompanying sheet of drawings, forming a part of this application, wherein-

Fignre 1 is a top plan vien of the table. Fig. 2 is a diagrammatic sectional view on line 80 $x x$, Fig. 1: and Fig. 3 is a cross-sectional view in elevation on line $y y$, Fig. 1.

In the drawings the letter A is used to indicate any suitable style of frame for the concentrator, within which is monnted to freely 85 swing the concentrating-table, which in the present case consists of a frame A^{\prime}, having a covering of narrow boards or strips B. Upon these boards or strjps B is laid linoleum, oilcloth, or other covering B^{\prime}, which constitutes the working face of the table. On this face or surface is secured an overflow-riffle B^{2}, which extends diagonally from the head end a of the table toward its foot edge or side, terminating at the point a^{\prime} or lower edge of the table a distance from its head end. This overflow-riffle or obstructing-rib B^{2} gradually decreases in height from its upper end toward its lower end, where its npper face is approximately flush with the surface or working face of the table. Joined to this diagonsl riffe or rib is a series of longitudinal riffles or
ribs C, each of which is located an equidistance apart and secured or attached to the workiag face of the table. These rifles or ribs extend longitudinally or lengthwise of erably terminate a short distance from sail foot or discharge end, so as to leave a plain or unriftled surface C^{\prime} at sucr end. The riffles or ribs C form a series of poekets or colparried downward orosuwise of the table is eaught and its trivel diverted from crosswise of the table to lengthwise thereof. Eatch lon: gitudinal wifle or rib C in lieight corresponds 15 with the height of the diagonal overflow-riffle or rib B^{2} at their points of jnncture. Tence the table may be said to be provided on its working face with a series of longitudinal ribs which gradually decrease in height from 20 the upper end of the table toward its lower end. Inasmuch as the flow of the waterand material to hee treated is strongest at the upper end of the table, it follows that the obstruction offered to the downward travol of 25 the material should be greatest at such portion of the table and less resistance offered at its lower portion for the reason that the current is less at sumel portion. if the longitudinal rittles be of uniform height, it heavier flow of water will be required to wash the material downward than where the rifles are of unequal or gradually - reduced height. As stated, if of equal height a heavier tlow of water is required, resulting in the material be35 ing washed over the upper rifles and "banking," so to speak, in the lower rimes, hence impairing the efliciency of the machine. Howe ver, by-reducing or deereasing the height of the longitudinal rilis or rithes proportion-- ately to that of the diagonal overflow-rithe or rib the material is permittel to tlow gradually downward or crosswise of the table, and the work of each runway being proportionatoly to the others as the hody of material passed thereover and the obstruction offered by each riffle or rib being likewise in proportion to the foree of the impelling stream or current of water at such points reaction of the water within the runways and carrying awny so of the lighter valuable particles of the material treated is prevented. As a consequence of this arrangement while the heavier saluable particles or portions will be mainly eaught or settled in the upler runways of the 55 table the lighter particles carried over such obstructing-ribs will settle, owing to their sperifiegravity athd reduced tlow of the watter, within the lower rumay:, and thus be recovered or separateg from the waste mate-
rial and bems carried forward to the umrithed portion of the tahle will be sulnjected to the action of elear water thowing thereover, and thas eliminated from the gangue with whicli it is mixerl.
Thediagonal overflow-rithe D2 being placed, as shown, in line with the natural fow or path
of the material confines the water with which the material is mixed and canses it to flow with the material, so as to wash or separate the base or worthless portion from that which is valuable, which base or worthless portion is carried over the dingonal riffle or rib, which decreases in beight from the head loward the foot of the table for this purpose. This diagonal orernow-rille or rib thus serves as an obstruction for confining the water at such end of the longitudinal rifles and preventing the same tlowing too freely over such portion of the table and carrying the material containing raluable particles or portions therewith, althongh it permits the downfow of the water after being retardel for such time as to permit settling of the valuable partieles. This rille or rib thms acts as a restrainiog. wall. If it were not for this rib, all the material flowing at the heat of the t:able would be washed away by the thow of the water, and if said rild or rimbe extemed straight, so as to form an end wall for the table, it would simply serve to canse the material io bank at such point and to throw the full current of water towatd the foot of the table in order to wash or earry away the lighter valuable portions.
The concentrating-tithle is secured to the slides 12 , which work in grivess 3 of the adjustable frame 4 , said frame heing hinged at, one side to the fived frame A. liy means of the adjusting-serew st the transwerse inctination may be increased or doereased hy raising or lowering the :aljusting device. Below the table is secured the rod ti, which projects be yond the forwardend of the talle. This rod is thrown in waral by means of the cam 7 , mounted upon the drive-shaft s, and is suddenly thrown ontward by means of the spring 9 , which surrounds the ron 6 . Any suitable form of mechanism mary be employed to impart the necessary motion to the concentrating-table, that described being made use of only on acconnt of its simplicity.

In the operation of the machine the material to bo treated is fed onto the table at its upper comer, near the head end thereof, the same being carricd downward ly the flow of water fed upon the table with the material to be treated. The reciprocating motion imparted to the table is such as to cary the material forwat or toward the foot or tail of the table, while the inclination of the tablo is such as to tend to permit of the material to flow downward or crosswise of the table. These two forces acting upon the material forces the same to pass over the table in a diagonal path, as indieated lyy the diagonal overflow-riple or rib B? (Shown in the drawjugs.) As the material flows over the table the valuable particles or portions by reason of their specifie gravity settle within the vari ous runways l, formed by the longitudinal 130 rifles of ribs (', and owing to the reciprocat-
toward the foot or tail end of the table, while the base or worthless material is carried over the diagonal rimle or rib B^{2} and conveyed toward the lower end or bottom of the table and discharged therefrom.
With the described arrangement of the riffles perfect separation is effected, pure concentrates are obtained, and the loss of valuable, although light, material is practically 10 eliminated, thereby making this class of oreconcentrators efficient and successful for the separation and recovery of fine or light gold from the ore and gangue.
I am aware that instead of secaring inde-
15 pendent riffes or ribs to the working face of the table a sheet or layer of rubber may be stamped or molded with said riffles or ribs thereon and said sheet or layer be used as the working face of the table. IIence my invention contemplates such form of table- i e., whether the working face of the table has independent riftlos or ribs applied thereto or whether the same be formed integral with said worklng face.
25 I mm aware that it is not novel to provide a concentrating-table baving a series of riffles or ribs longitudinally arranged upon the working face thereof, aud I do not wish to be understood as claiming this featureper se, for o such is disclosed in Letters Patent No. 609,804, granted to Samuel I. Hallott Angust 30, 1898; but. I ain not awaro that riffles or ribs so arranged have been made use of in combination with a rib or riflle run diagonally across the
35 working face of the table and from which rib or rifle the longitudinally-arranged ribs or riffles extend.

Having thus described my invention, what I claim as new, and desire to secure protection in by Letters Patent, is -

1. In an ore-concentrator of the described class, the combinatlon with the concentratingtable, of an overflow-riffe or rib arranged diagonally across the working face thereof, and
said diagonal riffe or rib and extending longitudinally toward the foot or tail of the table.
2. In an ore-concentrator of the described character, the combination with the concen-trating-table, having a movenient whose tendency is to carry the material fed thereon to-
ward the foot or tail of the table, of the over-flow-riffe or rib arranged diagonally across the working face of the table and extending from its upper end to its lower side, a series of parallel riffles or ribs extending from the diagonal riffle or rib longitudinally toward the foot or tail of the table, and of a plain uprifled surface between the ends of the longitudinal riffles or ribs and tail of the table.
3. In an ore-concentrator of the described character, the combination with the concen-trating-table, of an overflow-ritte or rib arranged diagonally across the working face of the table and extending from its upper end to 6 its lower side portion, said riffle or rib decreasing in height from its upper to its lower end, and of a series of parallel rifles or ribs extending from the diagonal riffle or rib longitudinally of the table or toward the tail or γ foot of the table, said ribs or riffles being of a height corresponding with the height of the diagonal riffle or rib at the juncture of said rik3 therewith.
4. As a new articlea concentrating-table for 25 ore-concentrators the working face of which is provided with a diagongl overflow-rifle or rib extending across the face thereof from its upper end to its lower portion and with a series of parallel riffles or ribs extending from so the diagonal riffle or rib longitudinally of the table or toward the foot or tail thereof.

In testimony whereof I hereunto affix my signature, in presence of two witnesses, this 21st day of April, 1890.

WILLIS G. DODD

Witnesses:
Walter F. Vane, N. A. Acker.

COMPLAINANTS' EXHIBIT No. 14
 Pinder Patent No. 658,120
 ALMON E. HART, Special Examiner

J. W. PINDER.

CONCENTRATOR.
(Application filed July 12, 1900.)
(No Model.)

United States Patent Office.

JOSEPH W. PINDER, OF GROVELAND, CALIFORNIA.

CONCENTRATOR.

SPECLFICATION forming part of Letters Patent No. 658,120, dated September 18, 1900.

Applicatlon fied Juiy 12,1900. Sortal No. 23,338. (No model.

To all whom it may concern:

Be it known thai I, Joseri W. Pinder, a citizon of the United States, residing at Groveland, county of Tuolumne, State of California, hate invented an Ingrovement in Concentrators; and I hereby declare the following to be a full, clear, and exact deseription of the sanne.
My invention relates to a device for first terials and afterward separating the lighter and worthless material therefrom.
It consists of a table, the head of which is made concave, and the lower end connecting wise suld sidewise and in conjunction with this table are a series of diagonally-disposed tapering riffles and anether series of riffles paralle! with the side of the table and sepao rated from the first-named series and means for eeceiving the discharge from each series of :iflles. The upper eud of the table is supported upon vertical standards upon each sice with heada which allow a perfect freeof movement, and a vertically-disposed craak-wheel is connected with the ceutral portic:: m^{2} the head, so that a revolving mothon ts given to the head, while the lower end of ine tatle is supported upon wheels or rollthis asd, the compound movements serying \%of first concentrate and afterward separste the anterial.
My invention also comprises details of coaby refers co to the accompanying drawines. Fig:re 1 is a plan of the cuncentrator. Fig. ε is a transverse section on the iine x of Fig. 1. Fig. 3 is a transverse section on the line y y of Tig. 1. Fig. 4 is an and elevation. Fig. 5 is a plan of the grooved tracks. Fig. 6 shows elevations of some of the riffles.
The table A is made, preferably, of light wood or of other suitable material, and its er forms an enlarged rounded head, which narrows into the body and extends to any suitable length to form the lower portion of the table. This upger or head portion of the table is made stizhtly concave, as shown height to prevent theescape of imaterial therefrom. This table is supportsa upon short
vertical standards 4 , which may have ballbearings or other suitable hearls, and these heads at the lower end rest in sockets at 5 , which are supporled upon the frame-timbers or other supports 6 . The upper ends of the standaids fit in similar sockets 7, which are fixed to the table at each side of the head. Intermediate between thesesupports is a ver- 60 tical shaft 8 , having a crank-wheel 9 upon it. the crank-piu of which connects with the lower part of the table, and power is derived to rotate the crank-shaft froin any zuitable sollree through a beli in the pulley 10 , fixerl npon the shaft 8 , so that the rotary motion of this head portion is produced, the standards 4 having a miversal movement, so that they easily follow the movement of the crank. This motion serves to concelstrate and settle the heavy taraterial in the deeper portion 2 of the head, and rs the material recmmalates it gradually flows nutward down the stratight portion of the iable, the concaved deprossion of the head gradually mergiog itsoli inios the lower or tail portion of the table. This lower eud 11 of the table is sopported rpon jourualed wheels 12. These wheels rum in grooved tracks, as at lis, so that the rotary motion imparted to the head of the spparatus becomes a longitudinal shaking motion at the lower eud.

Úpon one side of the table aro the riffles 14, which consist of tapering strips, the higher ends of sphich counect with ar upvardly-p:ojecting rib 15 , and this rib separaies the riffles 14 from another series of riffles 16 , whioh ary upon the outer side of the riband toward the edge of the table, as shown. These ribs are all deopest at their upper ends and gradually taper down to a point shere the lower ends terminate upo the table.

Material is fed into the upper end of the appratus in any desired regular manrer, and a supary of water is discharged into the head of tire table through a curved perforated pipe 17.

A second water-supply pipe 18 is located at a suitable point along the side of the table opposite the riffles and the operation will then be as follows: The apparatus being set in motion the rotary movement of the head of the table concentrates the heavy portion into the central part of the head, while the lighter por-
tion upon the surface gradnally flows down toward the foot of the table. The body of concentrates accumulates in the concavity of the table, and when a sufficient amount has
5 been settled they begin to flow downward; but by reason of the incline of the table they will also flow over the riffles 14 successively, and the lighter material flowing over these riftles with the concentrates will also flow over
so the interposed rib 15 and into the riffles 16 , the angle of which, as before stated, differs from the angle of the riftles 14, as plainly shown in the drawings. The "seconds," so called, flowing orer this rib 15 into the riffle 516 are rapidly separated from the concentrates and the latter are also graded by the various ribs or riffles over which they pass. Material which passes over the edge of the table is received into a trough 19 , which con20 veys it away, and the concentrates which reach the lower end of the table are similarly received into a condncting trough or chute 20 .

In order to vary the grade of the table to suit the character of the material which is be13, counected by a 13 , connected by a cross-timber 21, which is supported by a rertical standard 22, having rack-teeth upou one side, and these rackteeth are engaged by a pinion 23, mounted
30 upou a suitably - journaled shaft 24 . The outer end of this shaft has fixed to it a handlever 25 , with a suitable spring-controlled pin at the lower end, as at 26, and this pin is adapter to enter holes in a concaved segment point as to hola the device at any desired point of adjustment. Thus the grade of the table in the direction of its length can be readily changed at any time to suit the conditions of the material which is being acted upon.

Having thus described my invention, what I claim as new, and desire to secure by Letters Patent, is-

1. In a concentrator, a table having a 5 rounded, concaved head with a surronnding rim, an extension into which said head gradually merges, said extension being inclined from one side toward the other, and also inclined in the direction of its length, standards
50 supporting the opposite sides of the head and capable of unicersal movement, a crank connection with the center of the head whereby a rotary movement is produced, and rollers upon which the lower end of the table is supported whereby a longitndinal movement of this end of the table is produced, and riffles n pon the lower side of the table.
2. A concentrating-table consisting of a rounded head with the bottoin sloping grad-
60 nally to the center, and a peripheral rim, an extension forming the lower end of the table into which the concavity of the head merges, said extension being inclined transversely,
means whereby a rotary movernent of the head and a longitudinal reciprocating movement 65 of the lower end of the table are produced, a series of divergent riffles extending from the side of the table toward th center a rib parallel with the side of the table against which the upper ends of said riffles abut, and a second series of riffles exterior to the rib and parallel with the side of the trble.
3. A concentrating-table consisting of a rounded head having a bottom sloping toward a central point and a surrounding rim, the lower end of the table forming a continuation of said hottom into which it merges, said lowe: end being approximately flat and inclined lougitudinally and also transversely with a rim upon its upper edge, pipes by which water is delivered into the head portion and along the sides of the lower portion, a tapering rib connecting with the rim of the head portion and extending toward the lower end, approximately parallel with the discharge side of the table, tapering riffles having their deeper ends contacting with the tapering rib and diverging toward the center of the table, other tapering riffles exterior to the rib and approximately parallel with the side of the table, tronghs at the lower discharge side and end respectively to receive the materials separated upon the table and means whereby a rotary inotion of the head, and a longitudinal movement of the lower end of the table are simultaneously prodnced.
4. A concentrator comprising a table having a rounded concaved head, with surrounding rim, the lower end forming a continuation of the bottoin of the head portion and inclined longitudinally, and from one side to the other with a series of ribs and riffles for separating the materials flowing down the table, standards supporting the opposite sides of the head and having a universal movement, a crankshaft connecting with the central portion of the head, and means for rotating said shaft to produce a rotary movement of the head, rollers journaled to the lower end of the table, guiding supports apon which the rollers are 100 adapted to travel, a stem upon which said supports are carried having rack-teeth upon it, a pinion mounted upon a horizontally-jonrnaled shaft engaging the rack-teeth of the stem, a lever fixed to the shaft by which it is turnable to raise or lower the table-support aud change the grade thereof, and a springpresssd pin and seginent whereby the paris are retained at any position of adjustment.

In witness whereof I have hereunto set my 120 hand.
J. W. PINDER.

Witnesses:
E. G. Stine, W. B. Forsyth.

COMPLAINANTS' EXHIBIT No. 15
 Dod Patent No. 676,427
 ALMON E. HART, Special Examiner

No. 676,427.
Patented June 18, 1901.
W. G. DUD.
attachment for concentrating tables.
(No Model.)

fig. 3.

2Vituesses. OFEf(onteverdes)
Tattoo or Vans. Fig.

United States Patent Office.

WILLIS G. DODD, OF SAN FRANCISCO, CALIFORNIA.

ATTACHMENT FOR CONCENTRATING-TABLES.

SFECIFICATION forming part of Letters Patent No. 676,427, dated June 18, 1901.

Application filed August 30, 1900. Serial No. 28,492. (No model.)

To all whom it may concern :
Be it known that I, WILLIS G. DODD, a citizen of the United States, residing in the city and county of San Francisco, in the State of California, have invented certain new aud useful Improvements in Attachments for Con-centrating-Tables; and I do herebs declare the following to be a full, clear, and exact lescription of the same.

Practical working of this class of machinery has proven that a certain proportion of the gold or valuable particles is carried off with what is known as "middlings," and is thus lost or remaius unseparated unless reconveyed to the concentrating-table to be reworked. This is especially true in connection with the working of the ore by the nse of what is known as the "transverse riffled reciprocating table," or such as have a plain or muriffled zone of
20 flow at the extremity of the riffled surface of the table. With this class of tables the main separation takes place within the riffles of the table, while final separation of the valuable particles is made upon the plain ol unrifted pre of the table during the travel of the concentrates toward the discharge end thereof. While passing over this portion of the table the concentrates are subject to the action of clear water in order to wash the same and
30 separate the sand or base or worthless portions therefrom. This eurrent or flow of water is sufficient to carry the extreme fine floatgold with the sand. This mixture of the sand and fine gold is termed "middlings." It is recovery of fine gold from this class of material to which the present invention rolates.

The object of the invention is to provide a simple and inexpensire attachment for the clarged may be reworked by the action of the table proper, the attachment being so arranged that it may be adjusted to meet the requirements of the material to be worked.

In order to compreheud the invention, reference should be had to the accompanying sheet of drawings.

Figure 1 is a top plan view of a concen-trating-table, partly broken away, with the
50 - attachment applied thereto. Fig. 2 is an enlarged detail view of the attachment illustrated in Fig. 1. Fig. 3 is a side view in ele-
vation of the mechanism disclosed by Fig. 2 of the drawings, and Fig. 4 is an end view in eleration of the attachment viewed from the feed end of the table.

In the drawings the letter A is used to indicate an ordinary riffled concentrating-table having a plain or unriffled portion $\mathrm{A}^{\prime \prime}$ This unriffled portion constitutes the zone of flow 60 of the material discharged from the riffled portion A^{2} of the table. To the side of the table, at the discharge-end portion B for the middlings, is secmred the attachment B^{\prime}. This attachment has the action of a miner's "horn" 65 and for such reason shall liereinafter be termed a "horn attachment." Said horn attachment extends from approximately the extremity of the lowermost riffle a to the discharge end of the table. Any suitable shape may be given thereto; but I prefer to gradually incline the onter wall or side thereof from approximately poiut b toward its discharge end b^{\prime}. The bottom of the horn is also slightly upwardly inclined from b^{2} toward its discharge end b^{\prime}, which discharge end preferably terminates in a downwardly curved or inclined lip d, Fig. 3. By thus constructing the side wall and inclining the bottom of the horn the material or middlings discharged δ therein may be worked to much better advantage, as greater resistance is offered to its out.flow.

The forward end of the horn l3' is pivotally secured or fulerumed to the bottom edge 1 of the table by bolt e^{2}, which passes through eyerings e^{3}, attached to the bottom of the horn. The discharge-end portion of the horn is supported by the adjustable bolt 4 , which is fulcrumed between ears 5 , depending from the horn, Figs. 3 and 4. This serew-bolt passes through plate 6 , attached to bottom edge 1 of the table, and it is raised or lowered by ad-justing-nuts 7. These supporting features of the discharge end of the horn may be said to constitute an adjustable support or hanger, by means of which the inclination of the hom may be varied, so as to regulate or adjust the horizontal of the horm in accordance with the requirements of the material to be treated.
Any suitable style of mechauism may be employed for miting the lorn to the table and providing for such adjustment as may be required. I have shown and clescribed the
simplest form of means for such purpose; but, as stated, these may be varied as desired or practical working prove expedient.
The body of the tailings flows over the riffles 5 onto the launder C, from which it is discharged in any suitable manner.
The travel of the concentrates is represented by arrows 2 , while the flow or path of the middlings is indicated by arrows 3. Hereo tofore it has been customary to rework the middlings upon the table, an elevater being employed for the purpose of reconveying the same thereto.
To the edge 1 of the table is attached plate dlings discharged from the zone of flow into the horn 13. This plate is utilized by reason of the fact that the horn is located a slight distance below the surface of the concentrat-

ing-table.

There is linged or fulermed to the face of the concent":ing-table, near the lower discharge corner of the zone of flow, the deflecting finger or plate 9 . This plate is so regn5 lated as to deflect onto the plate 8 such of the middlings as have a tendency to pass uver the discharge end of the table at this point due to the impelling force of the table.
Such material as discharges into the horn $30 \mathrm{~B}^{\prime}$ is subjected to a horning action due to the reciprocatlog motion of the table. During the movement of the horn the heavier or precions particles contained in the middlings, owing to their specific gravity, settle to the bettem of the horn and gradually work upward therein until finally discharged from end b^{\prime} thereof, the worthless pertion of the middtings being gradually worked over the opposite end thereof.
If the material to be collected from the middlings is heary, then the inclination of the hom may be slight, while if the recovered material proves to be exceedingly light, then the inclination of the horn is so adjusted as to confine the material for a longer time therein.
"Taving thus described the invention, what I claim as new, and desire to secure plotection in by Letters I'atent, is -

1. The combination with a reciprocating
cured thereto and carried thereby so as to receive and work the middlings discharged therefrom, said attachment extending from approximately the discharge end of the lowermest riffle of the table to the discharge end of said table, the discharge end of the horn attachment leing contracted.
2. The combination with a reciprocating concentrating-table, of a horn attachment secured thereto and carried thereby so as to receive and work the middlings discharged therefrom, said attachment extending from approximately the discharge end of the lowermost riftle of the table to the discharge end of said table, the discharge end of the horn attachment being uprardly incliued, and a deflecting finger or plate secured to the surface of the table for deflecting the iniddlings into the horn attachment.
3. The combination with a reciprocating 70 concentrating-table, of a horn attachment secured thereto so as to receive and work the middlings discharged therefrom, and a plate or apron for conveying the middlings into the horn attachment.
4. The combination with a reciprocating concentrating-table, of a horn attachment secured thereto so as to receive and work the middlings discharged therefrom, an apron or plate for conveying the middlings into the 80 horn attachment, and a deflecting finger or plate for guiding the said material onto said plate or apron.
5. The combination with a reciprocating concentrating-table, of a horn attachmentadjustably secured thereto so as to receive and work the middlings discharged therefrom.
f. The combination with a reciprocating concentrating-table, of a horn attachment fulerumed thercto which receives and works the middlings discharged therefrom, and means for aldjusting the inclination of the horn attachnents.
In witness whereof I have heremnto set my hand.

WILLIS G. DODI).
Witnesses:
N. A. Acker, Walter F. Vane.

Patented Sept. 10, 1901.

No. 682,371.
H. P. TAYLOR.

ORE CONCENTRATOR.
Application filed Jan. 7, 1901.)
(No Model.)

2 2rituesses,

解

Fig. 2.

dnyzutor

No. 682,371.
H. P. TAYLOR.

ORE CONCENTRATOR.
Application filod Jen. 7, 1901.)
(No Model.)

2Situreses.

Patented Sept. 10, 1901.

2 Sheets-Sheet 2.

Inventor,
No Vat

United States Patent Office.

HARRY PICOTTE TAYLOR, OF IIOWARD, OREGON, ASSIGNOR OF ONE-FOURTII TO W. P. KEADY, OF SAME PLACE.
\section*{ORE-CONCENTRATOR.}

SPEOLFICATION forming part of Letters Patent No. 682,371, dated September 10, 1801.

Application 6led Jaruary 7, 1901. Serial No. 42,344. (No model.)

To all whom it may concern:

Be it known that I, Harry Picotte TisLOR, a citizen of the United States, residing at Howard, county of Crook, State of Oregon,
5 have invented an Improvement in Ore-Concentrators; and I hereby declare the following to be a full, clear, and exact description of the same.

My invention relates to improvements in to concentrating-tables wherenpon ores are separated from the refuse tailings and from each other according to their specific gravities.

It consists, esseutially; of a horizontallyinclined support, a transversely-inclined bed
15 upon this support, means by which these juclines nay be varied, a shaking-table npon this bed, means by which a movemeut is given to this table oblique to the horizontal line of the support, means by which the length of
20 this morement or stroke may be regulated, and of details more fully explained by reference to the following specification and accompanying drawings.

Figure 1 is a plan of my inveution. Fig. 2 25 is a longitudinal elevation. Fig. 3 is a part section and elevatiou on the line $x x$ of Fig. 1. Fig. 4 is a rear clevation. Fig. 5 is an end view. Figs. 6 and 7 are detail views of the driving mechanism.
The object of my invention is to provide a device in which I get the widest range of position and movement possible for the concen-trating-table as may be best adapted to the varying kinds and grades of ores under treattndina one and the same time, or it nas be given any of these tilts singly, or it may remain horizontal, and in any of these positions the movement or length of stroke of the table is capable of variation at will.

Having reference to the drawings, A is a suitable fonndation or base on which the mechanism is supported. A frame 13, com-
+5 posed of horizontal timbers suitably connected, is piroted at one end, as at 2 , to the base A, so as to be capable of being given a longitudinal tilt. This tiltiog is effected by an inclined-plane lifting mechanism secured
50 upon the parts of the base and the frame near the opposite end from the piyot?, as follows:

Ou each of the longitudinal pieces of the baso A are similar sliding wedges 3 , having projecting flanges by which their position on these pieces is maintained. One of these flanges of each wedge is notched to form a rack-bar 4. A pinion 5, having an axle journaled in the base, engages with the rack and by suitable means, as a lever 6, is operated to move the wedge. Secured upon the frame B are rollers 7, which are adapted to engage the inclined faces of the wedges 3 . A simultaneous movement of the levers moves the wedges forward or backward and correspondingly raises or lowers the end of the frame. 6 A bed portion C is hinged at 8 to the frame B. By means of these hinges the bed C is transrersely tilted by a mechanism somewhat similar to that used in giving the frame its longitudinal tult. U'pon the opposite side of the bed from the hinges are the vedge portions 9 , fitted so as to slide upon the inclines 10 , caryied upoll a rod 11, which latter is secured to the longitudinal portion of the frame B . The under side of this bar is provided with a rack 12, and a pinion 13, journaled in the frame, engages this rack and is actuated, as by means of a lever 14. Thus by means of the lever 14 the wedges 10 are simuitaneonsly moved and the lateral tilt of the bed and the table varied. This table D is supported above the bed in such manner that the table may be given a rocking or slidiug morement in a direction oblique to the length of the machine. Such mounting I have shown by the staudards 158 upou the bed, having their euds adapted to fit the cleats 16 on the bottom of the table and form sliding bearing-surfaces. The table is of irregular shape, laving its "head" end narrowed. The pulp is fed in, as at 17. Parallel with the louger and onter edge of the table are the riftes 18 , which may be either rectangular or otherwise formed in any wellknown mauner. Water is fed along the side and end of the table from the trongh or perforated pipe 19. The object of making this table with its outer edge louger is to compensate in a manner for the longitudinal tilting of the table and to raise thatedge of the concentrate cud which would naturally be lower, su that the water may tend to flow toward the head and be equally distributed over the til-
bie. Furthermore, for reasons scen to be shown, the valuable particles or the theoceentrates" will be carried "uphill" to mard the concentrate or bread end of tha tabla by
5 means of the rimes and the shakiog of the table, while the slime will fow of on tane lowe: or "tailings" side d. A difareatial reciproentiog movemest in the direction of than rimze

ic At tine head end of the mackine 3 horizontal shaft 20 is joorazed in framemory E añ has suitable d-ivinz counsctions with a source of power. Tpoo this shaith is a cocce-shapert cam 91. A sleere 29 apoa the sbibit haw oca
İ ect abutting agaizer the bast of the cam, and the ocherend is threadet, ca which the strolsadjuster 33 is cornable- This adjuster is held betwen the grides if on the ficmeworis E. The sleeve of is preteciec from urraing or
?c the shaft by meacs of a locgitedical groerte Y3 in thy sliever, in which a projection or lag En' on the irbme eagnes. To the bead of th? table is attached an sim ef. The octas eald of this arm has 3 wherl 3 , remuing on the ; free of the cam. This theel is rapu arzizs the cana by ransoc of a spring ? 3 . The tec: sion of this spring is reçilajeid by a Eangent slaeve 89 apoe ctiz sam. Thia olteve is exter riorly thereded and is termable in a threaded
30 projection 30 of the frmanory E and is ogerated by means of the spokes 31. By meaze of the morbble sleeve sg ryou the slaft so acting ayminst the can to mote the
 Hive circuafersace of the cam I an sbla to to the table. This aftity to chenge the shase of the table is c? greas ralae in many inshaces. Tho cam is giver sueh a periptary
 the table comes to a caick stof ce ticu cceccentrate end of tia stroke and to a crudual stop at the other aci. A3 previcesil indicated, the tabla ia capable, iavicer, theregh
 a longitudinal tilt asda toanaverse tilu These features, coupled with ibs oblic̣ue shaking movement, gives a di:Ferersial motion to the

$j \approx$ the valuabie particles onasin the comeentraia saciof tide table and efecta a cleszer and cloen aring than is usaal in coucectrating-idalera, this by reasoc that the alime is carivitia 32atber directioc- - e., tow 3 ad the lowar side d-
53 and the particles hive more frewtom to jeparate accordiag to thatr paibuive stectice ar3rithes. Furchermore, in tha been toan ien by the tre of this mackine the Aasijugroted ors may be concentratect in a $\mathrm{a} y \mathrm{y}$ statu, 3
Go featare that is of umense filus in dey 3nd arie Iceal ties, where cocservation of water is of first importarce is all netrations.

Hating thas describect my iovection, whas I claim as new, aud Iasers so seenes by Letuers
5; Pateat, is-
I. In a concentrazer, the combination of a

port, and a table macatet thengea swic tabiz beitg cf irsegriar saver with a maroved hemf ench rimab upora the table arringrot garamel with the outer oc lorgse side therent an di-
 Which tha tabla is rivea an ead rise reufecucatiog moremact obligete to loc gitudial itis

2. Is a cancentrator, the ccubizwion with a base of a frame pirnted thereva; meare by Which the itrme may tur inclinet tcatorim
 ble of being given an incllite thanarsese to the frame, a tiable qpoe this Eeti, siait will buing of iresgula: shaye and divaziag toce

 and means by which tha sable maj bu civen
 to the locgiscdival ario of the nachion, anc is the live of thy y: mes.
3. In a coneertizator, a tuble harina 3 das-
 width towned tie Roob hatiog paraini rinas
 cal aria of tho tabl acd yb-binal Fixt to
 by which this table mby be givet a vilizecatiag movenant in the line of thate cisis.

1. In a concentrawor, the combinbtiod with

 sac medna by whicin the beit is latemby tilitit क sable casried raoc the beit Exing purs at

2. The combination with s cuceratratas-unble 3nd meana by witith is may be lougitat
 thia zuble muJ bo ditarectall Trupecuane

 ksting enterise tivasks, a ant fharecn bew

 the cam mover, and meand whersef that

 runs oc the perigery of the caln, means h?
 cam is maiathizai.
(i. The combinazion ia a cracteatrable of 4

 by its tilt may be vaxien, a thble monarat

$: x$

[^2]1-
rection of the foot cad of the table, means by which water is fed to the table along this longer onter edge, riffles parallel with this longer edge, and means by which this table 5 is given a differential reciprocating morement in thedirection of the riffles and wherebr the enncentrates are made to trarel "nphill" upon the table.
7. In an ore-concentrator, the combination 10 with a longitudinally and transrersely tilted table, said isble haring its outer and upper edge divergent from the axis of the machine.
riffes of graduated lengths parallel with this upper edge and diagonal to the hesd end, and means whereby this table is giren a dif- I ferential reciprocasing movement in the direction of this upper edge.

In witness whereof I hare berenato set my hand.

HARRY PICOTTE TAYLOR.

Witnesses:
B. F. AHalt,
M. MULTABILL.

COMPLAINANTS' EXHIBIT No. 17
Lehrritter Patent No. 696,058
ALMON E. HART, Special Examiner

No. 696,058

J. A. LEHRRITTER CONCENTRATOR.

Application filed Oct 30, 1900

INVENTOR
John A. Lehrritter Ha) SEe ATTORNEY

No. 696,058.

> J. A. LEHRRITTER. CONCENTRATOR.
(Application filed Oct. 30, 1900.
(No Model.)

Patented Mar. 25, 1902.

3 Sheets -Sheet 2.

FIG. 3

INVENTOR
John A Lehrritter
ATP ACE ATTORNEY

No. 696,058.

J. A. LEHRRITTER. CONCENTRATOR.

Application fled Oct. 30, 1900.1
(No Model.)

Patented Mar. 25, 1902.

Fig. 12

FIG. 13

Fig. 15

Fig. 16

United States Patent Office.

JOHN A. LEHRRITTER, OF IEENVER, COLORADO.

CONCENTRATOR.

SPECIFICATION forming part of Letters Patent No. 696,058, dated March 25, 1902.

Application filed October 30, 1900. Serial No. 34,965 , (No morei.)

To all whom it maty concern:

Be it known that I, John A. Lehrritter, a citizeu of the United States of America, residing at Denver, in the county of Arapahoe
5 and State of Colorado, have invented certain new and useful Improvements in Concentrators; and I do declare the following to be a full, clear, and exact deseription of the invention, such as will enable others skilled in the
10 art to which it appertains to make and use the same, reference being had to the accompanying drawings, and to the letters and figures of reference marked thereon, whicls form a part of this specification.
15 My invention relates to improvements in means for concentrating pulverized ore or other material containing mineral values and effecting a separation of the said values from the gangre.

The invention embodies certain features of constrnction intended to improve and perfect the apparatus set forth in Patent No. 660,342, dete $\overline{\text { O }}$ October 23,1900 , all of which will be fully understood by reference to the aceoupanying drawings, in which-
Figure 1 is a top or plan view of a concentrating apparatus equipped with my improvements. Fig. 2 is a side elevation of the same. Fig. 3 is a cross-section taken on the line x^{x}, ing the construction for changing the inelination of the iower table. Fig. 5 is an enlarged fragmentary top view of the slotted bar attached to the table, showing one of the
35 separating-fingers in place. Fig. if is a section taken througla the same. Fig. 7 is a perspective view, on a larger seale, of the divided feed-water trongh. Fig. 8 is a top view of the same. Fig. 9 is a perspective viers of
40 an auxiliary slidiug conveyer adjnstably attached to the return-conveser. Fig. 10 is a perspective tiew of a flanged metallic rimile. Fig. 11 is a section taken throuch the slime trough or conveyer. Figs. 12 and 13 are frag-
45 mentary top and side view of the upper table, illustrating the tailings trongly or conveyer. Fig. 14 is a fragmentary top view of the re-turn-conveyer, slowing the slimo-compartment. Fig. 15 is a cross-sect ion taken throuth
50 the same, showing the teilings-trough in place. Fig. 16 shows the marag oinging the lower table to the upper table. Pig. 17 further illus-
trates the construction for aljating the inelination of the lower table. lig. 1 s is a section taken through the return-conveyer on the line!! !, Fir 12. Fig. 1! is a section taken on the line $z=$, Fig. 12 .

The same reference characters indicato the same parts in all the views.

Let the numeral 5 designate the relatively stationary base, tupon whichare mounted two table members 3 and 6 , which are normally laterally inclined. (See Fig. 3.) The lower table 6 is hinged at its upper edye to the supporting structure, whereby it is independently adjustable to vary its inclimation to correspond with the eharacter of tho material to be treated. The material treated by the lower table passes thereto from the upper table and consists of middings or tailings material containing sufficient mineral whlues which have escaped from the upper tabl to justify retreatment. Hence the function o: 'he lower table; but as the material passin. to the lower table is different in character from that which is treated ly the upper table it is often desirable to change the inclimation of the lower table, so that it shall be different from the inclination of the uper table. This independent lateral adjustability of the 8 lower table forms one of $m y$ improvements. It may be aceomplished in any desired mauner. As shown in the drawings, the lower table is provided with arms A, one of which is shown in Fig. 1f. These arms are hinged to projeetions B on the upper table by ueans of bolts C. (See Fig. 16.) The lower portion of the table 6 is provided with blocks 7 , having inclined lower faces, which are engaged by the inclined faces of blocks 8 , attached to the bars'. This bar is provided with a lug s^{c}, having a threaled opening engaged by an adjusting-serew 10, which is jonrnaled in a part D, stationary with reference to the table part 6. liy tuming this serew it is evident that the inclination of the table f may be regnlated at pleasure.
The riffes 12 of each table are angrolar in cross-section, being provided with a bottom flauge 122 , forming a right augle with the vertical part 12. The rifles are so arranged that the flanges 12 project upwardly on the slope of the table's inclination, whereby their exposed edges form an obstruction or
shallow riflo part, facilitating the catching of tho concentrates on the riffled surface of the table.

The slime-troughs 13 extend diagonally across the head of the respective table members. Each slime-trough marks the line of the head extremities of the riffles. Along each of these tronghs 13 and on the side adjacent the riffles is placed a rib or diagonal 10 riffle 14 to prevent the finer concentrates from passing through the wire-cloth screen 13^{a} into the slime-trongh. This screen 13^{n} occupies an inclined position and covers the top of each trongh. The rib 14 causes an aceumnlation of water eqnal to the depth of the riblat the head of the table along the slime-trongil to facilitate the concentration and settling of the mineral valnes. Without the rilb 14 the water would be drawn off from operation of a table of this character its tail or the catremity farther to the right (see Figs: 1 and 2) is highest, causing the water to fow naturally toward the head of the table. ${ }_{25}$ Each table is provided at its lower right-hand comer with a slotted bar 15, bent around the corner of the table. Through the slot is^{s} of this bir are passed thumb-serews 16 , to which are attached separating-fingers 17 , adapted from the middlings or to separate the concentrates into a number of different grades, as may be ref itired. By loosening its thumbscrew any finger may be moved along the bar slot of the bar.
Mounted upon the return-conveyer 18 , which receives the middlings discharged from the upper table, is an auxiliary conveyer 19, which may be arranged to recoive a grade of tailings containing no mineral values, whereby they may be discharged directly from the machine, thus avoiding the necessity of passing them over the concentrating-surface of the lower table, where they would ouly be a. burden and interfere with the treatment of the middlings discharged therenn from the return-conveyer. These worthless tailings are discharged through an opening controlled by a gate E , whence they pass by way of a trough E^{\prime}, formed at the head of the table C , to the, tailings-convejer 20 of the said table, whence they are discharged from the machine. It will be understood that whatever 55 isdlischarged in to the convejer 50 of the lower table is supposed tocontain no mineral valnes. This conveyer 20 of the lower table is also provided with a suitable slidable trough 21 , supported on the npper edge of the conveyer
60 from the lower edter and save the iniddlings case it is desimbe to save any portion of tho tailings from said table.

The slime-trongh 13 of the table 5 is ar-
65 ranged to discharge into a compartment $1 S^{\prime \prime}$, separated from the return-conveyar compartment ly a partition 18. In the bottom of
this compartment $1 S^{a}$ are formed a number of openings 18^{3}, through which the slimes pass to the lower table, whose upper edge projects moder and below the lower edge of the upper table, whereby the slimes are delivered to the table 6 in the rear or to the right of (see Figs. 1 and 2) the discharge of the middlings to the said table from the head extremity of the return-conveyer 18 , whereby these slimes are carried rearwardly or toward the tail of the table by the heavier material in front and saved with the concentrates at the discharge extremity or tail at the extreme right of the table 6. In the bottom of the slime-compartment 18^{3} are formed grooves 18^{3}, which are continued across the bottom of the main re-turn-convejer in order to catch any values that may settle as the material passes toward 8 the head of the convejer. Whatever is caught in these grooves passes in the direction indicated by the arrows (see Fig. 1t) to the upper edge of the lower table and is treated in the same manner as the slimes.
A suitable reciprocating movement is inparted to the entire table construction by operating mechanism 25, which is covered by another application, filed October 15, 1900, Serial No. 33,176 . Hence the said operating mechanism will not be described in detail. This operating mechanism, however, imparts a movement which is calculated to canse the concentrates to travel toward the tail of the table or in the direction indicated by the arrows in Fig. 1, while the tailings or gangue is carricd downwardly and discharged from the lower edge of the table.
When the apparatus is in use, the material to be treated is discharged in the form of pulp into a feed-box 26, located at the upper left-hand corner of the table 5 . (See Figs. 1 and 2.) From this feed - box the material passes to the riffled surface of the table, where the inineral values are caught by the riflles and carried to the plain surface 27 of the table, where the final separation of the mineral from the gangue is effected. The concentrates proper are discharged over the right-hand extremity of the table. (See Figs. 115 1 and 2.) The worthless tailings are canght by the trough 19, whose positiou is so regulated that it does not extend far cnongh toward the tail of the table to catch any middings or tailings containing valugs. It will be nuderstood that the nearer the tail of the table a discharge takes place the more likely is the discharged material to contain mineral values. IIence the position of the adjustable trough 10 may be regulated according to the material under treatment. The material canght by the trough 19 is discharged undor the gate E into the trough E^{\prime} and thence intu the discharge-conveyer 20 of the lower table. The middlings are discharged into the returnconveyer 18 in the rear of the tailings-conveyer 19 and carried thercby to the lower table for retreatment, as explained in the aforesaid patent. The slimes which pass

[^3]\qquad

[^4]
\qquad

[^5]\qquad
through the screen 13^{3} of the slime-treugh of the upper table are carried downrardly by the trough 13 and discharged inte the slimeconupartment 18^{3}, the trongli or conveyer 19 5 being cut away at 19^{2} for the purpese. (See Fig. 12.) These slimes which enter the compart mont 18^{a} pass to the lower table, as heretofore explained. The middlings which pass to the lower table are treated in the same 10 manner as the material discharged to the upper table, except that the tailings and slimes trongh discharge passes directly into the dis-charge-conveyer 20 , whence it passes as worthless material from the machine. If any 15 values pass over the lower edge of the table 6 , it will occur near the extremity of the table farther to the right, (see Figs. 1 and 2,) and these may be canght by the slidable trough 21 and conducted to a suitable receptacle (not 20 shewn) for retreatment.

The pure water necessary to effect the final separation of the material from the gangue on the plain pertions 27 and 27^{a} of the tables 5 and 6 is fed to the tables from troughs 28
25 and 28", respectively. Tliese troughs have perforated bottoms. The trough 28 is centrally divided by a partition 28°. If a comparatively small a mount of water is needed, feed-water from a source of water-supply (not 30 shown) is only fed to one compartment of the trough 28. If, however, inere wash-water is required, it is fed to both compartments of the trough, thus furnishing a donble discharge.
Belew the discharge extremity of the tail-ings-conveyer 19 is formed a partition II, upon which the tailings fall from the conveyer 19 and pass to the upper extremity of the trough E^{\prime} and thence into the bedy of said trengh 40 when the gate E is open. The widdlings pass to the table 6 through an opening J, formed at the extremity of the return-conveser 18.

The conveyer 21, heretofore mentioned, is particularly useful to collect the zinc from 45 the lower edge of the table G, near the tail thereof. This zinc wonld otherwise pass into the bulk of the tailings and require retreatment, which by this device is avoided. The separating-fingers 17 are provided with joints
5017^{3}, whereby their direction may be changed at pleasure without loosening the set-screws 16.

In further explanation of the function of the metal riffles 12 it may be stated that by using the metal riffles it makes it practicable
55 to empley a greater number of riffles without occupying any more space on the table; since the metal riffles may be formed much thinner than the wooden riffles.

The slidable trough or carrier 19 is held in bo place by a set-screw 19^{c}, passing through a slot 19^{4}, formed in the flange of the treugh and made of sufficient length to permit the desired range of adjustability or sliding movement.
6_{5}
Having thus described my invention, what I claim is-

1. A concentratiug apparatus comprising a
lateralls-inclined, riftled table, havinga slimetrough extending diagonally across its head at the extremities of the riffles, and provided with a screen through which the stimes pass to the trough, and a rib arranged along the slime-trongh between the lower edge of the screen and the riffled portion of the table, to dam the water and also prevent any of the settled concentrates froin passing through the screen inte the slime-trough.
2. In a concentrating apparatus the combination of two laterally-inclined table-sections, the lewer of. which is adapted to receive the tailings discharge from the lower edge of the upper table, a slime-trough arranged across the head of the upper table, riffles extending longitudinally on the upper table and terminating at the slime-trough, a return-conveyer 8 fer carrying the tailings from the lewer edge of the upper table to the head of the lower table, and a compartment separated from the return-conveyer and adapted to receive the slimes from the slime-trough of the upper table, the said compartment being previded with an outlet allowing the slimes to pass to the lower table in the rear of the discharge from the return-couveyer.
3. The combination of two laterally - in- 9 clined table-sections, the upper section overlapping the lower section, a return-cenveyer arranged along the lower edge of the upper table and adapted te carry the middlings from the upper table to the head of the lower table, a slime-trongh arranged across the head of the upper table, and a compartment separated from the return-conveyer and adapted to receive the slimes from the slime-trengh of the upper table, the bottem of the slimetrough being provided with escape-epenings allewing the slimes to pass to the lower table in the rear of the discharge from the returncunverer.
4. The combination of two laterally -in- 1 io clined table-sections, so arranged that the ? ?wer edge of the upper table everlaps the upper edge of the lower table, a return-conveyer arranged along the lower edge of the upper table, and adapted to carry the middings discharge to the head of the lewer table, and an auxiliary conveyer located above the return-conveyer and adapted to catch the wor thless portion of the tailings and discharge them froul the machine.

20
5. The combination with a laterally-inclined concentrating-table, having a movement adapted to carry the concentrates over the tail of the table, of a slotted bar extending around the lewer corner of the tail of the table, set-screws passing through the slot of the bar, and separating-fingers attached to the set-screws whereby the fingers may be adjusted at pleasure.
6. The combination of two laterally-in- 130 clined table-sections, a return-ceuveyer arranged along the lower edge of the upper table and adapted to carry the middlings from the upper table to the head of the lower ta-

70
bre, a slime-trough arranged diagonally across tho bead of tho upper table, and a compurtueut separated from the return-convever and idapted to receive the slimes from the slime5 trough of the upper table, the said compartment being provided with an outlet allowing the slimes to pass to the lower table in the rear of the discharge from the return-conveyer.
7. The combination with a laterally-in10 clined concentrating-table having a morewent adapted to carry the concentrates over
one extremity or the tail of the table, of a bar located at the lower coruer of the tail of the table and one or more jointed separatingfingers connected with said bar and adjusi- 15
able bodily thereon.
In testimony whereof I aflix my signature in presence of two witnesses.

JOHN A. LEHPRITTER.
Witnesses:
DORA C. SHICK,
G. J: Rollandet.

Smith Fatent No. 660,342
ALMON E. HART, Soecial Examiner

No. 660,342
(No Model.

J. P. SMITH. ore separator.

(Application filed Jan. 2, 1900

3 Sheets-Sheet 1.

No. 660,342 .
J. P. SMITH.

ORE SEPARATOR.
(Application filed Jan. 2, 1900.
(No Model.)

Patented 0ct. 23, 1900.

3 Sheets-Sheet 2.

No. 660,342 .
J. P. SMITH.

ORE SEPARATOR.
(Application flled Jan, 2, 1900.)
Patented Oct. 23, 1900.

3 Sheets-Sheet 3.

$$
\begin{aligned}
& \text { Joivathan P. Smith } \\
& \text { By Oevey. Strang *h., } \\
& \text { kis Attorney }
\end{aligned}
$$

United States Patent Office.

JONATHAN I', SMITII, OF DENVER, COL')RADO, ASSIGNOR OF ONE-HALF TO ALEXANDER II. B. ILARENC AND JOHN A. LEHRRITTER, OF SALIDA, COLORADO.

ORE-SEPARATOR.

SPECIFICATION torming part of Letters Patent No. 660,342, dated October 23, 1900.
Applioation filed January 2 , 1800. Serial No.60. (No model.)

To all whom it may concern:
Be it known that I, Jonathan P. Smith, a citizen of the United States, residing in the city of Deuver, county of Arapahoe, State of Colo-
5 rado, have invented an Iuprovement in OreSeparators; aud I hereby declare the following to be a full, clear, and exact description of the same.

My iuventign relates to an apparatus which 10 is designed for the separation of ores from their gangue and from other associated material as well as from each other.

It consists, essentially, of transversely-inclined shaking-tables haviur longitudinally15 disposed guides, the euds of which lie in diagonal lines from one side to the other of the table, slime-conveyers, aud one or more movable hinged finger's at the end of the table opposite the receiving-point. In counectiou 20 with these tiables is a return-conveyer, which receives the pulp from the first table and his a novement independeut of that of the tables. Inconjunction with these tables is a mechanism for producing a shaking movement.

The invention also comprises details of construction, which will be more fully explained by reference to the accompanying drawings, II which-

Figure 1 is a perspective view. Fig. 2 is it 30 transverse vertical section through $x x$ of Fig. 3. Fig. 3 is a plan of theactuating mechanisur: Fig. 4 is a partial longitudinal sectiou of the central part of the return-conveser. Fig. 5 is a lougitudiual veitical sactional view of the reciprocatiag mechanism. Fig. 6 is a detail showiug the rack-bar 43 and its pinious and the eccetutrics for raislng the euds of the table.

The object of this invention is to separate Ore Ores frequeutly carry lead, sulfid of copper, iron pyrites, aud zinc, and of ten chlorids and various other substances, and this ore and material it is the object of my invention to separate each into an individual class according to its specific weight.

The material to be treated is transferred from any usual or ordinary table or source of supply and delivered upou my apparatus,
50 is which I am euabled to separate the vari-
ous substauces by difference in their specific gravity.

As shown in the drawings, A is the point on the upper table at which the pulp or concentrates are received either from othęr tables or from ally other source of supply. The upper longitudiual edge of the table is approximately horizontal, and the table inclines from this side to the oppositeoue. Diagonally across the table and extending from the re-ceiving-point to a point near the center of oppositeside is theslime-conveyer 3 . Thisconsists of a shallow trough or excavatiou inale in the surface of the table, having au elevated rail or bar 31 extending along its lower side and a fine wire-cluth so een extendiug. from the upper edge of this ratil to the surface of the table at the opposite side of the troush, so as to cover the channel or trough, and thus prevent the coarse material from entering this couvever. Other forms may be used, the object being to collect and convey the slimes to a point of discharge. From the edge of the slime-conveyer guides 2 extend approximately parallel with each other in the line of the leugth of the table. 'These guides are here shown of essentially the same leugth; but by reason of their commencing at the line of the diagoually-disposed slime-conveyer the outer ends of each guide extends beyond the preceding one, so that the ends bf these guides teriniarte upon a diagonal line, which is here shown as being approximately parallel with the diagonal line of the slime-conveyer. These guides are made of any suitable depth, depending upon the character. the material to be operated upon. In the present case I have illustrated them ns bem about three sixteenths of an inch deep a: their commencement adjasent to the slimeconveyer and tapering to a chin edge at their termination. The material which is deliv. ered upou the t.tble having a differeat specific gravily is gradually moved from the receving end toward the opposite ond by a peculiar longitudinally-shakiog action of the table, which is produced as will be bereinafter more fully described. At the same time the transverse inclination of the table is such that the teudenoy of the material is to move row
toward the lower side. For this reason all the lighter material and "slines," so called, will pass over the guides and enter the slimeconveyer, which conducts these slimes diag5 onally across the table aud delivers them at the lower end of the convejer upon what I call a "return-conveyer" 6 . This returnconveyer is divided in to two portions, the one at the left receiving the material from the io slime-convejer and delivering it at the left and throngh an opening, (shown at 11, from which it passes npon the upper end of a second table 32, which is similarly arranged to the first-named table and is subject to the 15 same shaking movement. The heavier material, which, as hefore stated, may have different specific gravities, is gradually moved along the table by the shaking movement communicated thereto and the material of
20 diferent gravity will be separated as it passes the outer ends of the guides 2 , and will thas pass diagonally across the table in as many divergent streaius as there may be differences of specific gravity. Thus the lead, sulfid of
25 copper, iron pyrites, zinc, \&c., will be separated from the slines and also separated from each other by the action of this single table.

At the end of the table I have shown one or more arms or fingers 5 , jointed or pivoted
30 at the outer end and having their inner ends or points directed toward the guides. These fingers are turnable on the pivot-points, their lower surfaces resting upon the table, and they may be fixed at any desired point by clamping-screws, as 33 , these points being set to suit the character of the material arriving and the separation which may be desired. One portion of the material will pass to one side of the point and the other to the
40 opposite. The portion passing below the lowermost of these points will fall upon the right end of the return-conveyer and, moving along this convejer, will be discharged through an opeuing in the bottom at a point
45 near the center and before the point is remehed where the slimes are discharged from the left end of the upper table. The material thus discharged from the central part of the conveyer is delivered upon the second ta-
50 ble, the upper edge of which extends beneath the conveyer, and as it is subjected to the same shaking moveusent as the upper table a second and more completo separation is effected thereon. The remainder of the mate-
5.5 rial passes over the end of the table with as many separations by fingers 5 as may be desired and is collected at this end.

Water is distributed upon the tableduring the operation by means of adjustable perfo-
60 rated pipes 34 , which exteud across above the table, and a supply to which is controlled by suitable cocks, is shown at 35 . The movement of this table is produced by a reciprocating shaft 17 , which is supported and slid-
65 able longitudinally in guides upon a bod 13 , which is suitably fixed with relation to the table, and by a cam and springs which are
connected to act upon the shaft, as will be hereinafter described. The cam 16 is mounted upon a shaft 14 , suitably journaled upou the frame 13 and having pulleys 15 , through which power may be transmitted to rotate it. The cam 16 is so constrncted that as it revolves it engages the end of the shaft 17, and the latier, following the gradual incline of the cain, forces the shaft forward, and with it the table upon which it acts. When the cam has passed the end of the shaft, 17, the latter is acted upun by a spring 19, one end of which abuts against a disk or plate 20 , and the other end acts against the disk 18, which surrounds the shaft 17 and which is adjustable with relation to the disk 20 by means of screwthreaded rods 21 and nuts 22 . By this arrangement the tension of the spriug 19 and its consequent action upon the table will be regulated. Between the nuts 22 and the plate or disk 18 are rubber or other elastic buffers 7, which receive the disk 18 as it is returned by the spring 19 , and thus reduces the jar and shock of the return movement, which for this reason differs essentially from the sharp bumping movement of tables which are reciprocated and in which the return movement is receired by a solid bumper. The shaft 17 passas through a sleeve 23. This sleeve is screw-threaded upon the ontside, and a hand-wheel 24 is turnable in a slot transversely of the frame and fits upon this sleeve. By turning this hand-wheel the shaft and sleeve may be moved one way on the other, and throngh the disk 20 , which is carried with the sleeve, the length of the stroke is regulated to suit the character of the material which is being operated upon on the table without stopping the table. When this adjustinent has been satisfactorily reached, the disk 24 is locked by a set-screw 25.

28 is a yoke which is secured to the end of the table, and through the outer eud of this yoke the shaft 17 is slidable. A spring 27 aurrounds this shaft, one end abntting against the end of the yokerdjacent to the table and the other against a collar 26 on the shdft 17. Between this collar and the onter ead of the yoke is an elastic rubber or other buffer 29. The spring 27 is somewhat stiffer than the spring 19 , and when the cam acts to push the shaft 17 the spring 27 will yield slightly by reason of the inertia of the table, so that the movenient of the latter will be commenced sently. The incline of the cam ceases just before the offset is reached, and the end of the shaft 17, passing over this part, ceases to be advancod. . During this short interval the spring 27 recovers its extension, and when the cam releascs the shaft the spring 19 acts to give a soft quick return movoment to the table. This action of the two springs, consisting in the compression of spring 19 by the direct action of the caun on shaft 17 and the partial compression of the spring 27 by reason of the inertia of the table, to which motion is communicated through this spring, -

90

[^6]

\qquad

[^7]TIO

[^8]causes a slow forward movement of the tuble with the material to be separated upon it, and when the lavel part of the can reaches the end of the shaft 17 the fiasal extension of the
5 spring 27 and the quick return of the spring 19 produce adifferential motion, which is very effective in the operation upon ores haring different gravities which it is desired to separate from each other.
so The return-conveyer, which lies between the two tables, is a stracture independent of the tables and is suspended at one end by a stirrup or hanger, as at 36 , which rests upon the edges of a crasing surrounding the coul-
15 veyers, and at the other end by pins or rods a, which are slidable in the end of the casing, as shown. The cunvejer thus partakes of the movements of the table; bus it is relieved, so is to have a certain iudependent
20 movement upon the retnrn stroke of the table caused by its inertia, as follows: Coiled springs 8 surround the pins a, so that the springs press against the end of the conveyer, and when the return movement of the table
25 takes place the inertia of the conveyer compresses these springs, so that it does ext partake of full instantaneous movement of the table; but when the springs expand at the end of the return movement of the table the conveyer is forced forward by a movement which is subsequent to that of the table. At the opposite end of the casing in whioh the conveyer is suspended is a rubber buffer 9 , against which it strikes as it completes its
35 return movement. This action upon the conveyer, while primarily communicated by the same mechanisin which moves the main tables, actually causes a reverse movement of this return-conveyer, so that while the mate-
40 rial npon the main tables is moving from left to right the material which has been received into this conveyer moves from right to left, the portion received from the slime-con veyer of the first table being delivered upon the left end of the second table and the portiou which passes beyond the guides being received and discharged near the ends of the guides of the second table, as previonsly described. of the tables to suit varying character of ores to be separnted, I have shown the tables so supported that they may be titted and their inclimation changed. Various devices may
55 be employed for this purpose. I have bere shown shafts 40 , having fixed to thein eccentrics $41, \mathrm{~s} u$ disposed that when the sliafts are turned the eccentrics at one end will raise that side of the table and those at the oppo-
60 site end will correspondingly depress that sidj. The tables may rest upon or be connected with the eccentrics in any suitable manner to produce this result. In order to move the shafts and eccentrics in unison,
65 toothed piuions 42 are fixed to the shafts, and a rack-bar 43 engages the pinions. This rackbar is slidably guided and by means of a le-
ver it can be moved fo as to simultaneously rotate the shafts and eccentrics.

Having thus described my invention, what 70 I claim as new, and desire to secure by Letters Patent, is-
I. In an ore-separator, inclined tables having the longitudinally-disposed guides, the di-agonally-disposed slime-conveyers arranged with reference to the guides as shown, aud au independent return-conveyer.
2. An ore-separator consisting of an inclined shaking-table having longitudinallydisposed guides terminating at points in adi-8o agonal line across the table, a turnable sepa-rating-poiut pivoted upon the table beyond the guides, and a diagonally-disposed slimeconveyer having a screen surface or covering.
3. In an ore-separator, a transversely-iup- 85 clined shaking-table having longitudinallyfixed guides terminatiug successively upon a line diagonal to the table, a turnable separat-ing-point pivoted upon the table near the end of the lowermost guides, a screen - covered slime-convejer, and a retnin-conveyer which receives the pulp substantially as described.
4. In an ore-separator, a plurality of shak-ing-tables having longitudinally-disposed parallel guides, the terminal ends of which are in a line diagonally across the table, it movable separating-point pivoted upon the table aear the luwermast of satid guides, x di-agonally-disposed slime-conveyer having a screen-covering, a return-conveyer iuto whicli the pulp is discharged, having a motion the reverse of that of the table, and discharging upon the upper end of the second table.
5. In al ory-separator, a plurality of tatles having lougitudinally-disposed parallel ros guides and turuable separating-points at the ends of the tables, diagonally-placed sereencovered slime-couveyars, a return-convejer intermediate of the two tables recelving from the upperinost at oue end and discharging upon the lowermost at the opposite end, aud meclarnisun by which the tables are given a hongitudinal shaking novement.
6. The combination with fables having longitudinal guides, diagoually-disposed screencovered slime-conveyers and a return-conveyer, of a mechanism whereby a longitndinal shaking movement is effected, said mechanism consisting of u horizontal revoluble shaft having a disk com carried thereby, a guided shaft substantially in line with the first-mamed sbaft and upon the end of which the cam operates whereby motion is transmitted to the table, and return-springs connected therewith.
7. A mechanism for producing a longitndinal shaking movement of an ore-separating table, consisting of a horizontal rotary shaft, a disk cam fixed to one end of said shaft and revoluble therewith, a longitudinally-gnided slidable shaft, one end of which is acted upon by the cam-disk, springs surronnding said slidable shaft with plates whereby the springs are compressed by the movement of the shaft,
in one direction, and act to return the shaft when the can passes it, and means including an externally-threaded sleeve surrounding the shaft, a slotted bed and a hand-wheel en5 gaging the threads of the sleeve and working against the walls of the slot for adjusting the shaft with relation to the cam-disk so as to increase or diminish the length of the stroke.
8. In an ore-scparator, transversely-inclined
tables having longitudinally-disposed guides, diagonal slime-conveyers extending across the tables near the receiving ends of the guides, an independent return-convejer suspended to receive the slimes from the contions of the first table, and the heatvier portions from the discharge end, and to transmit them separately to the second table.
9. In an ore-separator, transversely-inclined tables with longitudinally-disposed guides, slime-conveyers arranged diagonally to the guides and an intermediate return-conveyer, and mechanism by which a gradual forward movement and a quick return movement of the tables are effected.
10. In an ore-separator, transversely - inclined tables with longitudinally-disposed guides, diagonal slime-con veyers, an intermediate independently-supported return-conveyer by which the slimes and the heavier separated material are transferred indopendently from the first to the second table, and a mechanism consisting of a cam by which a forward movement of the tables is effected, a returnspring, and a second spriug interposed be35 tween said mechanism and the table, said spring yielding when the tables are ad vanced to produce a grad nal forward movenent without disturbing the palp.
11. In an ore-separator, transsersels - in40 clined tables with longitudiwally-disposed guides, diagonally-disposed slime-conveyers, an intermediate retur-conveyer by which the slimes and the heavier separated material are transferted from the first to the second table, 45 a mechanism consisting of an advancing can and a return-spring by which the tables and conveyer are reciprocated, a second spring interpused between said mechanism and the tables, and cumpressible by the inertia of the
so tables during their furward movenent, and a plane section of the cam just previous to the offset which allows the return movement of the tables, whereby the forward movement of the liobles ceases and the second spring is af-
55 lowed to expaud just before the return of the tables.
12. In an ore-separator, transversely - inclined tables with longitudinally-disposed guides, diagonal slime-conveyers, an intermediate independently-supported return-conveyer by which the slimes and heavier separated material are transferred from the first to the second table, a mechanism consisting of an advancing cam, and a return-spring by which the tables and the return-convejer are 6 reciprocated, and springs interposed between the return-conveyer and its support carried by the tables, said springs yielding during the return movement of the tables, and expanding after satid movement is completed to produce a subsequent movement of the returnconveyer.
13. In an ore-separator, transversely - In clined tables with longitudinal guides, diagonal slime-conveyers, and a return-couveyer adapted to receive the slimes and heariersubstances and transfer them separately to the second table, said convejer being independently supported with relation to the tables, a cam and return-spring whereby the tables are reciprocated and the material ad vanced in one direction thereon, and other spriugs acting against the conveyer whereby an impulse is given it to move the material catried by it in a direction opposite to the movenent of ma- 8 terial upon the tables.
14. An ore-separator consisting of trans-versely-inclined tables with fongindinal gnides, diagonal slime conveyers, and a re-turn-conveyer intermediate between the $t w n$ tables, and a rer procating mechanism, in combination with a supporting device and mechanism whereby the angle of inclination of the tables may be adjusted.
15. An ore-separator consisting of trans- 95 versely-inclined tables with longitudinal guides, slime-conveyers arrangel diagonally to the guides, and a return-conveyer intermediate between the two tables, and a reciprocating mechanism, in combination with an adjusting device consisting of transverse shafts with eccentrics connected with the table, pi:1ious upon the shafts, and a rack-bar engaging the pinions, whereby the shatts may be turned and the eccentrics act to change the angle of 105 the table.
In witness whereof I have hereunto set my hand.

JONATHAN P. SMITH.
Witnesses:
S. II. Nourse,

Jessie C. Brodie.

COMPLAINANTS' EXHIBIT No. 19

Fritsch Patent No. 671,276
ALMON E. HART, Special Examiner
No. 671,276.
(No Model.)

A. FRITSCH.

Patented Apr. 2, 1901.

ORE CONCENTRATOR.

(Appliantion filed Sept. 13, 1900.)
3 Shoets-Sheot I.
Sis. 1.

Sig. 2.

9Yitneses:
Tиs ниссске Soreppuy

Susentoz:
a_{2} thuz İitucl?

Patented Apr. 2, 1901.
ore concentrator
(Application flled Sept. 13, 1900.

(No Model.)

Sis. 6.

Sitnesses:
TMisweurkel.
GRTOUppey

Sig. \%

Snvento:
(A)tfuz Sizitocf. By Nígdon roangan arobis

No. 671,276.
A. FRITSCH.

ORE CONCENTRATOR.
(Application filed Sept. 13, 1900 ,
(No Model.)
3ing. 8.
$\mathcal{S i g} \cdot{ }^{3}$ St $^{\text {sho }}$

3is. 10

Whitnessed:

Soorippy

Qusentoon: Outpmentitoce? Wo tigdon, Kongravaty

United States Patent Office.

ARTHUR FRITSCH, OF sT. LOUIS, MISSOURT.

ORE-CONCENTRATOR.

SPECLFICATION forming part of Letters Patent No. 671,276, dated April 2, 1901.

Application filed September 13,1900. Serial No. 29,931. (No motel.)

To all whom it mayy concern:
Be it known that I, Arthur Fritsch, of the city of St. Louis, State of Missouri, haveinvented eertain new and useful Improvements is \dot{A} Concentrators, of which the forme is a futl, clear, and exact deseription, reference being had to the accompanying dyawings, forming a part hereof.
This invention relates toore-concentrators; to and it consists of the novel construction, combination, and arrangement of parts hereinafter shown, described, and claimed.

Figure 1 is a side elevation showing my improved ore-concentrator. Fig, 2 is a plan tail view of at standard and adjusting-lever mate use of in carrying out the invention. Fig. 5 is a view showing the adjusting-lever and the parts carried thereby. Fig. 6 is a 20 detail view showing a portion of the operating mechanism. Fig. 7 is a view showing the means by whicls the table is operated. Figs. 8 und 9 are detail views showing the adjusting device made use of in carrying ont the 25 invention. Fig. 10 is a sectional view showing a portion of the table. Fig. 11 is a detail view showing the devices made use of to reciprocate the table.

In the construction of this invention I protion, and pivoted to one side of which we transverse bars 2, the opposite ends of the bats being connected by the member 3. Pivotally carried by the base-frame 1 on the side opposite from the piroted ends of the bars 2 are cams 4, upou which the member 3 rests and by means of which the frea eads of the bars 2 may be raised or lowered. Rigidly connected to one of the cams 4 is an operat-
40 ing-lever 5 , by means of which the cam may be turned ou its pivot, thereby raising or lowering the ends of the bars 2. The cams are made to operate simultaneously by means of a connecting-rod 6 , thereby causing the free
45 ends of both the bars to stand at a nuiform elevation.

Secured to the ends of the bars 2 are the upright standard-frames 7, pivotally carried within which wre the suspending-links 8 , the
50 upper ends of the said suspending-links being pivoted to the said standard-frames and the lower ends of whiel support the table.

A segment 9 is suppordod by one of the stand-ard-frames 7 , adjacent io the lever 5 , and the locking-cam l0, carried by the lever, operates upou the said segment, themby hold ing the lever and the cams 4 in any mjustment in which they are placerl.

Supported by the lower ends ol the links S are transperse bats 11 , upon whidh is monnted fo the bottom of the table. The satill table is constructed in the form of a reepeptache:aml comprises the top 12 and the upwathy projecting sides 13 , whereby the material is retained on the table. As shown, the rearend 65 ef the table is broader thath the forward end, the purpose of which will hereinafter appear. Secured upon the top of the tiblble is a section 14 of limolem, and secured upon the limotem covering are strips 15 of woml, the rearemats of which, as shown in Fig. 2 , being comerel, the purpose of which is (ognite the ore toward the forward end of the table when the machine is in operation. The roar conds of thestrips 15 are thicker than the forwarl ends, and said strips gradually taper toward their termination, and the forward ends are arranged in graduated form, those toward the left of the table becoming gradually shorter than those to the riyht, whereby the ore as it is separated is guided toward the forward end of the table.

16 indicates a trough into which the material is delivered amd out of which it is atlowed to gradually pass onto the top of the table as the machine operates. Upon the forward eml 85 of the table is carried a trough 17, into which the ore is received as it is separated and from which it may be delivered to any suitable reeeptacle. 18 indicates a correspouding troush carried by the sicle of the table into which the 90 sludge is delivered after the ore has been removed therefrom.

Supported above the rear end of the base 1 are brackets 19, carried by which is an oper-ating-shaft 20, and keyed upon one end of the said shaft is a belt-pulley 21 . Carried by the shaft 20 between the brackets 19 is an eccentric 92 , suspended from which is it wedgeshaped member 23, the function of which is to operate the table. Carried between the brackets 19 is a roller-2t, and extending rearwardly from the table between the brackets 19 is a U-shaped frame 25 , carried by which is a roller 26, colresponding to the roller 24,
\qquad
\qquad
\qquad 85

\author{
\qquad
 [^9]}

The lower end of the wedge 23 operates between the said rollers, and whenever the driveshaft 20 is rotated the said wedge is reciprocated vertically, thereby operating the table again be thrown in the manner presently described.

27 indicates a suitable guide secured to the frame 25 and to the brackets 19, whereby the - rear eud of the table is prevented from moving laterally. Carried by the brackets 19 below the rollers 24 and 26 is an integral member 28 , and comnected to the forward end of the said member is a rod 29 , which projects of end of the table and carries on its forward end a washer 30 . A coil-spring 31 is arranged around the rod 29 within the table, the euds of the said coil-spring bearing against the 20 washer 30 and the end of the table, respectively. By this means the table will be thrown back toward the brackets 19 after the wedge 23 is raised from between the rollers 24 and 26 . In operation the shaft 20 is ro21. This alternately raises and lowers the wedge 23, cansing it to pass between the rollers 24 and 26 , whereby the table will be operated forwardly, as above described. As - the shaft is continually rotated and the wedge 23 is raised from between the rollers 24 and 26 the tension of the spring 31 serves to throw the table again toward the brackets 19 , thereby imparting a continnous reciprocatory ing the operation is fed into the trough 16 ,
from which it passes gradually onto the top of the table and is guided therefrom by means of the strips 15, the ore being gradually led into the trough 17 and the gangue and sludge 4 passing into the trough 18 .

Ohe side of the table mas be raised or lowered in order to facilitate the morement of the ore and sludge by manipulating the lever 5 , and thereby operating the cams 4 in the manner described. The small rollers 32 , carried by the under side of the bar 3 , operate upon the cams 4, thereby causing their operation to be free and without friction.

I claim-
An ore-concentratur, comprising a base, standard-frames supported above it, cams under certain of said frames for raising and lowering them, a lever for operating said cams, a lock for retaining the lever and thereby the cams in the adjustment in which they are placed, a table supported to swing between the said frames, means for passing the material onto the said table in a thin strean, a series of curved and tapering guides for regn- 60 lating the movement of the ore, an operatingshaft, means operated by the shaft for foreing the table rearwardly whenever it is rotated, and a separate means for drawing the table to the front, substantially as specified. 65
In testimony whereof I affix my signature in presence of two witnesses.

ARTHUR FRITSCH.

Witnesses:
Edward E. Longan,
John D. Rippey.

Woodbury Patent No. 715,328
ALMON E. HART, Special Examiner

No. $715,328$.
G. E. WOODBURY.

ORE CONCENTRATOR.
(No Model.)

Patented Dec. 9, 1902.

No. 715,328.
Patented Dec. 9, 1902.
G. E. WOODBURY.

ORE CONCENTRATOR.
Application filed Jan. 24, 1899.

United States Patent Office.

GEOIRGE E. WOODBURY, OF SAN FRANCISCO, CALIFORNIA.
ORE-CONCENTRATOR.

sPECIFICATION forming part of Letters Patent No. 715,328, dated December 9, 1902.

Application filed Janaary 24, 1899, Serial No. 703,269, (No model.)

To inll u-7om it may concern:

Be it known that I, Ghorge E. Woodbury, a citizen of the United States, residing in the city and county of Sau Francisco, State of
5 California, have invented new and usefu! Improvements in Ore-Concentrators, of which the following is a specification.

This invention relates to improvements made in ore-concentrating machines of that
10 class or description in which tho concentrat-ing-surface is grooved or channeled and has a shaking motion without a traveling or progressive movement, machines of this class being commonly known as "concentrating-
15 tables." In the various grades and qualities of material treated in these machines there is always to be found a proportion of the mineral particles existing in a fine state of division, produced principally in the prepara-
20 tory disintegration of the ore in the mill, and these finest particles being the more readily influenced by the streams of wator that are applied to the surface of the table to separate and wash off the sand than by the motion of 5 the table, which in this class of concentrator constitntes the means of concentrating the mineral particles and bringing them to a common point of discharge, there is of necessity a certain proportion of loss of the mineral
30 taking place by the escape of the finest particles with the water. To overcome this imperfect operation and the consequent loss of concentrates, it is important to carry on the operation with the least quantity of water fluence of the shaking motion of the table as thoronghly as possible, and especially upon the upper part or head of the table, where the concentrates are finally separated and dis40 charged.

To secure the above results is the principal object of this invention; and to that end these improvements consist, mainly, in certain coustruction of grooved or channeled con-
45 centrating-surface and the combination of certain parts and mechanism on, all as hereinafter fully described, and pointed out in the claims at the end of this specification.

The following description explainsat length
50 the nature of my said improvements and the manner in which I proceed to construct, apply, and carry out the same, reference being had
to the accompanying drawings, forming part thereof.

Figure 1 of the drawings is a side elevation of a concentrating-table embodying my said improvements, the view being taken from the rear or higher side of the machine. Fig. 2 is a plan or top view of Fig. 1. Fig. $2^{\text {a }}$ is a longitudinal section through the table-surface 60 shown in Fig. 2, the section being taken along the bottom of one of the grooves. Fig. $2^{\text {b }}$ is a cross-section through the perforated pulpdistribnting pipe E. Fig. 3 is an end elevation taken from the right-hand side of Fig. 2. Fig. 3^{3} is a cross-section throngh the waterpipes G G^{\times}R. Fig. 4 is a sectional viow, on an enlarged scale, of the device for adjusting the inclination of the table. Figs. 5 and 6 are plans of the table, showing two modifications of the concentrating-surface. Fig. 7 is a side elevation taken from the lower side of Fig. 6. Fig. 8 is a cross-section of a portion of the grooved concentrating-sirface between the partition-strips. Fig. 9 is a similar section through the grooved portion at the head of the table. Fig. 10 is a side view in detail of the cam and followor of the vibrating mechanism.

Upon a stationary bed-frame composed of 80 timbers A A', stiflly joined and bolted together, the table B is monnted on spring legs or stanchions C C, so as to be movable in a longitudinal direction. Reciprocating motion of the table is produced throngh the medium 85 of mechanism applied to the head of the table, consisting principally of a cam H on a rotating shaft I and a sliding bar or follower K, attached at one end to the table and carrying on the opposite end a bead K^{\prime}, that is held against the cam by a spring L. The cam is shaped to produce a relatively slow forward throw and a quick return movement of the table in one complete revolution of the cam, and for this purpose the periphery of the cam is formed, as shown in Fig. 10, with an increased eccentric portion h and an angular projection h^{\times}, the relation of these portions to the remainder of the periphery being such that from x to y, ur about one-fourth of the entire revolution, the cam gives a forward motion, while the remaining portion gives the return or backward throw. By virtue of this form the return movement takes place in less
time than the forward movement, thereby giving the mineral particles a forward intpulse, cansing them to creep upon the surface of the table toward the head by virtue of their 5 inertia. In this table, as in other concentrators of the kind, the top or working surface B^{x} has an inclination downward and across the table transversely or from side to side, and the pulp or material to be treated is in10 troduced at the higher side, near one end, together with a greater or less quantity of water that is distributed en that end, so that a movement of the material is produced diagonally over the working surface under the 15 combined action and influence of the flow of water and the vibratory motion and inclination of the table.

In regulating or adjusting the operation to meet the variations in character or condition of the material under treatinent, and also in changing from one kind or grade of ore to another, it is necessary to vary the incliuation or pitch of the table, both transversely or sidewise and longitudinally or endwise, in moveme f the moterial introur and rection over the table, so that the inclination can be varied by raising the table at either side or at either end without disturbing the with relation to its driving mechanism and the pulp and water distributing pipes. Under the timbers of the stationary bed-frame, on which the table and the parts before men-frame-sills and the ground two circular plates MM^{x}, having cam-like faces or inclines. The lower one of these plates is fastened to the floor or ground and is formed with a center 40 post M^{8}, which is let into the timbers above, while the upper one, M, of the plates is fitted to rotate on that post and is finished with a flat top surface upon which the timber rests. Holes m^{3} are provided in the circumference of this upper plate for inserting a hand-spike by which the parts can be turned in one direction or the other, and thus raise or lower the stationary frame by virtue of the inclines before mentioned. The angle of these int
50 clined surfaces is properly regulated to hold the weight of the table without slipping wherever the movable plates may be set. By this means the inclination of the working surface is readily varied in both directions by 55 moving the parts before mentioned at either side and at either end of the stationary frame.

The pulp-distributing pipe E is supported from the stationary bed over the higher side of the table by means of standards $\mathrm{E}^{\prime} \mathbf{E}^{\prime}$, fas-
60 tened at the lower ends to the timbers A, and the water-pipe (i is carried by similar supports $\mathrm{E}^{2} \mathrm{E}^{2}$. secured at the lower ends to the stationary frane, the pipe \mathbf{E} and the waterpipe G being perforat ed with apertures along
65 the bottom, so as to direct the pulp and the water in a number of streams or jets along the upper side of the table.

For the principal or greater portion of its length the working surface of the table is divided by means of narrow strips D D into a number of separate chaunels or sections B^{\times}, extending from the lower end, on which the material is first introdnced, toward the head or opposite end, where the strips terminate at a distance from the end of the table, leaving the portion of the surface at that end of the table undivided. This portion $\mathrm{B}^{\times \times}$of the surface from which the strips are removed or omitted at the head of the table is finely grooved or corrugated from the line on which the strips terminate upward to the end of the table, the corrugations running longitudinally or substantially in the same direction as the motion and in close order across the entire width of the working surface. The bottom surfaces of the divisions between the stauding strips are also corrugated or grooved longitudinally with grooves of about the same degree of fineness as those composing the surface $1^{\times x}$ at the head of the table. The lastmentioned corrugations, however, while being a continuation of the grooved surface between the standing strips, are reduced in depth or marle more shallow than those on the main portion of the table either by cutting down the top surface or by raising or filliug up the bottons of the grooves, so that on any line of cross-section, as at $x: x$, Fig. 2, the grooves on the surface $B^{\times \times}$are of less depth than those on the main portion and at any line of cross-section, as $y y$. Upon this finely-grooved portion $B^{\times \times}$at the head of the machine the partially cleaned or separated concentrates are delivered from all the divisions or sections of the table-surface for the final washing out and separation of the particles of sand and earthy uratter that may remain mixed with the inineral particles up to this point in their progress throngh the machine. The grooves in this portion of the surface are carried to the end of the table, where they are intercepted by a cross-gutter P , running from the higher side downward to the lower side practically at right angles to the grooves and terminating at or merging into a spont or widened outlet at the lower corner of the table. Into this gutter the grooves or corrugations are arranged to deliver such particles as are received from the sections or divisions B^{\times}and are retained in the grooves against the washing action of the water applied on this part of the table. These grooves $B^{\times \times}$are reduced in depth either by grinding or cutting down the top surface of this part of the table or by raising or filling up the bottoms of the grooves B^{\times}, so that instead of having the same depth as those on the principal portion of the table they are made comparatively smaller. The object of this coustruction is to bring the particles in the grooves as they arrive at this portion of the surface more completely under the action of the streans of water and to effectively wash out and carry of the waste particles
with a much less quantity of water than is necessary for the deep grooves, thereby preventing the mineral particles that exist in a finely-divided condition from yielding to the
5 influence of the water and being carried off in the sand and other refuse matter.

By cutting down the quantity of water required to clean the concentrates and by controlling movement of the mineral particles 10 across the sarface by means of the grooves the finest particles are held back and brought under the influence of the motion to such a degree that their discharge with the tailings instead of with the concentrates is materially
15 prevented and a considerable saving in the mineral is effected.

In operating on slimes and tailiugs from other machines I bave obtained good results by making the sections or divisions $\mathrm{B} \times$ of the
30 concentratine-surface of the same length for the whole width of the table, as illustrated in the construction Fig. 2, for which purpose dividing-strips $D^{\times} D^{\times}$of uniform length are used, and the ends of the strips nearest
25 the head of the table are set on a line drawn transversely across the table substantially at right angles to the direction of the motion. On the other band, with material containing a large proportion of sulfurets or consisting
30 of what is known as "heavy material" the table will work to better advantage in many cases when the divisions B^{\times}are made of varying lengths ncreasing regularly in lengths one over another from the highør toward the
35 lower side, as shown in the modificatiou Fig. 6 , so that the ends of the dividing - strips $D^{\times} D^{\times}$nearest the head of the table terminate on a diagonal line drawn from the higher side downward toward the lower cor-
40 ner at the head of the machine. From the slanting line on which the divisions of the table-surface end the fine grooves $\mathrm{B}^{\times \times}$on this triangular portion rur longitudinally to the head of the table.

In the slight modification represented in Fig. 5 the surface between the dividing-strips D may be left smooth or without the grooves. Tris form or construction of surface will be found to give good results in working beavy
so material, while for many grades of ore the grooved snrface will be found to work to better advantage.

Vulcanized rubber is a good material to form the working surface of the table, as the
55 samo san readily be molded with fine grooves and finishell with a smooth surface within and between the grooves. The standing strips D can also be molded or formed integrally with the rubber, so that the whole working sur-
60 face of the table will be in one piece without seaffis or joints. The grooved portions of the concentrating-surface inay be formed by separate strips or pieces of rubber nailed or secured in any smooth and permanent manner
65 upor the table-surface between the dividing. strips and apon the undivided portion at the head of the machine. In place of thio rab-
ber covering sheet-cupper oc.other soft metal in the surface of which the grooves can easily be formed can be substituted.

The asual tailings-trough V along the lower side and a settling tank or receptacle for the cujcentrates are provided for handling the material discharged from the table.

The water-distributing pipes are arranged for nperation in the best position to obtain the desired results with a minimam quantity of water. For this purpose a distribntingpipe G^{\times}, with perforations along the under side, is placed transversely across the table near the head and just over the inner edge of the gutter P, so as to keep the material continuously moistened along the line of its discharge from the grooves into the gatter and also to keep the gutter itself constantly wet, thereby preventing the concentrates from choking or elogging these channels of discharge. A water-pipe R, supported over the triangular surface in a diagonal position, directs streams of water across the grooves, so that they fall in parallel lines covering the principal portion of the surface on which the concentrates are finally cleaned. These pipes are connected to a cominon water-supply pipe S and are provided with separate valves S^{\prime} for regulating the delivery of the water on hoth portions of the working surface.

Having thus fully described my invention, what I claim as new, and desire to secure by 100 Letters Patent, is-

1. An ore-concentrating table having the principal portion of its working surface divided inta longitudinal channels by standing strips and the portion at and near the concentrates-discharging end undivided, the surface both between and beyond the standing strips being finely grooved and said grooves running in the general direction of the standing strips, as described.
2. An ore-concentrating table having a surface composed of fine grooves extending lengthwise thereof in the general direction of the motion, the grooves in the table-surface at and near the concentrates-discharging end being of less depth than the grooves composing the principal portion of the table, and standing strips dividing the principal portion of the table-surface into longitudinal sections that open upon ite portion of the table-sur- 220 face at the discharge end having the grooves of less depth.
3. In an ore-concentrating table, a working surface composed bf grooves ranning longitudinally of the table, standing strips dividing the principal portion of the grooved surface into a number of sections, that portion of the surface between the concentrates-discharging end of the table and the ends of the standing strips having grooves of less depth than the remaining portion of the surface, and means for imparting vibratory motion to the table
4. In an ore-concentrating table having vi-
bratory motion, a working surface divided into channels running longitndiaally sand in the general direction of the motion,said channels terminating at a distance from the con-oentrates-dischargiag end of the table, and a surface composed of tine grooves covering that portion of the table between the ends of the channels and the concentrates-discharge end of the table.
5. In a table-concentrator having vibratory motion in the general direction of its length, the combination of a working surface divided into longitudinal cliannels that terminate at
a distance from the concentrates-discharge end of the table, a surface of fine grooves 15 composing that portion of the table-surface jetween the channels and the discharging end, and means for distributing water diagonally across said grooved surface.

In testimony that I claim the foregoing I 20 have hereunto set my hand and seal.

GEORGE E. WOODBURY. [L.s.]

Witnesses:

Edward E. Osborn, M. REGNER.
J. H. MICHELSEN \& M. LA M. BORGLUM.

ORE CONCENTRATOR.
APPLIOATION FILED JAN, 27, 1902.

J. H. MICHELSEN \& M. LA M. BORGLDM.

ORE CONCENTRATOR.
APPLIOATION FILED JAN. 27, 1902.
NO MODEL.
2 SHEETS-8HEET 2.

Mig. A.

grhn It. Ahehelaners,
Millev \& Dt. Borghom,
asy Millunam \times Fishew. Attozneys.

United States Patent Office.

JOHN H. MICHELSEN AND MILLER LA MOTHE BORGLUM, OF BUTTE, MONTANA; SAID MCHELSEN ASSIGNOR TO JOHN H. CURTIS ANI GREEN MAJORS, OF IUUTTE, MONTANA.

ORE-CONCENTRATOR.

SPECIFICATION forming part of Letters Patent No. 721,591, dated February 24, 1903.
Application filed January 27, 1902. Serial No, 91,448. (Nomodel.)

To all whom it maty concern:
Be it known that we, John II. Micifelsen and Miller La Mothe Borglum, citizens of the United States, residing at Butte, in the provements in Ore.Concentrators; and we do hereby declare the fullowing to be a full, clear, and exact description of the invention,
10 such as will enable others skilled in the art to which it appertains to make and use the same.

Our invention relates to improvements in ore-concentrators, and it is a specific im-
15 provement upon the structure shown in Patent No. 636, 679 , dated November 7, 1890, and Patent Ko. 671,34S, dated April 2, 1901.

The object of our iavention is to provide an ore-concentrating table which shall have
20 in addition to the reciprocating motion described in said patents a side motion at the rear or tail end thereof, which motion may be increased or diminished, as preferred.

In the accompanying drawings, Figure 1 is 25 a plan view of our improved ore-coucentrator. Fig. 2 is a side elevatiou thereof, and Figs. 3 and 4 are enlarged riews showing details.
The table a is driven by the shaft c through .30 the toggle mechanism b, and the shaft c is actuated $b y$ the eccentric d. The table is supported upon balls f, resting in sockets on the frame g, which frame is carried on links h and the height of which may be adjusted prevent the motion frou being too sudden. These parts are as previously described in the patents referred to. The supportingballs f are carried in sockets $j, 7$, and l, 40 which increase in size successively. This is to provide for the side slake of the rear ent of the table. Attached to the lower part of the table by means of bolts n is a plate m, provided with a projecting pintle O. On this 45 pintle is mounted a casting baring projecting ears r. A washer 1 , supports this casting in position, aud a pin 4, passing throngh the pintle o, supports the washer:
t represents a link, which is pivoted in the 50 ears r by means of the pin s. Λ pin "1 at the
other end of the link or arm t passes through ears u in a casting c, which is supported on a pin x, provided with a washer y. A lever or arm z is also pivoted upon the pin x and near its center is eularged, as shown at 1 , and is perforated for the passage of the pin 2 , which is carried by the plate 11. This lever has an outwardly-extendiug portion 3, extending outside of the framework, and is provided with a handle 6. The part 3 rests unon 6 a curved support 4 , fastened to the framework of the machine and provided with a curved slot 5 , whereby the part 3 may be moved back and forth into rarious positions in regard to the plate 4 . A haud-wheel $\% \sigma_{5}$ serves to secure the part 3 in any desired position.

With the parts as shown in Fig. 3-that is, with the pisots in a line perpendicular to the longitudinal axis of the machine-the table being pivatally connected to the link t, pisoted on the stationary arin or lever 3, a longitudinal morement of the table by the reciprocating mechanism will cause it to swing sidewise on one side of the before-meutioned perpendicular in the are of a circle around the point x as a center, and a reverse or reciprocal longitudinal movement of the table will cause the table to be deflected to an equal extent circularly in the opposite direction on the other side of the perpendicular. Thus we have a simple reciprocal side or end shake of the table. Moving the arm 3 to the right coincident with the line ? shifts the line of pivots to a position oblique to the transverse axis of the table. Therefore the table on its forward swiug-that is, to the right on Fig. 1-will approach much nearerthe central line than on its backward swing. If the lever or arm 3 is mored still farther to 9 the right to a position indicated by the dotted line 10 , a motion similar to that of a handpan is obtaiued. Shifting the arm 3 to the position indicated by the line 5 will move the line of pivots to a position oblicue to the thansverse axis, but in an opposite direction to that in the previous case, callusing the table in its forward motion to swing sidewise finther from the transverso axis than in the hackwart motion. by actual expriment ico
with the particular kind of ore under treatment the position most favorable for concentiration is found, and by this simple means of adjustment we provide a table which will ef5 fectively concentrate almost any kind of ore.

Having thus described our invention, what we claim as new, and desire to secure by Letters Patent of the United States, is-

1. In an ore-concentrator, the combination 10 of a table, means for reciprocating said table, a lever mounted on the frame of the machine and movable thereon, and a link pivoted to the table, said lever and link being pivoted together in a substantially horizontal plane, Is substantially as described.
2. In an ore-concentrator, the combination
of a table, means for reciprocatingsaid table longitudinally, the framework of the machine, a lever pivoted thereon, means for securing said lever in different positions upon 20 said framework, and a link or arm pivoted to said table, said link and lever being pivoted together in a substantially horizontal plane, substantially as described.

In testimony whereof we affix ollr signa- 25 tores in presence of two witnesses.

JOHN H. MICHELSEN.

MILLER LA MOTHE BORGLUM.
Witnesses:
A. T. Morgan,
M. P. Alexander.

Rogers \& Hanson Paient No. 732,319
${ }^{\prime}$ ALMON E. HART, Special Examiner
PATENTED JUNE 30, 1903.
E. B. ROGERS \& F. P. HANSON, ORE CONCENTRATOR.
APPLIOATION FILED JUNE 29, 1901.

No. 732,319.
PATENTED JUNE 30, 1903.
E. B. ROGERS \& F. P. HANSON. ORE CONCENTRATOR.

APPLIOATION FILED JUNE 29, 1901.

United States Patent Office.

Edward B. Rogers and fredrick P. HANson, of San francisco, CALIFORNIA.

ORE-CONCENTRATOR.

SPECIFICATION forming part of Letters Patent No. 732,319, dated June 30, 1903.

Application filed Jane 29, 1901. Serial No. 66,548, (No model.)

To all whom it may concern:
lie it known that we, Edward 13. Rogers and Fredrick P. Hanson, citizens of the United States, and residents of the city and 5 county of San Francisco and State of California, have invented certain new and useful Improvementsin Ore-Concentrators, of which the following is a specification.

This invention relates to improvements to made in ore-concentrators of the kind or description known as "concentrating-tables," in which the mineral particles are separated from the sand and worthless matter by the combined influence and action of the vibratory 15 motion of the table and currents of water flowing over the table-surface transversely across or in directions more or less opposed to the motion. In concentrators of this description it is customary to provide the surface of the 20 table with riffles or standing strips extending longitudinally and in the general direction of the motion, provision being made also for varying the inclination of the table-surface transversely for the purpose of accelerating 25 or retarding the flow of the water.

The present invention in this class of concentrators has for its object mainly to provide an improved construction of riffled surface by which the mineral particles will be effectively 30 separated and concentrated, and at the same time the gangue, of varying degrees of richness, will be closely graded and the grades separated one from the other for additional treatment either upon the same table or by passing

The invention has for its object, further, to provide a simple and efficient means for setting and fastening in place the spring-standards that carry the shaking-table and for adsting the degrees of inclination of the tablesurface while the machine is at work.

To such ends and object our said improvements consist in a peculiar construction of riftled tahle-surface and in certain novel improved mashe for the puppose secis as bor mach for the the claims at the end of this specification, reference being had therein to the accompanying

Figure 1 of the drawings is a top plan of a
concentrating-table having a riffled table-surface constructed in accordance with our invention, a portion of the table between the feeding-on end and the concentrates-discharg. ing end being broken out to reduce the length of the figure within the limits of the sheet. Fig. 2 is an elevation of the table, taken from the higher side, where the material is first introduced. Figs. 3, 4, and 5 are details, on an entarged seale, of the spring-standards on which the table is mounted, showing the manner of securing the top end of the standard to the table and the bottom end or foot to the stationary frame, Fig. 3 being a vertical lon- 65 gitudinal sectional view of the sockets and fastenings, Fig. 4 a rertical trans verse section, and Fig. 5 a top plan of the removable key that secures the ents of the standards of the sockets. Fig. 6 is a vertical transverse section taken through the table-surface, showing in cross-section the peculiar form of riftles employed.
The table a is mounted on spring-standards $b b$ in the nsual manner, with an inclination breadthwise or transversely of the surface, the foot of each standard being secured to the stationary frame and the top end to the bottom of the movable table by sockets and fastenings, in the construction of which provision is made for sceurely fixing the standards so that they will not be loosened by the yibrations, and at the same time allowing a standard to be removed and another set in place without loss of time.
In Figs. 1 and 2 of the drawings we illustrate a simple mechanism for giving a rapidlyvibrating motion to the table of the character or quality necessary for producing a continuons progressive movement of the mineral upon the surface of the channels or spaces between the riftles, but as no special novelty is claimed for the construction there shown a detailed description of such mechanism is not necessary to a clear understanding of the present improvements, which relate especially to the other parts of the maehine. Other means than that therein illustrated can be employed for giving vibratory motion to the table.
The shape of the table in outline is prefer- 100 ably an irregular parallelogram, leceasing in width from end to end along one side of the
longer sides and having the remaining side and the topends at right angles to one another. This reduction in the width of the table from the feeding-on end to the concentrates-disharging end is a feature observed in the construction of many styles of tables now in use and one that is allowed by the reduction in the mass or body of the material in its progress from the feeding-on side to the head or discharged.
Our present con.truction of riffled suriace is applicable, however, to tables that are of other shapes in outline, and while we describe and show a table-surface varying in width transversely we do not desire or intend to confine our improvement to that particular shape of table.
The part or feature of our improvement 20 which relates to the construction of the riffled surface consists in dividing that portion of the working surface a from the end nearest the feeding-on trongh c, which for distinction may be termed the "lower end," to about the middle line of the table into a number of parallel channels 3 by a series of riffles or standing strips 2 of uniform length extending lengthwise of the table in the general direction of the motion. Commencing at the lower
30 end before mentioned, the riffles 2 terminate on a common line x r running transversely across the table and in about the middle thereof from the higher to the lower side, and for the principal portion of that surface be35 tween the lower end and such median line the riffles are set and spacell at relatively wide distances apart. On that portion of the same surface which lies immediately in front of the feeding-on trough and which first receives the arom the trough the riffles 2 jacrease in number and are closely set and that portion of the table-surface is composed of narrower chamels 4 than the principal portion below. On this higher side of the fable the 5 material as it flows from the feeding-on trough is at first retarded, and its movement laterally is resisted by the closely-riffled section to such an extent or degree that the mineral particles are kept under the influence of motion to a greater deyree than by the flow of the wash-water and the inclination of the table-surface, while that portion of the material which by virtue of its light and valneless 5 character is earried by the wash-water over the riffles last mentioned is allowed to pass more freely across the remaining portion of the riffled surface below because of the reluction in the number of riffles on such lower
60 section. On that part of the table a further variation in the character of the riffled surface is made by inserting a series of intermediate riffles 5 between the widely-set rifftes 2 , so as to increase the number of riffles for a portion
65 of the table-surface withont affecting the character of the remaining portion of the openly-riffled surface nearer the lower end of
the table. For this purpose the intermediate riffles 5 are set between the riffles 2, starting from a line $y y$ running diagonally across the openly-riffled section from the higher corner downward to the lower side of the table and terminating at the median line $x x$, or thereabout. Starting from that diagonal line $y y$, the intermediate rifflesarecarried beyond the transverse median line x toward the foot of the table, and upon that portion of the surface lying between that line and the concen-trates-distharge end they are arranged in stepped position, extending beyond the endsof the principal riffes 2 so as to terminate on a diagonal line from the higher to the lower side of the table, and dividing that surface also into a smooth or unriffled portion uearest the head of the table of a triangular shape and a riffled portion or section between the diagonal line $z z$ and the adjacent ends of the principal riffles 2. The three series of riffles 245 set in this manner produce a strip or section of riffled surface that extends diagonally across the table-surface from the higher feeding-on side to the relatively lower end, where the clean concentrates are discharged and on which the rittles vary in number both in a transverse direction directly across the table from the higher to the lower side and also in a longitudinal direction or coineident with the vibratory motion. In addition to this the riffles will be seen to vary in number in a diagonal direction, producing a graduated surface that presents regularly-decreasing resistance in the diagonal path or course in which the middings are catused to travel by the combined action of the motion and the inclination of the table and the currents of water. By varying the character of the rifted surface in this manner we secure a thorough grading of the mineral-bearing gangue, holding the different grades under the influence of the vibrations without retarding too much the lateral movement and discharge of the worthless portions from the lower side of the table. In this operation we have found that the best results are secured hy retarding or holding back the matorial to the greatest degree or extent, at first on the lighest part of the table-surface, where the riftes are increased in number for that purpose, and eausing the separation of the mineral to take place mostly on the highest part, where it is first, introduced.

In concentrators of this class or description. in which the moving table is set pu spring legs or standards, it is necessary to attach the ends of the standards rigidly both to the table and to the stationary frame, as well am to fasten them securely, so that they will not by working loose affect the charaeter of the vibrations set up in the table, and it is de. sirable also to provide for readily taking ont a standard when it becomes broken and for placing a new one in position withont throwing the machine out of service. In this part of our improvement the top and botiom ends
of the standard are stiffly held in socketirons $l l e$, that are secured to the under side of the table and on the stationary frame bencath, the construction of which will be monderstood from Figs. 3 and 5 of the drawings. The standard b has a flat and relatively wide shank u^{\prime}, reduced in thiekness to give the proper flexibility in the direction of the length of the table and the necessary strength and stiff10 ness to carry the load, and on the top and bottom ends a thick wedge-shaped head b^{2}, corresponding in shape with the recess in the soeket-iron, is formed integral with the shank, the standards being usually eonprovider with a flange d^{\prime}, with screw-holes for securing it against the under side of the table, and the front side of the soeket is open to admit the head of the standard, whieh is in20 serted and removed from the front side by a lateral movement, a slit d^{2} in the bottom of the same being provided to admit the flat shank of the standard. The lower socketiron e being longer than the top iron, it has a foot b^{2} of the standard, and it is also open on one side for inserting the standard. The top rim is provided with a projecting rim or flange e^{2} to rest on the cross-timber f, throngh which 0 the socket-iron is let, as shown in Fig. 3. The lower socket-iron is made longer than the upper socket-iron for the purpose of dropping the foot of the standard, allowing a long standard to be used, and at the same time be keptata convenient height above the base. The head and foot of the standard after they are inserted in their respeetive sockets are fastened in place by a forked slotted key g, stradille the slank of the standard inst at the junetion with the wedge-shaped heal. This key, which is made sufficiently long for the purpose, extends beyond the side of the part, and by means of a short bolt and nut t passed through the lug and the end of the key, the latter is held in place, embracing the shank of the standard and preventing that so part from working out of its position in the soeket.

The means for varying the inclination of the table consists of a wealge-shaped slideblock m, under one end of each of the cross-
 the standards, and a fixed incline n on the muder site of the timberdiretly over the slineblock, the inclined faces of the two parts being in working position to prodnce rertieal moreso ment of that end of the eross-timber from the longitudinal movement of the shide-block. All the slide-hlocks are comnected by a long rod p, ruming along the side of the stationary frame, for setting them simultaneously and being serew-threaded innt fitted to a threaded nut or sleeve r, with a hand-wheel s for turn-
ing it. The ends of the movable cross-timbers that are raised and lowered by the wedges above deseribed are detached from the longitudinal bed-timbers in which they rest, hut are confined against lateral movement by angle-irons t, bolted to the stationary timbers on each side of the movable timber. The construetion will be elearly understood from 75 Fig. 2 of the drawings.

In situations where it may be desired to return different portions of the tailings to the higher side of the table for a seeond running through the table a rotary cylindrieal elevator 8o ean be connected with the main shaft of the vibrating mechanism, as illustrated in Figs. 1 and 2 , the connction being eonveniently made by a counter-shaft y^{\prime}, driven from the main shaft v by belt and pulleys x^{\prime} and eonneeted to the shaft w^{\prime} of the elevator by a belt and pulleys z^{\prime}, as illustrated in Fig. 1. A pipe 1 , leading from the elevator to the feed. ing-in trongh, conducts the material over the table and delivers it for a second distribntion on the table-surface. The construetion of this elevating means is not described or shown in detail by ns, for the reason that it contains no specially novel features.

Having thus fully deseribed our invention, what we claim as new therein, and desire to secure by Letters Patent, is-

1. A laterally-inelined, vibrating ore-concentrating table having its surface divided by riffles extending longitudinally thereof, and in the general direction of the vibratory movement, the riffles at the ligh end of the table being arranged uniformly elose together for a short distance, the remaining riffies upon the table being arranged uniformly comparatively far apart, and intermediate riffles arranged to extend from a line extending diagonally across the surface of the table, over the portion thereof containing the widely-anranged riffles, substantially as deseribed.
2. In an ore-concentrating table, the combination with a transversely-inclined table-surfaee having a vibratory motion in the general direetion of the length of the table, of a plurality of parallel longitudinally-set riffles, variably spaced in a transverse dircetion, producing a closely-set uniformly-spaced section in the vicinity of the feeding-on side of the table, and an openly-set, uniformly-spaced seetion below, and intermediate, uniformlyspaced riffles arranged in stepled losition from a line exteming diagonally across the table between the openly-set rifiles and parallel with the principal rimes bolow satid rlosely-set section.
3. A transversely-inclined ore-concentrating table having a riffied surface, a group of ritthes being set close together at the high side of the talle while the remainder of the table is covered with riffes set far apart, intermediate riffles arranged to extend diagonally of the table, so that the widely-spaced riffles project between every other pair of diagonallyarranged riffles, substantially as described.
t. The combination with an inclined ore vilmating concentrating-table, and a stationH'y bed, of a spring-standard having wedgesliaped lieads and socket-irons having flanges respectirely id socket-irons having wedge shaped sockets allapter to receive the heads of the standards, keys for securing the standards therein and means for detachably fasteno jug the keys.
4. The combination with a vibrating oreconcentrating table, of the stationary bedtimbers, the movable cross-timber f, socketirons l e sceured therein, spring-standards Z 15 liaving their ends fixed in the lower ends of the sockets on the stationary frame but being free to vibrate in said sockets above that point, inclines u on the movable timbers, wedge-shaped slide-blocks m set in operative 20 position thereto, and the rod p, threarled nut and hand-wheel as a means for moving and setting the slide-blocks, the sockets holding the standards against endwise movement.
5. In an ore-concentrating table the combination with a transversely-inclined tablesurface having a vibratory motion in the general direction of the length of the table, of a plurality of longitudinally-set riffles 2 , variably spaced in a transverse direction produc-
ing a closely-set section in the vicinity of the 3° feeding-on side of the table and an openlyset section below, and intermediate riffles arranged in stepped position between the openly-set riffles and parallel with them.
6. The combination with an inclined ore vibrating concentrating-table, and a stationary bed of spring-standards for supporting the table on said bed, sockets upon the table for receiving the upper ends of the standards, and comparatively deep sockets formed on the stationary bed, the lower ends of the spring-standards being thus secured at a suitable distance below the table in the bottom of said sockets and vibrating in the upper parts thereof, the table being thus supported at no great distance from the bed, enlarged retaining-heads on the lower ends of said standards, and means in the said sockets for engaging and holding thesaid enlarged heads in place, substantially as described.

In testimony whereof we have hereunto set our hands to the foregoing specification.

> EDWARD B. ROGERS.
> FREDRICK P. HANSON. $\left[\begin{array}{c}\text { L. S. } \\ \text { LL. S. }]\end{array}\right]$

Witnesses:

Edward E. Osborn, M. Regner.

ALMON F., HART, Special Examiner

No. 738,493.

NO MODEL.

PATENTED SEPT. 8, 1903.
R. T. SCHRAUBSTADTER.

CONCENTRATOR TABLE.
APPLIOATION FILED JULY.5, 1801.

$$
\text { 正品. } 3
$$

2 < $\frac{2}{2}$

$$
\frac{\operatorname{cic}+14}{r}
$$

Zeitriesseu.
Puicemonter
hnventor
Vichard v. Eviraudstadtar Ty 7.11. kituerefivil

No．738，493．

NO MODEL．

R．T．SCHRAUBSTADTER． CONCENTRATOR TABLE． APPLIOATION FILED JULY 5， 1901.

2 SHEETS－SHEET 2.

ぶいขといたの
（G）おtucss：

Pichand U．Onnauberader
23.8

United States Patent Office.

RICHARD T. SCHRAUBSTADTER, OF ST LOUIS, MISSOURI, ASSIGNOR TO FREDERIC W. RITTER, JR., OF WASHINGTON, DISTRICT OF COLUMIBIA.

CONCENTRATOR-TABLE.

SPECIFICATION forming part of Letters Patent No. 738,493, dated September 8, 1903.

Appliostion fled Jaly 5, 1901. Serial No. 67,210, (No model.)

To all. whom it mery roncern:
Be it known that I, Ricuard T. Schracbstadter, a citizen of the United States, residing at st. Louis, in the State of Missouri, have ments in Comecntwor-Tubtan ani berely declare the following to be a full, clear, and exact deseription of the same, reference being had to the accompanying drawings, in which-

Figure 1 is a lempective riew of a concen-trator-tahle emborlying my invention, the feed end being in the foregronnd. Figs. 2 and 3 are transverse sections thereof, taken on the tion on the line $4 t$, Fig. 1, the riffles omitted. Fis. 5 is a side elevation of the concentratortable, showing means for reciprocating the same.

Like symboln refor to like parts wherever they oceur.
My invention relates generally to tiat class of ore-cencentraturs wherein the matrix and values are separaten by gravity and wais lateralty inclined and to whichan endwise vibratory motion is imparted by suitable mechanism and with which a flow of water' is employed to carry off the gangue or lighter material at the lower edge of the table, while the values are directed kengthwise of the table amd delivered at the tail thereof. In this class of concentrators, as is well understood by those skilled in the art, the lateral inclinat tion of the table determines the capacity as weli as the range of sizes of the material capable of tratment by the eoncentrator, the steeper the inclination the greater the capacity, the less the inclination the greater the saving of fine values. Conerntrator-tables, therefore, as heretotore ronstructed may be said thate heento acompromise chatacterthat is to say, the table proper has been in the nature of a planesurface set at an ind inattion to ohatan the desired capacity and having its surface broken at internals by rifiles to eheck the flow of the waterand intereep the values and direct the same to the tail of the table. To increase the range and efficiency of such eoncentrators, the rifiles have been varimsly armand-as, for intance, diago-
nally, longitudinally of lifferent lengths, increasing gradually twwal the tail and discharge edge of the tald \cdot, : 141 : also longitudinally and curved at ont or twth ends, all of which while somewhot incrasing the capacity of the table result in the utilization of but a limited portion of the table-surface and a more or less imperfect separation of values.

The object of my present invertion is to 6 increase the capacity of the concentrator-tahle, utilize the greater part of its surface, effeet a cleaner separation of values from the matrix, and to dispense with the previous use of jigs or sereens.
To this end the main featme of my invention consists in a concentrator-table having a "warped" surface or approximation thereto, wherehy the lateral inclination or slope is rendered variable from head to tail or from the feed to the discharge end of the table and whereby an inercased range of sizes of the material to be treated is rendered possible, and, second, in a horizontal arrangement of riffles with relation to said warped surface of the table, whereby said riffles being at right angles to the trajectory of the flow saving of the fine values is insured.
There are other minor features of invention, all as will hereinafter more fully appear.
I will now proceed to describe my invention more fully, so that others skilled in the art to which it appertains may apply the same.
In the drawings, 1 inticates the surface of a concentrator-table embodying my inven- 8 tion, 1^{3} the head, and 1^{b} the tail or discharge end for values.

The lateral edges 8 and 3 of the table lie in different planes and are not pitrallel, while the head and tail edges $1^{1 a}$ and 1^{b} lie in the plane of the surface of the table and parallel toace mon plane, which results in relatively elevating the corner x (the feed-comer) with relation to the comer y (mper tail-comer) and giving to the surface 1 of the table the 9 form of a "hyperbotic pavaboloid," which is the preferred form of my warped table.
+4 indicate riffles which are applied to the table at intervals on lines formed by the intersection of horizontal planes with the warped surface 1 of the table, which canses said riffles to assume the form of parabolas, with their

5

\qquad
curvatures substantially nomal or at right ancles to the direction of flow of the material operated upon, which effeets a more perfect senaration of the values from the matrix or 5 gangue ats well as adding to the durability or life of the table.

The surface of the talle will preferably he covered with linoleum, and the riffles 4 , which may be of wood or other suitable material, will, owing to the warp of the table, be made to taper toward the tail of the table and preferably terminate along a parabola. The table may also be mounted in any suitable manner and vibrated ly any preferred mech5 anism-as, for instance, the table may be snpported or suspended loy adjustable links or iest upon rollers a (sce Fig. 5) and reciprocated ly mealls of a power-driven can-wheel A and it rod and return-spring $b \mathrm{P}$, the former being changeable and the latter adjustable by means of the nut c or otherwise to vary the length and time of the movement of the table.

The opreration of the table is in genemal the
pr fined table at its upper corner, near the head, and is carried downward by the flow and moved toward the tail of the table by the vibratory motion thereof, so as to assume a more or less diagonal travel from the head to the tail of the table, extending for at least three-fourths of the length of the table. During the travel of the material diagonally across the table the direction of the flow will be at substantially right angles to the riffles, and the values will be deposited in the runs formed by the riffies and will move the length of the table under the impulse of vibration, being discharged at the tail thereof, while the gangue will be carried down and 45 cvor the lower lateral edge of the table for the greater part of its length. The riffles may terminate alongs a parabola, which is practically a line of equal fall or grade. The lower edge of this parabola will be normal so to the edge of the table. Hence the headings can be hetter removed or separated from the middlings which adjoin them as compared to plain surfaces, where the prodnets proceed along an acute angle to the edge, as in pre- form of the table and the parabolas formed
by the riffles, I am enabled to utilize at least three-fourths of the table-surface, which results in a better distribution of the material, less crowding thereof at the feed, a more per- 60 lect separation, and greater capacity.

While I have shown and described a hyperbolic paraboloid as the preferred surface, it will be evident that other warped surface may be employed withont departing from the spirit of my invention, which includes, broadly, the utilization of a warped surface or approximations thereto for concentrator-tables either with or without riffles.

Wherever in the ioregoing specification 70 and the following claims the term" warped surface" is used the same is to be takeu as meaning any surface which may be generated by a right line moving so that no two of its consecutive positions shall be in the same 75 plane.

Therefore, baving thus described my invention, what I claim, and desire to secure by Letters I'itent, is-

1. A concentrator-table having a "warped" 80 surface and means for reciprocating said table, sulstantially as and for the purposes specifierl.
2. A concentrator-table having a "warped" surface provided with rifles and means for reciprocating said table, substantially as and for the purposes specified.
3. A concentrator-table having it "warped" surface and provided with riffles arranged on lines formed by the intersection of horizontal planes with the warped surface of the table and means for reciprocating said table, substantially as and for the purposes specified.
4. A concentrator-table having a concen-trating-surface in the form of a hyperbolic paraboloid, and means for reciprocating said table, substantially as and for the purposes sperified.
5. A coneentrator-table having a concen-trating-snrface in the form of a hyperbolic paraboloid, provided with riffles which have the form of parabolas, and means for reciprocating said table, substantially as and for the purposes specified.

In testimony whereof I affix my siguature, 105 in presence of two witnesses, this 1st day of July, 1901.

RICHARD T. SCHRAUBSTADTER.
Witnesses:
Joseph H. Zumbalen, W. E. Fisse.

It is hereby certified that in Letters Patent No. 738,493, granted September $\leqslant, 1903$, upon the application of Richard T. Schraubstadter, of St. Lonis, Missouri, for an improvement in "Concentrator-Tables," errors appear in the printed specification requiring correction, as follows: On page 1, line 46 , the word "internals" should read intervals; same page, line 52 , a comma should be inserted after the word"longitudinally," and the comma after the word "lengths" should be stricken out. Page 2, line 50 , the period after the word "table" should be stricken out and a comma inserted, and the following word "Hence" should begin with a small "h," thus making a continuous sentence; and that the said Letters Patent should be read with these corrections therein that the same may conform to the record of the case in the Patent Office.

Sigued and sealed this 27th day of October, A. D., 1903.
[sEAL.]

F. I. ALLEN, Commissioner of Patents.

-

```
COMPLAINANTS' EXHIBIT No. }2
    Dodd Patent No. 716,205
    ALMON E. HART, Special Examiner
```

No. 716.205.
W. G. DODD.

ORE CONCENTRATING TABLE.
Application filed July 25, 1902.1
Patented Dec. 16, 1902.
WITNE SSES:
NBMChasdz
Naltuल! Vam.

H
FIG.
FIG

W. G. DODO.

ORE CONCENTRATING TABLE.
Application filed July 25, 1902.)

United States Patent Office.

WILLIS G. DODD, OF SAN FRANCISCO, CALIFORNIA.

ORE-CONCENTRATING TABLE.

SPECIFICATION forming part of Letters Patent No. 716,205, dated December 16, 1902.

Application filed July 25, 1902. Serial No. 116,944. (No model.)

To all whom, it ma!! conerm:
Be it known that I, Whlis G. Dodd, a citizen of the United States, residing in the city and county of San Fraucisco, State of Cali-
5 fornia, have invented certain new aud iseful Improvements in Ore-Concentrating Tables; and I do hereby declate the following to be a full, clear, and exact description of the same.

The present invention relates to concen-
10 trating-tables, and more particularly to that class of concentrating - tables known as "trausverseby-inclined reciprocating concen-trating-tables," the working surfaces of which are provided with a series of longitulinal deand dids or mes which discharge the mineral they collect upon a smooth or onrifHed portion of the table for final washing and separation by subjecting the material fed thereon to the action of a flow of clear vater,
20 the invention pertaining more particularly to the manner of arranging and applying the deflecting slats or riffles to the working surfaces of such tables, together with other details hereinafter explained.
The object of my improvewent is, first, to increase the capacity of such concentratingtables withont cnlarging the working surface thereof, and, secondly, to increase their efficiency by producing less of the mised prod30 net, termed " middlings," which requiressubsequent treatment. I attain these objects by the manner of riffing the tables illostratel in the accompanying drawiugs, wherein-

Figure 1 is a top plan view of the concernof the table detaeheci from its trame; and Fig. 3 is a cross-sectional end riew in elevation, taken on line.r. Fig. 1, of the drawings.
Various Cuited sitates Letters I'atent have
40 been granted for concentrating-tables having rilles arrauged on the working face thereof for the separation of the valuable particles as the pulp is treated thereon. Perhaps the prior art may be said to be substantially delined by Cnited states Letters Parent No. 247,124, , wranted (iarvin, September 27, 1881; United Siates Letters Patent No. 258,879 , granted Blatebly el cel., June fi, 1882; United States Letters Patent No. $5: 3,302$, , granterl
50 Lampert. January 29,1895 , and United States Letters Patent No. 590, ,i75, granted Wilfley,

September 28, 1897. Many other United States Letters Patent have issued disclosing various improvements in connection with these concentrators; but the foregoing will suffice to illustrate ore-conceutrating tables provided with separating-riftles arranged to separate, collect, and discharge the valuable particles from the pulp fed or delivered onto the working face of the tables. The Wilfley Letters Patent, No. 590,675 , may lee said to constitute one of the latest types of such form of table-that is, a concentrating-table having longitudinal riffles which guide the material for separation. This table combines the advantageous features of the prior tables and eliminates supposed defects. It utilizes the arrangement of riffles of the Lampert patent, No. 533,362 -that is, arranges the riffles to extend from the head of the table, feeding the pulp thereto at substantially right angles to the riffles, and imparts to the table a jolting morement in the direction of the line of riffles. To the riffles is given the advancing terminal feature of the Garvin patent, No. 247,629 , aud the plain or unriffled portion of the table set forth in the Blatchly et al. patent, No. 258,879 , and disclosed to a limited extent at the terminal of the rifles of the said Lampert patent. In the said Lampert and 80 the said Wilfey patents the lougitndinal riffles extend from the head of the table, are arranged diagonally across the working face thereof, terminate at a plain or unriftled portion, and the jolting movement of the table is in the line of riffles. The riffles of the Willfey table extend onto the plain or nuriffled portion with advancing terminals, while the Lampert rifles terminate in the same line. This extension or advancing terminals of the Wilfley riffles give riffles of increasing length, each extendine from the liead of the table a distance beyond its preceding riffle onto the plain or maribled portion of the table. This arrangement of the riffles allows of the material assuming a natural diagonal line of movement over the smooth surface of the table and subjects it to repeated washings in its passage from rifle to riffle. With this form of table the material caught by the 100 uppermost and shortest riffle, consisting of mineral and gangue, is discharged upon the
smooth or unriffled portion of the table. The action of the flowing water, which is fed upon the upper edge of the table, separates and carries the gangue, which is lighter than the 5 inineral, downward to the advanced terminal of the next rifite, while the mineral remains on the smooth or unrifled portion of the table and, due to the motion given the table, is carried forward over the smooth surface todischarged into a receptacle provided for the purpose. In actual practice a slight portion of the mineral caught by the uppermost and shortest riffle will be carried downward with riffle below, mixing with the material caught hy this riffle, which is discharged upon the swooth surface and is again subjected to the separating action of the water, as before, ranced terminal of the riffle below, while the mineral continues on its travel over the smooth surface to the tail of the table and is discharged, this operation successively repeating itself down to the lower rilles on the material termed "middlings." It is obvions that the operation described could not be successfully performed should the table be
30 given a steep transverse inclination or should the flow of water fed upon the upper edge of the table be heavier than that sufficient to wash the gangue transversely down ward with out disturbing the mineral elinging to the smooth surface; otherwise the mineral and gangue would both be carried transversely downward and entangled among the adrancing terminals of the rifles, producing middlings only: Thus it wiil be seen that the ed the tible soverned by thedel cate conditions named-i. e, a slight transverse inclination and a light flow of water transversely acress the smooth surface of the table.

My improvment consists in placing the riffles upon the working face of a transverselyinclined concentrating-table in such a manner that all the mineral collected by the rilles will be discharged upon and guided by the
50 terminals of the riffles along the line of its natural path of travel over the table, due to the forces acting upon it, causell by giving the table a greater transverse inclination that can be employed in concentrating-tables of thansers fow of is used suflen to move the mineral downward across thesmooth or unculted portion of the working face of the table. The forces acting upon and gor-
60 erning the inineral in its travel over the taible under the conditions named are in versely the same as those acting upon a projectile discharged from a gun, tho constant flow of water acting as gravity and the impulse given
65 the table acting as the projecting force. These forces being known, the same formula
may be applied to determine the trajectory or path of the mineral over the table as is employed to determine the trajectory of a projectile, and when this is done the natural trajectory or path of tho mineral orer the table will be found to follow a cnrve approximating an inverted parabola.

By refering to Fig. 1, which is a plan view of a transversely-inclined reciprocating con-centrating-table provided with means for adjusting the transverse inclination as required and fitted with my improved form of riflling, the area inclosed by the letter A is the working face of the table, usually covered with linoleum. The area inclosed by the letter f3 is that portion of the table covered or fitted with my improvement, consisting of a series of mineral-collecting riffes. These are usually tapering strips of wood, and they extend longitudinally from the overflow-riffe C toward the foot A^{\prime} of the table, the terminals of these rifles advaucing to the curved line or path D approximating in inverted parabola. The area represented by letter $1 ;$ is that portion of the table which forms a smooth ronway or trough, which is utilized for the cleaning and convesing of the initeral Io its discharge-point at the foot of the table. The stationary water pipe or distributer C^{\prime} is suitably supported above the table. From this pipe clear water through suitably-controlled openings or jets is delivered to the table a short distance from the terminals or disclarge ends of the riffles. The feed-box D^{\prime} is located near the head of the table, at its upper edge, which delivers the pulp or material to be concentrated upon the table above the rilles. A sluice or launder E connects the feed-box with any 'suitable device for crushing the material. Any suitable mech anism for imparting a variable longitudinal reciprocating motion to the table may be employed, that illustrated in the drawings being a simple and well-known form.
The operation is as follows: The table is placed upon its frame or base \mathbf{E}^{\prime} with sufficient elevation to give a longitudinal inclination toward the head F. The table is then given a transverse inclination sufficient to cause the pulp to flow rapidly and smoothly downward over the riffles. Power being applied to the driving mechanism a longitudinal reciprocating motion is then imparted to the table, which motion has a tendency to carry the material fed upon the table forward toward the foot λ^{\prime}. Pulp, consisting of a mixture of water, gatngue, and mineral, is now introduced by means of a sluice into the feedbox D^{\prime}, from which it is delivered onto the table above the rinles and flows transwersely downward over the same. The mineral contained in the pulp, being heavier than the gangue settles between the rifles and is canght by them. A large portion of the stimy water introduced with the pulp in passing transersely downward over the table

[^10]125
washes over the overflow-riffle C. Should this water carry in suspension any of the fille particles of mineral, the same will be conducted into a sluice provided for the parpose
5 of conveying it to a settling-tauk, thus recovering the fine particles of suspended mineral that would otherwise be lost. The gangue or worthless partion of the pulp continues on its course, flows over the lower side of the 10 table, and is permitted to escape. The mineral which has been caught by the riffles is carried, due to the motion imparted to the table, longitudinally forward along the rittles and is discharged with more or less gangue 15 into the smooth runway or trough, where it is subjected to the action of a flow of clear water delivered upon the table from the water pipe or distributer C^{\prime}. The action of the water upon the material discharged by the
20 riffles and the cleauing and separation of the mineral in its travel through the runway or trough to its point of discharge will be more fnlly understood by referring to Fig. 2 of the drawings, which is an enlarged plan view of
25 the table and that portion upon which the operation is performed. As soon as the ina-terial-a mixture of mineral and ganguewhich has been collected by the first riffle is dischaiged upon the smooth portion of the
30 table it, comes in contact with the flow of water delivered from the pipe C^{\prime} and is carried down and mized with the discharge of the riffle below. This mixture in turn is carried down and mixed with the discharge of the 35 next riffle below, this operation successively repeating itself until a point-say y-in the path of the mireral has been reached where the trajecto y begias to flatten. At this point the downward speed of travel is rial begin to one mas or control to the motion imparted to the table, whicl agitates the material, consisting of mineral and gangue, causing the mineral to settle and the by the overflow of the clear water. The mass of clean mineral is gradually carried down the curve in the form of a band F^{\prime}, due to the motion of the table on one side and by the 50 flow of the water on the other side, holding it togetiner, thus forming a beavy band or riffle of traveling iniueral, in to which the lower riffles cannot discharge the lighter particles of gangue. It will, however, assimilate or 55 take up any mineral that the rifles may have collected and discharged on its path. When the band of mineral has reached the terminal of the last riffle, the friuge of gangue G at the lower edge of the table, mixed with
60 swall particles of mineral, is sliced off by using the hinged pointer G^{\prime}, and the middlings thus obtained are discharged into the hopper H, from whence they are taken and returned to the table by means of any suitable device
on and is discharged from the tablo over the apron H^{\prime} into any suitable receptacle provided for the purpose.

The lougitudinal inclination given the table is an important factor, as it gives a slight diagoual direction to the flow of witer at the head of the table, which tends to retard the lighter gangue from beiag discharged by the riffes, but does not interfere with the discharge of the mineral which the riffles may collect.

This method of riftliug enables the upper riftles to be used for the purpose of roughly collecting the mineral in mass and the lower riffles for guiding, cleaning, and separating it from the gangue, performing these two operations while the mineral is traveling over the table on a natura! trajectory, due to the forces actiug upon it, forming a curved line approximating an inverted parabola.

It is obvious that the described treatment of mineral in mass on a table of this type is much more rapid than with the ordinary method employed, and the middlings produced are reduced to a minimum. The means herein described of treating mineral on a table of this class by the use of a series of lougitudinal riflles having advancing terminals terminating in a curvod line approximating an inverted parabola is believed to be new. The inclination of the table is controlled by means of the adjusting devices H^{2}, which work against frame E^{\prime}. The flow of the pulp is indicated by arrow 3 and that of the separated material by arrows 4, the micldling being designated by arrows 5 .

Having thus described the invention, what is claimed as new, and desired to be protected by Letters Patent, is-

1. A tiansversely-inclined concentrating- 105 table laving a morement whose teudency is to carry the material fed thereon lougitudinally formard toward the tail or foot of the table, said table being provided with a numter of longitudinal riffes, the terminals of said riffles successively advancing and terminating upon the surface of the table in a curve-line approximating an inverted parabola so as to permit of a band of discharge, leaving a smooth surface onto which the material collected by the rifles is discharged, waslied and cleaned br being subjected to the action of clear water, and means whereby water is admitted on to the table for washlng the material delivered onto the unrifiled portion thereof.
2. A concentrating - table provided with means for imparting thereto a longitudinal and a transverse inclination, tho working surface of said table being provided with'a number of riftles extending longitadinally from an overflow-riffle toward its fool, the terminals of said rifles successively adrancing aud terminating upon the surface of the table in a curve-line, approximating an inverted pa-

rabola, a smooth or unriffied surface to the table onto which the material collected by the riffle is cleaned and separated by being subjected to the action of clear water, means
5 for imparting a reciprocating motion to the table, devices for giving thereto a longitudinaland alateral iuclination, and means whereby water is admitted onto the table for wash-
ing the material delivered onto the unrifled portion thereof.

In witness whereof I have hereunto set my hand.

WILLIS G. DODD.
Witnesses:
Harry J. Lask, Walter F. Vane.

```
COMPLAINANTS' EXHIBIT No. }2
Ruedy Patent No. 757,350
ALMON E. HART, Special Examinet
```

No. 757,350.
$\boxed{\boxed{O}} \mathrm{MODEL}$.

$$
\begin{gathered}
\text { J. RUEDY. } \\
\text { CONCENTRATOR, } \\
\text { APPLIOATION FILED AUG. 22, } 1902 .
\end{gathered}
$$

J. RUEDY.

CONCENTRATOR.
APPLIOATION FILED AUG. 22, 1902.
NO MODEL.

United States Patent Office.

JOHN RUEDY, OF DENVER, COLORADO.
\section*{CONCENTRATOR.}

SPECIFICATION forming part of Letters Patent No. 757,350, dated April 12, 1904.

Application filed August 22; 1902. Serial No. 120 701. No model.)

To all whom it may concern:
Be it known that I, John Reedr, a citizen of the United States of America, residing at Denver, in the county of Arapahoe and State useful Improvements in Concentrators; and I do declare the following to be a full, clear, and exact description of the invention, such as will enable others skilied in the art to which concentrators, and more particularly to a machine in which the gangue is separated from the mineral values by a washing and panning operation. Its object is to produce a concentra20 tor of the class described by means of which practically all of the mineral values mas be separated from the ore, which may be readily adjusted to produce the most effective results for any giren grade of ore under treatment, tion, which is light in weight and ceononical in use.

To this end the invention consists of a series of concentrating-pans forming a table moen centraly mounted on a recikneang rock shaft or bearing, is provided with adjustable means for tilting said table, and is also prorided with detachable rittles for regulating the orerflow er escape of the material from one pan or shelf to another.
Having briefly outlined my improvement, I will proceed to describe the same in detail, reference being made to the accompanying drawinge, in which is illustrated an embodi40 ment thereof.

In the drarings, Figure 1 is a top or plan riew of a concentrator constructed according to my invention. Fig. 2 is a longitudinal section of the same, taken on the lime ir x, Fig.
45 1. Fig. 3 is a cross-section taken on the line $y y$ of Fig. 2. Fig. 4 is a detail riew of the adjustable erank and the connection employed for giving the oscillating or rocking motion to the pans or shelves of the table. Fig. 5 is 50 an enlarged detail sectional view showing the
construction and arrangement of the riffles secured to the edges of the pans or shelves.
The same reference characters indicate the same parts in all the views.

Let the numeral 5 designate the foundation 5 of the machine, and 6 the bed or frame mounted thereon. In this frame are mounted the grooved sheaves 7 and 8. (See Fig. 2.) The sheave 7 is mounted in a vertically-adjustable bearing 7°. Resting on these sheaves 7 and 8 are the pans or shelves 9 , consisting of a series of flat strips or pieces, forming a trams-versely-stepped table mounted on cross beams or bars 10. Centrally seeured on the crossbars 10 and extending lengthwise of the ta- 6 ble is the rock-shaft 11 . This rock-shaft rests in the groores of the sheaves 7 and 8 and is made to reciprocate on said sheaves. Its rear end, which projects beyond the frame 10 , is prorided with a spiral suring 12 , which surrounds the shaft and rests between a rigid upright part 13 and a hand-wheel 14 , threaded on the end of the said shaft. At the opposite or forward end of the machine is arranged the power-shaft 15 . provided with the trans-mitting-pulley 16 and a crank 17 . Extending from the crank 17 is a connecting rod or link 18, the inner end of which is pivoted to a vertical lever 19. This lever is fulerumed, as shown at $19^{\text {a }}$, on the frame 6 , and its upper end is bifurcated to stradde the reeiprocating roek-shaft 11. Just in front of this piroted lever 19 is mounted a collar or stop 20 , which is rigidly secured on the shaft 11 .

Mounted on the power-shaft 15 is a second $\$_{5}$ pulley 21 , which is connected with a pulles 23 by a belt 22 . This pulley 23 is mounted below and near the longitudinal center of the table 10 on a shaft 24 , upon which is also mounted the adjustable erank 25 . (See Figs. 2 and 3.) This crank is shown in detail in Fig. 4 and consists of a short crank-arm 25", which is secured to a di-k or wheel 25°. fast on the shaft 24 , in such a mamer as to permit the frecend of the arm 25 " to be reatily swong to and from the center of the disk 6 , regulating the stroke of the crank. This crank-arm is pirotaliy mountel on the wheel or disk, and when in tiee its inner extremity is locked on the disk. To aldnst it, the crank 100
is loosened where it is attached to the disk and swung in one direction or the other, according as it is necessary to increase or diminisl its stroke, after which it is locked on 5 the disk and is ready for operation. To connect this crank 25 to the longitudinal edge of the table, I have provided a connecting-rod 26 , having a turnbuckle 27 , which is swiveled on a pin 28 , as shown in the drawings. Arranged the edge of the table with which the aforesaid crank is connected are the feed and wash water troughs or launders 29 and 30. The launder 30 is provided with a series of projections 30^{n} to prevent the ore in the pulp 15 which is fed to the launder from caking or packing. The pulp which is fed to this launder is obliged to pass aronnd these projections $30^{\text {a }}$ on its way to the openings 30^{c}, through which it falls, to a spreading-board 30^{4}, whence ing earied by its omn gravity and he rocking motion of the table to the concentrating pans or shelves 9 . At the frep or onter edge of each pan or shelf is secured a detachable riftle 31. These riffles are placed in an inclined
${ }^{2} y$ position, as shown in detail in Fig. 5, forming a \mathbf{V}-shaped recess A for retaining the nineral particles while the gangue is being thrown over the riffles by the rocking action of the table. A valve-controlled pipe 35 is mounted 30 above the feed-launder 30 for supplying the necessary water to form, with the ore, a pulp, of suitable consistency, white above the launder 29 is supported a perforated pipe 36 for supplying the table with the necessary wash-
35 water. which in first discharged into the lastnamed launder.

It will be observed from an inspection of Figs. 1 and 3 of the drawings that the pans or shelves 9 are widest at the center of the table gradually diminiso io width toward its outer edges in both directions. The reasons of this construction is that when the table is subjected to a transverse rocking action with the shaft 11, which is located directly below
45 the longitudinal center of the table, the motion is less on a line extending through the table's longitudinal center and increases toward the onter edges of the table in looth directions from said line. Hence in order that the materal in the longitudinal pans at the center of the table may have the necessary motion or agitation to separate the pulver-izel-ore particles from each other and allow the mineral values to settle the pans are given greater width, wherchy the material, though having a slowermovement, has a greater scope of travel on the wider pans than the pans farther from the center or the narrower pans, whereby the panning motion becomes equal
60 or approximately equal in all of the pans.
In operation, the parts being assembled as above described, the sheave 7 is adjusted so as to slightls raise the table at this point, whereby the batter in longitudinally ind lined, its 65 head or right. hand extremity fee Figs. 1 and
2) being lowest. In this manner the pans are usually raised to keep them free from water, or nearly so, at their rear end or left-hand extremity, referring to Figs. 1 and 2, while the greatest depth of water is found in the forward end of the pans. The pulp containing the pulverized ore to be treated passes from the launder 30 to the 1 rans 9 , where it is carried successively from one pan to its adjoining pan by virtuc of the rocking or oscillating motion to which the table is subjected during the rotation of the slaft 24 by the crank 25 and its connections. The heavier particles or mineral values of the pulp are retained by the riffles 31 and remain in the pans 9 nearer the feed edge of the table, while the lighter mineral values in the order of their gravity are caught by the pans farther from the feed edge of the table. The gangue is carried over each successive rittle, being deprived of a portion of the mineral values in each pan, until it is finally discharged from the table into the tail-ings-trough to, having heen completely or approxinately completely impoverished of the mineral values originally contained in the pulp. The merhanism for rocking the table is so adjusted that when the outer extremity of the operating-arm 25° is at its lowest point the table will occupy a slightly-melined position, (sce Fig. 3,) while whel the same extremity of the crank is at its upward limit of movement the table will be considerably inclined, thus throwing the gangue-discharge edge of the table relatively lower than the feed edge of the table. It will be understood that this arrangement facilitates the discharge of the gangue over the riffles of the pans or shelres, while there is no tendency to throw the material in the opposite direction or toward the feed edge of the table, since the latter is never moved beyond the horizontal in that direction. The rocking motion of the table is regulated to produce this result to the end that the discharge from one pan to the other is intermittent, as distinguished from continuons, wherely each man becomes in itself a complete concentrating derice, which discharges a portion of the lighter material every time the table is tilted in one direction sufficiently for the purpose. As soon as this occurs the discharge is interrupted by the reverse movement of the table. During this last-named stroke or morement the concentrating function takes place, the gangue rising and the concentrates settling preparatory to the reverse stroke, which tips off the top or upper stratum of the pan's contents. Simultaneonsly with the separation of the mincral values from the ganque the concentrates or mineral values caught by the pansare carried rearwardly in the pans or shelves by the reciprocating motion of the table imparted by the lever 19, which is connected with the crank-shaft 15, as heretofore explainal.
It will be seen that by virtne of the mech- $13=$
anism above uescribed the table is carried forward h_{y} the movement of the pivoted lever 19 engaging the rigid collar 20 on the rockshaft 11, the return stroke or travel of the 5 table being produced by the recoil of the spiral spring 12, which is adjusted to return the table by a sudden impulse, and the next forward movement of the leser 19 engaging the collar 20 suddeniy orercomes the rearward movero ment of the table, whereby the mineral values resting on the several pans 9 are carried gradually to the rear end of the pans up the slight incline of the hatter. In this manner the concentrates are gradually carried to the
is receiving-trough 34 , from which they pass to the receptacle 39.

From the foregoing it will be understood that the rocking motion of the table may be regulated by the relative position of the ad-
20 justable crank 25 , according to the character of the material to be treated, while the adjustment of the sheave 7 and the tension of the spiral spring 12 fully control the travel of the mineral values toward the rear of the 25 table.

Having thus described my invention, what I claim is-

1. A concentrating-table composed of a number of longitudinal pans widest at the cen-
30 ter of the table and diminishing in width toward the opposite edges thereof arranged to have a transverse intermittent discharge from one to the other, the discharge being completely interrupted during the rocking stroke
35 of the table in one direction, the said pans or shelves being provided with ritlles projecting above their discharge edge and shaped to hold the concentrates on the pan, and means for simultaneously imparting to the table a longi-
40 tudinal reciprocation and a rocking or oscillating movement.
2. A table for saving mineral values, said table having a series of longitudinal shelves widest at the center of the table and diminish-
45 ing in width toward the opposite edges thereof, giving the table a stepped surface crosswise of its length, the shelves having a transverse discharge from one to another, and means for simultancously imparting to the ta-
50 ble a longitudinal reciprocation and a rocking or oscillating motion, the latter being regulated to make the transverse discharge intermittent wherely the discharge is completely interrupted during the rocking stroke of the
55 table in one direction.
3. A table for saring mineral values, said table being providect with a series of longitudi-nally-disposed cencentrating-pans adapted to retain a pertion of the material under treat-
60 ment, said pans heing wilest at the eentral portion of the table and diminishing in width toward the opposite edges thereof and means for simultaneously imparting to the table a movement having a tendeney to cause the ma-
σ_{5} terial to travel thereon from the hefd toward
the tail of the table, and a movement causing the pans to overflow or discharge intermittently from one to another in a transverse direction, whereby the discharge is completely interrupted during appreciable intervals.
4. A table for saving mineral ralues, said table having a series of longitudinally-disposed. pans arranged to give the table a transserselystepped surface, the table being mounted on an axis lying in a vertical plane passed longitudinally through its central portion, the central pans being widest, and the other pans diminishing in width from the center in both directions, and means for imparting to the table a longitudinal reciprocation and a rock- So ing motion at right angles to its longitudinal movement, substantially as described.
5. In a concentrating apparatus, the combination with a suitable support, of a concen-trating-table provided with a series of longi-tudinally-disposed parallel pans rigidly connected with the table and giving its surface a transversely - stepped appearance, said pans being of varying width to compensate for the reduced motion in the vicinity of the table's 90 axis, a shaft secured to the longitudinal cen ter of the table and resting on the support, and means for simultaneously imparting to the shaft and table a longitudinal reciprocation and a transverse rocking or oscillating morement, the arrangement being such as to eause the pans to have an intermittent discharge from one to the other, the discharge being completely interrupted during one stroke of the rocking movement.
6. In a concentrating apparatus, the combination with a suitable support, of grooved wheels mounted thereon, a shaft engaging said wheels, and a concentrating-table having its central longitudinal portion secured to the shaft, said trible being composed of a series of longitudinal, parallel pans decreasing in width from the central portion of the table in both directions, and means for imparting to the shaft and table a longitudinal reciprocation and a rocking motion at right angles to the reciprocation, substantially as clescribed.
7. In concentrating apparatus, the combination with a suitable support, of grooved pulleys mounted thereon, one of said pulleys be- 115 ing vertically adjustable, a shaft engaging said pulleys, a concentrating-tahle mounted on the shaft, said table being composed of longitudinal parallel pans decreasing in width from the central part of the table in both directions, and means for simultancously imparing to the table a longitudinal reciprocation and a transverse rocking motion, said means being arranged to give the pans an intermittent, transverse discharge from one to the other.
s. In a concentrating apparatus. the combination with a suitable support, of a shaft mounted to roek and slide fongitudinally thereon, a concentrating-table having its central longitudinal portion made fast to said shaft, 130
said table being eomposed of a series of longitudinal, parallel pans decreasing in width from the central part of the table in both directions, and means for simnltaneously inrech to the shaf and table a longitudinal reciprocation and a rocking motion, substantialiy as described.
8. The combination with a suitable support, of a shaft mounted thereon and having a longio tudinal movement, said shait being spring-actuated in one direction, a lever connected with the shaft for actuating the table in the opposite direction to place the spring under tension, and a concentrating-table haring its central 5 longitudinal portion attached to the shaft, said table being composed of a series of parallel, longitudinally-disposed pans widest at the center or in the vicinity of the table's axis, and means for imparting to the table a roeking movement at right angles to its longitudinal reciprocation, the rocking means being arranged to cause the pans to discharge intermittently from one to the other, the discharge from one pan to another being completely in5 terrupted during the rocking stroke of the table in one direction.
9. The combination with a suitable support. of a table movably mounted thereon and composed of a series of parallel longitudinally-- disposed pans widest at the center of the table, means for imparting to the table a longitudinal reciprocation, an operating-crank, and a suitable connection between the said crank and the table wherebs a rocking movement is imparted to the table, culculated to cause the pans to have an intermittent diseharge from one to the other, the discharge from one pan to the other being completely interrupted at predetermined intervals.
10. The combination with a suitable support, of a table movably mounted thereon and
composed of a series of parallel, longitndinallydisposed pans widest at the center of the table, and means for imparting to the table a transverse rocking movement whereby the pans are made to overflow or discharge intermittently from one to another, the discharge being completely interrupted during the rocking stroke of the table in one direction
11. In concentrating apparatus, the combination with a suitable support, of sheaves mounted thereon, a shaft engaging said sheares, a spring surrounding the shaft, a hand-wheel threaded on the shaft and bearing against one extremity of the spring, a stationary support through which the shaft passes, a lever for imparting to the shaft a longitudinal movement in one direction whereby the spring is placed under tension, the spring imparting the morement in the opnosite direction, and a table mounted on the support and composed of a series of parallel longitudinally-disposed pans, said pans being widest at the center of the table, means for feeding the material to be treated, to the table, means for supplying the necessary wash-water to the table, and means for imparting to the table a rocking movement at right angles to its reciprocating morement, whereby the pans are caused to overflow or discharge intermittently from one to another, the discharge or overflow from one pan to another being completely interrupted at regular intervals or during the rocking movement of the table in one direction, substantially as described.
In testinony whereof I affix my signature in presence of two witnesses.

JOHN RUEDY.

Witnesses:

Deva Nelson,
A. J. O'Brien.

Overstrom Patent No. 763,784
ALMON E. HART, Soecial Examiner
No. 763,784.
PATENTED JUNE 28, 1904.
G. A. OVERSTROM. CONCENTRATING TABLE.
APPLIOATION PILED JULY 19, 1901.
28HEETS-8HEET 1.

No. 763,784.
PATENTED JUNE 28, 1904.
G. A. OVERSTROM.

CONCENTRATING TABLE.
APPLIOATION FILED JULY 19, 1901

2 SHEETS-SHEET 2.

By Brown Kalaiky
Atty=.

United States Patent Office.

GUSTAVE A. OVERSTROM, OF ANACONDA, MONTANA. ASitg.vot TO OVERSTROM CONCENTRATOR COMPANI, OF BITTE, MONTAN. \& CORPORATION OF MONTANA.

CONCENTRATING-TABLE.

SPECIFICATION forming parl of Letters Patent No. 763,784, dated June 28, 1904.

Application filed July 19, 1901. Sorial No. 68,958. (No model.)

To rill. whom. it mu!/ roneern:
Be it known that I, (iustave A. Ovensthom, a citizen of the United States, residing at Anaconda. in the countr of Derlextge and state 5 of Montani, have invented a new and useful Concentrating-'Talle, of which the following is a specification.

This invention relates to (re-coneentrating tables.

The ohject of the invention is to improve the construction of concentrating-tables whereby a more ellicient separation of mineral from the siliea, rock, dirt, and the like is effecter.

The invention consists, sulistantially, in the 15 construction, combination, location, and arrangement of parts, all as will be more fully lereinafter set forth, as shown in the accompanying drawings, and finally pointed out in the appended claims.

Referring to the accompansing drawings and to the various views and reference-signs appearing thereon, Figure 1 is a plan view of a concentrating-table embolying the principles of my invention. Fig. 2 is an edge view,
25 taken from the tailings-discharge edge or side of the table, looking from the botom of Fig. 1, the elge flange or riftle being omitted. Fig. 3 is a longiturlinal section on the line 3.3, Fig. 1, looking in the direction of the arrows. 30 Fig. 4 is an end view looking from the righthand end of Fig . 1. Fig. 5 is an enlarged detail view in cross-section, showing the arrangement of rittle on the upper surface of the tahte. Fig. 6 is a broken view similar to
35 Fig. 3, but on a larger scale. Fig. 7 is a view in section, taken longitudinally of an ore-concentrating table embodying the principles of my infention and showing the form of reciprocating mechanism therefor.
The same prat is designated by the same reference-sign wherever it oceurs throughout the several views.

In the operation of ore-coneontrating plants the crushed ore is deliverch upon a table to 45 which a reciprocatory mosement is imparted and upon which is delivered wash-water, the longitudinal reciprocations imparted to said tabl serving to effect the adrancement of the
particles of silica, rock, and mineral along said table, and the mineral portion heing heaviest sravitates to the bottom of the mass. is deposited upon the table, and progressed along said table, while the rock purtions, the silicate, dirt, and the like are gradually washed awny from the mineral portion and are discharged over one edge of the table (which edge I will hereinafter designate the "tailings-discharge" edge) alone with the wash-water, while the mineral portion is advanced or progressed over the end of the table. In order to prevent the mineral from being washed off with the washwater, it is nsmal to provide rifles upon the muper surface of the table, the purpose and function of which is to form stops to catch and hold the mineral portions, while at the 65 same time permitting the lighter silica, rock, dirt, and the like to wash over the upper or top edges of the rittles. These rifthes have been arranged in various ways, and rittles of various shapes in cross-section have been employed for this prupose.

My present invention relates particularly to a eonstruction and arrangement of riffes: and the special object in riew is to inswre as romblete a sepration of the silica, rock, tirt, and the like as possible from the mineral without the danger of losing aut of the mineral hy the same being washed off or aw:y with the washwater which carrics the silica, rock, de.. and white I have shown and will now describe a 80 particular construction and arrangement of table I desire it to be understond that my invention is not limited in this application to a table of the specific construction shown, lut is equally well adapted for use with othertymes and constructions of tables.

Referring to the accompan, ing drawings. reference-sign A designates the talle, which is of quadrangular shape- that is, the sidesor edges thereof are parallel with each other and the ends thereof are parallol with each otbor; Lut the sides, as shown, are inclinal with respect to the ends.

B designates gemerally the rimles. These riffles are arranged in the particubar form 95 shown, and preferably to restend paralle]
each other and substantially at right angles to the ends and diagonally to the sides or edges of the table. In practice reciprocatory morements are imparted to the table substantialls: in the direction of length of the riffes-that is, in a diagonal direction with respect to the table. I have shown an illustrative form of means for impartingsuch reciprocatory movements to the table. In the form of apparatus 10 for imparting reciprocatory morements to the table shown reference-sign A^{2} designates a shaft to which is eccentrically connected an arm B${ }^{2}$, carrying a bearing-block (${ }^{2}$. A block D^{2} is journaled in said bearing-block and a co-
${ }_{15}$ operating stationary bearing-block E^{2}, so that when shaft A^{2} is rotated the end of said arm B^{2} describes an orbital movement. The free end of said arm B^{2} is connected in suitable manner to the table A. The construction and 20 arrangement of this reciprocating mechanism is more fully described and claimed in my pending application, Serial No. 38,435 , filed Decenber 3, 1900: It is obrious that any suitable form of reciprocating mechanism may
25 be employed. Such mechanism in the specitic details of construction thereof forms no part of iny present invention.

The crushed ore is in practice deposited upon the table at the point K. Wash-water 30 is supplied along the edge C D and by reason of the component of forces due to the reciprocatory morements imparted to the table alout in the diagonal line from E to I) and the flow of wash-water transversely across the table 35 from the edge (1) the ore is progressed toward the end D F, while at the same time the mineral portion settles to the bottom or upon the surface of the table and the lighter silica, rock, dirt, or the like is washed over
40 the top edges of the rittles B by the washwater and is discharged along the edge E F , the mineral portion being discharged along the edge D F. In practice each succeeding riffle after the one terminating at the cor-
45 ner Eand on each side thereof is slightly less in height above the surface of the table than the one inmediately preceding it: but a diagonal line parallel with the line H F will cut the riffles at points of uniform height. The ob-
50 ject of this is to insure an even and uniform spreading out of the ore over the entire surface of the table, thereby enabling every portion of the table to perform its proper part of the concentrating-work. Thus, as riewed in
55 Fig. 2, (which is an edge view looking from the bottom of Fig. 1 toward the edge E F.) the ends of the ritlles shown in end view at the left-hand side of Fig. 2 are of greater height than the rifles shown in end riew at the right-
60 hand end of said lisure, each succeeding riffle being slightly lower than the immediatelypreceding ritlle. This is aho shown in Fig. 4, which is a view looking from the righ of Fig. 1 along the end 1) F, the riftle shown at
65 the right of sail ligure being of greater height
than those at the left-hand end of said figure. The riftles, as alore specified, extend diagonally with respect to the table, and those which terminate along the end D F extend all the way to the end of the table, and those which wouhl otherwise interseet the edge C D terminate a short distance from said edge, as clearly shown in Fig. 1. Each rittle, in accordance with the principles of my invention, is of decreasing height from the left-hand end thereof toward the right-hand end to a point indicated at L, Fig. 3, and from thence to a point indicated at M, Fig. 3, the height of the riffle remains substantiall, uniform and slightly above the ton surface of the table, and from the point II to the extreme right-hand end the riffle increases in beight to the point N, Fig. 3. The point L of each riffle is somewhat nearer the edge D F than the corresponding point of the preceding riffle. Consequently the dotted lines H F and J G, Fig. 1, indicate the line of the straight parallel surfaces of the riftles between the points L M, and which portions of the riffle extend only a very slight distance above the top surface of the table. The special purpose of this arrangement is to provide means for insuring a complete and efficient concentration of the mineral and the elimination of the dirt, rock, silica, and the like therefrom. Thus when the mineral reaches the point L , for instance, in the length of a riffle there is still prorided a ledge for retaining mineral; but the height of such ledge is not sufficient to prevent any silicate or rock to be washerl over. but is of sufficient extent to prevent the mineral from being carried over the top edge thereof, and even if some particles of mineral are carried over the depressed portion $\mathrm{L} M$ of one riftle they will be canght by the projecting edge of the next succerding riftle and progressed somewhat farther toward the end D F of the table before it reaches the depression L M of the next sncceeding riffle, and after the depression L M of any riffle is passed by any mineral it is desirable to provide against any further wash over the top edge of the riftle, for at that prriot a complete separation of the sitica, rock, \&e.. from the mineral has been effected. In other words, whatever portions of the rock, silica, and the like which have not been separated and washed awar from the mineral will be separated and washed away at the lowest portions L M of the riftles, and after passing the point M of any rittle the rifle increases in height, so as to insure aganst any particle of the mineral being washed orer: It will be understood that when the crushed ore is tirst supplied upon the surface of the table at the point K it partialiy lotges against the lirst riffle, a portion of the crnshed material washing ores the top alge of the first ritle and being caught by the next succeeding rifle, and so on, at the same time being progressed lengthwise of the lirsi ritlle and linally lalling \mathbf{I}_{3}
ower the extreme end of the first rittle and boing caught hy the extended length of the next succecting ritte, and so on. In order to still further insure the somation of the 5 silica, rock, and the like from the mineral and also to prevent too much of the water from llowing orer the clge I F of the table along with the mineral, 1 prefer to slightls raise the surface of the table adjacent to said to elge. This result may be aceomplished in many ways. A simple way is shown most elearly in Fig. 6 , wherein a tapering or wedgeshaped piece A ' is inserted underneath the linolem lining B^{\prime} of the table-surface, the 15 thickened portion of the wedge being presented towarl the efge I) F of the talle. The piece A' tapere not only in a dipection away from and normal to the edge I) F , but also in a direction parallel with said efge in order to 20 diminish the height of the raised portion or surface of the table toward the extreme lower corner of the talde. This raised portion hegins immediately beyond the seats or depressions in the riftles, the bounds of which are 25 indicated by the lines J di and H F and continues to the extreme end of the table, and in order that the riftles may not be raised a too great height above the surface of the table said riftles toward the ends thereof may be 30 slight! y reduced in height to compensate for the wedge-blocks, as clearly shown in Fig. 6. The purpose of this construction is to prevent the possibility of any silica, rock, or the like or too much water being earried over the end 35 of the table. The silica, rock, water, and the like being lighter than the mineral will not travel uptice inclined surface of the table near the end thereof, while the momentum of the mincral under the impens of the reciproca40 tions of the table will cause the mineral to travel up the incline. Therofore the silica. rock, water, or the like is retarded and caused to be wobled away toward the tailing-lelivery elge of the table, while the mineral is fed or 45 progrensed on over the edige I) F of the table and over the extending apron (" of the linoleum. This I regard as a valuable feature of my invention.
The rifflec, as above stated, may be of any 50 suitable or consenient shape in eross-section. In Fig. © I have slawn the construction of rittle which 1 have found suitable, eomprising an angle-strip somewhat inclined in the direction of flow of the wasl-water delivered
55 uren the table along the elge (' 1) that is, the riftle incline somewhat toward the tail-ing-delisery elge E F -thedirection of transberse flow of the wash-water weing indicated hy the arrow in Fig. 5. I do not desire, how-
60 (wer, to 1 n- imiten to this speritic shape in (rons-sention of the riftle, as other speeilic Whape in cros-section of rittles may equally. well answer the purpose. In practice I prefer to employ a flange or rifle (indicated
0_{5} at N) along the upher ealue from 15 to C of
the talle, along the ent from (' to E, and along the tailings-rlischarge edgre from E to F , as indieated indoted lines in Fig. 1. The flange or ritthextending from E to F isomitted in the view shown in Fige 9. and in practice this edge or flange should be of decereasing height from the cormer E towarl the corner F and corresponding in height to the height of the riffles-that is, corresponding to the decrease in height of the riffles, ar riewed in Fig. 2.
Variations and changes in the specifie details of construction and arrangement wonld readily oceur to persons skilled in the art and still fall within the spirit and sope of m? in- So rention. I do not desire, therefore, to be limited or restricted to the exact details of eonstruction shown and described: Jut,

Having now set forth the object and nature of my invention and a construction embody- 85 ing the principles thereof. what 1 chaim as new and useful and of my own invention, an:l desire to secure by Letters Patent. is

1. An ore-concentrating table having an open discharge end, riffles arranged upon the surface of said table and extending towarl said open discharge ench, each of said riflles having a depressed portion and elevated or raised portions on each side of the depressem? portion, the depressed portion heing fermed therein between the rimls of the rittles, and means for reciprocating said table in the direction of the length of said rifiles as and for the purpose set forth.
2. An ore-concentrating table having an ro open discharge end providen with rifles, arranged upon the surface of said table and extending toward said open discharge end, each of said ritiles leeing of decreasing height for a portion of the length thereof and increasing in height at the extreme ond thereof, and means for reciprocating said table in the direction of the length of said ritte, as and for the purpose set forth.
3. An ore-concentrating table, an open dis- 110 charge end provided with riftlesarranged upon the surface of said table and extending toward said open discharge end, each riffle having a portion of its length of uniform height, and increasing in height from saildonmortion of uni- 15 form height toward the respective ends thereof. and means for reeiprocating sajd table in the direction of the length of said rittes, as and for the purpose set forth.
4. 'The combination with a concentrating- 120 talile, of ritfles mounted on the mpper surface of said table and extending diagonally of said tal)le, said riffles being of derreasing height for a portion, and in the direction of, the length thercof, and of increasing height for 125 another portion of the length thereof, and means for reciprocating said talle in the direction of the length of said rittles, as and for the purpose set forth.
5. The combination with a concentrating- 130
table, of riffles mounted on the upper surface there of and extending parallel with respect to each other, each of said riftles provided with a pertion of uniform height and increasing in 5 leis ht toward the respective ends thereof fro:n said portion of uniform height, thereby for ning a seat or depression, the seat or depression formed in one riffle being somewhat in advance of or nearer the end of the table 10 than the seat or depression formed in the preceding riftle, means for reciprocating said table in the direction of the length of the rifHes, as and for the purpose set forth.
6. The combination with a concentrating15 table having parallel sides and parallel ends, the sides being inclined with respect to the end?, of rittles mounted on the top surface of said table and arranged in substantially parallel relation with respect to each other and rittles decreasing in height for a portion of the length thereof and increasing in height for a portion of the remaining length thereof, and means for reciprocating said table in the di25 rection of the length of said riffles, as and for the purpose set forth.
7. A concentrating-table having riftles upon the upper surface thereof, a covering or lining interposed between the riffles and table, o and a wedge-block interposed between said taHe and covering to form an upwardly-inclined suriace at the mineral-delivery end of the table, and means for reciprocating the table in the direction of the length of said rifles, as and for the purpose set forth.
8. A concentrating-table having a covering or lining for the upper surface thereof, and a block interposed between said cover and table
adjacent to the mineral-delivery end of the latter, in combination with riffles arranged on 40 said table-covering, said block being tapered lengthwise with respect to said riftles to form an upwardly-inclined surface at the mineraldelivery edge of the table, and means for reciprocating the tahle in the direction of the length of said riftles, as and for the purpose set forth.
9. A concentrating-table having riffles arranged to extend in the direction of the length of the table, in combination with a block arranged adjacent to the mineral-delivery end of said table, said bloek being tapered both lengthwise and transversely with respect to the length of said riffles to form an upwardlyinclined surface at the mineral-delivery end of the table, and means for reciprocating said table in the direction of the length of said riffles, as and for the purpose set forth.
10. The combination with a concentratingtable having parallel sides and parallel ends, said ends being inclined with respect to said sides, of riffles mounted on the upper surface of said table, said riffles being parallel with respect to each other and inclined to the sides and substantially at right angles to the ends 65 of the table, and means for reciprocating said table in the direction of the length of said riffles, as and for the purpose set forth.
In witness whereof I have hereunto set my hand, this $2 d$ day of July, 1901, in the pres- 70 ence of the subseribing witnesses.

GUSTAVE A. OVERSTROM.

Witnesses:
Chas. II. Seem,
S. E. Darby.
\qquad
號

\square

[^11]65

Perkins Patent No. 769,231
ALMON E. HART, Special Examiner
No. 769,231.
PATENTED SEPT. 6, 1904
G. E. PERKINS.

ORE CONCENTRATOR.
APPLICATION FILED JUNE $13,1903$.
NO MODEL.

Fig 3.

1-L.Budom-
C. Glace.. $^{\text {U }}$

त्गutuentor
George E. Perkins.
An Hound E/Penlur: Clthoniay

United States Patent Office.

GEORGE E. PERKINS, OF PROVIDENCE, RHODE ISLAND.
\section*{ORE-CONCENTRATOR.}

SPECIFICATION forming part of Letters Patent No. 760,231, dated September 6, 1904.

Application fled June 13, 1903. Serial No, 161,364. (No model,)
To wll whom it muly concern.
Be it known that I, (iborge E. Perkins, a resident of the eity of Providence, in the county of Providence and State of Rhode Island, have

This table is provided with longitudinal riftes I, attached to its upper face, which are of unequal length, increasing from the upper edge of the table downward, where they are the longest, the lowermost riffle extending nearly the full length of the table. To the right of the riftle extremities (see Fig. 1) there is a portion 13 of the table which is smooth or free from riftles.

H is the main feed-spout, through which the 60 material is fed to the distributing-trough I. This trough runs along the upper edge of the tal,le, extending nearly throughout its length. On the lower edge and throngh the rear wall of this trough are a series of holes L. (See 65 Fig. 5.) A dam or stop-wall IJ is placed in said trough a short distance from the pulpfeed end, forming a pocket for holding and distributing the pulp on the table through said holes L . The trough beyond this dam is for the purpose of receiving water through the supply-pipe K and distributing it over the table through the series of holes L in its section for this purpose. At the narrow end or foot of the table is a receptacle (for receiving the concentrates or richer portion of the separated material.

E is a spout or trough extending from the foot of the table along the side to the elevator F. The apron Gextends along the side of the table and is for the purpose of conducting the gangue or waste uver this trough H , causing it to bedeposited into a suitabledrain or wasto trough below. Near the foot of the table the space or aperture D is left open, through which How the middlings or that portion of the pilp) from which the richer mineral has not been entirely extracted. These middlingsare conducted through the aforesaid trough \mathbf{E} to the elevator F , by which they are raised and doposited into trough M, which trough in torn conduets them around back of the distributingtrongh 1, where they are deposited onto the table bevond the point where the initial pulp is discharged onto the table.

To the head end of the table is attached the mechanism which gives said tahle a longitudinal reciprocating movement and is deseribed as follows: b is a keeper which is mgaged by one extremity of a vertical lever \sim, that the following is a full, clear, and exact deseription thereof, reference being had to the accompanying drawings, and to the letters of reference marked thereon, whieh form a part of this specification.

This invention pertains to improvements in ore-concentrators, and has for its object to colleet and return the partly-separated pulp, or that portion known as "middlings," back to the table, where it is deposited at a point just below the pulp-feed to the table, thereby materially increasing the percentage saved of the richer or more valuable portion of the material during this second separation.

The invention consists of novel features and parts and combinations of the same, as will he fully deseribed hereinafter and then pointed out in claims.

Reterring to the drawings, A is the table, which tapers from the head toward the foot, where it is the narrowest, and is transversely inclined, causing the gangue or waste pulp discharged at its lower edge and the mineral or richer portion at the foot thereof.
A practical embodiment of the invention is represented in the accompanying drawings, forming a part of this specilication, in which similar characters of reference indicate corresponding parts in all the views.

Figure 1 is a plan view of the table, showing my spout or trough in position to conduct and deposit the middlings around and below the pulp-feed. Fig. 2 is a side elevation of the table, showing the spout for conducting the middlings from the end of the table back to the elevator. Fig. 3 shows the nechanism for imparting to the table a reciprocating motion. Fig. 4 shows the elevator, the trough leading to it, and the spont leading from it. Fig. 5 is an enlarged perspective view of the main feed or distributing trough, showing the distributing-holes through the rear wall of the smme. Fig. 6 is a detail sectional view on the line 66 , Fig. 1.
fulcrumediat d on a support e, mounted on the stationary frame f. The upper arm of the lever c is slotted to receive a bolt g, which holds a block h in place on the lever. This 5 block carries an antifrictional roller i, which engages the outer wall of the keeper b. The block h is adjustable for the purpose of changing the bearing-point on the keeper, and thereby regulating the length of the table's stroke. a bearing j, which is engaged by one extremity of a link k. This link is connected at l with a link h, forming a toggle-joint. One extremity of the link k engages a bar $j^{\prime \prime}$, at-
15 tached to the stationary frame. The pin connecting the two toggle parts also passes through one extremity of a pitman m, whose opposite extremity is connected with a wrist n on a crank θ, carried by a shaft p, journaled tionary frame f. The shaft p is provided with tight and loose pulleys x, which may be connected with any suitable motor for operating the mechanism. The outer extremities of the
forked to engage the bearings j and $j^{\prime \prime}$, respectively. Hence as the shaft p is rotated the toggles only impart the backward movement to the table or move it toward the left.
30 The forward or reverse movement is effected or imparted ly the recoil of a spring t, which is compressed or placed under tension by the table during its backward movement.

In the operation of the machine the matepar to be treated is discharged in the form of pulp upon the upper right-hand corner of the table through the supply-trough H. (See Fig. 1.) The gangue or waste passes transversely downward over the longitudinal rittles and is
40 discharged over the arron (i at the lower edge of the talle, the middlings, or that portion partially separated or which still contains a pereentage of the more precions minerals, is carried throngl the space I) at the end of the 45 table into the trough oes spout E and back by way of the elevator F and spout M onto the talile to be treated again and more thoroughly separated, white the mineral is discharged over the foot into the receptacle C. All the min-
50 eral, together with a portion of the gangne, is first caught by the riffles and under the influence of the table's motion is carried longitudinalls toward the foot until it reaches the smoother unrittled portion 13 , where it is acted
55 on ly the water, which effects a perfect or approximately perfect separation of the gangue from the mineral. As the material canght by the uppermost and shortest rittle passes to the portion B of the tahle the action of the water,
60 which is fed to the upper edge of the table, carries the gangue downward to the next rittle, while the mineral remains on the smooth portion 13 and is carried toward the tail of the table, where it is finally discharged. It is
σ_{5} expected that some of the mineral caught hy
the uppermost and shortest riffle will be carried downward with the gangue to the next rittle, which is longer. After leaving this lastnamed riffle and passing to the smooth or unriffled portion of the table the water again acts on the material and carries the gangue downward to the next riffle, leaving the clean mineral on the smooth portion B of the table.

In this manner the material is carried transversely down ward and longitudinally forward, the gangue being discharged at the lower edge of the table completely impoverished of its mineral values, and the partially-separated material or middlings are discharged through the aperture D into the trough E and returned to undergo another separation, while the richest portion is discharged at the foot or tail of the table. A portion of the ganguethat is to say, the light part thereof-passes over each riftle in succession from the shortest or uppermost to the longest or lowermost riffle. The mineral and the heavier gangue are caught ly the rittles and finally separated on the smooth portion B of the table.
The essential feature of this invention is my improved method of acting upon and saring the middlings. The middlings are of a comparatively light weight, and when they are first deposited upon the table with the rest of the gangue they are not able to free themselves and entirely /ivithstand the strong flow of the mass with which they are mixed in their first passage across the table and are therefore carried through the aperture 1) and deposited in the middlings-trough at the lower left-hand corner, whence they are returned and again deposited on the table, this time beyond this strong How of material, where the water alone can act upon the particles and finally wash and free them from the gangue, allowing them to he carried and deposited in the receptacle \mathbf{C} at the foot of the table and saved. The idea of carrying and delositing these returned middings around and bevond the point where the pulp is primarily fed to the machine is of great importance and has been so demonstrated in practice. For example, slould the middlings be deposited on the table at any point above the pulp-feed instead of below it these light particles wonld again be swept away by the flow of the gangue, as they were the first time. and could not he nilvel, as is now the case, by the use of my improved methood. These middlings constitute a very considerable proportion of the whole values in the pulp, and by retmoning then to the table in the manner alowe deseribed a much larger percentage of the valwable mineral is saved.

Having thus described my invention, what 125 I claim as new, and desire to secure hy Leters Patent, is

1. Adevice of the character deseribed, comprising a concentrating-tal)le, a distributingtrongh arranged near one side thereot ma har-
75

[^12]ing perforations in its onter side, said trough heing elevated, wherely middlings may pass thereunder, a second trough elerated above the phane of said discharge-trough and termi-
5 nating at a point beyond the outer side of the latter and nearer the concentrate discharge than the initial pulp-feed, means for collecting the middlings from said table and delivering them to said elevated trongh, and means for Io supplying water to said distributing-trough.
2. A device of the character deseribed, comprising a concentrating-table, a distributingtrough arranged near one side thereof and having perforations in its outer side, said trough 15 being elevated, a pulp-feeding poeket formed in said trough, an inclined trough located at the oppositeside of said table and leading from the lower end thereof, an apron located over
said inclined trough, an elevated trough leading from a point abore said inelined trough 20 and terminating at a point beyond the outer side of said distributing-trough and nearer the concentrate diseharge than said pocket, means for supplying water to said distributingtrough, and means for elevating the middlings 25 from said inclined trough to said elevated trough, whereby said middlings are discharged back of the distributing-trough and will pass thereunder.

In testimony whereof I have hereunto set 3° my hand this 12th day of June, A. D. 1903.

GEORGE E. PERKINS.

In presence of-
Howard E. Barlow, E. I. Ogden.

Forster Patent No. 780,031
ALMON E. HART, Special Examiner
No. 780,031 .
F. E. FORSTER.

CONCENTRATOR TABLE.
APPLIOATION FILED JAN. 23, 1904.

United States Patent Office.

FRANK EDMON FORSTER, OF (LIFTON, MRIZONA TERRITORY, ASSIGNOR OF ONE-HALF TO W'ILLIAM U. DE ROSEAU, OF CLAF"YON, ARIZONA TERRITORI.

CONCENTRATOR-TABLE.

SPECIFICATION forming part of Letters Patent No. 780,031, dated January 17, 1905.

Application filed January 23, 1904. Serial No. 190,393.

Beit known that I, Frank Edmox Fomente, a citizen of the Cnited states, residing at Clifton, in the comuty of Graham and Territory 5 of Arizona, have ibvented a new and nseful Concentrator-Table of which the following is a suecifiation:

This invention relates to concentrator-tables, and refers more particulands to tables for o concentraters of the type in which the table is disposed in an inclined plane and is given a longitulinal recinrocatory movement when the concentrator is in operation.

In concentrators of the type mentioned the 15 ore discharged mon the table passes obliguels across the table, the heavier particles of the ore taking the more ohligue course and the lighter particles moving more neally in a direction transperse to the line of movement o of the table. In such tables the aetion is satisfactory so far as the separation of the comser masses of gangue and the larger particle of ore is concerned; lant the separation of the metalic values contained in the slimes is not 5 complete, because the hearier masses of gingue sentito force the slimes off the table hefore complete sepaation of the metallie values therefrom can be effected.

The principil object of the present insensye above mentioned with a now arrangement of rifles and shots through which most of the gange or tailings may pase into at lander or trongh and be cariad awis. from the talle, thus allowing the slimes (o) work forward on the talse and cause a complete separation of the metallic values theretrom.

In attaining the ohjoct alowe mentioned and whers which will appear athe thenention is to more fully disclosed the same consists in the movel constraction of a concentrator-talak, ass hereinafter fully described and claimel, and illuntrated in prefermel form in the acembamying dranings, it being underboed that changes in the miner details of construction may le resorted to withont departing from ilie spirit of the invention or exceeding the sobe of the appended clams.
lu the drawing-, Figure 1 is a view in per-
spertive of the improvel concentrator-table, the feed-box from which the ore is discharged upon the table being indicated at the upper margin of the table by means of dotted lines. Fig 2 is a section on the line 22 of Fig. 1 . Fiy. 3 is a section on the line 33 of Fig. 1. Fig. 4 is a view in side elevation, partly in section, exhibiting one form of mechanism that mas be emploged tor imparting reciprecatory movement to the table.
koferming to the drawings, in which corre- 60 sponding parts are designated hys shilar characters of reference thronghout the several views. 1 designates the batek of rear margin of the concentrator-tahle, from which riffles 2 exterd longitudinally of the table toward it forwadent3. The riftes near the uppremargin 4 of the table are eomparatively short amb increase in length toway the lower margin 5. The riftles are preferably arranged in a plurality of groupe, three groups being shown, the groups being designated A, B, and (', respectively, from the upper part of the table to the lower. (iroup d eontains a much larger bumher of riftes than either of the groups B :and C^{\prime} : int the average length of the riffe: ingronn A is comsinlerably less than the arerage length of the ritthe in cither of the other gromp. In (ach groun) the rithes incrense mitomer in length from the uppermest to fle lowermest rittle, as shown in Fig. 1: thet the upnermus
 than the lowermest ritthe of group i, and the lowromest rit\# of gromp B in comsiderably longer than the upermast ritite of ervoup (i. The objeet of this arrangerment is tocation the 8 heavier masuon of tailings, which patis downward over the rilles in the uppor group from interfering with the pasage of ore ahong the riftes in the lower grouns. B. so arranging the rittles the gangur or tailing- mas. ha sparated into three graders, the combed yrad pasing over the mald of the riftlen of gromp A, the intermaliate grate paraing wer the ents of the rithes in group b: and the line gradu pasing or er the ends of the riftle in 95 group C .
In order to pravent mances of gangue from pasing orer the rifles in :mper group and
\qquad
descending upon the riftles of the next group, 1 provide slots 7 in the surface of the table at the points shown, a slot being provided below the lowermost riffle of groups A and B, near
5 the forward end thereof. Chutes 8 extend downward from said slots and discharge into a trough or launder 9, along which the material discharged from the chute may be carried by water or otherwise.

- The direction of the movement imparted to the concentrator-table is indicated by the arrow at the end of Fig. 1, and the course of the larger masses of gangue and ore over the table is indicated by heavy arrows, while the
$: 5$ course of the finer particles, including the slimes, is indicated by the light arrows.

The ore is discharged upon the concentra-tor-table from the feed-box F, (indicated in dotted lines at the upper margin of the table,) of the table cances the heavier masses to travel more rapidly toward the forward end of the table than the lighter and finer particles. A considerable portion of the largest particles of gangue will pass over the ends of the lower riffles in group A and will be carried off throngh the slot below the lowermost riftle of groupA. Particles of gangue of the next finer gyade will pass over the ends of the riffles in group B and be discharged through the slot below the lowermost rittle of that group, thus allowing the fine particles of ore and tailings to work forward along the riffles of group C, practically to the end thereof, and thus per-
35 mit complete separation of the metallic values from the tailings.

While the table has been shown as provided with three grouns of riffles only, it will be obvious that the number of groups may be increased, if desired, to separate the gangue or tailings into a greater number of different grades, and it will also be obrious that, if desired, slots may be provided, as indicated at 10 , for the escape of the metallic values which work along the riftles to their ends.

Any form of mechanism may be employed for imparting reciprocatory movements to the table, the form shown in Fig. 4 being one that will be eflective for the purpose and comprises a rod 11, one end of which is detachably secured in any suitable way to the under side of the table. The free end of the rod 11 carries a friction-roller 12 , which contacts with a cam 13, secured upon a shaft 14 and carrying fast and loose pulleys, one of which is designated 15, the said pulleys being engaged by a belt (not shown) leading to a suitable source of power. The shaftalso carries a fly-wheel 16 to insure a steady motion 6o of the shaft, as usual. Hounted upon the rod

11 is a spring 17, one end of which bears against a collar 18, adjustable on the shaft, and the other end against a washer 19 , also mounted upon the shaft and held against longitudinal movement by one of the cross-pieces 20 of the supporting - frame. The spring serves to hold the roller 12 in contact with the cam 13 , so that when the shaft 14 is rotated the cam imparts a quick forward and backward impulse to the rod, and consequently to the table, without any rest between the two movements, a rest, however, taking place when the friction-roller engages the flat side of the cam, as clearly shown in Fig. 4.

Having thus described the construction and operation of my invention, what I claim as new, and desire to secure by Letters Patent, is-

1. A table for reciprocatory concentrators having a plurality of sets of rittles the upper edges of which are disposed in the same plane, each set being arranged to overlap the next lower set.
2. A table for reciprocatory concentrators provided withescape-openings and with a plurality of setsof riffles, each set being arranged to overlap the next lower set, and the openings being disposed within the line of termination of the riftles above them.
3. A table for reciprocatory concentrators having a plurality of sets of riffles, each set being arranged to overlap the next lower set, and having, further, escape-openings disposed within the line of termination of the riffles, and at the outer terminals thereof.
4. A table for reciprocatory concentrators provided with escape-slots and with a plurality of sets of rittles, each set being arranged to overlap the next lower set, und the slots being disposed parallel with the riffles and within the line of termination of the riftles above them.
5. A table for reciprocatory concentrators provided with two series of escape-slots and with a plurality of sets of riffles each set being arranged to overlap the next lower set, one series of the slots being disposed parallel with the riffles and within the line of termination of the riffles above them, and the other series being disposed at the outer ferminals of the rifles.

In testimony that I claim the foregoing as my own I have hereto affixed mys signature in the presence of two witnesses.

FRANK EDMON FORSTER.
Witnesses:
W. B. Tompins,
W. H. De Rosbau.

COMPLAINANTS' EXHIBIT No. 29
 Dodd Patent No. 794,928
 ALMON E. HART, Special Examiner

No. 794,928 .
PATENTED JULY 18, 1905.
W. G. DODD.

ORE CONCENTRATING TABLE. APPLIOATION FILED JAN, 17, 1903.

WITNES5ES
Nalter of Vamel.
Leon ctoileer
FIF: Z

INVENTOR
Hium h. Wroded
by nacarac

United States Patent Office.

WILLIS G. DODD, OE SAN FRANCISCO, CALIFORNIA.

ORE-CONCENTRATING TABLE.

SPECIFICATION forming part of Letters Patent No. 794,928, dated July 18, 1905.
Application fled Janaary 17, 1903. Serial No. 139,407.

To all whom it ma!! conerern:
Be it known that I, Willis G. Dodm, a citizen of the United States, residing in the city and county of San Francisco, State of Culifornia, have invented certain new and useful Improvements in Ore-Concentrating Tables, relating more partieularly to that class of ore-concentrators known as "transverselyinclined reciprocating riffled tables," and pertains specially to the method of arranging the riffles upon the working face of such tables, of which the following is a specification.

The usual type of transverseiy - inclined 5 concentrating-table of the class referred to when in operation has a peculiar reciprocating motion imparted to it, which motion has a tendency to carry material fed thereon longitndinally toward the foot or tail of the table. The working face of the table proper has arranged upon its surface a series of longitudinal deflecting slats or riffles extending from the head of the table toward the foot or tail thereof, said riffles terminating in such a manner as to leave a plain, smooth, or unriffled portion of the table between the terminals of the riffles and the foot or tail of the table, onto which the mineral and gangue which may have been collected by the riffles - is discharged, and final separation of the mineral from the gangue is cffected by subjecting it to a transverse flow of clear water while it is being carried forward onto the plain, smooth, or unriffled portion. The pulp, which consists of a mixture of water carrying a small quantity of finely-crushed grains of valuable mineral intermingled with a large quantity of finely-crushed quartz, when fed upon the upper edge of the table flows transversely downward over and across the riffled portion of the table at approximately a right angle to the line of motion or to the longitudinal direction of the riffles. The mineral in the pulp having a specific gravity much greater than that of the gangue or quartz is arrested in its transverse downward course, settles or becomes entangled among the riffles, and due to the peculiar longitudinal reciprocating motion given the ta;o ble is carried longitudinally along the riffles
and is discharged upon the plain, smooth, or unriffled portion of the table above referred to. This transverse flow of the gangue over the riflles in a succession of miniature Niagaras across the path of the raluable mineral which is being convered toward the foot or tail of the table along the rilles keeps the mineral while being collected in a constant state of agitation and causes the finer particles of mineral to be carried with the worth- 60 less gangue and is discharged over the lower edge of the table, where these particles are finally lost. Said distributer is arranged a slight distance above the surface of the con-centrating-table and so located that the pulp discharged therefrom will be received onto the table's surface immediately in advance of the uppermost or shortest riffle of the series of collecting-riffles.

The object of my present invention is to 70 decrease this loss by unloading the riffles of a portion of the gangue, which I accomplish by a special arrangement of the riffles on the working face of the table, leaving a plain, smooth, or unriffled portion between the head of the table and the receiving ends of the riffles, upon which surface a partial separation of the gangue from the mineral is effected prior to entering the riffles for further treatment, all of which is set forth and illus- 8o trated in the accompanying drawings, which form a part of this specification, wherein-

Figure 1 is a plan riew of a transverselyinclined reciprocating concentrating-table fitted with my improved method of riflling, 85 and Fig. 2 is an end view of same in crossseetion.

The letter A represents the table proper of a concentrating-machine of the class described, the face of which is usually covered 90 with sheet-rubber or linoleum, or any suitable material may be used that will produce a smooth and even surface to the working face of the table. Upon this smooth working face of the table a series of deflectingslats or mineral-collecting riffles B , usually consisting of tapering strips of wood, are secured. These riffles are of varying length, the shortest usually being the uppermost, and they are so arranged that the receiving
end and the terminal end of each successive riffle from the uppermost downward advance beyond the receiving end and the terminal end of the riffle above, thus leaving a smooth 5 or unriffled portion of the table C between the receiving ends of the riffles and the head D of the table and a smooth or maiffled portion of the table E between the discharge ends of the riffles and the foot or tail of the 10 table F.

A feed-box or distributer G is suitably momed or secured to the tabse and is provided with a perforated bottom, which sifts or distributes the material to be concentrated 15 upon the table. A water-distributer II is suitably suspended at and above the upper edge of the table, from which, (hrongh suitable openings, clear water as required is delivered onto the table.
J is any suitable driving mechanism that will impart to the table a reciprocating motion that will impel the material delivered to the riflles longitudinally toward the foot or tail of the table.
\mathbf{K} is a sluice or laundes by means of which the material to be conentrated is convered from any suitable crushing device into the feed-box or distributer (i.

The operation of the concentrator is as follows: The table A is given a slight transverse inelination suffiejent to permist the pulp to flow downward over the smooth or mrillled portion C between the receiving ends of the riffles and the head D of the table. Power 35 is then applied by any suitable means to the driving mechanisin. J, which impartsareciprocating motion to the table. Pulp, consisting of water earrying finely-crushed quartz containing a small quantity of finely-crushecl 40 mineral is now introduced by means of the sluice K into the feed-box G , from which it is sifted or distributed onto the smooth or umriffled portion C of the table Λ, aljacent to the receiving encts of the rillles. As soon as this pulp is deposited upon the smooth surface of the table the quartz or gange flows downward and is entangled among the receiving ends of the lower rillles and after depositing any particles of mineral that may have been 50 carried with it is permitted to rim to waste. The mineral comtained in the pulp, dae to its specific gravity being aremter than the grartz or gangue associated with it, settles anul clings to the table, moving slowly down:ard 55 in a diagonal direction, due to the motion given the talble, and beromes entangled with the adrancing receiving ends of the rifles, enters them, and is carried longitadinalty along the tapering rifles, and is disehargeid
60 upon the smooth or unrifled pertioni of the table E , where the fimal separation of the gangue from the mineral is cflemed by sub-
jecting it to the action of a transserse flow of clear water delivered upon the table from the water-distributer II, the mineral being enrried over the foot or tail of the table and deposited in a box or receptacle provided for the purpose. The middlings produced, being a mixture of mineral containing a small quantity of quartz, are conducted into a special receptacle, from which they are retumed to the table by any suitable device for reworking.
Bye the method of riflling lerein described I am emabled to offect a partial sepration of the minetal from the gangue before delivering it to the riflles, thas reliesing then from a part of the load of pulp that has heretofore been mecessaly to pass over them and by avoiding exeessive disturlmace to the mincral while traveling along the rifles reduce the losis of fine particles to a minimum.

Having thas deseribed the invention, what is cinimed as new, and desired to be protected by Letters Patent. is:-

1. A transwersely-inclined ore-concentrating table provided ion its working face with at series of lomgitudinally-extending collectingrillles, which rilles gradually increase in lengeth from the uppermost rifle to the lowcrmost one of the series, the receiving and terminal ends of each rifle extending beyond the salidends of the precediner rifle, there being an mrifled or plain surface to the table intermediate the terminals of the riffles and its lead and tail respectively, and feeding means so arranged at the upper edge of the table as to canse a portion of the pmlp delivered unto the table to overlap the uppermost riflle toward the head, so as to feed directly to the projecting ends of part of the subsequem rilles.
2. An ore-concentrating table provided on its working face with a scries of longitudi-nally-extending collecting-rilles, which riffles gradually increase in lemeth from the uppermost riflie to the lowermest one of the series, the recriving end of cad rille extemeling beyond the reeciving end of the preeeding ritile, there being an mrilled surface to the tahbe intermediate its head end and the recoiving end of the rilles, and feceling means so arrangelat the upper edre of the table as to canse a portion of the pulpdelivered onto the table to overiap the uppermost vilfle toward the hemd, so as to feed directiy to the projecting conds of part ol the subsequent. rillles.

In witness whereof I have heremento set my hand.

WILLIS (i. DoDJ).
Witnesses:
Walter F. Vane,
D. B. Richards.

Sheridan Patent No. 796,940
ALMON E. HART. Special Examiner
No. 796,940 .
PATENTED AUG. 8, 1905.
T. F. SHERIDAN.

CONCENTRATING TABLE.
applioation filed feb. $6,1904$.

UNITED STATES PATENT OFFICE.

THOMAS F. SHERIDAN, OF CHICAGO, ILLINOIS.

CONCENTRATING-TABLE.

Specification of Letters Patent.
Patented Aug. 8, 1905.
Application filed February 6, 1904, Serial No. 192,446.

To all whom it may concern:
Be it known that I, Thoman F. Subriban, a itizen of the United States, residing at Chicago, in the county of Cook and State of Illinois, have invented certain new and useful Improvements in Concentrating- 'Tables, of hich the following is a specilication.
The invention relates to that class of con-centrating-tables which are provided with rif-fle-boards that have a vibratory motion parallel to the phane of the separating-surface thereof and whic: are provided with riffled and smouth portions for the purpose of separating the values from the waste materials, all of which will more fally herenatiter appear.

The principal object of the invention is to provide a simple, economical, and efficient rithe-board for concentrating-tables.

The invention consists principally in a riffleboard provided with a smooth separating-surtace at one end thereof and provided with riffles having their discharge ends opening upon and substantially founding two sides thereof, substantially as described.

The invention consists, further and finally, in the features, combinations, and details of construction hereinafter described and claimed.

In the accompanying: drawing, the figure represents, in plan view, a concentrating-table having a riftle-board constructel in accordance with my improvement looking at the same from above.

In illustrating and describing these improvements I have only illustrated and described that which I consic er to be new, taken in connection with so much as is old as will properly disclose the inven ion to others and enable those alalled in the art to practice the same, leaving ont of consideration other and well-known elements, which, if set forth herein, might tend to confusion, prolixity, and ambisuity.

In constructing a concentrating-tablo in accordance with these improvements I provide a rittle-bard having a four-sided or quadrilateral smooth semarating-surface // at one end thereot, upon which the values are finally eparand from the gangue and lighter or waste materials. It will be noticed on exanining the drawing that this table, which is transsersely inclined and adapted to the reciprocated in any desired ordinary or wellknown manner, has two parallel sides, an up-
per side b and lower side ca, and divergent end portions d and $e, s o$ that the front end edge and the lower side edge are in obligue relation to each other.
To assist in the separation of the values from the waste materials, the hoard is further provided witha plurality of riftles f, atranged at an incline to the side portions and substantially at right angles to one side of the quadrilateral smonth separating-surface and to one end - the inclined end - of the board.

Ans desired mechanism may be provided for the purpose of imparting a vibratory motion to said table, and said vilratory motion is imparted to said table in the direction of the length of its rittles, so as to throw the materials to be separated forward from the head of the table to the foot thereof, all of which is well known and understood in this art and needs no further illustration or description herein.
The material enters the table from the box g onto the surface h thereof and contacts the multiplieity of parallel-arranged rittles, the upper set of which riffles contact the front end or edge of the table and are substantially equal in length, terminating at their rear ends in a line parallel with the front end or edge of the table, the desire being to subject the materials at first and at once to the maximum effect of riffles of the necessary length, and thereby prevent anys sudien flushing or washing over of the values. The separation takes place in a uniform step-bystep manner and not in a progressise manner, as is the case where the riftes vary in length. It will further be seen that the table presents a smooth surface of maximun size, upon which the final separation or washing effect may be obtained, all of which will be understood and appreciated by those skilled in the art. It will also be observed that these riftles substantially bound two sides of the separating-surface-namely, the forward and lower side thereby confining the concentrates within the influence of the smooth separating - surface and tending to throw the material to be separated from all of said rithes onto the smooth separating-surface. In other words, the upper set of riffles--those which contact the front end-extend from such end to the smooth-surface portion rearward thereof in the direction of the concentrates-discharge end l of the table. The lower set or series of riftes - those which contact the lower side or
edge of the table extend from such lower side edge rearward to the smooth-surface portion. The first set of riffles are of smbstantially equal length, and the second sct are of constantly-diminishing length an they approach the lower side and rear end of the table, and the rear or concentrates-discharge end of each rittle extends berond the end of the riftle next abore it, as do those of the upper series. but to a greater extent, so that they sultend the entire lower side of the smooth-surface portion. The upper serips of riftles subtend the entire front side of such smooth-surface portion. The middlings discharged by the upper series of rittes upon the smooth-sifface portion are thuc, in effect, reconcentrated, and any valups are diverted back to the smooth-surface portion and to the concentrates-liseharge against the spray or slight flow due thereto to carry them into the gangue discharge or trongh. The effect of the abore is to provide practically the equiralent of a second concentrating-table, reconcentrating the middling: discharged from the first or upper series of riftles, and discharging the gangue quickly from the front lower side. The gangue-trough extends along the entire length of the lower side of the table, asshown in the drawing. and the concentrates-discharge extends the entire length of the concentrates ent or smooth-surface portion. Brs this arrangement the lougest riffles are where they are neelled most namely, at the front upper portion of the table-and the gangue which passes over them is at once discharged by the progressively-diminishing length of the lower series of riftles, all tending to produce adrantageous results by prerenting waste of values and producing high-grade concen-
trates, thus obviating the necesvity of a second table for the middlings in most cases.

I clains

1. A reciprocating transrersely-inclined concentrating-table having a lower side edge and a forward end edge in obligue relation to each other, a series of rittles of substantially equal length extending from the forward end toward the rear end of the table upon the upper purtion thereof, a smouth-surface portion between the rear ends of such riffles and the rear end of the table, and a secund series of ritile of progressively-diminishing lengthextending progressively from the lower side edge of the table wholls subtending such smoothsurface portion and alapted to return concentrales thereto.
2. A reciprocating transversely - inclined concentrating-table having a tuwer side edge and a forward end edge in oblique relation to each other, a series of riftles of substantially equal length extending from the forward end toward the rear end of the table upon the unper portion thereof, a smooth-surface portion between the rear ends of such riffles and the rear end of the table, a second series of riffles of progressively-diminishing length extending proyressively from the lower side egge of the table and wholly subtending such smocth-surface portion and adapted to return concentrates theretu, such table being prorided with a concentrates-discharge extending the entire lenyth of the concentrates end, and a gangue-trough extending the entire length of the lower side thereof.

THOMAS F. SHERIDAN.

Witnesses:
 Harry I. Cromer,
 Anme C. Courtenay.

COMPLAINANTS' EXHIBIT No. 31

Morgan \& Hoheisel Patent No. 829,884 ALMON E. HART, Soecial Examiner

PATENTED AUG. 28, 1906.
C. L. MORGAN \& J. F. HOHEISEL.

FLOATING METAL SAVING DEVICE FOR CONCENTRATORS.
APPLICATION FILED APE. II, 1904.

> Qvituesses Wht obratich Qena Celson.

C. L. MORGAN \& J. F. H0HEISEL.

FLOATING METAL SAVING DEVICE FOR CONCENTRATORS.
APPLICATION FILED APR. $11,1904$.
2 SHEETS-SHEET 2

UNITED STATES PATENT OFFICE.

GLAUDE L. MORGAN AND ,JOSEPH F. HOHEISEL, OF IDAHO SPRIN(iS, COLORADO.

FLOATING-METAL-SAVING DEVICE FOR CONCENTRATORS.

No. 829,884.
Specification of Letters Patent.
Patented Aug. 28, 1906.

Application filed April 11, 1904, Serial No, 202,679.

To all whom it may concern:

Be it known that we, Claude L. Morgan and Josepi F. Honersel, eitizens of the United States of America, residing at Idaho Springs, in the county of Clear Creek and State of Colorado, have invented certain new and useful Improvements in Floating-MetalSaving Devices for Concentrators; and we do declare the following to be a full, clear, and exact deseription of the invention, such as will enable others skilled in the art to which it appertains to make and use the same, refcrence being had to the accompanying drawings, and to the letters of reference marked thereon, which form a part of this specification.

Our invention relates to improvements in means for saving the light pretion of the metallic ralues sometimes termed "slimes," which float upon the top of the water and under ordinary conditions are lost with the gangue.

Our improvement is adapted for use in connection with concentrating-tables of the Wilfley type, in which the concentrating-surface of the table is provided with longitudinallydisposed riffles extending lengthwise of the table or in the direction of motion, the table being transversely inclined and having a movement in the direction of the rilles, the material to be treated, as well as the washwater, being fed upon the upper edge of the table. In this style of tables the gangue is carried transversely across the table and discharged over its lower longitudinal edge, while the concentrates are carried lengthwise of the table and discharged at its rear or tail extremity. In the treating of some classes of material a very important proportion of the values are in the form of slimes or floating material, which in this style of table and under the conditions above outlined naturally are carried transversely across the table and lost with the gangue. Our improvement is intended to overcome this difficulty; and it consists in equipping the table with a raised riflle or retarding device located near its gangue-discharge edge, said retarding device being raised from the bottom of the table, its lower surface, however, oceupying a position beneath the top of the depth of pulp on the table, whereby the floating material is stopped therebr and made to travel along to the tail extremity of the table. In the con-
struction herein illustrated and which will in 5.5 regular order be described in detail, we have chosen to place our retarding device in a position where a third rifile from the kower or gangue-discharge edge of the table would be placed, and for this reason the riflle corre- 60 sponding to this position is removed, or it may be said to be raised to form the retarding slime-saving derice. This retarding device may be supported in any suitable manner. It is preferred, however, to connect it with suitable means whereby it may be readily adjusted in order that the said device may be vertically adjustable at will, since it may be desirable in some instances to have a greater depth of pulp upon the table than in other instances, and to this end in the drawings the retarding device is threaded on a number of bolts which are journaled in the table and provided at their upper extremities with hand-cranks, whereby as the bolts are turned the retarding device is made to travel up or down at will, according to the direction of the bolts' movement.
Having briefly outlined our improved eonstruction, as well as the function it is intended to perform, we will proceed to describe the same in detail, reference being made to the atcompanying drawings, in which is illustrated an embodiment thereof.
In the drawings, Figure 1 is a fragmentary end view, partly in section, illustrating a con-centrating-table equipped with our improvement. Fig 2 is a plan view of a concentrat-ing-table provided with our improved device, the same being shown on a smaller scale. Fig. 3 is a top view illustrating a modified form of construction shown on a larger seale. Fig. 4 is a plan view of a concentrating-table provided with our improvements, the table being shown in connection with means for imparting a reciprocating movement thereto lengthwise of the table.
The same reference characters indicate the same parts in all the views.
Let A designate the boly of a suitable con- 100 centrating-table, which, as shown in the drawings, is transversely inclined and provided with a number of riffles B. As shown in the drawings, these riffles terminate in a diagonal line across the table, being of unequal length, the riffle highest on the table, heing shortest and the other riffes increasing in length toward the lower or gangue-dis-
charge edge of the table. In the drawings the two riffles adjacent the gangue-discharge edge extend the whole length of the table, while immediately above the next to the low-教 This device consists of a bar composed of any suitable material and may be of any desired size. It takes the place of one of the riffles desirable or required. This device C, which we term the "retarding" device, since it stops the slimes or floating material from passing downwardly over the table with the gangue,
be med above the upper surface or the ta. its bottom or low edge occupies a position beneath the level of the pulp D on the table, (see Fig. 1,) whereby the slimes E or floating values are prevented from escaptail or concentrates-discharge end of the table in the direction indicated by the arrows. the sail tail of the table being located at the right in Fig. 2 of the drawings. As heretofor saving the floating metallic values may be supported in the required position in any suitable manner. In the drawings it is shown provided with a number of threaded 30 openings, through which are passed a number of bolts F, which are passed upwardly through the body of the table and journaled therein, their threaded portions being passed through the threaded openings of the floating-mineral35 saving device. The heads of these bolts are let into the sockets in the under surface of the table, and the bolts are retained in place by plates G, secured to the lower surface of the table by screws II, whereby the said plates 40 are flush with the lower surface of the table. To the top of each bolt F above the device C is secured a hand-crank I for ease of manipulation. It will be understood that as these hand-cranks are turned the retarding device 45 C may be raised or lowered, as may be desired, according as it is necessary to lower the bottom of the device C or raise it in order that it may occupy a proper position with reference to the depth of pulp or water upon
In Fig. 4 of the drawings we have illustrated suitable merhanism for imparting a reciprocating movement to the table lengthwise thereof, whereby the concentrates are ward the right, referring to Fig. 4. Any suitable mechanism may be employed for imparting this movement. In the drawings, M illustrates a suitable stationary support, in 60 which is journaled a shaft M^{\prime}, provided with a cam M^{2}, acting on an abutment MI^{3}, connected with the head of the table by rods M^{4}. Between the table and the stationary crosspiece M^{5} is located a coil-spring M^{6}. A pul-
and a ny-wheel M^{8} to the opposite end of the shaft. As the shaft M^{\prime} is rotated the cam acts on the ahutment M^{3} to draw the table rearwardly, and as the cam leaves the abutment the table is thrown forwardly through the recoil of the spring. M°. The cam again engages the abutment in time to check the spring-actuated movement of the table, wherely the concentrates are caused to continue their forward movement by the stopping of the table. As this movement is continued the concentrates are carried forwardly and discharged at the rear open extremity of the table.

Nothing is claimed on the operating mech- 80 anism in this application, since we are aware that many devices may be employed for this purpose; neither do we claim that we have illustrated the best mechanism for intparting the reciprocating movement. The device shown is unly for the purpose of illustrating one way of imparting a longitudinallyreciprocating movement or a vibratory action to a table of this character.

In treating ore upon a table of this class the pulp to be treated may be said to be discharged into a feed-box J ind pass therefrom to the body of the table at its upper edge, which is designated K in Fig. 2. At the same time that the material to be treated is fed to the table wash-water is also fed thereto at the upper ellge K. The vibrating longitudinal movement being imparted to the table, the concentrates are carried toward the right, referring to Fig. 2 , while the gangue is carried downwardly and discharged over the lower edge L . The slimes or floating values, however, are caught by the device C and carried along in the direction of the arrow (see Fig. 2) and discharged with the concentrates into a gencral trough or into a separate receptacle, as may be desired.

Attention is called to the fact that as nothing is claimed on the general features of a concentrating-table we have not thought it necessary to indicate any mechanism or mechanical power or movement for imparting the longitudinal vibration to concentratingtables of this class. We have, however, called attention to the gencral operation of the table which it is believed will be as readily understood from the foregoing description as if it had been fully illustrated, since mechanisms of this kind are very common nowadays, ond while many different types may be employed they all seek to perform substantially the same function.

In Fig. 3 of the drawings we have illustrated a construction for use when it is desired to form a device C of wood. In this case it would not be practicable to thread the bolts F in the wool, and consequently a slecve (${ }^{\prime \prime}$, proviled with exterior ribs (${ }^{2}$ " to prevent it from turning in the wood, is empleyed, the sleeve being forced into an opening formed in $\times 3^{\circ}$
the wood and forming a nut which the threaded part of the bolt engages.

Having thus described our invention, what we claim is-

1. The combination with a transverselyinclined concentrating-table having a movement whose tendency is to cause the material to travel longitudinally thereon toward the rear or concentrates-discharge end of the table, the said end being open and the table having longitudinally-clisposed rifles, of a retarding device for saving the floating values, said device being supported above the bottom of the table, its lower edge, however, oceupying a position beneath the top of the pulp or water thereon.
2. The combination with a transverselyinclinel concentrating-table having a movement whose tendeney is to carry the material from the head toward the tail of the table, the said tail end of the table being open to permit the discharge of the concentrates, of a retarding device disposed longitudinally of the table and supported thereon above its concentrating-surface, whereby the pulp is allowed to pass thereunder, the lower edge of the said device, however, occupying a position below ihe top of the water or pulp on the table whereby the travel of the floating-metal - values or slimes is arrested, and the said values separated from the gangue.
3. The combination with a transverselyinclined concentrating-table having longitu-dinally-disposed riffles, and means for imroeating to the table a ongituchatly-recipcaused for travel toward the tail or concen-trates-diseharge end of the table, the said end of the table being open to permit said disharge, of a bar supported near the lower or gangue-discharge edge of the table and occupying a position above its concentratingsurface wherely the pulp is allowed to flow thereunder, the lower edge of the bar occupy-
45 ing a pusition below the top of the water or pulp on the table, whereby the floating or metallic values or slimes may be arrested in
their downward travel with the gangue, and caused to travel toward the concentrates end of the table.
4. The combination with a transverselyinclined concentrating-table having a movement whose tendency is to cause the material to travel longitudinally thereon toward the rear of the table which is open to permit the discharge of the eoneentrates, the table having longitudinally-clisposed riftles, of a retarding device located adjacent the lower or gangue-discharge edge of the table and in the path of the How of the gangue across the 60 table, the said device being raised above the bottom or concentrating surface of the table, its lower edge occupying a position below the top of the water or shmes thereon, the said device being vertically adjustable on the 65 table.
5. The combination with a transverselyinclined concentrating-table having a movement whose tendency is to cause the material to travel longitudinally thereon toward the rear or concentrates-discharge end of the table, the said end of the table being open to permit such discharge, the said table having longitudinally-disposed riffles, of a retarding strip or riffle arranged along the table in the 75 path of the ravel of the gangue thereon, the said retarding strip or riffle being provided with threated openings, bolts journaled in the bottom of the table and having threaded parts engaging the openings in the retarding 80 device, a hand-crank applied to the upper extremities of the bolts whereby the retarding device may be vertically adjusted at will, the said device being raised above the concen-trating-surface of the table and its bottom or 85 lower edge being located beneath the top of the pulp or water thereon.

In testimony where of we affix our signatures in presence of two witnesses.

CLAUDE L. MORGAN.
 JOS. F. HOHEISEL.

Witnesses:
R. J. Davies,
W. A. Roberts.

COMPLAINANTS' EXHIBIT No. 32
Taylor Re-issue Patent No. 12,592
ALMON E. HART, Special Examiner
REISSUED JAN. 8, 1907.
No. 12,592.
H. P. TAYLOR.

ORE CONCENTRATOR.

- APPLIOATION FILED JULY 28, 1803.

REISSUED JAN. 8, 1907.
H. P. TAYLOR.

ORE CONCENTRATOR.
APPLICATION FILED JULY 28, 1903

UNITED STATES PATENT OFFICE.

HARRY PICOTTE TAYLOR, OF HOWARD, OREGON, ASSIGNOR OF ONEFOURTH TO W. P. KEADY, OF HOWARD, OREGON.
\title{ ORE-CONCENTRATOR. }

No. 12,592.
Specification of Reissued Letters Patent.
Reissued Jan. 8, 1907.

Original No, 882,371, dated September 10, 1901. Application for reisspe filed July 28, 1903. Serial No. 167,360.

To all whom it may concern:
Be it known that I, Harry Picotte TayLor, a citizen of the United States, residing at Howard, in the county of Crook and State 5 of Oregon, have invented certain new and useful Improvements in Ore-Concentrators, of which the following is a specification.

My invention relates to improvements in concentrating-tables whereupon ores are separated from the refuse tailings and from each other according, to their specific gravities.

It consists, essentially, of a longitudinallyinclined support, a transversely-inclined bed upon this support, means by which these inclines may be varied, a shaking-table upon this bed, means by which a movement is given to this table oblique to the longitudinal line of the support, means by which the length of this movement or stroke may be regulated, and of details more fully explained by reference to the following specification and accompanying drawings.

Figure 1 is a plan of my in rention: Fig. 2 is a longitudinal elevation. Fig. 3 is a part section and elevation on the line $x x$ of Fig. 1 . Fig. 4 is a rear elevation. Flg. 5 is an end riew. Figs. 6 and 7 are detail riews of the driving mechanism.

The object of my invention is to provide a device in which I get the widest range of position and movement possible for the con-centrating-table as may be best adapted to the varying kinds and grades of ores under treatment. It is capable of being given a longitudinal, a transverse, and a diagonal tilt at one and the same time, or it may be given any of these tilts singly, or it may remain horizontal, and in any of these positions the movement or length of stroke of the table is capable of variation at will.

Having reference to the drawings, A is a suitable foundation or base on which the mechanism is supported. A frame B, composed of longitudinal timbers suitably connected, is pivoted at one end, as at 2 , to the base A, so as to be capable of being given a longitudinal tilt. This tilting is effected by an inclined-plane lifting mechamism secured upon the parts of the loase and the frame, near the opposite end from the pirot 2 , as follows: On each of the longitudinal pieces of the base A are similar sliding wedges 3 , haring projecting flanges by which their position on these pieces is maintained. One of these
flanges of each wedge is notched to form a 55 rack-bar 4. A pinion 5, having an axle journaled in the base, engages with the rack and by suitable means; as a lever 6 , is operated to move the wedge. Secured upon the frame B are rollers 7 , which are adapted to engage the 60 inclined faces of the wedges 3 . A simultaneous movement of the levers moves the wedges forward or backward and correspondingly raises or lowers the end of the frame. A bed portion (is hinged at 8 to the frame B. By means of these linges the bed C is transversely tilted by a mechanism somewhat similar to that used in giving the frame its longitudinal tilt. Upon the opposite side of the bed from the linges are the wedge portions 9 , fitted so as to slide upon the inclines 10, carried upon a rod 11, whiels latter is secured to the longitudinal portion of the frame B. The under side of this baris provided with a rack 12 , and a pinion 13 , journaled in the frame, engages this rack and is actuated as by means of a lever 14. Thus by means of the lever 14 the wedges 10 are simultaneousty moved and the lateral tilt of the bed and the table varied. The shaking or concentrating table D is supported above the bed in such manner that it may be given a rocking or sliding movement in a direction oblique to the length of the machine. Such mounting I have shown by the standards 15 upon the bed, having their ends adapted to fit the cleats 16 on the bottom of the table and form sliding bearing-surfaces. The table is of irregular shape, having its "head" end narrowed. The pulp is fed in, as at 17. Parallel with the longer and outer edge of the table are the riflles 18 , which may be either rectangular or otherwise formed in any wellknown manner. Water is fed along the side and end of the table from the trough or perforated pipe 19. The object of making this table with its outer edge longer is to compensate in a manner for the longitudinal tilting of the table and to raise that edge of the concentrate end which would naturally be 100 lower, so that the water may tend to flow toward the head and be equally distributed over the table. Furthermore, for reasons soon to be shown, the valuable partieles or the "eoncentrates" will be carried "uphill" 105 toward the concentrate or broad ench of the table by means of the riffles and the shaking of the table, while the slime will flow oll on
the lower or "tailings" side d. A differential reciprocating movement in the direction of the riffles is given to this table in the following mamer: At the head end of the ma5 chine a horizontal shaft 20 is journaled in a framework E : ind has suitable driving connections with a source of power.. ITon this shaft is a cone-shaped cam 21 . A sleeve 22 upon the shaft has one end abutting against threse of the cam and the other end is threaded, 111 which the stroke-adjuster 23 is turnable. This adjuster is held between the guides 24 on the framework E. The sleeve 22 is prevented from tmrning on the shaft by
15 means of a longitudinal groove 25 in the sleeve, in which a projection or lug 25^{\prime} on the frame engages. To the head of the table is attached an arin 26. The outer end of this arm has a wheel 27 running on the face of the
20 cam. This wheel is kept against the cam by reason of a spring 28 . The tension of this spring is regulated by a flanged sleeve 29 upon the arm. This sleeve is exteriorly threaded and is turnable in a threaded proated 50 of the ramework \mathbb{E} and is operated by means of the spokes 31 . By means of the movable sleeve 22 upon the slaft 20 acting against the cam to move the latter, so the wheel $2 T$ runs upon a greater or less ciro cumference of the cam, I am able to give any desired length of stroke or "shake" to the table. This alility to change the shake of the table is of great value in many instances. The cam is given such a periphery that a dif5 ferential movement is gained - i. e., the table comes to a quick stop on the concentrate end of its stroke and to a gradual stop at the other end. As preriously indicated, the table is capable, further, through means of the inclined wedges, of being given a longitudinal tilt and a transverse filt. These features, coupled with the oblique shaking movement, gives a differential motion to the table, which. with the angle of the riffles, throw's
45 the valuable particles toward the concent rate end of the table and effects a cleaner and closer saving than is usnal in concentratingtables, this by reason that the slime is carried in another direction - i. e, toward the
50 lower side d-and the particles have more freedion to separate according to their relative specific gravities. Furthermore, it has been found that by the use of this machine the finely-ground ore may be concentrated in a
55 drystate - a feature that is of immense value in dry and arid localitics where conservation of water is of first importance in all operations.

Having thus described my invention, what
60 I claim as new, and desire to secure by Letters Patent, is -

1. In a concentrator, the combination of a longitudinally and transversely inclined support, and a table mounted thereon, said table
05 heing of irregular shape with a marrowed heal
end, riffles upon the table arranged parallel with the outer or longer side thereof and diagunal to the said support, and means by which the table is given an endwise-reciprocating movement oblique to longitudinal axis of the machine, and in the line of said ritlles.
2. In a concentrator, the combination with a base of a frame pivoted thereon, means by which the frame may be inclined longitudinally, a bed hinged on this frame and capable of being given an incline transverse to the frame, a table upon this bed, said table being of irregular shape and diverging from its head cud, and having rilles parallel with its outer or long side and diagonal to the bed, and means by which the table may be given an endwise-reciprocating movenent oblique to the longitudinal axis of the machine, and in the line of the riffles.
3. In a concentrator, a table having a nar- 85 row head end, and gradually increasing in width toward the foot having parallel rifles extending in a line oblique to the longitudinal axis of the table and parallel with the longer or outer side of the table, and means by which this table nay be given a reciprocating movement in the line of these riflles.
4. In a concentrator, the combination with a base, of a frame pivoted at one end thereon, inclinerl wedges slidable npon the base, bear-ing-smfaces fixed upon the frame which engage these wedges, and means by which the wedges are moved and the frame given a longitudinal tilt, a bed hinged upon the frame, and means by which the bed is laterally tilted, a table carried upon the bed having parallel riffles oblique to the axis of the machine, and extending in uphill direction, and means by which the table is given a reciprocating movement in the direction of the 105 riffles.
5. The combination with a concentrator table and means br which it may be longitudinally and transversely tilted, means whereby this table may be differentially reciproeated obliquely to the longitudinal axis of the table, said means consisting of a shaft, a cone-shaped cam slidable upon this shaft, a sleeve upon the shaft andalso slidable thereon, and abutting against the base of the cone, said slecere having exterior threads, a nut thereon held between guides by which the sliding morement of the sleeve on the shaft is effected, and the cam moved, and means whanely the sleeve is kept from turning, an '120 arni upion the head of the table and carrying a wheel which runs on the periphery of the cam, means by which the contact of the wheelagainst the cam is mantained.
6. The combination in a coneentrator of a 125 longitudinally-tilted frame, and means by which this tilt may he raried, a transverselytilted bed upon this frame and means whereby its tilt may be varied, a table monnted thereon having one side inclined ontwarl 130
from the axis of the machine and in the direction of the foot end of the table, means by whicl water is fed to the table along this longer outer edge, riffles parallel with this longer efge, and means by which this table is given a differential reciprocating movement in the direction of the rillles and whereby the concentrates are made to travel "uphill " upon the table.
7. In an ore-concentrator, the combination with a longitudinally and transversely tilted table, suid table having its uuter and upper edge divergent from the axis of the machine. ritles of graduated lengths parallel 5 with this upper edge and diagonal to the head end, and means whereby this table is given a differential reciprocating movement in the direction of this upper edge.
b. In an ore-concentrator, the combinao tion of a table carrying a series of parallel
riffles, the table being transversely adjustable about an axis which is situated in a longitudinal vertical plane, and also longitudinally adjustable about an axis that is situated in a transverse vertical plane, such adjust- 2 ments being adapted to bring the surface of the table into different planes relative to the horizontal, and the said ritlles being arranged in a direction oblique or inclined to the said longitudinal and transverse vertical planes, 3 and means for imparting reciprocatory movements to the table on lines parallel with the riflles, substantially as set forth.
in testimony that I claim the above I have hereunto subscribed my name in the presence 3 of two witnesses.

IIARRY PICOTTE TAYLOR.
Witnesses:
A. B. Конлy, R. J. Mchfee.
M. CHRISTMANN.

ORE CONCENTRATOR.

4 SHEETS-SHEET 1.

M. CHRISTMANN.

ORE CONCENTRATOR.
APPLIOATION FILED JUNE 7, 1805.
4 SHEETS-8HEET 8.

[^13]EDIDTF-EILIN

M. CHRISTMANN.

ORE CONCENTRATOR. AFPLIOATION FILED JUNE 7, 2905 .

4 SHEETS-SHEET 4.

UNITED STATES PATENT OFFICE.

MICHAEL CHRISTMANN, OF LEADVILLE, COLORADO.
ORE-CONCENTRATOR.

No. 845,449.

Specification of Letters Patent.

Application fled June 7, 1905. Serial No. 264,154.

To all whom it mat! concern:
Be it known that I, Michael Curistmann, a citizen of the United States of America, residing at Leadville, in the county of Lake and 5 State of Colorado, have invented certain new and useful Improrements in Ore-Concentrators, of which the following is a specification.

My invention relates to improvements in ore-concentrators, and has for objeet to pro10 vide an apparatus which, being simple and efficient, will adequately separate the mineral from the gangue during one operation, thereby obviating repeating and consequent use of elevators and similar appliances and sar15 ing time and lal:or. I attain these objects by the mechanism illustrated in the accompanying drawings, in the several figures of which like parts are similarly designated, and in which-

Figure 1 represents a plan view of the apparatus: Fig. 2, a sifle elevation thereof: Fig. 3, a reitieal longitudinal section therethrough; Fig. 4, an enlarged vertical crosssection taken along line 4 4, Fig. 1; Fig. 5, an 25 enlarged rertical cross-section along line 55 , Fig. 1; Fig. 6, an enlarged plan view of the "movement end" of tiae stationary frame; Fig. 7, a seetional fragmentary end view thereof; Fig. S, a sestion along line S S, Fig. 307 ; Fig. 9, a fragmentary plan view of part of the stationary frame and superposed rockerarm: Fig. 10, an enlarged fragmentary section along the line 10 10, Fig. 5; Fig. 11, a perspective riew of one of the table-supporting rockers.

5 represents the bed or base frame, consisting of the longitudinal leams 6 and 6 and eross-timl ers 7 , securely bolted together to form a rigid and adequate support for the 40 talle, operating meehanism, and other parts of my device. Mounterl on frame 5 is the longitudinally-movalile talle 10 , composed of the linoleum-corered deck 11, securely traced on grirders 12 and suitable cross-
45 timbers 13. To further strengthen the strueture and prevent warping, girders 12 may Le lined witl metal plates 14 , secured thereto by bolts 15 .

Deck 11 is longitudinally divided into two
50 parts 16 and 17 , the former of which is plain and normally level, while the other is prorided with diagonally - extending riffles is and inclines toward the lower or gange edischarge sicle of the tahle. Riffles 18 , which, 55 if so desired, may l e made to taper from the head to the foot end of the deek, terminate a
certain distance from the table's outer edge, leaving a smooth plane for final separation of the mineral from the gangue.

Table 10 is, with the exception of its foot or 60 discharge end, provided with upwardly-extending flanges 19 and surmounted on its upper elge by a water-trough 20, supported on suitably-formed brackets 21 and provided on its outer side with a series of discharge- 65 apertures 22. The table is movably supported on two pairs of rockers 23, interposed between it and the stationary frame, each pair of rockers being connected by a transverselyextending rod 24. The lower rounded extrenities of rockers 23 are supported in cor-respondingly-shaped dies 25 , seeured in the outer and upwardly-extending extremities of parallel curved rocker-arms 26, which are mounted transversely of frame 5 in cha rs 27 ,
centrally seeured on the cross-timbers 7 . Arms 26 are connected by tie-rods 28 and a pivot-rod 29, which being secured at their lowernost point extends beyond the arms and is mounted in slots 30 in chairs 27 . Lateral deflection of the table is prevented by guicleplates 38 , secured to the under side of the table and engaging the cuter surfaces of rockers 23. The upper extremities of rockers 23 extend in inverted dies 31 , shaped similarly to those on the eurved roeker-arms and rigilly secured in corresponding positions to suitable parts of the tatle-fraine.

It will be obserred that the above-doscribed crrangement of parts not only per- no mits longitudinal movement of the table, but also allows it to be transversely inclined by reason of its being pivotally mounted in chairs 27 through instrumentality of the pirot-rod 29.

The transrerse inclination of the table is adjustable by means of a short shaft 32 , revolubly mounted in a becring 33 on the stationary frame end prorided with a pinion 34 at its mer and a hand-wheel 35 at its outer extremity. Pinion 34 meshes into a segmental gear 36 on the inner extremity of pivot-rod 29, and the verious perts may be held in any desired position by a set-screw 37 , extending through box 33 ind engaging slicft 32 .

During the operation of the device a repid longitudinal ree proeating or vilurating motion is imported to the tshle by the meehonism mounted on the upper end of the sta- 110 tionary frame and which will now be described.

Rigidly secured to table 10 by nuts 39 is the forwardly and longitudinally extending draw or thrust rod 40 , the outer extremity of
hich extends through a spring 41 and an $42^{\text {a }}$ of a vertical lever 42 , fulcrumed at 43 in a standard 44, which is mounted on the stationary frame 5 . A nut 45 , screwed onto the outer extremitr of the draw-rod, engages the outer surface of arm $42^{\text {a }}$, while a second nut 46 gives tension to spring 41 , which forms an adjustable buffer during the operation of the derice.

Mounted in bearings 47 , bolted to the stawhich carries, is he transerse shat 48, Shaft 48 may receive its rotary motion from any convenient source of power by means of pulleys 50 . The peripheral surface of wheel wheel 51 , revolubly mounted in a slot 52 in the lower arm 42° of lever 42 , which extends along the inner surface of the end timber 7^{2} of the stationary fre A headed rod 53 ex-
25 tends through apertures in the lower extremity of arm 42° and timber 7^{a} and through a coil-spring 54 , its head engaging the surface of said arm, while a nut 55 , screwed onto its outer extremity, gives ten-
30 sion to spring 54.
During the operation of the device the rotation of shaft 4 S will cause the peripheral projections on the cam-wheel to engage the antifriction-wheel 51 in arm 42°, which, being
ored inwardly, impeis the opposite arm on lever 42 to move outwardly, drawing the talble with it. Spring 54 is at the same time compressed, with the result that the moment the projection on the wiper-wheel is disen-
40 gaged from the periphery of the antifrictionwheel the relaxation of said spring will cause the lever and table to resume their original position. In this manner a rapid reciprocating or vibrating movement is imparted to
45 the table, the speed of which may be regulated by the number of peripheral projections on wheel 49.

Although the ore may be fed onto the table in any suitable manner, I preferably and 50 in order to obtain perfect results make use of a pan 58 , which is mounted on an elevated platform 55 at the feed end of the table by meąns of antifriction-balls 57 , which, being interposed between the two, engage corre-
55 spondingly--haped sockets 56 . secured to the platform, and oppositely-loeated inverted sockets 59 on the lower surface of the pan. Twn horizontally-arranged eccentries 60 and $60^{\text {a }}$, extending in correspoudingly-shaped
60 sockets 61 on the under surface of the pan, are adapted to impart an eccentric movement to pan 5 s and are to this end secmed to the upper extremities of vertical shafts 62 and 62^{3}, mounted in bearings 63 and steps
6564 on the stationary frame. Shafts 62 and
$62^{\text {a }}$ are, furthermore, provided with bevel gear-wheels 65 , which mesh into corresponding wheels 66 on a counter-shaft 67 , mounted in bearings on standard 71 , and which is operatively connected with shatt 48 by a belt 68 , passing around pulleys 69 and 70 on said shatts. Yan 5 S, having an outwardly-flaring peripheral side, is proyided with a number of radiclly-extending riffles 72 and a central upwardly-extending cylindrical projection 32 , the upper surface of which is concave to receive the pulp disclarged thereon through a valve-controiled spout is from a superposed receptacle 74. By reaion of the eccentric motion of pan 50 the pulp overflowing the edyes of projection 32 will thus be fed around cll parts of the pen instead of heing discharged therein at one point. Pan 5 S is, furthermole, provided with two valvecontrolled discharge-spouts 76 and 77, the lower one, 76 , of which being located near the bottom discharges the heary and valuable particles contained in the pulp into a feedbox 78, mounted on table 10 und haring a number of apertures $7 S^{3}$, through which the material is spread over the surface of the deck. The upper spout \bar{i}, located near the upper edge of the pan, discharges the lighter matter er gangue into a launder 79, which convers it to a settling-tank or other suitable receptacle. 'The classifving and feeding apparatus thus deseribed in combination with my table is subject of a separate application for patent, ₹elial No. 254,193, filed October 24. 1905.

The worthless matter or gangue discharged over the lower or discharge side of the table falls in a launder 10.5, placed alongside said table, and which, like leunder 79 , may lead to a seitling-tank or ether receptacle. A second launder 106, placed alongside launder 105, receives and convers the silica contained in the pulp, which, collecting at one point on the lower side of the table during the operation of the device, is discharted over an apron 107, ito which, being hung over the side of the table and launder $10 \overline{0}$, may be moved to any desired point.

Having thus described the mechanical construction of my device, its operation is as follows: The pulp being discharged from tank 74 through spout 75 onto the concave surface of projection 73 of pan 58 , is, as heretofore explained, fed evenly along the inner surface of the pan, in which, by reason of it 120 eccentric motion, resembling that of the ordinary miner's pan the heary mineral-bearing particles of the pulp settle on the hottom to be discharged through spout 76 into the feedbox 78 on part 16 of the deck. Being spread over the smooth portion 16 of the table through apertures 78° in the feed-box, the matter is separated by reason of the vibrating motion of the table, the heaviest and most valuable particles moving along part 16

[^14]\qquad
\qquad
\qquadto
\qquad
of the deck to be discharged along its lower end, while the lighter matter, aided by the water supplied from trough 20 , will flow over the riffled inclined portion 17 of the table, the riffles on which progressively catch the heavier particles and guide them to the lower or discharge end of the table, while the lighter matter or gangue overflowing the side of the table falls into launder 105.

Although the device has been illustrated in the drawings as being in a horizontal position, it may be preferable while operating to incline the same from the head to the tail end by elevating and propping the movement end of the stationary frame.

Having thus described my invention, what I claim is-

1. In combination a stationary frame, a concentration-deck mounted thereon said deck having a level portion extending from end to end thereof and a portion inclining laterally from said level portion, rifles arranged diagonally on said inclined portion, a space being left between the rear ends of the riffles and the end of the deck and means for reciprocating the deck.
2. In combination a stationary frame, a concentrator-deck thereon, said deck having a level portion extending from end to end thereof and a portion inclining laterally from said level portion, riffles diagonally arranged on said inclined portion, a trough located along the side edge of said inclined portion, means for spraying water on the outer edge is of the level portion, means for fecding the ma-
terial at the upper end of said level portion, means for reciprocating said deck and means for inclining said deck transversely.
3. In combination, a stationary frame, a concentrator-deck mounted to have a reciprocating movement thereon, a two-armed lever fulcrumed on said frame, a draw-rod connected at one end to said deck and its other end resiliently connected with the upper end of the lever, said connection consisting of a spring and a nut screwed on the draw-rod, a friction-roller carried by the lower end of said lever, a wiper-wheel revolubly mounted on the frame and arranged to engage the said friction-roller, a spring engaging with the lower end of the lever to hold it in its normal position and means for adjusting the said spring.
4. In combination, a stationary frame, parallel segmental rocking arms frounted on said frame, a shaft passing through the centers of said rocking arms, means for rocking said shaft, a rocker carried by each end of each rocking arm, a shaft connecting the rockers on each rocking arm together, each 6 rocker having two rounded portions, one engaging with the rocking arm, a deck resting on the other rounded portion of each rocker, and means for reciprocating the deck.

In testimony whereof I have affixed my 65 signature in presence of two witnesses.

MICHAEL CHRISTMANN.

Witnesses:
James Glynn,
Andrew P. Adolphson.

COMPLAINANTS' EXHIBIT No. 34
Snyder Patent No. 854,768
ALMON E. HART, Special Examiner
PATENTED MAY 28, 1907.
F. T. SNYDER.

SHAKING TABLE SEPARATOR.
APPLIOATION FILED OCT. 31, 1904.

F. T. SNYDER.

SHAKING TABLE SEPARATOR.
APPLIOATION FILED OOT. 3I, 1904.
2SHEETS-SHEET 2.

tultmesises:
Sruisug Hac howald. Cefred syoroorze.

Inventor:
FredercekT Singater,
By Bartour Binxer.
Alliss.

UNITED STATES PATENT OFFICE.

FREDERICK T. SNYDER, OF CHICAGO, ILLINOIS, ASSIGNOR TO INTERNATIONAL SEPARATOR COMPANY, OF CHICAGO, ILLINOIS, A CORPORATION OF NEW JERSEY.

SHAKING-TABLE SEPARATOR.

No. 854,768 .
Specification of Letters Patent. Patented May 28, 1907. Applioation filed October 31,1804. Serial No. 230,640.

To all whom it may concern:

Be it known that I, Frederick T. Snyder, a cicizen of the United States, residing at Chicago, Oak Park, in the county of Cook 5 and State of Illinois, have invented a certain new and useful Improvement in ShakingTable Separators, of which the following is a full, clear, concise, and exact description.
My invention relates to an ore concentra10 tor, and has for its object to provide improved apparatus for separating magnetically permeable ores from mixtures of materials containing such ores; my invention being more particularly intended to be used in 5 connection with mixtures of ores or materials which have so nearly the same specific gravity that they could not ordinarily be separated by the usual type of shaking table separator which is dependent for its opera20 tion upon the different specific gravities of the materials worked upon.

For example, where the mixture is composed of materials whose specific gravitues do not differ more than one unit such as a 25 mixture of feldspar, hornblende, magnetite and corundum, the ordinary type of shaking table concentrator is ineffective to separate any one of these materials from the rest.
My invention, broadly speaking, contemphg the application or a magnet to a shakjusted so as to act upon the inaterials upon the table to the extent of changing the effective weight of the more permeable particles, 5 so that the relative effective weights of the different materials in the mixture will be readjusted with a view of permitting the separation of the effectively lighter particles from the others.

I will describe my invention particularly by reference to the accompanying drawings, which illustrate the preferred embodiment thereof.
Figure 1 is a plan view of the ore concen45 trator constructed and equipped in accordance with my invention; Fig. 2 is an elevation thereof; Fig. 3 is a sectional enlarged diagram on line 3-3 of Fig. 1, showing a portion of the table in cross section, together
50 with the materials thereon to illustrate the readjustment in the relative positions of the materials which takes place under the influence of the magnet ; and Fig. 4 is a diagram-
matic plan view of the table showing the distribution and separation of the materials. Fig. 5 is a detuil cross sectional view illustrating teeth or ridges upon the pole face of the magnel.

The same letters of reference indicate the same parts wherever they are shown.

The concentrating table slown in the drawings, except fur the magnet and ins supporting parts, is a type well knuwn in the art. The material is fed onto the table a^{\prime} through the feed box a shown in the upper 65 right hand corner of Fig. 1, from which it is gradually caused to move along the table toward the other end. Such movement is caused by the differential reciproeating or shaking movement of the table produced by the mechanisms of the usual type. The return movement of the table at the end of its movement toward the left in Fig. 1 is much quicker than its return from the movement toward the right. This differential reciprocating motion, as is well known, will cause a step-by-step progression of the materials on the table toward the left hand end. This movement nay be assisted somenhat by a slight inclination of the table in the same di- 80 rection. The table is also slightly inclined about its longitudinal axis, so that wash water fed to the table through the clear water box b in the upper richt hand portion will flow down the surface of the table in the usual manner. Riffles $c \mathfrak{c}$ are provided upon the surface of the table, said riffles extending parallel to the direction in which it is reciprocated. As shown, the rifles are successively longer toward the lower part of the table, so that their left hand culs are located in a diagonal line from the upper right hand corner to the lower left hand corner thereof.

The normal operation of such a table is that the materials fed onto the table throngh 95 the feed box a are gradually moved along the table parallel to the rifles c c, by the differential reciprocating or slaking niotion which is imparted to the table by the mechanism S . At the same time dressing water flowing 100 across the table transersely to the riflles carries the lighter material over the tops of the riflles and downwath to the lower edge of the table. The heayier material, however, sinks to the bottom of the chamels becween ro5 the rifles and continues its passuge duwn the
\qquad
table parallel to said riffles. The result is that the lighter materials are separated from those which are heavier, the lighter materials coming off near the forward end of the table,

$$
5
$$ while the heavier materials stay on the table until they reach the lower end.

As before stated, however, unless there is a difference of over one unit in the relative specific gravities of the materials in themixture to to be separated, such a separation cannot be properly made in the manner above described; and in accordance with my invention I mount a magnet adjacent to the table and adjust the same to act upon the magnetic particles in the mixture of materials, in such a way as to vary their effective weight, producing in thistway a difference in the effective weight of the magnetic and non-magnetic materials sufficient to admit of their paration by the shaking table. This result may be obtained. by disposing the magnet m immediately above the table with its pole pieces $m^{\prime} m^{\prime}$ extending in lines diagonal to the riffles, with the faces of said pole pieces as ${ }_{2} 5$ close to the surface of the table as practical. The faces of the pole pieces should be roughened or provided with permeable projections to establish convergences of the lines of force toward said poles, since the magnetic par30 ticles tend to follow the converging lines of fores.

To decrease the reluctance of the magnetic circuit, an iron plate m^{2} may be provided underneath the table.directly below the mag-
35 net poles.
By the means above described, a series of narrow areas of magnetic concentration is established, in lines diagonal to the general direction of passage of the materials upon the
40 table. The effect of the magnetic field thus established is that when the materials upon the table come within the influence of said field, the more permeable particles are so influenced that their effective weight is changed
45 with relation to the non-magnetic materials, the permeable particles in this instance rising to the top of the mixture, where they may be washed off by the dressing water, while the less permeable particles remain at the bot-
50 tom and are gradually carried along parallel to the riffles by the differential shaking motion of the table.

In the diagram Fig. 3 I have ilhstrated the rearrangement of the materials in the mixwre which is brought about when said materials come within the range of influence of the magnet. The left hand portion of the figure illustrates the relative positions which the different materials in the mixture will as-
60 sume under normal conditions, while the right hand portion of the figure illustrates the relative positions of the materials when the magnetic particles have been rendered effectively lighter under the influence of the
σ_{5} magnet.

The magnet should not be of sufficient strength to actually lift the magnetic particles off thettable or draw them out of the mixture, but simply to overcome the force of gravity to such an extent that in the shaking of the table they will be brought to the top where they can readily be washed off by the dressing water.

To give a specific illustration, the ordinary relative weights of feldspar, hornblende. magnetite and corundum under water are indicated by the following figures: feldspar, 1.50; hornblende, 2: magnetite, 4 ; corundum, 3.

It will be seen that there is not sufficient difference in the specific gravities of these several materials to permit of a ready separation thereof by the ordinary type of shaking table concentrator., With the concentrator of my invention, however, equipped with the magnet, when the materials come within the influence of the magnet, their apparent or effective weights under water become as follows: feldspar, 1.50 ; hornblende, 1.50 ; nagnetite, 1.50 ; corundum, 3. That is to say, the corundum is now the heaviest material in the mixture, and there is a difference of one and a half units between its specific gravity and the apparent or effective specific gravity of either of the other materials; whereas without the magnet the magnetite would be heavier than the corundum, but not enough heavier to permit of satisfactory separation by the shaking table. Such a mixture of feldspar, hornblende, magnetite and corundum may therefore be separated by means of my concentrator as above described, the feldspar, hornblende and magnetite under the influence of the magnet being raised to the top of the riffle by the shaking of the table, and washed from the riffles by the dressing water, coming off at the lower edge of the table in the zone marked M, while the corundum will be carried along to the lower end of the table where it will finally come off in the zone marked C.

Under present methods of operation, the different minerals to be separated are also found associated with large quantities of silica or other barren rock, usually equaling from three to ten times the weight of the mineral. The present practice consists in putting the ore over a wet shaking table which separates the gangue from the mineral. The mineral is then dried and put through a magnetic scparator for the separation of the different minerals. In my present form of apparatus these second and third steps are a voided, as the material is separated magnetically at the same time that the mineral is concentrated out of gangue. It will be seen that the operation of the magnet interferes in no way with the concentration of the minerals from the gangue. The paths taken by the different materials are illustrated in Fig. 4, the zone marked F being that occu-

 185

90號95
pied by the feldspar, which in the illustration selected is the gangue material. The path of the magnetite is indicated at M , and the path of the corundum is indicated at C. A 5 trough is provided along the lower side of the table, and is divided into three compartments $d^{\prime} d^{2} d^{3}$. The compartment d^{\prime} is adapted to reccive the feldspar or other light silicates and convey the same to a suitable receptacle e; similarly the compartment d^{2} receives the magnetite or other magnetic particles, and conveys the same to a box \vec{e}^{*}, while the heaviest nou-magnetic material, such as corundum, is conveyed by the compartment d^{3} to a box e^{2}.

Having thus described my invention, I claim:

1. In a concentrator, the combination with a transversely-inclined shaking table having longitudinal channels thereon, of means for feeding a mixture of magnetic and non-magnetic minerals and gangue to the head of the table, means for imparting a differential reciprocating motion to the table parallel to said charnels in a direction to cause a travel of the mixture toward the foot of the table, means for flowing water across the table transversely to said channels to remove the gangue from the mixture, and a magnet suspended above the table near the foot thereof and adapted to exert a lifting force upon the magnetic constituents of the mineral concentrate, sufficient to cause said constituents to be washed by the water across said channels into a path divergent from the remainder of said concentrate.
2. In a concentrator, the combination with a table, of means for feeding materials to be separated to said table, means for agitating said table to pass said materials gradually along the table longitudinally thereof, a magnet having pole pieces above the table close to the surface thereof, said pole pieces extending across the table to the lower lateral edge thereof in a direction diagonal to the direction of passage of matcrials along the table, and means for flowing water across the table, substantially as set forth.
3. In a separator for mixtures of materials of different magnetic permeability, but of nearly the same specific gravity, the combination with a transversely-inclined table and means for feeding the mixtures of materials in a thin layer upon the table, a series of low obstructions extending longitudinally upon the table, means for imparting a differential reciprocating motion to said table in a direction to cause a gradual movement of the materials along the table substantially parallel to said obstructions, means for establishing a flow of water across the table at an angle to said obstructions, and a magnet adapted to act upon the materials upon said table to the extent of changing the effective weight
of the more permeable particles relative to the weight of the other materials, whereby the materials having the highest effective weight rise abore the level of the other materials and are washed over said obstructions by the water, and so separated.
4. In a concentrator, the combination with a table having longitudinal riffles thereon, of means for fecding materials to be separated to said table, means for imparting a differential reciprocating motion to said table in a direction substantially parallel to said riffles to cause a net travel of the material along the chamels between sairl riffles, means for flowing water across the table transversely to the riffles. and a magnet suspended above the table adapted tip exert a lifting force upon the magnetic parti-les sufficient to enable said particles to he washed by the water across the riflles, wherehy said magnetic particles are separated from the heavy non-magnetic materials.
5. In an ore-concentrator, in combination, for effecting selective separation of various mineral valucs and gangue, a table having \& riffled top slightly inclined from the horizontal, means for supplying a flow of water over said table-top, means for feeding onto the higher part of the table-top the mixed materials to be separated, mechanism for differentially agitating said table-top, and a source of magnetic influence of limited intensity so arranged that such of said materials as arc of like specific gravity but diverse magnetic properties will have their flotation differentiated while passing through the magnetic field and will be resultantly dispersed and isolated from each other, substantially as specified.
6. In an ore-concentrator, in combination, for effecting selective separation of various mineral values and gangue, a table having a riflled top slightly inclined from the horizontal, means for supplying a flow of water over said table-top, means for fecding onto the higher part of the table-top the mixed materials to be separated mechanism for differentially agitating said table-top, and an electromagnet of limited intensity so arranged tbat such of said materials as are of like specific gravity but diverse magnetic properties will have their flotation differentiated while passing through the magnetic field and will be resultantly dispersed and isolated from each othet, substantially as specified.
7. In an ore-concentrator, in combination, for effecting selective separation of various mineral values and gangue, a table having a riffled top slightly inclined from the horizontal, means for supplying a flow of water over said table-top, means for feeding onto the higher part of the table-top the mixed materials to le separated, mechanism for differentially agitating said table-top, and an electromagnet of limited intensity suspended
\qquad
\qquad125
slightly above the water-current flowing over said table-top and arranged so as to facilitate the flotation and resultant isolation of such of said materigls as are of like specific grarity with others but of higher paramagnetic properties, substantially as specified.
8. In an ore-concentrator, in combination, for effecting selective separation of various mineral ralues and gangue, a longitudinally o movable table haring its top slightly inclined from the horizontal and provided with a series, of longitudinal riffes successively increasing in length fron the upper toward thelower edge of said table, means for supplying a flow of wher said table-top from its upper to ward its lower edge, means for feeding onto the higher partiof the table-top above the shortest riffe the mixed materials to be separated, mechanism for imparting differential 20 reciprocating morement to said table, and a source of magnetic influence of limited intensity so arranged that such of said materials as are of like specific gravity but diverse magnetic properties will have their flotation differ-
25 entiated while passing through the magnetic field and will be resultantly dispersed and isolated from each other, substantially as specified.
9. In an ore-concentrator, in combination, mineral ralues and gangue, a longitudinally morable table having its top slightly inclined from the horizontal and provided with a series of longitudinal riffles successively increasing in length from the upper toward the lowet edge of said table, means for feeding onto the higher part of the table-top above the shortest riffle the mixed materials to be separated,
mechanism for imparting differential reciprocating morement to said table, and an elec-tro-magnet of limited intensity so arranged that such of said materials a a are of like specific gravity but diverse magnetic properties will have their flotation differentiated while passing through the magnetic field and will be resultantly dispersed and isolated from each other, substantially as specified.
10. In an ore-concentrator, in combination, for effecting selective separation of rarious mineral ralues and gangue, a longitudinally movable table having its top slightly inclined from the borizontal and provided with a series of longitudinal riffles successively increasing in length from the upper toward the lower edge of said table, means for supplying a flow of water over said table-top from its upper toward its lower edge, means for feeding onto the higher part of the tabletop abore the shortest riffle the mixed materials to be separated, mechanism for impart- 60 ing differential reciprocating morement to said table, and an electro-magnet of limited intensity suspended slightly above the watercurrent flowing over said table-top and arranged so as to facilitate the flotation and re- 65 sultant isolation of such of said materials as are of like specific grarity with others but of higher paramagnetic properties, substantially as specified.

In witness whereof, I hereunto subscribe 70 my name this 10 th day of October A. D., 1904.

FREDERICK T. SNYDER.

Witnesses:
De Witt C. Tanner,
Winfield W. Leach.

COMPLAINANTS' EXHIBIT No. 35
James Patent No. 874,364
ALMON E. HART, Special Examiner
No. 874,364.
PATENTED DEC. 17, 1907.
U. S. JAMES.

ORE CONCENTRATOR.
APPLIOATION FILED MAR. $26,1906$.

U. S. JAMES.

ORE CONCENTRATOR.
APPLIOATION FILED MAB. 26,1906

J. S. JAMES.

ORE CONCENTRATOR.
APPLIOATION FILED MAR. $26,1906$.

UNITED STATES PATENT OFFICE.

ULYSSES S. JAMES, OF NEWARK, NEW JERSEY, ASSIGNOR TO JAMES ORE CONCENTRATOR CO., OF NEWARK, NEW JERSEY, A CORPORATION OF NEW JERSEY.

ORE-CONCENTRATOR.
No. 874,364.
Specification of Letters Patent.

Application filed :1arch 26, 1906. Serial No. 308.069.

Patented Dec. 17, 1907.

To all whom it may concern:

Be it known that I, Ulysses S. James, a citizen of the United States, residing at Newark, in the countr of Essex and State of New
5 Jersey, have invented new and useful Improvements in Ore-Concentrators, of which the following is a specification.

This invention relates to ore concentrators.
The present invention is of the same gen-
10 eral type as that disclosed in my pending application, Serial Number 263,064 , filed May 31, 1905. The present concentrator possesses all the adrantages possessed by that covered in said application.

An ore concentrator made in accordance with my invention involves a longitudinally or endwise reciprocatory table. This table is made up of two sections, one of which is the concentrating portion proper, while the other of which constitutes a slime pan. There is some concentration done on or in the slime portion or pan, but the major part of the concentration is performed upon said concentrating portion, for which reason such designation has been adopted. By virtue of the slime portion I am enabled to save mineral values in the slime delivered into or onto said slime portion, a proceeding which has heretofore, so far as 1 am aware not been possible. The gangue or refuse matter is discharged uvar ore edge of the concentrating portion of the table, while the concentrates saved from the slimes are discharged orer such edge immediately back of the place of discharge of the gangue.

I have briefly alluded to the construction of a table embracing my invention. In the drawings accompanying and forming part of this specification. I show one simple adaptation of said table, which to emable those skilled in the art to practice said invention, I will set forth in detail in the following description, while the novelty of said invention will be included in the claims succeeding said deseription. The table is of such character that it is not subject to rertical vibration; it and the parts upon which the table is mounted are strongly hraced.

The invention has other objects and ad50 vantages which with the foregoing will be hereinafter treated at lemgth.

Referring to the drawings, Figure 1 is a top plan view of an ore concentrator inivolving my invention. Fig. 2 is a longitudinal sectional view of the same, the section being
on the line 2-2 of Fig. 1. Fig. 3 is a transverse sectional view, the section being on the line $3-3$ of said Fig. 1. Fig. 4 is a side eleration of the table. Fig. 5 is a top plan view of a supporting frame. Fig. 6 is a transverse 60 sectional view on the line 6-6 of Fig. 5. Fig. 7 is a detail view in perspective of a reinforcing or stiffening member. Fig. 8 is a sectional elevation showing part of the table and a supporting member. Fig. 9 is a view of the parts shown in the preceding figure, the section in Fig. 9 being in a plane at right angles to that of Fig. S. Figs. 10 and 11 are face and top plan views of a bracket, hereinafter more particularly described and showing also a portion of a bed.
Similar numerals refer to like parts throughout the several figures.

My improved concentrator involves a suitable table upon which the concentrating is done. I have shown an advantageous form of table in the drawings, the same being denoted in a general way by 2 . In the present case the table consists of two sections as 3 and 4 . As the greater part of the concentration of the ore is performed upon the portion 3 of the table, I will designate the same as a concentrating portion, although from what has been hereinbefore stated it will be understood that the slimes are profitably worked over or concentrated upon the slime portion 4. The two sections are connected in a flexible manuer, the hinge lying between the two being denoted in a general way by 5 and as represented best in Fig. 1, said hinge or dividing line is oblique to the line of motion of the table, such line of motion being longitudinal. I have not shown any means for longitudinally reciprocating the table 2 for the same constitutes no part of the present invention. This particular meclianisn may le of any desirable kind and may be of substantially the same type as that now generally in use which is adapted to give to the table initially on its' forward stroke a slow movement, and finally, or on the completion of such stroke, an accelerated motion to drive the mass on the table forward. On the return stroke of the table such mechanism will cause first a rapid and then a slow motion of the table so that the mass on the table will be retained in its adranced position.

The table as shown best in Fig. 2 includes in its make-up a series of longitudinally ex- 110
tending slats as 6 covered with some suitable material as $\overline{7}$ upon which the concentrating is done. The inaterial 7 may be, for example, linoleum. The longitudinally ex-
5 tending slats 6 are crossed on their under sides by cross bars as 8 , the slats and cross bars being usually made of wood, whereby the table can be made inexpensively while it is sufficiently strong and stable to withstand The feed box for supplying pulp onto the table may be of any desirable character and may be mounted in any suitable way. For this purpose, I have shown a feed box 10 as fastened in some convenient way to the
50 slime portion or pan of the table, and as crossing the hinge line betwern said slime portion and the concentrating portion of the table, whereby the pulp is delivered directly onto the head end of the table so that when
55 it strikes the table it can be advanced therealong and can be also stratified, the mineral values in the mass which are the heavier settling to the bootton of the mass or directly onto the top 7 of the table. The slimes are
60 carried 'into the stime pan 4 by reason of their semi-fluid condition assisted by the wash water.

The pulp is introduced onto the head end of the inble or substantially thereat at the
65 the hard usage to which a table is put. Some of the cross bars 8 , as clenrly shown in Fig. 1, are intersected by the hinge or dividing line 5 . Those eross bars 8 which are located directly under or form part of the concentrating portion 3 of the table are subjected to unusual stress which tends to distort or break the same. To prevent distortion of these particular cross bars, I provide stiffening or reinforcing members in connection therewith, and these stiffening or reinforcing members may be of any desirable character, although they are shown as being of channel form as indicated in Fig. 7. TThe reinforcing members 9 may consist of sheat metal properly shaped, or they may be in the form of castings to closely fit the coöperating cross bars and to be united thereto in any desirable manner. They may be held in place by a driving fit or by friction or positive means may be provided for holding them in assembled relation.

That part of the concentrating portion 3 of the table to the right of the hinge line 5 in Fig. 1 is upwardly inclined from said hinge line and the latter constitutes the base for said upwardly inclined or concentrating portion. In adilition to this upward inclination of the concentrating portion, the latter is also oblique to the line of motion of the table. The angularity of such concentrating portion may be varied to adapt the table to the particular character of ore being worked and I will hereinafter describe a simple means for securing this adjustment.
ing into the ledge or flange 15 running along the slime portion of the table. The free end of this ledge or flange 15 extends short of the slime portion so as to provide an outlet as 16 for the mineral values concentrated from the slimes which particular mineral values are discharged over the front of the table inmediately behind the gangue, the gangue being delivered over the front of the trble at a point commencing with the dividing line 5 and ending at a point between the same and the tail of the table. Extending across the table diagonally thereof is a ridge as 17 located in the present instance upon the slime portion 4. This ridge 17 extends approximately from the rear head cormer of the table to the front edge thereof substantially centrally of the length of said front edge and near the hinge line 5 . The ridge 17 with the flanges 14 and 15 present the marginal portion of the slime pan which has the outlet 16 . The ridge 17 has oppositely inclined fuces us 130
table. When the table is vibrated the mass of pulp thereon will become stratified, the heaviest particles being at the bottom of the pulp'and the others being in superposed order in accordance with the specific gravities of the particles forming them, the gangue being on top. On the movement of the table, the pulp is advanced toward the tail thereof and the several constituents in which the pulp has been separated are moved crosswise of the table or toward the front thereof, the gangue moving more rapidly than the other materials. The gangue is, therefore, carried toward the front edge of the table and is discharged thereover between the dividing or hinge line 5 and the tail of the table, The mineral values are carried toward the tail of the table with less lateral movement than the gangue, owing to their greater density and are discharged over the front of the table and over the tail end thereof.

The wash water is supplied to the table along a line oblique to the line of motion thereof and any suitable means may be provided for this purpose. For furnishing the wash water I represent a pipe 11 extending along the angular portion of the upper or rear edge of the table which angular edge as shown in Fig. 1 is at an acute angle to the hinge line 5. Extending longitudinally of the table are parallel riffles as 12 which cross the hinge line 5. These riffles extend in the direction of line of motion of the table and are comparatively shallow so as not to retard the lateral motion of the gangue after the same has been separated from the mineral values.

Along the rear of the table is extended a ledge as 13 which connects with the ledge or flange 14 extending across the head end of the table, the flange 14 having its front end deflected upon a forward angle and extend-

18 and 19 both diagonal to the line of motion of the table. The face 18 constitutes really the concentrating or effective part of the slime pan and is wider than the face 19 ; it extends upward toward the apex of the ridge 17, while the face 19 extends downward from said ridge. This ridge 17 prevents the coarse material from entering the slime pan although it does not prevent the slimes from entering said pan owing to their character. The upper surface of the ridge or flange 15, which in the present case is horizontally disposed, merges into the inclined face 18 as clearly indicated in Figs. 1 and 2. The wash water and the water in the slimes contained within the slime pan 4 is in a quiet or still condition so as not to offer any resistance to the flow of the slimes into said slime pan.

When the slimes enter the slime pan the mineral values therein gravitate toward the bottom of the liquid and on the forward motion of the table are projected onto the inclined surface 18. The ridge 17, however, of which said inclined surface forms a part, prevents the mineral values which have descended in the slimes from being washed over the top of the ridge and this result is aided by the wash water flowing over the top of the ridge. The mineral values in the slimes are after precipitation projected on the forward motion of the table onto the inclined surface and are not carried thereover as previously set forth, but they are moved along said inclined surface and are directed through the outlet 16 . The wash water free of mineral values and mixed with tailings or refuse from the slime pan passes over the front ledge 15 . By the provision of the slime pan I an enabled to save mineral values in slimes which have not heretofore been saved with concentrating tables as ordinarily constructed.

The framing for supporting the table 2 45 may be of any desirable character, although in Figs. 4 and is I have represented an adivantageous form of framing and the same involves in its make up a stationary member denoted in a general way by 20 and a swinging hingedly mounted and being directly a.ssociated with the concentrating portion 3 of the table by virtue of which the angular adjustment of said concentrating portion may be readily ohtained. The portion 20 , as best shown in Fig. 5, comprises two stringers, each denoted hy 23, which converge toward the tail of the table. These stringers are prevented from inward motion 60 by the cross i,eams 24 fitted hetween and suitally secured to the same. while out ward motion of the two stringers is prevented by the tie rods or bolts 2.5 of any desirable mumber. The two stringers 23 ne cut away be65 tween their emols as shown for example in

Fig. 4 and the diagonally disposed strut or brace 26 rests on the top of the cut away portions and bears near its opposite ends near the forward ends of shoulders produced by said cut away portions. The upper face of the brace or strut 26 is flush with or in the same horizontal plane as the upper surface of the deeper parts of the two stringers. (See Fig. 4). This brace extends in the direction of the hinge line 5 and is located immediately under said line so as to prevent the table tipping in the direction of the said line. In addition to this the brace also strengthens the bed or foundation frame and provides a means for upholding certain links. The hinges, each designated by 27 , are also sustained by this brace 26, the hinges uniting the two sections of the frame or bed of the table. The axes of the several hinges 27 are alined and are in a vertical plane intersecting the hinge line 5 . The hinge member 21 of the bed or foundation frame, is shown as composed of two steel or other metallic bars, each designated by 28 and which extend in the same general direction as the stringers 23, as illustrated in Fig. 5. Between the two bars or channel irons 28 the cross braces 29 extend, said cross braces having heads at their opposite ends fitted within the channels of said bars 28 and bolted or otherwise suitably fastened to the webs thereof. These cross braces or bars 29 prevent lateral motion both inwardly and outwardly of the two hars or channel irons 28. On the upper side of the two cross pieces 24 at the left in Fig. 5 rests and is suitably fastened a beain 30 , the upper face of which is in the same horizontal plane as the upper face of the obliquely disposed brace or strut 26, the two parts last mentioned abutting against each other in or- 105 der to further strengthen the structure.

I flexibly support the table 2 in an advantageous manner so that it will not be susceptible to shocks or jars, but on the contrary will run smoothly and moiselessly. This result I accomplish by links of a novel character extending between the table and the bed or forndation piece for the table which, as will be understood, comprises stationary and linged sections as 20 and 21 , respectively. There are two series of these links, one series extending between the stationary member 20 and the table, and I will designate each in a general way by 31, while the other series, each of which 1 will designate in a general way by 32 , extends between the swinging member 21 and said table. Ali of the links are of the same general character so that a detailed description of one will suffice for the remainder, and in this comnection particular 125 reference may be had to Figs. 8 and 9 , wherein one of the links which extends between the member $\underline{2}^{0}$) and the table is shown in detail. In these two figures, I have shown a way of comecting the links with the respec- 130
tive parts. The links shown in these two figures involve a body portion as 33 made of some suitable stiff material as wood to prerent upward displacement of the table and 5 flexible strips as 34 extending from the opposite ends of said wooden body. These flexible strips 34 may be of any suitable material, rubher belting so known being quite suitable for the purpose. The strips 34 are
10 set into notches or slots in the opposite ends of the wooden body and are fastened to the latter in some suitable way as by rivets. The upper flexible strips $3 \pm$ are fitted flatwise against one of the side faces of the reeross hars and laid flexible strips are facing pieces as 35 of wood for example, bolts 36 serving as a suitable means connerting the facing members 35, upper flexible strips 34 , and cross loars 8. 20 The lower strips 34 are fitted between the sections of clamps as 37 , the sections of which are held together by bolts or any other suitable manner, and one section of each of which clamps is fastened to the sections of 25 the stationary bed or foundation member 20 .

With respect to the series of links 32 they are connected at their upper ends with the angularly adjustable or concentrating portion of the table ? exactly as are the upper
30 ends of the links 31 connected with the slime portion of the table. The links 32 , however, are connected at their lower ends adjustably with the swinging section 21 so that should there be any imperfection in the irons 28 , such
35 imperfections will not prevent the concentruting portion of the table from being brought to an absolutely horizontal position when the table as a whole is set up. The lower flexible strips 34 of the links 32 are held 40 in place by clamps as 38 forming parts of brackets as 39 supported for vertical adjustment by the sides of the swinging member 21. In the bodies of the several brackets 39 are formed vertically disposed longitudinal
45 slots through which screws as 40 are passed (see Figs. 10 and 11) by which vertical adjustment of the several lorackets can be obtained, this being accomplished by loosening up the screws. Affer the adjustiment is se-
50 cured it can be maintained by tightening up the screws. To facilitate the clevation of the respective brackets they may be provided, as shown in Fig. 11, with heads as 41 which overhang the upper edges of the sides
55 of said member 21 , and through which are tapped adjusting screws as 42 to engage said sides.

Any desirable means nay he employed for elevating or lowering the swinging section 21
60 thereby to regulate the angular position of the concentrating postion 3 through the intervention of the intemmediate links 32 as will now appear. Supponted by suitable bearings upon the stringers 23 near the tail
end of the table is a shaft as 43 having at one 65 end thereof a worm-gear as 44 meshing with a worm as 45 on the shaft 46 , said shaft being provided with a head as 47 at one end, as shown in Figs. 4 and 5. By turning the head 47 , the shaft 46 and consequently the shaft 43 , through the intermediate worm gearing described, can be turned so as to carry cams as 48 and 49 against the outer cross bar 29 to angularly adjust the concentrating portion 3 of the table. The cam 48 has a greater throw than cam 49, as it is necessary to elevate the rear side of the table slightly more than the front side of the table to preserve the obliquity to which I have hereinbefore referred. The shaft 46 is shown as surrounded by a spring 50 bearing at its ends against the head 47 and against the bearing for said shaft, the spring serving to positively prevent backward motion of the two shafts, while the table is in action. Were not the spring present the two shafts would be turned backward while the table is in motion, and thereby affect the adjustment of the concentrating portion thereof.

The table involving my invention comprises really main and auxiliary concentrating portions. Practically the major part of the concentrating is done upon the main portion. In other words, the pulp or heavier material is worked over on this main concentrating portion, while the finer particles making up the slimes are worked on the auxiliary portion. Both portions of the table, therefore, are simultaneous in action. The main or concentrating portion 3 of the table has between the ridge 17 and the hinge line 5 a horizontal portion 3^{\prime}, as shown clearly in Fig. 1 on which the material when it is first delivered onto the table can freely spread out, this insuring the clean separation of the gangue from the mineral values.

What I claim is:

1. An endwise reciprocatory ore concentrating table having a concentrating portion flexibly joined along a line diagonal to the line of motion of the table and a slime portion, the concentrating portion being adapted to concentrate the pulp and the slime portion being adapted to receive the slime from the pulp and having an inclined ledge extending obliquely thereacross, provided with a face inclined upward toward the tail of the table and oblique to the Jine of motion thereof combined with means for adjusting said concentrating portion angularly with respect 120 to the slime portion.
2. An endwise reciprocatory ore concentrating table having a concentrating portion flexibfy joined along a line diagonal to the lime of motion of the table and a slime portion, the concentrating portion being ndapted to concentrate the pulp und the slime portion being adapted to reccive the slimes, said
slime portion having a ridge extending angularly across the same, said ridge having an inclined face oblique to the line of motion and upwardly inclined toward the tail of the table, said slime portion also haring means to hold the wash water supplied thereto substantially in a quiet condition combined with means for angularly adjusting said concentrating portion with respect to the slime portion.
3. An ore concentrating table having a concentrating portion and a slime porion, the concentrating portion being adapted to concentrate the pulp and the slime portion to concentrate the slimes, said slime portion haviug a ridge extending angularly across the same provided with an inclined face oblicque to the line of motion of the table and upwardly inclined tow ard the tail of said table, said slime portion having flanges extending along the head and front ibereof, the front flange merging into said inclined face and extending short of the apex of the same to provide an outlet for mineral values between said front flange and the apex of said inclined face.
4. The combination of a supporting bed involving a stationary and a swinging member, a concentrating table involving two flexibly related sections, and supporting links connected flexibly with the sections of the supporting bed and with the sections of the table.
5. The combination of a supporting bed 5 involving a stationary and a swinging secion, a concentratiug table comprising flexibly related sections, and supporting links extemting hetween the sections of the table and lise sections of the supporting bed.
6. The combination of a supporing bed involving a stationary and a swinging member, a concentrating table involving two flexibly related sections, supporting links extending between one of the sections of the 5 table and said swinging member, and supporting links exiending between the other section of the table and the stationary mem-
ber and adjustably connected with the latter.
7. The combination of a bed or foundation 50 member composed of a stationary parc and a swinging part, links composed of stiff bodies and flexible strips extending oppositely therefrom, the lower strips being connected with said stationary part, other links also composed of stiff bodies provided wirh flexible sirips ar opposite ends of the same, the lower strips being adjustably connected to said swinging part, and a table composed of flexibly related sections connected respec- 60 fively "ith the two upper series of flexible strips.
8. The combination of a bed or foundation member composed of a stationary part and a swinging part, links composed of stifl bodies and flexible strips extending oppositely therefrom, the lower strips being connected with said stationary part, other links also composed of stiff bodies provided with flexible strips at opposite ends of the same, the lower strips being adjustably connected to said suinging part, hand operated mechanism for raising and lowering said swinging part and a table composed of flexibly retated sections connected respectively with the upper series of flexible strips.
9. The combination of a bed or foundation piece consistiug of a stationary part and a swinging part, a table composed of flexibly related sections, supporiing links comected 80 with the sections of the table and with the parts of said bed or foundation member, a shaft provided with cams, having different throws, to actuate said swinging part, and hand operated mechanism for turning said 85 shaft.

In testimony whereof I have lecreunto set my hand in presence of two subscribing witnesses.

ULYSSES S. JAMES.
Witnesses:
Chas. S. Hyer,
Heati Sutherland.
-

COMPLAINANTS' EXHIBIT No. 36
Kohlman Patent No. 885,349
al.mon E. HART. Special Examiner
J. D. KOHLMANN.

CONCENTRATING TABLE.
APPLIOATION FILED FEB. $3,1905$.
4SHEETS-SHEET 1.

2vitnease
jublerct Levoes
Watts T. Et a tronk
J. D. KOHLMANN.

CONCENTRATING TABLE.
application filed feb. 9, 1905.

J. D. KOHLMANN. CONCENTRATING TABLE.

APPLICATION FILED FEB, $9,1905$.

No. $885,349$.
PATENTED APR. 21, 1908.
J. D. KOHLMANN. CONCENTRATING TABLE.
APPLICATION FILED FEB, $9,1905$.
4 SHEETS-SHEET 4.

Firy. 0

Fig. \%

QNitneases
Aridiontotinou:-
watho Eitationk

UNITED STATES PATENT OFFICE.

JOHN D. KOHLMANN, OF MILWAUKEE, WISCONSIN.

CONCENTRATING-TABLE.
Specification of Letters Pateat.
Patented April 21, 1808.

Application filed February 9, 1905. Serial ご. 244,954.

T'o all whom it may concern:

Be it known that I, Jome D. Komlmann, a citizen of the L'nited States, residing at Milwaukee, in the county of Milwankee and 5 State of Wisconsin, have invented certain new and useful Improvements in Concentrat-ing-Tables, of which the following is a specification.

My invention relates to an mprovement in vide a table for separating, mechanically, the various minerals, differing from each other in specific gravity, from the rock bearing said minerals, the rock having been previously crushed and reduced to a size best suited for the purpose.

It ith the foregoing objects in view, my invention consists in a table laving either a smooth or riffled surface, resting upon suitable supports, eapable of being adjusted from a horizontal to a tilting position and adapted to recaive a reciprocatory motion from the emin and side whereby the operator is enabled to obtain at will, a motion ranging from a 5 straight-way thrust of variable magnitude in the direction of the length of the table, without sile thrust, to a straight-way thrust of variable magnitute at the head end, at the tail rnd, at both head end and tail end or a combination of either, or both, with the notion in the direction of the length of the table, the varions combinations resulting in motions ranging in direction from 0° to 90° with the direction of length of table, any given setting producing a motion of fixed angularity.
My invention further consists in certain novel features of construction and combinations of parts which will be hereinafter described and pointed out in the claims.

In the accompanying drawings, Figure 1 is a plan view, Fig. ?is a side elevation, Fig. 3 is an end view, fig. 4 is an enlarged plan view of the driving gear or head motion, Fig. 5 is a side view of the latter figure on the same scale, and Figs. 6 and 7 are views of two forms of riffles.

A, represents the base or bed of the machine, and B is the table resting upon a!pports 1, 1, four or six in number. The ents 0 of these supports are spherieal and rest in correspondingly shaped sockets \because, \ldots, on the Jower surface of the table, and similar sockets 3,3 , located respectively on the base or bed, and on a bar on on the reur side of the machine, thereby permitting any given point on the table to describe a cirele, its surface
remaining a horizontal or inclined plane The bar 5 is provided on its lower surface with oppositely inclined blocks 6, 6 with their inclining surfaces inward or toward each other, and these blocks rest upon oppositely inclined wedges 7,7 , which are capable of being simultaneously thrust outward to raise the edge of the table beneath which they are located, or inward to lower it by swinging the hand lever 8 on its pivot!, it being connected on opposite sides of its pirot or fulcrum to the wetlges by means of connecting rods 10, 10. Stationary abutments 11,11 on the base or bed prevent endwise movement of the bar 5 by confining the latter between them. In this way, the operator is enabled to tilt the table more or less by actuating the hand lever S governing the position of the wedges, the supports 1, 1 , two or three in number on the opposite side of the machine serving as the fulcrum, while this adjustment is made or taking place.

The head motion and driving gear for imparting endwise and lateral motion to the table will now be described. I main drive shaft 15 is journaled in boxes 16,16 at the head end of the table, which end by the way is marked H to distinguish it from the tail end, which is marked T. Fast and loose pulleys are located on one end of the shaft 15 , and a crank disk 18 on the opposite end. This crank disk has a wrist-pin 19. A secondary slaft 20 parallel with shaft 15 is journaled a short distance therefrom at the head end of the concentrator, and this secondary shaft is provided with a weighted or balaneed lever 21 at one end. This lever has on the slaft side a planed slot 22 extending from the points D to E, said slot receiving the wrist pin 19, and a sliding bloek 23 whieh latter fits and slides in the slot whil ${ }^{\circ}$ the wrist pin turns in it, the block leing boted to fit the wrist or crank pin aforesaid. The opposite side of this lever 21 has a lievel-gear or sey- 100 ment 24 cast or fastened thereon concentric with its axis. The opposite end of the shaft has a crank 25 with a T-slot or tove tail slot 26 formed therein which permits the setting of the crank pin 27 at dead renter, at the 105 outer periphery or at any intermediate point, and from this crank pin the ronnecting rod -2s extends to the table whereby enilwise motion is imparted thereto.

From the foregoing it will be seen that as 110 the main shaft revolves and when the sliding bloek 23 and wrist-pin 19 are in the position
indicated at E a slow motion is being transmitted to the table, but when at D a quick return results.

Running at right angles to the main shaft 5 and parallel to the table is the auxiliary shaft 30, it being journaled in suitable bearings 31,31 . At the tail end of the machine this shaft is provided with a crank 32 similar to the crank 25 previously described, while near
10 its opposite end it is provided with a bevelgear 33 which meshes with the teeth of the bevel-gear 24 of the secondary shaft 20 from which it derives its motion. From the crank 32 a connecting rod 34 extends to the tail end 15 of the machine, while near the head end of the table, either an eccentric or a lever 35 is secured on the shaft 30 which also transmits motion to the table at the head end in a side direction through the connecting rod 36.
20 A spring 36^{d} mounted on the connecting rod 36 serves to prevent undue pounding. The three connecting rods 28,34 and 36 transmit the three motions to the table from the two crank disks and the eccentric or lever, and as
25 these cranks make only a part revolution they produce an oscillating effect.

From the foregoing it will be seen that I provide a table simple in mechanism and producing any and all motions required for
30 mechanical concentration. By suitable adjustment of the crank pin at the tail end of the table such side thrust may be obtained as to pernit of separating minerals having different specific gravities, from each other, 5 such as zinc blende from pyrites, etc. While I may use riffles or not, the motion resultant from the side thrust obviates the necessity of having riffles on the table.

In Figs. 6 and 7 I have illustrated tables 40 having riffles 40,40 . The ends of these riffles terminate in points which go to make up a curve, as indicated, which curve may be either a catenary, a parabola or an hyperbola or even a circle; whichever may give the best results for a given work. The origin of the curve may be at the head end or the tail end of the table as illustrated in the two views of the drawings, experiment again determining which is most efficient. Fig. 6
50 shows the riffles with the origin of the curve at the head end of the table, and Fig. 7 shows a set of riffles with the origin at the tail end.

It is evident that slight changes might be resorted to in the form and arrangement of
55 the several parts described without departing from the spirit and scope of my invention, and hence I do not wish to limit myself to the exact construction herein set forth, but

Having fully described my invention, what I claim as new and desire to secure by Let- 60 ters Patent, is:-

1. A laterally inclined and differentially reciprocating table adapted to discharge concentrates at one end and gangue over the side, in combination with a driving shaft, a secondary shaft imparting a direct reciprocating motion to the table independent of lateral motion, means for transmitting motion to the secondary shaft, an auxiliary shaft, and an independently adjustable arm connected therewith and with the table for imparting lateral motion to said table.
2. In combination, a laterally inclined and differentially reciprocating table adapted to discharge concentrates at one end and gangue over the side, a driving shaft, a secondary shaft imparting a direct reciprocating motion to the table independent of lateral motion, means for transmitting motion to the secondary shaft, an auxiliary shaft, and independently adjustable means connected with the latter and with the head and tail ends of the table, respectively, for imparting lateral motion.
3. In combination, a laterally inclined and 85 differentially reciprocating table adapted to discharge concentrates at one end and gangue over the side, a driving shaft, a secondary shaft imparting a direct reciprocating motion to the table independent of lateral motion, means for transmitting motion to the secondary shaft, an auxiliary shaft, gears on the secondary and auxiliary shafts, and undependently adjustable arms connected with the auxiliary shaft and with the head and tail ends, respectively, of the table, for imparting lateral motion.
4. In combination, a laterally inclined and differentially reciprocating table adapted to discharge concentrates at one end and gangue over the side, a driving shaft, a secondary shaft imparting a direct reciprocating motion to the table independent of lateral motion, a balanced slotted lever on the secondary shaft engaging a crank disk on the driving shaft, an auxiliary shaft, a gear thereon meshing with a gear on the secondary shaft, and an independently adjustable arm connected with the auxiliary shaft and with the table, for imparting lateral motion thereto.

\qquad

90

In testimony whereof I affix my signature in presence of two witnesses.

JOHN D. KOHLMANN.
Witnesses:

J. S. Brodhead,
F. G. Holtman.

COMPLAINANTS' EXHIBIT No. 37
Deister Patent No. 895,168
ALMON E. HART, Special Examiner
No. 895,168.
PATENTED AUG. 4, 1908.
E. DEISTER.

ORE CONCENTRATING TABLE.
application filed mar. 3, 1900.

Din il leister INVENTOR

ATTORNEY

UNITED STATES PATENT OFFICE.

FMIL DEISTER, OF FORT WAINE, INDIANA, ASSIGNOR TO THE DEISTER CONCENTRITOR COMPANY, A CORPORATION OF INDIANA.

ORE-CONCENTRATING TABLE.

No. 895,168 .

Specification of Letters Patent. Patented Aug. 4, 1908.
Application fled March 3. 1906. Serial No. 303,951.

To all whom it may concern:

Be it known that I, Emil Deister, citizen of the United States of America, and resident of Fort Wayne, in the county of Allen and
5 State of Indiana, have invented certain new and useful Improvements in Ore-Concentrating Tables, of which the following is a specification.

This invention relates to improvements in o ore - concentrating tables, and the object thereof is to provide a concentrating table which will effect efficient separation of mineral from ore-pulp and require but slight attention of the operator.

The above object is accomplished by the construction illustrated in the accompanying drawings, in which

Figure 1 is a perspective view showing my concentrating table and the particular aron rangement of riffles thereon: Fig. 2 is a plan view showing the rhomboilal form of the table, the relation of the driving mechanism in connection therewith, and the arrangement of the riffles; Fig. 3 is a cross section of Fig. 2
sponding edge thereof, is arranged a mineral launder 10 to receive the discharged concentrates therefrom.

The particular feature of this invention is in the character and relative arrangement of riffles 11 and 12 in connection with the table: The sifles are all relatively parallel and are arranged laterally, respecting the table, and oblique to the mineral discharge edge 5 thereof, in successive groups $13,14,15$ and 16 respectively. Each riffle tapers from its inner end at the breast-board to its outer end, and the riffles of each group vary directly in length successively toward the fow end of the table, the respective end riffles 12 extending to the mineral discharge edge 5 thereof, the other riffles 11 of the groups terminating at points suitably distant therefrom and affording a washing surface 17 alljacent the outer ends of the riffles of each group. The projections of the riffles 11 at the breast-board vary inversely and successively from the upper end of the table to the tailings discharge end thereof, and the projections of the end riffles 12 at the breast-board increase successively toward the latter end of the table.

In the operation of this invention, the table is set in rapid diflerential oscillating motion laterally, and ore-pulp is fed into the feed box from whence it gravitates upon the adjacent surface of the table, and flows toward the low end thereof. The mineral portion of the pulp, becomes directed from beneath the overlying gangue toward the washing surfaces at the high side of the table because of the differential motion thereof and the lateral range of the riffles. The mineral which passes out upon the washing surfaces is treated thereon to the action of dressing water suitably supplied in any well known manner, and is directed to the discharge edge, by the extending end riflles, from whence it gravitates into the mineral launder.

The gradual decrease in the height of the riffles toward the low end of the table affords 100 relief for the overlying gangue which aceordingly moves at a broad angle away from the high side of the table to the discharge end thereof because of its slant; and the variation in the lengths of the riffles of cach group has the effect of similarly relieviug the overlying gangue at the outcr margin of the body of pulp so that it does not crowd to the mineral discharge edge of the tahle and become discharged with the mineral, the end riffles be- 110
ing higher than the other riffles of the corresponding groups, and each being also successively of greater height from the surface of the table toward the low end thereof, has the 5 effect of retarding the longitudinal flow of pulp, and bodies of water are thereby maintained which flood the respectire groups of riffles, the depth of which bodies are correspondingly greater over each succeeding 10 group toward the low end of the table, and the settlement of fine mineral particles is facilitated thereby; and by the arrangement of the riffles in groups together with the extension of the end riffles to the discharge end of 15 the table, the heary and coarse mineral is expelled from the table at the head portion thereof and hence dons not mingle with and disturb the finer mineral particles which setthe later on the table nearer the lower end thereof, and thus the efficiency of the machine is thereby enhanced.

The form and arrangement of the table proper herein set forth is similar to that shown in previous applications filed by me 25 Feb. 19, 1906, Sr. No. 301,728 and Mareh 1, 1906, Serial No. 303,585, but is distinguished therefrom particularly by the arrangement of riffles. The table in the present instance is provided with riffles arranged especially for treating ore-pulp containing fines and slime, but it may also be used for treating coarser grades of ore by reducing the height of the end riflles to correspond with the general plane of the other riftles.

Having deseribed my invention, what I claim as new and desire to seeure by Letters Patent is:

1. In a device of the class described, a reciprocating table: a projecting breast-board 40 along the rear side thereof: and a series of riflles upon the surface of the table arranged in successive similar groups, the end riftle of each group extending to the mineral discharge edge of the table, the other rilles of the respoctive groupe increasing in length suceesively toward the corresponding end
riffle thereof, all of said riffles being tapered from their inner ends at the breast-board to their outer ends, the said end riffles increasing and the other riffles decreasing in height successively toward the tailing discharge end of the table.
2. In a device of the elass described, a reciprocating table; a projecting breast-board along the rear side thereof; and a series of riffles upon the table arranged in successive similar groups, the riffles of each group increasing in length successively toward the corresponding end riffle thereof, said end riffles being tapered at their inner ends at the breast-board toward their suter ends and projesting higher than the arljacent riffles, each end riffle increasing in height with the oiher end riffles successively toward the low end of the table.
3. In a device of the class deseribet, a reciproeating table; a projecting breast-board along the rear side of the table; and a series of riftles arranged upon the table in simila: successive groups, the end riffle of each group extending from the breast-board to the concentrates discharge edge of the table and being adapted to direct concentrates that issue from the riffles of the corresponding group to the discharge edge, and the riffles which intervene betweerr said end riffles each commencing its course at the breast-board and being of increasing length successively toward the end riffle of the corresponding group, there being a washing surface at the concentrates discharge edge of the table adjacent each group of riflles, each washing surface being separated from the adjacent washing surface by the corresponding end riffle.

In testimony whereof I affix my signature, in presence of t wo witnesses.

EMIL IEISTER.
Witnt ses:
W. G. Burns, M. Mettler.

Deister P.atent No. 895,167 ALMON E. HART, Special Examiner

No. 895,167.
PATENTED AUG. 4, 1908.
E. DEISTER.

ORE CONCENTRATOR. APPLIOATION FILED FEB. 10.1906.

3 SHEETS-BHEET 1.

ATTORNEY

ORE CONCENTRATOR.

ATTORNEY
E. DEISTER. ORE CONCENTRATOR. APPLIOATION FILED FEB, $19,1906$.

3 SHEETS-SHEET 3.
witnesses:
Srathilea Onather

UNITED STATES PATENT OFFICE.

EMIL DEISTER, OF FORT WAYNE, INDIANA, ASSIGNOR TO THE DEISTER CONCENTRATOI COMPANY, A CORPORATION OF INDIANA.

ORE-CONCENTRATOR.

No. 895,167.
Specification of Letters Patent.
Patented Aug. 4, 1908.
Application fled February 19, 1906. Serial No. 301,728.

To all whom it may concern:

Be it known that I, Emil Deister, citizen of the United States of America, and resident of Fort Wayne, in the county of Allen and
5 State of Indiana, have invented certain new and useful Improvements in Ore-Concentrators, of which the following is a specification.
This invention relates to improvements in 10 ore-concentrators, and the object thereof is to effect the removal of mineral from the concentrating table as rapidly as the same becomes clean, and this is done by providing local washing surfaces adjacent the mineral discharge side of the table, and suitably supplying the same with dressing water; and also by the particular form of the concentrating table.

My object is accomplished by the con20 struction illustrated in the accompanying drawing, in which:

Figure 1 is a plan view of my invention, a portion of the dressing water supply pipe being shown cut away; Fig. 2 is a detail view showing an elevation of one of the adjustable supporting struts for the table; Fig. 3 is an end elevation of Fig. 1; Fig. 4 is a detail in perspective showing the lower portion of the concentrating table, and particularly 30 showing the arrangement of riffles; Fig. 5 is a detail plan view showing part of the mineral discharge side of the table, and approximately showing the course of ore matter where dressing water is applied; Fig. 6 is a detail view showing a central cross-section through a portion of the concentrating table; Fig. 7 is a sectional view of the table in a vertical plane adjacent to and parallel with the breast-board, showing the relative heights of the riffles.

Similar numerals of reference indicate corresponding parts throughout the several views, and referring now to the same: 1 is a concentrating table of rhomboidal form and suitably supported upon swinging struts 2, 3,4 , and 5 respectively. The struts 4 and 5 are made wide at the base to prevent the table from moving longitudinally, and the struts 2 and 4 are made vertically adjustable 50 by means of screw-threaded shanks 6 so that the table may be adjusted to have proper incline toward the mineral discharge sicie 7 thereof. The struts 2 and 3 are supported at their lower ends respectively upon blocks 8 which are contained in corresponding cyl-
inders 9, and said blocks are adapted to be adjusted vertically by means of corresponding wedges 10 which extend through said cylinders. These wedges are connected together by a rod 11, and are adapted to be moved in unity by means of the lever 12 which is connected with one of the wedges by the rod 13 . When the struts 2 and 3 are thus moved vertically the table will thereby be adjusted accordingly with more or less longitudinal decline. A breast-board 14 extends along the lower side of the table, and a head-board 15 is similarly arranged across the upper end of the table. The table has a covering 16 of suitable material, such as linoleum, upon which are arranged numerous riffles 17 and 18 . The riffles 17 extend from the breast 14 across the table to the mineral discharge edge 7 thereof, and the riffles 18 intervene between the riffles 17 and extend from the breast, parallel with the former riffles, and terminate upon the surface of the table a suitable distance from the mineral discharge edge 7 thereof. All of said riffles are highest at the breast side of the table, and taper therefrom to a feather-edge at their outer ends. Thus it will appear that a uniform series of local washing surfaces 19 is provided between the ends of the short riffles 18 and the mineral discharge edge of the table.

A feed box 23 is secured to the head board 15, and overhangs the upper end of the table. The feed box is provided with openings 24 in its bottom, and vertically disposed ribs 25 are secured to the inner side of the feed box at points intervening between the openings 24 and serve to prevent pulp from banking toward the outer end of the feed box.

A feed pipe 26 , for dressing water, is suitably supported upon standards 27 and ranges over the mineral discharge portion of the table. This feed pipe has suitable perforations 28 located respectively so that dressing water from the feed pipe will be discharged upon the local washing surfaces approximately at points indicated by the dotted circles 29 in Fig. 5.

A suitable driving mechamism 30, having a reciprocating driving head 31 , is connected 105 to a fixed lug 32 which depends from the table, the connection being made by means of a driving rod 33 which has in connection therewith a spring 34 and a buffer 35 , the spring acting against one side of the driving head 31 ,
and the buffer acting against the opposite side thereof so that a differential reciprocating motion will be imparted to the table. The driving mechanism is so located in relation to the tuble that the motion of the latter will be transverse, or directly in line with the length of the riffics.

In the operation of this invention the table is set in rapid differential oscillating motion 10 laterally, and is adjusted to range upon an incline from the breast toward the mineral discharge edge, and upon'a decline from the head board toward the lower, or tailings dis-charge, end thereof. Ore pulp is then fed 15 into the feed box, from whence it passes through the openings 24 onto the surface of the table. Because of the longitudinal decline of the table, the pulp will move toward the lower end thereof, and because of the dif-
20 ferential motion and lateral incline of the table, together with the riffles, the mineral portion of the pulp will be directed from beneath the pulp out upon the local washing surfaces 19 where it is subjected to treatment by
25 dressing water. The extending riffles 17 conserve the mineral upon the adjacent local washing surfaces and further serve to direct the mineral to the edge 7 of the table from whence it is discharged into the concentrates
30 launder. By this arrangement the partially concentrated mincral is treated locally in masses to the action of dressing water, in contra-distinction to the common practice of applying dressing water to the partially con-
35 centrated mineral in general.
A feature of this inventien is that the table is so shaped, proportioned, and arranged that the gangue moves lengthwise over the table and becomes disharged from its lower end,
40 and the mineral is conveyed to and discharged from the upper side of the table, and it should be particularly noted that the mineral discharge side of the table is proportionately of much greater length as compared
45 with the tailings discharge end thereof. Thus the gangue is made to travel the full length of the table while the mineral moves the breadth of the table, which arrangement facilitates settlement of values contained in
50 the pulp and the final treatment by dressing water.

I hare found that by placing n high riffle 36 at the lower cnd of the table, and occasional high riffles 37 among the other riftles
55 upon the table, the flow of pulp along the breast side of the table will be retarded somewhat, and the ore-matter will ihereby become suspended in the bodies of water oceasioned by the high rillles, and this has the ef-
co fect of facilitating settlesnent of mineral contained therein.

All of the high riffles taper from their inner ends at the breast to their outer cuds, and are successively of increased leight from the
65 surface of the table, the lighest riffle 36 of
which is located at the low or discharge end thercof. All the riffles, 17 and 18, other: than the former high riffles taper from their inner ends at the breast to their outer emis and are successively of less height towarl the low end of the table. That is, the taper of the riffles decreases successively toward the low end of the table, so that alj of the latter riffles will have an cefual projection fromi the surface of the table approximately along the line Z-Z. This arrangement of riftles has the effect of relieving the overlying ore-matter so that it will move toward the lowest corner of the table (indicated at Y) and away from the washing surfaces 19, while the high riffles maintain bodies of water which flood the low riffles and thereby prevent the latter from causing eddies.
In Fig. 6 is shown a transverse central section through the mineral discharge side of the table. In this view the table is shown to have an incline of slightly less degree from the point Y to the discharge edge 7 as compared with the incline from the breast to the point Y. The point I is located between the outer ents of the short riffles 18 (indicated at X) and the discharge edge 7. The decrease in the incline of the table is coincident with the local washing surfaces and is made to facilitate the discharge of mineral.

Having described my invention, what I claim as new and desire to secure by Letter's Patent is:

1. In an ore-concentrator, a rhomboidal table having in connection therewith driving mechanism to actuate the same laterally and being arranged with longitudinal decline and lateral incline; a series of riffles arranged laterally upon the table, some of which extend from the breast at the low side of the table to its edge at the high side thereof, the other riffles of the series being shorter and which intervene between the former riffles and extend from the breast and terminate respectively at points suitably distant from the edge of the table at its high side and aflord a corresponding series of local washing surfaces adjacent said edge of the table; and suitable means to supply dressing water to said washing surfaces.
2. In an ore-concentrator, a rhomboidal table having in connection therewith suitable driving mechanism to actuate the same lateraily, and being arranged with longitudinal decline and lateral incline; a series of lateral riffles arranged upon the table, some of said riffles extending entirely across the table, and the riffles which intervene between the former riffles being short and terminating at their outer ends at points suitably distant from the edge of the table at its high side, and occasional high riffles dividing the table into several low riffled sections; a series of local washing surfaces adjacent the edge of the table along the high side thereof; and 130
suitable means to supply dressing water to said washing surfaces.
3. In an ore-concentrator, a rhomboidal table having in connection therewith suitable driving mechanism to actuate the same laterally, and being arranged with longitudinal decline and lateral incline, and having thereon a series of lateral riffles which taper to a feather-edge at their outer ends, the riffles being alternately of different length, the long riflles of which extend to the edge of the table at its high side, those portions of the table between the outer ends of the long riffles affording local washing surfaces.
4. In an ore-concentrator, a rhomboidal tanle having in connection therewith suitable driving mechanism to actuate the same lat-
erally, and being arranged with longitudinal decline and lateral incline; a series of low riffles arranged laterally upon the trble, each tapering from its inner end at the breast to its outer end, the riffles of said series being successively of less height toward the low end of the table; and occasional tapering high riffles located among the low riffles, and each being successively higher toward the low end of the table.

In testimony whereof I affix my signature, in presence of two witnesses.

EMIL DEISTER.
Witnesses:
M. Mfttler,
W. G. Burns.

COMPLAINANTS' EXHIBIT No. 39
 Deister Paient No. 895,169 ALMON E. HART, Special Examiner

No. 895,169.
PATENTED AUG. 4, 1908.
E. DEISTER.

ORE CONCENTRATOR.
APPLIOATION FILED JUNE $23,1906$.

WITNESSES:
(Mathuldr Jintien
trintarece

Emif deis tu nuventor

UNITED STATES PATENT OFEICE.

EMIL DEISTER, OF FORT WAYNE, INDIANA, ASSIGNOP TO THE DEISTER CONCENTRATOR COMPANY, A CORPORATION OF INDIANA.

ORE-CONCENTRATOR.

Specification of Letters Patent. Patented Aug. 4, 1908.
Application flled June 23, 1906. Serial No. 323,160.

To all whom it may concern:

Be it known that I, Emil Deister, a citizen of the United States of America, and resident of Fort Wayne, in the county of Allen and State of Indiana, have invented certain new and useful Improvements in Ore-Concentrators, of which the following is a specification.

This invention relates to improvements in ore concentrators, and the objects thereof are, first: to construct a machine of its class of less size and weight as compared with ordinary concentrators, and at the same time capable of efliciently treating an equal quantity of ore matter; and second: to so sonstruct the machine as to compensate for variations in the quantity of materin? fed to the machine, without the serious loss of mineral which ordinarily occurs when tables of ordinary construction become overloaded. The first object is accomplished principally by the form and arrangement of the table in connection with its various parts; and the second object is attained chiefly by the peenliarly constructed feed box and the manner of distributing the feed upon the table. The construction by which these objects are attained is illustrated by the accompanying drawings in whick

Figure 1 is a plan view of this invention; Fig. 2 is a transverse section of the same on the line $x-x$ of Fig. 1; Fig. 3 is a detail view showing a transverse section through a portion of the table and the feed box on the line Y; Fig. 4 is a detail view in perspective showing the bucking board and that portion of the table, which lies adjacent thereto; and Fig. 5 is a detail showing a side view of one of the riflles, somewhat exaggelated in height.

Similar numerals of reference indicate corresponding parts thoughout the several views, and refering now to the same: 1 is a concentrating table. having at one side thereof an upwardly projecting head-board ?, and along its rear cud a similarly projecting hreast-board 3. The opposite sides of the table are parallel and the rear end of the table ranges in a line oblique to the sides thereof, as also does a portion of its mineral discharge edge 4. An upwardly projecting bucking-board sextends along is part of the fore end of the table adjacent to and connecting with the corresponding end of the
head-board 2, and; in effect, forms a con- 55 tinuation of the latter. That portion of the bucking-board adjacent the head-board 2 ranges at a sharper angle respecting the latter than does the other portion 6 thereof which extends to the mineral discharge edge t of the table. At the juncture of the buck-ing-board and the adjacent surface of the table is secured a shoal 7 which serves to spread dressing water fed thereon.

Upon the surface of the table is arranged 6 a series of riffles 8 all of which are parallel with the sides of the table, and each riffle extends across the corresponding surface of the table to the opposite end thereof. These riffles taper from their rear ends 7 toward their forward ends, and each has an off-set 9 where it decreases suddenly in height. The respective off-sets of the riflles are located approximately on the line Z-Z. Thus it will be understood that the section of the table bordering its forward edge has shallow riftles thereon, each of which is a continuation of the corresponding riffle on the rear portion of the table.

A fred box 10 is secured over that portion 80 of the table adjacent the head-board 2 , and a vertical partition 11 extends lengthwise in the feed box from its rearend to a point the erein suitably distant from its forward and where it terminates and thes affords a pas-sare-way 12 for pulp to flow from its one section 13 to the other section 14 thereof. The bottom of the feed box ranges upon a sradual descent from the rear cond of the section 13 to the passage way $1 \because$, and from thence to the 90 rear end of the section 14. and that portion of the bottom in the section 14 slants transrersely downward toward the partition 11. A passage way 15 is made in the outer wall of the feed box adjacent the rear end of seco tion 14, and a laumer 16 is aremed to the breast-board 3 and is commeeded with the feed box to receive the werllow thereftom through salid passage "ay 15. A mries of openings 17 are mate in tha hottorn of the feed box in a lince adjacent the jartition 11 , and other openings is are made in the hottom of the feed box at its forwad end. An aprom 19 i - wected to the bottom ol the feed box beneath the openings 17, and serves to direct material dischatged therethrough toward thic head-hward 2. 1 series of diagonal riffles 20 are arranged npon the bottom
of the section 13 of the feed box which serre to direct underlying mineral toward the opening 18 nearest the head-board.

The table is supported from beneath at points indicated at $21-21$ and $22-22$, at the latter by means of movable posts 23 , and at the former by rocking standards 24 . The posts 23 are respectively supported upon oppositely disposed wedges 25 mounted in corresponding base castings 26, and the wedges are connected together by a rod 27 by means of which they are moved in unity. An adjusting shaft 28 is supported by brackets 29 which extend from the side of the base 30 , and upon said shaft is fixed a lever 31 and a depenting arm 32, the lower end of the latter having connection with the wedges 25 to actuate the same. Thus it will appear that by moving the lever 31, the table will be given more or less longitudinal incline. The standards 24 are made wide at the base and are mounted upon castings 33, and are adapted to permit longitudinal action of the table and prevent lateral motion thereof. Each of the standards 24 has an adjustable screw post 34 by means of which the table may be adjusted to have more or less lateral decline. The table thus mounted is connected, by means of a driving rod 35 , with a suitable actuating mechanism 36 such as to impart differential reciprocating motion to the table.

In the operation of this inventiol, pulp is fed to the feed box at the rear end of section 13, from whence it passes over the riffles 20 therein, through the passage way 12 into the section 14, and while so passing, more or less of the mineral portion of the pulp is directed by the riffles 20 so as to pass through the openings 18 , and the other portion of the pulp is discharged from the feed box through the openings 17, except surplus water which overflows through the passage-way 15 and is carried by the launder 16 to the tailings discharge side of the table. By this operation the heariest and cleanest portion of the mineral is fed to the table at points nearest its forward end, while the lighter mineral and pulp is carried through the openings 17 and deposited upon the table along the headward the mincral edge 4 orer which it is discharged into the mineral launder 37. The portion 6 of the bucking-board acts upon the adjacent mineral with less force than the board which is farthest from the tailings discharge side of the table. The motion of the table and the arrangement of riffles thereon are such as to cause the mineral to move toward the forward end of the table, and that portion thereof which comes into contact with the bucking-board is subjected to more or less vigorous action because of the obstruction afforded thereby, which affects a tendency to displace the sand while the mineral passes along the bucking-board toother portion thereaf, because of its lesser
angle to the direction of driving motion; and in passing along the shoal 7 the mineral is treated by the action of dressing water which is suitably fed upon the shoal and upon the table along the mineral discharge edge 4 thereof.

The off-sets of the riffles afford relief for the overlying gangue so that it tends to more downwardly toward the tailings discharge side of the table, while the underlying mineral portion of the pulp, thus relieved of the orerlying gangue, is carried by the shallow extensions of the riffles outward to the mineral launder, and while being directed hy said extensions, is treated to the action of dressing-water and thereby further relieved of gangue.
By providing an orerflow outlet for surplus water from the feed box and conducting it therefrom without discharging it upon the table, the body of pulp upon the table is not affectel thereby and the variations in the quantity of material fed upon the table is not so pronounced as would otherwise be the case, and consequently a corresponding im- 9 provement in the treatment of pulp is effected.

Having described my invention what I claim as new and desire to secure by Letters Patent is:-

1. In an ore concentrator, a slaking table having an oblique forward end; a shoal along part of said end of the table adjacent the feed side thereof and extending out bnto the table; and a series of riffles, those adjacent the shoal terminating at its inner edge, and the other riffles extending beyond the shoal to the concentrates discharge edge of the table.
2. In an ore concentrator, a shaking table e 105 having an oblique forward end and an upward projection extending along its rear end, feed side, and part-way along its forward end adjacent its feed side; a shoal adjacent the projection at the forward end of the table extending to the concentrates discharge portion thereof; and a series of riffles, those adjacent the shoal terminating at its iuner edge, and the other riffles extending bevond the shoal to the concentrates discharge edge of the table.
3. In an ore concentrator, a shaling table; a feed box secured to the table having feed openings adapted to discharge onto the table; and having also an orerflow outlet; and means in connection with the overflow outlet to convey the orefflow therefrom away from the table.
4. In an ore concentrator, a shaking table; and a feed box in connection with the table, having two paraltel sections with a passageway connecting the sections at their forward ends, the bottom of the feed box ranging upon a gradual decline from the rear end of the outer section to said passage way and from thence to the rear end of the inner sec-
tion, and haring also feed openings at its forward end, the inuer section haring feed openings along the side thereof adjacent the outer section and also an overflow outlet at its rear end.
5. In an ore concentrator, a shaking table; and a feed box connected to the table, haring two compartments which communicate with one another at their forward ends, and riffles on its bottom adapted to direct underlying mineral toward said openings, the inner section having an overflow outlet near its rear end, and a series of feed openings located between its overflow outlet and its forward end.
6. In an ore concentrator, a shaking table; and a feed box connected to the table, having a central longitudinal partition dividing it into sections which communicate with one another at their forward ends, the feed box having also feed openings, and the inner section thereof laving an overflow ontlet.
7. In an ore concentrator, a shaking table laving a feed lox extending along its head side, the said feed box having feed openings in : ts bottom and an orerflow outlet through its inner side; and a launder leading from said owrilow outlet to the tailings end of the table where it is adapted to discharge the userflow from said feed box.
s. In an ore concentrator, a shaking table; and a feed box connected to the table, having a partition which divides the feed box verti-
cally into two longitudinal sections which communicate with one another at their forward ends by means of a lateral passage-way, 35 and having feed openings near the forward end of its outer section and a series of feed openings leading from its inner section.
8. In an ore concentrator, a shaking table; a feed box connected to the table, having a 40 vertical partition dividing it into two longitudinal sections which communicate with one another by means of a suitable lateral passage-way, and having feed openings at its forward end and a series of feed openings leading from its inner section; and a series of riffles in the outer section adapted to direct underlying mineral therein toward the feed openings at the forward end of the feed box.
9. In an ore concentratora a slaking ta- 50 ble; and a feed box connected to the table, haring a rectical partition, and also feed openings at its forward end; means to direct underlying mineral in the feed box toward said openings, the feed box haring also an- 55 other series of feed openings which are sheltered from the former feed openings by said partition.

In testimony whereof I affix my signature. in presence of two witnesses.

EMIL DEISTER.
Witnesses:
Mathilda Mettler, W. G. Burns.

Deister Patent No. 921,090 ALMON E. HART, Special Examiner
E. DEISTER.

ORE CONCENTRATOR.
APPLIOATION FILED OOT. 9, 1905.
921,090.
Patented May 11, 1909.

> E. DEISTER.
> ORE CONCENTRATOR.
> APPLICATION FILED OCT. $9,1905$.

921,090.
Patented May 11, 1909.
3 SHEETS-SHEET 8.

Fision. 6

WITNESSES:
Emildorister meveroos

$$
\begin{aligned}
& \text { Nrm IV I Bmoman } \\
& \text { Otermano f Cample. }
\end{aligned}
$$

(8) 188_{3}

ATTORVEY

Patented May 11, 1909.
3 SHEETS-SHEET 3.

WIINESSES:
クnn If. Bumomane
Qternan of haneptes

Emilalinater inventor
Bytgobums ATIORNEY

UNITED STATES PATENT OFFICE.

EMIL DEISTER, OF FORT WAYNE, JNDIANA, ASSIGNOR TO THE DEIS'SER COACENTRATOR COMPANY, A CORPORATION OF INDIANA.

ORE-CONCENTRATOR.

No. 921,090 .
Specification of Letters Patent. Patented May 11, 1909.

> Application filed October 9, 1905. Serial No. 282,043.

To all whom it may concern:
Be it known that I, Emul Deister, a citizen of the United States of America, and resident of Fort Wayne, in the commy of Allen and State of Intliana, have iurentera certain new and aseful Tmprovements in Ore-Concentrators, of which the following is a specification.

This invention relates to improvements in 0 ore concentrators, and the oljects thereof are to facilitate settlement of the motalic portion of ore pulp upon the concentrating surface of the table; and to eifect a mure perfect final separation of mineral values from the partially concentrated mass of pulp than is ordinarily attained; turd further to effect the discharge of concentrates from the concentrating table as they becone ciean.

The above objects are accomplished by the 0 construction illustrated in the accompanying drawings, in which:
Figure 1 , is a plan view of the invention, a portion of the dressing water supply-nipe being cut away; Fig. 2, is a side elevaiion of 25 the same, a portion of the adjustable dam being cut away for showing discharge openings for tailings; lig. 3. is a head end elevation of the machine; Fig. 4. is a cross section of the concentrating-ratle on the line $x-x$ of Fig. 1; Fig. 5. is a defail view showing a cross section, upen an enlarged scale, of a portion of the concentrating-table on the line $x-x$ of Fig. 1; Fig. 6. is a detail vrew showing a portion of the side of the concen35 trating table where concentrates are disclarged; Fig. 7. is a detail view in persjective, upon an enlarged scale, showing the relative position of one shoal with the adjacent shoals; Fig. 8, is a longritudinal section, upon an enlarged scate, of one of the shouls. Fig. 9 is a detail perspective view of one of the shoals and conemtrates launder; and Fig. 10 is at detall view showing the connecting rod and spring for holding it in conneetion with the lever, the latter being shown cut away.

Similar numerals of teference indicate corresponding parts throughout the sovelal views, nud referring now to the same: 1 is a 50 concentrating table, preferably of triangular form, mounted upon swinging props 2, 3, 4,5, and 6 , respectively, which admit longitudi-
nal, reciprocating motion to be imparted to the table. The props 2 , 3 , and 4 , we arranged in aline ment beneath the table along the longest side thereof and sappoit the same, respectively, at points indicated by the dutted circles 7,8 , and 9: and the props 5 and 4 ; are smilaty armued bementh the table: tum suppent t:e sume at points adjacon the tailings cliselarge sule of the table as matiented respetively by the doted circles 10 and 11. The two props ${ }^{2}$ and 4 are made wide at the base in order to prevent the tahle from moving lateraty respecting the line of motion: and the two props 5 and 6 are made adjustable liy means of wedges 12 and 13 so that the taifings discharge side of the table may be elevated or lowered as desired to give the table a suitable decline toward its tailings discharge side. Each of the props 5 and 6 rest upon a movable block 14 which is loosely arranged in a corresponding cyiinder 15, the block being iddapted to he raised or lowered accordingly as the comesponding wedge is adjusted. The wedges 12 and 13 are connected by a rod 16 , and the wedge 13 has in comection therewith a serew-thepaded rod 17 which extends through a fixed bracket 18; and ihe rod 17 has mounted thereon adjustng wherls 19 upon either side of the bracket, so that the wedges may be adjusted and held in a desired position by manipulating the wheels 19.

The enncentrating surface of the table is composed of a series of steps 20 arranged in parallel relation with each other, and each successive step is lower than the adjacent preceding step, the lowemmst step being nearest the tailings discharge side of the table, and the upper surfaces of all of said steps are approximately level in cross section and range upon a uniform incline toward the concentrates-dischnge portion of the table. Along the discharge edge of each step is an upwardly projecting lip 21 which extends throughout the length of the eorresponding step, and upon eacla step is secured a uniform series of rifles 22 , "ach riffle commencing its course at the comesponding lip and ranging diagonally upon the atjacent surface of the corresponding step; and all the riffles are disposed in the direction of the concen-trates-discharge side of the table.

At the head end of the table is a gradually sloping breast 23 which extends from the lower ends of the steps upward toward the head-board 24 ; and a feed-box 25, having 5 feed-openings 25 in the bottom thereof, is mounted in connection with the table along the forward portion of the longest side theseof. In inclined shelf 27 is attached to the underside of the feed-bor and serves to more
10 or less distribute the ore-pulp as it passes from the feed-openings onto the table.

Along the tailings-discharge edge of the table is secured an apron 28 consisting of a plate which extends buth above and below 15 the adjacent edge of the table, and at series of tailings-discharge openings 29 are mate in the apton in line with the adjacent concentrating surface of the table. A vertically adjustable dam 30 rests against the outer
20 Face of the apmon 2 S , and extends throughout the length of the apron to the rear end of the table where it is pivotedly connected to the latter as indicated at 31. The dam is held in place against the apron by means of springs
2532 , and is held in adjusted position by means of a suitably mounted thumb-nut 33 .

At the rear end of each step is fixed a shoal 34, the upper surface of which gridually ascends from the adjacent eoncentrat-
30 ing surface of the corresponding step toward its head 35 . The outer edge of each shoal has an upturned flange 36 which extends from its head to the head of the next preceding shoal, where it connects with the aljacent
35 innermest side thereof. The said flanges thus arranged, in comnection with the heads of the respective shoals, constitute a levee which prevents an overllow of pulp trom the table. at its concentrates-discharge side.
40 The concentrating surface 37 of each shoal narrows toward its upper rear portion and leads up to the throat 38 which communicates with the concentrates-discharge opening 39, and the latter opene into a disclarge-
45 spout 40 . [pons either side of the throat 38 is a miniature platean 41, each of which extends to the corresponding side of the shoal and has a gradually rounded inner margin 42. Upon the concentrating sufface of the shoal
50 are several riffles 43 which lead toward the throat from the corresponding sides of the shoal and extend toward the entrance of its throat, the upper ends of the two rear ritlles ranging between the plateans. The heal 35
55 of each shom is hollow and has an elongated opening 44 at its thp, and las also dischargeports 45 which learl respectively out upen the corresponding plateass 41. The shoals are atl located in the same horizonal plane,
60 the height of carli at the thonat being approximately 10 line with the level of water, upon the tahle, which is maintained by adjusting the dam accordingly ats the tailingsdischarge side of the table is raised on low-
ered. A pipe 46 is supported by suitable 65 standards 47 :and extends along the concen-trates-discharge side of the table, adjacent the shcals; and a series of cocks 48 connect with the pipe 46 , and are adnpted respectively to discharge dressing water into the corresponding openings 44 of the corresponding shoals. The pipe 46 is connceted with it suitable liead of water by means of a connecting pipe 49 , the latter having a valve 50 .

The actuating mechanism consists of a rotative shaft 51 which lias mounted thereon tight and loose pullers 52 , and is mounted in a supporting easting 53 which is secured upom a bed 54 . An eccentric 55 on the shaft 51 has driving relation with the connecting rod 56. A lever 57 is comnected at its lower end to a shaft 55 which is suitably supported in connection with the hed, and the upper end of the lever is bifurcated and has a series of notches 59 made therein in which the ends of the cross head 60 are adapted to be seated. The cross head 60 is adapted to be shilted from one pair of notehes in the bifureated end of the lever to the other pairs of notches and thus catise the lever to be actuated with a greater or less range of movement, and the cross head is held in position in said notches by means of a screw-threaded hand-piece 61 which is mounted upon the projecting end of the connecting-rod 56 . The said hand-piece has in connection therewith a coil spring 62 which acto argainst the adjacent face of the leves.

A driving rod 63 extends at its rear end through a bracket 64 which is rigidly fixed to the underside of the table, and upon said rod is secured two sets of jam-nuts 65, one set upon either side ol said lracket 64; and a stiff coil spring 66 is interposed between one set of said jahu-muts and the bracket. which serves to prevent play between the drivingrod and table. The forward end of the driv-ing-rod extends loosely through a lug 67 which projects from the lever 57, and has mounted upon its extreme end a collar 68. A rubher buffer 69 is inter osed between the collar and the adjacent face of the lug 67 , and a vickling coil spring 70 is interposed between the opposite face if the lug 67 and an adjacent collar 71 which has screw-threaded relation with the driving-rod. Br adjusting the collar 71 so as to increase or decrease the stress upon the spring 70 , the degree of differential motion imp:arted to the table may Le varied.
In the operation of this invention, the table is set in differential reciprocating motion lengthwise respecting the steps, and a suitable cuantity of dressing water is supplied to the shoals from the cocks 18 . "re pulp is then supplied to the feed-box in the usual manner. It is the intention to maintain a suitable depth of water upon the table, and to effect
this the dam 30 is raised sufficiently so that the water will rise upon the table to a height approximately in line with the throats of the shoals. The tailings - openings 29 , -in the 5 apron, are numerous and of a size capable of passing the solids of the tailings, but are not such as to drain the table of its body of water so as to prevent the water overflowing the dam while the contemplated quantity of pulp is being supplied to the machine. Because of the buovancy afforded the pulp by the detained body of water upon the table, the mineral values of the pulp quickly settle upon the concentrating surface of the table,
15 and thereupon are carried toward the shoals because of the differential motion of the table. The pulp tends to move toward the tailingsdischarge side of the table, and the underlying portion of the settlel ore-matter is noved toward the shoals, while the overlying portion thereof falls lrom step to step successively to the discharge edge of the table where it becomes discharged through the tailings-openings 29, or is carried over the dam with the overflow water. The underlying portion of the settled ore-matter is detained upon the steps more or less because of the projecting lips 21, and is further conserved upon the steps by the diagonally disposed riffles thereon, and as such underlying ore-matter reaches the shoals it willhave become more or less separated from the gangue and may be said to have been parfially concentrated. This partially concen-
35 trated material enters the shoals and masses at the entrance of the throats thereof, and is there slaken and simultaneously subjected to the washing action produced by the discharge of dressing water from the ports 45 .
40 The effect of this treatment is such as to cause the lighter portions of the partially concentrated masses to pass backward from the throats of the shoals and tall over the inuer edges thereof upon the next succeeding
45 steps respectively: The heavier portions of the partially concentrated masses, thus freed from the lighter prortions, pass onward through the throuts and into the openings 39 and are discharged through the sponts 40 . A
50 launder 72 is secured to the table immediately beneath the spouts 40 to receive the discharge of concentrates therefrom, and the discharge end 73 of the launder is preferably located at the rearend of the table.
A particular feature in the operation of this invention is that the partially concentrated material is treated in the shoals to a slaking and washing action in masses, in contratistinction to the common practice of
60 spreating the partially concentrated material in a thin layer over a smooth and unprotected, or unriftled, washing surface; and in the present invention the concentrates become discharged from the table as they be-
come cleaned, instead of being conveyed over 65 a long course to a common concentrates-discharge place as on ordinary tables, thus avoiding a loss of mineral values occasioned by protracted contact with the dressing water as usually applied. Another feature of this invention is in the position of the adjustable props 5 and 6 relative to the table and the non-adjustable props 2,3 , and 4 : It will be obvious that by raising or lowering the former props, the table will thereby become tilted so that the longitudinal incline of the steps will be decreased or incrensed accordingly without altering the horizontal position of the concentrates-discharge side of the table, and therefore, the shoals will be maintained at a uniform height; and when the table is tilted by lowering or raising the adjustable props, movement of pulp toward the tailings-lischarge side of the table will accordingly be accelerated or retarded.

Matter somewhat similar in character is contained in a previous application, Sr. No. 274,515 , filed by me August 17, 1905, for "ore concentrators", the similarity residing particularly in the shoals.

Having described my invention what I claim as new and desire to secure by Letters Patent, is:

1. In an ore concentrator, a transversely inclined reciprocating concentrating table, having a level concentrates-discharge portion, the concentrating surface of the table being composed of a series of steps arranged longitudinally and in parallel relation with each other and in line with the direction of the motion of the table; approximately, and all the steps ranging upon an incline toward the said concentrates-discharge portion; an upwardly projecting lip secured along the discharge edge of each step; a series of riffles secured upon the concentrating surface of each step, earh riffle commencing its course at the corresponding lip and ranging diagonally upon the adjacent surface of the corresponding step: a shoal located at the rear end of each step, the concentrating surface of each shoal ascending from the concentrating surface of the corresponding step, each shoal having a throat and discharge opening; Iffeans for supplying each shoal with dressing,water at the sides of its throat; and a dam in connection with the tailings-discharge side of the table adapted to maintain a water level upon the table approximately in line with the $t^{\text {th }}$ rats of the shoais.
2. In an ore concentrator, a transversely inclined reciprocating concentrating table, the concentrates-discharge side of which ranges in a horizontal plane, having thereon a series of riffles adapted to direct maderlying orematter toward its concentrates-discharge side; a series of shoals arranged along the concentrates-discharge side of the table, each
ranging upon an incline from the adjacent concentrating surface thereof, and each having a throat and discharge opening; means forsupplying dressing water to each shoal at the sides of its throat; and a dam in comection with the tailings-diischarge side of the table arlapted to maintain a water level over the table approximately up to the throats of the shoals.
3. In an ore concentrator, a transversely inclined resiprocating concentrating table having riffles thereon adapted to direct underlying ore - matter toward its concentrate discharge side; a series of shoals located 15 along the concentrates discharge side of the table, each having a dis charge opening near its head, and throat leading from its concentrating surface to its opening, the outer edge of each shoal being higher than its inner edge;
20 and means for supplying dressing water to each shoal at the sides of its throat.
4. In an ore concentrator, a transversely inclined reciprocating concentrating table, the concentrateds-discharge side of which
25 ranges in a horizontal plane, having thereon a series of riffles adapted to direct underlying ore-matter toward its concentrates-discharge side; a series of shoals arranged in successive order along the concentrates-discharge side of
30 the table, the outer edge of each shoal having an uptumed flange, the said flanges constituting a levee adapted to prevent an overflow of pulp from the table at its concen-trates-discharge side, and each shoal having
35 also a throat and diseharge opening; means for supplying dressing water to each shoal at the sides of its throat: and at dam in cormection with the tailings-discharge side of the table adapted to maintain a water level over
40 the table npproximately up to the throats of the shoals.
5. In an ore concentrator, a transerersely inclined reciprocating concentrating table having riffes thereon adapted to direct 45 underlying ore-matter toward its concen-trates-discharge side: a series of shoals located along the concentrates-lischarge side of the table, each having a throat at its discharge end and plateaus upon each side of its
50 throat; and means for supplying dressing water to each shoal upon its plateaus.
6. In an ore concentrator, a transversely inclined reciprocating eoncentrating table of triangular form, and having riffles thereon
55 adapted to direct underlying ore-matter toward its coneentrates-lischarge side, the saill eoncentrates-diselarge side ranging in a horizontal plane; a series oll shoals, at the concent rates-discharge side of the table, a alapted
fio to receive ore-matter directly from the atiacent concentrating surface of the table, each shoal having a discharge opening, and throat leading from its concentrating surface to its
opening, the outer edge of each shoal being higher than its inner edge; and means for 65 supplying dressing water to each of said shoals nt the sides of its throat.
7. In an ore concentrator, a transwersely inclined reciprocating concentrating table having ritfles thereon adapterl to direct underlying ore-matter toward its concen-trates-discharge side; a series of shoals located along the concentrates-discharge side of the table, each having a throat and discharge opening; an upwardly projecting upron, secured along the tailings-discharge side of the table, having tailings openings therein in line with thr adjacent concentrating surface of the table; a dam in connection with the apron addapted to maintain a water level over the table approximately up to the throats of the shoals; and means lor supplying dressing water to each shoal at the sides of its throat.
8. In an ore concentrator, a transersely 8 inclined reciprocating concentrating table of triangular lorm, the coneentrates-discharge side of which is level, and the tailings-discharge side of which ranges upon an incline toward its rear end, and the eoncentrating surface of which is composed of a series of steps which extend lengthwise up) to the con-centrates-discharge side thereof; a series of shoals located aloner the concentrates-discharge side of the table, one at the end of each step, and being adapted for the purpose set forth; means for supplying dressing water to each shoal; and a dam in comnection with the tailings-discharge side of the table adaptel to maintain a water level over the table approximately up to its concentratesdischarge site.
9. In an ore concentrator, a transtersely inclined reciprocating concentrating table of Iriangular form, the concentrates-liseharge side of which is level, and the tailings-discharge side of which ranges upon an meline toward its rear end, and the coneentrating surface of which is composed of a scries of steps which extend lengthwise up to the con-centrates-discharge side thereof, each step having an upwardy projecting lip along its discharge edge; a shoal located at the rear end of each step adaptesl for the purpose set forth; a series of diagonally disposed riffles upon each of said steps, each riffle commeneing its course at the corresponding lip; means for supplying dressing water to each shoul; anu a dam in connection with the tailingsdischarge side of the tuble adapted to maintain a water level over the table approximately up to its concentrates-discharge side.
10. In an ore concentrator, a transversely inclined reciprocating concentrating table of triangular form, the concentrates-discharge side of which is level, and the tailings-dis-

Warge site of which ranges upon an incline lowatd its rear end, and having thereon a series of tilltes alapted to direet undedying ore-matter toward its concentrates-discharge 5 side; a series of shoals located along the con-centrates-discharge side of the table; means for supplying dressing water to each shoal: and a dam in comection with the tailingsdischarge side of the table adapted to main-
tain a water level orer the table approxi- 10 mately up to its concentrates-discharge side.

In testimony whereol I allix my signature, in presence of two witnesses.

EMIL DEISTER.
Witnesses:
Wm. H. Bensman, Herman J. Lampie.

CCMPLAINANTS' EXHIBIT No. 41
Kirksey Patent No. 906,535
ALMON E. HART, Special Examiner

J. G. KIRKSEY.

ORE SEPARATOR.
APPLICATION FILED FEB. 28, 1903.
906,535.

UNITED STATES PATENT OFFICE.

JOHN GIDEON KIRKSEY, OF GARTHAGE, MISSOURI.
ORE-SEPARATOR.
No. 906,535 .
Specification of Letters Patent. Patented Dec. 15, 1908.
Application filed February 28, 1903. Serial No. 145,870.

To all whom it may concern:

Be it known that I, John Gideon Kirk${ }^{-}$er, a citizen of the United States, residing at Carthage, in the county of Jasper and
6 State of Missouri, have invented a new and useful Ore-Separator, of which the following is a specification.
My invention relates to ore separators, and is especially directed to that class of devices is washed over the surface of a transversely inclined vibratory table and is concentrated according to its varying specific gravity, and is delivered in its separated condition at 5 the delivery end of the table.

The invention has for its objects to produce a device of this character in which the ore, after first spreading transversely of the table in strata of varying degrees of 0 purity, will, during the further separating action, be moved longitudinally of the table and, to some extent, in opposition to the current of water, and in which the lighter particles of the material will, during this lon5 gitudinal movement, travel in advance of the heavier particles, be separated therefrom, washed transversely across the table, and be concentrated in turn, while the gangue and other impurities will be finally 30 delivered at the lower side of the table. Thus the material will be delivered in a thoroughly separated condition, and the employment of conveying mechanism for returning it to the table for a second treatment will be obviated.

To these ends the invention comprises the novel details of construction and combination of parts more fully hereinafter described.

In the accompanying drawings,-Figure 1 is a perspective view of my improved device. Fig. 2 is a vertical transverse section through the same on the line 2-2 of Fig. 1. Fig. 3 is a longitudinal sectional ele-
45 vation on the line $3-3$ of Fig. 1. Fig. 4 is a side elevation as viewed in the direction of the arrow in Fig. 2. Fig. 5 is a perspective view of one of the riffle strips. Fig. 6 is a detail view of the adjustable eccentric.

Referring to the drawings, 1 indicates the main or base frame of my improved separator, which has hinged thereto, at its front longitudinal edge, as at 2 , a supplemental frame 3. These parts may be of any suitable
lar frames consisting of longitudinal bars united at their ends by transverse bars, as clearly shown in Fig. 1. The main and supplemental frames have secured to the rear side thereof, as illustrated in Fig. 4, wings 4 arranged in pairs and oppositely inclined longitudinally. Mounted between the wings ate longitudinally slidable wedge-shaped blocks 5 which are pivotally connected by rods 6 with an operating lever 7 by means of which the blocks may be actuated to adjustably tilt or incline the supplemental frame transversely from its back toward its front for the purpose more fully hereinafter described.

Disposed over the supplemental frame is a vibratory table 8, preferably of rectangular form, composed of any suitable material, and movably sustained by means of vertical links 9 pivoted at their upper ends to sills 10 which extend longitudinally of the under face of the table and at their lower ends pivotally mounted on transverse rods 11 sustained at their ends by the supplemental frame 3. The links 9 are arranged in pairs and have interposed between their lower ends on the transverse rods 11 spacing blocks 12. In this connection it is to be noted that there are three of the rods 11 and that each carries two sets of links 9 arranged respectively adjacent to the front and rear sides of the table, and further, that the rear links are of a greater length than the front links, which imparts to the table an initial inclination downward from its rear toward its front transversely, which inclination may be varied according to the varying materials treated by means of the sliding blocks is and their attendant mechanism, as wili be readily understood.

Secured to and constituting a vertical upwardly extending flange along the higher longitudinal side of the table is alate 13 , a similar plate 14 forming a projecting flange at the front or receiving end of the table, while the lower longitudinal side and rear discharge end of the same are provided with similar plates 15 and if which extend downward from and constitute depending 105 flanges.

Mounted at the front urper corner of the table is a box or hopper 17 which is secured in any suitable manner to the table and receives the material to be separated and delivers the same onto the table through suitable discharge openings formed in its bot-
tom. The material, which is delivered at the higher side of the table, is washed transversely across the same by water discharged from a suitably perforated pipe 18 which extends longitudinally of the table and is connected in any suitable manner with the vertical flange 13.

Secured to the upper face of the table in any suitable manner is a series of guides or riftles 19 , constructed preferably of wood, and which extend longitudinally of the table, and are disposed slightly diagonally of the same from the lower side of its receiving end toward the higher side of its discharge 15 end, are uniformly spaced apart, and at the receiving end of the table abut against a transversely and slightly diagonally disposed rail or flange 20 . The ends of the rittles which abut against the flange 20 and which receive the material when first discharged from the hopper, are comparatively high and narrow and from the receiving end of the riffles gradually decrease in height and increase in width toward the rear or discharge end of the table. Thus the discharge end of the riffles is comparatively wide and flat, being, in fact, alinost flush with the surface of the table when in position thereon.
When the material is first delivered onto the table, it will be washed transversely across the same and received in the spaces between the riflles, and, in its travel across the table, will be antomatically separated, 35 owing to the variation in its specific gravity, into strata of varying degrees of purity, the heavier or purer ores settling upon the table at its higher level, those next in purity and weight at a lower level, and so on until
40 the gangue and other light impurities are delivered at the lower side of the table into a receiving trough 21 . After this first primary separation of the ore, the same travels longitudinally of the table in its separated 45 condition from the receiving toward the delivery end of the table, and a further and more thorough concentration follows, due to the fact that the spaces between the riffics converge toward the discharge end of the
50 table and, owing to the gradually increasing friction and compression of the material between the sides of the riffles, retards the heavier and purer ores and pernits the lighter and less pure particles to travel for-
55 ward in advance of the same, and when these lighter particles reach a point of the riffles sufficiently low they are washed transversely across the table and concentrate with ores of a similar quality at a lower level. A still
60 further separation of the ores results from the diagonal disposition of the riffes from the lower portion of the receiving end of the table toward the higher portion of its discharge end, which necessitates the mate65 rial, during its longitudinal movement, trav-
eling to a certain extent against the current of the water. Thus the ore will, owing to these three separate and distinct concentrating actions, be delivered at the discharge end of the table in a thoroughly separated condition and in strata- of varying degrees of purity. The material is caused to travel longitudinally of the table owing to a constant vibratory motion which is positively imparted to the same by mechanism 7 now to be described.

Secured to the underside of the table in any suitable manner is a central longitudinal sill 22 , and bolted to the sill is a metal plate having depending ends $24-25$. This plate is situated some distance from the receiving end of the table and has secured to its depending end portion 25 one end of a horizontal rod 26 which extends parallel with the table and has its outer end slidingly mounted in suitable bearings formed in the supplemental framework of the machine at the front end of the latter, the other end portion of the rod haring clamped to it an arm 27 formed of two metal plates. This arm, which is adjustable longitudinally of the rod, extends vertically upward from the same and has pivotally attached to its upper end one end of a link 28 , which is pivotally connected at its other end with a vertically depending arn 29 carrieá by an eccentric 30 . The arm 29 of the eccentric has also pivoted thereto one end of a link 31 which is pivoted at its other end to the framework of the machine. The eccentric 30 is mounted upon and operated by a drive shaft 32 journaled in suitable bearings transversely of the machine and provided with driving pulleys 33 in belt connection with any suitable source of power. As the shaft operates, the eccentric will, through the medinm of its link connection with the shaft 26 , reciprocate the latter longitudinally and impart to the table 8 a vibratory reciprecating motion which, owing to the connection of the shaft to the table at a point distant from its receiving end, will be more thoroughly and equally distributed throughout the surface of the table, thus insuring a uniform concentration of the material under treatment.

In order to compensate for lost motion and a consequent irregularity in the vibratory motion of the table, I secure to the arm 24 of plate 23 one end of a rod 34 which has its other end slidingly mounted in a block 35 fixedly sustained by the framework of the device and mounted upon the rod between the block and a head 35 secured to its outer end, a buffer spring 36 which is normally expanded and against the action 125 of which the table is reciprocated.

In order that the vibratory motion of the table may be suitably regulated or adjusted according to the quality of the material under treatment, I provide for a ver- 130
tical adjustment of the eccentric 30 relative to the shaft 32. For this purpose the end plates of the eccentric are slotted, as at 37, for the reception of the shaft, and are fur-
5 ther slotted, as at 38 , for the reception of adjusting bolts 39 connected at their inner ends to an inner adjusting member 40 disposed upon the interior of the eccentric and are perforated, as at 41 , to receive the shaft.
10 From this it will be seen that by operating the bolts 39 in their slots 38 to adjust the members 40 , the eccentric may be moved to vary its eccentricity relative to the shaft, thus varying its throw and consequently
15 the longitudinal reciprocation of rod 26 and the table, which can consequently be adjusted to a nicety.

It will be noted that the table utilized in the present construction is of uniform
20 thickness and that the riffles are fastened upon the lipper flat face of the table. The top of the table forms the bottom of the grooves, whereas the edges of the riffles constitute the side wa!!s thereof. By providing
25 riffles which are fastened to the top of the table it is not necessary to go to the expense of constructing a special form of table. Riffles of the construction shown and described can be readily attached upon the
30 flat surface of any table. These riffles can be made as articles of manufacture and can be substituted by the user for riffles which are broken or otherwise injured upon the table. It will be noted that the bottom and
35 top faces of each riffle are counter parts so that the riffle can be secured upon the table with either face downward, thus making it easy to manufacture and apply. Moreover, shotid the upper edges and surfaces of the riflle become worn as a result of constant use the riffle may be detached and inverted and the worn face pressed tightly upon and secured to the surface of the table.

From the foregoing it will be seen that 45 I produce a derice in which there will be a thorough and perfect concentration of the ores, one in which the ores will be delivered in a separated and graded condition from
the discharge end of the table, while the gangue and other impurities will be deliv- 50 ered transversely of the table at its lower side. and that, owing to the perfect separation of the ores attendant upon my device, the employment of conveying mechanism to return the ore to the table for a second treatment, and, in fact, a second treatment of the ores, is obviated. In attaining these ends it is to be menderstood that I do not limit or confine myself to the details of construction herein shown and described inasmnch as rarious minor changes such as would suggest themselves to the skilled mechanic may be made therein without departing from the spirit or scope of my invention.

Having thus described my invention, what 65 I claim is:-

1. As an article a riffle for ore separators comprising a flat elongated strip gradually increasing in width and diminishing in thickness toward one end, the side edges of the strip being straight from end to end and perpendicular to the faces thereof, the two faces of the strip being duplicates.
2. The combination with an inclined table having il flat uninterrupted upper surface; of a plurality of similar riffles secured upon and disposed entirely above the upper surface of the table, said riffles being inclined upwardly toward the discharge end of the table and each riffle comprising a flat elongated strip gradually increasing in thickness toward one end, the side edges of the strip being straight from end to end and perpendicular to the faces thereof, the upper and lower faces of the riflle being duplicates, said 85 riffles forming grooves therebetween, the top of the table constituting the bottom of the grooves.

In testimony that I claim the foregoing as my own, I have hereto affixed my signa- 90 ture in the presence of two witnesses.

JOHN GIDEON KIRKSEY.

Witnesses:
H. L. Shinnon,
W. G. Moore.

Shemood Fatent No. 906,464

C. SEEミTOOD.

 906,464.

UNITED STATES PATENT OFFICE.

CLAUDE SHERWOOD, OF BLACK BEAR, IDAHO, ASSIGMOR OF ONE-HALF TO ISRAEL WALKER, OF TAFT, MONTANA.

ORE-CONCENTRATING TABLE.

No. 906,464 .
Specification of Letters Patent.
Patented Dec. 8, 1908.

Application filed November 5, 1907. Serial No. $400,876$.

To all whom it may concern:
Be it known that I. Clitde Suerwoud, a citizen of the Cnited states. residing at Black Bear. in the comenty of Shoshone and
5 state of Idaho. have inverted new and useful Improvements in Ore-Concentrating Tables, of which the following is a specification.

This invention relates to ore concentrating 10 tables, and particularly to an attachment to effect in a rapid and thorough manner proper grading or eparation of metallic values without possibility of their subsequent accidental mixture-, waste, or the necenity of 15 changing the adjustment or set of the table. The attachment may be empluyed with advantage 10 comection with rarions type of lables. but i- of e-pecial ntility when used in connertion with an endwise :eceiprocatory, 20 thansremely inclined table.

In the drawings: Figure 1 is a perspective vies of a concentrating table provided with ail attachment emborlying my invention. Fig. 2 is a top plan viem of the attachment 25 detached from the talle. one of the valves. heremafter particularly deseribed, being separated from said attachment and in perspective. Fig. 3 is a view of the attachment as scen from the table. two of the troughs
30 thereof being in section. Figs. t and are crosi-sectional riews on the lines $1-\frac{1}{4}$ and $\therefore-5$. respectively, of Fig. 2.

Like characters refer to like parts throughout the several figures of the draming.

In Fig. 1 a table of known type is shown and generally designated by the nmeral 2 . and is transervely inclined and given an endwise or longitiminally vibratory wer res ciprocatory motion ly any mitable means
40 tor the parpose of cratifying the pulp supplied thereto. This talle has on it. mpper side longitudinally diphoed rimles with their
 upon a line extemding diagomally of the table
 the load eparated from the phly on the motion of the table is fed. the lend. When it leaves the table. falling into an inclined trough \bar{y} secured to the head end of the tabie
50 in any surable mamer. This trongil is one feature of the improremem and directs the lead delivered thereinto into any subable receptacle. The other feature of the improvenent is designated in ageneral way by

6 and comprises several trough-, hereinafter 55 more particularly dencribed.

In addition to tronglas, the nember 6 includes an inner-row of comected pockets i of any desirable number and disposed along the lower side of the table 2 commencing at the head end and extending toward the tail end of said table. Into these pockets. lead and zinc middlings and other constituents are delivered and disposed of by means within the control of an attendant, as will be hereinafter made clear. The pockets or compartments mas be made in one piece of any desirable metal or other suitahle material, and while they may be of auy shape they are represented as being substantially square. Each pocket 7 is shown as having countersunk in the bottom thereof a disk valve 5 provided with a pisot 9 . The several valyes - are operated by diametrically opposite handles 8^{\prime} connected thereto and are held in their adjusted positions preferably by friction. By countersinking the valves in the hottoms of the respective pockets or partitions \bar{T}, said bottoms will not present on their. upper surfaces any projections or protrinsions upon or against which mineral vahes or the like might lodge or catch. In the buttom of each pocket or compartment i are three holes 10,11 and 12. Each rotary disk ralve 8 has through it a single hole or per- 8 foration 13 adapted to register with any one of the three holes or openings 10,11 or 12 in the bottom of its respective pocket or compartment \bar{i} for a purpose that will hereinafter appear:
In addition to the inner series of pockets I there is a second or onter series of pockets τ^{a}. and these pockets T^{2} may be of any numher: for instance, if thirteen of the pockets 7 are provided. four of the pockets ${ }^{-2}$ would he preferably used. The numbers of the two series of pocket-are simply mentioned, how evel: by way of illustration and will depend momewhat ipon the size of the table and dimensions of the pockets. The pockers $\mathrm{T}^{3} 100$ are constructed like the pockets i in all particulars. including the bottom opening $=$, hat to aroid ennfusion and facilitate an unclerstanding of the apparatus, the openings in the pocket: 7^{a} are clesignated by the characters i° : 7^{c} and τ^{d}, respectively, the pockets 7^{2} containing values sa each provided with is siagle opening 5^{b} and operating and con-
structed exactly like the valves 8 . The pockets 7^{2} are coincident with the first four of the pockets 7 , by virtue of which the first four pockets 7 can discharge respectively into the pockets 7^{7}. The primary purpose of the pockets 7^{2} is to provide for the proper disposal of the iron that passes over the lower side of the table near the front end thereof, althongh these pockets can be used 10 to dispose of the zinc or lead which may be therein by manipulating the valves 8 . The valve 8 of each pocket 7 will be turned to register the opening 13 of the valve with the openings 10,11 and 12 in accordance 15 with the character of the material flowing into the several pockets, and if zinc flows into the pockets the opening 13 of the valve 8 will he cansed to register with the opening 10: if middings of zinc and lead are direct-
20 ed into the pockets the openings 13 of each valse will be placed in registration with the openings 11, and if tailings flow into the pockets the openings 13 of the valves will be caused to register with the openings 12 .
25 In other words, the several ralves 8 will be positioned to relieve the pockets of their contents in relation to the several troughs in accordance with the particular character of the material flowing into the pockets
30 from the table. The registration of the cpening 13 with any one of the bottom openings 10,11 and 12 will result in a closure of the remaining two openings. It is the custom to return the middlings back onto the
35 table to be worked over, while the tailings can be deposited in a heap and also worked over at desired intervals.

Practically the same operation may be effected in the pockets 7^{2} as above noted or
40 when materials of different kinds solely occupy these latter pockets and under this condition of sole occupation of the pockets when the opening δ^{b} of each valve S^{a} registers with the opening ${ }^{-1}$, this is for the
 ing 7^{d} : When the opening 8^{b} in said valve 8^{a} registers with the opening $7^{\text {b }}$, this is for the purpose of permitting lead to pass through said opening 7^{b}, and when the open-
50 ing in said valve S^{a} registers with the opening 7, this is for the purpose of cansing irout to pass through said opening T^{c}. By the manipulation, therefore, of the several valves or any one or more of them, the
5 proper grading of the values and other materials that pass off the table can be obtained.

The member 6 is provided with four longitudinally extending troughs 14, 15, 16 and 17 , the trougit 14 being adapted to receive
60 the pure zinc, the trough 15 the zinc and lead niddlings, the trough 16 the tailings. and the trough' 17 the iron. The trough 14 discharges the mass within it forwardly or toward the head end of the table; the trough
6516 discharges the tailings therein toward the
rear or tail end of the table; the trough 15 discharges into the middlings elevator, not snown, and the rear end of said latter trough is represented as somewhat deflected or inwardly disposed for this purpose, and. the trough 17 causes the delivery of the iron in a forward and slightly lateral direction. The four troughs and the trough 5 hereinbefore described are separated from each other in a watertight manner so as to prevent possibility of mixture of the materials therein, and the said troughs may be disposed in coöperative relation to the pockets 7 and 7^{a} of the attachment in any desirable manner.

From the under side of the openings 10 in all the pockets 7 , except the first four of the latter, spouts 10^{a} project for the delivery of zine which may pass through said opening. 10 into the zinc trough 14. When the openings 13 of the several valves 8 register with the openings 11 of the pockets 7 , lead middlings will be directed into the trough 15. When the openings 13 of said valves 8 register with the openings 12 , the tailing: will be delivered into the trough 16. When the openings 13 of the valres 8 , except the first four thereof, register with the openings 10, zinc will be directed by way of the spouts 10^{a} into the trough 14 , and when the openings 13 of the first four valves 8 register with the openings 10 , the contents of said first four pockets 7 will be directed into the companion or outer pockets 7^{a}. The materials delivered into the outer pockets 7^{a} will, therefore, be released and recovered in accordance with the positions of the valves 8^{2}. Should the opening 8^{b} in one or all of the valves $8^{\text {a }}$ register with a cö̈perating opening or openings $7^{\text {d }}$, zinc will be directed from the pocket or pockets 7^{2} into the trough 14. Should the opening 8^{b} in any one of said yalves 8^{2} register with the coöperating opening $7^{\text {b }}$, lead will be delivered from the first four pockets into the trough 5 , said trough 5 having an angular extension $5^{\text {a }}$, as shown in Fig. 2, which extends under the several openings $7^{\text {b }}$. Should the openings in the four valles 8^{a} register respectively with the openings 7^{c}, this will be for the purpose of directing iron into the trongh 17. Therefore, by the manipulation of the several valves the constitnents discharged from the table may be separately recovered:or properly graded. Should the valves 8^{a} be set for effecting the discharge of iron into the trongh 17, and should it be scen by an attendant that zine or lead is being delivered into the pockets 7^{2}, such latter materials can be directed into the proper tronghs by a simple manipulation of the valves $8^{\text {a }}$ without changing the adjustment or set of the table, with respect to the pockets 7 and the valves 8.
From the foregoing description relating 130
to the discharge of the individual materials ur substances through the outlets of the pockets \bar{i} and \bar{T}^{4} and into the several troughs mentioned, it is not to be understood that cifferent materials are simultaneously liberated from each pueket, but that when one kind of material is flowing into each pocket, that material may be hiberated into the proper trongh which has been devised for outlets for directing the different materials. entering each procket through the outlets into separate troughs.
\therefore. The combination of a concentrating
25 table, a lead receiving trough extending across the head end of said table, a series of separate pockets extending along a side edge of the table and each providell with a sories oif distinet outletc, separate (rowghe for re-
30 ceiving different material. from the indididnal prockets, and shiftable means in the pockets and provided with an opening for registering with the respective outlets for effecting the delivery of different materials 35 throngh the aid outlets infor separate tronghs.
3. The combin-ion of a concentrating table. : series of pockets extending along an edge of said tabice for receiving material 40 di-charged therelrom. each poeket having several npenings, a valye in each pocket having an opening therem to register successively with the respective openings in said pockets, amb tronghs to receive material dis-
45 charged through the openings in said pockets.
4. The combination of an ore concentrating table, a series of separate pockets exteming along the diseharge edge thereof, poeket having at least three opemings, a ratue in each pocket having an opening adapted to register in succession with the respective three openings, two tromghs discharging toward the rear emo of the table
55 for receiving material pasing through certain of sath openings a third trongh for discharging towam the front of the table, and sponts for comblacting material from the perckets inter said third trongh. \therefore The emubin ition of :m ore coneentrat-
having a single opening and adapted to register in succession with satid ontlets for regulatiag the discharge of different materials through the outlets.
18. The combination of a concentrating table, a series of sejparate pockets extending 70 aloug the discharge edge of the table for rereiving materials from the latter and each having a plarality of bothom openings, and whiftable means in each pocket provided with is single opening to register with the respeetive bottom opemags of the poekets for controlling the diccharge of different materials therefrom, the shiftable means clowing the bottom openings not in registration with the single opening therein.
T. An attachnent for ore concentrating tablen comprising as scrise of non-commmicating pockets dranged in al row and each having a pluality of ontlet, and movable Heans in the poekets for controlling the 85 dulitery of material from the several ont-let-, each of the means having an opening to reviser wibl the outlets and when in regiswition with one of the outlets clowing the remaining ontlets.
\& Aus attachment for we concentrating talles comprising a serim of porkets arranged in at row and (erch having a plarality of outlema motary value in cach pocket having: an oprning th repinter with the ontlets in -ncers-ion, and separate means for receiving materialk disehargen thonol, the ontlets of the several poekets.
9. An attachment for ore comeentrating tablec comprising an imer series of poekets aranged in a row and ench having a plurality of outlets, an outer series of pockets (o) receive materiah from certain of the inner series of pockets and also hating a plurality of outlets. and votary valves hav- 105 ing openings therein and disposed in the two series of pocketa for controlling the discharge of materials from the latter, the openings in the valres being adapted to suceessively register with the outlets of the 110 pockets.
10. The combination of a coneentrating table, a series of pockets extending along the discharge side of the tally . the foinckets being non-communcating and provibled with a plurality of coulets for discharemer varions materials at different puints therefrom, and apertured means in the several pookets for shecessively oproning and clo-ing the outlets with relation to the interion of the prodkets 120 and to regulate the discharge of tho larions materials from each preken.
11. The emmbination of a monemtiating talle, a arriec of pockets extending along the discharge side of said table amil a recond 125 series of perdets armanged besile the first mentioned series of pockets, eael of the pockets being provided with a plurality of

95

75

65

$-$

[^15] inse talble. separate procket- to receive materiah divchareed from said table and each proviled with a rexies of distinet outlets, and rotatable means in each of the pockets
outlets and adjustable apertured means for discharging rarious materials from the lower portions thereof at different points, a part of the first mentioned series of pockets having communication with the second series of pcekets.
12. In attachment for ore concentrating tables comprising a series of pockets each having a plurality of outlets for discharging rarious materials at different points therefrom, apertured means movable within each of the poockets for successively opening and closing the outlets of the latter and to control the delivery of different materials from the said outlets, and a plurality of separate troughs into which the outlets of the pockets individually discharge.
13. An attachment for ore concentrating tables comprising a series of pockets each having a plurality of outlets, means operable at will for controlling the delivery of material from the sereral ontlets, and a second series of pockets coincident with certain of the first mentioned series of pockets and adapted to receive materials from the latter through certain of said ontlets, and means operable at will for controlling the discharge of materials from the second series of pockets.
14. In altachment for ore concentrating tables comprisiny a series of pockets each having a plurality of outlets, means for controlling the delivery of materials from the several outlets. and troughs corresponding in number with the outlets of each pocket, one trough being adapted to receive material from one outlet, and another trough being
adapted to receive material from another outlet.
15. An attachnent for ore concentrating 40 tables comprising a series of pockets each having a plurality of outlets, means for controlling the delivery of material from the several outlets, and troughs corresponding in number with the outlets of each pocket, one trough being adapted to receive naterial from one outlet, and another trough being adapted to receive material from another ontlet, said troughs being out of communication with each other.
16. An attachment for ore concentrating tables comprising a series of pockets each having a plurality of outlets, and rotary valves conntersunk in the bottoms of the respective pockets, each valve having an openiing, and the valves rotatable to effect registration of the openings with certain of the outlets.
17. An attachment for ore concentrating tables, comprising two series of pockets ar- 60 ranged in rows side by side and each having a plurality of outlets. means for controlling the delivery of material from the several outlets, and troughs to receive such material, at least one of the troughs being common to lwoth serjes of pookets.

In testimony whereof I have hereunto set my hand in prewence of two subscribing witnesses.

CLAUDE SHERTWOOD.

Witnesses:
Elmer M. Suiter, S. D. Lemimx.

COMPLAINANTS' EXHIBIT No. 43
James Patent No. 906,433
ALMON E. HART, Snecial Examiner
U. S. JAMES.
ORE CONCENTRATOR,

HCLtreesses.

Corocistar

Inventor

U. S. JAMES.

ORE CONCENTRATOR,
906,433.

$$
\text { APPLIOATION FILED MAX } 31,1805
$$

Eig.4.

Witaresses.
Grapesler

Traveritor zerysues of tannes

(- 2

J. S. JAMES.

ORE CONCENTRATOR.
906,433.

wutanas

Tiventor

UNITED STATES PATENT OFFICE.

ULYSSES S. JAMES, OF NEWARK, NEW JERSEY, ASSIGNOR, BY DIRECT AND MESNE ASSIGNMENTS. TO JAMES ORE CONCENTRATOR CO., A CORPORATION OF NEW JERSEY.

ORE-CONCENTRATOR.

No. 906,433 .
Specification of Letters Patent. Patented Dec. 8, 1908.
Application filed May 31, 1905. Serial No. 263,064.

To all whom it may concern:
Be it known that I, Uifseses S. James, a citizen of the United States, residing at Newark, in the county of Essex and State of New
5 Jersey, have invented new and useful Improvements in Ore-Concentrators, of which the following is a specification.

This invention relates to ore concentrators, the object of the invention being to provide
10 an effective apparatus of this character adapted to quickly and thoroughly separate mineral values from gangue and other foreign matter and to effect the separation of the various mineral values from one another.

In order to enable those skilled in the art to practice the invention, I have illustrated a simple and convenient form of embodiment thereof in the accompanying drawings forming a part of this specification, which I will
20 set forth in detail in the following description, while what I claim as new will be inchaded in the claims succeeding said description.

In the drawings: Figure 1 is a top plan
25 view of a concentrator involving my invention. Fig. 2 is a side elevation of the same. Fig. 3 is a trans rerse section on the line $3-3$ of Fig. 1. Fig. 4 is a top plan view of mechanism for vibrating the table, Fig. 5 is a vertical sectional view, and Fig. 6 is an inside view of the same. Figs. 7 and 8 are details hereinafter more particularly described, showing parts of said driving mechanism. Fig. 9 is a top plan riew of a modified shape 35 of table. Fig. 10 is a bottom plan view of the same. Figs. 11 and 12 are detail views of a slat. Fig. 13 is a transierse section on the line $13-13$ of Fig. 9.

The concentrating table shown in the 40 drawings is denoted in a general way by 2 , and it may take the external shape shown in Figs. 1 and 2, or that represented in Figs. 9 and 10 . The said table is composed of two hinge connected portions, $2^{\text {a }}$ and $2^{\text {b }}$, respec5 tively. The structure of the table shown in Figs. 1 and 2 is the same as that illustrated in detail in Figs. 9 and 10, so that if I describe in full the construction of the latter form of table, the same will apply to the 50 other. The table shown in said Figs. 9 and 10 includes in its makeup a plurality of slats or strips, as 3, extending longitudinally thereof and which are cut partially through or kerfed on the bias, as shown at 3^{a} in Figs.
slats. This cutting through the slats produces a hinge in the table, which I will denote by 4 . The hinge, as will be clearly evident upon an inspection of the drawings, is disposed obliquely of the table, extending from a point near the head comer of the table to a point on the opposite margin of the table between the ends. The slats on their upper sides are covered by some suitable flexible fabric, as $3^{\text {b }}$, which may be linoleum, and which of course extends across the hinge line 4. The hinge line constitutes the base line or one of the sides of the concentrating portion 2^{a} of the table. This concentrating portion may be either plain or riffled. In Figs. 1 to 3 I have shown it as riffled, while in Figs. 9,10 and 13 it is represented as being plain. The riffles, when employed, are parallel with the line of motion of the table, and are quite shallow, so as not to check the movement of the gangue on the concentrating portion $2^{\text {a }}$ after such gangue has been separated from the mineral. The portion 2^{b} of the table serves several offices, as will hereinafter appear, it being of such construction as to pre- 80 sent a slime pan.

The concentrating portion 2^{a} of the table is inclined upwardly from the base line toward the tail of the table, and the portion $2^{\text {b }}$ of the table, which serves as a slime pan, has a downward inclination from the base line toward the opposite corner, the inclination of this portion of the table being less than that of the concentrating portion.

The table is so construeted that the pulp 90 is held in a limited area adjacent to the place where it is deposited upon the concentrating portion of the table and is prevented from crossing the base line separating the concentrating portion of the table from the slime pan. The construction of the table is also such that when longitudinal, vikratory or reciprocatory motion is imparted to the table in the proper manner, the mass of pulp will become stratified upon the concentrating portion of the table, the heaviest particles forming the stratur at the bottom and the other strata being arranged in the order of the specific gravities of the particles forming them, the gangue, which is of the least density, lying on top. The vibratory movement imparted to the table causes the gradual advance of the pulp toward the tail of the table and also causec a lateral movement of the several strata into which the 110
\qquad

65

\qquad
\qquad90

\author{[^16]} -
$-$100105
\square
pulp becomes separated. the lateral morement of the gangue being most rapid and the latersl movement of the lower strata being roughly incersely propertional to their densities. In this way the gangue is carried comparatively rapidly toward the front margin of the table in a direction substantially parallel to the base line, but without ever being carried across the bave line. Which
10 would cause the bleeding of the rulp. The mineral ralues are carried onward tomard the tail of the table with less lateral motement than the gangue, owing to their grester densitr. and are discharged orer the tail of the table and over the from margin adjacent to the tail end.
As pretiouslr indicated. the portion $2^{i b}$ of the table. in connection with the formard motion thereof, pretent- the pulp from
20 crossing said base line. This result is aided in the present instance br the quiescent or stagnant wash water in the panlike slime portion of the table.
By referring to Fig:. 1 and 9, it will be seen that alony the back edge of the concentrating portion 2^{3} of the table. there is a ledge 5 rising therefrom, said ledge conrerging at its head end into the base line t of the concentrating portion 2^{3} of the table,
30 so that when pulp is introduced onto the head end of the table. it falls into a narrow space, the head end of the ledse in connection with the formard motion of the table and the slime portion $2^{\text {b }}$ thereof, serving to a pup or posit relo in a reduced area. As the table ribrates, the pulp mass is stratilied and is adranced along the concentrating portion, so that it can gradually or progressively spread out, the ardues descenaing according to their speciac gravities or weights, while the gangue will be on the top, together with other undesirable constituents in the pulp. A- the mass moves forward, the mineral
45 ralues will be gradualls panned dorma, and the gangue will gradually more awar from the mineral ralues toward but not scross the bave line 4 . and when riffles, as $2 c$. are present on the concentrating portion, they will not fons a height as to cheek or mpede the free spreading rnotion of the gangue, so that. when once the gangue has been separated from the mineral talues. it cannot again come in contact therewith. of the portion 2^{2} of the table can be adjusted. en that in case the gangue does not flow properly tuward the base line of the concentrating portion, the latter can be raised or its desired result or if it fors co promote the back end of the concentrating portion will be lowered. It will be understood that as the pulp mass is adranced. it is stratified.
a straight line, although not exactly in the direction of the length of the table, toward the tail of the table, where ther are discharged in lines pruperly separated according to their specific gravities, nrer the tail of the table, the gangue being discharged orer the forward side of the concentrating portion between the hinge line 4 and the tail of the table in a solid stream. not mixed with minerals.

I hare designated the portion 2^{b} of the table as a slime portion. Along the head of the same there is shown as extending a ledge 9. which conrerges in to the ledge $\$$ along the back of the table, while on the front side of the slime portion there is a flange or ledge 10. tapering from its highest point next the ledge or flange y to. and merging into. the surface of the slime portion $2^{\text {b }}$, in proximity to. but separated from, the hinge line 4. Into this slime portioni $2^{\text {b }}$, which is downwardly inclined from the hinge line $\frac{1}{4}$ toward the head of the table so as to produce, in connection with the flanges or ledges 9 and 10, a pan, there is discharged the wash water which flows over the front ledge 10 . The inction of the table precipitates any mineral values that mar be in rhis wash water onto the bottom thereof. and such mineral values are gradually worked toward the hinge or base line 4 , so that they can pass out of the outlet between the tail end of the ledge 10 and the hinge line 4 , br reason of which I am enabled to save all that is desirable in the pulp.

Any conrenient means mar be emploved 100 for delirering the pulp onto the table, fur example, a hopper or feed box as 11. arranged over the acute angular head of the concentrating portion of the table. The happer itself directs the pulp onto the said acute angular portion, where, by the joint action of the ledge S and the slime portion $2^{\text {b }}$. augmented by the forward motion of the table and the inclination of the concentrating portion. the pulp is held in a narrow area. 11 As the table is ribrated, the mass is pamed. the heary matter descending to the bottum of the mass and below the ganyue, so that. as the pulp mass is adranced with the forward motion of the table, the gangue on top of the mineral values can roll uver the same without disturbing or becoming nixed with them. The hopper of feed box is fixedly mounted upon the table, for which purpuse its hase or foot can be bolted or otherwise fastened tu 120 the slime portion 2^{b} of such table.

The wash water for the pulp may be supplied be a pipe as 15 , arranged over the concentrating portion $2 *$ of the table and supported by suitable stationary bearings, as 16 . The said pipe may be supplied with water in any suitable way.

Upon reference to Fig. 1 of the dramings, it will he seen that the fluw of wash water is diagonal to the line of motion of the table, 130
but is at right angles to the base line 4 of the concentrating portion $2^{\text {a }}$ of such table, so that the motion of the mass on said concentrating portion is, as nearly as possible,
5 opposed to the pressure of the water, by reason of which the water will not mix the mineral values with the gangue, which latter has previously passed free of the former. In other words, the motion of the mineral values 10 is opposed to the pressure of the water, so that such pressure will not tend, as indicated, to mix the minerals and gangue, while, at the same time, the water can freely and thoroughly wash the minerals and simultane15 ously wash the gangue toward the base line of the concentrating portion, the motion of the gangue toward said base line being due to the water; augmented by the inclination of said concentrating portion.

In Figs. 1, 9 and 10 of the drawing, the tahe is so constructed that its forward or concentrate discharge end is arranged obliquely, this edge in Fig. 1 forming an acute angle with the feell side of the table. By so con-
25 structing the table, the concentrate discharge end thereof is kept wet from the flow of the dressing water without the aid of a spray pipe across such end of the table. If this end of the table becomes dry, it causes the con30 centrates to bank at this point, and the same cannot be discharged. To avoid this difficulty, certnin tables use what is known as a spray pipe. This spray pipe is continually liable tostoppage owing to the accumulation of leaves and dirt, thus requiring considerI have adopted of cutting the concentrate discharge end of the table at an acute angle, the use of such a spray pipe with its attend40 ant objections is obviated, and a proper discharge of the concentrates is insured at all times. It will be understood, of course, that the direction of flow of the dressing water relatively to the table may be varicil. In
45 fact, in practice the inclination of the table may be varied to meet different conditions, the invention not heing limited in this regard. For instance, in sonte cases, an inclination of one quarter inch in six feet may
50 he sulficient, while in some cases, it may be necessary to set the table at an inclination of three quarters of an inch to six feet. In most eases, however, an inclination of onehalf an inch in six feet is most satisfactory,
55 and the water in such cases will flow almost at right angles to the line of motion of the table.

I will describe hereinafter a means for imparting a tibration of a peculiar character to 60 the table, the table initialty, on its working stroke, being given a slow movement, ant finally an accelerated or rapid motion, to drive the mass on the concentrating portion $2^{\text {a }}$ thereof forward, and on its return mose65 ment, being given an initially rapid but finally
slower motion, so that the pulp will be retained in its forward position. This forward motion of the table, as will be understood from what I have hereinbefore stated ails, in connection with the portion $2^{\text {b }}$ of the table, in preventing the pulp mass on the concentrating portion from crossing the base line 4, and in so doing, serves to hold the pulp in a narrow or reduced area, and finally permits its gradual spreading in area so that 75 the gangue can get free of the mineral values or those which are to be saved.

Arranged under the table are two frames, as 17 and 18, respectively, (see Fig. 2) said frames being connected by hinges, each designated by 19, the axes of the hinges being in common and coincident vertically with the hinge line 4 between the sections of the table. Betyeen the frames 17 and 18, and the two sections of the table, are links, as 20 , connected flexibly in some suitable manner at their opposite ends with the table sections and frames respectively, in order to permit the requisite vibratory motion of the table. The frame 1S, as will be understood, is con- 90 neeted with the table section 2^{a}, and it is arranged for tipping motion, so that a corresponding motion can be obtained with respect to said table section $2^{\text {a }}$, in order to adjust the angularity of the latter. To secure 95 the tipping motion in question, of the said frame 18,1 tap through the same screws 21, having hand wheels at their upper ends, and the bases of which engage the base frame 22. By the manipulation of the wheels, the frame 100 is can be rased or lowered and a corresponding adjustment secured with respect to the concentrating portion or section $2^{\text {a }}$ of the table.

It will be evident that when the coneen- 105 trating portion of the table is raised or lowered, the hinge line between said concentrating portion and the slime portion is not raried, but throughout the various adjustments of said concentrating portion said 110 hinge line remains in a uniform position which in the present case is horizontal.

In Figs. 4 to 8 inclusive, I have shown in detail a means for vibrating or reciprocating the table longitudinally. The head end of the table is shown as furnished with an arm 23, to which is pivoted a rod 24 extending through a guide sleeve 25 and also through a coiled spring 26 hearing at one enct agrainst said guide sleeve 25 and at the other against a slide 27 suitably guided for longitudinal movement upon the hase 22 , the outer end of the rod passing through, and having a nut hearing against, said slide. A roeker 29, consisting of two complemental side hars, bears at its lower emb agranst the extreme outer end of the arm ?3, and rigidly fastened to the upper end of the rocker is a flexible strap 30, enmected at its other end to the frame 2s. Guided restically by the rocker 130
is a plate 31 , such vertical movement being for adjustment in order to vary the stroke of the rocker. Connected with the head of the rocker and with the framing is a flexible con5 nection, as 32 , which may be of spring metal in order to hold the rocker down. The plate 31 is provided with a shoe 33 constituting the fulcrum portion of the rocker and having a rounded working surface which bears 10 against the framing 28 . The rocker is prorided with a vertically disposed screw 34 , the threaded portion of which is tapped through a flange on the plate 31 in order to raise the plate and consequently vary the 15 stroke of the rocker by the operation of the said screw, which latter is provided with a thumbpiece at its upper end. The serew is vertically immovable, and for this purpose it may have a fixed shoulder clamped within
20 the head of the rocker. It will be understood that the rocker 29 imparts an advancing motion to the table 2 in opposition to the coiled spring26. Supported by the frame 28 is a shaft 35 provided with an eccentric 36 25 for operating a pitman 37 connected at its upper end in some fixed manner with the flexible strap 30 between its point of attachment with the frame 25 and rocker 29. By the construction described, the eccentric 36
3 imparts, as its position varies, at first a slow advancing povement through the intervening mechanism, to the table, and finally an accelerated or very rapid motion, in order to forcibly or positively advance the pulp 35 along the table. During the advancing motion of the table, the spring 26 is put under compression, so that on the return motion of the eccentric, the spring can first impart a very rapid and then a slower return motion
40 to the table, the return motion being controlled of course by the eccentric.

IIereinbefore I hare spoken of the head and tail end of the table. The head of the table is at the right in Figs. 1, 2, 9 and 10, The front of the table is that over which the wash water is discharged, while the back of the table is that along which the ledge or flange 8 extends.

I deem it expedient to describe more in detail the novel construction of eccentric and spring mechanism for effecting the hereinbefore described action of the concentrating table. The ends of the strap 30 are adapted,
55 as will be apparent upon an inspection of Fig. 5, to work against upwardly curved faces upon the head of the rocker 29 and frame es respectively, while the said strap, between its ends, is adapted to act against
60 the curved top of the head of the pitman 37 , said pitman having a pin 37^{-a} extending through a perforation substantially centrally of the flexible strap 30, so that, as the position of the eccentrie 36 raries, I can, in
sired motion of the table. Upon the shaft 35 , provided with the eccentric, is a driver, which may be a pulley.
Having thus described the invention, what I claim is:

1. A löngitudinally vibratory concentrating table having two portions flexibly joincd with each other at opposite sides of a horizontally disposed hinge line extending obliquely to the direction of motion of the table, one of said portions of the table being upwardly inclined from said line and oblique to the line of motion of the table, and means; for varying the angular position of said upwardly inclined portion without changing the horizontal disposition of said linge line.
2. A longitudinally vibratory concentrating table having concentrating and slime portions situated at opposite sides of a line disposed diagonnlly to the direction of motion of the table, said concentrating portion being upwardly inchined from said line and oblique to said direction of motion, and means for supplying pulp on to the head end of said concentrating portion.
3. A longitudinally vibratory concentrating table having concentrating and slime portions flexibly joined with each other and at opposite sides of a line disposed diagonally to the direction of motion of the table, said concentrating portion being upwa:dly inclined from said line and oblique to said direction of motion, and means for supplying pulp on to the head end of said concentrating portion.
4. A longitudinally vibratory concentrating table having flexibly united concentrating and slime portions at opposite sides of a line disposed oblique to the line of motion of the table, said concentrating portion being upwardly inclined from the line dividing the said portions and oblique to said line of motion, means for supplying pulp on to the head end of said concentrating portion, and a pipe for wash water extending along the concentrating portion for directing wash water toward the line between the two portions and in a direction oblique to the line of motion of the table.
5. A longitudinally vibratory concentrating table having concentrating and slime portions at opposite sides of a dividing line extending oblique to the line of motion of the table, said concentrating portion being upwardly inclined from said dividung line and obligue to the said line of motion, and means earried by the table for supplying pulp directly onto the head end of said concentrating portion.
6. A longitudinally vibratory concentrat- 125 ing table sub-divided into comnected concentrating and slime portions, the dividing line between the two being oblique to the lime of motion of the table, said concentrating portion being upwardly inclined from said divid- 130
ing line and oblique to the said line of motion, means carried by the table for supplying pulp onto the head end of the said concentrating portion, and a pipe for wash
5 water extending along the upper edge of said concentrating portion for directing wash water towards said dividing line and in a direction oblique to the said line of motion.
7. A longitudinally vibratory concentrat-
in ing table having its concentrating surface upwardly inelined from a base line oblique to the line of motion of the table and having a slime pan separated from the concentrating surface by said base line, the concentrating
15 portion of the table being provided with pulp feeding devices discharging directly thereon, and its concentrating surface being oblique to said line of motion.
8. A longitudinally vibratory concentrat-

20 ing table having its concentrating portion upwardly inclined from a base line oblique to the line of motion of the table and having a slime pan separated from the concentrating portion by said base line, the concentrating 55 portion of the table being provided with pulp feeding devices discharging directly thereon and with means for supplying wash water in such a way as to canse a flow substantially pespendicular to said base line.
9. A longitudinally vibratory concentrating table divided on a hinge line diagonal to the direction of motion of the table to present portions at. opposite sides of the said line, one portion being upwardly inclined from 35 the other, the upwardly inclined portion having a flange at its back, converging into the hinge line at the head of said concentrating portion, and the other portion of the table having a ledge along its head and side, extending short of the hinge line.
10. A longitudinally vibratory concentrating table divided on a line diagonal to the direction of motion of the table to present 45 portions at opposite silles of saisl line, one portion being upwardly inclined from the other, means for introducing pulp onto the head end of said inclined portion of the table, the other portion being downwardly inclined
50 and at a less inclination than the concentrating portion and having a flange along its head and front, the last mentioned flange tapering from its head end toward its tail end, the latter extending short of the hinge
55 line.
11. An endwise reciprocatory concentrating table having separate concentrating portions flexibly joined along a line oblique to the line of motion of the table, to independ60 ently and simultaneously concentrate coarse and fine materials, the portion of the table upon which the coarse materials are concentrated having a discharge for the gangue over the front of the table and the portion of
65 the table on which the finer materials are
concentrated having a discharge for the mineral values hetween the head of the table and the place at which said gangue is discharged.
12. An endwise reciprocatory concentrat-
ing table having separate concentrating portions to independently and simuitaneously concentrate coarse and tine materials, the portion of the table upon which the coarse materials are concentrated having a discharge for the gangue over the front of the table and the portion of the table on which the finer materials are concentrated having a discharge for the mineral values between the head of the table and the place at which said gangue is discharged, the two portions of the table being flexibly joined along a line oblique to the line of motion of the table for preventing thereby the coarse and fine materials from being brought together on the table when once they are separated thereon.
13. An endwise reciprocatory concentrating table having concentrating and slime portions flexibly joined at opposite sides of a line oblique to the line of motion of the table, to independently and simultaneously concentrate the pulp and slimes, the concentrating portion having a discharge for the gangue at the front of the table, and the slime portion having heans for maintaining water delivered thereinto in a substantially quiet condition and also having an outlet for mineral values between the head of the table and the place at which the gangue is discharged.
14. An endwise reciprocatory concentrating table having pulp and slime concentrat- 100 ing portions flexibly connected along a line oblique to the line of motior of the table, the slime concentrating portion having water retarding means along its head and front sides which on the front of the slime concentrating 105 portion extend short of said line to provide an outlet for mineral values.
15. A concentrator deck comprising a plurality of relatively inclined planes each of constant area, said planes meeting in a line 110 extending from the rear end of the table towards the front end thereof in a general diagonal direction, and means for varying the relative inclination of said planes.
16. A concentrator deck comprising a plu- 115 rality of relatively inclined planes, which meet in a line extending diagonally of the table from the rear end towards the front end thereof, one of said planes being adapted to decrease the transverse flow of pulp towards the tailings side of the table, said transverse flow being induced by another 'plane of greater inclination.
17. A concentrator table comprising a plurality of independent planes each of constant 125 area, said planes meeting in a line extending from the rear end of the table towards the front end thereof in a general diagonal direction and one of said planes being inclined downwardly towards the tailings side of the 130
table at a less inclination than the orner, and means for adjusting the relative inclination of said planes.
18. The combination of a concentrator table or deck comprised of a plurality of independently adjustable planes of constant area, which meet in a line extending from the rear end of the table towards the front end thereof in a general diagonal direction, and means 10 for adjusting the relative inclination of the said planes.
19. A concentrator table comprised of a plurality of adjustable planes of constant area, said planes meeting in a line which extends diagonally downward from the rear end and feed side of the table towards the front or concentrate end and tailings side of the table, the concentrate or front end of
the table forming an acute angle with the feed side of the table.
20. A concentrator table the front end of which extends obliquely from the upper or feed side of the table towards the rear end thereof.
21. A concentrator deck the front or con- 25 centrate discharge end of which is on a line forming an acute angle with the feed side of the deck.

In testimony whereof I have hereunto set my hand in presence of two subscribing wit- 30 nesses.

ULYSSES S. JAMES.
Witnesses:
Heath Sutherland, Daisy Taylor.

919,709.

Patented Apr. 27, 1909.
3 SHEETB-SHEET 1.

J. N. FLOOD.

METHOD AND APPARATUS FOR SAVING SLIMES IN ORE CONCENTRATION, 919,709.

APPLIOATION FILED NOV, 23, I 900.
Patented Apr. 27, 1909.

J. N. FLOOD.
METHOD AND APPARATUS FOR SAVING SLIMES IN ORE CONCENTRATION.
919,709.
Patented Apr. 27, 1909.
3 SHEETS -SHEET 3.

Inventor

Samar N. Flow

UNITED STATES PATENT OFFICE

JAMES N. FLOOD, OF DENVER, COLORADO.

METHOD AND APPARATUS FOR SAVING SLIMES IN ORE CONCENTRATION.

No. $919,709 . \quad$ Specification of Letters Patent. Patented April 27, 1909.

Application filed November 23, 1908. Serial No. 463,981.

To ull whom it may concern:

Be it known that I, James N. Flood, a citizen of the United States, residing at Denrer, in the county of Denver and State of
5 Colorado, have invented certain new and useful Improvements in Methods and Apparatus for Saving Slimes in Ore Concentration; and I do hereby declare the following to be a full, clear, and exact description of the in-
10 rention, such as will enable others skilled in the art to which it appertains to make and use the same.

My invention relates to a method and apparatus for saving slimes and float metal 15 in concentrating processes wherein a flow of dressing water is employed, as for instance in operating what are known as the Rittinger type of tables and the Vanner or belt types of concentrators. In each of said types of
$\therefore 0$ concentrators the separation of the values and gangue is effected by gravity in the presence of a flow of current of dressing water which carries off the gangue or lighter constituents of the pulp while the values are 25 precipitated upon the table or belt and delivered therefrom by the movement of said table or belt.

The finely comminuted particles of metallies present in all crushed ore are held
30 either in suspension near the surface of the water or float upon the surlace, the surface tension and superficial viscosity of the water operating to support the very fine metallic particles. A large percentage of values is 85 consequently ine vitably lost with, or carried off in the tailings by the dressing water. In order to save such slimes or float mineral, I establish upon the surface ol the dressing water employed a series of waves or upraised
40 lines of water which intersect the direction of flow ol the dressing water on the table, thus promoting precipitation of the lloating metallic particles. These waves or upraised lines of water may be conseniently estab-
45 lished by means of capillary attraction, the devices chosen for that purpose being so urranged that their lower edges are located above the normal level of dressing water.

As a special apparatus suitable for use in 50 carrying out the main leature of my invention, I preferably employ a bar or series of bars of tapering cross section having the apex or apices thereof disposed above the
surface of the dressing water, and in case of a channeled concentrator table, the bars are preferably located in alinement with the channels thereof; and-said features constitute secondary or subordinate features of my invention.

There are other, minor, features of inven- 60 tion, involved in the elemental constructions and particular arrangements of the several parts of the apparatus, all as will hereinafter more fully appear.

In the drawings referred to herein and forming part of this specification, Figure 1 is a plan view of what is lnown as the Card construction of a Rittinger type of concentrator, the same having applied thereto apparatus adlapted to the performance of my method of saving slimes; Fig. ? is an end elevation of the apparatus, showing a transverse section of the table where the channels are widest; Fig. 3 is an enlarged detail sectional view of a portion of the apparatus and table shown in Figs. 1 and 2; Figs. 4, 5, 6 and 7 are detail views of modifications of the floats or bars which I prefer to employ as apparatus in practicing my method of concentration; Fig. S is a plan view of a table and the slime saring apparatus, showing an arrangement wherein the float bars are applied the whole length of a table having a diagonal line of Ilexure; Fig. 9 is a view of the front end of a Frue Vanner type of concentrator, showing. partly in side elevation and partly in vertical section, the application of the floats or bars thereto; Fig. 1 (1 is a transverse sectional view of the Vanner belt showing the relation of the float thereto and to the dressing water flowing thereover; Fig. 11 is an enlarged detail plan view of a portion of the Vanner bett and one end of a float; Fig. 12 is a diagrammatic view similar to Fig. 3, illustrating the apparent effect produced upon the fine metallic particles; and Fig. 13 is a diagrammatic view illustrating a series of waves uvon a plane concentrating surface.

Like symbols refer to like parts wherever they occur.

I will now proceed to describe my invention more fully, so that others skilled in the art to which it appertains may apply the same.

In the drawings. A indicates a concentrator 105 table which may have a plain surface as in

[^17]the case of the old Rittinger style, or may, as in the present instance, have concentrate channels a, either formed in the bed or created by riffles corresponding to the lands $5 a^{\prime}$ between the chanmels or grooves a, a. For purposes of illustration the table selected is one in which the cross section of the chanuels a, a is formed by a long incline on the upper or feed side, and a short, abrupt incline 10 on the lower or tailings side of the table, the two inclines meeting in an oltuse angle; but the character of the channel is nut a material matter or one of the limitations of this inve: tion. Tlre diagoually disposed dotted line
$15 x-x$ appearing in Fig. 1 is employed to indicate a line of flexure in the table; but said line of flexure is no part of the present invention, nor is it material thereto, or to this description, except in so far as it assists, when taken
20 in connection with Fig. 3 of the drawings, in showing how the slime saving apparatus may be readily applied to a table liaving such a line of flexure.
B indicates the feed box, and C, C^{\prime} the dressing water boxes located on the upper or feed side of the table in the usual mamer. The table will have the usual lateral inclination to induce the transrerse flow of the dressing water and the discharge of the
30 gangue, and will have a longitudinally reciprocating movement imparted to it by suitable meehanism (not shown) to discharge the concentrates, as is common to concentrators of this class.
b, b indicate a series of bars which are supported or suspended above the table with their lower edges above the normal level of the dressing water surface, in order to produce by capillary attraction the raised water of said bars may be brought approximately into the plane of or in contact with the normal surface of the dressing water, in no instance should they be allowed to dip beneath 45 the water level, as the effect would be to set up deleterious underflowing water currents. By such an arrangement of the bars b the dressing water adjacent to the lower edges thereof is raised above its natural level to form a waves as indicated diagrammatically in Fig 13. For the purposes of this specification and as indicative that these bars are never submerged, I shall hereinafter term these 55 elements b "floats". These floats b, b are preferably of tapering cross section so as to have a limited line or rounded edge b^{\prime} presented toward the surface of the dressing water, and said edges may be single or multi-
60 ple for each float b, as indicated in Figs. 4, 5, 6 and 7 of the drawings. As will be readily apparent, it is desirable that the floats should be vertically adjustable.
B^{\prime}, B^{\prime} indicate coupling bars or cleats to
the under surfaces of which the floats b, b are secured at intervals, preferably at intervals corresponding to the distance between the channels of a channeled or riffled table. As will be noted, said floats are arranged longitudinally of the table and consequently iransversely of or across the flow of the dress-ing-water: Where a channeled or riffled table is used, as shown in the drawings, the floats are preferably located in line with and over the chamels a, a. Any suitable means for supporting and adjusting the floats may ise purided, as for instance those shown in the drawings, which consist of an internally and externally threaded sleeve or nut N embedded in the table and a threaded bolt N^{\prime} which is plain where it passes through the cleat or coupling bar B^{\prime} and is provided with collars n^{2} for securing the coupling bar thereto so that the latter will be movable vertically with said bolt. The number of said adjusting devices $\mathrm{N}, \mathrm{N}^{\prime}$, and their location will depend on the number and arrangement of the floats b and coupling bars B^{\prime} that the constructor desires to employ.

In Fig. 1 of the drawings the floats $b, b 90$ are shown as confined to the dressing zone of the table, but they may he extended to the stratifying zone of the table, as indicated in Fig. 8 of the drawings, by simply arranginer one of the coupling bars B^{2} on the diagonal line of flexure (indicated by the dotted line, Fig. 1) and lapping the ends of the floats b, b thereon. In such a case, however, it is preferred to omit each alternate float, so that they will occupy a staggered relation on opposite sides of thie line of flexure, as shown in Fig. 8.
In the case of the Vanner type of concentrator illustrated in Figs. 9 to 11 of the drawings, the form of the floats b and their relation to the surface of the dressing water are the sume as in the case of the table heretofore described, that is to say, the lower edges of the floats we arranged to produce capillary waves transversely of the dressing water flow. In these figures of the drawings Dindicates the belt of the concentrator which is provided with the usual upturned flanges d, and is supported in ari inclined position, by the rollers d^{\prime}, d^{\prime} in the customary manner. E indicates the dressing water distributer and F the pulp distributer. The arrow shown in Fig. 9 indicates the direction of trasel of the belt, which is contrary to the flow of the dressing water, so that while the ganque is carried backwardly and downwardly lyy the dressing water, the concentrates are carried forwardly and upwardly by the belt and are discharged into a suitable receptacle.

The floats b, b shown in Figs. 9, 10 and 11 are suspended by means of suspension bars or straps f, f that are adjustably secured to

the pulp distributer F by means of set screws f^{\prime} which pass through elongated slots in the suspension bars. In order to prevent any slimes from passing between the ends of the
5 floats and the upturned flanges d, d of the belt, the ends of the floats are provided with pieces d^{2} of any suitable flexible material, preferably rubber, which sweep against or bear upon the upturned flanges d of the belt
10 D . The pulp feeder F forms a ready and advantageous means of suspending the floats; but such location or attachment of the floats is not essential or even material, as independent means of support for the floats may
15 be provided and located over the belt at any point or points back of the pulp feeder.

The construction and arrangement of the apparatus being substantially such as hereinbefore pointed out its operation will be as 20 follows: The pulp from the feeder B is distributed along the rearward upper side of the table or deck A and the dressing water is supplied to the table from the dressing water boxes $\mathrm{C}, \mathrm{C}^{\prime}$ in the usual manner. If the table is one capable of flexure on the diagonal line, the zone at the rear end and tailings side is slightly elevated to retard the transverse flow of the dressing water and facilitate the longitudinal forward travel of the con30 centrates. The usual longitudinal motion is imparted to the table. As soon as the level of the dressing water is established, the capillary floats b, b are adjusted so that their lower edges cause the formation of waves or ridges above said level, whereupon the slimes and float metals, instead of passing off with the tailings or gangue, will be affected by said wares and will be guided to and with the concentrates to the concentrate discharge 40 end of the table, their travel being influenced by the enduise motion of the table, instead of by the flow of the dressing water as heretofore. The adjustment and operation of the floats are substantially the same in the Tanner type of concentrator as in the table. Where float mineral exists in excess, as in the case of sylvanite, petzite, chalrocite, tetrahedrite, stephanite and the like, only a portion of the arrested float mincral may be thrown down apon the belt. the remainder being held by the capillary floats until it extends to and passes over the upper roller with the other concentrates. The apparent effect of the capillary waves, as I hare observed their action in this
55 mode of concentrating upon a concentrator :able, will be understood from an examination of Fig. 12 of the drawings, wherein 1 is a capillary float, 2 the concentrator deck, 3 a stratum of the coarser metallics, 4 float min-
;0 eral, and 5 gangue. The feathered arrows show the direction of flow of the dressing water transversely of the table, and the featherless arrows indicate currents within the capillary wave. The capillary waves not only
form upraised lines or ridges of water the 65 crests of which contact the lower edges of the floats, but establish and maintain, both on the surface and internally, currents which capsize the floating particles and, wetting all their surfaces, carry them down to the bottom of the stream, from whence such wave inauced currents are not strong enough to again raise the fine metallics, although they do raise the fine gangue matter and hold it in suspension so that it may pass off as waste.75

By the practice of my invention, it will be noted, the percentage of slimed metallics in the tailings is at once largely reduced, as is also the amount of slimed silica in the concentrates, while the volume of the concentrates 80 is meterially increased.

Having thus described $m y$ invention, what I claim and desire to secure by Letters Patent is:

1. The method of saving slimes in concen- 85 trating processes wherein dressing water is employed to separate comminuted metallic particles from the accompanying gangue, which consists in effecting a flow of an aqueous mixture of the particles to be sepa- 90 rated and establishing an upraised wave on the surface of said mixture without obstructing the flow of the mixture below the normal level thereof.
2. The method of saving slimes in concentrating processes wherein dressing water is emplosed to separate comminuted metallic particles from the accompanying gangue, which consists in effecting a flow of an aqueous mixture of the particles to be scparated and raising the surface of said-mixture at one or more places by capillary att raction without obstructing the flow of said mixture below the normal level thereof.
3. The method of saving slimes in concen- 105 trating processes wherein dressing water is employed to separate comminuted metallic particles from the accompanying gangue, which consists in effecting a flow of an aqueous mixture of the particles to be sepa- 110 rated and impeding the flow of said mixture br the interposition of an obstruction just abore the normal level of said mixture.
4. The combination with a concentrator and a dressing water supply therefor, of a 115 float extending in a direction intersecting the direction of the dressing water flow, said float having at its lower surface capillary contact with the normal surface of the dressing water.
5. The combination with a concentrator and a dressing water supply therefor, of a bar float arranged transversely of the dressing water flow with its lower edge above the normal surface level of the dressing water 125 and in such proximity to said surface as to establish capillary contact therewith.
6. The combination with a concentrator

Beck having longitudinally disposed channels, and a pulp feeder and dressing water supply, of a plurality of longitudinally disposed float bars arranged in line with and 5 over the channels and haring at their lower surfaces capillary contact with the 'itormal dressing water surface.

In testimony whereof I attix my signature, in presence of two subscribing witnesses.

JAMES N. FLOOD.
Witnesses:
Frank S. Card,
William S. Card.
F. DALLEMAGNE.

ORE CONCENTRATING AND SEPARATING APPARATUS.

953,900.

7reticessics:-
C. Al. Grawfore
i6. Sh hatinger

APPEIOATION FILED APR, 15, 1908
Patented Apr. 5, 1910.
2 SHEETS-SHEET 1.
FIG.2.

$$
0
$$

F. DALLEMAGNE.

ORE CONCENTRATING AND SEPARATING APPARATUS,
953,900.
Patented Apr. 5, 1910.
2SHEETS—SHEET 2
FIG_4_

FIG _5_
FIG_6_

FIG_8_
m

FIG_7-
害 r 品

Fitmesses:
Finnerator:-
Cist leranfrad
Framgozs Dallernaruge
by 13 . Singer.
Htitorney

UNITED STATES PATENT OFFICE.

FRANCOIS DALLEMAGNE, OF IRUN, SPAIN.
ORE CONCENTRATING AND SEPARATING APPARATUS.
953,900 .
Specification of Letters Patent. Patented Apr. 5, 1910.
Application filed April 15, 1908. Serial No. 427,147.

To all whom it may concern:
Be it known that I, François Dallemanes, citizen of France, residing at Irun. in the Kingedom of Spain, have invented new and nseful Improvements in Ore Concentrating and sparating Apparatus, of which the following is a specification.

This invention relates to an apparatus for scparating by resy simple mechanical mealle, comples ores finely mixed and having a difference of density of only the two thonsandths part of the unit. In such system of separation, the differences of density and equivalence of ores are brought into use and it has been endeavored to obtain the sorting ly employing the first moment of the fall of the particles to be separated.

To this end, a gronved platform is used, to which is imparted, through a special derice, mi alternating ascillatory circular movement which can impart to the materials to he sorted a number of oscillations reaching to 2,000 per mimute. A grain of the material may thus receive up to 100,000 oscillations hefore learing the platform. This power of sorting is precisely that which allows of the separation of very fine materials, whose densities approach very much one to the uther.

The device allows of modifying the form of the circular movement and thus to utilize either the horizontal msvement or the vertical movement or any combination of the two.

In the accompanying drawings: Figure 1 is a front vew of the apparatus: Fig. 2 is a plan riew; Fig. 3 is a cross sectional riew; Fig. t is a longitudinal section through the recnperator; Fig. is is a detail front viev on a large scale of certain parts for the transmission of motion: Fig. G is an end view of the parts shown in Fig. 5 ; Fig. 7 is an cnlarged section of one of the gronves in the platform of the apparatus; Fig. S is a view on a large scale of the device allowing of regulating the inclination of the platform.

The base of the apparatus is formed by an appropriately strutted rigid metallic frame a. The driving slaft Z and its fly-wheel b^{\prime} tive motion prey a a e through the connecting rod c. The flywheel b^{\prime} is provided with a slot ∂^{2} in which the pin b^{3} of comecting rod c is adjustable. sector d allows of varying the form of the
motion as will be seen hereinafter. The shaft e, throngh the medimm of the crank h and the connecting rod f. communicates its motion to other cranks h and to other par- 6 allel shafts e^{\prime} on which are keyed the cranks h. On said cranks h, are pivoted levers h^{\prime} to which is secured al digid frame i which follows the alternative cirenlar motion. On salil frame ; rests another morahle frame 2. Which may be suitably inclined, by means of a serew n. This serew acts on a lever u, keyed on a longitudinal shaft u^{\prime}, mounted on supports secured to the frame i. On said shaft μ^{\prime} are keyed at convenient distances, five small crank-ams ${ }^{\prime \prime}$ ' the pins of which are engaged in eyes formed in the supports secured to the frame k. It will be understood that by cither rotating the shaft n^{\prime} in me direction or in the opposite direction, the small crank arms u^{\prime} will canse the platform m to ascend or descend. The rotation of said shaft n^{\prime} is insured by the screw n which. when unscrewed in its support, draws down the lever w and, when screwerl, allows such lever to rise by reason of the weight exerted by the plat form on such lever. This operation nay be casily understood by reference to Fig. S.

The frames i and l : are morably secured one to another through an axle j which connects in pairs each of the five angle-iron crom-pieces which acts as struts for sald frame. On the frame k is a platform m. of any ricrid material and of rectangular, trapezoidal or any other shape. Such platform m is provided with longitudinal parallel grooves r, whose section in shown in Fig. \%. The repth of such grooves diminishes as it approaches the curss $p s$ which end. them. I perforated pipe q supplies the platform m with the water requived for working. The seprarated materjals fall into a recuperator o which is composen of sereral distinct channels $o o^{\prime} 0^{2} o^{3}$ which severally receive a single matcrial. Their bottoins are inclined so that the materials be di-charged through the orifices r. The inner chimnel u is movable and may be sitnated at the desired point for discharging a certain class of material. The materials enter through a distributer y and are conducted from the platform m to the channels o, o^{\prime}. o^{2} and o^{2} of the recuperator ly means of rigid plates t which may be placed at the desired points and be of size necessary for the work.

The function of grooves r, whose section is indicated in Fig. \bar{i}, is to be fillecl with materials of greater density, which through the oscillatory motion imparted by the appara- the materials adrance lengthwise, the grooves being shallower, the upper part of the mat terials, that is to say the lighter materiats. rise above the level of the platform and ate carried into the next groove, which is parallel. and which will effect the same operation until the materials of same density, meet in the same groove or grooves, which they then follow to the end, and fall at a same place of the discharge channels o $O^{\prime} 0^{2} 0^{3}$.

The motion of the platform me may be varied according to the nature of the ores to be sorted, by moving the pin g on the sector d. It will be understood that by such moveh and accordingly the form of the motion of levers h^{\prime}, of frame i and of platform will be modified. By this means a vertical oscillatory motion, or a horizontal oscillatory motion, or a combination of both, may be imparted to the platform m. In addition to this the amplitude of all said motions may be varied by displacing the pin b^{3} of the connecting rol c in slot b^{2} of the fly-wheel b^{\prime}.

Haring now described my invention, what I claim as new and desire to secure by Letters Patent ir:

1. In an ore concentrating and separating apparatus, the combination of a stationary 35 frame, a morable frame arranged above said stationary frame, a platform secured to said movable frame, cross shafts parallel one with each other journaled in the stationary frame, means for imparting to the first cross 0 shaft an alternating rotary motion, cranks keyed on the cross shafts, a rod comecting said craaks, and levers piroted on said eranks and fixed to the movable frame, substantially as described and for the purpose 5 set forth.
2. In an ore concentrating and separating apparatus, the combination of a stationary frame, a movable frame arranged above said
stationary frame, a platform connected to said movable frame, means for inclining 5 said platform with relation to the movable frame, cross thafts paralle! one with each other journaled in the stationary frame, a sector fixed on the first cross shaft, a pin adjustably erelured on said sector, a driving 55 shaft jommaled on the stationary frame, a crank fly wheel fixed on said driving shaft, a rod connecting the pin to an adjustable point of the crank fly wheel, cranks keyed on the cross shafts, a rod connecting said cranks, and levers pivoted on said cranks and fixed to the movable frame, substantially as described and for the purpose set forth.
3. In an ore concentrating and separating 65 apparatus, the combination of a stationary frane, a movable frame arranged above said stationary frame. a platform connected to said movable frame, a serew mounted on said movable frame, a longitudinal shaft journaled on said morable frane, a lever keyed on said-longitudinal shaft and engaging the screw, snali crank arms keyed on said longitudinal shaft, supports secured to the platform and provided with elongated eves in which are engaged the pins of the small crank arms, cross shafts parallel, one with each other journaled in the stationary frame, a sector fixed to the first cross shaft. a pin adjustably secured on said sector, a 80 driving shaft journaled on the stationary frame, a crank fly wheel fixed o said driving shaft, a rod comnecting the pin to an adjustable point of the crank fly wheel, cranks keyed on the cross shafts, a rod commecting said cranks, and leifers pivoted on said cranks and fixed to the morable frame. sulbstantially as described and for the purpose set forth.

In testimony whereof I have signed my 90 name to this specification in the presence of two smbscribing witnesses.

FRANCOIS DALLEMAGNE.
Witnesses:
Avtone Lamo
H. C. Coxe.

COMPLAINANTS' EXHIBIT No. 46
Look Patent No. 678,793
almon E. HART, Special Examiner
No. 678,793.
Patented July 16, 1901.

L. LOEK.

ORE CONCENTRATOR.
(No Model.)

United States Patent Office.

LUTHER LOOK, OF LOS ANGELES, CALIFORNIA, ASSIGNOR TO THE NEW STANDARD CONCENTRATOR CO., OF SAME PLACE.

ORE-CONCENTRATOR.

SPECIFICATION forming part of Letters Patert No. 678,793, dated Juiy 16, 1901.

Application fled August 14, 1900. Renewed Jane 22, 1901. Sorial No, 65,692. (Mo model.)

To all whom it may conern:
Beit known that I, Luther Look, a citizen of the United States, residing at Los Angeles, in the county of Los Augeles and State of
5 California, have invented new and usefnl Improvenents iul Ore-Concentrators, of which the following is a specification.
The object of this invention is to provide superior means for separating the heary minto eral from the light portions of the ore.

My present invention more particularly relates to the constraction of the concentratingtable and the combination thereof with the means for moving the table. Various means 15 may be employed for operating the table, and in the accompanying drawings I bave only indicated such means in a general way.
The accompanying drawings illustrate my invention.
Figure I is a front elevation of a machine embodying my invention. Fig. II is a plan view of my newly-invented concentrating-table. Fig. III is a section of the table on liue III III, Fig. II, diagonally across the table 25 and alougside a row of riftes. Fig. IV is a section on line IV IV in a larger scate.
a indicates the table, which is swung from a frame 7 by links $f g$ and slopes from the feed end r of the table to the discharge end
3047 and also slopes from the percussion side a^{\prime} to the power side $a^{\prime \prime}$.

25 indicates a cam to operate a lever 20 to operate the spring-balanced table a. The ta-ble-operating mechanism is not claimed in 35 this application, for the reason that it is described and claimed in a separate application, Serial No. 26,857, filed August 14, 1900, and pending in the United States Patent Office contemporameously herewith.
$71,72,73,71$, and 75 indicate rilles of different thicknesses or depths, respectively, arranged coaxially-i. e., endwise relative to each other in rows or lines extending diagonally across the table from the power side to45 ward the percussion side and discharge end at a slant of about one inch in twelre. The riflles of each of these diagonal crosswise rows of conxial rifiles are set at a slight distance apart to leave communicating channels 76 be-
50 tween the abutting ends of the riftles, respectively. The ends 7778 of each of the rillles
are beveled substantially in parallel liues, so that the front end 77 of each riflle is beveled on the side which is a waly from the feed end of the table, and the other end is is beveled ou the side which is toward the feed end x of the table. By this means the channels 76 between the abutting ends of the rifites of any of said rows extend from tho lower or porser side of the table $a^{\prime \prime}$ toward the upper or percussion side a ' thereof and away from the discharge end 47 of the table. The table sloves from the feed cud $2 \cdot$ toward the discharge end 47 and also from the percussion side a^{\prime} toward the power side $a^{\prime \prime}$.

53 indicates a clear-water pipe extending along the percussion side of the table to feed clear water onto the plain portiou of the table.

The arrow 80 indicates the direction of maximusn slope of the table-that is to say, the direction in which the clear water wonld flow across the table if the table were at rest and devoid of rillies.

The arrow 81 indicates the path and direction of the table as it moves toward the per- 75 cussion side to produce the bump.

The arrows s. 2 indicate the gencral course of the pulp when the table is in operation.

The arrorss 83 indicate the general course of the heavy mineral on the rifle portion of So the table when the table is in operation.
The arrows st iudicate the course of the mineral separated from the lighter material.

The riftles 71 at the percussion side of the table are preferably of slight height, say about. one-sixteenth of an inch or slightly more The riffles 71 are also preferably arranged sidewise parallel with each other in a row extending from the feed end v of the table to the discharge end tr along the line which is oblique to the direction of crery force at work in the table-tbat is to say, oblicue to the direction of bump and to the comses the palp and the clear water wonld flow in if free to act alone. This line is determined from the 95 resolution of the forces at work and extends in the direction indicated by arrows 82, in which the lighter material travels when the table is in operation. This is diagonallyacross the lines of greatest slope of the table and toward the perenssion side of the discharge end.

The riffles 72 are slightly thicker than the riffles 71 and are arranged sidewise paralle] with each other in an obliqne row, corresponding to the row in which the riffles 71 are 5 arranged. The riffles 73 are slightly thicker than the riffles 7:- and are arranged parallel with each other in oblique rows. The riffles 74 and 75 are arranged in a similar manner, each being thicker than the preceding in the so order named, so that in the preferred form the rifiles 75 are about one-half to five-eighths of an incll in thickness. By this arrangement the surface of the table is furnished with channels 79, which extend obliquely ${ }^{1} 5$ across the table, slanting from the power side $a^{\prime \prime}$ teward the plain discharge-way at a^{\prime}, percussion side, and toward the discharge end 47 of the talde. These channels 79 intercommunicate with each other through the chan-

91 indicates riffles in the channels 79 betwean the endwise rows of riffles. These riffles 51 are substantially of the same height is the riffles 71 , so that their top faces are 75. The riftles 91 are arranged parallel with the riffles $7172, \& c$, and are pointed at the ends and are set with slight spaces 92 between the ends of the several rifiles to form in the 30 channels 79 communicating channels corresponding to the chanucls 76, bnt offiset or stepped with relation to such channels 76. Preferably the channels 76 and the channels 92 are in alinement with each other in diagonal rows, as cloarly shown in Fig. Il, which extend from the power side toward the percussion side upwardly toward the feed end of the table in lines corresponding to the bevels of the ends of the riffles. These lines extend upwardly in a slight measure diagonally of the direction of the bump-that is to say, diagonally of the path of the table.

The purpose of the shallower riffles 91 is to prerent sluicing across the channels 79 and thong the commnnicating chamnels 76 . Another use of the intermediate shallow riffles 91 is to catch the mineral at the bottom and direct it toward the percnssion side of the table and at the same time to allow the lighter the discharge end of the table and to flow through the communicating channels 76 . By the provision of the intercommunicatingchanmels 79 and 76 the capacity of the table for freeing itself of the lighter material is greatly increased, and by the use of the offset shallow riffles 91 auy sluicing action through the communicating channels 76 does not operate to carry the mineral down through said chan-
60 nels 76.
By operating the table in the pathindicated by the arrow 81 diaronally of the rifites the action of the table causes the mineral to move along the line of the communicating chan-
65 nels 76 and to throw the mineral toward the lower side of the several rifles, and in actual
practice the mineral travels beneath the lighter material up through the communicating channels 76 and 92 between the ends of the riffles and against the comrso of both the pulp and the clear water and issues onto the plain discharge-way of the table at a^{\prime} from a channel which is nearer the feed end of the table than the chaunel in which the mineral finally reached the face of the table. By this construction and arrangement of the machine the silica and lighter portions of the pnlp are carried down the table with great freedom and rapidity and without disturbing the course of the mineral toward the percussinn side of the table: The mineral after it has reached the plain space of the table at the percussion side a^{\prime} moses downward along said space under the combined action of the percussion and the clear water and discharges at the percussion side of the discharge end of the tabie.

93 indicates a tapering equalizing cleat at the discharge end of the table to preserve a practically level discharge-surface and to prevent the water from escaping too freely from the lower or power side of the table.

The riffles in each endwise or coaxially arranged row extend at such a slant relative to the slope of the table aind to the depths of the riffles that the tops of all the rifles in any one row of coaxial riffles will substantially be on one level. This arrantement causes an even action and flow of the material over the riffled surface.
op indicate the pumping-beams, fastened to the table, and 56 indicate the posts against which said beams brmp.

19 indicates a spring, and 2526 indicate a cam and a lever which serve as means for 105 operating the table.

94 indicates the table-top, and 95 the linoleum or canvas cover for the sime, which is bent down orer the front member 96 of the frame and clamped by the strip 97 and is bent up at the sides and fastened by the side pieces 54 and 57 , respectively.

In practical operation the sharp points 77 and 78 of the riffles avoid any nudesirable agitation or stirring of the pulp by the ends of the riffles, which otherwise might ocenr when the table is in operation.

What I claim, and desire to secure by Letters Patent of the United States, is-

1. An ore-concentrator comprising a table having in its surface main channels which have a substantially common direction and channels communicating between the main channels; and means forshaking the table diagonally of the main chauncls.
2. An ore-concentrator cemprising a table having in its smeface parallel main channels and communicating chnnuels connectingsaid parallel channels; and means for shaking the table diagonally of the main channels.
3. An ore-concentrator comprising a table having in its surface parallel main channels
and oblioue communicating chanuels connecting the parallel main channels; and means for shaking the table diagonally of the main channels.

An ore-concentrator comprising a table having a slanting surface furnished with main channels arranged at an augle to the slope of said surface; and communicating channels extending between the main channels; and - means for shaking the table diagonally of the main chanuels.
5. An ore-concentrator comprising a table lavinga slanting surface furnished with main channels arranged at an angle to the slope of
5 said surface; and commonicating channels extending obliquely betweer the mail channels; aud means for shaking the table diagonally of the main channels.
6. An ore-concentrator comprising a table

20 havinga slanting surface furnished with main channels arranged at an angle to the slope of said surface, and commonicating channels extending upward obliquely between the main chaunels; and means for shaking the table diagonally of the main channels.
7. An ore-concentrator table liaving a slanting surface furnished with main channels arranged at an angle to the slope of said surface and extending obliquely down the table; 30 communicating channels extending obliquely upward between the main channels; a dis-charge-way along the upper edge of the table; a pipe for feeding water at the upper edge of said way; and means for vibrating the table; 35 the main channels at the side of the table op-
posite the discharge-way being deeper than the main channels at the discharge-way.
8. An ore-concentrator comprising a table furnished with riffles extending obliquely across the table and arranged coaxially in rows lengthwise of the riffles, with open spaces between the ends of the riffles, and being also arranged parallelly in rows extending obliquely from the feed end toward the discharge end of the table, with spaces between the sides of the riffles; and means for shaking the table diagonally of the riffes.
9. An ore-concentrator table furnished with short riftles arranged in rows coaxially of the riffes and also in parallel rows, and being of successively increasing heights from the percussion side of the table to the opposite side of the table and having spaces between the riffles, and a tapering, eqnalizing cleat at the discharge end of the table, substantially as set forth.
10. An ore-concentrating table furnished with riffles pointed at the ends and spaced apart in rows coaxially and parallelly; and means for chaking the table diaronally of the 60 riffles.

In testimony whereof I have signed my name to this specification, in the presence of two subscribing witnesses, at Los Angeles, California, this $2 d$ day of August, 1900.

LUTIIER LOOK.
Witnesses
James R. Townsend,
.Julia Townsend.

NO MODEL.

G. A. OVERSTROM.

CONCENTRATING TABLE.
APPLIOATION FILED DEO. 3, 1900.

llítrus.sscs
graben
RoN. etwition
G. A. OVERSTROM.

CONCENTRATING TABLE,
APPLIOATION FILED DEO, $3,1900$.
NO MODEL.

G. A. OVERSTROM.

CONCENTRATING TABLE.
applioation filed deo. 3, 1800.

G. A. OVERSTROM.

CONCENTRATING TABLE.
APPLIOATION FIEED DEO, 3, 1900.

No. 763,783.
PATENTED JUNE 28, 1904.
G. A. OVERSTROM. CONCENTRATING TABLE.
APPLIOATION FILED DEO, 3, 1900.

United States Patent Office.

GUSTAVE A. OVERSTROM, OF ANACONDA, MONTANA.

CONCENTRATING-TABLE.

SPECTFICATION forming part of Letters Patent No. 763,783, dated June 28, 1904.

Application filet December 3, J900. Serial No. 38,435. (No model.)

To wll whom it maty coneern:
Beit known that I, Gustaye A. Overstron, a citizen of the United States, residing at Anacomla, in the county of I Jecrlodge and State of Montana, lave invented a new and useful ('oncentrating-Table, of which the following is a specification.

This invention relates to concentrating-tables.

The objeet of the invention is to provide a construction and arrangement of concen-trating-tables for ores, minerals, and the like and operating means therefor which is simple and effieient.
15 A further object of the invention is to provicle a construction of concentrating-table and operating means therefor wherein the motion of the table under the influence of its actuating means is diagonal with respect to the table.
A further object of the invention is to provide means whereby the movement of the table in one direction consumes less time than its movement in the opposite direction.

A further object of the invention is to pro25 vile an arrangement of concentrating-talule in which the table is adjustable with reference to its line of movement

A further object of the invention is to provide means for adjustably regulating the lat30 eral tilt or inelination of the table.

Other objects of the invention will appear more fully hereinafter.
The invention consists, substantially, in the construction, combination, location, and ar-
35 rangement of parts, all as will be more full, hereinafter set fortl, as shown in the accommanying drawings, and finally pointed out in the appended claims.

Reforring to the accompanying drawings 40 and to the various views and reference-signs appearing thereon, Figure 1 is a plan view of an ore-concentratiug table and its operating mechanism embodying the principles of my invention. Fig. 2 is a front end elevation.
45 Fig. 3 is a rear end elevation. Fig. 4 is a sive elevation. Fig. 5 is a longitudinal central section. Fig. 6 is a transverse central section. Fig. 7 is a dingrammatic plan view. Fig. 8 is a view similar to Fig. 7. Fig. 9 is
a broken detail riew in section, showing an 50 arrangement of rittles emborlying the princibles of my invention. Fig. 10 is a similar view showing a modiliod arrangement of rifHes. Fig. 11 is a view similar to Figs, ! and 10, illustrating another modified form of rift fles embodying the insontion. Fig. 12 is a broken detail view, in horizontal section, showing the means for adjusting the tahle relative to the line of reciprocation thereof. Fig. 13 is a broken detail view in section, showing a construction of roller hearing or support tor the table. Fig. 14 is a broken detail view in section of the actuating mechanism for the table on the line 1414 , Fig. 5. Fig. 15 is a detached detail view in perspective of the swinging link employed in connertion with the actuating meclianism. Fig. 16 is a broken detail view in plan of the upper corner of the table, showing the feed-hox. Fig. 17 is a broken detail riew in section on the line 17 17. Fig. 1, looking in the direction of the arrows. Fig. 18 is a similat view on the line 1818 , Fig. 1. Fig. 19 is a diagrammatic plan view illustrative of features which are a voided in my invention. Fig. 20 is a broken detail view in section, showing a special arrangement of bearing-support for the table involving the principles of my invention. Fig. 21 is a view in plan similar to Figs. 7 and 8 , lomt on an enlarged scale, of a concentrating-table embodying my invention. Fig. 22 is a detail riew in seetion on the line $11^{2} 11^{2}$, Fig. 21. Fig. 23 is a central vertical sectional view through the operating mechanism, taken longitudinally with respect to the operating- 85 shaft.

The same part is designated by the same reference-sign wherever it oceurs thronghout the several views.

In the operation of separating mineral from 90 ore it is the usual custom to crush the ore to a desirable degree of fineness and then placing the crushed ors, either with or without first subjecting the same to hyilraulic or other sizers by which the crushem ore is separated or divided, according to the size of the particles thereof, mon a table or othermachine for separating the mineral from the gangus or
barren rock. The present invention relates particularly to a machine or table for thus separating and concentrating the crushed ore.

Before entering upon a detailed descrip-
5 tion of the construction and mode of operation embodying my invention 1 will first direct attention to different objectionable defects in machines of this character which my invention is designed to overcome, reference being ro had to the diagrammatic view shown in Fig. 19 , which illustrates one of the most successful forms of concentrating-tables at present in use. In this form of concentrating-table the ore is fed to the table or the ore-box, (indi${ }^{5} 5$ cated at P, and by reason of the lateral inclination of the table and the force or power employed in the delivers of the ore to the table such ore is carried down a short distance in the direction indicated by the arrow. a. A re20 ciprocatory motion is imparted to the table in the direction and along the line indicated by the arrow at l. By reason of this reciprocatory movement the particles of ore are moved toward the rear end D A of the table, 25 the reciprocatory movement imparted to the table being paratlel with the side A B of the table. During this travel of the particles of ore toward the delivery or rear end I) A of the table due to the reciprocatory movement 30 of the table such ore is subjected to the action of wash-water supplied from a suitable box or other receptacle or source, (indicated at Q,) and which wash-water traverses the table laterally in the direction indicated by the ar35 rows c. This wash-water tends to carry the particles in a direction transverse with respect to the line of reciprocation of the table. Thus the particles of ore, gangue, and the like are subjected to forces operating 40 thereon in intersecting lines, and hence under the well-known law of components of forees the particles will be carried in a diagonal direction E F and (i H . By reason of its lightness as compared with the ore the rock 5 is carried by the wash-water farther toward the side A B of the table than the mineral, and by reason of its greater weight the mineral is carried by the reciprocatory movement imparted to the table until such mineral is 50 finally delivered over the end of the table along the line HA into a receptacle R , and the barren rock or gangue, called "tailings," is carried over the side of the table between the points J F. "Middlings," so called, but
55 which in this case are mostly free particles of mineral and tailings, are carried over the lower edge of the table between the points 1 J . It has been the usual custom to provide a suitable elevator for the table to re-
60 turn these middlings again to the feed-box for retreatment. I have found that middlings proper and comprising mineral and rock hanging together are also deposited with the "middlings," so called, above referred to,
ment. It has been m.je experience in practice that middlings proper, as above defined, and from which the mineral is not separated by retreatment upon the table continue to accumulate by continually returning the same to the table until finally the table is unable to take care of the same, and consequently these middlings proper are finally forced into the tailings and the valuahle mineral contained therein is wasted.
It is one of the purposes of my invention to provide neans and an arrangement such that the middlings proper are efficiently separated by the table, so that they may be recrushed instead of merely heing returned over and over 80 again to the table, thus effecting a material saving in valuable mineral matter which has heretofore been waster and lost, the recrushing of the middlings operating to free the particles of mineral from the rock, and thus 8 pernitting separation thereof when fed upon the same or another table. Thus I contemplate not only saving and recrushing the middlings, but also propose to avoid the use of the additional machinery necessary for the 90 middling-elevator.

Again referring to the diagram of Fig. 19, it will be seen that the particles of ore and rock or gangue begin their travel or progression toward the rear end of the table at a point diagrammatically indicated at E and then continue such progressive movement at least until they attain the point indicated at F. Consequently the space E F B of the table is not utilized for any useful purpose, merely the dirty wash-water flowing thereover. Moreover, the space (i D H is also wasted so far as practical purposes are concerned, merely the fresh or clean water flowing thereover, and the length of table, at the rear end of which the concentrates are carried, is too short for the purpose. hence resulting in an accumulation of more than the necessary amount of " middlings," so called. and a material proportion of the concentrates are thus deposited in the receptacle which receives such middlings. Thus in the tables at presentemployed too much floor-space is taken up for the amount of work done, and it is one of the parposes of m,y invention to provide a construction wherein thisobjection is avoided and wherein the greatest amount of floor or space on the table is utilized in the performance of the work required of it, and to this end I providea table in which the waste space F E B of the tables at present in use is placed at another point (indicated by dotted lines at AK F) and the space 11 I) (i , which is vacant space, as above explained, and not utilized for any useful purpose in the tables of ordinary construction, I place at the point indicated at (i L C. Noreover, in the former constrnction of tables as above indicated and as illustrated in Fig. 19 the reciprocatory movement imparted to the table has been parallel with the
lower side of the table. The result of this armongent, and particularly where the same rate of movement of the table in both directions is maintained, has been that but very little action or tendency is developed to move the mineral faster than the rock or gangue, excent so far as the wash-water acts as a holdback on the rock, which is lighter than the mineral, and not so much as a holdback on 10 the mineral, which is heavier.

In carrying out my invention I propose to move the mineral forward or toward the rear end of the table at a greater rate of speed than the rock or gangue, and hence enabling the 15 rock or gangue to remain a longer period of time on the table, and hence is subjected for a longer period of time to the action of the wash-water, thereby enabling the mineral and the rock to be separated more thoroughly and efficiently. To accomplish this resnlt, i propose to employ a table of sulstantially diagonal or diamond shape in outline or having a concentrating area so defined and to impart a reciprocatory movement to the table about on
25 the line E H of the diagram or parallel therewith or practically on a diagonal line with respect to the table-that is, on a line which is inclined with respect to the lower edge of the table. In this manner I avoid any vacant or 30 waste space in the operating-surface of the table and I secure a longer distance at D Ki to accommodate the concentrates.

Again referring to Fig. 19, in the prior construction nothing but waste water and tailings
35 flows over the edge of the table between the points J B. This dirty water and tailings have usually been wasted. I have found, however, that this water and slime frequently contains as ligh as from two to three per cent.,
40 and possibly higher, of certain kinds of ore treated of valuable mineral which it is desirable to save. Therefore in carrying out my invention I propose to arrange a receptacle between the points F E to receive and retain
45 this slime and dirty water and from which this mineral may be collected and saved.
Having now outlined generally some of the important features of improvement of nyy invention, I will now describe a specific con-
5^{5} struction and arrangement thereof embodying the principles of $\mathrm{m} y$ invention, but to which, however, I do not desire to be limited or restricted, as many changes therein and variations therefrom would readily suggest them-
55 selves to persons skilled in the art and still fall within the spirit and scope of my invention.

Referring to the drawings, reference-signs 2122 designate a suitahle frame upon which
60 the operating parts of the machine are mounted. The sills 22 of the framing are arranged to extend parallel with respect to the line of application of the reciprocatory movement impartel to the table. Between the sills 22
65 is arranged a beam 23; pivotally mounted or
hinged at one end, as at 24, and adjustabily supported at its opposite end by a screw-rod 25 or in any other suitable or convenient manner. By'suitably adjusting the screw support 25 the beam 23 may be readily adjusted vertically. Upon beam 23 and adjacent to the respective ends thereof are mounted hoxes 26 27 , in which is arranged to operate a rod or pipe 28 , throngh which reciprocatory motion is imparted to the table. Pivotally connected to the head end of this rod is a connectingrod 29, said connecting-rod being pivotally connected at its other end to a sliding block, (indicated at 30, Figs. 2 and 14,) said block being adjustably mounted in a slot 31 in a pit-

8o man 32 , adapted to be reciprocated from an eccentric or main operating shaft 33. Upon this slaft are mounted the usual fast and loose pulleys 34 , adapted to reccive rotation from any convenient source of power. In suitalle boxes 35 are fulcrumed the crank-arms 36 of a swinging link 37 , said link being provided with crank arms or pintles 38 , pivotally connected or journaled in the pitman 32 about midway the length of the latter. If desired, the boxes 35 , in which the link are fulerumet. may be vertically adjusted to accommodate for wear or for other purpose by means wi the wedge-blocks 39, as most clearly shown in Figs. 4 and 5.

By the construction of operating mechanism above described it will be readily see- ${ }^{-1}$ that I not only provide means for impartin: a reciprocatory movement to connecting-rod 29 and to operating-rod 2s, but I am also enabled to vary the length of the stroke thereof and to sccure a more rapil movement of said rods in one direction than in the other. Thus by adjusting the block 30 to a point in line with the point of pivotal connection of pintles 38 in said pitman 1 secure the same rate of speed of reciprocation of rods 28 and 29 in one direction as in the other, and by varying the point of adjustment of block 30 relative to the point of pivotal connection of arms 38 in pitman 32 I am enabled to vary the speed of reciprocatory movement of the operatingrods 2928 in one direction with reference to the speed of movement of said rols in the opposite direction. Thus I am enalded to readily secure the desired variation (\%) accommodate any particular class or character of ore being treated. It is obvious that other constructions varying in the specific details thereof from the construction alove described may be employed for securing the same object. I do not desire, therefore, to be limited to the specific details shown and described. The construction shown, however, I have found to be practical and admirably answering the desired purpose.

The table proper (indicated at 40) may be constructed of the usual or ans convenient or suitahle material. Upon the under side of the table and at a point approximately at the 130
geometric center thereof is formed or secured a socket 41, adapted to receive a pin or projection 42 , formed with or attached to a sleeve 43 , mounted upon rod 28 and held between 5 collars 44. The pin or stud 42 formsa swivel connection between rod 28 and the table, whereby the table is permitted a swinging movement laterally or in a horizontal plane, and by reason of the sleeve 43 being mounted 10 on roi 28 the table is permitted of a lateral tilting to secure the desired adjustments thereof, as will presently be explained more fully, while at the same time said pin-and-socket connectionaffords means of attachment of the 15 table to the rod 28 , whereby reciprocations are imparted to the table when the rod 28 is reciprocated. If desired, a spring 45 may be interposed between guide-box 26 and a collar 46 on rod 28 to take up any lost motion or o wear.

The table 40 may be held in any position of horizontal or swinging adjustment in any suitable or convenient manner, as by means of the screw-rod 47, and the object of this 5 swinging or horizontal adjustment of the table abont stud 42 as a pivot or axis is to properls adjust the inclination of the table relative to the line of reciprocation thereof, or rather to adjust the inclination of the lower edge of the table to such line of reciprocation, according to the quality or character of the ore being treated.

It is desirable to provide means for laterally adjusting or tilting the table. This lateral tilt or adjustment may be effected in many specifically different ways. I bave shown a simple and efficient construction and arrangement for securing the desired result, but to which I do not desire my invention to be limited or restricted. In the construction shown I arrange the table to be supported at the upper and lower diagonally opposite corners the reof upon bearings (indicated at 48) carried by a support upon cam-sleeves 49 , the 45 cam-surfaces of which rest upon coüperating cam surfaces or sleeves 50. The cam-sleeves 4950 at the diagonally opposite corners of the table are adjustable relatively to each other and are arranged for independent or for co-
50 operating or coincident adjustment. The independent adjustment at either corner of the table may be secured by means of a crankarm 51, connected to one of the cam-sleeves. These cam-arms operate over segment-plates $55^{\prime} 52$. The crank-arms 51 may be held in any desired position of adjustment by means of the set-screw 53 . Thrus by loosening the setscrew for one or the other of the crank-arms 52 and rocking said arm the desired independ-
So ent adjustment of the diagonally opposite corners of the table may be effected. The coincident or simultaneous adjustment of the diagonall: opposite corners of the table may be effected by means of crank-arms 5 , respec-
65 tively connecterl to the cam-sleeves 49 of sup-
ports 48 , said crank-arms being connected together by connecting-bars 5 , so that when said connecting - bars are shifted the camsleeves 49 are simultancously actuated, thus simultaneously adjusting the diagonally opposite corners of the table. It is obvious that the arjustment of one corner of the table may be an elevating adjustment and of the other corner a lowering adjustment, thereby quickly securing the desired tilt or angle of inclina- 75 tion of the working surface of the table.

The ore to be treated may be delivered upon the table from any suitable source of supply and in any suitable manner. Where such-ore is delivered to the table from hy- So dranlic sizers, I employ a feed-box 5it at the extreme upper comer of the table, said feedhox delivering to the surface of the table. 1 have shown said feed-box provided with short sections of delivery-pipes 57 throngh the bottom thereof and which extend nearly to the surface of the table, as most clearly shown in Fig. 17, for a purpose presently to be explained. I provide a rib or flange 58 to extend several inches above the top surface of the table along the upper edge thereof and the head end and to a point about midway the length of the lower edge, as most clearly shown in Fig. 1, and adjacent to the feed-box I place one or more stops, (indicated at 59.) The purpose of this construction is to enable some of the fine mineral associated with the crushed ore and which is carried in suspension in the feed-water to settle upon the surface of the table by reason of the first rush of the water through the feed-box being arrested by the stop or stops 59 and the flange 58 , thus permitting such tine mineral, which would otherwise be carried on into the waste or tailings of the ordinary construction, to become deposited or settle upon the surface of the table and to be carried ly the combined action of the reciprocations of the table and of the wash-water. These are features of my invention which coonnerate with the arrange- I 10 ment shown and described, wherein the lower side of the table is diagonal or oblique to the line of reciprocation of the table, as provision of the stop or stops 59 , and especially of the rib or flange 58, would be of no spreial ntility if the lower side or edge of the table were parallel with the line of reciprocation of the table. This is an important and valuable feature of my inverition, as thereby I am enabled to successfully treat ores of finer mesh than is possible otherwise. The wash-water may be supplied to the table-surface in any suitable or convenient manner or from any convenient source. I have shown a receptacle or launder 60, loosely suspended in stirrups 61, i25 carried by the gooseneek-smports 62 , said gooseneck-supports being fastened to sup-porting-blocks 63 ,adjustahly secured by means of lag-serews 64, operating throngh slots 65 in said blocks 63 , whereby said blocks are se-
cured to a supporting-beam 21 of the frame of the machine. By this construction the wash launder or receptacle 60 may be readily moved or shifted endwise to conform to the requirements of the ore, and by adjustably supporting the gooseneck 62 upon the sills 21 said goosenecks may be suitably adjusted to accommotate the swinging or horizontal adjustment of the table, the loose suspension of io the lander avoiding binding thereof during such swinging adjustment.

At the rear end of the table I arrange a suitalse receptacle 66 to receive the concentrates, and along the lower portion of the lower edge
15 of the table 1 arrange a suitable receptacle 67 to receive the wash and feed water and tailings, it being understood that the tailings are lighter than the mineral, and hence are carried farther by the action of the wash-water transversely ucross the table, and hence are delivered from the table over the lower edge thereof, while the mineral, being heavier, is carried farther and faster by the reciprocations of the talle and is carried over the rear end of 25 the table and delivered into the receptacle 66 as concentrates. The "middlings," properly called, being heavier in weight than the tailings and lighter in weight than the mineral, are carried more nearly in a diagonal line and
30 are delivered from the table at a point adjacent to the lower corner thereof, and lience at this point I arrange a receptacle 68 to receive the same and from which such middlings may be collected and recrushed before fur-

I have found in practice that it is desirable to build up a bed of ore on the surface of the table, which bed will serve the purpose of bermitting some of the fine mineral to be cor-
40 (red hy the gangue or tailings, therehy decreasing the liability of such fine mineral being carried over the lower edge of the table by the wash-water. To accomplish this result, I adjustahly attach a strip 69 at the lower edge of 45 the tahle and extending from the termination of tlange 58 to the lower corner of the table, as clearly shown, said strip projecting a decreaving cxtent above the top surface of the talle from the end off flange 58 to the corner. In this manner am enathed to reguas desired, the depth of said bed being nothing at the extreme corners of the table and increasing in dopth toward the head of the 55 table, and hy so providing and adjustably regulating the depth of bed of ore on the table I am able to run the feed of material from the feed-box underneath such bed. and this is the purpose of the short pipe-sections 57 , ex-
60 tending through the bottom of the feed-box 56 to a point in proximity to the top surface of the table. Thus the feed material carrying finc particles of mineral is delivered to the talle underneath the bed of previnusly-intro65 duced ore, the overflowing hed of ore serv-
ing to hold or retain such fine particles until they settle or become deposited upon the surface of the table. This feature of my invention is a most important and valuable one in the practical operation in devices of this 70 character, as it results in effecting a saving of a material proportion of mineral which is not saved by the ordinary construction.
In addition to the supports for the talte afforded at 45 , as above explained, said table may also be supported at other points as, for instance, upon bearings 70. These bearings may le similar to the bearings 48, and, if desired, and as shown in Figs. 1, 4, and 5, said bearings nay consist of balls resting in seats provided therefor on the top of guide-boxes 26 27, thus not only forming hearing-supports for the table, but permitting the movements of the table above descrilied.

In Fig. 13 I have shown a modilied arrange- 85 ment of bearing-support for the table and comprising a bracket 71 , suitably supported and having a seat to receive a ball or hearing 72 upon the table.

In Fig. 20 I have shown another form of 90 bearing-support for the table which I have found effective and wherein is employed a rocking support 73 , loosely journaled or stepped in a sleeve or case it and provided with a seat to receive a bearing or roller support 75 , upon which the table rests. If desired, the step-sleeves it may contain a lubricant, as clearly indicated.

It is obvious that the construction shown in Figs. 13 and 20 may be employed at any de- 100 sired point as a support for the table. The construction illustrated in Fig. 13 is shown as applied to the bearing for the talle in the line of beam 23 and in the vicinity of a bearing-loox for the operating-rod 28, the hracket 71 leing arranged to straddle said box, while in Fig. 20 thave shown the hearing-supmort as applied at the diasonal corners of the table and wherein the adjusting cam-sleew 49 forms a support for the bearing-sleeve 74. Where roller-bearings are provided for the tahle, said bearings should be curvol on a ratlius struck from the axis of horizontal rotation or aljustment of the talle, as indicalcol in dotted lines: at 76 77, Fig. 7.

1 have shown a portion of the table at its head end cut ont at is in order to accommodate the operating mechanism. This portion of the table is not of material consernence and does not materially reduce the effective oper-ating-surface of the table, imasmuch as the main operations of the table vecur diagonalls: with respect thereto, and by omitting the portion which would otherwise fill the space indicated at 78 to accommodate the gearing I am enabled to shorten the space occupied by the table. If desired, however, this part of the surface of the table may be retained, as indicated in dotted lines at 79. (See Figs. 7 and 8.)

[^18]

It is desirable to provide ample space betweenadjacent tables ereeted in the same room in order to permit ready movement of employces therebetween. In order to secure as 5 much space for this purpose as possible, I may, if clesired, omit the extreme upper corner of the table, as indicated at 80 . If desired, however, this portion of the table may be retained, as indicated in dotted lines at 81 .

It is usual to form the table of material which is impervious to water. The same result, however, may be obtained by lining or covering the top surface of the table with a suitable impersious material such, for in-
15 stanee, as linoleum, sheet metal, waterproof, or the like-as indieated at 82 . It is sometimes desirable to employ riffles and arrange the same upon the upper surface of the table. These riftles form lags or holding projections 20 for the ore and for the wash-water and aid in effecting the proper separation of the mineral from the gangne or barren rock. In eases where ritflesare employed in connection with the table of my invention I prefer to so con25 struct such riffles as to presentan inelined upper surface, over which the ore and wash-water may readily pass, and rearwardly-inelined lower surface and diminishing in height toward the tail end of the table. This result 30 may be secured by suitably grooving or undercutting the top surface of the table 85 , as indieated at 83 , the top or upper surface 84 being inelined in the direction of flow of the wash-water, while the undereut portion 83
35 is rearwardly inelined with respect to the direction of flow of the water. (See Fig. 11.) The same result may be olstained by providing flanged strips 86 , suitably secured upon the top surface of the table 40 and inelined in the - direction of the lower edge of the table, thus forming rearwardly-inclined pockets 87. (See Fig. 10.) Similarlys, the same result may be secured by means of strips 88 , suitably secured upon the top surface of the table, (see
45 Fig. 9,) said strips being inclined on the surface thereot, as indicated at 89 , which is presented toward the direction from which the wash-water flows and are similarly inclined on the opposite side thereof to form similar
50 poekets 90 . (See Fig. 9.) If desired, the stops 59 may be similarly inclined, as clearly shown in Fig. 17. By sueh constructions and arrangements of the riffles the tailings are more readily and easily washed over the rif-
55 lles. and line particles of mineral would be("men deposited or wouid settle in the poekets 83,87, or 90 , as the catse may be, in which pocksts the water flowing over the riftles forms an eldy or is not materially agitated
(so by the flow of the wash-water, thereby pernitting the partieles of inineral to settle upon the surface of the table, and thus materially aidling in the sparation of the mineral trom the ore and adding to the material effective-
ness in practical use and operation of a table 65 emborlying my invention.
In Fig. 8 I have shown in diagrammatic plan a preferred arrangement of riffles, where such devices are employed, and wherein the riffles (indieated diagrammatically at 91) are arranged to extend from the head exd of the table and from the lower edge thereef substantially parallel with the line of reciproeation of the table and said riffles respectively terminating on a diagonal line from the upper and lower corners of the table. By this arrangement of riftles in comnection with a table having its lower edge inclined relative to the line of reciproeation of the table it will be observed that the riffles are shorter in 80 length toward the lower corner of the table.

It is believed that the operation of a con-centrating-table embodying the prineiples of my invention, as above explained, will be readily understood and comprehended by per- 85 sons skilled in the art when taken in conncetion with the foregoing description and the accompanying drawings.

It will be obvious that many variations in the details of construction and arrangement would readily suggest themselves to persons skilled in the art and still fall within the spirit and seope of my invention. I do not desire, therefore, to be linited or restricted to the exact details shown and deseribed; but

What I claim as new and useful and of my own invention, and desire to secure by Letters Patent of the United States, in--

1. A coneentrating-table, in combination with means for imparting a reciprocatory movement thereto, sail table having an mobstrueted tailinga-delivery edge, said edge being inelined away from the line of reciprocatory movement from the head end of the table toward the opposite end thereof, and rifles arranged in sliagonal relation with respect to said table, as and for the purpose set forth.
2. A concentrating-table having parallel upper and lower elges, said lower edge forning the tailings-discharge edge of the table and being unobstructed, and means for rectilinearly reciprocating wald table in a line from the end of one edge to the diagonally opposite end of the other edge, as and for the purpose set forth.
3. A concentrating-table, in combination with means for rectilinearly reciprocating the same, the tailings-delivery elge of said table being unobstructed and throughont the length thereof inclined away from the line of rectilinear movement from the heal cul of the table toward the opposite emb thereof, waid reeiprocating means operating to more the table faster in one dierection than in the other, as and for the purpose set forth.
708085

100
4. The eombmation with an operatins-shaft 12 haviner sn eceentriu, a मitman on)eratod hy said feeentric, swinging bearines for said pitman,
incombination with a concentrating-table, and a rod directly connecting said table and pitman, whereby less time is consumed in the forward stroke than is consumed in the backward stroke, as and for the purpose set forth.
5. The combination with a drive-shaft, having an eccentric, a pitman operated by said eccentric, swinging bearings for said pitman, a receiving-table, a rod directly connecting to said tahle and pitman, said rod being adjustable with respect to said pitman, whereby a reciprocatory moventent is imparted to said table, such movement consuming less time in one direction than in the other, as and for the 15 purpose set forth.
6. The combination with a main drive-shaft having an eccentric, a pitnan actuated by said eccentric, a swinging bearing for said pitman, a block mounted on said pitman for adjust20 ment lengthwise thereof, a concentratingtable, and direct connections between said table and block, as and for the purpose set forth.
7. The combination with a main drive-shaft an eccentric, a pitman actuated br aid eccentric, said pitman being longitudinally slotted. a swinging bearing for the free end of said pitman, a block adjustably mounted in the slot in said pitman, a concentrating30 table, and connections between said table and block, as and for the purpose set forth.
8. The combination with a main drive-shait having an eccentric, a pitman actuated by said eccentric, a fulerumed link pivotally con35 nected to said pitman, a connecting-rod adjustably connected to said pitman, a concen-trating-table, and connections between said table and connecting-rod, as and for the purpose set forth.
9. The combination with a main drive-shaft having an eccentric, a pitman actuated therehy, a bearing-block, a link fulcrumed in said block and pivotally connected to said pitman, a concentrating-table, and connections inde45 pendent of said link between said table and pitman, as and for the purpose set forth.
10. The combination with a main driveshaft having an eccentric, a pitman actuated therehy, a bearing-block, means for adjusting pirotally connected to said pitman, a concen-trating-table and connections between said table and pitman, as and for the purpose set forth. 11. A concentrating-table, and means for rectilinearly reciprocating the same, said table having a tailings-discharge edge inclined with respect to the line of reciprocatory movement of said tahle, and means for adjusting the po-
60 sition of said table to vary the degree of inrlination of said tailings-discharge edge with respect to the line of reciprocation, as and for the purpose set forth.
12. A concentrating-table, and means for
rectilinearly reciprocating the same, said trble 65 having a tailings-discharge edge inclined with respect to the line of reciprocatory movement of said table, in combination with swivel connections between said table and its reciprocating means to permit adjustment of said table to vary the angle of inclination of said tail-ings-discharge edge with respect to the line of reciprocation of sair table, as and for the purpose set forth.
13. A concentrating-table having a tailingsdischarge edge, and means for rectilinearly reciprocating said table on a line inclined with respect to said tailings-discharge edge, said means including a reeiprocating rod, and swivel connections between said table and rod to permit the angle of inclination of said tail-ings-discharge edge relative to the line of reciprocatory movement of said table to be adjustably varied, as and for the purpose set forth.
14. A concentrating-table, and means for rectilinearly reciprocating the same, said table having a tailings-discharge edge inclined with respect to the line of movement of the table, said reciprocating means including a reciprocating rod, a casting carried by said rod and forming a pivotal support for said table to permit of the lateral adjustment of said table to adjustably vary the inclination of said tail-ings-discharge edge relative to said line of reciprocation, as and for the purpose set forth.
15. A concentrating-table, and means for rectilincarly reciprocating the same, said table having a tailings-discharge edge inclined with? respect to the line of reciprocatory movement of said table and riffles upon the upper surface of said table and arranged to extend in the line of operation of said reciprocating means, said means including a reciprocatory rod, a casting carried upon said rod for move- 105 ment therewith, said casting arranged to pisotally engage said table to permit of the lateral adjustnient of said table to vary the inclination of said tailings--lischarge elge with respect to the line of reciprocatory movement 1 o of said table, as and for the purpose set forth.
16. A concentrating-table having parallel sides and ends, and means for reciprocating said table on a line diagonal with respect to said sides, said means including a reciproca- 115 tory rod, a casting loosely sleeved uron said rod and carrying a stud arranged to engage said table, means for laterally tilting saiil table ahout said stud to vary the angle of inclination of the sides of said table relative to the 120 diagonal line of reciprocation, as and for the purpose set forth.
17. A concentrating-table having a socket or seat at the axial center thereof, a rectilin-early-reciprocating rod for reciprocating said 125 table, a stud carried by said rod and arranged to be received in said socket or seat, means for adjusting said table about said stud and
means for locking said table in adjusted position, as and for the purpose set forth.
18. A concentrating-table having parallel sides and-ends, and means for reciprocating 5 said table in a line diagonal with respect to maid larallel sides, in combination with bear-ing-supports upon which the upper and lower corners of said table rest, said supports being arranged respectively on opposite sides of said reciprocating means, and means for adjusting said bearing-supports to adjustably vary the tilt of the surface of said table, as and for the purpose set forth.
19. A concentrating-table haring sides par-

45 rocatory moveren refence to the line of recipruls, means for adjustably supporting the same adjacent to the upper eilge of said table, and a wash-water-supply hox loosely suspended in said stirrups, as and for the pur50 pose set liorth.
22. A concentrating-table having its upper and lower sicles or edges substantially parallol with each other, and means for reciprocating said table in a diagonal digection, whereby
55 the lower or tailings-discharge edge of said tsble is inclined with respect to the line of reciprocation, shports for the extreme upper and lower diagonally opposite corners of said table, said supports arranged respec-
60 tively on opmosite sides of the reciprocating means and comprising cam-sleeves, and means for moving said cam-sleeves for adjustably varying the angle of inclination of the surface of sad table. as and for the purpose set 65 forth.
23. A concentrating-table having its upper and lower sides substantially parallel with each other, a rod connected to said table in a line diagonal with respect to said parallel sides, and means for longitudinally reciprocating said rod, in combination with supports for the extreme upper and lower diagonally opposite corners of said table and arranged respertively on opposite sides of said rod, each support comprising a pair of cam-sleeves, and means for moving one member of cach pair of causleeves with respect to the other member, whereby the tilt or inclination of the surface of the table nay be adjustably varied, as and for the purpose set forth.
24. A concentrating-table having its upper and lower sides substantially yarallel with each other, a rod connected to said table in a line diagonal with respect to said parallel sides, and means for reciprocating said roc longitudinally, in combination with supports for the extreme diagonally opposite corners of said table, and arranged respectively on opposite sides of said rod, each of said supports comprising a pair of coöperating cam-sleeves, the members of each pair of said sleeves being relatively adjustable, as and for the purpose set forth.
25. A concentrating-table and means for reciprocating the same, in combination with bearing-supports for said table, said bearingsupports each comprising an upper and lower can-sleeve, means for independently adjusting said cam-sleeves, and connections between said cam-sleeves whereby said table may be adjusted independently at each bearinc-support or coincidently, as and for the purpose set forth.
26. A concentrating-table, means for reciprocating the same, the tailings-discharge edge 105 of said table throughout its length being inclined away from the line of reciprocation from the head end of the table toward the opmosite end thereof, and riftles or projections upon and in diagonal relation with respect to the table-surface, saill rifles or projections heing arranged in uhstantially parallel relation to the line of recinrocation of the tahle, as and for the purpose set forth.
27. A concentrating - table haring riffles 115 upon the upper surface thereof, the lower or tailings-discharge edge of said tabla heing unohstructed and inelined with respect on aaid ritles, and means for imparting a rempocttory movement to said table in Ihe direction

[^19] of the length of said riffles, as and for the purpose set forth.
28. A concentrating-talble of substantially diamond shape, in combination with neans for imparting reciprocatory morements to said table in a direction diagonal with respect to said table.
29. A concentrating-table of diamond shape in outline, in combination with means for imparting reciprocatory morments to saild ta-
ble in a direction diagonal with respect to said table, and rithes arranged upon the surface of said table and extending in the direction of the reciprocatory movements imparted to the 5 table.
30. A concentrating-table having a substantially diamond-shaped concentrating area, means for reciprocating such table in the direction of the diagonal of such area, and rif10 fles arranged on said concentrating area and
parallel with each other and with the line of reciprocating movement of the table.

In witness whereof I have hereunto set my hand, this 24th day of November, 1900, in the presence of the subscribing witnesses.

GUSTAVE A. OVERSTROM.
Witnesses:
Geo. A. Long,
C. M. Sawyer.

COMPLAINANTS' EXHIBIT No. 48

Dodd Patent No. 694,005
ALMON E. HART, Special Examiner
W. G. 0000.
ore concentrator.
(Application filed Mar. 18, 1001.)
(No Model.)
Patented Feb. 25, 1902.

No. $694,005$.
No. 694,005.

Patented Feb. 25, 1902.

United States Patent Office.

WILLIS G. DODD, OF SAN FRANCISCO, CALTFORNIA.

ORE-CONCENTRATOR.

SPECIFICATION forming part of Letters Patent No. 694,005, dated February 25, 1902.

Application fled March 18,1901. Serial No. 51,619. (No model.)

To all whom it may concern:
Be it known that I, Willis G. Dodd, a citizen of the United States, residing in the city and county of San Francisco, State of Cali-
5 fornia, have invented certain new and useful Improvements in Ore-Concentrators; and I do hereby declare the following to be a full, clear, and exact description of the same.
The invention relates more especially to
10 that class of concentrators known as "slak-ing-tables" in contradistinction to the end-less-belt concentrators; and the object of the invention is the production of a machine which having large capacity shall occupy but effecting approximately verfect separation of the valuable particles of mineral from its attendant gangue while the pulp is traveling over the surface of the table on what may be
20 termed "natural" lines dne to the forces acting uponit. In this class of ore-concentrators the reciprocating concentrating-tables have ordinarily been constructed in the shape of a parallelogram, upon the surface of which are 25 placed longitudinal riffles, the valuable particles of mineral to be separated from the gangue carried by the pulp fed onto the table being caught in the riffles and carried lougitudinally toward the tail or discharge end of 30 the table, while the worthless portion of the pulp or gangue flows transversely over the table and is discharged at the bottom side of the table and permitted to escape. When the pulp is treated with said form of table, a material loss occurs in the escape of fine particles of mineral, which loss takes place for the following reasons: The path of the valnable particles of mineral, due to the motion given the table, is along the upper sides of the longitudinal riffles toward the tail or discharge end of the table. The path of the gangue or worthless material of the pulp, due to gravity, is transversely across the table. These two paths intersecting each other, as
45 they do, at approximately a right angle, a disturbance is caused and loss of fine material caught by the riffles takes place.

In the present invention the face of the table is of such construction that the path of
so the mineral and the path of the gangue in their movement over the face of the table intersect each other at a very oblique angle,
cansing little or no disturbance to the mineral caught by the riffles. Consequently the loss of the mineral songht to be saved is re- 5 duced to a minimum.

In order to comprehend the invention, reference should be latd to the accompanying sheet of drawings, wherein-

Figure 1 is a side view in elevation of the 60 improved concentrator, and Fig. 2 is a plan view of the mechanism disclosed by lig. 1 of the drawings.

In the drawings the numeral 1 is nsed to indicate the circuliar concentratiag-table, 65 which in the present ease consists of a circular cone centrally supported by a vertical shaft 2 , which works in bearing or box 3 , secured to the base or platform 4. The tablesurface or working face is provided with a series of riffles 5 , concentric to each other, but preferably with reference to the center of the table, each describing the involute of a circle. These rifiles start from the curved partition 6 , which may be termed the "head" of the circular table for the purpose of the riffles' starting-point, and are run, preferably, on regular concentric involute curves described around the center of the table, said riffles being of such lengul as to make the discharge end of the lower riflle extend a slight distance beyond the one above.
The table may be constructed ot any suitable material and the riffles be formed integral therewith in the form of depressions or 85 separate therefrom and secured thereto in any suitable manner.
The table is provided with a plain or unriffled portion 7 , onto which portion of the table the valuable particles of the material are discharged frotn the rillles for final treatment.
To the standards 8 is secured the ganguereceiving trough 9 , which is circular in form and arranged below the periphery of the con-centrating-table. This trough recoiyes the gangue or worthless uaterial discharged from or washed off of the table, and the length of said trough is equal to or slightly greater than that of the lowermost riffle of the table.
At the apex or near the center of the table is arranged the feed-box 10 , which box is divided by a central partition into compartments 11 12. Compartment 12 is the ore or pulp
receiving compartment, into which the ore or pulp to be distributed over the table is delivered by the fecl-chute 13. From this compartment the pulp escapes onto the table harough oatlet or o.icitpe ópenings 14 , formed therein. Compartment 11 acts as a reservoir for the water to bedistributed onto the plain or unriffled portiou of the table, the water being delivered into said compartment by 10 means of the water-supply pipe 15 and escaping from said compartment onto the uncithed portion of the table through the minute ont-let-openings 16.

Any suitable furm of mechanism may be 15 er.ployed for imparting an oscillatory motion to the table 1. In the present case the table is illustrated as being operated through the mediun of the jointed connecting-rod 17, connected at one end to the onterend of arm 18, projecting from the vertical shaft 2. The free end of the connecting-rod works through guide-bearing 15 and is attached to the eccen-trie-strap 20 , surrounding cam 21 , secured to the drive-shaft 22. Motion is imparted to power by ineans of power-belt (not shown) working over belt-wheel 93 , attached to the drive-shaft.
The operation of the inachine is as follows: ar suitablo meaus, settiner same in motion avy suitable means, setting same in motion, which movement is commonicated to the taWe by means of the connecting-rod 17 , cansing the table to nseillate or reciprocate a ronnd its central support or bearing-sudgeon 3 . Finely-crushed ore mixed with water, usnally designated as "pulp," is conveyed into.ccmpartinent 12 of the feed-box 10 , from which it is fed onto the table 1 through suitable ont-
40 let-openings $1 t$, made for the purpose. The pulp, due to the inclination or cone shape of the table, flows down ratially toward the circumference, coming in contact with the obstructing - riffles 5 , where the valuable par-
45 ticles of the mineral are caught and due to the reciprocating or oscillating motion givon the table are moved around the table and onto the unriffled portion 7 , where any particles of gangue contained ie the concentrates ctared upon the table from the water-com charged upon the dable from the water-compartment 11 of box 19 . Thiswater also serves to lubricate the smooth unriffled portion of the table, permitting the concentrates to con-
55 tinue traveling around the table until they are discharged into the box 94^{\prime}, which recoives the concentrates. The ganguo, the mineral being eliminaterl, flows downward over the riffles and is discharged at the pelannder 9.

The construction of the concentrating-table, together with the ustion imparted to it, effects a separation of the mineral from the
${ }^{6} 5$ gangue upon lines ontirely different from those of any machine of its class, due to the
following reasons: The motion or agitation wiven to the pulp is variahle, being very slight at or near the center of the table and rapidly increasiug toward the periphery. The pulp is subjectud to a series of impulses dne to the centrifugal action cansed by the oscillation of the circular table. The riffles being on a spiral or involnte of a circle form a pathway of travel for both gangue and miueral, at all points a gentle downward grade, which euables the mineral to scttle and the gangue to scparate therefrom while both are traveling at approximately the saine velocity, their paths diverging at an angle so oblique as to cause little or no disturbance, and consequeutly no loss of the valuable particles souglit to be saved. The flow of the gangue is indicated byarrows 24 and that of the mineral by arrows 25 . It will be observed that the path of the gangue while transverse of the table is at an oblique angle to the path of the mineral at the interscetion of the paths. Consequently there is little, if any, disturbance at such point.

There is hinged to the unriffled portion of the table at the extremity of the lowermost riffle a deflecting-finger 26 . This finger serves to gnide such of the gangue as may escape from said rifle on to the plain or unriffed portion of the table into the lamnder or circular trough for the gangue, thas preventiog same discharging into the box lomated to receive the mineral discharged from the plain or unrimled portion of the table.

Ilaving thus described the invention, what is claimed as new, and desired to be protected by Letters Patent, is -

1. An ore-concentrator comprising an oscillatory inclined table having an unriffled or plain surface adjacent its discharge portion for the separiated mineral, a series of curved rifles upon the working face of the table, said riflles oxtending from approximately a radial division and terminating at and discharging onto the plainfor unriffed surface of the table, and means whereby an oscillating motion is imparted to the dable whereby the mineral aud gangue travel within the riffes at approximately the same velocity until separation takes place.
2. Au ore-conceutrating apparatus comprising an oscillatory table inelined outwardly from its center, means for inparting an oscillating motion to the table during the treatment of the ore, a plain or unriffled portion to the table, a series of curved rifles arranged on the working face of the tablo eccentric to its center, each riffle increasing in length and exteuding greaterdistance into the unriffled portion of the table than the rifle immediately above.
3. A concentrating apparatus comprisiug an oscillatory concentrating - table, means whereby an oscillating motion is imparted to the table, a series of concentric riffles arranged upon the working face of the table,

75

110
115
120

[^20]each riffle being the involute of a circte, and of a plain or unriffled portion to the table intermediate the ends of the rifles.
4. A concentrating apparatus comprising 5 an oscillatory concentrating - table, means whereby an oscillating motion is imparted to the table, a series of concentric riffles arranged upon the working face of the table, each riffle being the involute of a circle and its discharge end terminating at a point beyond that of its preceding riffle and a plain or unriffled surface to the table onto which the riffles discharge.
5. The combination in a concentrating apmeans whereby an oscillating motion is im parted to the table, and of a series of curved riffles arranged upon the working face of the table, said rifles being concentric, and a plain 20 or unriffled portion to the table onto which the riffles discharge.
6. In an ore-concentrating apparatus, the combination with a cone-shaped concentrat-ing-table, having a plain or unriffled portion, means for imparting an oscillating motion to said table, and a series of concentric involute curved riffles arranged ou the working face of the table, the discharge end of each riffle terminating at a point beyond that of the riffe immediately above the same.
7. In an ore-concentrator, the combination with the cone-shaped table mounted to oscillate around a central vertical axis, a plain or unriffled portion to the table, a pulp and 5 water distributing box arranged to distribute the pulp and water at the apex of the cone, a series of downwardly-inclined curved riffles arranged on the working face of the table and extending onto the plain or unriffled por-
40 tion thereof, the discharge end of each rifte being beyond that of the riffe immediately above, and means whereby an oscillating motion is imparted to the concentrating-table.
8. In an ore-concentrator, the combination 45 with the circular cone-shaped table having a plain or unriffed portion, of means for imparting an oscillatory motion to the table, a pulp and water distributer arranged to dis-
tribute at the center of the table, a partitionwall secured to the working face of the table, 50 and a series of concentric curved riffles extending from said partition-wall across the working face of the table.
9. In an ore-concentrating machine, the combination with the circular concentrating-
table having an upper radially-sloping face, of devices for supplying water and pulp to said table, a central support for the table, a bearing for the support, a plain or unriffled portion to the table, means for imparting an 60 oscillating motion to the table, and a serics of downwardly-inclined curved riffles arranged upon the working face of the table, each riffte extending and discharging onto the plain or unriffled portion of the table.
10. In an ore-concentrator, the combination with the concentrating-table having a plain or unriffled portion, of means for imparting an oscillating movement to the table, a series of concentric riffles arranged on the workiug face of the table, each of which discharges onto the plain 9 r unriffled portion of the table, devices for supplying water and pulp to the table, and a circular trough or launder arranged to receive the gangue discharged from the table.
11. In an ore-concentrator, the combination with the concentrating-table having a plain or unriffled portion, of means for imparting an oscillating motion to the table, a scries of 8 curved riffles arranged on the working face of the table, each riffle discharging onto the plain or unriffled portion of the table, devices for supplying water and pulp to the surfaces of the table, a circular trough or launder for 85 receiving the gangue discharged from the table, and a deflecting-finger secured to the unriffled portiou of the table at a point beyond the discharge end of the bottom riffle.

In witness whereof I have hereynto set my 90 hand.

WILLIS G. DODD.
Witnesses:
N. A. Acker,
D. B. Richards.
W. G. DODD.
ore concentrating table.
Application filed June 22, 1900.
(Ne Model.

United States Patent Office.

WILLIS G. DODD, OF SAN FRANCISCO, CALIFORNIA.

ORE-CONCENTRATING TABLE.

SPECIFICATION forming part of Letters Patent No. 666,002, dated January 15, 1901.
Appliostion filed June 22, 1900, serial No. 21,134. (No model.)

To all whom it may concerri.

Be it known that I, WILLIS G. Dodd, a citizen of the United States, residing in the city and connty of San Franciseo, State of Cali5 fornia, have invented certain new and useful Improvements in Ore-Concentrating Tables; and I do hereby declare the following to be a full, clear, and exaet description of the same.
Thein rention relates more especially to that tables, and it resides more particularly in the arrangement of the riffies upon the working face of the said table. In this particular class 5 of concentrating-tables-that is, the trans-verseiy-iuclined ones--the separatiou of the valuable particles from the gangue takes place during the downward travel of the material over the working face of the table. The sepciprocating motion of the table and the downvard flow of a body of water over the face thereof. The downward or transverse travel of the material to be or being treated is retarded by means of a series of riffles arranged longitudinally of the table, which riffles eatch and confine the heavier or valuable particles separated from the gangue and divert the travel thereof from a path crosswise of the toone longitndinal thereos. It is mainiy due to the diverting of the crosswise travel of the material into a travel approximately lonfitudinally of the table that the separation of The valuable particles from the gangue is suc5 cessfully accomplished. However, the recovery of the valuable particles is only partial where the table is provided upon its working fare with a series of longitudinal riffes of tqual or unequal length, for while the larger
40 or neavier particles will be separated from the gangue and saved a considerable quantity of the "ighter valuable particles or "float(old" will be carried off with the flow of the gangue. It is the recovery of this grade of alerlal which the present of signed to accomplish, while at the same time speurng a better and more efficient separation, the valuable particles carried by the gausge upon the table.
50

The object of the present invention is to so coustruct the concentrating-surface of the table that the material fed thereon or deliv-
ered thereto may be "deflected," so to speak, from a transverse travel or path to a longitudinal travel or path with the least pussible disturbance, thus allowing of the heavigr particles separated from the gangue being conveyed lougitudinally of the table with the least agitation and friction and in a compact form and upon such lines as the material 60 would traverse the surface of the table of its own accord, resultiag in an increased capacity of the machine, the making of a cleaner concentrate, and enhanciug the value of the product obtained from the working of the table.

In order to comprehend the invention, reference should bs had to the accompanying sheets of drawings, forming a portion of the present application, wherein-

Figure 1 is a plan view of the improved con-centrating-table. Fig. 2 is a lougitudinal section view of the table in side elevation. Fig. 3 is a detail enlarged plan view of a portion of the table, illustrating the discharge ends of the riffies and the paths taken by the gangue and valuable particles as they leave the riffles; aud Fig. 4 is a similar view illustrating the paths of the gangue and vatuable particles as discharged from the ends of the ordinary straight or longitudinal riffles.

In the drawings the letter Λ is used to indicate a transversely-inclined concentratingtable, and A^{\prime} the unriffled or plain discharge end thereof. At the head-end coruer of the table is arranged the feed-box B, from which the ore or pulp to be worked is delivered onto the table. It will be understood that the table is a longitudinally-reciprocating ong, being driven by any suitable form of "mechanism designed for this purpose, preferably that form of drive mechanisu fully set forth and described in Letters Patent No.650, 673, granted me on the 29 th duy of May, 1900 , for an improved ore-concentrator.

At the upper edge of the table, nearity dis- 95 charge end and above the plain or unriffled portion A^{\prime}, is arranged the perforated waterdistributer B', by means of which clear water is delvered onto the plain or unriffed portion of the table in order to lubricate the same and wash from the valuable material such gangne as may adhere thereto as discharged from the riftes onto this portion of the table.

Intermediate the head end C of the table and the plain or umrifiled portion A^{\prime} thereof is arranged a series of parallel riffles C'. Each riftle is formed with an upwardly curved or ble horto u near the hoad end or the table and a downwardly curved or inclined portion a near the plain or unriffed partion of the table. The purtion of the riffles intermediate lle upwardly and down wardly curved
10 or inclined ends a a^{\prime} are approximately straight and longitudinal with the table or its working face. These riftles gradually decrease in height from their upwardly inclined or curved ends a toward their downwardly
nelined or curved ends a.
In Figs. 1 and 3 of the drawings the arrows 4 are used to indicate the travel or path of the gangue, its direction being transverse of the working face of the table, while arrows 5 ate the travel or path of the hearier or valuable particles, which is lougitudinally of the face of the table and at approsimately a right angle to the travel of the sangue. The surface of the table between numerals 6 and
257 may be said to constitute the zone of the gangue.

The pulp or finely-crushed ore contaning the mineral to be saved is delivered upon the table frou the feed-box B, located at the o head-end comer of the table, Fig. 1. The course or direction of travel of the material at this point is transverse of the table. As soon as the heavier particles come in contact with the upwardly curved or inclined portion of the end or the rinlesthis transverso travel of the valuable particles is gradually and gently changed into a longitudiual travel, dine to the natural curve or inclination of the riffles at this point and the reciprocating mo4o tion given the table. The mineral or heavier particles are then moved longitudinally along the rittles toward the foot or unrifted portion of the table. Durius this trat el of the mineral or valuable particles the gangue is 5 gradually eliminated and washed over the riffles transverse of the table. When the mineral or valuable particles reach the end of the riffles, the velocity at which it has been moving is accelerated, due to the downward
50 curvature or inclination of the riffles at this point, and it is gnided into its natural trajectory, approximating a parabolic curve, at a velocity approximately coincident with the velocity of the gangue at the outward bound-
55 ary 7 of the zone of flow, causing little or no disturbance of the particles of mineral collected. The gangue being much lighter thau the mineral has an inelined trajectory. The final separation of the mineral from the
Go gaugue takes place as the mineral is discharged from tie riflles onto the plain or unriffled portion of the tahle. Now as the trajectory of the gangue and the trajectory of the mincral intersect each other it the poiut
${ }^{6} 5$ of the mineral's discharge, Fig. 3 of the drawings, and the mineral crossen or passen through aud oui of the \%one covered by the gangue
and euters upon the smooth or unriffed portion of the table it continues in its comrse or natural trajectory until it passes over the tail or foot of the machine into a receptacle located at such point for its reception. While making this passage over the unriffed portlon of the table it is subjected to the action of a very slight spray of clear water delivered from the water-distributer B^{\prime}. This spray is for the purpose of lubricating the smooth surface of the table and for washing out any small particles of gangue that may bave become entangled with the mineral during its passage through the ontward boundary of the gangue zone. The gangue passes down ward over the riffles and across the table, being discharged over its lower edge and allowed to run to waste.

The improved riffles have two distinct features and pertorm two distinct functious in the operation of separatiug the mineral from the gangne. By reference to Fig. 1 of the drawings it will be seen that the upper or re- 90 ceiving end of the rifte has a gradual upward curve or inclination, while the lower or discharge end has a reverse or downward curve or inclination. The minerat when first delivered upon the table las a transverse direction, with a high velocity, which direction of the mineral's travel must be changed to a lougitudinal direction with the least possible disturbance. This is accomplished by the inelination or curvature given to the rimtes at this point. After the mineral or valuable particles have been collected withiu the riffles it is necossary that the mineral be carried forward longitudinially with as little agitation as possible and in a compact form, so as to enable it to cruss and pass through the outward boundary of the gangue zone. The downward chevature or inclination of the dischargeend of the riffles is such as to discharge the miueral on its natural trajectory in a 110 compact form with a velocity sufficient to euable the compact body of mineral to crossand pass through the gangne without hadue agitation or disturbance aud without being carried downward by the flow of the gangue. The construction of the described riftes serves, first, to divert the transverse travel of the mineral into a travel lomgitudiually. 0^{*} the table, and, secondly, to enable the mineral to be discharged upon the plain or unriffled portion of the table on its natural trajectory. By thus imparting a natural discharge to the collected or sepamated mineral undue agitation or disturbatace of the selid mass is obviated and a more perfect concentration obtained. Again, by confiuing the material between the rifles intermeditte the inclised or curved ends thereof the material is subjected to the conceutrating action of the table for a greater period than if the riffles were formed upon a comathon curvature throughout their length and the minesyl thus permitted to settle or collect in a borly. As the transfer of the trausverse travel of the
matoriat intoa honsinntinal tavel of the table is is sradmal ope at the head emt of the rit'fles, mulan artation or disturbance at this end of the riftes is overonmeand to a certain 5 extent the matorial is ansisted in its longiludinal trawe. The prevention of excessive agitation at this point prevents the finer of lighter particles of the valuable material boing carried off with the gangue.

In Fig. 4 of the drawings I have illustrated the disturbance and arritation which take place at the discharge end of the rifles when the table is provided with the ortinary straight rifles. In this view the arrow 8 in15 dicates the llow of the gangue and 9 the flow of the miatral, which meet or intersect at the point 10. It will ba noticed that in such catse the "mineral," so to speak, is dropped from one rifte onto the next lowest riffe and the ma-
20 terial brokenand the finer particles liberated from the solid mass. Being thos liberated, the finer particles will becarried off with the grangue and lost unless the waste material be treated as middlings and be returned to the talbles by mears of an elevator or otherwise to agrain undergo the process of separation.
llaving thns described my invention, what I claim as new, and desire to secure protection in by Letters Patent, is-

1. A reciprocating ore-conceutrating table having a plain or unrifled tail or foot porlion, an obstructing-riffle arranged upon the working fare of said table intermediate its heiul end and its piain or unriffled foot or tail 35 portion, said riffle having an noward inclinathon it its head end and a downward inclinathon at its discharge end, the portion of the riffé intermediate the npwardly and downwardly inclined ends being apmoximately lonitudinal with the working face of the table.
2. A reciprocating ore-concentrating table having a plain or muriffled tail or foot portion, an obsiructing-rifle arranged upon the working face of said table intermediate its head end and its plain or undifled foot or tail portion, satid rifle being upwadly inclined at its heal eml and downwandy inclinedat its discharge ent.
3. Areciprocating oreconcentrating table 50 having a platin or mariffed tail or foot portion, a serieo of whstrmeting-rifles arranged upon the working face of satid table intermediate its head end but its plain or antittled foot portion, satid ribles hatving on upward inclatation at their leand ends and a downward inclination at their foot or discharge emds, the portion of the riflles intermediate the upwardy and downwardly inclined ends being approximately lougitulinal with the working face of 60 the table.
4. A reciprociting ore-coucentrating table having a plain or andifled tail or foot portion, a serics of obstructing-rifiles arrauged non the working face of the table intermediate its 65 head end and its plain or ummbled fout por-

Lim, satid riftes being upwardly inclined at flem head ends and downwardly inclined at their thischarge ends.
i. A reciprocating ore-cencentrating table having a series of obstructing-riffles arranged upon its working face, said riffles having an upwafd inclination at their head ends and a downwad inclinationat their discharge ents, iss ithd for the purpose set forth.
(. A remiprocating ore-concentrating tablo having a platin or uuritlled foot or tail portion, an obstructing-riffle arranged upon the working face of said table intermediate its head end and its plain or unriftled foot or tail portion, the riffle being upwardly inclined at its heal end and downwardly inclined at its discharge end and having that portion intermediate its upwardly and downwardly incliued ends approximately longitndinal with the working face of the table, said riffle gradually decreasing in height from its head end toward its foot or discharge end.
7. A reciprocating ore-concentrating table having a plain or unciffled tail or foot portion, a series of rittles arranged upon the working face of said table intermediate its head end and its plain or unriffed foot portion, said riffles being downwardly inclined at their discharge end, the portion of the riffles interwediate the head end of the table and its foot or tail end being approximately longitudiaal with the working face of the table.

8, A concentratiag-table having a plain or unrifled foot or tail portion and provided on its working face with an obstrncting-rifte, the body portion of said riffle being approxiwately longitudinal with the face of the table and its head end npwarily inclined, whereby the material fed onto the table for separation has its path of travel diverted from a transverse direction into a travel longitudinal of the working face of the table.
9. A concentrating-table having a plain or unrified foot or tail portion and provided on its working face with an obstrncting-riffle, 110 the body portion of said riffle being approxi. mately longitudinal with the face of the table and its discharge end downwardly inclined.
10. A reciprocating ore-concentrating table having a plain or unriffled tail or foot portion, 145 a series of obstructing-rimles arranged npon the working face of the table intergediate its head end and its foot portion, said riftes having an upward inclination at their head end and having their body portion approximately 120 longitudinal with the working face of the table.

In testimony whereof I aflix my signature, in the presence of witnesses, this 13 th day of June, 1900.

WILLIS G. DODD.
In presence of -
N. A. Acker,
D. R. Richards.

DESIGN.
No. 33,011 .
Patented July 24, 1900.
W. G. DODO.

ORE CONCENTRATING TABLE.
(Application filed June 22, 1900.)

Witnesses.
oflllonteverde
थPRicharcls,
duventor.
Sicilia G. Sod.
by ncalucxer
his cherty.

United States Patent Office.

WILIISG. DODD, OF SAN FRANCISCO, OALIFORNIA.

DESIGN FOR AN ORE-CONCENTRATING TABLE.

SPECIFICATION forming part of Design No. 33,011, dated july 24, 1900.
Application filed June 22,1900. Serial No. 21,244. Term of patent 14 years.

To all whom it may concern:
Be it known that I, Willis G. DODD, a citizen of the United States, residing in the city and county of San Francisco, state of Califor-
5 nia, have invented and produced a new and original Design for Ore-Concentrating Tables, of which the following is a full, clear, and exact specification, reference being had to the accompanyingsheet of drawings, forming 10 a part thereof.

As shown in the drawings, the leading or material features of the design consist of the concentrating-table Λ, having a plain or unriffled portion Λ^{\prime} at its tail or discharge-end 15 portion. On the working face of the table are arranged a number or series of parallel riffles B, each riffle having an upwardly-inclined portion a at the head end of the table,

While the discharge-end portom a^{\prime} of each riffle is downwardly inclined. The portion 20 of the riffles intermediate the upwardly and downwardly inclined ends t and ${ }^{\prime}$ ' is approximately longitudinal with the working face of the table.

Having thus described my inveutiou, what 25 I claim as new, and desire to secure protection in by Design Letters Patent, is-

The design for an ore-concentratiug table, as herein shown and deseribed.

In testimony whereof I affix my siguature, 3° in the presence of witnesses, this 7th day of June, 1900.
WILLIS G. DODD.

In presence of -
N. A. Acker,
D. B. Richards.

COMPLAINANTS' EXHIBIT No. 51
Monell Patent No. 661,886
ALMON E. HART, Special Examiner

No. 661,886.
Patented Nov. 13, 1900.

1. F. MONELL.

CONCENTRATING TABLE.
Application filed June 9. 1899
No Model.)
2 Sheets-Sheet 1.

I. F. MONELL.

CONCENTRATING TABLE.
(No Model.)
(Applacation filed June 9, 1899.

United States Patent Office.

IRA FERRIS MONELL, OF BOULDER, (OLORADO.

CONCENTRATING-TABLE.

SPECIFICATION forming part of Letters Patent No. 661,886, dated November 13, 1900.

Application filed Jure 9, 1899. Serial No. 719,913. (No riocie..

To all whom it may concern:

Be it known that I. Ira Ferris Monell, of Bonlder, in the county of Boulder and state of Colorado, have invented a new and Im-
5 proved Concentrating-Table, of which the following is a full, clear, and exact description.
This invention relates to improvements in ore-concentrators; and the object is to pro-
Io vide a concentrator having a large surface area over which the crushed or pulverized material may pass and by one operation effectually separate the mineral from the sand or pulp.
I will clescribe a concentrating-table embodying iny invention and then point ont the novel features in the appended claims.

Reference is to be had to the accompanying drawings, forming a part of this specification,
20 in which similar characters of reference indieate correspondiug parts in all the figures.
Figure 1 is a front elevation of a concentrator embodying my invention. Fig, 2 is a plan view thereof. Fig. 3 is a section on the
25 line 33 of Fig. 2 on an enlarged scale; and Fig. t is a section on the line $4 t$ of Fig. 2 and also ou an enlarged scale.

Referring to the drawings, 1 designates the concentrating-table, mounted to swing in a
30 frame 2. It is designed that the table shall have a lateral movement imparted to it either by direct application of power or by means of concussion. I have here shown the table as suspended from the upper cross-bars of
35 the frame by means of rorls or hangers 3 , and these rods are of such a length with relation to each other that the table has a downward inclination from its feeding side to its outlet side.
40 At one side of the table is a driving-shaft 4, on which an eccentric 5 is monnted, and from an eccentric-strap 6 on the eccentric 5 an eccentric-rod 7 extends to a pivotal connection with a bolt 8, movable through an
45 opening in a bar 9 , which extends over the top of the table from its rear to its front side. Surrounding the bolt 8 and abutting at one end against the bar 9 is a buffer-sleeve 10, of rubber or similar material, and against which
50 a tappet 11 on the bolt 8 is designed to engage as the table is moved in one direction by the eccentric. This tappet 11 is made in
the form of a nut adjustable on a threaded portion of the bolt 8 , so that the degree of throw of tho table may be regulated. The table is moved in the opposite direction by means of a rod 12 , comnected at one end to a fixed portion 13 of the frame and having its other end extended loosely through an opening in a spring-plate 14, depending from a upper cross-bar of the frame. The rod 12 also passes through a buffer-sleeve 15, of rubber or similar material, which abuts against the onter side of the spriug-plate $1 t$, and it nut 16 on the threaded end of the rod 12 is 65 designed to engage with the spring-plateduring a movement of the table. By adjusting the nut 16 the throw of the table in this direction may be regnlated.

It is to be understood that I do not confine my invention to the particnlar means above described for imparting movements to the table.

Arranged above the hoad of the table and near one side thereof is a feed-trough 17, which is V-shaped in cross-section and has perforations throngh its hottom portion, and the pulp or the material to be operaterl upou is fed to the trough 17 through a pipe 18 . Also arranged along the head of the table and extended from a poist near one end of the trough 17 to the opposite side of the table is a perforated water-supply pipe 19.

The table is guided in its hack-and-forth movement by guide-bars 20 , extended from the ends of the table and movable against the sides of buffer-heads 21 , and to relieve the table from too great a shock cushions 22 are provided to engage against the bui-fer-heads. The table is pacticaily divided into two sections, which mas be designated as x and y. At the junction of the section x with the section y and extended diagonally from the feed end to the outlet cmil of the table is a tail-strip 23 , and extended from this tail-strip 23 parallel with the front and rear of the table is a series of rifles 24 . While these rifiles extend parallel with the front and rear of the table, they are shown as atranged diagonally from one side of the titble 100 to the other side. The object of the riftes $2 t$ is to form saud cushons through which the mineral will settle and to allow the excess of water to pass out between the rifles to the
back eud over the tailpicce 23. This water carries the slime amb can be partly coucentrated in the section // of the table, as will be heremafter described.

Furward of the riftles 24 and extended in the same direction thereof is a scries of shallow or fine grooves 25. Theseshallow qrooves are formed in sets, and at the end of each set is a cleaninespace 30 . The motion of the 10 lable will settle the fine material into the gronves 25 and move it forwitd to the clean-ing-spaces 30 , when it will move diagonally across the said cleaning-spaces into larger grooves 26, which extend heyond the ends of mates in an peniner 27 thenurh the table If the material be clean, it will he let ont into it reeeiving-trongh through a valve-controllea pipeconnected with the opening. If wotelean, 20 the valves must be closen, and the prodncts will bo passed over to adjustable rifties 28 . These adjustable riffles are made in the form of blooks, and cach one is mommed on a bolt 29, which passen through the table and upon
 liy loosening the nut 31 the riffle carried thereby may be swong to any desired angle on the table. From the riffles 28 the clean material will be carried to chammels or grooves 32 , valve-eontrolled pipes 33 , with which the ends of the channels or yrooves 32 communieate. The material will discharge into a suitable receptacle arranged under the table. Ordi35 narily the adjustable riffles will not have to be used for the first four or five sections of grooves 25, and for some ore it is not neeessary to use them at all.

At the upper side of each large groove or

40 chanuel 26 is a row of upwardly-extended pins 34. These pins are designed to split the sand eushion and give the mineral mixed with the sand a chance to settle in the small grooves or ehamels. The several grooves or chmels 20 and a part of each groove or chamuel 26 are formed in a plate 35 , removably seated in a reeess formed in the table 1. This plate may consist of any suitable mate-rial-such is wood, metal, asphalt, or the top surfree of the top flush or even with the ing this plate removable is so that another plate may be substituted, having channels or grooves of different depths depending npon
The ontlet edge of the table 1 has a greater ineline than has the main portion of the table, as indicated at 36. This gives more flow to the sand as it leaves the riffles 24 and a wo wore rapid discharge. On the edge of this portion 36 is a riffle 37 , designed to catch any material that the operator may think worth saving. At one end this rime is provided with a vertically-adjustable portion 38 , which
65 may be raised or lowered, as desired, by means of a liner or a shim placed underneath said portion 38.

On the section y of the table is a removable plate 39. similar to the phate 35 , and in this plate 39 is formed a series of grooves or cham nels 40 , and also below each set of grooves or channels 40 is a deepergroove 41 , which communieates with a slischarge-opening 42 , which connects with a valve-controlled pipe for discharging material into a tamk or other receiving vessel underneath the table. Extended ontward on the table from the tailpiece 23 and above eath opening or outlet 42 is a guad-strip 43 . These gnamd-strips are designed to prevent sand from passing into the 8 ontlets. L'pon one side of the plate 39 and arranged on the table-section y is a series of riffles $4 f$, which form the sand cushions and through which the excess of water passes. Thesp rimles $4 t$ abnt against a lailpiece 45,8 whel extends diagonally on the table.

In the operation of the machine the tendeucy of movement of the heavier particles will he toward the sille Z of the table. The very light material, with the water, however, will pass over the taipiece 23 and into the fine channels or grooves on the section y of the table, and from these fine grooves the material will be deposited into the larger or deeper grooves 41. Some of the material and sand, however, will pass to the upper sides of the riffles 44 and form sand cushions through which the excess of water will pass and discharge over the tailpieco 45.
llaving thus fully deseribed my invention, I clatim as new and desire to secure by Letters Patent-

1. In an ore-concentrator, a table having a series of channels in its top, the said channels having valve-controlled outkets through the table, and an adjnstable riffe at one end of each of said channels, substantially as specified.
2. A concentrator, having a series of shallow channels and deeper channels, the series of channels being arranged diagonally on the table and the deeper chamels having communication with valve-controlled outlets, a series of riffles at one side of the series of cbannels, the said riflles also being arrauged diagonally, aud means for imparting swiuging motion to the table, substantially as specified.
3. A concentrator-table, having a diagg-nally-disposed recess formed in it, a plate adapted to be removably seated in said recess, the said plate having a series of channels formed in it, certain of said channels having communicatiou with discharge-pipes, a series of riffles arranged at one side of the recess, a tailpiere against which the ends of said riflles abut, aud means for imparting inotion to the table, substantially as specified.
4. Aswinging concentratinghable arranged on an ineline, a series of rifles on the table, the riftles being arranged diagonally, a tailpicce against which the riffles abut, and the table having a series of channels formed in it at each side of the riffles, the series of chan-
nels being arranged diagonally and certain of the channels being deeper than the other channels and communicating with ontlets, and another series of riffles arranged on the 5 table at one side of the first-named series of riffles, substantially as specified.
5. A concentrating-table monuted to swing and arranged in in inclined position, the said table having a series of channels formed in
10 it , the said series of channels being arranged diagonally, asd certain of the channels being deeper than the others and having commonication with outlets, a series of fixed riffes at one side of the series of channels and also
15 arranged diagonally, and a series of adjustable riflles arranged diagonally at the opposite side of the series of channels, substantially as specified.
6. A concentrating-table mounted to have 20 a lateral motion and having a series of channels formed in it, the said series of channels being arranged diagonally and in sets, pins extended upward from the table above each set of channels, and fixed riffles arranged at
one side of the series of chaunels, substan- 25 tially as specified.
7. A concentrating-table, a number of series of riffles on the table, each series being arranged in a diagonal direction, each riffle in a series being parallel with the front and rear of the table, and a tailpiece extended diagonally on the table adjacent to an end of each series of riffles, substantially as specified.
8. A concentrating-table having a recess 35 arranged diagonally in its top, a channeled plate adapted to be placed in said recess, the channels of the plate being arranged in sets each set consisting of a number of channels having a cleaning-space at one end, and a larger channel which extends beyond the ends of the other channels of a set, substantially as specified.

IRA FERRIS MONELL.
Witnesses:
Frederick W. Kohler, Jr., Frederick L. Williamson.

COMPLAINANTS' EXHIBIT No. 52
Pinder Patent No. 812,520
ALMON E. HART, Special Examiner
J. W. PINDER.

ORE CONCENTRATOR.
APPLIOATION FILED NOV. $25,1904$.

J. W. FINDER.

ORE CONCENTRATOR.
$\triangle P P L I O A T I O \mathbb{E}$ FILED $\mathbb{B O}, 25,1004$.

FIG. 5.

FIG. 7.

FIG. 12.

WITNESSES,
Char, E. Chopin.
ytyomer

UNITED STATES PATENT OFFICE.

JOSEPH WILLIAM PINDER. OF SAN FRANCISCO, CALIFORNIA.

Applicating filed Novomber 25, 1904. Serial No. 234,223.

To all, whom it may concern:

Be it known that I, Joseph William Pinper, a citizen of the United States, residing in the city and county of San Francisco and 5 State of C'alifornia, have invented new and useful Improvements in Ore-Concentrators, of which the following is a specification.

My invention relates to an improved oreconcentrator, and especially to ore-concen-- trators of the circular type.

The object of my invention is to provide a concentrator which will have a maximum amount of eoncentrating-surface within a minimum space, which shall be simple and 5 substantial in construction, and which şhall provide for a more delicate and complete separation of valuable minerals having different specific gravities than is possible by means of the machines commonly in use.

The iuvention consists of the parts and the construction and combination of parts as hereinafter more fully deseribed and claimed, having reference to the accompanying drawings, in which-

Figure 1 is a plan view of my improved concentrator - pan with a portion of upper surface covering broken away to show sectional character of the pan. Fig. ? is a section on line W W of Fig. 1. Fig. 3 is a detail - section on line $\mathbf{X} \mathbf{X}$ of Fig. 1, illustrating the relative levels of the two ends of the panspiral. Fig. 4 is a perspective of the splashbox. Figs. 5 and 6 are details in partial section of the wash-water pipe and water-strip. return motion of the pan. Fig. 8 is an elevation of the discharge-spout for the concentrates shown in Fig. 3. Fig. 9 is a detail in partial section of the toggle mechanism for - operating the pan. Fig. 10 is a deiail in sectiom of the pulp-feed box. Fig. 11 is a plan of the central bowl into which the grange discharges, showing sereen-receptacle for separate collection of slime values. Fig. 12 is a 5 detail of the pivotal standards for supporting the pan. Fiy. 13 is a detail in partial section of the central support for the pan, showing method of raising and lowering it to vary its depth. Fiy. $1+$ is an elevation of the central charge.

A represents a pan which is substantinlly involute in outline, but whose concentratingsurface lies in the plane of a turn of an in-
verted conical helix or spiral. The surface of this pan is preferably composed of independent sections or seetors having their inner ends rather loosely connected to the rim of a central bowl 2, as indicated in Fig. 13, while their upper ends are made fast to a steel rim 3. These sectors all converge downwardly to the center, so that the pan is more or less concave, the seetional character of the pan rendering the latter flexible to allow variations in the extent of this concavity and to adapt the pan to ores of different grades and character. By supporting the outer rim of the pan at substantially a fixed le vel the bowl 2 may be raised or lowered on the central supporting-shaft 4 to change the pitch of the pan. The shaft 4 is secured in a casting 5 , fast to the bed-frame 6 , and extends upwardy through a sleeve 7 , which is fast to or cast integral with the spouts, the latter being bolted to the bowl 2, as shown. A head or cap! is fixed to this sleeve, and a scrow 10, passing through the eap, pirots on the top of shaft 4, so that by mears of the hand-wheels 11 the serew may be turned to raise and lower the center of the pan, this raising and lowering being permitted hy reason of the flexibility of the pann, operatirg through the pivotal connectiors of the sectors with the bowl. The surface of the pan is preferably covered with some impermeable and durable but flexible matcrial, such as linoleum, (indicated at 12.) On the surface of this covering are secured the curved or spiral riffles 13 , which exterd arourd the pan from a line radial to the pan or from a lize running from the widest point of the pan toward the center, and which line is herein designated as the "head" of the pan. Inotherwords, the loculs of one terminal of a majority of the riffles is in a line radial or substantially radial to the pan, and the riffles incline gradually upward and nutward in the direction of curvature around the pan, so that the material tends to travel by virtue of the centrifusal ation of 100 the pan between rather than orer the rifles. In the present instance the head of the pan is indicated loy the radial partition 14 . and the surface on the head side of this partition may be an inch, more or less, higher than the corro- 105 sponding surface on the other or tail side of the pan, as indicated in Fig. 3. The spiral riffles curve outwardly, the outermost terminating first and the others successively around the surface of the pan. The outer 110
periphery of the pan is supported by the upright standards 15 . The lower ends of these standards rest loose in sockets 16 , secured to the timber frame, and the upper ends sup5 port adjustable brackets 17 , which are bolted to the flange 18 on the under side of the pan. A spiral steel spring 19 is attached to the parts 1617 to hold the pan securely to its bearings and to reduce or eliminate all the vibration.
10 The standards 15 allow the pan to have a free oscillating movement about the central pivotal shaft or stud 4. The oscillating movement is imparted to the machine in such a manner as to cause the pulp delicered from

15

 the pan in the direction of the latter's incline and to give to the pulp its proper agitation and effect the necessary separation of the values from the worthless matter. Any20 suitable means may be provided to produce the proper oscillation of the pan. For this purpose I prefer to use the well-known principle of a double toggle, as 20, commonly used on rock-breakers and other machinery.
25 These toggles are operated from a suitable source of power through shaft 21 and eccentric 22 and connect with the rim of the par. by a connecting-rod, as 23 . A stiff steel spring 24 , having one end secured to the pan
30 and the other abutting against a suitable stop on the stationary part of the timber frame, acts in opposition to the toggles to cause a quick return of the pan and effect the adrance step by step of the material around the pan. disposed at the widest point of the pan or farthest from the center and extends a substantial distance around the pan.

The pulp ard water are delivered through 40 a suitable spout, as $2 \overline{5}$, into the splash-box 26 , whence it distributes orer the buttom of the feed-box 25 , discharging thence through openings 27 upon the pan.

The operation will then be as follows: The 45 pan being given an oscillatory motion, the pulp from box 25 , falling as it does upon the pan nearest its periphery and farthest from the center, is subjected immediately to the greatest agitation, throwing down at once all forward on its jourcev around the pan, while the gangue and lighter portiors flowing over the riffles 13 will graritate toward the center. A water-pipe 28, supported on suitable brack-
55 cts 29 , extends around the periphery of the pan beyord the feed-box and is perforated on its inner side, so as to cast a spray of numerous jets of clear water upon the outer edge of the pan adjacent to the rim. In order to
60 distribute this water so as not to allow anr considerable separate streams to flow directly across the pan and interfere with the proper stratifyirg of the nuterial thereon, I employ a water-strip 30, preferably of rubber and se-
65 cured to the pan adjacent to the rim 3 and
forming therewith a channel into which the jets from pipe 28 discharge, letting the water out of this channel through suitable perforatiors 31 in the strip. The circular form of the pan affords the greatest amount of area for cleanirg and corcentrating purposes within the smallest space, which in machines of this character is of vital importance. As the fireer concentrates approach the center in their line of travel arourd the pan, the motion imparted to the pulp is varied, the agitation and impulse growing less as it nears the end of the riffle system. This not only affords a suitable agitation for all classes of sulfids, including the very lightest, which require less agitation for settling purposes than do the heavier particles, but these heavier concentrates which are already formed on the outer circumference travel slower and assume a more stratified position as they go onward, thus making the separation. more complete. The formation of the strata of the heariest minerals on the outer edge of the pulp prevents the wash-water washing away the finer and more delicate minerals which lie on the surface of the pan and under the gangue nearest the heavier mineral already developed. These finer values are gradually separated from the baser matter in their progress around the pan, the gangue, being lighter, naturally seeking the center and the heavier matter the outside of the pan, as described, so that in the end we have a thorough and complete separation and stratifieation from the center to the outside of the pan of all the values according to their specific grarities. Passing beyond the riffles, the ralues remaining on the pan are worked forward until they finally discharge into a spout 32 and can be collected into any suitable receiver, the adjustable finger 33 serving to direct the material as lesired. The gangue passing over the pan discharges into bowl 2 and passes thence out as waste through spout 8 . The pan adjacent to the bowl 2 and within the innermost riffle is given an accelerated pitch, as indicated in Fig. 13, to assist in the more rapid passage of the gangue after it is once free of the riffles. Some ores slime more than others-that is, their values become ground into a pulp too fine for ordinary concentration. Ore-pulp of this character fed upon my pan will be worked around the pan in the mamer described. The fine slime being heavier will approach the center about two-thirds of the distance around the pan, and unless some means is provided for their collection they will eventually flow off with the rest of the gangue and barren matter through spout S . Aecordingly I construct the bowl? with two compartments, one opening into spout 8 and the other laving a separate discharge, as 34 , this latter eompartment being covered with a very-fine-mesh screen, as 35 . If the pan
were handling pulp, for instance, which had passed through a forty-mesh screen from the mortar, the sereen 35 would be about eightymesh, any values larger than eighty-mesh be-
5 ing caught by the riffles 13 and duly stratified. The finer slime values approaching screen 35 will pass therethrough and out at spout 34 to be separately collected, while any lighter barren matter too large to pass through
1o screen 35 will be delivered into the regular gangue-discharge in bowl 2 .

Having thus described my invention, what I claim, and desire to secure by Letters Patent, is-

1. A concentrating-pan having a concaved upper surface and mounted upon a central support, said pan being essentially involute in outline, riffles on the surface of the pan, said pan having a central discharge, means
20 located at the widest purtion of the pan for delivering material upon the pan in the field of maximum agitation and means for giving the pan an oscillatory movement.
2. A concentrating-pan having a concaved 25 upper surface and mounted on a central support, said pan being essentially involute in outline, spiral riffles on the pan and a feedbox arranged around the pan at substantially the point farthest removed from the
30 central support, said pan having separate discharges for the values and worthless matter and means for giving the pan an oseilatory movement.
3. In a cencentrator, a pan having a cen35 tral discharge and a coneaved riffled surface wherein the riffles commence at a common line which is radial to the pan said riffles terminating at irregular intervals around the pan, means for supporting the perimeter of
40 the pan, means for supplying pulp to the pan at substantially the point farthest removed from the central discharge, and means for raising and lowering the center of the pan to vary its depth.
45 4. A concentrating-pan having a concaved upper surface essentially involute in outline, and having riffles on said surface commencing at a common line radial to the pan and terminating at irregular intervals around the
5° pan, said pan composed of a series of sections rigidly supported at their outer ends, and flexibly supported at the center, means for raising and lowering the imer ends of said sections to vary the depth of the pan, means
55 for delivering material upon the pan in the field of maximum agitation, and means for oscillating the pans.
4. A concentrating-pan having a coneaved upper surface and a central opening, said pan
6o having riffles on its surface commencing at a common line radial to the pan and terminating at irregular intervals around said pan, means for supporting the pan at the center and at its periphery to permit it to oscillate 65 in a horizontal plane, said pan composed of
a plurality of sectors flexibly supported at the center, means for raising the inner ends of these sectors to vary the depth of the pan, a flexible covering supported on these sectors, curved riffles supported on said covering, and means for delivering material upon the pan in the fied of maximum agitation.
5. An ore-coneentrating pan háring a concaved upper riffled surface, with the riffles commencing at a common line which is substantially radial to the pan and terminating at irregular intervals around the pan said pan being essentially involute in outline and the surface of the pan lying in a spirally-descending plane.
6. An ore-concentrating pan having a coneaved upper riffled surface, saicl pan being essentially involute in outline and the surface of the pan lying in a spirally - descending plane.
7. An ore-coneentratıng pan having a concaved upper riffled surface, said pan being essentially involute in outline and the surface of the pan lying in a spirally - descending plane, the pan having a central discharge, and means for delivering pulp at one or more points on said pan most remote from the center and in the field of maximum agitgtion of said pan.
8. An ore-concentrating apparatus com- 9 prising a shallow inverted conical pan having a central and movable peripheral supports, means by whieh said pan is abruptly oseillated about its center, means for diseharging pulp and wash-water near the periphery of the pan, a series of spirally-disposed riffles fixed upon the surface of the pan, and each commencing at a common line which is sul)stantially radial to the pan, said riffles terminating at irregular intervals around the pan, said surface declining in a curve from the commencement to the termination of the riffles, and separate discharge-openings for the concentrated mineral and the gangue.
9. An ore-concentrating apparatus com- iro prising a shallow inverted conical pan having a central and movable peripheral supports. means by which said pan is abruptly oseillated about its center, means for discharging pulp and wash-water near the periphery of the pan in the field of maximum agitation. a series of spirally-disposed riffles fixed upon the surface of the pan, said riffles and cach commeneing at a common line which is substantially radial to the pan, said riffles terminating at irregular intervals around the pan, declining in a curve from the commencement to the termination of the rilles said pan having a separate discharge for the gangue and radially-extending openings in the body of the pan in the path of the raliues for the separate discharge and collection of the latter.
10. In a concentrator, a shallow horizon-tally-supported concaved pan having a flexi- 130
ble bottom said pan being essentially involute in outline, vertical standards upon which the periphery of the pan is supported and movable, a central post with socket-sleeve cap be raised or lowered, spirally-disposed riffles upon the surface of the pan, means for delivering pulp and wash-water at the outer periphery thereof in the field of maximum'agitation, and mechanism by which a circular oscillatory movement of the pan is effected.
11. In an ore-concentrator, a circular pan having a concaved upper riffled surface with the riffles commencing at a common point substantially radial to the pan and terminating at irregular points around the pan, and a flexible bottom, means for supporting the outer periphery of the pan, said meansincluding standards loosely pivoting in sockets in the bed-frame and pivotally engaging corresponding parts on the pan, springs relative to said standards and operating to hold the pan to its seat, a central support for the pan and means for raising and lowering the center of the pan to vary its depth.
12. An ore-concentrating pan having essentially the outline of an involute and arranged with its upper surface in a spirallydescending plane, a partition extending from the center of the pan outwardly at the highest point of the surface of the same, and curved riffles extending around the pan in the direction of the decline of eurvature, means for delivering pulp and wash-water on the pan in substantially the field of maximun agitation and separate discharges for the gangue and values.
13. An ore-concentrating pan having essentially the outline of an involute and aro ranged with its upper surface in the plane of a turn of a conical helix, a radial'partition extending from the center of the pan outwardly at the highest point of the surface of the same and curved riffles extending around the pan in the direction of the decline of cur- vature; means for delivering material onto
the pan at the-widest part thereof, and separate discharges for the gangue and values.
14. An ore-concentrating pan having essentially the outline of an involute and arranged with its upper surface in the plane of a turn of a conical helix, a radial partition extending from the center of the pan outwardly at the highest point of the surface of the same and curved riffles extending around
the pan in the direction of the deciine of curvature, a curved segmental feed-trough disposed at the outer edge of the pan at its widest part, said pan having a central discharge for the gangue and having discharge- 60 passages intermediate of its center and periphery for the values.
15. In a concentrator, a circular concaved pan having an upper riffled surface arranged in a spirally-descending plane and a central 6 discharge, means for delivering material upon the pan, said pan having a discharge-passage for the values intermediate of its center and periphery, said passage extending transverse to the general direction of movement of the values.
16. In a concentrator, a circular pan having a concaved upper riffled surface and a central opening, a bowl in said opening having a discharge for the gangue and a separate screen-covered receptacle for the finer slimes passing over the pan, means for supporting the bowl, means for supporting the outer periphery of the pan, means for delivering material and wash-water upon the fian, said pan 8o having a discharge for the concentrated values intermediate of its center and periphery and means for giving the pan an oscillatory movement.

In testimony whereof I have hereunto set 85 my hand in presence of two subscribing witnesses.

JOSEPH WILLIAM PINDER.
Witnesses:
Francis G. Smith,
L. J. Fontenrose.
J. W. PINDER.

ORE CONCENTRATOR.
APPLICATION FILED FEB. $28,1906$.
3 SHEETS-SHEET 1.

J. W. FINDER.

ORE CONCENTRATOR.
APPLICATION FILED FEB, 28,1900

J. W. PINDER.

ORE CONCENTRATOR.
APPLICATION FILED FEB. 28, I906.

Siventor
Tosentw. Piruler

UNITED STATES PATENT OFFICE.

JOSEPH W. PINDER, OF SAN FRANCISCO, CALIFORNIA.

ORE-CONCENTRATOR.

No. 12.590.
Specification of Reissued Letters Patent.
Reissued Jan. 8, 1907.
Original No, 744,229, dated November 17, 1903. Applination for reissue filed Febroary 28, 1906. Serial No. 264,201.

To all whom it may concern:
Be it knowi that I, Joseph W. Pinder, a citizen of the United States, residing in the city and county of San Francisco, State of
5 California, have invented certain new and useful Improvements in Ore-Concentrators; and I do hereby declare the following to be a full, clear, and exact description of said invention, such as will enable others skilled in
10 the art to which it most nearly appertains to make, use, and practice the same.

My invention relates to that class of oreconcentrators for separating and saving the heavy particles of metal contained in earthy r 5 deposits or ore-pulp in which a shallow pan or concave table is mounted on a central vertical shaft and connected with operating mechanism by which a reciprocating rotary motion accompanied with a jolt or jar at the
20 termination of each reciprocation is imparted to the pan or table.

My improvements relate to the surface construction of the pan or table, whereby the separation and concentration of the heavy icles are accomplished; and it consists principally in the arrangement of spiral riffles on the upper surface of the pan or table, whereby the motion and jar of the pan compel the particles to work in a circle outward connection with this riffle and table construction I combine a system of pulp-distribution and water-spraying devices by which the separation and cleaning of the particles are accomplished during their travel. It also includes a central trap or basin of peculiar construction for the purpose of catching and saving any escaping mercury or analgam that may pass downward over the riffles, all as hereinafter more fully described.
Referring to the accompanying drawings. Figure 1 is a plan view of my pan or table. Fig. 2 is a vertical section of the pan, taken through the line $x x$, Fig. 1. Fig. 3 is an enlarged sectional view of the central trap of view of a section of the distributing-trough,
and Fig. 5 is a side view of the connection of the reciprocating rod with the depending rim of the pan. Fig. 6 is a cross-section of the pan and its support, taken at a right angle to 60 $x x$, Fig. 1. Fig. 7 is a side view of the actuating mechanism, and Fig. 8 is a partial vertical section showing the construction of the pan.

Let A represent a circular pan or table 65 which is slightly concave on its upper surface. The bottom or floor of this pan or table may be made solid and fixed or it may be made of independent triangular-shaped sections with their widest portions at the outer rim and their apices at the center. I prefer to make it of these independent sections, so that the incline or concavity of the upper surface of the pan can be varied and regulated, as hereinafter described. This floor when made solid can be supported directly from a central socket B ,-which fits over and rests upon the upper end of a stationary spindle C. This latter spindle is fixed in and secured to the framework or base D , upon which the pan is mounted; but when the floor is made up of independent triangular sections, as above specified, it is supported on a shallow vertical rim E, which extends around underneath the floor of the panat a point between the middle and outer edges of the sections. This rim is then supported by bracing-arms G from a loose sleeve F, so that by raising or lowering the sleeve on the spindle the center or apex ends of the floor-sections can be raised or lowered like an umbrella, and thus vary the pitch or incline of the floor. To provide for raising or lowering this sleeve, I form or secure to it a collar h, in the outer face of which is a circular groove. A wedge-shaped bar I then enters this groove and is connected by a rod j with a hand-wheel K. The outer end of the rod is threaded and passes through a threaded hole in a block L, which forms a part of the framework or base, so that by turning the handwheel the wedge can be moved back or forth, and thus raise or lower the sleeve.

The outer edge of the pan A has the form of an evolute, so as to carry its rim on one side outward to a distance, and the terminus of this evolute is connected in a straight or radial line a with the commencement of the evolute. A shallow rim M passes entirely around this evolute edge except the straight radial portion above described, which forms the point of discharge for the sulfurets.

The floor of the pan should be perfectly
smooth before the riffles are applied, and when I use the independent triangular secthons I cover and stretch tightly over it some smooth material, preferably linoleum.

In the central portion of the pan surrounding the supporting-socket I construct my improved amalgan-trap, which will be hereinafter described. Commencing at the outer edge of this rmalgam-trap, I then secure - upon the smooth bottom of the pan a series of shallow riffles $n n n$, which are made in evolute form and here shown as terminating at different points at regular intervals on the same outer circle at the outer edge of the con5 centrating part of the pan, so that the space between each two riflles will diseharge its burden at a separate interval into the outer track at the periphery of the pan, which leads to the point of discharge. These rif-
20 fles, it will he observed, open out or expand around the pan in the direction in which the concentrates are to travel. This permits the concentrates to move between rather than across the riffles, therely preventing their
The pulp is distributed at proper intervals on the table and at points proximate to the outer ends of the riffles by means of the dis-triluting-troughs P P, which are supported
30 on brackets $p p$ from the outer edge of the table. The material for distribution is delivered to troughs PP through the boxes OO. Sccured to the outer lower corners of the troughs is a carpet Q, with its nap side down, 5 and this carpet passes loosely over and rests upon the top of all the riffles down to the amalgam-trough. The ore-pulp is fed through holes r r in the outer side of the dis-tributing-troughs P, so as to pass under40 neath the earpet as it flows downward over the riffles toward the center of the table. A water-pipe R surrounds the outer edge of the pan lying just above the shallow rim M, and this pipe is perforated on its inner side, so as 45 to cast a spray of numerous jets of clear water upon the outer edge of the table. This water passes down the floor and earries the pulp over the riffles and underneath the carpet. At the same time a jigging motion is 50 imparted to the pan by meehanism hereinafter descriled, hy which the light and heary particles are caused to be separated by the combined action of the riflles, the flow of water, and the motion, so that the heavy parti55 eles will settle hetween the riffles aecording to their specifie gravity and be carried around between the riflles by the movement of the pan and bedelivered into the outer dischargetrack, whence they are carried to the disso charge-opening of the pan. The water contimally llowing downward carries the lighter particle's toward the center discharge and trap, and the sweeping aetion of the carpet as the pulp llows underneath it causes its nap to 65 gather any fne floating particles or slimes
that may come in contact with it until they aggregate or become saturated sufficiently to sink of their own gravity.
The amalgam-trap consists of two com-partments-to wit, an outer shallow compartment or trough S-into which the overflowing tailings are first received. This compartment or trough is separated from the discharge-compartment T by a partition U , which is somewhat lower than the outer edge of the trough S, so that the tailings will overfow the partition into the dischargecompartment' T . The partition U has a narrow horizontal shelf V projecting over it into the trough S, and a perforated water-pipe W extends around under this shelf into the trough. The action of this spray is to cause an ebullition in the trough and a consequent eddy below the pipe, so that any amalgam or mercury that enters the trough will be settled and caught, while the light and worthless portions will overtlow the partition into the discharge-compartment T and pass ofi through the waste-spout X .

The motion which I impart to the pan or table is a slow motion in one direction and a quick motion or jolt in the opposite direction. This is accomplished by means of a cam 2, acting upon a tappet 3, which is attached to the actuating-rod 4. This is a horizontally-sliding rod, the opposite end of which is connected with the vertical rim E, as shown at Fig. 5, or it may be cunnected with some other part of the pan. The cam 2 pushes the rod slowly in one direction until the tappet is released from the end of the cam, when a spring 5 on the outcr end of the rod gives it a quick return motion, accompanied with a jar, which motion being imparted to the table causes the heary particles which are caught between the riflles to travel ontward by reaction in the path of the rifiles until they are discharged in regular order at the end of the discharge-track.

This pan will soparate and concentrate the 110 heavy particles in a clean condition and they will be delivered by the evolute riffles in the order of their specific gravity. The carpet or other fabric will sweep the surface of the flowing pulp clear of floating particles of value and hold them until they are in a condition to settle and be caught by the riflles, while the amalgam-trough will catch and save any particles of mercury or amalgam that atiempt to escape through the de- izo pressed center of the pan.

Having thus described my mention, what I clain, and desire to secure by Letters Patent, is-

1. A concehtrating pan or cable having a 125 concave upper surface mounted on a center support that permits it to oscillate in a horizontal plane: a mercury and amnlgam trap at the center of said table: spiral or evolute rifles sccured to the upper surface of said 130
table and terminating at stated intervals on the same circle near the outer periphery of the pan: distributing-boxes adapted to deliver the pulp at or near the outer edge of the
5 series of riffles: means for imparting to said pan an oscillatory motion: aud a perforated water-pipe surrounding the outer edge of the pan or table, substantially as above described.
2. A concentrating pan or table having a concave upper surface, the circumference of said pan having the form of an evolute: a central support for the pan which permits it to oseillate in a horizontal plane: a mercury
15 and amalgam trap at the center of said pan: spiral or evolute riffles secured upon the bottom of the pan and terminating at their outer ends at intervals on the same circle near the outer edge of the pan: distributing-boxes 20 adapted to deliver the pulp at the outer edge of the riffles: a water-pipe surrounding the outer edge of the pan and adapted to deliver a spray of clear water upon the outer edge of the table and means for imparting to the pan
25 a rotary oscillation in a horizontal plane, substantially as described.
3. In a concentrating-pan having a concave upper surface, spiral or evolute riffles terminating at intervals on the same circle
30 near the outer edge of the pan: a track surrounding said riffles on the outer periphery of the pan: means for imparting to the pan a slow rotary movement in one direction and a quick motion in the opposite direction so as 35 to cause the particles to travel outward between the rillles: and a central mercury and amalgam trap at the center of the pan, substantially as described.
4. In a concentrating-pan having a con-

40 cave upper surface spiral or evolute riffles on the upper surface of the pan: a track surrounding said riffles at the outer periph:sy of the pan: distributing-boxes arranged to deliver the pulp between the outermost riffles: 45 means for imparting to said pan an oscillatory motion: a mercury or amalgam trap at the center of said pan and a water-pipe surrounding the outer edge of the pan and adapted to spray the water upon the outer circle of the pan.
5. A concentrating-pan the exterior outline of which is in the form of an evolute said pan being mounted on a pivotal center: a rim surrounding the exterior of the evolute except
55 at the straight line which connects the outer end of the evolute with its commencement: a mercury or amalram trap at its center: spiral or evolute riffles commencing at the central trap and terminating at intervals on the 60 same circle near the outer edge of the pan: a track surrounding the riffles at the outer periphery of the pan and terminating at the straight line which connects the terminals of the evolute: a water-pipe surrounding the
65 outer rim of the evolute and adapted to de-
liver a spray of water upon the table and means for imparting to the table a slow oscillating movement in one direction and a quick movement in the opposite direction, substantially as described.
6. In a concentrating-pan a concave upper surface: a mercury or amalgam trap at the center of the pan: spiral riffles surrounding the amalgam-trap: distributing-boxes adapted to deliver the pulp between the outermost riffles of the series: a carpet spread over said riffles with its nap side down and attached at its outer edge to the distributing-boxes so that the pulp will pass underneath it: a waterpipe surrounding the outer edge of the pan 80 and adapted to deliver a spray of water on the outer edge of the pan and means for imparting to the pan a slow oscillating movement in one direction and a quick return movement in the opposite direction, substan- 85 tially as described.
7. In a circular conceatrating-pan having a reciprocating motion, and provided with spiral riffles on its concave upper surface, a central trap consisting of an outer shallow trough and an inner discharge chamber or passage; a partition lower than the outer edge of the trough separating said trough from the discharge-passage; a narrow shelf on top of the partition and projecting into the trough, and a perforated water-pipe below the shelf and adapted to deliver a spray of water into the trough, substantially as described.
8. A concentrating pan or table having a 100 concave upper surface mounted on a center support that permits it to oscillate in a horizontal plane: a mercury and amalgam trap at the center of the table; spiral or evolute riffles secured to the upper surface of said table 105 and opening outwardly toward the periphery of the table:-distributing-boxes adapted to deliver the pulp at or near the outer edge of the series of riffles: means for imparting to said pan an oscillatory motion: and a perfo- : 10 rated water-pipe surrounding the outer edge of the pan or table.
9. In a concentrating-pan having a concaved upper surface, spiral or evolute riffles extending from points substantially central 115 of the pan toward the periphery thereof: a track surrounding the riffles approximate to the periphery of the pan: means for imparting an oscillatory movement to the pan to cause the particles to travel outward be- 120 tween the riffles, and said pan having a central water and gangue discharge.
10. A concentrating-pan, the exterior outline of which is essentially evolute in outline, said pan having means for centrally supporting it for oscillatory movement in a horizontal plane, and means for oscillating said pan.

11: A concentrating-pan, the exterior outline of which is essentially evolute in outline, said pan having means for centrally support- 13°
ing it for oscillatory movement in a horizontal plane, spiral riffles on the pan opening outward toward the periphery of the pan, and means for oscillating said pan.
12. A concentrating-pan having a concaved upper surface, the exterior outline of said pan be'ng essentially evolute in outline, the wider and narrower portions of said pan being connected by an approximately radial cillating said pan.
13. A concentrating-pan, the exterior outline of which is essentially evolute in outline, said pan having means for centrally support-
15 ing it for osoillatory movement in a horizoncal plane, means for oscillating said pan to cause material to tend to travel around the pan in one direction, and spiral riffles on the pan expanding outward toward the periph-
the direction of the tendency of travel of the material.
14. A concentrator-table mounted for os-
cillatory movement in a horizontai plane, spiral riffles on the table expanding outward 25 toward the periphery of the pan, and means to impart an oscillatory movement to the pan to cause the heavier particles on the table to travel between the riffles.
15. A concentrating pan or table having a 30 concaved upper surface and mounted upon a central support for oscillatory movement in a horizontal plane: said table being essentually evolute in outline, riffles on the table having their outer ends relatively more re- 35 mote from the center of the table than their inner ends are, means for delivering material and water upon the table, and means for giving the table an oscillatory movement.

In witness whereof I have hereunto set my 40 hand.

JOSEPH W. PINDER.

Witnesses:
Henry P. Tricou, S. H. Nourse.

COMPLAINANTS' EXHIBIT No. 54
Ford Patent No. 830,425
AL.MON E. HART, Special Examıner

No. 830,425 .
PATENTED SEPT. 4, 1906.
W. E. FORD.

ORE CONCENTRATOR.
APPLICATION FILED MAY $10,1905$.

Alfuz:cigz
W. E. FORD.

ORE CONCENTRATOR.
APPLIOATION FILED MAY10, 1905.
4 SHEETS-8HEET 2

WITNESSES:
S. R. Hermax 2
sen. Geyard.
7res.es.

IAIENTOR EVIETRORCl

W. E. FORD.

ORE CONGENTRATOR.
APPLIOATION FILED MAY10, 1005.

W. E. FORD.

ORE CONCENTRATOR,
APPLIOATION FILED MAY $10,1905$.

Hotrod
Witucses
E. Kivanbach
I. Io Thue That

UNITED STATES PATENT OFFICE.

WILLIAM E. FORD, OF CARTHAGE, MISSOURI.

ORE-CONCENTRATOR.

No. 830, 425.
Specification of Letters Patent.
Applioation filed May 10, 1905. Serial No. 269,746.

To all whom it may concern:
Be it known that I, William E. Ford, a citizen of the United States, residing at Carthage, in the county of Jasper, State of Mis5 souri, have invented certain new and useful Improvements in Ore-Concentrators; and I do hereby declare the following to be a full, clear, and exact description of the invention, such as will enable others skilled in the art to ro which it appertains to make and use the same.

This invention relates to ore-treating machines, and more particularly to those known as. "concentrators," and has for its object to
15 provide a nachine of this nature which will be arranged to separate matter of various specific gravities.

Another object is to provide a machine of this kind which will be susceptible of adjust20 ment and which will include a movable bed and means for moving the latter.

Another object is to provide a bed equipped with the ribs known as "riffles," these riffles being arranged in a novel manner.

Other objects and advantages witl be apparent from the following description, and it will be understood that changes in the specific construction shown and described may be made within the scope of the claims aud 30 that any suitable materials may be used without departing from the spirit of the invention.

In the drawings forming a portion of this specification, and in which like characters of 35 reference indicate simular parts in the several views, Figure 1 is a side clevation. Fig. 2 is longitudial section. Fig. 3 is a top plan view of the reciprocating inechanism. Fig. 4 is a transverse section of the bel. Fig. 5 is a
40 transverse section on line 55 of Fig. 3. Fig. 6 is a top plan view of the bed. Fig. 7 is a detail sectional view showing two of the riffles at the feed end of the bed. Fig. 8 is a sertional view showing two of the riffles adja45 cent to the discharge end of the bed. Fig. 9 is a longitudinal section of the bed, showing one of the riffles in side clevation. Fig. 10 is a perspective view showing a portion of a bed embodying a modified form of the in-
50 vention. Fig. 11 is a side elevation of the invention, showing the table-actuating mechanism in full lines at one limit of its movement and in dotted lines at the other limit of its movement,

Referring now to the drawings, the present
invention comprises a plurality of trans-versely-extending shafts 5 , journaled at their ends in brackets 6. Mounted upon thess shafts there are supporting members 7 , which include upwardly and inwardly di- 60 rected side pieces 8 , haring horizontally-extending members 9 , journaled therebetween at their upper ends. A longitudinally-extending shifi-rod 10 is mounted in these members 9 , and piroted upon this shift-rorl there is a bed 11 , including spaced trans-rersely-extending beans 12 , having openings 12^{\prime}, in which the shift-rod is revolubly engaged and to which at the ends are securenl longitudinally-extending sills 13, havinge a flow 14 secured thereupon, this floor being formed of diagonally-disjosed planks.

The shift-rod 10 is located at one side of the central longitudinal axis of the bed, and pivoted to the sill 11^{\prime}, which lies farthest from the shift-rod, there are a plurality of depending links 15 , which are pivoted at their lower ends to the horizontally-extending arms 16 of bell-crank levers 17, which are pivoted upon brackets 18. The remain- 8 ing arms 19 of the bell-crank levers extend upwardly and are comected by a rod 20 . A horizontal arm 21 extends oppositely from the arm 16 of one of the levers and has an outer end 22 , against which rests one end of a 85 threaded bar 23 , which is engaged in the threaded perforation 24 of a block 25 , the latter being secured upon a suitable support 26 , which may be a horizontally-extended portion of the bracket 18, to which the last-mentioned bell-crank lerer is attarhed. The bar 23 is provided with a herizontal hand-wheet 27 , and it will thus lee seen that the just-described portion of the machine may be operated to vary the transverse pitch of the bed.

The beain 12, which lies adjacent to the rearward or feed end 28 of the bed, is indicated at $12^{\prime \prime}$, and located at this end of the bed there is an actuating mechanism 29, mounted upon a foundation 30, consisting of a concrete base E, upon which are secured a pair of longitudinally-extending spaced channel-irons F ind G, their webs Il being -disposed vertieally and their flanges I being directed outwardly, the upper flanges being somewhat narrower than the lower flanges. Cast integral with the upper flanges of a channel-iron adjacent to the forward ends thereof are boxings 35 , in which a rock-shaft 34 is journaled, and mounted uron the upper 1 o

Hanges I adjacent to the rearward ends thereof are boxings K , in which is.journaled a power-shaft 41 , and these boxings are adjustable longitudinally of the chanmel-irons
5 to permit of rariation of the positions of the arm 38 and link 35^{\prime} with respect to each other.

The channel-irons F and G are secured to the concrete base E by means of anchorto bolts L. Extending upwardly from the channel-irons forwardly of the boxings 35 there are projections M. which are connected by a yoke N. extending downwardly between the channel-irons, and these projections are 15 held in position by bolts O engaged therein and in the upper flanges I of the channelirons. The projections M receive thereagainst the rearward end of a helical spring 33, whieh surrounds the shift-rod 10 and which rests at
20 its forward end against the beam 12", this - pring forming a buffer to prevent lost motion between the working parts.

The channel-irons F and G have a yoke N^{\prime} secured therebetween adjacent to their rear-
25 ward ends, and this yoke has its spaced portions fastened to the webs H of the channelirons by means of suitable bolts, the yokes II and N^{i} thus acting to connect the channelirons and strengthen the structure. The
30 forward ends of the chanuel-irons are slanted downwardly and forwardly, as shown at P .

The rock - shaft 34 extends transversely and has an upwardly-extending crank $3 \bar{o}^{\prime \prime}$ therein. which is comected by means of a
35 curwed link 36 with the adjacent end of the rod 10 this rod having spaced arms 37 connected therewith, between which the link 36 is piroted. At one end the shaft 34 has an upwarlly-extending arm 38 , having a later-
40 ally-projecting pin 39 at its upper end, which is idjustably engaged in a slot 34^{\prime}, formed longritudinaliy in the upper portion of a link :5', which extends downwardly and which is pimoted to a crank 40, carried by the hori-
45% entally-extending power-shaft +1 .
The arm 38, as mentioned above, is pivoted to the link 35 ' above the planes of the Whafts 34 and $: 1$, and it will be seen from the drawings that as the shaft 41 revolves the
50 crank to, revolving therewith, will rock the arm 38 through the medium of the link 35^{\prime}, and the are through which this arm moves is one of approximately eighty degrees. By reason of the faet that the crank $35^{\prime \prime}$ and the
55 arm 38 oecupy a common plane longitudinally of the shaft 34 , as shown, the crank $35^{\prime \prime}$ also moves through an are of approximately eighty degrees, and the arrangement is such that when the crank is at the forward limit
60 of its movement in the direction of the bed it occupies a nearly-vertical position, the rank occupying an approximately horizontal position when at the rearward limit of its novement. It will thus be seen that this
65 crank moves through a portion of a circle de-
sribed concentrically with the shaft 34 , and this portiom of the circle is the upper portion of that half of the circle which lies farthest from the berl.

It will of course he seren that when the 70 crank $35^{\prime \prime}$ mores throngh it are the shiftrod 10 will be moved thrugh the met!imn of the link 36 , and it will alsol $1 x$ apparent that when the crank is moved rearwardly its horizontal minvement is constamly decreased and the rate of horizontal movement of the shift-rod is proportionately decreased, the rate of morenemt of the shift-rod heing inreased when the rrank is moved upwardly and forwardly until the crank has reached the forward limit of its movement, when the maximum of speed of the slift-rod and therewith the bed will have heen reached. When the crank has reached the forward limit of its movement, its motion and that of 85 the shift-rod and hed are reversed, and this reversal takes place when the bed is momer at its greatest rate of specd. By reason of the fact that the speed of the shift-rod 10 is constantly decreasing during the rearward movement thereof, the power of this shiftrod is constantly increased, and it will be seen that the builer-mping 33 is compressed during this increase of prower. By reason of the propertionate lenerths of the link 35^{\prime} and the arm 3.5 the crank to moves through a greater portion of its circle when the arm 38 is being moved rearwardly than when the arm is being moned lorwadiy, so that the bed 11 is moved forwardy at a greater rate of speed than when it is inosed rearen ardy: By reason of the fact that the rearward movement of the bed is at :s rate of speed less than that of the forward movement thereof, dhe power exerted by the shaft is further incteased luring its rearwarl movement, and this increase of power also occurs during the eompression of the -pring 33.

The shaft 34 is mbroken, the crank $35^{\prime \prime}$ being formed by spaced arms 35^{a} and $35^{\text {b }}$, which extend at right angles to the shaft, and the link 36 is concave at that surface which lies in the direction of the shaft $3+$ to receive into its concavity the portion of the shaft extending between the arms 35^{a} and 35^{b}. It will thus be seen that a structure is provided the strength of which is materially increased by the fact that the shaft is unhroken.

A supporting-link A is pivoted at its upper end upon a pin B , extending laterally from an arm (', which depends from the rearward end of the shift-rod 10, this pirot-point being in a horizontal plane with the pivotpoints of the supporting members 7 and the members 4, and at its lower end the link 1 is piveted on a bolt D, engaged in the webs of the channel-irons, this bolt occupring a common plane with the shafts 5 . The link A thus supports the rearward end of the shiftrod 10 .

Located above the floor 14 of the bed there are a plurality of longitudinally-ex:ending planks Z, which form the working surface of the bed, and formed integral with
5 these planks there are a plurality of up-wardly-projecting longitudinally-extending riffles 43 of equal width, which extend parallel to each other and in spaced relation Each of these riffles consists of a base portion io Y and an upper central portion X, the former being somewhat wider than the latter and having its upper surface at opposite sides of the central portion slanted downwardly and outwardly to the working surface W of the
15 bed. The upper portions \mathbf{X} of the riffles are reduced in height gradually from their rearward to their forward ends and the upper surfaces of these central portions are curved transversely throughout their entire lengths,
20 as shown at V . Throughout their rearward portions the central portions X of the riffles have vertical side surfaces \mathbb{T}^{\top}; but by reason. of the fact that the central portions of the riffles are slanted downwardly toward their 25 forward ends these vertical surfaces are constantly reduced in height until they disappear, and the arcs V terminate at the slanted surfaces of the base portions Y. It will be readily seen that betweeu this point and the constantly lessening convexity due to the further reduction of the height of the central portions of the riffles until the ares disappear entirely, these arcs being merged into it will also be seen that the height of these base portions is reduced until they terminate at their forward ends at the working surfar 3 , the forward ends of the rifles being
40 spaced from the furward end of the bed.
At the side edge of the bed 11, which lies farthest from the rod 12, there is a watersupply box 40 ', arranged to discharge water upon the bed.

In operation the shaft 41 is rotated upwardly and away from the bed, which causes the bed to move quickly forwardly and then slowly rearwardly, the speed leeing constantly increased during its forward move-
50 ment and constantly decreased during its rearward movement, as described above, and it will be seen that when the hed is at the forward limit of its movement the crank $35^{\prime \prime}$ will extend at a lesser angle to the plane of move-
55 ment of the bed than when the bed is at the rearward limit of its movement, this being due to the fact that the crank mover through the portion mentioned above of a 'ircle deseribed concentrically with the shaft 3.4 . Ore to be 60 separated is placed upon the bed at the rearward or feed end thereof and the movement of the bed causes the ore to ber thrown toward the discharge end thereof. At the same time water from the rischarye-box 40^{\prime}
65 passef over the surface of the bed trans-
versely and the particles of matter of lesser specific gravity are carried off thereby, the particles of greater sperific gravity falling between th. riffles. It will thus be seen that the 'heav st motter will be deposited hetween the riffles which lie nearest to the wa-ter-box and that the particles of lessening weight will extend toward the opposite side of the bed, the light waste matter being carried off entirely.

As will be readily understood, the transverse pitch of the bed may be varied as described above to suit different conditions, and by means of the slot 34^{\prime} of the link 35^{\prime} the mechanism is susceptible of adjustment to vary the length of the are through which the arm 38 moves. By reason of the fact that the power-shaft 41° is adjusteble toward and away from the slaft 34 the relative length of time consumed by the bed in its forward and rearward movements may be varied.
In Fig. 10 there is shown a modified form of the invention, in which the riffles 43 from the water-supply side of the led to the discharge side thereof lie with the points at which the vertical side faces of their central portions Y disappear forwardly of these points of the preceding riffles, so that these points lie in a diagonal line extending transversely of the bed and the riffles terminate at their rearward ends on a diagonal line parallel to the line at which the vertical faces of the riffles disappear.
What is claimed is-

1. In a nechanism of the class described, the combination with a reciprocating bed, mearis for recijrocating the bed, said means comprising an umbroken roek-shaft, a crank carried by the rack-shaft, a curved link pir- 105 oted to said crank a nd disposed with its coracaved side toward the said roek-shaft and being arranged to receive the said shaft in its concavity, and connections between the said link and the bed to reciprocate the latter when the crank is rocked, said crank being arrangerl to extend when at the limit of its movement toward the bed, at a lesser angle to the plane of movement of the bed than when the crank is at the limit of its move- II_{5} ment away from the bed.
2. In a mechanism of the class deseribed, the combination with a reciprocating bed, of means for rociprocating the bed comprising an unbroken rock-shaft, a crank carried by 20 the rock-shat and movalde toward and away from the herl, a curved link proted to said crank and di-pored with its concaved side toward the -aid rock-slaft and being arranged to receive said rock-shuft in its eon- 125 cavity, connections between ilie link aud the bed in reciprocate the latier when the crank is rocked, sairl erank being morable to intcrease the angle betwees, it ancl the plane of movement of the led whell the crasik is $1 z^{\circ}$
moved away from the bed and to decrease said angle when the crank is moved toward the bed.
3. In a meehanism of the class deseribed, the combination with a reciprocating bed, of means for reciprocating the bed, said means comprising an unbroken rock-shaft, a crank carried by the rock-shaft, a curved link pivoted to the crank and disposed with its conand side toward the rock-shaft and being arranged to receive said shaft in its concavity, and connections between the link and the bed for reciprocation of the latter when the shaft is rocked, said crank and link being movable to respect to each other to increase the angle between the crank and the link when the crank is moved toward the bed, and to decrease said angle when the crank is moved away from the bed.
In a mechanism of the class described the combination with a reciproeating bed, of means for reciprocating the bed comprising an unbroken rock-shaft, means for rocking the shaft, a crank carried by the rock-shaft, a 25 curved link pivoted to the crank and operative connections between the curved link and the bed, said link being disposed with its concave side directed toward the rock-shaft and being arranged to receive the shaft in its
30 concavity, said shaft extending at opposite sides of the link.
4. In a mechanism of the class described, the combination with a reciprocatory bed, of a shift-rod carried by the bed, and means for rectocating the bed, said means comprising an unbroken rock-shaft, a crank carried by the rock-shaft and morable toward and a way from the bed, means for rocking the shaftand a curved link conneeted with the crank
40 and with the shift-rod to reciprocate the latter when the shaft is rocked, said link having its concaved side directed toward the said rock-shaft and arranged to receive the said shaft in its concavity, said crank being ar-
45 ranged to lie at the least angle to the path of movement of the shift-rod when at the limit of its movement in the direction of the shiftrod.
5. The combination with a reciprocating 50 body having a forward and a rearward end, of means for reciprocating the body comprising an unbroken rock-shaft., means for rocking the shaft, a crank carried by the rock-shaft and movable therewith forwardly and rear55 wardly in an are, a curved link pivoted to said crank and disposed with its concaved side toward said rock-shaft and being arranged to receive the said shaft in its concavity, and connections between the crank and
60 the reciprocating body for movement of the latter when the crank is rocked, said crank being arranged to lie at the least angle to the plane of movement of the body when the crank is at its forward limit of its movement.
6. In a mechanism of the class described,
the combination with a reciprocatory bed, of means for reciprocating the bed comprising a power-shaft, an unbroken rock-shaft, a erank carried by the rock-shaft, a crank carried by the poiser-shaft, a curved link connected with the first-named crank, said link being adapted to receive the said rock-shaft in its concavity, an arm carried by the rock-shaft and pivoted to the link, the distance between the pivot-point of the link and arm and the pivot-point of the link and the crank being less than the distance between the firstnamed pirot-point and the rock-shaft, a crank carried by the rock-shaft, and operative connections between the crank and bed.
7. An ore-concentrator comprising a bed means for giving the bed a longitudinal differential shake and spaced upwardly-extending riffles carried by the bed, each of said riffles having a base portion and an upper central portion, the former being slanted upwardly from the surface of the bed to the central portion, said central portion having vertical side walls throughout a portion of its length and having an upper transversely-curved surface, said riffles being reduced in height from one end to the other, the points of termination of the side surfaces of the several riffles being disposed in a diagonal line transversely of the bed.
8. Än ore-concentrator comprising a bed, means for giving the bed a longitudinal differential shake, spaced riffles carried by the bed and extending upwardly therefrom, each of said riffles having a base portion and an upper central portion, the base portion extending laterally beyoud the central portion and being slanted upwardly from the surface of the bed to the central portion, said central portion having vertical side surfaces throughout a portion of its length and having a transversely-curved upper surface, said riffles being reduced in height throughout their entire lengths.
9. An ore-concentrator comprising a bed, means for giving the bed a longitudinal differential shake, spaced upwardly-extending riffles carried by the bed, each of said riffles having a base portion and an upper central portion, the base portion being slanted upwardly from the surface of the bed to the central portion, said riffles being gradually reduced in height from one end to the other, the entire portions of the riffles having vertical side surfaces terminating short of one end of the riffles and having transversely-curved upper surfaces.
10. An ore-concentrator comprising a bed arranged for longitudinal movement, means for reciprocating the bed, said means comprising an unbroken rock-shaft, means for rocking the shaft, a crank carried by the rock-shaft, a curved link pivoted to the crank and operative connections between the curved link and the bed, said link being 13°
disposed with its concaved side toward the rock-shaft and being arranged to receive the said shaft in its coneavity, said bed-reciprocating means being arranged to move the bed
aster forwardly than rearwardly.
11. In a mechanism of the class described, the combination with a reciprocating bed, and a shift-rod connected thercto, of means for reciprocating the bed, said means includro ing a suitable frame, a power-shaft mounted on said frame and adjustable longitudinally thereof, a rock-shaft, a crank carried by said power-shaft, a link adjustably connected to said crank, an arm carried by said rock-shaft 5 and adjustably connected to said link, a crank carried by said rock-shaft, a curved link pivoted to said crank at one of its ends and connected at the other of its ends to said shift-rod, and a supporting-link pivoted in
20 said frame at its lower end and pivoted at its upper end to the said shift-rod.
12. In anore-concentrator, the combination with supports, of a rod mounted in the supports, said supports being arranged for 25 longitudinal rocking movement to permit of longitudinal movement of the rod, a bed pivotally mounted upon the rod for transverse roeking movement with respect thereto, said rod lying at one side of the central longitudi-
30 nal axis of the bed, a bed-moving mechanism connected therewith at the opposite side of said axis from the rod, said mechanism being arranged for operation to move the bed and vary the transverse pitch thereof, and means
35 for adjusting said bed longitudinally of the said rod.
13. In an ore-coneentrator, the combination with supports, of a rod mounted in the
supports, said supports being arranged for pivotal movement to permit of longitudinai movement of the rod, a bed-reciprocating mechanism connected with the rod, a bed pivotally mounted upon the rod for transverse movement with respect thereto, said rod lying at one side of the central longitudinal axis of the bed, bell-crank levers, links connected at one of their ends to said bed at the side opposite the said axis from the rod and at the other of their ends to one of the arms of said bell-crank levers, a rod connecting the other of the arms of said bell-crank lever, a third arm carried by one of said bell-crank levers, and means for adjusting said arm to adjust the pitch of said bed.
14. In an ore-concentrator, in combination, rock-shafts, standards mounted upon said rock-shafts, a rod mounted upon said standards, said standards being arranged for longitudinal rocking movement to permit of 60 longitudinal novement of the rod, a bed pivotally mounted upon the rod for transverse movement with respect thereto, said rod lying at one side of the central longitudinal axis of the bed, and a bed-moving mechan- 65 ism connected therewith at the opposite side of said axis from the rod, said mechanism being arranged for operation to move the bed and vary the transverse pitch thereof.

In testimony whereof I affix my signature 70 in presence of two witnesses.

WILLIAM E. FORD.

Witnesses:

Frank C. Hall, E. M. Colford.

COMPLAINANTS' EXHIBIT No. 55
Dynan Patent No. 676,534
ALMON E. HART, Special Examiner

No. 676,534.
(No Model.)

No. 676,534.
T. DYNAN.

ORE CONCENTRATOR.
(Application filed Dec. 24, 1900.1
2 Sheets-Sheet 2
(No Model.)
(A)

United States Patent Office.

THOMAS DYNAN, OF AMADOR CITY', CALIFORNIA.

ORE-CONCENTRATOR.

SPECIFICATION forming part of Letters Patent No. 676,534, dated June 18, 1201.

Application filed December 24,1900. Serial No. 40,865, (No model.)

To cell whom it maly concern:

Beit known that I, Thomas Iynan, a citizen of the United States, residing at Amador City, in the county of Amador and State of
5 California, have invented certain new and nseful Improvements in Ore-Concentrators; and I do declare the following to be a full, clear, and exact description of the invention, such as will enable others skilled in the
10 art to which it appertains to make and use the same, reference being had to the accompanying drawings, and to the figures of reference marked thereon, which form a part of this specification.
5 My invention relates to ore-concentrators, and more palticularly to that class known as "table-concentrators," over which crushed ore is introduced and the precious me: al sepa rated therefrom.

My object is to furnish an ore-concentrator with which the fine sulfurets may be thoroughly and effectively"separated from the residue and saved, torether with the coarser sulfurets: This I accomplish by the use of the peculiar construction, novel combination, and adaptation of parts hereinafter set forth, and particularly pointed ont in the claims herennto annexed, reference being had to the accompanying drawiugs for a better
30 comprehension hereof, in which-
Fignre 1 is a top view of my improved ciecoucentrator. Fig. 2 is a detached sectional view through line $X \mathcal{X}$, lig. 1. Fig. 3 is a front side elevation of the concentrator.
35 Fig. 4 is a rear elevation of the same, showing the adjustable roller-bcarings. Fig. 5 is a detail sectional view of the injector-elevator. lig. f is a detail view of the can-gears, showing the adjusting-slot therein. Fig. 7
40 is a detail view of the crank, showing the adjustable crank-pin.

Similar figures of reference indicate conesponding parts in the sereral views.

1 omploy a table 1 , which has its frout side
45 mounted on rollers 2, journaled in trusses 3, which are adjustably secured to the side of the bed-timbers 4 by thumb-nuts 5 , said trusses 3 being adjustable by reasoni of slots 6 ,-arranged therein. The rear side of the table 1 is supported on vollers 7, which are journaled in arms 8, piv-
otally secured to the bed-timbers 4, said arms 8 each hivving a curved arm 9 , provided with a slot 10 therein, secured thereto and alapted to be each engaged by a thoin'u-nut 11. The table 1 may be given the proper slant forward by the last-named arms 8 and 9 , which said arms 8 are connected near the rollers 7 by a bar 12, which is pivotally secured to each and has one end attached to a 6 lever 13, whicli has its lower end pivoted to the side of the bed-timbers 4 and is provided with the usual spring-fastener 14 and seg-ment-raek 15, which is Hlso attached to the bed-timbers 4 .

The table 1 is oscillated by means of a rod 16, suitably attached at one end to a lug 17, which is rigidly attached at a suitable location boneath the table, preferably near the center thereof, and the other end of said rod 16 is journaled to in wrist-pin 18, which is rigidly attached to a base 19 , adapted to be adjusted in a slot arrenged radiaily in the crank-wheel 20. The base 10 and pin 18 are adjusted by means of a serew 21, opersted from the periphery of the crank-wheel, with which screw the base 19 engages. The crankwheel 20 is rigidly attached to one end of a shaft 22, which is suitably joirnaled on the bed-timbers and has a gear-wheol 23 attachedeccentrically to its other end. A similar gear-wheel $2 t$ is similarly attached to a shaft 95 , which is journaled orothe bed-timbers, said wheel $2 t$ being adapted to ongage the wheel 23 for the purpose as will be presontly shown. The shaft 25° is provided with a suitable balance-wheel 26 and the usual power-pulleys 35.

As shown in Fig. 6, the eccentric gearwheels 23 aud 24 are each provided with a slot 28 , arranged radially therein for the reception of the shafts 22 and 25 , respectively, which are inserted thorein and maintained rigidly in positiou by means of nuts 27. The slots $2 S$ are provided for the purpose of giving the aneven oscillatory end motion to the table so muc! desired in machines of this class.

The top surface of the table is arranged in steps or terraces, as shown in Fig. 2, which 100 extend from end to enc of said table, said steps being preferably four incles wide and
one-sixteenth of an inch drop from ons step to the next step below. The table is given a slant, as shown in Fig. 2.

The table 1 has a groove 29 in its left-hand 5 end, which terminates in a spout 30 , whieh empties into a tank 31, which rests on the hed-timbers. On the lower edge of the table, near the left-liand eud, a strip 32 is secured in position to confine the sulfurets and water and condluct the same into the tank 31. On the remaiuder of the lower edge of the table a tapering strip 33 is secured, as shown in Fig. 3, which extends from the lower righthend corver to within a short distance of the
end of the strip $3 ?$.
A sluice-box 34 is attached to the lower side of the table 1, so as to catch and carry away the residne that is separated from the sulfurets and carried over the strip 33. The
20 strip 33 is preferably about one and one-hulf inches high at the extreme right-hand end and tapers to a point within about. 8 foot of the strip 32 , thus leaving a small space for unseparated quartz to pass from the table 25 into the upper end of the sluice-box 34 , which has a depression in the bottom thereof to prevent any sulfurets that may not be separated from passing away with the tailings, thereby forming a receptaclo 36 , which has an open-- ing in the boftom thereof provided with a pipe 37 to conduct the contents into a box or vat 38 , which is rigidly secmed to the side of the bed-timbers 4. The averflow from the sulfurets-tank 31 is also conducted into this ber as means of a pipe He. As fast as the materizil enters the box 38 the same is carried back to the battery (not shown) by an injećtor-eleveior (shorvg in Fig. 5) eomposed of the pipe 39, which is connected to botum or ho bos as and coaducts ins contents into a T-pipe connection 40 , from which a pipe 41 extends to the hattery, (onts shown,) whither the contents of said pipes are impelled hy water under groper pressure passing though a pipe 42, connecied to the opposite end of the T 40 in line with the pipe 41, which pipe 42 is provided rith a nozzle 43. As will be seen; a great saving of waier is effected by reason of the double use of a 50 greater part thereof.

I arrange a series of strips 45 across the right-band end of the table, each being located, preferauly, ncar the center of eaoh step or terrace, said strip being preferably 55 three-eightis of an inch thick and one-half inch higb at the extreme end of the table, tapering to one-fourth incll at the other end. I also arrange another: series of strips 46 diagonaliy on saic! table, said strins being
60 placed paraild with the table aud alternately betwern the strip)s 45, as shown in Fig. 1. Theso strips are three - eighths of an inch wirle by one-fourth of an inch high to within a short distance (preferably one foot) of nue
65 end, whereupen said stripstiper to a featheredge, said enda vaing placed toward the groove 29.

A pipe 47 is arranged as shown in kigs . I ard 3 for the purpose of supplying and distributing clear water on the forward end of 70 the table.

A pulp distributer or spreador 43 is arrauged rigidly on the upper sile of the table near the richt-hand end for the purpoen of delivering the crushed oro evenly on the tabłe. Said spreader 48 has a slot 49 arranged lpngituaimalls its the top side for the receptiou and to allcw the free action of a pipe o 0 , which conducts the puip or crushed ore from the atemps or battery to the table.
The mode of operating my improved areconcentrator is as follows: The bed-timbers t having beeu placed in position, the table 1 , supported on the rollers 2 and 7 , and the machinery for imparting motion to the table 8 haviag been properly adjusted on the frame, the table 1 is given the desired slant forward to snit the quality of ore being worked by means of the rollers 7 and arms 3 and 9 , which are oporated by the leve! 13 , after which the thumb-nuts 11 are tighteued to maintain the said arms more securely in position. The gear-wheels 23 and 24 are adjusted on the slafte 22 and 25 to give the proper uneven or jerky motion. By adjusting the shafts nearer the center of the wheels 23 and 24 the notion is lessened, and vice versa. The erank$\operatorname{pin} 1819$ is adjusted in the crank-wheel 20, so as to give the desired leugth of end motion for the table. The pulp or crushed ore is in- 100 troduced thruygh the pipe 50 into the spreader 48 , from whence it passes over the table. The sulfurels are caught by the strips:45 and 46 and carried forward by tho laneven oscillatory end motion of the table, shich has the righthanc end preferably alnout one inch lower than ibe other end for the purposo of preventing the ref use from ranning forward into the groove 99 , and thence into the sulfurets-tank-31. As the sulfurgts are carried for- no ward on the table the water from the pipe 47 carries away all in id from the same, rendering said suliurets free from mud or other impurities when they are deposited into the groove 29 and condricted into the tank 31. Any extremely fine sulfurets that are carried over the strips 4o are given a cbance to settle in the lower right-hand corner by reason of an eddy formed bj_{j} the strip 33 , whieh nrevents the water from flowing over the same at the 120 extreme outer end, whereupon after said sulfurats have settled tho same are carried forward by the oscillatory motion, as before described, until the end of the strip $3: 3$ is reached, at which puint the saul sulfirets, together with rither unseparated quartz, are deposited into the receptaclo 30 avd from there into the box 38. From the box 38 snid maseparated quartz is forced back to the battery by tho injector-elevator (stown in Figs. :3 and 5) is 130 be worked over and returned to the table.

I am well aware that ore-concentrators have been rade which have cortrgated surfaces; bat these are defective

What I claim as new, and desire to secure by Letters Patent, is-

1. In an ore-concentrator of the class described the combiuation with a suitable table 5 and its connections of the adjustable rollers 2 arranged under the front side of said table and journaled in trusses 3, said trusses 3 adjustably attached to suitable bed-timbers, by thumb-nuts, the rollers 7 arranged beneath
to the rear side of said table and journaled in arms 8, said arms 8 piroted to bed-timbers and having the supporting-arms 9 attached thereto, said arms 9 each provided with a slot 10 and thumb-nut 11, the rod 12 attached to ver 13 provided with its spring-stop 14, all arranged and operating substantially as shown and described and for the purnoses set forth herein.
2. In an ore-concentrator, the combinatlou with a suitable foundation 4 of the table 1 with its surface composed of steps and provided with the strips 45 and 46 arranged as described, said table being motunted on suitother end journaled to the wrist-pin 18, said wrist-pin adjustably attached to the crankwheel 20 , said crank-wheel 20 rigidly attached to a suitable shaft 22 , the shafts 25 and 22 journaled on the bed-timbers, said shaft 25 haring suitable balance-wheels and pulleys attached thereto, the eccentric gear-wheels 23
and $2 \pm$ adjustably attached to one end of the slafts 22 and 25 respectively, and the waterpipe 47, all arranged and operating substantially as shown and described and for the purposes set forth herein.
3. Iu an ore-coucentrator the combination with a table suitably monnted on roller-bearings, of the terraced surface of said table provided with the strips 45 and 40 arranged as described, the ore-spreader 48 , the water-pipe 47 , the strips 32 and 33 arranged on the lover side of said table, the sluice-box $3 \pm$ having the receptacle 36 arranged at its top end, the box 38 arranged below the receptacle 36 , the injector-ele rator arranged below the said box 38, the force-pipe 42 and the discharge-pipe 41 suitably attached thereto and suitable machinery arranged to impart motion to the table, all arranged and operating substantially as shown and described and for the purposes set forth herein.
4. In an ore concentrator; the combination of an inclined table having a trough at one 65 eud, weans for supplying pulp to the table, means for actuating the table, a sluice-box arranged at the lower edge of the table and having a depression at its receiving end, a tank arranged to receive from the ough of 70 the table, a receptacle arranged to receive from the depression of the sluice-box, means for conveying sulfurets from the tank to said receptacle, a water-supply pipe, and an in-jector-elevator interposed between and connected to the said receptacle and tha watersupply pipe.

In testimony whereof I affix my signature in presence of two witnesses.

THOMAS DYNAN.

Witnesses:
Richard Vance,
Henry Allan.

> COMPLAINANTS' EXIHBIT No. 56
> Klein Patent No. 686,088
> ALMON E. HART, Special Examiner

No. 686,088 .
(No Model.)

Patented Nov. 5, 1901.

d. KLEIN.

ORE CONCENTRATOR.
Application filed Feb. 25, 1901.
2 Sheets -Sheet I.

Witnessesaprosorrickes

Snidentor.
John Klein
By Nigdow ditugan Atty.

J. KLEIN.

ore concentrator.
(Application fled Feb. 25, 1901.)
(No Model.)
2 Sheets-Sheet 2.

药 3

2Sitnesseo
alfuro Eicks-
ghoreppory

Inventor
John Klein
By Higdow\& Lingan Attys.

United States Patent Office.

JOHN KLEIN, OF DESLOGE, MISSOURI, ASSIGNOR OF ONE-IIALF TO PAUL A. FUSZ, OF GRANITE, MONTANA, AND CHARLES D. McLURE, OF ST. LOUIS, MISSOURI.

ORE-CONCENTRATOR.

gFECLFICATION forming part of Letters Patent No. 686,088, dated November 5, 1901.

Application fled Februrry 25, 1901. Serial \#o. 48,668, (No model,)

To all whom it may concern:
Be it known that I , JoHn Klein, of the city of Desloge, St. Francois connty, State of Missonri, have invented certain new and useful
5 Inprovements in Ore-Concentrators, of which the following is a full, clear, and exact doscription, reference being had to the accompanying drawings, forming a part hereof.
This invention relates to ore-concentrators; 10 and it consists of the novel constraction, combination, and arrangement of parts hereinafter shown, described, and claimed.

My improved concentrator consists of a table located upon a suitable support and promininum the resistance encountered in operating the table and avoid the wear which would otherwise resnlt were the bearingblocks coustructed to slide upon each other. The table is provided with the usnal feedtrough near one side, from which the pulp can be fod in a steady stream upon the table. A series of channels is arranged upon the table, gradually lengthening toward the side face is almost doubled and the elevated flat surfaces caused by the usual riffles are avoided. The table is provided with an adjusting proper whereby cated at the front end of the table and operates the same, and also operates a secondary feeding mechanism which conveys back to the 5 table any of the marerial which needs additional concentration or separation. I also provide an air-pipe for subjecting the pulp to theaction of the air immediatelyafteritleaves the feed-trough and before it reaches the 40 channels.

In the drawings, Figure 1 is a plan view showing my invention. Fig. 2 is a side elovation thereof. Fig. 3 is a view showing the frame of the table. Fig. 4 is a sectional view invention. Fig. 5 is a detail view showing ono of the ball-bearings and the screw by which the table is raised or lowered. Fig. 6 is a detail view showing a part of the inven-
table. Fig. 8 is a view showing the end of the table.
In the construction 0 : this invention I provide a base or support 1 , upon which the table and motor operating the same are mounted. At intervals along the base 1 are transverse members 2, which support the table and one end of which may be raised or low. ered to give the table the proper inclination. As shown in Fig. 8, the members 2 project at one side beyond the base 1, and secured to the under sides of said members 2 are sleeves 3, provided with internal threads, and a similar sleeve 4 is supported in vertical alinement with each of the sleeves 3 . A rod 5 operates in each adjacent pair of the sleeves, and the said rods are provided with opposite threads on their different ends, so that when they are turned they may be operated into or out of the sleeves 3 and 4, and thereby lower or raise the table. Connected to each of the rods 5 is an arm 6, and the said arms are connected to an operating-lever 7 by means of connevting-rods 8. The lever 7 is pivoted to the base 1 , and a segment 9 is located adjacent to the said lever, so thes is may be retained in the different adjustnients in which it is placed. Upon the transverso members 2, adjacent the ends thereof, are 80 the grooved blocks 10, within which are located balls 11, which form ball-bearings for the support of the table.
The table is constructed with a frame of angle-iron and is given additional strength by 8 means of transverse and longitudinal braces which prohibit any of the parts from becoming loosened during the movement of the table. Upon the frame 12 is secured the top of the table, which consists of a series of longitudiual strips 13, bolted or otherwise fastened to the said frame 1.2. A covering 14, of linoleum or other suitable material, issecured over the top of the table, and upon this covering the pulp is delivered during the operation of the machine. Blocks 15, corresponding to the blocks 10 , are secured to the under side of the table and are provided with grooves similar to tho gruoves in the blocks 10 for the reception of balls 11 . These grooves, as shown in Fig. 5, are arranged parallel with the length of the table, so tiat the
tablo may hate a retian hatkwad and for"arl movement, the seppe of which is only limited hy the ienght of the beating-blocks. By this construction df beating the resistance
 areatly reducen imt the blocks du not become worn, as wonla ucenr were they permited to opremte directly arginst each other. The advantage of this construction will be readily ro apparent to those fatmiliar with machines of Lhis ehatracter.

Upon the top of the table above the covering $1+$ is secured a series of metallic chamels 10, which are spaced a suitable distance apart,
${ }^{5}$ as shownin Fig. 1 of the drawings. The vertical sides of these channels become gradually lowev toward the rear end of the table, until at the extreme rear ends of the chanbiels they disappear entirely and are even
20 with the upper sides of the bottom of the channels. (Sice Fig. 7.) As shown in Fig. 1, the chamels become gradually longer torard the discharge side of the table, the chanuel at that side being almost of equal length with
25 the table. The channels constructed as deseribed provide greater table-surface than results when strips are used as rifties, for the reason that no flat elevated surfaces are presented, except a small area of the vertical sides of the channels. The material way pass toward the rear end of the table, either between the channels or within them, thus ecenomizing space and very nearly doubling the capacity of the table.
Upon the feed side of the table is located a trough 17, having divisions, one of which is at the rear of the table and the other at the forward end. The disision at the front is to receive and deliver the pulp, and that part
40 of the trough at the rear of the table receives th3 pure water and permits it to pass onto the table in a steady stream.

Located on the base 1, in front or the table, is a motor 18 , which operates a rod 19 , con45 nected by a sort of universal joint 20 to the end of the table. The rod 19 is reciprocated by the motor 18, and as it does so it operates the table on the bearings alove described. The connection 20, as stated, permits the tajo ble to assume different positions without interfering with the operation of the rod 19.

Located in any desired manner above the base is a shalt 21 , adapted to rotate and which is cuifnected by suitable intermediate gears to a shaft 22, carrying on its outer end a short pipe 2:3, the juner and of which is closed and the suter end of which opens into a trough or pipe 24 . That part of the pulp or material which it is desired to pass over the table a second time is conveyed to a receptacle located bencath the outer end of the pipe 23 and from which it is taken and deliserel onto tho table to be again operated upon. A series of pipes or tubes 25 project
65 raldially from the pipe 23 and are carried aronnd as the said pipe $£ 2$ and its shaft 22 are rotated. On the outer ends of the pipes

4i, are cartiod clbows elt, which operate into the receptacle colntaning the mixture below the pipe 93 and receive a portion and retain it therein mutil the pipe assumes a vertical or inclinel position, at which time it falls out of said pipe 25 , in which it is contained, and into the pipe 23 and then into the pipe or trough 2t, fromi which it is conveyed to the feed side of the table by means of an inclined pipe 27 . The pipe or trough 24 and the pipe 27 are preferably inclined, so that the material will gravitate toward the end of the pipe 27, from which it is permitted to fall to the top of the table and pass through the concentrating process as the table is reciprocaled by the motor 18. A pipe 28 leads from any suitable source of air-supply and projects over the front end of the table at the feed side thereof, and the said pipe is provided with a series of perforations 20 , through which the air is forced to act upon the material inmediately after it leaves the trough 17 and before it reaches the channels. By this action of the air the mineral is forced down toward the rear of the table and is passelalong the ends of the channe!s to the point at which it is deliverd from the top of the table.

A table constructed as above described is comparatively simple. The adjusting device whereby the table may be inclined permits of a very delicate and exact adjustment, and the table may be retained in the different positions by locking the lever 7 to the segment 9 in any known manner. The ball-bearings supporting the table reduce the resistance to a minimnm and prevent any wear of the bearing-blocks. The material can be conveyed upon the table in a steady stream and is acted upon by the air from the pipe 28 before reaching the channels, and the ore is forced by the air toward the rear end of the table and permits the lighter particles to pass over the channels and to be conducted thereby torard the rear end of the table. Any material which it is desired to pass a second time orer the table can be done so by conducting it to the receptacle located beneath the pipe 23, from which it will be raised by the rotary arms 25 and delivered into the trough or pipe 24 , from which it flows by gravity to the opposite or feed side of the table.

The motor 18 is an air-motor, and air is supplied thereto through any suitable source and also to the table through the pipe 28 . The table is reciprocated with a sudden and impulsive action, such as only notors of this class can give, and the frame 12 of the table is purposely constructed of strong angle-iron :n order to withstand the strain. The rod or shaft 19 , having the connection 20 , does no in any mauner interfere with the adjustment of the table; but the machine will be operated with equal effectivencss in whatever po- 130 sition it is placed.

I claim-

1. An ore-cencen rating table, consisting of a rigid metallic frame, longitudinal strips
secured thereto, a linoleum covering upon said strips, a series of metallic troughs or channels having taporing sides, fixed upon said covering, screws for tilting the table, a
5 lever for rotatiug said screws, and a lock for locking the lever to holl the screms, substanally as specified.
2. In a concentrating table, a frame formed of angle-iron and having longitudinal and ro transverse braces, strips 13 rigidly secured to aid frame, a covering of linolemm upon the said strips, a series of metallic channels 16 having vertical sides which taper from the front end to the rear of the table, secured 55 upon the linoleum covering, the said channels becoming gladuaily lengthened toward the discharge side of the table, and means for reciprocating tho table, substantially as specified.
3. In an ore-concentrater, a table, means for convering the ore thereon in a steady stream, a series of metallic channels having vertical siles, removably secured to the top of the table and extending longitudinally thereon, transversely to the feed of the ore, the said channels tapering from the front to the rear of the table and being space? apart to provide other channels, and means for reciprocating the table, substantially as specified.
4. In an ore-coucentrator, a table having a series of metallic channels or troughs with vertical sides removably secured to its top and extendinglongitudiually thereon, the said chamels or troughs tapering from the front to the rear of the table transversely of the
feed of the ore and being spaced apart to form other channels, and means for reciprocating the table, substantially as specilitid.
5. An ore-concentrating table, consisting 4 of a rigid metallic frame, a number of strips serured thereon and forming the top of the table, means for feeding the ore outo the table in a steady stream, a scries of parallel metallic troughs or channels removably secured upon the top of the table and extending longitudinally thereon transversely of the feed of the ore aud tapering from the front to the rear of the table, means for tilting the tedble, means for retaining the table in different positions, and means for reciprocating the table, snbstantially as suecified.
6. An ore-concentrator, consisthing of a table having a series of metallic clannels or troughs secured to its top and spaced apart to provide other channols or troughs, means for delivering the pulp onto the table, an airmotor for reciprocating the table, au airspraying pipe leading from the motor and extending over the table, a pipe adjacent to the table, means for rotating the pipe, a series of hollow radial arms carried by said pipe and rotated therewith, and means for delivering pulp onto the table when the said parts are cotated, substantially as specified.

In testimony whereof I affix my siguaturs in presence of two witnesses.

JOHN KLEIN.

Witnesses:
IV. T. Намумоск, S. E. Jackson.

COMPLAINANTS' EXHIBIT No. 57
Ten Winkel Patent No. 770,877
ALMON E. HART, Special Examıner
No. 770,877.
PATENTED SEPT. 27, 1904.
A. TEN WINKEL.

CLASSIFYING OR SIZING APPARATUS.
APPLIOATION FILED NOV.9, 1903.

A. TEN WINKEL.

CLASSIFYING OR SIZING APPARATUS.

United States Patent Office.

AUGUST TEN WINKEL, OF DENVER, COLORADO.

CLASSIFYING OR SIZING APPARATUS.

SPECIFICATION forming part of Letters Patent No. 770,877, dated September 27, 1904

Applioation filed November 9, 1903. Serial No. 180,496. No model.)

To all whom it may concern:

Be it known that 1, Augest Tex Winkel, a citizen of the United States of America, residing at Denver, in the county of Denver and
5 State of Colorado, have invented certain new and useful Improvements in Classitwing or Sizing Apparatus, of which the following is a specification.

My invention relates to derices employed various sizes preparatory to being fed on the concentrating-tables; and the object of my inrention is to produce a classifying device which, operating in eonjunction with the con-centrating-table to which it is attached, will classify the pulp fed onto it and deposit the various sizes upon the concentrating-table along its upper elge, where water may be upplied in varying quantities, according to - the size and condition of the material.

I attain my olject by the mechanism illustrated in the acconipanying drawings, in which the device is shown mounted upon a concen-trating-talle of the Wilfer trpe, although 5 it must be understood that my sizer may be attached to and used in eonjunction with any table cither of the jogging or bumping variety.

In the drawings, Figure 1 is a plan view of 30 my sizer mounted at the feed-corner of a lfilfley tahle. Portions of the screens have been broken away in order to show sereens and riftled table located underneath the upper sereens. Fig. 2 is an enlarged cross-sec5 tion taken along line 22 of Fig. 1. Fig. 3 is an enlarged longitudinal section of a fortion of the derice, taken along line 33 of Fig. 1. Fig. 4 is a front view of Fig. 3. Fig. 5 is a section of the table, taken in front of the - high side of the sizer, showing the mechanism enpopecl for anlinsting its inclination. Fir. ${ }^{6}$ iflnstrates the particular sereen or perforated phate which is must suitable for use on m device; and Fig. 7, a blan view of the 45 tabie 14 of the sizer, drawn to a reduced scale. showing connection of compartments "and i, of the sizer with compartments A and B on the table. Riffes are omitted for salse of elearness.

Similar reference characters refer to simi- 50 lar parts throughout the varions views.
5 represents the transversely-inclined con-centrating-table with a feel and water trongh 6. This trough as it is used at present is divided into two compartments by a transversely - loeated partition, the compartment above the feed-corner of the table being used for feeding the pulp onto the table, while the other compartment supplies the water necesary for the proper treatment of the ores. When my device is attached to the table, I remove the partition and employ the entire trough for the distribution of water along the table.

The sizer 7 , located at the feed-corner of the 6_{5} concentrating-table, is inclined toward the ut)per edge of said table and hinged at its lowest side to the upwardly - extending flange 5^{-1} of table 5 by means of suitably-located hinges x. The onposite or high side of the sizer is sup- 7 ported by slotted segments ! , mounted on a thireaded rod 10, the side of the sizer hasing been provided with bolts 11, which pass through the slots 9^{n} of segments 9 . Rod 10 is supported at oncend in a stationary box 11^{2}, 7 located on the upper surface of the talse, while it. opposite extremity extends through and beyond the flange 5) of table 5 . Collars 12 and $12^{\text {a }}$. lucated, respectively, at the inside and outside of tlange 5 " and secured to rod 10 , prerent longitudinal movement of the rod. A crank 13, mounted on the extremity of the rod extending beyond thange 5 ", affords means for turning same. Segments 9 are provided with sleeves 9 , having female serew-threaln low 85 the reception of rod 10 , which passes thenugh them.

When it is desired to change the inclination of sizer $\mathrm{T}^{\text {in }}$ relation to the surfare of table io. crank 13 is thrned in the required direction. causing sleeves? and with them suments? to tavel akong rod 10 , and bolt- 11 in following slots $11^{\prime \prime}$ will cather the sidn of the sizer to he raised or loweret, according to the dirertion in which rod 10 is leiny turnel. Šizer 95 Tis compresed of a table 14. provided on its upper surface with a linoleun covering t^{4}
75So
\qquad85

[^21]\square
engaging the linoleum. Secured to and supported by table 14 is a rectangular three-sided frame 25 , composed of two parallel side strips 25^{a}, connected by a cross-piece 25^{e}, the fourth 5 side being omitted to allow the discharge of the ore from plate 14 . Secured to frame 25 are two screens 16 and 17 , which lying in one plane and adjoining each other extent along the entire length of the table 14. They may so be fastened together by soldering or other suitable means and are provided on their upper surface with a number of projections, whose function is the breaking of the pulp, Which passes over the screens.
Screens 16 and 17 may be supported and kept from sagging by suitably-located supports 17^{7}. Along the division-line of the two screens is lucated a longitudinal cleat 19 , which resting upon the linoleum covering of table $14 \mathrm{ex}-$ 20 tends along its entire length and engaging the under surface of screens 16 and 17 divides the space between the screens and phate 14 into two compartments " and $\%$. Placed on top of screens 16 and 17 is a second three-sided frame 50 , composed of two end pieces 50^{a}, connected by a side piece 50°, the open side in this case facing the lower side of the sizer. Secured to frame 50 and resting upon projections 26 of screens 16 and 17 is a third screen 15 , the upshace of which is, hie the other screens, provided with a number of projections 26 .

Screcn 15 , extending along the entire length of the table, is of a width sufficient to cover screen 17 and a portion of the adjoining screen
35 16. Its inner cilge rests upon a cleat 20 , which engages the upper surface of screen 16 and, like cleat 19 , extends along the entire length of the sizer. Cleat 20 in conjunction with the upper part of frame 50 forms a rec40 tangular frame which incloses the entire space between screen 15 and the screens located beneathit. Screens 15, 16, and 17 vary in mesh, screen 16 being the coarsest (siy forty) and 17 the finest, (sixty,) while the upper screen 4515 is of a medium mesh, (fifty.)

The feed-box 21 is located at the upper side of the sizer, being secured thereto in any suitable way. It is provided with a number of apertures 21^{2}, which may be closed or opened
50 by means of gates 21°. The pulp on leaving the feed-box through apertures 21^{4} falls upon the fifty-mesh sereen 15 . The material finer than fifty mesh will fall through sereen is onto the sixty-mesh screen 17 , through which
55 the material fince than sixty mesh will fall into compartment " of the riffer table 14, along which on account of the shaking motion of the concentrating-table to which the sizer is attached it will travel along the riftles
60 and into a compartment A on the surface of the concentrating-table, said compartinent heing separated from the rest of the table by nams of an upwardly-extending flange 2.2. The material which did not fall throngh sereen
5515 will travel over said sereen and fall onto
the forty-mesh screen 16, through which the material finer than forty mesh will fall into compartment 6 of table 14, while the coarser material will on account of the shaking motion and inclined position of the sizer travel over the edge of the sizer onto the roncen-trating-table at C . The material which did not pass throngh screen 17 will travel transversely along said screen onto the portion of screen 16 extending from the line on which it joins screen 17 to cleat 20 and will fall into compartment l of table 14 , fiom where it, together with the material which fell through screen 16 , will move transversely into a conpartment B of the concentrating-table, which is separated from the before-mentioned conpartment A by an upwardly-extending Hange 23. A third flange 24 prevents the ore coming from B from mixing with the ore which fell from sereen 16 onto the table at C.

Partitions 22 and 23 extend, respectisels, from points directly underneath the upper. corner of the sizer at the discharge end and the point of termination of dividing-cleat 20 at the same end of the sizer toward the edge of table 5 , terminating at points underneath water-trough 6 and a certain distance away from flatge 5^{2} of the table, the function of the partitions being to compel the ore discharged from the sizer to move to the upper edge of the concentrating-table, from where it is made to run along the entire width of said table for concentrating purposes. Watertrough 6 hav a number of apertures 6^{a} with corresponding gates f°, throngh which clean water may he applied to the elassilied material on the table, therely facilitating its running over the concentrating-tahk, which is especially of value when the pulp is thick and heav. By proper manipmation of gates tir, located above the different ore-compartments on the table, the flow of water may he regulated to suit the various sizes contained in the compartments A, B, and C .

At the discharge end of mys sizer I have tocated a gate 30, which is guided during up and downward movement and held in place at any desired height by loolts 24 , screwed into the edge of the sizer and passing through slots 30^{n} in the gate. By raising or lowering gate 30, which operates on the principle of a head-gate in an irrigating-ditch, 1 an enabled to regulate the amome of water which flows with the ore from the con!partments "and b of the table 14 onto the coneentrating-table. 120 Torether with the pulp, water is constantly fed onto the sizer out of feed-box 19 , the quantity of water to be sulticient to corer the sizer at all times. To prevent the water and pulp) running off sereen 15 at the high or feed side of the sizer, that side is provided with an upwardly-extenting thange 28 , which extends along its entire length. Projections 26, althongh shown in the drawings as being cylindrical, may be of any desired shape, de-
pending largely on the kind of ore it is desired to treat.

In Fig. 4 is illustrated a section of screen or perforated plate which I preferably use
5 on my sizer, as it obviates the necessity of stretching, is stronger and more durable than the wire screens, and does not clog.

Having thus described my invention, what I claim is-

1. A classifier or sizer comprising a trans-versely-inclined riffled table, adjoining screens running lengthwise above said table, a third screen located above said screens, a partition located on said table underneath the division-
15 line of said adjoining screens, cleats on said table supporting said screens, the distance betwcen said screens and the table exceeding the height of the riffles, substantially as described.
2. In a classifier or sizer, a transcerselyinclined table, adjoining screens running lengthwise abore said table, a third screen located above said adjoining screens, suitable means for dividing the space between the adpartments open at one end and suitable means for varying the area of the openings at said end, substantially as described.
3. In a classifier or sizer, a transversely30 inclined riffled table, adjoining sereens located above said table, the space between the sereens and the table being divided into two compartments open at one of their ends, a gate, adapted to close said open ends, a third creen located above and covering one of the before-mentioned screens and part of the adjoining one, the space between the uppermost and lower screens being inclosed and a feed-box located above said upper screen,
4. The combination with a transrersely-inclined concentrating - table of a riftled bed, transversely inclined toward and hinged at the upper edge of said table, adjoining and su-
45 perimposed screens secured to and above said bed, suitable means for feeding pulp onto said screens, means for discharging the rarious grades of ore onto said table at different points and suitable means for varying the
50 angle between said bed and the concentratingtable, substantially as deseribed.
5. The combination with a transversely-inclined concentrating - table of a riffled bed transsersely inclined toward and hinged at the
55 upper edge of said table, adjoining and superimposed screens seeured to and above said bed, suitable means for feeding pulp onto said screens, means for discharging the various grades of ore onto said table at differ-
ent points, a rotatable, longitudinally-station- 60 ary, threaded rod mounted on said table, threaded plate-bearing sleeves mounted on said rod, segmental slots in said plates and bolts secured to the upper side of said bed and passing through said slots, sulsstantially 65 as described.
6. In a sizer or classifier, the combination with a riffled bed provided with a plurality of superimposed screen-sections and transversel, , inclined toward the upper edge of a concen-trating-table, of partitions extending from the discharge end of said bed toward the upper edge of said table, substantially as described.
7. The combination with a transversely-inclined concentrating-table of a riffled bed, transversely inclined toward the upper edge of said table, adjoining screens of varying mesh located above and running lengthwise of said bed, a screen located above the adjoining screens, suitable means for feeding pulp onto the uppermost screen, and partitions on said table adapted to direct the material, discharged at different points from the screens and the riffled bed, toward the mper edge of the concentrating-talle, and means for feeding water in varying quantities into the compartments formed by said partitions, substantially as described.
8. The combination with a transversely-inclined concentrating-table of a linoleum-corered, riftled plate, transversely inclined toward and hinged at the upper edge of said table, adjoining longitudinal screens secured to a frame on said plate, the space between them and the plate being divided into two compartments open at one end, suitable means for regulating the discharge from the compartments, a screen located above and covering one of said screens and part of the adjoining one, projections extending above sur- 100 face of said screens, a feed-trough located above the uppermost screen, means on the concentrating-table for directing the various grades of ore, discharged onto it, toward the upper edge of the table, a water-trough located at the upper edge of the table and provided with discharge-apertures and corresponding gates, and suitable means for varying the inclination of the riffled plate in relation to the table, sutstantially as described.

In testimony whercof I have signed my name, before two subscriling witnesses, this 3 d day of November, 1903.

AUGUST TEN WINKEL.

.Witnesses:
G. J. Rollindet,
K. M. Stемр.
-

Grannatt Patent No. 632,109

ALMON E. HART, Special Examiner

No. 632,109.
H. C. GRANNATT. ORE CONCENTRATOR.
Application flled May 6, 1898.
2 Sheets-Sheet 1 .

No. 632,109.
H. C. GRANNATT. ORE CONCENTRATOR.
(No Model.)

(Application fled May e, 1898.)

Patented Aug. 29, 1899.

Fag. 3.

$\mathrm{F}_{1} \mathrm{G}$.
F2g.7.

Fig. 4

Fig.

United States Patent Office.

HENRY C. GRANNATT, OF COLORADO SPRINGS, COLORADO.

ORE-CONCENTRATOR.

SPECIFICATION forming part of Letters Fatent No. 632,109, dated Auguat 29, 1899.

Applioation filed Mej 6, 1898, Seriel No, 678,941, (No model)

To wll whom it may concern:

Be it known that I, Henry C. Grannatt, of Colorado Springs, in the counts of El Paso and State of Colorado, have invented a new 5 and Improred Ore-Concentrator, of which the following is a full, clear, and exact description.

My invention relates to an ore concentrating or amalgamating device to be used in con10 section with water and which treats the material by flowing it over plates or tables which are inclined and which are given longitudi-nally-reciprocating and laterally-oscillating motions.
The invention comprises the features which will be hereinafter described, and particularly pointed out in the claims.

Reference is to be had to the accompanying drawings, forining a part of this specification, to in which similar characters of reference indicate corresponding parts in all the figures.
Figure 1 is a top plan view of my device. Fig. 2 is a side elevation. Fig. 3 is an end clevation, partially in section. Fig. 4 is a side 25 elevation of the elliptical gears by which the differential reciprocation is obtained. Fig. 5 is a top plan view of said gears. Fig. 6 is a cross-section through the slats upon which the ore is treated, aad Fig. 7 is a perspoctive view of the pivot used for supporting the central portions of the pivoted slats.

The object of my invention is to provide a machine for the treatment of ores by the wet process which shall require less water than
5 the mechanisms usnally employed and at the same time to secure a greater efficiency.

The framework of my device comprises two frames \mathbf{A} and \mathbf{A}^{\prime}, which are pivoted by hinges a upon one side edge, so that the angle of the 40 upper frame A may be readily adjusted to comply with the requirements in treating different ores. The upper frame A is preferably of a rectangular shape and has mounted therein a series of slats B, extending longi5 tudinally of the frame. These slats are provided with riffles b, extending along the lower side edge thereof and retaining the water and ore upon the slat. The length of the riffles b apon the successive slats varies, being short-
50 est on the upper slat and increasing in length on the successive slats.

The palp or ground ore mixed with water
is introduced into the box C , which is plaged at the upper edge of the concentrator, and es. capes upon the slats through an opening C^{\prime} at one eud of the concentrator. It is intended that the pulp should have a comparatively small amount of water mixed therewith, as the device is intended for use in places where the supply of water is scarce. It is not to be understood, however, that toy device will work successfully only with a suall supply of water, bat that it is especially adapted for use in places where the water-supply is short.
The slats B are preferably constructed as 65 indicated in the cross-section shown in Fig. 6. Each slat consists of two parts B^{2} and B^{3}, which are connected to each other by grooves and tongues B^{4}. The object of this construction is to prevent warping of the slats. The slats are provided at each end with pivots B^{\prime}, which are located at one side of the slats and preferably on the same line as the riffles b. While it is preferred that the upper edge of the riffles 6 should be directly over or in line with the center of pivots, the device will work with large measure of success when the riffles are placed at either side of this point, the best result, however, being obtained when the riffles correspond in line with the pivots. This last construction produces a line of comparatively unagitated or quiet material next to the riffes and gives the heavier particles a better chance to collect there. If the pivot were otherwise placed relative to the rime, 85 the material being concentrated would be kept in greater agitation, so that no quiet zone or line could form, and the heavier particles would be carried along more rapidly.
To give an oscillating motion to the slats, the pivot at one end of each slat is extended and is provided with a crank D, the cranks upon the different slats being connected by a common connecting-rod D^{\prime}. To more thoroughly support the central portions of the slats, which otherwise might sag, a pivot, such as that shown in Fig. 7, is provided. This pivot consists of two bent plates b^{2} and b^{3}, the plate b^{2} being fastened to the under surface of the slat and the plate b^{3} being attached to the fraino A. The plate b^{2} lias one end bent downward and provided with a convexlyrounded extremity, while the plate b^{9} has one end bent up and provided with a concavely-
\qquad
65
\qquad
\qquad
rounded extremity adapted to engage the end of the plate b^{2}.

Each of the slats E is preferably provided on the edge having the riffle with a flap b^{\prime} of 5 leather, tin, or other suitable material and which projects a sufficient distance to`iusure the overflow from one slat being deposited within the edge of the slat below it.

The frame A is made adjustable in elevaso tion upon the frame \mathbf{A}^{\prime} and is provided with rollers e upon the edge opposite the hinges. Mounted upon the frame A^{\prime} is a lever e^{2}, connected by means of a link e_{3}^{3} with an inclined block or wedge e^{\prime}, which supports the roller e.
15 By moving this wedge in or drawing it out the elevation of this edge of the frame A is varied. The frame A^{\prime} is provided with rollers or wheels E beneath the same and running upon a track E^{\prime}, extending longitudicanable of lougitudinal motion upon the track. This motion is secured by means of the circular and elliptical gears. (Shown in Figs. 4 and 5, also in Fig. 2.) pon a suitable supporting-fralue I is journaled a circular gear F , which is fixed upon a shaft F^{2}, which carres a pulley F^{3}. This pulley is connected by a belt J^{\prime} with a pulley mounted upon any suitable shaft J, said
30 shaft being rotated by connection with some source of power. The gear F is thus given a continuous and uniform rotation. The gear F is provided with a crauk-pin f, upon which is pivoted one end of link G^{\prime}. The opposite that is the link is loosely held upon a pin f, that is secured upon ati elliptical gear $\mathbf{F}^{\prime \prime}$. This gear is supported by means of an arm G, which at its upper end is pivoted upon the framework I and at its lower end engages the o pin f^{\prime}. This permits the gear F ' to swing in au are of a circle of which the arm G is a radius. The ontline of the gear F^{\prime} is so constructed with reference to the pivot-points f and f^{\prime} and their distances from their respective senters that the gears F^{\prime} and F^{\prime} are constantly in mesh. The link G^{\prime} serves to hold the gear F^{\prime} against the gear F, while the arm G gives it a swinging support.

Upon the pin f^{\prime} is fixcd a crank-arm H, to 50 the outer end of which is secured a link or connecting-rod H^{\prime}, which at its opposite end is attached to the frame A. By this means the frame A is given a reciprocation which varies in speed, being more rapid in one di-
55 vactior than in the other. The more rapid motion of the frame is given to it while traveling away from the gear-wheels, while the slow motion is on the return. The result of this is to work the heavier particles of the
60 ore, which carry the valies, toward the left, as shown in $\mathrm{Figs} .\mathrm{I} \mathrm{and} \mathrm{2-that} \mathrm{is}$, slats toward the ends of the riffles b. One or more pipes K or other suitable means are provided by which clear water may be intro-

65

 5 duced upon the slats, so as to insure a more thorongh washing and separation of the parts.The operation of the device is as follows:

The pulp or ground ore is introduced through the box C upon the upper slat and at oncend thereof. These slats are given a constant slight oscillating motion upon their pivots and at the same time are given a reciprocating motion as a body. As a consequence of this the pulp is not given an opportunity to settle, but is kept thoroughly agitated in the water, and a smaller amount of water is also sufficient for this purpose The oscillating movement of the slats will tend to work the concentrates down into the angle above the riffles. The lighter particles, which will come to the surface, will work over the edges of the riffles with a portion of the water and be deposited upon the slat next below. Tlie concentrates aud heavier particles will, by the longitudinal reciprocation of the frame and slats, be gradually worked lengthwise of the slats until they reach the ends of the riffles. They will then be discharged from the ends of the riffle upon the slat next below. As the riffle upon each succeeding slat is longer than the preceding one, the result by the time the concentrates reach the first slat is a very thorough separation of the worthless particles from the valuable ones.

To the lower end of the frame, as described, may be attached a finishing-table L. This table is flat and has an incline in about the same direction as that of the slats, being made to tip more or less to suit differont kinds of ore. This table is given a longitudinal reciprocation with the main frame. Beneath thin lower edge of the table may bo placed two V-shaped plates, which serve to secure a final separation of the concentrates from the worthless particles of the ore.

This device may be used for concentrating ores in places where the water-supply is very limited. It will secure a thorongh separation with great economy in the use of water. In ordinary use it is preferable that the slats l' be covered with a layer of some material such as linoleum. Such a layer is indicated by the dotted lines at P' in Fig. G. In case the device is desired to bo used as an amalgamator, as well as a concentrator, an amalgamated metal plate may be substituted for the sheet of linoleum. The riffles may also be extended the entire length of the slat and the longitudinal reciprocating motion disconnected.

Having thus fully described my invention, I claim as new and desire to secure by Letters Patent-

1. Au ore-concentrator, comprising a frame having a series of inclined slats therein, piv- 125 oted at their lower edges and each having a riffle extending along its pivot edge, and with its upper edge substantially in line with the pivots, said slats being placod in succossively lower planes, so that he overflow from one is 130 received by the inext, and the rintes extending from the feeding end of the slats a part only of their length and being of successively greater length, and meaus for giving tto
framo reciprocations longitudinally of the slats, and for simnitancously giving the slats a slight oscillation on their pivots, substantially as described.
2. An ore-concentrator, comprising a frame having a series of inclined slats therein, pivoted at their lower edges, each having a riffle extending along its pivoted cdge, the upper edges of the riftles being substantially in line 10 with the pirots, said slats being placed in successively lower planes so that the overflow from one is received by the next, and the riffles extending from the feeding end of the slats a part only of their length and being of
is successively greater length, wheels under the frame, a track extending longitudinally of the slats, mechanisin attached to the frame to reciprocate it, and means for simultaneously giving the slats a slight oscillating mo-
20 tion on their pivots, substantially as deseribed.
3. An ore-concentrator, comprising a frame having a series of inclined slats therein, pivoted at their lower edges, each having a rifle extending along its pi yot edge with its upper edge sulstantially in line with the pivots said slats being placed in successively lower planes, so that the overflow from one is received by the next, and the riffles extending
30 from the feeding end of the slats a part only of their length and being of successively greater length, wheels under the frame, a track for said wheels extending longitndinally of the slats, mechanism attached to the
35 frame to reciprocate it, cranks upon the slatpivots, a common connecting-rod for said cranks, and a power connection to said rod, for simultaneously giving the slats a slight oscillating motion, substantially as described.
4. An ore-concentrator, comprising a frame having a series of inclined slats therein, pivoted at their lower edges, each having a riffle extending along its pivot edge, and with its upper edge substantially in line with the 45 pivots, said slats being placed in successively lower planes so that the overflow from one is received by the next, and the riffles extending from the feeding end of the slats a part only of their length and being of successively reciprongh, meavdions the ran reciprocations longitudinally of the slats and for simultaneously giving the slats a slight oscillation on their pivots, and an inclined finishing-table attached to the opposite side of the device and receiving the concentrates thereon, substantially as described.
5. An ore-concentrator, comprising a frame formed in two parts, hinged to each other at one edge and provided at their other edges
60 with adjnstable separating means, said frane having a series of inclined slats therein, pivoted at their lower edges and each having a riffle extending along its pivot edge with its upper edge substantially in line with the pivots, said slats being placed in successively lower planes so that the overflow from one is received by the next, and the riffles extend-
ing from the feeding end of the slats a part only of their lengtin and being of successibely greater length, and means for giving the fr:m reciprocations longitudinally of the slats and for simultaneously giving the slats a slight oscillation on their picots, substantially as described.
6. An ore-concentrator, comprising a frame formed in two parts hinged to each other at one edge, a roller on one part at its opposite edge, a wedge-block engaging said roller, a lever controlling the wedge-block, said frame having a series of inclined slats therein, piv- 8 oted at their lower edges and each havimg a rifle extending along its pirot edge, and with its upper edge substantially in line with the pirots, said slats being placed in successively lower planes so that the overflow from one is δ. received by the next, and the riffles extending from the feeding end of the slats a part only of their leugth and being of successively greater length, and means for giving the frame reciprocations longitudinally of the slats, and for simultaneously giving the slats a slight oscillation on their pivots, sulstantially as described.
7. An ore-concentrator, comprising a frame having a scries of inclined slats thercin, 1 iv oted at their lower, edge, and having intermediate pirotal supports, comprising bars having respectively a convex and concave arc formed upon their ends and fixed to the slats and their supports, the slats also haring riffles extending along their pirot edge, with their upper edges substantially in line with the pirots, said slats being placed in successively lower planes so that the overflow from one is received by the next, and the riffles extending from the feeding end of the slats a part ouly of their length and being of successively greater length, and means for giving the frame reciprocations longitndinally of the slats, and for simultaneously giving the slats a slight oscillation on their pivots, substantially as described.
8. An ore-concentrator, comprising a frame having a series of inclined slats thereiu, pivoted at their lower edges and each havin' a 115 riffle extending along its pirot edge, the upper side of the riffle being substantially in line with the pivots, said slats being placed in successively lower planes so that the overflow from one is received by the next, and the riffles extending from the feeding end of the slats a part only of their lexgth and being of successively greater length, the slats also having flaps extending from their lower edge over the upper edge of the nextslat, and means for giving the frame reciprocations longitudinally of the slats and for simultaneously giving the slats a slight oscillation or their pivots, substantially as described.
9. An ore-concentrator, comprisinga frame 13° having a series of inclined slats therein, pivoted at their lower edge and oach having a riffe extending along oue edge and substantially in line with its pivot, said slats being
placed in successively lower planes, so that the orerflow from one is reccired by the next, and the rittes extending from the fecding cud of the slats a part ouly of their length attached to the lower sides of the slats and extending over the upper cilye of the next slat, wheels under the frame, a track cxtending longitudinally of the slats, mechanisun attached to the frame for reciprocating the frame, cranks uron the pivots of the slats, aud means connemteri to said cranks, for simultaneously giving the slats a slight oscillating motion, substantially as described.
10. Au ore-concentrator, comprising a frame having a series of inclined slats therein, pivoted at theirlower edges and each having a riftle extending along its pivot edge, the upper edge of the riflle being substantially in line with the pirots, said slats being placed in surcessivel! lower planes, so that the overflow from one is receired by the next, and the rifles exteading from the feeding end of the shats a part enty of their length and be25 ing of successively greater length, a differential reriprocating mechanism connected to the frame for giving is motion longitadinally of the siats, and means for simultaneously giring the slats: sliglat oscillating motion on
11. An ore-concentrator, comprising a frame having a series of inclined slats thereiu, pivoted at their lower cuges and each haviug a rifle extending along one edge substantially in lime whit its pirots, satid slats being
placed in successively lower plancs, so that the overflow from one is received by the next, and the riffles extending from the feeding end of the slats a part only of their length and being of successirely greater length, a circular spur-gear having a power oonnection, an elliptical spur-gear, means for moving the gear-centers to hold said gears in mesh, a crank-pin carried by the elliptical gear, a link connecting said crank-pin with the concen- 4 trating-frame, and means for simultaneonsly giviog the slats a slight oscillating motion on their pivots, substantially as described.
12. An ore-concentrator, comprising a frame having a series of inclined slats therein, pi roted at their lower edges and each having a riffle extending along its pivot edge, the apper edge of the riffle being sabstantially in line with the pirots, said slats being placed in successively lower planes so that the overflow from one is received by the next, a circular gear having a power connection, an elliptical gear, a link connecting the gears and holding them in mesh, a link having a fixed pirot at one end and pivoted at the other 6 end to the elliptical gear, a crank-pin upon said elliptical gear, a link connecting said crank-pin with the concelltrating-frame, and means for simultaneonsly giving the slats a slight oseillating motion on their pivots, sub- 65 stantially as described.

HENRY C. GRANNATT.
Witcesses:
Johis M. Buster,
A. R. Thompson.

Cammett Patent No. 713,747
ALMON E. HART, Special Examiner
Patented Nov. 18, 1902.
I. A. CAMMETT.

ORE CONCENTRATING TABLE.
Application filed Mar. 19, 1901.1

United States Patent Office.

Abstract

IRA AUSTIN CAMMETT, OF DENVER, COLORADO, ASSIGNOR TO THE DEN. VER ENGINEERING WORKS COMPANY, OF DENYER, COLORADO, A CORPORATION.

ORE-CONCENTRATING TABLE.

SPECIFICATION forming part of Letters Patent No. 713,747, dated November 18, 1902.
Application fled March 19. 1901. Serinl No. ${ }^{1}$,877. (No model,)

To all whom it may concern:
Be it known that I, Ira Austin Cammett, of Denver, in the county of Arapahoe, in the State of Colorado, have invented certain uew
5 and useful Improvements in Ore-Concentrating Tables, of which the following is a description accompanied by drawiugs.
There are several types of concentrators which may be regarded as tables, whether tables of the Rittinger type that do not travel, but have vibratory or percussive movements. The present invention, while applicable in at greater or less degree to certain torms of these baber tables of the Ritinger type, and herefore specially apm?icable to them. It has been cust atary to tive to guch tables an inclitation :a sene curection and a jercussive motion o or peculiar vibrating motion at riyht angles or at eearly right angles to the inelination. The inelination determiues the natural direction or flow of the water, and the percussive motion determines the direction in which the 5 valnes will be mechanieally carried by the table. Oif course the values are aiso acted upon by the flow of the water, so that they follow diagonal patitis which correspond neither with the flow of the watter nor with the line 30 of mechanical vibration. It must, however, be understool that althongh I am lescribing the invention in comection with a flow of water this does wot presint the prineiples of operation of the in emiom from being utilized in a dry separator.
For the purpose of definition lie term" "longitudinal" will be nser in this specificatiou to mean where the sease so permits a direction transverse to the inclination of the table and preferably parallel or nearly parallekwith the percussive or vibratory movement. The inclination of these tahles is usually adjustable tuat least a slight exte:it in the direction of the mechanical movement, as well as at 45 right angles thereto.

The present invention relates, primarily, to the riffled or partly-rifled surfaces of sueh concentrating-tables.
The object of the invention is to improve
better and, indeed, substantially perlect con:centration and separation of certain grades of ore than has heretofore been pussible.

The advantayes of tirnered riffies, whether in the form of raised ribeor tepressed grooves, are now well known. Such tapored rifles are illustrated, for example, in the Cammeit \& Shepard patent. No. 932,892 , of September 12 , 1889, andin others. In the Cammett \& Shepard paient a series of rifles are described aud claimed which are reduced ia height and continve at a loser lerel belore their termination toward the vaines end of the tahle. The present improvement is a particular form of rifliog which is in soue respect? closely re- 5_{5} lated io that patent.
The aature of the present inventiou will now be readily undersiond by a leseription of the accompanying drawings.

In the drawiugs, Figure 1 is a general view without much ragard to detail, showingatoreeoncentrator of one type to which the present improvements are applicable. Fig. ? is a plan view of the table-top embodying the present improvements. Fig. 3 is s vertical section of the sams on the plane 33. ligs. 4 and 5 ane cross-sections ou the planes +4 and $\sin ^{5}$. Fics. $i f$ aud 7 are enlarged seetional views of pa"ts of Fig. 5 toward the right-hand end and left-hand end, respectively, of the said figure. Fig. S is a sectional view showing the probable action of water in effectingr the riflilus.

The bed b of the table-top is provided with a series of longitudinal ribs γ, furming rimes. These ribs wheu considered separately are of considerable height at the bead end h of the table and diminish in height toward the valuesend r^{\prime} of the active surface of the table. Oneside of each rib becomes flush with the bottom of the channel or adjacent table-surface, while the other side of the same rib is still cousiderably raised above the adjacent tablesurface to it height which may vary from a sixty-fourth of an inch, or thereabont, up to an cighth of an inch or mure, the upper limit not haviug been definitely determined by me.

The effect of sueh obliteration of one side of the table is plainly seen iu Fig. 6, and this condition may continue throughout the re- 100
maining active surface of the table toward the values end v. Whether or not there is a plain, smooth, or unriffled portion at the extreme values end of the table, I do not mean 5 to inake a characteristic of the present in vention. In addition to the characteristics of the individual ribs or riffles just described the riffles as considered collectively differ one from another in that the higher ribs-that is, toward the feed side f of the tablediminish in height in advance of those farther down in the table nearer the waste or tailings side t. The dotted line $s s$, Fig. 2, shows a point where the upper side or each 5 ribsinks into and is obliterated in the adjacent surface of the table. The curvature of this line s s results from the longitudinal distance between the points where adjacent ribs areso obliterated on one side in the table2) surface, it being greater toward the upper or feed side of the table than toward the lower or tailings side t of the table.

From the foregoing it will be seen that one side of each rib siuks in to the general table. 25 surface in advance of the other side of the same rib; secondly, that such sinking takes place on the upper ribs considerably in advance of where it takes place on the lower rib; thirdly, that this difference between 30 neighboring ribs is greater toward the npper side of the table than loward the lower or tailings side. While 1 prefer to have all these three characteristics combined, it is obvious that they need not necessarily be so combined, 35 and I point out in the following claims the features and combinations of features that I desire to protect. The operation of the table constrncted as described is peculiarly advantageous for treating some grades of ores where defined rrocves along the portion of the th ble where the novel separation between fine values and fine gangue or waste takes place. The carve s s, ronvex toward the feed side 45 and values end of the table, represents an approximation to the natural edge of the mass of mineral which cuvers the table when in eperathon, thongh I do not mean that such a curvecorresponds in location with the bound- canse it is olwiuns tha the bommdary of the unbroken bed of mineral upon the table will
vary its position according to whether thu amount of mineral fed on to the table is greater or less. The riffed surface of the table lying on the convex side of the curve s s presents a step-like or clapboard-like surface, as shown by Figs. 6 and 7 , and when the incli. nation of the table is very slight, as it frequently is in practice, the surfaces between neighboring riffles will be approximately level, so that values in falling from one level to another will tend to be held by the small eddy or quiet spot which forms beneath the pro-tecting-wall of the riffle, as indicated in Fig. S.

What I claim, and desire to secure by these Letters Patent, is the following:

1. Au improved conceutrating-table having a table-surface embodying a series of raised ribs or riffles which diminish in beight as they extend toward the tail end of the table and which sink into the adjacent surface of the table on one side of each while continning farther upon the other side, for substantially the purposes set forth.
2. An improved concentratiug - table haviug a table-surface embodying a series of raised ribs or riffles which diminish in height as they extend toward the tail end of the table and which sink into the adjacent surface of the table on one side of cach while contiuning farther upon the other side, a portion of the fable-surface constituting a series of shallow step-like riflles in a continuous integral surface, for substantially the purposes 8 set forth.
3. An improved concentrating-table having it table-surface emborlying a series of rassed ribs or riffles which in part are raised on wh sides, and in part are raised only on one side, forming a step-like formation, the line or zone of lemarkation between such part heing less oblique to the ibs on the upper or higher side of the table and more obliqque or transverse to the ribs on the lower or talings side of the table, for stibstantially the purposes set forth.

Signedthis 14th day of March, 1901, at A•alconda, Montana.

IRA AUSTIN CAMMETT.

Witnesses:
R. DE B. SMITH,
J. W. MEHARGEY.

COMPLAINANTS' EXHIBIT No. 60

Cammett \& Shepard Patent No. 769,431
ALMON E. HART, Special Examiner
PATENTED SEPT. 6, 1904
I. A. CAMMETT \& F. E. SHEPARD.

ORE CONCENTRATOR.
APPLIOATION FILED MAR, 29, 1898.
N0 MODEL.
58HEET8-SRCET 1.

I. A. CAMMETT \& F. E. SHEPARD.

ORE CONCENTRATOR. APPLIOATION FLLED MAR, 29, 1898.

I. A. CAMMETT \& F. E. SHEPARD.

ORE CONCENTRATOR.
APPLIOATION FILED MAB. 29, 1898.
§O MODEL.

No. 769,431.
PATENTED SEPT. 6, 1904.
I. A. CAMMETT \& F. E. SHEPARD.

ORE CONCENTRATOR.
APPLIOATION FILED MAR. 29, 1888.
HO MODEL.
5SHEET8-SHEET 4.

L. A. CAMMETT \& F. E. SHEPARD.

ORE CONCENTRATOR. APPLIOATIGN FILED MAR. 29, 1898.
YO MODEL.
6SHEETS-SHEET5.

United States Patent Office.

IRA A. CAMLMETT AND FRANK E. SHEPARD, OF DENVER, COLORADO, ASSIGNOR TO ARTHUR R. WILFLEY, OF DENVER, COLORADO.

ORE-CONCENTRATOR.

GPECIFICATION forming part of Lettere Patent No. 769,431, dated September 6, 1904.

Application filed March 29, 1898. Serial No. 675,637. (No model.)

To all whom it may concern:
Be it known thaf we, Ira A. Cammett and Frank E. Shepard, of Denver, Colorado, have invented certain new and useful Improve5 ments Relating to Ore-Concentrators, of which the following is a description, referring to the accompanying drawings, which form a part of this specification.

The object of the invention is to improve 10 the construction and perfect the operation of ore-concentrators.

The nature of the invention is such that it will be best understood by an inspection of the accompanying drawings, which show one derstood that it is limited to the minor details of construction there shown.

Figure 1 is a plan view of the table and some of its attachments. Fig. 2 is a side ele20 vation of the concentrator. Fig. 3 is an end view of the table and some of its attachments, the frame being shown partly in cross-section. Fig. 4 is a sectional detail on the plane 44 of Figs. 1 and 5. Fig. 5 is a cross-section
section angles to Fig. 4. Fig. 6 is a cross- section showing a portion of 'the table transversely inclined. Fig. 7 is a cross-section of a water-supply pipe. Fig. 8 is a central axial section of the conveying apparatus or pump used for the middlings. Fig. 9 is a central section transverse to the axis, showing the rotating portion of the same. Fig. 10 is a plan view, and Fig. 11 is a side elevation, of the end-shake mechanism. Fig. 12 is an end ele vation, partly in cross-section, on the plane X X of Fig. 11; and Fig. 13 is a vertical section on the plane 13 13, Figs. 10 and 11.
Throughout the drawings like numerals of reference indicate like parts.
The table of the concentrator is mounted to reciprocate longitudinally under the action of the end-shake motion, which will be later described. Preferably ball-bearings 20 are prorided to pernit the endwise movement of the table upon its frame 21. The frame 21 the table upon its frame is The frame
by means of the sprocket-wheels 24 , so that 50 they may all three be simultaneously actuated. The lower frame or bed-frame 30 , upon which the frame 21 is adjustable, as just dcscribed, is supported upon hinges or fulcrums 31, which form a transverse axis, upon which the apparatus may be inclined by means of the hand-wheel 32. By these means the table may be inclined transversely and longitudinally to the desired degree, and by a combination of both adjustments the table may be inclined obliquely, so as to raise one of its corners. The table itself is constructed of fluted wookwork, the flutings and the grains of the wood lying at right angles to each other in the two layers. (Clearly seen in Figs. 4, 5, and 6.) By this construction the table may be made very light and at the same time will retain its shape. The riffles 40 are in the form of strips set on edge upon the transverse members 41 of the table. Between these riffies 40 are set the longitudinally-grooved upper members of the table 42 , which form the surface or bed of the table and separate the rittles. The left-hand end of the table, as seen in Fig. 1, will be referred to as the "head" end and the other as the "tail" end for distinction. The riftles run from the head end toward the tail end, gradually diminishing in height until they converge into or sink below the surface formed by the members 42 , which separate the riffles from each other. The riffles at the feed side of the table are comparatively short and are successively of greater length as the gangue side or tailings side of the table is approached. This results in producing a triangular area toward the tail end and feed side of the table, in which the riftes do not project above the surface of the table, as clearly seen in Fig. 1. The surface of this portion 44 of the table is given a roughened finish similar to a piece of coarse sandpaper or grooved from the end of the riffles toward the end of the table. This result is preferably accomplished by coating it with a paint not susceptible to the action of water and either ronghening the surface of the paint or introducing sand or other small particles into the paint before it is applied. Thegrooves are made ly planing the riffle-strip

\qquad

\qquad

-

\qquad longitudinal axis 22 and is adjustable thereon by means of any one of the three handwheels 23 , which are coöperatively connected wheels 23 , which are coorperatively connected
belom the berel of t be talbes．Whate the strips

 10 of rappear in the sphere ！ 1 ．These linas wa \ddagger ：miturd for the prrpose of listinsumhinur μ－ tiven the purt of the thBlis wheve whe cufths wer pused tat the part in which they siner into LV Lew the sommon level or the zapamany

$=$ tire rifiles taper forra trom the hewi so to the ounlary of the space t the the sterer rize Hestaprenor more mpidy minan tiose tima ma
 iner the common exvel of the wrace $=0$ Cot ₹ It v same Lloner the oblique line whecis bounde it．Were the riffles simply raperrad lown むom c：a hemul end to vhere they lisappar it tiois
 tipe rould．tent：wo surl up is tive thin endes
as rader the iction of wathe＂：but by beme in－ Eertal an ur ge Entivanh the segantainer mem－

亏 rirced．

The pul）or materiat to be worced is sect
 Burtiae to the fees sute of the ta ie aena own Tutad sud．The ent－inare movemente，vheh is $\because:$ piran to tise tuble and which will be powerntig
 turface turard the tain ond ot the abie and anim

 Thel urose the successive rintes trom tue vi－
 tine？rablents sive of the tade icsu tive ailinge

 the riffestward the tail end of the table until

 the pul）or arat matevial soraco trom the gov－

 ＂M．Coverr．thet Eal ent of the rat le wat ：nto

I＇sermi ines．whith os that permon of the

有

 intor ite indinet con reves $i+$ aud vish ubva

 erod tomm tive plow fil Leny the dund it de xi
 supgoverd

 is provider the tre－tung\％Th Dhe varn

π
tus. This tends to balance the action of the pump and increase its capacity for a given diameter and speed, while decreasing the number of pulsations for a given speed. If any leakage takes place between the hub 66 and the rotating part of the pump or conveyer, it will merely flow back into the casing and be taken up again by the spirals. By this simple arrangement complications of a stuffingbox are avoided. This centripetal conveyer or pump will lift pulp, sand, \&c., without choking, and it requires a verysmall amount of power in its operation.

The end-shake apparatus remains to be described. Its principal parts are the crankshaft 80 , pitman 81 , oscillating frame 82 , con-necting-link 83 , and reciprocating rod 84 , mounted in the framework or bousing 85. The oscillating frame $8: 2$ turns upon the trunnions 90 in suitable bearings in the housing 85 . It is oscillated upon these trunnions by mean's of the pitman 81, which is piroted at one end to the box 91 , adjustable along the screw 92 by the hand-wheel 93 . The object of this adjustment is to produce any desired difference in the relative speeds of the direct and return movements of the reciprocating rod 84 , so as to gire an end-shake morement to the table that will tend to cause a progressive travel of the particles along the surface of the table in distinction to a mere evenly-balanced or harmonic movement, which would merely agitate without giving progressice movement to the parti-cles-that is to say, when the box 91 is adjusted so as to be beneath the shaft 80 the direct and return movements of the table are of suostantially similar character; but when the box 91 is screwed toward the hand-wheel 93 and displaced from directly beneath the shaft 80. then a quickening of the return movement and a delaying of the direct morement is produced. Incidentally the adjustment of the box 91 by means of the hand-wheel 93 causes a variation in the length of the stroke. as well as a difference in its quality: but this is not the object of the adjustment, and the length of stroke is changed to any desired extent by independent means operated by the handwheel 93. These means are as follows: The reciprocating rod is spring-pressed toward the link 83 and is. indeed, kept in contact with the link solely by the compression of the spring. The link 83 is a loose link haring recesses at each end, one of which recpsses 5 receives the trunnion or bearing 96 of the rod $S \pm$, while the other end of the link. forked as shown in Fig. 10, bears against trunnions 97 . carried by a reatically-adjustable box 95 . which is screw-threaded on the screw 99. By oo turning the hand-wheel 95 , and therehy the screw 99 , the box 98 is adjusted so as to bring the trunnions 97 toward and from the axial line of the trunnions 90 . It is clear that when the trunnions 9 a a e coaxial with the trun-
nions 90 no movement will be given to the 65 link 83 or reciprocating rod 84 when the oscillating frame 82 is rocked. On the other hand, when the box 98 is screwed downward more and more motion is given to the link 83 and rod 84. It therefore follows that by adjustins the hand-wheel 93 the quality of the end-shakf or quick-return movement is modified, while by adjusting the hand-wheel 95 the length or throw of the novement is controlled. Moreover, the crank-shaft 80 is prorided with means for varying its speed - such. for instance, as the cone-pulleys 100. Fig. 10. By this means the number of reciprocations and also the speed of reciprocations is variable at will. The reciprocating rod 84 is connected with the table by means of a lug, plate, or loop 101 through a slot in which the rod 84 extends. This slot or some other adjustable connection is necessary to permit the inclination and adjustment of the table without ε affecting its connection with the rod 84 . By means of the nuts 110 the compression of the spring 111 can be varied at will to press the rod 84 , link 83 , and trunnions 97 into firm engagement with each other. One advantage of having these connections spring-pressed together is that no lost motion will be produced by working of the parts, as the spring takes up the wear.
In describing so much in detail the form of the in rention which has been selected for illustration it must not be understood that there is any implication that the invention is restricted to any such minor details. On the contrary,

We claim, and !esire to secure bss these Letters Patent, the following features, without meaning to imply in any claim features not mentioned or necessarily understood therein:

1. In combination in a concentrator-table. the riffles, and the separating-pieces 42 forming the table-surface and between which the rittles are placed. the said riftles lying betweer and projecting above the separating-pieces for a portion only of their length and merging into and continuing between the said sep-arating-pieces toward the tail end, substantially as set forth.
2. In the end-shake mechanism for a concentrator, the pivotally-mounted oscillating frame or hember thereof proviled with two adjusting-screws, each haring a screw-threaded box thereon, a crank and pitman actuating one of the said boxes, and a link actuated by the other of said boxes and connected to the part- to be shaken, the said screws acting to adjust the said boxes toward and from the center of motion of the said frame or member to vary the operation of the meclianism, substantially as set forth.
3. In a concentrating apparatus the combination of a lower trame hinged at one end and adjustable vertically at the other, an end-shake
below the level of the table. While the strips fo. which form the viflles, also form part of the fat portion 44 of the table, the separating-lines do not appear in the space 44. These lines are 5 omitted for the purpose of distinguishing between the part of the table where the rifiles are raised and the part in which they sink into or helow the common level of the separating members 42. It must he understool that all to the rifiles taper down from the head end to the houndary of the space 44 , the shurter riffles tapering more rapidly than those that are on the tailings side of the table, but all assuming the common level of the surtace 44 or beit. Were the riffles simply tapered down from the head end to where they disappear at this ollique line and nailed upon a that surface they would tend to curl up at the thin ends 20 under the action of water; but by being inserted on edge between the separating members 42 and resting upon the transrerse timhers 41 the whole table is made firm and secure and the bending or curling of the riftles pre25 venterl.

The pulp or material to be treated is fed into the fied-box 50 , placed above the rifflesurface at the feed side of the table near the head end. The end-shake morement, which is 30 given to the table and which will be presently described, carries the material along the rifflesurface toward the tail end of the table and onto the roughened or grooved surface 44, where it isacted upon by clean water delivered from the
35 water-supply pipe 51 . The gangue or tailings waslo across the successive riffles from the wicinity of the feed-box 50 and finally pass at the tailings side of the table into the tailingshox 57 . The concentrates or valuable mineral 40 portions of the pulpare carried along between the riftles toward the tail end of the table until they reach the surface 44 , and after being almost entirely freed from gangue and foreign materials by the wash-water upon the surface
4544 they pass into the concentrates-box 52. As the pulp or wet material starts from the corner of the table beneath the feed-box 50 the water which it contains spreals out over the surface of the table as it flows towarl the tail-
50 ings side. As the result of this, particles of metal or valuable mineral which are washed over the first one or two riffles will be caught by the succeeding riftes and eventually carried toward the tail end of the table and onto
55 the ronghened or grooved surface 44 to be acted upon by the wash-water from the pipe 51.

The middings, which is that portion of the material which should be delivered near the corner of the table diagonally opposite to the
so teedthox, are retreated for the recovery of any valualde mineral which may remain in them. For the purpone of dividing the tailing. into middlings mal tailingw which are not to be re-treated the movable partition 53 , sep-
65 wnting the midalings-converer of from the
tailings-uox 57, is provided. By moving this toward or from the tail end of the table more: or less of the tailings. will pass as midalings into the inclined conseyer 54 and wash down toward the centripetal conveger 60, (which will be presently describel, and thereby delivered through the pipe 70 to the middlings feed-hox 71. This mictdlings feed-box delivers the middlings back onto the table at the feed side. but at a point considerably nearer the tail end than the feed-lox 50 . Byadjusting the point at which the middlings feed-box 71 delivers the middlings back onto the table almost perfect st paration of the midlliniss can be obtained. To permit this adjustment of the .80 box 71, it may be mounted on adjuntable supports 72, which may travel along the rail or stationary support 73 , secured on the side of the bed-frame 30. The wash-water is delivered from the pipe 51 along the feel side of the surface 44. The tail end of the pipe $\tilde{51}$ is supported bya hand-screw 75 and bracket 76 . By: turning the hand-screw 75 the end of the pipe may be raised or lowered to affect the flow of water from it. The pipe 51 is slotted or perforated at intervals, preferably for its whole length, as indicated at is in Fig. 7, preferably on the upper side of the pipe. Beneath is provided the drip-flange 77. The water flowing through the opening is runs around the pipe 51 and is spread by the drip-flange 77 into a continuous sheet as it flows onto the table. By turning the screw 75 the relative quantity of water delisered at the respective ends of the pipe 51 may the regulated at will.

The centripetal pump or conveyer 60 may be driven by a belt-wheel 51 and shaft 62 , upou which is mounted the rotary parts of the conveyer. The rotary part consists of two side plates 63 , with the two spiral coils dit, forming spiral channels between them, extending from the exterior to the central space 6 a. The central space $6 \overline{0}$ is provided with a projecting flange, as shown, which fits within the stationary hub 66 of the casing. To the hub 66 is connected the middlings tail-pipe 20 already described. The plate 63 and spirals $\rho 4$ are partly submerged in the middling. con-veyer-box 54 , so that the rotation of the spirals causes it to gather up a portion of the 115 pulp and water, depending in amome upon the depth to which the spirals are subnerged. The spirals are turned in the direction shown by the outermost arrow in Fig. 9, and as the result the pulpand water taken up at each rotation, combined with the air which is taken in between the successive quantities of water mat pulp, are forced by ervaty in the lirwtion indicated by the arrow, reaching the central space fas and tlowing out through the pipe 125 61) into the middlings feel-box it.

By- inspection of Fig. ? it will be seren that there are two spirals, forming two spiral passages, so that two quantities of pulp or water are taken up at each rotation of the appara- 130
tus. This tends to balance the action of the pump and increase its capacity for a given diameter and speed, while decreasing the number of pulsations for a given speed. If any 5 leakage takes place between the hub 66 and the rotating part of the pump or conveyer, it will merely flow back into the casing and be taken up again by the spirals. By this simple arrangement complications of a stuffingo box are avoided. This centripetal convever or pump will lift pulp, sand, \&c., without choking, and it requires a very small amount of power in its operation.
The end-shake apparatus remains to be de5 seribed. Its principal parts are the crankshaft 80 , pitman 81 , oscillating frame 82 , con-necting-link 83 , and reciprocating rod 84 , mounted in the framework or bousing 85. The oscillating frame 82 turns upon the trum-- nions 90 in suitable bearings in the housing 85 . It is oscillated upon these trunnions by mean's of the pitman 81 , which is pivoted at one end to the box 91 , adjustable along the screw 92 by the hand-wheel 93 . The object of this ad5 justment is to produce any desired difference in the relative speeds of the direct and return movements of the reciprocating rod 84 , so as to give an end-shake movement to the table that will tend to cause a progressive travel of the - particles along the surface of the table in distinction to a mere eventy-balanced or harmonic movement, which would merely agitate without giving progressive movement to the parti-cles-that is to say, when the box 91 is adjusted 35 so as to be beneath the shaft 80 the direct and return movements of the table are of substantially similar character; but when the box 91 is screwed to ward the hand-wheel 93 and displaced from directly beneath the shaft 80 . 40 then a quickening of the return movement and a delaying of the direct morement is produced. Incidentally the adjustment of the box 91 by means of the hand-wheel 93 canses a variation in the length of the stroke, as well 45 as a difference in its quality; but this is not the object of the adjustment, and the length of stroke is changed to any desired extent by independent means operated by the handwheel 93. These means are as follows: The 50 reciprocating rorl is spring-pressed toward the link 83 and is, indeed, kept in contact with the link solely by the compression of the spring. The link 83 is a loose link haring recesses at each end, one of which recesses 55 receives the trunnion or bearing 96 of the rod 84 , while the other end of the link, forked as shown in Fig. 10, bears against trumnions 97 , carried by a vertically-adjustable box 95 . which is screw-threaded on the screw 99. By ou turning the hand-wheel $!5$, and therelo the screw 99, the box 98 is adjusted so as to bring the trunnions 97 toward and from the axial line of the trunnions 90. It is clear that when the trunnions 97 a e coaxial with the trun-
nions 90 no movement will be given to the 65
link 83 or reciprocating rod 84 when the oscillating frame 82 is rocked. On the other hand, when the box 95 is screwed downward more and more motion is given to the link 83 and rod 84 . It therefore follows that by adjustins the hand-wheel 93 the quality of the end-shakp or quick-return movement is modified, while by adjusting the hand-wheel 95 the length or throw of the movement is controlled. Moreover, the crank-shaft 80 is provided with means for varying its speed - such, for instance, as the cone-pulleys 100, Fig. 10. By this means the number of reciprocations and also the speed of reciprocations is variable at will. The reciprocating rod 84 is con- 80 nected with the table by means of a lug, plate, or loop 101 through a slot in which the rod 84 extends. This slot or some other adjustable connection is necessary to permit the inclination and adjustment of the table without ε_{5} affecting its connection with the rod 84 . By means of the nuts 110 the compression of the spring 111 can be varied at will to press the rod 84 , link 83 , and trunnions 97 into firm engagement with each other. One advantage of having these connections spring-pressed together is that no lost motion will be produced by working of the parts, as the spring takes up the wear.

In describing so much in detail the form of the invention which has been selected for illustration it must not be understood that there is any implication that the invention is restricted to any such minor details. On the contrary,

We claim, and desire to secure by these Letters Patent, the following features, without meaning to imply in any claim features not mentioned or necessarily understood therein:

1. In combination in a concentrator-table, the riffles, and the separating-pieces 42 forming the table-surface and beiween which the riftles are placed, the said riftles lying betweer and projecting above the separating-pieces for a portion only of their length and merging into and continning between the said sep-arating-pieces toward the tail end, substantially as set forth.
2. In the end-shake mechanism for a concentrator, the pisotally -mounted oscillating frame or nember thereof provided with two adjusting-screws, each having a screw-threaded box thereon, a crank and pitman actuating one of the said boxes, and a link actuated by the other of said boxes and connected to the parts to be shaken, the said screws acting to adjust the said boxes toward and from the center of motion of the said frame or member to vary the operation of the mechanism, substantially as set forth.
3. In a concentrating apparatus the combination of a lower frame hinged at one end and adjustable vertically at the other, an end-shake
mechanism mounted on the said lower frame, an intermediate frame hinged at one side to the saiu lower frame and adjustable vertically at its other side, and a table-top mounted to
5 reciprocate longitudinally on the said intermediate frame and connected to be actunted hy the said end-shake mechanism upoh the said lower frame, substantially as sint forth.
4. The table-top for reciprocating concenro trating-tables having a riffled upper portion and having an under portion of grooved or channeled timbers extending transversely to the riffles, whereby a light strong table is produced having a minimum of inertia in proportion to its strength, and stiffened longitudinally by the said riffles and transversely by the said grooved or channeled timbers, substantially for the purposes set forth.
5. In a concentrator, a table, the surface of
part a roughened and grooved formation, substantially as set forth
6. A concentrator-table, the surface of which toward the head end has raised ribs or riffles and toward the tail end has a grooved formation, the riffling throughout both the raised rib portion and the grooved portion being in continuous lines, whereby the lower strata of minerals may pass contmuously without interruption or restratification from 30 the ribbed portion to the grooved portion, for substantially the purposes set forth.

In testimony whereof we have hereunto set our hands this 22d day of March, 1898.

IRA A. CAMMETT.
FRANK E. SHEPARD.

Witnesses:
E. Ransome,
M. C. Russell.

Kemp, Loomis \& Fitzwater Patent No. 963,582
ALMON E. HART, Special Examiner
A. M. KEMP, M. W. LOOMIS \& J. E. FITZWATER.
biffle for concentrating tables.
APPLIOATION FILED FEB. $13,1909$.
963,582.
Patented July 5, 1910.

UNITED STATES PATENT OFFICE.

ALBERT M. KEMP AND MERTON W. LOOMIS, OF DENVER, COLORADO, AND JOSEPH F. FITZWATER, OF ROSSVILLE, ILLINOIS.

RIFFLE FOR CONCENTRATING-TABLES

963,582.
Speciflcation of Letters Patent. Patented July 5, 1910. Application filed February 13, 1909. Serial Nc. 477,733.

To all whom it may concern:
Be it known that we, (1) Albert M. Kemp. (2) Merton W. Loomis, and (3) Joserif E. Fitzwater, citizens of the United 5 States, residing at (1 2) Denver, in the county of Denver and State of Colorado, and (3) Rossrille. Vermilion county, Illinois, have invented certain new and useful Inprovements in Riftles for Concentrating-
10 Tables, of which the following is a specification.

Our invention relates to tables for oreconcentrators, and more particularly to the form and arrangement of the rifles of such
15 tables, and has for its object to provide a more eflicient surface for separating the gange and concentrates. We attain this object ly the construction shown in the accompanying drawing, in which:concentrator table built in accordance with our invention and Fig. 2 is a perspective of one of the ritlle-bars, shown detached from the table.

1 is the pulp-loox. located at the head of the table. + the discharge end for the concentrates and 7 the side at which the gangue i- discharged.

The bitles i-fi, are arrangen substan-
30 tially parallof to each other and to the sides of the table: earh rithe ermprising a series of ecetions s, s grahlually decreasing in depth from the head of the table to a diaganal line 2,3 , and having their ond- slighty 5 overlapping laterally, as shown in the drawings. By this construction, shomblders, having their faces mormal to the longitudinal rittles, are formed? hy the orerlapping ends of the sections, which thomblers assist mathe concentrates diseharge end of the table. From the head of the table to the diagonal line 2.3 . these sections are preferably composed of woord. Betwenn this line amd the of the table the acet ane metcably of metal of slight and uniform thickness. such as strips of hoop-irom: lout are still secured to the table in substantially parallel rows, and with laterally-overlapping ends, as shown at 9, 9.
Our table may lie used with any desired form of driving mechanism: such. for example, as that shown in our Patent No. 900.285 , dated Oct. 6. 71908 ; or the riffles may

Fig. 1, we have illustrated the means for reciprocating the table as consisting of a driving pulley 10 , carrying eccentrically a crank pin 11. which is connected to a cross bar 12 of the table, by a connecting rod 13.

We are aware that contintous rifles of gradually decreasing thickness have been used; as have also riftle-bars arranged in zigzag lines, and bars capped with a metallic strip. Our arrangement is, however, exceedingly rapid and efficient in operation and effects a better separation of the different grades of concentrates than other constructions with which we are familiar.

What we claim is:-

1. A concentrator-table having rithes comprising contacting, laterally-overlapping sections the forward ends of which form shoulders having their faces normal to the longitudinal direction of the rifles; and means to reciprocate said table substantially as described.
2. A concentrator-table having rifles comprising contacting. laterally-overlapping ections decreasing in thickness from the 80 head of the table toward the foot thereof the forward ends of said sections forming shoulders having their faces normal to the longitudinal direction of the rifles, and means to recip,rocate said table substantially 85 as dewribed.
3. A conctitrator-table having a plurality of riffles extending throughout its length. aiill rillles comprising contacting, laterallyoverlapping sections the forward ends of 90 which form shoulders having their faces nomal to the longitudinal direction of the r:inles: and means to reciprocate said table -ulstantially as described.
4. A coucentrator-table having a plural- 9: ity of riffles extending thonghont its length, aid rifles romprising a series of contacting, laterally-overlalping sections ilecreasing in thickne-s from the hearl of the table toward the foot thereof the forward ends of sail 100 -ections forming shoulters having their face normal to the longitudinal direction of the riffles; and means to reciprocate sain tahle substantially as described.
5. A riffle foe concentrator tahles comprising laterally-overlapping sections; some of aid sections decreasing nuifumby in thickness and others thereof being of substandially uniform thickuess the forward ends of said sections forming shonlders having 110
their faces normal to the longitudinal direction of the riffles; and means to reciprocate said table substantially as described.
6. A riffle for concentrator-tables com-
\qquad prising a series of laterally-overlapping, vertically-tapering sections and a serijs of laterally-overlapping metallic sections of uniform thickness the forward ends of said sections forming shoulders having their faces normal to the longitudinal direction of table substantially as described.
7. A concentrator-table provided with a parallel series of riffles extending through15 out its length, each of said riffles comprising laterally-overlapping sections decreasing in thickness from the head of the table toward
the foot thereaf and laterally-overlapping sections of substantially uniform thickness; the number of said last named sections de- 2 creasing from one side of the table toward the other side thereof; and means to reciprocate said table substantially as described.

In testimony whereof we have affixed our signatures, in presence of witnesses.

ALBERT M. KEMP.
 MERTON W. LOOMIS.
 JOSEPH E. FITZWATER.

Witnesses:
John H. Gabriel,
Lena E. Hannen,
J. E. Swift,
G. A. Ray.

Complainont's Exhibit No. 6;. Blue-Print of Drawings von Rittinger Table.

Almon E. Hart. Suecial Examiner.

Almon E trank 2 von Pittunga Table.

Rittinger Concentraling Table (scaLe:'/4e)

3ch ner:

Complainant's Exhibit No. 69. Photograph No. 1 Wilfley Table Without Riffles, Irregular Feed.

Almon E. Hart, Special Examiner.

Complainant's Exhibit No. '7o. Photograph No. 2, Wilfley Table Without Riffles, Regular Feed (One Ton Per Hour).

Almon E. Hart, Special Examiner.

Complainant's Exhibit No. 71. Photograph No. 3, Wilfley Table Without Riffles, Regular Feed (One Ton Per Hour).

Almon E. Hart, Special Examiner.

Complainant's Exhibit No. i2. Photograph No. 4, Wilfley Table, Without Riffles, Feed Half Ton Per Hour.

Almon E. Hart, Special Examiner.

Complainant's Exhibit No. 73. Photograph No. 5, Wilfley Table With Rectangular Riffles of Uniform and Equal Height, Terminating Diagonally, Upper End of Diagonal Line of Termination Advanced, Feed Half Ton Per Hour.

Almon E. Hart, Special Examiner.

Almon E. Hart, Special Examiner.
The Henry E. Waad Ore Testing Lo.
 $30-60$ mesh
1000 libs p.hous
Horizomtal A to B
$2 \frac{9}{16}$
244 HeN B
$5 / 0^{\prime \prime}$
$43-\frac{1}{16}$ "High-Nom-Aper
$\frac{\text { Diagram and Dingersions of }}{\text { Sancentration on Letilfley } 6}$
Sencentrator
AEcampurving Pioto \#5.
Tesi of Aup. 3n th 11.

Complainant's Exhibit No. 74. Photograph No. 6, Wilfley Table With Rectangular Riffles of Uniform and Equal Height, Terminating Diagonally, Upper End of Diagonal Line of Termination Advanced, Feed One Ton Per Hour.
Almon E. Hart, Special Examiner.

$\frac{1}{1} \frac{10}{10} 4$

Complainant's Exhibit No. 75. Photograph No. 7, Wilfley Table with Rectangular Riffles of Uniform and Equal Height, Terminating Diagonally, Upper End of Diagonal Line of Termination Receding Towards Mechanism End, Feed One Ton Per Hour.

Almon E. Hart, Special Examiner.

Almon E. Hart, Special Examiner.
The Herrry E. Wlood Dire Testiong Co.

30-60 mash

43- $\frac{1}{16}$ "higit -Non-tagar:
2000 /6s p. houm
Hanizamtal
$29^{\prime \prime}$
244 Hev.
$5 / 8{ }^{\circ}$

$$
<102
$$

$$
\begin{aligned}
& A \text { to } B \\
& \angle \text { to } B
\end{aligned}
$$

[^22]\sim
\qquad
17
\qquad －

\qquad
保
（

Complainant's Exhibit No. 76. Photograph No. 8, Wilfley Table With
Rectangular Riffles of Uniform and Equal Height, Terminating
Diagonally, Lower End of Diagonal Line of Termina-
tion Receding Towards Mechanism End,
Feed One Ton Per Hour.
Almon E. Hart, Special Examiner.

$$
\begin{aligned}
& \text { Diagnam and Dimensions of } \\
& \frac{\text { Cancentration on Wriffley D6 }}{\text { Loncentrator }} \\
& \text { Accompanying P?hoto } 8 \text {. } \\
& \text { Test of Aug. } 30 \text { th } 11
\end{aligned}
$$

Complainant's Exhibit No. 77. Photograph No. 9, Wilfley Table With Z-Bar Riffles of Uniform Height, $1 / 4$ Inch High, Terminating on a Diagonal Line.

Almon E. Hart, Special Examiner.

The Henry E. Woad Dre Testing LO.

Accompanying Photo 7 CP.
Test of Aug. 30 \% 11.

Complainant's Exhibit No. 78. Photograph No. 10, Wilfley Table With Rectangular Wood Riffles, $1 / 4$ Inch High, of Equal Length, Feed One Ton Per Hour.

Almon E. Hart, Special Examiner.

The Henny E. Woad Dre Testing Co.

Complainant's Exhibit No. 79. Photograph No. 11, Wilfley Table With
Rectangular Wood Rifles, $1 / 4$ Inch High, of Equal Length, Feed Half T'on Per Hour.
Almon E. Hart, Special Examiner.

16-

Complainant's Exhibit No. so. Photograph No. 12, Wilfley Table With Rectangular Wood Riffles, $1 / 4$ Inch High, of Equal Length, Change of Transverse Inclination and Length of Stroke.

Almon E. Hart, Special Examiner.

 (16 .u\% J.atlerf

Complainant's Exhitit Ňo. 51. Photograph No. 13. Wilfle! Table Mith Riffles of Equal Length, Terminating Cniformlr.

Feed One Ton Per Hour.
Almon E. Hart. Special Examiner.
 Exhitit No. 21.
Almon E. Hart. Sperial Examiner.

Complainant's Exhibit No. 81. Photograph No. 13, Wilfley Table With Riffles of Equal Length, Terminating Uniformly, Feed One Ton Per Hour.
Almon E. Hart, Special Examiner.

Matenial
More of Feed
Grade in inches
Hevolutions pimin.
Lenprs of Siroke
Riffles
 A. Doonl

Complainant's Exhibit No. S2. Photograph No. 14, Wilfley Table, 5¼
Inches Transverse Inclination, 3/4-Inch Stroke, Feed One-Half Ton Per Hour.
Almon E. Hart, Special Examiner.

$$
\begin{aligned}
& =1 \text {, Nat }
\end{aligned}
$$

Complainant's Exhilit No. 83. Photograph No. 15. Wilfler Table With Cniformle Tapering Riffes of Equal Leng1h, Level Longitudinallr, 51_{4} Inches Transverse Inclination. 3_{1}-Inch Stroke.

Almon E. Hart. Special Examiner.

Almon E. Hart, Special Examiner.

Diagram and Dimensions of

$$
\begin{aligned}
& \begin{array}{l}
A \operatorname{ABB} \\
C A B
\end{array} \\
& \text { 2000 } 165 \text { shen hour }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Motemial } \\
\text { Mate of Feed } \\
\text { Gmade in imates } \\
\text { "" " } \\
\text { Mevalutions pimin. } \\
\text { Lengpis af Sinate } \\
\text { Biffles }
\end{array}
\end{aligned}
$$

Complainant's Exhibit No. 84. Photograph No. 16, Wilfley Table With 14 Uniformly Tapering Riffles of Equal Length, Spaced 41/4 Inches.
Almon E. Hart, Special Examiner.

Almon E. Hart, Special Examiner.

 12

$$
110-\operatorname{lon}=-2+1 \quad k \min +1
$$

Complainant's Exhibit No. 85. Photograph No. 17. Wilfley Standard Commercial Table With Tapering Riffles,

Feed One-Half Ton Per Hour.
Almon E. Hart, Special Examiner.

Almon E. Hart, Special Examiner.
The Hewry E. Wood Gre Testinf Ce.

 -6, + +

Complainant's Exhibit No. S6. Photograph No. 18, Wilfley Standard Table With Tapering Riffles, Feed One Ton Per Hour.

Almon E. Hart, Special Examiner.

,

Complainant's Exhibit No. s7. Photograph No. 19, Wilfley Standard Table With Tapering Riffles, Feed One Ton Per Hour.

Almon E. Hart, Special Examiner.

Complainant's Exhibit No. s6-st-A. Blue-Print Diagram of Photographs Exhibits Nos. 86 and 87.

Almon E. Hart, Special Examiner.
$00.001-9$

Complainant's Exhibit No. s8. Photograph No. 20, Wilfley Commercial Construction, Feed 1 Millimeter Pulp, One Ton Per Hour.

Almon E. Hart, Special Examiner.

The Henry Et Lood Are Tpsting Lo.

$$
\begin{aligned}
& \text { Moterial } \\
& \text { Hate of Feed } \\
& \text { Grede in inchee } \\
& \text { "" Hevolutions pimin } \\
& \text { Lengri of Sinate } \\
& \text { Aiffles }
\end{aligned}
$$

\qquad II 4 tamor

Complainant's Exhibit No. 89. Photograph No. 21, Wilfley Standard Table, Increased Transverse Inclination, Feed One Ton Per Hour. Almon E. Hart, Special Examiner.

Complainant's Exhibit No. S9-A. Blue-Print Diagram of Photograph Exhibit No. 89.

Almon E. Hart, Special Examiner.

 in Mil reronin in
\& tum of in an, α ber 1 in nith

Complainant's Exhibit No. 90. Photograph No. 29, Wilfley Standard Table, Longitudinally Inclined.
Almon E. Hart, Special Examiner.

Almon E. Hart, Special Examiner.

 (10) $10=1$
nuil

Complainant's Exhibit No. 91. Photograph No. 23, Wilfley Standard Table, Transverse Inclination Increased.

Almon E. Hart, Special Examiner.

Hate of teed
Grade in inches
" " "
Hevalutionss p.min. Lengin of sroote Riffles

16-30 4nesh PIATervíl

$$
\begin{gathered}
16-30 \text { 4Ne54 } \\
2060 / 65 \text { hawm } \\
76 " \\
4 \frac{1}{2}
\end{gathered}
$$

249 Hev.

$A 10 B$
$\operatorname{Cos} B$

$$
\begin{aligned}
& \rightarrow-4112
\end{aligned}
$$

Complainant's Exhibit No. 92. Photograph No. 2t, Wilfley Standard Table, Longitudinally Inclined, Feed One-Half Ton Per Hour.

Almon E. Hart, Special Examiner.

Complainant's Exhibit No. 93. Photograph No. 27, Wilfley Table With Z-Bar Riffes Terminating on a Diagonal Line, Illustrating Influence of Riffle Tips in Advance of Physical Termination.

Almon E. Hart, Special Examiner.

Complainant's Exhibit No. 94. Photograph No. 28, Wilfley Table With Z-Bar Riffles, Uniform Height, Feed $3 / 4$ Ton Per Hour.

Almon E. Hart, Special Examiner.

$89-1$


```
-100-*
-m
```


Complainant's Exhibit No. 25. Photograph No. 29, Wilfley Table With Z-Bar Riffles of Uniform Height, Feed One and One-Half Tons Per Hour.
Amon E. Hart, Special Examiner.

站
The Henry E. Woad Dre Testing Lo

$$
\begin{aligned}
& 71 \\
& 1-2+2+2+2+2
\end{aligned}
$$

\square En

Complainant's Exhibit No. 96. Photograph No. 30, Wilfley Table With Z-Bar Riffles, Uniform Height,

Feed One-Half Ton Per Hour.
Almon E. Hart, Special Examiner.

Amon E. Hart, Special Examiner.

Complainant's Exhibit No. 97. Photograph No. 31, Wilfley Table With Z-Bar Riffles, Uniform Height, Feed One Ton Per Hour.

Almon E. Hart, Special Examiner.

Almon E. Hart, Special Examiner.
 Digonam amd Divemsions of SBracentration on Leliffley $* 6$ 3 LBurentreptor Hccompanying
Test of 5 ept. $2^{\text {nd }} /$ The Herry E. Woad Are Testsing $L \overline{0}$.

Complainant's Exhilit No. 98. Photograph No. 32, Wilfley Table With Z-Bar Riffles of Uniform Height, Increased Transverse Inclination, Feed One-Half Ton Per Hour.

Almon E. Hart, Special Examiner.

$93-4$

The Nemry E. Wasd Dre Testingeld.

'10 '

- $=-$

का $\%$ ain.
M. H

16

Complainant's Exhibit No. 99. Photograph No. 36, Wilfley Table With Z-Bar Riffles of Uniform Height, 1/16 Inch High, Terminating on a Diagonal Line.
Almon E. Hart, Special Examiner.

Almon E. Hart, Special Examiner.

Complainant's Exhibit No. 100. Photograph No. 37, Wilfley Table with Z-Bar Riffles of Uniform Height, 1/16 Inch High, Terminating on a Diagonal Line, with Certain Lines Placed Upon the Surface.

Almon E. Hart, Special Examiner.

aowom'! (0015 pilt dat

Complainant's Exhibit No. 101. Photograph No. 38, Wilfler Table with Z-Bar Riffles of Uniform Height, 1/16 Inch High, Terminating on a Diagonal Line with Certain Lines Placed Upon the Surface Showing Location from Which Materials Were

Taken from the Table Surface.
Almon E. Hart, Special Examiner.

 Grak i 6 i i

Compfanant's Exhibit No. 102. Scobey Chart Almon E. Hart, Special Examiner.

Complamant's Eshout No. 10.9. Assays of Samples Taken as Showa in Photograph Complainant's Evhibit No. 101 and Complainant's Exhibit No, 102, Seobey Chart.
Almon E. Hart, Special Examiner.

Complamant's Exhibit No. 10\%. Photograph No. 41, Deister Table
No. 145:.
Almon E. Hart, Special Examiner.

Almon E. Hart, Special Examiner.
The Herry E. Wood Ore Teoting Co.

 flll .o\% timilel

Complainant's Exhibit No. 105. Photograph No. 42, Deister Table, Increased Inclination from C to A . Almon E. Ilart, Special Examiner.

Complainant": Exhilit No. Iut. Photograph So. 43. Deister No. こ. sand Table.
Almon E. Hart. Special Examiner.

The Henry E. Wood Ore Testing Co.

D.

Complainant's Exhibit No. 10i. Photograph No. 44, Deister Sand Table No. ${ }^{2}$.

Almon E. Har', Special Examiner.

Complainant's Exhibit No. 10s. Photograph No. 45, Deister Table, Inclination from C to D, Decreased.

Almon E. Hart, Special Examiner.

Complainant's Exhibit No. 109. Photograph No. 46, No. 2 Deister Sand Table.
Almon E. Hart. Special Examiner.

Complainant:s Exhibit No. 110. Photograph No. 47. Wilfler Table Deck, Riffles. Deister Pattern.

Amon E. Hart, Special Examiner.

Complainant's Exhilit No. 110. Photograph No. 47. Wilfley Table Deck, Riffles, Deister Pattern.
Almon E. Hart, Special Examiner.

(

Complainant's Exhibit No. 111. Plotograph No. 48, Wilfley Table Deck, Riffles, Deister Pattern, Decreased Inclination, C to B. Almon E. Hart, Special Examiner.

Complainant's Exhibit No. 112. Photograph No. 49, Wilfley Table Deck, Riffles, Deister Pattern. Decreased Inclination, C to B. Almon E. Hart, Special Examiner.

(asen

[^0]: 125

[^1]:

[^2]: ェ2

[^3]: 110

[^4]:

[^5]: 120

[^6]: \square

[^7]: 125

[^8]: 12"

[^9]: \qquad

[^10]: IIO

[^11]:

[^12]: 85

[^13]: W. ミiーN N N

[^14]: \qquad

[^15]: 70

[^16]: 5

[^17]:

[^18]:

[^19]: 120

[^20]: 130

[^21]:

[^22]:

