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VI. A Second -lMemoir upon Quantics. By ARTHUR CAYLEY, Esq. 

Received April 14,-Read May 24, 1855. 

THE present mnemoir is intended as a continuation of my Introductory Memoir 
upon Quantics, t. 144. (1854) p. 245, and must be read in connexion with it; the 

paragraphs of the two Memoirs are numbered continuously. The special subject of 
the present memoir is the theorem referred to in the Postscript to the Introductory 
Memnoir, and the various developments arising thereout in relation to the number 
and form of the covariants of a binary quantic. 

25. 1 have already spoken of asyzygetic covariants and invariants, and I shall have 
occasion to speak of irreducible covariants and invariants. Considering in general 
a function u determined like a covariant or invariant by means of a system of partial 
differential equations, it will be convenient to explain what is meant by an asyzygetic 
integral and by an irreducible integral. Attending for greater simplicity only to a 

single set (a, b, c...), which in the case of the covariants or invariants of a single 
function will be as before the coefficients or elements of the function, it is assumed 
that the system admits of integrals of the form u=_P, u=Q, &c., or as we may 
express it, of integrals P, Q, &c., whlere P, Q, &c. are rational and integral homogeneous 
functions of the set (a, b, c..), and moreover that the systemr is such that P, Q, &c. 

being integrals, P(P, Q..) is also an integral. Then considering only the integrals 
which are rational and integral homogeneous functions of the set (a, b, c..), integrals 
P, Q, R,.. not connected by any linear equation or syzygy (such as XP+PQ+vR..=O*), 
are said to be asyzygetic; but in speaking of the asyzygetic integrals of a particular 
degree, it is implied that the integirals are a system such that every other integral of 

the same degree can be expressed as a linear function (such as xP+pQ+vR..) of 
these integrals; and any integral P not expressible as a rational and integral hlomo- 

geneous function of integrals of inferior degrees is said to be an irreducible integral. 
26. Suppose now that A,, A,, &c. denote the number of asyzygetic integrals of the 

degrees 1, 2, 3, &c. respectively, and let a,, c,, ,, &c. be determined by the equations 

I 
A1- A2=2Ioc(a,+ 1) +M2 

A3= G6Cl(al+l)(la1+2) + 1V'2+ 3 

A4=- ,(oa,+ 1)(ga+-2)(ag+3a)+1o(o+- 1l)2- 1-3+ 3+ 2(2+ 1)+s4, &c., 

* It is hardly necessary to remark, that the multipliers A, p, v.., and generally any coefficients or quantities 
not expressly stated to contain the set (a, b, c..), are considered as independent of the set, or to use a con- 

venient word, are considered as ' trivials.' 
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or what is the same thing, suppose that 

I +A,x+A,x2+ &c.= (1 -x-)-a'(1l 2)-a2(l --x3)3... 

A little consideration will show that a, represents the number of irreducible integrals 
of the degree r less the number of linear relations or syzygies between the composite 
or non-irreducible integrals of the same degree. In fact the asyzygetic integrals of 
the degree 1 are necessarily irreducible, i. e. A=--O,. Represent for a moment the 
irreducible integrals of the degree 1 by X, X', &c., then the composite integrals 

X2, XX', &c., the number of which is Ic1,(,+ 1), must be included among the asyzy- 

getic integrals of the degree 2; and if the composite integrals in question were asyzy- 

getic, there would remain A2- -a,(M,+ l) for the number of irreducible integrals of 

the degree 2; but if there exist syzygies between the composite integrals in question, 

the number to be subtracted from A2 will be cV,(l-+1) less the number of these 

syzygies, and we shall have A2--1,(c,1+ ), i. e. a2 equal to the number of the irre- 

ducible integrals of the degree 2 less the number of syzygies between the composite 
integrals of the same degree. Again, suppose that a, is negative -13, we may for 

simplicity fuppose that there are no irreducible integrals of the degree 2, but that 
the composite integrals of this degree, X2, XX', &c., are connected by 12 syzygies, 
such as ;X2+-XX'+ &c.-=0, 1XX2+-,XX'+ &c. =0. The asyzygetic integrals of 

the degree 4 include X4, X' X', &c., the number of which is 24 (c+1 )(a, +2)(a,+3); 
but these composite integrals are not asyzygetic, they are connected by syzygies which 
are augumentatives of the 2 syzygies of the second degree, viz. by syzygies such as 

(7X2+pXX'..)X2=0, (lJX2+XX'.)XX ')XX &c. (X,X2+plXX'..)X2=O, 

(X?X2+(,1XX'..)XX'- O, &c., 

the number of which is a,(al,+1)P2. And these syzygies are themselves not asyzy- 

getic, they are connected by secondary syzygies such as 

x,(X2+ cxXX'..)X2+1,(XX2+x(XX'..)XX'+&c. 

-_(.lX 2+i,iXX'..)X2"- p(X, X2+JLXX'..)XX'-&c. -=O, &c. &c., 

the number of which is 132(P2-1). The real number of syzygies between the com- 

posite integrals X4, X3X', &c. (i. e. of the syzygies arising out of the P2 syzygies 
1 1 

between X2, XX', &c.), is therefore l(a,+-1)2- 2P2(32--1), and the number of inte- 

grals of the degree 4, arising out of the integrals and syzygies of the degrees 1 and 2 

respectively, is therefore 
1 2) 

I,,-i(a,+ 1)(al+2) (a+3)-al(al+ ')P2-+ (P2-_); 
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or writing --C instead of /, the number in question is 

4c(a1+ 1)(i+ 2) (, + 3) +2 I1(1 + 1)a2+ 22(2+ 1). 

The integrals of the degrees 1 and 3 give rise to a,a integrals of the degree 4; and if 
all the composite integrals obtained as above were asyzygetic, we should have 

A4- 24(oa +)(,+2)(,+ 3)- Ma(a + 1)~2- a2(2+ 1)--~a,I 

i. e. Oc4 as the number of irreducible integrals of the degree 4; but if there exist any 
further syzygies between the composite integrals, then a, will be the number of the 
irreducible integrals of the degree 4 less the number of such further syzygies, and the 
like reasoning is in all cases applicable. 

27. It maybe remarked, that for any given partial differential equation, or system 
of such equations, there will be always a finite number v such that given v inde- 

pendent integrals every other integral is a function (in general an irrational function 

only expressible as the root of an equation) of the v independent integrals; and if to 
these integrals we join a single other integral not a rational function of the v integrals, 
it is easy to see that every other integral will be a rational function of the +1 inte- 

grals; but every such other integral will not in general be a rational and integral 
function of the v+ 1 integrals; and there is not in general any finite number whatever 
of integrals, such that every other integral is a rational and integral function of these 

integrals, i. e. the number of irreducible integrals is in general infinite; and it would 
seem that this is in fact the case in the theory of covariants. 

28. In the case of the covariants, or the invariants of a binary quantic, A2 is given 
(this will appear in the sequel) as the coefficient of Xn in the development, in ascend- 

ing powers of x, of a rational fraction , wherefx is of the form 

(1 -x)l( 1 - 
2)2. (] -xk)k 

and the degree of px is less than that offx. We have therefore 

1+A,x+A22 +.. = f 

and consequently x-= -(1-- x)"1-l(l -x2)2-La2.. (l Xk)k-ak(1 - Xk+l)-ak+l.. 

Now every rational factor of a binomial I--xm is the irreducible factor of Il--m', 
where m' is equal to or a submultiple of m. Hence in order that the series oa, a2, G3.. 

may terminate, 'px must be made up of factors each of which is the irreducible factor 
of a binomial 1--xm, or if px be itself irreducible, then px must be the irreducible 
factor of a binomial - x. Conversely, if 'px be not of the form in question, the 
series C, , , C3, &c. will go on ad infinitum, and it is easy to see that there is no point 
in the series such that the terms beyond that point are all of them negative, i. e. there 
will be irreducible covariants or invariants of indefinitely high degrees; and the 
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number of covariants or invariants will be infinite. The number of invariants is first 
infinite in the case of a quantic of the seventh order, or septic; the number of cova- 
riants is first infinite in the case of a quantic of the fifth order, or quintic. 

29. Resuming the theory of binary quantics, I consider the quantic 

(a, b, .. , a'Jx, y)Y. 

Here writing {ybx} =a6b+2bbb.. +mb'a'=X 

{xay} =mbb+-m-lca^.. +a'b,^ Y, {X-ai aM 

any function which is reduced to zero by each of the operations X-y,)x Y-x6y is a 

covariant of the quantic. But a covariant will always be considered as a rational 
and integral function separately homogeneous in regard to the facients (x, y) and to 
the coefficients (a, b, .. b', a'). And the words order and degree will be taken to refer 
to the facients and to the coefficients respectively. 

I commence by proving the theorem enunciated, No. 23. It follows at once from 
the definition, that the covariant is reduced to zero by the operation 

X--Yx. Y- - xay- - Y - Yxa,y.x -ya-, 
which is equivalent to 

X.Y-Y.X+yay-x. 
Now 

X.Y=XY+X(Y) 
Y. X=YX+Y(X), 

where XY and YX are equivalent operations, and 

X(Y)= 1lmada+2m-- 1 bab... +-m 1 b'a 

Y(X)= m bb,.. +2m--1 hb' + lma', 
whence 

X (Y)- Y(X) =mab- +-+m--2bab .-- - 2b'm,.-- ma'a, 
=k suppose, 

and the covariant is therefore reduced to zero by the operation 

k+-yb,--xb,. 

Now as regards a term a"b..b'a'?'.xiy', we have 

k-=ma+m-23. ., --mn-2\--m 

yZ,-Xa,a=j-i; 

and we see at once that for each term of the covariant we must have 

ma+m-2 --..-m-23P\'m--m=j-=O, 

i. e. if (x, y) are considered as being of the weights , -- respectively, and (a, b, b, a') 
as being of the weights --2 m, -2 m+ 1, ..' m- 1, m respectively, then the weight 
of each term of the covariant is zero. 
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But if (x, y) are considered as being of the weights 1, 0 respectively, and (a, b, ..b', a') 
as being of the weights 0, , ..m-1-, m respectively, then writing the equation under 
the form 

m(a+ pi.. + 3'+a)+j+i-2(3+ .. +m- 13'+m' +i)=0, 

and supposing that the covariant is of the order p and of the degree 0, each term of 
the covariant will.be of the weight , (mO+p). 

I shall in the sequel consider the weight as reckoned in the last-mentioned manner. 
It is convenient to remark, that as regards any function of the coefficients of the 

degree 0 and of the weight q, we have 

X.Y-Y.X=m--2q. 
30. Consider now a covariant 

(A, B, ..B', A' x, y). 
of the order p and of the degree 0; the covariant is reduced to zero by each of the 

operations X-yb,, Y--x,, and we are thus led to the systems of equations 
XA=0 

XB =pA 

XC =p-1B 

XB'=2C' 

XA'=--B 
and 

YA =B 

YB=2C 

YC'=- -B' 

YB' =pA' 
YA' =0. 

Conversely if these equations are satisfied the function will be a covariant. 
I assume that A is a function of the degree 0 and of the weight 2 (mO-p), satis- 

fying the condition 
XA=0. 

And I represent by YA, Y2A, Y3A, &c. the results obtained by successive operations 
with Y upon the function A. The function Y'A will be of the degree 0 and of the 

weight 2 (m0--)+s. And it is clear that in the series of terms YA, Y2A, Y3A, &c., 
we must at last come to a term which is equal to zero. In fact, since m is the 

greatest weight of any coefficient, the weight of YV is at most equal to mO, and there- 
fore if (mr--I)+s>mo, or s> (m0+z), we must have Y'A=O. 2 .2 P)rM r. ~O\ M 
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Now writing for greater simplicity XY instead of X.Y, and so in similar cases, we 
have, as regards YVA, 

XY-YX=p -2s. 
Hence 

(XY-YX)A=--A, 
and consequently 

XYA =YXA+ /A=pA. 
Similarly 

(XY-YX)YA= --2YA, 
and therefore 

XY2A=YXYA +-- 2YA 

=-YA+E- -2YA=2(p- 1)YA. 
And again, 

(XY-YX)Y2A=p--4Y2A, and therefore 
XY3A=YXY2A + - 4Y2A 

=2p-- Y2A+4---4Y2A=3(/p-2)Y2A, 
or generally 

XY'A=s(--s+ 1)YsA. 
Hence putting s=p+-l, +2, &c., we have 

XY +1A=o 

XY'+2AA= - (+2) 1 .Y+IA 

XY'+3A= -(= +3)2.Y' +2A 

&c., 
equations which show that 

Y+'A=O0; 
for unless this be so, i. e. if Y"+lA=1=0, then from the second equation XY+2A=O=0, 
and therefore Y+2A=I=O, from the third equation XY'+I=0O, and therefore Y+'A=I=O, 
and so on ad infinitum, i. e. we must have Y+'A=0. 

31. The suppositions which have been made as to the function A, give therefore the 
equations 

XA=0 

XYA=pA 
XY2A=2(p- 1)YA 

XY"A=pY-'A 
Yg+'A=0. 

And if we now assume 

B=YA, C=-YB, ..A'=YB, 2 
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the system becomes 
XA =-0 

XB =pA 

XC =-- B 

XA'=B' 

YA'=0; 

so that the entire systern of equations which express that (A, B..B', A'Jx, y) is 
a covariant is satisfied; hence 

Theorem. Given a quantic (a, b, . . b', ax, y); if A be a function of the coefficients 
of the degree 6 and of the weight 2 (m6d-) satisfying the condition XA=O, and if 
B, C, ..B', A' are determined by the equations 

1 
B-YA, C=YB, ..A=YB', 

then will 
(A, B, ..B', A'x, y) 

be a covariant. 
In particular, a function A of the degree a and of the weight X md, satisfying the 

condition XA=O, will (also satisfy the equation YA=O and will) be an invariant. 
32. 1 take now for A the most general function of the coefficients, of the degree d 

and of the weight I (mD- -b) then XA is a function of the degree 6 and of the weight 
3 (m0-) )- 1, and the arbitrary coefficients in the function A are to be determined 
so that XA=O. The number of arbitrary coefficients is equal to the number of 
terms in A, and the number of the equations to be satisfied is equal to the number of 
terms in XA; hence the number of the arbitrary coefficients which remains indeter- 
minate is equal to the number of terms in A less the number of terms in XA; and 
since the covariant is completely determined when the leading coefficient is known, 
the difference in question is equal to the number of the asyzygetic covariants, i. e. the 
number of the asyzygetic covariants of the order p and the degree 0 is equal to the 
number of terms of the degree 6 and weight 2 (mO-p), less the number of terms of 
the degree d and weight - (m6-P)- 1. 

33. I shall now give some instances of the calculation of covariants by the method 

just explained. It is very convenient for this purpose to commence by forming the 
literal parts by ARBOGAST'S Method of Derivations: we thus form tables such as the 
following:- 

a 
6b 

c 

a2 ab ac bc b2 
b2 

i ~ ' ?~ -] be 
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a |b |c d 

a2 ab a ad bd cd d 
62 e c2 

a3 a2b a2c a2d abd acd ad2 bd2 cd2 d 
ab2 abe ac2 b2d bed c2d ' 

b3 b62 b62 c3 

a4 a3b a3c a'd a2bd a2cd a2d2 abd2 acd2 ad3 bd3 cd3 d4 
a2b2 ' a2bc a"c2 e a62d abed ac2d b2d2 bed2 c2d2 

ab3 ab2c abc2 ac3 b2cd becd cad 
b4 b63 b3d be3 c4 

b2c2 

a 6 c d e 

a2 ab ac ad ae be bd cd d2 
b2 be bd cd C2 

C2 
? 

a2e abe ace ade ae2 
abd acd . ad2 bee bde 
ac2 62d 62e bd2 c2e 
b2c be2 bed c2d cd2 

c3 

34. Thus in the case of a cubic (a, b, c, d3x, y)3, the tables show that there will 
be a single invariant of the degree 4. Represent this by 

Aa2d2 

+Babcd 

+ Cac 

+Db3d 

+Eb2c2, 

which is to be operated upon with a?b+2b^3c+3cd. This gives 

+B 
+3D 
+2E 

+ 2B 
+6C 
+4E 

+6A 

+ 3B 
+3D 

a2cd 
ab2d 
abc2 
6b3 
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i. e. B+6A=0, 3D+2B=0, &c.; or putting A=I, we find B=-6, C=4, D=4, 
E=--3, and the invariant is 

a2d2 

-6abcd 

+4ac3 

- 4h3d 

--3b2. 

Again, there is a covariant of the order 3 and the degree 3. 
or leading coefficient is 

Aa2d 

-Babe 

+Cb3, 

The coefficient of xs 

which operated upon with aaB+2b-b+3ca, gives 

'+{B ||+ 3A aec 
3C +2B a62 

i. e. B+3A=0, 3C+2B0; or putting A=1, we have B=--3, C=2, and the leading 
coefficient is 

a2d 

-3abc 

+2b3. 
The coefficient of xy is found by operating upon this with (3bba+2cb-+dd c), this 
gives 

+6 

-9 
-6 
+ -l~ 

i. e. the required coefficient of x2y is 

-3 abd 
ae 
b2c 

3abd 

--6ac2 

and by operating upon this with - (3b6b+2c6+dac)9, we have for the coefficient of xl:y2 

+3 -6 acd 
+9 ' +i 62d 

-9 ~ +6 be 

i. e. the coefficient of xy2 is 

MDCCCLVI. 

- 3acd 

.+ 6b2d 

.-3bc2. 
Q 
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Finally, operating upon this with I (3b0a+2ca^+d ) ,, we have for the coefficient of y 

-1 ads 
-3 +8 -- bed 

-2 
' 

ca 

i. e. the coefficient of y3 is 
-ad" 

+3bcd 

-2c3, 
and the covariant is 

a2d 3abd -3acd -ad2 
( -3abc --6ae +662d +3bed ) 

+ 263 -+ 3be -36c2 -2c3 

I have worked out the example in detail as a specimen of the most convenient method 
for the actual calculation of more complicated covariants *. 

35. The number of terms of the degree 0 and of the weight q is obviously equal to 
the number of ways in which q can be made up as a sum of 0 terms with the elements 

(0, I, 2, ...m), a number which is equal to the coefficient of xqze in the development of 

1 

(1l-z) (1 -Xz) (1-'xz) ..(1--QGr'); 

and the number of.the asyzygetic covariants of any particular degree for the quantic 

* Note added Feb. 7, 1856.--The following method for the calculation of an invariant or of the leading 
coefficient of a covariant, is easily seen to be identical in principle with that given in the text. Write down 
all the terms of the weight next inferior to that of the invariant or leading coefficient, and operate on each of 
these separately with the symbol 

b c b- 
ind. b * - + 2 ind. c - * m-- ind. ?*b - 

where we are first to multiply by the fraction, rejecting negative powers, and then by the index of the proper 
letter in the term so obtained. Equating the results to zero, we obtain equations between the terms of the 
invariant or leading coefficient, and replacing in these equations each term by its numerical coefficient in the 
invariant or leading coefficient, we have the equations of connexion of these numerical coefficients. Thus, for 
the discriminant of a cubic, the terms of the next inferior weight are a2cd, ab2d, abc2, b3c, and operating on each 
of these separately with the symbol 

b e d ind. b -+2 ind. c+3 ind. d.- 
a b c 

we find 

abed + 6 a2d2 
3 b3d +2 abed 
2 b2 +6 ac3 +3 abed 

+4 bSc2 +3 bad 

and equating the horizontal lines to zero, and assuming aSdS 1, we have a2d2= 1, abed=-6, ac3=4, b3d=4, 
b'2c2=-3, or the value of the discriminant is that given in the text. 
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(*jx, y)m can therefore be determined by means of this development. In the case of 
a cubic, for example, the function to be developed is 

1 
(l-z) (I z)(l-)( - A SZ3) 

which is equal to 

1+z-(l +x+x2+x)+z2(1 +x+2x-+24X+2x4+.x5+x6)+ &c., 

where the coefficients are given by the following table; on account of the symmetry, 
the series of coefficients for each power of z is continued only to the middle term or 
middle of the series. 

1l f (0) 

11 1 2 f2 f(2) 

/1if f 13 f (3) 

I'f1 'I 

? 
1 f3 /f4 fsf 6 6j/ (5) 

1 f1 2 *3s 4? 51 7 fs f S (6) 

and from this, by subtracting from each 

precedes it, we form the table 
coefficient the coefficient which immediately 

1 (0) 

I1 0 (1) 

1 0 1 o (2) 

1 0 1 1 0 (3) 

I o0 1 1 1 0 o 1 (4) 

O 1 11 1 1 o1 o (5) 

1 0 1 1 1 1 2 0o 1 0o (6 

The successive lines fix the numberi and chlaracter of the covariants of the degrees 
0, 1, 2, 3, &c. The line (0), if this were to be interpreted, would show that there is a 

single covariant of the degree 0; this covariant is of course mnerely the absolute con-- 
stant unity, and may be excluded. The line () shows that there is a single covariant 

Q2 

1.11 

.. 
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of the degree 1, viz. a covariant of the order 3; this is the cubic itself, which I repre- 
sent by U. The line (2) shows that there are two asyzygetic covariants of the 

degree 2, viz. one of the order 6, this is merely U'2, and one of the order 2, this I 

represent by H. The line (3) shows that there are three asyzygetic covariants of the 

degree 3, viz. one of the order 9, this is U3; one of the order 5, this is UH, and one of 
the order 3, this I represent by O(. The line (4) shows that there are five asyzygetic 
covariants of the degree 4, viz. one of the order 12, this is U4; one of the order 8, 
this is U2H; one of the order 6, this is H2; and one of the order 0, i. e. an invariant, 
this I represent by V. The line (5) shows that there are six asyzygetic covariants of 
the degree 5, viz. one of the order 15, this is U5; one of the order 11, thisis isUH; 
one of the order 9, this is UJ2P; one of the order 7, this is UH2; one of the order 5, 
this is HI-; and one of the order 3, this is VU. The line (6) shows that there are 8 

asyzygetic covariants of the degree 6, viz. one of the order 18, this is U6; one of the 
order 14, this is U4H; one of the order 12, this is U3(P; one of the order 10, this is 
U2'-12; one of the order 8, this is UH'P; two of the order 6 (i. e. the three covariants 
H3, P'2 and VU' are not asyzygetic, but are connected by a single linear equation or 

syzygy), and one of the order 2, this is VH. We are thus led to the irreducible 
covariants U, HE, (, V connected by a linear equation or syzygy between H3, (D2 and 
VU2, and this is in fact the complete system of irreducible covariants; V is therefore 
the only invariant. 

36. The asyzygetic covariants are of the form UWHqV', or else of the form 
UWHV''O; and since U, H, V are of the degrees 1, 2, 4 respectively, and (P is of the 

degree 3, the number of asyzygetic covariants of the degree m of the first form is 

equal to the coefficient of x in 1(1-x)(1-x2)(1-x4), and the number of the 

asyzygetic covariants of the degree m of the second form is equal to the coefficient 
of xn in x'-(1 -x)(l1-..)(1 --4). Hence the total number of asyzygetic covariants 
is eqtal to the coefficient of xm in (1-x3)-(l1-x)(Il-x2)(1-X4), or what is the 
same thing, in 

1 -x6 

(1-) (1-2) (1-3) (1--4); 

and conversely, if this expression for the number of the asyzygetic covariants of 
the degree m were established independently, it would follow that the irreducible 
invariants were four in number, and of the degrees 1, 2, 3, 4 respectively, but con- 
nected by an equation of the degree 6. As regards the invariants, every invariant is 
of the form VP, i. e. the number of asyzygetic invariants of the degree m is equal to 

the coefficient of xm in _x4, and conversely, from this expression it would follow that 

there was a single irreducible invariant of the degree 4. 
37. In the case of a quartic, the function to be developed is, 

1 
(1 - z)(1 - xz)(1 - xz)(1 - 3) (1 - - x4(1- ) 
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and the coefficients are given by the table. 

2 

5 

8 

1 

1 

i 1 

1 1 2 3 

And subtracting from each 
have the table- 

2 

1 

3 

6 

1 

2 

5 

9 

1 

3 

6 

10 

1 

3 

5 

9 

13 14 

2 

4 

7 

11 

1 

1 

4 

7 

11 

3 

5 

8 

12 

16 16 18 

(0) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

coefficient the coefficient immediately preceding it, we 

1 

1 

1 

1 0 1 

0 

1 

1 

2 

0 

1 

1 

1 

2 

2 

0 

1 

0 

1 
. 

1 

1 

2 

2 

I 

0 

0 

0 

0 

1 

0 

1 

1 

1 

1 

1 0 1 112 1 3 1 3 1 2 0 2 

(0) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

the examination of which will show that we have for the quartic the following 
irreducible covariants, viz. the quartic itself U; an invariant of the degree 2, which I 

represent by I; a covariant of the order 4 and of the degree 2, which I represent by H; 
an invariant of the degree 3, which I represent by J; and a covariant of the order 6 
and the degree 3, which I represent by L(; but that the irreducible covariants are 
connected by an equation of the degree 6, viz. there is a linear equation or syzygy 
between ()2, I3H3, 12JIJ12U, IJ2HU2 and J3U3; this is in fact the complete system of 
the irreducible covariants of the quartic: the only irreducible invariants are the 
invariants I, J. 

38. The asyzygetic covariants are of the form UPIqHWJ, or else of the form 
UPlqHrJsqD, and the number of the asyzygetic covariants of the degree r is equal to 
the coefficient of xm in (1+-x) --(1-x)( 1-x) (--x3)) or what is the same thing, in 

1 --6 
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and the asyzygetic invariants are of the form IPJ, and the number of the asyzygetic 
invariants of the degree m is equal to the coefficient of xm in 1 +(1--x2)(1 --x). 
Conversely, if these formulae were established, the preceding results as to the form 
of the system of the irreducible covariants or of the irreducible invariants, would 
follow. 

39. In the case of a quintic, the function to be developed is 

(1 z)(1 -XZ) (1 -2Z-) (1-Z) (1-X4z)(l -x5Z) 
; 

and the coefficients are given by the table: 

I (0) 

L l r (?) 
i1 1 2 213 3 (2) 

1 1 2 3 4 5 6 16 (3) 

1 1 2 3 5 6 8 9 11)11 12 (4) 

1 2 3 5 9 1 1 14 16 18 19 20 (5) 

and subtracting from each coefficient the one which immediately precedes it, we have 
the table: 

1 0 0 (1) 

1 0 1 IO I 0 (2) 

110 1 1 1 1 1 0 (3) 

1 o 1 1 21112 112 0 11 (4) 

0 1 Illl 2 2 2 2 3 2 2 1 1 (5) 

We thus obtain the following irreducible covariants, viz.- 
Of the degree 1 ; a single covariant of the order 5, this is the quintic itself. 
Of the degree 2; two covariants, viz. one of the order 6, and one of the order 2. 
Of- the degree 3; three covariants, viz. one of the order 9, one of the order 5, and 

one of the order 3. 
Of the degree 4; three covariants, viz. one of the order 6, one of the order 4, and 

one of the order 0 (an invariant). 
Of the degree 5;- three covariants, viz. one of the order 7, one of the order 3, and 

one of the order 1 (a linear covariant). 

114 



MR. A. CAYLEY'S SECOND MEMOIR UPON QUANTICS. 

And these covariants are connected by a single syzygy of the degree 5 and of the 
order 11; in fact, the table shows that there are only two asyzygetic covariants of 
this degree and order; but we may, with the above-mentioned irreducible covariants 
of the degrees 1, 2, 3 and 4, form three covariants of the degree 5 and the order 11; 
there is therefore a syzygy of this degree and order. 

40. I represent the number of ways in which q can be made up as a sum of m terms 
with the elements 0, 1, 2,... m, each element being repeatable an indefinite number 
of times by the notation 

P(0, 1, 2,.. m)q, 
and I write for shortness 

P'(O, 1,2,..m)0q=P(O, 1,2..m)0q-P(0, 1,2...m)0q-l. 

Then for a quantic of the order m, the number of asyzygetic covariants of the degree 
0 and of the order p is'(, 1,2 ... (d) 

PIt(O , 1, 2 ... m)01(m--a). 

In particular, the number of asyzygetic invariants of the degree 0 is 

P'(O, 1, 2.. m)lm. 
To find the total number of the asyzygetic covariants of the degree 0, suppose first 

that md is even; then, giving to p the successive values 0, 2, 4,.. m, the required 
number is 

P(ImO) -P(lm- 1 ) 
+P(mdO-l1)-P(mO-d-2) 

+P(2) -P(1) 
+P(1) 
-=P(}mO), 

i. e. when md is even, the number of the asyzygetic covariants of the degree 0 is 

P(O, 1, 2.. m)0-mO; 

and similarly, when m6 is odd, the number of the asyzygetic covariants of the degree 
d is P(O, 1, 2, .. m)? (mO-1 ). 

But the two formulae may be united into a single formula; for when mO is odd sm0 
is a fraction, and therefore P(?m6) vanishes, and so when md is even }(m--1) is a 
fraction, and P1(mn--1) vanishes; we have thus the theorem, that for a quantic of 
the order m,- 

The number of the asyzygetic covariants of the degree 0 is 

P(0,1, 2 ... m)qLmM+P(0, 1, 2, .. m)0(mn- 1). 

41. The functions P2mO, &c. may, by the method explained in my "Researches 
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on the Partition of Numbers," post. p. 34, be determined as the coefficients of xe in 
certain functions of x; I have calculated the following particular cases:- 

Putting, for shortness, 
P'(0, 1, 2, .m)mO=-- coefficient x? in pm, 

1 
then P2= l_x 

1q3= _ 

p4= 4 
(1 - X2)(1 - 

3) 

1--x + 12 
5 

(-4) 
- 

-6) )1 _-8) 

(1 -X)(l + -X3-X4--X_5+X7+X8) P6= '- 
(I (1 - 2)2 (I- 1 (1 ) 

1 -x6 + 2x8 -x10 + 5x12 + 2x14 + 6x16 + 2X18 5X20 X22 + 224-X6 + 32 
7 

(_X-4) (l-X6) (l-X8) (l _~O) (1 _2) 

(1-)(1 + X--X3-X4 X6 X7 +8 X 9 +10 3 15+ X16) 

s= 
( 
((1 _Xe)Q(l._g)e(j1-x4)(1-_X)(1 -X7) 

P(O, 1, 2, ..m)?0m=- coefficient of x? in am, 
then (12)( 

1 +X4 
,t3 (I -,t2)2(1-_X4) 

':%, 1 - -x + x2 

(1 -)2(1 x2)(1- X) 

1 - X4 6x4+ 9 6+ 128 9X0 + 6X2+ X14'+ 16 
etR_ (1-2X2)2(1--x4)(l-X6)(1-_x8) 

P(O, 1, 2, ..m)01(m - 1)= coefficient of x n rnm, 

then l ,3= (1 -x)2(1-X4) 

? x+4X3+8 + 10 lO7-10+9 811+4x13+X15 
It,s = (l-X)2(1 - 4)(1 -X6) (1 -8) 

And from what has preceded, it appears that for a quantic of the order n, the number 
of asyzygetic covariants of the degree 0 is for.m even, coefficient xe in 4-m, and for m 
odd, coefficient x0 in (,4m+4l,m); and that the number of asyzygetic invariants of the 
degree 0 is coefficient X0 in pm. Attending first to the invariants,- 

42. For a quadric, the number of asyzygetic invariants of the degree 0 is 

coefficient xo in 1-2- 

which leads to the conclusion that there is a single irreducible invariant of the 
degree 2. 
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43. For a cubic, the number of asyzygetic invariants of the degree 0 is 

coefficient x9 in 1-_-4 

i. e. there is a single irreducible invariant of the degree 4. 
44. For a quartic, the number of asyzygetic invariants of the degree 0 is 

coefficient x8 in 
(l _XZ)(i _3) 

i. e. there are two irreducible invariants of the degrees 2 and 3 respectively. 
45. For a quintic, the number of asyzygetic invariants of the degree 0 is 

_--X6 + x12 
coefficient x? in (_x4)(,6 

The numerator is the irreducible factor of 1--x36, i.e. it is equal to (1-x36)(1--x6) 
-(1--x18)(1--x'2); and substituting this value, the number becomes 

1--X36 
coefficient x' in (1_4)(-8)(1 i)(1_I8) 

i. e, there are in all four irreducible invariants, which are of the degrees 4, 8, 12 and 
18 respectively; but these are connected by an equation of the degree 36, i. e. the 

square of the invariant of the degree 18 is a rational and integral function of the 
other three invariants; a result, the discovery of which is due to M. HERMITE. 

46. For a sextic, the number of asyzygetic invariants of the degree 0 is 

* (1 -)(l( +X - X4-X5 - 7+ X+X8) coefficient x in (1 _-2)(1 -x -4)(1-5) 

the second factor of the numerator is the irreducible factor of 1--x30, i e. it is equal 
to (1 -3?)(l--5)(1-3)(1 -2) +(1--15)(1-~?l)(1-l6)(1 -); andsubstitutingthis 
value, the number becomes 

1 --xs? 
coefficient x3 in (iX1 _2)4)l 1 ,4)(1i 

- 
6)(1_ )(I_.-X15) 

i. e. there are in all five irreducible invariants, which are of the degrees 2, 4, 6, 10 and 
15 respectively; but these are connected by an equation of the degree 30, i.e. the 

square of the invariant of the degree 15 is a rational and integral function of the 
other four invariants. 

47. For a septic, the number of asyzygetic invariants of the degree 0 is 

. . x 1-6 + 2x8-x0 + 5x2 + 2x+14 + 616 + 2x18 + 520x-22 2x24- x26 + 2 
coefficient x in (-4)( 6)( 8)(i-I)( 12) 

the numerator is equal to 

( 

1 

X6) (1 8) -2( - x10) (1 -_X2) 
~-5 

( 
_ 14)-4 

where the series of factors does not terminate; hence the number of irreducible inva- 
MDCCCLVI. R 
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riants is infinite; substituting the preceding value, the number of asyzygetic invariants 
of the degree 0 is 

coefficient Cx in (1 4)--4(1)- (1- )-3( x12)-6(l -x14)-4... 
The first four indices give the number of irreducible invariants of the corresponding 
degrees, i.e. there are 1, 3, 6 and 4 irreducible invariants of the degrees 4, 8, 12 and 
14 respectively, but there is no reason to believe that the same thing holds with 

respect to the indices of the subsequent terms. To verify this it is to be remarked, 
that there are 1, 4, 10 and 4 asyzygetic invariants of the degrees in question respect- 
ively; there is therefore one irreducible invariant of the degree 4; calling this X4, 
there is only one composite invariant of the degree 8, viz. X2; there are therefore 
three irreducible invariants of this degrees say X8, X8, X". The composite invariants 
of the degree 12 are four in number, viz. X/, X4X8, X4X8, X4Xg, and these cannot be 
connected by say syzygy, for if they were so, X2, Xg, X', X' would be connected by a 
syzygy, or there would be less than 3 irreducible invariants of the degree 8. Hence 
there are precisely 6 irreducible invariants of the degree 12. And since the irreducible 
invariants of the degrees 4, 8 and 12 do not give rise to any composite invariant of 
the degree 14, there are precisely 4 irreducible invariants of the degree 14. 

48. For an octavic, the number of the asyzygetic invariants of the degree 0 is 

(l1-x)(l +X-_3-X4+rX6+X7+?8+X9+XO1-X12_x13+X15+ 16) coefficient x? in ({l--x2)2 - x 3)2(1 - 4)(1 x5) (1 -x7) 

and the second factor of the numerator is 

(I )-i(l 2)(I_X3)l-_X6)I-i( 8)-1(1 _-) -1( 1_X1O)-1(1_X16 (1-X17)( 18)^ 

where the series of factors does not terminate, hence the numlber of irreducible inva- 
riants is infinite. Substituting the preceding value, the number of the asyzygetic 
invariants of the degree 0 is 

coeff. x^'in (1-Z ) (1-x3)-l(l -xl4Y\\-S5)-(l -a6)-1( -7)-(l -t81(l -9)(l _10)-l( _1 )(1 9( _ 18)... 

There is certainly one, and only one irreducible invariant for each of the degrees 
2, 3, 4, 5 and 6 respectively; but the formula does not show the number of the irre- 
ducible invariants of the degrees 7, &c.; in fact, representing the irreducible inva- 
riants of the degrees 2, 3, 4, 5 and 6 by X2, X, X4, X,, X6, these give rise to 3 com- 

posite invariants of the degree 7, viz. X2X2X,, X2X,, X,X4, which may or may not be 
connected by a syzygy; if they are not connected by a syzygy, there will be a single 
irreducible invariant of the degree 7; but if they are connected by a syzygy, there will 
be two irreducible invariants of the degree 7; it is useless at present to pursue thle 
discussion further. 

Considering next the covariants,- 
49. For a quadric, the number of asyzygetic covariants of the degree 0 is 

coefficient xt in ( )(1I 
(I -X)(1 - X2)' 
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i. e. there are two irreducible covariants of the degrees 1 and 2 respectively; these are 
of course the quadric itself and the invariant. 

50. For a cubic, the number of the asyzygetic covariants of the degree 0 is 

coefficient x? in (1x)(( x4) 

The first factor of the numerator is the irreducible factor of 

1-x2, =(1-x2) +( 1-) 
and the second factor of the numerator is the irreducible factor of 

1-X4, =(1-_4) (1 _X2) . 

substituting these values, the number is 

coefficient xI in (1)(1--(- 

i. e. there are 4 irreducible covariants of the degrees 1, 2, 3, 4 respectively; but these 
are connected by an equation of the degree 6; the covariant of the degree I is the 
cubic itself U, the other ccvariants are the covariants already spoken of and repre- 
sented by the letters H, (D and V respectively (I is of the degree 2 and the order 3, 
(D of the degree 3 and the order 3, and V is of the degree 4 and the order 0, i. e. it is 
an invariant). 

51. For a quartic, the number of the asyzygetic covariants of the degree 0 is 

1-x+x2 coefficient x in (1 _)2(1_x2)(1-X,3) 

the numerator of which is the irreducible factor of 1-x6, i. e. it is equal to 

(1--x6)(1--x) -(1 -x)(1 -x3). Making this substitution, the number is 

coefficient x0 in (l_Zx)(1- 2 X) 

i. e. there are five irreducible covariants, one of the degree 1, two of the degree 2, and 
two of the degree 3, but these are connected by an equation of the degree 6. The 
irreducible covariant of the degree 1 is of course the quartic itself U, the other irre- 
ducible covariants are those already spoken of and represented by I, H, J, <( respect- 
ively (I is of the degree 2 and the order 0, and J is of the degree 3 and the order 0, 
i. e. I and J are invariants, H is of the degree 2 and the order 4, (I is of the degree 3 
and the order 6). 

52. For a quintic, the number of irreducible covariants of the degree 0 is 
. + x + X + 4x3 + 6x4 + 8x5 + 9x6 + 10x7 + 12X8 + 10x9 + 9X10 + 8x11 + 6x12 + 413 + 14 + 15 + X6 

coeff.x in (1 -2)2(1(- 4) (1 
' 

)(_ -8) 

the numerator of which is 

(1+2(1-+2 2++2X2+x3+2X4+3X5+x6+5X7+x8+3x9+2x0+Xll+2X-1 +X ) 

the first factor is (l-x)-2(1 -x2)2, the second factor is 

( x)( - 
X2)-2( 3a)-3(1 )- 2(15)-2(1 6)5(1 - -7)5(1 --8)7(1 -_X)'(1-Xl (- 1) 1-- - 

R 2 
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which does not terminate; the number of irreducible covariants is therefore infinite. 
Substituting the preceding values, the expression for the number of the asyzygetic 
covariants of the degree d is 

coeff. x in (1 -x)-( --(1 X- 2()--(1 -_6) -4(1i- 7)5 (1_ 6)6( X7)(- x) 9)(1 -x)-9(1 - ll)-19.. 

which agrees with a previous result: the numbers of irreducible covariants for the 
degrees 1, 2, 3, 4 are 1, 2, 3 and 3 respectively, and for the degree 5, the number 
of irreducible covariants is three, but there is one syzygy between the composite 
covariants of the degree in question; the difference 3-1=2 is the index taken with 
its sign reversed of the factor (1-x5)-2. 

.53. I consider a system of the asyzygetic covariants of any particular degree and 
order of a given quantic, the system may of course be replaced by a system the terms 
of which are any linear functions of those of the original system, and it is necessary 
to inquire what covariants ought to be selected as most proper to represent the 
system of asyzygetic covariants; the following considerations seem to me to furnish 
a convenient rule of selection. Let the literal parts of the terms which enter into 
the coefficients of the highest power of x or leading coefficients be represented by 
Ma, M3, My,.. these quantities being arranged in the natural or alphabetical order; 
the first in order of these quantities M. which enters into the leading coefficient of a 

particular covariant, may for shortness be called the leading term of such covariant, 
and a covariant the leading term of which is posterior in order to the leading term 
of another covariant, may be said to have a lower leading term. 

It is clear, that by properly determining the multipliers of the linear functions we 
may form a covariant the leading terni of which is lower than the leading term of 
any other covariant (the definition implies that there is but one such covariant); call 
this E. We may in like manner form a covariant such that its leading term is lower 
than the leading term of every other covariant except 0,; or rather we may formt a 
system of such covariants, since if (2 be a covariant having the property in question, 
(P<+kO?1 will have the same property, but k may be determined so that the covariant 
shall not contain the leading term of 9i, i. e. we may form a covariant ,2 such that 
its leading term is lower than the leading term of every other covariant excepting 
?0, and that the leading term of 0? does not enter into 2,; and there is but one such 
covariant, 0,. Again, we may form a covariant 30 such that its leading term is lower 
than the leading term of every other covariant excepting 0, and 2,, and that the 
leading terms of 0i and 0, do not either of them enter into 0,; and there is but one 
such covariant, 03. And so on, until we arrive at a covariant the leading term of 
which is higher than the leading terms of the other covariants, and which does 
not contain the leading terms of the other covariants. We have thus a series of 
covariants 0,, 02, 0,, &c. containing the proper number of terms, and which 
covariants may be taken to represent the asyzygetic covariants of the degree and 
order in question. 
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In order to render the covariants 0 definite as well numerically as in regard to 

sign, we may suppose that the covariant is in its least terms (i. e. we may reject 
numerical factors common to all the terms), and we may make the leading term 

positive. The leading term with the proper numerical coefficient, if different fiorm 
unity and with the proper power of x, or the order of the function annexed, will, when 
the covariants of a quantic are tabulated, be sufficient to indicate, without any 
ambiguity whatever, the particular covariant referred to. I subjoin a table of the 
covariants of a quadric, a cubic and a quartic, and of the covariants of the degrees 
1, 2, 3, 4 and 5 respectively of a quintic, and also two other invariants of a quintic. 

Covariant Tables (Nos. 1 to 26). 

No. 1. No. 2. 

( +1 a +2 6 +1 c ^(,y)2 4+1 ac 
_1 6 

The tables Nos. 1 and 2 are the covariants of a binary quadiic. No. 1 is the qua- 
dric itself; No. 2 is the quadrinvariant, which is also the discriminant. 

No. 3. No. 4. 

(|+1 a +3 b +3 c +1 d Tix,y). }+ +1 ad +1 bd )2 
--1 I2 --1 be -1 c2 ,. 

No. 5. No. 6. 

+1 a2d +3 abd -3 acd -I ad2 +1 a2d2 

( -3 abc -6 ac+ +6 a2d +3 bed T,y)3. -6 abed 
+2 b43 +3 b2C -3 be2 -2 C3 +4 ac3 

+4 bad 
-3 b2 c 

The tables Nos. 3, 4, 5 and 6 are the covariants of a binary cubic. No. 3 is the 
cubic itself; No. 4 is the quadricovariant, or H-essian; No. 5 is the cubicovariant; 
No. 6 is the invariant, or discriminant. And if we write 

No. 3=U, 
No. 4=H, 
No. 5=: (, 
No. 6=V, 

(Q-2VU2+H3--0. then identically, 
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No. 7. 

( +1 a +4 b +6 c +4 d +1 e |X, Y)4 

No. 8. No. 9. 

+1 ae - +1 ac +2 ad +1 ae +2 be +1 bd 
-4 bd - b2 - - 2 2 bc +2 bd -2 cd -1 C2 Ix,y)4 
+ 3 c2 --3 c2 

No. 10. No. 11. 

+1 ace + 1 a2d + 1 ae + 5 abe c ace - 5 ade -1 ae2 -1 be2 
-1 ad2 -3 abc +2 abd -15 aed -10 ad2 +15 bce -2 bde +3 ede rj - 
-1 b2e ( +2 b3 -9 ac2 +10 b2d +10 b2e -10 bd2 +9 c2e -2 d3 AX Y) 
+2 bed +6 b2c be2 , bed ,o c2d -6 cd2 
--1 3 

C 

3 
c3 

No. 12. 

+ 1 ae3 '+ 81ac 
- 12 a2bde2 _ 54 ac3d2 
- 18 a2c2e2 _ 27 b4e2 
+ 54 a2ed2e +108 b3cde 
- 27 a2d4 - 64 b3d3 
+ 54 ab2ce2 _ 54 b2c3e 
- 6 ab2d2e 36 b2c2d2 
-180 abc2de , bc4d 
+108 abed3 , c6 

The tables Nos. 7, 8, 9, 10 and ll are the irreducible covariants of a quartic. 
No. 7 is the quartic itself; No. 8 is the quadrinvariant; No. 9 is the quadricovariant, 
or Hessian; No. 10 is the cubinvariant; and No. 11 is the cubicovariant. The table 
No. 12 is the discriminant. And if we write 

No. 7=U, 
No. 8=I, 
No. 9=H, 
No. 10=J, 
No. 1 -=0, 
No. 12=-V, 

then the irreducible covariants are connected by the identical equation 
JU3 -IU2H+4H3+ 2==0, 

and we have V=-I--27J2. 
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No. 13. 

( +1 a | +5 b +10 c +10 d +5 e +1f l xXy)5 

No. 14. 

+1 ae +1 af +1 bf 
( -4 bd'- -3 be -4 ce X, y) 

+3 C2 '+2 cd +3 d2 

No. 15. 

+1 ac +3 ad +3 ae +1 af +3 bf 
(. -1 b2 --3 bc +3 bd +7 be +3 ce 

-6 c2 --8 cd -6 d2 , 

+3 cf +1 df 
-3 de -1 e2 , Y)6 

No. 16. 

+1 ace + 1 aef +1 adf + bdf 
-1 ad2 1 ade -1 ae2 -1 be2 
-1 b2e _ -1 f -1 6ef -1 C 
+ 2 bed +1 bce e +1 bde +2 cde 
-1 c3 +1 bd2 + 1 c2e -1 d3 

-1 c2d -1 cd2 

( 

5x, y)3 

No. 17., 

+ 1 a2f +5 abf + 2 acf - 2 adf - 5 aef -1 af2 
--5 abe -16 ace -12 ade - 8 ae2 +16 bdf +5 bef 
+2 acd : + 6 ad2 + 8 b2f +12 bef + 9 be2 * -2 cdf 
+8 bd - 9 b2e -38 bee + 38 bde - 6 c2f -8 ce2 
-6 be2 +38 bed +72 bd2 -72 c2e -38 cde +6 d2e 

-24 c3 -32 c2d +32 cd2 +24 d3 

No. 18. 

+1 a2d + 2 ae +1 af + 7 abf + 5 aef - ad- 7aef- 1 af2 - 7 2 bf'-- cf2 
--3 abc + 1 abd +11 abe - 8 ace -40 ade -16 ade + 8 bdf -11 bef - 1 cef +3 def 
+2 b3 -12 ac2 -34 acd -34 ad2 +16 b2f +40 b2f -29 be2 +34 cdf +12 d2f -2 e3 

+ 9 b2c +16 b2d +29 b2e +47 bce -47 bce +34 c2f -16 ce2 - 9 de2 
+ 6 b2 - 2 bed -44 bd2 +44 bd2 + 2 cde - 6 de 

. 8 c +16 c2d -16 cd - 8 d3 
I ~ ~ ~ , . , ......, ,. , ,f . . .. - t , . . . . 

( 
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,N&19. 

+ 1 af2,' 
-10 abef 
+ 4 acdf 
+16 ace2 
-12 ad2e 
+16 b"df 
+ 9 62e" 
--12 bcef 
--76 bcde 
+48 bd' 
+ 48 c3e 
-32 c2d2 

MR. A. CAYLEY'S SECOND MEMOIR UPON QUANTICS. 

No. 20. 

( 

+ 1 a2df + 2 alef + 1 a9f 2 + 2 abf2 + 1 aef2 
ae2 -4 abdf - 4 abef 4 ef - 3 adef 

- 3 abef -10 a6e2 - 2 acdf 2 ad2f + 2 ae3 
- 5 abde - 2 ac2f + 4 ace2 + 4 ade2 b2f2 
+ 10 ac2e +24 acde o,. ad2e -10 b2ef - 5 bcef 
- 4 acd2 -12 ad3 + 4 62df +24 bcdf +10 bd2f 
+ 2 bf + 4 b2cf - 9 b2e2 +16 bee2 - 5 bde2 
- 5 b2ce +16 b2de be 62f -22 bd2e - 4 c2df 
+14 b2de -22 bc2e +50 c ede -12 c3f +14 c2e 
-16 bc2d - 4 bed2 -36 bd3 - 4 c2de -16 cd2e 
+ 6 c4 + 8 c3d -36 c3e + 8 ed3 + 6 d4 

+28 C2d2 

No. 21. 

1a f +1 a2cf 4 + 2ad f ae f 2 af _ 2 acf2 -1 adf2 
-1 a2de - e2 a bdef abef -2 acef adef +1 ae2f 
-1 ab2f -10' abf -2 ab6e2 , acdf +1 a2f + 2 ae3 +1 bef2 
-2 abce +10 abde -1 ac2 -20 ace2 +1 ade2 + 2 62f 2 +2 bdef 
+4 a6d2 ace -2 acde +20 ad2e +2 b2ef beef -3 be3 
-1 ac2d acd2 +3 ad3 +20 b2f +2 bedf +10 bd2f -4 c2ef 
+-3 63e - 2 by -1 b62f 6be2 -5 ce2 --14 bde2 +1 cd2f 
-6 b"cd +14 b2ce +5 b2de -20 bcf -1 bd2e -10 cedf -6 cde2 
+3 6c3 +- 2 b2d2 +1 bc2e .o bede -3 c3f - 2 c2e2 --3 d3 

-26 bc2d --9 bed2 -20 bd3 +9 c2de +26 cd2e 
+12 4 +-4 c3d +20 c3e -4 cd3 -12 d4 

eC2d2 
. . 

No. 22. 

( 

+ 1 a2cf + I a2df2 
- 2 a2def - 1 a2eY 
+ 1 a2e3 - 2 abecf2 
- 1 ayf2 - 4 ahdef 
- 4 abcef + 6 abe3 
+ 8 abdf + 8 acef 
- 2 abde2 - 2 acd2f 
- '2 ac2df -12 acde2 
+ 14 ac2e2 + 6 ad3e 
-22 acd2e + 1 63/2 
+ 9 ad4 -2 b2cef 
+ 6 b3ef +14 b2d2f 
-12 62ef _-15 b2de2 
-15 b2ce -22 bc2ef 
+10 b2d2e +10 bcee2 
+ 6 bcf +30 bed2e 
+30 bc2de -15 bd4 
-20 bcd3 + 9 c4f 
-15 c4e -20 c3de 
+10 c3d2 +10 c2d3 

Ix, Y)Y 



MR. A. CAYLEY'S SECOND MEMOIR UPON QUANTICS. 

No. 23. 

( 

a2^f2 +1 a2c - 1 a2df a2ef 
+ 1 a2cef - 5 a2def + 1 a2ef - 1 abdf 
- 3 a2d2f + 4 a2e3 + 5 abcf2 + 1 abef 
+ 2 ade2 -- 1 ab2f2 - 8 abdef + 3 ac2f 
- 1 ab2ef + 8 abcef 3 abe3 -14 acdef 
+14 abcdf +11 abd2f --11 ac2ef + 8 ace3 
-11 abce2 -17 abde2 +11 acd2f + 9 adyf 
- 1 abd2e -11 ae2df + 6 acde2 - 6 ad2e2 
- 9 acf -16 ac2e2 - 6 ad 3e - 2 b2Cef 
+14 ac2de +44 acd2e - 4 b3f2 +11 b2def 
- 6 acd3 -18 ad4 +17 b2cef - 9 b2e 
- 8 b3df - 3 b3ef +16 bd2df + 1 bc2ef 
+ 9 b3e2- - 6 b2cdf -21 b2de2 .-14 bed2f 
+ 6 b2c2f +21 b2ce2 -44 bc2df +16 bede2 
-16 b2cde - 5 b2d2e + 5 be2e2 - 3 bd3e 
+ 8 b2d3 + 6 bc3f +39 bcd2e + 6 c3df 
+ 3 bc3e -39 bc2de -12 bd4 - 8 c3e2 
- 2 bc2d2 +22 bed3 +18 c4f + 2 e2d2e 

c4d +- 12 c4e -22 c3de te cd4 
- 8 3d2 + 8 c2d3 

Ix, y)3 

No. 24. 

e a3ef a3f2 a2 62 - 1 a2f2 + 1 a2df2 a2ef2 . ! a2f3 abf3 
tl a2bdf abef - 3 a2cef + 7 a2def - ae2f + 3ab abdf aef2 o, acef2 
o a2be2 + 7 a2cdf +12 a2d2f - 6 a2e3 - 7 abef2 - 3 abe2f - 7 aedf2 -2 ad2f2 

+ a22ef -10 a2ce2 - 9 a2de2 + 1 a62y2 +26 abdef -12 acy22 + 7 ace2f +4 ade2f 
-5 a2cde + 3 a2d2e + 3 ab2ef -26 abeef -19 abe3 +18 acdef + 7 ad2ef -2 ae4 
+3 a2d3 - 7 ab2df -18 abedf +32 abd!f -32 ac2ef + 6 ace3 - 7 ade3 bef2 
-4 ab2ef +10 abe2- -18 abce2 - 8 abde2 +18 acd2f + 3 ad3f +10 b2df2 +5 bedf2 
+5 ab2de - 7 abc2f +30 abd2e -18 ac2ddf +53 acde2 -15 ad2e2 -10 b62e2 -5 bce2f 
+5 abc2e - 8 abede - 3 ac3f + 6 ac2e2 -39 ad3e + 9 b2cf2 - 3 be2f2 -5 bd2ef 
-7 abed2 + 9 abd3 +45 ac2de +52 acd2e + 6 b3f2 +18 b2def + 8 bedef +5 bde3 
+ 1 ac3d +22 ac3e -39 acd3 -39 ad4 + 8 beef -27 b2e3 - 2 bee3 --3 c3f2 
+2 b4f -19 ac2d2 - 6 b3d]f +19 b3ef - 6 b2d2f -30 be2ef -22 bd3e +7 e2def 
-5 b3ce + 7 b3cf +27 b3e2 -53 b2cdf -20 b2de2 -45 bcd2f +19 bd2e2 +2 c2e3 
-2 b3d2 + 2 b3de +15 b2c 2f +20 b2ce +45 bc2df +87 bede2 - 9 c3ef -1 cd3f 
+8 b2c2d -19 b2c2e -87 b2cde -25 b2d2e +25 bc2e2 -12 bd3e +19 c2d2f -8 ed2e2 
-3 be4 -11 b2cd2 + 6 b2d 3 +39 be3 -52 bed2e +39 c3df +11 c2de2 +3 d4e 

+33 bc3d +12 bc3e -45 bc2de . bd4 - 6 c3e2 -33 cd3e 
-12 ce +57 bc2d2 +65 bed3 +39 e4f -57 c2d2e +12 d5 

-24 c4d Ca c4e -65 c3de ?+24 cd4 
-20 e3d2 +20 c2d3 

i^, .y)7 

No. 25. 

I 
f a4f4 

a3be '3 
+ I a3edf3 
- 1 a3ce2f2 
- 3 a3d2ef2 
+ 5 ade3f 
- 2 a3e5 
- 1 a2b2df3 
+ 1 a2b2e2f2 
- 3 a2be2f3 
+11 a2bedef2 
-- 5 a2bce3 
+ 12 a2bd/f2 
-30 a2bd2e2f 
+15 a2bde4 

+ 12 
- 21 
- 34 
+ 22 
+ 78 
- 48 
- 27 
+ 18 
+ 5 
-5 

- 30 
- 34 
+133 
- 54 

a2e3ef2 

a2e2d2f2 
a2c2de2f 
a2c2e4 

a2cd3e]f 
a2ed2e3 
a2d5f 
a2d4e2 
ab3cf3 
ab3def2 
ab3e3f 
ab2C2ef2 
ab2edf 2 

ab2cde2f 
ab2ce4 

- 18 ab2d3ef 
+ 3 ab2d2e3 
+ 78 abc3df2 
- 18 abc3e2f 
-210 abc2d2ef 
+106 abc2de3 
+ 93 abed4f 
- 30 abed3e2 
- 9 abd5e 
- 17 ac5f2 
+ 93 ac4def 
- 38 ac4e3 
- 42 ac3df 
+ 8 ac3d2e2 
+ 6 ac2d4e 

acd6 
- 2 b5f3 
+ 15 b4cef 2 
+ 18 b4d2f2 
- 54 b4de2W 
+ 27 b4e4 
- 48 b3C2 df 
+ 3 b3cef 
+106 b3cd2ef 
- 81 b3ede3 
- 38 b3d4f 
+ 38 b3d3e2 
+ 18 b2cf 2 
- 30 b2c3def 
+ 38 b2c3e3 

k -- 
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+ 8 b2C2d3f 
+25 b2C2d2e2 
-57 b2cd4e 
+ 18 b2d6 
- 9 bceef 
+ 6 be4d2f 
-57 bc4de2 
+38 be3d3e 
-24 be2d5 

c d c6df 
+18 c6e2 
-24 e5d2e 
+ 8 c4d4 

* I _. 

S 



MR. A. CAYLEY'S SECOND MEMOIR UPON QUANTICS. 

No. 26. 

-10080 a2cd3ef 
+ 5760 a2cd2e3 
+ 3456 a2d5f 
- 2160 aSd4e2 
- 640 ab3cf3 
+ 320 abldef2 
- 180 ab3ef 
+ 4080 ab2eaef2 
+ 4480 ab'cd2f2 
-14920 ab2cde2f 
+ 7200 ab2ce4 
+ 960 ab2d3ef 
- 600 ab2d"e3 
-10080 abc3df2 

, + 960 abc3e!f 
+ 28480 abc2dSef 
-16000 abc2de3 
-11520 abed4f 

+ 7200 abed3e3 
t abd5e 

+ 3456 ac5f 
-11520 ac4def 
+ 6400 ae4e3 
+ 5120 ae'd3f 
- 3200 ac3de2 

a ac'2d4e 
a acd6 

+ 256 65/3 
- 1920 b4cef2 
- 2560 b4d?f2 
+ 7200 b4de2f 
- 3375 b4e4 
+ 5760 b3c2df2 
- 600 b3ce2f 
-16000 6bcd2ef 
+ 9000 b3cde3 

c_ . 

+6400 b3df 
-4000 b'3de2 
-2160 b2C4f 
+ 7200 b62cdef 
-4000 b"c3e3 
-3200 b2c2"df 
+2000 b2c2d2e2 

, b2ed4e 
| o0 b2d6 

bc5ef 

bc4def 
bc3d e 

? beSde 

ce2 
b 

C4d 
e 

I ?-. c4d4 

The tables Nos. 13 to 24 are the irreducible covariants of the degrees 1, 2, 3, 4 
and 5 of a quintic. No. 13 is the quintic itself; No. 15 is the Hessian; No. 19 is the 
quartinvariant; No. 22 is the linear covariant; the other covariants can be referred 
to by their degree and order, or simply by the number of the table. The foregoing 
covariants are connected by the equation of the degree 5 and order 1 1 

(No. 13)(No. 21)+(No. 14)(No. 18)-(No. 15)(No. 17)=0. 

The table No. 25 is the simplest octinvariant, and the table No. 26 is the discrimi- 
nant; we have 

(No. 26)=(No. 19)2- 1152(No. 25). 

+ 1 
- 20 
- 120 
+ 160 
+ 360 
- 640 
+ 256 
+ 160 
- 10 
+ 360 
- 1640 
+ 320 
- 1440 
+ 4080 
- 1920 
- 1440 
+ 2640 
+ 4480 
- 2560 

a4f4 
a3bef3 
a'cdf3 a3bf 

a3'def2 

a e5 

a2b2dfs 

a"bc2f 
a2cedef2 
a2hee3f 
a2bdf2 
a2bd 2e2f 

a2bde4 

a*2Cd2f' 
a2c2de2f 
a2c2e4 
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