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PEEFACE.

A BOUT thirty years ago I commenced to develop the consequences of

-*- certain important geometrical and dynamical discoveries properly

associated with the illustrious names of Poinsot and Chasles, Hamilton

and Klein. The result of rny labours I have ventured to designate as

&quot; The Theory of Screws.&quot;

As the theory became unfolded I communicated the results in a long

series of memoirs read chiefly before the Royal Irish Academy. To

this learned body I tender my grateful thanks for the continual kind

ness with which they have encouraged this work.

I published in 1876 a small volume entitled The Theory of Screws:

A Study in the Dynamics of a Rigid Body. This contained an account

of the subject so far as it was then known.

But in a few years great advances were made, the geometrical

theories were much extended, and the Theory of Screw-chains opened

up a wide field of exploration. The volume just referred to became

quite out of date.

A comprehensive account of the subject as it stood in 1886 was

given in the German work Theoretische Mechanik starrer Systeme : Auf
Grund der Methoden und Arbeiten und mit einem Vorworte von Sir Robert

S. Ball, herausgegeben von Harry Gravelius, Berlin, 1889. This work was

largely a translation of the volume of 1876 supplemented by the sub

sequent memoirs, and Dr Gravelius made some further additions.

The theory was still advancing, so that in a few years this considerable

volume ceased to present an adequate view of the subject. For example,

the Theory of Permanent Screws which forms perhaps one of the most

B. b
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VI PREFACE.

instructive developments was not communicated to the Royal Irish Academy
until 1890. The twelfth and latest memoir of the series containing the

solution of an important problem which had been under consideration

for twenty-five years did not appear until 1898.

It therefore seemed that the time had now come when an attempt

should be made to set forth the Theory of Screws as it stands at

present. The present work is the result. I have endeavoured to include

in these pages every essential part of the Theory as contained in the

twelve memoirs and many other papers. But the whole subject has

been revised and rearranged and indeed largely rewritten, many of the

earlier parts have been recast with improvements derived from later

researches, and I should also add that I have found it necessary to

introduce much that has not been previously published.

The pleasant duty remains of expressing my thanks for the help that

I have received from friends in preparing this book. I have received

most useful aid from Prof. W. Burnside, Mr A. Y. G. Campbell,

Mr G. Chawner. Mr A. W. Panton, Mr H. W. Richmond, Mr R. Russell,

and Dr G. Johnstone Stoney. In the labour of revising the press I have

been aided by Mr A. Berry, Mr A. N. Whitehead, and lastly by Professor

C. J. Joly, who it will be seen has contributed several valuable notes.

Finally, I must express my hearty thanks to the Cambridge Univer

sity Press for the liberality with which they undertook the publication

of this book and for the willing consent with which they have met

all my wishes.

ROBERT S. BALL.

OBSERVATORY,

CAMBRIDGE, 17 May, 1900.
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THE THEOEY OF SCKEWS.

INTRODUCTION.

THE Theory of Screws is founded upon two celebrated theorems. One
relates to the displacement of a rigid body. The other relates to the forces

which act on a rigid body. Various proofs of these theorems are well known
to the mathematical student. The following method of considering them

may be found a suitable introduction to the present volume.

ON THE REDUCTION OF THE DISPLACEMENT OF A RIGID BODY TO ITS

SIMPLEST FORM.

Two positions of a rigid body being given, there is an infinite variety

of movements by which the body can be transferred from one of these

positions to the other. It has been discovered by Chasles that among these

movements there is one of unparalleled simplicity. He has shown that a

free rigid body can be moved from any one specified position to any other

specified position by a movement consisting of a rotation around a straight

line accompanied by a translation parallel to the straight line.

Regarding the rigid body as an aggregation of points its change of

place amounts to a transference of each point P to a new point Q. The

initial and the final positions of the body being given each point P corre

sponds to one Q, and each Q to one P. If the coordinates of P be given
then those of Q will be determined, and vice versa. If we represent P by
its quadriplanar coordinates xl ,

aez ,
x3 ,

x
4&amp;gt;

then the quadriplanar coordinates

2/i. 2/2&amp;gt; 2/s- 2/4
f Q must be uniquely determined. There must, therefore,

be equations connecting these coordinates, and as the correspondence is

essentially of the one-to-one type these equations must be linear. We
shall, therefore, write them in the form

y,
= (11) x, + (12) xz + (13) x. + (14) x,,

y*
= (21) x, + (22) x, + (23) x.A + (24) xt ,

y9
= (31) x, + (32) x, + (33) xa + (34) a?4 ,

y4
= (41) ^ + (42) xz + (43) x, + (44) x..

B. 1



2 INTRODUCTION.

If we make yl
= px1} y2

= p#2 , 2/s
= Pxa&amp;gt; 2/4

= Px* we can eliminate xl ,xz ,
xa ,

\ and obtain the following biquadratic for p,

(11) -p,



INTRODUCTION. 3

In general in any homographic transformation there cannot be four distinct

double points in a plane, unless every point of the plane is a double point.

For suppose P1; P2 ,
P3 ,

P4 were four distinct coplanar double points and that

any other point R had a correspondent R
1

. Draw the conic through Plt P2 ,

P3 , P4 ,
R. Then R must lie on this conic because the anharmonic ratios

R(Plt P2 ,
P3 ,

P4) and R (l\, P2 ,
P3 ,

P4) are equal. We have also

P,(P2 ,
P3 ,

P4) R) and P, (P2 ,
P3 ,

P4 ,
R ) equal, but this is impossible if R

and R be distinct. R is therefore a double point.

In the case of the displaced rigid body suppose there is a fourth distinct

double point in the plane at infinity. Each ray connected with the body
will then have one double point at infinity, so that after the transformation

the ray must again pass through the same point, i.e. the transformed position

of each ray must be parallel to its original position. This is a special form of

displacement. It is merely a translation of the whole rigid system in which

every ray moves parallel to itself.

In the more general type of displacement there can therefore be no

double point distinct from T, 0], 2 and lying in the plane at infinity. Nor

can there be in general another double point at a finite position T . For if

so, then the ray TT is unaltered in position, and any finite point T&quot; on the

ray TT will be also unaltered, since this homographic transformation does

not alter distances. Hence every point on TT is a double point. Here

again we must have fallen on a special case where the double points instead

of being only four have become infinitely numerous. In this case every point
on a particular ray has become a double point. The change of the body from

one position to the other could therefore be effected by simple rotation around

this ray.

There must however be four double points even in the most general case.

Not one of these is to be finite, and in the plane at infinity not more than

three are to be distinct. The fourth double point must be in the plane at

infinity, and there it must coincide with either 0,, 2 or T. Thus we learn

that the most general displacement of a rigid system is a homographic trans

formation of all its points with the condition that two of its double points are

on the imaginary circle fi in the plane at infinity, while the pole of their chord

gives a third. Of these three one, we shall presently see which one, is to be

regarded as formed of two coincident double points.

All rays through T are parallel rays, and hence we learn that in the

general displacement of a rigid body there is one real parallel system of

rays each of which L is transformed into a parallel ray L . Let A be any

plane perpendicular to this parallel system. Let L and L cut A in the points
R and R. Then as L and L move, R and R are corresponding points in two

plane homographic systems. Any two such systems in a plane will of course

1-2



4 INTRODUCTION.

have three double points. The special feature of this homographic trans

formation is that every circle is transformed into a circle. Each circle passes

through the two circular points at infinity in its plane. These two points in

A are therefore two of the double points of the plane homographic trans

formation. There remains one real point X in A which is common to the

two systems. The normal S to A drawn through X is therefore the one and

only ray which the homographic transformation does not alter.

This shows that in the most general change of a rigid system from one

position to another there is one real ray unaltered Hence every point on S
before the transformation is also on S afterwards. There must therefore be

two double points distinct or coincident on S. But we have already proved
that in the general case there is no finite double point. Hence S must

have two coincident double points at T. Thus we learn that in the general
transformation of a system which is equivalent to the displacement of a rigid

body, there is one real point at infinity which is the result of two coinciding
double points, and the polar of this point with respect to the imaginary
circle on the plane at infinity cuts that circle in the two other double points.

The displacement of the rigid body can thus be produced either by

rotating the body around S or by translating the body parallel to 8, or by
a combination of such movements. We are therefore led to the funda

mental theorem discovered by Chasles.

Any given displacement of a rigid body can be effected by a rotation about

an axis combined with a translation parallel to that axis.

Of much importance is the fact that this method of procedure is in

general unique. It is easily seen that there is only one axis by rotation about

which, and translation parallel to which, the body can be brought from one

given position to another given position. Suppose there were two axes P
and Q, which possessed this property, then by the movement about P, all the

points of the body originally on the line P continue thereon
;
but it cannot

be true for any other line that all the points of the body originally on that

line continue thereon after the displacement. Yet this would have to be true

for Q, if by rotation around Q and translation parallel thereto, the desired

change could be effected. We thus see that the displacement of a rigid body
can be made to assume an extremely simple form, in which no arbitrary

element is involved.

ON THE REDUCTION OF A SYSTEM OF FORCES APPLIED TO A RIGID BODY

TO ITS SIMPLEST FORM.

It has been discovered by Poinsot that any system of forces which act

upon a rigid body can be replaced by a single force, and a couple in a plane
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perpendicular to the force. Thus a force, and a couple in a plane perpen
dicular to the force, constitute an adequate representation of any system of

forces applied to a rigid body.

It is easily seen that all the forces acting upon a rigid body may, by
transference to an arbitrary origin, be compounded into a force acting at the

origin, and a couple. Wherever the origin be taken, the magnitude and

direction of the force are both manifestly invariable
;
but this is not the case

either with the moment of the couple or the direction of its axis.

The origin, however, can always be so selected that the plane of the

couple shall be perpendicular to the direction of the force. For at any origin

the couple can be resolved into two couples, one in a plane containing the

force, and the other in the plane perpendicular to the force. The first com

ponent can be compounded with the force, the effect being merely to transfer

the force to a parallel position ;
thus the entire system is reduced to a force,

and a couple in a plane perpendicular to that force.

It is very important to observe that there is only one straight line which

possesses the property that a force along this line, and a couple in a plane

perpendicular to the line, is equivalent to the given system of forces. Sup

pose two lines possessed the property, then if the force and couple belonging
to one were reversed, they must destroy the force and couple belonging to the

other. But the two straight lines must be parallel, since each must be parallel

to the resultant of all the forces supposed to act at a point, and the forces

acting along these must be equal and opposite. The two forces would there

fore form a couple in a plane perpendicular to that of the couple which is

found by compounding the two original couples. We should then have two

couples in perpendicular planes destroying each other, which is manifestly

impossible.

We thus see that any system of forces applied to a rigid body can be

made to assume an extremely simple form, in which no arbitrary element is

involved.

These two principles being established we are able to commence the

Theory of Screws.



CHAPTER I.

TWISTS AND WRENCHES.

1. Definition of the word Pitch.

The direct problem offered by the Dynamics of a Rigid Body may be

thus stated. To determine at any instant the position of a rigid body

subjected to certain constraints and acted upon by certain forces. We may
first inquire as to the manner in which the solution of this problem ought to

be presented. Adopting one position of the body as a standard of reference,

a complete solution of the problem ought to provide the means of deriving
the position at any epoch from the standard position. We are thus led to

inquire into the most convenient method of specifying one position of a body
with respect to another.

To make our course plain let us consider the case of a mathematical point.

To define the position of the point P with reference to a standard point A,
there can be no more simple method than to indicate the straight line along
which it would be necessary for a particle to travel from A in order to arrive

at P, as well as the length of the journey. There is a more general

method of defining the position of a rigid body with reference to a certain

standard position. We can have a movement prescribed by which the body
can be brought from the standard position to the sought position. It was

shown in the Introduction that there is one simple movement which will

always answer. A certain axis can be found, such that if the body be rotated

around this axis through a determinate angle, and translated parallel to the

axis for a determinate distance, the desired movement will be effected.

It will simplify the conception of the movement to suppose, that at each

epoch of the time occupied in the operations producing the change of position,

the angle of rotation bears to the final angle of rotation, the same ratio

which the corresponding translation bears to the final translation. Under

these circumstances the motion of the body is precisely the same as if it were

attached to the nut of a uniform screw (in the ordinary sense of the word),
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which had an appropriate position in space, and an appropriate number of

threads to the inch.

In the Theory of Screws the word pitch is employed in a particular sense

that must be carefully noted. We define the pitch of a screw to be the

rectilinear distance through which the nut is translated parallel to the axis

of the screw, while the nut is rotated through the angular unit of circular

measure. The pitch is thus a linear magnitude. It follows from this

definition that the rectilinear distance parallel to the axis of the screw

through which the nut moves when rotated through a given angle is simply
the product of the pitch of the screw and the circular measure of the

angle.

2. Definition of the word Screw.

It is a fundamental principle of the theory developed in these pages
that the dynamical significance of screws is precisely analogous to their

kinematical significance. It is, therefore, essential that in the formal

definition of the particular sense the word screw is to bear in this volume

no prominence can be assigned to kinematical terms or conceptions unless

it can be equally given to dynamical terms and conceptions. This condition

is fulfilled by excluding both Kinematics and Dynamics and constituting the

screw as the geometrical entity thus described.

A screw is a straight line with which a definite linear magnitude termed the

pitch is associated.

We shall often denote a screw by a symbol, and then usually by a small

Greek letter. With reference to these symbols, a caution may be necessary.

If, for example, a screw be denoted by a, then a is not an ordinary algebraic

quantity. It is a symbol which denotes all that is included in the conception
of a screw, and requires five quantities for its specification ;

of these four are

required to determine the position of the straight line, and the pitch must be

specified by a fifth. It will often be convenient to denote the pitch by a

symbol, derived from the symbol employed to denote the screw to which the

pitch belongs. The pitch of a screw is accordingly represented by appending
to the letter p a suffix denoting the screw. For example, pa denotes the pitch
of a and is an ordinary algebraical quantity.

3. Definition of the word Twist.

We have next to define the use to be made of the word tiuist.

A body is said to receive a twist about a screw when it is rotated uniformly
about the screw, while it is translated uniformly parallel to the screw, through
a distance equal to the product of the pitch and the circular measure of the

angle of rotation.
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4. A Geometrical Investigation.

We can now demonstrate that whenever a body admits of an indefinitely
small movement of a continuous nature it must be capable of executing that

particular kind of movement denoted by a twist about a screw.

Let AI be a standard position of the body, and let P be any marked

point of the body initially at Plt As the body is displaced continuously to a

neighbouring position, P will generally pursue a certain trajectory which, as

the motion is small, may be identified with its tangent on which Pn is a

point adjacent to P,. In travelling from P, to Pn ,
P passes through the

several positions, P2 ,
. . .P^. In a similar manner every other point, Q1} of the

rigid body will pass through a series of positions, Q2 , &c., to Qn . We thus

have the points of the body initially at P1} Qlt R1} respectively, and each
moves along a straight line through the successive systems of positions

P*, Qa, RZ, &c., on to the final position Pn , Qn ,
Rn . We may thus think of

the consecutive positions occupied by the body A 2&amp;gt;

A 3 , &c., as defined by the

groups of points Plt Q1} R1 and P2 , Q2 ,
R2 ,

&c. We have now to show that if

the body be twisted by a continuous screw motion direct from A
1 to A n ,

it

will pass through the series of positions A 2&amp;gt;

A 3 , &c. It must be remembered
that this is hardly to be regarded as an obvious consequence. From the

initial position A 1 to the final position A n ,
the number of routes are generally

infinitely various, but when these situations are contiguous, it is always
possible to pass by a twist about a screw from A 1 to A n via the positions
A 2 ,

A 3 . .. A n_!.

Suppose the body be carried direct by a twist about a screw from the

position AT, to the position A n . Since this motion is infinitely small, each

point of the body will be carried along a straight line, and as Pj is to be

conveyed to PB , this straight line can be no other than the line PiPn .

In its progress Pl will have reached the position P2 , and when it is

there the points Ql} Rt will each have advanced to certain positions along
the lines QtQn and R^n, respectively. But the points reached by Ql and
R1 can be no other than the points Q.2 and R2 , respectively. To prove this

we shall take the case where P1} Q1} R 1 are collinear. Suppose that when
P! has advanced to P2 , Q1 shall not have reached Q.,, but shall be at

the intermediate point Q . (Fig. 1.) Then the line P& will have moved to

P2Q ,
and as 7^ can only be conveyed along R^.,, while at the same time

it must lie along P2Q ,
it follows that the lines P2Q and R^2 must intersect

at the point R ,
and consequently all the lines in this figure lie in a plane.

Further, P2Q2 and P2 Q are each equal to PjQi, as the body is rigid, and so

also P2R and P2R2 are equal to P^. Hence it follows that QiQ and R^o
are parallel, and consequently all the points on the line P&Ri are displaced
in parallel directions. It would hence follow that the motion of every point
in the body was in a parallel direction, and that consequently the entire
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movement was simply a translation. But even in this case it would be

impossible for the points Q and R to be distinct from Q.2 and R2 , because,

Fig. l.

when a body is translated so that all its points move in parallel lines, it is

impossible, if the body be rigid, for the distances traversed by each point not

to be all equal. We have thus demonstrated that if a body is free to

move from a position A 1 to an adjacent position A n by an infinitely small

but continuous movement, it is also free to move through the series of

positions A.
2&amp;gt;

A 3 , &c., by which it would be conveyed from A^ to A n by a twist.

We may also state the matter in a somewhat different manner, as

follows : It would be impossible to devise a system of constraints which

would permit a body to be moved continuously from A 1 to A n ,
and would at the

same time prohibit the body from twisting about the screw which directly

conducts from A l to A n . Of course this would not be true except in the case

where the motion is infinitely small. The connexion of this result with the

present investigation is now obvious. When A is the standard position of the

body, and B an adjacent position into which it can be moved, then the body
is free to twist about the screw defined by A and B.

5. The canonical form of a small displacement.

In the Theory of Screws we are only concerned with the small displace

ments of a system, and hence we can lay down the following fundamental

statement.

The canonical form to which the displacement of a rigid body can be

reduced is a twist about a screw.

If a body receive several twists in succession, then the position finally

attained could have been reached in a single twist, which is called the

resultant tivist.
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Although we have described the twist as a compound movement, yet in

the present method of studying mechanics it is essential to consider the

twist as one homogeneous quantity. Nor is there anything unnatural in

such a supposition. Everyone will admit that the relation between two

positions of a point is most simply presented by associating the purely

metric element of length with the purely geometrical conception of a

directed straight line. In like manner the relation between two positions of

a rigid body can be most simply presented by associating a purely metric

element with the purely geometrical conception of a screw, which is merely a

straight line, with direction, situation, and pitch.

It thus appears that a twist bears the same relation to a rigid body which

the ordinary vector bears to a point. Each just expresses what is necessary

to express the transference of the corresponding object from one given position

to another*.

6. Instantaneous Screws.

Whatever be the movement of a rigid body, it is at every instant twisting

about a screw. For the movement of the body when passing from one

position to another position indefinitely adjacent, is indistinguishable from

the twist about an appropriately chosen screw by which the same displacement

could be effected. The screw about which the body is twisting at any

instant is termed the instantaneous screw.

7. Definition of the word Wrench.

It has been explained in the Introduction that a system of forces

acting upon a rigid body may be generally expressed by a certain force

and a couple whose plane is perpendicular to the force. We now employ
the word wrench, to denote a force and a couple in a plane perpendicular to

the force. The quotient obtained by dividing the moment of the couple by
the force is a linear magnitude. Everything, therefore, which could be

specified about a wrench is determined (if the force be given in magnitude),

when the position of a straight line is assigned as the direction of the force,

and a linear magnitude is assigned as the quotient just referred to.

Remembering the definition of a screw ( 2), we may use the phrase,

ivrench on a screw, meaning thereby, a force directed along the screw and

a couple in a plane perpendicular to the screw, the moment of the couple

being equal to the product of the force and the pitch of the screw. Hence

we may state that

The canonical form to which a system of forces acting on a rigid body

can be reduced is a wrench on a screw.

*
Compare M. Rene de Saussure, American Journal of Mathematics, Vol. xvm. No. 4, p. 337.
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If a rigid body be acted upon by several wrenches, then these wrenches

could be replaced by one wrench which is called the resultant wrench.

A twist about a screw a requires six algebraic quantities for its complete

specification, and of these, five are required to specify the screw a. The sixth

quantity, which is called the AMPLITUDE OF THE TWIST, and is denoted by
a

, expresses the angle of that rotation which, when united with a translation,

constitutes the entire twist.

The distance of the translation is the product of the amplitude of the twist

and the pitch of the screw, or in symbols, a pa . The sign of the pitch

expresses the sense of the translation corresponding to a given rotation.

If the pitch be zero, the twist reduces to a pure rotation around a. If

the pitch be infinite, then a finite twist is not possible except the amplitude
be zero, in which case the twist reduces to a pure translation parallel to a.

A wrench on a screw a requires six algebraic quantities for its complete

specification, and of these, five are required to specify the screw a. The sixth

quantity, which is called the INTENSITY OF THE WRENCH, and is denoted by

a&quot;, expresses the magnitude of that force which, when united with a couple,

constitutes the entire wrench.

The moment of the couple is the product of the intensity of the wrench

and the pitch of the screw, or in symbols, a&quot;pa . The sign of the pitch

expresses the direction of the moment corresponding to a given force.

If the pitch be zero, the wrench reduces to a pure force along a. If the

pitch be infinite, then a finite wrench is not possible except the intensity be

zero, in which case the wrench reduces to a couple in a plane perpendicular

to a.

In the case of a twisting motion about a screw a. the rate at which the

amplitude of the twist changes is called the TWIST VELOCITY arid is denoted

by a.

8. Restrictions.

It is first necessary to point out the restrictions which we shall impose

upon the forces. The rigid body M, whose motion we are considering, is

presumed to be acted upon by the same forces whenever it occupies the same

position. The forces which we shall assume are to be such as form what is

known as a conservative system. Forces such as those due to a resisting medium

are excluded, because such forces do not depend merely on the position of

the body, but on the manner in which the body is moving through that

position. The same consideration excludes friction which depends on the

direction in which the body is moving through the position under considera

tion.
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But the condition that the forces shall be defined, when the position is

given, is still not sufficiently precise. We might include, in this restricted

group, forces which could have no existence in nature. We shall, therefore,

add the condition that the system is to be one in which the continual creation

of energy is impossible.

An important consequence of this restriction is stated as follows : The

quantity of energy necessary to compel the body M to move from the

position A to the position B, is independent of the route by which the change
has been effected.

Let L and M be two such routes, and suppose that less energy was

required to make the change from A to B via L than via M. Make the

change via L, with the expenditure of a certain quantity of energy, and then

allow the body to return via M. Now, since at every stage of the route M
the forces acting on the body are the same whichever way the body be

moving, it follows, that in returning from B to A via M, the forces will give

out exactly as much energy as would have been required to compel the body
to move from A to B via M

;
but by hypothesis this exceeds the energy

necessary to make the change via L, and hence, on the return of the body to

A, there is a clear gain of a quantity of energy, while the position of the body
and the forces are the same as at first. By successive repetitions of the

process an indefinite quantity of energy could be created from nothing. This

being contrary to experience, compels us to admit that the quantity of energy

necessary to force the body from A to B is independent of the route

followed.

It follows that the amount of work done in a number of twists against

a wrench is equal to the work that would be done in the resultant twist.

For, the work done in producing a given change of position is independent
of the route.

We may calculate the work done in a twist against a wrench by deter

mining the amount of work done against three forces which are equivalent

to the wrench, in consequence of the movements of their points of application

which are caused by the twist.

We shall assume the two lemmas 1st. The work done in the displace

ment of a rigid body against a force is the same at whatever point in its line

of application the force acts. 2nd. The work done in the displacement of a

point against a number of forces acting at that point, is equal to the work

done in the same displacement against the resultant force.

The theorem to be proved is as follows : The amount of work done in a

given twist against a number of wrenches, is equal to the work done in the

same twist against the resultant wrench.
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Let n wrenches, which consist of 3w forces acting at A lt ... A 3n , compound
into one wrench, of which the three forces act at P, Q, R. The force at A k

may generally be decomposed into three forces along PA^, QA/c, RA^. By
the 2nd lemma the amount of work ( W) done against the 3w original forces,

equals the amount of work done against the 9w components. It, therefore,

appears from the 1st lemma, that W will still be the amount of work done

against the 9n components, of which 3/i act at P, 3w at Q, 3n at R. Finally,

by the 2nd lemma, W will also be the amount of work done by the original

twist against the three resultants formed by compounding each group at

P, Q, R. But these resultants constitute the resultant wrench, whence

the theorem has been proved.

We thus obtain the following theorem, which we shall find of great
service throughout this book.

If a series of twists A
l ,...Am , would compound into one twist A, and

a series of wrenches B1 ,...Bn ,
would compound into one wrench B, then

the energy that would be expended or gained when the rigid body per
forms the twist A, under the influence of the wrench B, is equal to the

algebraic sum of the mn quantities of energy that would be expended or

gained when the body performs severally each twist A lt ...Am under the

influence of each wrench B
l ,...Bn .

We have now explained the conceptions, and the language in which

the solution of any problem in the Dynamics of a rigid body may be pre
sented. A complete solution of such a problem must provide us, at each

epoch, with a screw, by a twist about which of an amplitude also to be

specified, the body can be brought from a standard position to the position

occupied at the epoch in question. It will also be of much interest to know

the instantaneous screw about which the body is twisting at each epoch, as

well as its twist velocity. Nor can we regard the solution as quite complete,
unless we also have a clear conception of the screw on which all the forces

acting on the body constitute a wrench of which we should also know the

intensity.

There is one special feature which characterises that portion of Dynamics
which is discussed in the present treatise. We shall impose no restrictions

on the form of the rigid body, and but little 011 the character of the con

straints by which its movements are limited, or on the forces to which the

rigid body is submitted. The restriction which we do make is that the body,
while the object of examination, remains in, or indefinitely adjacent to, its

original position.

As a consequence of this restriction, we here make the remark that the

amplitude of a twist is henceforth to be regarded as a small quantity.
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If it be objected, that with so great a restriction as that just referred to,

only a limited field of inquiry remains, the answer is as follows : A perfectly

general investigation could yield but a slender harvest of interesting or

valuable results. All the problems of Physical importance are special cases

of the general question. Thus, a special character in the constraints has pro

duced the celebrated problem of the rotation of a rigid body about a fixed

point. To vindicate our particular restriction it seems only necessary to

remark, that the restricted inquiry still includes the theory of Equilibrium,

of Impulsive Forces, and of Small Oscillations.

Whatever novelty may be found in the following pages will, it is

believed, be largely due to the circumstance that, with the important

exception referred to, all the conditions of each problem are of absolute

generality.



CHAPTER II.

THE CYLINDROID.

9. Introduction.

Let a and /3 be any two screws which we shall suppose to be fixed both

in position and in pitch. Let a body receive a twist of amplitude of about

a, followed by a twist of amplitude /3 about /3. The position attained

could have been arrived at by a single twist about some third screw p with

an amplitude p. We are always to remember that the amplitudes of the

twists are infinitely small quantities. With this assumption the order in

which the twists about a and /3 are imparted will be immaterial in so far

as the resulting displacements are concerned. The position attained is the

same whether a follows /3 or /3 follows a .

Any change in a or in /3 will of course generally entail a change both in

the pitch and in the position of p. It might thus seem that p depended

upon two parameters, and that consequently the different positions of p

would form a doubly infinite series, known in linear geometry as a

congruence. But this is not the case, for we prove that p depends only

upon the ratio of a to /3 and is thus only singly infinite.

Take any point P and let h a be the perpendicular distance from P to a,

while pa is as usual the pitch of the screw; then the point P is transferred

by the twist about a through the distance

V^a
2 + / a

2 a .

The twist about /3 conveys P to a distance

The resultant of these two displacements conveys P in a direction which

depends upon the ratio of a to /3 ,
and not upon their absolute magnitudes.

Let P and Q be two points on p, then the resultant displacement will

convey P and Q to points P and Q respectively which are also on the axis
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of p. Suppose that a and ft be varied while their ratio is preserved P
and Q will then be transferred to P&quot; and

Q&quot;
while by the property just

proved P, P ,
P&quot; will be collinear and so will Q, Q , Q&quot;.

It therefore follows

that as P, P , Q, Q are collinear so will P, Q, P&quot;, Q&quot;
be collinear. The line

PQ will therefore be displaced upon itself for every pair of values a and

$ which retain the same ratio. The position of the resultant screw is thus

not altered by any changes of a! and ft ,
which preserves their ratio.

Let f be the angle between a and ft. We take the case of a point P
at an infinite distance on the common perpendicular to a and (3. This

point is displaced through a distance equal to

h \fa!- + ft
2 + 2a /3 cos

&&amp;gt;,

where h stands for the infinite perpendicular distance from P to a or to ft.

This displacement of P is normal to p which itself intersects at right angles

the common perpendicular to a and ft. As the perpendicular distance from

P to p can only differ by a finite quantity from h

hp = h Va 2 + /3
2 + 2a ft cos

a&amp;gt;,

or

p
= Va

7
- + ft

-2 +2a ft cos^a.

This determines the amplitude of the resulting twist which is, it may be

noted, independent of the pitches.

Let
&amp;lt;j)

be the angle between the directions in which a point Q on p is

displaced by the twists about a and ft, then the square of the displacement

of Q will be

(pa
2 + haa

) a
2 + (pi + hi) ft

2 + 2 Vpa
2 + h* \?pi + hi aft cos

cf&amp;gt; ;

but this may also be written

whence we see that pp depends only on the ratio of a to ft .

The pitch and the position of p thus depend on the single numerical

parameter expressing the ratio of a and ft . As this parameter varies so

will p vary, and it must in successive positions coincide with the several

generators of a certain ruled surface. Two of these generators will be the

situations of a and of ft corresponding to the extreme values of zero and

infinity respectively, which in the progress of its variation the parameter

will assume.

We shall next ascertain the laws according to which twists (and wrenches)

must be compounded together, that is to say, we shall determine the single

screw, one twist (or wrench) about which will produce the same effect on the
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body as two or more given twists (or wrenches) about two or more given
screws. It will be found to be a fundamental point of the present theory
that the rules for the composition of twists and of wrenches are identical*.

10. The Virtual Coefficient.

Suppose a rigid body be acted upon by a wrench on a screw ft, of which the

intensity is
ft&quot;.

Let the body receive a twist of small amplitude a around a
screw a. It is proposed to find an expression for the energy required to effect

the displacement.

Let d be the shortest distance between a and ft, and let 6 be the angle
between a and ft. Take a as the axis of x, the common perpendicular to a.

and ft as the axis of z, and a line perpendicular to x and z for y. If we
resolve the wrench on ft into forces X, Y. Z, parallel to the axes, and couples
of moments L, M, N, in planes perpendicular to the axes we shall have

X=ft&quot;cosO; Y=ft&quot;smO; Z=0;
L = p pfi cos

-
ft&quot;d

sin
;
M =

ft&quot;Pii sin + ft&quot;d cos ;

N = 0.

We thus replace the given wrench by four wrenches, viz., two forces and
two couples, and we replace the given twist by two twists, viz., one rotation

and one translation. The work done by the given twist against the given
wrench must equal the sum of the eight quantities of work done by each of

the two component twists against each of the four component wrenches.

Six of these quantities are zero. In fact a rotation through the angle a

around the axis of x can do work only against L, the amount being

aft&quot; (pft
cos - d sin 0).

The translation pa a parallel to the axis of x can do work only against

X, the amount being
a

ft&quot;pa
cos 0.

Thus the total quantity of work done is

aft&quot; {(pa+pp) cos d sin 0}.

The expression

i [(P + PP) cos d sin 0]

is of great importance in the present theoryf. It is called the virtual

* That the analogy between the composition of forces and of rotations can be deduced from

the general principle of virtual velocities has been proved by Rodrigues (Liouville s Journal, t. 5,

1840, p. 436).

+ The theory of screws has many points of connexion with certain geometrical researches on the

linear complex, by Pliicker and Klein. Thus the latter has shown (Mathematische Annalen, Band
n., p. 368 (1869)), that if p &nd ps be each the &quot;Hauptparameter&quot; of a linear complex, and if

(Pa +Pft)
cos O-d sin = 0,

where d and relate to the principal axes of the complexes, then the two complexes possess a

special relation and are said to be in &quot;

involution.&quot;

B. 2
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coefficient of the two screws a and ft, and may be denoted by the

symbol

11. Symmetry of the Virtual Coefficient.

An obvious property of the virtual coefficient is of great importance. If

the two screws a and ft be interchanged, the virtual coefficient remains

unaltered. The identity of the laws of composition of twists and wrenches

can be deduced from this circumstance*, and also the Theory of Reciprocal
Screws which will be developed in Chap. III.

12. Composition of Twists and Wrenches.

Suppose three twists about three screws a, ft, 7, possess the property
that the body after the last twist has the same position which it had before

the first : then the amplitudes of the twists, as well as the geometrical rela

tions of the screws, must satisfy certain conditions. The particular nature

of these conditions does not concern us at present, although it will be fully

developed hereafter.

We may at all events conceive the following method of ascertaining these

conditions :

Since the three twists neutralize it follows that the total energy ex

pended in making those twists against a wrench, on any screw
77, must be

zero, whence

a
trar, + ft ^ftr, + J^yr,

= 0.

This equation is one of an indefinite number (of which six can be shown
to be independent) obtained by choosing different screws for

77. From
each group of three equations the amplitudes can be eliminated, and four of

the equations thus obtained will involve all the purely geometrical conditions

as to direction, situation, and pitch, which must be fulfilled by the screws

when three twists can neutralize each other.

But now suppose that three wrenches equilibrate on the three screws

a, ft, 7. Then the total energy expended in a twist about any screw
77 against

the three wrenches must be zero, whence

&amp;lt;*&quot;^a,,
+ ft ^fr + j ^yr,

= 0.

An indefinite number of similar equations, one in fact for every screw 77, must
be also satisfied.

By comparing this system of equations with that previously obtained, it

is obvious that the geometrical conditions imposed on the screws a, ft, 7, in

* This pregnant remark, or what is equivalent thereto, is due to Klein (Math. Ann., Vol. iv.

p. 413 (1871)).
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the two cases are identical. The amplitudes of the three twists which

neutralise are, therefore, proportional to the intensities of the three wrenches

which equilibrate.

When three twists (or wrenches) neutralise, then a twist (or wrench)

equal and opposite to one of them must be the resultant of the other two.

Hence it follows that the laws for the composition of twists and of wrenches

must be identical.

13. The Cylindroid.

We next proceed to study the composition of twists and wrenches, and

we select twists for this purpose, though wrenches would have been equally

convenient.

A body receives twists about three screws
;
under what conditions will

the body, after the last twist, resume the same position which it had before

the first ?

The problem may also be stated thus : It is required to ascertain the

single screw, a twist about which would produce the same effect as any two

given twists. We shall first examine a special case, and from it we shall

deduce the general solution.

Take, as axes of x and y, two screws a, /3, intersecting at right angles,

whose pitches are pa and pp. Let a body receive twists about these screws

of amplitudes & cos I and 6 sin I. The translations parallel to the coordinate

axes are pa6 cos I and p$& sin I. Hence the axis of the resultant twist makes

an angle I with the axis of x
;
and the two translations may be resolved into

two components, of which (pa cos
2
1 + pp sin2

/) is parallel to the axis of the

resultant twist, while 6 sin I cos I (pa
-

pp) is perpendicular to the same line.

The latter component has the effect of transferring the resultant axis of the

rotations to a distance sin I cos I (pa pp), the axis moving parallel to itself

in a plane perpendicular to that which contains a and /3. The two original

twists about a and /3 are therefore compounded into a single twist of

amplitude & about a screw 6 whose pitch is

The position of the screw 6 is defined by the equations

y x tan /,

z = (pa pp) sin I cos I.

Eliminating I we have the equation

22
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The conoidal cubic surface represented by this equation has been called

the cylindroid*.

Each generating line of the surface is conceived to be the residence of a

screw, the pitch of which is determined by the expression

When a cylindroid is said to contain a screw, it is not only meant that the

screw is one of the generators of the surface, but that the pitch of the screw

is identical with the pitch appropriate to the generator with which the screw

coincides.

We shall first show that it is impossible for more than one cylindroid to

contain a given pair of screws 6 and
&amp;lt;f&amp;gt;.

For suppose that two cylindroids

A and B could be so drawn. Then twists about 6 and
&amp;lt;f&amp;gt;

will compound
into a twist on the cylindroid A and also on the cylindroid B ( 14). There

fore the several screws on A would have to be identical with the screws on B,

i.e. the two surfaces could not be different. That one cylindroid can always
be drawn through a given pair of screws is proved as follows.

Let the two given screws be 6 and
&amp;lt;,

the length of their common perpen
dicular be h, and the angle between the two screws be A

;
we shall show that

by a proper choice of the origin, the axes, and the constants pa and pp, a

cylindroid can be found which contains 6 and &amp;lt;.

If I, m be the angles which two screws on a cylindroid make with the

axis of oc, and if zly z*, be the values of z, we have the equations of

which the last four are deduced from the first six

* This surface has been described by Pliicker (Neue Geometric des Eaumes, 1868-9, p. 97) ;
he

arrives at it as follows : Let ft = 0, and ft = be two linear complexes of the first degree, then all

the complexes formed by giving /* different values in the expression O + /ufi
= form a system of

which the axes lie on the surface z (x^ + y
2
)
-

(k
- k )xy = Q. The parameter of any complex of

which the axis makes an angle w with the axis of x is &= fc cos2 w + fc sin2 w. Pliicker also con

structed a model of this surface.

Pliicker does not appear to have noticed the mechanical and kinematical properties of the

cylindroid which make this surface of so much importance in Dynamics ; but it is worthy of

remark that the distribution of pitch which is presented by physical considerations is exactly

the same as the distribution of parameter upon the generators of the surface, which Pliicker

fully discussed.

The first application of the cylindroid to Dynamics was made by Battaglini, who showed that

this surface was the locus of the wrench resulting from the composition of forces of varying ratio

on two given straight lines (Sulla serie dei sistemi di forze, Eendic. Ace. di Napoli, 1869, p. 133).

See also the Bibliography at the end of this volume.

The name cylindroid was suggested by Professor Cayley in 1871 in reply to a request which

I made when, in ignorance of the previous work of both Pliicker and Battaglini, I began to

study this surface. The word originated in the following construction, which was then

communicated by Professor Cayley. Cut the cylinder xi + y&quot;=(p -p^ in an ellipse by the

plane z x, and consider the line x = Q, y=PB ~Pa - If any plane z~c cuts the ellipse in the

points A, B and the line in C, then CA, CB are two generating lines of the surface.
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Pe = Pa cos2
/ + pft

sin2
1, z1

= (pa pp) sin I cos I,

P&amp;lt;t&amp;gt;

= P* C s
2wi + Pft sin2

m, zz
= (pa pp) sin m cos m,

A = I m, k = z
l

zz ,

_
Pa JJB A

&amp;gt;

sin A

Pa + pp=pe+p&amp;lt;t,-h cot A,

+ 5,A

with similar values for m and z.2 . It is therefore obvious that the cylindroid
is determined, and that the solution is unique.

It will often be convenient to denote by (6, &amp;lt;)
the cylindroid drawn

through the two screws 6 arid &amp;lt;.

On any cylindroid there are in general two but only two screws which

like a. and /3 intersect and are at the same time at right angles. These two

important screws are often termed the principal screws of the surface.

14. General Property of the Cylindroid.

If a body receive twists about three screws on a cylindroid, and if the

amplitude of each twist be proportional to the sine of the angle between the

two non-corresponding screws, then the body after the last twist will have

regained the same position that it held before the first.

The proof of this theorem must, according to ( 12), involve the proof of the

following: If a body be acted upon by wrenches about three screws on a

cylindroid, and if the intensity of each wrench be proportional to the sine of

the angle between the two non-corresponding screws, then the three wrenches

equilibrate.

The former of these properties of the cylindroid is thus proved : Take

any three screws 0,
&amp;lt;/&amp;gt;, i/r, upon the surface which make angles I, m, n, with

the axis of x, and let the body receive twists about these screws of amplitudes

,
&amp;lt;/&amp;gt;

, -\Jr
. Each of these twists can be decomposed into two twists about the

screws a and /3 which lie along the axes of x and y. The entire effect of the

three twists is, therefore, reduced to two rotations around the axes of x and

y, and two translations parallel to these axes.

The rotations are through angles equal respectively to

cos I 4-
&amp;lt;f&amp;gt;

cos m + ty cos n

and sin I +
&amp;lt;/&amp;gt;

sin m + ty sin n.

The translations are through distances equal to

pa (0
f

cos I + &amp;lt; cos ra +
-&amp;gt;/r

cos n)

and pp (0 sin I +
&amp;lt;/&amp;gt;

sin m + -fy
sin n}.
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These four quantities vanish if

u
&amp;lt;p

&amp;gt;lr

sin (w -
n) sin (n I)

~
sin (I m)

and hence the fundamental property of the cylindroid has been proved.

The cylindroid affords the means of compounding two twists (or two

wrenches) by a rule as simple as that which the parallelogram of force pro
vides for the composition of two intersecting forces. Draw the cylindroid
which contains the two screws; select the screw on the cylindroid which
makes angles with the given screws whose sines are in the inverse ratio of

the amplitudes of the twists (or the intensities of the wrenches); a twist

(or wrench) about the screw so determined is the required resultant. The

amplitude of the resultant twist (or the intensity of the resultant wrench) is

proportional to the diagonal of a parallelogram of which the two sides are

parallel to the given screws, and of lengths proportional to the given ampli
tudes (or intensities).

15. Particular Cases.

If p* =P0 the cylindroid reduces to a plane, and the pitches of all the

screws are equal. If all the pitches be zero, then the general property of the

cylindroid reduces to the well-known construction for the resultant of two

intersecting forces, or of rotations about two intersecting axes. If all the

pitches be infinite, the general property reduces to the construction for the

composition of two translations or of two couples.

16. Cylindroid with one Screw of Infinite pitch.

Let OP, Fig. 2, be a screw of pitch p about which a body receives a small

twist of amplitude o&amp;gt;.

Fig. 2.

Let OR be the direction in which all points of the rigid body are trans

lated through equal distances p by a twist about a screw of infinite pitch
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parallel to OR. It is desired to find the cylindroid determined by these two

screws.

In the plane FOR draw OS perpendicular to OP and denote Z ROS
by X.

The translation of length p along OR may be resolved into the components

p sin X along OP and p cos X along OS.

Erect a normal OT to the plane of POR with a length determined by
the condition

coOT= p cos X.

The joint result of the two motions is therefore a twist of amplitude to

about a screw 6 through T and parallel to OP.

The pitch pe of the screw is given by the equation

(opg
= wp + p sin X,

whence pe p=QT tan X.

Fig. 3.

In Fig. 3 we show the plane through OP perpendicular to the plane POR
in Fig. 2. The ordinate is the pitch of the screw through any point T.

If p6
= then OT= OH. Thus H is the point through which the one

screw of zero pitch on the cylindroid passes, and we have the following

theorem :

If one screw on a cylindroid have infinite pitch, then the cylindroid

reduces to a plane. The screws on the cylindroid become a system of parallel

lines, and the pitch of each screw is proportional to the perpendicular distance

from the screw of zero pitch.
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17. Form of the Cylindroid in general.

The equation of the surface contains only the single parameter p*pp,
consequently all cylindroids are similar surfaces differing only in absolute

magnitude.

The curved portion of the surface is contained between the two parallel

planes z = (papp), but it is to be observed that the nodal line x = 0, y= 0,

also lies upon the surface.

The intersection of the nodal line of the cylindroid with a plane is a

node or a conjugate point upon the curve in which the plane is cut by the

cylindroid according as the point does lie or does not lie between the two

bounding planes.

18. The Pitch Conic.

It is very useful to have a clear view of the distribution of pitch upon
the screws contained on the surface. The equation of the surface involves

only the difference of the pitches of the two principal screws and one arbitrary

element must be further specified. If, however, two screws be given, then

both the surface and the distribution are determined. Any constant added

to all the pitches of a certain distribution will give another possible distribu

tion for the same cylindroid.

Let pg be the pitch of a screw 6 on the cylindroid which makes an angle I

with the axis of x
;
then ( 13)

Pe = Pa cos2
1 +pp sin2

1.

Draw in the plane x, y, the pitch conic

where H is any constant
;
then if r be the radius vector which makes an angle

I with the axis of x, we have

H
P =

-?&amp;gt;

whence the pitch of each screw on a cylindroid is proportional to the inverse

square of the parallel diameter of the conic.

This conic is known as the pitch conic. By its means the pitches of all

the screws on the cylindroid are determined. The asymptotes, real or

imaginary, are parallel to the two screws of zero pitch.

19. Summary.

We shall often have occasion to make use of the fundamental principles
demonstrated in this chapter, viz.,
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That one, but only one, cylindroid can always be drawn so that two of its

generators shall coincide with any two given screws a and ft, and that when all

the generators of the surface become screws by having pitches assigned to them

consistent with the law of distribution characteristic of the cylindroid, the pitches

assigned to the generators which coincide with a and /3 shall be equal to the

given pitches of a. and /3.

Thus the cylindroid must become a familiar conception with the student

of the Theory of Screws. A model of this surface is very helpful, and fortu

nately there can be hardly any surface which is more easy to construct. In

the Frontispiece a photograph of such a model is shown, and a plate repre

senting another model of the same surface will be found in Chap. XIII.

We shall develop in Chap. V an extremely simple method by which

the screws on a cylindroid are represented by the points on a circle, and

every property of the cylindroid which is required in the Theory of Screws

can be represented by the corresponding property of points on a circle.



CHAPTER III.

RECIPROCAL SCREWS.

20. Reciprocal Screws.

If a body only free to twist about a screw a be in equilibrium, though
acted upon by a wrench on the screw ft, then conversely a body only free to

twist about the screw ft will be in equilibrium, though acted upon by a wrench

on the screw a.

The principle of virtual velocities states, that if the body be in equili

brium the work done in a small displacement against the external forces

must be zero. That the virtual coefficient should vanish is the necessary and

the sufficient condition, or ( 10)

(pa + pp) cos d sin = 0.

The symmetry shows that precisely the same condition is required

whether the body be free to twist about a, while the wrench act on ft, or

vice versa. A pair of screws are said to be reciprocal when their virtual co

efficient is zero.

21. Particular Instances.

Parallel or intersecting screws are reciprocal when the sum of their pitches

is zero. Screws at right angles are reciprocal either when they intersect,

or when one of the pitches is infinite. Two screws of infinite pitch are

reciprocal, because a couple could not move a body which was only sus

ceptible of translation. A screw whose pitch is zero or infinite is reciprocal

to itself*.

22. Screw Reciprocal to Cylindroid.

If a screw t] be reciprocal to two given screws 9 and
(f&amp;gt;,

then 77 is reciprocal

to every screw on the cylindroid (6, &amp;lt;).

* See also Professor Everett, F.R.S., Messenger of Mathematics, New Series (1874), No. 39.
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For a body only free to twist about 77 would be undisturbed by wrenches

on 6 and &amp;lt;

;
but a wrench on any screw ty of the cylindroid can be resolved

into wrenches on 6 and
&amp;lt;/&amp;gt;

;
therefore a wrench on

-^r
cannot disturb a body

only free to twist about 77 ;
therefore

*fy
and rj are reciprocal. We may say

for brevity that 77
is reciprocal to the cylindroid.

77 cuts the cylindroid in three points because the surface is of the third

degree, and one screw of the cylindroid passes through each of these three

points ;
these three screws must, of course, be reciprocal to

77.
But two

intersecting screws can only be reciprocal when they are at right angles, or

when the sum of their pitches is zero. The pitch of the screw upon the cylin

droid which makes an angle I with the axis of x is

pa cos3
/ +pp sin2

/.

This is also the pitch of the screw TT I. There are, therefore, two screws

of any given pitch ;
but there cannot be more than two. It follows that 77

can at most intersect two screws upon the cylindroid of pitch equal and

opposite to its own
; and, therefore, 77 must be perpendicular to the third

screw. Hence any screw reciprocal to a cylindroid must intersect one of the

generators at right angles. We easily infer, also, that a line intersecting one

screw of a cyliudroid at right angles must cut the surface again in two

points, and the screws passing through these points have equal pitch.

These important results can be otherwise proved as follows. A wrench

can always be expressed by a force at any point 0, and a couple in a

plane L through that point but not of course in general normal to the force.

For wrenches on the several screws of a cylindroid, the forces at any

point all lie on a plane and the couples all intersect in a ray.

The first part of this statement is obvious since all the screws on the

cylindroid are parallel to a plane.

To prove the second it is only necessary to note that any wrench on the

cylindroid can be decomposed into forces along the two screws of zero pitch.

Their moments will be in the planes drawn through arid the two screws of

zero pitch. The transversal across the two screws of zero pitch drawn from

must therefore lie in every plane L.

We hence see that the third screw on the cylindroid which is crossed by
such a transversal must be perpendicular to that transversal.

23. Reciprocal Cone.

From any point P perpendiculars can be let fall upon the generators of

the cylindroid, and if to these perpendiculars pitches are assigned which are

equal in magnitude and opposite in sign to the pitches of the two remaining
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screws on the cylindroid intersected by the perpendicular, then the perpen
diculars form a cone of reciprocal screws.

We shall now prove that this cone is of the second order, and we shall

show how it can be constructed.

Let be the point from which the cone is to be drawn, and through let

a line OT be drawn which is parallel to the nodal line, and, therefore, perpen
dicular to all the generators. This line will cut the cylindroid in one real

point T (Fig. 4), the two other points of intersection coalescing into the in

finitely distant point in which OT intersects the nodal line.

Draw a plane through T and through the screw LM which, lying on the

cylindroid, has the same pitch as the screw through T. This plane can cut

the cylindroid in a conic section only, for the line LM and the conic will then

Fig. 4.

make up the curve of the third degree, in which the plane must intersect the

surface. Also since the entire cylindroid (or at least its curved portion) is

included between two parallel planes ( 17), it follows that this conic must be

an ellipse.

We shall now prove that this ellipse is the locus of the feet of the per

pendiculars let fall from on the generators of the cylindroid. Draw in the

plane of the ellipse any line TUV through T
; then, since this line intersects

two screws of equal pitch in T and U, it must be perpendicular to that

generator of the cylindroid which it meets at V. This generator is, therefore,

perpendicular to the plane of OT and VT, and, therefore, to the line 0V.

It follows that V must be the foot of the perpendicular from on the
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generator through V, and that, therefore, the cone drawn from to the ellipse

TLVM is the cone required.

We hence deduce the following construction for the cone of reciprocal

screws which can be drawn to a cylindroid from any point 0.

Draw through a line parallel to the nodal line of the cylindroid, and

let T be the one real point in which this line cuts the surface. Find the

second screw LM on the cylindroid which has a pitch equal to the pitch of

the screw which passes through T. A plane drawn through the point T and

the straight line LM will cut the cylindroid in an ellipse, the various points

of which joined to give the cone required*.

We may further remark that as the plane TLM passes through a gene
rator it must be a tangent plane to the cylindroid at one of the intersections,

suppose L, while at the point M the line LM must intersect another generator.

It follows (22) that L must be the foot of the perpendicular from T upon LM,
and that M must be a point upon the nodal line.

24. Locus of a Screw Reciprocal to Four Screws.

Since a screw is determined by five quantities, it is clear that when the

four conditions of reciprocity are fulfilled the screw must generally be confined

to one ruled surface. But this surface can be no other than a cylindroid.

For, suppose three screws X, //., v, which were reciprocal to the four given
screws did not lie on the same cylindroid, then any screw

&amp;lt;f&amp;gt;

on the cylindroid

(X, fi), and any screw
-^r

on the cylindroid (X, v) must also fulfil the conditions,

and so must also every screw on the cylindroid (&amp;lt;, ^) (22). We should thus

have the screws reciprocal to four given screws, limited not to one surface,

as above shown, but to any member of a family of surfaces. The construction

of the cylindroid which is the locus of all the screws reciprocal to four given

screws, may be effected in the following manner :

Let a, /3, 7, 8 be the four screws, of which the pitches are in descending
order of magnitude. Draw the cylindroids (a, 7) and (13, 8). If &amp;lt;r be a linear

magnitude intermediate between pp and py ,
it will be possible to choose two

screws of pitch or on (a, 7), and also two screws of pitch &amp;lt;r on (/3, 8). Draw
the two transversals which intersect the four screws thus selected

; attribute

to each of these transversals the pitch a, and denote the screws thus pro
duced by 6, &amp;lt;j&amp;gt;.

Since intersecting screws are reciprocal when the sum of their

pitches is zero, it follows that 6 and
&amp;lt;/&amp;gt;

must be reciprocal to the cylindroids

(a, 7) and (13, 8). Hence all the screws on the cylindroid (6,
&amp;lt;/&amp;gt;)

must be re

ciprocal to a, /3, 7, 8, and thus the problem has been solved.

* M. Appell has proved conversely that the cylindroid is the only conoidal surface for which

the feet of the perpendiculars from any point on the generators form a plane curve. Revue de

Mathematiques Speciales, v. 129 30 (1895). More generally we can prove that this property

cannot belong to any ruled surface whatever except a cylindroid and of course a cylinder.



30 THE THEORY OF SCREWS. [25-27

25. Screw Reciprocal to Five Screws.

The determination of a screw reciprocal to five given screws must in

general admit of only a finite number of solutions, because the number of

conditions to be fulfilled is the same as the number of disposable constants.

It is very important to observe that this number must be unity. For if

two screws could be found which fulfilled the necessary conditions, then these

conditions would be equally fulfilled by every screw on the cylindroid

determined by those screws ( 22), and therefore the number of solutions of

the problem would not be finite.

The construction of the screw whose existence is thus demonstrated, can

be effected by the results of the last article. Take any four of the five

screws, and draw the reciprocal cylindroid which must contain the required
screw. Any other set of four will give a different cylindroid, which also

contains the required screw. These cylindroids must therefore intersect in

the single screw, which is reciprocal to the five given screws.

26. Screw upon a Cylindroid Reciprocal to a Given Screw.

Let e be the given screw, and let X, p, v, p be any four screws reciprocal

to the cylindroid ;
then the single screw 77,

which is reciprocal to the five

screws e, X, //., v, p, must lie on the cylindroid because it is reciprocal to

X, /A, v, p, and therefore 77 is the screw required.

The solution must generally be unique, for if a second screw were reciprocal

to e, then the whole cylindroid would be reciprocal to e
;
but this is not the

case unless e fulfil certain conditions ( 22).

27. Properties of the Cylindroid*.

We enunciate here a few properties of the cylindroid for which the writer

is principally indebted to that accomplished geometer the late Dr Casey.

The ellipse in which a tangent plane cuts the cylindroid has a circle for

its projection on a plane perpendicular to the nodal line, and the radius of the

circle is the minor axis of the ellipse.

The difference of the squares of the axes of the ellipse is constant

wherever the tangent plane be situated.

The minor axes of all the ellipses lie in the same plane.

The line joining the points in which the ellipse is cut by two screws of

equal pitch on the cylindroid is parallel to the major axis.

The line joining the points in which the ellipse is cut by two intersecting
screws on the cylindroid is parallel to the minor axis.

* For some remarkable quaternion investigations into &quot; the close connexion between the

theory of linear vector functions and the theory of screws
&quot;

see Professor C. J. Jolj , Trans. Royal
Irish Acad., Vol. xxx. Part xvi. (1895), and also Proc. Royal Irish Acad., Third Series, Vol. v.

No. 1, p. 73(1897).
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SCREW CO-ORDINATES.

28. Introduction.

We are accustomed, in ordinary statics, to resolve the forces acting on

a rigid body into three forces acting along given directions at a point and

three couples in three given planes. In the present theory we are, however,

led to regard a force as a wrench on a screw of which the pitch is zero, and

a couple as a wrench on a screw of which the pitch is infinite. The ordinary

process just referred to is, therefore, only a special case of the more general

method of resolution by which the intensities of the six wrenches on six

given screws can be determined, so that, when these wrenches are com

pounded together, they shall constitute a wrench of given intensity on a

given screw*.

The problem which has to be solved may be stated in a more symmetrical
manner as follows:

To determine the intensities of the seven wrenches on seven given screws,

such that, when these wrenches are applied to a rigid body, which is entirely

free to move in every way, they shall equilibrate.

The solution of this problem is identical (12) with that of the problem
which may be enunciated as follows :

To determine the amplitudes of seven small twists about seven given screws,

such that, if these twists be applied to a rigid body in succession, the body

after the last twist shall have resumed the same position which it occupied

before the first.

The problem we have last stated has been limited as usual to the

case where the amplitudes of the twists are small quantities, so that the

motion of a point by each twist may be regarded as rectilinear. Were it

*
If all the pitches be zero, the problem stated above reduces to the determination of the six

forces along six given lines which shall be equivalent to a given force. If further, the six lines of

reference form the edges of a tetrahedron, we have a problem which has been solved by Mobius,
Grelle s Journal, t. xvm. p. 207 (1838).
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not for this condition a distinct solution would be required for every variation

of the order in which the successive twists were imparted.

If the number of screws were greater than seven, then both problems
would be indeterminate

;
if the number were less than seven, then both

problems would be impossible (unless the screws were specially related) ;

the number of screws being seven, the problem of the determination of the

ratios of the seven intensities (or amplitudes) has, in general, one solution.

We shall solve this for the case of wrenches.

Let the seven screws be a, ft, 7, B, e, 77. Find the screw ty which is

reciprocal to 7, 8, e, , 77. Let the seven wrenches act upon a body only
free to twist about ty. The reaction of the constraints which limit the

motion of the body will neutralize every wrench on a screw reciprocal to

i/r (20). We may, therefore, so far as a body thus circumstanced is con

cerned, discard all the wrenches except those on a and ft. Draw the

cylindroid (a, ft), and determine thereon the screw p which is reciprocal to
-^r.

The body will not be in equilibrium unless the wrenches about a and ft

constitute a wrench on p, and hence the ratio of the intensities a&quot; and
ft&quot;

is

determined. By a similar process the ratio of the intensities of the wrenches

on any other pair of the seven screws may be determined, and thus the

problem has been solved. (See Appendix, note 1.)

29. Intensities of the Components.

Let the six screws of reference be wl ,
&c. &&amp;gt;6 ,

and let p be a given screw

on which is a wrench of given intensity p&quot;.
Let the intensities of the

components be p/ , &c. p6&quot;,
and let 77 be any screw. A twist about

77 must
do the same quantity of work acting directly against the wrench on p as

the sum of the six quantities of work which would be done by the same

twist against each of the six components of the wrench on p. If TS^ be

the virtual coefficient of
7; and the nth screw of reference, we have

P&quot;^r,p
=

P&quot;^ + &C. pG&quot;^rfl-

By taking five other screws in place of 77, five more equations are

obtained, and from the six equations thus found p/ , &c. p6

&quot;

can be de

termined. This process will be greatly simplified by judicious choice of

the six screws of which 77 is the type. Let
77 be reciprocal to G&amp;gt;2 , &c. &&amp;gt;6 ,

then

oj-,,2
= 0, &c. -or^

= 0, and we have

P&quot;^r,p
^

Pl ^rft-

From this equation p&quot;
is at once determined, and by five similar equations

the intensities of the five remaining components may be likewise found.

Precisely similar is the investigation which determines the amplitudes of

the six twists about the six screws of reference into which any given twist

may be decomposed.
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30. The Intensity of the Resultant may be expressed in terms of the

intensities of its components on the six screws of reference.

Let a be any screw of pitch pa ,
let plt p.2 ,

&c. pe be the pitches of the

six screws of reference wl} o&amp;gt; 2 ,
... &&amp;gt;6 ;

then taking each of the screws of refer

ence in succession, for
77

in 29, and remembering that the virtual coefficient

of two coincident screws is simply equal to the pitch, we have the following

equations :

ar 6
=ai + + cr-BT,,, + aps .

But taking the screw p in place of 77 we have

&amp;lt;*&quot;pa

=
l&quot;rttl + tt/ ^ae.

Substituting for ^al ... -5ro6 from the former equations, we deduce

pj1* = $OW) + 22 (/V^12).

This result may recall the well-known expression for the square of a force

acting at a point in terms of its components along three axes passing through
the point. This expression is of course greatly simplified when the three

axes are rectangular, and we shall now show how by a special disposition

of the screws of reference, a corresponding simplification can be made in the

formula just written.

31. Co-Reciprocal Screws.

We have hitherto chosen the six screws of reference quite arbitrarily ;

we now proceed in a different manner. Take for &)1? any screw; for co2 , any
screw reciprocal to a^; for o&amp;gt;3 , any screw reciprocal to both

&&amp;gt;!
and &&amp;gt;2 ;

f r &&amp;gt;4 ,

any screw reciprocal to o)1} &&amp;gt;.,,
&&amp;gt;3 ;

for &&amp;gt;5 , any screw reciprocal to a&amp;gt;l ,
&amp;lt;o2 &amp;gt; MS, &&amp;gt;4 ;

for &&amp;gt;6 ,
the screw reciprocal to Wj, &&amp;gt;.,,

&&amp;gt;3 ,
&&amp;gt;4 ,

o&amp;gt;5 .

A set constructed in this way possesses the property that each pair

of screws is reciprocal. Any set of screws not exceeding six, of which each

pair is reciprocal, may be called for brevity a set of co-reciprocals*.

Thirty constants determine a set of six screws. If the set be co-

reciprocal, fifteen conditions must be fulfilled
;
we have, therefore, fifteen

elements still disposable, so that we are always enabled to select a co-

reciprocal set with special appropriateness to the problem under con

sideration.

* Klein Las discussed (Math. Ann. Band n. p. 204 (1869)) six linear complexes, of which each

pair is in involution. If the axes of these complexes be regarded as screws, of which the
&quot;

Hauptparameter
&quot;

are the pitches, then these six screws will be co-reciprocal.

B. 3
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The facilities presented by rectangular axes for questions connected with

the dynamics of a particle have perhaps their analogues in the conveniences

which arise from the use of co-reciprocal sets of screws in the present

theory.

If the six screws of reference be co-reciprocal, then the formula of the

last section assumes the very simple form

32. Co-ordinates of a Wrench.

We shall henceforth usually suppose that the screws of reference are

co-reciprocal. We may also speak of the co-ordinates of a wrench*, meaning

thereby the intensities of its six components on the six screws of reference.

So also we may speak of the co-ordinates of a twist, meaning thereby the

amplitudes of its six components about the six scretvs of reference.

The co-ordinates of a wrench of intensity a&quot; on the screw a are denoted

by / ,
...

fi
&quot;. The co-ordinates of a twist of amplitude a about a are

denoted by a/, . . . a B .

The co-ordinates of a twist-velocity a about a are denoted by a1? cL, ... d
ti

.

The actual motion of the body is in this case a translation with velocity apa

parallel to a and a rotation around p with the angular velocity d.

33. The Work done in a twist of amplitude a about a screw a, by
a wrench of intensity ft&quot;

on the screw ft, can be expressed in terms of the

co-ordinates.

Replace the twist and the wrench by their respective components about

the co-reciprocals. Then the total work done will be equal to the sum of

the thirty-six quantities of work done in each component twist by each

component wrench. Since the screws are co-reciprocal, thirty of these

quantities disappear, and the remainder have for their sumf

34. Screw Co-ordinates.

A wrench on the screw a, of which the intensity is one unit, has for its

components, on six co-reciprocal screws, wrenches of which the intensities

may be said to constitute the co-ordinates of the screw a. These co-ordinates

may be denoted by alt ... a6 .

*
Pliicker introduced the conception of the six co-ordinates of a system of forces Phil. Trans.,

Vol. CLVI. p. 362 (1866). See also Battaglini,
&quot; Sulle dinami in involuzione,&quot; Atti di Nnpoli iv.,

(1869); Zeuthen, Math. Ann., Band i. p. 432 (1869).

t That the work done can be represented by an expression of this type was announced by

Klein, Math. Ann. Band iv. p. 413 (1871).
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When the co-ordinates of a screw are given, the screw itself may be thus

determined. Let e be any small quantity. Take a body in the position A,
and impart to it successively twists about each of the screws of reference of

amplitudes ealy &amp;lt;z.2 ,
... e 6 . Let the position thus attained be B\ then the

twist which would bring the body directly from A to B is about the required

screw a.

35. Identical Relation.

The six co-ordinates of a screw are not independent quantities, but

fulfil one relation, the nature of which is suggested by the relation between

three direction cosines.

When two twists are compounded by the cylindroid ( 14), it will be

observed that the amplitude of the resultant twist, as well as the direction

of its screw, depend solely on the amplitudes of the given twists, and the

directions of the given screws, and not at all upon either their pitches or their

absolute situations. So also when any number of twists are compounded, the

amplitude and direction of the resultant depend only on the amplitudes and

directions of the components. We may, therefore, state the following general

principle. If n twists neutralize (or n wrenches equilibrate) then a closed

polygon of n sides can be drawn, each of the sides of which is proportional
to the amplitude of one of the twists (or intensity of one of the wrenches),

and parallel to the corresponding screw.

Let an ,
bn ,

cn ,
be the direction cosines of a line parallel to any screw of

reference
&&amp;gt;,

and drawn through a point through which pass three rect

angular axes.

Then since a unit wrench on a has components of intensities a,,... a6 ,

we must have

(!! 4 . . . + tt
(i
a

fi)
2 + (&ii + . + &)2 + (Cjfli 4- . . . + c

(i
a

(i)
2 = 1,

whence ^X2
-f 2Sai&amp;lt;x,cos (12)

=
1,

if we denote by cos (12) the cosine of the angle between two straight lines

parallel to m 1 and &&amp;gt;2 .

36. Calculation of Co-ordinates.

We may conceive the formation of a table of triple entry from which the

virtual coefficient of any pair of screws may be ascertained. The three argu
ments will be the angle between the two screws, the perpendicular distance,

and the sum of the pitches. These arguments having been ascertained by

ordinary measurement of lines and angles, the virtual coefficient can be

extracted from the tables.

Let a be a screw, of which the co-ordinates are to be determined. The

32
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work done by the unit wrench on a in a twist of amplitude &&amp;gt;/
about the

screw
&&amp;gt;!

is

2&)j VTal,

but this must be equal to the work done in the same twist by a wrench of

intensity j
on the screw &&amp;gt;1} whence

or j
= -

.

Pi

Thus, to compute each co-ordinate an , it is only necessary to ascertain

from the tables the virtual coefficient of e*i and wn and to divide this quantity

37. The Virtual Coefficient of two screws may be expressed with great

simplicity by the aid of screw co-ordinates.

The components of a twist of amplitude are of amplitudes a alt ... a a B .

The components of a wrench of intensity ft&quot;
are of intensities

@&quot; j3lt ...

/3&quot;#,

Comparing these expressions with 32, we see that

and we find that the expression for the work done in the twist about a, by
the wrench on ft, is

a.
ft&quot; [2

The quantity inside the bracket is twice the virtual coefficient, whence we

deduce the important expression

l&aft
=

S/)j !/?].

Since a and ft enter symmetrically into this expression, we are again

reminded of the reciprocal character of the virtual coefficient.

38. The Pitch of a screw is at once expressed in terms of its co

ordinates, for the virtual coefficient of two coincident screws being equal

to the pitch, we have

pa = 2^1
a

1

2
.

39. Screw Reciprocal to five Screws.

We can determine the co-ordinates of the single screw p, which is

reciprocal to five given screws, a, ft, y, 8, e. ( 25.)

The quantities pl} ... p ti ,
must satisfy the condition

,

= 0,
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and four similar equations ;
hence pnpn is proportional to the determinant

obtained by omitting the /t
th column from the matrix or :

i&amp;gt; 72. 7a. 74. 75&amp;gt; 7

,, 0,, &,, S4 ,
83 ,

88

I

i, e,, e3 ,
64 ,

65 ,
e6 , |

and affixing a proper sign. The ratios of p1} ... ps , being thus found, the

actual values are given by 35.

If there were a sixth screw f the evanescence of the determinant which

written in the usual notation is (a1; /32 , 73, S4 , e5 , f6) would express that the

six screws had a common reciprocal. This is an important case in view of

future developments.

40. Co-ordinates of a Screw on a Cylindroid.

We may define the screw 8 on the cylindroid by the angle I, which it makes

with a, one of the two principal screws a and /3. Since a Avrcnch of unit

intensity on 6 has components of intensities cos I and sin I on a and j3 ( 14),

and since each of these components may be resolved into six wrenches on

any six co-reciprocal screws, we must have ( 34)

6n = On cos I + fin sin I.

From this expression we can find the pitch of : for we have

pe
= Spj (: cos I 4- & sin If,

whence expanding and observing that as a and /3 are reciprocal p1 a. 1@1 0,

and also that S,p1
a l

~ = pa and f!h&
&amp;gt;a

*Pjh we have the expression already

given ( 18), viz.

pe = p* cos2

I+PP sin2
1.

If two screws, and
&amp;lt;, upon the cylindroid, are reciprocal, then (m being

the defining angle of
&amp;lt;),

2pt (! cos I + Pi sin 1) (! cos m + {3l
sin m) = 0,

or pa cos I cos m+pft sin I sinm = 0.

Comparing this with 20, we have the following useful theorem :

Any two reciprocal screws on a cylindroid are parallel to conjugate

diameters of the pitch conic.

Since the sum of the squares of two conjugate diameters in an ellipse is

constant, we obtain the important result that the sum of the reciprocals of the

pitches of two reciprocal screws on a cylindroid is constant *.

*
Compare Octonions, p. 190, by Alex. Mu

Aulay, 1898.



38 THE THEORY OF SCREWS. [41-

41. The Canonical Co-Reciprocals.

If all the six screws of a co-reciprocal system are to pass through the same

point, they must in general constitute a pair of screws of pitches 4- a and

a on an axis OX, a pair of screws of pitches -1- b and 6 on an axis Y
which intersects OX at right angles, and a pair of screws of pitches + c and

c on an axis OZ perpendicular to both OX and OF.

It is convenient to speak of a co-reciprocal system thus arranged as a set

of canonical co-reciprocals. The three rectangular axes OX, OY, OZ we may
refer to as the associated Cartesian axes.

If a, ,
2 2 ,

... a6 be the six co-ordinates of a screw referred to the canonical

co-reciprocals, then the pitch is given in general by the equation

pa = a Or - 2
2
) + b (ots

2 - a4
2

) + c ( 5
2 -

6
2
).

It must be remembered that in this formula we assume that the co-ordi

nates satisfy the condition | 35

1 = (! + a a)
2 + (a, + 4 )

2 + ( 5 + a*)
2

-

Of course this condition is not necessarily complied with when a.^ ,, ... or

some of them are infinite, as they are in the case of a screw of infinite

pitch 44.

In general the direction cosines of the screw a are

42. An Expression for the Virtual Coefficient.

Let X
, fjf,

v be the direction cosines of the screw B (of pitch pe) which

passes through the point x, y ,
z . Let

X&quot;, p&quot;,
v&quot; be the direction cosines of

the screw a (of pitch pa ) which passes through the point x&quot;
, y&quot;,

z&quot;. Then it

can easily be shown that the virtual coefficient of 6 and a is half the

expression

j

x -
x&quot;, y

- y\ z - z&quot;

(l}9 + P&amp;lt;t&amp;gt;) (X X&quot; + p fJi&quot;
+ v

v&quot;)
X , fJL ,

v

X&quot;
, /*&quot; ,

&quot;&quot;

43. Equations of a Screw.

Given the six co-ordinates al , 2 ,
. . . 6 of a screw, with reference to a set

of six canonical co-reciprocals, it is required to find the equations of that screw

with reference to the associated Cartesian axes.

If we take for 6 in the expression just written the screw of pitch a in the

canonical system, thus making

X = 1
; pf = ;

v =
;
x =

; y =
;
z = 0,
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we have

2aal
=

( a+pa )\&quot;- (p&quot;z
-

v&quot;y ),

similarly 2aa2
= (- a + pa ) A.&quot; (fjif

z
v&quot;y ),

we thus find

\&quot;
=

a, + a.,
; v&quot;y pf z = a (i a,) pa (a, -f a,).

In like manner we obtain two similar pairs of equations for the required

equations of the screw a,

(a.-, + ?) y
-

(a, f 04) z = a (j - ou)
- pa (^ + o 2),

(a, -f a,) z - ( 6 4- ) a; = 6 (a,
- a4)

-
&amp;gt; (as + 4), (i).

(as + 4) # - (i + ,) y=c(as
- a6)

- ^a ( 5 + a6

The expressions on the right-hand side of these equations are the co

ordinates of the extremity of a vector from the origin of length equal to

the perpendicular distance of a from the centre, and normal to the plane

containing both a and the origin.

The co-ordinates of the foot of the perpendicular from the origin on the

screw a are easily shown to be

x - ( 5
-

6) ( + a4) c - (a5 + a,) ( 3
- a4) b,

i/
= (di- a,) ( 3 +O a - (! 4- a ) ( 5

-
) c,

^ = (as
-

a,) (a, -1- a,) b - (a3 + 4 ) (otj
- a2) a,

44. A Screw of Infinite Pitch.

The conception of the screw co-ordinates as defined in 41 require special

consideration in the case of a screw of infinite pitch. Consider a wrench on

such a screw. If the intensity of the wrench be one unit, then the

moment of the couple which forms part of the wrench is infinite. As the

pitches of the screws of reference or any of those pitches are not in general

to be infinite, it follows that the wrench of unit intensity on a screw of

infinite pitch must have for its components on one or more of the screws of

reference wrenches of infinite intensity.

If therefore au 2 ,
... a6 be the co-ordinates of a wrench of infinite pitch,

it is essential that one or more of the quantities ci l} a.,, ... as shall be

infinite.

In the case where the screws of reference form a canonical system we can

obtain the co-ordinates as follows :

(pa + a) cos (al)
- dAl sin (al) _ (/&amp;gt;

a
-

a) cos (al)
- rfal sin (rl)~~

;
&quot;2
~ -
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It pa be indefinitely great with respect to a and dai, then

pa cosf(ai ) pa cos (oci)--
2a &quot;2a

_ ;ja cos (as)
&quot;

26
&quot;

&quot;4
~

26

_ Pa cos (as) _ Pa cos (as)
a 5
~

2c 2c

If the co-ordinates of a screw not itself at infinity satisfy

ai + a, = 0; a
:j + a4

= 0; 5 + a6
= 0;

then we must have

for the equations

(Pa + ) cos (ai)
-

dai sin (ai)
ttj
= & &amp;gt;

_ (pa a) cos (ai)
- dal sin (ai)

and two similar pairs could not be otherwise satisfied.

We are not however entitled to assume the converse, i.e. that if the pitch

is infinite then the three equations a1 + a.2
= 0, &c. must be satisfied. It will

however be true that

but some at least of the co-ordinates being infinite, we are in general

prevented from replacing these equations by the ordinary linear form.

45. Indeterminate Screw.

It may however be instructive to investigate otherwise the circumstances

of a screw a possessing the property that its six co-ordinates a1( a, ... a^ are

submitted to the three conditions

! + a, =
;

as + a4
=

;
a 5 + 6

= 0.

Two distinct cases must be considered. Either the screw a must have some

finite points, or it must lie altogether at infinity. The first alternative is now

supposed. The second will be discussed in the next article.

If there be any finite points on a then for such points the three left-

hand members of the equations in 43 are all zero. The three right-hand

members must also reduce to zero. The only way in which this can be

accomplished (for we need not consider the case in which all the co-ordinates

are zero) is by making pa infinite.
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The direction of the screw of infinite pitch is indicated by the fact that

as a twist about it is a translation with components a (i -
2), b (a3 a4 ),

c ( g 6),
the screw must be parallel to a ray of which these three quantities

are proportional to the direction cosines.

As the three equations to the screw have disappeared, the situation of

the screw is indeterminate. This is of course what might be expected,

because a couple is equally efficacious in any position in its plane.

46. A Screw at infinity.

If we have

&amp;lt;*!
+ 2

=
; 3 + a4

=
; 5 + = :

then the three equations (i), of (43) will be satisfied for a screw entirely at

infinity, no matter what its pitch may be. From this and the last article we

see that the three equations

j + ,
=

;
a3 + a4

=
; a, + % =

may mean either a screw of infinite pitch and indefinite position, or a screw

of indefinite pitch lying in the plane at infinity.

47. Screws on one axis.

The co-ordinates being referred to six canonical co-reciprocals, it is required

to determine the co-ordinates of the screws of various pitches which lie on the

same axis as a given screw a.

We have from 36

_ (a + j?.)(i + .2)
-

&amp;lt;
sin (al)~

_ (i + a)
- d

ai
sin (ai)~

~~

whence ^ w
1
= (^ + tt,).

2Q

We thus have the useful results

6)5
= a&

~

These formulae may be verified by observing that one of the equations ( 43)

defining o&amp;gt; is

(&&amp;gt;5 + a&amp;gt;9) y (w3 + w4) s = a (a^ o&amp;gt;2) pm (coj -f o)a).
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Introducing the values just given for eo this equation becomes

-
(aa + a4) z = a fa - o2)

- pa fa + a,),

as of course it ought to do, for the pitch is immaterial when the question is

only as to the situation of the screw.

48. Transformation of Screw-co-ordinates.

Let i...a6 be the co-ordinates of a screw which we shall call to, with

reference to a canonical system of screws of reference with pitches + a and

a on an axis X
; + b and b on an intersecting perpendicular axis Y,

and + c and c on the intersecting axis OZ which is perpendicular to both

OX and Y.

Let x
, 7/0, z be the co-ordinates of any point with reference to the

associated system of Cartesians.

Draw through a system of rectangular axes O X
,
O Y , O Z parallel to

the original system OX, OF, OZ.

Let a new system of canonical screws of reference be arranged with pitches

+ a and a on O X
, + b and b on O Y

,
and + c and c on O Z .

Let 1} 0., ... #6 be the co-ordinates of the screw o with regard to these

new screws of reference. It is required to find these quantities in terms of

!, ... 6 .

Let x, y ,
z be the current co-ordinates of a point on w referred to the

new axes, the co-ordinates of this point with respect to the old axes being

x, y, z,

then x=x + x
; y = y + y - z = z + z&amp;lt;)

.

The equations of &&amp;gt; with respect to the new axes are ( 43),

(0, + 0) &amp;lt;/

-
(&, + OJ z =

&quot; (0i
-

0.)
-

JP. (0i +
0,))

(01 + 0JS-(0s + 0Jaf = b(0 &amp;gt;

-04)-p..(0t + 0^
......... (i).

(0, + 4 ) x -
(0, + 0,) y = c(05

-
6 )
- pM (0, + 6})

We have also

( 5 + 8) y ~ fa + 4&amp;gt;

z = a (tfj
-

a,)
-pu fa + 2

)j

(! + ,) .2 -fa + a6)x = b(a3 -a,)-pta (a3 +a4)[ ......... (ii).

( 3 + ce4) x - fa + a.,) y = c (ag
- a

fi)
-

_pu (a5 + or6)J

Remembering that the new axes are parallel to the original axes we have

1 + 3
=

a, + aa ; 3 + 4
= a3 + a4 ; 5 + 0,

=
a, + a

ti
......... (iii).
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Hence by subtracting the several formulae (i) from the formulae (ii) we

obtain

// ( 5 + )
- z

(flfg + 4)
= a (a,

-
a,)

- a (0,
-

0,)j

zn (! -I- a,)
- a? (a5 + a

fi)
= 6 (a,

- a4)
- b (03

-
4) L ........ (iiii).

# ( 3 + 4&amp;gt;

-
2/o (i + 2)

= c ( s
-- a6)

- c (05
-

6) )

The six e( {nations (iii) and (iiii) determine 6l) ... # in terms of ,,....

49. Principal Screws on a Cylindroid.

If two screws are given we determine as follows the pitches of the two

principal screws on the cylindroid which the two given screws define.

Let a and /3 be the two given screws. Then the co-ordinates of these

screws referred to six canonical co-reciprocals are

!,... and fr,...fr.

The co-ordinates of any other screw on the same cylindroid are propor
tional to

pa, + fr, py2 + /3,, . . . pa, + & ;

when p is a variable parameter.

The pitch p of the screw so indicated is given by the equation ( 41)

a (pa, + J3J*
- a (pa, + /3,)

2 + b (pa3 + &)* - b (pa, + &)3

= p [{p ( ttl + a,) + fr + fr}* + p {(a, + a4) + & + /34 j

2 + p {(a s + a) + fr + ft,]-

2

],

or

p*pa + 2pvrali + pft
= p {p

2 + 2p cos (a/3) +1],
or

p- (pa -p) + 2p {CTa/3
- p cos (a/9)] + pp p = 0.

For the principal screws p is to be determined so that p shall be a maxi

mum or a minimum ( 18), whence the equation for p is

Ka0 -p cos
(a/3)]

2 = (pa
-
p) (p ft

-
p),

or

I? sin2

(a/3) + p (2OTa/3
cos (a/8)

- pa
-
pp) + papft

- vr^ = 0.

The roots of this quadratic are the required values of p.

The quadratic may also receive the form

=
(P
~
Pa) (p

~
Pft) sin

2() + d
a/5

-sin (a/3) cos (a/9) (/ja

-
i (Pa -ppy cos2

(a/S)
-

i #. sin2

(a/3),

where dap is the shortest distance of a and /3.
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In this form it i.s obvious that to increase each of the three quantities

Pa&amp;gt; pp&amp;gt; P by in does not affect the equation. This is of course the well-known

property of the cylindroid. ( 20.)

If the quadratic have two equal roots, then all the screws of the cylindroid
form a plane pencil, and all have equal pitches.

The discriminant of the quadratic is

^a +^)2-4w 0(j;a+p0)cos(a/S)-4^ap0 sin2

(a/S)+4OT^
2
si

-
(pa + pft) cos (a/3)}

3 + (pa + ppf sin2

(a/3)
-

4&amp;gt;p
ap ft

sin2

(a/

(^a-^)2
)sin

2

(a/3).

Hence discarding the case when (a/3)
= we have

d.fi=0, p*-pft

= 0,

as was to be expected.



CHAPTEK V.

THE REPRESENTATION OF THE CYLINDROID BY A CIRCLE*.

50. A Plane Representation.

The essence of the present chapter lies in the geometrical representation

of a screw by a point. The series of screws which constitute the cylindroid

correspond to, or are represented by, a series of points in a plane. By
choosing a particular type of correspondence we can represent the screws

of the cylindroid by the points of a circle
&quot;f.

Various problems on the

cylindroid can then be studied by the aid of the corresponding circle. We
commence with a very simple process for the discovery of the circle. It will

in due course appear how this circular representation is suggested by the

geometry of the cylindroid itself ( 68).

It has been shown ( 13) that the positions of the several screws on

the cylindroid may be concisely defined by the intersections of the pairs of

planes,

y = x tan 0,

z = in sin 26.

In these equations, 9 varies in correspondence with the several screws, while

in is a parameter expressing the size of the cylindroid. In fact, the whole

surface, except parts of the nodal line, is contained between two parallel

planes, the distance between which is 2m.

The pitch of the screw corresponding to 9 is expressed by

P=pn + cos 20,

where p is a constant.

*
See papers in Proceedings of the lioyal Irish Academy, Ser. n. Vol. iv. p. 29 (1883), and the

Cunningham Memoirs of the lioyal Irish Academy, No. 4 (1886).

t I may refer to a paper by Professor Mannheim, in the Comptes rendits for 2nd February,

1885, entitled &quot;Representation plane relative aux deplacements d une figure de forme invariable

assujettie a quatre conditions.&quot; Professor Mannheim here shows how the above plane repre

sentation might also have been deduced from the instructive geometrical theory which he had

brought before the Academy of Sciences on several occasions.
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Eliminating 6 between the equations for z and p, we obtain

[50-

Let p and z be regarded as the current co-ordinates of a point. Then
the locus of this point is the circle which forms the foundation of the plane

representation*.

7?i is, of course, the radius, and p is the distance of the centre from a

certain axis. Any point on this circle being given, then its co-ordinates p
and z are completely determined. Thus sin 20 and cos 20, and, consequently,
tan 0, are known. We therefore see that the position of a screw and its

pitch are completely determined when the corresponding point on the circle

is known. To each point of the circle corresponds one screw on the cylin-

droid. To each screw on the cylindroid corresponds one point on the circle.

This may be termed the representative circle of the cylindroid.

51. The Axis of Pitch.

Let T
(fig. &quot;&amp;gt;)

be the origin. Then pQ is the perpendicular ST from the

centre 8 of the circle to the axis PT. The ordinate AP is the pitch of the

P T

Fig. 5.

* The following elegant construction for the cylindroid is given by Mr T. C. Lewis, Messenger

of Mathematics, Vol. ix. pp. 15, 1879. &quot;

Suppose that a point P moves with uniform velocity

around a circle while the circle itself rotates uniformly about an axis in its plane with half the

angular velocity that P has around the centre. Then the perpendiculars from P on the axis of

rotation trace out the cylindroid, while the lengths of those perpendiculars are the pitches of the

corresponding screws.&quot; This construction is of special interest in connexion with the represen
tation of the cylindroid by a circle discussed in this chapter. The construction of Mr Lewis shows

that if the circle rotate around the axis of pitch with half the angular velocity of the point P
around the circle, then not only does P represent the screw in this circle but the perpendicular
from P on the axis of pitch is the position of the screw itself.
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screw, and the line PT may be called the axis of pitch. We have, accord

ingly, the following theorem :

The pitch of any screw on the cylindroid is equal to the perpendicular let

fall on the axis ofpitch from the corresponding point on the circle.

A parallel AA to the axis of pitch cuts the circle in two points, A and

A
,
which have equal pitch. The diameter perpendicular to the pitch axis

intersects the circle in the points U, V of maximum and minimum pitch.

These points, of course, correspond to the two principal screws on the cylin

droid. The two screws of zero pitch are defined by the two real or imaginary

points in which the axis of pitch cuts the circle.

A fundamental law of the pitch distribution on the several screws of a

cylindroid is simply illustrated by this geometrical representation. The law

states that if all the pitches be augmented by a constant addition, the

pitches so modified will still be a possible distribution. So far as the

cylindroid is concerned, such a change would only mean a transference of

the axis of pitch to some other parallel position. The diameter 2m merely

expresses the size of the cylindroid, and is, of course, independent of the

constant part in the expression of the pitch.

52. The Distance between two Screws.

We shall often find it convenient to refer to a screw as simply equivalent
to its corresponding point on the circle. Thus, in

fig. 6, the two points, A

and B, may conveniently be called the screws A and B. The propriety of

this language will be admitted when it is found that everything about a
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screw can be ascertained from the position of its corresponding point on the

circle.

Let us, for instance, seek the shortest distance between the two screws

A and J5. Since all screws intersect the nodal axis of the cylindroid at

right angles, the required shortest distance is simply the difference between

the values of m sin 20 for the two screws : this is, of course, the difference

of their abscissae, i.e. the length PQ. Hence we have the following theorem :

The shortest distance between two screws, A and B, is equal to the pro

jection of the chord AB on the axis ofpitch.

We thus see that every screw A on the cylindroid must be intersected

by another screw A, and the chord AA is, of course, perpendicular to

the axis of pitch. The ray through S, parallel to the axis of pitch, will give

two screws, L and M. These are the bounding screws of the cylindroid, and

in each a pair of intersecting screws have become coincident. The two

principal screws, U and V, lying on a diameter perpendicular to the axis of

pitch, must also intersect.

If all the pitches be reduced by p , then the pitch axis passes through
the centre of the circle, and the case assumes a simple type. The extremities

of a chord perpendicular to the axis of pitch define screws of equal and

opposite pitches, and every pair of such screws must intersect. The screws

of zero pitch will then be the bounding screws, while the two principal

screws will have pitches +m and m, respectively.

53. The Angle between two Screws.

This important function also admits of simple representation by the

corresponding circle. Let A, B (fig. 7) denote the two screws; then, if 6

and 6 be the angles corresponding to A and B,

AST =26; B8T=28 ,

whence ASB = 2(8- 6
}.

If IT be any point on the circle, then

AHB = 0-8
,

and we deduce the following theorem :

The angle between two screws is equal to the angle subtended in the circle

by their chord.

The extremities of a diameter denote a pair of screws at right angles:

thus, A ,
in fig. 7, is the one screw on the cylindroid which is at right angles

to A. The principal screws, f/&quot;aud V, are also seen to be at right angles.
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The circular representation of the cylindroid is now complete. We see

how the pitch of each screw is given, and how the perpendicular distance

and the angle between every pair of screws can be concisely represented.

We may therefore study the dynamical and kinematical properties of the

cylindroid by its representative circle. We commence by proving a funda

mental principle very analogous to an elementary theorem in Statics.

54. The Triangle of Twists.

It has been already shown ( 14) that any three screws on the cylindroid

possess the following property :

If a body receive twists about three screws, so that the amplitude of

each twist is proportional to the sine of the angle between the two non-

corresponding screws, the body, after the last twist, will be restored to where

it was before the first.

With the circular representation of the cylindroid we transform this

theorem into the following:

If any three screws, A, B, C (Fig. 8), be taken on the circle, and if twists

be applied to a body in succession, so that the amplitude of each twist is

proportional to the opposite side of the triangle ABC, then the body will

be restored by the last twist to the place it had before the first.

From the analogy of wrenches, and of twist velocities to twists, we are

also able to enunciate the following theorems :

If wrenches upon the three screws A, B, C be applied to any rigid body,

then these wrenches will equilibrate, provided that the intensity of each is

proportional to the opposite side of the triangle.
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If twist velocities about the three screws A, B, C animate a rigid body,

then these twist velocities will neutralize if they are respectively proportional

to the opposite sides of the triangle.

55. Decomposition of Twists and Wrenches.

The theorems we have just enunciated lead to simple rules for effecting

the composition, or the decomposition of twists or of wrenches. Let a twist

on a screw X be given, and let it be required to find the components of this

twist on any two given screws A, B, all three, of course, lying on the same

cylindroid. Let o be the amplitude of the twist on X. Then, by the last

article, the following triad of twists on the screws X, A, B, respectively, will

neutralize :

BX AX
w

&amp;gt;

&quot;AB &quot;AB

whence the components on A a,nd B of the twist about X are, so far as

magnitudes are concerned,

AX
and

&quot;AS

A similar proposition holds of course for wrenches.

56. Composition of Twists and Wrenches.

Let two twists, of amplitudes a and /3, about the screws A and B, respec

tively, be applied to a rigid body. It is required to find the single resultant

screw X, and the amplitude CD of the resulting twist. Divide AB (Fig. 9)

in the point /, so that the segments AI and BI shall be in the inverse ratio

of a to /3. Bisect the arc AB at H, and draw HI, which will cut the circle

in the required point X.

The value of &&amp;gt; is obtained from the equations
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If the amplitudes a and /3 had opposite signs, then the point / should have

divided AB externally in the given ratio.

57. Screw Co-ordinates.

We have developed in the last chapter the general conception of

Screw Co-ordinates. In the case of the cylindroid, the co-ordinates of any
screw X, with respect to two standard scresvs A and B, are found by resolving

a wrench of unit intensity on X into its two components on A and B. These

components are said to be the co-ordinates of the screw. If we denote the

co-ordinates of X by Xl and X 2 ,
we have

^BX = AX
l ~AB ~~ AB

The co ordinates satisfy the identical relation,

where e denotes the angle between the two screws of reference, that is, the

angle subtended by the chord AB.

58. Reciprocal Screws.

Every screw A on the cylindroid has one other reciprocal screw B tying

also on the cylindroid ( 26). Denoting as usual A and B by their corre

sponding points on the circle, we may enunciate the following theorem :

The chord joining a pair of reciprocal screws passes through the pole of

the axis of pitch.

The condition that two screws shall be reciprocal is

(pa -I- pft) cos 6 daf} sin
= 0,

where pa and p^ are the pitches, 6 is the angle between the two screws,

and d^ their shortest distance. It is easy to show that this condition

is fulfilled for any two screws A and B (Fig. 10), whose chord passes through

0, the pole of the axis of pitch PQ.

42
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Since SO . ST = &amp;gt;SM

2 = SB2
,
we have Z STA = Z SAB, and z

whence Z ATB is bisected by ST, and therefore

Z ATP = \ Z 4SB = 6 = Z BTQ.

= z

It follows that .4Pcos0 = PTsmO, since each is equal to the perpen
dicular from P on A T.

Similarly,

BQ cos = QT sin
;

whence
( AP + BQ) cos0-(PT + QT) sin = 0,

which reduces to

(pa + pi) cos 6 daft sin 6 = 0.

The theorem has thus been proved.

We have, therefore, a simple construction for finding the screw B reci

procal to a given screw A. It is only necessary to join A to 0, the pole

of the axis of pitch, and the point in which this cuts the circle again gives
B the required reciprocal screw.

We also notice that the two principal screws of the cylindroid are reci

procal, inasmuch as their chord passes through 0.

59. Another Representation of the Pitch.

We can obtain another geometrical expression for the pitch, which will be

often more convenient than the perpendicular distance from the point to the

axis of pitch.

Let A (Fig. 11) be the point of which the pitch is required. Join

AOB, draw AP perpendicular to the axis of pitch PT, and produce AP to
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intersect BT at E. Then, since is the pole of PT, the line PT bisects the

angle ATE ( 58), and therefore AE must be bisected at P.

From similar triangles,

OB:AB:: OT : AE;

whence, if pa be the pitch of A, arid, of course, equal to AP, or \AE,

_AB.OT
IP*- QB

.

But since the quadrilateral ASBT is inscribable in a circle,

OT.OS = OA.OB;

whence, eliminating OT, we have, finally,

_ AO.AB
Pa

m&amp;lt;r

:

as OS is constant, we see that pa varies as AO . AB, whence the following

theorem :

If AB be any chord passing through 0, the pole of the axis of pitch, then

the pitch of the screw A is proportional to the product AO . AB.

60. Pitches of Reciprocal Screws.

It is known that the sum of the reciprocals of the pitches of a pair of

reciprocal screws on the cylindroid is constant ( 40). This is also plain

from the geometrical representation. For, since the triangles APT and BQT
(Fig. 10) are similar, we have

AP-.BQ:: TP : TQ :: OA :OB;
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whence is the centre of gravity of particles of masses and placed at

A and B, respectively.

From the known property of the centre of gravity,

.1 1 /I

Pa Pft \Pa

but each of the terms on the left-hand side is unity, whence, as required,

I 1- _?_

The second mode of representing the pitch also verifies this theorem.

For since ( 59)

AO.AB

_BO.BA
Pft
~
~20S~ ;

we have

_AB&amp;gt;
AB2 .AO.BO

p+pft-

from which

but OA . OB is constant for every chord through ; and, as OS is constant,

it follows that the sum of the reciprocals of the pitches of two reciprocal
screws on any cylindroid must be constant.

61. The Virtual Coefficient.

Let A and B (Fig. 12) be the two screws. Let, as usual, be the pole of

the axis of pitch PT. Let be the point in which the chord AB intersects

OT the perpendicular drawn from to the axis of pitch, and let FT be the

polar of
, which is easily shown to be perpendicular to SO. From T let fall

the perpendicular TF upon AT ,
and from let fall the perpendicular OG

upon AB.

As before
( 58), we have ATF = tT TF=e\ also, since

^SAO =^AT
,
and ^SAO = ^ATO,

we must have ^SAO -^SAO = /.AT O 1

-^ATO, or Z OAG = z TAF-

whence the triangles OA G and TAF are similar, and, consequently,
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but, as in 58, we have

(pa -TT + pp- TT ) cos - d
aft

sin =
;

Fig. 12.

whence the virtual coefficient is simply,

AS
OS

and we have the following theorem :

The virtual coefficient of any pair of screws varies as the perpendicular

distance of their chord from the pole of the axis of pitch.

We also notice that the line TF expresses the actual value of the virtual

coefficient.

The theorem of course includes, as a particular case, that property of

reciprocal screws, which states that their chord passes through the pole of the

axis of pitch ( 58).

62. Another Investigation of the Virtual Coefficient.

It will be instructive to investigate the theorem of the last article by a

different part of the theory. We shall commence with a proposition in ele

mentary geometry.

Let ABC (Fig. 13) be a triangle circumscribed by a circle, the lengths of

the sides being, as usual, a, b, c. Draw tangents at A, B, C, and thus form

the triangle XYZ. It can be readily shown that if masses a2
, b&quot;,

c&quot; be placed
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at A, H, C, their centre of gravity must lie on the three lines AX, BY, GZ.
These lines must therefore be concurrent at /, which is the centre of gravity
of the three masses.

Fig. 13.

Let BY intersect the circle again at H. Then, since AC is the polar of
Y, the arc AC is divided harmonically at H and B: consequently the four

points A, C, B, H subtend a harmonic pencil at any point on the circle. Let
that point be B, then BC, BI, BA, BZ form a harmonic pencil ;

hence CZ is
cut harmonically, and consequently Z must be the centre of gravity of

particles, + a? at A, + b2 at B, and - c
2 at C.

Suppose the axis of pitch to be drawn (it is not shown in the figure), and
let h be the perpendicular let fall from Z on this axis, also let plt p2 , p3 be the
pitches of the screws A, B, C.

Then, by a familiar property of the centre of gravity, we must have

Pitf +p^ -
p.? = (a? + b3 - c

2

) k = 2abh cos C.

We shall take A, B as the two screws of reference, and if p, and
p,,

be the co
ordinates of C with respect to A and B

; then, from the principles of screw
co-ordinates ( 30), we have

where W|3 is the virtual coefficient of A and B. In the present case we have

_ a _b
pl ~c p*~c

whence

and, finally,

Pi 2

12
= h cos C.
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The negative sign has no significance for our present purpose, and hence we

have the following theorem :

The virtual coefficient of two screws is equal to the cosine of the angle

subtended by their chord, multiplied into the perpendicular from the pole of the

chord on the axis ofpitch.

This is, perhaps, the most concise geometrical expression for the virtual

coefficient. It vanishes if the perpendicular becomes zero, for then the

chord must pass through the pole of the pitch axis, and the two screws be

reciprocal. The cosine enters the expression in order that its evanescence,

when 0= 90, may provide for the circumstance that the perpendicular is then

infinite.

This result is easily shown to be equivalent to that of the last article by
the well-know ti theorem :

If any two chords be drawn in a circle, then the cosine of the angle sub

tended by the first chord, multiplied into the perpendicular distance from its

pole to the second chord, is equal to the cosine of the angle subtended

by the second chord, multiplied into the perpendicular from its pole to

the first chord.

It follows that the virtual coefficient must be equal to the perpendicular

from the pole of the axis of pitch upon the chord joining the two screws,

multiplied into the cosine of the augle in the arc cut off by the axis of pitch.

This is the expression of 61, namely,

nr ASOG
08

63. Application of Screw Co-ordinates.

It will be useful to show how the geometrical form for the virtual coefficient

is derived from the theory of screw co-ordinates. Let a
}&amp;gt; 2 &amp;gt;

and ftl} #&amp;gt;
be the

co-ordinates of two screws on the cylindroid ; then, if the screws of reference

be reciprocal, the virtual coefficient is ( 37)

Let A, B (Fig. 14) be the screws of reference, and let C and C be the two

screws of which the virtual coefficient is required. Let PQ be the axis of

pitch of which is the pole, then lies on AB, as the two screws of reference

are reciprocal ( 58).

As AB is divided harmonically at and H, we have

AO : OB :: HA : HE :: AP : BQ :: p, : p2 ;

whence is the centre of gravity of masses
,

at A and B, respectively.



58 THE THEORY OF SCREWS. [63-

If, therefore, AX, BY, OG be perpendiculars on CO
,
we have, from the

principle of the centre of gravity,

Fig. 14.

or, p2AX + PIBY = ( Pl +PJ OG
;

but, by a well-known property of the circle, if ra be the radius,

2mAX = AC . AC
-,

2mBY = BC.BC -

whence

or

P1BC.BC + p.,AC.AG = 2m ( Pi + P,) OG = m ~
( 60),Ob

BC_ BW_ AC_
pl +P-

OG
_ _ _

AB AB - AB AB~ m
OS

But, from the expressions for screw co-ordinates ( 57), this reduces to

*

The required expression has thus been demonstrated.

We can give another proof of this theorem as follows :

If the two screws of reference be reciprocal, and if pl and p2 be the co

ordinates of another screw, then it is known, from the theory of the co

ordinates, that the virtual coefficients of this screw, with respect to the screws

of reference, are p1pl and p.,p, respectively ( 37).

Thus (Fig. 15) the virtual coefficient of X and A must be ( 57),

BX
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AO.AB
but we know ( 59) pl

whence the virtual coefficient is

280

AO.BX 2m sin A . AO OG= in
280 2SO OS

as already determined. This is an instructive proof, besides being much

shorter than the other methods.

Fig. 15. Fig. 16.

64. Properties of the Virtual Coefficient.

If the virtual coefficient be given then the chord envelopes a circle with

its centre at the pole of the axis of pitch.

Two screws can generally be found which have a given virtual coefficient

with a given screw.

Let A (Fig. lo) be a given screw, and X a variable screw
;
then their

virtual coefficient is proportional to OG, and therefore to the sine of A, that

is, to the length BX. Thus, as X varies, its virtual coefficient with A
varies proportionally to the distance of X from the fixed point B.

65. Another Construction for the Pitch.

As the virtual coefficient of two coincident screws is equal to their pitch,

we shall obtain another geometrical construction for the pitch by supposing

two screws to coalesce. For (in Fig. 1C), let AG be the chord joining the two

coincident screws, that is the tangent, then, from 61, we have for the pitch,

OGm
OS

whence the following theorem :

The pitch of any screw is proportional to the perpendicular on the tangent

at the point let fallfrom the pole of the axis ofpitch.
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66. Screws of Zero Pitch.

A screw of zero pitch is reciprocal to itself. The tangent at a point

corresponding to a screw of zero pitch, being the chord joining two reciprocal

screws, must pass through the pole of the axis of pitch. This is, of course,

the same thing as to say that the axis of pitch intersects the circle in two

screws, each of which has zero pitch.

67. A Special Case.

We have supposed that the axis of pitch occupies any arbitrary position.

Let us now assume that it is a tangent to the representative circle. This

specialization of the general case could be produced by augmenting the

pitches of all the screws on the cylindroid, by such a constant as shall make

one of the two principal screws have zero pitch.

The following properties of the screws on the cylindroid are then

obvious :

1. There is only one screw of zero pitch, 0.

2. The pitches of all the other screws have the same sign.

3. The maximum pitch is double the radius.

4. The screw is reciprocal to every screw on the surface, arid this

is the only case in which a screw on the cylindroid is reciprocal to every

other screw thereon.

68. A Tangential Section of the Cylindroid*.

Let the plane of section be the plane of the paper in Fig. 17, and let the

plane contain one of the screws of zero pitch OA. Let OH be the projection

of the nodal axis on the plane of the paper. Then OA being perpendicular to

the nodal axis must be perpendicular to OH, Let P be the point where the

second screw of zero pitch cuts the curve. Then since any ray through P
and across AO, meets two screws of equal pitch, it must be perpendicular
to the third screw which it also meets on the cylindroid ( 22). Hence

PH is perpendicular to the screw through H, and as the latter lies in the

normal plane through OH it follows that the angle at H is a right angle.

Any chord perpendicular to AO must for the same reason intersect two

screws of equal pitch, and therefore APHO must be a rectangle.

If tangents be drawn at A and P intersecting at T, then it can be shown

that any chord TLM through T cuts the ellipse in points L and M on two

reciprocal screws.

* For proofs of theorems in this article see a paper in the Transactions of the Royal Irish

Academy, Vol. xxix. pp. 132 (1887).
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If from any point X a perpendicular XR be let fall on AP, then the pitch
of the screw through X is XR tan 6, where sin 6 is the eccentricity of the

ellipse. Also 6 is the angle between the normal to the plane and the nodal

axis.

Fig. 17.

Let two circles be described, one with the major axis of the ellipse as

diameter and the other with the line joining the two foci as a diameter. Let

^i be the point in which the ordinate through X meets the first circle and
X., be the point in which a ray drawn from X^ to the centre meets the second

circle. Then this point X2 on this inner circle will be exactly the circular

representation of the screws on the cylindroid with which this chapter com
menced. There is only one such circle, for the distance between the foci is

the same for every tangential section, and so is the distance from the centre

to the axis of pitch.



CHAPTER VI.

THE EQUILIBRIUM OF A RIGID BODY.

69. A Screw System.

To specify with precision the nature of the freedom enjoyed by a rigid

body, it is necessary to ascertain all the screws about which the constraints

will permit the body to be twisted. When the attempt has been made for

every screw in space, the results will give us all the information conceivable

with reference to the freedom of the body, and also with reference to the

constraints by which the movement may be hampered.

Suppose that by these trials, n screws A 1} ... An have been found about

each of which the body can receive a twist. It is evident, without further

trial, that twisting about an infinite number of other screws must also be

possible (w&amp;gt;l):
for suppose the body receive any n twists about A^, ...

A n the position attained could have been reached by a twist about some

single screw A. The body can therefore twist about A. Since the amplitudes
of the n twists may have any magnitude (each not exceeding an infinitely

small quantity), A is merely one of an infinite number of screws, about which

twisting must be possible. All these screws, together with A,, ... An ,
will in

generalform what we call a screw system of the nth, order.

If it be found that the body cannot be twisted about any screw which

does not belong to the screw system of the nth order, then the body is said

to have freedom of the nth order. It is assumed that A lf ... A n are

independent screws, i.e. not themselves members of a screw system of order

lower than n. If this were the case, the screws about which the body could

be twisted would only consist of the members of that lower screw system.

Since the amplitudes of the n twists about AI, ... An are arbitrary, it

might be thought that there are n disposable quantities in the selection of a

screw S from a screw system of the ?ith order. It is, however, obvious from

14 that the determination of the position and pitch of S depends only upon
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the ratios of the amplitudes of the twists about A 1} ... A n and hence in the

selection of a screw from the screw system of the nth order, we have n 1

disposable quantities.

70. Constraints.

An essential feature of a system of constraints consists in the number of

independent quantities which are necessary to specify the position of the

body when displaced in conformity with the requirements of the constraints.

That number which cannot be less than one, nor greater than six, is the

order of the freedom. To each of the six orders of freedom a certain type of

screw system is appropriate.

The study of the six types of screw system as here defined is a problem
of kinematics, but the statical and kinematical properties of screws are so

interwoven that we derive great advantages by not attempting to relegate
the statics and kinematics to different chapters. We shall not require any
detailed examination of the constraints. Every conceivable condition of

constraints must have been included when the six screw systems have been

discussed in their most general form. Nor does it come within our scope,

except on rare occasions, to specialize the enunciation of any problem, further

than by mentioning the order of the freedom permitted to the body.

71. Screw Reciprocal to a System.

If a screw X be reciprocal to n independent screws, A l} ... A n ,
of a screw

system of order n, then X is reciprocal to every other screw A which belongs
to the same screw system. For, by the property of the screw system, it

appears that twists of appropriate amplitudes about A 1} ... A n , would

compound into a twist about A. It follows ( 69) that wrenches on A
l , ...

A n ,
of appropriate intensities ( 30) compound into a wrench on A. Suppose

these wrenches on A 1} ... A
n&amp;gt;

were applied to a body only free to twist

about X, then since X is reciprocal to A lt ... A H ,
the equilibrium of the

body would be undisturbed. The resultant wrench on A must therefore be

incapable of moving the body, therefore A and X must be reciprocal.

72. The Reciprocal Screw System.

All the screws which are reciprocal to a screw system P of order n

constitute a screw system Q of order 6 n. This important theorem is thus

proved :

Since only one condition is necessary for a pair of screws to be reciprocal,
it follows, from the last section, that if a screw X be reciprocal to P it will

fulfil n conditions. The screw X has, therefore, 5 n elements still dis

posable, and consequently (n &amp;lt;

f&amp;gt;)

an infinite number of screws Q can be
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found which are reciprocal to the screw system P. The theory of reciprocal

screws will now prove that Q must really be a screw system of order 6 n.

In the first place it is manifest that Q must be a screw system of some

order, for if a body be capable of twisting about even six independent screws,

it must be perfectly free. Here, however, if a body were able to twist about

the infinite number of screws embodied in Q, it would still not be free,

because it would remain in equilibrium, though acted upon by a wrench

about any screw of P. It follows that Q can only denote the collection of

screws about which a body can twist which has some definite order of

freedom. It is easily seen that that number must be 6 n, for the number
of constants disposable in the selection of a screw belonging to a screw

system is one less than the order of the system ( 36). But we have seen

that the constants disposable in the selection of X are 5 n, and, therefore,

Q must be a screw system of order G - n.

We thus see, that to any screw system P of order n corresponds a reciprocal

screw system Q of order 6 n. Every screw of P is reciprocal to all the

screws of Q, and vice versa. This theorem provides us with a definite test as

to whether any given screw a is a member of the screw system P. Construct

6?i screws of the reciprocal system. If then a be reciprocal to these 6 n

screws, a must in general belong to P. We thus have 6 n conditions to

be satisfied by any screw when a member of a screw system of order n.

73. Equilibrium.

If the screw system P expresses the freedom of a rigid body, then the

body will remain in equilibrium though acted upon by a wrench on any
screw of the reciprocal screw system Q. This is, perhaps, the most general
theorem which can be enunciated with respect to the equilibrium of a rigid

body. This theorem is thus proved : Suppose a wrench to act on a screw
77

belonging to Q. If the body does not continue at rest, let it commence to

twist about a. We would thus have a wrench about rj disturbing a body
which twists about a, but this is impossible, because a and ?; are reciprocal.

In the same manner it may be shown that a body which is free to twist

about all the screws of Q will not be disturbed by a wrench about any screw

of P. Thus, of two reciprocal screw systems, each expresses the locus of a

wrench which is unable to disturb a body free to twist about any screw of

the other.

74. Reaction of Constraints.

It also follows that the reactions of the constraints by which the move
ments of a body are confined to twists about the screws of a system P can

only be wrenches on the reciprocal screw system Q, for the reactions of the
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constraints are only manifested by the success with which they resist the

efforts of certain wrenches to disturb the equilibrium of the body.

75. Parameters of a Screw System.

We next consider the number of parameters required to specify a screw

system of the ?ith order often called for brevity an ?i-system. Since the

system is defined when n screws are given, and since five data are required

for each screw, it might be thought that on parameters would be necessary.

It must be observed, however, that the given 5n data suffice not only for the

purpose of defining the screw system but also for pointing out n special

screws upon the screw system, and as the pointing out of each screw on the

system requires n - 1 quantities ( 69), it follows that the number of

parameters actually required to define the system is only

5n n (n 1) = n (6 n).

This result has a very significant meaning in connexion with the theory

of reciprocal screw systems P and Q. Assuming that the order of P is n, the

order of Q is 6 n
;
but the expression n (6 n) is unaltered by changing n

into 6 n. It follows that the number of parameters necessary to specify a

screw system is identical with the number necessary to specify its reciprocal

screw system. This remark is chiefly of importance in connexion with the

systems of the fourth and fifth orders, which are respectively the reciprocal

systems of a cylindroid and a single screw. We are now assured that a

collection of all the screws which are reciprocal to an arbitrary cylindroid can

be nothing less than a screw system of the fourth order in its most general

type, and also, that all the screws in space which are reciprocal to a single

screw must form the most general type of a screw system of the fifth order.

76. Applications of Co-ordinates.

If the co-ordinates of a screw satisfy n linear equations, the screw must

belong to a screw system of the order 6 n. Let 77 be the screw, and let one

of the equations be

whence 77
must be reciprocal to the screw whose co-ordinates are pro

portional to

^, .
~6

,(37).
Pi P*

It follows that 77
must be reciprocal to n screws, and therefore belong to a

screw system of order 6 n.

Let a, /3, 7, B be for example four screws about which a body receives

twists of amplitudes a , # , 7 ,
& . It is required to determine the screw p and

B. 5
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the amplitude p of a twist about p which will produce the same effect as the

four given twists. We have seen ( 37) that the twist about any screw a

may be resolved in one way into six twists of amplitudes a a,, ... a 6 ,
on the

six screws of reference
;
we must therefore have

p pe
= a a,, + /3 @ + 77fi + 8 86 ,

whence p and p l} ... pK can be found ( 35).

A similar process will determine the co-ordinates of the resultant of any

number of twists, and it follows from 12 that the resultant of any number

of wrenches is to be found by equations of the same form. In ordinary

mechanics, the conditions of equilibrium of any number of forces are six,

viz. that each of the three forces, and each of the three couples, to which the

system is equivalent shall vanish. In the present theory the conditions are

likewise six, viz. that the intensity of each of the six wrenches on the screws

of reference to which the given system is equivalent shall be zero.

Any screw will belong to a system of the ?ith order if it be reciprocal to

6 n independent screws
;

it follows that 6 n conditions must be fulfilled

when n + 1 screws belong to a screw system of the nib. order.

To determine these conditions we take the case of n 3, though the

process is obviously general. Let a, /3, 7, & be the four screws, then since

twists of amplitudes a, (3 , 7 ,
& neutralise, we must have p zero and hence

the six equations

a a, + /3A + 77, + S S, = 0,

&c.

from any four of these equations the quantities a
, /3 , 7 ,

S can be eliminated,

and the result will be one of the three required conditions.

It is noticeable that the 6 n conditions are often presented in the

evanescence of a single function, just as the evanescence of the sine of an

angle between a pair of straight lines embodies the two conditions necessary

that the direction cosines of the lines coincide. The function is suggested

by the following considerations : If n + 2 screws belong to a screw system

of the (n + l)th order, twists of appropriate amplitudes about the screws

neutralise. The amplitude of the twist about any one screw must be pro

portional to a function of the co-ordinates of all the other screws. We thus

see that the evanescence of one function must afford all that is necessary for

n + 1 screws to belong to a screw system of the nth order.*

*
Philosophical Transactions, 1874, p. 23.
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77. Remark on systems of Linear Equations.

Let a right line be, as usual, represented by the two equations

Ax + By + Cz + D = 0,

There are here six independent constants involved, while a right line is

completely defined by four constants. The fact of course is that these two

equations not only determine the right line on which our attention is fixed,

but they also determine two planes through that line. Four constants are

needed for the straight line and one more for each of the planes, so that there

are six constants in all.

If we are concerned with the straight line only the intrusion of two

superfluous constants is often inconvenient. We can remove them by first

eliminating y and then x, thus giving the two equations the form

We have here no more than the four constants P, Q, P , Q ,
which are indis

pensable for the specification of the straight line.

Of course it may be urged that these equations also represent two planes.
No doubt they do, but the equation z = Px + Q is a plane parallel to the axis

of y, which is absolutely determined when the straight line is known. The

plane Aac+By+Cz +D = Q may represent any one of the pencil of planes
which can be drawn through the straight line.

Analogous considerations arise when the screws of an n-system are

represented by a series of linear equations. We commence with the case of

the two-system, in which of course the screws are limited to the generators
of a cylindroid.

Let 0j, 2 ,
... 6 be the co-ordinates of a screw referred to any six screws

of reference.

Let these co-ordinates satisfy the four linear equations

A,e, +A&+ +4 6
=

0,

B& + B,02 + ... +B,0B
= 0,

0,6,+ &amp;lt;7a 2 + ... + c\e c&amp;gt;

= o,

A0i + A& + ... + A08
=

o,

where AI, A, ..., Bl ,
B2 ,

... Gly (7, and D1} D.,, ... are constants.

Then it is a fundamental part of the present Theory that the locus so

defined is a cylindroid (| 76).

52
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But it will be observed that there is here a mass of not fewer than

20 independent constants, while the cylindroid is itself completely defined by

eight constants ( 75). The reason is that these four equations really each specify

one screw, i.e. four screws in all, and as each screw needs five constants

the presence of 20 constants is accounted for.

But when it is the cylindroid alone that we desire to specify there is no

occasion to know these four particular screws. All we want is the system of

the fourth order which contains those screws. For the specification of the

position of a screw in a four-system three constants are required. Thus the

selection of four screws in a given four-system requires 12 constants. These

subtracted from 20 leave just so many as are required for the cylindroid.

This is of course the interpretation of the process of solving for 3 ,04 , r&amp;gt; , 6

in terms of 9 and 2 . We get

3
= P0, + Q02 64

= P 6, + Q 2 5
=

P&quot;0, + Q&quot;02 ;
86
= P&quot; 0, + Q &quot;02 .

Thus we find that the constants are now reduced to eight, which just serve

to specify the cylindroid.

An instructive case is presented in the case of the three-system. The

three linear equations of the most general type contain 15 constants. But

a three-system is defined by 9 constants ( 75). This is illustrated by solving

the equations for 0.2 , 4 , K in terms of 1; 3 , r,, when we have

0, = P0, + Q03 + RBS ,

4
= P B, + Q S + R05 ,

6
=

P&quot;0, + Q&quot;d, + R&quot;05 .

This symmetrical process is specially convenient when the screws of reference

are six canonical co-reciprocals.

The general theory may also be set down. An ?i-system of screws is

defined by 6 n linear equations. These contain 5(6 n) = 30 5n constants.

We can, however, solve for 6 n of the variables in terms of the remaining n.

Thus we get 6 n equations, each of which has n constants, i.e. n (6 n) in

all. This is just the number of constants necessary to specify an ?i-system.

The original number in the equation 30 - 5n may be written

n (6
-

n) + (6
-

n) (5
-

n).

The redundancy of (6 n) (5 n) expresses the number of constants necessary
for specifying 6 n screws in a system of the (6 n)th order.



CHAPTER VII.

THE PRINCIPAL SCREWS OF INERTIA*.

78. Introduction.

If a rigid body be free to rotate about a fixed point, then it is well known
that an impulsive couple about an axis parallel to one of the principal

axes which can be drawn through the point will make the body commence
to rotate about that axis. Suppose that there was on one of the principal

axes a screw ij with a very small pitch, then a twisting motion about 77 would

closely resemble a simple rotation about the corresponding axis. An impul
sive wrench on

77 (i.e. a wrench of great intensity acting for a small time)
will reduce to a couple when compounded with the necessary reaction of the

fixed point. If we now suppose the pitch of 77 to be evanescent, we may still

assert that an impulsive wrench on
it]

of very great intensity will cause the

body, if previously quiescent, to commence to twist about ?;.

We have stated a familiar property of the principal axes in this indirect

manner, for the purpose of showing that it is merely an extreme case for a

body with freedom of the third order of the following general theorem :

If a quiescent rigid body have freedom of the nth order, then n screws can

always be found (but not generally more than n), such that if the body receive

an impulsive wrench on any one of these screws, the body will commence to

tiuist about the same screw.

These n screws are of great significance in the present method of studying

Dynamics, and they may be termed the principal screws of inertia. In the

present chapter we shall prove the general theorem just stated, while in the

chapters on the special orders of freedom we shall show how the principal
screws of inertia are to be determined for each case.

*
Philosophical Transactions, 1874, p. 27.
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79. Screws of Reference.

We have now to define the group of six co-reciprocal screws ( 31) which

are peculiarly adapted to serve as the screws of reference in Kinetic investi

gations. Let be the centre of inertia of the rigid body, and let OA, OB,
OC be the three principal axes through 0, while a, b, c are the corresponding
radii of gyration. Then two screws along OA, viz. wl ,

&&amp;gt;2 ,
with pitches + a,

a; two screws along OB, viz. o&amp;gt;3 , &&amp;gt;4 ,
with pitches + b, b, and two along

OC, viz. &amp;lt;y D ,
w6) with pitches + c, c, are the co-reciprocal group which

we shall employ. The group thus indicated form of course a set of canonical

co-reciprocals ( 41). For convenience in writing the formulae, we shall

often use ply ... p6 ,
to denote the pitches as before.

We shall first prove that the six screws thus defined are the principal screws

of inertia of the rigid body when perfectly free. Let the mass of the body be

M, and let a great constant wrench on w, act for a short time e. The intensity
of this wrench is

&&amp;gt;/ ,
and the moment of the couple is aw&quot;. We now consider

the effect of the two portions of the wrench separately. The effect of the force

&&amp;gt;/
is to give the body a velocity of translation parallel to OA and equal to

/?

-rj / . The effect of the couple is to impart an angular velocity d^ about

the axis OA. This angular velocity is easily determined. The effective

force which must have acted upon a particle dm at a perpendicular distance

r from OA is - dm. The sum of the moments of all these forces is
e

Mo? -~
. This quantity is equal to the moment of the given couple so that

60

Ma2 -1 =
aw,&quot;,

e
&&amp;gt;x

The total effect of the wrench on wl is, therefore, to give the body a

velocity of translation parallel to OA, and equal to T^WI&quot;, and also a velocity

ff

of rotation about OA equal to ^ &&amp;gt;/
. These movements unite to form a

twisting motion about a screw on OA, of which the pitch, found by dividing
the velocity of translation by the velocity of rotation, is equal to a. This

same quantity is however the pitch of eoj, and thus it is proved that an

impulsive wrench on ^ will make the body commence to twist about w^.

We shall in future represent ew&quot; by the symbol &&amp;gt;/&quot;,
which is accordingly to

express the intensity of the impulsive wrench.
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80. Impulsive Screws and Instantaneous Screws.

If a free quiescent rigid body receive an impulsive wrench on a screw 77,

the body will immediately commence to twist about an instantaneous screw

a. The co-ordinates of a being given for the six screws of reference just

denned, we now seek the coordinates of
77.

The impulsive wrench on 77 of intensity 77

&quot;

is to be decomposed into com

ponents of intensities tj &quot;r} 1 ,
... i} &quot;rj6 on (

l ,
... ws . The component on con

will generate a twist velocity about o&amp;gt; H amounting to

jLWM Pn

but if a be the twist velocity about a which is finally produced, the expression

just written must be equal to aan ,
and hence we have the following useful

result :

If the co-ordinates of the instantaneous screw be proportional to al} ... a
fi&amp;gt;

then the co-ordinates of the corresponding impulsive screw are proportional to

81. Conjugate Screws of Inertia.

Let a be the instantaneous screw about which a quiescent body either

free or constrained in any way will commence to twist in consequence of

receiving an impulsive wrench on any screw whatever 77. Let ft be the

instantaneous screw in like manner related to another impulsive screw

We have to prove that if be reciprocal to a then shall 77 be reciprocal
to j3.

When the body receives an impulsive wrench on of intensity
&quot;&quot;

there

is generally a simultaneous reaction of the constraints, which takes the form

of an impulsive wrench of intensity ///&quot;
on a screw /*. The effect on the body

is therefore the same as if the body had been free, but had received an

impulsive wrench of which the component wrench on the first screw of

reference had the intensity ^ &quot;^
+ p, &quot;^

. This and the similar quantities
will be proportional to the co-ordinates of the impulsive screw which had the

body been perfectly free would have /3 as an instantaneous screw. These

latter, as we have shown in 80, are proportional to p l /31 ,p.,@.i ...p6/36 . Hence
it follows that, h being some quantity differing from zero, we have

Multiplying the first of these equations by p^, the second by^oa^, &c. adding
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the six products and remembering that a and are reciprocal by hypothesis
while a. and /* are reciprocal by the nature of the reactions of the constraints,

we have

The symmetry of this equation shows that in this case 77 must be reciprocal

to ft. Hence we have the following theorem which is of fundamental import
ance in the subject of the present volume.

If a. be the instantaneous screw about which a quiescent rigid body either

perfectly free or constrained in any manner whatever commences to twist in

consequence of an impulsive wrench on some screw tj, and if ft be another

instantaneous screw, similarly related to an impulsive screw , then whenever %
is reciprocal to a we shall find that 77 is reciprocal to ft.

When this relation is fulfilled the screws a and ft are said to be conjugate
screws of inertia.

82. The Determination of the Impulsive Screw, corresponding to

a given instantaneous screw, is a definite problem when the body is perfectly

free. If, however, the body be constrained, we shall show that any screw

selected from a certain screw system will, in general, fulfil the required
condition.

Let Blf ... Bn_n be 6 n screws selected from the screw system which is

reciprocal to that corresponding to the freedom of the nth order possessed by
the rigid body. Let S be the screw about which the body is to twist. Let

X be any one of the screws, an impulsive wrench about which would make
the body twist about S

;
then any screw Y belonging to the screw system of

the (7
-

n)th order, specified by the screws, X, B1} ... B6_n is an impulsive

screw, corresponding to S as an instantaneous screw. For the wrench on Y
may be resolved into 7 n wrenches on X, B1} ... B6_n ;

of these, all but

the first are instantly destroyed by the reaction of the constraints, so that the

wrench on Y is practically equivalent to the wrench on X, which, by hypo
thesis, will make the body twist about S.

As an example : if the body had freedom of the fifth order, then an

impulsive wrench on any screw on a certain cylindroid will make the body
commence to twist about a given screw.

As another example : if a body have freedom of the third order, then

the &quot;locus&quot; of an impulsive wrench which would make the body twist about

a given screw consists of all the screws in space which are reciprocal to a

certain cylindroid.

83. System of Conjugate Screws of Inertia.

We shall now show that from the screw system of the nth order P, which

expresses the freedom of the rigid body, generally n screws can be selected
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so that every pair of them are conjugate screws of inertia (81). Let Bl ,
&c.

B6_n be (6 n) screws defining the reciprocal screw system. Let A
l be any

screw belonging to P. Then in the choice of A l we have n 1 arbitrary

quantities. Let 7
X be any impulsive screw corresponding to A l as an instan

taneous screw. Choose A 2 reciprocal to 71( B1} ... Bs^n ,
then A l and A 2 are

conjugate screws, and in the choice of the latter we have n 2 arbitrary

quantities. Let /., be any impulsive screw corresponding to A 2 as an instan

taneous screw. Choose A 3 reciprocal to II ,
I2 ,
Bl} ... B6_n ,

and proceed thus

until An has been attained, then each pair of the group A l} &c. A n are

conjugate screws of inertia. The number of quantities which remain

arbitrary in the choice of such a group amount to

or exactly half the total number of arbitrary constants disposable in the

selection of any n screws from a system of the nth order.

84. Principal Screws of Inertia.

We have now to prove the important theorem in Dynamics which affirms

the existence of n principal Screws of Inertia in a rigid body with n degrees
of freedom.

The proof that we shall give is, for the sake of convenience, enunciated

with respect to the freedom of the third order, but the same method applies
to each of the other degrees of freedom.

Let 6 be one of the principal screws of inertia, then an impulsive wrench
on must make the body commence to twist about 0. In the most general
case when the body is submitted to constraint, the impulsive wrench on will

of course be compounded with the reaction on some screw A, of the reciprocal

system. The result will be to produce the impulsive wrench which would,
if the body had been free, have generated an instantaneous twist velocity
about 6.

We thus have the following equations ( 80) where x and y are unknown :

pA = uQi + yXi,

Let a be one of the screws of the three-system in question. Then since X
must be reciprocal to a we have by multiplying these equations respectively

by pii, . .. psct6 and adding,

K
= xp^e, + xp.a.,6, + . . . + xp (&$.
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In like manner if ft, 7 be two other screws of the three-system,

A =
xpijrfi -f

But as 6 belongs to the three-system its co-ordinates must satisfy three

linear equations. These we may take to be

We have thus six linear equations in the co-ordinates of 0. We can therefore

eliminate those co-ordinates, thus obtaining a determinantal equation which

gives a cubic for x.

The three roots of this cubic will give accordingly three screws in the

three-system which possess the required property.

Thus we demonstrate that in any three-system there are three principal

screws of inertia, and a precisely similar proof for each of the six values of

n establishes by induction the important theorem that there are n principal

screws of inertia in the screw system of the ?ith order. It is shown in 86

that all the roots are real.

We shall now prove that the Principal Screws of Inertia are co-reciprocal.

Let and
&amp;lt;/&amp;gt;

be two such screws, corresponding to different roots x, x&quot; of

the equation in x.

Then we have

, , , , ,

pi-x p-2
-m pt x

Let /* be the screw of the reciprocal system on which the impulsive wrench

is generated by the impulse given on 0.

Then
, y/*i , y^ , yn*

&amp;lt;Pl

=
// , 0-J

= -
7, , 06 = -

7,

PI X p., x p6 x

As fi is reciprocal to and X is reciprocal to
&amp;lt;f&amp;gt;,

we have

.
,

/ T n
Pi
- % P* X ps-%

, ,

// T ~77 &quot;T ~r

pi
- as p.2 -x p6

- x

Subtracting these equations and discarding the factor x
x&quot;,

we get

__
&quot;\

i i / f\ /
i- x&quot;) (^2

- x )(p2
-

x&quot;) ( p6
- x } ( ps

-
x&quot;}
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which is of course

2M4&amp;gt;i
=

;

whence 6 and
&amp;lt;/&amp;gt;

are reciprocal, and the same being true for each pair of

principal screws of inertia we thus learn that they form a co-reciprocal

system.

We can also show that each pair of the Principal Screws of Inertia are

Conjugate Screws of Inertia.

It is easy to see that

x ^ Pi^-if^i
x v Pi^iA1! \

~~i // ** i + 77 j2t
- ~ = i , ^

&1 ~- x PI x x x PI
-~ x y p^ x \

As each of the terms on the left-hand side of this equation is zero, the

expression on the right-hand is also zero, but this is equivalent to

whence we show that 6 and
&amp;lt;/&amp;gt;

are conjugate screws of inertia and the

required theorem has been proved.

85. An algebraical Lemma.

Let U and V be two homogeneous functions of the second degree in n

variables. If either U or V be of such a character that it could be expressed

by linear transformation as the sum of n squares, then the discriminant

of U + \V when equated to zero gives an equation of the nth degree in \
of which all the roots are real *.

Suppose that V can by linear transformation assume the form

x 2
_j_ x 2

-\- x

and adopt xly x.,, ... xn as new variables, so that

TT ,- /vi 2 i ft /-.i 2 i 9/f **U Ct jjwj |~ Lv nJi
*2

i~ ^i(rj2l*/
i
t* 2

The discriminant of U+\V will, when equated to zero, give the equation
for \,

an + X, a12 ,
. . . am

j

= 0,

;

ft2i , $2-2 &quot;I&quot;
* ^2i

and the discriminant being an invariant the roots of this equation will be

* A discussion is found in Zanchevsky, Theory of Screws and its application to Mechanics,

Odessa, 1889. Mr G. Chawner has most kindly translated the Russian for me.
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the same as those of the original equation. The required theorem will

therefore be proved if it can be shown that all the roots of this equation

are real. That this is so is shown in Salmon s Modern Higher Algebra,

Lesson VI.*

86. Another investigation of the Principal Screws of Inertia.

The n Principal Screws of Inertia can also be investigated in the following

fundamental manner by the help of Lagrange s equations of motion in

generalized co-ordinates.

Let . . . be the co-ordinates
( 95) of the impulsive screw. Let

&amp;lt;/&amp;gt;!,...

&amp;lt; n be the co-ordinates of the body, then
&amp;lt;j&amp;gt;i,

...
&amp;lt;f&amp;gt;

n will be the co-ordinates

of the instantaneous screw, and from Lagrange s equations,

_^ =
dtdfj d$r

where T is the kinetic energy and where P-$$i denotes the work done in a

twist S&amp;lt;
t against the wrench.

If the screws of reference be co-reciprocal and if
&quot;

be the intensity of

a wrench on
,
then

p, - 2^r&.

As we are considering the action of only an impulsive wrench the effect of

which is to generate a finite velocity in an infinitely small time we must

have the acceleration infinitely great while the wrench is in action. The term

,
- is therefore negligible in comparison with -

( r )
and hence for the

dfa dt
\d&amp;lt;j)J

impulsive motion -f

d (dT\

*Wr?S
We may regard i and

&quot;

as both constant during the indefinitely small time

e of operation of the impulsive wrench, whence ( 79)

2f1 f&quot;

= ^.
Pi cty,

Hence replacing &amp;lt;fa
l} ...

(j&amp;gt;
n by 6lt ... Bn we deduce the following ( 95, 96).

If T be the kinetic energy of a body ivith freedom of the nth order,

twisting about a screw 6 whose co-ordinates referred to any n co-reciprocals

belonging to the system expressing the freedom are Bl} ... n ,
then the co-ordinates

* See also Williamson and Tarleton s Dynamics, 2nd edition, p. 457 (1889), and Kouth s

Rigid Dynamics, Part II, p. 49 (1892).

t Niven, Messenger of Math., May 1867, quoted by Bouth, Rigid Dynamics, Part I, pp. 327-8.
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of an impulsive wrench by which the actual motion of the body could be

produced are proportional to

dT ^dT_
pl d01

&quot;

pn ddn

The existence of n Principal Screws of Inertia can now be readily deduced,

for suppose that

l dT l dT

where X is an unknown factor. If then we make

T = au 0!~ + a&amp;lt;v&amp;gt;Q&amp;gt;? + 2,aK 0i0&amp;lt;&amp;gt;
. . .

we have an equation of the nth degree for X as follows :

tt-ia , . . . a^n =:
&quot;

Ctni ,
Gtn2 &amp;gt; &nn

It is essential to note that T is A function of such a character that by
linear transformation it can be expressed as the sum of n squares, for suppose
it could be expressed as

it would be possible to find a real screw which made H1} H2 ,
... IIn-i each

zero, and then the kinetic energy of the body twisting about that screw

would be negative. Of course this is impossible. Hence we deduce from

85 the important principle that all the Principal Screws of Inertia are real.

If the equation had a repeated root the number of Principal Screws of

Inertia is infinite. We take n = 4f, but the argument applies to 3 and 2

also. (There can be no repeated root when n is either 5 or 6. See chaps.
XVII. and XVIII.) We can choose variables such that T becomes

and the pitch X becomes simultaneously

If therefore the discriminant of T + \p, equated to zero, has a pair of equal
values for X, we must have a condition like

Take any screw of the system for which
;i

= 0, #4
=

0, then

T = M 6* (1*1*0!* + ii*0.?),

P= p

,or T= p.
Pl
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Hence we find that for all screws on the cylindroid represented by 6l} 2 , 0,

the energy will vary as the pitch when the twist velocity remains the same.

It appears from the representation of the Dynamical problem in chap. XII.

that in this case all the screws of the cylindroid Olt 2 , 0, must be principal

screws of Inertia. The number of principal screws of inertia is therefore

infinite in this case. (See Routh s Theorem, Appendix, Note 2.)

87. Enumeration of Constants.

It is the object of this article to show that there are sufficient constants

available to permit us to select from the screw system of the ?ith order

expressing the freedom of a rigid body, one group of n screws, of which every

pair are both conjugate and reciprocal, and that these constitute the principal

screws of inertia ( 78).

To prove this, it is sufficient to show that when half the available con

stants have been disposed of in making the n screws conjugate (81) the

other half admit of adjustment so as to make the screws also co-reciprocal.

Choose A! reciprocal to Blt ... B6_n ,
with n - 1 arbitrary quantities; A z

reciprocal to A ly B^, ... BK_ n&amp;gt;
with n 2 arbitrary quantities, and so on, then

the total number of arbitrary quantities in the choice of n co-reciprocal

screws from a system of the ?ith order is

n(n 1)n-l + w-2... +1= -y .

Hence, by suitable disposition of the n(n 1) constants it might be

anticipated that we can find at least one group of n screws which are

both conjugate and co-reciprocal.

We have now to show that these screws would be the principal screws

of inertia ( 78). We shall state the argument for the freedom of the third

order, the argument for any other order being precisely similar.

Let AI, A 2 ,
A 3 be the three conjugate and co-reciprocal screws which

can be selected from a system of the third order. Let Blt B.2 ,
B3 be any

three screws belonging to the reciprocal screw system. Let Rlt Ry , R.}
be

any three impulsive screws corresponding respectively to A l} A z ,
A 2 as

instantaneous screws.

An impulsive wrench on any screw belonging to the screw system of the

4th order defined by Rlt Bl} Bz ,
B3 will make the body twist about A, ( 82),

but the screws of such a system are reciprocal to A 2 and A a ;
for since A l and

A z are conjugate, Rl must be reciprocal to A z ( 81), and also to A 3 ,
since A^

and A 3 are conjugate. It follows from this that an impulsive wrench on any

screw reciprocal to A 2 and A 3 will make the body commence to twist about

A lt but A l
is itself reciprocal to A 3 and A a , and hence an impulsive wrench
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on A 1
will make the body commence to twist about 4,. Hence A l

and also

A.2 and A 3 are principal screws of inertia.

We shall now show that with the exception of the ?? screws here deter

mined, generally no other screw possesses the property. Suppose another

screw S were to possess this property. Decompose the wrench on S into n

wrenches of intensities S&quot;,
... Sn

&quot;

on A lt ... A n ;
this must be possible,

because if the body is to be capable of twisting about S this screw must

belong to the system specified by A lt ... A n . The n impulsive wrenches on

A lt ... A n will produce twisting motions about the same screws, but these

twisting motions are to compound into a twisting motion on S. It follows

that the component twist velocities $ ... &amp;lt;Sn must be proportional to the

intensities $/ ,
... Sn &quot;. But if this were the case, then every screw of the

system would be a principal screw of inertia
;

for let X be any impulsive

screw of the system, and suppose that Y is the corresponding instantaneous

screw, the components of X on A lt ... A nt have intensities X&quot;, ... Xn &quot;,

these will generate twist velocities equal to

c* C
Q! y n *-*M

-y II

-~-jj A. i ,
. . . // -A- n

&amp;gt;

Of

and these quantities must equal the components of the twist velocity about

Y. But the ratios

are all equal, and hence the twist velocities of the components on the screws

of reference of the twisting motion about Y must be proportional to the

intensities of the components on the same screws of reference of the wrench

on X. Remembering that twisting motions and wrenches are compounded

by the same rules, it follows that Y and X must be identical.

As it is not generally true that all the screws of the system defining the

freedom possess the property enjoyed by a principal screw of inertia, it

follows that the number of principal screws of inertia must be generally

equal to the order of the freedom.

88. Kinetic Energy.

The twisting motion of a rigid body with freedom of the nth order may
be completely specified by the twist velocities of the components of the

twisting motion on any n screws of the system defining the freedom. If the

screws of reference be a set of conjugate screws of inertia, the expression for

the kinetic energy of the body consists of n square terms. This will now be

proved.

If a free or constrained rigid body be at rest in a position L, and if the
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body receive an impulsive wrench, the body will commence to twist about a

screw a with a kinetic energy Ea . Let us now suppose that a second

impulsive wrench acts upon the body on a screw /*, and that if the body had

been at rest in the position L, it would have commenced to twist about a

screw /?, with a kinetic energy E$.

We are to consider how the amount of energy acquired by the second

impulse is affected by the circumstance that the body is then not at rest in

L, but is moving through L in consequence of the former impulse. The

amount will in general differ from Ep, for the movement of the body may
cause it to do work against the wrench on

JJL during the short time that it

acts, so that not only will the body thus expend some of the kinetic energy
which it previously possessed, but the efficiency of the impulsive wrench on

/A will be diminished. Under other circumstances the motion through A
might be of such a character that the impulsive wrench on p acting for a

given time would impart to the body a larger amount of kinetic energy than

if the body were at rest. Between these two cases must lie the intermediate

one in which the kinetic energy imparted is precisely the same as if the body
had been at rest. It is obvious that this will happen if each point of the

body at which the forces of the impulsive wrench are applied be moving in a

direction perpendicular to the corresponding force, or more generally if the

screw a. about which the body is twisting be reciprocal to /A. When this is

the case a and ft must be conjugate screws of inertia ( 81), and hence we
infer the following theorem :

If the kinetic energy of a body twisting about a screw a with a certain

twist velocity be Ea , and if the kinetic energy of the same body twisting

about a screw /3 with a certain twist velocity be Ep, then when the body has

a motion compounded of the two twisting movements, its kinetic energy will

amount to Ea + Ep provided that a and /3 are conjugate screws of inertia.

Since this result may be extended to any number of conjugate screws of

inertia, and since the terms Ea , &c., are essentially positive, the required
theorem has been proved.

89. Expression for Kinetic Energy.

If a rigid body have a twisting motion about a screw a, with a twist

velocity a, what is the expression of its kinetic energy in terms of the

co-ordinates of a ?

We adopt as the unit of force that force which acting upon the unit

of mass for the unit of time will give the body a velocity which would carry
it over the unit of distance in the unit of time. The unit of energy is the

work done by the unit force in moving over the unit distance. If, therefore,
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a body of mass M have a movement of translation with a velocity v its kinetic

energy expressed in these units is

The movement is to be decomposed into twisting motions about the

screws of reference ta
l ,

&c. &amp;lt;o6 ,
the twist velocity of the component on wn

being do,,. One constituent of the twisting motion about &amp;lt;am consists of

a velocity of translation equal to dpnan ,
and on this account the body

has a kinetic energy equal to ^Ma
2

pn
2an-. On account of the rotation

around the axis with an angular velocity aan the body has a kinetic energy

equal to

1/J2/V 2
j r2fjm

2 Lin I / (C///6

where r denotes the perpendicular from the element dM on com . Remembering
that pm is the radius of gyration this expression also reduces to ^Ma?pm*am

2
,

and hence the total kinetic energy of the twisting motion about wm is

Ma?pn*Qin~.

We see, therefore ( 88), that the kinetic energy due to the twisting
motion about a is

The quantity inside the bracket is the square of a certain linear mag
nitude which is determined by the distribution of the material of the body
with respect to the screw a. It will facilitate the kinetic applications of the

present theory to employ the symbol ua to denote this quantity. It is then to

be understood that the kinetic energy of a body of mass M, animated by a

twisting motion about the screw a with a twist velocity a, is represented by

90. Twist Velocity acquired by an Impulsive Wrench.

A body of mass M, which is only free to twist about a screw a, is acted

upon by an impulsive wrench of intensity ij&quot;
on a screw 77. It is required to

find the twist velocity d which is acquired.

The initial reaction of the constraints is an impulsive wrench of intensity
X&quot; on a screw X. Then the body moves as if it were free, but had been acted

upon by an impulsive wrench of which the component on &&amp;gt;m had the intensity

This component would generate a velocity of translation parallel to &amp;lt;an and

equal to ^W^n + X^X,,). The twist velocity about &&amp;gt; produced by this

component is found by dividing the velocity of translation by pn . On the

B.
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other hand, since the co-ordinates of the screw a are a1; ... 6 ,
the twist

velocity about &amp;lt;un may also be represented by ayn ( 34), whence

Iiiir\

If we multiply this equation by pn
2
w ,

add the six equations found by giving

n all values from 1 to 6, and remember that a and X are reciprocal, we

have ( 39)

ftua
z = M -n&quot;^a\

whence a is determined.

This expression shows that the twist velocity produced by an impulsive

wrench on a given rigid body constrained to twist about a given screw, varies

directly as the virtual coefficient and the intensity of the impulsive wrench,

and inversely as the square of ua . (See Appendix, Note 3.)

91. The Kinetic Energy acquired by an Impulsive Wrench can

be easily found by 89
; for, from the last equation,

1///0fj
^

Mr/I ll 2 - __ -_ 7TT -
(Ua ~M ?C &quot;&quot;

hence the kinetic energy produced by the action of an impulsive wrench on

a body constrained to twist about a given screw varies directly as the product

of the square of the virtual coefficient of the two screws and the square of

the intensity of the impulsive wrench, and inversely as the square of ua .

92. Formula for a free body.

We shall now express the kinetic energy communicated by the impulsive

wrench on TJ to the body when perfectly free. The component on eon of

intensity r!&quot;t]n imparts a kinetic energy equal to

///o

whence the total kinetic energy is found by adding these six terms.

The difference between the kinetic energy acquired when the body is

perfectly free, and when the body is constrained to twist about a, is equal to

The quantity inside the bracket reduces to the sum of 15 square terms, of

which
(&amp;gt;!! 770 j92 02?7i)

2
is a specimen. The entire expression being therefore

essentially positive shows that a given impulsive wrench imparts greater

energy to a quiescent body when free than to the same quiescent body when

constrained to twist about a certain screw.
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93. Lemma.

If a group of instantaneous screws belong to a system of the rath order,

then the body being quite free the corresponding group of impulsive screws

also belong to a system of the nth order
; for, suppose that n + 1 twisting

motions about n + 1 screws neutralise, then the corresponding n + 1 im

pulsive wrenches must equilibrate, but this would not be possible unless all the

impulsive screws belonged to a screw system of the ?ith order.

94. Euler s Theorem.

If a free or constrained rigid body is acted upon by an impulsive wrench, the

body will commence to move with a larger kinetic energy when it is permitted
to select its own instantaneous screw from the screw system P defining the

freedom, than it would have acquired, had it been arbitrarily restricted to

any other screw of the system.

Let Q be the reciprocal system of the (6 w)th order, and let P be the

screw system of the nth order, consisting of those impulsive screws which,
if the body were free, would correspond to the screws of P as instantaneous

screws.

Let i) be any screw on which the body receives an impulsive wrench. De

compose this wrench into components on a system of six screws consisting of any
n screws from P

,
and any 6 n screws from Q. The latter are neutralised by

the reactions of the constraints, and may be omitted, while the former com

pound into one wrench on a screw belonging to P
;
we may therefore

replace the given wrench by a wrench on , If the body were perfectly free,

an impulsive wrench on must make the body twist about some screw a on

P. In the present case, although the body is not perfectly free, yet it is free

so far as twisting about a is concerned, and we may therefore, with reference

to this particular impulse about
&quot;,

consider the body as being perfectly free.

It follows from 92 that there would be a loss of energy if the body were

compelled to twist about any screw other than a, which is the one it naturally
chooses.

95. Co-ordinates in a Screw System.

The co-ordinates of a screw belonging to a specified screw-system can be

greatly simplified by taking n co-reciprocal screws belonging to the given
screw system as a portion of the six screws of reference. The remaining
6 n screws of reference must then belong to the reciprocal screw system.
It follows that out of the six co-ordinates al} ... a

tt
of a screw a, which belongs

to the system, 6 n are actually zero. Thus we are enabled to give the more

general definition of screw co-ordinates which is now enunciated.

If a wrench, of which the intensity is one unit on a screw a, which belongs to

62
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a certain screw system of the nth order, be decomposed into n wrenches of

intensities a1} ... an on n co-reciprocal screws belonging to the same screw system,

then the n quantities a1} . . .^ are said to be the co-ordinates of the screw a. Thus

the pitch of a will be represented byp^ + . . . +pnan*. The virtual coefficient

of a and /3 will be (p&fa + ... +pn &amp;lt;*n@n)-

We may here remark that in general one screw can be found upon a screw

system of the wth order reciprocal to n 1 given screws of the same system.

For, take 6 n screws of the reciprocal screw system, then the required screw

is reciprocal to 6 n + n 1 = 5 known screws, and is therefore determined

( 25).

96. The Reduced Wrench.

A wrench which acts upon a constrained rigid body may in general be

replaced by a wrench on a screiu belonging to the screw system, which defines

the freedom of the body.

Take n screws from the screw system of the ?ith order which defines the

freedom, and 6 n screws from the reciprocal system. Decompose the given

wrench into components on these six screws. The component wrenches on

the reciprocal system are neutralized by the reactions of the constraints, and

may be discarded, while the remainder must compound into a wrench on the

given screw system.

Whenever a given external wrench is replaced by an equivalent wrench

upon a screw of the system which defines the freedom of the body, the latter

may be termed, for convenience, the reduced wrench.

It will be observed, that although the reduced wrench can be determined

from the given wrench, that the converse problem is indeterminate (n &amp;lt; 6).

We may state this result in a somewhat different manner. A given
wrench can in general be resolved into two wrenches one on a screw of any

given system, and the other on a screw of the reciprocal screw system. The
former of these is what we denote by the reduced wrench.

This theorem of the reduced wrench ceases to be true in the case when

the screw system and the reciprocal screw system have one screw in common.

As such a screw must be reciprocal to both systems it follows that all the

screws of both systems must be comprised in a single five-system. This is

obviously a very special case, but whenever the condition indicated is satisfied

it will not be possible to resolve an impulsive wrench into components on the

two reciprocal systems, unless it should also happen that the impulsive
wrench itself belongs to the five-system*.

*
I am indebted to Mr Alex. Mc

Aulay for having pointed out in his book on Octonions, p. 251,

that I had overlooked this exception when enunciating the Theorem of the reduced wrench in the

Theory of Screws (1876).
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97. Co-ordinates of Impulsive and Instantaneous Screws.

Taking as screws of reference the n principal screws of inertia ( 84), we re

quire to ascertain the relation between the co-ordinates of a reduced impulsive
wrench and the co-ordinates of the corresponding instantaneous screw. If the

co-ordinates of the reduced impulsive wrench are
v\&quot; , ...r}n &quot;,

and those of the

twist velocity are al} d 2&amp;gt;

... an , then, remembering the property of a principal
screw of inertia ( 78), and denoting by u l} ... un ,

the values of the magnitude
u ( 89) for the principal screws of inertia, we have, from 90,

^ =
M^&quot;

whence observing that dl
= dot1 ;

... an = dan we deduce the following theorem,
which is the generalization of 80.

If a quiescent rigid body, which has freedom of the nth order, commence
to twist about a screw a, of which the co-ordinates, with respect to the

principal screws of inertia, are alt ... an and if p1} ... pn be the pitches, and

iii, ... un the constants defined, in 89, of the principal screws of inertia,

then the co-ordinates of the reduced impulsive wrench are proportional to

U,* Un*

!, ... an .

PI Pn

Let T denote the kinetic energy of the body of mass M when animated

by a twisting motion about the screw a, with a twist velocity a. Let the

twist velocities of the components on any n conjugate screws of inertia be

denoted by a,, a
2 ,

... dn . [These screws will not be co-reciprocal unless in the

special case where they are the principal screws of inertia.] It follows ( 88)
that the kinetic energy will be the sum of the n several kinetic energies due

to each component twisting motion. Hence we have ( 89)

T = Mufa? + . . . +

and also ua
* = u? a,

3 + . . . + un
2 a 2

.

Let i, ... an and /31( ... /37i,
be the co-ordinates of any two screws belong

ing to a screw system of the ?ith order, referred to any n conjugate screws of

inertia, whether co-reciprocal or not, belonging to the same screw system, then

the condition that a and /3 should be conjugate screws of inertia is

Mi
aax ft + . . . + ujttnpn = 0.

To prove this, take the case of n = 4, and let A, B, C, D be the four screws of

reference, and let A l} ... A s be the co-ordinates of A with respect to the six

principal screws of inertia of the body when free ( 79). The unit wrench on

a is to be resolved into four wrenches of intensities cti, ... a4 on A, B, C, D:
each of these components is again to be resolved into six wrenches on the
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screws of reference. The six co-ordinates of a, with respect to the same

screws, are therefore

A^j, + B1
a2 + Ojttg + D^t,

A^ + B6 a, + C

We can now express the condition that a and /3 are conjugate screws of inertia.

This condition is ( 81)

Sp!
2

(A lttl + B^, + 0,0, + A4&amp;gt;(A& +B& + C& + A/34)
- 0.

Denoting pfAf + ... +p6A/ by uf y
and observing that Slp1

2A
l
B

1 and similar

expressions are zero, we deduce

A similar proof may be written down for each of the remaining degrees
of freedom.



CHAPTER VIII.

THE POTENTIAL.

98. The Potential.

Suppose a rigid body which possesses freedom of the ?tth order be sub

mitted to a system of forces. Let the symbol define a position of the

body from which the forces would be unable to disturb it. By a twist of

amplitude & about a screw belonging to the screw system, the body may be

displaced from to an adjacent position P, the energy consumed in making
the twist being denoted by the Potential V, and no kinetic energy being

supposed to be acquired. The same energy would be required, whatever be

the route by which the movement is made from to P. So far as we are

at present concerned V varies only with the changes of the position of P
with respect to 0. The most natural co-ordinates by which the position

P can be specified with respect to are the co-ordinates of the twist ( 32)

by which the movement from to P could be effected. In general these

co-ordinates will be six in number; but if n of the screws of reference be

selected from the screw system defining the freedom of the body, then ( 95)

there will be only n co-ordinates required, and these may be denoted by
0i, ... &n.

The Potential V must therefore depend only upon certain quantities

independent of the position and upon the n co-ordinates #/, . . . n ;
and since

these are small, it will be assumed that V must be capable of development
in a series of ascending powers and products of the co-ordinates, whence we

may write

+ terms of the second and higher orders,

where H, H1} ... Hn are constants, in so far as different displacements are

concerned.

In the first place, it is manifest that H =
;
because if no displacement

be made, no energy is consumed. In the second place, Hl ,
... Hn must also

be each zero, because the position is one of equilibrium ;
and therefore,
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by the principle of virtual velocities, the work done by small twists about

the screws of reference must be zero, as far as the first power of small

quantities is concerned. Finally, neglecting all terms above the second

order, on account of their minuteness, we see that the function V, which

expresses the potential energy of a small displacement from a position of

equilibrium, is generally a homogeneous function of the second degree of the

n co-ordinates, by which the displacement is defined.

99. The Wrench evoked by Displacement.

When the body has been displaced to P, the forces no longer equilibrate.

They have now a certain resultant wrench. We propose to determine, by

the aid of the function V, the co-ordinates of this wrench, or, more strictly,

the co-ordinates of the equivalent reduced wrench ( 96) upon a screw of the

system, by which the freedom of the body is defined.

If, in making the displacement, work has been done by the agent which

moved the body, then the equilibrium of the body was stable when in the

position 0, so far as this displacement was concerned. Let the displacement

screw be 0, and let a reduced wrench be evoked on a screw rj
of the system,

while the intensities of the components on the screws of reference are

*7i&quot;j W- Suppose that the body be displaced from P to an excessively

close position P ,
the co-ordinates of P ,

with respect to 0, being ( 95)

0i + 861, . . . n + 80n .

The potential V of the position P is

it being understood that 861, ... 80n are infinitely small magnitudes of a

higher order than #/, . . . n .

The work done in forcing the body to move from P to P is V V.

This must be equal to the work done in the twists about the screws of

reference whose amplitudes are S0/, . . . 80n , by the wrenches on the screws

of reference whose intensities are T?/ ,
... rjn &quot;. As the screws of reference

are co-reciprocal, this work will be equal to ( 33)

+ 2rh &quot;p1
801 +... + 2rJn&quot;pn80n -

Since the expression just written must be equal to V V for every

position P in the immediate vicinity of P, we must have the coefficients of

80i, ... 80n equal in the two expressions, whence we have n equations, of

which the first is

&quot;_ JL dl
7/1

: +
2PI d0\

Hence, we deduce the following useful theorem :
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If a free or constrained rigid body be displaced from a position of equi

librium by twists of small amplitudes, #, ,
... #

,
about n co-reciprocal screws

of reference, and if V denote the work done in producing this movement,

then the reduced wrench has, for components on the screws of reference,

wrenches of which the intensities are found by dividing twice the pitch of

the corresponding reference screw into the differential coefficient of V with

respect to the corresponding amplitude, and changing the sign of the

quotient.

It is here interesting to notice that the co-ordinates of the reduced

impulsive wrench referred to the principal screws of inertia, which would

give the body a kinetic energy T on the screw 0, are proportional to

^dT 1 dT
2Pl de, &quot;2pn d0n

vs

100. Conjugate Screws of the Potential.

Suppose that a twist about a screw 6 evokes a wrench on a screw ?/,

while a twist about a screw
&amp;lt;f&amp;gt;

evokes a wrench on a screw . If 6 be reci

procal to
,
then must

&amp;lt;f&amp;gt;

be reciprocal to ij. This will now be proved.

The condition that 6 and are reciprocal is

pAti + + pn6n n = ;

but the intensities (or amplitudes) of the components of a wrench (or twist)

are proportional to the co-ordinates of the screw on which the wrench (or

twist) acts, whence the last equation may be written

but we have seen ( 99) that

_ 1^ t _
*%V&amp;lt;*fc&quot; nn

whence the condition that 9 and f are reciprocal is

0/jEj^p9W&**
d(f)i d&amp;lt;f)n

Now, as V$ is an homogeneous function of the second order of the quantities

&amp;lt;J&amp;gt;i,

...
(j&amp;gt;
n }

we may write

V* = Auft* + . . . + A nn$n&amp;gt;
+ 2^ 12

&amp;lt;k&amp;gt;
s + 2^/0; + . . .

,

in which A hk
= A ai .

Hence we obtain:
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Introducing these expressions we find, for the condition that and should

be reciprocal,

This may be written in the form :

.. /) i i i . A a &amp;gt; i i i f Q I
i f) i

&amp;gt;\
I A

&quot;-ll* ! Y I i &quot;L nn&quot;n 0n T &quot;1J \&quot;l 0-2 T t Qi ) i
= &quot;

But this equation is symmetrical with respect to and
&amp;lt;,

and therefore

we should have been led to the same result by expressing the condition that

was reciprocal to
77.

When and
&amp;lt;/&amp;gt; possess this property, they are said to be conjugate screws

of the potential, and the condition that they should be so related, expressed

in terms of their co-ordinates, is obtained by omitting the accents from the

last equation.

If a screw be reciprocal to 77, then is a conjugate screw of the

potential to 0. If we consider the screw to be given, we may regard the

screw system of the fifth order, which embraces all the screws reciprocal to

77,
as in a certain sense the locus of &amp;lt;. All the screws conjugate to 0, and

which, at the same time, belong to the screw system C by which the freedom

of the body is defined, must constitute in themselves a screw system of the

(n l)th order. For, besides fulfilling the 6 n conditions which define the

screw system C, they must also fulfil the condition of being reciprocal to 77 ;

but all the screws reciprocal to 7 n screws constitute a screw system of the

(ra-l)th order ( 72).

The reader will be careful to observe the distinction between two conju

gate screws ofinertia ( 81
),
and two conj ugate screws of the potential. Though

these pairs possess some useful analogies, yet it should be borne in mind

that the former are purely intrinsic to the rigid body, inasmuch as they only

depend on the distribution of its material, while the latter involve extrinsic

considerations, arising from the forces to which the body is submitted.

101. Principal Screws of the Potential.

We now prove that in general n screws can be found such that when

the body is displaced by a twist about any one of these screws, a reduced

wrench is evoked on the same screw. The screws which possess this

property are called the principal screws of the potential. Let a be a principal

screw of the potential, then we must have, 99:

dVa
i
= + ,

,

2wj dflj

and ( /i 1) similar equations.
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Introducing the value of Va ,
and remembering (34) that a/ =

&amp;lt;*&quot;!
and

a/ = a ci, we have the following n equations:

(ft
\

AH rpi) + a2A 12 + ... + anA ln =0,
a /

&c., &c.

aiAm + a.2A n2 + ... +an (A nn T pn
j

= 0.
\ ^* /

From these linear equations an ... an can be eliminated, and we obtain
// &quot;

an equation of the nth degree in . The values of substituted suc

cessively in the linear equations just written will determine the co-ordinates

of the n principal screws of the potential. If the position of equilibrium

be one which is stable for all displacements then Va must under all

circumstances be positive. As it can be reduced to the sum of n squares

all the roots of this equation will be real ( 86) and consequently all the n

principal screws of the potential will be real.

We can now show that these n screws are co-reciprocal. It is evident,

in the first place, that if S be a principal screw of the potential, and if be

a displacement screw which evokes a wrench on 77, the principle of 100

asserts that, when 6 is reciprocal to S, then must also y be reciprocal to S.

Let the n principal screws of the potential be denoted by Si, ... Sn ,
and let

Tn be that screw of the screw system which is reciprocal to Si, ... Sn-i ( 95),

then if the body be displaced by a twist about Tn , the wrench evoked must

be on a screw reciprocal to Si,... Sn-i ,
but Tn is the only screw of the

screw system possessing this property; therefore a twist about Tn must

evoke a wrench on Tn ,
and therefore Tn must be a principal screw of the

potential. But there are only n principal screws of the potential, therefore

Tn must coincide with Sn ,
and therefore Sn must be reciprocal to Si, ... Sn^.

102. Co-ordinates of the Wrench evoked by a Twist.

The work done in giving the body a twist of small amplitude a! about a

screw a, may be denoted by

fttfta*.

In fact, remembering that a a1
=

1 ,
...

,
and substituting these values for

0.1 in I7
&quot;

( 100), we deduce the expression:

Fva
- = Ana,- + ...+ A nnan

- + 24 18* 1 a + 24 13a, + . . .

where F is independent of a and has for its dimensions a mass divided by the

square of a time, and where va is a linear magnitude specially appropriate

to each screw a, and depending upon the co-ordinates of a, and the constants

in the function
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The parameter va may be contrasted with the parameter ua considered

in 89. Each is a linear magnitude, but the latter depends only upon the

co-ordinates of a, and the distribution of the material of the rigid body.

Both quantities may be contrasted with the pitch pa ,
which is also a linear

magnitude, but depends on the screw, and neither on the rigid body nor the

forces.

If a body receive a twist of small amplitude a? about one of the principal

screws of the potential, then the intensity of the wrench evoked on the

same screw is (99) :

1 dVa
+
2pa da

but we have just seen that V=Fva-a
2
,
whence we have the following

theorem :

If a body which has freedom of the nth order be displaced from a position

of equilibrium by a twist about a screw a, of which the co-ordinates with

respect to the principal screws of the potential arc i, ... an ,
then a reduced

wrench ( 96) is evoked on a screw with co-ordinates proportional to

/tj
2 rt 2

1

-!,... an , where vl} ...
, pl} ...

,
are the values of the quantity v, and

PI Pn
the pitch p, for the principal screws of the potential.

We can now express with great simplicity the condition that two screws

and
(f&amp;gt;

shall be conjugate screws of the potential. For, if 6 be reciprocal

to the screw whose co-ordinates are proportional to

we have :

Vi*0i&amp;lt;l&amp;gt;l +...+vn*0n
&amp;lt;f&amp;gt;

n = 0.

The expression for the potential assumes the simple form

Fv1
*a1

3 +... + Fvn*an s
.

If the function V be proportional to the product of the pitch of the

displacement screw and the square of the amplitude, then every displacement
screw will coincide with the screw about which the wrench is evoked.

103. Form of the Potential.

The n principal screws of the potential form a unique group, inasmuch

as they are co-reciprocal, as well as being conjugate screws of the potential.

They therefore fulfil n (n 1) conditions, being the total number available in

the selection of n screws in an n system.
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We now show that the expression of the potential will consist of the

sum of n square terms, when referred to any set of n conjugate screws of the

potential.

The energy consumed in giving a body a twist of amplitude 6 from the

position of equilibrium to a new position P, is equal to Fve*0
z

( 102),

and 77
is the screw on which the wrench is evoked. Suppose that from

the position P the body receive a twist of amplitude &amp;lt;j&amp;gt;

about a screw
&amp;lt;,

it

would generally riot be correct to assert that the energy consumed in the

second twist was proportional to the square of its amplitude. For, during
the second twist, either a portion of the energy will be consumed in doing
work against the wrench on

rj,
or the energy expended in the second twist

will be rendered less, in consequence of the assistance afforded by the wrench

on t]. If, however, 77 be reciprocal to
(f&amp;gt;,

then the quantity of energy con

sumed in the twist about
&amp;lt;/&amp;gt;

will be unaffected by the presence of a wrench

on 77. Hence if 6 and
&amp;lt;f&amp;gt;

be two conjugate screws of the potential, the

energy expended in giving the body first a twist of amplitude 6 about 6,

and then a twist of amplitude &amp;lt;/&amp;gt;

about
&amp;lt;f&amp;gt;,

is to be represented by

By taking a third screw, conjugate to both 6 and
&amp;lt;,

and then a fourth

screw conjugate to the remaining three, and so on, we see finally that the

potential reduces to the sum of n square terms, where each pair of the

screws of reference are conjugate screws of the potential.



CHAPTER IX.

HARMONIC SCREWS.

104. Definition of an Harmonic Screw.

We have seen in 97 that to each screw 6 of a screw system of the nth

order corresponds a screw X, belonging to the same screw system. The
relation between 6 and X is determined when the rigid body, and also the

screw system which defines its freedom, are completely known. The physical
connection between the two screws 6 and \ may be thus stated. If an

impulsive wrench act on the screw \, the body, if previously quiescent, will

commence to move by twisting about 6.

We have also seen ( 102) that to each screw 6 of a screw system of the

nth order corresponds a certain screw 77 belonging to the same screw system.
The relation between 6 and

77
is determined when the rigid body, the forces,

and the screw system which defines the freedom, is known. The physical
connexion between the two screws 6 and

77 may be thus stated. If the body
be displaced from a position of equilibrium by a twist about 6, the evoked

wrench, when reduced ( 96) to the screw system, acts on
17.

The rigid body being given in a position of equilibrium, and the forces

which act on the body being known, and also the screw system by which the

freedom of the body is prescribed, we then have corresponding to each screw

of the given screw system, two other screws X and 77, which also belong to

the same screw system.

Considering the very different physical character of the two systems of

correspondence, it will of course usually happen that the two screws X and
77

are not identical. But a little reflection will enable us to foresee what we
shall afterwards prove, viz., that when 6 has been appropriately chosen, then

\ and 77 may coincide. For since n 1 arbitrary quantities are disposable in

the selection of a screw from a screw system of the nth order ( 69), it follows

that for any two screws (for example X and 77) to coincide, n1 conditions
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must be fulfilled
;

but this is precisely the number of arbitrary elements

available in the selection of 6. We can thus conceive that for one or more

particular screws 6, the two corresponding screws \ and 17 are identical
;
and

we shall now prove the following important theorem :

If a rigid body be displaced from a position of equilibrium by a twist

about a screw 6, and if the evoked wrench tend to make the body commence to

twist about the same screw 6, then if we call 9 an harmonic screw ( 106), we
assert that the number of harmonic screws is generally the same as the order

of the screw system which defines the freedom of the rigid body.

We shall adopt as the screws of reference the n principal screws of inertia.

The impulsive screw, which corresponds to 6 as an instantaneous screw, will

have for co-ordinates

,

Pi Pn

where A is a certain constant which is determined by making the co-ordinates

satisfy the condition ( 35). If 6 be an harmonic screw, then, remembering
that the screws of reference are co-reciprocal ( 87), we must have n equations,
of which the first is ( 102) :

1L

U
*0&amp;gt;- J ^1%/ *2Pl de&amp;gt;-

j
nm

Assuming -p
=

Ms&quot;, where M is the mass of the body, and .9 an unknown

quantity, and developing F, we deduce the n equations :

6, (A n + Ms*u*} + zA K +...+ nA ln = 0,

t
Am + 0*Am +... + n (A nn + Ms2un2

)
= 0.

Eliminating 0^, ... n ,
we have an equation of the nth degree for s&quot;. The

n roots of this equation are all real ( 85), and each one substituted in the

set of n equations will determine, by a system of n linear equations, the

ratios of the n co-ordinates of one of the harmonic screws.

It is a remarkable property of the n harmonic screws that each pair of

them are conjugate screws of inertia, and also conjugate screws of the

potential. Let H
l , . . . Hn_t , be n 1 of the harmonic screws, to which

correspond the impulsive screws Slt ... Sn^. Also suppose T to be that one
screw of the given screw system which is reciprocal to Slt ...$_! ( 95),
then T must form with each one of the screws Hlt ... 7/n_! a pair of con

jugate screws of inertia (81). But, since Slt ... /SM_, are the screws on
which wrenches are evoked by twists about //,,... #_! respectively, it is
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evident that T must form with each one of these screws Hlt ... Hn^ a pair
of conjugate screws of the potential ( 100). It follows that the impulsive

screw, corresponding to T as the instantaneous screw, must be reciprocal to

7/i , ... ffn-i ,
and also that a twist about T must evoke a wrench on a screw

reciprocal to Hlt ... Hn^. As in general only one screw of the system can

be reciprocal to H
l ,...Hn^, it follows that the impulsive screw, which

corresponds to T as an instantaneous screw, must also be the screw on which a

wrench is evoked by a twist about T. Hence, T must be a harmonic screw,

and as there are only n harmonic screws, it is plain that T must coincide

with Hn ,
and that therefore Hn is a conjugate screw of inertia, as well as a

conjugate screw of the potential, to each one of the remaining n 1 harmonic

screws. Similar reasoning will, of course, apply to each of the harmonic

screws taken in succession.

105. Equations of Motion.

We now consider the kinetical problem, which may be thus stated. A
free or constrained rigid body, which is acted upon by a system of forces, is

displaced by an initial twist of small amplitude, from a position of equi
librium. The body also receives an initial twisting motion, with a small

twist velocity, and is then abandoned to the influence of the forces. It is

required to ascertain the nature of its subsequent movements.

Let T represent the kinetic energy of the body, in the position of which

the co-ordinates, referred to the principal screws of inertia, are #/, . . . n .

Then we have ( 97) :

while the potential energy which, as before, we denote by V, is an homo

geneous function of the second order of the quantities #/, . . . # .

By the use of Lagrange s method of generalized co-ordinates we are

enabled to write down at once the n equations of motion in the form :

Substituting for T we have :

with (n 1) similar equations. Finally, introducing the expression for V
( 100), we obtain n linear differential equations of the second order.

The equations which we require can be otherwise demonstrated as follows.
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Suppose the body to be in motion under the influence of the forces, and that

at any epoch t the co-ordinates of the twisting motion are

dt
&quot;

dt~
&quot;

when referred to the principal screws of inertia. Let / ,
...

&quot;

be the

co-ordinates of a wrench which, had it acted upon the body at rest for the

small time e, would have communicated to the body a twisting motion

identical with that which the body actually has at the epoch t. The

co-ordinates of the impulsive wrench which would, in the time e, have pro

duced from rest the motion which the body actually has at the epoch t + e,

are :

-
1

dt
&quot;&quot; n

dt

On the other hand, the motion at the epoch t + e may be considered to

arise from the influence of the wrench / ,
. . . fM

&quot;

for the time e, followed by

the influence of the evoked wrench for the time e. The final effect of the

two wrenches must, by the second law of motion, be the same as if they

acted simultaneously for the time e upon the body initially at rest.

The co-ordinates of the evoked wrench being :

I dV
+ J^

2pl ddi 2pn ddn

we therefore have the equation :

dt
2/&amp;gt;i

or

dt 1 dV
dt

~

2Pl d6J

and w1 similar equations ;
but we see from 97 that

ef-M^We^- ^^ ~dt

Differentiating this equation with respect to the time, and regarding e as

constant, we have

dt Pl dt*

whence
2

&amp;lt;9/
dV

the same equation as that already found by Lagrange s method.

B.
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To integrate the equations we assume

tf^/n, ...#,/=/ n ;

whereflt ...fn are certain constants, which will be determined, and where H
is an unknown function of the time : introducing also the value of V, given
in 100, we find for the equations of motion :

-
MI*/I fj

+ (4,1/1 + 4 M/ + + 4i/) n = o,

&c.

c?
2n- Mun% ^ + (Am f, + An.fi + ...+ Annfn) 11 = 0.

If the quantity s, and the ratios of the n quantitiesf1} .../, be deter

mined by the n equations :

(A u + Mu*s-) +f*A lz + ... +fnAm = 0,

&c., &c.

+f,A nn_ +... +fn (A nn + Mu^ff) = J

then the n equations of motion will reduce to the single equation :

By eliminating /j, ... fn from the n equations, we obtain precisely the

same equation for s2 as that which arose ( 104) in the determination of the

n harmonic screws. The values of fj, ... fn ,
which correspond to any value

of s
2

,
are therefore proportional to the co-ordinates of a harmonic screw.

The equation for Q gives :

H = H sin (st + c).

Let Hl} ... Hn , Cj ,
... cn be 2n arbitrary constants. Let fpq denote the

value of/9 ,
when the root sp

z has been substituted in the linear equations.

Then by the known theory of linear differential equations*,

ffn sin (snt + cn),

0n =fmffi Si&quot; (*i* + C,) + . +fnnHn Sin (snt + CM ).

In proof of this solution it is sufficient to observe, that the values of

#/,... n satisfy the given differential equations of motion, while they also

contain the requisite number of arbitrary constants.

*
Lagrange s Method, Routh, Rigid Dynamics, Vol. i., p. 369.
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106. Discussion of the Results.

For the position of the body before its displacement to have been one of

stable equilibrium, it is manifest that the co-ordinates must not increase

indefinitely with the time, and therefore all the values of s2 must be essen

tially positive, since otherwise the values of #/, .. n would contain expo
nential terms.

The 2n arbitrary constants are to be determined by the initial circum

stances. The initial displacement is to be resolved into n twists about the n

screws of reference
( 95). This will provide n equations, by making t = 0,

and substituting for Oi,...0n ,
in the equations just mentioned, the amplitudes

of the initial twists. The initial twisting motion is also to be resolved into

twisting motions about the n screws of reference. The twist velocities of
JQ I JQ &amp;gt;

these components will be the values of ;

,
. . .

,
~,

,
when t =

;
whence

we have n more equations to complete the determination of the arbitrary

constants.

If the initial circumstances be such that the constants H.,, ..., Hn are all

zero, then the equations assume a simple form :

0i =fu#! sin (s^ + c),

On =/!?! sin (sj + c).

The interpretation of this result is very remarkable. We see that the

co-ordinates of the body are always proportional to fu , ...,fln ,
hence the

body can always be brought from the initial position to the position at any
time by twisting it about that screw, whose co-ordinates are proportional to

fu&amp;gt; &amp;gt;f-m\ but, as we have already pointed out, the screw thus defined is

a harmonic screw, and hence we have the following theorem :

If a rigid body occupy a position of stable equilibrium under the

influence of a conservative system of forces, then n harmonic screws can be

selected from the screw system of the nth order, which defines the freedom

of the body, and if the body be displaced from its position of equilibrium

by a twist about a harmonic screw, and if it also receive any small initial

twist velocity about the same screw, then the body will continue to

perform twist oscillations about that harmonic screw, and the amplitude of

the twist will be always equal to the arc of a certain circular pendulum,
which has an appropriate length, and was appropriately started.

The integrals in their general form prove the following theorem :

A rigid body is slightly displaced by a twist from a position of stable

equilibrium under the influence of a system of forces, and the body receives

7-2
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a small initial twisting motion. The twist, and the twisting motion, may
each be resolved into their components on the n harmonic screws : n circular

pendulums are to be constructed, each of which is isochronous with one of

the harmonic screws. All these pendulums are to be started at the same
instant as the rigid body, each with an arc, and an angular velocity equal

respectively to the initial amplitude of the twist, and to the twist velocity,
which have been assigned to the corresponding harmonic screw. To
ascertain where the body would be at any future epoch, it will only be

necessary to calculate the arcs of the n pendulums for that epoch, and then

give the body twists from its position of equilibrium about the harmonic

screws, whose amplitudes are equal to these arcs.

107. Remark on Harmonic Screws.

We may to a certain extent see the actual reason why the body, when
once oscillating upon a harmonic screw, will never depart therefrom. The

body, when displaced from the position of equilibrium by a twist upon a

harmonic screw 0, and then released, is acted upon by the wrench upon a

certain screw rj, which is evoked by the twist. But the actual effect of an

impulsive wrench on 77 would be to make the body twist about the harmonic

screw ( 104), and as the continued action of the wrench on 77 is indis

tinguishable from an infinite succession of infinitely small impulses, we can

find in the influence of the forces no cause adequate to change the motion

of the body from twisting about the harmonic screw 0.



CHAPTER X.

FREEDOM OF THE FIRST ORDER.

108. Introduction.

In the present chapter we shall apply the principles developed in the

preceding chapters to study the Statics and Dynamics of a rigid body
which has freedom of the first order. Ensuing chapters will be similarly

devoted to the other orders of freedom. We shall in each chapter first

ascertain what can be learned as to the kinematics of a rigid body, so far as

small displacements are concerned, from merely knowing the order of the

freedom which is permitted by the constraints. This will conduct us to a

knowledge of the special screw system which defines the freedom enjoyed by
the body. We shall then be enabled to determine the reciprocal screw

system, which involves the theory of equilibrium. The next group of

questions will be those which relate to the effect of an impulse upon a

quiescent rigid body, free to twist about any screw of the screw system.

Finally, we shall discuss the small oscillations of a rigid body in the vicinity

of a position of stable equilibrium, under the influence of a given system of

forces, the movements of the body being limited as before to the screws of

the screw system.

109. Screw System of the First Order.

A body which has freedom of the first order can execute no movement

which is not a twist about one definite screw. The position of a body so

circumstanced is to be specified by a single datum, viz., the amplitude of the

twist about the given screw, by which the body can be brought from a

standard position to any other position which it is capable of attaining. As

examples of a body which has freedom of the first order, we may refer to the

case of a body free to rotate about a fixed axis, but not to slide along it, or

of a body free to slide along a fixed axis, but not to rotate around it. In

the former case the screw system consists of one screw, whose pitch is zero
;

in the latter case the screw system consists of one screw, whose pitch is

infinite.
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110. The Reciprocal Screw System.

The integer which denotes the order of a screw system, and the integer

which denotes the order of the reciprocal screw system, will, in all cases,

have the number six for their sum ( 72). Hence a screw system of the

first order will have as its reciprocal a screw system of the fifth order.

For a screw 6 to belong to a screw system of the fifth order, the necessary

and sufficient condition is, that 6 be reciprocal to one given screw a. This

condition is expressed in the usual form :

(pa + Pe) cos dag sin = 0,

where is the angle, and dae the perpendicular distance between the screws

9 and a.

We can now show that every straight line in space, when it receives an

appropriate pitch, constitutes a screw of a given screw system of the fifth

order. For the straight line and a being given, da6 and are determined,

and hence the pitch pe can be determined by the linear equation just

written.

Consider next a point A, and the screw a. Every straight line through

A, when furnished with the proper pitch, will be reciprocal to a. Since the

number of lines through A is doubly infinite, it follows that a singly infinite

number of screws of given pitch can be drawn through A, so as to be

reciprocal to a. We shall now prove that all the screws of the same pitch

which pass through A, and are reciprocal to a, lie in a plane. This we shall

first show to be the case for all the screws of zero pitch*, arid then we shall

deduce the more general theorem.

By a twist of small amplitude about a the point A is moved to an adja

cent point B. To effect this movement against a force at A which is per

pendicular to AB, no work will be required; hence every line through A,

perpendicular to AB, may be regarded as a screw of zero pitch, reciprocal

to a.

We must now enunciate a principle which applies to a screw system of

any order. We have already referred to it with respect to the cylindroid

( 18). If all the screws of a screw system be modified by the addition of

the same linear magnitude (positive or negative) to the pitch of every screw,

then the collection of screws thus modified still form a screw system of the

same order. The proof is obvious, for since the virtual co-efficient depends

on the sum of the pitches, it follows that, if all the pitches of a system be

* This theorem is due to Mdbius, who has shown, that, if small rotations about six axes can

neutralise, and if five of the axes be given, and a point on the sixth axis, then the sixth axis is

limited to a plane. (&quot;
Ueber die Zusammensetzung unendlich kleiner Drehungen,&quot; Crelle s

Journal, t. xviii., pp. 189212.) (Berlin, 1838.)
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increased by a certain quantity, and all the pitches of the reciprocal system

be diminished by the same quantity, then all the first set of screws thus

modified are reciprocal to all the second group as modified. Hence, since a

screw-system of the nth order consists of all the screws reciprocal to 6 n

screws, it follows that the modified set must still be a screw system.

We shall now apply this principle to prove that all the screws X of any

given pitch k, which can be drawn through A, to be reciprocal to a, lie in a

plane. Take a screw ij, of pitch pa + k, on the same line as or, then we have

just shown that all the screws p, of zero pitch, Avhich can be drawn through
the point A, so as to be reciprocal to ?;, lie in a plane. Since

fj,
and 77 are

reciprocal, the screws on the same straight lines as
/u,
and 77 will be reciprocal,

provided the sum of their pitches is the pitch of r) ; therefore, a screw X, of

pitch k, on the same straight line as p, will be reciprocal to the screw a, of

pitch pa ;
but all the lines

//.
lie in a plane, therefore all the screws X lie in

the same plane.

Conversely, given a plane and a pitch k, a point A can be determined

in that plane, such that all the screws drawn through A in the plane, and

possessing the pitch k, are reciprocal to a. To each pitch k1} &3 , ..., will

correspond a point A 1} A. ...
;
and it is worthy of remark, that all the points

A l} A.2 must lie on a right line which intersects a at right angles; for join
A l} A, then a screw on the line A^.^, which has for pitch either k: or k.,

must be reciprocal to a; but this is impossible unless A^A^ intersect a at

a right angle.

111. Equilibrium.

If a body which has freedom of the first order be in equilibrium, then

the necessary and sufficient condition is, that the forces which act upon the

body shall constitute a wrench on a screw of the screw system of the fifth

order, which is reciprocal to the screw which defines the freedom. We thus

see that every straight line in space may be the residence of a screw, a

wrench on which is consistent with the equilibrium of the body.

If two wrenches act upon the body, then the condition of equilibrium is,

that, when the two wrenches are compounded by the aid of a cylindroid,
the single wrench which replaces them shall lie upon that one screw of the

cylindroid, which is reciprocal to a ( 2G).

We can express with great facility, by the aid of screw co-ordinates, the

condition that wrenches of intensities
6&quot;, &amp;lt;&quot;,

on two screws 6,
&amp;lt;f&amp;gt;,

shall

equilibrate, when applied to a body only free to twist about a.

Adopting any six co-reciprocals as screws of reference, and resolving each

of the wrenches on 9 and
&amp;lt;/&amp;gt;

into its six components on the six screws of
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reference, we shall have for the intensity of the component of the resultant

wrench on &&amp;gt;n

6&quot;6n +
4&amp;gt;&quot;&amp;lt;j&amp;gt;

n -

Hence the co-ordinates of the resultant wrench are proportional to

For equilibrium this screw must be reciprocal to a, whence we have

Pla, (ff 0, + f&amp;gt;0 +...+P*. (ff Ot + f&) = 0,

Or, 0&quot;^a6 + $&quot;1*04
= 0.

This equation merely expresses that the sum of the works done in a

small twist about a against the wrenches on and
&amp;lt;f&amp;gt;

is zero.

We also perceive that a given wrench may be always replaced by a

wrench of appropriate intensity on any other screw, in so far as the effect

on a body only free to twist about a is concerned.

It may not be out of place to notice the analogy which the equation just

written bears to the simple problem of the determination of the condition

that two forces should be unable to disturb the equilibrium of a particle

only free to move on a straight line. If P, Q be the two forces, and if I, m
be the angles which the forces make with the direction in which the particle

can move, then the condition is

P cos I + Q cos in = 0.

This suggests an analogy between the virtual co-efficient of two screws,

and the cosine of the angle between two lines.

112. Particular Case.

If a body having freedom of the first order be in equilibrium under the

action of gravity, then the vertical through the centre of inertia must lie

in the plane of reciprocal screws of zero pitch, drawn through the centre

of inertia.

113. Impulsive Forces.

If an impulsive wrench of intensity 77

&quot;

act on the screw
&amp;gt;/,

while the

body is only permitted to twist about a, then we have seen in 90 how the

twist velocity produced can be found. We shall now determine the impulsive

reaction of the constraints. This reaction must be an impulsive wrench of

intensity X
&quot;

on a screw X, which is reciprocal to a. The determination of X

may be effected geometrically in the following manner : Let /* be the screw,

an impulsive wrench on which would, if the body were perfectly free, cause

an instantaneous twisting motion about a
( 80). Draw the cylindroid (77, fi).
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Then A, must be that screw on the cylindroid which is reciprocal to a, for a

wrench on X, and the given wrench on 77, must compound into a wrench on p,

whence the three screws must be co-cylindroidal
*

;
also X must be reciprocal

to a, so that its position on the cylindroid is known ( 20). Finally, as the

impulsive intensity 17

&quot;

is given, and as the three screws 77, X, /* are all

known, the impulsive intensity X &quot;

becomes determined ( 14).

114. Small Oscillations.

We shall now suppose that a rigid body which has freedom of the first

order occupies a position of stable equilibrium under the influence of a

system of forces. If the body be displaced by a small twist about the screw

a which prescribes the freedom, and if it further receive a small initial twist

velocity about the same screw, the body will continue to perform small

twist oscillations about the screw a. We propose to determine the time

of an oscillation.

The kinetic energy of the body, when animated by a twist velocity

7 /

,

CLt&amp;gt;

is Mua
~ (~

J
( 89). The potential energy due to the position attained by

giving the body a twist of amplitude a away from its position of equili

brium, is Fva
2
af

2

( 102). But the sum of the potential and kinetic energies
must be constant, whence

Mua -?-)dt I
Fva-a- = const.

Differentiating we have

Integrating this equation we have

a = A sin A/ -

Mua

t + B cos / Fva

V Mu
where A and B are arbitrary constants. The time of one oscillation is

therefore

IM
F&quot;

Regarding the rigid body and the forces as given, and comparing
inter se the periods about different screws a, on which the body might have
been constrained to twist, we see from the result just arrived at that the

time for each screw a is proportional to --
.

We shall often for convenience speak of three screws on the same cylindroid as co-cylindroidal.
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115. Property of Harmonic Screws.

As the time of vibration is affected by the position of the screw to which

the motion is limited, it becomes of interest to consider how a screw is to

be chosen so that the time of vibration shall be a maximum or minimum.
With slightly increased generality we may state the problem as follows :

Given the potential for every position in the neighbourhood of a position
of stable equilibrium, it is required to select from a given screw system
the screw or screws on which, if the body be constrained to twist, the time

of vibration will be a maximum or minimum, relatively to the time of

vibration on the neighbouring screws of the same screw system.

Take the n principal screws of inertia belonging to the screw system,
as screws of reference, then we have to determine the n co-ordinates of a

screw a by the condition that the function shall be a maximum or a
Va

minimum.

Introducing the value of ua ( 97), and of va ( 102), in terms of the

co-ordinates, we have to determine the maximum and minimum of the

function

Multiplying this equation by the denominator of the left-hand side,

differentiating with respect to each co-ordinate successively, and observing
that the differential coefficients of a; must be zero, we have the n equations :

(^ n - U^X) j + A 12dz ... + A ln n = 0,

&c., &c.

AM&! + A H.,a., ... -I- (A nn
~

Unty H = 0.

We hence see that there are n screws belonging to each screw of the

nth order on which the time of vibration is a maximum or minimum, and by

comparison with 104 we deduce the interesting result that these n screws

are also the harmonic screws.

Taking the screw system of the sixth order, which of course includes

every screw in space, we see that if the body be permitted to twist about

one of the six harmonic screws the time of vibration will be a maximum
or minimum, as compared with the time of vibration on any adjacent screw.

If the six harmonic screws were taken as the screws of reference, then

ua
2 and wa

2 would each consist of the sum of six square terms ( 89, 102). If

the coefficients in these two expressions were proportional, so that ua
&quot;

only
differed from v^ by a numerical factor, we should then find that every screw

in space was an harmonic screw, and that the times of vibrations about

all these screws were equal.



CHAPTER XL

FREEDOM OF THE SECOND ORDER.

116. The Screw System of the Second Order.

When a rigid body is capable of being twisted about two screws and

(j),
it is capable of being twisted about every screw on the cylindroid (6, &amp;lt;)

( 14). If it also appear that the body cannot be twisted about any screw

which does not lie on the cylindroid, then as we know the body has freedom

of the second order, and the cylindroid is the screw system of the second

order by which the freedom is defined ( 219).

Eight numerical data are required for determination of a cylindroid (75).
We must have four for the specification of the nodal line, two more are

required to define the extreme points in which the surface cuts the nodal

line, one to assign the direction of one generator, and one to give the pitch
of one screw, or the eccentricity of the pitch conic.

Although only eight constants are required to define the cylindroid, yet
ten constants must be used in defining two screws 6,

(f&amp;gt;,

from which the

cylindroid could be constructed. The ten constants not only define tne

cylindroid, but also point out two special screws upon the surface ( 77).

117. Applications of Screw Co-ordinates.

We have shown ( 40) that if a, /3 be the two screws of a cylindroid,

which intersect at right angles, then the co-ordinates of any screw 9, which

makes an angle I with the screw a, are :

ttj cos I + & sin I, . . . as cos I + /9 (j
sin I,

reference being made as usual to any set of six co-reciprocals.

In addition to the examples of the use of these co-ordinates already

given ( 40), we may apply them to the determination of that single screw
6 upon the cylindroid (a, /8), which is reciprocal to a given screw rj.



108 THE THEORY OF SCREWS. [117-

From the condition of reciprocity we must have :

P\n\ (i cos I + & sin /)+...+ p tirj6 ( cos I + /36 sin I)
= 0,

or, OT
ar|

cos I + zap,,
sin I = 0.

From this tan I is deduced, and therefore the screw becomes known

( 26).

In general if tn^ be the virtual coefficient of any screw 77 and a screw

on the cylindroid, we have

V*r,0
=

^ar, COS I + CT^, SU1 I
\

whence if on each screw a distance be set off from the nodal line equal to

the virtual coefficient between 77 and 6, the points thus found will lie on

a right circular cylinder, of which the equation is
;

X? + y*
= TS^X + TX^y.

Thus the screw which has the greatest virtual coefficient with 77 is at

right angles to the screw reciprocal to 77, and in general two screws can be

found upon the cylindroid which have a given virtual coefficient with any

given external screw.

118. Relation between Two Cylindroids.

We may here notice a curious reciprocal relation between two cylindroids,

which is manifested when one condition is satisfied. If a screw can be found

on one cylindroid, which is reciprocal to a second cylindroid, then conversely

a screw can be found on the latter, which is reciprocal to the former. Let

the cylindroids be (a, /3), and ( X, fi). If a screw can be found on the former,

which is reciprocal to the latter, then we have :

pAi (i cos I + /3j sin 1) -f . . . + pn^n (oi cos I + /3n sin I)
= 0,

Pif^i (i cos I + ft sin 1) + . . . 4- pn^n (an cos I + ftn sin I)
= 0.

Whence eliminating I, we find :

As this relation is symmetrical with regard to the two cylindroids, the

theorem has been proved.

119. Co-ordinates of Three Screws on a Cylindroid.

The co-ordinates of three screws upon a cylindroid are connected by four

independent relations. In fact, two screws define the cylindroid, and the

third screw must then satisfy four equations of the form
( 20). These

relations can be expressed most symmetrically in the form of six equations,

which also involve three other quantities.
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Let X, JJL,
v be three screws upon a cylindroid, and let A, B, C denote the

angles between
/LI v, between v X, and between X

//., respectively. If wrenches

of intensities X&quot;, // , v&quot;,
on \, /*, v, respectively, are in equilibrium, we must

have ( 14):

_X&quot; p&quot;
v&quot;

sin A sin B
~~

sin C

But we have also as a necessary condition that if each wrench be resolved

into six component wrenches on six screws of reference, the sum of the

intensities of the three components on each screw of reference is zero
;

whence

Xj sin A + /ij
sin B + vl sin (7 = 0,

X sin A + p,6 sin B + v6 sin G = 0.

From these equations we deduce the following corollaries :

The screw of which the co-ordinates are proportional to aXj + bfa , ...

X6 + bfj,G ,
lies on the cylindroid (X, //.),

and makes angles with the screws

X, IJL,
of which the sines are inversely proportional to a and 6.

The two screws, of which the co-ordinates are proportional to

aXj 6/ij, ... aX6 + &/AG ,

and the two screws X, /* are respectively parallel to the four rays of a plane
harmonic pencil.

120. Screws on One Line.

There is one case in which a body has freedom of the second order that

demands special attention. Suppose the two given screws 9,
&amp;lt;f&amp;gt;,

about which

the body can be twisted, happen to lie on the same straight line, then the

cylindroid becomes illusory. If the amplitudes of the two twists be 6
,

$&amp;gt;
,

then the body will have received a rotation 6 +
&amp;lt;f&amp;gt;

, accompanied by a trans

lation pe +
&amp;lt;f&amp;gt; p&amp;lt;t&amp;gt;.

This movement is really identical with a twist on a

screw of which the pitch is :

O pe +
& +

&amp;lt;!&amp;gt;

Since
,

&amp;lt;/&amp;gt; may have any ratio, we see that, under these circumstances, the

screw system which defines the freedom consists of all the screws with

pitches ranging from -co to +00, which lie along the given line. It

follows ( 47), that the co-ordinates of all the screws about which the

body can be twisted are to be found by giving x all the values from

QO to + GO in the expressions :

a x dR * x dR
l + ~

&quot; K +

in which
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121. Displacement of a Point.

Let P be a point, and let a, /3 be any two screws upon a cylindroid. If

a body to which P is attached receive a small twist about a, the point P will

be moved to P . If the body receive a small twist about /3, the point P
would be moved to P&quot;. Then whatever be the screw 7 on the cylindroid

about which the body be twisted, the point P will still be displaced in the

plane PP P&quot;.

For the twist about 7 can be resolved into two twists about a and /3, and

therefore every displacement of P must be capable of being resolved along

PP and PP&quot;.

Thus through every point P in space a plane can be drawn to which the

small movements of P, arising from twists about the screws on a given

cylindroid are confined. The simplest construction for this plane is as

follows: Draw through the point P two planes, each containing one of the

screws of zero pitch; the intersection of these planes is normal to the

required plane through P.

The construction just given would fail if P lay upon one of the screws

of zero pitch. The movements of P must then be limited, not to a plane,

but to a line. The line is found by drawing a normal to the plane passing

through P, and through the other screw of zero pitch.

We thus have the following curious property due to M. Mannheim*, viz.,

that a point in the rigid body on the line of zero pitch will commence to

move in the same direction whatever be the screw on the cylindroid about

which the twist is imparted.

This easily appears otherwise. Appropriate twists about any two screws,

a and /3, can compound into a twist about the screw of zero pitch X, but the

twist about X cannot disturb a point on X. Therefore a twist about ft must

be capable of moving a point originally on X back to its position before it

was disturbed by a. Therefore the twists about /3 and a. must move the

point in the same direction.

122. Properties of the Pitch Conic.

Since the pitch of a screw on a cylindroid is proportional to the inverse

square of the parallel diameter of the pitch conic ( 18), the asymptotes
must be parallel to the screws of zero pitch ;

also since a pair of reciprocal

screws are parallel to a pair of conjugate diameters ( 40), it follows that

the two screws of zero pitch, and any pair of reciprocal screws, are parallel

to the rays of an harmonic pencil. If the pitch conic be an ellipse, there

* Journal de I ecole Polytechnique, T. xx. cah. 43, pp. 57122 (1870).
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are no real screws of zero pitch. If the pitch conic be a parabola, there is

but one screw of zero pitch, and this must be one of the two screws which

intersect at right angles.

123. Equilibrium of a Body with Freedom of the Second Order.

We shall now consider more fully the conditions under which a body

which has freedom of the second order is in equilibrium. The necessary

and sufficient condition is, that the forces which act upon the body shall

constitute a wrench upon a screw which is reciprocal to the cylindroid which

defines the freedom of the body.

It has been shown ( 23), that the screws which are reciprocal to a cylin

droid exist in such profusion, that through every point in space a cone of

the second order can be drawn, of which the entire superficies is made up of

such screws. We shall now examine the distribution of pitch upon such a

cone.

The pitch of each reciprocal screw is equal in magnitude, and opposite in

sign, to the pitches of the two screws of equal pitch, in which it intersects the

cylindroid ( 22). Now, the greatest and least pitches of the screws on the

cylindroid are pa and p$ ( 18). For the quantity pa cos2
1 + pft

sin2
1 is always

intermediate between pa cos2
1 + pa sin2

1 and pp cos2
1 + pp sin2

1. Hence it

follows that the generators of the cone which meet the cylindroid in three

real points must have pitches intermediate between pa and pp. It is also

to be observed that, as only one line can be drawn through the vertex of

the cone to intersect any two given screws on the cylindroid, so only one

screw of any given pitch can be found on the reciprocal cone.

One screw can be found upon the reciprocal cone of every pitch from

oo to + oo . The line drawn through the vertex parallel to the nodal line

is a generator of the cone to which infinite pitch must be assigned. Setting

out from this line around the cone the pitch gradually decreases to zero,

then becomes negative, and increases to negative infinity, when we reach

the line from which we started. We may here notice that when a screw

has infinite pitch, we may regard the infinity as either + or indifferently.

If we conceive distances marked upon each generator of the cone from the

vertex, equal to the pitch of that generator, then the parallel to the nodal

line drawn from the vertex forms an asymptote to the curve so traced upon
the cone. It is manifest that we must admit the cylindroid to possess

imaginary screws, whose pitch is nevertheless real.

The reciprocal cone drawn from a point to a cylindroid, is decomposed
into two planes, when the point lies upon the cylindroid. The first plane
is normal to the generator passing through the point. Every line in this

plane must, when it receives the proper pitch, be a reciprocal screw. The
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second plane is that drawn through the point, and through the other screw

on the cylindroid, of equal pitch to that which passes through the point.

We have, therefore, solved in the most general manner the problem of

the equilibrium of a rigid body with two degrees of freedom. We have

shown that the necessary and sufficient condition is, that the resultant

wrench be about a screw reciprocal to the cylindroid expressing the freedom,

and we have seen the manner in which the reciprocal screws are distributed

through space. We now add a few particular cases.

124. Particular Cases.

A body which has two degrees of freedom is in equilibrium under the

action of a force, whenever the line of action of the force intersects both

the screws of zero pitch upon the cylindroid.

If a body acted upon by gravity have freedom of the second order, the

necessary and sufficient condition of equilibrium is, that the vertical through
the centre of inertia shall intersect both of the screws of zero pitch.

A body which has freedom of the second order will be in equilibrium,

notwithstanding the action of a couple, provided the axis of the couple be

parallel to the nodal line of the cylindroid.

A body which has freedom of the second order will remain in equilibrium,

notwithstanding the action of a wrench about a screw of any pitch on the

nodal line of the cylindroid.

125. The Impulsive Cylindroid and the Instantaneous Cylin
droid.

A rigid body M is at rest in a position P, from which it is either partially

or entirely free to move. If M receive an impulsive wrench about a screw

Xlt it will commence to twist about an instantaneous screw A 1} if, however,

the impulsive wrench had been about X2 or X3 (M being in either case at

rest in the position P) the instantaneous screw would have been A 2 ,
or A 3 .

Then we have the following theorem:

If Xi, Xz ,
X3 lie upon a cylindroid S (which we may call the impulsive

cylindroid), then A 1} A.,, A 3 lie on a cylindroid S (which we may call the

instantaneous cylindroid).

For if the three wrenches have suitable intensities they may equilibrate,

since they are co-cylindroidal ;
when this is the case the three instantaneous

twist velocities must, of course, neutralise; but this is only possible if the

instantaneous screws be co-cylindroidal ( 93).
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If we draw a pencil of four lines through a point parallel to four gene
rators of a cylindroid, the lines forming the pencil will lie in a plane. We
may define the (inharmonic ratio of four generators on a cylindroid to be

the anharmonic ratio of the parallel pencil. We shall now prove the follow

ing theorem :

The anharmonic ratio offour screws on the impulsive cylindroid is equal

to the anharmonic ratio of the four corresponding screws on the instantaneous

cylindroid.

Before commencing the proof we remark that,

If an impulsive wrench of intensity F acting on the screw X be capable

of producing the unit of twist velocity about A, then an impulsive wrench

of intensity Fta on X will produce a twist velocity w about A.

Let X1} X2 , X3) X^ be four screws on the impulsive cylindroid, the

intensities of the wrenches appropriate to which are F^, F2 a)2 ,
F3 to3t Fw.

Let the four corresponding instantaneous screws be A 1} A 2 ,
A s , A^ and the

twist velocities be a&amp;gt;1; &&amp;gt; 2 ,
a&amp;gt;3 ,

a&amp;gt;4 . Let
&amp;lt;j)
m be the angle on the impulsive

cylindroid defining Xm ,
and let 6m be the angle on the instantaneous

cylindroid defining Am .

If three impulsive wrenches equilibrate, the corresponding twist velocities

neutralize by the second law of motion : hence ( 14) certain values of

&&amp;gt;!, &amp;lt;B.;,,
6)

:! ,
ft)4 must satisfy the following equations:

to,

sin (02
-

3) sin (03
-

0,) sin (0,
-

a)

sin (fa (j&amp;gt;
3) sin

(&amp;lt;/&amp;gt;

3 fa) sin (fa

too

sin (03
-

4) sin (04
-

2)
sin (02

-
:! )

_
sin (0 :j

-
fa)

~
sin (fa

-
fa) sin (fa

-
fa*)

whence

sin (0j 0) sin (03 4) _ sin (fa fa) sin
(&amp;lt;ft

:i fa)

sin (03 0!&amp;gt;
sin (04

-
2)

~
sin (fa fa) sin (fa fa,)

which proves the theorem.

If we are given three screws on the impulsive cylindroid, and the

corresponding three screws on the instantaneous cylindroid, the connexion

between every other corresponding pair is, therefore, geometrically deter

mined.

B. $
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126. Reaction of Constraints.

Whatever the constraints may be, their reaction produces an impulsive
wrench Rl upon the body at the moment of action of the impulsive wrench

X^. The two wrenches X
l
and 7^ compound into a third wrench F,. If

the body were free, Yl is the impulsive wrench to which the instantaneous

screw A-i would correspond. Since Xlt X2 ,
X3 are co-cylindroidal, A lt A z ,

A 3

must be co-cylindroidal, and therefore also must be Ylt F2 ,
Y3 . The nine

wrenches Xly X.2 ,
X3 ,

Rlt E, Ri}
-

F,, F2 ,
Y3 must equilibrate; but if

Xi, X2 ,
X3 equilibrate, then the twist velocities about A lt A 2 ,

A a must

neutralize, and therefore the wrenches about F, ,
F2 ,

F3 must equilibrate.

Hence RI, R.2 ,
R3 equilibrate, and are therefore co-cylindroidal.

Following the same line of proof used in the last section, we can show

that

If impulsive wrenches on any four co-cylindroidal screws act upon a

partially free rigid body, the four corresponding initial reactions of the

constraints also constitute wrenches about four co-cylindroidal screws; and,

further, the anharmonic ratios of the two groups offour screws are equal.

127. Principal Screws of Inertia.

If a quiescent body with freedom of the second order receive impulsive
wrenches on three screws Xl} X.2 ,

X3 on the cylindroid which expresses the

freedom, and if the corresponding instantaneous screws on the same cylin

droid be A lt A%, A s ,
then the relation between any other impulsive screw X

on the cylindroid and the corresponding instantaneous screw A is completely
defined by the condition that the anharmonic ratio of X, Xlt X2 , X3 is equal
to the anharmonic ratio of A, A^, A.,, A 3 .

If three rays parallel to Xlt X2 ,
X3 be drawn from a point, and from the

same point three rays parallel to A^, A.,, A 3 , then, all six rays being in the

same plane, it is well known that the problem to determine a ray Z such

that the anharmonic ratio of Z, A l ,
A 2 ,

A 3 is equal to that of Z, X^, X2 ,
X3)

admits of two solutions. There are, therefore, two screws on a cylindroid

such that an impulsive wrench on one of these screws will cause the

body to commence to twist about the same screw.

We have thus arrived by a special process at the two principal screws of

inertia possessed by a body which has freedom of the second order. This is,

of course, a particular case of the general theorem of 78. We shall show

in the next section how these screws can be determined in another manner.

128. The Ellipse of Inertia.

We have seen ( 89) that a linear parameter ua may be conceived appro

priate to any screw a of a system, so that when the body is twisting about
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the screw a. with the unit of twist velocity, the kinetic energy is found by

multiplying the mass of the body into the square of the line ua .

We are now going to consider the distribution of this magnitude ua on

the screws of a cylindroid. If we denote by ult u^ the values of tia for any

pair of conjugate screws of inertia on the cylindroid (81), and if by a
l , a,

we denote the intensities of the components on the two conjugate screws of

a wrench of unit intensity on a, we have ( 97)

From the centre of the cylindroid draw two straight lines parallel to the

pair of conjugate screws of inertia, and with these lines as axes of as and y
construct the ellipse of which the equation is

U-fX* + M 2
2
7/

2 = H,

where H is any constant. If r be the radius vector in this ellipse, we have

( 35)

x y- =
! and - = a,, ;

r r

whence by substitution we deduce

which proves the following theorem:

The linear parameter ua on any screw of the cylindroid is inversely

proportional to the parallel diameter of a certain ellipse, and a pair of

conjugate screws of inertia on the cylindroid are parallel to a pair of

conjugate diameters of the same ellipse. This ellipse may be called the

ellipse of inertia.

The major and minor axes of the ellipse of inertia are parallel to screws

upon the cylindroid, which for a given twist velocity correspond respectively to

a maximum and minimum kinetic energy.

An impulsive wrench on a screw 77 acts upon a quiescent rigid body
which has freedom of the second order. It is required to determine the

screw 6 on the cylindroid expressing the freedom about which the body
will commence to twist.

The ellipse of inertia enables us to solve this problem with great facility.

Determine that one screw
&amp;lt;f&amp;gt;

on the cylindroid which is reciprocal to
?? ( 26).

Draw a diameter D of the ellipse of inertia parallel to &amp;lt;. Then the required
screw 6 is simply that screw on the cylindroid which is parallel to the

diameter conjugate to D in the ellipse of inertia.

The converse problem, viz., to determine the screw 77,
an impulsive wrench

82
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on which would make the body commence to twist about 6, is indeterminate.

Any screw in space which is reciprocal to
&amp;lt;/&amp;gt;

would fulfil the required condition

(136).

We have seen in 96 that an impulsive wrench on any screw in space may

generally be replaced by a precisely equivalent wrench upon the cylindroid

which expresses the freedom. We are now going to determine the screw 77,

on the cylindroid of freedom, an impulsive wrench on which would make the

body twist about a given screw 6 on the same cylindroid. This can be easily

determined with the help of the pitch conic
;
for we have seen ( 40) that a

pair of reciprocal screws on the cylindroid of freedom are parallel to a pair

of conjugate diameters of the pitch conic. The construction is therefore as

follows: Find the diameter A which is conjugate, with respect to the ellipse

of inertia, to the diameter parallel to the given screw 6. Next find the

diameter B which is conjugate to the diameter A with respect to the pitcfi

conic. The screw on the cylindroid parallel to the line B thus determined

is the required screw 77.

Two concentric ellipses have one pair of common conjugate diameters.

In fact, the four points of intersection form a parallelogram, to the sides of

which the pair of common conjugate diameters are parallel. We can now

interpret physically the common conjugate diameters of the pitch conic, and

the ellipse of inertia. The two screws on the cylindroid parallel to these

diameters are conjugate screws of inertia, and they are also reciprocal; they

are, therefore, the principal screws of inertia, to which we have been already

conducted (127).

If the distribution of the material of the body bear certain relations to

the arrangement of the constraints, we can easily conceive that the pitch

conic and the ellipse of inertia might be both similar and similarly situated.

Under these exceptional circumstances it appears that every screw of the

cylindroid would possess the property of a principal screw of inertia.

129. The Ellipse of the Potential.

We are now to consider another ellipse, which, though possessing many
useful mathematical analogies to the ellipse of inertia, is yet widely different

from a physical point of view. We have introduced ( 102) the conception
of the linear magnitude w

,
the square of which is proportional to the work

done in effecting a twist of given amplitude about a screw a. from a position

of stable equilibrium under the influence of a system of forces. We now

propose to consider the distribution of the parameter va upon the screws of

a cylindroid. It appears from 102 that if vl} v denote the values of the

quantity va for each of two conjugate screws of the potential, and if a,, 2

denote the intensities of the components on the two conjugate screws of a
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wrench of unit intensity on a screw a, which also lies upon the cylindroid,

then
* =

From the centre of the cylindroid draw two straight lines parallel to the

pair of conjugate screws of the potential, and with these lines as axes of x

and y construct the ellipse, of which the equation is

vi*a? + v./y*
= H,

where H is any constant. If r be the radius vector in this ellipse, we have

x y= a, and - = a., ;

r r

whence by substitution we deduce

--
i ^;*

a :;

which proves the following theorem :

The linear parameter va on any screw of the cylindroid is inversely pro

portional to the parallel diameter of a certain ellipse, and a pair of conjugate
screws of the potential are parallel to a pair of conjugate diameters of the

same ellipse.

This ellipse may be called the ellipse of the potential.

The major and minor axes of the ellipse of the potential are parallel to

screws upon the cylindroid, which, for a twist of given amplitude, correspond

to a maximum and minimum potential energy.

When the body has to relinquish its original position of equilibrium by
the addition of a wrench on a screw 77 to the forces previously in operation,

the twist by which the body may proceed to its new position of equilibrium
is about a screw 0, which can be constructed by the ellipse of the potential.

Determine the screw
&amp;lt;/&amp;gt;

(on the cylindroid of freedom) which is reciprocal to

77 ( 26), then
&amp;lt;/&amp;gt;,

and the required screw 0, are parallel to a pair of conjugate

diameters of the ellipse of the potential.

The common conjugate diameters of the pitch conic, and the ellipse of

the potential, are parallel to the two screws on the cylindroid, which we

have designated the principal screws of the potential ( 101).

When a body is disturbed from its position of equilibrium by a small

wrench upon a principal screw of the potential, then the body could be moved
to the new position of equilibrium required in its altered circumstances by a

small twist about the same screw.
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130. Harmonic Screws.

The common conjugate diameters of the ellipse of inertia, and the ellipse

of the potential, are parallel to the two harmonic screws on the cyliudroid

( 104). This is evident, because the pair of screws thus determined are

conjugate screws both of inertia and of the potential.

If the body be displaced by a twist about one of the harmonic screws,

and be then abandoned to the influence of the forces, the body will continue

to perform twist oscillations about that screw.

If the ellipse of inertia, and the ellipse of the potential, be similar,

and similarly situated, it follows that every screw on the cylindroid will

be a harmonic screw.

131. Exceptional Case.

We have now to consider the modifications which the results we have

arrived at undergo when the cylindroid becomes illusory in the case con

sidered ( 120).

Suppose that and were a pair of conjugate screws of inertia on the

straight line about which the body was free to rotate and slide independently.
Then taking the six absolute principal screws of inertia as screws of reference,

we must have (97)

ps dR\ / pf dR\
+ f j- hi + -:- ,

- = o,% drjj \ 4^j drjj

where
77 denotes the screw of zero pitch on the same straight line.

Expanding this equation, and reducing, we find

This result can be much simplified. By introducing the condition that
as in 120

R =
(77! + 77,)- + (7/3 + 1J4)- + (rj, + 776)

2
,

we obtain

Hence we can prove ( 133) that in this case the product of the pitches of
two conjugate screws of inertia is equal to minus the square of the radius of

gyration about the common axis of the screws.



132] FREEDOM OF THE SECOND ORDER. 119

132. Reaction of Constraints.

We shall now consider the following problem : A body which is free to

twist about all the screws of a cylindroid C receives an impulsive wrench on

a certain screw
77. It is required to find the screw X, a wrench on which

constitutes the impulsive reaction of the constraints. Let C represent the

cylindroid which, if the body were perfectly free, would form the locus of

those screws, impulsive wrenches on which correspond to all the screws of C
as instantaneous screws. Since a wrench on 77, and one on \, make the body
twist about some screw on C, it follows that the cylindroid (77, X) must have

a screw p in common with C . The wrench on X might be resolved into two,

one on 77, and the other on p, and the latter might be again resolved into

two wrenches on any two screws of C . It therefore follows that X must

belong to the screw system of the third order, which may be defined by 77,

and by any two screws from C . Take any three screws reciprocal to this

system, and any two screws on C. We have then five screws to which X is

reciprocal, arid it is therefore geometrically determined ( 26).

When X is found, the cylindroid (77, X) can be drawn, and thus p is deter

mined. The position of p on C will point out the screw on C, about which

the body will commence to twist, while the position of p on (77, X), and the

known intensity of the wrench on 77, will determine the intensity of the

wrench on X.



CHAPTER XII.

PLANE REPRESENTATION OF DYNAMICAL PROBLEMS CONCERNING A BODY

WITH TWO DEGREES OF FREEDOM*.

133. The Kinetic Energy.

If a rigid body of mass M twist about a screw 0, with the twist velocity

0, then the kinetic energy of the body may be written in the form

Mufffi,

where ue is a linear magnitude appropriate to the screw 6 ( 89).

The function uf is the arithmetic mean between the square of the radius

of gyration and the square of the pitch, for the kinetic energy of the body
when twisting about 9 is the sum of two parts : one, the kinetic energy of

the rotation
;

the other, of the translation. The energy of the rotation

is simply

this being in accordance with the definition of the radius of gyration p e .

The kinetic energy due to the translation is, of course,

whence the total kinetic energy is

and therefore

134. Body with two Degrees of Freedom.

The movements are under these circumstances restricted to twists about

the screws of a cylindroid, and we shall now examine the law of distribution

*
Royal Irish Academy, Cunningham Memoirs, No. 4, p. 19 (1886) ;

see also Proceedings of the

Royal Irish Academy, 2nd Series, Vol. iv. p. 29 (1883).
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of ue upon the several screws of the cylindroid ( 128). The representative

circle ( 50) will give a convenient geometrical construction.

Let 6l and 0.2 be the two co-ordinates of 6 relatively to any two screws

of reference on the cylindroid. Then the components of the twist velocity

will be 00i and 00.,. The actual velocity of any point of the body will

necessarily be a linear function of these components. The square of the

velocity will contain terms in which 3
is multiplied into 0f, 0^0.,, #./, respec

tively. If, then, by integration we obtain the total kinetic energy, it must

assume the form

whence, from the definition of ug

The three constants, X, /m, v, are the same for all screws on the cylindroid.

They are determined by the material disposition of the body relatively to

the cylindroid.

We have taken the two screws of reference arbitrarily, but this equation
can receive a remarkable simplification when the two screws of reference

have been chosen with special appropriateness.

Fig. 18.

Let the lengths AX and BX (fig. 18) be denoted by p l and p2 , and if e

be the angle subtended by AB, we have from 57,

X/?!
2 + 2/zp^ + vpJ

- ue
~

(ps
-

Zptfz cos e + p./)
= 0.

Let us now transform this equation from the screws of reference A, B
to another pair of screws A

,
B . Let p^, p.,

be the distances of X from

A
,
B

, respectively ; then, from Ptolemy s theorem, we have the following

equations :

pl .A B = p.;.AA -
pl .AB ,

p,.A B = p2 .A B-p, .BB .
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We thus see that p^ and
p.,

are linear functions of /?/ and p.2 }
the several

coefficients A B
,
A B, &c., in these two equations being constant. The

equation for u is thus to be transformed by a linear substitution for p1 and

p.,. Of course tie , being dependent only upon the position of X, is quite

unaffected by the change of the screws of reference. We can therefore

apply the well-known principle that the invariant of this binary quantic

can only differ by a constant factor from the transformed value. The

invariant is

(\
- ue-) (v

- u e
2

)
-

(yu, + / cos e)
2
.

This must be true for every point X, and therefore for all values of u g-.

It is necessary that the coefficients of the terms in the expression

itg
4 sin2

e
UQ&quot; (X + v -f 2/t cos e) + \v p?

shall be severally proportional to those in the transformed expression

ue
4 sin 2

e ug
-

(X + v -f 2// cos e ) + XV //
2

.

We thus obtain the two equations of condition,

sin2
e _ X + v + 2// cos e _ X i/- //

2

sin2
e X + v + 2/it cos e Xp /A

2

The four quantities, X
, /A ,

v
,
e

, may now be chosen arbitrarily, subject to

these two equations, which are the necessary as well as the sufficient

conditions. Indeed it is obvious that there must be but two independent

quantities corresponding to the two positions of A and B .

We may impose two conditions on the four quantities, and for our present

purpose we shall make
X = v

; /u/
= 0.

The equations of X and e are then

sin2
e _ 2X

_V*
sin2

e X -4- 2/A cos e + v \v fi
2

and we obtain

x/=
2 (^-A^

X + 2/A cos e + v

4 (\v
-

/u
2

)
sin -

e = sin1 e -s r,

(X + 2/LA
COS 6 + V)

2

X is thus uniquely determined, and the expression for sin2
e gives for e four

values of the type e
,
+ (TT e ).

The negative values are meaningless, and

the two others are coincident, because the arc which subtends e on one side

subtends IT e on the other.

There is thus a single pair of screws of reference which permit the

expression for ue
- to be exhibited in the canonical form
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We are now led to a simple geometrical representation for ue
2
. Let A, B

(fig. 19) be the two canonical screws of reference. Bisect AB in
,
then

= -2AO -+2XO -,

= 2XY.XO .

It is obvious that the point must have a critical importance in the

kinetic theory, and its fundamental property, which has just been proved, is

expressed in the following theorem :

If a rigid body be twisting with the unit of twist velocity about any screw

X on the cylindroid, then its kinetic energy is proportional to the rectangle

X . X Y, where is a fixed point.

We are at once reminded of the theorem of 59, in which a similar

law is found for the distribution of pitch, only in this case another point,

0, is used instead of the point . Both points, and
,
are of much

significance in the representative circle. We can easily prove the following

theorem, in which we call the polar of the axis of inertia :

If a rigid body be twisting with the unit of twist velocity about X, then

its kinetic energy is proportional to the perpendicular distance from X to the

axis of inertia.

The geometrical construction for the pitch given in 51 can also be

applied to determine w
fl

2
. This quantity is therefore proportional to the

perpendicular from on the tangent at X. It thus appears that the

representative circle gives a graphic illustration of the law of distribu

tion of ue
- around the screws on a cylindroid.

The axis of inertia cannot cut the representative circle in real points, for
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otherwise we should have at either intersection a twist velocity without any
kinetic energy. There is no similar restriction to the axis of pitch. We thus

see that must always lie inside the circle, but that may be in any

part of the plane.

135. Conjugate Screws of Inertia.

We have already made much use of the conception of Conjugate Screws

of Inertia. We shall here approach the subject in a manner different from

that previously employed.

Let a be a screw about which a rigid body is twisting with a twist

velocity d
;

let the body be simultaneously animated by a twist velocity /?

about a screw /3.
These two will compound into a twist velocity about

some screw 6. If the body only had the first twist velocity, its kinetic

energy would be Mv-ffi. If it only had the second, the energy would be

MuffP. When it has both twist velocities together, the kinetic energy is

Mufti*. Generally it will not be true that the resulting kinetic energy is

equal to the sum of the components ; but, under a special relation between

a and /8, we can have this equality ;
and as shown in 88 under these cir

cumstances a and /3 are conjugate screws of inertia. The necessary condition

is thus expressed :

ufu* = ua
2
d* + M/j

2
/3

2
.

We have now to prove the following important theorem :

Any chord through the pole of the axis of inertia intersects the representa

tive circle in a pair of conjugate screws of inertia.

For we have

0- tct
2 :^2

:: AR- : BX* : AX2
;

but if AB passes through the pole of the axis of inertia, then the centre of

gravity of masses AIF at X, + BX&quot; at A, and + AX- at B, will lie on the

axis of inertia
; and, accordingly,

uf = BX-ua
2 +

whence

which proves the theorem.

Or we might have proceeded thus: From Ptolemy s theorem (fig. 19),

AB.XY = AX .BY+AY.BX:

multiplying by AB . XO
,
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but, from the property of the circle,

B Y. XO = AX . BO ;
A Y . XO = EX . A

;

whence

AB .XY. XO =AX\ AB. BO + BX&amp;gt;.AB.AO ,

from which we obtain, as before,

125

136. Impulsive Screws and Instantaneous Screws.

A rigid body having two degrees of freedom lies initially at rest. It is

suddenly acted upon by an impulsive wrench of large intensity acting for a

short time. The body will, in general, commence to move by twisting about

some screw on the cylindroid, and the kinetic problem now to be studied is

the following : Given the impulsive screw, and the intensity of the impul
sive wrench, find the instantaneous screw and the acquired twist velocity.

The problem will be rendered more concise by the conception of the

reduced wrench ( 96). It is to be remembered, that as the body is only

partially free, there are an infinite number of screws on which wrenches

would make the body commence to twist about a given screw on the cylin

droid. For, let 6 be an impulsive screw situated anywhere, and let an

impulsive wrench on cause the body to commence to move by twisting
about some screw, a, on the cylindroid. Let \, /u-, v, p be any four screws

reciprocal to the cylindroid. Then any wrench on a screw belonging to the

system defined by these five screws will make the body commence to move

by twisting about a. Let e be that one screw on the cylindroid which is

reciprocal to 6, then e is reciprocal to the whole system defined by A,, /*, v, p,

0, and, conversely, each screw of this system will be reciprocal to e. We
thus see that any screw, wherever situated, provided only that it is

reciprocal to e, will be an impulsive screw corresponding to a as an instan

taneous screw. Any one of this system may, with perfect generality, be

chosen as the impulsive screw. Among them there is one which has a

special feature. It is that screw,
&amp;lt;/&amp;gt;,

on the cylindroid which is reciprocal to

77 ;
and hence we have the following theorem ( 128):

Given any screw, a, on the cylindroid, then there is in general another screw,

&amp;lt;/&amp;gt;,

also on the cylindroid, such that an impulsive wrench administered on
&amp;lt;f)

will make the body twist about a.

This correspondence of the two systems of screws must be of the one-to-

one type ; for, suppose that two impulsive screws on the cylindroid had the

same instantaneous screw, it would then be possible for two impulsive

wrenches, of properly chosen intensities on two different screws, to produce
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equal and opposite twist velocities on the common instantaneous screw.

The body would then not move, and therefore the two impulsive wrenches

must equilibrate. But this is impossible, if they are on two different

screws.

137. Two Homographic Systems.

From what has been shown it might be expected that the points corre

sponding to the instantaneous screws and those corresponding to the

impulsive screws should, on the representative circle, form two homographic

systems. That this is so we shall now prove.

Let A, B (fig. 20) be a pair of impulsive screws, and let A
,
B be respec

tively the corresponding pair of instantaneous screws, i.e. an impulsive

wrench on A will make the body commence to twist about A
,
and similarly

for B and B . Let an impulsive wrench on A, of unit intensity, generate a

twist velocity, a, about A ,
and let /3 be the similar quantity for B and B .

Let X be any other screw on which an impulsive wrench is to be applied

to the body supposed quiescent. The body will commence to twist about

some other screw, X ,
with a certain twist velocity fa. We can determine

&amp;lt;Z&amp;gt; in the following manner: The unit impulsive wrench on X can be

replaced by two component wrenches on A and B, the intensities of these

being
BX A;X

~AB AB
respectively.

These impulsive wrenches will generate about A
,
B twist velocities

respectively equal to

BX
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those components must, when compounded, produce the twist velocity &&amp;gt; about

X
, and, accordingly, we have

. BX . B X AX . A X

Retaining A, B, A ,
B

,
as before, let us now introduce a second pair of points,

Y and F
,
instead of X and X

,
and writing &&amp;gt; instead of

o&amp;gt;,
we have

.BY .,FT_a AB
~ * A B AB

~
A B

whence, eliminating a, /3, &&amp;gt;,
o&amp;gt;

,
we have

5Z BY B X FT
AX : AY :: A X : A Y&quot;

As the length of a chord is proportional to the sine of the subtended

angle, we see that the anharmonic ratio of the pencil, subtended by the four

points A, B, X, Fat a point on the circumference, is equal to that subtended

by their four correspondents, A ,
B

,
X , Y . We thus learn the following

important theorem :

A system of points on the representative circle, regarded as impulsive

screws, and the corresponding system of instantaneous screws, form two homo-

graphic systems.

138. The Homographic Axis.

Let A, B, C, D (fig. 21) represent four impulsive screws, and let A
,
B

,

C
,
D be the four corresponding instantaneous screws. Then, by the well-

Fig. 21.

known homographic properties of the circle, the three points, L, M, N, will

be collinear, and we have the following theorem :



128 THE THEORY OF SCREWS. [138-

If A and B be any two impulsive screws, and ifA and B be the corre

sponding instantaneous screws, then the chords AR and BA will always

intersect upon the fixed right line XY.

This right line is called the homographic axis. It intersects the circle in

two points, X and Y, which are the double points of the homographic systems.

These points enjoy a special dynamical significance. They are the two

Principal Screws of Inertia, and hence

The homographic axis intersects the circle in two points, each of which

possesses the property, that an impulsive wrench administered on that screw will

make the body commence to move by twisting about the same screw.

The method by which we have been conducted to the Principal Screws

of Inertia shows how there are in general two, and only two, of these screws

on the cylindroid. The homographic axis is the Pascal line, for the

Hexagon AA BB CC
,
and thus we have a dynamical significance for

Pascal s theorem.

139. Determination of the Homographic Axis.

The two principal screws of inertia must be reciprocal, and must also be

conjugate screws of inertia ( 84). The homographic axis must therefore

comply with the conditions thus prescribed. We have already shown ( 58)

the condition that two screws be reciprocal, and ( 135) the condition that

two screws be conjugate screws of inertia, and, accordingly, we see

1. That the homographic axis must pass through 0, the pole of the

axis of pitch.

2. That the homographic axis must pass through ,
the pole of the

axis of inertia.

The points and having been already determined we have accordingly,

as the simplest construction for the homographic axis, the chord joining

and .

140. Construction for Instantaneous Screws.

The points and afford a simple construction for the instantaneous

screw, corresponding to a given impulsive screw. The construction depends

upon the following theorem ( 81):

If two conjugate screws of inertia be regarded as instantaneous screws, then

the impulsive screw corresponding to either is reciprocal to the other.

Let A be an impulsive screw (fig. 22); if we join AO we obtain H, the

screw reciprocal to A
;
and if we join HO we obtain A

,
the conjugate screw
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of inertia to H. But, as A is the only screw reciprocal to H, it is necessary,

by the theorem just given, that an impulsive wrench on A must make the

body commence to move by twisting about A .

Fig. 22.

As and are fixed, it follows from a well-known theorem, that as

otherwise proved in 137, A and A form two homographic systems.

141. Twist Velocity acquired by an Impulse.

We can obtain a geometrical expression for the twist velocity acquired

about A by a unit impulsive wrench on A (Fig. 22).

It appears, from 90 (see also 147), that the twist velocity acquired

on cc by an impulsive wrench on 77,
is proportional to

2

The numerator being the virtual coefficient is proportional to AO.A H
( 68), and as u^ is proportional to A O .A H ( 134), we see that the

required ratio varies as AO -f- A O which itself varies as

HO
HO

hence we obtain the following theorem :

The impulsive wrench on A, of intensity proportional to HO, generates a

twist motion about A ,
with velocity proportional to HO .

The geometrical representation of the effect of impulsive forces is thus

completely determined both as regards the instantaneous screw, and the

instantaneous twist velocity acquired.

142. Another Construction for the Twist Velocity.

A still more concise method of determining the instantaneous screw can

be obtained if we discard the points and
,
and introduce a new fixed

point, ft, also on the homographic axis.

B. 9
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Let X, Y (Fig. 23) be the two principal screws of inertia. Let A be

an impulsive screw, and A the corresponding instantaneous screw. Draw

Fig. 23.

through -A the line AH parallel to XY. Join HA
,
and produce it to

meet the homographic axis at fl. Let a be the twist velocity generated by
an impulsive wrench of unit intensity at X, and let /3 be the corresponding

quantity for F.

It may be easily shown that the triangle AA X is similar to YA Cl, and

that the triangle AA Y is similar to XA l
;
whence we obtain

A YflA__
AX~~ OF AY

The unit wrench on A can be decomposed into components on X and F of

respective intensities

AY AX
XY XY

AX
These will generate twist velocities

AT
a
~XY

Let &amp;lt;w be the resulting twist velocity on A ,
then the components on X and F

must be equal to the quantities just written
;
whence

A Y AY
XY
A X
XY

= a.

and we obtain

or,

XY

ZF

CIA

&quot;OF
5

a : /3 :: OF:

we thus see that O is a fixed point wherever A and A may be.
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It also follows that

is constant
;
whence we have the following theorem :

Draw through the impulsive screw A a rayAH parallel to the homographic

axis, then the ray from H to a fixed point fl on the homographic axis will

cut the circle in the instantaneous screw A ,
and the acquired twist velocity will

be inversely proportional to CIA .

If the twist velocity to be acquired by A from a unit impulsive wrench

on A be assigned, then CIA is determined : there will be two screws A ,
and

two corresponding impulsive screws, either of which will solve the problem.

The diameter through Cl indicates the two screws about which the body will

acquire the greatest and the least velocities respectively with a given

intensity for the impulsive wrench.

143. Twist Velocities on the Principal Screws.

The quantities a and ft, which are the twist velocities acquired by unit

impulsive wrenches on the principal screws, can be expressed geometrically

as follows (Fig. 22) :

Let to be the twist velocity acquired on A by the wrench on A, then, by
the last article,

aAY = (oA Y,

/3AX=a,A X;

A Y AY
whence : ft :: ^ : ^ .

This ratio is the anharmonic ratio of the four points X, Y, A, A ,
that is, of

X, Y, 0, ; whence, finally,

O Y OY
* : P OX OX

144. Another Investigation of the Twist Velocity acquired by
an Impulse.

We have just seen that

&amp;lt;*AY=a&amp;gt;A Y,

whence aftAX . AY= tfA X . A Y.

Let fall perpendiculars AP, A P
, HQ on the homographic axis (Fig. 24).

Then, by the properties of the circle,.

AX. AY : A X. A Y :: AP : A P
;

so that a/3AP = a&amp;gt;-A P .

92
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By similar triangles,

[144,

whence

or, as before ( 141),

Fig. 24.

OA . OH O H*

CO X
OH
OH

It will be noticed that, for this investigation, H may have been chosen

arbitrarily on the circle. We thus see that, besides the two points and
,

there will be a system of pairs of points of which any one may be employed for

finding the instantaneous screw, and for determining the instantaneous twist

velocity.

If we choose any two points (Fig. 25), fl and H
,
so that

Fig. 25.

then A being given, Al determines H, and Hfl determines A
,
while the

twist velocity is proportional to O T/ -=- IH. We can suppose fl at infinity,



145] PLANE REPRESENTATION OF DYNAMICAL PROBLEMS. 133

and thus obtain the construction used in 142. A similar construction is

obtained when fl is at infinity.

The two points, A and A
,
will divide the arc cut off by XY in a constant

anharmonic ratio, for the pencil H (XQQ Y) always preserves the same

anharmonic ratio as H moves round the circle.

145. A Special Case.

If
77 be an impulsive screw, arid if a be the corresponding instantaneous

screw, it will not usually happen that when a. is the impulsive screw ij
is the

corresponding instantaneous screw. If, however, in even a single case, it be

true that the impulsive screw and the instantaneous screw are interchange

able, then the relation will be universally true.

Let fl and 1 (Fig. 26) be a pair of points belonging to the system
described in 144. Then A being given, A is found. If A is similarly to

Fig. 26.

determine A, then the figure shows that fl must lie on the polar of fl
,

and, consequently, fl and fl are conjugate points with respect to the circle;

or, what comes to the same thing, they divide XY harmonically. The same

must be true of each pair of points H and fl
,
and therefore of and

, and

we have the following theorem :

If the points and be harmonic conjugates of the points where the homo-

graphic axis intersects the circle, then every pair of instantaneous and impulsive
screws on the cylindroid are interchangeable.

We might, perhaps, speak of this condition of the system as one of

dynamical involution. In this remarkable case an impulsive wrench of unit

intensity applied to one of the principal screws of inertia will generate a

velocity equal and opposite to that which would have been produced if the

wrench had been applied to the other principal screw. The construction
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for the pairs of related screws becomes still more simplified by the theorem,

that

When the system is one of dynamical involution, the chord joining an

impulsive screw with its instantaneous screw passes through the pole of
the homograpldc axis.

We may take the opportunity of remarking, that dynamical involution

is not confined to the system of the second order. It may be extended to a

rigid body with any number of degrees of freedom, or even to any system of

rigid bodies. Whenever it happens that the relation of impulsive screw and

instantaneous screw is interchangeable in one case, it is interchangeable in

every case.

For, let O
l ,

... 6n be the co-ordinates of an instantaneous screw, then ( 97)
the corresponding impulsive screw has for co-ordinates,

MI n un avly ... vn ;

PI Pn

and if this latter were regarded as an instantaneous screw, then its impulsive
screw would be

3 *
Pn

but as this is to be only

we must have

which shows that if the theorem be true for one pair, it is true for all. The

conditions, of course, are, that any one of the following systems of equations
be satisfied :

1/2 ,.2 ,,. 2
, &quot;i _ i III _ i

Un
~

Pi
~
P2

~ ~
Pn

146. Another Construction for the Twist Velocity acquired
by an Impulse.

Reverting to the general case, we find that the chord AA (Fig. 27) is cut

by the homographic axis at T, so that the square of the acquired twist

velocity is proportional to the ratio of TA to TA .

For, with the construction in 142, draw HQ parallel to AT; then,

AT



146] PLANE REPRESENTATION OF DYNAMICAL PROBLEMS. 135

but we showed, in the article referred to, that A l varies inversely as the

acquired twist velocity, whence the theorem is proved.

Fig. 27.

This is, in one respect, the simplest construction, for it only involves the

chord AA and the homographic axis.

The chord AA must envelop a conic having double contact with the

circle (Fig. 28), for this is a general property of the chord uniting two corre

sponding points, A and A
,
of two homographic systems. Let / be the

Fig. 28.

point of contact of the chord and conic (Fig. 28). Then AA is divided

harmonically in 7 and T
; for, if ZFbe projected to infinity, the two conies

become concentric circles, and the tangent to one meets it at the middle

point of the chord in the other
;
the ratio is therefore harmonic, and must

be so in every projection ; whence,

AI _^AT
A I A T

but the last varies as the square of the twist velocity acquired, and hence we
see that
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The chord joining any impulsive screw A to the corresponding instantaneous

screw A envelops a conic, and the point of contact, I, divides the chord into

segments, so that the ratio of AI to A I is proportional to the square of the

twist velocity acquired about A by the unit impulsive wrench on A.

147. Constrained Motion.

We can now give another demonstration of the theorem in 90, which is

thus stated :

If a body, constrained to twist about the screw a, be acted upon by an

impulsive wrench on the screw 77, then the twist velocity acquired varies as

W 2

The numerator in this expression is the virtual coefficient of the two

screws, and the denominator is the function of 134, which is proportional

to the kinetic energy of the body when twisting about a with the unit of

twist velocity.

Let a and
t] be represented by A and I respectively (Fig. 29), and let A

Fig. 29.

be the impulsive screw which would correspond to A if the body had been

free to twist about any screw whatever on the cylindroid defined by A and

A . Let K be reciprocal to A .

The impulsive wrench on / is decomposed into components on K and A.

The former is neutralized by the constraints
;
the latter has the intensity

KI
KA

whence the twist velocity &&amp;gt;, acquired by A ,
is ( 141) proportional to

KI HO
KA HO
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but, by geometry,

whence, 63, ft) GC

x

OA
KI.HO .OA
HO.HA .OA

A .HA

3C
~i&amp;gt; j

which is the required result.

148. Energy acquired by an Impulse.

The kinetic energy acquired by a given impulse, using the same notation

as before, is ( 91) proportional to

Let A be the impulsive screw, and A the screw about which the body
is constrained to twist. Draw the chord AOH (Fig. 30), then, as A varies,

Fig. 30.

while A is fixed, the virtual coefficient of A and A varies as A H (63).
The square of this is proportional to AT, the length of the perpendicular
from A on the tangent at H. If PQ be the axis of inertia, the value of u*
is proportional to the perpendicular A Q, and, accordingly, the kinetic energy
acquired is proportional to

AT
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Any ray through P, the intersection of the axis of inertia with the tangent
at H, cuts the circle in two points, A and

A&quot;, either of which will receive the

same kinetic energy from the given impulse.

149. Euler s Theorem.

If the body be permitted to select the screw about which it will

commence to twist, then, as already mentioned, 94, Euler s theorem states

that the body will commence to move with a greater kinetic energy than if

it be restricted to some other screw. By drawing the tangent from P (not,

however, shown in the figure) we obtain the point of contact B, where it is

obvious that the ratio of the perpendiculars on PH and PQ is a maximum,
and, consequently, the kinetic energy is greatest. It follows from Euler s

theorem that B will be the instantaneous screw corresponding to A as the

impulsive screw. The line BH is the .polar of P, and, consequently, BH
must contain

,
the pole of the axis of inertia. We are thus again led

to the construction ( 140) for the instantaneous screw 5; that is, draw

AOH, and then HO B.

150. To determine a Screw that will acquire a given Twist

Velocity under a given Impulse.

The impulsive screw being given, and the intensity of the impulsive
wrench being one unit, the acquired twist velocity ( 147) will vary as

(Fig. 30),

AfH
A Q

If, therefore, the twist velocity be given, this ratio is given. A must then lie

on a given ellipse, withH as the focus and the axis of inertia as the directrix.

This ellipse will intersect the circle in four points, any one of which gives a

screw which fulfils the condition proposed in the problem.

The relation between the intensity of the impulsive wrench and the twist

velocity generated can be also investigated as follows :

Let P, Q, R, S be points on the circle (Fig. 31) corresponding to four im

pulsive screws, and let P
, Q ,

R
,
S be the four corresponding instantaneous

screws deduced by the construction already given. Let p, q, r, s denote the

intensities of the impulsive wrenches on P, Q, R, S, which will give the units

of twist velocity on P
, Q , R, S . Supposing that impulsive wrenches on

P, Q, R neutralize, then the corresponding twist velocities generated on

P
, Q , R must neutralize also. In the former case, the intensities must be

proportional to the sides of the triangle PQR ;
in the latter, the twist
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velocities must be proportional to the sides of the triangle P Q R .

Introducing another quantity d, we have

rP Q = dPQ,

qP R = dPR,

The three other groups of equations are similarly obtained

rQ S = aQS, qP S = cPS, rP S = bPS,

sR Q = aRQ, sQ P = cQP, sR P = bRP.

Whence we easily deduce

ap = bq
= cr = ds = hpqrs,

where h is a new quantity. We hence obtain from the first equation

P Q = hPQpq.

As this is absolutely independent of R and S, it follows that h must be inde

pendent of the special points chosen, and that consequently for any two

points on the circle P and Q, with their corresponding points P and Q , we

must have
P Q

PI
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In the limit we allow P and Q to coalesce, in which case, of course, P and

Q coalesce, and p and q become coincident
;
but obviously we have then

PQ : ML :: PX : LX,

P Q : ML :: P Y : LY-

P Q P Y LX
whence

PQ
=
PX

=
LY&amp;gt;

and as P Foc -L and PX oc
,

we have finally p oc -
T v .

Li

The result is, of course, the same as that of 141. Being given the

impulsive screw corresponding to P, we find P by drawing PXL and LYP
;

and then to produce a unit twist velocity on P
,
the intensity of the impul

sive wrench on P must be proportional to LX -r- LY. It is obvious that by
a proper adjustment of the units of length, force and twist velocity, LX
may be the intensity of the impulsive wrench, and LY the acquired twist

velocity.

151. Principal Screws of the Potential.

Let us suppose that a body having two degrees of freedom is in a position

of stable equilibrium under the influence of a conservative system of forces.

If the body be displaced by a small twist, it will no longer be in a position of

equilibrium, and a wrench has commenced to act upon it. This wrench can

always, by suitable composition with the reactions of the constraints, be

replaced by an equivalent wrench on a screw of the cylindroid (see 96).

For every point H, corresponding to a displacement screw, we have a

related point,H , corresponding to the screw about which the wrench is evoked.

The relation is of the one-to-one type, and it will now be proved that the

system of screws H is homographic with the corresponding system H . The

proof is obtained in the same manner as that already given in 137, for

impulsive and instantaneous screws.

Let E be a displacement screw about which a twist of unit magnitude
evokes a wrench of intensity e on E

;
let f be the similar quantity for

another pair of screws, F and F .

A twist of unit amplitude about H may be decomposed into components,

HF HE
EF EF

about E and F, respectively.
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These will evoke wrenches on E and F of the intensities

HF HE
EF EF

respectively. But this pair of wrenches are to compound into a wrench of

intensity h on H
,
and consequently we have

H F HF

H E _
S EF

HF H F ,

whence ~
:

,
:: J : e.

If we take another pair of points, K and K ,
we have

KF H F K F
^

HE : KE :: H E K E

whence (HKFE) = (H K F E ).

Thus, the anharmonic ratio of any four points in one system is equal to that of

their correspondents, and the two systems are homographic.

The homographic axis intersects the circle in two points, which are the

principal screws of the potential, i.e. a twist about either evokes a wrench

on the same screw. Of course this homographic axis is distinct from that

in 139. But this homographic axis, like the former one, passes through the

pole of the axis of pitch because the principal screws of the potential are

reciprocal.

152. Work done by a Twist.

Suppose that the body, when in equilibrium under the system of forces,

receives a twist of small amplitude of about any screw a, a quantity of work

is expended, which we shall denote by

Fva-a
2
.

In this, F is a constant, whose dimensions are a mass divided by the square

of a time, and v* is a linear magnitude specially appropriate to the screw a,

and depending also upon the system of forces ( 102). We may compare
and contrast the three quantities,^, ua ,

va : each is a linear magnitude

specially correlated to the screw a. The first and simplest, pa ,
is the pitch

of the screw, and depends on the geometrical nature of the constraints
;
ua

involves also the mass of the body, and the distribution of the mass relatively

to a
;
va ,

still more complicated, depends also on the system of forces.
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153. Law of Distribution of va .

As we follow the screw a around the circle, it becomes of interest to study
the corresponding variations of the linear magnitude va . We have already
found a very concise representation of pa and ua by the axis of pitch and the

axis of inertia, respectively. We shall now obtain a similar representation

of va by the aid of the axis of potential.

It is shown ( 102) that va
2 must be a quadratic function of the co

ordinates; we may therefore apply to this function the same reasoning as

we applied to ua
2

( 134). We learn that va
2
is at each point proportional to

the perpendicular on a ray, which is the axis of potential.

Thus, if A (Fig. 32) be the screw, the value of va
2

is proportional to AP,
the perpendicular on PT\ if 0&quot; be the pole of the axis of potential, then,

as in 59, we can also represent the value of va
~

by the product AO&quot;. AA .

154. Conjugate Screws of Potential.

In general the energy expended by a small twist from a position of

equilibrium can be represented by a quadratic function of the co-ordinates

of the screw. If, moreover, the two screws of reference form what are

called conjugate screws of potential ( 100), then the energy is simply the

sum of two square terms. The necessary and sufficient condition that the

two screws shall be so related is, that their chord shall pass through 0&quot;.

Another property of two conjugate screws of potential is also analogous

to that of two conjugate screws of inertia. If A and A be two conjugate

screws of potential, then the wrench evoked by a twist round A is reciprocal

to A ,
and the wrench evoked by a twist around A is reciprocal to A.
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155. Determination of the Wrench evoked by a Twist.

The theorem just enunciated provides a simple means of discovering the

wrench which would be evoked by a small twist which removes the body
from a position of equilibrium.

Let A (Fig. 33) be the given screw; join AO&quot;, and find H; then the

required screw A must be reciprocal to H, and is, accordingly, found by

drawing the chord HA through 0.

Fig. 33.

The axis 00&quot; is of course the homographic axis of 151. We need not

here repeat the demonstration of 141, which will apply, mutatis mutandis,
to the present problem. We see that the ratio of the intensity of the

wrench to the amplitude of the twist is proportional to

HO
HO&quot;

The other constructions of a like character can also be applied to this case.

156. Harmonic Screws.

If after displacement the rigid body be released, and small oscillations

result, the present geometrical method permits us to study the resulting
movements.

It has been shown ( 130) that there are two special screws on the surface,
each of which possesses the property of being a harmonic screw. If a body
be displaced from rest by a small twist about a harmonic screw, and if it

also receive any small initial twist velocity about the same screw, then the

body will continue for ever to perform harmonic twist oscillations about the
same screw.

The two harmonic screws are X and T, where the circle is intersected

by the axis passing through the pole of the axis of inertia
, and the pole

of the axis of potential 0&quot; (Fig. 34).
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For, suppose the body receives a small initial displacement about X, this

will evoke a wrench on H, found by drawing XO&quot;Y and YOH ( 155). But the

Fig. 34.

effect of a wrench on H will be to produce twist velocity about a screw found

by drawing HOY and YO X, i.e. X itself ( 140). Hence the wrench evoked

can only make the body still continue to twist about X, and harmonic

vibration on X will be the result. Similar reasoning, of course, applies

to Y.

157. Small Oscillations in general.

The initial displacement, and the initial twist velocity of the body, can

always be decomposed into their respective components on X and Y. The

resulting small oscillations can thus be produced by compounding simple

harmonic twist oscillations about X and Y.

If it should happen that and 0&quot; become coincident, then every screw

would be a harmonic screw.

If and coincided, then every screw would be a principal screw of

inertia ( 86).

If and 0&quot; coincided, then every screw would be a principal screw of

potential.

158. Conclusion.

The object proposed in this Chapter has now been completed. It has

been demonstrated that the representative circle affords a concise method

of exhibiting many problems in the Dynamics of a Rigid System with two

degrees of freedom, so long as the body remains near its initial position.

The geometrical interest of the enquiry is found mainly to depend on the

completely general nature of the constraints. If the constraints be specialized

to those with which mechanical problems have made us familiar, it will
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frequently be found that the geometrical theory assumes some extreme and

uninteresting type. For instance, a case often quoted as an illustration of

two degrees of freedom, is that of a body free to rotate around an axis,

and to slide along it. The representative circle has then an infinite

radius, and the finite portion thereof is merely a ray perpendicular to the

axis of pitch. The geometrical theory then retains merely a vestige of

its interest.

B. 10



CHAPTER XIII.

THE GEOMETRY OF THE CYLINDROID.

159. Another investigation of the Cylindroid.

The laws of the composition of twists and wrenches are of such funda

mental importance in the present subject that the following method* of

investigating the cylindroid seems worthy of attention. This method is not,

however, presented as a substitute for that already given (Chap. II.) which is

certainly both more simple and more direct.

Let a and /3 be any two screws, then if a body receives a twist about a,

followed by another twist about /3, the position arrived at could have been

reached by a single twist about a third screw 7. If the amplitudes of the

twists about a and ft are given, then the position of 7, as well as the ampli

tude of the resultant twist thereon, are, of course, both determined. If,

however, the amplitudes of the twists on a and ft are made to vary while

the screws a and ft themselves remain fixed, then the position of 7, no less

than the amplitude of the resultant twist, must both vary. It has however

been shown in 9 that the position and pitch of 7 remain constant so long as

the ratio of the amplitudes of the twists about a and ft remains unchanged.

As this ratio varies, the position of 7 will vary, so that this position is a

function of a single parameter ; and, accordingly, 7 must be restricted to be

one of the generators of a certain ruled surface S, which includes a and ft as

extreme cases in which the ratio is zero and infinity respectively.

Let 6l be a screw which is reciprocal both to a and ft, then 6l
must also

be reciprocal to every screw 7 on S. Let 2 , 3&amp;gt;

#4 be three other screws also

reciprocal to S. Since a screw is defined by five conditions, it is plain that a

screw which fulfils the four conditions of being reciprocal to lf #2
&amp;gt;

0s&amp;gt; $4 will

have one disposable parameter, and must, therefore, be generally confined to

a certain ruled surface. This surface must include S, inasmuch as all the

screws on S are reciprocal to l} 2 , 3 , 4 ;
but further, it cannot include any

*
Proceedings of the Royal Irish Academy, 2nd Ser., Vol. iv. p. 518 (1885).
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screw e not on S
;
for as e and any screw 7 on S are reciprocal to lt #a , 3 ,04 ,

it will follow that any screw on the surface made from e and 7, just as S is

made from a and ft, must also be reciprocal to 6l) 2 , 3 , 4 . As 7 may be

selected arbitrarily on S, we should thus find that the screws reciprocal to

&i, &2, $s&amp;gt; #4 were not limited to one surface, but constituted a whole group of

surfaces, which is contrary to what has been already shown. It is therefore

the same thing to say that a screw lies on S, as to say that it is reciprocal to

0i, 6* d. ( 24).

Since the condition of reciprocity involves the pitches of the two screws

in an expression containing only their sum, it follows that if all the pitches

on 1} 2 , 3 ,
#4 be diminished by any constant in, and all those on S be

increased by m, the reciprocity will be undisturbed. Hence, if the pitches

of all the screws on S be increased by + m, the surface so modified will still

retain the property, that twists about any three screws will neutralize each

other if the amplitudes be properly chosen.

We can now show that there cannot be more than two screws of equal

pitch on 8
;

for suppose there were three screws of pitch m, apply the

constant m to all, thus producing on S three screws of zero pitch. It must

therefore follow that three forces on 8 can be made to neutralize
;
but this is

obviously impossible, unless these forces intersect in a point and lie on a

plane. In this case the whole surface degrades to a plane, and the case is a

special one devoid of interest for our present purpose. It will, however, be

seen that in general S does possess two screws of any given pitch. We can

easily show that a wrench can always be decomposed into two forces in such

a way that the line of action of one of these forces is arbitrary. Suppose
that 8 only possessed one screw A, of pitch m. Reduce this pitch to zero

;

then any other wrench must be capable of decomposition into a force on X

(i.e. a wrench of pitch zero), and a force on some other line which must lie

on S; therefore in its transformed character there must be a second screw

of zero pitch on S, and, therefore, in its original form there must have been

two screws of the given pitch m.

Intersecting screws are reciprocal if they are rectangular, or if their

pitches be equal and opposite ;
hence it follows that a screw 6 reciprocal to

S must intersect 8 in certain points, the screws through which are either at

right angles to or have an equal and opposite pitch thereto.

From this we can readily show that S must be of a higher degree than

the second
;
for suppose it were a hyperboloid and that the screws lay on

the generators of one species A, a screw which intersected two screws

of equal pitch m must, when it receives the pitch m, be reciprocal to the

entire system A. We can take for one of the generators on the hyper
boloid belonging to the species B

;
will then intersect every screw of the

10-2
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surface
;

it must also be reciprocal to all these
; and, as there are only two

screws of the given pitch, it will follow that 6 must cut at right angles every

generator of the species A. The same would have to be true for any other

reciprocal screw &amp;lt; similarly chosen
;
but it is obvious that two lines 6 and &amp;lt;

cannot be found which will cut all the generators at right angles, unless,

indeed, in the extreme case when all these are coplanar and parallel. In the

general case it would require two common perpendiculars to two rays, which

is, of course, impossible. We hence see that S cannot be a surface of the

second degree.

We have thus demonstrated that 8 must be at least of the third degree
in other words, that a line which pierces the surface in two points will pierce
it in at least one more. Let a and ft be two screws on 8 of equal pitch in,

and let 6 be a screw of pitch m which intersects a and ft. It follows that

6 is reciprocal both to a and ft, and therefore it must be reciprocal to

every screw of 8. Let 6 cut 8 in a third point through which the screw 7 is

to be drawn, then 6 and 7 are reciprocal ;
but they cannot have equal and

opposite pitches, because then the pitch of 7 should be equal to that of a

and ft. We should thus have three screws on the surface of the same pitch,

which is impossible. It is therefore necessary that 6 shall always intersect 7
at right angles. From this it will be easily seen that 8 must be of the

third degree ;
for suppose that 6 intersected 8 in a fourth point, through

which a screw 8 passed, then 6 would have to be reciprocal to 8, because it is

reciprocal to all the screws of $; and it would thus be necessary for 9 to be

at right angles to 8. Take then the four rays a, ft, 7, 8, and draw across

them the two common transversals 6 and &amp;lt;. We can show, in like manner,

that
(j)

is at right angles to 7 and 8. We should thus have 6 and
&amp;lt;/&amp;gt;

as two

common perpendiculars to the two rays 7 and 8. This is impossible, unless

7 and 8 were in the same plane, and were parallel. If, however, 7 and 8 be

so circumstanced, then twists about them can only produce a resultant twist

also parallel to 7 and 8, and in the same plane. The entire surface 8 would

thus degenerate into a plane.

We are thus conducted to the result that 8 must be a ruled surface

of the third degree, and we can ascertain its complete character. Since any
transversal 6 across a, ft, and 7 must be a reciprocal screw, if its pitch be

equal and opposite to those of a and ft, it will follow that each such trans

versal must be at right angles to 7. This will restrict the situation of 7,

for unless it be specially placed with respect to a and ft, the transversal 6

will not always fulfil this condition. Imagine a plane perpendicular to 7,

then this plane contains a line / at infinity, and the ray 6 must intersect / as

the necessary condition that it cuts 7 at right angles. As 6 changes its

position, it traces out a quadric surface, and as I is one of the generators of

that quadric, it must be a hyperbolic paraboloid. The three rays a, ft, 7,
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belonging to the other system on the paraboloid must also be parallel to a

plane, being that denned by the other generator /
,
in which the plane at

infinity cuts the quadric.

Let PQ be a common perpendicular to a and 7, then since it intersects

7 at right angles, it must also intersect /
;
and since PQ cuts the three

generators of the paraboloid a, 7 and /, it must be itself a generator, and

therefore intersects ft. But a, ft, 7 are all parallel to the same plane, and

hence the common perpendicular to a and 7 must be also perpendicular to ft.

We hence deduce the important result, that all the screws on the surface S
must intersect the common perpendicular to a and ft, and be at right angles

thereto.

The geometrical construction of S is then as follows: Draw two rays a and

ft, and also their common perpendicular X. Draw any third ray 6, subject

only to the condition that it shall intersect both a and ft. Then the common

perpendicular p to both and X will be one of the required generators,

and as 6 varies this perpendicular will trace out the surface. It might
at first appear that there should be a doubly infinite series of common

perpendiculars p to X and to 6. Were this so, of course S would not be

a surface. The difficulty is removed by the consideration that every trans

versal across p, a, ft is perpendicular to p. Each p thus corresponds to a

singly infinite number of screws 9, and all the rays p form only a singly

infinite series, i.e. a surface.

A simple geometrical relation can now be proved. Let the perpendicular

distance between p and a be dlt and the angle between p and a be A l ;
let dz

and A 2 be the similar quantities for p and ft, then it will be obvious that

rfj : dz : : tan A l : tan A 2 ;

or rfj + d2 : d1 d.2 : : sin (A^ + A 2) : sin (A l A 2),

if z be the distance of p from the central point of the perpendicular h

between a and ft ;
and if e be the angle between a and ft, and 6 be the

angle made by p with a parallel to the bisector of the angle e, then we have

from the above

z : h : : sin 2&amp;lt; : sin 2e.

The equation of the surface 8 is now deduced for

oc

tan 6 = -
;

y

whence we obtain the equation of the cylindroid in the well-known form

z (#
2 + */*)

= xy.sm 2e *

The law of the distribution of pitch upon the cylindroid can also be deduced
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from the same principles. If a and yS are screws of zero pitch, then any
reciprocal transversal 6 will be also of zero pitch ;

and as p must be reciprocal
to 6, it will follow that the pitch of p must be equal to the product of the
shortest perpendicular distance between p and 6, and the tangent of the

angle between the two lines. In short, the pitch of p must simply be equal
to what is sometimes called the moment between p and 6.

We are also led to the following construction for the cylindroid.

Draw a plane pencil of rays and another ray L, situated anyivhere. Then
the common perpendiculars to L and the several rays of the pencil trace out

the cylindroid.

I have already mentioned (p. 20) that the first model of the cylindroid
was made by Plucker in illustration of his Neue Geometric des Raumes. The
model of the surface which is represented in the Frontispiece was made from

my design by Sir Howard Grubb, the cost being defrayed by a grant from
the Scientific Fund of the Royal Irish Academy. A hollow cylinder was
mounted on a dividing engine and holes were drilled at the calculated points.
Silver wires were then stretched across in the positions of the generators
and a beautiful model is the result.

The equation to the tangent cone drawn from the point x, y ,
z to

the surface,

z (x
2
4- y

2
)
- 2mxy = 0,

is of the fourth degree and is given by equating to zero the discriminant

of the following function in
&&amp;gt;,

to
3 (xz- zx) -

&amp;lt;u

2

[yz -zy + 2m (x
- x

}} + o&amp;gt; {xz
- zx + 2m (y

-
y )} + zy

-
yz.

This cone has three cuspidal edges, and accordingly the model exhibits

in every aspect a remarkable tricuspid arrangement.

I here give the details of the construction of the much simpler model of

the cylindroid figured in Plate II.* A boxwood cylinder, Omlo long and
O m&amp;gt;05 in diameter, is chucked to the mandril of a lathe furnished with a

dividing plate. A drill is mounted on the slide rest, and driven by overhead

gear. The parameter pa -pft (in the present case O ^OGG) is divided into

one hundred parts. By the screw, which moves the slide rest parallel to the

bed of the lathe, the drill can be moved to any number z of these parts
from its original position at the centre of the length of the cylinder. Four
holes are to be drilled for each value of z. These consist of two pairs
of diametrically opposite holes. The directions of the holes intersect the

* See Transactions of Royal Irish Academy, Vol. xxv. p. 216 (1871) ; and also Phil. Mag. Vol.

XLII. p. 181 (1871); also B. A. Report, Edinburgh, 1871.
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axis of the cylinder at right angles. The following table will enable the

work to be executed with facility. I is the angle of 13 :

z
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160. Equation to plane section of Cylindroid.

Each generator of the cylindroid is the abode of a certain screw, and

accordingly each point in a plane section will lie on one screw, and generally

on only one. We may, accordingly, regard the several points of the cubic as

in correspondence with the several screws on the cylindroid. It will often be

convenient to speak of the points on the section as synonymous with the

screws themselves which pass through those points.

We must first investigate the equation* to the cubic curve produced by

cutting the cylindroid by a plane situated in any arbitrary position.

Fig. 35.

Let OX and OF (Fig. 35) be the two principal screws of the cylindroid of

which OH is the nodal line. Let XYl be the arbitrary plane of section.

The position of this plane is defined by the magnitudes h, a, (3, whereof h

is the length of the perpendicular from on XY, a. is the angle between OR
and OX, and ft is the angle ORl, or the inclination of the plane of section

to the principal plane of the cylindroid.

Draw through H the line 1$ parallel to XY; then we shall adopt IN

as the new axis of x and SIR as the new axis of y, so that if P be any point

on the surface, we have PN = y and IN = x. The dotted letters, x
, y ,

z

refer to the original axes of the cylindroid. Let fall PT perpendicular on

the plane of OXY, and TM perpendicular to XY. Then we have MN=
whence

y + z cosec ft
= h sec /3 (i),

* Transactions of the Eoyal Irish Academy, Vol. xxix. p. 1 (1887).
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while, if 6 be the angle XOT, and OT be denoted by r, we have

x = r sin(0
-

a),

or x = y cos a x sin a (ii) ;

but, obviously,

OR = r cos (0
-

a) + MT ;

whence h = x cos a 4- y sin a + z cot /3 (iii).

Solving the equations (i), (ii), (iii), we obtain

xe = x sin a + y cos /3 cos a,

y = + x cos a + y cos /3 sin a,

z = h tan /3 y sin /3.

It appears from these that

# 2 + y
z = x* + ifcos

2

ft,

a; ?/
=

#?/ cos /3 cos 2a + (y
2 cos2

/3 #2
) sin a cos a.

The equation of the cylindroid gives

z (x
z + y

2

)
= Zmx y ;

whence we deduce, as the required equation of the section,

(h tan ft
-
y sin /3) (#

2 + y
z cos2

/3)

= 2m3ry cos ft cos 2a + 2m sin a cos a (y
2 cos2

ft a?);

or, arranging the terms,

sin /3 cos
3

fty
3 + sin yS?/a;

2

(m sin 2a + h tan /3) #
2 + Zmxy cos /3 cos 2

+ (m sin 2a cos2
ft h sin /3 cos /3) y

J = 0.

It is often convenient to use the expressions

x = h tan (6 0) m sin 20 cot ft tan (0 a),

y = hsecft msin 20cosec/3,

from which, if be eliminated, the same equation for the cubic is obtained
;

or, still more concisely, we may write

x = y cos ft tan (0 a),

y
= h sec ft m sin 20 cosec ft.

This cubic has one real asymptote, the equation of which is

ysinft = m sin 2a + h tan ft,

and the asymptote cuts the curve in the finite point for which

x = tan 2a (h + m sin 2a cot ft).

The value of at this point is a.
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Fig. 36.

EXPLANATION OF FIG. 36.

General Section of the Cylindroid, showing

(1) Cubic with the double point 0.

(2) Asymptote of the cubic.

(3) The parabola, which is the envelope of the chords joining screws of equal pitch.

(4) Hyperbola having triple contact with the cubic, being envelope of reciprocal chords.

(5) Section of the principal plane. It is a tangent to the hyperbola.

(6) A tangent to the parabola, showing two screws, P and Q, of equal pitch.

(7) Common tangents to the parabola and the cubic, touching the latter at the two

principal screws.

(8) Any tangent to the hyperbola intersects the cubic in three points, two of which belong

to reciprocal screws (not shown).

Equations of Cubic. Equation of Parabola. Equations of Hyperbola.

a;= -9f/tan(0-25 ), /_ x \ 2
a; = 1-6 21-6 sec047 5 tan 0,

y = 20 -66 sin 20.
V ~ \

+
15J y = - 12-8 + 32 8 sec

&amp;lt;f&amp;gt;.
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In Fig. 36 will be found a drawing of this curve. The following are the

values of the constants adopted :

a = 25; /3
= 26; h = lS; wi = 28 9;

with which the equations become

=% tan (0-25),

y = 20 - 66 sin 20.

The curve was plotted down on &quot;

papier millimetrique,&quot; and has been copied
in reduced size in the figure. The constants were selected after several

trials, in order to give a curve that should be at once characteristic, and

of manageable dimensions.

The distribution of pitch upon the screws of the cylindroid is of

fundamental importance in the theory, so that we must express the pitches

appropriate to the several points on the cubic.

Let p denote the pitch ; then, from the known property of the cylindroid,

p=p + mcos 26,

where pQ is a constant. Transforming this result into the co-ordinates of

the point on the cubic, we have

(x
2

if cos2
ft) cos 2a + 2xy cos 8 sin 2a

/\1 /i /vvi v_ *

P ~P ^ + 2/

2 cos2
/3

161. Chord joining Two Screws of Equal Pitch.

As the pitches of the two screws, defined by + and 6, are equal, the

chord in question is found by drawing the line through the points x
, y and

x&quot;, y&quot;, respectively, where

x = y cos ft tan (9 a),

y = h sec ft m cosec ft sin 20,

x&quot;
=

y&quot;
cos ft tan ( a),

y&quot;

= h sec ft + m cosec ft sin 20.

After a few reductions, the required equation is found to be

xm (cos 20 + cos 2a) + y (h sin ft + m cos ft sin 2a)

- h- tan ft + m2 cot ft sin 2 20 - 0.

If this chord passes through the origin, then

- h* tan- ft + ??i
2 sin2 20 =

;

or, h tan m sin 20 = 0.

But this is obviously necessary ;
for from the geometry of the cylindroid it is

plain that must then fulfil the required condition.
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We can also determine the chord in a somewhat different manner, which

has the advantage of giving certain other expressions that may be of

service.

Let U = be the cubic curve.

Let V= be the equation of the two straight lines from the origin to the

points of intersection with the two equal pitch screws + 6.

Let L = be the chord joining the two intersections of U and V, distinct

from the origin : this is, of course, the chord now sought for. Then we must

have an identity of the type

cU=VX

where c is some constant. For the conditions L = and V= imply U=0, and

L cuts U in three points, two of which lie on V, and the third point, called /,

must lie on X. The line X is otherwise arbitrary, and we may, for con

venience, take it to be the line 11 from the origin to /. The product VX
thus contains only terms of the third degree, and accordingly the terms of

the second degree in U must be sought in LY.

Let U=u3 +u2 where u3 and u2 are of the third and second degrees

respectively, then cu.2 must be the quadratic part of the product L Y. As L
does not pass through the origin, it must have an absolute term, conse

quently Y must not contain either an absolute term or a term of the first

degree. If, therefore, c be the absolute term in L, it is plain that Y must

be simply u2 ,
and we have accordingly,

c (us + MS)
= VX + (L + c) u2 ,

where L denotes the value of L without the absolute term : we have con

sequently the identity

cu3
= VX + L u2 .

In this equation we know uz ,
u3 , V, and the other quantities have to be found.

If we substitute

x = y cos /3 tan (a + 6),

we make V vanish, and representing L by \x + py, we find

X cos ft tan (a 6) p = c T~ 5
- ^ &amp;gt;

h tan /9 + ra sin 20

and after a few steps

\ m cos 2a + tn cos 20

c - h* tan /3 + ?/i
2 cot /3 sin

2 2

p _ h sin /3 + m cos ft sin 2a

c

~~

h2 tan /3 + ??i
2 cot ft sin2 2
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We can also obtain X
;
for let it be Px+ Qy, then severally identifying the

coefficients of a? and y
3

,
we have,

P = m sin 2a 4- h tan ft,

Q = m cos ft (cos 2a + cos 20) ;

finally, resuming the various results, we obtain the identity

wherein,

c = - h2 tan ft + m2 cot /3 sin
2
20,

U = sin/3 cos2

/3?/
3 + sin Pyx?,

(m sin 2a + A tan /3) a?
2 + 2mxy cos /3 cos 2a

+ (m sin 2a cos2

ft h sin ft cos /3) t/
2

.

F= wz#2
(cos 2a + cos 2$) + 2//m/ sin 2a cos ft + my2 cos2

ft (cos 20 cos 2a),

X = oc(m sin 2a + A tan /3) my cos ft (cos 2a + cos 20),

i = TO# (cos 2a + cos 20) + y (h sin /3 + m cos /3 sin 2a)

- A2 tan /3 + m2 cot sin2
20,

F= a? ( m sin 2a A tan /3) -f 2?n#y cos ^ cos 2a

+ 2/

2

(m sin 2a cos2
/3 h sin y3 cos y3).

162. Parabola.

The screws reciprocal to a cylindroid intersect two screws of equal pitch
on the surface. Any chord in the section which cuts the cubic in two points
of equal pitch must thus be the residence of a screw reciprocal to the surface;

accordingly the chord

mx (cos 2a + cos 20) + y (h sin ft + m cos ft sin 2a)

- h- tan ft + m? cot ft sin
2 20 = 0,

when it receives a pitch equal to

pQ m cos 20,

forms a screw reciprocal to the cylindroid.

It is easily shown that the envelope of this chord is a parabola; differ

entiating with respect to we have

x = 2m cot ft cos 20.

Eliminating we obtain

xz + 4&amp;lt;mx cot ft cos 2&amp;lt;z + 4y (h cos ft + m cos ft cot ft sin 2a)
- 4h?+ 4m2 cot2

ft
= 0.

The vertex of the parabola is at the point

x = - 2m cot ft cos 2a
; y = h sec ft m cosec ft sin 2a.
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The latus rectum is

4 cos /3 (h + m cot /3 sin 2a).

The values of the two equal pitches (p) on the pair of screws are thus

expressed in terms of the abscissa x of the point in which the chord touches

the envelope by means of the equation

From any point P, on the cubic, two tangents can be drawn to the

parabola. Each of these tangents must intersect the cubic in a pair of screws

of equal pitch. One tangent will contain the other screw whose pitch is equal

to that of P. The second tangent passes through two screws of equal pitch

in the two other points which, with P, make up the three intersections with

the cubic. As the principal screws of the cylindroid are those of maximum
and minimum pitch respectively, it follows that the tangents at these points

will also touch the parabola. These common tangents are shown in the

figure.

This parabola is drawn to scale in Fig. 36. The equation employed was

2

5 +

When the figure was complete, it was obvious that the parabola touched

the cubic, and thus the following theorem was suggested :

The parabola, which is the envelope of chords joining screws of equal pitch,

touches the cubic in three points.

The demonstration is as follows : To seek the intersections of the

parabola with the cubic, we substitute, in the equation of the parabola, the

values

x = h tan (6 a) m cot /3 sin 20 tan (9 a),

y = h sec /3 m cosec /3 sin 20,

This would, in general, give an equation of the sixth degree for tan 9. It

will, however, be found in this case that the expression reduces to a perfect

square. The six points in which the parabola meets the cubic must thus

coalesce into three, of which two are imaginary. The values of 9 for these

three points are given by the equation

h tan (9
-

a)
- m cot (sin 26 tan (9

-
a) + 2 cos 20}

= 0.

We can also prove geometrically that the parabola touches the cubic at

three points.

In general, a cone of screws reciprocal to the cylindroid can be drawn

from any external point. If the point happen to lie on the cylindroid,
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the cone breaks up into two planes. The nature of these planes is easily

seen. One of them, A, must be the plane perpendicular to the generator

through ;
the other, B, is the plane containing 0, and the screw of equal

pitch to that of the screw through 0. These planes intersect in a ray, L,

and it must first be shown that L is a tangent to the cyliridroid.

Any ray intersecting one screw on a cylindroid at right angles must cut

the surface again in two screws of equal pitch ; consequently L can only

meet the surface in two distinct points, each of which has the pitch of the

generator through 0. It follows that L must intersect the surface at two

coincident points 0, i.e. that it is a tangent to the cylindroid at 0.

Let any plane of section be drawn through 0. This plane will, in

general, intersect A and B in two distinct rays : these are the two screws

reciprocal to the cylindroid, and they are accordingly the two tangents from

to the parabola we have been discussing. The only case in which these

two rays could coalesce would occur when the plane of section was drawn

through L ;
but the two tangents to a parabola from a point only coalesce

when that point lies on the parabola. At a point where the parabola meets

the cubic, L must needs be a tangent both to the parabola and to the cubic,

which can only be the case if the two curves are touching. We have thus

proved that the parabola must have triple contact with the cubic.

There are thus three points on the cubic which have the property that

the tangent intersects the curve again in a point of equal pitch to that of the

point of contact. We thus learn that all the screws of a four-system which

lie in a plane touch a parabola having triple contact with the reciprocal

cylindroid.

From any point P, on the cubic, two tangents can be drawn to the

parabola. Each of these tangents must intersect the cubic in a pair of screws

of equal pitch. One tangent will contain the two screws whose pitch is equal
to that of P. The other tangent passes through two screws of equal pitch
in the two other points, which, with P, make up the three intersections

with the cubic.

As the principal screws of the cylindroid are those of maximum and

minimum pitch, respectively, it follows that the tangents at these points
will also touch the parabola. These common tangents are shown in Fig. 36.

From the equation of the cylindroid,

z (a? + 2/
2
)
=

2ma?y,

it follows that the plane at infinity cuts the surface in three straight lines

on the planes,
* = 0,

x iy
= 0.
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The line at infinity 011 the plane of z is of course intersected by all the real

generators of the cylindroid, inasmuch as they are parallel to z. The points

at infinity on the planes x iy
= are each the residence of an imaginary

screw, also belonging to the surface. The pitches of both these screws are

infinite.

We may deduce the two screws of infinite pitch on the surface in another

way. The equations of a screw are

y = x tan 6,

z = m sin 20,

while the pitch is

p + m cos 20.

If tan 6 be either + i, we find both z infinite and the pitch infinite. We
thus see that through the infinitely distant point /, on the nodal line of the

cylindroid, two screws belonging to the surface can be drawn, just as at any
finite point. The peculiarity of the two screws through / is, that their

pitches are equal, i.e. both infinite, and this is not the case with any other

pair of intersecting screws.

It is now obvious why the envelope just considered turned out to be

a parabola rather than any other conic section. Every plane section will

have the line at infinity for a transversal cutting two screws of equal pitch ;

the envelope of such transversals must thus have the line at infinity for

a tangent, i.e. must be a parabola.

163. Chord joining Two Points.

If 6 and 6&quot; be the angles by which two points on the cubic are defined,

then the equation to the chord joining those points is

where A = 2m cos (0
-

a) cos
(9&quot;

-
a) cos (0 + 0&quot;),

B = hsm/3+m cos j3 cos (6
r + 0&quot;)

sin (2a
- & - & }

- m cos sin (0 +
0&quot;)

cos (ff
-

0&quot;),

C = - tan /3 (h
-m cot /3 sin 20 ) (h-m cot j3 sin

2(9&quot;).

If in these expressions we make + 6&quot;
=

0, we obtain the equation for the

chord joining screws of equal pitch, as already obtained.

We shall find that, in particular sections, these expressions become con

siderably simplified. Suppose, for example, that the plane of section be a

tangent plane to the cylindroid. The cubic then degenerates to a straight

line and a conic. The condition for this will be obvious from the equation
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of the cubic. If the coefficient of a? become zero, the required decomposition

takes place, for y is then a factor. The necessary and sufficient condition

for the plane of section being a tangent, is therefore

ra sin 2a + h tan /3
= 0.

When this is the case, the three expressions of A, B, C may be divided by
a common factor,

2m cos (6 a) cos
(6&quot; a).

and we have

A = cos (& + 0&quot;),

B = - cos /3 sin (& + 0&quot;),

G = - 2m cot 13 sin (a + ) sin (a + 0&quot;).

If the screws be of equal pitch, 9 + 0&quot;
= 0, the coefficient of y disappears,

and we see that all the chords are merely lines parallel to the axis of y, which

is parallel to one of the axes of the ellipse.

The equation to the chord then becomes

(cos 2a + cos 20) [x + m cot ft (cos 2a cos 20)}
= 0.

For a given value of x there are two values of corresponding to the two

chords that can be drawn through the point. One of these chords is parallel

to y, and has a obtained from the equation

cc + m cot /3 (cos 2a cos 20) = 0.

7T
The other value of is

--
a, from the equation

2

cos 2a+ cos 20 = 0.

This is independent of x, as might have been foreseen from the fact that

the two screws of equal pitch are in this case the line in the section and the

other screw of equal pitch. The latter cuts the section in a certain point, and,

of course, all chords through this point meet the curve in two screws of equal

pitch.

164. Reciprocal Screws.

Another branch of the subject must now be considered. We shall first

investigate the following general problem :

From any point, P, a series of transversals is drawn across each pair

of reciprocal screws on the cyliiidroid. It is required to determine the cone

which is the locus of these transversals. We shall show that this is a cone

of the second degree.

B. 11
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Let a, /3, 7 be the co-ordinates of the point. Then the plane through

this point, and the generator of the cylindroid defined by the equations

y = x tan 0,

z = in sin 20,

is (y x tan 6) (7 m sin 20)
=

(/3 a tan 6) (z m sin 20) ;

or, if we arrange in powers of tan 0, we obtain

A tan 3 + B tan2 + Otan + D = 0,

in which

A = VLZ yx ;
D =

&amp;lt;yy (3z,

B = yy /3z + 2mx 2ma
;

C = a.z yx + 2m/3 2my.

If the same transversal also crosses the generator defined by , then,

A tan3 + B tan2 & + G tan & + D = 0.

When the two screws defined by and are reciprocal,

tan tan = H,

when H is a constant.

By eliminating and rejecting the factor

tan - tan &

we obtain

- A*H 3 + A CH* - BDH + Dn- = 0.

And as this is of the second degree in x, y, z, the required theorem has been

proved.

All these cones must pass through the centre of the cylindroid, inasmuch

as the two principal screws of the cylindroid are reciprocal. If a constant

be added to the pitches of all the screws on the cylindroid, then the pairs

of reciprocals alter, inasmuch as H alters. The cone changes accordingly,

and thus there would be through each point a family of cones, all of which,

however, agree in having, as a generator, the ray from the vertex to the

centre of the cylindroid. Thus, even when the cylindroid is given, we must

further have the pitch of a stated screw given before the cone becomes

definite. This state of things may be contrasted with that presented by the

cone of reciprocal screws which may be drawn through a point. The latter

depends only upon the cylindroid itself, and is not altered if all the pitches

be modified by a constant increment.
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The discriminant of the cubic

- A n-H3 + ACH* - SDH + D* =

is

A-D* (A
2D* + B3D + -fa

AC 3 - &C* - f ABCD).

Omitting the factor A~D2
,
we have, for the envelope of the system of cones,

the cone of the fourth order, found by equating the expression in the

bracket to zero. It may be noted that the same cone is the envelope of

the planes

165. Application to the Plane Section.

We next study the chord joining a pair of reciprocal points on the cubic

of 160. Take any point in the plane of the section
; then, as we have just

seen, a cone of screws can be drawn through this point, each ray of which

crosses two reciprocal screws. This cone is cut by the plane of section in

two lines, and, accordingly, we see that through any point in the plane of

section two chords can be drawn through a pair of reciprocal points. The
actual situation of these chords is found by drawing a pair of tangents to a

certain hyperbola. This will now be proved.

The values of 6 and 6 ,
which correspond to a pair of reciprocal points,

fulfil the condition

tan0tan0 =#;
whence,

cos (6 -0 )
= \ cos (0 + ) ;

where, for brevity, we write X instead of

l+H
l-H

If, further, we make + 6 =
ty, we shall find, for the equation of the chord,

Px + Qy + Rz = 0;

in which,

ra ,, .
m . mP =

-^ (X + cos 2a) -f sin 2a sin 2i/r + --
(\ + cos 2a) cos 2^,22 ^

Q = /t sin y3 + cos ft sin 2a
( (\ + cos 2a) sin 2\frA &

-~ cos 8 sin 2a cos

7)1-= -h&quot; tan 8 - (\
2 - 1 ) cot B + \hm sin 2-f

-~
(\ -

1) cot B cos

11-2
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The envelope of this chord is found to be

= +#2 ra2 sin2
2a,

+ y
2

|

ra2 cos2 & cos2 2a - hm sin cos sin 2a - A2 sin2
/3

+ |m2 X cos 2a cos2
/3 + |ra

2 X2 cos2
/3,

w2

+ xy \ a sin 2 cos 2 cos ~ m^ cos ^a s^n &

|m2 X sin 2a cos /3 ra&X sin /3,

+ ac + m/t2 cos 2a tan fS + hm2 X sin 2a + mA2 X tan /3,

+ y |

- w2A cos /3 + w/i2 sin y3 sin 2a + 2/i
3 sin tan /3

- w2AX cos cos 2a,

+
|

m2A2 - A4 tan2

0.

Using the data already assumed in 160, and, with the addition now

made of taking X to be ,
the equation reduces to

122a;2 - 2(%2 - 16Ley
- 2417^ - 5003y + 245436 =

;

which, for convenience of calculation, I change into

x = 1-6 + 21 6 sec
&amp;lt;J&amp;gt;

47 5 tan
&amp;lt;/&amp;gt;,

y = - 12-8 + 32-8 sec
&amp;lt;/&amp;gt;.

This hyperbola has been plotted down in Fig. 36. It obviously touches the

cubic at three points. I had not anticipated this until the curves were care

fully drawn
; but, when the theorem was suggested in this manner, it was

easy to provide the following demonstration :

The cone of reciprocal chords drawn through any point P breaks up

into a pair of planes when P lies on the cylindroid. (I use the expression,

reciprocal chord, to signify the transversal drawn across a pair of reciprocal

screws on the cylindroid. This is very different from a screw reciprocal to

the cylindroid.) For, take the screw reciprocal to that which passes

through P. Then the plane X, through P and this screw, is obviously one

part of the locus. Draw through P any transversal across a pair of reci

procals on the cylindroid, then the plane Y, through the centre and this

transversal, will be the other part of the locus. This pair of planes, X
and Y, intersect in a ray which we shall call 8.

A plane of section through P will, of course, usually cut the two planes

in two rays, and these will be the two reciprocal chords through P. But

suppose the plane of section happened to pass through 8, then there will be

only one reciprocal chord through P, and this will, of course, be 8. Now,

8 must be a tangent to the cylindroid at P. Every chord through P, in

the plane of Y, must cut the surface again in a pair of reciprocal points. To

this 8 must be no exception, and as it lies in X, it intersects the screw
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reciprocal to that through P ;
therefore the third intersection of S with the

surface must coalesce with P, or, in other words, S must be a tangent to the

surface at P. We have thus shown that in the case where two reciprocal

chords through a point on the cubic coalesce into one, that one must be the

tangent to the cubic at P.

But the two reciprocal chords through a point will only coalesce when
the point lies on the hyperbola, in which case the two chords unite into the

tangent to the hyperbola. Consider, then, the case where the hyperbola
meets the cubic at a point P, inasmuch as P lies on the hyperbola, the two

chords coalesce into a tangent thereto, but because they do coalesce, this line

must needs be also a tangent to the cubic
; hence, whenever the hyperbola

meets the cubic the two curves must have a common tangent. Altogether
the curves meet in six points, which unite into three pairs, thus giving the

required triple contact between the hyperbola and the cubic.

If a constant h be added to all the pitches of the screws on a cylindroid,

then, as is well known, the screws so altered still represent a possible cylin

droid ( 18). The variations of h produce no alteration in the cubic section

of the cylindroid ; but, of course, the hyperbola just considered varies with

each change of h. In every case, however, it has the triple contact, and

there is also a fixed tangent which must touch every hyperbola. This is

the chord joining the two principal screws on the cylindroid ; for, as these

are reciprocal, notwithstanding any augmentation to the pitches, their chord

must always touch the hyperbola. The system of hyperbolae, corresponding
to the variations of h, is thus concisely represented ; they must all touch

this fixed line, and have triple contact with a fixed curve : that is, they must

each fulfil four conditions, leaving one more disposable quantity for the

complete definition of a conic. See Appendix, note 4.

We write the tangent to the hyperbola or the reciprocal chord in the

form

L cos 2i/r + M sin 2-f + N = 0.

If a pair of values can be found for x and y, which will simultaneously satisfy

L =
0, M = 0, N = 0,

then every chord of the type

L cos 2ir

must pass through this point. The condition for this is, that the discriminant

of the hyperbola is zero, and we find the discriminant to be

{m*h sin (X,
2 -

1) (h tan ft + m sin 2a).
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There are two critical cases in which this expression vanishes. It does so if

h tan ft + m sin 2a =
;

where the plane of section is tangential to the cylindroid.

But we also note that the discriminant will vanish if

h = 0,

i.e. if the plane of section passes through the centre of the cylindroid.

We might have foreseen this from the results of the last article
;

for the

plane of Y is a central section, and the hyperbola has evidently degenerated,
for all the reciprocal chords, instead of touching an hyperbola, merely pass

through the common apex P. The case of the central section is therefore

of special interest.

166. The Central Section of the Cylindroid.

By this we mean a section of the surface, special in no other sense, save

that it passes through the centre of the surface. The equation to the

central section is ( 160)

y
3 sin ft cos

2

/3 + yx
z sin (3 mxz sin 2a + 2mxy cos ft cos 2a + my- sin 2a cos2

/3
= 0.

The chord joining points of equal pitch + 6 is

x (cos 20 + cos 2a) + y cos ft sin 2a + m cot ft sin2 20 = 0.

The apex P through which all reciprocal chords pass is

_ m (\
2 -

1) cot ft (\ + cos 2)
1 + 2X cos 2a 4- A,

2

_ m (A
2

1) cosec ft . sin 2a
V ~

1 + 2X cos 2a + X2

and in general the co-ordinates of a point on the cubic are

x = y cos ft tan (6 a),

y = m cosec ft sin 26.

One of these curves may be conveniently drawn to scale, from the

equations

as =% tan (0
-

25),

y = - 66 sin 20.

The parabola, which is the envelope of equal pitch-chords, would in this

case have as its equation
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The principal screws on the cylindroid both pass through the double

point ;
the two tangents to the curve at this point must therefore both

touch the parabola.

The leading feature of the central section is expressed by the important

property possessed by the chords joining reciprocal screws. If we add any

constant to the pitches, then we alter X, and, accordingly, the point P,

through which all reciprocal chords pass, moves along the curve.

The tangent to the cubic at P meets the cubic again in the point

reciprocal to P. Two tangents, real or imaginary, can be drawn from P
to the cubic touching it in the points 1\, T2 , respectively: as these must

each correspond to a screw reciprocal to itself, it follows that Tl
and T2

are the screws of zero pitch. We hence see that the two tangents from any

point on the cubic touch the cubic in points of equal pitch.

Let a and ft be two screws, and 7 and 8 another pair of screws, and let

the two chords, a/9 and 78, intersect again on the cubic. If d and 6 be

the perpendicular distance and angle between the first pair, and d and

the corresponding quantities for the second pair, then there must be some

quantity ay, which, if added to all the pitches on the cyliridroid, will make

a. and /3 reciprocal, and also 7 and 8 reciprocal. We thus have

(pa + pp + 2&&amp;gt;)
cos d sin 6 = 0,

(Py + Ps + 2w) cos - d sin 6 =
;

whence, pa + pp d tan = py + p& d tan 6
;

in other words, for every pair of screws, a and /8, whose chords belong to a

pencil diverging from a common point on the surface, the expression

Pa + p? d tan 6

is a constant. The value of this constant is double the pitch of the screw

of either of the points of contact of the two tangents from P to the curve.

167. Section Parallel to the Nodal Line.

If the node on the cubic be at infinity, the form of equation to the cubic

hitherto employed will be illusory. The nature of this section must therefore

be studied in another way, as follows :

Let the plane cut the two perpendicular screws in A and B. Let I be

the perpendicular OC from upon G, and let rj be the inclination of this

perpendicular to the axis of x. Then, taking OA as the new axis of x, in

which case z will be the new y, we have

x = I tan (t) 0\

y = m sin 20.
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Eliminating 6, and omitting the accents, we have, as the equation of the

cubic,

yx
1 + mx2 sin 2ij + l-y + 2lmx cos 2^ ml2 sin 2?;

= 0.

The chord joining the two points and & has, as its equation,

mac cos (0 + ) [cos (2rj
- -

) + cos (0
-

)] + ly

- ml sin (2vi-0- ) cos (0 + )
- ml cos (0

-
) sin (0 + )

= 0.

If this be the chord joining the screws of equal pitch, then

+ = 0,

and the equation reduces to

mas (cos 2?7 + cos 20) + ly ml sin 2^ = 0.

We thus see that this chord, which in the general section envelops a parabola,

now passes constantly through the fixed point

x = 0,

y = + m sin 2?;.

This result could have been foreseen
; for, consider that screw on the cylin-

droid (and there must always be one) normal to the plane which it intersects

at a point P, any ray in the plane through P is perpendicular to this screw,

and, therefore, by a well-known property of the cylindroid, must intersect

the curve again in two points of equal pitch. This point P is, of course,

the point whose existence we have demonstrated above.

168. Relation between Two Conjugate Screws of Inertia.

We have found the relation between a pair of conjugate screws of inertia

so important in the dynamical part of the theory, that it is worth while to

investigate the properties of the chord joining two such points in the central

section. It can readily be shown that this chord must envelop a conic.

This conic and the point P on the cubic through which all reciprocal chords

will pass, will enable the impulsive screw, corresponding to any instantaneous

screw, to be immediately determined. For, draw through any point S that

tangent to the conic which gives S as one of the two conjugate screws of

inertia which must lie upon it
;
let S be the other conjugate screw

;
then

the chord PS will cut the cubic again in the required impulsive screw.

The two principal screws of inertia are found by drawing from P that

tangent to the conic which has not P as one of the two conjugate screws

of inertia. The two intersections of this tangent, with the cubic, are the

required principal screws of inertia.

We can also determine the relation between the impulsive screw and the

instantaneous screw with regard to any section whatever. We have here
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to consider two conies connected with the cubic, viz. the reciprocal conic,

which is the envelope of reciprocal chords, and the inertia conic, which is

the envelope of chords of conjugate screws of inertia. We must provide

a means of discriminating the two tangents from a point P on the cubic

to either conic
; any ray, of course, cuts the cubic in three points, of which

two possess the characteristic relation. If P be one of these two, we may
call this tangent the odd tangent. The other tangent will have, as its

significant points, the two remaining intersections ; leaving out P, we can

then proceed, as follows, to determine the impulsive screw corresponding to

P as the instantaneous screw :

Draw the odd tangent from P to the inertia conic, and from the con

jugate point thus found draw the odd tangent to the reciprocal conic. The

reciprocal point Q thus found is the impulsive screw corresponding to P as

the instantaneous screw.

In general there are four common tangents to the two conies. Of these

tangents there is only one possessing the property, that the same two of its

three intersections with the cubic are the correlative points with respect

to each of the conies. These two intersections are the principal screws of

inertia.

To determine the small oscillations we find the potential conic, the

tangents to which are chords joining two conjugate screws of the potential

( 100). The two harmonic screws are then to be found on one of the two

common tangents to the two conies. It can be shown that both the inertia

conic and the potential conic will, like the reciprocal conic, have triple

contact with the cubic.



CHAPTER XIV.

FREEDOM OF THE THIRD ORDER*.

169. Introduction.

The dynamics of a rigid body which has freedom of the third order,

possesses a special claim to attention, for, included as a particular case, we

have the celebrated problem of the rotation of a rigid body about a fixed

point. In the theory of screws the screw system of the third order is

characterised by the feature that the reciprocal screw system is also of the

third order, and this is a fertile source of interesting theorems.

We shall first study the screw system of the third order, and its reciprocal.

We shall then show how the instantaneous screw, corresponding to a given

impulsive screw, can be determined for a rigid body whose movements are

prescribed by any screw system of the third order. We shall also point out

the three principal screws of inertia, of which the three principal axes are

only special cases, and we shall determine the kinetic energy acquired by a

given impulse. Finally, we shall determine the three harmonic screws, and

we shall apply these principles to the discussion of the small oscillations of

a rigid body about a fixed point under the influence of gravity.

A screw system of the first order consists of course of one screw. A
screw system of the second order consists of all the screws on a certain

ruled surface (the cylindroid). Ascending one step higher, we find that in

a screw system of the third order the screws are so numerous that a finite

number (three) can be drawn through every point in space. In the screw

system of the fourth order a cone of screws can be drawn through every

point, while to a screw system of the fifth order belongs a screw of suitable

pitch on every straight line in space.

170. Screw System of the Third Order.

We shall now consider the collocation of the screws in space which

constitute a screw system of the third order. A free rigid body can receive

* Transactions of the Royal Irish Academy, Vol. xxv. p. 191 (1871).
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six independent displacements. Its position is, therefore, to be specified by
six co-ordinates. If, however, the body be so constrained that its six co

ordinates must always satisfy three equations of condition, there are then

only three really independent co-ordinates, and any position possible for a

body so circumstanced may be attained by twists about three fixed screws,

provided that twists about these screws are permitted by the constraints.

Let A be an initial position of a rigid body M. Let M be moved from

A to a closely adjacent position, and let x be the screw by twisting about

which this movement has been effected
; similarly let y and z be the two

screws, twists about which would have brought the body from A to two

other independent positions. We thus have three screws, x, y, z, which com

pletely specify the circumstances of the body so far as its capacity for

movement is considered.

Since M can be twisted about each and all of x, y, z, it must be capable
of twisting about a doubly infinite number of other screws. For suppose
that by twists of amplitude x

, y ,
z

,
the final position V is attained. This

position could have been reached by twisting about some screw v, so as to

come from A to V by a single twist. As the ratios of x to y ,
and z

,
are

arbitrary, and as a change in either of these ratios changes v, the number
of v screws is doubly infinite.

All the screws of which v is a type form what we call a screw system of
the third order. We may denote this screw system by the symbol S.

171. The Reciprocal Screw System.

A wrench which acts on a screw
77

will not be able to disturb the equili

brium of M, provided t] be reciprocal to x, y, z. If
rj be reciprocal to three

independent screws of the system S, it will be reciprocal to every screw of S.

Since rj has thus only three conditions to satisfy in order that it may be

reciprocal to S, and since five quantities determine a screw, it follows that tj

may be any one of a doubly infinite number of screws which we may term

the reciprocal screw system S . Remembering the property of reciprocal

screws ( 20) we have the following theorem ( 73).

A body only free to twist about all the screws of S cannot be disturbed

by a wrench on any screw of S
; and, conversely, a body only free to tAvist

about the screws of S cannot be disturbed by a wrench on any screw of S.

The reaction of the constraints by which the freedom is prescribed
constitutes a wrench on a screw of S .

172. Distribution of the Screws.

To present a clear picture of all the movements which the body is
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competent to execute, it will be necessary to examine the mutual connexion

of the doubly infinite number of screws which form the screw system. It

will be most convenient in the first place to classify the screws in the

system according to their pitches ;
the first theorem to be proved is as

follows :

A II the screws of given pitch + k in a three-system lie upon a hyperboloid

of which theyform one system of generators, while the other system of gene

rators with the pitch k belong to the reciprocal screw system.

This is proved as follows : Draw three screws, p, q, r, of pitch + k

belonging to S. Draw three screws, I, m, n, each of which intersects the

three screws p, q, r, and attribute to each of I, m, n, a pitch k. Since two

intersecting screws of equal and opposite pitches are reciprocal, it follows

that p, q, r, must all be reciprocal to I, m, n. Hence, since the former

belong to S, the latter must belong to 8 . Every other screw of pitch + k

intersecting I, m, n, must be reciprocal to S
,
and must therefore belong to S.

But the locus of a straight line which intersects three given straight

lines is a hyperboloid of one sheet, and hence the required theorem has

been proved.

173. The Pitch Quadric.

One member of the family of hyperboloids obtained by varying k presents

exceptional interest. It is the locus of the screws of zero pitch belonging
to the screw complex. As this quadric has an important property ( 176)

besides that of being the locus of the screws of zero pitch, it is desirable

to denote it by the special phrase pitch quadric.

We shall now determine the equation of the pitch quadric. Let one of

the principal axes of the pitch quadric be denoted by x, this will intersect

the surface in two points through each of which a pair of generators can be

drawn. One generator of each pair will belong to S, and the other to S .

Each pair of generators will be parallel to the asymptotes of the section of

the pitch quadric by the plane containing the remaining principal axes

y and z. Let /*,
v be the two generators belonging to S, then lines bisecting

internally and externally the angle between two lines in the plane of y and

z, parallel to
/i, v will be two of the principal axes of the pitch quadric.

Draw the cylindroid (pit). The two screws of zero pitch on the cylindroid

are equidistant from the centre of the cylindroid, and the two rectangular

screws of the cylindroid bisect internally and externally the angle between

the lines parallel to the screws of zero pitch. Hence it follows that the two

rectangular screws of the cylindroid (pv) must be on the axes of y and z

of the pitch quadric. We shall denote these screws by ft and 7, and their
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pitches by p$ and py . From the properties of the cylindroid it appears
that a, the semiaxis of the pitch quadric, must be determined from the

equations
a = (pp py) sin I cos I,

P cos2
1 +py sin2

1 =
;

whence eliminating I, we deduce

with of course similar values of b and c. Substituting these values in the

equation of the quadric

we deduce the important result which may be thus stated :

The three principal axes of the pitch quadric, when furnished with suitable

pitches pa ,pii, p-f, constitute screws belonging to the screw system of the third

order, and the equation of the pitch quadric has theform

PO.CO&quot;
+ ppf +pyz

2 + papppy = 0.

We can also show conversely that every screw 6 of zero pitch, which

belongs to the screw system of the third order, must be one of the generators
of the pitch quadric. For must be reciprocal to all the screws of zero

pitch on the reciprocal system of generators of the pitch quadric ;
and

since two screws of zero pitch cannot be reciprocal unless they intersect

either at a finite or infinite distance, it follows that 9 must intersect the

pitch quadric in an infinite number of points, and must therefore be entirely

contained thereon.

174. The Family of Quadrics.

It has been shown that all the screws of given pitch belonging to a

system of the third order are the generators of a certain hyperboloid.

There is of course a different hyperboloid for each pitch. We have now

to show that all these hyperboloids are concentric.

Take any two screws whatever belonging to the system and draw the

cylindroid which passes through those screws. This cylindroid contains

two screws of every pitch. It must therefore have two generators in

common with every hyperboloid of the family. But from the known sym
metrical arrangement of the screws of equal pitch on a cylindroid, it follows

that the centre of that surface must lie at the middle point of the shortest

distance between each two screws of equal pitch. The centres of the hyper
boloids for all possible pitches must therefore lie in the principal plane of

any cylindroid of the system. Take any three cylindroids of the system.
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The centres of all the hyperboloids coincide with the intersection of the

three principal planes of the cylindroids. It will be convenient to call this

point the centre of the three-system.

We hence see that whenever three screws of a three-system are given,

the centre of the system is determined as the intersection of the principal

planes of the three cylindroids denned by each pair of screws taken suc

cessively.

We may also show that not only are the family of hyperboloids concentric,

but that they have also their three principal axes coincident in direction and

situation with the principal axes of the pitch quadric.

Draw any principal axis z of the pitch quadric. Two screws of zero

pitch belonging to the system will be intersected by z and we draw the

cylindroid through these two screws. Let L l and L.&amp;gt; be the two screws of

equal pitch p on this cylindroid. Let be the centre of the cylindroid, this

same point being also the centre of the pitch quadric, and therefore as

shown above of every p-pitch hyperboloid Sp . As the centre bisects every

diameter, it follows that the plane OL2 cuts the hyperboloid Sp again in a

ray LI which is perpendicular to z and crosses Ll at its intersection with z.

The plane containing L l and Z/ is therefore a tangent to 8P at the point

where the plane is cut by z. As z is perpendicular to this plane it follows

that the diameter is perpendicular to its conjugate plane. Hence z is a

principal axis of Sp ,
and the required theorem is proved.

Let now S denote a screw system of the third order, where a, /3, y are

the three screws of the system on the principal axes of the pitch quadric.

Dimmish the pitches of all the screws of S by any magnitude k. Then the

quadric

must be the locus of screws of zero pitch in the altered system, and therefore

of pitch + k in the original system ( 110).

Regarding & as a variable parameter, the equation just written represents

tlie family of quadrics which constitute the screw system S and the reciprocal

screw system 8 . Thus all the generators of one system on each quadric,

with pitch + k, constitute screws about which the body, with three degrees

of freedom, can be twisted
;
while all the generators of the other system,

with pitch k, constitute screws, wrenches about which would be neutralized

by the reaction of the constraints.

For the quadric to be a real surface it is plain that k must be greater

than the least, and less than the greatest of the three quantities pa ,pp, py -
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Hence the pitches of all the real screws of the screw system S are inter

mediate between the greatest and least of the three quantities pa&amp;gt; pp, py .

175. Construction of a three-system from three given Screws.

If a family of quadric surfaces have one pair of generators (which do not

intersect) in common, then the centre of the surface will be limited to a

certain locus. We may investigate this conveniently by generalizing the

question into the search for the locus of the pole of a fixed plane with

respect to the several quadrics.

Let A be the given plane, / be the ray which joins the two points in

which the given pair of generators intersect A, X be the plane through /
and the first generator, Y the plane through / and the second generator,
B the plane through / which is the harmonic conjugate of A with respect
to X and Y. Then B is the required locus.

For, draw any quadric through the two given generators, and let be

the pole of A with respect to that quadric.

Draw a transversal through cutting the plane A in the point A l and
the first and second generators in X

l and Yt respectively. Since A 1 is on
the polar of it follows that OZ^Fj is an harmonic section. But the

transversal must be cut harmonically by the pencil of planes I(BXAY)
and hence must lie in B, which proves the theorem.

In the particular case when A is the plane at infinity, then is the

centre of the quadric. A plane parallel to the two generators cuts the

plane at infinity in the line /, and the planes X, Y and B must also contain

7. Then A, B, X, Y are parallel planes. Any transversal across X and Y
is cut harmonically by B and A, and as A is at infinity, the transversal must
be bisected at B. It thus appears that when a family of quadrics have one

pair of non-intersecting generators in common, then the plane which bisects

at right angles the shortest distance between these generators is the locus

of the centres of the quadrics.

If therefore three generators of a quadric are given, the three planes
determined by each pair of the quadrics determine the centre by their

intersection. The construction of the axes of the quadric may be effected

geometrically in the following manner. Draw three transversals Ql} Q2 , Q3

across the three given generators R1} R2 ,
R3 . Draw also two other trans

versals Hi, R5 across Q1} Q2 , Q3 . Construct the conic which passes through the
five points in which R1} R2 , R 3&amp;gt;

Rit Rs intersect the plane at infinity. Find
the common conjugate triangle to this conic and to the circle which is the
intersection of every sphere with the plane at infinity. Then the three
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rays from the centre of the quadric to the vertices of this triangle are the

three principal axes of the quadric.

We thus prove again that if a and /3 be any two screws of a three-system,
the centre of the pitch-quadric must lie in the principal plane of the

cylindroid through a and /?. For the common perpendicular to any two

screws of equal pitch on the cylindroid will be bisected by the principal

plane and therefore any hyperboloid through these two screws of equal

pitch must have its centre in that plane.

176. Screws through a Given Point.

We shall now show that three screws belonging to S, and also three

screws belonging to 8
,
can be drawn through any point x

, y ,
z . Substitute

x, y ,
z

,
in the equation of 17 5 and we find a cubic for k. This shows that

three quadrics of the system can be drawn through each point of space.

The three tangent planes at the point each contain two generators, one

belonging to S, and the other to S . It may be noticed that these three

tangent planes intersect in a straight line.

From the form of the equation it appears that the sum of the pitches of

three screws through a point is constant and equal to pa +pp +py -

Two intersecting screws can only be reciprocal if they be at right angles,

or if the sum of their pitches be zero. It is hence easy to see that, if a

sphere be described around any point as centre, the three screws belonging
to S, which pass through the point, intersect the sphere in the vertices of a

spherical triangle which is the polar of the triangle similarly formed by the

lines belonging to S .

We shall now show that one screw belonging to S can be found parallel

to any given direction. All the generators of the quadric are parallel to

the cone

(pa
-

k) x* + (pft

-
k) f + (py

-
k) z* = 0,

and k can be determined so that this cone shall have one generator parallel

to the given direction
;

the quadric can then be drawn, on which two gene

rators will be found parallel to the given direction
;
one of these belongs to

S, while the other belongs to S .

It remains to be proved that each screw of8 has a pitch which is propor

tional to the inverse square of the parallel diameter of the pitch quadric*.

* This theorem is connected with the linear geometry ol Plucker, who has shown (Neue Geometric

des Ratlines, p. 130) that k
l
x- + L2y- + k,

t
z 2 + k

1
kJ{3 )

is the locus of lines common to three

linear complexes of the first degree. The axes of the three complexes are directed along the

co-ordinate axes, and the parameters of the complexes are fcj, ._,,
k
3 ; the same author has also

proved that the parameter of any complex belonging to the &quot;

dreigliedrige Gruppe&quot; is propor

tional to the inverse square of the parallel diameter of the hyperboloid.
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Let r be the intercept on a generator of the cone

(pa
-

k) tf + (pp -k)f + (py -k)z* = 0;

by the pitch quadric

pa x&quot; + ptf + W&amp;gt;
+ paptpy = ;

then k = -PP^-
r-

but k is the pitch of the screw of S, which is parallel to the line r.

Nine constants ( 75) are required for the determination of a screw

system of the third order. This is the same number as that required for

the specification of a quadric surface. We hence infer, what is indeed

otherwise manifest, viz., that when the pitch quadric is known the entire

screw system of the third order is determined.

Another interesting property of the pitch quadric is thus enunciated.

Any three co-reciprocal screws of a given screw system of the third order

are parallel to a triad of conjugate diameters of its pitch quadric.

Take any three co-reciprocal screws of the system as screws of reference,

and let plt p^, p3 be their pitches. If then the co-ordinates of any screw p

belonging to the system be denoted by pl} p2 , p3 ,
we shall have for the pitch

ofp(95)
Pp = PlP* + P*P*

If a parallelepiped be constructed, of which the three lines parallel to

the reciprocal screws, drawn through the centre of the pitch quadric, are

conterminous edges, and of which the line parallel to p is the diagonal, and

if x, y, z be the lengths of the edges, and r the length of the diagonal, then

we have ( 35)

x y z~ =
Pi&amp;gt;

- =
P* -=P*-

It follows that pp must be proportional to the inverse square of the

parallel diameter of the quadric surface

P&2 +p2y
n- + p3z = H.

But pft
must be proportional to the inverse square of the parallel diameter

of the pitch quadric, and hence the equation last written must actually be

the equation of the pitch quadric, when H is properly chosen. But the

equation is obviously referred to three conjugate diameters, and hence three

conjugate diameters of the pitch quadric are parallel to three co-reciprocal
screws of the screw system.

B. 12
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We see from this that the sum of the reciprocals of the pitches of three

co-reciprocal screws is constant. This theorem will be subsequently

generalised.

177. Locus of the feet of perpendiculars on the generators*.

If p be the pitch of the screw of the three-system which makes angles

a, ft, 7 with the three principal screws, it is then easy to show that the

equation of the screw is

(p a) cos a + z cos /3 y cos 7 = 0,

z cos a + (p b) cos ft + a; cos 7 = 0,

+ y cos a x cos ft + (p c) cos 7 = 0.

If perpendiculars be let fall from the origin on the several screws of the

system, then if x, y, z be the foot of one of the perpendiculars

sc cos a + y cos ft + z cos 7 = 0.

Eliminating cos a, cos /3, cos 7 from this equation and the two last of those

above, we have

a; y z = 0,

z p b x

+ y x p c

or (pV)(p-c)x + x (#
2 + y- + z2

) + yz (b
-

c)
=

;

from this and the two similar equations we have, by elimination of p
2 and p

and denoting x2 + y
z + z* by r2

,

x, (b + c) x, bcx + (b c) yz + xr* =
;

y, (c + a) y, cay + (c a) zx + yr
n-

z, (a+b)z, abz + (a b) xy + zr3

multiplying the first column by r- and subtracting it from the last, we have

x, (b + c) x, bcx + (b c) yz = 0,

y, (c + a) y, cay + (c a) zx

z, (a + b) z, abz + (a b) xy

which may be written

(a
-

b)
2#y + (b

-
cf y*z- + (c

-
a)

2
z-ac&quot; = (a -b)(b- c) (c

-
a) vyz.

* This Article is due to Professor C. Joly, On the theory of linear vector functions,&quot; Transac

tions of the Royal Irish Academy, Vol. xxx. pp. 601 and 617 (1895), where a profound discussion

of Steiner s surface is given. See also by the same author Bishop Law s Mathematical Prize

Examination, Dublin University Examination Papers, 1898.
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This equation denotes a form of Steiner s surface :

v a + V/3 + V7 + VS = 0,

where

----- __
b c c a a o

Q_ ^ 2y 2z
r-* 7 7 &quot;T&quot;

-
j

6 c c a a b

2x 2y 2z
7 = - 7

--- + ^------
-, + 1,

o c c a a o

.__ --
.

6 c c a a 6

From the form of its equation it appears that this surface has three

double lines, which meet in a point, viz. the three axes OX, OY, OZ. This

being so any plane will cut the surface in a quartic curve with three double

points, being those in which the plane cuts the axes. If the plane touch the

surface, the point of contact is an additional double point on the section, that

is, the section will be a quartic curve with four double points, i.e. a pair of

conies. The projections of the origin on the generators of any cylindroid

belonging to the system lie on a plane ellipse ( 23). This ellipse must lie

on the Steiner quartic. Hence the plane of the ellipse must cut the quartic
in two conies and must be a tangent plane. See note on p. 182.

178. Screws of the Three-System parallel to a Plane.

Up to the present we have been analysing the screw system by classifying

the screws into groups of constant pitch. Some interesting features will be

presented by adopting a new method of classification. We shall now divide

the general system into groups of screws which are parallel to the same

plane.

We shall first prove that each of these groups is in general a cylindroid.

For suppose a screw of infinite pitch normal to the plane, then all the screws

of the group parallel to the plane are reciprocal to this screw of infinite

pitch. But they are also reciprocal to any three screws of the original

reciprocal system ; they, therefore, form a screw system of the second order

( 72) that is, they constitute a cylindroid.

We shall prove this in another manner.

A quadric containing a line must touch every plane passing through the

line. The number of screws of the system which can lie in a given plane

is, therefore, equal to the number of the quadrics of the system which can

be drawn to touch that plane.

122
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The quadric surface whose equation is

(pa
-

k) x- + (pp
-

k) y- + (py
-

k) z- + (p*
-

k) (p?
-

k) (py
-

fc)
= 0,

touches the plane Px + Qy + Rz + S = 0, when the following condition is

satisfied :

whence it follows that two values of k can be found, or that two quadrics

can be made to touch the plane, and that, therefore, two screws of the

system, and, of course, two reciprocal screws, lie in the plane.

From this it follows that all the screws of the system parallel to a plane

must in general lie upon a cylindroid. For, take any two screws parallel to the

plane, and draw a cylindroid through these screws. Now, this cylindroid will

be cut by any plane parallel to the given plane in two screws, which must

belong to the system; but this plane cannot contain any other screws;

therefore, all the screws parallel to a given plane must lie upon the same

cylindroid.

179. Determination of a Cylindroid.

We now propose to solve the following problem : Given a plane, deter

mine the cylindroid which contains all the screws, selected from a screw

system of the third order, which are parallel to that plane.

Draw through the centre of the pitch quadric a plane A parallel to

the given plane. We shall first show that the centre of the cylindroid

required lies in A ( 174).

Fig. 37.

Let Tl} T2 (Fig. 37) be two points in which the two quadrics of constant

pitch touch the plane of the paper, which may be regarded as any plane

parallel to A
;
then P is the intersection of the pair of screws belonging

to the system PTl} PT2 ,
which lie in that plane, and P is the intersection

of the pair of reciprocal screws P Rlt P R belonging to the reciprocal



179] FREEDOM OF THE THIRD ORDER. 181

system. Since P R^ is to be reciprocal to PT2 ,
it is essential that ^ be

a right angle; similarly ,R2 is a right angle. The reciprocal cylindroid, whose

axis passes through P
,

will be identical with the cylindroid belonging
to the system whose axis passes through P ;

but the two will be differently

posited. If the angle at P be a right angle, the points Tl and T2 are at

infinity ; therefore, the plane touches the quadrics at infinity ;
it must,

therefore, touch the asymptotic cone, and must, therefore, pass through the

centre of the pitch quadric ;
but P is the centre of the cylindroid in this

case, and, therefore, the centre of the cylindroid must lie in the plane A.

The position of the centre of the cylindroid in the plane A is to be

found by the following construction : Draw through
the centre a diameter of the pitch quadric

conjugate to the plane A. Let this line intersect

the pitch quadric in the points P1} P2 ,
and let S,

S (Fig. 38) be the feet of the perpendiculars let

fall from P1} P2 upon the plane A. Draw the

asymptotes OL, OM to the section of the pitch

quadric, made by the plane A. Through S and S
draw lines in the plane A, ST, ST

,
S T, S T

,

parallel to the asymptotes, then T and T are the

centres of the two required cylindroids which belong
to the two reciprocal screw systems.

This construction is thus demonstrated :

Fig. 38.

The tangent planes at P^ P2 each intersect the surface in lines parallel

to OL, OM. Let us call these lines PI-//I, P\Mi through the point P1} and

P.,L,, PZM., through the point P.2 . Then P^, PM&amp;lt; are screws belonging
to the system, and PlMl ,

P.2L2 are reciprocal screws.

Since OL is a tangent to the pitch quadric, it must pass through the

intersection of two rectilinear generators, which both lie in a plane which

contains OL
;

but since OL touches the pitch quadric at infinity, the

two generators in question must be parallel to OL, and therefore their

projections on the plane of A must be S T, ST . Similarly for ST,
S T

;
hence ST and S T are the projections of two screws belonging to

the system, and therefore the centre of the cylindroid is at T . In a similar

way it is proved that the centre of the reciprocal cylindroid is at T.

Having thus determined the centre of the cylindroid, the remainder of

the construction is easy. The pitches of two screws on the surface must be

proportional to the inverse square of the parallel diameters of the section

of the pitch quadric made by A. Therefore, the greatest and least pitches
will be on screws parallel to the principal axes of the section. Hence, lines
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drawn through T parallel to the external and internal bisectors of the angle
between the asymptotes are the two rectangular screws of the cylindroid.

Thus the problem of finding the cylindroid is completely solved.

It is easily seen that each cylindroid touches each of the quadrics in two

points.

We may also note that a screw of the system perpendicular to the plane

passes through T. Thus given any cylindroid of the system the position of

the screw of the system parallel to the axis of the cylindroid is determined*.

180. Miscellaneous Remarks.

We are now in a position to determine the actual situation of a screw

belonging to a screw system of the third order of which the direction is

given. The construction is as follows : Draw through the centre of the

pitch quadric a radius vector OR parallel to the given direction of 6, and

cutting the pitch quadric in R. Draw a tangent plane to the pitch quadric
in R. Then the plane A through OR, of which the intersection with the

tangent plane is perpendicular to OR, is the plane which contains 0. For

the section in which A cuts the pitch quadric has for a tangent at .R a

line perpendicular to OR; hence the line OR is a principal axis of the

section, and hence (179) one of the two screws of the system in the plane
A must be parallel to OR. It remains to find the actual situation of 6 in

the plane A.

Since the direction of is known, its pitch is determinate, because it

is inversely proportional to the square of OR. Hence the quadric can be

constructed, which is the locus of all the screws which have the same pitch
as 6. This quadric must be intersected by the plane A in two parallel

* In a letter (10 April 1899) Professor C. Joly writes as follows : Any plane through the

origin contains one pair of screws A and B belonging to the system intersecting at right angles
and another pair A and B belonging to the reciprocal system. The group A, B, A ,

B form

a rectangle of which the origin is the centre. The feet of the perpendiculars from on A and
on B and the point of intersection of A and B will lie on the Steiner s quartic

(b-c)-y-z
z + (c-a)

2 z-x- + (a-b)
2 xz

y
2- +(b-c) (c-a) (a-b)xyz.

The point of intersection of A and B and the feet of the perpendiculars on A and B will lie on

the new Steiner s quartic

(6
-

c)
2

?/
2z2 + (c

-
) z*-x*+(a

-
&)

2zy= -
(b

-
c) (c

-
a) (a

-
b) xyz.

The locus of the feet of the perpendiculars on the screws of a three-system from any arbitrary

origin whatever is still a Steiner s quartic, but its three double lines are no longer mutually rect

angular. They are coincident with the three screws of the reciprocal three-system which passed

through the origin. This quartic is likewise the locus of the intersection of the pairs of screws

of the reciprocal system which are coplanar with the origin. There is a second Steiner s quartic
whose double lines coincide with the three screws of the given system which pass through the

origin and which is the locus of intersection of those pairs of screws of the given system which
lie in planes through the origin. It is also the locus of the feet of perpendiculars on the screws

of the reciprocal system.
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lines. One of these lines is the required residence of the screw 0, while

the other line, with a pitch equal in magnitude to that of 0, but opposite
in sign, belonging, as it does, to one of the other system of generators, is a

screw reciprocal to the system.

The family of quadric surfaces of constant pitch have the same planes
of circular section, and therefore every plane through the centre cuts the

quadrics in a system of conies having the same directions of axes.

The cylindroid which contains all the screws of the screw system parallel

to one of the planes of circular section must be composed of screws of equal

pitch. A cylindroid in this case reduces to a plane pencil of rays passing

through a point. We thus have two points situated upon a principal axis

of the pitch quadric, through each of which a plane pencil of screws can be

drawn, which belong to the screw system. All the screws passing through
either of these points have equal pitch. The pitches of the two pencils are

equal in magnitude, but opposite in sign. The magnitude is that of the

pitch of the screw situated on the principal axis of the pitch quadric*.

181. Virtual Coefficients.

Let p be a screw of the screw system which makes angles whose cosines

are /, a, h, with the three screws of reference a, /3, y upon the axes of the

pitch quadric. Then, reference being made to any six co-reciprocals, we
have for the co-ordinates of p,

&c., &c.,

ps =/e +g@6 + hy6

Let ij be any given screw. The virtual coefficient of p and rj is

Draw from the centre of the pitch quadric a radius vector r parallel to p,

and equal to the virtual coefficient just written
;
then the locus of the

extremity of r is the sphere

x2 + \f + z* = #CT
ar) + yetft + zvr

yrl
.

The tangent plane to the sphere obtained by equating the right-hand
side of this equation to zero is the principal plane of that cylindroid which
contains all the screws of the screw system which are reciprocal to 17.

*
If a, b, e be the three semiaxes of the pitch quadric, and +d the distances from the centre,

on a, of the two points in question, it appears from 179 that 2d2= (a
8 -i2

) (a
2 -c2

),
which shows

that d is the fourth proportional to the primary semiaxis of the surface, and to those of its focal

ellipse and hyperbola.



THE THEORY OF SCREWS. [182-

182. Four Screws of the Screw System.

Take any four screws a, ft, 7, 8 of the screw system of the third order.

Then we shall prove that the cylindroid (a, ft) must have a screw in common
with the cylindroid (7, &). For twists of appropriate amplitudes about a,

ft, 7, B must neutralise, and hence the twists about a, ft must be counter

acted by those about 7, &
;
but this cannot be the case unless there is

some screw common to the cylindroids (a, ft) arid (7, 8).

This theorem provides a convenient test as to whether four screws

belong to a screw system of the third order.

183. Geometrical notes.

The following theorem may be noted :

Any ray 77 which crosses at right angles two screws a, ft of a three-system

is the seat of a screw reciprocal to the system.

For, draw the cylindroid a, ft, then of course 77, whatever be its pitch,

is reciprocal to all the screws on this cylindroid. Through any point P on

77 there are two screws of the system which lie on the cylindroid, and there

must be a third screw 7 of the system through P, which, certainly, does

not lie on the cylindroid. If, therefore, we give 77 a pitch py)
it must be

reciprocal to the three-system.

In general, one screw of a three-system can be found which intersects

at right angles any screw ivhatever 77.

For 77 must, of course, cut each of the quadrics containing the screws

of equal pitch in two points. Take, for example, the quadric with screws

of pitch p. There are, therefore, two screws, a and ft of pitch p belonging
to the system, which intersect 77. The cylindroid a, ft must belong to the

system, and from the known property of the cylindroid the ray ij,
which

crosses the two equal pitch screws ( 22), must cross at right angles some

third screw 7 on this cylindroid ;
but this belongs to the three-system, and

therefore the theorem has been proved.

184. Cartesian Equation of the Three-System.

If we are given the co-ordinates of any three screws of a three-system
with reference to six canonical co -reciprocals, we can calculate in the

following manner the equation to the family of pitch quadrics of which the

three-system is constituted.

Let the three given screws be a, ft, 7, with co-ordinates respectively
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!,...; ftl} ... /3; 71, ... 76 . Then if X, p, v be three variable parameters,
the co-ordinates of the other screws of the three-system will be

Xotj + yttySj + vji ,
Xa.2 + /i$j + v%, ... Xa6 + /Jift6 + i&amp;gt;7

6 .

We shall denote the pitch of this screw by p, and from 43 we have for the

equations of this screw with reference to the associated Cartesian axes :

= + (Xa5 + pfa + vy, + Xa6 + fj,j39
+ vy6) y

(X 3 + fj,fts + vj3 + X 4 -1- pfti + v%) z

(Xj + jjifii + vyi X 2 /A/3a 1/72) a

with two similar equations.

From these we eliminate X, /*, v and the determinant thus arising admits

of an important reduction.

To effect this we multiply it by the determinant

4 ,
.

I
7i + 7a . 73 + 74

For brevity we introduce the following notation :

P = x [(ft, + &) (73 + 74)
-

08, + A) (75 + 7.)]

+ y [(& + &) (75 + 7) - (& + ft) (71 + 7.)]

+ z [(& + &) (7l + 7.)
- (^ + /32) (7, + 74 )] ,

with similar values for Q and R by cyclical interchange.

We also make

L
aft
= a(a1 + a) (A - &) + 6 ( 3 + 4) (/33

-
/94) + c (a, + 6) (/35

-
&),

^ = a (A + A) (i -
a,) + & (& + /34) (a3

-
4) + c (/35 + &) (a8

-
6 ),

with similar values for Zay ,
Zya ,

L
fty , L^ by cyclical interchange.

The equation to the family of pitch quadrics is then easily seen to be

0=

If the three given screws a, ft, 7 had been co-reciprocal, then as

Lap + Lpa = 2-57a =
0,

it follows that L
af} and Lfta only differ in sign, so that if
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the equation becomes

= pa -p ,
R p cos (a/3), + Q p cos (017)

R -p cos (aft), Pfi-p

- Q - P cos (a7) &amp;gt;

+ P -p cos

By expanding this as a cubic for p we see that the coefficient of p
2

divided by that of p
3 with its sign changed is

pa sin2
(ffy) +jp/3 sin 2

(yq) +joY sin
2
(off)

sii4[(y) + (7a) + (a/3)]sin|[^

This is accordingly the constant sum of the three pitches of the screws of

the system which can be drawn through any point.

185. Equilibrium of Four Forces applied to a Rigid Body.

If the body be free, the four forces must be four wrenches on screws of

zero pitch which are members of a screw system of the third order. The

forces must therefore be generators of a hyperboloid, all belonging to the

same system ( 132).

Three of the forces, P, Q, R, being given in position, S must then be a

generator of the hyperboloid determined by P, Q, R. This proof of a

well-known theorem (due to Mobius) is given to show the facility with

which such results flow from the Theory of Screws.

Suppose, however, that the body have only freedom of the fifth order,

we shall find that somewhat more latitude exists with reference to the

choice of S. Let X be the screw reciprocal to the screw system by which

the freedom is defined. Then for equilibrium it will only be necessary that

S belong to the system of the fourth order defined by the four screws

P, Q, R, X.

A cone of screws can be drawn through every point in space belonging
to this system, and on that cone one screw of zero pitch can always be

found ( 123). Hence one line can be drawn through every point in space

along which S might act.

If the body have freedom of the fourth order, the latitude in the choice

of S is still greater. Let Xly X2 be two screws reciprocal to the system,
then S is only restrained by the condition that it belong to the screw system
of the fifth order defined by the screws

P, Q, R, X1} X.
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Any line in space when it receives the proper pitch is a screw of this

system. Through any point in space a plane can be drawn such that every

line in the plane passing through the point with zero pitch is a screw of the

system ( 110).

Finally, if the body has only freedom of the third order, the four equi

librating forces P, Q, R, S may be situated anywhere.

The positions of the forces being given, their magnitudes are determined
;

for draw three screws Xlt X.2&amp;gt;

X3 reciprocal to the system, and find ( 28) the

intensities of the seven equilibrating wrenches on

4j Q&amp;gt; -R&amp;gt; &amp;gt;&amp;gt; Xj, X2 ,
X3 .

The last three are neutralised by the reactions of the constraints, and

the four former must therefore equilibrate.

Given any four screws in space, it is possible for four wrenches of proper
intensities on these screws to hold a body having freedom of the third order

in equilibrium. For, take the four given screws, and three reciprocal screws.

Wrenches of proper intensities on these seven screws will equilibrate ;
but

those on the reciprocal screws are destroyed by the reactions, and, therefore,

the four wrenches on the four screws equilibrate. It is manifest that this

theorem may be generalised into the following : If a body have freedom of

the kth order, then properly selected wrenches about any k+l screws (not

reciprocal to the screw system) will hold the body in equilibrium.

That a rigid body with freedom of the third order may be in equilibrium
under the action of gravity, we have the necessary and sufficient condition,

which is thus stated :

The vertical through the centre of inertia must be one of the reciprocal

system of generators on the pitch quadric.

We see that the centre of inertia must, therefore, lie upon a screw of

zero pitch which belongs to the screw system ; whence we have the following
theorem : The restraints which are necessary for the equilibrium of a body
which has freedom of the third order under the action of gravity, would

permit rotation of the body round one definite line through the centre of

inertia.

186. The Ellipsoid of Inertia.

The momental ellipsoid, which is of such significance in the theory of

the rotation of a rigid body about a fixed point, is presented in the Theory
of Screws as a particular case of another ellipsoid, called the ellipsoid of

inertia, which is of great importance in connexion with the general screw

system of the third order.



188 THE THEORY OF SCREWS. [186-

If we take three conjugate screws of inertia from the screw system as

screws of reference, then we have seen (97) that, if 1} 0.,, 3 ,
be the co

ordinates of a screw 0, we have

where ult u.2 ,
us are the values of ug with reference to the three conjugate

screws of inertia.

Draw from any point lines parallel to 0, and to the three conj ugate screws

of inertia. If then a parallelepiped be constructed of which the diagonal is

the line parallel to 0, and of which the three lines parallel to the conjugate

screws are conterminous edges, and if r be the length of the diagonal, and

x, y, z the lengths of the edges, then we have

x _a V a
z a

r~ *

IT

=
2&amp;gt;

r if*

We see, therefore, that the parameter u appropriate to any screw is

inversely proportional to the parallel diameter of the ellipsoid

u.?z&amp;gt;
= H,

where H is a certain constant.

Hence we have the following theorem : The kinetic energy of a, rigid

body, when twisting with a given twist velocity about any screw of a system

of the third order, is proportional to the inverse square of the parallel

diameter of a certain ellipsoid, which may be called the ellipsoid of inertia ;

and a set of three conjugate diameters of the ellipsoid are parallel to a set

of three conjugate screws of inertia which belong to the screw system.

We might also enunciate the property in the following manner: Any
diameter of the ellipsoid of inertia is proportional to the twist velocity with

which the body should twist about the parallel screw of the screw system, so

that its kinetic energy shall be constant.

187. The Principal Screws of Inertia.

It will simplify matters to consider that the ellipsoid of inertia is con

centric with the pitch quadric. It will then be possible to find a triad of

common conjugate diameters to the two ellipsoids. WT
e can then determine

three screws of the system parallel to these diameters ( 180), and these

three screws will be co-reciprocal, and also conjugate screws of inertia.

They will, therefore, ( 87), form what we have termed the principal screws

of inertia. When the screw system reduces to a pencil of screws of zero

pitch passing through a point, then the principal screws of inertia reduce

to the well-known principal axes.
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188. Lemma.

If from a screw system of the nih order we select n screws A ly ...
,
A n ,

which are conjugate screws of inertia ( 87), and if 8l be any screw which

is reciprocal to A 2 ,...,A n ,
then an impulsive wrench on SY will cause the

body, when only free to twist about the screws of the system, to commence

to twist about A lt Let 7^ be the screw which, if the body were perfectly

free, would be the impulsive screw corresponding to A l as the instantaneous

screw. R! must be reciprocal to A.,,...,A n ( 81). Take also 6 n screws

of the reciprocal system B1 ,...,Bti
^n . Then the 8 n screws Rl} Slt Bl} ...

,

B6_n must be reciprocal to the n 1 screws A 2 , ...,A n ,
and therefore the

8 n screws must belong to a screw system of the (7 ?i)th order. Hence

an impulsive wrench upon the screw Si can be resolved into components on

RI, BI, ... ,B6-n . Of these all but the first are neutralised by the reactions

of the constraints, and by hypothesis the effect of an impulsive wrench

upon Q is to make the body commence to twist about A 1} and therefore

an impulsive wrench on Si would make the body twist about AI.

189. Relation between the Impulsive Screw and the Instan

taneous Screw.

A quiescent rigid body which possesses freedom of the third order is

acted upon by an impulsive wrench about a given screw
77.

It is required
to determine the instantaneous screw 6, about which the body will commence
to twist.

The screws which belong to the system, and are at the same time reci

procal to
77,
must all lie upon a cylindroid, as they each fulfil the condition

of being reciprocal to four screws. All the screws on the cylindroid are

parallel to a certain plane drawn through the centre of the pitch quadric,

which may be termed the reciprocal plane with respect to the screw 77. The

reciprocal plane having been found, the diameter conjugate to this plane
in the ellipsoid of inertia is parallel to the required screw 6.

For let fi and v denote two screws of the system parallel to a pair of

conjugate diameters of the ellipsoid of inertia in the reciprocal plane. Then

6, fi, v are a triad of conjugate screws of inertia
;
but 77 is reciprocal to

//,

and v, and, therefore, by the lemma of the last article, an impulsive wrench

upon i] will make the body commence to twist about 6.

190. Kinetic Energy acquired by an Impulse.

We shall now consider the following problem : A quiescent rigid body
of mass M receives an impulsive wrench of intensity rf&quot;

on a screw
77. We

have now to determine the locus of a screw belonging to a screw system
of the third order, such that, if the body be constrained to twist about 6, it
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shall acquire a given kinetic energy E, in consequence of the impulsive
wrench.

We have from 91 the equation

1
7/&quot;

2

We can assign a geometrical interpretation to this equation, which will

lead to some interesting results.

Through the centre of the pitch quadric the plane A reciprocal to
77

is to be drawn. A sphere (181) is to be described touching the plane A
at the origin 0, the diameter of the sphere being so chosen that the intercept

OP made by the sphere on a radius vector parallel to any screw 6 is equal
to ty^g (181). The quantity ue is inversely proportional to the radius vector

OQ of the ellipsoid of inertia, which is parallel to 9 ( 186). Hence for all

the screws of the screw system which acquire a given kinetic energy in

consequence of a given impulse, we must have the product OP . OQ constant.

From a well-known property of the sphere, it follows that all the points

Q must lie upon a plane A , parallel to A. This plane cuts the ellipsoid of

inertia in an ellipse, and all the screws required must be parallel to the

generators of the cone of the second degree, formed by joining the points

of this ellipse to the origin, 0.

Since we have already shown how, when the direction of a screw belonging
to a screw system of the third order is given, the actual situation of that

screw is determined ( 180), we are now enabled to ascertain all the screws

6 on which the body acted upon by a given impulse would acquire a given
kinetic energy.

The distance between the planes A and A is proportional to OP . OQ,
and therefore to the square root of E. Hence, when the impulse is given,

the kinetic energy acquired on a screw determined by this construction is

greatest when A and A are as remote as possible. For this to happen, it

is obvious that A will just touch the ellipsoid of inertia. The group of

screws will, therefore, degenerate to the single screw parallel to the diameter

of the ellipsoid of inertia conjugate to A, But we have seen ( 130) that

the screw so determined is the screw which the body will naturally select

if permitted to make a choice from all the screws of the system of the

third order. We thus see again what Euler s theorem ( 94) would have

also told us, viz., that when a quiescent rigid body which has freedom of the

third order is set in motion by the action of a given impulsive wrench, the

kinetic energy which the body acquires is greater than it would have been

had the body been restricted to any other screw of the system than that

one which it naturally chooses.
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191. Reaction of the Constraints.

An impulsive wrench on a screw 77 acts upon a body with freedom of

the third order, and the body commences to move by twisting upon a screw

6. It is required to find the screw X, a wrench on which constitutes the

initial reaction of the constraints. Let
&amp;lt;/&amp;gt;

denote the impulsive screw which,

if the body were free, would correspond to 6 as the instantaneous screw.

Then \ must lie upon the cylindroid (&amp;lt;/&amp;gt;, 77),
and may be determined by

choosing on
(&amp;lt;, 77) a screw reciprocal to any screw of the given screw

system.

192. Impulsive Screw is Indeterminate.

Being given the instantaneous screw 6 in a system of the third order,

the corresponding impulsive screw 77 is indeterminate, because the impulsive
wrench may be compounded with any reactions of the constraints. In fact

77 may be any screw selected from a screw system of the fourth order, which

is thus found. Draw the diametral plane conjugate to a line parallel to 6

in the ellipsoid of inertia, and construct the cylindroid which consists of

screws belonging to the screw system parallel to this diametral plane.
Then any screw which is reciprocal to this cylindroid will be an impulsive
screw corresponding to 6 as an instantaneous screw.

Thus we see that through any point in space a whole cone of screws can

be drawn, an impulsive wrench on any one of which would make the body
commence to twist about the same screw.

One impulsive couple can always be found which would make the body
commence to twist about any given screw of the screw system. For a

couple in a plane perpendicular to the nodal line of a cylindroid may be

regarded as a wrench upon a screw reciprocal to the cylindroid ;
and hence

a couple in a diametral plane of the ellipsoid of inertia, conjugate to the

diameter parallel to the screw 6, will make the body commence to twist

about the screw 6.

It is somewhat remarkable that a force directed along the nodal line of

the cylindroid must make the body commence to twist about precisely the

same screw as the couple in a plane perpendicular to the nodal line.

If a cylindroid be drawn through two of the principal screws of inertia,

then an impulsive wrench on any screw of this cylindroid will make the

body commence to twist about a screw on the same cylindroid. For the

impulsive wrench may be resolved into wrenches on the two principal
screws. Each of these will produce a twisting motion about the same

screw, which will, of course, compound into a twisting motion about a screw
on the same cylindroid.
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193. Quadric of the Potential.

A body which has freedom of the third order is in equilibrium under

the influence of a conservative system of forces. The body receives a twist

of small amplitude 9 about a screw 9 of the screw system. It is required
to determine a geometrical representation for the quantity of work which

has been done in effecting the displacement. We have seen that to each

screw 9 corresponds a certain linear parameter VB ( 102), and that the work

done is represented by

F^&\

We have also seen that the quantity ve
~

may be represented by

where l} 2 ,
93 are the co-ordinates of the screw 9 referred to three conjugate

screws of the potential, and vlt v.2 ,
vs ,

denote the values of vg for each of the

three screws of reference ( 102).

Drawing through the centre of the pitch quadric three axes parallel to

the three screws of reference, we can then construct the quadric of which

the equation is

v^x
z + v?y- + v3

2
z- = H,

which proves the following theorem :

The work done in giving the body a twist of given amplitude from a

position of equilibrium about any screw of a system of the third order, is

proportional to the inverse square of the parallel diameter of a certain

quadric which we may call the quadric of the potential, and three conjugate
diameters of this quadric are parallel to three conjugate screws of the

potential in the screw system.

194. The Principal Screws of the Potential.

The three common conjugate diameters of the pitch hyperboloid, and

the quadric of the potential, are parallel to three screws of the system
which we call the principal screws of the potential. If the body be

displaced by a twist about a principal screw of the potential from a

position of stable equilibrium, then the reduced wrench which is evoked

is upon the same screw.

The three principal screws of the potential must not be confounded with

the three screws of the system which are parallel to the principal axes of

the ellipsoid of the potential. The latter are the screws on which a twist

of given amplitude requires a maximum or minimum consumption of

energy, and they are rectangular, which, of course, is not in general the

case with the principal screws of the potential.
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195. Wrench evoked by Displacement.

By the aid of the quadric of the potential we shall be able to solve

the problem of the determination of the screw on which a wrench is evoked

by a twist about a screw 6 from a position of stable equilibrium. The
construction which will now be given will enable us to determine the screw

of the system on which the reduced wrench acts.

Draw through the centre of the pitch quadric a line parallel to 6. Con
struct the diametral plane A of the quadric of the potential conjugate to

this line, and let X, p, be any two screws of the system parallel to a pair of

conjugate diameters of the quadric of the potential which lie in the plane
A. Then the required screw

&amp;lt;/&amp;gt;

is parallel to that diameter of the pitch

quadric which is conjugate to the plane A.

For
&amp;lt;f&amp;gt;

will then be reciprocal to both X and
//,;

and as X, /A, 6 are

conjugate screws of the potential, it follows that a twist about 6 must evoke

a reduced wrench on &amp;lt;.

196. Harmonic Screws.

When a rigid body has freedom of the third order, it must have ( 106)
three harmonic screws, or screws which are conjugate screws of inertia, as

well as conjugate screws of the potential. We are now enabled to construct

these screws with facility, for they must be those screws of the screw system
which are parallel to the triad of conjugate diameters common to the ellipsoid

of inertia, and the quadric of the potential.

We have thus a complete geometrical conception of the small oscillations

of a rigid body which has freedom of the third order. If the body be once

set twisting about one of the harmonic screws, it will continue to twist

thereon for ever, and in general its motion will be compounded of twisting
motions upon the three harmonic screws.

If the displacement of the body from its position of equilibrium has

been effected by a small twist about a screw on the cylindroid which contains

two of the harmonic screws, then the twist can be decomposed into com

ponents on the harmonic screws, and the instantaneous screw about which

the body is twisting at any epoch will oscillate backwards and forwards

upon the cylindroid, from which it will never depart.

If the periods of the twist oscillations on two of the harmonic screws

coincided, then every screw on the cylindroid which contains those harmonic

screws would also be a harmonic screw.

If the periods of the three harmonic screws were equal, then every screw

of the system would be a harmonic screw.

B. 13
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197. Oscillations of a Rigid Body about a Fixed Point*.

We shall conclude the present Chapter by applying the principles which

it contains to the development of a geometrical solution of the following

important problem :

A rigid body, free to rotate in every direction around a fixed point, is

in stable equilibrium under the influence of gravity. The body is slightly

disturbed : it is required to determine its small oscillations.

Since three co-ordinates are required to specify the position of a body

when rotating about a point, it follows that the body has freedom of the

third order. The screw system, however, assumes a very extreme type,

for the pitch quadric has become illusory, and the screw system reduces to

a pencil of screws of zero pitch radiating in all directions from the fixed

point.

The quantity ue appropriate to a screw reduces to the radius of

gyration when the pitch of the screw is zero
;
hence the ellipsoid of inertia

reduces in the present case to the well-known momental ellipsoid.

The quadric of the potential ( 193) assumes a remarkable form in the

present case. The work done in giving the body a small twist is propor

tional to the vertical distance through which the centre of inertia is

elevated. In the position of equilibrium the centre of inertia is vertically

beneath the point of suspension, it is therefore obvious from symmetry that

the ellipsoid of the potential must be a surface of revolution about a vertical

axis. It is further evident that the vertical radius vector of the cylinder

must be infinite, because no work is done in rotating the body around a

vertical axis.

Let be the centre of suspension, and 1 the centre of inertia, and let

OP be a radius vector of the quadric of the potential. Let fall 1Q per

pendicular on OP, and PT perpendicular upon 01, It is extremely easy

to show that the vertical height through which / is raised is proportional

to IQ 2 x OP 2
;
whence the area of the triangle OPI is constant, and there

fore the locus of P must be a right circular cylinder of which 01 is the

axis.

We have now to find the triad of conjugate diameters common to the

momental ellipsoid, and the circular cylinder just described. A group of

three conjugate diameters of the cylinder must consist of the vertical axis,

and any two other lines through the origin, which are conjugate diameters

of the ellipse in which their plane cuts the cylinder. It follows that the

triad required will consist of the vertical axis, and of the pair of conjugate

* Trans. Roy. Irish Acad., Vol. xxiv, Science, p. 593 (1870).
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diameters common to the two ellipses in which the plane conjugate to the

vertical axis in the momental ellipsoid cuts the momental ellipsoid and the

cylinder. These three lines are the three harmonic axes.

As to that vertical axis which appears to be one of the harmonic

axes, the time of vibration about it would be infinite. The three har

monic screws which are usually found in the small oscillations of a body
with freedom of the third order are therefore reduced in the present case

to two, and we have the following theorem :

A rigid body which is free to rotate about a fixed point is at rest under

the action of gravity. If a plane S be drawn through the point of suspension

0, conjugate to the vertical diameter 01 of the momental ellipsoid, then the

common conjugate diameters of the two ellipses in which 8 cuts the momental

ellipsoid, and a circular cylinder whose axis is 01, are the two harmonic axes.

If the body be displaced by a small rotation about one of these axes, the

body will continue for ever to oscillate to and fro upon this axis, just as if the

body had been actually constrained to move about this axis.

To complete the solution for any initial circumstances of the rigid body,

a few additional remarks are necessary.

Assuming the body in any given position of equilibrium, it is first to be

displaced by a small rotation about an axis OX. Draw the plane containing

01 and OX, and let it cut the plane S in the line OF. The small rotation

around OX may be produced by a small rotation about 01, followed by a

small rotation about OF. The effect of the small rotation about 01 is

merely to alter the azimuth of the position, but not to disturb the equi

librium. Had we chosen this altered position as that position of equilibrium

from which we started, the initial displacement would be communicated by a

rotation around F. We may, therefore, without any sacrifice of generality,

assume that the axis about which the initial displacement is imparted lies

in the plane S. We shall now suppose the body to receive a small angular

velocity about any other axis. This axis must be in the plane S, if small

oscillations are to exist at all, for the initial angular velocity, if not capable

of being resolved into components about the two harmonic axes, will have a

component around the vertical axis 01. An initial rotation about 01 would

give the body a continuous rotation around the vertical axis, which is not

admissible when small oscillations only are considered.

If, therefore, the body performs small oscillations only, we may regard

the initial axis of displacement as lying in the plane S, while we must have

the initial instantaneous axis in that plane. The initial displacement may
be resolved into two displacements, one on each of the harmonic axes, and

132
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the initial angular velocity may also be resolved into two angular velocities

on the two harmonic axes. The entire motion will, therefore, be found by

compounding the vibrations about the two harmonic axes. Also the instan

taneous axis will at every instant be found in the plane of the harmonic

axes, and will oscillate to and fro in their plane.

Since conjugate diameters of an ellipse are always projected into con

jugate diameters of the projected ellipse, it follows that the harmonic axes

must project into two conjugate diameters of a circle on any horizontal

plane. Hence we see that two vertical planes, each containing one of the

harmonic axes, are at right angles to each other.

We have thus obtained a complete solution of the problem of the small

oscillations of a body about a fixed point under the influence of gravity.



CHAPTER XV.

THE PLANE REPRESENTATION OF FREEDOM OF THE THIRD ORDER*.

198. A Fundamental Consideration.

Let x, y, z denote the Cartesian co-ordinates of a point in the body
referred to axes fixed in space. When the body moves into an adjacent
position these co-ordinates become, respectively, x + 8x, y + 8y, z + 82, and
we have, by a well-known consequence of the rigidity of the body,

Bx = a + gz hy,

8y = b + hx fz,

8z = c+fy- gx,

where a, b, c, /, g, h may be regarded as expressing the six generalized
co-ordinates of the twist which the body has received.

If the body has only three degrees of freedom, its position must be

capable of specification by three independent co-ordinates, which we shall

call 6lt 6.,, 6.A . The six quantities, a, b, c, f, g, h, must each be a function
of #!, 2 , 3 , so that when the latter are given the former are determined.
As all the movements are infinitely small, it is evident that these equations
must in general be linear, and of the type

a = A 1 1 + A,0, + A 30.J ,

in Avhich A lt A 2 ,
A 3 are constants depending on the character of the

constraints.
.
We should similarly have

b = B1 1 + B& + B363 ,

and so on for all the others.

It is a well-known theorem that the new position of the body defined

by 0i, 0-2, 3 may be obtained by a twist about a screw of which the axis
is defined by the equations

a + gz hy _ b + hx fz _ c +fy gx
~7~ 9 &

* Trans. Roy. Irish Acad., Vol. xxix. p. 247 (1888).
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The angle through which the body has been rotated is

(/
2 +

&amp;lt;7

2 + /*
2

)&quot;,

and the distance of translation is

af+ bg + ch

while the pitch of the screw is

af+bg + ch

Every distinct set of three quantities, dl , #,, 3 ,
will correspond to a

definite position of the rigid body, and to a group of such sets there will be

a corresponding group of positions. Let p denote a variable parameter, and

let us consider the variations of the set,

according as p varies. To each value of p a corresponding position of the

rigid body is appropriate, and we thus have the change of p associated with

a definite progress of the body through a series of positions. We can give

geometrical precision to a description of this movement. The equations to

the axis of the screw, as well as the expression of its pitch, only involve the

ratios of a, b, c,f, g, h. We have also seen that these quantities are each

linear and homogeneous functions of l , #,, 3 . If, therefore, we substitute

for #j, #2 ,
#3 the more general values

the screw would remain unaltered, both in position and in pitch, though
the angle of rotation and the distance of translation will each contain p
as a factor.

Thus we demonstrate that the several positions denoted by the set p6l}

p0.2 , pOs are all occupied in succession as we twist the body continuously
around one particular screw.

199. The Plane Representation.

All possible positions of the body correspond to the triply infinite triad

If, for the moment, we regard these three quantities as the co-ordinates

of a point in space, then every point of space will be correlated to a position
of the rigid body. We shall now sort out the triply infinite multitude of

positions into a doubly infinite number of sets each containing a singly
infinite number of positions.
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If we fix our glance upon the screws about which the body is free to

twist, the principle of classification will be obvious. Take an arbitrary triad

01, 2, 03,

and then form the infinite group of triads

for every value of p from zero up to any finite magnitude : all these triads

will correspond to the positions attainable by twisting about a single screw.

We may therefore regard

ly 0.2 ,
63

as the co-ordinates of a screw, it being understood that only the ratios of

these quantities are significant.

We are already familiar with a set of three quantities of this nature

in the well-known trilinear co-ordinates of a point in a plane. We thus

see that the several screws about which a body with three degrees of

freedom can be twisted correspond, severally, with the points of a plane.

Each of the points in a plane corresponds to a perfectly distinct screw,

about which it is possible for a body with three degrees of freedom to be

twisted. Accordingly we have, as the result of the foregoing discussion, the

statement that

To each screw of a three-system corresponds one point in the plane.

To develope this correspondence is the object of the present Chapter.

200. The Cylindroid.

A twist of amplitude 6 on the screw 6 has for components on the three

screws of reference

0i, 0.2 , S ;

a twist of amplitude &amp;lt; on some other screw &amp;lt; has the components

When these two twists are compounded they will unite into a single twist

upon a screw of which the co-ordinates are proportional to

If the ratio of to & be X, we see that the twists about and &amp;lt; unite into

a twist about the screw whose co-ordinates are proportional to

01 +
\&amp;lt;f&amp;gt;

ly 6.2 + X._,, 0-j + \&amp;lt;&amp;gt;s .

By the principles of trilinear co-ordinates this point lies on the straight line

joining the points and &amp;lt;. As the ratio \ varies, the corresponding screw
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movcs over the cylindroid and the corresponding point moves over the

straight line. Hence we obtain the following important result :

The several screws on a cylindroid correspond to the points on a straight
line.

In general two cylindroids have no screw in common. If, however, the two

cylindroids be each composed of screws taken from the same three-system,
then they will have one screw in common. This is demonstrated by the

fact that the two straight lines corresponding to these cylindroids necessarily
intersect in a point which corresponds to the screw common to the two
surfaces.

Three twist velocities about three screws will neutralize and produce
rest, provided that the three corresponding points lie in a straight line, and
that the amount of each twist velocity is proportional to the sine of the

angle between the two non-corresponding screws.

Three wrenches will equilibrate when the three points corresponding to

the screws are collinear, and when the intensity of each wrench is propor
tional to the sine of the angle between the two non-corresponding screws.

201. The Screws of the Three-system.

In any three-system there are three principal screws at right angles to

each other, and intersecting in a point ( 173). It is natural to choose these

as the screws of reference, and also as the axes for Cartesian co-ordinates.

The pitches of these screws are p1} p.,, p3 ,
and we shall, as usual, denote the

screw co-ordinates by 0,, a , 3 . The displacement denoted by this triad of

co-ordinates is obtained by rotating the body through angles 1} 0.2 , 3 around
three axes, und then by translating it through distances p^, p,0.2 , p3 3 parallel
to these axes. As these quantities are all small, we have, for the displace
ments produced in a point x, y, z,

Sy = p.2 2 + x03
- z6

l ,

8z = ps 3 + y01 -x02 ;

these displacements correspond to a twist about a screw of which the axis

has the equations

pA + z0y
-
y03 _ p2 2 + x03

- z0l p3 3 + yfl
- x0.2

0i 0, ~0T~
while the pitch p is thus given :
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We have now to investigate the locus of the screws of given pitch, and as

p is presumed to be a determinate quantity, we have

(p.*
-
p) 2 + x03

= 0,

whence, by eliminating 1} 2 , 3 we obtain, as the locus of the screws of

pitch p, the quadric otherwise found in the previous chapter

(p! -p) xz + (p,-p) y + (p.-p) z- + (pi-p)(ps -p)(p3 -p) = 0.

According as p varies, this family of quadrics will exhibit all the screws of

the three-system which possess a definite pitch.

202. Imaginary Screws.

To complete the inventory of the screws it is, however, necessary to

add those of indefinite pitch, i.e. those whose co-ordinates satisfy both the

equations M +Ma+M8 =o.

0s + e.? + &amp;lt;v=o.

There are four triads of co-ordinates which satisfy these conditions, and,

remembering that only the ratios are concerned, the values of 1} n , 3

may be written thus :

The equations of the axis written without p are

* (Of + 0J}
- yOA - ^0A + ( P*

- p3) 0,6, = 0,

y (Of + 0s)
- zOA - x6A + (p3

-
Pl) 6A = o,

z (6? + &amp;lt;92 )
- x0A - y030, + ( PI

- pz) 6,0, = 0,

of which two are independent.

If we substitute the values of 0,, 6.,, 3 for the first indeterminate screw,
the three equations just written reduce to

*
( P2

-
#,)* + y ( p3

-p$ + z ( Pl
-p$ -(p2

-
p3)

h-
(p-.-p^^p,-p$ - 0.
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If we make

* = (P*-pa)* , @ = (p3 -pi)* ,

f
Y
= (pi-prf,

the equations of the four planes are expressed in the form

+ ax + fty + yz a/3y = 0,

ax + fiy + jz afty
= 0,

+ ax /3y + yz a/3y 0,

+ ax + (3y &amp;lt;yz afty = 0.

It is remarkable that the three equations of the axis for each of these screws

here coalesce to a single one. The screw of indeterminate pitch is thus

limited, not to a line, but to a plane. The same may be said of each of

the other three screws of indeterminate pitch ; they also are each limited

to a plane found by giving variety of signs to the radicals in the equations

just written. We have thus discovered that the complete locus of the

screws of a three-system consists, not only of the family of quadrics, which

contain the screws of real or imaginary, but definite pitch, but that it also

contains a tetrahedron of four imaginary planes, each plane being the locus

of one of the four screws of indefinite pitch.

203. Relation of the Four Planes to the Quadrics.

The planes have an interesting geometrical connexion with the family of

quadrics, which we shall now develop. The first theorem to be proved is,

that each of the quadrics touches each of the planes. This is gcometrically
obvious, inasmuch as each quadric contains all the screws of the system
which have a given pitch p\ but each of the planes contains a system of

screws of every pitch, among which there must be one of pitch p. There
will thus be a ray in the plane, which is also a generator of the hyper-
boloid but this, of course, requires that the plane be a tangent to the

hyperboloid.

It is easy to verify this by direct calculation.

Write the quadric,

(Pi
-
p) a* + (p,- p) f + (p3 -p)z~ + (Pl

-
p) (p.2

-
p) (p3

- p)
= 0.

The tangent plane to this, at the point x, y , z, is

( p,
-

p) xx + (p,-p) yij + (^3
_
p) zz

&amp;gt; + (pl

If we identify this with the equation

ax + fiy + ryz a/3y = 0,
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we shall obtain

*- Pi)* (Pi- Pi)*

- (PI-P)(P*-P)

and as these values satisfy the equation of the quadric, the theorem has been

proved.

The family of quadric surfaces are therefore inscribed in a common tetra

hedron, and they have four common points, as well as four common tangent

planes. For, write the two cones

#- + if + z- = 0,

pj? + ihy&quot; + ihz&quot;
= o.

These cones have four generators in common, and the four points in which

these generators cut the plane at infinity will lie on every surface of the

type

(Pi
~
P) ? + (P*

~
P) V&quot;

+ (Pa ~p)2- + (pi
-
p) (p*

-
p) (p3 -p) = 0.

We now see the distribution of the screws in the imaginary planes. In

each one of these planes there are a system of parallel lines
;
each line of this

system passes through the same point at infinity, which is, of course, one of

the four points just referred to. Every line of the parallel set, when it

receives appropriate pitch, belongs to the three-system.

It thus appears that the ambiguity in the pitches of the screws in the

planes is only apparent. The system of screw co-ordinates which usually
defines a screw with absolute definiteness, loses that definiteness for the

screws in these planes. Each plane contains a whole pencil of screws,

radiating from a point at infinity, but the co-ordinates can only represent
these screws collectively, for the three co-ordinates then represent, not a single

screw, but a whole pencil of screws. As the pitches vary on every screw of

the pencil, the co-ordinates can only meet this difficulty by representing the

pitch as indeterminate.

The proof that only a single screw of each pitch is found in the pencil is

easily given. If there were two, then the same hyperboloid would have two

generators in this plane of equal pitch ;
but this is impossible, because, from

the known properties of the three-system, only one of these generators

belongs to the three-system, and the other to the reciprocal system.
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204. The Pitch Conies.

The discussion in 203 will prepare us for the plane representation of

the screws of given pitch p, for we have

P (0? + 0/ + 3
2
)
-Ma -M2 -M2 =

-

This, of course, represents a conic section, and, accordingly, we have the

following theorem :

The locus of points corresponding to screws of given pitch is a conic

section.

A special case is that where the pitch is zero, in which case the locus is

given by

This we shall often refer to as the conic of zero -pitch.

Another important case is that where p is infinite, in which case the

equation is

0* + 3*+03*=o.

The conic of zero-pitch and the conic of infinite pitch intersect in four points,

and through these four points all the other conies must pass. The points, of

course, correspond to the screws of indeterminate pitch : we may call them

P,, P,, P,, 1\.

Any conic through these four critical points will be a conic of equal-

pitch screws.

As a straight line cuts a conic in two points, we see the well-known

theorem, that every cylindroid will contain two screws of each pitch.

The two principal screws on a cylindroid are those of maximum and

minimum pitch ; they will be found by drawing through Pl} P2 ,
P3 ,

P4 ,
the

two conies touching the straight line corresponding to the cylindroid. The

two points of contact are the screws required.

If a and ft are the two principal screws on a cylindroid, then any pair

of harmonic conjugates to a and ft represent a pair of screws of equal pitch.

For if S + kS = be a system of conies, then it is well known that the

pairs of points in which a fixed ray is cut by this system form a system in

involution. The double points of this involution are the points of contact

of the two conies of the system which touch the line.

205. The Angle between Two Screws.

From the equations of the screw given in 201, we see that the direction
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cosines are proportional to 8
} ,

#2
&amp;gt;

;1 ;
for if we take the point infinitely

distant we find that the equations reduce to

x _ y _ z

6l &, $3

Accordingly, the line drawn parallel to the screw through the origin has its

direction cosines proportional to 0,, 2 , 3 ,
and hence the actual direction

cosines are

ft ft 3

The cosine of the angle between two screws, 6 and
&amp;lt;/&amp;gt;,

will therefore be

By the aid of the conic of infinite pitch we can give to this a geometrical

interpretation.

The co-ordinates of a screw on the straight line joining 6 and
&amp;lt;f&amp;gt;

will be

ft + X&amp;lt;j ,
#2 + ^-$2&amp;gt;

ft + X&amp;lt; 3 .

If we substitute this in the equation to the conic of infinite pitch we obtain

ft
2 + ft

2 + 9* -H 2X
(#!&amp;lt;/&amp;gt;,

+ 2
&amp;lt;/&amp;gt;

2 + 3 3) + \- (fa- 4-
&amp;lt;/&amp;gt;.;-

+
&amp;lt;/)

= 0.

Writing this in the form

aX2 + 2&X + c = 0,

of which Xj and X 2 are the roots, we have, as the four values of X, corre

sponding, respectively, to the points 6 and
&amp;lt;/&amp;gt;,

and to the points in which

their chord cuts the conic of infinite pitch,

X1( Xo, 0, oo.

The anharmonic ratio is

^V
or

b - V62 - ac

b + V62 - ac

If to be the angle between the two screws, 6 and
&amp;lt;,

then

b
COS G) =

,

Vac

and the anharmonic ratio reduces to

an*-,

whence we deduce the following theorem :
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The angle between two screws is equal to \i times the logarithm of the an-

ha,rmonic ratio in which their corresponding chord is divided by the infinite

pitch conic.

The reader will be here reminded of the geometry of non-Euclidian

space, in which a magnitude, which in Chapter XXVI. is called the Intervene,

analogous to the distance between two points, is equal to ^i times the

logarithm of the anharmonic ratio in which their chord is divided by the

absolute. We have only to call the conic of infinite pitch the absolute, and

the angle between two screws is the intervene between their corresponding

points.

206. Screws at Right Angles.

If two screws, 9 and
&amp;lt;/&amp;gt;,

be at right angles, then

$]&amp;lt;l
+ 0.2

&amp;lt;f).2

+
0;,,(f&amp;gt;

3
= 0.

In other words, 6 and
&amp;lt;/&amp;gt;

are conjugate points of the conic of infinite pitch,

V+$+&- &

All the screws at right angles to a given screw lie on the polar of the point

with regard to the conic of infinite pitch. Hence we see that all the screws

perpendicular to a given screw lie on a cylindroid. This is otherwise obvious,

for a screw can always be found with an axis parallel to a given direction.

If, therefore, a cylindroid of the system be taken, a screw of the system

parallel to the nodal axis of that cylindroid can also be found, and thus we

have the cylindroid and the screw, which stand in the relation of the pole and

the polar to the conic of infinite pitch.

A point on the conic of infinite pitch must represent a screw at right angles

to itself. Every straight line cuts the conic of infinite pitch in two points, and

thus every cylindroid has two screws of infinite pitch, and each of these

screws is at right angles to itself.

In general, the direction cosines of the nodal axis of a cylindroid are

proportional to the co-ordinates of the pole of the line corresponding to the

cylindroid with respect to the conic of infinite pitch.

207. Reciprocal Screws.

If lt 0,, 3 be the co-ordinates of a screw, and n
&amp;lt;/&amp;gt;,, &amp;lt;/&amp;gt;

3 those of another

screw, then it is known, 37, that the condition for these two screws to be

reciprocal is

We are thus led to the following theorem, which is of fundamental importance

in the present investigation :
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A pair of reciprocal screws are conjugate points with respect to the zero-

pitch conic.

From this theorem we can at once draw the following conclusions :

All the screws of the system reciprocal to a given screw lie upon a

cylindroid.

For the locus of points conjugate to 9 is, of course, the polar of

with respect to the zero-pitch conic, and this polar will correspond to a

cylindroid.

On any cylindroid one screw can always be found reciprocal to a given
screw 9. For this will be the intersection of the polar of 9 with the line

corresponding to the given cylindroid.

A triad of co-reciprocal screws will correspond to a self-conjugate triangle
of the conic of zero-pitch.

208. The Principal Screws of the System.

Draw the conic of zero-pitch A, and the conic of infinite pitch B, which

intersect in the four screws of indeterminate pitch, P,, P2 ,
P3 ,

P4 (see fig. 39).

Draw the diagonals of the complete quadrilateral, and let them intersect in

Fig. 39.

the points X, Y, Z. These three points are significant. Take any pair of

them, X and F; then, by the known properties of conies, X and Y are con

jugate points with respect to both of the conies A and B. The screws X
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and Fmust therefore be mutually perpendicular and reciprocal. If p
be the pitches of these screws

;
if to be the angle between them, and d their

perpendicular distance, then the virtual coefficient is one-half of

(Pe + Pt) cos &amp;gt;

~
do* sin &&amp;gt;

;

as they are reciprocal, this is zero, and as &amp;lt;o is a right angle, we must have

d =
;
in other words, the screws corresponding to X and Y must intersect

at right angles. The same may be proved of either of the pairs X and Z or

Y and Z. The points X, Y, Z must therefore correspond to three screws of

the system mutually perpendicular, and intersecting at a point. But in the

whole system there is only a single triad of screws possessing these properties.

They are the axes in the equations of 201, and are known as the principal

screws of the system. The three points X, Y, Z being the vertices of a

self-conjugate triangle with respect to both the conies A and B, and hence to

the whole system, we have the following theorem :

The vertices of the conjugate triangle common to the system of pitch conies

correspond to the three principal screws of the three-system.

209. Expression for the Pitch.

Each conic drawn through the four points of indeterminate pitch, P1} P2 ,

P3 ,
P4 ,

is the locus of screws with a given pitch belonging to the system.

We are thus led to connect the constancy of the pitch at each point of this

conic with another feature of constancy, viz. that of the anharmonic ratio

subtended by a variable point of the conic with the four fixed points. The

connexion between the pitch and the anharmonic ratio will now be

demonstrated.

Let 1 ,
#2 &amp;gt;

03 be the co-ordinates of any point on the conic, and let a, /3, 7
be the co-ordinates of one of the four points, say P1 ;

then if 0j, $2 , :i
be the

current co-ordinates, the equation of the line joining 9 to Pl
is

&amp;lt;f&amp;gt;3

13,

=0.

As we are dealing with the anharmonic ratio of a pencil, we may take any

section for the calculation of the ratios, and, accordingly, make

&amp;lt;k

= 0;

and we have for the co-ordinates of the point in which the line joining

8 and Pj intersects
&amp;lt;/&amp;gt;

:!

= 0, the conditions,

-
i7
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By changing the sign of a, and then changing the signs of ft aud of 7, we
shall obtain the four points in which the pencil 0(P1 ,

P2 ,
P3 ,

P4) cuts the

axis
&amp;lt;j&amp;gt;

3
= 0. If four values of

j-
1

be represented by k, I, m, n, the required
02

anharmomc ratio is, of course,

(n l)(m k)

(n-m)(l-ky
and after a few reductions we find that this becomes

But we have

_

Eliminating 0^, we find that 2
2 and 0/ disappear also when we make

tf = p-2-ps , Pa = p,-p1) y
2 = pi-p,,

and we obtain the following result :

which gives the following theorem :

Measure off distances plf p.,, ps , p, from an arbitrary point on a straight

line, then the anharmonic ratio of the four points thus obtained is equal to the

anharmonic ratio subtended by any point of the p-pitch conic at the four points

of indeterminate pitch.

It is possible without any sacrifice of generality to make the zero-pitch
conic a circle. For take three angles A, B, G whose sum is 180 and such
that the equations

sin2J. _ sin 2B _ sin 2(7

Pi Pi p3

are satisfied where pl} p2 , ps are the three principal pitches of the three-

system. If the fundamental triangle has A, B, C for its angles then the

equation

a,
2 sin 2A + 2

2 sin IB + a/ sin 2(7 = 0,

is the equation of the zero-pitch conic. It is however a well-known theorem
in conies that this equation represents a circle with its centre at the ortho-

centre, that is, the intersection of the perpendiculars from the vertices of the

triangle on its opposite sides.

We thus have as the system of pitch conies

a,
2 sin 24 + *2

2 sin 2B + a
3
2 sin 2(7 - p (a,

2 + a2
2 + a,

2

)
= 0.

B. 14
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The centre of a conic of the system has for co-ordinates

sin A sin B sin G
sin 2A -p sin 25 -p sin 20 -p

The locus of the centres of the system of conies is easily seen to pass through

the vertices of the triangle of reference. It must also pass through the

orthocentre, and hence by a well-known property it must be an equilateral

hyperbola. It can also be easily shown that this hyperbola must pass

through the &quot;

symmedian&quot; point of the triangle, i.e. through the centre of

gravity of three particles at the vertices of the triangle when the mass of each

particle is proportional to the square of the sine of the corresponding angle.

In Fig. 40 a system of pitch conies has been shown drawn to scale. The

sides of the fundamental triangle are represented by the numbers 117,

189, 244 respectively. The equation to the system of conies, expressed in

Cartesian co-ordinates for convenience of calculation, is

= .- 1864116 - + y- (2-2135882 -
-6852041

)
V p i \ p J

-1649571^ - 9 46700z -

25199-54 +
*

P

Among critical conies of the system we may mention :

1. The two parabolas for which the pitches are respectively

8766 and &quot;3089.

2. The three cases in which the conic breaks up into a pair of straight

lines for the pitches sin 2A, sin 25, sin 2(7, respectively. Of these, the first

alone is a real pair corresponding to the pitch 8256034. The equations of

these lines are

x = 7 84y
- 978,

For convenience in laying down the curves the current co-ordinates on

each conic are expressed by means of an auxiliary angle ; thus, for example,

in computing points on the hyperbola with the pitch 748984 I used the

equations
x = 66 + 26-1 sec 6 + 132 tan 6,

y = 161-5 + 40-7 sec 0.

The ellipse with pitch 9 was constructed from the equations

x = - 367 - 168 cos 351 sin 0,
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The following are the pitches of the several points and curves represented

Vertices of the Triangle + 992, + 825, - 448,

Ellipses + -96, + -92, + 1,
-

4,

Parabola + 309,

Hyperbolas + 748984, + -8300467.

The locus of the centres of the pitch conies is

a^j sin (A - B) sin 2(7 + 2a3 sin (B - C) sin 1A + a.^ sm(C-A) sin 25 = 0.

210. Intersecting Screws in a Three-System.

If two screws of a three-system intersect, then their two corresponding

points must fulfil some special condition which we propose to investigate.

Let a be one screw supposed fixed, then we shall investigate the locus of

the point 6 which expresses a screw which intersects a. We can at once

foresee a certain character of this locus. A ray through a can only cut it in one

other point, for if it cut in two points, we should have three co-cylinclroidal

screws intersecting, which is not generally possible. The locus is, as we shall

find, a cubic and the necessary condition is secured by the fact that a is a

double point on the cubic, so that a ray through a has only one more point

of intersection with the curve. We can indeed prove that this curve must

be a cubic from the fact that any screw meets a cylindroid in three points.

Draw then a ray ( 200) corresponding to a cylindroid of the three-system.

There must be in general three points of the locus on this ray. Therefore the

locus must be a cubic.

As a and 6 intersect we have since d6a
=

2&amp;lt;3-ea
= (pa + pe) cos 0&amp;lt;9).

By substituting the values of the different quantities in terms of the co

ordinates we have the following homogeneous equation of the cubic :

= 2 (0!* + 2
2 + 3

2

) (p^A +P&A +P&A) (a,
2 + 2

2 + a3
2

)

a
3&amp;lt;?3) (ai

2 + 2
2 + as

2

)

We first note that this cubic must pass through the four points of inter

section of
=

0,&quot;+ &amp;lt;9./ + 6*,

= pA* +p&i +pA2
-

But this might have been expected, because as we have shown ( 203) each of

these four points corresponds, not to a single screw, but to a plane of screws.
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In a certain sense therefore a must intersect each of these four screws, and

accordingly the cubic has to pass through the four points.

To prove that a is a double point we write for brevity

p = 0^ + e:- + 3-, R =p&A + p.&A + p3a3 3 ,

Q = Pidi
1 + pA* + P-*0/, 8 = ^0,+ a,8, + a3 3 ,

L =p&S + p2aj + psa3
2
,

H = a/
2 + a,2 + a3

2
,

and the equation is

P(2HR-LS)-8QH=0.

Differentiating with respect to 1} 0.2 , 3 respectively and equating the results

to zero we have

= 20j [2RH -LS- aHS] + a, [2aPH-LP- HQ],

= 208 [2RH -LS- bHS] + a2 [2bPH-LP- HQ],

= 203 [2RH -L8- cHS] + a3 [2cPH-LP - HQ].

These are satisfied by 6
l
= al , 2

=
2 , 3

= as which proves that a is a double

point.

The cubic equation is satisfied by the conditions

=p]
a

l 1 +p2a2 2 +p3 &amp;lt;xz 3 .

This might have been expected because these equations mean that o and

are both reciprocal and rectangular, in which case they must intersect. Thus

we obtain the following result :

If !, a2 ,
as are the co-ordinates of a screw a in the plane representation,

then the co-ordinates of the screw which, together with a, constitute the

principal screws of a cylindroid of the system are respectively

Ps-p* Pi- Pi P*-PI
1 2 3

The following theorem may also be noted. Among the screws of a three-

system which intersect one screw of that system there will generally be two

screws of any given pitch.

For the cubic which indicates by its points the screws that intersect a

will cut any pitch conic in general in six points. Four of these are of course

the four imaginary points referred to already. The two remaining inter

sections indicate the two screws of the pitch appropriate to the conic which

intersect a.

The cubic

P(2HR-LS)-SQH = Q,
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of course passes through the two points which lie at the intersections of

2HR LS = and Q = 0. Hence we deduce the following result.

The cylindroid through the two screws of zero pitch which intersect a

corresponds to the ray whose equation is

2( 1

2
+a,

2+a3
2

)(&amp;gt; 1
a1 6&amp;gt;1 +p,aA +p^-A)-(p^ +p,a.* +p&?} (a^ +a2 2+a3 3)=0,

a will of course intersect a third screw on this cylindroid and be perpen
dicular thereto.

The cubic passes through the two points defined by

= aA + oc,&amp;lt;92 + a3 3 ,

but these points are the points of contact of the pair of tangents drawn from

the point a to the conic of infinite pitch.

These two points in addition to the four points on the same conic defined

by its intersection with the conic of zero pitch, make six known points on the

cubic. If however we are given six points on a cubic and also a double

point on the curve, then it is determinate. Thus we obtain the following

geometrical construction.

In the plane representation of a three-system we draw the conic of zero

pitch C and the conic of infinite pitch U. To find the locus of the screws

which intersect a given screw a, it is necessary to draw the two tangents
from a to If and through the two points of contact, and also the four points
common to C and U then draw that single cubic which has a double point
at a. See Appendix, note 5.

211. Application to Dynamics.

By the aid of the plane representation we are enabled to solve certain

problems in the dynamics of a rigid body which has freedom of the third

order.

Let an impulsive wrench act upon a quiescent rigid body ; it is required
to determine the instantaneous screw about which the body will commence to

twist.

It has been shown ( 96) that the impulsive wrench, wherever situated,

can generally be adequately represented by the reduced impulsive wrench
on a screw of the three-system. The problem is therefore reduced to the

determination of the point corresponding to the instantaneous screw, when
that corresponding to the impulsive screw is known.



211] PLANE REPRESENTATION OF THE THIRD ORDER. 215

We have first to draw the conic of which the equation is

This conic is of course imaginary, being in fact the locus of screws about

which, if the body were twisting with the unit of twist velocity, the kinetic

energy would nevertheless be zero. If two points 0, (ft
are conjugate with

respect to this conic, then

The screws corresponding to 6 and $ are then what we have called conjugate,
screws of inertia.

This conic is referred to a self-conjugate triangle, the vertices of

which are three conjugate screws of inertia. There is one triangle self-

conjugate both to the conic of zero pitch, and to the conic of inertia just
considered. The vertices of this triangle are of especial interest. Each pair
of them correspond to a pair of screws which are reciprocal, as well as being

conjugate screws of inertia. They are therefore what we have designated
as the principal screws of inertia ( 87). They degenerate into the principal
axes of the body when the freedom degenerates into the special case of

rotation around a fixed point.

When referred to this self-conjugate triangle, the relation between the

impulsive point and the corresponding instantaneous point can be expressed
with great simplicity. Thus the impulsive point &amp;lt;,

whose co-ordinates are

#iWi
2

-5- Pi ; 0*uf -j- p2 ; 3 3
a
-r p3 ,

corresponds to the instantaneous point whose co-ordinates are 6lt 2 , 3 . The

geometrical construction is sufficiently obvious when derived from the

theorem thus stated.

If &amp;lt;f&amp;gt;

denote an impulsive screw, and 6 the corresponding instantaneous screw,
then the polar of &amp;lt;f&amp;gt;

with regard to the conic of zero pitch is the same straight line

as the polar of 6 with regard to the conic of inertia.

If H be the virtual coefficient of two screws 6 and 77, then

It follows that the locus of the points which have a given virtual coefficient

with a given point is a conic touching the conic of infinite pitch at two

points. If
-v/r

be the screw whose polar with regard to the conic of infinite

pitch is identical with the polar of
77 with regard to the conic of zero pitch,

then all the screws 6 which have a given virtual coefficient with
77 arc

equally inclined to ^. It hence follows that all the screws of a three-

system which have a given virtual coefficient with a given screw are parallel
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to the generators of a right circular cone. All the screws reciprocal to 77

form a cylindroid, and fy is the one screw of the system which is parallel

to the nodal line of the cylindroid. The virtual coefficient of ^ and 17 is

greater than that of 77 with any other screw.

If 6 be a screw about which, when a body is twisting with a given
twist velocity it has a given kinetic energy, then we must have

U *e? + uje* + u3
2

3
2 - E(e? + e.? + e/) = o,

where E is a constant proportional to the energy. It follows that the locus

of 6 must be a conic passing through the four points of intersection of the

two conies

u*d? + u?e? + u 3
263

2 = 0,

The four points in which these two conies intersect correspond to the screws

about which the body can twist with indefinite kinetic energy. These four

points A, B, C, D being known, the kinetic energy appropriate to every point
P can be readily ascertained. It is only necessary to measure the anharmonic

ratio subtended by P, at A, B, C, D, and to set off on a straight line

distances wx

2
, u, u3

2
,
h2

,
so that the anharmonic ratio of the four points

shall be equal to that subtended by P. This will determine h2
,
which is

proportional to the kinetic energy due to the unit twist velocity about the

screw corresponding to P.

A quiescent rigid body of mass M receives an impulsive wrench of given

intensity on a given screw 77 ;
we investigate the locus of the screw 6 belonging

to the three-system, such that if the body be constrained to twist about 6,

it shall acquire a given kinetic energy.

It follows at once (91) that we must have

where E is proportional to the kinetic energy. The required locus is there

fore a conic having double contact with the conic of inertia.

It is easy to prove from this that E will be a maximum if

V#i : Ptfi
= W2

2
2 : p2i] 2

= u3
2

3 : psrj3 ;

whence again we have Euler s well-known theorem that if the body be

allowed to select the screw about which it will twist, the kinetic energy

acquired will be larger than when the body is constrained to a screw other

than that which it naturally chooses ( 94).

A somewhat curious result arises when we seek the interpretation of

a tangent to the conic of infinite pitch. This tangent must, like any other

straight line, correspond to a cylindroid ;
and since it is the polar of the
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point of contact, it follows that every screw on the cylindroid must be at

right angles to the direction corresponding to the point of contact. The

co-ordinates of the point of contact must therefore be proportional to the

direction cosines of the nodal line of the cylindroid.

If the body be in equilibrium under the action of a conservative system
of forces, then there is a conic (analogous to the conic of inertia) which

denotes the locus of screws about which the body can be displaced to a

neighbouring position, so that even as far as the second order of small

quantities no energy is consumed. The vertices of the triangle self-conjugate

both to this conic and the conic of inertia correspond to the harmonic

screws about which, if the body be once displaced, it will continue to

oscillate.



CHAPTER XVI.

FREEDOM OF THE FOURTH ORDER.

212. Screw System of the Fourth Order.

The most general type of a screw system of the fourth order is exhibited

by the set of screws which are reciprocal to an arbitrary cylindroid ( 75).

To obtain certain properties of this screw system it is, therefore, only

necessary to re-state a few results already obtained.

All the screws which belong to a screw system of the fourth order and
which can be drawn through a given point are generators of a certain cone

of the second degree ( 23).

All the screws of the same pitch which belong to a screw system of the

fourth order must intersect two fixed lines, viz. those two screws which,

lying on the reciprocal cylindroid, have pitches equal in magnitude but

opposite in sign to the given pitch ( 22).

One screw of given pitch and belonging to a given screw system of the

fourth order can be drawn through each point in space ( 123).

As we have already seen that two screws belonging to a screw system
of the third order can be found in any plane ( 178), so we might expect
to find that a singly infinite number of screws belonging to a screw system
of the fourth order can be found in any plane. We shall now prove that

all these screws envelope a parabola. A theorem equivalent to this has

been already proved in a different manner in 162.

Take any point P in the plane, then the screws through P reciprocal to

the cylindroid form a cone of the second order, which is cut by the plane
in two lines. Thus two screws belonging to a given screw system of the

fourth order can be drawn in a given plane through a given point. But
it can be easily shown that only one screw of the system parallel to a

given line can be found in the plane. Therefore from the point at infinity

only a single finite tangent to the curve can be drawn. Therefore the other
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tangent from the point must be the line at infinity itself, and as the line

at infinity touches the conic, the envelope must be a parabola.

In general there is one line in each screw system of the fourth order,

which forms a screw belonging to the screw system, whatever be the pitch

assigned to it. The line in question is the nodal line of the cylindroid

reciprocal to the four-system. The kinematical statement is as follows :

When a rigid body has freedom of the fourth order, there is in general
one straight line, about which the body can be rotated, and parallel to which
it can be translated.

A body which has freedom of the fourth order may be illustrated by the

particular case where one point P of the body is forbidden to depart from
a given curve. The position of the body will then be specified by four

quantities, which may be, for example, the arc of the curve from a fixed

origin up to P, and three rotations about three axes intersecting in P. The

reciprocal cylindroid will in this case assume an extreme form
;

it has de

generated to a plane, and in fact consists of screws of zero pitch on all the

normals to the curve at P.

It is required to determine the locus of screws parallel to a given straight
line L, and belonging to a screw system of the fourth order. The problem
is easily solved from the principle that each screw of the screw system must
intersect at right angles a screw of the reciprocal cylindroid ( 22). Take,

therefore, that one screw 6 on the cylindroid which is perpendicular to L.

Then a plane through 6 parallel to L is the required locus.

213. Equilibrium with freedom of the Fourth Order.

When a rigid body has freedom of the fourth order, it is both necessary
and sufficient for equilibrium, that the forces shall constitute a wrench upon
a screw of the cylindroid reciprocal to the given screw system. Thus, if a

single force can act on the body without disturbing equilibrium, then this

force must lie on one of the two screws of zero pitch on the cylindroid.
If there were no real screws of zero pitch on the cylindroid that is, if the

pitch conic were an ellipse, then it would be impossible for equilibrium to

subsist under the operation of a single force. It is, however, worthy of

remark, that if one force could act without disturbing the equilibrium,
then in general another force (on the other screw of zero pitch) could
also act without disturbing equilibrium.

A couple which is in a plane perpendicular to the nodal line can be
neutralized by the reaction of the constraints, and is, therefore, consistent
with equilibrium. In no other case, however, can a body which has freedom
of the fourth order be in equilibrium under the influence of a couple.
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We can also investigate the conditions under which five forces applied

to a free rigid body can neutralize each other. The five forces must, as

the body is free, belong to a screw system of the fourth order. Draw

the cylindroid reciprocal to the system. The five forces must, therefore,

intersect both the screws of zero pitch on the cylindroid. We thus prove
the well-known theorem that if five forces equilibrate two straight lines can

be drawn which intersect each of the five forces. Four of the forces will

determine the two transversals, and therefore the fifth force may enjoy any

liberty consistent with the requirement that it also intersects the same two

lines.

If A
l ,...A 5 be the five forces, the ratio of any pair, let us say for

example, A : A z is thus determined.

Let P, Q be the two screws of zero pitch upon the cylindroid, i.e. the

two common transversals of A ly ... A 5 .

Choose any two screws X and Y reciprocal to both A! and J. 2 ,
but not

reciprocal to A 3 ,
A 4 or A 5 .

Choose any screw Z reciprocal to A 3 , A^, A 5 ,
but not reciprocal to A l

or A 2 .

Construct ( 25) the single screw / reciprocal to the five screws

X, 7, P, Q, Z.

The four screws X, Y, P, Q are reciprocal to the cylindroid A 1} A.2 \

therefore /, which is reciprocal to X, Y, P, Q, must lie upon the cylindroid

(Alt Aj($2Q
Since P, Q, Z are all reciprocal to A 3 ,

A t ,
A 5 , it follows that / being

reciprocal to P, Q, Z must belong to the screw system A 3 ,
A t ,

A 5 . Hence

/ is found on the cylindroid (A 1} A 3),
and it must also belong to the system

(A 3 , AI, A s). If, therefore, forces along A 1 ,...A 5 are to equilibrate, the

forces along A 1&amp;gt;

A 3 must compound into a wrench on /.

But / being known by construction the angles A ZI and A^I are known,

and consequently the ratio of the sines of these angles, i.e. the relative

intensities of the forces on A
1
and A 2 are determined

( 14).

If a free rigid body is acted upon by five forces, the preceding con

siderations will show in what manner the body could be moved so that it

shall not do work against nor receive energy from any one of the forces.

Let A!, ... A 5 be the five forces. Draw two transversals L, M intersecting

A 1 ,...A i . Construct the cylindroid of which L, M are the screws of zero

pitch ; find, upon this cylindroid, the screw X reciprocal to A 5 . Then the
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only movement which the body can receive, so as to fulfil the prescribed

conditions, is a twist about the screw X. For X is then reciprocal to

AU...AS, and therefore a body twisted about X will do no work against

forces directed along A 1} ... A s .

From the theory of reciprocal screws it follows that a body rotated

around any of the lines A ly ... A 5 will not do work against nor receive energy
from a wrench on X.

In the particular case, where A l} ... A 5 have a common transversal, then

X is that transversal, and its pitch is zero. In this case it is sufficiently

obvious that forces on A^...A 5 cannot disturb the equilibrium of a body

only free to rotate about X.

214. Screws of Stationary Pitch.

We begin by investigating the screws in an ?i-system of which the pitch
is stationary in the sense employed in the Theory of Maximum and Minimum.
We take the case of n = 4.

The co-ordinates Ol ,... S of the screws of a four-system have to satisfy
the two linear equations denning the system. We may write these equations
in the form

The screws of reference being co-reciprocal, we have for the pitch pe the

equation

SM -.Rp^O,

where R is the homogeneous function of the second degree in the co

ordinates which is replaced by unity ( 35) in the formulae after differ

entiation.

If the pitch be stationary, then by the ordinary rules of the differential

calculus ( 38),

As however belongs to the four-system, the variations of its co-ordinates

must satisfy the two conditions

Following the usual process we multiply the first of these equations by
some indeterminate multiplier \, the second by another quantity p, and then
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add the products to the former equation. We can then equate the co

efficients of 80!,... 8#6 severally to zero, thus obtaining

J~D

2p6 6
-

ja Pe + *A + A^e = 0.
av6

Choose next from the four-system any screw whatever of which the co

ordinates are $15 ... &amp;lt;. Multiply the first of the above six equations by &amp;lt;j&amp;gt;

1}

the second by &amp;lt; 2 ,
&c. and add the six products. The coefficients of X and

//,

vanish, and we obtain

dR
,
dR

The coefficient of pg is however merely double the cosine of the angle
between 6 and &amp;lt;. This is obvious by employing canonical co-reciprocals

in which
.R = (0i + 0*y + (0, + ety + (0, + 0,y,

whence
dR dR

(0, + 2)+2 (03 + 4) (03 + t) + (08 + 00 (0, + 6)
= 2 cos

We thus obtain the following theorem, which must obviously be true for

other values of n besides four.

If (f)
be any screw of an n-system and if 6 be a screw of stationary pitch

in the same system then -ar^
= cos

(6(f&amp;gt;)pe .

Suppose that there were two screws of stationary pitch and in an ??-

system. Then
13- = cos

If pe and PCJ,
are different these equations require that

BJ^
=

;
cos

(#&amp;lt;/&amp;gt;)

=
;

i.e. the screws are both reciprocal and rectangular and must therefore

intersect.

We have thus shown that if there are two stationary screws of different

pitches in any w-system, then these screws must intersect at right angles.

In general we learn that if any screw of an ?i-system has a pitch equal

to that of a screw of stationary pitch in the same system, then and

must intersect. For the general condition

*
= cos

(#&amp;lt;/&amp;gt;) p6
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is of course

(Pe + P*) cos W) - sin
(0&amp;lt;f&amp;gt;) d^ = 2pe cos (0&amp;lt;j&amp;gt;),

or

(P&amp;lt;t&amp;gt;

~
Pe) cos

(0&amp;lt;f&amp;gt;)

- sin
(0&amp;lt;f&amp;gt;)

d
64&amp;gt;

= 0.

If then p^ = p6 we must have sin
(#(/&amp;gt;) c^ = 0, which requires that and

must intersect at either a finite or an infinite distance.

In the case where
&amp;lt; is at right angles to 6 it follows from the formula

^ob cos
(0&amp;lt;fi)p6

that
CT04,

= 0, or that and are reciprocal. But two screws

which are at right angles and also reciprocal must intersect, and hence we
have the following theorem.

If 6 be a screw of stationary pitch in an n-system, then any other screw

belonging to the n-system and at right angles to Q must intersect 6.

If
(/&amp;gt; belongs to an w-system its co-ordinates must, on that account, satisfy

6 n linear equations. If it be further assumed that &amp;lt; has to be perpen
dicular to 0, then the co-ordinates of &amp;lt; have to satisfy yet one more equa
tion, i.e.

. dR
, dR

ft&amp;gt;:-*;BETft

In this case
&amp;lt;/&amp;gt;

is subjected to 7 n linear equations. It follows ( 76) that

(f&amp;gt;

will have as its locus a certain (n l)-system, whence we have the following

general theorem.

If 6 is a screw of stationary pitch in an n-system P then among the

(n Y)-systems included in P there is one Q such that every screw of Q intersects

at right angles.

These theorems can also be proved by geometrical considerations. If a

screw 6 have stationary pitch in an w-system it follows a fortiori that 6 must
have stationary pitch on any cylindroid through 6 and belonging wholly to

the n-system. This means that must be one of the two principal screws

on such a cylindroid. Choose any other screw &amp;lt; of the system and draw the

cylindroid (0, &amp;lt;/&amp;gt;)

then 6 is a principal screw, and if 6 and the other principal
screw on the cylindroid be two of the co-reciprocal screws of reference, then

the co-ordinate of &amp;lt; with respect to is
cos(0&amp;lt;) ( 40). But that co-ordinate

must also have the general form -nr^ -rpl ,
whence at once we obtain

Let be a screw of stationary pitch in a three-system, and let
&amp;lt;/&amp;gt;

and ^r
be any two other screws in that system. Then 6 is one of the principal
screws on the cylindroid (#&amp;lt;/&amp;gt;) ;

let &amp;lt;j be the other principal screw on that
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cylindroid. In like manner let p be the other principal screw of the cylin-

droid
(0i/r). Then p and a determine the cylindroid (per) which belongs to

the system, 6 must lie on the common perpendicular to p and cr, and hence

the screws of the cylindroid (per) each intersect 6 at right angles.

If is a screw of stationary pitch in a four-system, it can be shown

that three screws p, cr, r not on the same cylindroid can be found in the same

system, and such that they intersect 6 at right angles. In this case p, cr, r

will determine a three-system, every screw of which intersects 6 at right

angles.

215. Application to the Two-System.

The principles of the last article afford a simple proof of many funda

mental propositions in the theory. We take as the first illustration the well-

known fact ( 76) that if the co-ordinates of a screw satisfy four linear

equations then the locus of that screw is a cylindroid.

From the general theorem we see by the case of n = 2 that in any two-

system a screw of stationary pitch will be intersected at right angles by
another screw of the two-system.

These two screws may be conveniently taken as the first and third of the

canonical co-reciprocal system lying on the axes of x and y. Hence we have

as the co-ordinates of a screw of the system l , 0, #3 , 0, 0, 0.

The investigation has thus assumed a very simple form inasmuch as the

four linear equations express that of the six co-ordinates of a screw of the

system four are actually zero.

Let X, fjb,
v be the direction angles of the screw 6 with respect to the

associated Cartesian axes then ( 44),

a _ (Pe + a) cos ^ ~ dei sin X (pe a) cos X dei sin X
V\^ )

v) = I

a a

a (Pe + &) cos P - ^02 sin
/u. (pe

-
b) cos p-d^ sin pe*

= IT &quot;

; ~TF~
-

;

_ _ (pe + c) cos v des sin v _ _ (p6 c) cos v - des sin v

c c

The two last of these equations give

cos v =
;

de3
= 0.

Hence we learn that 6 must intersect the axis of z at right angles. 6 is

thus parallel to the plane of xy at a distance dei
= dez

= z, and accordingly
we have the equations

(pg a) cos X z sin X = 0,

(p6 b) cos
/j.

z sin
/u,
= 0,
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whence eliminating z and observing that X
//,
= 90 we obtain,

pd
= a cos2 X + 6 sin2

X,

and eliminating pe ,

(b a) sin X cos X = z.

If we desire the equation of the surface we have

y = x tan X,

and hence finally

225

Thus again we arrive at the well-known equation of the cylindroid.

We can also prove in the following manner the fundamental theorem
that among the screws belonging to any two-system there are two which
intersect at right angles ( 13).

Let 6 be any screw of the two-system, and accordingly the six co-ordinates

of 9 must satisfy four linear equations which may be written

If be a screw which intersects 6 at right angles, then we must
also have

inasmuch as these screws are reciprocal as well as rectangular.

From these six equations Ol ,...06 can be eliminated, and we have the

resulting equation in the co-ordinates of
&amp;lt;f&amp;gt;,

B.

dR
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This equation involves the co-ordinates of &amp;lt; in the second degree. If this

equation stood alone it would merely imply that $ belonged to the quadratic

five-system ( 223) which included all the screws that intersected at right

angles any one of the screws of the given cylindroid. If we further assume

that
&amp;lt;f&amp;gt;

is to be a screw on the given cylindroid, then we have

... + (76
(/&amp;gt;

6
= 0,

From these five equations two sets of values of
&amp;lt;f&amp;gt;

can be found. Thus

among the system of screws which satisfy four linear equations there must

be two screws which intersect at right angles. These are of course the two

principal screws of the cylindroid.

216. Application to the Three-System.

The equations of the three-system can be also deduced from the principle

employed in 214 which enunciated for this purpose is as follows.

If 6 be a screw of stationary pitch in a three-system P then there is a

cylindroid belonging to P such that every screw of the cylindroid intersects

6 at right angles.

It is obvious that this condition could only be complied with if lies on

the axis of the cylindroid, and as the cylindroid has two intersecting screws

at right angles we have thus a proof that in any three-system there must be

one set of three screws which intersect rectangularly. Let their pitches be

a, b, c, then on the first we may put a screw of pitch a, on the second a

screw of pitch b, and on the third a screw of pitch c. Thus we arrive

at a set of canonical co-reciprocals specially convenient for the particular

three-system.

We have therefore learned that whatever be the three linear equations

defining the three-system it is always possible without loss of generality to

employ a set of canonical co-reciprocals such that the 1st, 3rd and 5th screws

shall belong to the system.

These three screws will define the system. Any other screw of the

system can be produced by twists about these three screws. Hence we

see that for every screw of the system we must have

0, = ; 4
= 0; 6

= 0.



217] FREEDOM OF THE FOURTH ORDER. 227

If X, /j,,
v be the direction angles of 6 we have therefore ( 44)

fi _ (pe a) cos X d
ei

sin X _
c/2 (j

a

a (Pd
-

b) cos
/u,

- de3 sin /i
4
-

-g- :0,

/, _ (P
-

c) cos v - d65 sin v
t/G

= U.
c

The direction cosines of the common perpendicular to 6 and 1 arc

cos v cos
//,

sin X sin X

whence the cosine of the angle between this perpendicular and the radius

vector to a point ac, y, z on is

y cos v z cos /j, d6l

r sin X r sin X r

or d
ei sin X = y cos v z cos /x.

We have thus the three conditions

(pe a)cos\ +z cos
//, ?/ cos z/ = (i),

2 cos X + (p 9 b) cos /i + cos v = (ii),

+ ycosX # cos
//, -f ( pQ c) cos v = (iii),

whence eliminating cos X, cos
//,,

cos v we obtain

(pe a) (pe b) (pe c) + (p6 a)x
1

-\-(pe H)y- + (pe c)z&quot;
= 0.

Thus we deduce the equation otherwise obtained in 174, for the family of

pitch-hyperboloids on which are arranged according to their pitches the

several screws of the three-system.

217. Principal pitches of the Reciprocal Cylindroid.

From a system of the fourth order a system of canonical co-reciprocals
can in general be selected which possesses exceptional facilities for the investi

gation of the properties of the screws which form that four-system.

Let OA and OB be the axes of the two principal screws of the reciprocal

cylindroid. Let a and b be the pitches of these two principal screws and
let c be any third linear magnitude. Let 00 be the axis of the cylindroid.

Then the canonical co-reciprocal system now under consideration consists of

Two screws on OA with pitches + a and - a.

Two screws on OB with pitches + b and - b.

Two screws on 00 with pitches + c and c.

152
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Of these the four screws with pitches a,b,+c,-c respectively are each

reciprocal to the cylindroid. Each of these four screws must thus belong to

the four-system. Further these four screws are co-reciprocal.

If 0^ ...
({
be the six co-ordinates of a screw in the four-system referred

to these canonical co-reciprocals, then we have

l
= 0, 3

= 0.

For 0! =
ie

,
but as the first screw of reference belongs to the reciprocal

CL

cylindroid we must have tzr]0
= 0. In like manner vr3g

= 0, and therefore

0! = and #3 = are the two linear equations which specify this particular

four-system.

The pitch of any screw on the four-system expressed in terms of its

co-ordinates is

I^02^j&amp;gt;04

2 + c (05
2 -

6
2

)

*f+0t+&+ lff

of which the four stationary values are a, b, + oo
,

GO .

We may remark that if the four co-ordinates here employed be taken as

a system of quadriplanar co-ordinates of a point we have a representation

of the four-system by the points in space. P^ach point corresponds to one

screw of the system. The screws of given pitch pe are found on the quadric

surfaces

U+peV=0,

where ?7=0 is the quadric whose points correspond to the screws of zero

pitch and where V= is an imaginary cone whose points correspond to the

screws of infinite pitch. Conjugate points with respect to U = will cor

respond to reciprocal screws. A plane will correspond to a three-system

and a straight line to a two-system.

The general theorem proved in 214 states that when is a screw of

stationary pitch in an ra-system to which any other screw &amp;lt; belongs, then

^e* = Pe cos
0(/&amp;gt;.

Let us now take a four-system referred to any four co -reciprocals and choose

for $ in the above formula each one of the four co-reciprocals in succession,

we then have

Pi e, =pe {0, + 2 cos (12) + 63 cos (1.3) + 4 cos (14)}]

p2 2
= pe {6 l

cos (1 2) + 2 +03 cos (23) + 4 cos (24)}

p3 3
= Pe {0i cos (1.3) + 2 cos (23) + a + 4 cos (34)}

2&amp;gt;404

= ps {0i cos (14) + 2 cos (24) + 6, cos (34) + 4 ]

Eliminating 1( 2 , 3) 4 we deduce a biquadratic for pe . But we have
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already seen that two of the roots of this must be infinite, whence this

equation reduces to a quadratic, and its roots are as we have seen equal
but opposite in sign to the pitches of the principal screws of the reciprocal

cylindroid.

After a few reductions and replacing pe by p we obtain the following

equation

P*(P!P* sin2

(34) + p,pa sin
2

(24) + . . .)

We thus deduce from any four co-reciprocal screws the quadratic equation
which gives the pitches of the two principal screws of the cylindroid to

which the given four-system is reciprocal.

218. Equations to the screw in a four-system &amp;lt;/

The screws of the four-system are defined by the equations

(pe + a) cos X + z cos
yu, y cos v = 0,

z cos X + ( pe + b) cos
fj, + x cos v = 0,

where pg is the pitch where cos X, cos p, cos v are the direction cosines and

where oc, y, z is a point on the screw. By these equations the properties of

the various screws of the system can be easily investigated.

If pe be eliminated we obtain

x cos X cos v + y cos p cos v z (cos
2 X + cos2

p,) (a 6) cos X cos
//.,

whence we obtain for the equation to the cone of screws which belongs to the

four-system, and has its vertex at #, y0) ZQ

x (as
-

x,} (z
-

z,} + 7/0 (y
-
y ) (z

-
z,)

-
z, {(x

- a? )
3 + (y

-
y )

2

} ~(a-b) (x
- x ) (y

-
// )

= 0.

This is of course the cone which has been referred to in 123.

219. Impulsive Screws and Instantaneous Screws.

A body which is free to twist about all the screws of a screw system of

the fourth order receives an impulsive wrench on the screw 77, the impulsive

intensity being 77
&quot;. It is required to calculate the co-ordinates of the screw

6 about which the body will commence to twist, and also the initial re

actions of the constraints.

Let X and
/j,

be any two screws on the reciprocal cylindroid, then the

impulsive reaction of the constraints may be considered to consist of

impulsive wrenches on X, p of respective intensities X
&quot;, //,&quot;

. If we adopt
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the six absolute principal screws of inertia as screws of reference, ( 79) then

the body will commence to move as if it were free, but had been acted upon
by a wrench of which the co-ordinates are proportional to p^, ..., p666 .

It follows that the given impulsive wrench, when compounded with the

reactions of the constraints, must constitute the wrench of which the co

ordinates have been just written
;
whence if h be a certain quantity which

is the same for each co-ordinate, we have the six equations

Multiply the first of these equations by X1; the second by Xj, &c.: adding
the six equations thus obtained, and observing that 6 is reciprocal to X, and
that consequently

2M\i = 0,

we obtain

f}

/ &quot;

^r} 1
\

1 + X &quot;^!
2 + //&quot;SXj//,!

= 0,

and similarly multiplying the original equations by p1 , ..., ^6 and adding,
we obtain

^x, + /&quot;S
2 = 0.

From these two equations the unknown quantities X
&quot;, //&quot;

can be found,
and thus the initial reaction of the constraints is known. Substituting the

values of X
&quot;, //&quot;

in the six original equations, the co-ordinates of the

required screw 9 are determined.

220. Principal Screws of Inertia in the Four-System.

We have already given in Chapter VII. the general methods of deter

mining the principal screws of inertia in an ?i-system. The following is a

different process which though of general application is in this chapter set

down for the case of the four-system.

Choose four co-reciprocal screws a, ft, 7, 8 of the four-system and let

their co-ordinates be as usual !,... ,fc; &,...,&; yn ...,7; 81, ...,86 ;

referred to the six absolute principal screws of inertia ( 79).

Let an impulsive wrench on one of the principal screws of inertia 6 in

the four-system be decomposed into components on a, /3, 7, 8, and let the

impulsive intensities be a
&quot;, &quot;, 7 &quot;,

8 &quot;.

Let X, p, be any two screws on the reciprocal cylindroid. Then the body
will move as if it had been free and had received impulsive wrenches on the

absolute principal screws of inertia, the impulsive intensities being

a&quot; a6 + {3&quot; j3G + y
&quot;

7ti + B &quot;SV + X/7/X6



221] FREEDOM OF THE FOURTH ORDER. 231

The co-ordinates of are proportional to

/// , rt/rr r\ . ill
, 5/&quot;S&amp;gt;

a a x + p & + 7 71 + o di

/// . nni rt i i

a a + /3 #, + 7 7e + &amp;lt;%

As # is to be a principal screw of inertia it follows that the expressions

last written multiplied severally by pl} ...,p6 must be proportional to the

intensities of the impulsive wrenches received by the body : whence we have

the following equations in which h is a quantity which is the same for each

of the co-ordinates.

i + 7&quot; 7i + 8
&quot;^

=
*&quot; i + P&quot;& + 7&quot;Vi + S///

We are now to multiply these equations by au . .., a
fi respectively, and

add. If we repeat the process using p\, ...,/36 ; 71, ..., 7el !,..., S6 ;

Xls ...,X6 ; fr, ...,fj,6 and if we remember that a is reciprocal to /3, 7, 8

because the system is co-reciprocal and that a is reciprocal to A, and p,

because X and
//, belong to the reciprocal system, then observing that like

conditions hold for ft, 7, and S, we have the equations

//

S71
X1+///

S7,/*1 =0,
/

S81X1 + /i

// SV1 =0,

V +/
//

S\1^1 =0,

From these equations a
&quot;, /S&quot; , 7 &quot;,

8
&quot;,

X&quot;
, /*&quot;

can be eliminated and the

result is to give a biquadratic for h. Thus we have the four roots for the

equation. Each of these roots will give a corresponding set of values for

&quot;

, &quot;, 7 &quot;,
8

&quot;,
X

&quot;, p&quot;
thus we obtain

which are proportional to the co-ordinates of the corresponding principal

screw of inertia.

The values of X &quot; and
///&quot;

determine the impulsive reaction of the con

straints.

221. Application of Euler s Theorem.

It may be of interest to show how the co-ordinates of the instantaneous
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screw corresponding to those of a given impulsive screw can be deduced
from Euler s theorem ( 94). If a body receive an impulsive wrench on a

screw 7] while the body is constrained to twist about a screw 6, then we have

seen in 91 that the kinetic energy acquired is proportional to

If #j, 0.2 , 3 , #4 be the co-ordinates of referred to the four principal
screws of inertia belonging to the screw system of the fourth order, then

(195,97)

uf =uf + w;-
&amp;lt;,

2 + u./* + ufOf.

Hence we have to determine the four independent variables 1} 6.,, 3) #4 ,
so

that

shall be stationary. This is easily seen to be the case when lt 0.,, 3 , 4 are

respectively proportional to

Jlfci *, |9t, ~^.
U/l U2 ^3 Ul

These are accordingly, as we already know ( 97), the co-ordinates of the

screw about which the body will commence to twist after it has received

an impulsive wrench on
?/.

This method might of course be applied to any order of freedom.

222. General Remarks.

It has been shown in 80 how the co-ordinates of the instantaneous

screw corresponding to a given impulsive screw can be determined when the

rigid body is perfectly free. It will be observed that the connexion between
the two screws depends only upon the three principal axes through the

centre of inertia, and the radii of gyration about these axes. We may
express this result more compactly by the well-known conception of the

momental ellipsoid. The centre of the momental ellipsoid is at the centre

of inertia of the rigid body, the directions of the principal axes of the

ellipsoid are the same as the principal axes of inertia, and the lengths of

the axes of the ellipsoid are inversely proportional to the corresponding
radii of gyration. When, therefore, the impulsive screw is given, the

momental ellipsoid alone must be capable of determining the corresponding
instantaneous screw.

A family of rigid bodies may be conceived which have a common
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momental ellipsoid; every rigid body which fulfils nine conditions will

belong to this family. If an impulsive wrench applied to a member of

this family cause it to twist about a screw 0, then the same impulsive

wrench applied to any other member of the same family will cause it

likewise to twist about 0. If we added the further condition that the masses

of all the members of the family were equal, then it would be found that

the twist velocity, and the kinetic energy acquired in consequence of a

given impulse, would be the same to whatever member of the family the

impulse were applied ( 90, 91).

223. Quadratic n-systems.

We have always understood by a screw system of the nth order or briefly

an w-system, the collection of screws whose co-ordinates satisfy a certain

system of 6 n linear homogeneous equations. We have now to introduce

the conception of a screw system of the nth order and second degree or briefly

a quadratic n-system (n &amp;lt; 6). By this expression we are to understand a

collection of screws such that their co-ordinates satisfy 6 n homogeneous

equations ;
of these equations 5 n, that is to say, all but one are linear

;

the remaining equation involves the co-ordinates in the second degree.

Let #!,...,#&amp;lt;; be the co-ordinates of a screw belonging to a quadratic

w-system. We may suppose without any loss of generality that the 5 n

linear equations have been transformed into

Qn+2
=

; n+3
=

;
. . . K

= 0.

The remaining equation of the second degree is accordingly obtained by

equating to zero a homogeneous quadratic function of

A A
t/j ... t77l+l

We express this equation which characterizes the quadratic ?i-system as

All the screws whose co-ordinates satisfy the 5 n linear equations must

themselves form a screw system of the 6 (5 n)
= (n + l)th system. This

screw system may be regarded as an enclosing system from which the screws

are to be selected which further satisfy the equation of the second degree

[70
= 0. The enclosing system comprises the screws which can be formed by

giving all possible values to the co-ordinates 6l , ...,0n+l .

Of course there may be as many different screw systems of the nth order

and second degree comprised within the same enclosing system as there can

be different quadratic forms obtained by annexing coefficients to the several

squares and products of n + 1 co-ordinates. If n = 5, the enclosing system
would consist of every screw in space.
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224. Properties of a Quadratic Two-system.

The quadratic two-system is constituted of screws whose coordinates satisfy

three linear equations and one quadratic equation, and these screws lie

generally on a surface of the sixth degree ( 225). If we take the plane

representation of the three-system given in Chapter XV., then any conic in

the plane corresponds to a quadratic two-system and all the points in the

plane correspond to the enclosing three-system. Since any straight line in

the plane corresponds to a cylindroid in the enclosing system and the

straight line will, in general, cut a conic in the plane in two points, we have

the following theorem.

A quadratic two-system has two screws in common with any cylindroid

belonging to the enclosing three-system.

A pencil of four rays in the plane will correspond to four cylindroids

with a common screw, which we may term a pencil of cylindroids. Any
fifth transversal cylindroid belonging also to the same three-system will be

intersected by a pencil of four cylindroids in four screws, which have the

same anharmonic ratio whatever be the cylindroid of the three-system

which is regarded as the transversal. We thus infer from the well-known

anharmonic property of conies the following theorem relative to the screws

of a quadratic two-system.

If four screws a, /3, j, 8 be taken on a quadratic two-system, and also

any fifth screw 77 belonging to the same system, then the pencil of cylindroids

(770), (77/3), (^7), (?)&) will have the same anharmonic ratio whatever be the

screw V). (See Appendix, note G.)

The plane illustration will also suggest the instructive theory of Polar

screws which will presently be stated more generally. Let 7=0 be the conic

representing the quadratic two-system and let V= be the conic representing

the screws of zero pitch belonging to the enclosing three-system. Let P be a

point in the plane corresponding to an arbitrary screw 6 of the three-system.

Draw the polar of P with respect to U=Q and let Q be the pole of this

straight line Avith respect to V= 0, then Q will correspond to some screw
&amp;lt;/&amp;gt;

of

the enclosing three-system. From any given screw 6, then by the help of the

quadratic two-system a corresponding screw $ is determined. We may term

&amp;lt;/&amp;gt;

the polar screw of with respect to U0. Three screws of the enclosing

system will coincide with their polars. These will be the vertices of the

triangle which is self-conjugate with respect both to U and to V.

A possible difficulty may be here anticipated. The equation V= is itself

of course equivalent to a certain quadratic two-system and therefore should

correspond to a surface of the sixth degree. We know however ( 173) that

the locus of the screws of zero pitch in a three-system is an hyperboloid, so

that in this case the expectation that the surface would rise to the sixth
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degree seems not to be justified. It is however shown in 202 that this

hyperboloid is really not more than a part of the locus. There are also four

imaginary planes which with the hyperboloid complete the locus, and the

combination thus rises to the sixth degree.

225. The Quadratic Systems of Higher Orders.

If we had taken n = 3, then of course the quadratic three-system would

mean the collection of screws whose four co-ordinates satisfied an equation
which in form resembles that of a quadric surface in quadriplanar co

ordinates. A definite number of screws belonging to the quadratic three-

system can in general be drawn through every point in space.

We shall first prove that the number of those screws is six. Let l} ..., 8

be the co-ordinates of any screw referred to a canonical co-reciprocal system.
Then if x

, y ,
z be a point on 0, we have ( 43)

(05 + 0.) y
-

(03 + 4 ) / = a (6,
-

0,)
- pe (el + 0,),

(0, + 0,) z
1 -

(03 + (i) x = & (03
-

4)
-
Pe (03 + 0.1

(03 + 04) x -
(0, + 0,) y = c(06

-
6)
- pe (05 + 6 ).

If we express that belongs to the enclosing four-system we shall have two

linear equations to be also satisfied by the co-ordinates of 0. These equations

may be written without loss of generality in the form

2
=

; 4
= 0.

We have finally the equation Ug
= characteristic of the quadratic three-

system. From these equations the co-ordinates are to be eliminated. But
the eliminant of k equations in (k l) independent variables is a homo

geneous function of the coefficients of each equation whose order is, in

general, equal to the product of the degrees of all the remaining equations*.
In the present case, the coefficient of each of the first three equations must
be of the second degree in the eliminant and hence, the resulting equation
for pe is of the sixth degree, so that we have the following theorem.

Of the screws which belong to a quadratic three-system, six can be drawn

through any point.

As the enclosing system in this case is of the fourth order, the screws of

the enclosing system drawn through any point must lie on a cone of the

second degree ( 218). Hence it follows that the six screws just referred to

must all lie on the surface of a cone of the second degree.

We may verify the theorem just proved by the consideration that if the

function U6 could be decomposed into two linear factors, each of those factors

*
Salmon, Modern Higher Algebra, p. 76, 4th Edition (1885).
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equated to zero would correspond to a three-system selected from the

enclosing four-system. We know (| 176) that three screws of a three-system

can be drawn through each point. We have, consequently, three screws

through the point for each of the two factors of Ue ,
i.e. six screws in all.

The equation of the 6th degree in pe contains also the co-ordinates x
, y ,

z

in the sixth degree. Taking these as the current co-ordinates we may

regard this equation as expressing the family of surfaces which, taken

together, contain all the screws of the quadratic three-system. The screws

of this system which have the same pitch pe are thus seen to be ranged on

the generators of a ruled surface of the sixth degree. All these screws

belong of course to the enclosing four-system, and as they have the

same pitches, they must all intersect the same pair of screws on the

reciprocal cylindroid ( 212). It follows that each of these pitch surfaces of

the sixth degree must have inscribed upon it a pair of generators of the

reciprocal cylindroid.

Ascending one step higher in the order of the enclosing system we see

that the quadratic four-system is composed of those screws whose co-ordinates

satisfy one linear homogeneous equation L = 0, and one homogeneous

equation of the second degree U Q. We may study these screws as

follows.

Let the direction cosines of a screw 6 be cos X, cos
/u,,

cos v. If the

reference be made, as usual, to a set of canonical co-reciprocals we have

cos X = B! + 6.,
;
cos

//,
= #

:i + 64 ;
cos v = 5 + #6 .

We therefore have for a point x
, y

1

,
z on 6 the equations ( 218)

2a0! = (a + pe} cos A, z cos
JJL
+ y cos v

,

2a02
= (a pe) cos X + z cos /* y cos v,

with similar expressions for 3 ,
#4 , 5 ,

6
fi

.

Substituting these expressions in L = and U = and eliminating pe ,

we obtain an homogeneous equation of the fourth degree in cos X,

cos fi,
cos v. If we substitute for these quantities x x, y y ,

z z
,
we

obtain the equation of the cone of screws which can be drawn through

x
, y ,

z
\
this cone is accordingly of the fourth degree. We verify this con

clusion by noticing that if U = were the product of two linear functions,

this cone would decompose into two cones of the second degree, as should

clearly be the case ( 218).

It remains to consider the Quadratic Five-system. In this case the

enclosing system includes every screw in space, and the six co-ordinates of
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the screw 6 are subjected to no other relation than that implied by the

quadratic relation

Ue
= Q.

As before we may substitute for lt ..., 66 from the equations

2a#j = (a 4- pe) cos \ z cos
fj&amp;gt;

+ y cos v,

2a#2
= (a Pe) cos A. + 2 cos

i*&amp;gt; y cos v,

with similar expressions for 26^, 2602 &amp;gt;

&c.

Introducing these values into

Ue
= 0,

we obtain a result which may be written in the form

where A, B, C contain eosX, cos/i, cos v in the second degree, and where

x
, y ,

z enter linearly into B and in the second degree into G.

Hence we see that on any straight line in space there will be in general

two screws belonging to any quadratic five-system. For the straight line

being given x
, y ,

z are given, and so are cos X, cos
//.,

cos v. The equation

just written gives two values for a pitch which will comply with the

necessary conditions.

If we consider pe and also x
, y ,

z as given, and if we substitute for

cos X, cos
/j,,

cos v the expressions x af
y y y ,

z z respectively, we obtain

the equation of a cone of the second degree. Thus we learn that for each

given pitch any point in space may be the vertex of a cone of the second

degree such that the generators of the cone when they have received the

given pitch are screws belonging to a given quadratic five-system.

If the equation

be satisfied, then the straight lines which satisfy this condition will be

singular, inasmuch as each contains but a single screw belonging to the

quadratic five-system. As cos \, cos
/j,,

cos v enter to the fourth degree into

this equation it appears that each point in space is the vertex of a cone of

the fourth degree, the generators of which when proper pitches are assigned
to them will be singular screws of the quadratic five-system.

If we regard cos X, cos p, cos v as given quantities in the equation

then this will represent a quadric surface inasmuch as x
, y ,

z enter to the

second degree. This quadric is the locus of those singular screws of the

quadratic five-system which are parallel to a given direction. Hence the

equation must represent a cylinder.
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If B = the two roots of the equation in pe will be equal, but with

opposite signs; as cos X, cos/i, cosy enter to the second degree in B it

follows that through any point in space as vertex a cone of the second degree
can be drawn such that each generator of this cone when the proper pitch is

assigned to it will equally belong to the quadratic five-system, whether that

pitch be positive or negative.

If B = and (7 = 0, then both values of pe must be zero. Regarding
as

, y ,
z as fixed, each of these equations will correspond to a cone with

vertex at x
, y ,

z
\
these cones will have four common generators, and hence

we see that through any point in space four straight lines can in general be

drawn such that with the pitch zero but not with any other pitch, these

screws will be members of a given quadratic five- system.

226. Polar Screws.

The general discussion of the quadratic screw-systems is a subject of

interest both geometrical and physical. We shall here be content with a

few propositions which are of fundamental importance.

Let as before

Ue
= Q

be the homogeneous relation between the co-ordinates 1 ,...,0n+1 of the

screws which constitute a quadratic ?i-system.

Let 77 and denote any two screws other than 6 and chosen from the

enclosing w-system, from which the screws of the quadratic n-system are

selected by the aid of the condition U6
= 0. If then we adopt the fertile

method of investigation introduced by Joachimsthal, we shall substitute in

mUe
= for 61} ..., 6n+1 the respective values

The result will be

TT &amp;lt;* r,where U* = -^- + ... + l+1
--

.

C&quot;7i ar)n+l

Solving this quadratic equation for I -f- m we obtain two values of this

ratio and hence ( 119) we deduce the following theorem.

Any cylindroid of a given (n + l)-system will possess generally two screws

belonging to every quadratic n-system which the given (n + \)-system
encloses.

If the two screws 77 and had been so selected that they satisfied the

condition
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then the two roots of the quadratic are equal but with opposite signs, and
hence ( 119) we have the following theorem.

If the condition U^ = is satisfied by the co-ordinates of two screws 77

and which belong to the enclosing (n + l)-system, then these two screws 77,

and the tw.o screws which, lying on the cylindroid (rj, ), also belong to the

quadratic ?i-system U9
= Q, will be parallel to the four rays of an harmonic

pencil.

We are now to develop the conception of polar screws alluded to in 224,
and this may be most conveniently done by generalizing from a well-known

principle in geometry.

Let be a point and S a quadric surface. Let any straight line through
cut the quadric in the two points X 1 and X2 . Take on this straight line

a point P so that the section OXP^X^ is harmonic
;
then for the different

straight lines through the locus of P is a plane. This plane is of course
the well-known polar of P. We have an analogous conception in the present
theory which appears as follows.

Take any screw
77 in the enclosing (n + l)-system. Draw a pencil of n

cylindroids through 77, all the screws of each cylindroid lying in the enclosing
(n+ l)-system. Each of these cylindroids will have on it two screws which

belong to the quadratic w-systetn Ue
= 0. On each of these cylindroids a

screw can be taken which is the harmonic conjugate with respect to
77

with reference to the two screws of the quadratic n-system which are found
on the cylindroid. We thus have n screws of the f type, and these u screws
will define an n-system which is of course included within the enclosing
(n + l)-system.

The equation of this n-system is obviously

This equation is analogous to the polar of a point with regard to a

quadric surface. We have here within a given enclosing (n + l)-system a
certain re-system which is the polar of a screw 77 with respect to a certain

quadratic n-system.

The conception of reciprocal screws enables us to take a further im
portant step which has no counterpart in the ordinary theory of poles and
polars. The linear equation for the co-ordinates of f, namely

tf* = 0,

is merely the analytical expression of the fact that f is reciprocal to the
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screw of the enclosing (n + l)-system whose co-ordinates are proportional

to

1

P\ rj pn+1 rjn+1

This we shall term the polar screw of rj
with respect to the quadratic

w-system. It is supposed, of course, that the screws of reference are co-

reciprocals.

If CL and ft be two screws of an enclosing (n + 1 )-system, and if i) and

be their respective polar screws with reference to a quadratic n-system, then

when a is reciprocal to % we shall have /3 reciprocal to 77.
For we have, where

h is a common factor,

1 dUa 1 dUa

htji
=--r~ &amp;gt;

ir)n+i i j

P! da, pn+l dan+l

whence

h(p1 1J1 /31 + ... + Pn+i Vn+i Pn+l) = Uop-

If therefore $ and rj are reciprocal the left-hand member of this equation is

zero and so must the right-hand member be zero. But the symmetry shows

that and a are in this case also reciprocal. We may in such a case regard

a and ft as two conjugate screws of the quadratic ?i-system.

As a first illustration of the relation between a screw and its polar, we

shall take for Ua = 0, the form

Pitf + p*&amp;lt;tf
+ . . . + p6 a&amp;lt;?

-
p (i

2 + 2
2 + . . . + 6

- + 2 1 2 cos (12) . . . )
= 0.

This means of course that Ua = denotes every screw which has the pitch p.

Take any screw a and draw a cylindroid through a. The two screws of

pitch p on this cylindroid belong to U and a fourth screw 9 may be taken

on this cylindroid so that a, 6, and the two screws of pitch p form an

harmonic pencil.

By drawing another cylindroid through a. another screw of the 0-system

can be similarly constructed. If these five cylindroids be drawn through

we can construct five different screws of the ^-system. To these one screw

will be reciprocal, and this is the polar of a. We have thus the means of

constructing the polar of a.

Seeing however that Ua = includes nothing more or less than all the

p-pitch screws in the universe and that in the construction just given for

the polar of a there has been no reference to the screws of reference, sym

metry requires that the polar of a must be a screw which though different

from a must be symmetrically placed with reference thereto. The only

method of securing this is for the polar of a with respect to this particular

function to lie on the same straight line as a.
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Hence we deduce that the screw with co-ordinates

i, Oj) 6&amp;gt;

and the screw with co-ordinates proportional to

.1 dJL 1 ^ 1 ^
pl d^ p2 daz p6 dotG

in which U is the expression

P^ + p2 2
2

... + p6 a&amp;lt;? + X (i
2 + 02

2
... + 2ai a2 cos (12) ...)

must be collinear, and this is true for all values of X.

We hence see that the co-ordinates of a screw collinear with a must be

proportional to

where
E = a1

2 + a2
2 +... + 2a1a2 cos (12) + ...

Thus we obtain the results of 47 in a different manner.

227. Dynamical application of Polar Screws.

We have seen
( 97) that the kinetic energy of a body twisting about a

7/n/

screw 6 with a twist velocity -^-
and belonging to a w-system is

w

the screws of reference being the principal screws of inertia.

If we make i&amp;lt;1

2
1

2 + ... + un
2

n
2 =

0, then 6 must belong to a quadratic

-system. This system is, of course, imaginary, for the kinetic energy of

the body when twisting about any screw which belongs to it is zero*.

The polar 77 of the screw 0, with respect to this quadratic w-system, has

co-ordinates proportional to

ui n un /U1} ... p.
Pi Pn

Comparing this with 97, we deduce the following important theorem :

A quiescent rigid body is free to twist about all the screws of an enclosing

(n + \}-system A. If the body receive an impulsive wrench on a screw 17

* In a letter to the writer, Professor Klein pointed out many years ago the importance of the

above screw system. He was led to it by expressing the condition that the impulsive screw
should be reciprocal to the corresponding instantaneous screw.

B. 16
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belonging to A, then the body will commence to twist about the screw 6, of
which V) is the polar with respect to the quadratic n-system composed of
the imaginary screws about which the body would twist with zero kinetic

energy.

If a rigid body which has freedom of the nth order be displaced from a

position of stable equilibrium under the action of a system of forces by a

twist of given amplitude about a screw 6, of which the co-ordinates referred

to the n principal screws of the potential are Ol ,... n ,
then the potential

energy of the new position may, as we have seen ( 103) be expressed by

If this expression be equated to zero, it denotes a quadratic rc-system,

which is of course imaginary. We may term it the potential quadratic

w-system.

The potential quadratic w-system possesses a physical importance in

every respect analogous to that of the kinetic quadratic n-system : by
reference to ( 102) the following theorem can be deduced.

If a rigid body be displaced from a position of stable equilibrium by a twist

about a screw 6, then a wrench acts upon the body in its new position on

a screw which is the polar of 6 with respect to the potential quadratic

w-system.

The constructions by which the harmonic screws were determined in the

case of the second and the third orders have no analogies in the fourth order.

We shall, therefore, here state a general algebraical method by which they

can be determined.

Let U=0 be the kinetic quadratic ?i-system, and F=0 the potential

quadratic w-system, then it follows from a well-known algebraical theorem

that one set of screws of reference can in general be found which will reduce

both U and V to the sum of n squares. These screws of reference are the

harmonic screws.

We may here also make the remark, that any quadratic w-system can

generally be transformed in one way to the sum of n square terms with

co-reciprocal screws of reference; for if U and pe be transformed so

that each consists of the sum of n square terms, then the form for the

expression of pe ( 38) shows that the screws are co-reciprocal.

228. On the degrees of certain surfaces.

We have already had occasion ( 210) to demonstrate that the general

condition that two screws shall intersect involves the co-ordinates of each
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of the screws in the third degree. We can express this condition as a

determinant by employing a canonical system of co-reciprocals. For if two
screws 6 and

(f&amp;gt;
intersect, then there must be some point x, y, z which shall

satisfy the six equations ( 43) :

( 5 + ) ?/
-

( 3 + 4) z
= a (! - 03) -pa (! + 2),

(! + a
2) z

-
( 5 + 6) x = b ( 3

-
4)
- pa (as 4- 04),

(as + a4 ) x - (! + 03) y = c ( 5
-

6) -pa (os + a,,),

(0B + 6) y
-

(0, + 0&amp;lt;)

z = a (6,
-

2) -pe (6, + 6&amp;gt;2),

From these equations we eliminate the five quantities x, y, z, pe , pa and
the required condition that and a shall intersect, is given by the equa
tion

- ( 5 + 6 ),
-

( 3 + 04), (! + aa ), ,
a (! - a2)

= 0.

-(, + ,), , (! + &amp;gt;(), (a3 + a4 ), , 6(a3 -a4 )

(a3 + 4), -(ati + Os), , (a5 + a
fi), ,

c (a5
- a8)

, (05 + 6), -(6 3 +6&amp;gt;4 ), , (6, + e,}, a(01 -02)

-(05 +06), , (01 + 2\ , (6&amp;gt;3 + ^4), b(03 -04)

(03 +0&amp;lt;\ -& + 0J, 0,0, (^5 + ^6), c(05 -06)

Four homogeneous equations between the co-ordinates of indicate

that the corresponding screw lies on a certain ruled surface. Let us suppose
that the degrees of these equations are I, m,n,r respectively, then the degree
of the ruled surface must not exceed Slmnr.

For express the condition that shall also intersect some given screw ct,

we then obtain a fifth homogeneous equation containing the co-ordinates of

in the third degree. The determination of the ratios of the six co-ordi

nates 6-1, ... 6 is thus effected by five equations of the several degrees I, m,
n, r, 3. For each ratio we obtain a system of values equal in number to

the product of the degrees of the equations, i.e. to Slmnr. This is accord

ingly a major limit to the number of points in which in general a pierces
the surface, that is to say, it is a major limit to the degree of the surface.

Of course we might affirm that it was the degree of the surface save for the

possibility that through one or more of the points in Avhich a met the surface

more than a single generator might pass.

As an example, we may take the simple case of the cylindroid, in which
I, m, n, r being each unity the locus is of the third degree. The screws of

162
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a three-system which satisfy an equation of the nth degree must have as

their locus a surface of degree not exceeding 3n. The most important

application of this is when n = 2, in which case the screws form a quadratic

two-system. The degree of this surface cannot exceed six, on the other

hand, if the quadratic condition which we may write

A0? + B02
* + CB? + 2F0A + 200,6, + 2H0A = 0,

should break up into two linear factors each of these linear factors will

correspond to a cylindroid, i.e. a surface of the third degree. Hence the

degree of the surface must in general be neither less than six nor greater

than six, and hence we learn that the surface which is the locus of the

screws of a quadratic two-system is of the sixth degree.

A particular case of special importance arises when the pitches of all the

screws on the surface are to be the same. The statement of this condition

is of course one equation of the second degree in the co-ordinates of the

screw. In the case of canonical co-reciprocals, this equation would be

But the condition that Q and a shall intersect will now submit to

modification. We sacrifice no generality by making a of zero pitch, so

that if 6 has a given pitch pe ,
the condition that a and shall intersect

is no longer of the third degree. It is the linear equation

2t3-ae
= pe cos (a0).

If therefore the co-ordinates of satisfy three homogeneous equations of

degrees I, m, n respectively, in addition to the equation of the second degree

expressing that the pitch is a given quantity, then the locus is a surface of

degree not exceeding 2lmn.

As the simplest illustration of this result we observe that if I, m, n be

each unity, the locus in question is the locus of the screws of given pitch in

a three-system. This locus cannot therefore be above the second degree,

and we know, of course (Chapter XIV.) that the locus is a quadric.

If I and m were each unity and if n = 2 we should then have the locus

of screws of given pitch belonging to a four-system and whose co-ordinates

satisfied a certain equation of the second degree. This locus is a surface of

the fourth degree. In the special case where the given pitch is zero, the

surface so defined is known in the theory of the linear complex. It is there

presented as the locus of lines belonging to the complex and whose co

ordinates further satisfy both a linear equation and a quadratic equation.

Mr A. Panton has kindly pointed out to me that in this particular case

the surface has two double lines which are the screws of zero pitch on the
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cylindroid reciprocal to the enclosing four-system. It has also eight singular

tangent planes (four through each double line) touching all along a generator.

The cylindroid is a very special case of this surface in which one of the

double lines is at infinity. If the system be reciprocal to the cylindroid

z(x
2 + y

f
) + kx;y

= Q, then the cylindroid to which the surface reduces is

z(as
* + y

2
) kxy = Q. The singular tangent planes are represented by the

two tangent planes at the limits of the cylindroid.



CHAPTER XVII.

FREEDOM OF THE FIFTH ORDER.

229. Screw Reciprocal to Five Screws.

There is no more important theorem in the Theory of Screws than that

which asserts the existence of one screw reciprocal to five given screws.

At the commencement, therefore, of the chapter of which this theorem is

the foundation, it may be well to give a demonstration founded on elementary

principles.

Let one of the five given screws be typified by

jtch _
fc Pk 7*

while the desired screw is defined by

(pitch
=

p).

x x _y y __
z - z

P 7

The condition of reciprocity ( 20) produces five equations of the following

type :

k)7k

From these five equations the relative values of the six quantities

can be determined by linear solution. Introducing these values into the

identity
a. (yy (3z } + (az yx) 4 y (fix ay )

= 0,

gives the equation which determines p.
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To express this equation concisely we introduce two classes of subsidiary

magnitudes. We write one magnitude of each class as a determinant.

= P.

/82

73

74

75

By cyclical interchange the two analogous functions Q and R are denned.

-
y3Cl3&amp;gt; 73

74

By cyclical interchange the two analogous functions M and JV^ are denned.

The equation for p reduces to

The reduction of this equation to the first degree is an independent

proof of the principle, that one screw, and only one, can be determined

which is reciprocal to five given screws
; p being known, a, /3, 7 can be found,

and also two linear equations between x, y ,
z

,
whence the reciprocal screw is

completely determined.

For the study of the screws representing a five-system we may take the

first screw of a set of canonical coreciprocals to be the screw reciprocal to

the system. Then the co-ordinates of a screw in the system are

0, 2 ,
63 ,

... 6 ,

while if X, p, v be the direction cosines of 6 and x, y, z a point thereon, and

pe the pitch we have ( 43)

(pe + a) cos \ z cos p + y cos v = 0.

We can obtain at once the relation between the direction and the pitch
of the screw belonging to the system and passing through a fixed point.

If pe
= and 2 and y be given, then the equation shows that the screw is

limited to a plane ( 110).

230. Six Screws Reciprocal to One Screw.

When six screws, A l} ... A 6 are reciprocal to a single screw T, a certain
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relation must subsist between the six screws. This relation may be ex

pressed by equating the determinant of 39 to zero. The determinant

(which may perhaps be called the sexiant) may be otherwise expressed as

follows :

The equations of the screw A k are

oc XT, y i/ 1, z ZT. , .
,

, ,-- = 3ho
J2 =--

(P^ch Pk).

* ft 7/fc

We shall presently show that we are justified in assuming for T the

equations

The condition that A k and T be reciprocal is

77*) + ** (7& - P

Writing the six equations of this type, found by giving k the values

1 to 6, and eliminating the six quantities

P&amp;lt;*, p&, py, &amp;lt;*, ft 7)

we obtain the result :

#i
~ a

i2A&amp;gt;

a
i ft. 7i

3/J3 + 732/3
-

*3,

4/&amp;gt;4
+ 742/4

-
ft^4, ft/&amp;gt;4

+ a4^4
~ 744 , 74/&amp;gt;4

+ ft4 ~ ^4 , 4, ft, 74

a5P5 + 75 3/5
-

ftj^B, ftps + 4^5
-

75^5, 75/5 + ft^5
~

^S^/S, 5 , ft, 7

62/6, 6 , ft, 7e

= 0-

By transformation to cmy parallel axes the value of this determinant is

unaltered. The evanescence of the determinant is therefore a necessary

condition whenever the six screws are reciprocal to a single screw. Hence

we sacrificed no generality in the assumption that T passed through the

origin.

Since the sexiant is linear in xl} y1} zi} it appears that all parallel screws

of given pitch reciprocal to one screw lie in a plane. Since the sexiant is

linear in a1} ft, 7^ we have another proof of Mobius theorem ( 110).

The property possessed by six screws when their sexiant vanishes may be

enunciated in different ways, which are precisely equivalent.

(a) The six screws are all reciprocal to one screw.
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(6) The six screws are members of a screw-system of the fifth order and

first degree.

(c) Wrenches of appropriate intensities on the six screws equilibrate,

when applied to a free rigid body.

(d) Properly selected twist velocities about the six screws neutralize,

when applied to a rigid body.

(e) A body might receive six small twists about the six screws, so that

after the last twist the body would occupy the same position which it had

before the first.

If seven wrenches equilibrate (or twists neutralize), then the intensity
of each wrench (or the amplitude of each twist) is proportional to the

sexiant of the six non-corresponding screws.

For a rigid body which has freedom of the fifth order to be in equilibrium,
the necessary and sufficient condition is that the forces which act upon the

body constitute a wrench upon that one screw to which the freedom is

reciprocal. We thus see that it is not possible for a body which has freedom

of the fifth order to be in equilibrium under the action of gravity unless the

screw reciprocal to the freedom have zero pitch, and coincide in position with

the vertical through the centre of inertia.

Sylvester has shown* that when six lines, P, Q, R, S, T, U, are so situated

that forces acting along them equilibrate when applied to a free rigid body,
a certain determinant vanishes, and he speaks of the six lines so related as

being in involution^.

Using the ideas and language of the Theory of Screws, this determinant
is the sexiant of the six screws, the pitches of course being zero.

If xm , ym ,
zm , be a point on one of the lines, the direction cosines of the

same line being am , /3m ,ym , the condition is

ii-#i7i&amp;gt; #i/3i-2/ii =0.

, 72, y-fli-

/33 , 73, y3y3
-

&, 74, 2/474
-

&, 75, y5%-

-
#373,

~
2/44

*
Comptes Rendus, tome 52, p. 816. See also p. 741.

t In our language a system of lines thus related consists of the screws of equal pitch belonging
to a five-system. In the language of Pliicker (Neue Geometric des Raumes) a system of lines
in involution forms a linear complex. It may save the reader some trouble to observe here
that the word involution has been employed in a more generalised sense by Battaglini, and in

quite a different sense by Klein.
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It must always be possible to find a single screw X which is reciprocal

to the six screws P, Q, R, S, T, U. Suppose the rigid body were only free

to twist about X, then the six forces would not only collectively be in equi

librium, but severally would be unable to stir the body only free to twist

about X.

In general a body able to twist about six screws (of any pitch) would

have perfect freedom
;
but the body capable of rotating about each of the

six lines, P, Q, R, S, T, U, which are in involution, is not necessarily perfectly

free (Mobius).

If a rigid body were perfectly free, then a wrench about any screw could

move the body; if the body be only free to rotate about the six lines in

involution, then a wrench about every screw (except X) can move it.

The conjugate axes discussed by Sylvester are presented in the Theory of

Screws as follows : Draw any cylindroid which contains the reciprocal

screw X, then the two screws of zero pitch on this cylindroid are a pair of

conjugate axes. For a force on any transversal intersecting this pair of

screws is reciprocal to the cylindroid, and is therefore in involution with the

original system.

Draw any two cylindroids, each containing the reciprocal screw, then all

the screws of the cylindroids form a screw system of the third order.

Therefore the two pairs of conjugate axes, being four screws of zero pitch,

must lie upon the same quadric. This theorem, due to Sylvester, is proved

by him in a different manner.

The cylindroid also presents in a clear manner the solution of the

problem of finding two rotations which shall bring a body from one position

to any other given position. Find the twist which would effect the desired

change. Draw any cylindroid through the corresponding screw, then the

two screws of zero pitch on the cylindroid are a pair of axes that fulfil the

required conditions. If one of these axes were given the cylindroid would

be defined and the other axis would be determinate.

231. Four Screws of a Five-system on every Quadric.

On any single sheeted hyperboloid four screws of any given pitch p can

in general be determined which belong to any given system of the fifth

order. A pair of these screws lie on each kind of generator.

Let X be the screw reciprocal to the system. Take any three generators

A, B, C of one system on the hyperboloid, and regarding them as screws of

pitch p draw the cylindroid XA and take on this A the second screw of

pitch p. Then the two screws of pitch p which can be drawn as transversals

across A, B, C, A are coincident with two generators of the hyperboloid
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while they are also reciprocal to the cylindroid because they cross two screws

thereon with pitches equal in magnitude but opposite in sign. They are

therefore reciprocal to X. In like manner it can be shown that two of the

other system of generators possess the same property.

On every cylindroid there is as we know ( 26) one screw of a given five-

system. This important proposition may be otherwise proved as follows.

Let 6 be the co-ordinates of a screw on the cylindroid, then these co-ordinates

must satisfy four linear equations. There must be a fifth equation in the

six quantities l} ... 66 inasmuch as 6 is to lie on the given five-system.

Thus from these five equations one set of values of 8lt ... 66 can be

determined.

On a quadratic two-system ( 224) there will always be two screws

belonging to any given five-system. For the quadratic two-system is the

surface whose screws satisfy four homogeneous equations of which three are

linear and one is quadratic. If another linear equation be added two

screws on the surface can, in general, be found which will satisfy that

equation.

232. Impulsive Screws and Instantaneous Screws.

We can determine the instantaneous screw corresponding to a given

impulsive screw in the case of freedom of the fifth order by geometrical
considerations. Let X, as before, represent the screw reciprocal to the freedom,
and let p be the instantaneous screw which would correspond to X as an

impulsive screw, if the body were perfectly free
;

let 77 be the screw on which
the body receives an impulsive wrench, and let be the screw about which
the body would commence to twist in consequence of this impulse if it had
been perfectly free.

The body when limited to the screw system of the fifth order will

commence to move as if it had been free, but had been acted upon by a
certain unknown wrench on X, together with the given wrench on

rj. The
movement which the body actually acquires is a twisting motion about a
screw 6 which must lie on the cylindroid (, p). We therefore determine 6
to be that one screw on the known cylindroid (, p) which is reciprocal to the

given screw X. The twist velocity of the initial twisting motion about 6, as

well as the intensity of the impulsive wrench on the screw X produced by
the reaction of the constraints, are also determined by the same construction.
For by 17 the relative twist velocities about 6, ,

and p are known; but
since the impulsive intensity rj

&quot;

is known, the twist velocity about is

known ( 90) ;
and therefore, the twist velocity about is known

; finally,
from the twist velocity about p, the impulsive intensity X &quot;

is determined.
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233. Analytical Method.

A quiescent rigid body which has freedom of the fifth order receives an

impulsive wrench on a screw 77 : it is required to determine the instantaneous

screw 6, about which the body will commence to twist.

Let X be the screw reciprocal to the freedom, and let the co-ordinates be

referred to the absolute principal screws of inertia. The given wrench com

pounded with a certain wrench on X must constitute the wrench which, if

the body were free, would make it twist about 6, whence we deduce the six

equations (h being an unknown quantity)

Multiplying the first of these equations by X1} the second by X2 , &c., adding

the six equations thus produced, and remembering that and X are reciprocal,

we deduce

i/&quot;2%A.i + X&quot; 2V = 0.

This equation determines X &quot;

the impulsive intensity of the reaction of

the constraints. The co-ordinates of the required screw 6 are, therefore,

proportional to the six quantities

Pi Pe

234. Principal Screws of Inertia.

We can now determine the co-ordinates of the five principal screws of

inertia
;
for if be a principal screw of inertia, then in general

.

whence

with similar values for ,, ... 6 . Substituting these values in the equation

and making ^-
= #, we have for sc the equation

fv

pl
-co p2-x p3

- x pt- a; p5
- x p6

- x

This equation ts of the fifth degree, corresponding to the five principal

screws of inertia. If x denote one of the roots of the equation, then the

corresponding principal screw of inertia has co-ordinates proportional to

Xj X-s X3 X^_ X5 X6

^~- x&quot; PI-X&quot; p3 -x&quot; pi-&quot; Ps-x&quot; PS-
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We can easily verify as in 84 that these five screws are co-reciprocal and

are also conjugate screws of inertia.

It is assumed in the deduction of this quintic that all the quantities

XJ...XB are different from zero. If one of the quantities, suppose Xl5 had

been zero this means that the first absolute principal Screw of Inertia

would belong to the w-system expressing the freedom.

Let us suppose that Xj = then the equations are

Of course one solution of this system will be V&quot; = 0, ,
= ... = 0. This

means that the first absolute principal Screw of Inertia is also one of the

principal Screws of Inertia in the rc-system, as should obviously be the case.

For the others = and we have an equation of the fourth degree in

,

P*
- %

In the general case we can show that there are no imaginary roots in the

quintic, for since the screws

^1 ^-2 X

and
p1
- x p2

- x ps
-

x&quot;

are conjugate screws of inertia, we must have (81)

If x = a. + if$ ; y = a ift then this equation reduces to

v frV _

but as these are each positive terms their sum cannot be zero. This is a

particular case of 86. (See Appendix, note 2.)

235. The limits of the roots.

We can now show the limits between which the five roots, just proved to

be real, must actually lie in the equation
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substitute p , = . =

. 6
= x = -\

ft ?&amp;gt; ft y

and suppose qi, qz , qa, q*, q*, q& to be in descending order of magnitude.

&quot;X
2 -\ 2

&quot;\
2

Thus -JSL + _*_ + . ..+_*_=&amp;lt;).
y
-

?i y
- & y - ft

That is v(y -
ft)(y

-
?,)(y

-
?4) (y -?5)(y

-
&) +

+V (y
- ?0 (y

-
9-2) (y

-
&) (y

-
?4) (y

-
?B)

= 0.

In the left-hand member of this equation substitute the values

qi, q*, qa , ?4&amp;gt; q*, q*

successively for y ;
five of the six terms vanish in each case, and the values of

the remaining term (and therefore of the whole member) are alternately

positive and negative.

The five values of y must therefore lie in the intervals between the six

quantities qlt q2 ,
... qs ,

the roots are accordingly proved to be real and distinct

(unless one of the quantities \1} \2 ,
X3 ,

\4 ,
\5 ,

X6
= and a further condition

hold, or unless some of the quantities q 1} ... qe be equal).

The values of p1} ... p6 are a, b, c; and we suppose a, b, c, positive

and a &amp;gt; b &amp;gt; c.

The values of y lie in the successive intervals between

1 1 1 _1 _1 _1
c b a a b c

and consequently of the roots of the equation in x.

Two are positive and lie between a and b, and between b and c respectively.

Two are negative and lie between a and b, and between b and c

respectively.

The last is either positive and &amp;gt; a or negative and &amp;lt; a.

236. The Pectenoid.

A surface of some interest in connection with the freedom of the fifth

order may be investigated as follows.

Let a be the pitch of the one screw
&&amp;gt;,

to which the five system is

reciprocal.

Take any point on o&amp;gt; and draw through any two right lines OF, and

OZ which are at right angles and which lie in the plane perpendicular
to a).
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Then if 6 be a screw of the five-system with direction cosines cos X,

cos
//,,

cos v, and if as, y, z be a point on the screw 6 and pe its pitch we must

have ( 216)

( pe + a) cos X + z cos /* y cos v = 0.

Fig. 41.

Everything that we wish to specify about the five-system may be

conveniently inferred from this equation.

For example, let it be desired to find the locus of the screws of a five-

system which can be drawn through a given point as
, y ,

z and have the

given pitch pe .

We have ( pe + a) cos \-\-z cos p y cos v = 0.

If os, y, z be a point on 6 we may substitute x x, y y, z z for cos X,

cos ft, cos v, and we obtain

whence we see that the locus is a plane, as has been already proved other

wise. (When the pitch is zero, this is Mbbius theorem, 110.)

If we change the origin to some other point P which may with complete
generality be that point whose co-ordinates are o, h, o and call X, Y, Z the
co-ordinates with these new axes, the equation becomes

(pe + a)c
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Let the radius vector of length pg + a = R be marked off along each screw

6 drawn through P, then the equation becomes

or squaring (Z
2 + F2 + Z*) X* = h*Z\

This represents a surface of the fourth degree. A model of the surface

has been constructed*. It is represented in Fig. 41, and from its resemblance

to the valves of a scallop shell the name pectenoid is suggested.

The geometrical nature of a pectenoid is thus expressed. Given a screw

a of pitch pa and a point situated anywhere. If a screw 6 drawn through
be reciprocal to a then the extremity of a radius vector from along 6 equal

to pa + pe will trace out a pectenoid.

All pectenoids are similar surfaces, they merely differ in size in accordance

with the variations of the quantity h. The perpendicular from upon a is

a nodal line, and this is the only straight line on the surface. The pectenoid

though unclosed is entirely contained between the pair of parallel planes

Z = + h, Z = h. Sections parallel to the plane of Z are hyperbolas. Any

plane through the nodal line cuts the pectenoid in a circle.

A straight wire at right angles to the nodal line marked on the model

indicates the screw reciprocal to the five-system. A second wire starts

from the origin and projects from the surface. It is introduced to show

concisely what the pectenoid expresses. If this wire be the axis of a

screw 6 whose pitch when added to the pitch of the screw a, is equal to

the intercept from the origin to the surface then the two screws are

reciprocal. The interpretation of the nodal line is found in the obvious

truth that when two screws intersect at right angles they are reciprocal

whatever be the sum of their pitches. One of the circular sections made

by a plane drawn through the nodal line is also indicated in the model. The

physical interpretation is found in the theorem already mentioned, that all

screws of the same pitch drawn through the same point and reciprocal to

a given screw will lie in a plane.

With the help of the pectenoid we can give another proof of the theorem

that all the screws of a four-system which can be drawn through a point lie

on a cone of the second degree ( 123).

Let be the point and let a and /3 be two screws on the cylindroid

reciprocal to the system. Let 6 be a screw through belonging to the

four-system and therefore reciprocal to a and to /9.

Then for the pectenoid relating to and a, we have

(pe + pa)M-kN=0,
where M=0, N=0 represent planes passing through 0.

* Transaction* of the Royal Irish Academy, Vol. xxv. Plate xn. (1871).
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In like manner for the pectenoid relating to and /3, we have

257

where M =
0, N = also represent planes passing through 0, whence

eliminating pe we have

(pa -pe)MM - kNM + kNM= 0.

The equation of the pectenoid can also be deduced directly as follows.

Let five screws of the five-system be given. Take a point on one of

these screws (a) and through draw four screws /3, 7, 8, e which belong to

the four-system defined by the remaining four screws of the original five.

Let there be any three rectangular axes drawn through 0. Let ct
l , 2 ,

a3 be

the direction cosines of a and let /31( /32 , /33 be the direction cosines of /?,

and similarly for 7, 8, e. Let 6 be some other screw of the five-system

which passes through and let 1} 62 , 3 be its direction cosines, then if

twists of amplitudes a, ft , 7 ,
5

, e ,
& neutralize we must have

77i

ee2

a 3 + + 773 + 3 + ees

because the rotations neutralize, and also

a.pa a.2

whence by elimination of a
, /3 ,

. . . 6 ,
we have

a2 @2 72 S2 e2

83 &amp;gt;3 73 63 63

i3

2
= 0,

3
= 0,

f

p9 1
= 0,

6pe 6z
= 0,

pe&3
= 0,

= 0.

This equation has the form

Pe L e. +M e. +N e,

Let pe
= p /i and

l
= x-^- p, 6z

= y-^p, 3
= z H- p then by reduction and

transformation of axes we obtain

where y and 2 are planes at right angles and a is constant. This is the

equation of the pectenoid.

17a



CHAPTER XVIII.

FREEDOM OF THE SIXTH ORDER.

237. Introduction.

When a rigid body has freedom of the sixth order, it is perfectly free.

The screw system of the sixth order includes every screw in space. The

statement that there is no reciprocal screw to such a system is merely a

different way of asserting the obvious proposition that when a body is

perfectly free it cannot remain in equilibrium, if the forces which act upon

it have a resultant.

238. Impulsive Screws.

Let A lt A 2 ,
... denote a series of instantaneous screws which correspond

respectively to the impulsive screws Rlt R2 ,
... the body being perfectly

free. Corresponding to each pair A 1} RI is a certain specific parameter.

This parameter may be conveniently defined to be the twist velocity pro

duced about A! by an impulsive wrench on R^, of which the intensity is one

unit. If six pairs, A lt jRT ;
A a ,

R.2 ,
... be known, and also the corresponding

specific parameters, then the impulsive wrench on any other screw R can

be resolved into six impulsive wrenches on Rl ,...R6 ,
these will produce

six known twist velocities on A 1} ... A G ,
which being compounded determine

the screw A, the twist velocity about A, and therefore the specific para

meter of R and A. We thus see that it is only necessary to be given six

corresponding pairs, and their specific parameters, in order to determine

completely the effect of any other impulsive wrench.

If seven pairs of corresponding instantaneous and impulsive screws be

given, then the relation between every other pair is absolutely determined.

It appears from 28 that appropriate twist velocities about A^,...A 7 can

neutralise. When this is the case, the corresponding impulsive wrenches

on R^^.R?, must equilibrate, and therefore the relative values of the

intensities are known. It follows that the specific parameter of each pair

At, RI is proportional to the quotient obtained by dividing the sexiant of
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A 2 ,...A R , by the sexiant of R.2 ,...R6 . With the exception of a common
factor, the specific parameter of every pair of screws is therefore known,
when seven corresponding screws are known. It will be shown in Chap. XXI.
that three corresponding pairs are really sufficient.

When seven instantaneous screws are known, and the corresponding
seven impulsive screws, we are therefore enabled by geometrical construction

alone to deduce the instantaneous screw corresponding to any eighth impulsive
screw and vice versa.

A precisely similar method of proof will give us the following theorem :

If a rigid body be in position of stable equilibrium under the influence

of a system of forces which have a potential, and if the twists about seven

given screws evoke wrenches about seven other given screws, then, without
further information about the forces, we shall be able to determine the

screw on which a wrench is evoked by a twist about any eighth screw.

We may present the results of the present section in another form. We
must conceive two corresponding systems of screws, of which the correspond
ence is completely established, when, to any seven screws regarded as

belonging to one system, the seven corresponding screws in the other system
are known. To every screw in space viewed as belonging to one system
will correspond another screw viewed as belonging to the other system.
Six screws can be found, each of which coincides with its correspondent.
To a screw system of the nth order and rath degree in one system will

correspond a screw system of the nth order and rath degree in the other

Sj stem.

We add here a few examples to illustrate the use which may be made of

screw co-ordinates.

239. Theorem.

When an impulsive force acts upon a free quiescent rigid body, the

directions of the force and of the instantaneous screw are parallel to a pair
of conjugate diameters in the momental ellipsoid.

Let f}i,...i]6 be the co-ordinates of the force referred to the absolute

principal screws of inertia, then ( 35)

and from
( 41) it follows that the direction cosines of 77 with respect to the

principal axes through the centre of inertia are

172
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If a, b, c be the radii of gyration, then the instantaneous screw cor

responding to i] has for co-ordinates

,
% _fh ,Va _ rh ,^5 _^s

I y y I T
&amp;gt; 71 I i

a a o o c c

The condition that 77 and its instantaneous screw shall be parallel to a

pair of conjugate diameters of the momental ellipsoid is

or

But if the impulsive wrench on 77 be a force, then the pitch of 77
is zero,

whence the theorem is proved.

240. Theorem.

When an impulsive wrench acting on a free rigid body produces an

instantaneous rotation, the axis of the rotation must be perpendicular to

the impulsive screw.

Let i)!, ... i)6 be the axis of the rotation, then

2^V = 0,

or

a (77!
-

7;2) (77! +O + b (773
-

774) (773 + 774) + c (775
-

77 6) (775 + 776)
= 0,

whence the screw of which the co-ordinates are + ar) l , arj.2 , + brj3 ,
... is

perpendicular to 77, and the theorem is proved.

From this theorem, and the last, we infer that, when an impulsive force

acting on a rigid body produces an instantaneous rotation, the direction of

the force, and the axis of the rotation, are parallel to the principal axes of

a section of the momental ellipsoid.

241. Principal Axis.

If 77 be a principal axis of a rigid body, it is required to prove that

SjH*y0,
reference being made to the absolute principal screws of inertia.

For in this case a force along a line Q intersecting 77, compounded with

a couple in a plane perpendicular to 77, must constitute an impulsive wrench

to which 77 corresponds as an instantaneous screw, whence we deduce ( 120),

h and k being the same for each coordinate,

.,
h dR

h dR
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Expressing the condition that pe
= 0, we have

but we have already seen ( 131) that the two last terms of this

equation are zero, whence the required theorem is demonstrated.

The formula we have just proved may be written in the form

This shows that if the body were free, then an impulsive force suitably

placed would make the body commence to rotate about 77.
Whence we have

the following theorem*:

A rigid body previously in unconstrained equilibrium in free space is

supposed to be set in motion by a single impulsive force
;

if the initial axis

of twist velocity be a principal axis of the body, the initial motion is a pure

rotation, and conversely.

It may also be asked at what point of the body one of the three

principal axes coincides with 77 ? This point is the intersection of 6 and 77.

To determine the co-ordinates of 6 it is only necessary to find the relation

between h and k, and this is obtained by expressing the condition that 6 is

reciprocal to
77,

whence we deduce

Zh + kuj = 0.

Thus is known, and the required point is determined. If the body be

fixed at this point, and then receive the impulsive couple perpendicular to

77, the instantaneous reaction of the point will be directed along 0.

242. Harmonic Screws.

We shall conclude by stating for the sixth order the results which are

included as particular cases of the general theorems in Chapter IX.

If a perfectly free rigid body be in equilibrium under the influence of a

conservative system of forces, then six screws can generally be found such

that each pair are conjugate screws of inertia, as well as conjugate screws of

the potential, and these six screws are called harmonic screws. If the body
be displaced from its position of equilibrium by a twist of small amplitude
about a harmonic screw, and if the body further receive a small initial

twisting motion about the same screw, then the body will continue for ever

to perform small twist oscillations about that screw. And, more generally,

whatever be the initial circumstances, the movement of the body is com

pounded of twist oscillations about the six harmonic screws.

*
Townsend, Educational Times Reprint, Vol. xxi. p. 107.



CHAPTER XIX.

HOMOGRAPHIC SCREW SYSTEMS*.

243. Introduction.

Several of the most important parts of the Theory of Screws can be

embraced in a more general theory. I propose in the present chapter to

sketch this general theory. It will be found to have points of connexion

with the modern higher geometry ;
in particular the theory of Homographic

Screws is specially connected with the general theory of correspondence. I

believe it will be of some interest to show how these abstract geometrical

theories may be illustrated by dynamics.

244. On Plane Homographic Systems.

It may be convenient first to recite the leading principle of the purely

geometrical theory of homography. We have already had to mention a

special case in the Introduction.

Let a be any point in a plane, and let ft be a corresponding point. Let

us further suppose that the correspondence is of the one-to-one type, so that

when one a is given then one ft is known, when one ft is given then it is the

correspondent of a single a. The relation is not generally interchangeable.

Only in very special circumstances will it be true that ft, regarded as in the

first system, will correspond to a in the second system.

The general relation between the points a and ft can be expressed by the

following equations, where a1} a.2 , 3 are the ordinary trilinear co-ordinates of

a, and J31} /3a , fi3 ,
the co-ordinates of ft,

ft = (11)0! +(12)0, + (13) a,,

ft = (31) 0^(32) a, + (33) 03.

In these expressions (11), (12), &c., are the constants defining the particular

character of the homographic system.

* Proc. Hoy. Irish Acad. Ser. n. Vol. HI. p. 435 (1881).
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There are in general three points, which coincide with their corre

spondents. These are found by putting

& = Pi ; ft*
=

pa., ; j33
=
paa .

Introducing these values, and eliminating a
l ,

a.
2&amp;gt;

as ,
we obtain the following

equation for p :

0-| (11) -p, (12), (13)

(21), (22) -p, (23)

(31), (32), (33) -p
If we choose these three points of the vertices of the triangle of reference,

the equations relating y with x assume the simple form,

& =
/i i ; & =/2 &amp;lt;*2 ; & =/3 a ,

where /!,/2,/3 are three new constants.

245. Homographic Screw Systems.

Given one screw a, it is easy to conceive that another screw ft correspond

ing thereto shall be also determined. We may, for example, suppose that

the co-ordinates of ft ( 34) shall be given functions of those of a. We might

imagine a geometrical construction by the aid of fixed lines or curves by
which, when an a is given, the corresponding ft shall be forthwith known :

again, we may imagine a connexion involving dynamical conceptions such as

that, when a is the seat of an impulsive wrench, ft is the instantaneous screw

about which the body begins to twist.

As a moves about, so the corresponding screw ft will change its position

and thus two corresponding screw systems are generated. Regarding the

connexion between the two systems from the analytical point of view, the

co-ordinates of a and ft will be connected by certain equations. If it be

invariably true that a single screw ft corresponds to a single screw a, and that

conversely a single screw a corresponds to a single screw ft ;
then the two

systems of screws are said to be homographic.

A screw a. in the first system has one corresponding screw ft in the

second system ;
so also to ft in the first system corresponds one screw

in the second system. It will generally be impossible for a and a to coincide,

but cases may arise in which they do coincide, and these will be discussed

further on.

246. Relations among the Co-ordinates.

From the fundamental property of two homographic screw systems the

co-ordinates of ft must be expressed by six equations of the type



264 THE THEORY OF SCREWS. [246-

If these six equations be solved for Oj, ... otg we must have

a,=., ....

As a single a is to correspond to a single /3, and vice versa, these equations

must be linear : whence we have the following important result :

In two homographic screw systems the co-ordinates of a screw in one system

are linear functions with constant coefficients of the co-ordinates of the corre

sponding screw in the other system.

If we denote the constant coefficients by the notation (11), (22), &c., then

we have the following system of equations :

13,
= (11) a, + (12) a, + (13) o3 + (14) 4 + (15) a5 + (16) 6 ,

& = (21) a + (22) as + (23) a3 + (24) 4 + (25) a5 + (26) a,,

& = (61) a, + (62) a, + (63) a3 + (64) a4 + (65) a5 + (66) cv

247. The Double Screws.

It is now easy to show that there are in general six screws which coincide

with their corresponding screws; for if ^1
=

p%i, j32
=

pa.2 , &c., we obtain an

equation of the sixth degree for the determination of p. We therefore

have the following result :

In two homographic screw systems six screws can in general be found, each

of which regarded as a screw in either system coincides with its correspondent

in the other system.

248. The Seven Pairs.

In two homographic rows of points we have the anharmonic ratio of

any four points equal to that of their correspondents. In the case of two

homographic screw systems we have a set of eight screws in one of the

systems specially related to the corresponding eight screws in the other

system.

We first remark that, given seven pairs of corresponding screws in the two

systems, then the screw corresponding to any other given screw is deter

mined. For from the six equations just written by substitution of known

values of ail, ... 6 and /31; ... /36 ,
we can deduce six equations between (11),

(12), &c. As, however, the co-ordinates are homogeneous and their ratios are

alone involved, we can use only the ratios of the equations so that each pair

of screws gives five relations between the 36 quantities (11), (12), &c. The
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seven pairs thus give 35 relations which suffice to determine linearly the

ratios of the coefficients. The screw y9 corresponding to any other screw a is

completely determined
;
we have therefore proved that

When seven corresponding pairs of screws are given, the two homographic
screw systems are completely determined.

A perfectly general way of conceiving two homographic screw systems

may be thus stated : Decompose a wrench of given intensity on a screw a

into wrenches on six arbitrary screws. Multiply the intensity of each of the

six component wrenches by an arbitrary constant
;
construct the wrench on

the screw /3 which is the resultant of the six components thus modified;
then as a moves into every position in space, and has every fluctuation in

pitch, so will /3 trace out the homographic screw system.

It is easily seen that in this statement we might have spoken of twist

velocities instead of wrenches.

249. Homographic n-systems.

The seven pairs of screws of which the two systems are defined cannot be

always chosen arbitrarily. If, for example, three of the screws were co-

cylindroidal, then the three corresponding screws must be co-cylindroidal,
and can only be chosen arbitrarily subject to this imperative restriction.

More generally we shall now prove that if any n + 1 screws belong to an
n-system (69), then the n + 1 corresponding screws will also belong to an

n-system. If n + 1 screws belong to an ?i-system it will always be possible to

determine the intensities of certain wrenches on the n + 1 screws which when
compounded together will equilibrate. The conditions that this shall be

possible are easily expressed. Take, for example, n = 3, and suppose that
the four screws a, fi, 7, 8 are such that suitable wrenches on them, or twist

velocities about them, neutralize. It is then obvious ( 76) that each of the
determinants must vanish which is formed by taking four columns from
the expression

i, -,, o
3&amp;gt; a,, a5 , 26

76

It is, however, easy to see that these determinants will equally vanish for

the corresponding screws in the homographic system ;
for if we take as screws of

reference the six common screws of the two systems, then we have at once
for the co-ordinates of the screw corresponding to a

(ll)alf (22)0,, (33) a,, (44) 4 , (55) a., (66)*.
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Whcri these substitutions are made in the determinants it is plain that

they still vanish
;
we hence have the important result that

The screws corresponding homographically to the screws of an n-system

form another n-system.

Thus to the screws on a cylindroid will correspond the screws on a

cylindroid. It is, however, important to notice that two reciprocal screws

have not in general two reciprocal screws for their correspondents. We thus

see that while two reciprocal screw systems of the nth and (6 ?i)th orders

respectively have as correspondents systems of the same orders, yet that

their connexion as reciprocals is divorced by the homographic transforma

tion.

Reciprocity is not, therefore, an invariantive attribute of screws or screw

systems. There are, however, certain functions of eight screws analogous to

anharmoriic ratios which are invariants. These functions are of considerable

interest, and they are not without physical significance.

250. Analogy to Anharmonic Ratio.

We have already ( 230) discussed the important function of six screws

which is called the Sexiant. This function is most concisely written as the

determinant (a^^Js^s^s) where a, /3, 7, B, e, are the screws. In Sylvester s

language we may speak of the six screws as being in involution when their

sexiant vanishes. Under these circumstances six wrenches on the six screws

can equilibrate ;
the six screws all belong to a 5-system, and they possess one

common reciprocal. In the case of eight screws we may use a very concise

notation; thus 12 will denote the sexiant of the six screws obtained by

leaving out screws 1 and 2. It will now be easy to show that functions of the

following form are invariants, i.e. the same in both systems:

12 . 34

13. 24

It is in the first place obvious that as the co-ordinates of each screw enter to

the same degree in the numerator and the denominator, no embarrassment

can arise from the arbitrary common factor with which the six co-ordinates of

each screw may be affected. In the second place it is plain that if we replace

each of the co-ordinates by those of the corresponding screw, the function

will still remain unaltered, as all the factors (11), (22), &c., will divide out. We
thus see that the function just written will be absolutely unaltered when

each screw is changed into its corresponding screw.

By the aid of these invariant functions it is easy, when seven pairs of

screws are given, to construct the screw corresponding to any given eighth
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screw. We may solve this problem in various ways. One of the simplest

will be to write the five invariants

12.38 13.48 14\58 15.68 16.78

13.28 14.38 15.48 16.58 IT . 68*

These can be computed from the given eight screws of one system ;
hence

we have five linear equations to determine the ratios of the coefficients of the

required eighth screw of the other system.

It would seem that of all the invariants of eight screws, five alone can

be independent. These five invariants are attributes of the eight-screw

system, in the same way that the anharmonic ratio is an attribute of four

collinear points.

251. A Physical Correspondence.

The invariants are also easily illustrated by considerations of a me

chanical nature. To a wrench on one screw corresponds a twist on the

corresponding screw, and the ratio of the intensities of the wrench and twist

is to be independent of those intensities. We may take a particular case to

illustrate the argument : Suppose a free rigid body to be at rest. If that

body be acted upon by an impulsive system of forces, those forces will

constitute a wrench on a certain screw a. In consequence of these forces the

body will commence to move, and its instantaneous motion cannot be

different from a twist velocity about some other screw /3. To one screw a

will correspond one screw 0, and (since the body is perfectly free) to one

screw /3 will correspond one screw a. It follows, from the definition of homo-

graphy, that as a. moves over every screw in space, ft will trace out an homo-

graphic system.... From the laws of motion it will follow, that if F be the

intensity of the impulsive wrench, and if V be the twist velocity which that

wrench evokes, then F~ V will be independent of F and V, though, of course,

it is not independent of the actual position of a and /3.

252. Impulsive and Instantaneous Systems.

It is known ( 230) that when seven wrenches equilibrate (or when

seven twist velocities neutralize), the intensity of the wrench (or the twist

velocity) on any one screw must be proportional to the sexiant of the six non-

corresponding screws.

Let F1S ,
F.,s ,

... F7S be the intensities of seven impulsive wrenches on the

screws 1, 2, ... 7, which equilibrate, then we must have

18 28 78
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Similarly, by omitting the first screw, we can have seven impulsive wrenches

which equilibrate, where

18

hence we have

13.28 FK.F&

Let the instantaneous twist velocity corresponding to F1S be denoted by

F18 , then, as when seven wrenches equilibrate, the seven corresponding twist

velocities must also equilibrate, we must have in the corresponding system,

12. 38 = VnV*
13.28 ViV

But we must have the twist velocity proportional to the impulsive intensity ;

hence, from the second pair of screws we have

and from the third pair,
F V F V
^38 38 * 13 13 )

hence we deduce

VlZ ^38 _ ^12 ff

1^13 ^28 -^13 ^28

and, consequently, the function of the eight impulsive screws

12.38

13.28

must be identical with the same function of the instantaneous screws.

It should, however, be remarked, that the impulsive and instantaneous

screws do not exhibit the most general type of two homographic systems. A
more special type of homography, and one of very great interest, characterizes

the two sets of screws referred to.

253. Special type of Homography.

If the general linear transformation, which changes each screw a into its

correspondent 6, be specialized by the restriction that the co-ordinates of 6

are given by the equations

fi-
1

&quot;i

Pi

I &amp;lt;*

6 da6
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where U is any homogeneous function of the second order in alt ...a6 ,
and

where plt ...p6 are the pitches of the screws of reference, then the two

systems are related by the special type of homography to which I have

referred.

The fundamental property of the two special homographic systems is

thus stated :

Let a and /3 be any two screws, and let 6 and
&amp;lt;j&amp;gt;

be their correspondents,

then, when a is reciprocal to
&amp;lt;j&amp;gt;,

/3 will be reciprocal to 9.

We may, without loss of generality, assume that the screws of reference

are co-reciprocal, and in this case the condition that ft and 6 shall be co-

reciprocal is

=
;

but by substituting for 1} ... 6 ,
this condition reduces to

dU

Similarly, the condition that a and &amp;lt; shall be reciprocal is

dU dU
~ =

It is obvious that as U is a homogeneous function of the second degree,

these two conditions are identical, and the required property has been

proved.

254. Reduction to a Canonical form.

It is easily shown that by suitable choice of the screws of reference the

function U may, in general, be reduced to the sum of six square terms. We
now proceed to show that this reduction is generally possible, while still

retaining six co-reciprocals for the screws of reference.

The pitch pa of the screw a is given by the equation ( 38),

the six screws of reference being co-reciprocals, the function pa must retain

the same form after the transformation of the axes. The discriminant of

the function

equated to zero will give six values of X
;
these values of X will determine

the coefficients of U in the required form. I do not, however, enter further

into the discussion of this question, which belongs to the general theory of

linear transformations.
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The transformation having been effected, an important result is im

mediately deduced. Let the transformed function be denoted by

then we have

ft=-
PI

PI

whence it appears that the six screws of reference are the common screws of

the two systems. We thus find that in this special case of homography

The six common screws of the two systems are co-reciprocal.

The correspondence between impulsive screws and instantaneous screws

is a particular case of the type here referred to. The six common screws of

the two systems are therefore what we have called the principal screws of
inertia, and they are co-reciprocal.

255. Correspondence of a Screw and a system.

We shall sometimes have cases in which each screw of a system cor

responds not to a single screw but to a system of screws. For the sake of

illustration, suppose the case of a quiescent rigid body with two degrees of

freedom and let this receive an impulsive wrench on some screw situated

anywhere in space. The movement which the body can accept is limited.

It can, indeed, only twist about one of the singly infinite number of screws,
which constitute a cylindroid. To any screw in space will correspond one

screw on the cylindroid. But will it be correct to say, that to one screw on
the cylindroid corresponds one screw in space ? The fact is, that there are

a quadruply infinite number of screws, an impulsive wrench on any one of

which will make the body choose the same screw on the cylindroid for its

instantaneous movement. The relation of this quadruply infinite group is

clearly exhibited in the present theory. It is shown in 128 that, given a

screw a on the cylindroid, there is, in general one, but only one screw 6 on
the cylindroid, an impulsive wrench on which will make the body commence
to twist about a. It is further shown that any screw whatever which fulfils

the single condition of being reciprocal to a single specified screw on the

cylindroid possesses the same property. The screws corresponding to a thus

form a five-system. The correspondence at present before us may therefore

be enunciated in the following general manner.

To one screw in space corresponds one screw on the cylindroid, and to one

screw on the cylindroid corresponds a five-system in space.
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256. Correspondence of m and n systems .

We may look at the matter in a more general manner. Consider an

w-system (J.) of screws, and an w-system (B) (m&amp;gt;n). (If we make ra = 6

and n = 2, this system includes the system we have been just discussing.)

To one screw in A will correspond one screw in B, but to one screw in B
will correspond, not a single screw in A, but an (m + 1 ?i)-system of screws.

If m = n, we find that one screw of one system corresponds to one screw

of the other system. Thus, if m = n = 2, we have a pair of cylindroids, and

one screw on one cylindroid corresponds to one screw on the other. If

m = 3, and n = 2, we see that to each screw on the cylindroid will cor

respond a whole cylindroid of screws belonging to the three-system. For

example, if a body have freedom of the second order and a screw be indicated

on the cylindroid which defines the freedom, then a whole cylindroid full of

screws can always be chosen from any three-system, an impulsive wrench on

any one of which will make the body commence to twist about the indicated

screw.

257. Screws common to the two systems.

The property of the screws common to the two homographic systems
will of course require some modification when we are only considering an

wi-system and an ?i-system. Let us take the case of a three-system on the

one hand, and a six-system, or all the screws in space, on the other hand.

To each screw a of the three-system A must correspond, a four-system, B,

so that a cone of the screws of this four-system can be drawn through every

point in space. It is interesting to note that one screw /3 can be found,

which, besides belonging to B, belongs also to A. Take any two screws

reciprocal to B, arid any three screws reciprocal to A, then the single screw

/3, which is reciprocal to the five screws thus found, belongs to both A and

B. We thus see that to each screw a of A, one corresponding screw in the

same system can be determined. The result just arrived at can be similarly
shown generally, and thus we find that when every screw in space cor

responds to a screw of an ?i-system, then each screw of the n-system will

correspond to a (7 ?i)-system, and among the screws of this system one

can always be found which lies on the original n-system.

As a mechanical illustration of this result we may refer to the theorem

( 96), that if a rigid body has freedom of the nth order, then, no matter

what be the system of forces which act upon it, we may in general combine
the resultant wrench with certain reactions of the constraints, so as to

produce a wrench on a screw of the n-system which defines the freedom of

the body, and this wrench will be dynamically equivalent to the given

system of forces.
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258. Corresponding Screws defined by Equations.

It is easy to state the matter analytically, and for convenience we shall

take a three-system, though it will be obvious that the process is quite

general.

Of the six screws of reference, let three screws be chosen on the three-

system, then the co-ordinates of any screw on that system will be a1( 2 , 3 ,

the other three co-ordinates being equal to zero. The co-ordinates of the

corresponding screw ft must be indeterminate, for any screw of a four-system

will correspond to ft. This provision is secured by /34) /35 , /3f) remaining quite

arbitrary, while we have for @lt j32 , @3 the definite values,

If we take /34 , /35 , /36 all zero, then the values of ($l} /32 , /33 , just written, give

the co-ordinates of the special screw belonging to the three-system, which

is among those which correspond to a.

As a moves over the three-system, so will the other screw of that system
which corresponds thereto. There will, however, be three cases in which the

two screws coincide
;
these are found at once by making

Pi = p&amp;lt;*i , /32
= p*2 ; /33

= pa3 ,

whence we obtain a cubic for p.

It is thus seen that generally n screws can be found on an ?z-system, so

that each screw shall coincide with its correspondent. As a dynamical
illustration we may give the important theorem, that when a rigid body
has n degrees of freedom, then n screws can always be found, about any
one of which the body will commence to twist when it receives an impulsive

wrench on the same screw. These screws are of course the principal screws

of inertia ( 84).

259. Generalization of Anharmonic Ratio.

We have already seen the anharmonic equality between four screws on a

cylindroid, and the four corresponding screws
;
we have also shown a quasi

anharmonic equality between any eight screws in space and their cor

respondents. More generally, any n + 2 screws of an w-system are connected

with their n + 2 correspondents, by relations which are analogous to an

harmonic properties. The invariants are not generally so simple as in the

eight-screw case, but we may state them, at all events, for the case of n = 3.

Five screws belonging to a three-system, and their five correspondents
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are so related, that when nine are given, the tenth is immediately deter

mined
;
for this two data are required, that being the number required to

specify a screw already known to belong to a given three-system.

We may, as before, denote by 12 the condition that the screws 3, 4, 5

shall be co-cylindroidal. This, indeed, requires no less than four distinct

conditions, yet, as pointed out ( 76), functions can be found whose evanes

cence will supply all that is necessary. Nor need this cause any surprise,

when it is remembered that the evanescence of the sine of an angle between

two lines contains the two conditions necessary that the direction cosines are

identical. The function

12.34

13.24

can then be shown to be an invariant which retains its value unaltered when
we pass from one set of five screws in a three-system to the corresponding
set in the other system.

B - 18



CHAPTER XX.

EMANANTS AND PITCH INVARIANTS.

260. The Dyname.

If we wish to speak of a magnitude which may be a twist or a wrench or

a twist velocity it is convenient to employ the word Dyname used by
Pliicker* and by other writers. The Dyname a is completely expressed by
its components al} ... a6 n the six screws of reference. These six quantities

are quite independent. They may be considered as the co-ordinates of the

Dyname.

Let a be the intensity of the Dyname on a
;
then of is a factor in each of

!, ... a6 ,
and if the Dyname be replaced by another on the same screw

a, but of intensity #a
,

the co-ordinates of this new Dyname will be

#!, ... XO.Q.

Let ft be a second Dyname on another screw quite arbitrary as to its

position and as to its intensity ft . Let the co-ordinates of ft, referred to the

same screws of reference, be ft1} ... /36 . If we suppose a Dyname of intensity

yft on the screw ft, then its co-ordinates will be yft1} ... yft6 . Let us now

compound together the two Dynames of intensities oca and yft on the screws

a. and ft. They will, according to the laws for the composition of twists and

wrenches ( 14), form a single Dyname on a third screw lying on the same

cylindroid as a and ft. The position of the resultant screw is such that it

divides the angle between a and ft into parts whose sines have the ratio of y
to x. The intensity of the resultant Dyname is also determined (as in the

parallelogram of force) to be the diagonal where x and y are the sides, and

the angle between them is the angle between a and ft. It is important to

notice that in the determination of this resultant the screws to which the co

ordinates are referred bear no part ;
the position of the resultant Dyname on

the cylindroid as well as its intensity each depend solely upon the two

original Dynames, and on the numerical magnitudes x and y.

*
Pliicker, Fundamental views regarding Mechanics, Phil. Trans. 1866, Vol. CLVI. pp. 361

380.
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We have now to form the co-ordinates of the resulting Dyname, or its

components when decomposed along the six screws of reference. The first

Dyname has a component of intensity x^ on the first screw
;
and as the

second Dyname has a component y^1} it follows that the sum of these two

must be the component of the resultant. Thus we have for the co-ordinates

of the resultant Dyname the expressions

261. Emanants.

Let us suppose that without in any particular altering either of the

Dynames a and ft we make a complete change of the six screws of reference.

Let the co-ordinates of a with regard to these new screws be \, ... \6 ,
and

those of (3 be
//,1} ... //,. Precisely the same argument as has just been used

will show that the composition of the Dynames xo! and yfi will produce a

Dyname whose co-ordinates are x\^ + y/j,lt
. . . x\6 + y(j,s

. We thus see that the

Dyname defined by the co-ordinates x^ + yfti, ... xa6 + y{36 , referred to the

first group of reference screws is absolutely the same Dyname as that defined

by the co-ordinates X,j + y^, ... x\6 + yv 6 referred to the second group
of reference screws, and that this must remain true for every value of

x and y.

In general, let 1} ... #6 denote the co-ordinates of a Dyname in the first

system, and
&amp;lt;j&amp;gt;

l} ...
&amp;lt;/&amp;gt;

6 denote those of the same Dyname in the second system.

Let/(0!, ... 6) denote any homogeneous function of the first Dyname, and let

JP
(&amp;lt;/&amp;gt;!,

... &amp;lt; 6) be the same function transformed to the other screws of refer

ence. Then we have

as an identical equation which must be satisfied whenever the Dyname de

fined by lt ... 6 is the same as that defined by &amp;lt; u ...
&amp;lt;/&amp;gt;

6 . We must there

fore have

f(xa.i + yfi-i ,
. . . aJOe + y/36)

=

These expressions being homogeneous, they may each be developed in

ascending powers of -
. But as the identity must subsist for every value of

oc

this ratio, we must have the coefficients of the various powers equal on both

sides. The expression of this identity gives us a series of equations which

are all included in the form*

d d *

* See Proceedings Roy. Irish Acud., Ser. n. Vol. in. ; Science, p. 601 (1882).

18-2
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The functions thus arising are well known as
&quot; emanants

&quot;

in the theory

of modern algebra. The cases which we shall consider are those of n = 1 and

n = 2. In the former case the emanant may be written

- df n df

262. Angle between Two Screws.

It will of course be understood that/ is perfectly arbitrary, but results of

interest may be most reasonably anticipated when / has been chosen with

special relevancy to the Dyname itself, as distinguished from the influence

due merely to the screws of reference. We shall first take for / the square

of the intensity of the Dyname, the expression for which is found ( 35)

to be

where (12) denotes the cosine of the angle between the first and second

screws of reference, which are here taken to be perfectly arbitrary. The

second group of reference screws we shall take in a special form. They are

to be a canonical co-reciprocal system, so that

R = (\ + X2)
2 + (\3 + X4)

2 + (X5 + X6 )
2

.

Introducing these values, we have, as the first emanant,

X2 ) + (pa 4- /i4) (X3 + X4) + (fjL6 + fit) (X 5 + X6) ;

but in the latter form the expression obviously denotes the cosine of the

angle between a and /3 where the intensities are both unity ; hence, whatever

be the screws of reference, we must have for the cosine of the angle between

the two screws the result

263. Screws at Right Angles.

In general we have the following formula for the cosine of the angle

between two Dynames multiplied into the product of their intensities :

dR n dR dR

This expression, equated to zero, gives the condition that the two Dynames
be rectangular.
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If three screws, a, @, y, are all parallel to the same plane, and if 9 be a

screw normal to that plane, then we must have

dR dR

dR
dfr

dR dR

264. Conditions that Three Screws shall be parallel to a

Plane.
^ *

Since a screw of a three-system can be drawn parallel to any direction,

it will be possible to make any three of the quantities 6l ,
... 66 equal to zero.

Hence, we have as the condition that the three screws, a, /3, 7 shall be

all parallel to a plane the evanescence of all the determinants of the type

dR

dR

dR
d7l

&amp;gt;

dR

dR

dR

dR

dR

dR

265. Screws on the same Axis.

The locus of the screws d perpendicular to a is represented by the

equation

If we assume that the screws of reference are co-reciprocal, then the

equation just written can only denote all the screws reciprocal to the one

screw whose co-ordinates are

Pi di
&quot;

PS da6

It is manifest that all the screws perpendicular to a given line cannot be

reciprocal to a single screw unless the pitch of that screw be infinite, other

wise the condition

(pa +pe) cos (f&amp;gt;

d sin &amp;lt;

=

could not be fulfilled. We therefore see that the co-ordinates just written

can only denote those of a screw of infinite pitch parallel to a.
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If a? be a variable parameter, then the co-ordinates

x dR a; dR
Oti + -.

~
7 i #6 &quot;T ~i ~9

4p, da, 4p6 da6

must denote a screw of variable pitch x on the same screw as or. We are

thus conducted to a more general form of the results previously obtained

( 47).

These expressions may be written

! + COS flj ,
or a + COS O.J, . . .^ 2j?2

where alf a2 , ... are the angles which a makes with the screws of reference.

266. A general Expression for the Virtual Coefficient.

We may also consider that function of the co-ordinates of a Dyname
which, being always proportional to the pitch, becomes exactly equal to the

pitch when the intensity is equal to unity. More generally, we may define

the function to be equal to the pitch multiplied into the square of the

intensity, and it is easy to assign a physical meaning to this function. It

is half the work done in a twist against a, wrench, on the same screw, where

the amplitude of the twist is equal to the intensity of the wrench. Referred

to any co-ordinates, we denote this function by V expressed in terms of

Xj,... X6 . If we express the same function by reference to six co-reciprocal
axes with co-ordinates cfi, ..., we have the result

p1 a.1
s + ...&amp;gt;6 a

2 = V.

Forming now the first emanant, we have

2pi iA + . . . + 2p, 6 /36 = ^
-^-

. . . + ^6 ;

but the expression on the left-hand side denotes the product of the two
intensities into double the virtual coefficient of the two screws; hence

the right-hand member must denote the same. If, therefore, after the

differentiations we make the intensities equal to unity, we have for the

virtual coefficient between two screws X and
yu,

referred to any screws of

reference whatever one-half the expression

dV dV

Suppose, for instance, that X is reciprocal to the first screw of reference,

then



266] EMANANTS AND PITCH INVARIANTS. 279

This can be verified in the following manner. We have

V=
p\&quot;\

dv / d

and, therefore, if X be reciprocal to the first screw of reference, the formula

to be proved is

A few words will be necessary on the geometrical signification of the

differentiation involved. Suppose a Dyname A, be referred to six co-ordinate

screws of absolute generality, and let us suppose that one of these co

ordinates, for instance X1; be permitted to vary, the corresponding situation

of X also changes, and considering each one of the co-ordinates in succession,

we thus have six routes established along which X will travel in correspond
ence with the growth of the appropriate co-ordinate. Each route is, of

course, a ruled surface
;
but the conception of a surface is not alone adequate

to express the route. We must also associate a linear magnitude with each

generator of the surface, which is to denote the pitch of the corresponding
screw. Taking X and another screw on one of the routes, we can draw a

cylindroid through these two screws. It will now be proved that this

cylindroid is itself the locus in which X moves, when the co-ordinate cor

related thereto changes its value. Let 9 be the screAV arising from an

increase in the co-ordinate Xjj a wrench on 6 of intensity 6&quot; has components
of intensities #/ ,

. . . 6 &quot;. A wrench on X has components X/ ,
. . . X6&quot;. But

from the nature of the case,

If therefore & be suitably chosen, we can make each of these ratios 1,

so that when 6&quot; and X&quot; are each resolved along the six screws of reference,

all the components except $/ , X/ shall neutralize. But this can only be

possible if the first reference screw lie on the cylindroid containing and X.

Hence we deduce the result that each of the six cylindroids must pass

through the corresponding screw of reference
;
and thus we have a complete

view of the route travelled by a screw in correspondence with the variation

of one of its co-ordinates.

Let the six screws of reference be 1, 2, 3, 4, 5, 6. Form the cylindroid

(X, 1), and find that one screw 77 on this cylindroid which has with 2, 3, 4, 5, G,

a common reciprocal ( 26). From a point draw a pencil of four rays parallel
to four screws on the cylindroid. Let OA be parallel to one of the principal
screws

; OX be parallel to X, Otj to 77, and Oh to the first screw of reference.
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Let the angle AOh be denoted by A, the angle ^40?; by B, and the angle
A OX by &amp;lt;f).

To find the component \ we must decompose A, , a twist on

X, into two components, one on 77, the other on the first screw of reference.

The component on 77 can be resolved along the other five screws of reference,

since the six form one system with a common reciprocal. If we denote by

77 the component on 77, we then have

X \! 77

sin (B - A)
=

sin
(&amp;lt;

- B)
=

sin(&amp;lt;/&amp;gt;-J)

and if a and 6 be the pitches of the two principal screws on the cylindroid,

we have for the pitch of X the equation

p = a cos2

&amp;lt;/&amp;gt;

+ b sin 2

&amp;lt;f&amp;gt;

;

also -3^-
= ~ V

,
because the effect of a change in X, is to move the screw

aXj
d(f&amp;gt;

ctXj

along this cylindroid.

Air u , sin (0
-

.B)We have Xj = 77 -r }
---A ,sm (0- A)

and as the other co-ordinates are to be left unchanged, it is necessary that

77 be constant, so that

d\ _ ,sm(B A)
~d$~

rj

sin^(&amp;lt;f&amp;gt;-A)

dp . . sin2
(&amp;lt;4 A)and hence ,^- = (6

-
a) sin 2&amp;lt;f&amp;gt; ,

. ^-4r .

ctXj ^T)sm(B-A)

A , d\ d\ dd&amp;gt;

Also = ^_ = _ cos ( (f) _^) j

aXj rf0 rfXj

Hence, substituting in the equation

we deduce a = b tan
&amp;lt;/&amp;gt;

tan A :

but this is the condition that X and the first screw of reference shall be

reciprocal ( 40).

267. Analogy to Orthogonal Transformation.

The emanants of the second degree are represented by the equation

when F is the function into which / becomes transformed when the co

ordinates are changed from one set of screws of reference to another. If

we take for / either of the functions already considered, these equations
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reduce to an identity ;
but retaining / in its general form, we can deduce

some results of very considerable interest. The discussion which now follows

was suggested by the reasoning employed by Professor W. S. Burnside* in

the theory of orthogonal transformations.

Let us suppose that we transform the function f from one set of co-

reciprocal screws of reference to another system. Let p1} ... p6 be the

pitches of the first set, and qlt ... q6 be those of the second set. Then we
must have

for each merely denotes the pitch of the Dyname multiplied into the square
of its intensity. Multiply this equation by any arbitrary factor x and add

it to the preceding, and we have

d_ } f -( 2\

i A.J d,\6 1

Regarding &, ... /36 as variables, the first member of this equation

equated to zero would denote a certain screw system of the second degree.
If that system were &quot;central&quot; it would possess a certain screw to which
the polars of all other screws would be reciprocal, and its discriminant

would vanish
;
but the screw $ being absolutely the same as p, it is plain

that the discriminant of the second side must in such case also vanish. We
thus see that the ratios of the coefficients of the various powers of x in the

following well-known form of determinant must remain unchanged when
one co-reciprocal set of screws is exchanged for another. In writing the

d zf
determinant we put 12 for -=

, &c.

16 1=0.

26

36

46

56

66 + ape

Take for instance the coefficient of of divided by that of x, which is

easily seen to be

1 d2/ I d2f
PI da.1

2

p6 das
2

*
Williamson, Differential Calculus, p. 412.

11-
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and we learn that this expression will remain absolutely unaltered provided

that we only change from one set of co-reciprocals to another. In this / is

perfectly arbitrary.

268. Property of the Pitches of Six Co-reciprocals.

We may here introduce an important property of the pitches of a set of

co-reciprocal screws selected from a screw system.

There is one screw on a cylindroid of which the pitch is a maximum,
and another screw of which the pitch is a minimum. These screws are

parallel to the principal axes of the pitch conic ( 18). Belonging to a

screw system of the third order we have, in like manner, three screws of

maximum or minimum pitch, which lie along the three principal axes of

the pitch quadric ( 173). The general question, therefore, arises, as to

whether it is always possible to select from a screw system of the ?tth order

a certain number of screws of maximum or minimum pitch.

Let 1} ... #6 be the six co-ordinates of a screw referred to n co-reciprocal

screws belonging to the given screw system. Then the function pe ,
or

is to be a maximum, while, at the same time, the co-ordinates satisfy the

condition ( 35)

20!
s + 220A cos (12) = 1,

which for brevity we denote as heretofore by

Applying the ordinary rules for maxima and minima, we deduce the six

equations
dR

9 - =

From these six equations Ol ,
... 96 can be eliminated, and we obtain the

determinantal equation which, by writing x= 1 +po, becomes

1 %PI, cos (21), cos (31), cos (41), cos (51), cos (61)

cos (12), l-#pa ,
cos (32), cos (42), cos (52), cos (62)

cos (13), cos (23), l-a;p3) cos (43), cos (53), cos (63)

cos (14), cos (24), cos (34), laspt ,
cos (54), cos (64)

cos (15), cos (25), cos (35), cos (45), lacps ,
cos (65)

cos (16), cos (26), cos (36), cos (46), cos (56), 1 -
ay&amp;gt;

6

=
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It is easily seen that this equation must reduce to the form

In fact, seeing it expresses the solution of the problem of finding a screw

of maximum pitch, and that the choice may be made from a system of the

sixth order, that is to say, from all conceivable screws in the universe it is

obvious that the equation could assume no other form.

What we now propose to study is the manner in which the necessary

evanescence of the several coefficients is provided for. After the equation

has been expanded we shall suppose that each term is divided by the

coefficient of a? that is, by

From any point draw a pencil of rays parallel to the six screws. On
four of these rays, 1, 2, 3, 4, we can assign four forces which equilibrate

at the point. Let these magnitudes be X1} X.2 ,
X3 ,

X4 . We can express

the necessary relations by resolving these four forces along each of the four

directions successively. Hence

X, + X, cos (12) + Xs cos (13) + X, cos (14) = 0.

X, cos (21) + X2 +X, cos (23) + X, cos (24) - 0.

Xl cos (31) + Xz cos (32) + X. + Z4 cos (34) = 0.

X, cos (41) + X, cos (42) + Xs cos (43) + X4
= 0.

Eliminating the four forces we have

1, cos (12), cos (13), cos (14)

cos (21), 1, cos (23), cos (24)

I cos (31), cos (32), 1, cos (34)

cos (41), cos ^42), cos (43), 1

Thus we learn that every determinant of this type vanishes identically.

Had we taken live or six forces at the point it would, of course, have been

possible in an infinite number of ways to have adjusted five or six forces to

equilibrate. Hence it follows that the determinants analogous to that just

written, but with five and six rows of elements respectively, are all zero.

These theorems simplify our expansion of the original harmonic deter

minant. In fact, it is plain that the coefficients of x*, of x, and of the

absolute term vanish identically. The terms which remain are as follows :

x ti + Ao? + ExA + Cic
8 = 0.
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, 1
where A = 2,

,

V sin2
(l, 2)

in which

1, cos (12), cos (13)

cos (12), 1, cos (23)

cos (13), cos (23), 1

If by S (123) we denote the scalar of the product of three unit vectors

along 1, 2, 3, then it is easy to show that

We thus obtain the following three relations between the pitches and the

angular directions of the six screws of a co-reciprocal system*,

Pi

The first of these formulae gives the remarkable result that, the sum of the

reciprocals of the pitches of the six screws of a co-reciprocal system is equal
to zero.

The following elegant proof of the first formula was communicated to me

by my friend Professor Everett. Divide the six co-reciprocals into any two

groups A and B of three each, then it appears from 174 that the pitch

quadric of each of these groups is identical. The three screws of A are

parallel to a triad of conjugate diameters of the pitch quadric, and the sum
of the reciprocals of the pitches is proportional to the sum of the squares of

the conjugate diameters ( 176). The three screws of B are parallel to

another triad of conjugate diameters of the pitch quadric, and the sum of

the reciprocals of the pitches, with their signs changed, is proportional to the

sum of the squares of the conjugate diameters. Remembering that the

sum of the squares of the two sets of conjugate diameters is equal, the

required theorem is at once evident.

*
Proceedings of the Royal Irish Academy, Series in. Vol. i. p. 375 (1890). A set of six

screws are in general determined by 30 parameters. If those screws be reciprocal 15 conditions

must be fulfilled. The above are three of the conditions, see also 271.
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269. Property of the Pitches of n Co-reciprocals.

The theorem just proved can be extended to show that the sum of the

reciprocals of the pitches of n co-reciprocal screws, selected from a screw system

of the nth order, is a constant for each screw system.

Let A be the given screw system, and B the reciprocal screw system,
Take 6 n co-reciprocal screws on B, and any n co-reciprocal screws on A.

The sum of the reciprocals of the pitches of these six screws must be always
zero

;
but the screws on B may be constant, while those on A are changed,

whence the sum of the reciprocals of the pitches of the n co-reciprocal screws

on A must be constant.

Thus, as we have already seen from geometrical considerations, that the

sum of the reciprocals of the pitches of co-reciprocals is constant for the

screw system of the second and third order ( 40, 176), so now we see that

the same must be likewise true for the fourth, fifth, and sixth orders.

The actual value of this constant for any given screw system is evidently
a characteristic feature of that screw system.

270. Theorem as to Signs.

If in one set of co-reciprocal screws of an n-system there be k screws with

negative pitch and n k screws with positive pitch, then in every set of

co-reciprocal screws of the same system there will also be k screws with negative

pitch and n k screws with positive pitch.

To prove this we may take the case of a five-system, and suppose that of

five co-reciprocals A
l ,
A 2 ,

A 3 ,
A 4 ,

A 5 the pitches of three are positive, say
mf, ra2

2
, TO/, while the pitches of the two others are negative, say ra4

2
,

Let 8 be any screw of the system, then if 1} ... #5 be its co-ordinates

with respect to the five co-reciprocals just considered, we have for the pitch
of 6 the expression

raM2 + w2
2

2
2 + ra3

2
&amp;lt;93

2 - m4
2

4
2 - m5

2
5
2
.

Let us now take another set of five co-reciprocals B1} B2 ,
B3 ,

B4 ,
B5

belonging to the same system, then the pitches of three of these screws must
be + and the pitches of two must be . For suppose this was not so, but

that the five pitches were, let us say n^, n^, w3
2
,

v? 4
2
,

ws
2

. Let the co-ordinates

of with respect to these new screws of reference be
&amp;lt;f&amp;gt;

1}
&amp;lt;f&amp;gt;

2 ,
... B ,

then

the pitch will be

V&2 +
n.*&amp;lt;f&amp;gt;

2
2 + ns

a
3
2 + nty* - n 5

2

&amp;lt;/&amp;gt;

5
2

.



286 THE THEORY OF SCREWS. [270-

Equating these two values of the pitch we ought to have for every screw S

- n^ + M3
2

&amp;lt; 2
2 + w3

2
&amp;lt; 3

2
-f n4

2
&amp;lt; 4

2 + m*

But it can easily be seen that this equation is impossible.

Let H be the screw to which all the screws of the five-system are re

ciprocal, and let us choose for 8 the screw reciprocal to A 1} A 2 ,
A 3 ,

B6 , H.

The fact that S is reciprocal to H is of course implied in the assumption that

8 belongs to the five-system, while the fact that S is reciprocal to each of the

screws A lt A 2 . A 3 ,
B5 gives us

1==0, 2
=

0, 3
= 0, 8

= 0.

Hence we would have the equation

which would require that all the co-ordinates were zero, which is im

possible.

In like manner any other supposition inconsistent with the theorem of

this article would be shown to lead to an absurdity. The theorem is there

fore proved.

We can hence easily deduce the important theorem that three of the

screws in a complete co-reciprocal system of six must have positive pitch

and three must have negative pitch*.

For in the canonical system of co-reciprocals the pitches are + a, a,

4- b, b, + c, c, i.e. three are positive and three are negative, and as in this

case the w-system being the six -system includes every screw in space we see

that of any six co -reciprocals three of the pitches must be positive and three

must be negative.

271. Identical Formulae in a Co-reciprocal System.

Let any screw a be inclined at angles cxi, a2, ... aG to the respective six

screws of a co-reciprocal system.

Then we have for the co-ordinate an

_ (pa +pn)cos al dal sin al^ ~~~

* This interesting theorem was communicated to me by Klein, who had proved it as a

property of the parameters of &quot;six fundamental complexes in involution&quot; (Math. Ann. Band.

i. p. 204).
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If we substitute these values for a
l ,

... an in the expression

we obtain the equation

cos2 al cos2 a2 cos2
a6~

+ - + ...+ -

Pi P* P

f
=/&amp;gt;a

cos a6 (p6 cos a6 da6 sin a6)
_|_

__ _ . ^

JP

(pl cos a l dal sin al)
2

( p6 cos a6 da6 sin a6)
2

As al, &c., da, &c., &amp;gt;!,

&c. are independent of pa we must have the three

co-efficients of this quadratic in pa severally equal to zero.

272. Three Pitches Positive and Three Negative.

The equation
cos2 al cos2 a2 cos2 a6 _

Pi P-2 p%

also shows that three pitches of a set of six co-reciprocals must be positive
and three must be negative. For, suppose that the pitches of four of the

co-reciprocals had the same sign, and let a be a screw perpendicular to the

two remaining co-reciprocals, then the identity just written would reduce to

the sum of four positive terms equal to zero.

From this formula and also

11 1
--+- + ... + -=0
Pl P-2 P6

sin2
ai sin2 a2 sin2 6we have h + . . . H =

Pi PI PS

273. Linear Pitch Invariant Functions.

We propose to investigate the linear functions of the six co-ordinates of

a screw which possess the property that they remain unaltered notwith

standing an alteration in the pitch of the screw which the co-ordinates

denote. It will first be convenient to demonstrate a general theorem which
introduces a property of the six screws of a co-reciprocal system.

The virtual coefficient of two screws is, as we know, represented by half
the expression

(pa + pp) cos 6 d sin 6,

where pa and pft
are the pitches, is the angle between the two screws,

and d the shortest perpendicular distance. The pitches only enter into
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this expression by their sum; and, consequently, if pa be changed into

pa + x, and pp be changed into p$ x, the virtual coefficient will remain

unaltered whatever x may be.

We have found, however ( 37), that the virtual coefficient admits of

representation in the form

Pii/3i+ ... + profit-

To augment the pitch of a by x, we substitute for a l} a..,, ... the several

values ( 265),
SY&amp;gt; fit*

a, + - cos a,!, a2 + -^ cos a2 ,
...

2^] 2p2

where a1( a2 ,
... are the angles made by the screw a with the screws of

reference. Similarly, to diminish the pitch of ft by x, we substitute for

&, /32 , . the several values

OC OG

&-H-COS&!, &-a- cos&2 ,
&c.

Zpi Zp2

With this change the virtual coefficient, as above expressed, becomes

x \ ( Q x
+ 9~ COS a - COS

\ ^Pi

or,

CO

o v/^j COS ttj + p 2 COS a2 + ...! COS Oj 2 COS 2 . . . )
Z

s ! cos &! cos a2 cos &2 cos ae cos 6,

We have already shown that such a change must be void of effect upon
the virtual coefficient for all values of x. It therefore follows that the

coefficients of both x and x* in the expressions just written must be zero.

Hence we obtain the two following properties :

=
(p\ cos j + ... + /36 cos a6) (^ cos h+ ... + a6 cos 66),

_ cos a: cos bi cos ae cos 66

The second of the two formulas is the important one for our present

purpose. It will be noted that though the two screws, a and @, are com

pletely arbitrary, yet the six direction cosines of a. with regard to the screws

of reference, and the six direction cosines of /3 with regard to the same

screws of reference, must be connected by this relation. Of course the

equation in this form is only true when the six screws of reference are

co-reciprocal. In the more general case the equivalent identity would be

of a much more complicated type.
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274. A Pitch Invariant.

Let h lt ... h 6 be the direction angles of any ray whatever with regard to

six co-reciprocal screws of reference, then the function

U =
! cos h-i + . . . + as cos h s

is a pitch invariant.

For, if we augment the pitch of a by x, we have to write for alf ... a6

the expressions
x x

j + 5 COS ! . . . 6 + COS 6 ,

API ApQ

and then U becomes

! COS A! + . . . + COS hK

x /cos aa cos ^ cos a cos A,
~r o I T H--

Pi

but from what we have just proved, the coefficient of x is zero, and hence
we see that

! cos ^ -|- . . . + 6 cos h 6

remains unchanged by any alteration in the pitch of a.

If we take three mutually rectangular screws, a, /3, 7, then we have the

three pitch invariants

L =
1 cos ^ + . . . + 6 cos a6 ,

M = #! cos &J + ... + #6 cos 66 ,

N = Ol COS Ci + . . . + #6 COS C6 .

It is obvious that any linear function of L, M, N, such as

fL + gM+hN,
is a pitch invariant.

We can further show that this is the most general type of linear pitch
invariant.

For the conditions under which the general linear function

^0,+ ... +A n n

shall be a pitch invariant are that equations of the type

A l cos a, A 6 cos aa _
e--r . . . + - = U ; dec.

Pi P
shall be satisfied for all possible rays.

Though these equations are infinite in number, yet they are only equi
valent to three independent equations ;

in other words, if these equations
are satisfied for three rays, a, b, c, which, for convenience, we may take to

be rectangular, then they are satisfied for every ray.

B. 19
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For, take a ray e, which makes direction-angles X, /A, v with a, b, c, then

we have

COS j
= COS X COS ! + COS /A COS &! + COS V COS Cj ,

cos e6 = cos X cos a6 + cos
/u,

cos 66 + cos v cos c6 .

Hence
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discover the direction of the resultant screw and the magnitude of the

resultant twist velocity by proceeding as if the twist velocities were vectors.

Neither the pitches of the component screws nor their situations affect the

magnitude of the resultant twist velocity or the direction of the resultant

screw. This principle is, of course, an immediate consequence of the law

of composition of twist velocities by the cylindroid.

Let any ray a make an angle A, with the ray 6, and angles a1} ... a6 with

the six screws of reference. The twist velocity $ on 6 if resolved on a has

a component 0cos\. This must be equal to the sum of the several com

ponents 1} #2 ,
... resolved on a; whence we have

cos X = #! cos a-i + ... + G cos a6 .

If we make =
unity, we obtain

cos \=01 cos at + ... +06 cos as .

This gives a geometrical meaning to the pitch invariant. It is simply the

cosine of the angle between the screws 6 and a. As, of course, the pitch
is not involved in the notion of this angle, it is, indeed, obvious that the

expression for any function of the angle must be a pitch invariant.

We now see the meaning of the equation obtained by equating the pitch
invariant to zero. If we make

1 COS !+...+ #6 COS C1 6
=

it follows that a. and must be at right angles. The equation therefore

signifies the locus of all the screws that are at right angles to a.

The two equations

1 cos !+... + 6 cos a6
= 0,

0! cos &!+... -f #6 cos b6
= 0,

denote the screws perpendicular to the two directions of a and /3. In other

words, these two equations define all the screws perpendicular to a given

plane.

276. Screws at infinity.

Let us now take the case where a, ft, 7 are three rectangular screws, and

examine the conditions satisfied by 1} ..., 6 when subjected to the three

following equations :

#1 cos (&!+ ... + 6 cos a6
= 0,

0! COS h + ... + 6 COS b6
= 0,

l COS G! + ... + 6 COS C6 = 0.

The screws which satisfy these conditions must all be perpendicular to the

192
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three directions of o, j3, 7. For real and finite rays this is impossible ;
for

real and finite rays could not be perpendicular to each of three rays which

were themselves mutually rectangular. This is only possible if the rays

denoted by 1} ... 6K are lines at infinity.

It follows that the three equations, L = 0; M=Q; N=Q, obtained by

equating the three fundamental pitch invariants to zero, must in general

express the collection of screws that are situated in the plane at infinity.

We can write the three equations in an equivalent form by the six

equations
., ,,COSi COS&j 7 COSCi
0i =/ + g- -+A- -,

Pi Pi Pi

n , cos as cos 66 7
cos c6

t/6 =/ - + g + fi
-

,

Pa p6 ps

where f, g, h are any quantities whatever; for it is obvious that, by substi

tuting these values for 1 ,
... 6 in either L, or M, or N, these quantities are

made to vanish by the formula of the type

X cos a6 cos 6

Pi

We have, consequently, in the expressions just written for Blt ... 6 ,
the

values of the co-ordinates of a screw which lies entirely in the plane at

infinity.

277. Expression for the Pitch.

It is known that if a, 0, 7 be the direction-angles of a ray, and if P, Q, R
be its shortest perpendicular distances from three rectangular axes, then

P sin a cos a + Q sin /3cosfi + R sin 7 cos 7 = 0.

Let
77, ,

be three screws of zero pitch, which intersect at right angles, and
let 6 be another screw, then, if vr^ be the virtual coefficients of 77 and 0,

2&quot;5T,,0

= p6 cos a P sin a,

whence, by the theorem just mentioned, we have

pe
=

Zvr^o cos a + 2tjy|e cos + 2^ cos 7.

Let a1} ... a6 be the angles made by 77 with the six co-reciprocal screws of

reference, then

cos a = L = 61 cos ax + . . . + 6 cos aa ,

and, similarly, for the two other angles,

cos yS
=M= e

i cos &J + ...+ 6 cos 66 ,

cos 7 =N =
l cos d + . . . + B6 cos c6 ,
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and L2 +M2
-\- N*= 1, whence we have for the pitch the homogeneous ex

pression

It appears from this that the three equations,

57,0
=

; -GTffl

=
; Tffl

= 0,

indicate that 6 must be one of a pencil of rays of zero pitch radiating from

a point.

The equations Z =
; lf=0; N=Q, define a screw of indeterminate

pitch.

Why the screws in the plane at infinity ( 46) should in general present
themselves with indeterminate pitch is a point which requires some ex

planation. The twist about such a screw, as around any other, consists, of

course, of a rotation and a translation. If, however, the finite parts of the

body are only to be moved through a finite distance, the amplitude of the

twist must be infinitely small, for a finite rotation around an axis at infinity

would, of course, imply an infinitely great displacement of parts of the body
which were at finite distances. The amplitude of the rotation is therefore

infinitely small, so that, if the pitch is finite, the displacement parallel to

the axis of the screw is infinitely small also. It thus appears that the effect

of a small twist about a screw of any finite pitch at infinity is to give the

finite parts of the body two displacements, one of which is infinitely insig

nificant as regards the other. We can therefore overlook the displacement
due to the pitch, and consequently the pitch of the screw unless infinite is

immaterial
;

in other words, in so far as the screw is the subject of our

investigation, its pitch is indeterminate.

In like manner we can prove that a screw in the plane at infinity, when

regarded as the seat of a wrench, must, when finite forces are considered,

be regarded as possessing an indeterminate pitch. For, let the force apper

taining to the wrench be of finite magnitude, then its effect on bodies at

finite distances would involve a couple of infinite moment. It therefore

follows that the force on the screw at infinity must be infinitely small if the

effects of the wrench are finite. The moment of the couple on the screw

of finite pitch is therefore infinitely small, nor is its magnitude increased

by importation from infinity ; therefore, at finite distances, the effect of the

couple part of the wrench may be neglected in comparison with that of the

force part of the wrench. But the pitch of the screw is only involved so

far as the couple is concerned
;
and hence whatever be the pitch of the

screw lying in the plane at infinity, its effect is inoperative so far as finite

operations are concerned.
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There is here a phenomenon of duality which, though full of significance

in non-Euclidian space, merely retains a shred of its importance in the space

of ordinary conventions. A displacement, such as we have been considering,

may of course arise either from a twist about a screw of infinite pitch at an

indefinite distance, or a twist about a screw of indefinite pitch at an infinite

distance.

278. A System of Emanants which are Pitch Invariants*.

From the formula

2tzr
a/3
= (pa + pp) cos (a/3)

- da$ sin (a/3),

we obtain

sin () = i
(pa + pft ) (a,^ + . . . + 6

^-J

-I* ,-+...+* -}ft^}\
d/3, dftJ V JR. r

or from symmetry

We thus obtain an emanant function of the co-ordinates of a and /3 which

expresses the product of the shortest distance between a and /8 into the sine
of the angle between them. The evanescence of this emanant is of course
the condition

( 228) that a and /3 intersect.

This emanant is obviously a pitch invariant for each of the two screws
involved. It will be a pitch invariant for a whatever be the screw /3. Let
us take for /3 the first screw of reference so that

& = 1; & = 0... /36
= 0.

Then

A (P*+PI\
da, \ \/Ra )

must be a pitch invariant. It may be written

2 da,

This article is due to Mi- A. Y. G. Campbell.
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but we know that the last term is itself a pitch invariant, and hence we have

the following result.

IfPa be the pitch of a screw a expressed in terms of the co-ordinates, and

if Ra denote the function a + ... + 2 + 2^0, cos (12) + ... = 1, then the

several functions

&_ _Pa

da,

remain unaltered if instead of j
. . . a the co-ordinates of any other screw on

the same straight line as a should be substituted.

This is easily verified by the known formulae that if a be any screw and

another screw on the same axis as a whose pitch is pa + ac, then

x dR Q _
x dR

01 = ai +
1̂ d^

i
&quot; 6

- a6 +
4p6 da6

whence

- s - 2 +
* ~

* + A&amp;gt; cos al



CHAPTER XXL

DEVELOPMENTS OF THE DYNAMICAL THEORY.

279. Expression for the Kinetic Energy.

Let us suppose that a body of mass M is twisting around a screw a with

the twist velocity a. It is obvious that the kinetic energy of the body must

be the product of Md 2 and some expression which has the dimensions of the

square of a linear magnitude. This expression has a particular geometrical

significance in the Theory of Screws, and the symbols of the theory afford a

representation of the expression in an extremely concise manner.

Let
77 be the impulsive screw which corresponds to a as an instantaneous

screw, the body being supposed to be perfectly unconstrained.

As usual pa is the pitch of a and (a?/) is the angle between a and
77.

From the formulae of 80 we have, where H is a common factor,

H^ = + aa^; Hv]2 = a 2 ;

#773 = + ba3 ; Hr)4
= - 6a4 ;

Hr) 5
= + ca& ; #77,3

= -ca6 ;

whence

H
[(771 + 7?2) (! + 2) + (r;3 + 774) (a3 + a4) + (775 + 776) (a fl + ae)]

= a (!
2 -

a/) + b (a3
2 -

a/) + c (a5
2 - a6

2

) =pa

and we obtain

cos

The kinetic energy is

in

&quot;

cos (an)

cos

*
Trans. Roy. Irish Acad., Vol. xxxi. p. 99 (1896).
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which is the required expression for the kinetic energy. It is remarkable

that the co-ordinates of the rigid body are introduced by the medium of the

impulsive screw alone.

280. Expression for the Twist Velocity.

If an impulsive wrench of unit intensity on a screw 77 be applied to a

quiescent rigid body of unit mass which in consequence commences to twist

about an instantaneous screw a, it is required to find the initial twist

velocity a.

The impulsive wrench may be replaced by component impulsive forces

T]I, ,.. rj6 on the six principal screws of inertia and component impulsive

couples with moments 0%, atj^, br}3 , 6774, crj 5 , cijs about those screws

of inertia.

The force ^ is expressed by the velocity it produces in the unit mass

parallel to the direction of
77. The component twist velocity of a is di

about the first principal screw, and accordingly the velocity of translation

parallel to that screw is adaj. Hence we have

but
!
= ~-. T?I,

cos (a?;)

whence we obtain*

cos (OCT?)
f* .._v /

P
It will be noted that in this expression the co-ordinates of the rigid body
are introduced through the medium of the impulsive screw alone.

A special case arises when the impulsive wrench is a couple, in which
case of course p^= oo . As the effect of an impulsive couple is to produce
a pure rotation only, we must under these circumstances have pa = 0.

Poinsot s well-known construction exhibits the axis of the initial rotation

as the diameter of the mornental ellipsoid conjugate to the plane of the

impulsive couple. As three conjugate diameters of an ellipsoid could not
lie in the same plane, it follows that in the case of p^

= oo we can never
have a and 77 at right angles. As pa is zero while cos (777) is not zero, we
must have d infinite.

This might have been inferred from the fact that as the intensity of the

impulsive wrench was not zero while the pitch of the screw on which it lay
was infinite, the moment of the impulsive couple was infinite and conse

quently the initial twist velocity must be infinite.

* Trans. Roy. Irish Acad., Vol. xxxi. p. 100 (1896).
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Unless in this exceptional case where p^ is infinite it is always true that

when pa is zero, a and 77 are at right angles.

It is universally true that when the impulsive screw and the instan

taneous screw are at right angles (the body being quite free), the pitch of

the instantaneous screw must be zero.

For if pa were not zero when cos (a?;) was zero then a. must be zero. As

some motion must result from the impulse (the mass of the body being

finite) we must have pa infinite. The initial motion is thus a translation.

Therefore the impulse must have been merely a force through the centre

of gravity ;
a and 77 must be parallel and cos (a?;) could not be zero.

The expression for the kinetic energy in 279,

cos

assumes an indeterminate form when the impulsive wrench reduces to a

couple. For we then have pa = 0, but as cos (a?;) is not zero the expression

for v?
ari ,

i.e.

2 {(POL + pj cos (CM?)
- dar

,
sin (arj)},

becomes infinite.

The expression for the kinetic energy arising from an impulsive wrench

of unit intensity on a screw 77 applied to a free body of unit mass which

thereupon begins to twist with an instantaneous movement about a screw a

has the concise form

Po

281. Conditions to be fulfilled by two pairs of Impulsive and

Instantaneous Screws.

Let a be a screw about which a free rigid body is made to twist in

consequence of an impulsive wrench administered on some other screw, 77.

Let /3 be another instantaneous screw corresponding in like manner to as

an impulsive screw. Then we have to prove that the two following formulas

are satisfied * :

cos^)
cosW + ~To^ cos () = 2l

Pa
/ \ w DT) / / i &amp;lt;- \ **

cos (ttq) cos (pt)

*
Proceedings of the Camb. Phil. Soc., Vol. ix. Part iii. p. 193.
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To demonstrate the first of these formulae. Expand the left-hand side and

it becomes

ft + &) (17, +

i + ,) (ft + ft) + (a + ,) (ft + ft) + ( B + a.) (ft + ft)}.

But, as already shown,

cos (a?;) cos (a?;)

whence, by substitution, the expression reduces to

+ a (A + A) (i - 2) + a (! + a.,) (A - /32)

+ 6 (A + ft) (. -
4 ) + 6 (a. + a4) (/8,

-
/34)

+ c (/36 + A) ( 5
- ae) + c ( B + 6) (/35

- A)

4 + 2ca5/?5
-

To prove the second formula it is only necessary to note that each side

reduces to

It will be observed that these two theorems are quite independent of the

particular screws of reference which have been chosen.

282. Conjugate Screws of Inertia.

We have already made much use of the important principle that is

implied in the existence of conjugate screws of inertia. If a be reciprocal
to then must

17 be reciprocal to . This theorem implied the existence

of some formula connecting -nraf and CT^. We see this formula to be

Pa Pft

cos ewj cos

We have now to show that if ^^ = 0, then must waf
= 0.

Let us endeavour to satisfy this equation when tn-^ is zero otherwise

than by making ujaf zero. Let us make pa infinite, then -n^ will reduce

to %pa cos (af) (for we may exclude the case in which p( is also infinite

because in that case raf
=

0, inasmuch as any two screws of infinite pitch
are necessarily reciprocal).
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The formula becomes, when pa is very large,

Pa- P? 1 / *-\
*-r r ura = - ~~ir. Ipa cos (a|).

cos(cc?7) cos(/3|)
&quot;

In this case as the twist about a is merely a translation, we must have

cos
err) 1, so that

is to vanish, but this cannot be secured by making p? zero, because that

cannot happen without cos (/3) being zero, except the pitch of be infinite

( 280) which is the case already excluded. It is therefore necessary that

cos (a) be zero, but this requires that a and be reciprocal, i.e. that vra = 0.

Let us now suppose that we try to satisfy the original equations by

making OT^ = 0, pp = 0. Here again we find that Pfs
= entails cos (/3) zero,

except p$ = GO . This in general makes -CT^ infinite so that the equation is

not satisfied. If a and were at right angles then no doubt the equation
would be satisfied, but then -S7a| is zero. We thus see that notwithstanding
the special form of the fundamental equation ( 281) it implies no departure
from the complete generality of the principle that whenever is^ is zero

then must &amp;lt;r f be also zero.

283. A Fundamental Theorem.

Let us suppose that a rigid body is either entirely free or constrained in

any manner whatever. Let
r) be an impulsive screw whose pitch p^ is not

infinite. Let 77

&quot;

be the intensity of an impulsive wrench on that screw, it

being understood that
?/&quot;

is to be neither zero nor infinity. Let a be the

instantaneous screw about which the body, having been previously quiescent,
will commence to twist with an instantaneous twist velocity a. It is also

supposed that pa is neither zero nor infinity.

Let be the impulsive screw similarly related to /9, and let the affiliated

symbols have the corresponding significations and limitations.

Let be the impulsive screw similarly related to 7, and let the affiliated

symbols have the corresponding significations and limitations.

The instantaneous movement of the body must necessarily be the same
as if it had been quite free and had received in addition to the impulsive
wrench of intensity 77

&quot;

on the screw
rj,

an impulsive wrench of intensity p&quot;

situated on some screw p belonging to the system of screws reciprocal to the

freedom of the body.

Let these two wrenches compound into a single wrench of intensity to
&quot;

on a screw w.
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Then we have ( 279),

,
cos (aco)

Ct = CO -
and also ( 278),

Pi&amp;lt;*i f x p2 a-2 x p (i
a6 f

,

&&amp;gt;!

= cos (&)), eo2
= ~ cos (CLCO), . . . o&amp;gt;6

= cos (aw).
Pa Pa Pa

But from the fact that to
&quot;

is the resultant of
?/&quot;

and
p&quot;

we must have by

resolving along the screws of reference

/ / / / /// /// /// /// / / /// // /.\
CO C0

1
=

T) 77J + P PI, CO C02 =T) 1J 2 + p p2 ,
. . . CO CO =

r) T] ti + p p6...... (1),

whence we obtain by substitution,

&amp;gt;!!

=W + p &quot;pi, dp.2CL2
=

if&quot;I* + p&quot;p2, djOflOe
=

rj &quot;r}6 + p &quot;pK
. . .(ii).

If we multiply the first of these equations by^/Su the second by^2/32 , &c.,

and then add, we obtain

as however p is on the reciprocal system we must have, except when p&quot;

=
&amp;lt;x&amp;gt;

to be subsequently considered,

d^p^a^^r) &quot;^^.

In like manner,

d2p1

2a17i
=

&amp;gt;/&quot;

C3Vr

We shall similarly find

ivi
=

r&quot;^&amp;gt; faptfi* = ?&quot;*
}

}
............... (Hi),

l 1
=

r^&amp;gt; 7^2

7i#i
=

?&quot;&quot;K
I

whence by multiplication

But we have chosen the intensities rj &quot;, % &quot;, %
&quot;

so that no one of them is

either zero or infinity, whence

T\P Sy^ = OT
iy

OTfar^ ........................... (iv).

It remains to see whether this formula will continue to be satisfied in the

cases excepted from this demonstration.

Let us take the case in which p^ is infinite, which makes ^ ... infinite.

We have in the case of p^ very large,

ffr,
cos (771)* =

~2p^&amp;gt;

the equations (ii) become

TJ&quot;p^
cos (771 ) . T; &quot;^,,

cos (776)= Z =
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multiplying the equations severally by pi,2h&amp;gt;
and adding, we get

dSpiXA =W Pi (Pi cos
(&quot;ni ) +& cos (772 )+...+ &j cos (176))

=
^&quot;TSfa (since p^ is indefinitely large),

whence we proceed as before and we see that the theorem (iii) remains true,

even if p^ or p$ or pg be infinite.

If pa be zero, then in general cos aeo is zero. But in this case pa -f- cos aw

becomes da the length of the perpendicular from the centre of gravity upon
a. Hence we have

and the proof proceeds as before so that in this case also the theorem holds

good.

Finally, let jja be infinite, &amp;lt;u must then be of zero pitch and pass through
the centre of gravity and

dpa
= CD &quot;.

We have

o&amp;gt;1
= cosai, o)3

= cos

so that the equations (i) become

| a&amp;gt;&quot; cos (ai )
=

77&quot; rj l + p &quot;pi
,

\u&amp;gt;&quot;
cos (ai )

=
r) &quot;t]2 + p &quot;p2 ,

| w&quot; cos (as )
=

7/&quot;7? 3 + p^Vs, 2 &amp;lt;u/

&quot;

cos (
a3 )

=
7y&quot; 74 + p &quot;pi,

\&amp;lt;a&amp;gt;&quot;

COS (as) = r) &quot;&amp;lt;r)-a + p &quot;p
5 , \&amp;lt;o&quot;

COS (05)
= ^ &quot;^ + p&quot;ps

.

Multiplying these equations by +a^lt a/32 , +b/33 , 6/33 ,
... and adding,

we have

| &amp;lt;o&quot; [a (fa
-

/8a) cos (ai ) + b (j33
-

/34) cos (as ) + c (/85
-

/S6) cos (as )]
=

17 &quot;^

Let a- be the screw belonging to the reciprocal system on which there is

an impulsive wrench of intensity a
&quot;

due to the reactions when an impulsive
wrench is administered on . Then we have

/3a/3i
= ^ &quot;^i

+ o-&quot; o-j ;

-
$afit

=
%&quot; %z + o-&quot;V2 ,

whence

/8a (fii y82) cos (ai )
= f

&quot;

cos (|i ) cos (ai ) + a&quot; cos
(&amp;lt;ri ) cos (ai ),

with similar expressions for the two other pairs, whence by addition

/8 {a (fr
-

yS2) cos (ai )+ b (/33
-

/94) cos (as) + c (J3S
-

yS6) cos (as)]
=

%&quot;
cos (a|),

for since a and a- are reciprocal and pa = oo we must have cos
(a&amp;lt;r)

= 0.



284] DEVELOPMENTS OF THE DYNAMICAL THEORY. 303

We thus obtain
1

/ /

and similarly

whence 7 cos()_ tsr,,wiieuut; - ^ --- -- =-
COS(0 OT^y

or remembering that pa is infinite,

j-///

2L CTg * _ OTi0

fa
&quot;

a V,y

But we had already from
(iii),

whence we deduce that in this case also the formula remains true. We thus

obtain the following general theorem.

If 1), ,
be three impulsive screws and a, /3, 7 the three corresponding

instantaneous screws, then in all cases, no matter how the movements of the body

may be limited by constraints, the following formula holds good*:

It is easily shown that this relation subsists when the correspondence
between

?/ and a is of the more general type implied by the equations

dU

where U is any homogeneous function of the second degree in the co

ordinates.

284. Case of a Constrained Rigid Body.

Let 77 and be, as before, a pair of impulsive screws, and let a and ft

be the corresponding pair of instantaneous screws. Let p be the screw on

which a reaction is contributed by the constraints at the moment when the

impulsive wrench is applied on
77.

The movement of the body twisting about a is therefore the same as if

it had been free, and one impulsive wrench had been imparted about 77

and another simultaneously about p, so that the following conditions are

satisfied :

* Trans. Eoy. Irish Acad., Vol. xxx. p. 575 (1894).
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Multiplying by p^, ...p (i
a , respectively, and adding, we have

&amp;lt;*Uaa
= ^ &quot;tff^

,

where u^ = pftf + . . . +
p&amp;lt;?

&amp;lt;*&amp;lt;? ;

because, as p belongs to the reciprocal system, we must have

OT O = 0.

Similarly, if we multiplied the six equations by p^i, ...p6/36 , respectively,

and added, we should get, since p is reciprocal to /3 also,

where u
aft
=p^a^ + . . . + p?a t .

Eliminating d and rj

&quot; we have the concise result*,

Uaa. &pT,
~

Ua^ar,.

In a similar way we can deal with the pair of screws, /3 and
,
and by

eliminating &amp;lt;r,
the reaction of the constraints in this case, we obtain the

result

Finally, from these two equations we can eliminate w
a/3 ,

and we obtain

This formula is a perfectly general relation, connecting any two pairs of

impulsive and instantaneous screws 77, a and
, /3. It holds whether the

body be free or constrained in any way whatever. If the body be perfectly

free, then it is easy to show that it reduces to the result already found, viz.

P* PP

ooBfo)
*

cos(/3)

285. Another Proof.

From the theory of impulsive and instantaneous screws in an n-system
we know (97) that if alf ... ctn be the co-ordinates of an instantaneous screw,

then the co-ordinates i)1} ... 17w of the reduced impulsive screw may be deter

mined as follows :

tr wi
2

#,, = -*

*- v
a -

Pn

Multiplying severally by p l al) ... pn an ,
and adding, we have

H^r,a = Uaa .

* Trans. Roy. Irish Acad., Vol. xxx. p. 573 (1894).
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Multiplying similarly by p^P^, ...pn /3n ,
and adding,

Eliminating H, we find

UaaVTpr,
-

Uafi Srar,
= 0.

We may also prove this formula by physical consideration. Let a, /3 be

the two screws which correspond, as instantaneous screws, to 77 and
,
as

impulsive screws.

Let us take on the cylindroid a, @, a screw 9, which is conjugate to a

with respect to inertia ( 81). Then, by known principles, the screw 6 so

defined must be reciprocal to
77.

Hence Prf& + ... +pn r)n n = Q.

As, however, a and 6 are conjugate, we have

also, since 6 is co-cylindroidal with a and
,
there must be relations of the

kind

Substituting these in the two previous equations, we get

=
;

=
;

whence, as before,

UaatVpT, Uaptffayl = 0.

286. Twist Velocity acquired by an Impulse.

From the fact that the twist velocity a. acquired by a free body in

consequence of an impulsive wrench of unit intensity on a screw
77

is

expressed ( 280) by the equation

cos (otr?)
a =-^-L

Pa

we see that the second of the two formulae of 281 may be expressed thus :

The proof thus given of this expression has assumed that the body is quite
free.

It is however a remarkable fact that this formula holds good whatever

be the constraints to which the body is submitted. If the body receive the

unit impulsive wrench on a screw 77, the body will commence to twist about

. 20
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a screw a. But the initial velocity of the body in this case will not generally

be cos (a.rj) +PO.- It may be easily shown to be

But we have also

whence in all cases

/3-&PT,
= O-57af .

This formula is therefore much more general besides being more concise

than that of 281.

287. System with Two Degrees of Freedom.

Let A, B, C, X, &c., and A
,
B

,
C

,
X

, &c., be two homographic systems
of points on a circle. These correspond respectively to two homographic

systems of screws on the cylindroid according to the method of representation

in Chap. XII. Then it is known, from geometrical principles, that if any
two pairs, such as A, A and B, B ,

be taken, the lines AB ,
BA intersect

on a definite straight line, which is the axis of the homography.

In general this axis may occupy any position whatever
; if, however, it

should pass through 0, the pole of the axis of pitch, then the homography
will assume a special type which it is our object to investigate.

In the first place, we may notice that under these circumstances the

homography possesses the following characteristic :

Let A, B be two screws, and A
,
B their two correspondents ; then, if A

be reciprocal to B
,
B must be reciprocal to A .

For in this case AB must pass through 0, and therefore BA must pass

through also, i.e. B and A must be reciprocal.

This cross relation suggests a name for the particular species of homo

graphy now before us. The form of the letter ^ indicates so naturally the

kind of relation, that I have found it convenient to refer to this type of

homography as Chiastic. No doubt, in the present illustration I am only

discussing the case of two degrees of freedom, but we shall presently see

that chiastic homography is significant throughout the whole theory.

288. A Geometrical Proof.

It is known that in the circular representation the virtual coefficient of

two screws is proportional to the perpendicular distance of their chord from

the pole of the axis of pitch ( 61).
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Let a, ft, 7 be three screws of one system, and let 77, f, be the three

corresponding screws, and, as usual, let raf represent the virtual coefficient

of a and . Then whenever the homography is chiastic :

This is geometrically demonstrated when the following theorem is

proved :

If six points be inscribed on a circle, then the continued product of

the three perpendiculars let fall from any point in a Pascal line formed
from these six points upon three alternate sides of the corresponding

hexagon is equal to the continued product of the three perpendiculars let

fall from the same point on the other three sides.

Let act
, ft ft , 77 be the three pairs of sides, and write the equation

afty
= a ft y ,

then this represents a cubic curve through the nine points aa , aft , ..., and
this cubic can only be the circle and the Pascal line.

289. Construction of Chiastic Homography on the Cylindroid.

It is first obvious that, if two corresponding pairs of screws be arbitrarily

selected, it will always be possible to devise one chiastic homography of

which those two pairs are corresponding members. The circular construction

shows this at once for, join AB and A B, they intersect at T, then the line

TO is the homographic axis, and the correspondent to X is found by drawing
A X, and then AX through the intersection of A X and OT.

290. Homographic Systems on Two Cylindroids.

The fundamental theorem for the two cylindroids is thus expressed :

Take any two screws, ct and ft, on one cylindroid, and any two screws,

77 and ,
on the other, it will then be possible to inscribe one, and in general

only one chiastic homography on the two surfaces, such that a and
rj shall

be correspondents, and also ft and .

For, write the general equation

If, then, a, ft, 77, are known, and if 7 be chosen arbitrarily on the first

cylindroid, it will then be always possible to find one, but only one, screw

on the second cylindroid which satisfies the required condition.

If a body had two degrees of freedom expressed by a cylindroid A, and
if an arbitrary cylindroid B were taken, then an impulsive wrench ad

ministered by any screw on B would make the body commence to twist

202
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about some corresponding screw on A, and the two systems of screws would

have chiastic homography. If the body were given both in constitution

and in position, then, of course, there would be nothing arbitrary in the

choice of the corresponding screws. Suppose, however, that a screw i) had

been chosen arbitrarily on B to correspond to a screw a on A, it would

then be generally possible to design and place a rigid body so that it should

begin to twist about a in consequence of the impulse on ??. There would,

however, be no arbitrary element remaining in the homography. Thus, we

see that, while for homography, in general, three pairs of correspondents

can be arbitrarily assigned, there can only be two pairs so assigned for

chiastic homography, while for such a particular type as that which relates

to impulsive screws and the corresponding instantaneous screws, only one

pair can be arbitrarily chosen.

291. Case of Normal Cylindroids.

We have already had occasion ( 118), to remark on the curious relation

ship of two cylindroids when a screw can be found on either cylindroid which

is reciprocal to all the screws on the other. If, for the moment, we speak
of two such cylindroids as

&quot;

normal,&quot; then we have the following theorem :

Any homography of the screws on two cylindroids must be chiastic if

the two cylindroids are normal.

Let a, /3, 7 be any three screws on one cylindroid, and 77, , any three

screws on the other
; then, since the cylindroids are normal, we have

whence we obtain

GJ
&amp;gt;f ( /nraf

5J
0i)

5J
&quot;yf

sfat afP 1s
yr,)

=
,

unless therefore is reciprocal to /3, we must have

SJa^^ SJ-yf ^a^ft^yyt = 0.

If, however, had been reciprocal to /3, then one of these screws (suppose /3)

must have been the screw on its cylindroid reciprocal to the entire group of

screws on the other cylindroid. In this case we must have

5% = ;
tsp$

= 0,

so that even in this case it would still remain true that

.

= 0.

It is, indeed, a noteworthy circumstance that, for any and every three pairs

of screws on two normal cylindroids, the relation just written must be

fulfilled.
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In general, when two pairs of screws are given on two cylindroids, the

chiastic homography between the surfaces is determined. If, however, it

were possible to determine two chiastic homographies having two pairs in

common, then every homography is chiastic, and the cylindroids are normal.

Let a, 77 and ft, be the two pairs of correspondents, and let 7 have the

correspondents and
,
then we have

whence
&quot;

i.e. the two cylindroids are normal.

292. General Conditions of Chiastic Homography.

We shall now discuss the relations of chiastic homography between two

systems of screws in the same w-system. The first point to be demonstrated

is, that in such a case every pair of the double screws are reciprocal.

Take a and (3 as two of the double screws, and
77 and will coincide

with them
;
whence the general condition,

becomes

= 0.

One or other of these factors must be zero. We have to show that in general
it is impossible for

to vanish.

For, take 7 reciprocal to a but not to ft, then rav
=

;
but OT^Y is not

zero, and therefore -sraf
would have to be zero

;
in other words f must be

reciprocal to a. But this cannot generally be the case, and hence the other

factor must vanish, that is

UTaft
= 0.

In like manner it can be shown that every pair of the double screws must
be reciprocal.

Conversely it can be shown that if the double screws of two homo-

graphic systems are co-reciprocal, then the homography is chiastic.

Let the w-double screws of the two systems be taken as the screws of

reference
;
then if one screw in one system be denoted by the co-ordinates

!, ... On,
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its correspondent in the other system will be

XAj !, ... \hn ctn .

Similarly, the correspondent to

&, ... /3n

will have for its co-ordinates

Mi/Si, Mn/3n,

and the correspondent to

7i&amp;gt; 7n

will have for its co-ordinates

where A,, /n, v, are the constants requisite to make the co-ordinates fulfil the

fundamental conditions as to dimensions.

We thus compute

and similarly for the other terms.

Whence, by substitution, we find the following equation identically

satisfied :

It may be noted that, in a three-system, two homographies are chiastic

when, in the plane representation by points, the double points of the two

systems form a triangle which is self-conjugate with respect to the pitch

conic.

293. Origin of the formulae of 281*.

Let a be a screw about which a free rigid body is made to twist in

consequence of an impulsive wrench administered on some other screw 77.

Except in the case where a and 77 are reciprocal, it will always be possible

(in many different ways) to design and place a rigid body so that two

arbitrarily chosen screws a and 77 will possess the required relation.

Let now /3 and be two other screws (not reciprocal) : we may consider

the question as to whether a rigid body can be designed and placed so that

a shall be the instantaneous screw corresponding to 77 as an impulsive screw,

while ft bears the same relation to .

It is easy to see that it will not generally be possible for a, /3, 77, to

stand in the required relations. For, taking a and /3 as given, there are five

*
Proceedings of the Cambridge Phil. Soc. Vol. ix. Part iii. p. 193.
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disposable quantities in the choice of rj, and five more in the choice of f.

We ought, therefore, to have ten disposable co-ordinates for the designing
and the placing of the rigid body. But there are not so many. We have

three for the co-ordinates of its centre of gravity, three for the direction of

its principal axes, and three more for the radii of gyration. The other

circumstances of the rigid body are of no account for our present purpose.

It thus appears that if the four screws had been chosen arbitrarily we

should have ten conditions to satisfy, and only nine disposable co-ordinates.

It is hence plain that the four screws cannot be chosen quite arbitrarily.

They must be in some way restricted. We can show as follows that these

restrictions are not fewer than two.

Draw a cylindroid A through a, fi, and another cylindroid P through rj.

Then an impulsive wrench about any screw &&amp;gt; on P will make the body
twist about some screw on A. As eo moves over P, so will its corre

spondent 6 travel over A. It is shown in 125 that any four screws on

P will be equianharmonic with their four correspondents on A, and that

consequently the two systems are homographic.

In general, to establish the homography of two cylindroids, three cor

responding pairs of screws must be given ; and, of course, there could be

a triply infinite variety in the possible homographies. It is, however, a

somewhat remarkable fact that in the particular homography with which

we are concerned there is no arbitrary element. The fact that the rigid

body is supposed quite free distinguishes this special case from the more

general one of 290. Given the cylindroids A and P, then, without any
other considerations whatever, all the corresponding pairs are determined.

This is first to be proved.

If the mass be one unit, and the intensity of the impulsive wrench on &&amp;gt;

be one unit, then the twist velocity acquired by 6 is ( 280)

cos
(#&&amp;gt;)

~~^~
where

cos(#o&amp;gt;) denotes the cosine of the angle between the two screws

and
ft&amp;gt;,

and where pg is the pitch of 6. If, therefore, pg be zero, then cos
(#o&amp;gt;)

must be zero. In other words, the two impulsive screws coly o&amp;gt;2 on P, which

correspond to the two screws of zero pitch dl ,
62 on A, must be at right

angles to them, respectively. This will in general identify the correspondents
on P to two known screws on A.

We have thus ascertained two pairs of correspondents, and we can now
determine a third pair. For if o&amp;gt;3 be a screw on P reciprocal to #2 ,

then its

correspondent 3 will be reciprocal to o&amp;gt;2 . Thus we have three pairs 6lt 2 ,
#3

on A, and their three correspondents co
l ,

&&amp;gt;2 , o&amp;gt;,
on P. This establishes the
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homography, and the correspondent 6 to any other screw &&amp;gt; is assigned by
the condition that the anharmonic ratio of (a^^co is the same as that of

a a A A
1/11/2(73(7.

Reverting to our original screws a and rj, ft and
, we now see that they

must fulfil the conditions

when the quantities in the brackets denote the anharmonic ratios.

It can be shown that these equations lead to the formulae of 281.

294. Exception to be noted.

We have proved in the last article an instructive theorem which declares

that when two cylindroids are given it is generally possible in one way, but

in only one way, to correlate the several pairs of screws on the two surfaces,

so that when a certain free rigid body received an impulse about the screw

on one cylindroid, movement would commence by a twisting of the body
about its correspondent on the other cylindroid. It is, however, easily seen

that in one particular case the construction for correlation breaks down.

The exception arises whenever the principal planes of the two cylindroids
are at right angles.

The two correspondents on P to the zero-pitch screws on A had been

chosen from the property that when pa is zero the impulsive wrench must be

perpendicular to a. We thus take the two screws on P which are respec

tively perpendicular to the two zero-pitch screws. But suppose there are

not two screws on P which are perpendicular to the two zero-pitch screws on

A. Suppose in fact that there is one screw on P which is parallel to the

nodal axis of A, then the construction fails. We would thus have a single
screw on P with two corresponding instantaneous screws for the same body.
This is of course impossible, and accordingly in this particular case, which

happens when the principal planes of P and A are rectangular, it is impos
sible to adjust the correspondence.

295. Impulsive and Instantaneous Cylindroids.

Let X, X be two screws on a cylindroid whereof a and jB are the two

principal screws.

Let 0, 6 be the angles which X and X respectively make with a.

We shall take the six absolute screws of inertia as the screws of reference
and we have as the co-ordinates of X

! cos 6 + & sin 6, . . . a cos 6 + /36 sin 6,
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and of X

! cos + & sin
,
... a6 cos & + /36 sin &.

In like manner, let p and p be two screws on a cylindroid, of which the

two principal screws are rj and f.

Let
&amp;lt;f&amp;gt;,

&amp;lt; be the angles which p and p make respectively with .

Then the co-ordinates of p are

r) l cos
&amp;lt;/&amp;gt;

+ fj sin (j),
... rj6 cos

&amp;lt;/&amp;gt;

+ 6 sin &amp;lt;,

and of p

7?! cos
&amp;lt;/&amp;gt;

+ j sin
&amp;lt;/&amp;gt;

,
...

77,3
cos + 6 sin &amp;lt;

,
&c.

We shall now suppose that the two cylindroids a, /3 and 77, are so

circumstanced that the latter is the locus of the impulsive wrenches cor

responding to the several instantaneous screws on the former with respect

to the rigid body which is to be regarded as absolutely free. We shall

further assume that p is the impulsive screw which has X as its instantaneous

screw, and that the relation of p to X is of the same nature.

If, however, the four screws X, X
, p, p possess the relations thus indi

cated, it is necessary that they satisfy the conditions already proved ( 281).

These are two-fold, and they are expressed by the following equations, as

already shown :

cos (\p ) + P,*,. cos (\p
f

)
= 2rAv,

cos (\p) cos

p\ p\

We shall arbitrarily choose X and p, so as to satisfy the conditions

A/P
= 0, tnv = 0,

and thus the second of the two equations is satisfied. These two equations
will give & as a function of

&amp;lt;,
and

&amp;lt;/&amp;gt;

as a function of 6. We can thus

eliminate & and &amp;lt; from the first of the two equations, and the result will

be a relation connecting 6 and $. This equation will exhibit the relation

between any instantaneous screw 6 on one cylindroid, and the corresponding

impulsive screw
&amp;lt;/&amp;gt;

on the other.

It will be observed that when the two cylindroids are given, the required

equation is completely denned. The homographic relations of p and X is

thus completely determined by the geometrical relations of the two cylin
droids.
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The calculation* presents no difficulty and the result is as follows :

= cos 6 cos
(f&amp;gt;

+ cos 6 sin
(f&amp;gt;

+ sin 6 cos
&amp;lt;/&amp;gt;

+ sin 9 sin

+pa cos cos - -S7a cos

cos (a??) [ra ,
cos (a) *3-

j cos (a?;)]

***, [cos (a) cos (77)
- cos (a?;) cos

+pa cos ra ,
cos - OTa cos

cos (a) [ra ,
cos (a) nraf cos (CM?)]

-GTpt [cos (a) cos (/ify) cos (arj) cos

cos (at)) \ixfr cos (a) -BT^ cos (a?;)]

+ pa COS (77) [tjp, cos

a, [cos (a) cos (/ify) cos (atj) cos

+ PP cos (a^) [or^, cos (a^) tsfc cos (a??)]

cos
/

rp , cos -^ j
cos

_+ ^-B3-a| [cos (af) cos (firf) cos (a??) cos

296. An exceptional Case.

A few remarks should be made on the failure of the correspondence
when the principal planes of the two cylindroids are at right angles ( 294).

It will be noted that though this equation suffers a slight reduction when
the principal planes of the two cylindroids are at right angles yet it does

not become evanescent or impossible. For any value of 6 defining a screw

on one cylindroid, the equation provides a value of &amp;lt; for the correspondent
on the other cylindroid. Thus we seem to meet with a contradiction, for

while the argument of 294 shows that in such a case the homography
is impossible, yet the homographic equation seemed to show that it was

possible and indeed fixed the pairs of correspondents with absolute

definiteness.

It is certainly true that if two cylindroids A and P admit of the cor

relation of their screws into pairs whereof those on P are impulsive screws

and those on A are instantaneous screws, the pairs of screws by which the

homographic equation is satisfied will stand to each other in the desired

relation. If, however, the screws on two cylindroids be correlated into

pairs in accordance with the indications of the homographic equation,

though it will generally be true that there may be corresponding impulsive
screws and instantaneous screws, yet in the case where the principal planes
of the cylindroids are at right angles no such inference can be drawn.

The case is a somewhat curious one. It will be seen that the calculation

See Trans. Eoy. Irish Acad. Vol. xxx. p. 112 (1894).
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of the homographic equation is based on the fact that if X, \ be two

instantaneous screws and p, p the corresponding impulsive screws, then

the formula

COS (X + P*
t , x

COS (\p
f

)
= 2tsrAX,

, t , xcos (X/o) cos \Kff)

must be satisfied.

And generally it is satisfied. In the case of two cylindroids with normal

planes it is however easy to show that there are certain pairs of screws for

which this formula cannot obtain.

For in such a case there is one screw X on A which is perpendicular to

every screw on P, so that whatever be the p corresponding to X,

cos (\p) 0.

Since no other screw X can be perpendicular to any screw on P we cannot

have either

cos (X p), or cos (A///), zero.

Hence this equation cannot be satisfied and the argument that the homo-

graphic equation defines corresponding pairs is in this case invalid.

We might have explained the matter in the following manner.

When the principal planes of A and P are normal there is one screw X
on A which is perpendicular to all the screws on P. If therefore the two

cylindroids were to be impulsive and instantaneous, there must be a screw

on P which corresponds to X. It can be shown in general ( 301) that

d\ = p\ tan (X0)

when dx is the perpendicular from the centre of gravity on X; it follows

that when (A.0)
= 90 we must have either p^ zero or d\ infinite.

But of course it will not generally be the case that X. happens to be one

of the screws of zero pitch on A. Hence we are reduced to the other

alternative

d*. = infinity.

This means that the centre of gravity is to be at infinity.

But when the centre of gravity of the body is at infinity a remarkable

consequence follows. All the instantaneous screws must be parallel.

For if 6 be the impulsive wrench corresponding to X as the instantaneous

screw, then we know that

di=p*. tan(X0),

and that the centre of gravity lies in a right line parallel to X and distant
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from it by d^. In like manner if
&amp;lt;/&amp;gt;

be an impulsive screw corresponding to

yu,
as instantaneous screw we have another locus parallel to p for the centre

of gravity.

But as the centre of gravity is at infinity these two loci must there

intersect, i.e. they must be parallel and so must X and
fi,

and hence all

instantaneous screws must be parallel.

Thus we see that all the screws on A must be parallel, i.e. that A must

have degraded into an extreme type of cylindroid.

297. Another extreme Case.

.Given any two cylindroids A and P it is, as we have seen, generally

possible to correlate in one way the several screws on A to those on P so

that an impulsive wrench given to a certain rigid body about any screw on

P would make that body commence to move by twisting about its cor

respondent on A. One case of failure has just been discussed. The case

now to be considered is not indeed one of failure but one in which any
two pairs of screws on A and P will stand to each other in the desired

relations.

Suppose that A and P happened to fulfil the single condition that each

of them shall contain one screw which is reciprocal to the other cylindroid.

We have called the cylindroids so circumstanced &quot;

normal.&quot;

Let A, be the screw on A which is reciprocal to every screw on P. If

then P and A are to stand to each other in the required relation, A. must

be reciprocal to its impulsive screw. But this is only possible on one

condition. The mass of the body must be zero. In that case, if there is

no mass involved any one of the screws on P may be the impulsive screw

corresponding to any one of the screws on A .

Here again the question arises as to what becomes of the homographic

equation which defines so precisely the screw on P which corresponds to

the screws on A ( 295). It might have been expected that in the case

of two normal cylindroids this homographic equation should become evan

escent. But it does not do so.

But there is no real contradiction. The greater includes the less.

If every screw on P will suit as correspondent every screw on A then d

fortiori will the pairs indicated by the homography fulfil the conditions

requisite.

That any two pairs of screws will be correspondents in this case is

obvious from the following.
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Let X be the screw on A which is reciprocal to P,

S .................. P ........................ A.

Then any screw
//,
on A and any screw

cj&amp;gt;

on P fulfil the conditions

WA$ = 0, TOV,,
= 0.

Hence &amp;lt; is the impulsive screw corresponding to
fj,

as the instantaneous

screw.

298. Three Pairs of Correspondents.

Let a, T\\ ft, J; ; 7, be three pairs of impulsive and instantaneous screws
;

let 9,
&amp;lt;/&amp;gt;

be another pair. Then, if we denote by Lap
= 0, and Map

=
0, the

two fundamental equations

C08

Pa Pfi

cos (XT
** ~

cos

we shall obtain six equations of the type

L6a = 0, L
9li
= 0, L^ = 0,

Jlfea = 0, Jlftf
= 0, Mey

= 0.

From these six it might be thought that
&amp;lt;f&amp;gt;

lt ... &amp;lt; 6 could be eliminated,

and thus it would, at first sight, seem that there must be an equation for 6

to satisfy. It is, however, obvious that there can be no such condition, for 6

can of course be chosen arbitrarily. The fact is, that these equations have

a peculiar character which precludes the ordinary algebraical inference.

Since ,;; ft, ; 7, ;
are three pairs of screws, fulfilling the necessary

six conditions, a rigid body can be adjusted to them so that they are

respectively impulsive and instantaneous. We take the six principal screws

of inertia of this body as the screws of reference. We thus have, where

pa , pp, py are certain factors,

By putting the co-ordinates in this form, we imply that they satisfy the

six equations of condition above written.

Substituting the co-ordinates in L0a
= 0, we get

= + (a, + a2) (pefa + p9 fa) + (a, + a,) (pe
&amp;lt;f&amp;gt;

3 + pe$t) + ( + a.) (pe
&amp;lt;j&amp;gt;

t

+ (0i + 0a) (ai
-

2&amp;gt;

+ (0 +
04&amp;gt; (b&amp;lt;*&amp;gt;

~
6*4) + (05 + 6) (c 8

- ca 6)

- 2 (aa^ - a^62 )
- 2 (6o0 - ba,e4)

- 2 (c 5 ^5
-

ca,0).
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Let

! a6l
= Xly

4 4- 6#4
= Xt ,

c06
= X6 ,

and the equation becomes

= (! + 2) (X, + X,} + ( 3 + 4) (X3

and the two other L equations give

= (A + &) (X, + X2) + (0, + &) (X3

=
(71 + 7

5 + 6) (X5 + X6) ;

/36) (X,

a) + (73 + 74) (-^s + -^4) + (75 4- 76) (Xs + X 6).

If we eliminate X^ + Xi} X3 + X t ,
XS + XS from these equations, we

should have

=
Otj + 85 0(3 + 4 Qfg + Ct6

A 4/3, & 4- A & 4

7i +7s 7s + 74 7s + 7e

But this would only be the case if a, /3, 7 were parallel to a plane, which is

not generally true. Therefore, we can only satisfy these equations, under

ordinary circumstances, by the assumption

In like manner, the equations of the M type give

Pa^Or,
= 0,

Substituting, in the first of these, we get

-
pa (017! 0j

-
a??2 ^2 4- br}3 3

-
6774 4 + cv)s s

-
cy^e) = ;

which reduces to

ac^Zj - a 2Z2 + ba3Xs
- 6a4Z4 + casXs

- ca6Xe
=

;

but we have already seen that X^ -+ X2
= 0, &c., whence we obtain

Xi (a! + aoz) + X3 (6a3 + 6 4) + X5 (c 6 + ca6)
=

;

with the similar equations

X
l (a/9, + a/82 ) + X3 (b/33 + bfr) + X 5 (cyS5 + c&) = 0,

^! (ayl + ay2) + X3 (by, + by4) + X5 (c% + cy6)
= 0.

These prove that, unless a, @, y be parallel to a plane, we must have
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X1
= 0, X3

= 0, Xs
= 0. Combining these conditions with the last, we draw

the general conclusion that

or &c.

Thus we demonstrate that if a pair of screws 6,
$&amp;gt; satisfy the six conditions,

they stand to each other in the relation of impulsive screws and instantaneous

screws.

299. Cylindroid Reduced to a Plane.

Suppose that the family of rigid bodies be found which make a, 77 and

/?, impulsive and instantaneous. Let there be any third screw, 7, and let

us seek for the locus of its impulsive screw, ,
for all the different rigid

bodies of the family.

must satisfy the four equations

cos (777) + / cos (a?) = 2sray ,

cos (arj) cos

-^008(^0 =
COS (yC)

cos (ar;)
Y&amp;gt;) cos

As there are four linear equations in the coordinates of
,
we have the

following theorem.

If a, 77 and /3, f be given pairs of impulsive and instantaneous screws,

then the locus of the impulsive screw corresponding to 7, as an instan

taneous screw, is a cylindroid.

But this cylindroid is of a special type. It is indeed a plane surface

rather than a cubic. The equations for can have this form :

cos (a?) = A cos (yf), vra(
= C cos (y ),

COS (f)
= B COS (y), CT^ = D COS (yf),

in which A, B, C, D are constants.

The fact that cos (af) and cos (7^) have one fixed ratio, and cos (/3) and
cos (yf) another, shows that the direction of is fixed. The cylindroidal
locus of

, therefore, degenerates to a system of parallel lines.

At first it may seem surprising to find that CT
of is constant. But the
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necessity for this arrangement is thus shown. If not constant, then there

would generally have been some screw
,
for which tsra^ was zero. In this

case, of course, ^yn would be generally zero also. But 7 and tj being both

given, this is of course not generally true. The only escape is for r
af

to be constant.

300. A difficulty removed.

Given a and 77, @ and and also 7, then the plane of is determined

from the equations of the last article.

As OTa and ts^ are constant, both a and /3 must be parallel to the plane

already considered. But as an impulsive screw could not be reciprocal to an

instantaneous screw, it would seem that w
y^

must never be zero, but this

condition can only be fulfilled by requiring that must be parallel to

the same plane. Whence a, /3, 7 must be parallel to the same plane. But

these three screws are quite arbitrary. Here then would seem to be a

contradiction.

The difficulty can be explained as follows :

Each rigid body, which conformed to the condition that a, /3 and 77, f

shall be two pairs of corresponding impulsive and instantaneous screws, will

have a different screw corresponding to a given screw 7. Thus, among the

various screws
,
in the degraded cylindroid, each will correspond to one

rigid body. In general, of course, it would be impossible for f to be

reciprocal to 7. It would be impossible for an impulsive wrench to make a

body twist about a screw reciprocal thereto. Nevertheless, it seemed certain

that, in general, there must be a screw reciprocal to 7. For otherwise,

a, /3, 7 should be all parallel to a plane, which, of course, is not generally

true. If, however, a, or b, or o were zero, then the body will have no

mass
; consequently no impulse would be necessary to set it in motion.

This clearly is the case when is reciprocal to 7. We have thus got over

the difficulty. and 7 are reciprocal, in the case when the rigid body is

such that a, or 6, or c is zero.

301. Two Geometrical Theorems.

The perpendicular from the centre of gravity on any instantaneous screw

is parallel to the shortest distance between that instantaneous screw and the

corresponding impulsive screw.

The perpendicular from the centre of gravity on any instantaneous screw

is equal to the product of the pitch of that screw, and the tangent of the angle

between it and the corresponding impulsive screw.
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Let a be the instantaneous screw and da the length of the perpendicular
thereon from the centre of gravity. If cos A,, cos /i, cos v be the direction

cosines of da then

da cos X = ( 5
- a6) (a, + 4) c - ( 5 + a6) ( 3

- o4) b,

da cos /*=(!- 2) (a, + ae)a- fa + o^) (a5
-

6) c,

da cos v = ( 3 4) (ttj + a2) & ( 3 + 4) (i 2) a.

But if
77

is the impulsive screw corresponding to a as the instantaneous

screw we have

!
=-^-\*hi -C& 2

= -^ N^&quot;&amp;gt; &C., &C.,
cos (a?;) cos (a?;)

whence
*)

da COS X =
CQSY

. ((T/., + 77 fi) (173 + 4)
-

( 5 + e) (173 + 1;4)),

2)

rfa cos /^
= /?. ((% + 7?2) ( 5 + 6)

- (! + 2) (775 + 776)),

d COS &quot;
= ^T~\ (^s + ^4&amp;gt; (i + On)

- (s + 4) (77! + 772)).COo \Jjiij}

But

(% + %) ( 3 + 4)
-

( B +
6&amp;gt; (?3 + 74)

= sin (077) cos X ,

with similar expressions for sin (0(77) cos /* and sin (377) cos v where cos X
,

cos p, and cos v are the direction cosines of the common perpendicular to

and 77. We have therefore

v
da cos X = v r sin (an) cos X ,

cos

in

da coKu,= ~
. sin (77)cos /A

cos (at})

rn

da cos v = *? - sin (a77) cos v,
cos (277)

whence

cos X = cos X
;

cos
/it
= cos pf ;

cos v cos v
;

and da = pa tan (77),

which proves the theorems.

B. 21



CHAPTER XXII.

THE GEOMETRICAL THEORY*.

302. Preliminary.

IT will be remembered how Poinsot advanced our knowledge of the

dynamics of a rigid system by a beautiful geometrical theory of the rotation

of a rigid body about a fixed point. We now specially refer to the geometrical
construction by which he determined the instantaneous axis about which

the body commenced to rotate when the plane of the instantaneous couple
was given.

We may enunciate with a generality, increasing in successive steps, the

problem which, in its simplest form, Poinsot had made classical. From the

case of a rigid body which is constrained to rotate about a fixed point we

advance to the wider conception of a body which has three degrees of

freedom of the most general type. We can generalize this again into the

case in which the body, instead of having a definite number of degrees of

freedom has any number of such degrees. The range extends from the

first or lowest degree, where the only movement of which the body is

capable is that of twisting about a single fixed screw, up to the case in

which the body being perfectly free, or in other words, having six degrees of

freedom, is able to twist about every screw in space. It will, of course, be

borne in mind that only small movements are to be understood.

In a corresponding manner we may generalize the forces applied to the

body. In the problem solved by Poinsot the effective forces are equivalent
to a couple solely. For the reaction of the fixed point is capable of reducing

any system of forces whatever to a couple. But in the more generalized

problems with which the theory of screws is concerned, we do not restrict

the forces to the specialized pair which form a couple. We shall assume

that the forces are of the most general type and represented by a wrench

upon a screw. Thus, by generalizing the freedom of the rigid body, as well

as the forces which act upon it, we may investigate the geometrical theory of

the motion when a rigid body of the most general type, possessing a certain

number of degrees of freedom of the most general type, is disturbed from a

* Trans. Royal Irish Acad. Vol. xxi. (1897) p. 185.
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position of rest by an impulsive system of forces of the most general type.

This is the object of the present chapter.

303. One Fair of Impulsive and Instantaneous Screws.

Let it be supposed that nothing is known of the position, mass, or other

circumstances of an unconstrained rigid body save what can be deduced

from the fact that, when struck from a position of rest by an impulsive
wrench on a specified screw 77, the effect is to make the body commence to

move by twisting around a specified screw a.

As a, like every other screw, is defined by five coordinates, the knowledge
of this screw gives us five data towards the nine data that are required for

the complete specification of the rigid body and its position.

We have first to prove that the five elements which can be thence

inferred with respect to the rigid body are in general

(1) A diameter of the momental ellipsoid.

This is clearly equivalent to two elements, inasmuch as it restricts

the position of the centre of gravity to a determinate straight line.

(2) The radius of gyration about this diameter.

This is, of course, one element.

(3) A straight line in the plane conjugate to that diameter.

A point in the plane would have been one element, but a straight

line in the plane is equivalent to two. If the centre of gravity were

also known, we should at once be able to draw the conjugate plane.

Draw a plane through both the instantaneous screw a and the common

perpendicular to a and
77.

Then the centre of gravity of the rigid body
must lie in that plane ( 301). It was also shown that if pa be the pitch of

a, and if (ar)) represent the angle between a and 77, then the perpendicular
distance of the centre of gravity from a. will be expressed by pa tan ((277)

( 301). This expression is completely known since a and 77 are known.

Thus we find that the centre of gravity must lie in a determinate ray

parallel to a. There will be no ambiguity as to the side on which this

straight line lies if it be observed that it must pass between a and the point
in which 77 is met by the common perpendicular to 77 and a. In this manner

from knowing a and 77 we discover a diameter of the momental ellipsoid.

If a be the twist velocity with which a rigid body of mass M is twisting
about any screw a. If

77 be the corresponding impulsive screw, and if Ts
ar&amp;gt;

denote as usual the virtual coefficient of a and 77, then it is proved in 279

that the kinetic energy of the body

MCt2

-,
r GJ an-

cos (077)

212
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We can now determine the value of pa
* where pa is the radius of gyration

about an axis parallel to a through the centre of gravity. For the kinetic

energy is obviously
P/d

a

(/t&amp;gt;a

a

+^.
2 + a

2

)-

By equating the two expressions we have

a
2 = 2

cos

But when a and rj are known the three terms on the right-hand side of

this equation are determined. Thus we learn the radius of gyration on the

diameter parallel to a.

It remains to show how a certain straight line in the plane which is

conjugate to this diameter in the momental ellipsoid is also determined.

Let a screw 6, of zero pitch, be placed on that known diameter of the

momental ellipsoid which is parallel to or. Draw a cylindroid through the

two screws 6 and 77. Let
&amp;lt;/&amp;gt;

be the other screw of the zero pitch, which will

in general be found on the same cylindroid.

We could replace the original impulsive wrench on 77 by its two com

ponent wrenches on any two screws of the cylindroid. We choose for this

purpose the two screws of zero pitch 6 and &amp;lt;. Thus we replace the wrench

on 77 by two forces, whose joint effect is identical with the effect that would

have been produced by the wrench on 77.

As to the force along the line 6 it is, from the nature of the con

struction, directed through the centre of gravity. Such an impulsive force

would produce a velocity of translation, but it could have no effect in pro

ducing a rotation. The rotatory part of the initial twist velocity must there

fore be solely the result of the impulsive force on &amp;lt;.

But when an impulsive force is applied to a quiescent rigid body we

know, from Poinsot s theorem, that the rotatory part of the instantaneous

movement must be about an axis parallel to the direction which is conjugate

in the momental ellipsoid to the plane which contains both the centre of

gravity and the impulsive force. It follows that the ray (f&amp;gt;

must be situated

in that plane which is conjugate in the momental ellipsoid to the diameter

parallel to a. But, as we have already seen, the position of
&amp;lt;/&amp;gt;

is completely

defined on the known cylindroid on which it lies. We have thus obtained a

fixed ray in the conjugate plane to a known diameter of the momental

ellipsoid.

The three statements at the beginning of this article have therefore been

established. We have, accordingly, ascertained five distinct geometrical data

towards the nine which are necessary for the complete specification of the

rigid body. These five data are inferred solely from our knowledge of a

single pair of corresponding impulsive and instantaneous screws.
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304. An Important Exception.

If pa = 0, then (a?;) is 90, and consequently pa tan (a?;) is indefinite.

If, therefore, the pitch of the instantaneous screw be zero, then we are no

longer entitled to locate the centre of gravity in a certain ray. All we know
is that it lies in the plane through a perpendicular to 77. In general the

knowledge of the impulsive screw corresponding to a given instantaneous

screw implies five data, yet this ceases to be the case if pa is zero, for as 77

must then be perpendicular to a there are really only four independent data

given when 77 is given. We have, therefore, in this case one element the less

towards the determination of the rigid body.

305. Two Pairs of Impulsive and Instantaneous Screws.

Let us next suppose that we are given a second pair of corresponding

impulsive and instantaneous screws. We shall examine how much further

we are enabled to proceed by the help of this additional information towards

the complete determination of the rigid body in its abstract form. Any data

in excess of nine, if not actually impossible, would be superfluous. If,

therefore, we are given a second pair of impulsive and instantaneous screws,

the five data which they bring cannot be wholly independent of the five data

brought by the preceding pair. It is therefore plain that the quartet of

screws forming two pairs of corresponding impulsive screws and instantaneous

screws cannot be chosen arbitrarily. They must submit to at least one

purely geometrical condition, so that the number of data independent of each

other shall not exceed nine.

It is, however, not so obvious, though it is certainly true, as we found in

281, that the two pairs of screws must conform not merely to one, but to

no less than two geometrical conditions. In fact, if 77, be two impulsive

screws, and if a, /3 be the two corresponding instantaneous screws, then,

when the body acted upon is perfectly free, the following two formulae must

be satisfied :

P Pf*

cos + cos
cos (a??) cos

We can enunciate two geometrical properties of the two pairs of screws,

which are equivalent to the conditions expressed by these equations.

In the first place, each of the pairs of screws determines a diameter of

the momental ellipsoid. The fact that the two diameters, so found, must

intersect each other, is obviously one geometrical condition imposed on the

system a, 77 and /3, .
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Let G be this intersection, and draw OP parallel to a and equal to the

radius of gyration about GP, which we have shown to be known from the

fact that a and ij
are known. Let X be the plane conjugate to GP in the

moraental ellipsoid, then this plane is also known.

In like manner, draw GQ parallel to ft and equal to the radius of

gyration about GQ. Let Y be the plane, conjugate to GQ, in the momental

ellipsoid.

Let PI and P2 be the perpendiculars from P, upon X and Y respec

tively.

Let Ql
and Q2 be the perpendiculars from Q, upon X and Y respec

tively.

Then, from the properties of the ellipsoid, it is easily shown that

PI ^2 = Qi Qv

This is the second geometrical relation between the two pairs of screws

a, ?; and ft, . Subject to these two geometrical conditions or to the two

formulse to which they are equivalent the two pairs of screws might be chosen

arbitrarily.

As these two relations exist, it is evident that the knowledge of a second

pair of corresponding impulsive screws and instantaneous screws cannot

bring five independent data as did the first pair. The second pair can bring
no more than three. From our knowledge of the two pairs of screws together
we thus obtain no more than eight data. We are consequently short by
one of the number requisite for the complete specification of the rigid body
in its abstract form.

It follows that there must be a singly infinite number of rigid bodies,

every one of which will fulfil the necessary conditions with reference to the

two pairs of screws. For every one of those bodies a is the instantaneous

screw about which twisting motion would be produced by an impulsive
wrench on

77. For every one of those bodies ft is the instantaneous screw

about which twisting motion would be produced by an impulsive wrench
on f.

306. A System of Rigid Bodies.

We have now to study the geometrical relations of the particular system
of rigid bodies in singly infinite variety which stand to the four screws in the
relation just specified.

Draw the cylindroid (a, ft) which passes through the two screws a and ft.

Draw also the cylindroid (q, ) which passes through the two corresponding
impulsive screws

17 and It is easily seen that every screw on the first of

these cylindroids if regarded as an instantaneous screw, with respect to the
same rigid body, will have its corresponding impulsive screw on the second
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cylindroid. For any impulsive wrench on
(77, ) can be decomposed into

impulsive wrenches on 77 and . The first of these will generate a twist

velocity about a. The second will generate a twist velocity about /3. These

two can only compound into a twist velocity about some other screw on the

cylindroid (a, /3). This must, therefore, be the instantaneous screw corre

sponding to the original impulsive wrench on
(77, ).

It is a remarkable point about this part of our subject that, as proved
in 293, we can now, without any further attention to the rigid body, corre

late definitely each of the screws on the instantaneous cylindroid with its

correspondent on the impulsive cylindroid.

We thus see how, from our knowledge of two pairs of correspondents, we
can construct the impulsive screw on the cylindroid (77, ) corresponding to

every screw on the cylindroid (a, /3).

It has been already explained in the last article how a single known

pair of corresponding impulsive and instantaneous screws suffice to point
out a diameter of the momental ellipsoid, and also give its radius of

gyration. A second pair of screws will give another diameter of the

momental ellipsoid, and these two diameters give, by their intersection, the

centre of gravity. As we have an infinite number of corresponding pairs,

we thus get an infinite number of diameters, all, however, being parallel to

the principal plane of the instantaneous cylindroid. The radius of gyration

on each of these diameters is known. Thus we get a section 8 of the

momental ellipsoid, and we draw any pair of conjugate diameters in that

section. These diameters, as well as the radius of gyration on each of them,

are thus definitely fixed.

When we had only a single pair of corresponding impulsive and instan

taneous screws, we could still determine one ray in the conjugate plane to

the diameter parallel to the instantaneous screw. Now that we have further

ascertained the centre of gravity, the conjugate plane to the diameter,

parallel to the instantaneous axis, is completely determined. Every pair of

corresponding impulsive and instantaneous screws will give a conjugate

plane to the diameter parallel to the instantaneous screw. Thus we know

the conjugate planes to all the diameters in the plane S. All these planes

must intersect, in a common ray Q, which is, of course, the conjugate

direction to the plane S.

This ray Q might have been otherwise determined. Take one of the two

screws, of zero pitch, in the impulsive cylindroid (77, ).
Then the plane,

through this screw and the centre of gravity, must, by Poinsot s theorem

already referred to, be the conjugate plane to some straight line in S.

Similarly, the plane through the centre of gravity and the other screw of

zero pitch, on the cylindroid (77, ), will also be the conjugate plane to some
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ray in S. Hence, we see that the ray Q must lie in each of the planes so

constructed, and is therefore determined. In fact, it is merely the transversal

drawn from the centre of gravity to intersect both the screws of zero pitch

on the cylindroid (77, ).

We have thus proved that when two pairs of corresponding impulsive

screws and instantaneous screws are given, we know the centre of the

momental ellipsoid, we know the directions of three of its conjugate

diameters, and we know the radii of gyration on two of those diameters.

The radius of gyration on the third diameter remains arbitrary. Be that

radius what it may, the rigid body will still fulfil the condition rendering

a, ??
ond /3, | respective pairs of instantaneous screws and impulsive screws.

We had from the first foreseen that the data would only provide eight

coordinates, while the specification of the body required nine. We now

learn the nature of the undetermined coordinate.

It appears from this investigation that, if two pairs of impulsive screws

and the corresponding instantaneous screws are known, but that if there be

no other information, the rigid body is indeterminate. It follows that, if an

impulsive screw be given, the corresponding instantaneous screw will not

generally be determined. Each of the possible rigid bodies will have a

different instantaneous screw, though the impulsive screw may be the same.

It was, however, shown ( 299), that all the instantaneous screws which

pertain to a given impulsive screw lie on the same cylindroid. It is

a cylindroid of extreme type, possessing a screw of infinite pitch, and

degenerating to a plane.

Even while the body is thus indeterminate, there are, nevertheless,

a system of impulsive screws which have the same instantaneous screw for

every rigid body which complies with the expressed conditions. Among
these are, of course, the several screws on the impulsive cylindroid (rj. f)

which have each the same corresponding screw on the instantaneous cylin

droid (a, /3), whatever may be the body of the system to which the impulsive
wrench is applied. But the pairs of screws on these two cylindroids are

indeed no more than an infinitesimal part of the total number of pairs of

screws that are circumstanced in this particular way. We have to show

that there is a system of screws of the fifth order, such that an impulsive
wrench on any one of those screws

rj
will make any body of the system com

mence to twist about the same screw a.

As already explained, the system of rigid bodies have a common centre

of gravity. Any force, directed through the centre of gravity, will produce
a linear velocity parallel to that force. This will, of course, apply to every

body of the system. All possible forces, which could be applied to one

point, form a system of the third order of a very specialized type. Each one
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of the screws of this system will have, as its instantaneous screw, a screw of

infinite pitch parallel thereto. We have thus a system of impulsive screws

of the third order, and a corresponding system of instantaneous screws of

the third order, the relation between each pair being quite independent of

whatever particular rigid body of the group the impulsive wrench be

applied to.

This system of the third order taken in conjunction with the cylindroid

(?;, ) will enable us to determine the total system of impulsive screws which

possess the property in question. Take any screw 6, of zero pitch, passing

through the centre of gravity, and any screw,
(f&amp;gt;,

on the cylindroid (w, ).

We know, of course, as already explained, the instantaneous screws corre

sponding to 9 and &amp;lt;. Let us call them \, /j,, respectively. Draw the

cylindroid (6, &amp;lt;),
and the cylindroid (X, //,).

The latter of these will be the

locus of the instantaneous screws, corresponding to the screws on the former

as impulsive screws. From the remarkable property of the two cylindroids,

so related, it follows that every impulsive screw on (9, &amp;lt;)
will have its

corresponding instantaneous screw on (X, p) definitely fixed. This will be so,

notwithstanding the arbitrary element remaining in the rigid body. From
the way in which the cylindroid (9, (f&amp;gt;)

was constructed, it is plain that the

screws belonging to it are members of the system of the fifth order, formed

by combinations of screws on the cylindroid (rj, ) with screws of the special

system of the third order passing through the centre of gravity. But all

the screws of a five-system are reciprocal to a single screw. The five-system

we are at present considering consists of the screws which are reciprocal to

that single screw, of zero pitch, which passes through the centre of gravity
and intersects both the screws, of zero pitch, on the impulsive cylindroid

(77, ).
The corresponding instantaneous screws will also form a system of the

fifth order, but it will be a system of a specialized type. It will be the result

of compounding all possible displacements by translation, with all possible

twists about screws on the cylindroid (a, /3). The resulting system of the

fifth order consists of all screws, of whatsoever pitch, which fulfil the single
condition of being perpendicular to the axis of the cylindroid (a, /3). Hence
we obtain the following theorem :

If an impulsive cylindroid, and the corresponding instantaneous cylin

droid, be known, we can construct, from these two cylindroids, and without any
further information as to the rigid body, two systems of screws of the fifth

order, such that an impulsive wrench on a given screw of one system will

produce an instantaneous twist velocity about a determined screw on the other

system.

It is interesting to note in what way our knowledge of but two corre

sponding pairs of impulsive screws and instantaneous screws just fails to

give complete information with respect to every other pair. If we take any
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ray in space, and assign to it an arbitrary pitch, the screw so formed may be

regarded as an impulsive screw, and the corresponding instantaneous screw

will not, in general, be defined. There is, however, a particular pitch for

each such screw, which will constitute it a member of the system of the

fifth order. It follows that any ray in space, when it receives the proper

pitch, will be such that an impulsive wrench thereon would set any one

of the singly infinite system of rigid bodies twisting about the same

screw a.

307. The Geometrical Theory of Three Pairs of Screws.

We can now show how, when three pairs of corresponding impulsive
screws and instantaneous screws are given, the instantaneous screw, corre

sponding to any impulsive screw, is geometrically constructed.

The solution depends upon the following proposition, which I have set

down in its general form, though the application to be made of it is somewhat

specialized.

Given any two independent systems of screws of the third order, Pand Q.

Let &) be any screw which does not belong either to P or to Q, then it is

possible to find in one way, but only in one, a screw 6, belonging to P, and a

screw
&amp;lt;j&amp;gt;, belonging to Q, such that

o&amp;gt;,
6 and

(f&amp;gt;

shall all lie on the same cylin-

droid. This is proved as follows.

Draw the system of screws of the third order, P ,
which is reciprocal to P,

and the system Q ,
which is reciprocal to Q. The screws belonging to P

,

and which are at the same time reciprocal to
a&amp;gt;,

constitute a group reciprocal

to four given screws. They, therefore, lie on a cylindroid which we call P .

In like manner, since Q is a system of the third order, the screws that can be

selected from it, so as to be at the same time reciprocal to
&&amp;gt;,

will also form a

cylindroid which we call Q .

It is generally a possible and determinate problem to find, among the

screws of a system of the third order, one screw which shall be reciprocal

to every screw, on an arbitrary cylindroid. For, take three screws from the

system reciprocal to the given system of the third order, and two screws on

the given cylindroid. As a single screw can be found reciprocal to any five

screws, the screw reciprocal to the five just mentioned will be the screw now

desired.

We apply this principle to obtain the screw 6, in the system P, which is

reciprocal to the cylindroid Q . In like manner, we find the screw
&amp;lt;/&amp;gt;,

in the

system Q, which is reciprocal to the cylindroid P .

From the construction it is evident that the three screws 0,
&amp;lt;f&amp;gt;,

and &amp;lt;w are

all reciprocal to the two cylindroids P and Q . This is, of course, equivalent

to the statement that 0,
&amp;lt;j&amp;gt;,

a&amp;gt; are all reciprocal to the screws of a system of
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the fourth order. It follows that, 6,
&amp;lt;/&amp;gt;,

w must lie upon the same cylin-

droid. Thus, 6,
&amp;lt;/&amp;gt;

are the two screws required, and the problem has been

solved. It is easily seen that there is only one such screw 0, and one such

screw &amp;lt;&amp;gt;.

Or we might have proceeded as follows : Take any three screws on P,

and any three screws on Q. Then by a fundamental principle a wrench on &amp;lt;y

can be decomposed into six component wrenches on these six screws. But
the three component wrenches on P will compound into a single wrench on

some screw 6 belonging to P. The three component wrenches on Q will

compound into a single wrench on some screw
&amp;lt;/&amp;gt; belonging to Q. Thus the

original wrench on &amp;lt;w may be completely replaced by single wrenches on 6

and
&amp;lt;f&amp;gt;.

But this proves that 6,
&amp;lt;/&amp;gt;,

and w are co-cylindroidal.

In the special case of this theorem which we are now to use one of the

systems of the third order assumes an extreme type. It consists simply of

all possible screws of infinite pitch. The theorem just proved asserts that

in this case a twist velocity about any screw &amp;lt;w can always be replaced by a

twist velocity about some one screw belonging to any given system of the

third order P, together with a suitable velocity of translation.

In the problem before us we know three corresponding pairs of impulsive
screws and instantaneous screws (rj, 2), (, /3), (, 7), and we seek the impul
sive screw corresponding to some fourth instantaneous screw 8.

It should be noticed that the data are sufficient but not redundant. We
have seen how a knowledge of two pairs of corresponding impulsive screws

and instantaneous screws provided eight of the coordinates of the rigid

body. The additional pair of corresponding screws only bring one further

co-ordinate. For, though the knowledge of 7 appropriate to a given f

might seem five data, yet it must be remembered that the two pairs (??, a)
and (f, 7) must fulfil the two fundamental geometrical conditions, and so

must also the two pairs (, /3) and (, 7) ; thus, as 7 has to comply with

four conditions, it really only conveys a single additional coordinate, which,
added to the eight previously given, make the nine which are required for

the rigid body. We should therefore expect that the knowledge of three

corresponding pairs must suffice for the determination of every other pair.

Let the unit twist velocity about 8 be resolved by the principles ex

plained in this section into a twist velocity on some screw S belonging to

a, /3, 7, and into a velocity of translation on a screw x of infinite pitch.

We have already seen that the impulsive screw corresponding to 8 must
lie on the system of the third order defined by 77, ,

and and that it

is definitely determined. Let us denote by -^ this known impulsive screw

which would make the body commence to twist about B .
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Let the centre of gravity be constructed as in the last section
;
then an

impulsive force through the centre of gravity will produce the velocity of

translation on 8j. Let us denote by % the screw of zero pitch on which this

force lies.

We thus have % as the impulsive screw corresponding to the instan

taneous screw S^ while
i/r

is the impulsive screw corresponding to the

instantaneous screw S .

Draw&quot; now the cylindroids (%, i/r)
and (81} S

).
The first of these is

the locus of the impulsive screws corresponding to the instantaneous

screws on the second. As already explained, we can completely correlate

the screws on two such cylindroids. We can, therefore, construct the

impulsive screw on (^, ^) which corresponds to any instantaneous screw

on (S1; S
).

It is, however, obvious, from the construction, that the original

screw B lies on the cylindroid (S1} S
).

Hence we obtain the impulsive screw

which corresponds to B as the instantaneous screw, and the problem has

been solved.

308. Another method.

We might have proceeded otherwise as follows : From the three given

pairs of impulsive screws and instantaneous screws rja, %J3, 7 we can find

other pairs in various ways. For example, draw the cylindroids (a, #)

and (, ); then select, by principles already explained, a screw B on the

first cylindroid, and its correspondent 6 on the second. In like manner,

from the cylindroids (a, 7) and
(17, ),

we can obtain another pair (&amp;lt;/&amp;gt;,
e).

We
have thus five pairs of correspondents, ??, /3, 7, 08,

&amp;lt;f&amp;gt;e.

Each of these

will give a diameter of the momental ellipsoid, and the radius of gyration

about that diameter. Thus we know the centre of the momental ellipsoid

and five points on its surface. The ellipsoid can be drawn accordingly.

Its three principal axes give the principal screws of inertia. All other

pairs of correspondents can then be determined by a construction given

later on (311).

309. Unconstrained motion in system of second order.

Suppose that a cylindroid be drawn through any two (not lying along

the same principal axis) of the six principal screws of inertia of a free rigid

body. If the body while at rest be struck by an impulsive wrench about

any one of the screws of the cylindroid it will commence to move by

twisting about a screw which also lies on the cylindroid. For the given

impulsive wrench can be replaced by two component wrenches on any

two screws of the cylindroid.
We shall, accordingly, take the component

wrenches of the given impulse on the two principal screws of inertia which,

by hypothesis, are contained on the cylindroid. Each of those components
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will, by the property of a principal screw of inertia, produce an instantaneous

twist velocity about the same screw. But the two twist velocities so

generated can, of course, only compound into a single twist velocity on some

other screw of the cylindroid. We have now to obtain the geometrical

relations characteristic of the pairs of impulsive and instantaneous screws on

such a cylindroid.

In previous chapters we have discussed the relations between impulsive

screws and instantaneous screws, when the movements of the body are

confined, by geometrical constraint, to twists about the screws on a

cylindroid. The problem now before us is a special case, for though the

movements are no other than twists about the screws on a cylindroid, yet

this restriction, in the present case, is not the result of constraint. It arises

from the fact that two of the six principal screws of inertia of the rigid

body lie on the cylindroid, while the impulsive wrench is, by hypothesis,

limited to the same surface.

To study the question we shall make use of the circular representation

of the cylindroid, 50. We have there shown how, when the several screws

on the cylindroid are represented by points on the circumference of a circle,

various dynamical problems can be solved with simplicity and convenience.

For example, when the impulsive screw is represented on the circle by

one point, and the instantaneous screw by another, we have seen how

these points are connected by geometrical construction ( 140).

In the case of the unconstrained body, which is that now before us, it is

known that, whenever the pitch of an instantaneous screw is zero, the corre

sponding impulsive screw must be at right angles thereto ( 301).

In the circular representation, the angle between any two screws is

equal to the angle subtended in the representative circle by the chord

whose extremities are the representatives of the two screws. Two screws,

at right angles, are consequently represented by the extremities of a

diameter of the representative circle. If, therefore, we take A, B, two

points on the circle, to represent the two screws of zero pitch, then the two

points, P and Q, diametrically opposite to them, are the points indicating

the corresponding impulsive screws. It is plain from 287 that AQ and BP
must intersect in the homographic axis, and hence the homographic axis

is parallel to AQ and EP, and as it must contain the pole of AB it follows

that the homographic axis XY must be the diameter perpendicular to AB.

The two principal screws of the cylindroid X and Y are, in this case, the

principal screws of inertia. Each of them, when regarded as an impulsive

screw, coincides with its corresponding instantaneous screw. The diameter

XY bisects the angle between AP and BQ.
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It is shown ( 137) that the points which represent the instantaneous

screws, and the points which represent the corresponding impulsive screws,

form two homographic systems. A well-known geometrical principle asserts

( 146), that if each point on a circle be joined to its homographic corre

spondent, the chord will envelop a conic which has double contact with the

circle. It is easily seen that, in the present case, the conic must be the

hyperbola which touches the circle at the ends of the diameter XY, and

has the rays AP and BQ for its asymptotes. The hyperbola is completely
defined by these conditions, so that the pairs of correspondents are uniquely
determined.

Every tangent, 1ST, to this hyperbola will cut the circle in two points..

I and S, such that 8 is the point corresponding to the impulsive screw, and

/ is the point which marks out the instantaneous screw. We thus obtain

a concise geometrical theory of the connexion between the pairs of cor

responding impulsive screws and instantaneous screws on a cylindroid which

contains two of the principal screws of inertia of a free rigid body.

For completeness, it may be necessary to solve the same problem Avhen

the cylindroid is defined by two principal screws of inertia lying along the

same principal axis of the rigid body. It is easy to see that if, on the

principal axis, whose radius of gyration was a, there lay any instantaneous

screw whose pitch was pa ,
then the corresponding impulsive screw would

be also on the same axis, and its pitch would be p n
where p n

x pa = a?.

310. Analogous Problem in a Three-system.

Let us now take the case of the system of screws of the third order,

which contains three of the six principal screws of inertia of a free rigid

body.

Any impulsive wrench, which acts on a screw of a system of the third

order, can be decomposed into wrenches on any three screws of that system,
and consequently, on the three principal screws of inertia, which in the

present case the three-system has been made to contain. Each of these

component wrenches will, from the property of a principal screw of inertia,

generate an initial twist velocity of motion around the same screw. The
three twist velocities, thence arising, can be compounded into a single twist

velocity about some other screw of the system. We desire to obtain the

geometrical relation between each such resulting instantaneous screw and
the corresponding impulsive screw.

It has been explained in Chap. XV. how the several points in a plane
are in correspondence with the several screws which constitute a system
of the third order. It was further shown, that if by the imposition of

geometrical constraints, the freedom of a rigid body was limited to twisting
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about the several screws of the system of the third order, a geometrical
construction could be obtained for determining the point corresponding to

any instantaneous screw, when the point corresponding to the appropriate

impulsive screw was known.

We have now to introduce the simplification of the problem, which

results when three of the principal screws of inertia of the body belong
to the system. But a word of caution, against a possible misunderstanding,
is first necessary. It is of course a fundamental principle, that when a

rigid system has freedom of the ?ith order, there will always be, in the

system of screws expressing that freedom, n screws such that an im

pulsive wrench administered on any one of those screws will immediately
make the body begin to move by twisting about the same screw. These

are the n principal screws of inertia.

But in the case immediately under consideration the rigid body is sup

posed to be free, and it has, therefore, six principal screws of inertia. The

system of the third order, at present before us, is one which contains three

of these principal screws of inertia of the free body. Such a system of

screws possesses the property, that an impulsive wrench on any screw

belonging to it will set the body twisting about a screw which also belongs
to the same system. This is the case even though, in the total absence of

constraints, there is no kinematical difficulty about the body twisting about

any screw whatever.

As there are no constraints, we know that each instantaneous screw, of

zero pitch, must be at right angles to the corresponding impulsive screw

( 301). This condition will enable us to adjust the particular homography
in the plane wherein each pair of correspondents represents an impulsive
screw and the appropriate instantaneous screw.

The conic, which is the locus of points corresponding to the screws of a

given pitch p, has as its equation ( 204)

3*-p(6? + 6* + 6&amp;gt;3
2

)
= 0.

The families of conies corresponding to the various values of p have a

common self-conjugate triangle. The vertices of that triangle correspond to

the three principal screws of inertia.

The three points just found are the double points of the homography
which correlate the points representing the impulsive screws with those

representing the instantaneous screws. Let us take the two conies of the

system, corresponding to p = and p = oo . They are

3
2 = ........................... (i),

3
2 = ........................... (ii).
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Two conjugate points to conic (i) denote two reciprocal screws. Two con

jugate points to conic (ii) denote two screws at right angles.

Let A be any point representing an instantaneous screw. Take the

polar of A, with respect to conic (i). Let P be the pole of this ray, with

respect to conic (ii).

Then P will correspond to the impulsive screw, while A corresponds to

the appropriate instantaneous screw. For this is clearly a homography of

which A and P are two correspondents. Further, the double points of this

homography are the vertices of the common conjugate triangle to conies (i)

and (ii). If A lie on (i), then its polar is the tangent to (i) ;
and as every

point on this polar will be conjugate to P, with respect to conic (ii), it

follows that A and P are conjugate, with respect to (ii) that is, A and P
are correspondents of a pair of screws at right angles. As the pitch of the

screw, corresponding to A, is zero, we have thus obtained the solution of

our problem.

311. Fundamental Problem with Free Body.

We now give the geometrical solution of the problem so fundamental

in this present theory which may be thus stated :

A perfectly free body at rest is struck by an impulsive wrench upon a

given screw. It is required to construct the instantaneous screw about which

the body will commence to twist.

The rigid body being given, its three principal axes are to be drawn

through its centre of gravity. The radii of gyration a, b, c about these

axes are to be found. On the first principal axis two screws of pitches + a

and a respectively are to be placed. Similarly screws of pitches + b, b,

and +c, c are to be placed on the other two principal axes. These are, of

course, the six principal screws of inertia: call them A
0&amp;gt;

A l} A.2 ,
A 3 ,

A
4&amp;gt;

A 5 .

We then draw the five cylindroids

AoA 1} A A 2 ,
A A

3&amp;gt;

A QAt, A A B .

It is always possible to find one screw on a cylindroid reciprocal to any

given screw. In certain cases, however, of a special nature, more than a

single screw can be so found. Under such circumstances the present

process is inapplicable, but the exceptional instances will be dealt with

presently.

Choose on the cylindroid A A l a screw 1 which is reciprocal to the

given impulsive screw ?;, which is, of course, supposed to lie anywhere and

be of any pitch.

In like manner, choose on the other four cylindroids screws 2 , 3 ,
#4 ,

66 ,

respectively, all of which are also reciprocal to
77.
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Let us now think of 9l as an instantaneous screw
;

it lies on the cylindroid
A A lt and this cylindroid contains two principal screws of inertia. It follows
from 309 that the corresponding impulsive screw fa lies on the same cylin
droid. That screw fa can be determined by the construction there given.
In like manner we construct on the other four cylindroids the screws

&amp;lt;j&amp;gt;

2 , fa,

fa, fa, which are the impulsive screws corresponding respectively to 2 , 3 ,

#4 , 6 ,
as instantaneous screws.

Consider then the two pairs of corresponding impulsive screws and in

stantaneous
J
screws

(77, a) and (fa, ^). We have arranged. the construction
so that 6l is reciprocal to

77. Hence, by the fundamental principle so often

employed, a and dl are conjugate screws of inertia, so that a must be reciprocal
to fa.

In like manner it can be proved that the instantaneous screw a for which
we are in search must be reciprocal to fa, fa, fa, fa. We have thus dis

covered five screws, fa, fa, fa, fa, fa, to each of which the required screw a
must be reciprocal. But it is a fundamental point in the theory that the

single screw reciprocal to five screws can be constructed geometrically ( 25).
Hence a is determined, and the geometrical solution of the problem is

complete.

It remains to examine the failure in this construction which arises when
any one or more of the five screws fa ... fa becomes indeterminate. This

happens when 77 is reciprocal to two screws on the cylindroid in question.
In this case 77 is reciprocal to every screw on the cylindroid. Any one of such
screws might be taken as the corresponding fa and, of course, would have
been also indefinite, and a could not have been found. In this case 77 would
have been reciprocal to the two principal screws of inertia, suppose A ,

A
l

which the cylindroid contained. Of course still more indeterminateness
would arise if 77 had been also reciprocal to other screws of the series A

,
A l}

A a ,
A 3 ,

A 4 ,
A 5 . No screw could, however, be reciprocal to all of them. If?;

had been reciprocal to five, namely, A l} A a ,
A s , A,, A 5 , then 77 could be no

screw other than A
, because the six principal screws of inertia are co-

reciprocal ; 77 would then be its own instantaneous screw, and the problem
would be solved.

We may therefore, under the most unfavourable conditions, take 77 to be

reciprocal to four of the principal screws of inertia A
,
A lt A a ,

A
3&amp;gt;

but not to

A 4 or .-1 5 . We now draw the five cylindroids, A A t , A,A 4 ,
A 2A 4 ,

A 3A 4 ,
A A 5 .

We know that
77 is reciprocal to no more than a single screw on each

cylindroid. We therefore proceed to the construction as before, first finding
0, ... 5 , one on each cylindroid ;

then deducing fa ... fa, and thus ultimately

obtaining a.

Thus the general problem has been solved.

B. 22
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312. Freedom of the First or Second Order.

If the rigid body have only a single degree of freedom, then the only

movements of which it is capable are those of twisting to and fro on a

single screw a. If the impulsive wrench 77 which acted upon the body

happened to be reciprocal to a, then no movement would result. The forces

would be destroyed by the reactions of the constraints. In general, of course,

the impulsive screw 77
will not be reciprocal to a. A twisting motion about

a will therefore be the result. All that can be said of the instantaneous screw

is that it can be no possible screw but a.

In the next case the body has two degrees of freedom which, as usual, we

consider to be of the most general type. It is required to obtain a con

struction for the instantaneous screw a about which a body will commence

to twist in consequence of an impulsive wrench
77.

The peculiarity of the problem when the notion of constraint is introduced

depends on the circumstance that, though the impulsive screw may be

situated anywhere and be of any pitch, yet that as the body is restrained to

only two degrees of freedom, it can only move by twisting about one of the

screws on a certain cylindroid. We are, therefore, to search for the in

stantaneous screw on the cylindroid expressing the freedom.

Let A be the given cylindroid. Let B be the system of screws of the

fourth order reciprocal to that cylindroid. If the body had been free it would

have been possible to determine, in the manner explained in the last section,

the impulsive screw corresponding to each screw on the cylindroid A. Let

us suppose that these impulsive screws are constructed. They will all lie on

a cylindroid which we denote as P. In fact, if any two of such screws had

been found, P would of course have been denned by drawing the cylindroid

through those two screws.

Let Q be the system of screws of the fourth order which is reciprocal to

P. Select from Q the system of the third order Q t
which is reciprocal to 77.

We can then find one screw ^ which is reciprocal to the system of the fifth

order formed from A and Qj. It is plain that -^ must belong to B, as this

contains every screw reciprocal to A.

Take also the one screw on the cylindroid A which is reciprocal to 77, and

find the one screw
rj2 on the cylindroid P which is reciprocal to this screw

on A.

Since 77, 77! and ?72 are all reciprocal to the system of the fourth order

formed by A
l and Q1} it follows that 77, 77^ and 773 must all lie on the same

cylindroid. We can therefore resolve the original wrench on 77 into two com

ponent wrenches on y^ and 772.
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But it is of the essence of the theory that the reactions of the constraints

by which the motion of the body is limited to twists about screws on the

cylindroid A must be wrenches on the reciprocal system B. So far, therefore,

as the body thus constrained is concerned, the reactions of the constraints

will neutralize the wrench on TJ I . Thus the wrench on
r}2 is the only part of

the impulsive wrench which need be considered.

But we already know from the construction that an impulsive wrench on^
will produce an instantaneous twist velocity about a determined screw a on

A. Thus we have found the initial movement, and the investigation is geo

metrically complete.

313. Freedom of the Third Order.

We next consider the case in which a rigid body has freedom of the third

order. We require, as before, to find a geometrical construction for the in

stantaneous screw a corresponding to a given impulsive screw
77.

Let A be the system of screws of the third order about which the body
is free to twist. Let B be the system of screws of the third order reciprocal
to A. We must first construct the system of the third order P which

consists of the impulsive screws that would have made the body, if perfectly

free, twist about the several screws of A.

As already explained ( 307) we can, in one way, but only in one way,
resolve the original wrench on

77 into wrenches 7^ on B, and 772 on P. The
former is destroyed by the reactions of the constants. The latter gives rise

to a twist velocity about a determinate screw on A. Thus the problem has

been solved.

314. General Case.

We can obviously extend a similar line of reasoning to the cases where
the body had freedom of the remaining degrees. It will, however, be as simple
to write the general case at once.

Let A be a system of screws of the ?ith order, about which a body is free

to twist, any other movements being prevented by constraints. If the body
receive an impulsive wrench, on any screw

77,
it is required to determine the

instantaneous screw, of course belonging to A, about which the body will

commence to twist.

Let B be the system of screws of the (6
-

w)th order, reciprocal to A.
The wrenches arising from the reaction of the constraints must, of course, be
situated on the screws of the system B.

Let P be the system of screws of the nth order, which, in case the body

222
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had been free, would have been the impulsive screws, corresponding to the

instantaneous screws belonging to A.

Let Q be the system of screw of the (6
-
n)th order, which are reciprocal

to P.

Take from A the system of the (n- l)th order, reciprocal to 77,
and call

it A,.

Take from Q the system of the (5 ?i)th order, reciprocal to 77, and call

it Q,.

As A is of the nth order, and Qx of the (5
-

w)th, they together define a

system of the fifth order. Let ^ be the single screw, reciprocal to this system

of the fifth order.

As Jj is of the (n-l)th order, and Q is of the (6
-

w)th order, they

together define a system of the fifth order. Let r}2 be the single screw,

reciprocal to this system of the fifth order.

77! is reciprocal to A l of the (n l)th order, because J.j forms part of A.

It is reciprocal to Qj of the (5 n)th order, because it was so made by con

struction. Thus 77! is reciprocal to both A l and Qlt that is to a system of the

fourth order.

In like manner, it can also be shown that rj2 is reciprocal to both A^

and Qlt

A l and Q1 were originally chosen so as to be reciprocal to 77.
It thus

appears that the three screws, rj, tj^, 772, are all reciprocal to the same system

of the fourth order. They are, therefore, co-cylindroidal.

The initial wrench on 77
can therefore be adequately replaced by two

components on ^ and ?7 2 . The former of these is destroyed by the reaction

of the constraints. The latter gives rise to an initial movement on a

determined screw of A. Thus, the most general problem of the effect of

an impulsive wrench on a constrained rigid body has been solved geo

metrically.

315. Freedom of the Fifth Order.

The special case, where the rigid body has freedom of the fifth order, may
be viewed as follows.

Let p be the screw reciprocal to the screw system of the fifth order, about

which the body is free to twist.

Let A, be the instantaneous screw, determined in the way already explained,

about which the body, had it been free, would have commenced to twist in

consequence of an impulsive wrench on
p.
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Let 77 be any screw on which an impulsive wrench is imparted, and let a

be the corresponding instantaneous screw, about which the body would have

begun to twist had it been free.

Draw the cylindroid through a and X, and choose on this cylindroid the

screw
/JL,

which is reciprocal to p.

Then ^ is the instantaneous screw about which the body commences to

twist, in consequence of the impulsive wrench on 77.

For
(77, p) is a cylindroid of impulsive screws, and (a, X) are the corre

sponding instantaneous screws. As p is reciprocal to p, it belongs to the

system of the fifth order. The corresponding impulsive screw must lie on

(77, p). The actual instantaneous motion could therefore have been produced

by impulsive wrenches on 77 and p. The latter would, however, be neutralized

by the reactions of the constraints. We therefore find that
77 is the impulsive

screw, corresponding to a as the instantaneous screw.

316. Principal Screws of Inertia of Constrained Body.

There is no more important theorem in this part of the Theory of Screws

than that which affirms that for a rigid body, with n degrees of freedom,
there are n screws, such that if the body when quiescent receives an

impulsive wrench about one of such screws, it will immediately commence
to move by twisting about the same screw.

We shall show how the principles, already explained, will enable us to

construct these screws.

We commence with the case in which the body has two degrees of

freedom. We take three screws, 77, , , arbitrarily selected on the

cylindroid, which expresses the freedom of the body. We can then de

termine, by the preceding investigation, the three instantaneous screws,

, ft, 7, on the same cylindroid, which correspond, respectively, to the

impulsive screws. Of course, if 77 happened to coincide with a, or with ft,

or f with 7, one of the principal screws of inertia would have been found.

But, in general, such pairs will not coincide. We have to show how, from

the knowledge of three such pairs, in general, the two principal screws of

inertia can be found.

We employ the circular representation of the points on the cylindroid,
as explained in 50. The impulsive screws are represented by one system
of points, the corresponding instantaneous screws are represented by another

system of points. It is an essential principle, that the two systems of points,
so related, are homographic. The discovery of the principal screws of inertia

is thus reduced to the well-known problem of the discovery of the double

points of two homographic systems on a circle.
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The simplest method of solving this problem is that already given in

139, in which we regard the six points, suitably arranged, as the vertices

of a hexagon ;
then the Pascal line of the hexagon intersects the circle in

two points which are the points corresponding to the principal screws of

inertia.

317. Third and Higher Systems.

We next investigate the principal screws of inertia of a body which has

three degrees of freedom. We have first, by the principles already ex

plained, to discover four pairs of correspondents. When four such pairs

are known, the principal screws of inertia can be constructed. Perhaps

the best method of doing so is to utilize the plane correspondence, as

explained in Chap. xv. The corresponding systems of impulsive screws

and instantaneous screws, in the system of the third order, are then repre

sented by the homographic systems of points in the plane. When four pairs

of such correspondents are known, we can construct as many additional pairs

as may be desired.

Let a, 0, 7, 8 be four points in the plane, and let 77, , f, be the

points corresponding, so that ?/ represents the impulsive screw, and a the

instantaneous screw, and similarly for the other pairs. Let it be required

to find the impulsive screw
&amp;lt;,

which corresponds to any fifth instantaneous

screw e. Since anharmonic ratios are the same in two corresponding figures,

we have

a (0, 7, 8, 6)
= ,K ?, 0,

(/&amp;gt;),

thus we get one ray r)&amp;lt;f&amp;gt;,

which contains &amp;lt;. We have also

(, 7, ,
&amp;lt;0

= f07, C, 0. &amp;lt;),

which gives a second ray &amp;lt;, containing &amp;lt;/&amp;gt;,

and thus
&amp;lt;f&amp;gt;

is known.

A construction for the double points of two homographic systems of

points in the same plane is as follows:

Let and be a pair of corresponding points. Then each ray

through will have, as its correspondent, a ray through . The locus of

the intersection of these rays will be a conic S. This conic S must pass

through the three double points, and also through and .

Draw the conic 8
,
which is the locus of the points in the second system

corresponding to the points on S, regarded as in the first system. Then

since lies on S, we must have on S . But S must also pass through
the three double points. is one of the four intersections of S and S

,
and

the three others are the sought double points. Thus the double points are

constructed. And in this manner we obtain the three principal screws of

inertia in the case of the system of the third order.
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If a rigid body be free to move about screws of any system of the

fourth order, we may determine its four principal screws of inertia as

follows.

We correlate the several screws of the system of the fourth order with

the points in space. The points representing impulsive screws will be

a system homographic with the points representing the corresponding

instantaneous screws. If we have five pairs of correspondents (a, 77),

(@&amp;gt; )&amp;gt; (% 0&amp;gt; (S, &), (e, &amp;lt;p),

in such a homography we can at once determine

the correspondent ^ to any other screw X.

Draw a pencil of four planes through a, /3, and the four points j, B, e, X,

respectively.

Draw also a pencil of four planes through ij, ,
and the four points

, 0, (j), T/T, respectively. These two pencils will be equianharmonic. Thus

we discover one plane which contains
i/r.

In like manner we can draw

a pencil of planes through a, y, and /3, 8, e, X, respectively, and the equi

anharmonic pencil through 77, , and
, 6,

&amp;lt;f&amp;gt;, ^, respectively. Thus we

obtain a second plane which passes through ty. A third plane may be

found by drawing the pencil of four planes through a, S, and the four points

/3, y, e, X, respectively, and then constructing the equianharmonic pencil

through 77, 6, and
, , 0, \^, respectively. From the intersection of these

three planes, ^r is known.

In the case of two homographic systems in three dimensions, there are,

of course, four double points. These may be determined as follows.

Let and be two corresponding rays. Then any plane through will

have, as its correspondent, a plane through . It is easily seen that these

planes intersect on a ray which has for its locus a quadric surface S, of which

and are also generators. This quadric must pass through the four

double points.

Let 8 be the quadric surface which contains all the points in the

second system corresponding to the points of S regarded as the first system.

Then will lie on 8
,
and the rest of the intersection of 8 and S will be

a twisted cubic G, which passes through the four double points.

Take any point P on C, and draw any plane through P. Then every

ray of the first system of the pencil through P in this plane will have

as its correspondent in the second system the ray in some other plane

pencil L. One, at least, of the rays in the pencil L will cut the cubic C.

Call this ray X ,
and draw its correspondent X in the first system passing

through P.

We thus have a pair of corresponding rays X and X ,
each of which

intersects the twisted cubic C.
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Draw pairs of corresponding planes through X and X . The locus of

their intersection will be a quadric S&quot;, which also contains the four double

points.

S&quot; and C, being of the second and the third order respectively, will

intersect in six points. Two of these are on X and X
,
and are thus dis

tinguished. The four remaining intersections will be the required double

points, and thus the problem has been solved.

These double points correspond to the principal screws of inertia, which

are accordingly determined.

In the case of freedom of the fifth order, the geometrical analogies which

have hitherto sufficed are not available. We have to fall back on the

general fact that the impulsive screws and the corresponding instantaneous

screws form two homographic systems. There are five double screws be

longing to this homography. These are the principal screws of inertia.

318. Correlation of Two Systems of the Third Order.

It being given that a certain system of screws of the third order, P, is

the locus of impulsive screws corresponding to another given system of the

third order, A, as instantaneous screws, it is required to correlate the corre

sponding pairs on the two systems.

We have already had frequent occasion to use the result demonstrated

in 293, namely, that when two impulsive and instantaneous cylindroids
were known, we could arrange the several screws in corresponding pairs
without any further information as to the rigid body. We have now to

demonstrate that when we are given an impulsive system of the third

order, and the corresponding instantaneous system, there can also be a

similar adjustment of the corresponding pairs.

It has first to be shown, that the proposed problem is a definite one.

The data before us are sufficient to discriminate the several pairs of screws,

that is to say, the data are sufficient to point out in one system the corre

spondent to any specified screw in the other system. We have also to

show that there is no ambiguity in the solution. There is only one rigid

body ( 293) which will comply with the condition, and it is not possible that

there could be more than one arrangement of corresponding pairs.

Let a, /3, 7 be three instantaneous screws from A, and let their corre

sponding impulsive screws be 77, ,
in P. In the choice of a screw from

a system of the third order there are two disposable quantities, so that,

in the selection of three correspondents in P, to three given screws in A,
there would be, in general, six disposable coordinates. But the fact that

a, ?; and @, g are two pairs of correspondents necessitates, as we know,
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the fulfilment of two identical conditions among their coordinates. As

there are three pairs of correspondents, we see at once that there are six

equations to be fulfilled. These are exactly the number required for the

determination of rj, , , in the system P.

To the same conclusion we might have been conducted by a different

line of reasoning. It is known that, for the complete specification of a

system of the third order, nine co-ordinates are necessary ( 75). This is

the same number as is required for the specification of a rigid body. If,

therefore, we are given that P, a system of the third order, is the collection

of impulsive screws, corresponding to the instantaneous screws in the

system A, we are given nine data towards the determination of a rigid

body, for which A and P would possess the desired relation. It therefore

follows that we have nine equations, while the rigid body involves nine

unknowns. Thus we are led to expect that the number of bodies, for which

the arrangement would be possible, is finite. When such a body is de

termined, then of course the correlation of the screws on the two systems

is immediately accomplished. It thus appears that the general problem
of correlating the screws on any two given systems of the third order,

A and P, into possible pairs of impulsive screws and instantaneous screws,

ought not to admit of more than a finite number of solutions.

We are now to prove that this finite number of solutions cannot be

different from unity.

For, let us suppose that a screw X, belonging to A, had two screws

6 and
&amp;lt;f&amp;gt;,

as possible correspondents in P. This could, of course, in no case

be possible with the same rigid body. We shall show that it could not

even be possible with two rigid bodies, M{ and M2 . For, if two bodies could

do what is suggested, then it can be shown that there are a singly infinite

number of possible bodies, each of which would afford a different solution of

the problem.

We could design a rigid body in the following manner :

Increase the density of every element of Mj in the ratio of p^ : 1, and

call the new mass M.
Increase the density of every element of M2 in the ratio of p2 : 1, and

call the new mass M2 .

Let the two bodies, so altered, be conceived bound rigidly together by
bonds which are regarded as imponderable.

Let ty be any screw lying on the cylindroid (6, &amp;lt;j&amp;gt;).

Then the impulsive
wrench of intensity, ty

&quot;

on
i/r, may be decomposed into components

,
sin

(^r-&amp;lt;J&amp;gt;)
,

,
sin (6

- ^)V /d ,( on 9, and iK -^ ^ *g on &amp;lt;f&amp;gt;.

sin (6
-

&amp;lt;/&amp;gt;)
sm(0 -

&amp;lt;)
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If the former had been applied to M^ it would have generated about a

( 280) a twist velocity represented by

, sin (A/T
-

&amp;lt;f&amp;gt;) J^ cos(0a)
r

sin (6
r

-&amp;lt;/&amp;gt;)

Mt pa

If the latter had been applied to the body M2 ,
it would have generated a

twist velocity about the same screw, a, equal to

,
sin (6 ^r) J^ cos ((fta)

* sin (0-0) J/7
&quot;~

Pa

Suppose that these two twist velocities are equal, it is plain that the original

wrench on ty would, if it had been applied to the composite rigid body,

produce a twisting motion about a. The condition is

sin (^r &amp;lt;/&amp;gt;) _ sin (6 -fy)

MI cos ((pa)

~ M3 cos (0a)

We thus obtain tan
i/r

in terms of MI : Ma . As the structure of the

composite body changes by alterations of the relative values of pl
and

p.z ,

so will
T/T

move over the various screws of the cylindroid (6, &amp;lt;p).

This result shows that, if three screws, a, ft, 7 be given, then the possible

impulsive screws, 77, ,
which shall respectively correspond to a, /3, 7 in a

given system of the third order P, are uniquely determined.

For, suppose that a second group of screws, 77 , % &amp;gt;
&amp;gt;

could also be deter

mined which fulfilled the same property. We have shown how another

rigid body could be constructed so that another screw, ^, could be found on

the cylindroid (77, 77 ),
such that an impulse thereon given would make the

body twist about a. It is plain that, for this body also, the impulsive

wrench, corresponding to ft, would be some screw on the cylindroid (f, ).

But all screws on this cylindroid belong to the system P. In like manner,

the instantaneous screw 7 would correspond for the composite body to some

screw on the cylindroid (, &quot;)

Hence it follows that, for each different

value of the ratio p^ : p2 ,
we would have a different set of impulsive screws

for the instantaneous screws a, ft, 7. We thus find that, if there were

more than one set of such impulsive screws to be found in the system P,

there would be an infinite number of such sets. But we have already

shown that the number of sets must be finite. Hence there can only be

one set of screws, 77, , ,
in the system P, which could be impulsive screws

corresponding to the instantaneous screws, a, ft, 7. We are thus led to the

following important theorem, which will be otherwise proved in the next

chapter.

Given any two systems of screws of the third order. It is generally pos

sible, in one way, but only in one, to design, and place in a particular position a
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rigid body such that, if that body, while at rest and unconstrained, receive an

impulsive wrench about any screw of the first system, the instantaneous move

ment will be a twist about a screw of the second system.

The two systems of corresponding impulsive and instantaneous screws

on the two systems of the third order, form two homographic systems.

There are, of course, infinite varieties in the possible homographic cor

respondences between the screws of two systems of the third order. The

number of such correspondences is just so many as the number of possible

homographic correspondences of points in two planes. There is, however,

only one correspondence which will fulfil the peculiar requirements when

one of the systems expresses the instantaneous screws, and the other the

impulsive screws severally corresponding thereto.

If we are given one pair of corresponding impulsive and instantaneous

screws, the body is not by such data fully determined. We are only given
five coordinates, and four more remain, therefore, unknown. If we are

given two corresponding impulsive cylindroids and instantaneous cylindroids,

the body is still not completely specified. We have seen how eight of its

coordinates are determined, but there is still one remaining indeterminate.

If we are given a system of the fourth order of impulsive screws, and the

corresponding system of the fourth order of instantaneous screws, the body,
as in the other cases, remaining perfectly free, there are also, as we shall see

in the next section, a singly infinite number of rigid bodies which fulfil the

necessary conditions. In like manner, it will appear that, if we are given a

system of the fifth order consisting of impulsive screws, and a corresponding

system of the fifth order consisting of instantaneous screws, the body has

really as much indeterminateness as if we had only been given a single

pair of corresponding screws.

But the case of two systems of the third order is exceptional, in that

when it is known that one of these is the locus of the instantaneous screws,

which correspond to the screws of the other system regarded as impulsive
screws, the rigid body for which this state of things is possible is completely
and uniquely specified as to each and every one of its nine coordinates.

319. A Property of Reciprocal Screw Systems.

Given a system of the fourth order A and another system of the fourth

order P. If it be known that the latter is the locus of the screws on which
must lie the impulsive wrenches which would, if applied to a free rigid

body, cause instantaneous twist velocities about the several screws on A,
let us consider what can be inferred as to the rigid body from this fact alone.

Let A be the cylmdroid which is composed of the screws reciprocal to A.
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Let P be the cylindroid which is composed of the screws reciprocal to P.

Let Pl} P2 ,
P3 ,

P4 be any four impulsive screws on P. Let A 1} A 2 ,
A 3 ,

A 4

be the four corresponding instantaneous screws on A.

Take any screw a. on the cylindroid P . Let 77 be the corresponding

impulsive screw. Since a is reciprocal to all the screws on P it must be

reciprocal to Pj. It follows from the fundamental property of conjugate
screws of inertia, that 77 must be reciprocal to A^. In like manner we can

show that 77 is reciprocal to A 2 ,
A z ,

and A t . It follows that 77 is reciprocal

to the whole system A, and therefore must be contained in the reciprocal

cylindroid A. Hence we obtain the following remarkable result, which is

obviously generally true, though our proof has been enunciated for the

system of the fourth order only.

Let P and A be any two systems of screws of the nth order, and P and A
their respective reciprocal systems of the (ft~n)th order. IfP be the collec

tion of impulsive screws corresponding severally to the screws of A as the

instantaneous screws for a certain free rigid body ; then, for the same free

rigid body A will be the collection of impulsive screws which correspond to

the screws of P as instantaneous screws.

320. Systems of the Fourth Order.

Thus we see that when we are given two systems of the fourth order P
and A as correspondingly impulsive and instantaneous, we can immediately
infer that, for the same rigid body, the screws on the cylindroid A are

the impulsive screws corresponding to the instantaneous screws on the

cylindroid P .

We can now make use of that instructive theorem ( 293) which declares

that when two given cylindroids are known to stand to each other in this

peculiar relation, we are then able, without any further information, to mark

out on the cylindroids the corresponding pairs of screws. We can then

determine the centre of gravity of the rigid body on which the impulsive
wrenches act. We can find a triad of conjugate diameters of the momental

ellipsoid, and the radii of gyration about two of those diameters. Hence

we have the following result :

If it be given that a certain system of the fourth order is the locus of the

impulsive screws corresponding to the instantaneous screws on another given

system of the fourth order, the body being quite unconstrained, we can then

determine the centre of gravity of the body, we can draw a triad of the

conjugate diameters of its momental ellipsoid, and we can find ike radii of

gyration about two of those diameters.

There is still one undetermined element in the rigid body, namely, the
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radius of gyration about the remaining conjugate diameter. The data before

us are not adequate to the removal of this indefiniteness. It must be

remembered that t/he data in such a case are just so many but no more than

suffice for the specification of the n-system A. The number of data neces

sary to define an n-system is n (6 n). If, as in the present case, n = 4, the

number of data is 8. We are thus one short in the number of data necessary

to specify a rigid body. Thus we confirm the result previously obtained.

We can assert that for any one of the singly infinite number of rigid bodies

which fulfil the necessary conditions, the system A will be the locus of the

instantaneous screws which correspond to the screws of the system P as

impulsive screws.

Though in the two cylindroids A and P we are able to establish the

several pairs of correspondents quite definitely, yet we must not expect, with

the data before us, to be able to correlate the pairs of screws in A and P
definitely. If this could be done then the rigid body would be quite deter

minate, which we know is not the case. There is, however, only a single

indeterminate element left in the correlation of the screws in A with the

screws of P. This we prove as follows :

Let &amp;lt; be any screw of P on which an impulsive wrench is to act. Let 8

be the instantaneous screw in A about which the movement commences.

We shall now show that though 8 cannot be completely defined, in the

absence of any further data, yet it can be shown to be limited to a certain

cylindroid.

Let G be the centre of gravity. Then we know that an impulsive force

directed through G will generate a movement of translation in a direction

parallel to the force. Such a movement may, of course, be regarded as a

twist about a screw of infinite pitch.

Draw through G a plane normal to
&amp;lt;/&amp;gt;. Any screws of infinite pitch in

this plane will be reciprocal to &amp;lt;. It follows from the laws of conjugate screws

of inertia that the impulsive forces in this plane, by which translations could

be produced, must lie on screws of zero pitch which are reciprocal to 8.

Take any two of such screws : then we know that 8 is reciprocal to these two

screws and also to P . It follows that 8 is reciprocal to the screws of a

determinate system of the fourth order, and therefore 8 must lie on a deter

mined cylindroid.

We may commence to establish the correspondence between P and A by

choosing some arbitrary screw
&amp;lt;f&amp;gt;

on P, and then drawing the cylindroid on A,
on which we know that the instantaneous screw corresponding to P must

lie. Any screw on this cylindroid may be selected as the instantaneous

screw which corresponds to
&amp;lt;/&amp;gt;.

Once that screw 8 had been so chosen there
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cau be no further ambiguity. The correspondent in A to every other screw

in P is completely known. To show this it is only necessary to take two

pairs from A and P and the pair just found. We have then three corre

sponding pairs. It has been shown in 307 how the correspondence is

completely determined in this case.

Of course the fact that 8 may be any screw on a cylindroid is connected

with the fact that in this case the rigid body had one indeterminate element.

For each of the possible rigid bodies & would occupy a different position on

its cylindroidal locus.

321. Systems of the Fifth Order.

It remains to consider the case where two screw systems of the fifth

order are given, it being known that one of them P is the locus of the

impulsive screws which correspond to the several screws of the other system
A regarded as instantaneous screws.

Let P be the screw reciprocal to P, and A the screw reciprocal to A.

Then from the theorem of 319 it follows that an impulsive wrench on A
would make the body commence to move by twisting about P . We thus

know five of the coordinates of the rigid body. There remain four inde

terminate elements.

Hence we see that, when the only data are the two systems P and A
,

there is a fourfold infinity in the choice of the rigid body. There are conse

quently four arbitrary elements in designing the correspondence between the

several pairs of screws in the two systems.

We may choose any two screws 77, ,
on P, and assume as their two corre

spondents in A any two arbitrary screws a and ft, provided of course that

the three pairs A , B , rj, a, and
, ft fulfil the six necessary geometrical

conditions ( 304). Two of these conditions are obviously already satisfied by
the circumstance that A and P are the reciprocals to the systems A and P.

This leaves four conditions to be fulfilled in the choice of a. and ft. As each

of these belongs to a system of the fifth order there will be four coordinates

required for its complete specification. Therefore there will be eight disposable

quantities in the choice of o and ft. Four of these will be utilized in making
them fulfil the geometrical conditions, so that four others may be arbitrarily

selected. When these are chosen we have four coordinates of the rigid

body which, added to the five data provided by A and P
, completely define

the rigid body.

322. Summary.

We may state the results of this discussion in the following manner :

If we are given two systems of the first, or the second, or the third order
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of corresponding impulsive screws and instantaneous screws, all the corre

sponding pairs are determined. There is no arbitrary element in the

correspondence. There is no possible rigid body which would give any
different correspondence.

If we are given two systems of the fourth order of corresponding

impulsive screws and instantaneous screws then the essential geometrical

conditions ( 281), not here making any restriction necessary, we can select

one pair of correspondents arbitrarily in the two systems, and find one rigid

body to fulfil the requirements.

If we are given two systems of the fifth order of corresponding impulsive
screws and instantaneous screws then subject to the observance of the geo
metrical conditions we can select two pairs of correspondents arbitrarily in

the two systems, and find one rigid body to fulfil the requirements.

If we are given two systems of the sixth order of corresponding impul
sive screws and instantaneous screws then subject to the observance of

the geometrical conditions we can select three pairs of correspondents

arbitrarily in the two systems, and find one rigid body to fulfil the

requirements.

The last paragraph is, of course, only a different way of stating the results

of 307.

323. Two Rigid Bodies.

We shall now examine the circumstances under which pairs of impulsive
and instantaneous screws are common to two, or more, rigid bodies. The

problem before us may, perhaps, be most clearly stated as follows :

Let there be two rigid bodies, M and M . IfM be struck by an impulsive
wrench on a screw 6, it will commence to twist about some screw X. If M
had been struck by an impulsive wrench on the same screw 6, the body would

have commenced to twist about some screw
/u,,

which would of course be

generally different from \. If 6 be supposed to occupy different positions

in space (the bodies remaining unaltered), so will \ and p move into corre

spondingly various positions. It is proposed to inquire whether, under

any circumstances, 6 could be so placed that X and
//,

should coincide. In

other words, whether both of the bodies, M and M
, when struck with an

impulsive wrench on 6, will respond by twisting about the same instantaneous

screw.

It is obvious, that there is at least one position in which 6 fulfils the

required condition. Let 6^ G&amp;lt;&amp;gt; be the centres of gravity of M and M . Then
a force along the ray Gl 6r2 ,

if applied either to M or to M
,
will do no more

than produce a linear velocity of translation parallel thereto. Hence it
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follows, that a wrench on the screw of zero pitch, which lies on the ray

Gl G2 ,
will have the same instantaneous screw whether that wrench be

applied to M or to M .

We have now to examine whether there can be any other pair of im

pulsive and instantaneous screws in the same circumstances. Let us suppose

that when 6 assumes a certain position 77, we have A, and
/u, coalescing into the

single screw a.

We know that the centre of gravity lies in a plane through a, and the

shortest distance between a and 77.
We know, also, that da =pa tan (a??),

where da is the distance of the centre of gravity from a. It therefore follows

that a must be parallel to GiG2 . We have, however, already had occasion

( 303) to prove that, if pa be the radius of gyration of a body about a ray

through its centre of gravity, parallel to a,

2pa sra
,,

,

pa
2 = -^f \ da ~

Pa-
cos (377)

Hence it appears that, for the required condition to be satisfied, each of the

two bodies must have the same radius of gyration about the axis through its

centre of gravity, which is parallel to a. Of course this will not generally be

the case. It follows that, in general, there cannot be any such pair of

impulsive screws and instantaneous screws, as has been supposed. Hence we

have the following result :

Two rigid bodies, with different centres of gravity, have, in general, no other

common pair of impulsive screws and instantaneous screws than the screw, of

zero pitch, on the ray joining the centres of gravity, and the screw of infinite

pitch parallel thereto.

We shall now consider what happens when the exceptional condition, just

referred to, is fulfilled, that is, when the radius of gyration of the ray G1 G2 is

the same for each of the bodies.

In each of the momental ellipsoids about the centres of gravity of the

two bodies, draw the plane conjugate to the ray G^G2 . Let these planes

intersect in a ray T. Suppose that an impulsive force, directed along T, be

made to act on the body whose centre of gravity is O l . It is plain, from

Poinsot s well-known theory, that the rotation produced by such an impulse

will be about a ray parallel to G1G2 . If this impulsive wrench had been

applied to the body whose centre of gravity is G2 ,
the instantaneous screw

would also be parallel to G1 G2 . If we now introduce the condition that the

radius of gyration of each of the bodies, about G1 G2 ,
is the same, it can be

easily deduced that the two instantaneous screws are identical. Hence we

see that T, regarded as an impulsive screw of zero pitch, will have the same

instantaneous screw for each of the two bodies.
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If we regard T and G 1G2 as two screws of zero pitch, and draw the

cylindroid through these two screws, then any impulsive wrench about a

screw on this cylindroid will have the same instantaneous screw for either

of the two bodies to which it is applied.

For such a wrench may be decomposed into forces on T and on G1 G2 ]

these will produce, in either body, a twist about a, and a translation parallel

to a, respectively. We therefore obtain the following theorem :

If two rigid bodies have different centres of gravity, G { and 6r2 , and if

their radii of gyration about the ray G^z are equal, there is then a

cylindroid of screws such that an impulsive wrench on any one of these

screws will make either of the rigid bodies begin to twist about the same

screw, and the instantaneous screws which correspond to the several screws

on this cylindroid, all lie on the same ray Gfi^, but with infinitely varied

pitch.

It is to be remarked that under no other circumstances can any im

pulsive screw, except the ray GiGz ,
with zero pitch, have the same instan

taneous screw for each of the two bodies, so long as their centres of gravity
are distinct.

We might have demonstrated the theorem, above given, from the results

of 303. We have there shown that, when an impulsive screw and the

corresponding instantaneous screw are given, the rigid body must fulfil five

conditions, the nature of which is fully explained. If we take two bodies

which comply with these conditions, it appears that the ray through their

centre of gravity is parallel to the instantaneous screw, and we also find

that their radii of gyration must be equal about the straight line through
their centres of gravity.

If two rigid bodies have the same centre of gravity, then, of course, any

ray through this point will be the seat of an impulsive wrench on a screw of

zero pitch such that it generates a twist velocity on a screw of infinite pitch,

parallel to the impulsive screw. This will be the case to whichever of the

two bodies the force be applied. We have therefore a system of the third

order (much specialized no doubt) of impulsive screws, each of which has the

same instantaneous screw for each of the two bodies. In general there will

be no other pairs of common impulsive and instantaneous screws beyond
those indicated.

Under certain circumstances, however, there will be other screws possess

ing the same relation.

We may suppose the two momental ellipsoids to be drawn about the

common centre of gravity. These ellipsoids will, by a well-known property,

possess one triad of common conjugate diameters. In general, of course, the

B. 23
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radii of gyration of the two bodies, around any one of these three diameters,

will not be equal. If, however, it should happen that the radius of gyration

of one body be equal to that of the other body about one OX of these three

common conjugate diameters, it can be shown that any screw, parallel to OX,

whatever be its pitch regarded as an instantaneous screw, will have the same

impulsive screw for either of the two bodies.

If the radii of gyration about two of the common conjugate diameters

were equal for the two bodies, it will then appear that any instantaneous

screw which is parallel to the plane of the common conjugate diameters, will

have the same impulsive screw for each of the two bodies. The corresponding

impulsive screws belong to the system of the fifth order, which is defined by

being reciprocal to a screw of zero pitch on the third of the three common

conjugate diameters.

Of course, if the radii of gyration coincide on this third diameter, then

the two rigid bodies, regarded from our present point of view, would be

identical.



CHAPTER XXIII.

VARIOUS EXERCISES.

321 The Co-ordinates of a Rigid Body.

We have already explained ( 302) how nine co-ordinates define a rigid

body sufficiently for the present theory. One set of such co-ordinates with

respect to any three rectangular axes may be obtained as follows.

Let the element dm have the co-ordinates x, y, z, then causing the

integrals to extend over the whole mass, we compute the nine quantities

fxdm = Mx ; fydm = My ; fzdm = Mz
;

jyzdm = Ml? ; fxzdm = M12
2

; faydm = M13
2

;

j(y* + z2
) dm = Mp,

2
; JO2 + z2

) dm = Mp2
2

; f(x
2 + f) dm = Mp3

2
.

The nine quantities #, y ,
z

, I?, 12
2
, 13

2
, pf, p.?, p/ constitute an adequate

system of co-ordinates of the rigid body.

If 0J, 2 ,
... 6S be the canonical co-ordinates of a screw about which twists

a rigid body whose co-ordinates are x
, y ,

z
, If, If, 13

2
, pf, pf, p3

* with respect
to the associated Cartesian axes, then the kinetic energy is Mue

2d2
,
where M

is the mass, $ the twist velocity, and where

V = a?e? + a?G? + b2
3
2 +W + c

2
6&amp;gt;5

2 + c2 6
2

+ 6^0 (^3
-

#4) (0* + 0*)
~

ex. (05
-

6) (03 + t )

+ cy (6,
-

6) (0, + 6,}
-

ay, (0,
-

0,) (0, + 0.)

+ az (0,
-

2) (03 + 0.)
- bz (03

-
4) (0, + 6&amp;gt;2)

+ i (/&amp;gt;!

2 - 2

) (0 l + &amp;lt;92)
2 + i (pj

-
&) (0t + 6tf + \ (p3

2 - c
2

) (0. + 6)
2

- V (0* + 4) (O, + 0.)
~ ^ (0* + 0.) (0i + 0) - tt (0i + 0*) (0* + 04)-

232
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325. A Differential Equation satisfied by the Kinetic Energy.

If the pitch p of the screw 6 about which a body is twisting receive a

small increment 8p while the twist velocity is unaltered the change in

kinetic energy is

MpSpv*.

But the addition of 8p to p has the effect ( 264) of changing each canonical

co-ordinate 0^ into

The variation thus arising in the kinetic energy equated to that already

found gives the following differential equation which must be satisfied by uf,

a (Of
-

0f) + b (6?
-

0f) + c (0?
-

Oft

_ dul\ 03 + 04 fduf _ du G fduf _ duf\

\d05 d0J
_

d01 d0 2b d03 d0 2c

If we assume that ue
- must be a rational homogeneous function of the

second order in 1) ...06 we can, by solution of this equation, obtain the

value of UQ- given in the last Article.

326. Co-ordinates of Impulsive Screw in terms of the Instan

taneous Screw.

If alt ... 6 be the canonical co-ordinates of an instantaneous screw and

771, ... r)6 the corresponding co-ordinates of the impulsive screw, then we have

(
(

J9)&amp;gt;

1 dua
* 1 duf ,

e?/!
= -

-j , e?;2
= ---j , &c.,

a d^ a da2

and we obtain the following :

+ ea^ = (+ pf + a2

) ^ (+ p?
- a2

)
a2 + (az

- bz -
If) 3

+ (az, + bz - 13
2

)
a4 + (- ay + cy

-
I?) a5 + (- ay,

-
cy

-
If) ac

-
eaT;,

= (+ pi
2 - a2

) ^ (+ pf + a2

) 2 + (- az - bz - 13
Z

) a3

(- az + bz -
I/) a

4 + (+ ay + cy
-

If) 6 + (+ ay,
-

cy
-

If) aG

+ eby3
= (+ az,

-
bz,

- 13-) a, + (- az - bzQ
-

If) a2 + (+ pf + 62

) a3

(+ p.?
- b2

) 4 + (+ bx - cx -
I*) a5 + (6^0 + cx -

/,
8
) 6

-
ebr)4

= (+ azQ -f bz - 13 ) a, + (- az + bz -
If) 2 (+ p 2

2 - b2

) a3

(+ p./ -f b2

) 4 -f (- bx - cx -
l^) a5 + (- fo + cx -

li
2

) ati

+ ecvjr,
= (- ay + cy

-
If) aa + (+ ay + cy

-
If) 2 + (+ bx - cx -

If} &amp;lt;*3

(- bx - cx -
If) a, + (+ pf + c

2
) 5 (+ pf

- c
2

) 8

-
ecrje

= (- ay,
-

cy
-

If) a, + (ay,
-

cy
-

If) a2 + (+ bx + cx -
If) 3

(- bx, + ex,
-

If) 4 + (+ pf
- c

2

) 5 + (pf + c
2
) &amp;lt;V
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327. Another proof of article 303.

As an illustration of the formulae just given we may verify a theorem of

303 showing that when we know the instantaneous screw corresponding to

a given impulsive screw, then a ray along which the centre of gravity must

lie is determined.

For subtracting the second equation from the first and repeating the

process with each of the other pairs, we have

-
2) + 2^ ( 3 + 4)

-
2y (a-, + (i),

e
(773 + *74)

= 26 (ots
-

04) + 2x ( 5 + a)
- 2^ (! + 02),

e Ofc + %) = 2c (ae
-

) + 2y (j + a2)
- 2# ( 3 + a4).

Eliminating e we have two linear equations in x^y^z^ thus proving the

theorem.

If we multiply these equations by a. l + a^, a3 + a4 , ar, + 6 respectively

and add, we obtain

e cos (OLVJ)
= 2pa ,

thus giving a value for e.

328. A more general Theorem.

If an instantaneous screw be given while nothing further is known as to

the rigid body except that the impulsive screw is parallel to a given plane

A, then the locus of the centre of gravity is a determinate plane.

Let A,, //,,
v be the direction cosines of a normal to A, then

At (^ 3 + ifc) + v (%, + i/)
= 0,

whence by substitution from the equations of the last Article we have a

linear equation for XQ , y ,
z .

329. Two Three-Systems.

We give here another demonstration of the important theorem of .318,

which states that when two arbitrary three-systems U and V are given, it is

in general possible to design and place a rigid body in one way but only in

one way, such that an impulsive wrench delivered on any screw 77
of V shall

make the body commence to move by twisting about some screw a of U.

Let the three principal screws of the system U have pitches a, b, c and

take on the same three axes screws with the pitches a, b, c respectively.

These six screws lying in pairs with equal and opposite pitches form the

canonical co-reciprocals to be used.
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As 77 belongs to the three-system V we must have the six co-ordinates of

i) connected by three linear equations ( 77) ; solving these equations we have

772
= ^77! +.8773 +775,

774
= A ill + B rj3 + G

rjs ,

The nine coefficients A, B, C, A ,
B

,
G

, A&quot;, B&quot;,
G&quot; are essentially the co

ordinates of the three-system V. We now seek the co-ordinates of the rigid

body in terms of these quantities.

Take the particular screw of U which has co-ordinates

1, 0, 0, 0, 0, 0.

Then the co-ordinates of the corresponding impulsive screw are 77!, 772, ...

where

+ ecu?!
=

p!
2 - a2

; + e&77 3
= az - bz - Z3

2
; + eC775

= - ay + cy
-

I? ;

-
ea772

=
pj

2 - a2
;

- &ii4
= az + bz - /3

2
;

-
ec77B

= ay
-

cyQ
- 12

2
.

Since by hypothesis this is to belong to V, the following equations must
be satisfied :

2 ~
Pi

2

= A a*_P* + B
az

&amp;lt;&amp;gt;

~
bzp

- 13
2

c cy
-

ay,
- 1*

a a b c

- az - bz + 13
2

_ , ttM-p
2 az - bz - 13

2

cy
-

ay,
-

I?
T -a-

-
h -O -

j-

-----HO--
b c

R,,
az - z -

cy
-
ay -cab c

In like manner by taking successively for a the screws wiih co-ordinates

0, 0, 1, 0, 0,

and 0, 0, 0, 0, 1, 0,

we obtain six more equations of a similar kind. As these equations are

linear they give but a single system of co-ordinates x
, y 0&amp;gt;

z
, If, I*, 13

2
,

P*&amp;gt; P*, Pa
2 for the rigid body. The theorem has thus been proved, for of course

if three screws of U correspond to three screws of V then every screw in U
must have its correspondent restricted to V.

330. Construction of Homographic Correspondents.

If the screws in a certain three -system U be the instantaneous screws

whose respective impulsive screws form the three-system V, then when three

pairs of correspondents are known the determination of every other pair of

correspondents may be conveniently effected as follows.
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We know ( 279) that to generate the unit twist velocity on an instan

taneous screw a an impulsive wrench on the screw r\
is required, of which

the intensity is

COS

the mass being for convenience taken as unity.

Let a, ft, 7 be three of the instantaneous screws in U, and let 77, ,
be

their respective impulsive screws in V.

Let d, ft, 7 be the component twist velocities on a, ft, y of a twist velocity

p on any other screw p, belonging to the system U.

Then the impulsive wrench on V, which has p as its instantaneous screw

will have as its components on 77, , f the respective quantities

7 \ ^&amp;gt;

~
/ 7T^\ P) &quot;/ L,\ 7-

cos (a?7) cos (p) cos (7^)

These are accordingly the co-ordinates of the required impulsive wrench.

331. Geometrical Solution of the same Problem.

When three pairs of correspondents in the two impulsive and instan

taneous systems of the third order V and U are known we can, in general,
obtain the impulsive screw in V corresponding to any instantaneous screw p
in U as follows.

Choose any screw other than p in the three-system U and draw the

cylindroid H through that screw arid p. Every screw on a cylindroid

thus obtained must of course belong to U. Then H must have a screw in

common with the cylindroid (a/3) drawn through a and ft, for this is

necessarily true of any two cylindroids which lie in the same three-system.
In like manner H must also have a screw in common with the cylindroid

(ay) drawn through a and 7. But by the principle of 292 the several pairs

of correspondents on the instantaneous cylindroid (aft) and the impulsive

cylindroid (77 ) are determined. Hence the impulsive screw corresponding
to one of the screws in H is known. In like manner the known pairs on the

two cylindroids (ay) and (77^) will discover the impulsive screw corresponding
to another instantaneous screw on H. As therefore we know the impulsive
screws corresponding to two of the screws on H we know the cylindroid H
which contains all the impulsive screws severally corresponding to instan

taneous screws on H, of which of course p is one. But by 293 we can now
correlate the pairs on H and H

,
and thus the required correspondent

to p is obtained.
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332. Co-reciprocal Correspondents in two Three-systems.

If U be an instantaneous three-system and V the corresponding im

pulsive three-system it is in general possible to select one set of three

co-reciprocal screws in U whose correspondents in V are also co-reciprocal.

As a preliminary to the formal demonstration we may note that the

number of available constants is just so many as to suggest that some finite

number of triads in U ought to fulfil the required condition.

In the choice of a screw a in U we have, of course, two disposable

quantities. In the choice of /3 which while belonging to U is further

reciprocal to a there is only one quantity disposable. The screw belonging
to U, which is reciprocal both to a and /?, must be unique. It is in fact

reciprocal to five independent screws, i.e. to three of the screws of the system

reciprocal to U, and to a and /3 in addition.

We have thus, in general, neither more nor fewer than three disposable
elements in the choice of a set of three co-reciprocal screws a, /3, 7 in U.

This is just the number of disposables required for the adjustment of the

three correspondents rj, ,
in V to a co-reciprocal system. We might,

therefore, expect to have the number of solutions to our problem finite. We
are now to show that this number is unity.

Taking the six principal screws of inertia of the rigid body as the screws

of reference, we have as the co-ordinates of any screw in U

Xa6 4- fA/36 -|- vy6)

where X, p,, v are numerical parameters.

The co-ordinates of the corresponding screw in V are

P! (Xctj + fji/Sj. + i/7l ),

p2 (Xa2 + pfa

where for symmetry p1} . . . p6 are written instead of + a, a, + b, b, &c.

Three screws in U are specified by the parameters

X
, //, z/; X&quot;, //,&quot;, v&quot;;

X
&quot;, p&quot;,

v&quot;.

If these screws are reciprocal, we have

= 2P1 (Va, + /& + i/7l ) (X&quot;ai + /*&quot;& + *&quot;7l ),

or = \
\&quot;pa + n ^ pt + v v

&quot;py + (X&amp;gt;&quot;
+ XV) *r*p

+ (XV + XV) OTay + (ii

and two similar equations.
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If the corresponding impulsive screws are reciprocal, then

o =xv^v + /*y SfV/Si
2 + *v Spiv +

(*&amp;gt;&quot;
+vy) SiVaA

+ (XV&quot; + XV) SlvXTi + (pv&quot; + ^V
and two similar equations.

Take the two conies whose equations are

= pa

= a

these conies will generally have a single common conjugate triangle. If the

co-ordinates of the vertices of this triangle be X
, ///,

v
; X&quot;, // ,

z/
;
X

&quot;, //&quot;,
v&quot;

\

then the equations just given in these quantities will be satisfied
;
and as there

is only one such triangle, the required theorem has been proved.

It can be easily proved that a similar theorem holds good for a pair

of impulsive and instantaneous cylindroids.

333. Impulsive and Instantaneous Cylindroids.

If a given cylindroid U be the locus of the screws about which

a free rigid body would commence to twist if it had received an impulsive
wrench about any screw on another given cylindroid V, it is required to

calculate so far as practicable the co-ordinates of the rigid body.

Let us take our canonical screws of reference so that the two principal
screws of the cylindroid U have as co-ordinates

1, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 0.

The co-ordinates of any other screw on U will be

alt 0, 3 , 0, 0, 0.

The cylindroid F will be determined by four linear equations in the

co-ordinates of
rj. These equations may with perfect generality be written

thus ( 77),

where A, B, A ,
B

, A&quot;, B&quot;,
A

&quot;,
B &quot;

are equivalent to the eight co-ordinates

defining the cylindroid V.

The screw on U with co-ordinates

1, 0, 0, 0, 0,
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will have its corresponding impulsive screw defined by the equations

( 326)
+ ear]!

=
pi

2 + a?
;

- ea^ = p x

2 - a2
;

+ ebrjs
= az bz -

I? ; ebrj4
= az + bz ls

2
;

+ ecrj5
= cy

-
ay -12

2
;

-
ecr) 6

= -
ay

-
cy

- Z2
2
.

By substituting these in the equations just given, we obtain

az - bz - ls
2

_ . a? + pi* ^ a2 -
pi

2

b a a

- azn
- bz + 13

2
, a? + p? ,

a2 -
Pl

2

--
.

-
a

cy
- ay

-
I? = &amp;gt;

,
a2 + pi

2

ay + cy, + 1? _
A&amp;gt;

,,
a? + p,

2

+ B//
,
d? - pf

c a a

In like manner from the screw on U

0, 0, 1, 0, 0,

we obtain

+ arj l
= azQ bz

ti I/ , ur)-&amp;gt;

= az bz /3

2

;

+ brj3
=

p,
2 + 62

; -6174= p-?-b*;

+ crj5
= bx CX l*\ Crf = bx + CC If.

Introducing these into the equations for 77, we have

az - bz - I/ 7
az + bz + 1

3

2

= A -- ---h x&amp;gt;

a a

62 -
p 2

2
. , az - bz - 13

2

D , az + bz
,
r = A +n

a a

- bz - Z3
2 az + bz

rcaa
- bx - cx + /j

2
. , az - bz -

l&amp;lt;? n ,,, az + bz + 13
*

J\. i
-*-

c a a

Thus we have eight equations while there are nine co-ordinates of the

rigid body. This ambiguity was, however, to be expected because, as proved

in 306, there is a singly infinite number of rigid bodies which stand to the

two cylindroids in the desired relation.

The equations, however, contain one short of the total number of co

ordinates
;

aa
, y ,

z
, I,

2
, I,

2
,

13
2

, p,
2

, p 2
2 are all present but p3

2
is absent.



334] VARIOUS EXERCISES. 363

Hence from knowing the two cylindroids eight of the co-ordinates of

the rigid body are uniquely fixed while the ninth remains quite indeter

minate. Every value for p3
2 will give one of the family of rigid bodies for

which the desired condition is fulfilled.

We have already deduced geometrically ( 306) the relations of these

rigid bodies. We now obtain the same results otherwise.

The momental ellipsoid around the centre of gravity has as its

equation

(x
- x

oy- pS +(y- 7/ )
2

p.? + (z- ztf p s
2 - 2 (y

-
y ) (z

-
z,) I?

- 2 (z
- z ) (as

-
) 4

2 - 2 (x
- a? ) (y

-
y,} 13

2 -
(yx,

-
xytf

-
(zy

-
yz*f

-
(xz

- zx T = &
This may be written in the form

tf(z-ztf = R,

where p3
2 does not enter into R.

As
/&amp;gt;

3
2 varies this equation represents a family of quadrics which have

contact along the section of R = by the plane z z^ = 0. This proves
that a plane through the common centre of gravity and parallel to the

principal plane of the cylindroid U passes through the conic along which

the momental ellipsoids of all the different possible bodies have contact. All

these quadrics touch a common cylinder along this conic. The infinite point
on the axis of this cylinder is the pole of the plane z - ZQ for each quadric.

Every chord parallel to the axis of the cylinder passes through this pole
and is divided harmonically by the pole and the plane z z = 0. As the

pole is at infinity it follows that in every quadric of the system a chord

parallel to the axis of the cylinder is bisected by z z . Hence a diameter

parallel to the axis of the cylinder is conjugate to the plane z z in every
one of the quadrics. Thus by a different method we arrive at the theorems

of 306.

334. The Double Correspondents on Two Cylindroids.

Referring to the remarkable homography between the impulsive screws

on one cylindroid V and the corresponding instantaneous screws on another

cylindroid U we have now another point to notice.

If the screws on U were the impulsive screws, while those on V were the

instantaneous screws, there would also have been a unique homography, the

rigid bodies involved being generally distinct.

But of course these homographies are in general quite different, that is to

say, if A be a screw in U the instantaneous cylindroid, and B be its corre

spondent in V the impulsive cylindroid, it will not in general be true that if
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A be a screw in U the impulsive cylindroid, then B will be its instantaneous

screw in V the instantaneous cylindroid.

It is however to be now shown that there are two screws H1 a,nd H2 on U,

and their correspondents K1
and K3 on V, which possess the remarkable

characteristic that whether V be the impulsive cylindroid and U the instan

taneous cylindroid or vice versa, in either case Hl and Kl are a pair of corre

spondents, and so are H2 and Kz .

Let B1} B2 ,
B3 ,

&c. be the screws on U corresponding severally to the

screws A l} A.2 ,
A 3 , &c., on V when V is the impulsive cylindroid and U the

instantaneous cylindroid.

Let Gl} C2 ,
C3 , &c., be the screws on U corresponding severally to the

screws A l} A 2 ,
A 3 , &c., on V when U is now the impulsive cylindroid, and V

the instantaneous cylindroid.

The systems A lt A 3 , A,, &c., and B,, B.,, B3 , &c., are homographic.

The systems Clt a ,
Cs , &c., and A lt A s ,

A 3 , &c., are homographic.

Hence also,

The systems Blt B.2 ,
B3 , &c., and Clt C*, C3 ,

&c. are homographic.

Let 7/j, HZ be the two double screws on U belonging to this last homo-

graphy, then their correspondents Kl} K2 on V will be the same whether U
be the impulsive cylindroid and V the instantaneous cylindroid or vice versa.

There can be no other pairs of screws on the two cylindroids possessing

the same property.

335. A Property of Co-reciprocals.

Let a, /3, 7 be any three co-reciprocal screws. If 77, ff,
are the three

screws on which impulsive wrenches would cause a free rigid body to twist

about a, /3, 7 respectively, then

cos (af) cos (17) cos (7 ) + cos (a) cos() cos (77;)
= 0.

We have from 281 the general formula

cos fy + cos
cos a?;

cos

but as a and /3 are reciprocal each side of this equation must be zero. We

thus have

Pa cos ,
= - -- cos

^ -/
cos (017)

cos
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and similarly,

COS (yf;)
= --,- _ COS

COS (7 )

Pv i v\ P-
/ _ cos(a) = .

N
cos

cos (7 ) cos (a?;)

whence we obtain

cos (a) cos (fir)) cos (7f) + cos (a) cos (/3) cos (yrf)
= 0,

for it is shown in 283 that pa -:- cos (a??) or the other similar expressions can

never be zero.

336. Instantaneous Screw of Zero Pitch.

Let a be an instantaneous screw of zero pitch. Let two of the canonical

co-reciprocals lie on a, then the co-ordinates of a are

i, i o, o, o, o.

The co-ordinates of the impulsive screw ij are given by the formulae of

32G which show that

We thus have

(i + Oa) (Vi + fc) + ( 3 + 04) (ife + ^4) + ( 5 + ) (77, + 776)
= 0,

which proves what we already knew, namely, that a and 77 are at right angles

(S 293).

We also have

2/0 (l?3 + ^4) + ^0 (l?5 + %) = 0,

which proves the following theorem :

If the instantaneous screw have zero-pitch then the centre of gravity of

the body lies in the plane through the instantaneous screw and perpendicular
to the impulsive screw.

337. Calculation of a Pitch Quadric.

If a, fi, 7 be three instantaneous screws it is required to find with respect
to the principal axes through the centre of gravity, the equation to the pitch

quadric of the three-system which contains the three impulsive screws corre

sponding respectively to a, @, 7 . The co-ordinates of these screws are

expressed with reference to the six principal screws of inertia.

We make the following abbreviations :

A = a? (a*
-

2
2
) + b* ( 3

2 -
4
2

) + c
3

( 5
2 - a6

2

),

B = a? (&*- /32
2

) + 63

(/33
- -

&*) + c
s(&2-&a

),

C=a? (7l
2 -
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P = + bcx ((A - A) (73
-

74)
~ (A - A) (7s

-
7.)),

+ cay ((75 7) (& ~ &) ~~
(71

~
72) (& A))&amp;gt;

Q = + bcx ((a,
- a4) (75

-
76)

-
(a5

- a6) (73
-

7,)),

+ acy ((71
- 72) ( 5

-
6)
- (i - &amp;lt;*2) (75

-
7e))

+ abz ((!
-

2 ) (73
-

74)
-

(a,
-

4) (7!
-

7,,)) ;

- a
a) (A&quot; A) (& /32) ( 5 tte)),

^ = a3
(: + a) (A - &) + 6s

(a, + a4) (A - A) + c3
(*5 + a6) (/36

-
/36 ),

Z^a
= a3 (A + /32) (aj

-
2) + 63

(/33 + A) ( 8
-

&quot;4)
+ c

3 (A + A) (as
-

e) I

Zay
= a3

(d + a) (71
-

72) + b3

( 3 + 4) (73
-

74) + c
3

(cc5 + 6) (75
-

7),

^ya = tt
3
(7x + 72) (! - a

s) + 63
(7s + 74) (3 ~ 4) + C

3

(75 + 7e) (s - a
e) I

X0y
= a3 (A + A) (7i

-
72) + ^3 (A + &) (73

-
74) + c

3 (A + A) (7s
~

7e),

The required equation is then as follows :

= A, -R + L^,

R + Lafi , B, -

Q + Lay ,
P + Lfiy ,

C



CHAPTER XXIV.

THE THEORY OF SCREW-CHAINS*.

338. Introduction.

In the previous investigations of this volume the Theory of Screws has

been applied to certain problems in the dynamics of one rigid body. I

propose to show in the present chapter to what extent the conceptions

and methods of the Theory of Screws may be employed to elucidate certain

problems in the dynamics of any material system whatever.

By such a system I mean an arbitrary arrangement of
/j, rigid bodies

of any form or construction, each body being either entirely free or con

strained in any manner by relations to fixed obstacles or by connexions

of any kind with one or more of the remaining p 1 pieces.

For convenience we may refer to the various bodies in the system by
the respective numerals 1, 2, ... /n. This numbering may be quite arbitrary,

and need imply no reference whatever to the mechanical connexions of

the pieces. The entire set of material parts I call for brevity a mass-chain,

and the number of the bodies in a mass-chain may be anything from unity

to infinity.

I write, as before, of only small movements, but even with this limitation

problems of equilibrium, of small oscillations and of impulsive movements

are included. By the order of the freedom of the mass-chain, I mean the

number of generalized co-ordinates which would be required to specify a

position which that mass-chain was capable of assuming. The order cannot

be less than one (if the mass- chain be not absolutely fixed), while if each

element of the mass-chain be absolutely free, the order will be as much
as 6/i.

Starting from any arbitrary position of the mass-chain, let it receive a

small displacement. Each element will be displaced from its original

position to an adjacent position, compatible of course with the conditions

* Transactions Royal Irish Acad. Vol. xxvm. p. 99 (1881).
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imposed by the constraints. The displacement of each element could,

however, have been effected by a twist of appropriate amplitude about a

screw specially correlated to that element. The total effect of the displace

ment could, therefore, have been produced by giving each element a certain

twist about a certain screw.

339. The Graphic and Metric Elements.

In the lowest type of freedom which the mass-chain can possess (short

of absolute fixity) the freedom is of the first order, and any position of

the mass-chain admits of specification by a single co-ordinate. In such a

case the screw appropriate to each element is unique, and is completely

determined by the constraints both in position and in pitch. The ratio

of the amplitude of each twist to the amplitudes of all the other twists is

also prescribed by the constraints. The one co-ordinate which is arbitrary

may be conveniently taken to be the amplitude of the twist about the

first screw. To each value of this co-ordinate will correspond a possible

position of the mass-chain. As the ratios of the amplitudes are all known,

and as the first amplitude is given, then all the other amplitudes are known,

and consequently the position assumed by every element of the mass-chain

is known.

The whole series of screws and the ratios of the amplitudes thus embody
a complete description of the particular route along which the mass-chain

admits of displacement. The actual position of the mass-chain is found

by adding to the purely graphic element which describes the route a metric

element, to indicate the amplitude through which the mass-chain has

travelled along that route. This amplitude is the arbitrary co-ordinate.

340. The Intermediate Screw.

It will greatly facilitate our further progress to introduce a conventional

process, which will clearly exhibit the determinate character of the ratios

of the amplitudes in the screw series. Consider the two first screws, i
and or2

of the series. Draw the cylindroid (o. l , 2 ) which contains these two screws.

Since al
and 2 are appropriated to two different elements of the mass-chain,

no kinematical significance can be attached to the composition of the two

twists on j and 2 . If, however, the two twists on j
and a2 , having the

proper ratio of amplitudes, had been applied to a single rigid body, the dis

placement produced is one which could have been effected by a single

twist about a single screw on the cylindroid (al} et2). If this inter

mediate screw be given, the ratio of the amplitudes of the twists on

the given screws is determined. It is in fact equal to the ratio of the

sines of the angles into which the intermediate screw divides the angle

between the two given screws. With a similar significance we may conceive an

intermediate screw inserted between every consecutive pair of the p original

screws.
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341. The definition of a Screw-chain.

It will be convenient to have a name which shall concisely express the

entire series of /A original screws with the
//,

1 intermediate screws whose

function in determining the amplitudes has just been explained. We may
call it a screw-chain. A twist about a screw-chain will denote a displace

ment of a mass-chain, produced by twisting each element about the

corresponding screw, through an amplitude whose ratio to the amplitudes
on the two adjacent screws is indicated by the intermediate screws. The

amplitude of the entire twist will, as already mentioned, be most conveniently

expressed by the twist about the first screw of the chain. We hence have

the following statement :

The most general displacement of which a mass-chain is capable can be

produced by a twist about a screw-chain.

342. Freedom of the first order.

Given a material system of p elements more or less connected inter se,

or related to fixed points or supports : let it be required to ascertain the

freedom which this material system or mass-chain enjoys. The freedom is to be

tested by the capacity for displacement which the mass-chain possesses. As

each such displacement is a twist about a screw-chain, a complete examina

tion of the freedom of the mass-chain will require that a trial be made to

twist the mass-chain about every screw-chain in space which contains the

right number of elements
/u,.

If in the course of these trials it be found that

the mass-chain cannot be twisted about any screw-chain, then the system
is absolutely rigid, and has no freedom whatever. If after all trials have

been made, one screw-chain, and only one, has been discovered, then the

mass-chain has freedom of the first order, and we have the result thus

stated :

When a mass-chain is so limited by constraints, that its position can be

expressed by a single co-ordinate, then the mass-chain is said to have freedom

of the first order, and its possible movements are solely those which could be

accomplished by twisting about one definite screw-chain.

By this method of viewing the question we secure the advantage of

eliminating, as it were, the special characters of the constraints. The
essential moving parts of a steam-engine, for example, have but one degree
of freedom. Each angular position of the fly-wheel necessarily involves a

definite position of all the other parts. A small angular motion of the fly

wheel necessarily involves a definite small displacement of each of the

other parts. Complicated as the mechanism may be, it is yet always possible

to construct a screw-chain, a twist about which would carry each element

from its original position into the position it assumes after the displacement
has been effected.

B. 24
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343. Freedom of the second order.

Suppose that after one screw-chain has been discovered, about which the

mass-chain can be twisted, the search is continued until another screw-chain

is detected of which the same can be asserted. We are now able to show,

without any further trials whatever, that there must be an infinite number

of other screw -chains similarly circumstanced. For, compound a twist of

amplitude a on one chain, a, with the twist of amplitude /3 on the other, /?.

The position thus attained could have been attained by a twist about some

single chain 7. As a and /3 are arbitrary, it is plain that 7 can be only one

of a system of screw-chains at least singly infinite in number about which

twisting must be possible.

The problem to be considered may be enunciated in a somewhat more

symmetrical manner, as follows :

To determine the relations of three screw-chains, a, /3, 7, such that if

a mass-chain be twisted with amplitudes of, ft , 7 ,
about each of these screw-

chains in succession, the mass-chain will regain the same position after the

last twist which it had before the first.

This problem can be solved by the aid of principles already laid down

(Chap. H.). Each element of the mass-chain receives two twists about

a and /3 ;
these two twists can be compounded into a single twist about

a screw lying on the cylindroid defined by the two original screws. We
thus have for each element a third screw and amplitude by which the required

screw-chain 7 and its amplitude 7 can be completely determined.

A mass-chain free to twist to and fro on the chains a and /3 will therefore

be free to twist to and fro on the chain 7. These three chains being known,

we can now construct an infinite number of other screw-chains about which

the mass-chain must be also able to twist.

Let 8 be a further screw-chain of the system, then the screws OLI} /31( 7^ 8
1

which are the four first screws of the four screw-chains must be co-

cylindroidal ;
so must 2 &amp;gt; A, y2 ,

82 and each similar set. We thus have ^

cylindroids determined by the two first chains, and each screw of every chain

derived from this original pair will lie upon the corresponding cylindroid.

We have explained ( 125) that by the anharmonic ratio of four screws on

a cylindroid we mean the anharmonic ratio of a pencil of four lines parallel

to these screws. If we denote the anharmonic ratio of four screws such as

i&amp;gt; &, 7i&amp;gt; Si by tne symbol

[i, fii, 71, $1],

then the first theorem to be now demonstrated is that

[i, &, 71, S,]=[ 2 , &, 72&amp;gt; &&amp;gt;]

= &c. = [aM , $1, 7M , M],

or that the anharmonic ratio of each group is the same.
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This important proposition can be easily demonstrated by the aid of

fundamental principles.

The two first chains, a and /3, will be sufficient to determine the entire

series of cylindroids. When the third chain, 7, is also given, the construction

of additional chains can proceed by the anharmonic equality without any
further reference to the ratios of the amplitudes.

When any screw, 8l} is chosen arbitrarily on the first cylindroid, then

82 ,
6

3 , &c., ... 8^, are all determined uniquely; for a twist about ^ can be

decomposed into twists about
x and &. The amplitudes of the twists on

ofj and & determine the amplitudes on or
2 and /32 by the property of the

intermediate screws which go to make up the screw-chains, and by com

pounding the twists on a., and /82 we obtain S2 . If any other screw of the

series, for example, 82 ,
had been given, then it is easy to see that ^ and

all the rest, 83 ,
... B^, are likewise determined. Thus for the two first

cylindroids, we see that to any one screw on either corresponds one screw

on the other.

If one screw moves over the first cylindroid then its correspondent will

move over the second and it will now be shown that these two screws trace

out two homographic systems. Let us suppose that each screw is specified

by the tangent of the angle which it makes with one of the principal screws

of its cylindroid. Let
l , fa be the angles for two corresponding screws

on the first arid second cylindroids, then we must have some relation which

connects tan 1 and tan^j. But this relation is to be consistent with the

condition that in every case one value of tan l is to correspond to one

value of tan fa, and one value of tan fa to one value of tan lf

If for brevity we denote tan 6l by x and tan fa by x then the geometrical
conditions of the system will give a certain relation between x and x . The
one-to-one condition requires that this relation must be capable of being

expressed in either of the forms

x=U
;

x =U,
where U is some function of x and where U is a function of x. From the

nature of the problem it is easily seen that these functions are algebraical

and as they must be one valued they must be rational. If we solve the first

of these equations for x the result that we obtain cannot be different from

the second equation. The first equation must therefore contain x only in the

first degree in the form (see Appendix, Note 7)

/ / /

px +q
The relation between tan 0^ and tan fa will therefore have the form which

may generally be thus expressed,

a tan
1 tan fa+b tan l + c tan

&amp;lt;f&amp;gt;

1 + d = 0.

242
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Let &!, 6.,, :j , 4 be the angles of four screws on the first cylindroid, then the

anharmonic ratio will be

sin (04 -6&amp;gt;3) sin (02-00

From the relation just given between tan01( tau^, which applies of course

to the other corresponding pair, it will be easily seen that this anharmonic

ratio is unaltered when the angles &amp;lt; 1; &amp;lt; 2 , &c., are substituted for 1? 2 ,
&c.

We have, therefore, shown that the anharmonic ratio of four screws on

the first cylindroid is equal to that of the four corresponding screws on the

second cylindroid, and so on to the last of the
//, cylindroids.

As soon, therefore, as any arbitrary screw Sj has been chosen on the first

cylindroid, we can step from one cylindroid to the next, merely guided in

choosing S2 ,
S3 , &c., by giving a constant value to the anharmonic ratio of

the screw chosen and the three other collateral screws on the same cylindroid.

Any number of screw-chains belonging to the system may be thus readily

constructed.

This process, however, does not indicate the amplitudes of the twists

appropriate to Slt S2 ,
&3 ,

&c. One of these amplitudes may no doubt be

chosen arbitrarily, but the rest must be all then determined from the

geometrical relations. We proceed to show how the relative values of these

amplitudes may be clearly exhibited.

The first theorem to be proved is that in the three screw-chains a, ft, 7
the screws intermediate to ! and 2 ,

to /3j and (3.2 ,
to y1 and j2 are co-

cylindroidal. This important step in the theory of screw-chains can be

easily inferred from the fundamental property that three twists can be

given on the screw-chains a, /3, 7, which neutralize, and that consequently
the three twists on the screws a

1 , j31}
&amp;lt;y

l will neutralize, as will also those

on a2 , /32 , 72- These six twists must neutralize when compounded in any

way whatever. We shall accordingly compound ax
and a2 into one twist

on their intermediate screw, and similarly for /^ and /32 ,
and for yl and 73.

We hence see that the three twists about the three intermediate screws

must neutralize, and consequently the three intermediate screws must be

co-cylindroidal.

We thus learn that in addition to the several cylindroids containing the

primary screws of each of the system of screw-chains about which a mass-

chain with two degrees of freedom can twist, there are also a series of

secondary cylindroids, on which will lie the several intermediate screws of

the system of screw-chains.

If Sj be given, then it is plain that the intermediate screw between Sj

and 82 ,
as well as all the other screws of the chain and their intermediate
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screws, can be uniquely determined. If, however, the intermediate screw

between Sx
and 82 be given, the entire chain 8 is also determined, yei it is

not immediately obvious that that determination is unique. We can, however,

show as follows that this is generally the case.

Let S12 denote the given intermediate screw, and let this belong, not

only to the chain S1} 82 , &c., but to another chain &/, 82 ,
&c. We then

have S1} &amp;lt;512 ,
8.2 co-cylindroidal, and also S/, 8^, 82 co-cylindroidal. Decom

pose any arbitrary twist of amplitude 6 on S12 into twists on 8L and 2 ,
and a

twist of amplitude 6 on the same 812 into twists on 8/ and S2 . Then the

four twists must neutralize
;
but the two twists on S/ and S t compound into

a twist on a screw on the first cylindroid of the system ;
and / and 62 into

a twist on the second cylindroid of the system ;
and as these two resultant

twists must be equal and opposite it follows that they must be on the same

screw, and that, therefore, the cylindroids belonging to the first and second

elements of the system must have a common screw. It is, however, not

generally the case that two cylindroids have a common screw. It is only true

when the two cylindroids are themselves included in a three-system, this

could only arise under special circumstances, which need not be further con

sidered in a discussion of the general theory.

It follows from the unique nature of the correspondence between the

intermediate cylindroids and the primary cylindroids that one screw on any

cylindroid corresponds uniquely to one screw on each of the other cylindroids;

the correspondence is, therefore, homographic.

We have now obtained a picture of the freedom of the second order of the

most general type both as to the material arrangement and the character of

the constraints : stating summarily the results at which we have arrived,

they are as follows :

A mass-chain of any kind whatever receives a small displacement. This

displacement is under all circumstances a twist about a screw-chain. If

the mass-chain admits of a displacement by a twist about a second screw-

chain, then twists about an infinite number of other screw-chains must also

be possible. To find, in the first place, a third screw-chain, give the mass-

chain a small twist about the first chain
;
this is to be followed by a small

twist about the second chain : the position of the mass-chain thus attained

could have been reached by a twist about a third screw-chain. The system

must, therefore, be capable of twisting about this third screw-chain. When
three of the chains have been constructed, the process of finding the re

mainder is greatly simplified. Each element of the mass-chain is, in each

of the three displacements just referred to, twisted about a screw. These

three screws lie on one cylindroid appropriate to the element, and there are

just so many of these cylindroids as there are elements in the mass-chain.
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Betvveen each two screws of a chain lies an intermediate screw, introduced

for the purpose of defining the ratio of the amplitudes of the two screws of

the chain on each side of it. In the three chains two consecutive elements

will thus have three intermediate screws. These screws are co-cylindroidal.

We thus have two series of cylindroids : the first of these is equal in number

to the elements of the mass-chain
(/it),

each cylindroid corresponding to one

element. The second series of cylindroids consists of one less than the

entire number of elements (^
-

1). Each of these latter cylindroids corre

sponds to the intermediate screw between two consecutive elements. An
entire screw-chain will consist of

fju primary screws, and
//,

1 intermediate

screws. To form such a screw-chain it is only necessary to inscribe on each

of the 2yu,
1 cylindroids a screw which, with the other three screws on that

cylindroid, shall have a constant anharmonic ratio. Any one screw on any
one of the 2/^1 cylindroids may be chosen arbitrarily ;

but then all the

other screws of that chain are absolutely determined, as the anharmonic

ratio is known. The mass-chain which is capable of twisting about two

screw-chains cannot refuse to be twisted about any other screw-chain con

structed in the manner just described. It may, however, refuse to be

twisted about any screw-chains not so constructed
;
and if so, then the

mass-chain has freedom of the second order.

344. Homography of Screw-systems.

Before extending the conception of screw-chains to the examination of

the higher orders of freedom, it will be necessary to notice some extensions

of the notions of homography to the higher orders of screw systems. On
the cylindroid the matter is quite simple. As we have already had occasion

to explain, we can conceive the screws on two cylindroids to be homo-

graphically related, just as easily as we can conceive the rays of two plane

pencils. The same ideas can, however, be adapted to the higher systems
of screws the 3rd, the 4th, the 5th while a case of remarkable interest

is presented in the homography of two systems of the 6th order.

The homography of two three-systems is completely established when to

each screw on one system corresponds one screw on the other system, and

conversely. We can represent the screws in a three-system by the points
in a plane (see Chap. xv.). We therefore choose two planes, one for each
of the three-systems, and the screw correspondence of which we are in

search is identical with the homographic point-correspondence between the

two planes.

We have already had to make use in 317 of the fundamental property
that when four pairs of correspondents in the two planes are given then
the correspondence between every other pair of points is determined by
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rigorous construction. Any fifth point in one plane being indicated, the

fifth point corresponding thereto in the other plane can be determined.

It therefore follows that when four given screws on one three-system are

the correspondents of four indicated screws on the other system, then the

correspondence is completely established, and any fifth screw on one system

being given, its correspondent on the other is determined.

345. Freedom of the third order.

We are now enabled to study the small movements of any mass-chain

which has freedom of the third order. Let such a mass-chain receive

any three displacements by twists about three screw-chains. It will, of

course, be understood that these three screw-chains are not connected in

the specialized manner we have previously discussed in freedom of the

second order. In such a case the freedom of the mass-chain would be of

the second order only and not of the third. The three screw-chains now

under consideration are perfectly arbitrary ; they may differ in every con

ceivable way, all that can be affirmed with regard to them is that the

number of primary screws in each chain must of course be equal to
fj,,

i.e. to the number of material elements of which the mass-chain consists.

It may be convenient to speak of the screws in the different chains which

relate to the same element (or in the case of the intermediate screws, the

same pair of elements) as homologous screws. Each set of three homologous
screws will define a three-system. Compounding together any three twists

on the screw-chains, we have a resultant displacement which could have

been effected by a single twist about a fourth screw-chain. The first theorem

to be proved is, that each screw in this fourth screw-chain must belong to the

three-system which is defined by its three homologous screws.

So far as the primary screws are concerned this is immediately seen.

Each element having been displaced by three twists about three screws, the

resultant twist must belong to the same three-system, this being the im

mediate consequence of the definition of such a system. Nor do the inter

mediate screws present much difficulty. It must be possible for appropriate

twists on the four screw-chains to neutralize. The four twists which the

first element receives must neutralize : so must also the four twists imparted
to the second element. These eight twists must therefore neutralize,

however they may be compounded. Taking each chain separately, these

eight twists will reduce to four twists about the four intermediate screws :

these four twists must neutralize
;
but this is only possible if the four

intermediate screws belong to a three-system.

On each of
fj, primary three-systems, and on each of

yu,
1 intermediate

three-systems four screws are now supposed to be inscribed. We are to
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determine a fifth screw about which the system even though it has only
freedom of the third order, must still be permitted to twist.

To begin with we may choose an arbitrary screw in any one of the three-

systems. In the exercise of this choice we have two degrees of latitude;
but once the choice has been made, the remainder of the screw-chain is

fixed by the following theorem :

If each set of five homologous screws of five screw-chains lies on a three-

system, and if a mass-chain be free to twist about four of these screw-chains,
it will also be free to twist about the fifth, provided each set of homologous
screws is homographic with every other set.

Let 8 denote the fifth screw-chain. If 8
l be chosen arbitrarily on the

three-system which included the first element, then a twist about 8
l
can

be decomposed into three twists on a
t&amp;gt; /8lf 7,. By the intermediate screws

these three twists will give the amplitudes of the twists on all the other
screws of the chains a, /3, y, and each group of three homologous twists

being compounded, will give the corresponding screws on the chain 8. We
thus see that when 8, is given, 82 ,

83 , &c., are all determinate. It is also

obvious that if S2 ,
or any other primary screw of the chain, were given, then

all the other screws of the chain would be determined uniquely.

If, however, an intermediate screw, 812 , had been given, then, although
the conditions are, so far as number goes, adequate to the determination of
the screw-chain, it will be necessary to prove that the determination is

unique. This is proved in the same manner as for freedom of the second
order

( 343). If there were two screw-chains which had the same inter

mediate screw, then it must follow that the two primary three-systems must
have a common screw, which is not generally the case.

We have thus shown that when any one screw of the chain 8, whether

primary or intermediate, is given, then all the rest of the screws of the
chain are uniquely determinate. Each group of five homologous screws must
therefore be homographic.

It is thus easy to construct as many screw-chains as may be desired,
about which a mass-chain which has freedom of the third order must be

capable of twisting. It is only necessary, after four chains have been
found, to inscribe an arbitrary screw on one of the three-systems, and then
to construct the corresponding screw on each of the other homologous
systems.

In choosing one screw of the chain we have two degrees of latitude: we
may, for example, move the screw chosen over the surface of any cylindroid
embraced in the three-system: the remaining screws of the screw-chain,
primary and intermediate, will each and all move over the surface of corre

sponding cylindroids.
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If the mass-chain cannot be twisted about any screw- chain except those

we have now been considering, then the mass-chain is said to have freedom

of the third order. If, however, a fourth screw-chain can be found, about

which the system can twist, and if that screw-chain does not belong to the

doubly infinite system just described, then the mass-chain must have freedom

of at least the fourth order.

346. Freedom of the fourth order.

The homologous screws in the four screw-chains about which the mass-

chain can twist form each a four-system. All the other chains which can

belong to the system m.ust consist of screws, one of which lies on each of the

four-systems.

It will facilitate the study of the homography of two four-systems to

make use of the analogy between the homography of two spaces and the

homography of two four-systems as already we had occasion to do in 317.

A screw in a four-system is defined by four homogeneous co-ordinates

whereof only the ratios are significant. Each screw of such a system can

therefore be represented by one point in space. The homography of two

spaces will be completely determined if five points, a, b, c, d, e in one space,

and the five corresponding points in the other space, a, b
,
c

,
d

, e are

given.

From the four original screw-chains we can construct a fifth by com

pounding any arbitrary twists about two or more of the given chains. When
five chains have been determined, then, by the aid of the principle of homo

graphy, we can construct any number.

That each set of six homologous screws is homographic with every other

set can be proved, as in the other systems already discussed. With respect
to the intermediate screws a different proof is, however, needed to show
that when one of these screws is given the rest of the chain is uniquely de

termined. The proof we now give is perhaps simpler than that previously
used, while it has the advantage of applying to the other cases as well. Let

a, /3, 7, 8 be four screw-chains, and let e I2 ,
an intermediate screw of the

chain e, be given. We can decompose a twist on e12 into components of

definite amplitude on a I2 , &,, 7,3, 8K . The first of these can be decomposed
into twists on c^ and a.2 ;

the second on & and /32 , &c. Finally, the four

twists on !, &, 7!, 8
1 can be compounded into one twist, e,,

and those on

2, &, 72 , 8-2 compounded into a twist on e
2

. In this way it is obvious that

when e12 is given, then ej and e2 are uniquely determined, and of course the

same reasoning applies to the whole of the chain. We thus see that when

any screw of the chain is known, then all the rest are uniquely determined,
and therefore the principle of homography is applicable.
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In the choice of a screw-chain about which a mass-chain with four

degrees of freedom can twist there are three arbitrary elements. We may
choose as the first screw of the chain any screw from a given four-system.

If one screw of the chain be moved over a two-system, or a three-system
included in the given four-system, then every other screw of the chain will

also describe a corresponding two-system or three-system.

347. Freedom of the fifth order.

In discussing the movements of a system which has freedom of the fifth

order, the analogies which have hitherto guided us appear to fail. Homo-

graphic pencils, planes, and spaces have exhibited graphically the relations

of the lower degrees of freedom
;
but for freedom of the fifth degree these

illustrations are inadequate. No real difficulty can, however, attend the

extension of the principles we have been considering to the freedom of the

fifth order. We can conceive that two five-systems are homographically

related, such that to each screw on the one corresponds one screw on the

other, and conversely. To establish the homography of the two systems it

will be necessary to know the six screws on one system which correspond to

six given screws on the other : the screw in either system corresponding to

any seventh screw in the other is then completely determined.

In place of the methods peculiar to the lower degrees of freedom, we
shall here state the general analytical process which is of course available in

the lower degrees of freedom as well.

A screw 6 in a five-system is to be specified by five co-ordinates 1 ,
#2 ,

B3 ,

64, B5 . These co-ordinates are homogeneous; but their ratios only are con

cerned, so they are equivalent to four data. The five screws of reference

may be any five screws of the system. Let
&amp;lt;f&amp;gt;

be the screw of the second

system which is to correspond to 6 in the first system. The co-ordinates of

&amp;lt;f&amp;gt; may be referred to any five screws chosen in the second system. It will

thus be seen that the five screws of reference for
&amp;lt;j&amp;gt;

are quite different from

those of 6.

The geometrical conditions expressing the connection between
&amp;lt;/&amp;gt;

and 9

will give certain equations of the type

where t/j, ..., U5 are homogeneous functions of Blt ..., 95 . These equations

express that one 9 determines one
&amp;lt;f&amp;gt;.

As however one &amp;lt; is to determine one

9 we must have also equations of the type

where //, ..., U6 are functions of
&amp;lt;f&amp;gt;

1} ...,
&amp;lt;/&amp;gt;

5 .

From the nature of the problem these functions are algebraical and as

they must be one valued they must be rational functions. We have therefore
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a case of &quot;Rational Transformation&quot; (see Salmon s Higher Plane Curves,

Chap. VIII.). The theory is however here much simplified. In this case

none of the special solutions are admissible which produce the critical cases.

Consider the equations U.2 = Q, ..., U5
= 0. They will give a number of

systems of values for lf ..., 95 equal to the product of the degrees of

C/2
&amp;gt;

U5 . Each of these 6 screws would be a correspondent to the same

&amp;lt;j)

screw 1, 0, 0, 0, 0. But in the problems before us this
&amp;lt;f&amp;gt;

as every other &amp;lt;

can have only one correspondent. Hence all the functions Ult U2 ,
etc.

Ui, 17%, etc. must be linear. We may express the first set of equations thus :

fa
= (11) 0, + (12) a + (13) e3 + (14) 4 + (15) 6t ,

fa
=

(21) 1 + (22) 2 + (23) e.A + (24) 0, + (25) 95 ,

fa
= (31) 0, + (32) 9, + (33) 3 + (34) 6, + (35) t ,

fa = (41) 0, + (42) 0, + (43) 3 + (44) 4 + (45) t ,

fa
= (51) 0, + (52) 6, + (53) B, + (54) 9, + (55) .

For the screw
(j&amp;gt;

to be known whenever 9 is given, it will be necessary to

determine the various coefficients (11), (12), &c. These are to be determined
from a sufficient number of given pairs of corresponding screws. Of these co

efficients there are in all twenty-five. If we substitute the co-ordinates of one

given screw 9, we have five linear equations between the co-ordinates. Of
these equations, however, we can only take the ratios, for each of the co

ordinates may be affected by an arbitrary factor. Each of the given pairs
of screws will thus provide four equations to aid in determining the co

efficients. Six pairs of screws being given, we have twenty-four equations
between the twenty-five coefficients. These will be sufficient to determine
the ratios of the coefficients. We thus see that by six pairs of screws the

homography of two five-systems is to be completely defined. To any seventh

screw on one system corresponds a seventh screw on the other system, which
can be constructed accordingly.

348. Application of Parallel Projections.

It will, however, be desirable at this point to introduce a somewhat
different procedure. We can present the subject of homography from
another point of view, which is specially appropriate for the present theory.
The notions now to be discussed might have been introduced at the outset.

It was, however, thought advantageous to concentrate all the light that

could be obtained on the subject ;
we therefore used the point-homography

of lines, of planes, and of spaces, so long as they were applicable.

The method which we shallnow adopt is founded on an extension of

what are known as
&quot;

parallel projections
&quot;

in Statics. We may here recall
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the outlines of this theory, with the view of generalizing it into one adequate
for our purpose.

We can easily conceive of two systems of corresponding forces in two

planes. To each force in one plane will correspond one force in the other

plane, and vice versa. To any system of forces in one plane will correspond

a system of forces in the other plane. We are also to add the condition that

if one force x vanishes, the corresponding force x will also vanish.

The fundamental theorem which renders this correspondence of im

portance is thus stated :

If a group offerees in one of the planes would equilibrate when applied

to a rigid body, then the corresponding group of forces in the other plane

would also equilibrate when applied to a rigid body.

Draw any triangle in each of these planes, then any force can be de

composed into three components on the three sides of the triangle. Let

x, y, z be the components of such a force in the first plane, and let x, y ,
z

be the components of the corresponding force in the second plane ;
we must

then have equations of the form

x = ax + by + cz,

y = a x + b y + c z,

z = a&quot;x -f
b&quot;y

+ c&quot;z,

where a, b, c, &c., are constants. These equations do not contain any terms

independent of the forces, because x, y ,
z must vanish when x, y, z vanish.

They are linear in the components of the forces, because otherwise one force

in one plane will not correspond uniquely with one force in the other.

Let a?1} y-i, z^ ac2 , y2 ,
z.2 ;

... xn , yn ,
zn be the components of forces in the

first plane.

Let Xi, yi, Zi] #/, y2 , z.\ ... xn , yn ,
zn be the components of the corre

sponding forces in the second plane. Then we must have

k
= a-rk + byk + czk ,

yk
= a xk + b yk -f c zk ,

zk = a&quot;xk +-
b&quot;yk + c&quot;zk ,

where k has every value from 1 to n. If therefore we write

and
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with similar values for % % , 2z, 2/ then the above equations give

2a? = a 2x + b % + c %z,

% = a 2a? + 6 % + c/ ^z,

2s = a&quot;2a? + &&quot;2y
+ c&quot;2*.

If the system of forces in the first plane equilibrate, the following con

ditions must be satisfied :

2tf = 0, % =
0, ^z = 0,

and from the equations just written, these involve

2a&amp;gt; =0, % =0, 2* =0,

whence the corresponding system in the other plane must also equilibrate.

To determine the correspondence it will be necessary to know only

the three forces in the second plane which correspond to three given forces

in the first plane. We shall then have the nine equations which will be

sufficient to determine the nine quantities a, b, c, &c.

It appears, from the form of the equations, that the ratio of the intensity

of a force to the intensity of the corresponding force is independent of those

intensities, i.e. it depends solely upon the situation of the lines in which the

forces act.

Take any four straight lines in one system, and let four forces,

X1} X2 ,
X3 , X^, on these four straight lines equilibrate. It is then well

known that each of these forces must be proportional to certain functions

of the positions of these straight lines. We express these functions by

A ly A.2 ,
A

3&amp;gt;

A. The four corresponding forces will be X^, X2
t
X3 ,

X4 ,

and as they must equilibrate, they must also be in the ratio of certain

functions AJ, AJ, A 3 ,
A of the positions.

We thus have the equations

Xi _ X 2 _X 3 _ -A-4

A! A A 3 AI

Xi _ X 2 _ X 3 _ X
A 1 A 2 A 3 A

We can select the ratio of Xl to X^ arbitrarily : for example, let this ratio

be /A; then

whence the ratio of X
3
to X.2 is known. Similarly the ratio of the other

intensities X3 : X3 ,
and X4 : Xt is known. And generally the ratio of every

pair of corresponding forces will be determined.
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It thus appears that four straight lines in one system may be chosen

arbitrarily to correspond respectively with four straight lines in the other

system ;
and that one force being chosen on one of these straight lines in

one system, the corresponding force may be chosen arbitrarily on the corre

sponding straight line in the other system. This having been done, the

relation between the two systems is completely defined.

From the case of parallel projections in two planes it is easy to pass to

the case which will serve our present purpose. Instead of the straight lines

in the two planes we shall take screws in two ^-systems. Instead of the

forces on the lines we may take either twists or wrenches on the screws.

More generally it will be better to use Plucker s word &quot;

Dyname,&quot; which we

have previously had occasion to employ ( 260) in the sense either of a twist

or a wrench, or even a twist velocity. We shall thus have a Dyname in one

system corresponding to a Dyname in the other.

Let us suppose that a Dyname on a screw of one n-system corresponds

uniquely to a different Dyname on a screw of another ?i-system. The two

n-systems may be coincident but we shall treat of the general case.

In the first place it can be shown that if any number of Dynames in

the first system neutralize, their corresponding Dynames in the second

system must also neutralize. Take n screws of reference in one system,
and also n screws of reference in the corresponding system. Let 6 be the

Dyname in one system which corresponds to
(f&amp;gt;

in the other
;
6 can be

completely resolved into component Dynames of intensities 1} ... 6n on the

n screws of reference in the first system and in like manner
&amp;lt;f&amp;gt;

can be resolved

into n components of intensities fa, ...
&amp;lt;f&amp;gt;
n on the screws of reference in the

second system (n = &amp;lt; 6).

From the fact that the relation between and
&amp;lt;f&amp;gt;

is of the one-to-one

type the several components
&amp;lt;j&amp;gt;

l}
...&amp;lt;f&amp;gt;

n are derived from 1 ,...0n by n equations
which may be written

fa t
=

( ?*1) 0, + (W2) ,... S
4 (nn) 6n ,

in which (11), (12), &c. must be independent of both and
&amp;lt;,

for otherwise

the correspondence would not be unique.

If there be a number of Dynames in the first system the sums of the

intensities of their components on the n screws of reference may be expressed
as S#!, ... ^0n respectively. In like manner the sums of the intensities of

the components of their correspondents on the screws of reference of the

second system may be represented by &quot;fa,
...

2&amp;lt;/&amp;gt;
n respectively. We therefore
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obtain the following equations by simply adding the equations just written

for each separate -screw

20H = (1) 20! + (w2) 20, . . . + (nn) 20n .

If the Dynamos in the first system neutralize then their components on

the screws of reference must vanish or

But it is obvious from the equations just written that in this case

and therefore the corresponding Dynames will also neutralize.

Given n pairs of corresponding Dynames in the two systems, we obtain

?i
2 linear equations which will be adequate to determine uniquely the ?i

2

constants of the type (11), (12), &c. It is thus manifest that n given pairs
of Dynames suffice to determine the Dyname in either system, corresponding
to a given Dyname in the other. It is of course assumed that in this case

the intensities of the two corresponding Dynames in each of the ?i-pairs are

given as well as the screws on which they lie.

349. Properties of this correspondence.

To illustrate the distinction between this Dyname correspondence and

the screw correspondence previously discussed, let us take the case of two

cylindroids. We have already seen that, given any three pairs of corre

sponding screws, the correspondence is then completely defined ( 343).

Any fourth screw on one of the cylindroids will have its correspondent on

the other immediately pointed out by the equality of two anharmonic ratios.

The case of the Dyname correspondence is, however, different inasmuch as

we require more than two pairs of corresponding Dynames on the two

cylindroids, in order to completely define the correspondence. For any
third Dyname 6 on one of the cylindroids can be resolved into two Dynames
6l and 2 on the two screws containing the given Dynames. These com

ponents will determine the components ^^^ on the corresponding cylindroid,
which being compounded, will give &amp;lt;f&amp;gt;

the Dyname corresponding to 0.

It is remarkable that two pairs of Dynames should establish the corre

spondence as completely as three pairs of screws. But it will be observed

that to be given a pair of corresponding screws on the two cylindroids is

in reality only to be given one datum. For one of the screws may be
chosen arbitrarily; and as the other only requires one parameter to fix it
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on the cylindroid to which it is confined its specification merely gives a

single datum. To be given a pair of corresponding Dynamos is, however,

to be given really two data one of these is for the screws themselves as

before, while the other is derived from the ratio of the amplitudes. Thus

while three pairs of corresponding screws amount to three data, two pairs

of corresponding Bynames amount to no less than four data
;
the additional

datum in this case enabling us to indicate the intensity of each correspondent

as well as the screw on which it is situated.

It can further be shown in the most general case of the correspondence

of the Bynames in two w-systems that the number of pairs of Bynames

required to define the correspondence is one less than the number of pairs

of screws which would be required to define merely a screw correspondence

in the same two w-systems. In an n -system a screw has n l disposable

co-ordinates. To define the correspondence we require n + 1 pairs of screws.

Of course those on the first system may have been chosen arbitrarily, so

that the number of data required for the correspondence is

A Byname in an w-system has n arbitrary data, viz., n 1 for the screw,

and one for the intensity : hence when we are given n pairs of corresponding

Bynames we have altogether n2 data. We thus see that the n pairs of

corresponding Bynames really contribute one more datum to the problem

than do the n + l pairs of corresponding screws. The additional datum is

applied in allotting the appropriate intensity to the sought Byname.

We can then use either the n pair of Byname correspondents or the

(n + l) pairs of screw correspondents. In previous articles we have used the

latter; we shall now use the former.

350. Freedom of the fifth order.

In the higher orders of freedom the screw correspondence does not indeed

afford quite so simple a means of constructing the several pairs of corre

sponding screws as we obtain by the Byname correspondence. In two

five-systems the correspondence is complete when we are given five Bynames
in one and the corresponding five Bynames in the other. To find the

Byname X in the second system, corresponding to any given Byname A
in the first system, we proceed as follows: Decompose A into Bynames
on the five screws which contain the five given Bynames on the first system.

This is always possible, and the solution is unique. These components will

correspond to determinate Bynames on the five corresponding screws : these

Bynames compounded together will give the required Byname X both in

intensity and position.

In the general case where a mass-chain possesses freedom of the fifth
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order we may, by trial, determine five screw-chains about which the system
can be twisted. Each set of five homologous screws will determine a

five-system. In this method of proceeding we need not pay any attention

to the intermediate screws : it will only be necessary to inscribe one Dyname
(in this case a twist) in each of the homologous five-systems so that

the group of six shall be homographic. The set of twists so found will form

a displacement which the system must be capable of receiving. This is

perhaps the simplest geometrical presentment of which the question
admits.

One more illustration may be given. Suppose we have a series of planes,
and three arbitrary forces in each plane. We insert in one of the planes

any arbitrary force, and its parallel projection can then be placed in all

the other planes. Suppose a mechanical system, containing as many distinct

elements as there are planes, be so circumstanced that each element

is free to accept a rotation about each of the three lines of force in the

plane, and that the amplitude of the rotation is proportional to the intensity
of the force

;
it must then follow that the system will be also free to accept

rotations about any other chain formed by an arbitrary force in one plane and

its parallel projections in the rest.

We may, however, also examine the case of a mass-chain with freedom

of the fifth order by the aid of the screw correspondence without intro

duction of the Dyname. We find, as before, five independent screw-chains

which will completely define all the other movements which the system
can accept. To construct the subsequent screw-chains, which are quadruply
infinite in variety, we begin by first finding any sixth screw-chain of the

system by actual composition of any two or more twists about two or more

of the five screw-chains. When a sixth chain has been ascertained the

construction of the rest is greatly simplified. Each set of six homologous
screws lie in a five-system. Place in each of these five-systems another

screw which, with the remaining six, form a set which is homographic with

the corresponding set in each of the other five-systems. These screws

so determined then form another screw-chain about which the system must

be free to twist.

In the choice of the first screw with which to commence the formation

of any further screw-chains of the five-system we have only a single condition

to comply with : the screw chosen must belong to a given five-system.

This implies that the chosen screw must be reciprocal merely to one given
screw. On any arbitrary cylindroid a screw can be chosen which is reciprocal

to this screw, and consequently on any cylindroid one screw can always be

selected wherewith to commence a screw-chain about which a mass-chain

with freedom of the fifth order must be free to twist.

B. 25
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351. Freedom of the sixth order.

In freedom of the sixth order we select at random six displacements of

which the mass-chain admits, and then construct the six corresponding screw-

chains. The homologous screws in this case lie on six-systems, but a six-

system means of course every conceivable screw. It is easily shown ( 248)

that if to one screw in space corresponds another screw, and conversely, then

the homography is completely established when we are given seven screws

in one system, and the corresponding seven screws in the other. Any eighth

screw in the one system will then have its correspondent in the other imme

diately determined.

It is of special importance in the present theory to dwell on the type of

homography with which we are here concerned. If on the one hand it

seems embarrassing, from the large number of screws concerned, on the

other hand we are to recollect that the question is free from the complication

of regarding the screws as residing on particular n-systems. Seven screws

may be drawn anywhere, and of any pitch ; seven other screws may also be

chosen anywhere, and of any pitch. If these two groups be made to corre

spond in pairs, then any other screw being given, its corresponding screw will

be completely determined. Nor is there in this correspondence any other

condition, save the simple one, that to one screw of one system one screw

of the other shall correspond linearly.

Six screw-chains having been found, a seventh is to be constructed.

This being done, the construction of as many screw-chains as may be desired

is immediately feasible. From the homographic relations just referred to

we have appropriate to each element of the system seven homologous screws,

and also appropriate to each consecutive pair of elements we have the seven

homologous intermediate screws. An eighth screw, appropriate to any

element, may be drawn arbitrarily, and the corresponding screw being con

structed on each of the other systems gives at once another screw-chain about

which the system must be free to twist.

When a mass-chain has freedom of the sixth order we see that any one

element may be twisted about any arbitrary chosen screw, but that the

screw about which every other element twists is then determined, and so

are also the ratios of the amplitudes of the twists, by the aid of the inter

mediate screws.

352. Freedom of the seventh order.

Passing from the case of six degrees of freedom to the case of seven

degrees, we have a somewhat remarkable departure from the phenomena
shown by the lower degrees of freedom. Give to the mass-chain any seven

arbitrary displacements, and construct the seven screw-chains, a, /3, 7, B, e,
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t) by twists about which those displacements could have been effected.

In the construction of an eighth chain, 0, we may proceed as follows :

Choose any arbitrary screw lm Decompose a twist on 1 into components
on !, &, ry1(

$lt GI ,
. This must be possible, because a twist about any

screw can be decomposed into twists about six arbitrary screws, for we
shall not discuss the special exception when the six screws belong to a system
of lower order.

The twists on a^ ...
, &c., determine the twists on the screw-chains

,... and therefore the twists on the screws a2 ,
... ,, which compound

into a twist on &amp;lt;92 , similarly for 3 , &c.; consequently a screw-chain of which
#! is the first screw, and which belongs to the system, has been constructed.

This is, however, only one of a number of screw-chains belonging to the

system which have 6
l for their first screw. The twist on

l might have been

decomposed on the six screws, &, 7l ,
Slt l , , 77,, and then the screws 2 , &c.,

might have been found as before. These will of course not be identical with
the corresponding screws found previously. Or if we take the whole seven

screws, o^, ... 77!, we can decompose a twist on
1 in an infinite number of

ways on these seven screws. We may, in fact, choose the amplitude of the
twist on any one of the screws of reference, oq ,

for example, arbitrarily, and
then the amplitudes on all the rest will be determined. It thus appears
that where l is given, the screw 2 is not determined in the case of freedom
of the seventh order

;
it is only indicated to be any screw whatever of a

singly infinite number. The locus of 2 is therefore a ruled surface
;
so will

be the locus of
3 , &c. and we have, in the first place, to prove that all these

ruled surfaces are cylindroids.

Take three twists on 1} such that the arithmetic sum of their amplitudes
is zero, and which consequently neutralize. Decompose the first of these
into twists on a1} &, 7l ,

Sl} , ^, the second on a,, ft, 7l ,
81} e,, 17,, and the

third on a1} ft, %, 8ly e1} . It is still open to make another supposition
about the twists on 6^ let us suppose that they are such as to make the two

components on ^ vanish. It must then follow that the total twists on each
of the remaining six screws, viz. 1} ft, 7l) 8^ ely shall vanish, for their

resultant cannot otherwise be zero. All the amplitudes of the twists about
the screw-chains of reference must vanish, and so must also the amplitudes
of the resultant twists when compounded. We should have three different

screws for 2 corresponding to the three different twists on 0^ and as the
twists on these screws must neutralize, the three screws must be co-

cylindroidal.

We can, therefore, in constructing a screw-chain of this system, not only
choose #! arbitrarily, but we can then take for 62 any screw on a certain

cylindroid : this being done, the rest of the screw-chain is fixed, including
the intermediate screws.

252
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353. Freedom of the eighth and higher orders.

If the freedom be of the eighth order, then it is easily shown that the

first screw of any other chain may be taken arbitrarily, and that even the

second screw may be chosen arbitrarily from a three-system. Passing on to

the twelfth order of freedom, the two first screws of the chain, as well as the

amplitudes of their twists, may be chosen quite arbitrarily, and the rest of

the chain is fixed. In the thirteenth order of freedom we can take the

two first twists arbitrarily, while the third may be chosen anywhere on a

cylindroid. It will not now be difficult to trace the progress of the chain

to that unrestrained freedom it will enjoy when the mass-chain has G^

degrees of freedom, when it is able to accept any displacement whatever. In

the last stage, prior to that of absolute freedom, the system will have its

position defined by 6/j,
- 1 co-ordinates. A screw-chain can then be chosen

which is perfectly arbitrary in every respect, save that one of its screws must

be reciprocal to a given screw.

354. Reciprocal Screw-Chains.

We have hitherto been engaged with the discussion of the geometrical

or kinematical relations of a mass-chain of p elements : we now proceed to

the dynamical considerations which arise when the action of forces is

considered.

Each element of the mass-chain may be acted upon by one or more

external forces, in addition to the internal forces which arise from the reaction

of constraints. This group of forces must constitute a wrench appropriated

to the particular element. For each element we thus have a certain wrench,

and the entire action of the forces on the mass-chain is to be represented by

a series of
/j,

wrenches. Recalling our definition of a screw-chain, it will be

easy to assign a meaning to the expression, wrench on a screw-chain. By this

we denote a series of wrenches on the screws of the chain, and the ratio of

two consecutive intensities is given by the intermediate screw, as before.

We thus have the general statement :

The action of any system of forces on a mass-chain may be represented

by a wrench on a screw-chain.

Two or more wrenches on screw-chains will compound into one wrench

on a screw-chain, and the laws of the composition are exactly the same as

for the composition of twists, already discussed.

Take, for example, any four wrenches on four screw-chains. Each set of

four homologous screws will determine a four-system; the resulting wrench-

chain will consist of a series of wrenches on these four-systems, each being
the

&quot;parallel projection&quot; of the other.



354] THE THEORY OF SCREW-CHAINS. 389

Let a and /3 be two screw-chains, each consisting of ^ screws, appro

priated one by one to the p elements of the mass-chain. If the system
receive a twist about the screw-chain /3, while a wrench acts on the screw-

chain a, some work will usually be lost or gained ; if, however, no work be

lost or gained, then the same will be true of a twist around a acting on

a wrench on /3. In this case the screw-chains are said to be reciprocal. The
relation may be expressed somewhat differently, as follows :

If a mass-chain, only free to twist about the screw-chain a, be in equilibrium,

notwithstanding the presence of a wrench on the screw-chain j3, then, conversely,

a mass-chain only free to twist about the screw-chain ft will be in equilibrium,

notwithstanding the presence of a wrench on the screw-chain a.

This remarkable property of two screw-chains is very readily proved
from the property of two reciprocal screws, of which property, indeed, it

is only an extension.

Let ! . . . aM be the screws of one screw-chain, and /3] . . . yS^ those of the

other. Let a^, a.2 ,
... aM denote amplitudes of twists on a1} 2 , &c., and let

a
i&quot;&amp;gt; 82&quot;, &c., denote the intensities of wrenches on a1} a2 ,

&c. Then, from

the nature of the screw-chain, we must have

/ : / =
&amp;lt;

: a2&quot;=a3 : a8 &quot;, &c.,

A :
A&quot;

= & :&&quot;
= & :&&quot;, &c.;

for as twists and wrenches are compounded by the same rules, the inter

mediate screws of the chain require that the ratio of two consecutive

amplitudes of the twists about the chain shall coincide with the ratio of the

intensities of the two corresponding wrenches. Denoting the virtual

coefficient of c^ and j3i by the symbol Br
ai /3 lJ

we have for the work done by
a twist about a, against the screw-chain /3,

&c.,

while for the work done by a twist about ft against the screw-chain a we

have the expression
2a1

//A/

OTaiPl + 2a2 ^&amp;gt;a^2)
&c.

If the first of these expressions vanishes, then the second will vanish also.

It will now be obvious that a great part of the Theory of Screws may be

applied to the more general conceptions of screw-chains. The following

theorem can be proved by the same argument used in the case when only a

single pair of screws are involved.

If a screw-chain 6 be reciprocal to two screw-chains a and /3, then 6 will

be reciprocal to every screw-chain of the system obtained by compounding
twists on a. and /3.
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A screw-chain is defined by 6/4 1 data ( 353). It follows that a finite

number of screw-chains can be determined, which shall be reciprocal to

6/i 1 given screw-chains. It is, however, easy to prove that that number

must be one. If two chains could be found to fulfil this condition, then

every chain formed from the system by composition of two twists thereon

would fulfil the same condition. Hence we have the important result

One screw-chain can always be determined which is reciprocal to 6//- 1

given screw-chains.

This is of course only the generalization of the fundamental proposition

with respect to a single rigid body, that one screw can always be found

which is reciprocal to five given screws ( 25).

355. Twists on 0/^ + 1 screw-chains.

Given 6/^+1 screw-chains, it is always possible to determine the ampli
tudes of certain twists about those chains, such that if those twists be

applied in succession to a mass-chain of
/u, elements, the mass-chain shall,

after the last twist, have resumed the same position which it had before the

first. To prove this it is first necessary to show that from the system formed

by composition of twists about two screw-chains, one screw-chain can always
be found which is reciprocal to any given screw-chain. This is indeed the

generalization of the statement that one screw can always be found on a

cylindroid which is reciprocal to a given screw. The proof of the more

general theorem is equally easy. The number of screw-chains produced by
composition of twists about the screw-chains a and /3 is singly infinite.

There can, therefore, be a finite number of screw-chains of this system

reciprocal to a given screw-chain 6. But that number must be one
;
for if

even two screw-chains of the system were reciprocal to 6, then every screw-

chain of the system must also be reciprocal to 8. The solution of the original

problem is then as follows : Let a. and /3 be two of the given 6/z, + 1 chains,

and let 6 be the one screw-chain which is reciprocal to the remaining
6/i 1 chains. Since the 6/* + 1 twists are to neutralize, the total quantity
of work done against any wrench-chain must be zero. Take, then, any
wrench-chain on 6. Since this is reciprocal to 6/4 1 of the screw-chains, the

twists about these screw-chains can do no work against a twist on 6. It

follows that the amplitudes of the twists about a and @ must be such that

the total amount of work done must be zero. For this to be the case, the
two twists on a and /3 must compound into one twist on the screw-chain v,

which belongs to the system (a/3), and is also reciprocal to 0. This defines

the ratio of the amplitudes of the two twists on a and /3. We may in fact

draw any cylindroid containing three homologous screws of a, /3, and 7, then
the ratio of the sines of the angles into which 7 divides the angle between
a and @ is the ratio of the amplitudes of the twists on a. and /8. In a
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similar manner the ratio of the amplitudes of any other pair of twists can

be found, and thus the whole problem has been solved.

We are now able to decompose any given twist or wrench on a screw -

chain into 6//. components on any arbitrary 6//,
chains. The amplitudes or

the intensities of these G/A components may be termed the 6/i co-ordinates

of the given twist or wrench. If the amplitude or the intensity be regarded

as unity, then the 6/A quantities may be taken to represent the co-ordinates

of the screw-chain. In this case only the ratios of the co-ordinates are of

consequence.

If the mass-chain have only n degrees of freedom where n is less than 6/1,

then all the screw-chains about which the mass-chain can be twisted are so

connected together, that if any n + 1 of these chains be taken arbitrarily, the

system can receive twists about these n 4- 1 chains of such a kind, that after

the last twist the system has resumed the same position which it had before

the first. In this case n co-ordinates will be sufficient to express the twist

or wrench which the system can receive, and n co-ordinates, whereof only the

ratios are concerned, will be sufficient to define any screw-chain about which

the system can be twisted.

G/j, n screw-chains are taken, each of which is reciprocal to n screw-

chains about which a mass-chain with freedom of the nth order can twist.

The two groups of n screw-chains on the one hand, and 6/i
- n on the other,

may each be made the basis of a system of chains about which a mechanism

could twist with freedom of the nth order, or of the (6/i
-

?i)th order, re

spectively. These two systems are so related that each screw-chain in the

one system is reciprocal to all the screw-chains in the other. They may thus

be called two reciprocal systems of screw-chains.

Whatever be the constraints by which the freedom is hampered, the

reaction of the constraints upon the elements must constitute a wrench on

a screw-chain. It is a fundamental point of the present theory that this

screw-chain belongs to the reciprocal system. For, as no work is done

against the constraints by any displacement which is compatible with the

freedom of the mass-chain, it must follow, from the definition, that the

wrench-chain which represents the reactions must be reciprocal to all

possible displacement chains, and must therefore belong to the reciprocal

system.

For a wrench-chain applied to the mass-chain to be in equilibrium it

must, if not counteracted by some other external wrench-chain, be counter

acted by the reaction of the constraints. Thus we learn that
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Of two reciprocal screw-chain systems, each expresses the collection of
ivrench-chains of which each one will equilibrate when applied to a mass-chain

only free to twist about all the chains of the other system.

This is, perhaps, one of the most comprehensive theorems on Equilibrium
which could be enunciated.

356. Impulsive screw-chains and instantaneous screw-chains.

Up to the present we have been occupied with considerations involving

kinematics and statics : we now show how the principles of kinetics can be

illustrated by the theory sketched in this chapter.

We shall suppose, as before, that the mechanical arrangement which we

call the mass-chain consists of
jj, elements, and that those elements are so

connected together that the mass-chain has n degrees of freedom. We shall

also suppose that the mass-chain is acted upon by a wrench about any screw-

chain whatever. The first step to be taken is to show that the given
wrench-chain may be replaced by another more conveniently circumstanced.

Take any n chains of the given system, and 6/u, n chains of the reciprocal

system, then the given wrench-chain can be generally decomposed into

components on the n + (6/z
-

n) chains here specified. The latter, being all

capable of neutralization by the reaction of the constraints, may be omitted,

while the former n wrench-chains admit of being compounded into a single
wrench-chain. We hence have the following important proposition :

Whatever be the forces which act on a mass-chain, their effect is in general

equivalent to that of a wrench on a screw-chain which belongs to the system of
screw-chains expressing the freedom of the mass-chain.

The application of this theorem is found in the fact that, while we still

retain the most perfect generality, it is only necessary, either for twists or

wrenches, to consider the system, defined by n chains, about which the mass-

chain can be twisted.

Let us consider the mass-chain at rest in a specified position, and suppose
it receives the impulsive action of any set of forces, it is required to determine

the instantaneous motion which the system will acquire. The first operation
is to combine all the forces into a wrench-chain, and then to transform that

wrench-chain, in the manner just explained, into an equivalent wrench-
chain on one of the screws of the system. Let 6 be the screw-chain of the

system so found. In consequence of this impulsive action the mass-chain,

previously supposed to be at rest, will commence to move
;
that motion can,

however, be nothing else than an instantaneous twist velocity about a screw-

chain a. We thus have an impulsive screw-chain 6 corresponding to an
instantaneous screw-chain a. In the same way we shall have the impulsive
screw-chains

&amp;lt;, i/r, &c., correlated to the instantaneous chains, /3, y, &c.
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The first point to be noticed is, that the correspondence is unique. To
the instantaneous chain a one impulsive screw-chain 6 will correspond. There

could not be two screw-chains 6 and 6 which correspond to the same instan

taneous screw-chain a. For, suppose this were the case, then the twist

velocity imparted by the impulsive wrench on 6 could be neutralized by the

impulsive wrench on 6 . We thus have the mass-chain remaining at rest

in spite of the impulsive wrenches on 6 and 6 . These two wrenches must
therefore neutralize, and as, by hypothesis, they are on different screw-

chains, this can only be accomplished by the aid of the reactions of the

constraints. We therefore find that 6 and 6 must compound into a

wrench-chain which is neutralized by the reactions of the constraints.

This is, however, impossible, for 6 and 6 can only compound into a wrench

on a screw-chain of the original system, while all the reactions of the

constraints form wrenches on the chains of the wholly distinct reciprocal

system.

We therefore see that to each instantaneous screw-chain a only one

impulsive screw-chain 6 will correspond. It is still easier to show that to

each impulsive screw-chain 6 only one instantaneous screw-chain a will

correspond. Suppose that there were two screw-chains, a and a.
, either of

which would correspond to an impulsive wrench on 6. We could then give
the mass-chain, first, an impulsive wrench on d of intensity X, and make
the mass-chain twist about a, and we could simultaneously give it an im

pulsive wrench on the same screw-chain 6 of intensity X, and make the

mass-chain twist about a . The two impulses would neutralize, so that as

a matter of fact the mass-chain received no impulse whatever, but the

two twist velocities could not destroy, as they are on different screw-chains.

We would thus have a twist velocity produced without any expenditure of

energy.

We have thus shown that in the w-system of screw-chains expressing the

freedom of the mass-chain, one screw-chain, regarded as an instantaneous

screw-chain, will correspond to one screw-chain, regarded as an impulsive
screw-chain, and conversely, and therefore linear relations between the

co-ordinates are immediately suggested. That there are such relations can be

easily proved directly from the laws of motion (see Appendix, note 7). We
therefore have established a case of screw-chain homography between the
two systems, so that if 1} ...0n denote the co-ordinates of the impulsive
screw-chain, and if aa , ... an denote the co-ordinates of the corresponding
instantaneous screw-chain, we must have n equations of the type

0, = (11) ttl + (12) a2 + (13) 3 . .. + (1 ) a
B&amp;gt;

(nn) B ,
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where (11), (12), &c., are n? coefficients depending on the distribution of the

masses, and the other circumstances of the mass-chain and its constraints.

The equations having this form, the necessary one-to-one correspondence is

manifestly observed.

357. The principal screw-chains of Inertia.

We are now in a position to obtain a result of no little interest. Just as

we have two double points in two homographic rows on a line, so we have n

double chains in the two homographic chain systems. If we make, in the

foregoing equations,

0i
=

p*i 5 #2 = p 2 , &c.,

we obtain, by elimination of a1} ... an ,
an equation of the nth degree in

p.

The roots of this equation are n in number, and each root substituted in the

equations will enable the co-ordinates of each of the n double screw-chains

to be discovered. The mechanical property of these double chains is to be

found in the following statement :

If any mass-chain have n degrees of freedom, then in general n screw-

chains can always be found (but not more than n), such that if the mass-chain

receive an impulsive wrench from any one of these screw-chains, it will

immediately commence to move by twisting about the same screw-chain.

In the case where the mass-chain reduces to a single rigid body, free or

constrained, the n screw-chains to which we have just been conducted reduce

to what we have called the n principal screws of inertia. In the case, still

more specialized, of a rigid body only free to rotate around a point, the

theorem degenerates to the well-known property of the principal axes. We

may thus regard the n principal chains now found as the generalization of

the familiar property of the principal axes for any system anyhow con

strained.

Considerable simplification is introduced into the equations when, instead

of choosing the chains of reference arbitrarily, we select the n principal

screw-chains for this purpose ;
we then have the very simple results,

0, = (11) x ; 2
= (22) 2 ;

... 6n = (nn) an .

This gives a method of finding the impulsive screw-chain corresponding to

any instantaneous screw-chain. It is only necessary to multiply the co

ordinates of the instantaneous screw-chain i, a2 by the constant factors (11),

(12), &c., in order to find the co-ordinates of the impulsive screw-chain.

The general type of homography here indicated has to be somewhat

specialized for the case of impulsive screw-chains and instantaneous screw-

chains. The n double screw-chains are generally quite unconnected we

might, indeed, have exhibited the relation between the two homographic
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systems of screw-chains by choosing n screws quite arbitrarily as the double

screws of the two systems, and then appropriating to them n factors (11),

(22), (33), &c., also chosen arbitrarily. In the case of impulsive and instant

aneous chains, the n double chains are connected together by the relation

that each pair of them are reciprocal, so that the whole group of n chains

form what may be called a set of co-reciprocals.

To establish this we may employ some methods other than those

previously used. Let us take a set of w-co-reciprocal chains, and let the

co-ordinates of any other two chains, 6 and &amp;lt; of the same system, be
1&amp;gt;

... 6n

and fa, ...fa,,. Let 2p1} *2p2 , &c., 2pn be certain constant parameters

appropriated to the screws of reference. 2pj is, for example, the work done

by a twist of unit amplitude on the first screw-chain of reference against a

wrench of unit intensity on the same chain. The work done by a twist O
l

against a wrench fa on this chain is 2p1 1 fa. As the chains of reference are

co-reciprocal, the twist on 6l does no work against the wrenches fa2 ,
&amp;lt; 3 ,

... &c.
;

hence the total work done by a twist on 6 against the wrench on
&amp;lt;/&amp;gt;

is

and hence if 6 and &amp;lt; be reciprocal,

The quantities p1 ,
. . . pn are linear magnitudes, and they bear to screw-chains

the same relation which the pitches bear to screws. If we use the word

pitch to signify half the work done by a unit twist on a screw-chain against
the unit wrench on the screw-chain, then we have for the pitch p6 of the

chain 6 the expression

The kinetic energy of the mass-chain, when animated by a twist velocity of

given amount, depends on the instantaneous screw-chain about which the

system is twisting. It is proportional to a certain quadratic function of the n

co-ordinates of the instantaneous screw. By suitable choice of the screw-

chains of reference it is possible, in an infinite number of ways, to exhibit

this function as the sum of n squares. It follows from the theory of

linear transformations that it is generally possible to make one selection of

the screw-chains of reference which, besides giving the energy function the

required form, will also exhibit pe as the sum of n squares. This latter

condition means that the screw-chains of reference are co-reciprocal. It only
remains to show that the n screw-chains of reference thus ascertained must
be the n principal screw-chains to which we were previously conducted.

We may show this most conveniently by the aid of Lagrange s equations
of motion in generalized co-ordinates ( 86).
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Let #j ,
. . . 6n represent the co-ordinates of the impulsive screw-chain, and

let !,... an be the co-ordinates of the corresponding instantaneous screw-

chain, reference being made to the screw-chains of reference just found.

Lagrange s equations have the form

A (
dT

.\ -dT- p
dt \ddj cfaj

where T is the kinetic energy, and where PiSc^ denotes the work done

against the forces by a twist of amplitude BO.I.

If Q&quot; denote the intensity of the impulsive wrench, then its component
on the first screw of reference is

f

&quot;01} and the work done is 2p1 &quot;0l &al ,

while, since the chains are co-reciprocal, the work done by Sttj against the

components of &&quot; on the other chains of reference is zero, we therefore have

JV*%$r
r

fc
We have also

T=M(u1
2d1*+...+un*dn2

),

when ult ... un are certain constants.

We have, therefore, from Lagrange s equation,

whence, integrating during the small time t, during which the impulsive
force acts,

in which d is the actual twist velocity about the screw-chain, so that dl
= dx l ,

each being merely the expression for the component of that twist velocity

about the screw-chain.

We hence obtain lt ... n , proportional respectively to

Pi
&quot;

Pn
u 2

If we make =
(11), &c., we have the previous result,

PI

n = (nn)an .

358. Conjugate screw-chains of Inertia.

From the results just obtained, which relate of course only to the chains of

reference, we can deduce a very remarkable property connecting instantaneous

chains, and impulsive chains in general. Let a. and ft be two instantaneous

chains, and let and $ be the two corresponding impulsive chains, then when OL
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is reciprocal to
&amp;lt;/&amp;gt;,

ft will be reciprocal to 6. This, it will be observed, is a

generalization of a property of which much use has been previousl)&amp;lt;jfcnade

( 81). The proof is as follows.

The co-ordinates of the instantaneous chains are

&.-..

The co-ordinates of the corresponding impulsive chains are

Pi Pn
and

V& Ujfin

Pi Pn

If the chain a be reciprocal to the impulsive chain which produces /3, then

we have

&amp;lt;!& + ... + un2
nl3n = ;

but this being symmetrical in a and /3 is precisely the same as the condition

that the impulsive chain corresponding to a. shall be reciprocal to /9. Following
the analogy of our previous language we may describe two screw-chains so

related as conjugate screw-chains of Inertia.

359. Harmonic screw-chains.

We make one more application of the theory of screw-chains to the

discussion of a kinetical problem. Let us suppose that we have any material

system with n degrees of freedom in a position of stable equilibrium under

the action of a conservative system of forces. If the system receive a small

displacement, the forces will no longer equilibrate, but the system will be

exposed to the action of a wrench on a screw-chain. We thus have two

corresponding sets of screw-chains, one set being the chains about which the

system is displaced, the other set for the wrenches which are evoked in

consequence of the displacements.

By similar reasoning to that which we have already used, it can be shown

that these two corresponding chain systems are homographic. We can

therefore find n screw-chains about which, if the system be displaced, a

wrench will be evoked on the same screw-chain, and (the forces having a

potential) it can be shown that this set of n screw-chains are co-reciprocal.

If after displacement the system be released it will continue to make
small oscillations. The nature of these oscillations can be completely
exhibited by the screw-chains. To a chain a, regarded as an instantaneous

screw-chain, will correspond the screw as an impulsive screw-chain. To the

chain a, regarded as the seat of a displacing twist, will correspond a wrench
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(f)
which is evoked by the action of the forces. It will, of course, generally

happen that the chain 6 is different from the chain &amp;lt;. It can however be

shown that 6 and
&amp;lt;/&amp;gt;

are not in every case distinct. There are n different

screw-chains, each of which regarded as a will have the two corresponding

screws 6 and &amp;lt; identical. Nor is it difficult to see what the effect of such a

displacement must be on the small oscillations which follow. A wrench is

evoked by the displacement, and since 6 and &amp;lt; coincide, that wrench is

undistinguishable from an infinitely small impulsive wrench which will

make the system commence to twist about a. We are thus led to the

result that

There are n screw-chains such that if the system be displaced by a twist

about one of these screw-chains, and then released, it will continue for ever to

twist to and fro on the same screw-chain.

Following the language previously used, we may speak of these as

harmonic screw-chains, and it can be shown that whatever be the small

displacement of the system, and whatever be the small initial velocities with

which it is started, the small oscillations are merely compounded of twist

vibrations about the n harmonic screw-chains.



CHAPTER XXV.

THE THEORY OF PERMANENT SCREWS*.

360. Introduction.

In commencing this chapter it will be convenient to recite a well-known

dynamical proposition, and then to enlarge its enunciation by successive

abandonment of restrictions.

Suppose a rigid body free to rotate around a fixed point. There are, as

is well known, three rectangular axes about any one of which the body
when once set in rotation will continue to rotate uniformly so long as the

application of force is withheld. These axes are known as permanent axes.

The freedom of the body in this case is of a particular nature, included in

the more general type known as Freedom of the Third Order. The Freedom

of the Third Order is itself merely one subdivision of the class which,

including the six orders of freedom, embraces every conceivable form of

constraint that can be applied to a rigid body. We propose to investigate
what may be called the theory of permanent screws for a body constrained

in the most general manner.

The movement of the body at each moment must be a twist velocity

about some one screw belonging to the system of screws prescribed by
the character of the constraints. In the absence of forces external to those

arising from the reactions of the constraints, the movement will not, in

general, persist as a twist about the same screw 6. The instantaneous screw

will usually shift its position so as to occupy a series of consecutive positions

in the system. It must, however, be always possible to compel the body to

remain twisting about 6. For this purpose a wrench of suitable intensity
on an appropriate screw 77 may have to be applied. Without sacrifice of

generality we can in general arrange that 77 is one of the system of screws

* Trans. Roy. Irish Acad., Vol. xxix. p. 613 (1890).
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which expresses the freedom of the body ( 96). It may sometimes appear
that the intensity of the necessary wrench on 77 vanishes. The body in

such a case requires no coercion beyond that of the original constraints to

preserve 9 as the screw about which it twists, and when this is the case we

shall describe as a permanent screw. This use of the word permanent
does not imply that the body could remain for ever twisting about this

screw, for the movement of the body to an appreciable distance will in

general entail some change in its relation to the constraints. The character

istic of the permanent screw is the absence of any acceleration in the body

twisting about it, using the word acceleration in its widest sense.

In the earlier parts of the chapter we shall discard the restrictions

involved in the assumption that the material arrangement is only a single

rigid body. The doctrine of screw-chains (Chap, xxiv.) enables us to extend

a considerable portion of the present theory to any mass-chain whatever.

Any number of material parts connected in any manner must still conform

to the general law, that the instantaneous movements can always be repre

sented by a twist about a certain screw-chain. In general the mass-chain

will have a tendency to wander from twisting about the original screw-chain.

In such cases the position of the instantaneous screw-chain cannot be

maintained without the imposition of further coercion than that which the

constraints supply. This additional set of forces may be applied by a

restraining wrench-chain, the relation of which to the instantaneous screw-

chain we shall have to consider. Sometimes it may appear that no restraining

wrench-chain is necessary beyond one of those provided by the reaction of

the constraints. The instantaneous screw-chain is then to be described as

permanent.

361. Different properties of a Principal Axis.

Another preliminary matter should be also noticed, because it exhibits

the relation of the subject discussed in this chapter to some other parts of

the Theory of Screws. In the ordinary theory of the rigid body there are,

as is well known, two distinct properties of a principal axis which possess

dynamical significance. We may think of a principal axis as the axis of a

couple which, when applied impulsively to the body, will set it rotating

about this axis. We may also think of the principal axis as a direction

about which, if a body be once set in rotation, it will continue to rotate.

The first of these properties by suitable generalization opens up the theory

of principal screw-chains of inertia, which we have already explained in

previous chapters. It is from the other property of the principal axis that

the present investigation takes its rise. It is important to note that two

quite different departments in the Theory of Screws happen to coalesce in

the very special case of a rigid body rotating around a point.
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362. A Property of the Kinetic Energy of a System.

It is obvious that the mere alteration of the azimuth about a fixed axis

from which a rigid body is set into rotation will not affect its kinetic energy,

provided the position of the axis and the angular velocity both remain un
altered.

A moment s reflection will show that this principle may be extended to

any movement whatever of a rigid body. At each instant the body is

twisting about some instantaneous screw a with a twist velocity a. Let
the body be stopped in a position which we call A. Let it receive a dis

placement by a twist of any amplitude about a and thus be brought to a

position which we call B*. Finally, let the body be started from its new

position B so as to twist again about a with the original twist velocity d,

then it is plain that the kinetic energy of the body just before being stopped
at the position A is the same as its kinetic energy just after it is started

from the position B.

Enunciated in a still more general form the same principle is as

follows :

Any mass-chain in movement is necessarily twisting about some screw-

chain. If we arrest the movement, displace the mass-chain to an adjacent

position on the same screw-chain, and then start the mass-chain to twist

again on the same screw-chain, with its original twist velocity, the kinetic

energy must remain the same as it was before the interruption.

This principle requires that whatever be the symbols employed, the

function T, which denotes the kinetic energy, must satisfy a certain identical

equation. I propose to investigate this equation, and its character will

perhaps be best understood by first discussing the question with co-ordinates

of a perfectly general type. We shall suppose the mass-chain has n degrees
of freedom.

Let the co-ordinates xlt ...xn represent the position of the mass-chain,

and let its instantaneous motion be indicated by x
l ,...xn . Let be the

initial position of the mass-chain, then in the time Bt it has reached the

position ,
whereof the co-ordinates are

x
l + x^t, ... xn + xn$t.

The movement from to must, like every possible movement of a

system, consist of a twist about a screw-chain. This is a kinematical fact,

wholly apart from whatever particular system of co-ordinates may have

* We have supposed that the pitch of this displacement is the same as the pitch of a. This

restriction is only introduced here because the constraints will generally forbid the body to make

any other twist about the axis of a. If the body were quite free we might discard the restriction

altogether as is in fact done later on
( 376).

B. 26
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been adopted. We call this screw-chain 0, and 6 denotes the twist velocity

with which the system moves round 0.

Choose any n independent screw-chains, about each one of which the

mass-chain is capable of twisting. Then 6 can be decomposed into n com

ponents which have twist velocities 1} ... 6n about the several screw-chains

of reference ( 355).

Since everything pertaining to the position or the movement of the

mass-chain must necessarily admit of being expressed in terms of the co

ordinates of the mass-chain, and since the quantities 1} ... On are definitely

determined by the position and movements of the mass-chain, it follows

that these quantities must be given by a group of formulae which may be

written

&quot;n Jn\%i y H&amp;gt;n j #1 &amp;gt; Xnj-

Let the mass-chain be stopped in the position A. Let it then be dis

placed to an adjacent position B defined by the following variations of the

co-ordinates

where 8e is a small quantity. From this new position B let the mass-chain

be started into motion so that it shall have the same twist velocity as it

had just before being stopped in A and about the same screw- chain. This

condition requires that each of the quantities lt ... Qn shall resume its original

value unaltered by the stoppage and subsequent restarting of the mass-

chain from a new position. There must accordingly be an adjustment of

8xl} ... 8xn to satisfy the equations

dxn

Under these circumstances T has obviously not altered, so that we
have also

dT dT . dT .. dT

Let us assume, for brevity, the symbol A, such that

* _ . d d

dxl dxn
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Then we obtain, by elimination of Bxl} ... 8xn ,
and 8e,

AT,

AA,

dT dT

dfn dfn

= 0.

dxl

&quot;

dx
1t

Such is the general condition which must be satisfied by the kinetic energy

of any material arrangement whatever. But the equation is so complicated

when expressed in ordinary rectangular co-ordinates that there is but little

inducement to discuss it.

363. The Identical Equation in Screw-chain Co-ordinates.

The Theory of Screw-chains exhibits this equation in a form of special

simplicity. For, suppose that

then the equation of the last article reduces to

We thus have the following theorem :

If the co-ordinates, #/ ,
... On , of a mass-chain be n twists about n screiv-

chains, belonging to the system of screw-chains which express the freedom of

the mass-chain, and if Oi, ... On be the twist velocities of the mass-chain about

these same screw-chains, then the kinetic energy T satisfies the equation

A dT
v i

~jm~&amp;gt;
f Un ja~f

~
aPJ aun

I have thought it instructive to exhibit the origin of this equation as

a special deduction from the case of co-ordinates of the general type. For

a brief demonstration the following simple argument suffices :

If the mass-chain be displaced through S0/, ... S0n while the velocities

are unaltered, the change of kinetic energy is

If the change of the position be due to a small twist Se around the screw-

chain with co-ordinates l} ... 6n ,
then

262
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but from the physical property of the kinetic energy already cited, it appears

that this kind of displacement cannot change the kinetic energy, whence

A
dT , dT _

&quot; n ~

364. The Converse Theorem.

Let us take the general case where the co-ordinates are ocl ,...xn and

xl ,
... xn . Suppose that cb2 ,

... xn are all zero, then x^ is the velocity of the

mass-chain. We shall also take xz ,
... xn to be zero, so that we only consider

the position of the mass-chain defined by x
l . Think now of the two positions

for which ^ = and x1
= x

1 respectively. Whatever be the character of the

constraints it must be possible for the mass-chain to pass from the position

X-L
= to the position xl #/ by a twist about a screw-chain. The magnitude

Xi is thus correlated to the position of the mass-chain on a screw-chain about

which it twists.

If the co-ordinates are of such a kind that the identical equation which T
must necessarily satisfy has the form

. dT . dT _
Xl
dxJ~

Xn
dxn

~

then for the particular displacement corresponding to the first co-ordinate,

#2 ,
... xn are all zero, and

and as T must involve x^ in the second degree, we have

T = Hx*
where H is independent of #/

Let #j be the twist velocity about the screw-chain corresponding to the

first co-ordinate, then, of course, A being a constant,

T = Ae*,

whence A 6f = Hxf,

VZtfj = A/774,

and by integration and adjustment of units and origins

& .

We thus see that while the displacement corresponding to the first co-ordinate

must always be a twist about a screw-chain, whatever be the actual nature of

the metric element chosen for the co-ordinate, yet that when the identical

equation assumes the form
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the metric element must be essentially the amplitude of the twist about the

screw-chain. We have thus proved the following theorem :

The co-ordinates must be twists about n screw-chains of reference whenever

the identical equation, satisfied by T, assumes the form

6
dT

. a dT_
9l &quot; ffn

~

365. Transformation of the Vanishing Emanant.

Suppose that the position and movement of a mass-chain were represented

by the co-ordinates #/, #&amp;lt;/, n ; #i&amp;gt; @2, - &n when referred to one set of

n screws of reference, and by &amp;lt;/&amp;gt;/, (f&amp;gt;
2 }

...
&amp;lt;,/;

&amp;lt;/&amp;gt;!,

&amp;lt; 2 ,
&amp;lt;/&amp;gt;

when referred to

another set of screws of reference. Then of course these sets of co-ordinates

must be linearly connected.

We may write

4 - (11) ft .-.. + (!)*, ,

= (nl) &amp;lt;/... + (&amp;gt;,)&amp;lt;,;.

Then, by differentiation

4 -(ii) ^...

Thus the two sets of variables are co-gredients, and by the theory of

linear transformations we must have

dT , dT dT : dT

The expression on either side of the equation is of course known in algebra

as an emanant ( 261).

We could have foreseen this result from the fact that whatever set of

n independent screw-chains belonging to the system was chosen, the identical

equation must in each case assume the standard form.

366. The General Equations of Motion with Screw- chain

Co-ordinates.

The screw-chain co-ordinates of a mass-chain with n degrees of freedom

are #/, ... dn ;
the co-ordinates of the velocities are 1} ... 0*. Let 77 be the

wrench-chain which acts on the system. Let the components of the wrench-

chain, when resolved on the screw-chains of reference, have for intensities

Vi &amp;gt; W- Let p l ,
... pn be the pitches of the chains of reference, by which

is meant that 2pt
is the work done on that screw-chain by a twist of unit

amplitude against a wrench of unit intensity on the same screw-chain. Then

the screw-chains of reference being supposed to be co-reciprocal, we have,
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irom Lagrange s equations,

d (dT\ dT
~ = ^W.T?] .

dt \d0J dd,
w -

dt\de

These equations admit of a transformation by the aid of the identity

e^- f
dT

-o
*ap&quot;

n
den

-

Differentiating this equation by &lt we find

but

dT * _ ,
**

= Q _ _ ,

dt \dej
~

J

dd?
2

de.de,
n

de, den
*

de^ei
+ n

de~de~f

whence, by substitution

AfdT.} = 0fT d*T dT

dt\dej
~

l

de^&quot;

n

Hence when screw-chain co-ordinates are employed Lagrange s equations

may be written in the form

ifT d T d T
*

367. Generalization of the Eulerian Equations.

The equations just written can be further simplified by appropriate
choice of the screw-chains of reference. We have already assumed the
screw-chains of reference to be co-reciprocal. If, however, we select that

particular group which forms the principal screw-chains of inertia ( 357),
then every pair are conjugate screw-chains of inertia besides being reciprocal.
In this case T takes the form



368] THE THEORY OF PERMANENT SCREWS. 407

Neglecting the small quantities 6-^ ... &c. we have

-r = 0, &C.
d6.de,

Introducing these values we obtain

dT

These may be regarded as the generalization for any material arrangement

whatever of the well-known Eulerian equations for the rotation of a rigid

body around a fixed point. If there are no external forces then
i\&quot; ,

. . . rjn
&quot;

are all zero, and the equations of movement assume the simple form

AT

368. The Restraining Wrench-chain.

If a mass-chain be twisting about an instantaneous screw-chain 0, the

mass-chain will, in general, presently forsake 6 and gradually adopt one

instantaneous screw-chain after another. It is however possible, by the

application of a suitable wrench-chain, to compel the mass-chain to continue

twisting about the same screw 6 with unchanged twist velocity. We now

proceed to the discovery of this restraining wrench-chain when no other

external forces act on the mass- chain.

As all the accelerations of 6 must vanish, the co-ordinates of the wrench-

chain required are obtained by imposing the conditions

1
= 0; a

= 0,...0n =0.

We therefore infer from the general equations of 366, that if IJ L &quot;,
. . . r) n

&quot;

are the co-ordinates of the restraining wrench-chain we must have

1 dT

1 dT
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whcnce we deduce the following theorem :

If the position of a mass-chain be referred to co-reciprocal screw-chains

of reference, then

1 dT 1 dT

Pi dffi pn d6n

are the co-ordinates of the restraining wrench-chain which would coerce the

mass-chain into continuing to twist about the same screw-chain 6*.

369. Physical meaning of the Vanishing Emanant.

We may verify this theorem by the following method of viewing the

subject. It must be possible to coerce the system to twist about 6 by the

imposition of special constraints. The reactions of these constraints will

constitute, in fact, the restraining wrench-chain. It is, however, a character

istic feature that, as the system is, ex hypothesi, still at liberty to twist

about 6, the reaction of any constraints which are consistent with this

freedom must lie on a screw-chain reciprocal to 0.

The condition that two screw-chains, 6 and rj, shall be reciprocal ( 354)
s

but this is clearly satisfied if for
i)1} ... we substitute

l^dT^ 1 dT
piW pn d0n

]

for the equation then becomes

dT
i. fl

dT
n

i

ddr&quot;
n
de~r

which, when multiplied by 0, reduces to the known identity

e
dT ^ dT

o
*ap&quot;-

+
*n?--?.-

We thus obtain a physical meaning of this equation. It is no more than an

expression of the fact that the restraining wrench-chain must be reciprocal
to the instantaneous screw-chain.

370. A displacement without change of Energy.
It should also be noticed that provided the twist velocities remain un

altered the kinetic energy will be unchanged by any small displacement
of the mass-chain arising from a twist on any screw-chain reciprocal to the

restraining screw-chain.

* A particular case of this, or what is equivalent thereto, is given in Williamson and Tarleton s

Dynamics, 2nd ed., p. 432.
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For, if 6-^, ... d,i be the co-ordinates of the displacement, the change in

Tis

^.+ +0 ~
which may be written

O dT- i0 L&amp;lt;W-.

but this will be zero if, and only if, the screw-chain #/, ... n be reciprocal

to the screw-chain

^ dT ^dT^
pl ddj

&quot;

pn dQn

371. The Accelerating Screw-chain.

When the mass-chain has forsaken the instantaneous screw-chain 6, and

is twisting about another instantaneous screw-chain
&amp;lt;,

there must be a

twist velocity about some screw-chain p, which, when compounded with the

twist velocity about 6, gives the twist velocity about
&amp;lt;/&amp;gt;.

When &amp;lt; and are

indefinitely close, then p is the accelerating screw-chain.

Taking the n principal screw-chains of inertia as the screws of reference

and assuming that external forces are absent, we have

,i dT
11 = dl7

,if 20 -a un un

It is plain that the co-ordinates of the accelerating screw-chain are 1 ,
... n ,

whence we have the following theorem:

If a mass-chain be twisting around a screw-chain 6, and if external forces

are absent, the co-ordinates of the corresponding accelerating screw-chain are

proportional to

I dT I dT

372. Another Proof.

It is known from the theory of screw-chains (357) that if a quiescent

mass-chain receive an impulsive wrench-chain with co-ordinates

11 2 11 2
til U-n

TT^ 1 &quot;

pn&amp;gt;

P\ Pn

the mass-chain commences to twist about the screw-chain, of which the

co-ordinates are

pi, Pn-
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Jf, by imposition of a restraining wrench-chain, the mass-chain continues

to twist about the same screw-chain 6, the restraining wrench-chain has

neutralized the acceleration. It follows that the restraining wrench-chain,

regarded as impulsive, must have generated an instantaneous twist velocity

on the accelerating screw-chain, equal and opposite to the acceleration that

would otherwise have taken place. The co-ordinates of this impulsive

wrench-chain are proportional to

dT 1 dT

Pl d0l

&quot;
&quot;

Pnd0n
&quot;

The corresponding instantaneous screw-chain is obtained by multiplying

these expressions severally by

and thus we find, as before, for the co-ordinates of the accelerating screw-

chain

373. Accelerating Screw-chain and instantaneous Screw-chain.

We have, from the expressions already given,

. dT rlT

M(utf& + ...+ utfjj = e, JL
+ . . . en j* ,

.

But the right-hand side is the emanant which we know to be zero, whence

This shows that 1} ... 6n , and lf ... dn are on conjugate screw-chains of

inertia, and hence we deduce the following theorem :

Whenever a mass-chain is moving without the action of external forces,

other than from constraints restricting the freedom, the instantaneous screw-

chain and the accelerating screw-chain are conjugate screw-chains of inertia.

374. Permanent Screw-chains.

Reverting to the general system of equations ( 366) we shall now in

vestigate the condition that 6 may be a permanent screw-chain. It is obvious

that if 0J, ... n are all zero, then

dT dT_
d0i

&quot;
&quot;

d0n

must each be zero. If, conversely, the differential coefficients just written

are all zero, then the quantities j ,
... n must each also vanish.
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This is obviously true unless it were possible for the determinant

dd?

d*T

to become zero. Remembering that T is a homogeneous function of the

quantities l) ... n in the second degree, the evanescence of the determinant

just written would indicate that T admitted of expression by means of n 1

square terms, such as

This vanishes if

= 0, &c.;

each of these is a linear equation in lt ... n ,
and consequently a real system

of values for 6^ ... n must satisfy these equations, and render T zero. It

would thus appear that a real motion of the mass-chain would have to be

compatible with a state of zero kinetic energy. This is, of course, im

possible ;
it therefore follows that the determinant must not vanish, and

consequently we have the following theorem :

If the screw-chains of reference be co-reciprocal, then the necessary and
the sufficient conditions for 6 to be a permanent screw are that its co-ordinates

l , 2 ,
... n shall satisfy the equations

dT
=o- ^=o

dOl d0n

There are n of these equations, but they are not independent. The cmanant

identity shows that if n 1 of them be satisfied, the co-ordinates so found

must, in general, satisfy the last equation also.

375. Conditions of a permanent Screw-chain.

As the quantities #/, . . . tl are small, we may generally expand T in

powers, as follows :

T=T + 1 T1 +...0n Tn

The equation

therefore becomes

dT
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and as #/, a , &c., are indefinitely small, this reduces to

2*1
=

0,

where 2\ is a homogeneous function of lt 2 ,
... Bn in the second degree.

For the study of the permanent screws we have, therefore, n equations

of the second degree in the co-ordinates of the instantaneous screw-chain,

and any screw-chain will be permanent if its co-ordinates render the several

differential coefficients zero. We may write the necessary conditions that

have to be fulfilled, as follows :

Let us denote the several differential coefficients of T with respect to the

variables by I, II, III, &c. Then the emanant identity is

1i + 2n + 3ni + ...=o,

and we may develop any single expression, such as III, in the following

form :

III = III!A2 + III22 2
2 + III^s

2 + 2111,-M + . . . 2IIIM 4 .

As the emanant is to vanish identically, we must have the coefficients of

the several terms, such as Of, Q?Q.ly A0Ai &c
-&amp;gt;

all zero, the result being

three types of equation

In = 0, I-B+ II 12
= 0, I23 +II 1 3 + IIIi2

=
&amp;gt;

1122 = 0, IIU + I12 =0, &C.,

11133 = 0, IIB + IIIB = &amp;gt;

&C.
f

IV^ = 0, &c., &c.

&c.

Of the first of these classes of equations, In = 0, there are n, of the second

A e^ +u- A n(n-l)(n-2) . w(n+l)(n+2)
there are n (n

-
1), and of the third, ^^ ,

in all,
-i

^ 5 .

1 . L . o 1 . Z

376. Another identical equation.

Let T be the kinetic energy of a perfectly free rigid body twisting for

the moment around a screw 6. It is obvious that T will be a function of

the six co-ordinates, #/, . . . #6 ,
which express the position of the body, and

also of 0j, ...
6&amp;gt;

the co-ordinates of the twist velocity,

T=f(0l ,...0. t ft, ...A).

We may now make a further application of the principle employed in

302. The kinetic energy will be unaltered if the motion of the body be

arrested, and if, after having received a displacement by a twist of amplitude

e about a screw of any pitch on the same axis as the instantaneous screw,

the body be again set in motion about the original screw with the original

twist velocity. This obvious property is now to be stated analytically.
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It has been shown in 265 that if lt 2 ,
... 6 are the co-ordinates of

a screw of zero pitch, then the co-ordinates of a screw of pitch px on the

same axis are respectively

* px dR A px dR * px dR
&quot;l~l

---- -~
, t/2 &quot;1

-- --
T~ ,

. . . t/u T-- ~ -
.

^ d01 4p2 d02 4&amp;gt;p
6 d0G

In these expressions px denotes an arbitrary pitch, while R is the

function

es + fa ... + 6
2 + 2 (12) eA + 2 (23) e,e3 , &c.,

where (12) is the cosine of the angle between the first and second screws of

reference, and similarly for (23), &c.

The principle just stated asserts that T must remain unchanged if we

substitute for #/, #2 ,
&c - the expressions

We thus obtain the formula

p^dR^dT
,

A p,dRy^ = Q

^dejde, 4&amp;gt;p
6 deJ d06

As this must be true for every value of px ,
we must have, besides the

vanishing ernanant, the condition

^dR dT^ 1^?^ =0
pl dO, dffi p6 d06 d06

~

It is plain that this is equivalent to the statement that the screw whose

co-ordinates are

l^dR T_dR ^dR
~Pi d0\ P* d02 p* d66

must be reciprocal to the screw defined by the co-ordinates

I dT_ l^dT^ \dT
Pl d0l

&quot;

p,d0:r
&quot;

p6 d06

&quot;

The former denotes a screw of infinite pitch parallel to and hence it

follows that the restraining screw must be perpendicular to 6. Remember

ing also that the restraining screw is reciprocal to 0, it follows that the

restraining screw must intersect 0. We thus obtain the following result :

If be the screw about which a free rigid body is twisting, then to check

the tendency of the body to depart from twisting about a restraining wrench

on a screw which intersect* at right angles must in general be applied.
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377. Different Screws on the same axis.

Let the body be displaced from a standard position to another position

denned by the co-ordinates #/, 2 ,
. . . 6 ,

and let it then be set in rotation

about a screw of zero pitch with a twist velocity whose co-ordinates are

lt 2 , ... 6 . Let the kinetic energy of the body in this condition be T.

Suppose that in addition to the rotation about 6 the body of mass M
also received a velocity v of translation parallel to 0. Then the kinetic

energy of the body would be T
,
where

It is obvious that the position of the body, i.e. the co-ordinates $/, 0.f, ... e ,

can have no concern in ^Mv2
,
whence

dT dT
,a ,

=
-J0-, ,

and similar equations.
at/i CtC/!

But a body rotating about with an angular velocity and translated

parallel to with the velocity v is really rotating about a screw on the

same axis as and with a pitch v -f- p. As v may have any value we obtain

the following theorem :

All instantaneous screws lying on the same axis have the same restraining

screw.

378. Co-ordinates of the Restraining Wrench for a free rigid

body.

Suppose the body to have a standard position from which we displace it

by small twists #/, . . . 6 around the six principal screws of inertia. While

the body is in its new position it receives a twist velocity of which the

co-ordinates relatively to the six principal screws of inertia are lt ... 6 .

To compute the kinetic energy we proceed as follows : Let a point lie

initially at oc, y, z, then, by the placing of the body at the starting position

the point is moved to X, Y, Z, where

X = a (0,
-

2 ) + y (05

f + 6 )
- z (03

f + 0/) + x,

Y = b (03

f -
0/) + z (0, + 2 )

- x (0, + U ) + y,

Z = c (0r;
-

6 ) + x (0, + 0/)
-
y (0/ + a ) + z,

in which a, b, c are the radii of gyration on the principal axes. The six

principal screws of inertia lie, of course, two by two on each of the three

principal axes, with pitches + a, a on the first, + b, b on the second,

and + c, c on the third.

In consequence of the twist velocity with the components #1,... 6 ,
each

point X, Y, Z receives a velocity of which the components are
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a (6,
-

0.) + Y(0r, + eG)-Z (03 + 4),

6 (B, -0J + Z (0! + 2)
- X (e r&amp;gt;

+ 6),

c (A - 0) + X (A + 4)
- I

7
(9, + 4).

Before substitution for X, Y, Z it will be convenient to use certain abbre

viations,

0i 2
=

1 ; &i 2
=

pi ; 0i + 0.2
= \i , BI + 2

=
&)] ,

/]//}/ /} A Q i Q \ Q \ Q
&quot;3 #4 = e2 , 3 (74

= p2 , &quot;3 + #4 = A-2- U 3 + (74
=

&amp;lt;W2 ,

$&amp;gt;
# = e3 ; 5 $6

=
p3 ; #5 + #/ = X3 , 5 + fi

=
&amp;lt;w s -

With these substitutions in v2 the square of the velocity of the element we

readily obtain after integration and a few reductions and taking the total

mass as unity,

2
c
2

)

.

2(i)i bc^p^cos X2 &amp;lt;w3&)j (c
2 a2

)

&amp;gt;3&)i XsO^a^ (a
2 62

),

whence we easily find

7/TT

If T;/ ,
... rj s

&quot;

be the co-ordinates of the restraining wrench, then, as shown

in 368,

&quot;= 1^T
P*d0r

whence we deduce the following fundamental expressions for the co

ordinates of the restraining wrench :

pMi&quot;
=

acp3w2 + abp2ws + (6
2

c
2

) &)2&)3 ,

PM-i = + acp3(o.2 abp2co3 + (b&quot;
c
2

)
&&amp;gt;2 &&amp;gt;3 ,

PMs&quot;
=

abpico3 + cbpsWi + (c
2 a2

) w^w^

PPl&quot;
= + abpitos cbpsW! + (c

2 a2

) o)so) l ,

PS^S&quot;
=

bcpzW! + acpiO)2 + (a
2 62

) w^w*,

Pets&quot;
= + fop^ acpi(o2 + (a

2 62
)

As usual, we here write for symmetry

pl== + a; p.,
= -a; p3

= + b;

We verify at once that

Pw&quot;01 + ...

but this is of course known otherwise to be true, because the restraining
screw must be reciprocal to the instantaneous screw.
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These equations enable us to study the correspondence between each

instantaneous screw 6 and the corresponding restraining screw 77.
It is to

be noted that this correspondence is not of the homographic, or one-to-one

type, such as we meet with in the study of the Principal Screws of Inertia,

and in other parts of the Theory of Screws. The correspondence now to

be considered has a different character.

379. Limitation to the position of the Restraining Screw.

If a particular screw 6 be given, then no doubt, a corresponding screw r)

is given definitely, but the converse is not true. If 77 be selected arbitrarily

there will not in general be any possible 6. If, however, there be any one 0,

then every screw on the same axis as 6 will also correspond to the same 77.

From the equations in the last article we can eliminate the six quantities,

6l ,
. . .

(i ;
we can also write ??/

=
i)&quot;^,

. . . rj n
&quot; =

tj&quot;r)n where 77&quot;
is the intensity

of the restraining wrench and ^,,..1)^ the co-ordinates of the screw on

which it acts.

We have a
(%&quot; + V )

= 2abp2a)3 2ac/&amp;gt;3
&amp;lt;w2 ,

2
c
2

r) 1 + 7;2 , p.2 p3

whence = 6 c ,

a 7?! 7/2 C02 W3

and from the two similar equations we obtain, by addition,

b- j^ 77! + 7/ 2 c
2 a2

773 + 774 a2 62 % + 77,; _
a % ^2 b *73

-
*?4 c 775-776

It might at first have been supposed that any screw might be the possible

residence of a restraining wrench, provided the corresponding instantaneous

screw were fitly chosen. It should however be remembered that to each

restraining screw corresponds a singly infinite number of possible instan

taneous screws. As the choice of an instantaneous screw has five degrees

of infinity, it was to be presumed that the restraining screws could only

have four degrees of infinity, i.e. that the co-ordinates of a restraining screw

must satisfy some equation, or, in other words, that they must belong to a

screw system of the fifth order, as we have now shown them to do.

380. A verification.

We confirm the expression for the co-ordinates of 77 in the following manner.

It has been shown ( 376) that so long as retains the same direction and

situation, its pitch is immaterial so far as
77

is concerned. This might have

been inferred from the consideration that a rigid body twisting about a

screw has no tendency to depart from the screw in so far as its velocity of

translation is concerned. It is the rotation which necessitates the restrain

ing wrench if the motion is to be preserved about the same instantaneous
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screw. We ought, therefore, to find that the expressions for the co-ordinates

of
?) remained unaltered if we substituted for 1} ... 6 , the co-ordinates of

any other screw on the same straight line as 6. These are ( 47)

04), 04
-y (03

where H is arbitrary.

Introducing these into the values for rj^, it becomes

- aca)2 (ft + -- a)3 }
+ abw.A U% + -?-

j + (&
2 - c

2

) &&amp;gt;2 &&amp;gt;3 ,

y C .. / \ /

from which .H&quot; disappears, and the required result is proved.

The restraining screw is always reciprocal to the instantaneous screw,

and, consequently, if e be the angle between the two screws, and d their

distance apart,

(Pi + Pe) cos e - d sin e = 0.

We have seen that this must be true for every value of pg ,
whence

cos e =
;

d =
;

i.e. the two screws must intersect at right angles as we have otherwise shown
in 376.

This also appears from the formulae

Vi +W = 26p2 &&amp;gt; 3 2c/93 &&amp;gt;2 ,

1)3&quot; + -n&quot;
=

2c/o8 a&amp;gt;i

-
2a/&amp;gt;

1 o&amp;gt;3 ,

multiplying respectively by &&amp;gt;,,
&&amp;gt;2 ,

eos , and adding, we get

til + 17s) (01 + #2) + (% + ^4&amp;gt; (03 + 4 ) + (^75 + 17) (05 + 6)
= 0,

which proves that rj and ^ are rectangular ;
but we already know that they

are reciprocal, and therefore they intersect at right angles.

381. A Particular Case.

The expressions for the restraining wrenches can be illustrated by taking
as a particular case an instantaneous screw which passes through the centre

of gravity.

B. 27
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The equations to the axis of the screw are

apl + 3/0)3
zo)2 _ bp2 + za&amp;gt;i

#a)3 _ c/33 + xa)2 yw^

0&amp;gt;1
&&amp;gt;2

W 3

If x, y, z are all simultaneously zero, then

ap1= bp1 = cp3

ft)! ft&amp;gt;2 0&amp;gt; 3

and these are, accordingly, the conditions that the instantaneous screw passes

through the centre of gravity.

With these substitutions the co-ordinates become

pl7)l

&quot; =
(6

2 - c
2

) ft&amp;gt;2 ft&amp;gt;3 ; Pals&quot;
=

(c
2 - a2

) 30i ; PM*&quot;
= (a

2 - &2
) iw2 ,

PM9

&quot; =
(&
- c

2

) &&amp;gt;2 a&amp;gt;3 ; PM&quot;
=

(c
2 - a2

) u,^ ; jp^&quot;
= (a

2 - 62

) &)
1a)2 ;

remembering that ^ = + a
; p2

= - a, &c., we have

% &quot; +V =0; 7
7/ + 774

// = 0; V+W-0;
but these are the conditions that the pitch of 77 shall be infinite

;
in other

words the restraining wrench is a couple, as should obviously be the case.

From the equations already given, we can find the co-ordinates of the

instantaneous screw in terms of those of the restraining screw.

We have

__~
2 (6

2 - c
2
) (c

2 - a2

) (a
2 - 62

)

,-j-f O TT . JJand
O&amp;gt;i

= tl -
77 -fj: ] f&amp;gt;2

== ti T~, T, 77V j ^3 &quot; ~~7 77 /7\

a (r} 1 7/2 ) (773 ^4 j C ^7/5 f] 6 )

If we make

then we have

3

&quot;*

- . _
G

&quot;

2pT &quot;2o6c

In these expressions, /&amp;gt; fl
is the pitch of 6, and is, of course, an indeterminate

quantity.

382. Remark on the General Case.

If the freedom of a body be restricted, then any screw will be permanent,

provided its restraining screw belong to the reciprocal system. For the body
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will not depart from the original instantaneous screw except by an accelera

tion. This must be on a screw which stands to the restraining screw in the

relation of instantaneous to impulsive, but in the case supposed these two

screws are reciprocal, therefore they cannot be so related, and therefore there

is no acceleration.

There is little to be said as to the restraining wrench when the freedom

is of the first order. Of course, in this case, as every movement of the body
can only be a twist about the screw which prescribes its freedom, the

restraining wrench is provided by the reactions of the constraints. It is

only where the body has liberty to abandon its original instantaneous screw

that the theory of the restraining wrench becomes significant.

383. Two Degrees of Freedom.

If a rigid body has two degrees of freedom, then it is free to twist about

every screw on a certain cylindroid. If the body be set initially in motion

by a twist velocity about some one screw on the surface, then, in general,

it will not remain twisting about this screw. A movement will take place

by which the instantaneous axis gradually comes into coincidence with

other screws on the cylindroid. If we impose a suitable restraining wrench

i), then of course can be maintained as the instantaneous screw; 77 is

reciprocal to 6. It may be compounded with any reactions of the constraints

of the system. Thus, given 6, there is an entire screw system of the fifth

order, consisting of all possible screws reciprocal to 0, any one screw of which

may be taken as the restrainer. Of this system there is one, but only one,

which lies on the cylindroid itself. There are many advantages in taking it

as the restraining wrench, and it entails no sacrifice of generality ;
we there

fore have the following statement : To each screw on the cylindroid, regarded

as an instantaneous screw, will correspond one screw, also on the cylindroid,

as a restraining screw.

The position of this restraining screw is at

once indicated by the property that it must be

reciprocal to the instantaneous screw. If we

employ the circular representation for the

screws on the cylindroid (fig. 42), and if be

the pole of the axis of pitch, then it is known

that the extremities of any chord, such as IR
drawn through 0, will correspond to two re

ciprocal screws ( 58). If therefore / be the

instantaneous screw, R must be the restraining

screw. If a body free to twist about all the screws on the cylindroid be set

in motion by a twist velocity about /. it will be possible, by a suitable wrench

27-2
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applied on the screw corresponding to R, to prohibit the body from changing

its instantaneous screw.

Let be the pole of the axis of inertia, then, if IA be a chord drawn

through ,
the points / and A correspond to a pair of conjugate screws of

inertia ( 135). It further appears that A is the instantaneous screw corre

sponding to an impulsive wrench on R ( 140). Therefore the effect of the

wrench on R when applied to control the body twisting about 7 is to com

pound its movement with a nascent twist velocity about A. Therefore A
must be the accelerating screw corresponding to /. We thus see that

Of two conjugate screws of inertia, for a rigid body with two degrees of

freedom, either is the accelerator for a body animated by a twist velocity about

the other.

384. Calculation of T.

In the case of freedom of the second order we are enabled to obtain the

form of T, from the fact that the emanant vanishes, that is,

If we assume that T is a homogeneous function of the second degree in

0i and 2 ,
the solution of this equation must be

T =M2 + zseA + Me,2 + H
(6&amp;gt;;02

- o&y + (0/02
- #/ e,) (A0, + M),

in which L, S, M, H, A are constants. If we further suppose that 0, and #./

are so small that their squares may be neglected, then the term multiplied

by H may be discarded, and we have

T =M2

whence

Thus, for the co-ordinates of the restraining screw, supposing the screws of

reference to be reciprocal, we have

from which it is evident that

which is, of course, merely expressing the fact that 77 and 9 are reciprocal.

385. Another method.

It may be useful to show how the form of T, just obtained, can be derived

from direct calculation. I merely set down here the steps of the work and

the final result.
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Let us take any two screws on the cylindroid a and ft, and let their co

ordinates, when referred to the absolute screws of inertia, be

ls ... 6 ,
and &, ... /8.

Then any other screw on the cylindroid, about which the body has been

displaced by a twist, by components #/ on a. and 2 on ft will have, for co

ordinates, ^ *MV...%tf*M .

and the screw about which the body is twisting, with a twi^t velocity 0, will

have, for co-ordinates,

It readily appears that, so far as the terms involving #/and #./are concerned,

the kinetic energy is the expression

where

A = + be (! + 2) [( 3
-

6) (& - &) - (3 - 4&amp;gt; (A - &)]
+ (6

2 - c
2
) (a, + 04) (a, + a 6) (A + &

+ ca (ag + 4) [(a,
-

a.,) (& - /36)
-

( 5
-

6) (A - A)]
+ (c

2 - a2
) ( B + 6) (! + 2) (/3S

+ a6 (as + 6) [(a,
-

4) (A - &) - (ai
- a2 ) (/33

-
/34)]

+ (a
2 - 62

) (! + aa) ( 3 + 4) (A

= + be (& + /88 ) [( 5
-

6) 09,
- A) - (a,

-
4) (A -

-
(Z&amp;gt;

2 - c
2

) (a: + a,

ca 3 + !
-

2 / B
-

/ 6
-

5
-

-
(c

2 - a2
) ( 3 + 4) (/SB

-
a,) (A - /32)

- (i -
-

(a
2 - 62

) (a, + .) (A + A) (A + A).

386. The Permanent Screw.

We now write the equations of motion for a body which has two degrees

of freedom, and is unacted upon by any force, the screws of reference being

the two principal screws of inertia.

We have, from the general equations (367)

M&quot; 2/3
^^=
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Introducing the value just obtained for T,

[386-

There must be one screw on the cylindroid, for which

This screw will have the accelerations ^ and 2 ,
both zero, and thus we have

the following theorem :

If a rigid body has two degrees of freedom, then, among the screws about

which it is at liberty to twist, there is one, and in general only one, which has

the property of a permanent screw.

The existence of a single permanent screw in the case of freedom of the

second order seems a noteworthy point. The analogy here ceases between

the permanent screws and the principal screws of inertia. Of the latter

there are two on the cylindroid ( 84).

387. Geometrical Investigation.

Let N (fig. 43) be the critical point on the circle which corresponds to

the permanent screw ( 50). Let P be a screw 0, the twist velocity about

Oi

Fig. 43.

which is 0. Let ue be a linear parameter appropriate to the screw 6, such

that Mug
262 is the kinetic energy.

Let Ox and 2 be the two screws of reference on the cylindroid and for

convenience let the chord 00Z be unity. Let the point Q correspond to

another screw
&amp;lt;f&amp;gt;,

then from 57

Ptolemy s theorem gives

PQ6(f&amp;gt;
=

2 &amp;lt;l $102-

Now let &amp;lt; be the adjacent screw about which the body is twisting in a time

8t after it was twisting about 6.
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Then

01
= @i + OiOt,

&amp;lt;j&amp;gt;2

~ $2 + dzot,

whence

which is, accordingly, the rate at which P will change its position. If we

substitute for 0j and 62 their values already found in the last article, we

obtain for the velocity of P the expression

N being the position of the permanent screw, let p be the length of the

chord P^, then the expression just written assumes the form

where k is a constant.

This expression illustrates the character of the screw corresponding to N.

If p be zero, then the expression for this velocity vanishes. This means that

P has no tendency to abandon N
;
in other words, that the screw correspond

ing to N is permanent.

388. Another method.

It is worth while to investigate the question from another point

of view.

Let us think of any cylindroid 8 placed quite arbitrarily with respect to

the position of the rigid body. A certain restraining screw i) will corre

spond to each screw 6 on S. As 6 moves over the cylindroid, so must the

corresponding screw 17 describe some other ruled surface S . The two

surfaces, S and 8
,

will thus have two corresponding systems of screws,

whereof every two correspondents are reciprocal. One screw can be dis

covered on S
,
which is reciprocal, not alone to its corresponding 6, but to

all the screws on the cylindroid. A wrench on this ij
can be provided by the

reactions of the constraints, and, consequently, the constraints will, in this

case, arrest the tendency of the body to depart from 6 as the instantaneous

screw. It follows that this particular 6 is the permanent screw.

The actual calculation of the relations between 77 and the cylindroid is as

follows :

A set of forces applied to a rigid system has components X, T, Z at

a point, and three corresponding moments F, G, H in the rectangular planes

of reference.
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Let p be the pitch of the screw on which the wrench thus represented

lies, and let a, y, z be the co-ordinates of any point on this screw. Then,
in the plane of Z the moments of the forces are xY yX, and if to this be

added pX, the whole must equal H.

Thus we have the three equations, so well known in statics,

F=pX+yZ -zY,

G=pY+zX-xZ,
H=pZ + xY -yX.

The centrifugal acceleration on a point P is, of course, co
2PH, where o&amp;gt; is

the angular velocity, and PH the perpendicular let fall on the axis. The
three components of this force are X

y Y ,
Z

, where

X =
ft&amp;gt;

2 sin 6 (x sin y cos 0},

Y = ft)
2 cos 6 (y cos 6 x sin 0),

Z = ft)
2 0-rasin 2(9),

and the three moments are F
,
G

,
H

, where

F = to
2 sin 9 (yz sin + xz cos 6 Zmy cos 6),

G = ft)
2 cos 6 ( yz sin 6 xz cos 6 + Zmx sin 0),

H = to
2

1(2/
2 - 2

) sin cos 6 + xy cos 20}.

We are now to integrate these expressions over the entire mass, and we

employ the following abbreviations ( 324) :

jxdm = Mx jydm = My ; $zdm = Mz
;

jxydm = M13
2

; fxzdm= Ml.? ; jyzdm = Ml? ;

X = fX dm , Y=fY dm; Z = jZ dm;
F = fF dm; G=fG dm; H=JH dm;

then, omitting the factor Ma?, we have

X= + (a? sin 6 y cos 6) sin 0,

Y= (x sin 6 7/ cos 6) cos 0,

Z = Z
Q
m sin 20

;

F = + sin (I,
2 sin + I* cos 0)

- 2my sin cos 0,

G = - cos (^ sin (9 +
,

2 cos 0) + 2mx sin cos 0,

#=
(/&amp;gt;i

2 -
p*} sin cos + r- cos 20.

We can easily verify that
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We now examine the points on the cylindroid intersected by the axis of

the screw

F=pX+yZ -zY,

G=pY+zX-xZ,
H=pZ + xY-yX.

We write the equations of the cylindroid in the form

x R cos
&amp;lt;f&amp;gt;

; y = R sin &amp;lt;

;
z = m

sin2&amp;lt;/&amp;gt;;

then, eliminating p and R, and making

V = FX+GY+HZ,
we find, after a few reductions,

tan3 ^(YV-GU) + tan2

&amp;lt;f&amp;gt;
(XV - FU + 2mX U)

This cubic corresponds, of course, to the three generators of the cylindroid
which the ray intersects.

If we put

then the cubic becomes, by eliminating m,

The factor Ftan^ + Z simply means that the restraining screw cuts the

instantaneous screw at right angles.

The two other screws in which 77 intersects the cylindroid are given by
the equation

(XYV-XGU) tan2 + (XYV- FUY) = 0.

These two screws are of equal pitch, and the value of the pitch is

Pl (XYV-XGU)+p2 (FUY-XYV}
U(FY-GX)

where p^ and p.2 are the pitches of the two principal screws on the cylindroid.
After a few reductions the expression becomes

V (I*
- xopl ) sin + (I* + yopa) cos 6

U xQ sin y cos 6

This is the pitch of the two equal pitch screws on the cylindroid which
rj

intersects. If
77 is to be reciprocal to the cylindroid, then, of course, the

pitch of
77 itself should be equal and opposite in value to this expression.

Hence the permanent screw on the cylindroid is given by

(li*
-
XopJ sin 6 + (72

2 + y p2) cos 6 = 0.
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We notice here the somewhat remarkable circumstance, that if

/!
2 -

ajojpi
=

0&amp;gt;

and I? + y*P*
= 0,

then all the screws on the cylindroid are permanent screws.

It hence appears that if two screws on a cylindroid are permanent, then

every screw on the cylindroid is permanent.

389. Three Degrees of Freedom.

Let us now specially consider the case of a rigid body which has freedom

of the third order. On account of the evanescence of the emanant we have

*dT * dT , dT _
*W 4*W 4 *W?

It is well known that if U, V, W be three conies whose equations submit to

the condition

those conies must have three common intersections.

It therefore follows that the three equations

must have three common screws. These are, of course, the permanent

screws, and, accordingly, we have the theorem :

A rigid system which has freedom of the third order has, in general, three

permanent screws.

There will be a special convenience in taking these three screws as the

screws of reference. We shall use the plane representation of the three-

system, and the equations of the conies will be

AJA + BAOi + CAO^O, or 7=0,

AAos + BAOi + cAo, = o, F=O,

AAh + BA^ + cAe^o, w=o-,

but, as elu + e2v+03w = o,

identically, we must have

^ = 0; A, = Q; A 3
= 0;

(71= 0; C2 =0; B3 =0;

and also A : + B2 + C3
= 0.

For symmetry we may write
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We thus find that when T is referred to the three permanent screws of the

system, its expression must be

T= aB* + 602
2 + c03

2 + ZfdA + %ff$A + %h0A

+ (ji-v) 010A + (v-\)0M + (X - A*) S A-

Let
77&quot;

be the intensity of any wrench acting on a screw 77 belonging to

the system, and let 2-orlr
, represent the virtual coefficient between 77 and the

first of the three screws of reference.

Then, substituting for T in Lagrange s equations, we have

+ ah + h 2 + g 3 -(p-v) eA =
-n-^7?&quot;,

If 77 be the restraining screw, then an appropriate wrench ?/ should be

capable of annihilating the acceleration, i. e. of rendering

0j = ; 2
=

; S
=

;

whence the position of 77, and the intensity 77&quot;
are indicated by the equations

(V
-

We can now exhibit the nature of the correspondence between
77 and 0, for

If we make H=$i$A+n&quot;&amp;gt; and omit the dots over lt &c., we have

+ w32773)
- H (a

-
7),

03 Oia*?! + ^32i?2 +p3
r

ns) =H(@- a).

We may reduce them to two homogeneous forms, viz.

where L = - M=; N = \
d^ *

^772 ^773

390. Geometrical Construction for the Permanent Screws.
We see that 77 must lie on the polar of the point lt 2 , 3 with respect

to the pitch conic ( 201) or the locus of all the screws for which
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We also see that 77 must lie on the polar of the point a#i, /3#2 &amp;gt; 7$s with

regard to the same conic.

We thus obtain a geometrical construction by which we discover the

restraining screw when the instantaneous screw is given.

Two homographic systems are first to be conceived. A point of the first

system, of which the co-ordinates are 81} #2 &amp;gt; &s, has as its correspondent a

point in the second system, with co-ordinates a01} /302 , j03 . The three

double points of the homography correspond, of course, to the permanent
screws.

To find the restraining screw ?? corresponding to a given instantaneous

screw 0, we join to its homographic correspondent, and the pole of this

ray, with respect to the pitch conic, is the position of 17.

The pole of the same ray, with regard to the conic of inertia ( 211), is

the accelerator. It seems hardly possible to have a more complete geo
metrical picture of the relation between 77 and 9 than that which these

theorems afford.

391. Calculation of Permanent Screws in a Three-system.

When a three-system is given which expresses the freedom of a body
we have seen how in the plane representation the knowledge of a conic (the

conic of inertia) will give the instantaneous screw corresponding to any

given impulsive screw. A conic is however specified completely by five

data. The rigid body has nine co-ordinates. It therefore follows that there

is a quadruply infinite system of rigid bodies which with respect to a given

three-system will have the same conic of inertia. If in that three-system a

be the instantaneous screw corresponding to 77 as the impulsive screw for

any one body of the quadruply infinite system, then will 77 and a stand in

the same relation to each other for every body of the system.

The point in question may be illustrated by taking the case of a four-

system. The screws of such a system are represented by the points in space,

and the equation obtained by equating the kinetic energy to zero indicates

a quadric. For the specification of the quadric nine data are necessary.

This is just the number of co-ordinates required for the specification of

a rigid body. If therefore the inertia quadric in the space representation

be assumed arbitrarily, then every instantaneous screw corresponding to a

given impulsive screw will be determined; in this case there is only a finite

number of rigid bodies and not an infinite system for which the correspond

ence subsists.

We thus note that there is a special character about the freedom of the

fourth order which we may state more generally as follows. To establish

a chiastic homography ( 292) in an n-system requires (n l)(n + 2)/2 data.
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If the restraints are such that the number of degrees of freedom is less

than four, then an infinite number of rigid bodies can be designed, such

that the impulsive screws and their corresponding instantaneous screws

shall be represented by a given chiastic homography. If n exceed four then

it will not in general be possible to design a rigid body such that its corre

sponding impulsive screws and instantaneous screws shall agree with a given
chiastic homography. If, however, n 4 then it is always possible to design
one but only one rigid body so that its pairs of corresponding impulsive
screws and instantaneous screws shall be represented by a given chiastic

homography.

Returning to the three-system we may remark that, having settled the

inertia conic in the plane representation we are not at liberty to choose

three arbitrary points as representing the three permanent screws. For

if these three points were to be chosen quite arbitrarily, then six relations

among the co-ordinates of the rigid body would be given, and the conic of

inertia would require five more conditions. Hence the co-ordinates of the

rigid body would have in general to satisfy eleven conditions which, of

course, is not generally possible, as there are only nine such co-ordinates.

It is therefore plain that when the conic of inertia has been chosen at least

two other conditions must necessarily be fulfilled by the three points which

are to represent the permanent screw. This fact is not brought out by
the method of 389 in which, having chosen the three permanent screws

arbitrarily, we have then written down the general equation of a conic

as the inertia conic. This conic should certainly fulfil at least two con

ditions which the equations as there given do not indicate.

We therefore calculate directly the expression for the kinetic energy of

a body in the position #/, #2 , 3 twisting about a screw with twist velocities

#1, 62 ,
63 when the screws of reference are the three principal screws of the

three-system with pitches a, b, c, and when a?
, y ,

z
, If, 12

2
,

13
2

, pf, p2
*

} p/ are

the nine co-ordinates ( 324) of the rigid body relative to these axes.

It is easily shown that we have for the kinetic energy the mass M of the

body multiplied into the following expression where squares and higher

powers of #/, #2
&amp;gt; QS are omitted :

i (a
2^2 +W + c

2
3
2 + p*0* + p*ej + p3*03*)

+ 0A (c -b)x + 0A (a -c)y + 0A (b
-

a) z.

+ 0A(p*
2 -

p&amp;gt;?
+ uc - ab)

+ 0A (V - cz )
- 6A (4

2
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+ 0A (Pi
2 -

p3
2 + ba - be)

+ 0A
(/&amp;gt;

2
2 -

pi +cb- GO)

+ 0A (I?
-

fyo)
-

30i (li
2

[391-

+ 0*

+ 01

The coefficients of #/, #2 , 0s respectively each equated to zero will give
three conies 7=0, F= 0, Tf = 0. These conies have three common points
which are of course the three permanent screws.

If we introduce a new quantity O we can write the three equations

(I/
-

+ (l*-ax*)02 + (ab
-

p-&amp;gt;

+ H) 3
= 0.

The elimination of ft between each pair of these equations will produce
the three equations U = Q, V0, W = 0. If therefore we eliminate 1} 2 , 3

from the three equations just written the resulting determinant gives a

cubic for H. The solution of this cubic will give three values for fl which

substituted in the three equations will enable the corresponding values of

0i &amp;gt; 0zy 0s to be found. We thus express the co-ordinates of the three per
manent screws in terms of the nine co-ordinates of the rigid body and their

determination is complete.

It may be noted that the same permanent screws will be found for any
one of the systems of rigid bodies whose co-ordinates are

whatever h may be.

392. Case of Two Degrees of Freedom.

We have already shown that there is a single permanent screw in every

case where the rigid body has two degrees of freedom. We can demonstrate

this in a different manner as a deduction from the case of the three-

system.

Consider a cylindroid in a three-system, that is of course a straight

line in the plane representation ( 200). Let this line be AB (tig. 44). If

the movements of the body be limited to twists about the screws on the

cylindroid, there may be reactions about the screw which corresponds to the

pole P of this ray with respect to the pitch conic, in addition to the reactions

of the three-system.
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The permanent screw on this cylindroid will be one whereof the restrain

ing screw coincides with P. In gene.ral, the points corresponding homo-

Fig. 44.

graphically to the points on the ray AB will form a ray CD. The inter

section 0, regarded as on CD, will be the correspondent of some point X on

AB. The restraining screw corresponding to X will therefore lie at P, and

will be provided by the constraints. Accordingly, X is a permanent screw

on the cylindroid, and it is obvious from the construction that there can be

no other screw of the same character.

We can also deduce the expression for T in the two-system from the

expression of the more general type in the three-system ;
for we have

T= T + o -
v) o; eA +(v-\) o;dA + (*-/*) #3 0A.

Consider any screw on the cylindroid defined by

substituting, we obtain

(0, 8
-

2 3) [(X
-

ft) P02 + (\-v) Q93],

which we already know to be the form of the function in the case of the two-

system ( 384).

393. Freedom of the Fourth Order.

The permanent screws in the case of a rigid body which has freedom of

the fourth order may be investigated in the following manner: If a screw

be permanent, the corresponding restraining screw 77 must be provided by the

reactions of the constraints. All the reactions in a case of freedom of the

fourth order lie on the screws of a cylindroid. On a given cylindroid three

possible 77 screws can be found. For, if we substitute al + \^1 , 2 + X/32 , &c.,

for T/!, 7/2, &c., in the equation

{

c-a
[

b 7?3
-

7/4
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we obtain a cubic for X. The three roots of this cubic correspond to three 77

screws. Take the 6 corresponding to one of the 77 screws, then, of course,

6 will not, in general, belong to the four-system. We can, however, assign

to Q any pitch we like, and as it intersects 77
at right angles, it must cut two

other screws of equal pitch on the cylindroid ( 22). Give to 6 a pitch equal

and opposite to that of the two latter screws, then 6 is reciprocal to the

cylindroid, and therefore it belongs to the four-system. We thus have a

permanent screw of the system, and accordingly we obtain the following

result :

In the case of a rigid body with freedom of the fourth order there are, in

general, three, and only three, permanent screws.

394. Freedom of the Fifth and Sixth Orders.

When a rigid body has freedom of the fifth order, the screws about which

the body can be twisted are all reciprocal to a single screw p. In general, p

does not lie on the system prescribed by the equation which the co-ordinates

of all possible 77 screws have to satisfy. It is therefore, in general, not

possible that the reaction of the constraints can provide an
77. There are,

however, three screws in any five-system which possess the property of

permanent screws without however making any demand on the reaction of

the constraints. The existence of these screws is thus demonstrated :

Through the centre of inertia of the body draw the three principal axes,

then, on each of these axes one screw can always be found which is reciprocal

to p. Each of these will belong to the five-system, and it is obvious from

the property of the principal axes, that if the body be set twisting about one

of these screws it will have no tendency to depart therefrom.

A body which has freedom of the sixth order is perfectly free. Any screw

on one of the principal axes through the centre of inertia is a permanent

screw, and, consequently, there is in this case a triply infinite number of

permanent screws.

395. Summary.

The results obtained show that for a rigid body with the several degrees

of freedom the permanent screws are as follows :

No. of Permanent Screws

Freedom I



CHAPTER XXVI.

AN INTRODUCTION TO THE THEORY OF SCREWS IN NON-EUCLIDIAN SPACE.

396. Introduction.

The Theory of Screws in non-Euclidian space is a natural growth from
some remarkable researches of Clifford* in further development of the

Theory of Riemann, Cayley, Klein and Lindemann. I here give the in

vestigation sufficiently far to demonstrate two fundamental principles
( 42

7&amp;gt; 434) which conduct the theory to a definite stage at which it

seems convenient to bring this volume to a conclusion.

I have thought it better to develop from the beginning the non- Euclidian

geometry so far as we shall at present require it. It is thus hoped to make
it intelligible to readers who have had no previous acquaintance with this

subjectf. I give it as I have worked it out for my own instruction*. It is

indeed characteristic of this fascinating theory that it may be surveyed from

many different points of view.

397. Preliminary notions.

Let #!, #2 ,
x3 ,

xt be four numerical magnitudes of any description. We
may regard these as the co-ordinates of an object. Let ylt y2 , y3t y4 be the

co-ordinates of another object, then we premise that the two objects will be
identical if, and only if

1 ^2 3 4

?/l

~
#2

~
2/3

~
2/4

All possible objects may be regarded as constituting a content.

&quot;Preliminary Sketch of Biquaternions,&quot; Proceedings of the London Mathematical Society,
Vol. iv. 381395 (1873). See also &quot;On the Theory of Screws in a Space of Constant Positive

Curvature,&quot; Mathematical Papers, p. 402 (1876). Clifford s Theory was much extended by
the labours of Buchheim and others

; see the Bibliographical notes.

t We are fortunately now able to refer English readers to a Treatise in which the Theory of
non-Euclidian space and allied subjects is presented in a comprehensive manner. Whitehead,
Universal Algebra, Cambridge, 1898.

Trans. Roy. Irish Acad., Vol. xxvm. p. 159 (1881), and Vol. xxix. p. 123 (1887).

B - 28
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All objects whose co-ordinates satisfy one linear homogeneous equation

we shall speak of as an extent.

All objects whose co-ordinates satisfy two linear homogeneous equations

we shall speak of as a range.

It must be noticed that the content, with its objects, ranges, and extents,

have no necessary connexion with space. It is only for the sake of studying

the content with facility that we correlate its several objects with the points

of space.

398. The Intervene.

In ordinary space the most important function of the co-ordinates of a

pair of points is that which expresses their distance apart. We desire to

create that function of a pair of objects which shall be homologous with

the distance function of a pair of points in ordinary space.

The nature of this function is to be determined solely by the attributes

which we desire it to possess. We shall take the most fundamental pro

perties of distance in ordinary space. We shall then re-enunciate these

properties in generalized language, and show how they suffice to determine

a particular function of a pair of objects. This we shall call the Intervene

between the Two Objects.

Let P, Q, R be three collinear points in ordinary space, Q lying between

the other two
;
then we have, of course, as a primary notion of distance,

PQ + QR = PR.

In general, the distance between two points is not zero, unless the points

are coincident. An exception arises when the straight line joining the points

passes through either of the two circular points at infinity. In this case,

however, the distance between every pair of points on the straight line is

zero. These statements involve the second property of distance.

In ordinary geometry we find on every straight line one point which is

at an infinite distance from every other point on the line. We call this the

point at infinity. Sound geometry teaches us that this single point is

properly to be regarded as a pair of points brought into coincidence by the

assumptions made in Euclid s doctrine of parallelism. The existence of a

pair of infinite points on a straight line is the third property which, by
suitable generalization, will determine an important feature in the range.
The fourth property of ordinary space is that which asserts that a point at

infinity on a straight line is also at infinity on every other straight line

passing through it. This obvious property is equivalent to a significant law

of intervene which is vital in the theory. If we might venture to enunciate

it in an epigrammatic fashion, we would say that there is no short cut to

infinity.



THE THEORY OF SCREWS TN NON-EUCLIDIAN SPACE. 435

The fifth property of common space which we desire to generalize is

one which is especially obscured by the conventional coincidence of the two

points at infinity on every straight line. We prefer, therefore, to adduce

the analogous, but more perfect, theorem relative to two plane pencils of

homographic rays in ordinary space, which is thus stated. If the two rays
to the circular points at infinity in one pencil have as their correspondents
the two rays to the circular points in the other pencil, then it is easily
shown that the angle between any two rays equals that between their two

correspondents.

We now write the five correlative properties which the intervene is to

possess. They may be regarded as the axioms in the Theory of the Content.

Other axioms will be added subsequently.

399. First Group of Axioms of the Content.

(I) If three objects, P, Q, R on a range be ordered in ascending para
meter ( 400), then the intervenes PQ, QR, PR are to be so determined that

(II) The intervene between two objects cannot be zero unless the objects

are coincident, or unless the intervene between every pair of objects on the

same range is also zero.

(III) Of the objects on a range, two either distinct or coincident are at

infinity, i.e. have each an infinite intervene with all the remainder.

(IV) An infinite object on any range has an infinite intervene from every

object of the content.

(V) If the several objects on one range correspond one-to-one with the

several objects on another, and if the two objects at infinity on one range
have as their correspondents the two objects at infinity on the other, then

the intervene between any two objects on the one range is equal to that

between their correspondents on the other.

400. Determination of the Function expressing the Intervene

between Two Objects on a Given Range.

Let x
l ,
x2 ,

xs ,
x4 ,

and y1} yz , ys , y4 be the co-ordinates of the objects by
which the range is determined. Then each remaining object is constituted

by giving an appropriate value to p in the system,

Let A. and /* be the two values of p which produce the pair of objects of

which the intervene is required. It is plain that the intervene, whatever it

be, must be a function of xlt x2 ,
#3 , #4 and yj} y2 , y s&amp;gt; yt ,

and also of X and
/z.

So far as objects on the same range are concerned, we may treat the co-

28-2
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ordinates of the originating objects as constant, and regard the intervene

simply as a function of X, and /*,
which we shall denote by/(X, yu,).

The form of this function will be gradually evolved, as we endow it with

the attributes we desire it to possess. The first step will be to take a third

object on the same range for which the parameter shall be v, where X, p, v

are arranged in order of magnitude. Then, as we wish the intervene to

possess the property specified in Axiom I., we have

By the absence of /u from the right-hand side, we conclude that
/j,

must

disappear identically from the left-hand side. This must be the case

whatever X and v may be. Hence, no term in which /A enters can have

X as a factor. It follows that f(\, p) must be simply the difference of two

parts, one being a function of X, and the other the same function of p.

Accordingly, we write,

The first step in the determination of the intervene function has thus been

taken. But the form of
(f&amp;gt;

is still quite arbitrary.

The rank of the objects in a range may be concisely defined by the

magnitudes of their corresponding values of p. Three objects are said to be

ordered when the corresponding values of p are arranged in ascending or descend

ing magnitude.

Let P, Q, Q be three ordered objects, then it is generally impossible

that the intervenes PQ and PQ shall be equal ; for, suppose them to be so,

then

PQ + QQ = PQ by Axiom I.;

but, by hypothesis, PQ = PQ ,

and hence QQ = 0.

But, from Axiom Tl., it follows that (Q and Q being different) this cannot be

true, unless in the very peculiar case in which the intervene between every

pair of objects on the range is zero. Omitting this exception, to which we

shall subsequently return, we see that PQ and PQ cannot be equal so long

as Q and Q are distinct.

We hence draw the important conclusion that there is for each object P
but a single object Q, which is at a stated intervene therefrom.

Fixing our attention on some definite value B (what value it does not

matter) of the intervene, we can, from each object X, have an ordered equi-

intervene object /j, determined. Each X will define one
yu,.

Each p will

correspond to one X. The values of X with the correlated values of
/u,

form

two homographic systems. The relation between X and yu depends, of course,
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upon the specific value of 8, but must be such that, when one of the

quantities is given, the other shall be determined by a linear equation. It

is therefore assumed that X and
//,
must be related by the equation

where the ratios of the coefficients A, B, C, D shall depend, to some extent,

upon 8. If X and // be a given pair of parameters belonging to objects

at the required intervene, then

by which the disposable coefficients in the homographic equation are reduced

to two.

The converse of Axiom II., though generally true, is not universally so.

It will, of course, generally happen that when two objects coincide their

intervene is zero. But on every range two objects can be found, each

of which is truly to be regarded as two coincident objects of which the

intervene is not zero.

Let us, for instance, make X =
yu,

in the above equation ;
then we have

This equation has, of course, two roots, each of which points out an object

of critical significance on the range. We shall denote these objects by
and . Each of them consists of a pair of objects which, though actually

coincident, have the intervene 8. The fundamental property of and is

thus demonstrated.

Let X be any object on the range ;
then (Axiom I.)

XO + 8 = XO;
and as 8 is not zero, we have

XO =
infinity.

Therefore every object on the range is at an infinite intervene from 0. A
similar remark may be made with respect to

;
and hence we learn that

the two objects, and , are at infinity.

We assume, in Axiom in., that there are not to be more than two objects

on the range at infinity : these are, of course, and . We must, therefore,

be conducted to the same two objects at infinity, whatever be the value of

the intervene 8, from which we started.* We thus see that while the

original coefficients A
, B, C, D do undoubtedly contain 8, yet that 8 does not

affect the equation
A\* + (B + C) X + D = 0.

*
My attention was kindly directed to this point in a letter from Mr F. J. M Aulay.
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It follows that D -T- A and (B + C) -=- A must both be independent of 8. We

may therefore make

and thus the homographic equation becomes

where A is the only quantity which involves 8.

The equation can receive a much simpler form by taking the infinite

objects as the two originating objects from which the range was determined.

In this case the equation

must have as roots X = and X = x, and therefore

4=0; D = 0,

hence the homographic equation reduces to

B\ + C/* = ;

since B -=- C is a function of the intervene 8, we may say, conversely, that

We have, however, already learned that the intervene is to have the

form

Now we find that it can also be expressed, with perfect generality, in the

form

It follows that these two expressions must be equal, so that

In this equation the particular value of B does not appear, nor is it even

implied. The formula must therefore represent an identical result true for

all values of X and all values of
/it.

We may, therefore, differentiate the formula with respect both to \ and
to

fji,
and thus we obtain



400] THE THEORY OF SCREWS IN NON-EUCLIDIAN SPACE. 439

whence we deduce

X &amp;lt;

(&amp;gt;)

=
/*&amp;lt;/&amp;gt;

(/A

As X and p are perfectly independent, this equation can only subsist by

assuming for &amp;lt; a form such that

\&amp;lt;j&amp;gt; (\)
= H,

where H is independent of X. Whence we obtain

&amp;lt;/&amp;gt;

=
f,

and, by integration,

(X)
= H log X + constant.

The intervene is now readily determined, for

&amp;lt;j&amp;gt; (X)
-

&amp;lt;/&amp;gt;
O) = H log X - H log p,

= H log
-

.

f

We therefore obtain the following important theorem which is the well-

known* basis of the mensuration of non-Euclidian space :

Let #1, #8 , #g, #4 ,
and ylt ya , ys , y* be the two objects at infinity on a range,

and let a^ + X^i, #2 + Xy2 ,
x3 + \y3 ,

x + ^y, and xl + /u#1} x2 + /j,y2 ,
oc3 + ^y3 ,

i + py* be any two other objects on the range, then their intervene will be

expressed by
H (log X

-
log fi) t

where H is a constant depending upon the adopted units of measurement.

It will be useful to obtain the expression for the intervene in a rather

more general manner by taking the equation in X and /A, for objects at the

intervene 8, as

Let X and X&quot; be the two roots of this equation when //.
is made equal to X.

It follows that what we have just written may be expressed thus:

X^ + X (0
- IX -

IX&quot;) + fi (- 6 - ^X -
IX&quot;) + X X&quot; = 0.

For, if X = p, this is satisfied by either X or X&quot;,
while 6 disappears. 6 is, of

course, a function of the intervene, and it is only through 6 that the inter

vene comes into the equation. By solving for 9, we find

* Professor George Bruce Halsted remarks in Science, N. S., Vol. x., No. 251, pages 545557,

October 20, 1899, that &quot;Koberto Bonola has just given in the Bolletirw di Bibliografia e Storia

della Scienze Matematiche (1899) au exceedingly rich and valuable Bibliografia sui Fondamenti,

della Geometria in relazione alia Geometria non-Euclidea in which he gives 353 titles.&quot;
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The intervene itself is F (&), where F expresses some function; and,

accordingly,

When we substitute in this expression the value of 6 given above, we have

an identity which is quite independent of the particular 8. We must, there

fore, determine the functions so that this equation shall remain true for all

values of X, and all values of p. The formulae must therefore be true when

differentiated

d6_ __(/*-X )OA-X&quot;) d6 = (X-X )(X&quot;-X)

dx t-x)
2

d^ (/i-x)
2

whence,

or (X
- X )(X

-
X&quot;)

&amp;lt; (X) = O - X )(/A
-

X&quot;) f (/*),

which has the form

Considering the complete independence of both X and
/JL,

this equation re

quires that each of its members be independent alike of X and /*. We shall

denote them by H (X X&quot;)
where H is a constant, whence

(X
- X )(X

-
X&quot;) (j&amp;gt;

(\) = H(\
r -

X&quot;),

JUV-v x-x V

whence, integrating and denoting the arbitrary constant by C,

(f&amp;gt;(\)=H [log (X
- X )

-
log (X

-
X&quot;)] + G

;

similarly,

and, finally, we have for the intervene, or (X)
&amp;lt;/&amp;gt;

(^), the expression,

This expression discloses the intervene as the logarithm of a certain an-

harmonic ratio.

We may here note how a difficulty must be removed which is very

likely to occur to one who is approaching the non-Euclidian geometry for the
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first time. No doubt we find the intervene to be the logarithm of an an-

harmonic ratio of four quantities, but these quantities are not distances

nor are they quantities homologous with the intervene. They are simply
numerical. The four numbers, X, jj,,

X
,

X&quot; are merely introduced to define

four objects, one of them being,

and the others are obtained by replacing X by //,,
X

, X&quot;, respectively. All

we assert is, that if we choose to call the two objects defined by X and X&quot;

the objects at infinity, and that if we desire the intervene between the

objects X and
/j,

to possess the properties that we have already specified,

then the only function possible will be the logarithm of the anharmonic ratio

of these four numbers.

The word anharmonic is ordinarily applied in describing a certain

function of four collinear points. In the more general sense, in which we
are at this moment using the word, it does not relate to any geometrical or

spacial relation whatever
;

it is a purely arithmetical function of four abstract

numbers.

We may also observe that the relation between 6 and the intervene 8

is given by the equation
8

PH , 1
/i i/v \ \
&quot;It*

~ x )-s-

and the expression of the intervene as a function of 6
;
that is, the expression

F(6} is

401. Another process.

We may also proceed in the following manner. Let us denote the values

of X for the infinite objects on the range by pe
ie and pe~

ie
.

If then X, fji
be two parameters for two objects at an intervene

,
we must

have (p. 439)

X/i + X (e p cos 6) + fM ( e - p cos 6) + p
2 = 0.

Solving for e, we have

_ X/i p cos 6 (X + p,} + p
z

fji
X

The intervene 8 must be some function of e, whence
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whence
dF de _ dF p?

-
2//, cos + p**

( J de d\
~

de
~

(fi
-

X)
2

dF de _ dF A,
2 - 2X cos + p

2

* (/*

~~fadiM~Te ~(/a
-
\)

2

~

(X
2 - 2X cos + p

2

) &amp;lt; (A,)
=

(fj?
-

2/4 cos + p*) &amp;lt; (^)
=

p sin suppose.

Hence we have

. ,. x
,
/ p sin 6 \

&amp;lt;/&amp;gt; (X)
= tan-1 -

a
-

,

\p cos \J

and thus we get for the intervene with a suitable unit

o, . / psin 8 \ ( p sin 6 \
8 = tan- ]

^
- -tan&quot;

1 -*

-^ -1.
\p cos 6 \/ \p cos V p/

402. On the Infinite Objects in an Extent.

On each range of the extent there will be two objects at infinity, by the

aid of which the intervene between every two other objects on that range
is to be ascertained. We are now to study the distribution of these infinite

objects over the extent. Taking any range and one of its infinite objects,

0, construct any other range in the same extent containing as an object.

This second range will also have two infinite objects. Is to be one of

them? Here we add another attribute to our, as yet, immature conception
of the intervene.

In Euclidian space we cannot arrive at infinity except we take an

infinitely long journey. This is because the point at infinity on one straight
line is also the point at infinity on any other straight line passing through
it. Were this not the case, then a finite journey to infinity could be taken

by travelling along the two sides of a triangle in preference to the direct

route vid the third side. To develop the analogy between the conception of

intervene and that of Euclidian distance, we therefore assume (in Axiom IV.)

that an infinite object has an infinite intervene with every other object of

the content. In consequence of this we have the general result, that

If be an infinite object on one range, then it is an infinite object on every
one of the ranges divergingfrom 0.

The necessity for this assumption is made clear by the following con

sideration : Suppose that were an infinite object on one range containing
the object A, but were not an infinite object on another range OB, diverging
also from 0; then, although the direct intervene OA is infinite, yet the

intervenes from A to 5 and from B to would be both finite. The only

escape is by the assumption we have just italicised. Otherwise infinity

could be reached by two journeys, each of finite intervene.
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Take any infinite object 0. Construct a series of ranges in the extent,

each containing 0. Each of these ranges will have another infinite object,

Oi, 2 , 3 , &c. The values xlt #2 ,
x3 ,

which define Olt 2 , 3 , &c., must fulfil

some general condition, which we may express thus :

Form a range through Ol and 2 . There must be two infinite objects on

this range, and of course all other objects thereon will be defined by a linear

equation L = in xly x2 ,
x3 .

Every object satisfying the condition/^, xz ,
x3)

= is infinite, and there

fore all the values of x1} x2 ,
xs common to the two equations L = and

/(#!, a?2 ,
#3)

= must denote infinite objects. But we have already seen that

there are only two infinite objects on one range ;
therefore there can be

only two systems of values common to the two equations. In other words,

f(%i, x2 ,
x3) must be an algebraical function of the second degree. There

can be no infinite object except those so conditioned
; for, suppose that S

were one, then any range through S would have two objects in common
with /, and thus there would be three infinite objects on one range, which

is contrary to Axiom in.

Hence we deduce the following important result :

All the infinite objects in an extent lie on a range of the second degree.

We thus see that every range in an extent will have two objects in

common with the infinite range of the second order. These are, of course,

the two infinite objects on the range.

403. On the Periodic Term in the Complete Expression of the

Intervene.

We have found for the intervene the general expression

H (log X - log p).

We may, however, write instead of X,

(cos 2n7r + i sin 27r) X,

where n is any integer ;
but this equals

e
2inir\

;

hence, log X = Zimr + log X ;

and, consequently, the intervene is indeterminate to the extent of any
number of integral multiples of

The expression just written is the intervene between any object and
the same object, if we proceed round the entire circumference of the range.
We may call it, in brief, the circuit of the range.
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The intervene between the objects X and X is

iHir.

Nor is this inconsistent with the fact that \ = zero denotes two coincident

objects, as does also X= infinity. In each of these cases the coincident

objects are at infinity, and the intervene between two objects which coalesce

into one of the objects at infinity has an indeterminate value, and may thus,

of course, be iH-rr, as well as anything else.

404. Intervenes on Different Ranges in a Content.

Let us suppose any two ranges whatever. There are an infinite number

of objects on one range, and an infinite number on the other. The well-

known analogies of homographic systems on rays in space lead us to inquire

whether the several objects on the two ranges can be correlated homo-

graphically. Each object in either system is to correspond definitely with

a single object in the other system.

We determine an object on a range by its appropriate X. Let the

corresponding object on the other range be defined by X . The necessary

conditions of homography demand that for each X there shall be one X
,
and

vice versa. Compliance with this is assured when X and X are related by
an equation of the form

PXX + Q\ + R\ + 8 = 0.

Let \i, X2 ,
X 3 ,

X4 be any four values of X, and let
X/&amp;gt; X,/, X*/, X/ be the cor

responding four values of X
, then, by substitution in the equation just

written, and elimination of P, Q, R, S, it follows that

Xi Xs Xj X4 A! Xs A-2 X4

X^ \s Xj X4 X2 X3 Xj X4

We now introduce the following important definition :

By the expression, anharmonic ratio offour objects on a range, is meant

the anharmonic ratio of the four values of the numerical parameter by which

the objects are indicated.

We are thus enabled to enunciate the following theorem :

When the objects on two ranges are ordered homographically, the an

harmonic ratio of any four objects on one range equals the anharmonic ratio

of theirfour correspondents on the other.

Three pairs of correspondents can be chosen arbitrarily, and then the

equation last given will indicate the relation between every other X and its

corresponding X .

Among the different homographic systems there is one of special im

portance. It is that in which the intervene between any two objects in



404] THE THEORY OF SCREWS IN NON-EUCLIDIAN SPACE. 445

one range equals that between their correspondents in the other. But

this homography is only possible when a critical condition is fulfilled.

In the first place, an infinite object on one range must have, as its

correspondent, an infinite object on the other. For if X be an infinite

object on one range, it has an infinite intervene with every other object

on that range (Axiom iv.) ;
therefore X

,
the correspondent of X, must

have an infinite intervene with every other object on the second range.

If, then, X and Y are the infinite objects on one range, and X and Y
the infinite objects on the other, and if A and B be two arbitrary objects on

the first range, and A and B their correspondents on the other; then,

using the accustomed notation for anharmonic ratio,

But, if H be the factor (p. 440) for the second range, which H is for the first,

we have, since the intervenes are equal,

H log (ABXY) = H log (A BX Y ) ;

and, since the anharmonic ratios are equal, we obtain

H=H .

If, then, it be possible to order two homographic systems of objects, so that

the intervene between any two is equal to that between their correspondents,

we must have H and H equal ;
and conversely, when H and H are equal,

then equi-intervene homography is possible.

We have therefore assumed Axiom v. ( 399) which we have now seen

to be equivalent to the assumption that the metric constant H is to be the

same for every range of the content.

Nor is there anything in Axiom V. which constitutes it a merely gratuitous

or fantastic assumption. Its propriety will be admitted when we reduce our

generalized conceptions to Euclidian space. It is an obvious notion that

any two straight lines in space can have their several points so correlated

that the distance between a pair on one line is the same as that between

their correspondents on the other. In fact, this merely amounts to the

statement that a straight line marked in any way can be conveyed, marks

and all, into a different situation, or that a foot-rule will not change the

length of its inches because it is carried about in its owner s pocket.

In a similar, but more general manner, we desire to have it possible, on

any two ranges, to mark out systems of corresponding objects, such that the

intervene between each pair of objects shall be equal to that between their

correspondents. We have shown in this Article that such an arrangement
is possible, when, and only when, the property v. is postulated. We may
speak of such a pair of ranges as equally graduated.
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The conception of rigidity involves the notion that it shall be possible to

displace a system of points such that the distance between every pair of

points in their original position equals that between the same pair after

the displacement. We desire to have corresponding notions in the present

Theory, which will only be possible when we have taken such a special view

of the nature of the intervene as is implied in Axiom v.

405. Another Investigation of the possibility of equally Gradu
ated Ranges.

The importance of the subject in the last Article is so great in the

present Theory that I here give it from a different point of view.

Taking the infinite objects on a range as the originating objects, we have

on the first range for the intervene between the objects X and a,

H (log X - log a) ;

arid for the second range for the intervene between
ju,
and ft, we have

Regarding a and (3 as fixed, and X and ^ as defining a pair of correlative

objects, we get, as the relation between X and /n for equally graduated

ranges,

whence the relation between X and
//,

is thus given :

IT
H

When this is the case, there are several values of X corresponding to one

value of p., which may be thus found : Let m be any integer ; then, in the

usual manner,

x
fp\*( H . . H \

-
TS cos 2w ff if + * sm *m ~fr ^ ;

a \I3J \ H ff J

and therefore

fl_
H

or

fl_

\
H ! 2H
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or
H 1

. 4P

&c. &c. &c.

We see that the correspondence between X and
//.

cannot be of the homo-

graphic character, unless

H = H .

The necessity for this condition may be otherwise demonstrated by

considering the subject in the following manner:

The intervene between any two objects on one range is, of course,

ambiguous, to the extent of any integral number of the circuits on that range.

Let G and C be the circuits, and let 8 be an intervene between two objects

on the second range. If we try to determine two objects, a and X, on the

first range that shall have an intervene 8, we must also have another object

X
,
such that its intervene from a is B + C . Similarly, there must be another

object X&quot; with the intervene S + 2C&quot;, &c. It is therefore impossible to have

a single object at the intervene S + raC&quot; from a, unless it happened that

C=C
,

or that

H =H .

Thus, again, are we led to the conclusion that ranges cannot be equally

graduated unless their circuits are the same.

The circuits on every range in the content being now taken to be equal,

we can assume for the circuit any value we please. There are great advan

tages in so choosing our units that the circuit shall be TT
;
but we have as its

expression,

whence we deduce

406. On the Infinite Objects in the Content.

Certain objects in the content are infinite, and it is proposed to determine

the conditions imposed on xlt x^, #3 ,
x4 when they indicate one of these. If

an object be infinite, then every range through that object will have one

other infinite object. Let these be 1} 2 ,
&c. These several objects will

conform with the condition,

Every infinite object in the content must satisfy this equation ; and,

conversely, every object so circumstanced is infinite.
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Two linear equations in #1} a?2 ,
#3 ,

x4 determine a range, and the simul

taneous solution of these equations with

gives the infinite objects on that range but there can only be two and

hence we have the following important theorem :

The co-ordinates a;1} #2 ,
x3 ,

x4 of the infinite objects in a content satisfy an

homogeneous equation of the second degree.

We denote this equation by

407. The Departure.

Let the ranges x^ x2 , 0, be formed when the parameter x1 -r x2 has every

possible value, then the entire group of ranges produced in this way is called

a star. In ordinary geometry the most important function of a pair of rays

in a pencil is that which expresses their inclination. We have now to create,

for our generalized conceptions, a function of two ranges in a star which

shall be homologous with the notion of ordinary angular magnitude.

We shall call this function the Departure. Its form is to be determined

by the properties that we wish it to possess. In the investigation of the

departure between two ranges, we shall follow steps parallel to those which

determined the intervene between two objects.

If OP, OQ, OR be three rays in an ordinary plane diverging from 0, then

In general the angle between two rays is not zero unless the rays are coin

cident
;
but this statement ceases to be true when the vertex of the pencil is

at infinity. In this case, however, the angle between every pair of rays in

the pencil is zero.

Every plane pencil has two rays (i.e. those to the circular points at

infinity), which make an infinite angle with every other ray.

408. Second Group of Axioms of the Content.

We desire to construct a departure function which shall possess the

following properties :

(VI) If three ranges, P, Q, R, in a star, be ordered in ascending parameter,
and if the departure between two ranges, for example, P and Q, be expressed

by PQ, then

PQ + QR = PR.
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(VII) The departure between two ranges cannot be zero unless the ranges

are coincident, or unless the departure between every pair of ranges in that

star is also zero.

(VIII) Of the ranges in a star, two (distinct or coincident) are at infinity,

i.e. have each an infinite departure from all the remainder.

(IX) An infinite range has an infinite departure, not only with every

range in its star, but with every range in the extent.

(X) If the several ranges in one star correspond one to one with the

several ranges in another, and if the two infinite ranges in one star have as

their correspondents the infinite ranges in the other; then the departure

between any two ranges in one star is equal to that between the two corre

sponding ranges in the other.

409. The Form of the Departure Function.

The analogy of these several axioms to those which have guided us to

the discovery of the intervene, shows that the investigation for the function

of departure will be conducted precisely as that of the intervene has been
;

accordingly, we need not repeat the several steps of the investigation, but

enunciate the general result, as follows :

Let ac1} x.2 ,
and y1} yz be the co-ordinates of any two ranges in a star, and

let \i, \2, and
//,1} /i2 be the co-ordinates of the two infinite ranges in that star.

Then the departure between (xl ,
#2) and (y1} y2) is

Aa - yaX

410. On the Arrangement of the Infinite Ranges.

Every star in the extent will have two infinite ranges, and we have now

to see how these several infinite ranges in the extent can be compendiously

organized into a whole.

To aid in this we have assumed Axiom ix., the effect of which is to

render the following statement true. Let several objects on a range, 0, be

the vertices of a corresponding number of stars. If be an infinite range

in any one of the stars, then it is so in every one.

Let alt Oz, as be any three ranges in an extent. Then every range in

the same extent can be expressed by

#!! + #2a 2 -f x3a3 ,

where #lt x2 ,
x3 are the three co-ordinates of the range. It is required to

determine the relation between x1} #2 ,
x3 if this range be infinite.

B. 29
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An object L will be defined by an equation of the form, where Lly L2 ,
L3

are numerical,
L3x3

= 0,

for any two sets of values, xlt xz ,
x3 ,

which satisfy this equation, will deter

mine a pair of ranges which have the required object in common.

Let the relation between the co-ordinates of an infinite range be

/Oi, a?2 , s)
= 0;

then the infinite ranges in the star, whose vertex is the object L, will be

defined by co-ordinates obtained from the simultaneous solution of

= 0,

But there can only be two such ranges ; and, accordingly, the latter of these

equations must be of the second degree. We hence deduce the following

important result :

The infinite ranges in an extent may be represented by the different groups

of values of the co-ordinates xly xz ,
x3 which satisfy one homogeneous equation

of the second degree.

Remembering that the existence of zero intervene between every pair of

objects on a range is a consequence of the coincidence of the two objects of

infinite intervene on that range, we have the following result :

The range through, two consecutive objects of infinite intervene is a range of
zero intervene.

And, similarly, we have the following :

The object common to two consecutive ranges of infinite departure is the

vertex of a star of zero departure.

411. Relations between Departure and Intervene.

With reference to the theory of Departure, we thus see that there is a

system of critical ranges, and a system of critical objects in each extent.

Every critical range has an infinite departure from every other range. Every
critical object is the vertex of a star of which the departure between every

pair of ranges is zero. It will be remembered that in the theory of the

intervene we were conducted to the knowledge that every extent contained
a system of objects and ranges, critical with regard to the intervene. Each
critical object had an infinite intervene with every other object in the

extent. Each critical range possessed the property that the intervene

between any two objects thereon is zero. There are, thus, objects and

ranges critical with repect to the intervene. There are also objects and

ranges critical with respect to the departure. But nothing that we have
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hitherto assumed will entitle us to draw any inference as to the connexion,

much less as to the actual identity, between the critical systems related to

intervene, and those related to departure. We have already assumed five

properties for the intervene, and five like properties for the departure. These

are, in fact, the axioms by which alone the functions of intervene and of

departure could be constructed. But another axiom of quite a distinct type

has now to be introduced.

There are objects of infinite intervene, and objects of zero departure.

There are ranges of infinite departure, and ranges of zero intervene. A

range generally contains two objects of infinite intervene, and two of zero

departure. A star generally contains two ranges of infinite departure, and

two ranges of zero intervene. On a range of zero intervene the two objects

of infinite intervene coalesce, and their intervene from other objects on the

range becomes indeterminate. In a star of zero departure the two ranges

of infinite departure coalesce, and their departure from other ranges in

the same star becomes indeterminate. We have thus the following state

ment :

On a range of zero intervene, the intervene between every pair of objects

is zero, except where one particular object is involved, in which case the

intervene is indeterminate.

In a star of zero departure, the departure between every pair of ranges

is zero, except where one particular range is involved, in which case the

departure is indeterminate.

The new axiom to be now introduced will be formed as the others have

been by generalization from the conceptions of ordinary geometry. In that

geometry we have two different aspects in which the phenomenon of paral

lelism may be presented. Two non-coincident lines are parallel when the

ansle between them is zero, or when their intersection is at an infiniteo

distance. Without entering into any statement about parallel lines, we may

simply say, that when two different straight lines are inclined at the angle

zero, their point of intersection is at infinity. Generalizing this proposition,

we assume the following axiom or property, which we desire that our systems

of measurement shall possess.

412. The Eleventh Axiom of the Content.

This axiom, which is the first to bring together the notions of intervene

and of departure, is thus stated :

(xi) If two ranges in the same extent have zero departure, their common

object will be at infinity, and conversely.

The vertex of every star of zero departure will thus be at infinity, and

hence we deduce the important result that all the objects of infinite inter-

292
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vene are also objects of zero departure, and conversely. Thus we see that

the two systems of critical objects in the extent coalesce into a single

system in consequence of the assumption in Axiom xi.

Each consecutive pair of critical objects determine a range, which is a

range of infinite departure as well as of zero intervene.

The expression infinite objects will then denote objects which possess the

double property of having, in general, an infinite intervene from other objects

in the extent, and of being also the vertices of stars of zero departure.

The expression infinite ranges will denote ranges which possess the double

property of having, in general, an infinite departure with all other ranges,

and which consist of objects, the intervene between any pair of which is, in

general, zero.

There is still one more point to be decided. The measurement of depar

ture, like that of intervene, is expressed by the product of a numerical

factor with the logarithm of an anharmonic ratio. This factor is H for the

intervene. Let us call it H for the departure. What is to be the relation

between H and H l Here the analogy of geometry is illusory; for, owing
to the coincidence between the points of infinity on a straight line, H has to

be made infinite in ordinary geometry, while H must be finite. But in the

present more general theoryH is finite, and we have found much convenience
*t

derived from making it equal to -=
,
for then the entire circuit of any rangez

ft

is TT. We now stipulate that H is also to be ^ . The circuit of a star
it

will then be TT also.

With this assumption the theory of the metrics of an extent admits of a

remarkable development.

Let x, y, z be any three objects. Let a, b. c denote the intervenes

between y and z, z and x, x and y, respectively. Let the departure between

the ranges from x to y and x to z be denoted by A, from y to z and y to # be

denoted by B, and from z to x and z to y be denoted by C. Then,

sin A _ sin B _ sin G
sin a sin b sin c

cos a = cos b cos c 4- sin b sin c cos A,

cos b = cos c cos a + sin c sin a cos B,

cos c = cos a cos b + sin a sin b cos C.

Thus the formulae of spherical trigonometry are generally applicable through
out the extent*.

*
I learned this astonishing theorem from Professor Heath s very interesting paper, Phil.

Trans. Part n. 1884.
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413. Representation of Objects by Points in Space.

The several objects in a content are each completely specified when the

four numbers, xlt x2 ,
x3 ,

#4 , corresponding to each are known. It is only the

ratios of these numbers that are significant. We may hence take them to

be the four quadriplanar co-ordinates of a point in space. We are thus led

to the construction of a system of one-to-one correspondence between the

several points of an Euclidian space, and the several objects of a content.

The following propositions are evident :

One object in a content has for its correspondent one point in space, and
one point in space corresponds to one object in the content.

The several objects on a range correspond one to one with the several points
on a straight line.

The several objects in an extent correspond one to one with the several

points in a plane.

Since the objects at infinity are obtained by taking values of xl} xz , x3 ,
xt ,

which satisfy a quadric equation, we find that

The several objects at infinity in the content correspond with the several

points of a quadric surface.

This surface we shall call the infinite quadric.

The following theorem in quadriplanar co-ordinates is the foundation of

the metrics of the objects in the content by the points in space.

If #1; #2, s, \ and y1} y2 , y*, y* be the quadriplanar co-ordinates of two

points P and Q respectively, and if 1} 2 , 3 , 4 be any other four points on

the ray PQ whose co-ordinates are respectively

i, #2+^42/2, %3 + \y3 , #4 + ^42/4,

then, we have the following identity

Remembering the definition of the anharmonic ratio of four objects on a

range ( 404), we obtain the following theorem :

The anharmonic ratio of four objects on a range equals the anharmonic
ratio of their four corresponding points on a straight line.
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We hence deduce the following important result, that

The intervene between any two objects is proportional to the logarithm of

the anharmonic ratio in which the straight line joining the corresponding

points is divided by the infinite quadric.

We similarly find that

The departure between any two ranges in the same extent is proportional

to the logarithms of the anharmonic ratio of the pencil formed by their two

corresponding straight lines, and the two tangents in the same plane from

their intersection to the infinite quadric.

414. Poles and Polars.

The point #1} xz ,
x3 ,

x4 has for its polar, with regard to the infinite quadric,

the plane,

dU dU dU dU AX1 3 h X2 -j h X.A -j
h #4 -7

= 0.

dxi dx2 dx3 dxi

Thus we see that an object corresponding to the point will have a polar

extent corresponding to the polar of that point with regard to the infinite

quadric. The following property of poles and polars follows almost imme

diately.
7T

The intervene from an object to any object in its polar extent is equal to -^ .

We have hitherto spoken of the departure between a pair of ranges

which have a common object: we now introduce the notion of the departure

between a pair of extents by the following definition :

The departure between a pair of extents is equal to the intervene between

their poles.

415. On the Homographic Transformation of the Content.

In our further study of the theory of the content we shall employ,

instead of the objects themselves, their corresponding points in ordinary

space. All the phenomena of the content can be completely investigated

in this way. Objects, ranges, and extents, we are to replace by points,

straight lines, and planes. Intervenes are to be measured, not, indeed, as

distances, but as logarithms of certain anharmonic ratios obtained by ordinary

distance measurement. Departures are to be measured, not, indeed, as

angles, but as logarithms of anharmonic ratios of certain pencils obtained

by ordinary angular measurement.

I now suppose the several objects of a content to be ordered in two

homographic systems, A and B. Each object, X, in the content, regarded

as belonging to the system A, will have another object, Y, corresponding

thereto in the system B. The correspondence is to be simply of the one-to-
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one type. Each object in one system has one correspondent in the other

system. But if X be regarded as belonging to the system B, its correspondent
in A will not be Y, but some other object, Y .

To investigate this correspondence we shall represent the objects by
their correlated points in space. We take xl} x2 ,

x3 ,
x4 as the co-ordinates

of a point corresponding to as, and yl} y2 , y3 , y4 as the co-ordinates of the

point corresponding to y. We are then to have an unique correspondence

between as and y, and we proceed to study the conditions necessary if this

be complied with.

416. Deduction of the Equations of Transformation.

All the points in a plane L, taken as x points, must have as their

correspondents the points also of a plane ; for, suppose that the corre

spondents formed a surface of the nth degree, then three planes will have

three surfaces of the nth degree as their correspondents, and all their n 3

intersections regarded as points in the second system will have but the

single intersection of the three planes as their correspondent in the first

system. But unless n = 1 this does not accord with the assumption that the

correspondence is to be universally of the one-to-one type. Hence we see

that to a plane of the first system must correspond a plane of the second

system, and vice versa.

Let the plane in the second system be

AM + A.2y, + A 3y, + A 4yt
= 0.

If we seek its corresponding plane in the first system, we must substitute

for y1} 7/2, 2/s&amp;gt; 2/4
the corresponding functions of xly x.

2&amp;gt;

x3 ,
#4 . Now, unless

these are homogeneous linear expressions, we shall not find that this remains

a plane. Hence we see that the relations between X1) x2 ,x3 ,x4 and y\,y&amp;lt;i&amp;gt;y*,yi

must be of the following type where (11), (12), &c., are constants :

TA
= (11K + (12) *2 + (13) *3 + (14) *4 ,

7/2
=

(21) x, + (22) xz + (23) xs + (24) a&amp;gt;4 ,

y,
= (31K + (32) x, + (33)^3 + (34) #4 ,

/4
= (41X + (42)^2 + (43)^3 + (44) x4 .

Such are the equations expressing the general homographic transformation

of the objects of a content. From the general theory, however, we now

proceed to specialize one particular kind of homographic transformation.

It is suggested by the notion of a displacement in ordinary space. The

displacement of a rigid system is only equivalent to a homographic trans

formation of all its points, conducted under the condition that the distance

between every pair of points shall remain unaltered (see p. 2). In our extended

conceptions we now study the possible homographic transformations of a
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content, conducted subject to the condition that the intervene between

every pair of objects shall equal that between their correspondents.

417. On the Character of a Homographic Transformation

which Conserves Intervene.

In all investigations of this nature the behaviour of the infinite objects

is especially instructive. In the present case it is easily shown that every

object infinite before the transformation must be infinite afterwards

when moved to . For, let X be any object which is not infinite before the

transformation, nor afterwards, when it becomes X . Then, by hypothesis,

the intervene OX is equal to O X
;
but OX is infinite, therefore O X must

be also infinite, so that either or X is infinite
; but, by hypothesis, X is

finite, therefore must be infinite, so that in a homographic transformation

which conserves intervene, each object infinite before the transformation remains

infinite afterwards.

It follows that in the space representation each point, representing

an infinite object, and therefore lying on the infinite quadric U=Q must,

after transformation, be moved to a position which will also lie on the

infinite quadric. Hence we obtain the following important result :

In the space representation of a homographic transformation which con

serves intervene, the infinite quadric U=Q is merely displaced on itself.

A homographic transformation of the points in space will not, in general,

permit any quadric to remain unchanged. A certain specialization of the

constants will be necessary. They must, in fact, satisfy a single condition,

for which we shall presently find the expression.

Let cclt oc2 ,
x3 ,

#4 be the quadriplanar co-ordinates of a point, and let us

transform these to a new tetrahedron of which the vertices shall have as

their co-ordinates with respect to the original tetrahedron

1
. rr /y&amp;gt;

&quot;I ) *2 )
X3 &amp;gt;

&quot; 4 &amp;gt;

v&quot; &amp;lt;r&quot; r&quot; &amp;lt;r&quot;

*Tl i
a 2 ^3 &amp;gt; &quot;^l &amp;gt;

If then Xl} X 2 ,
X3 ,

X4 be the four co-ordinates of the point referred to

the new tetrahedron

+ Xi X* + x^&quot;Xs +
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For these equations must be linear and if Xz ,
X3 , X^ are all zero then

#i&amp;gt; 2, 3, #4 become a;/, #2 ,
x3 ,

x as they ought to do, and similarly for the

others, whence we get

X,=

vCo OC*&amp;gt;

OCn Otif? vu-

(KA oc*

We may write this result thus

Let us now suppose that the vertices of this new tetrahedron are the

double points of a homography defined by the equations

2h
= (11) x, + (12) x, + (13) x, + (14) x4t

y,
= (21) x, + (22) x2 + (23) 8 + (24) a?4 ,

y3
=

(31) ^ + (32) ^2 + (33) xt + (34) #4 ,

y4
= (41) ^ + (42) a;2 + (43) xa + (44) ar4 .

We have to solve the biquadratic

(11) -p (12) (13) (14) =0.

(21) (22) -p (23) (24)

(31) (32) (33) -p (34)

(41) (42) (43) (44) -p

Let the roots be pl} p^, p3 , pt . Then we have

Plx{ = (11) / + (12) / + (13) a?, + (14) ar4 ,

p a
a72
= (21) a?/ + (22) #2 + (23) x, + (24) a?/,

/9^3
= (31 ) a?/ + (32) a?s + (33) ar, + (34) ar/,

P!^ =
(41) a;/ + (42) a?/ + (43) &amp;lt;c,

+ (44) a-/,

with similar equations for a;/ , a;/&quot;, a^&quot;&quot;, a;/ ,
&c.
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We thus get

Hpipipsp+Xi
=

or HPlX^

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

2/1 y* 2/3 2/4

X-i Xn Xv XA

But these determinants are the co-ordinates of y referred to the new

tetrahedron, and omitting needless factors

We thus obtain the following theorem.

Let xly x2 ,
x3 , #4 be the co-ordinates of a point with respect to any arbitrary

tetrahedron of reference.

Let T/J, y.2 , t/3 , y be the co-ordinates of the corresponding point in a

homographic system defined by the equations

yl
= (11) xl + (12) xz + (13) x3 + (14) x,

yz
= (21) as, + (22) x, + (23) x, + (24) *4 ,

yz
= (31) x, + (32) x2 + (33) x, + (34) x,,

7/4
= (41) x, + (42) x, + (43) x, + (44) x..

If we transform the tetrahedron of reference to the four double points of

the homography, and if X1} X2 ,
X3 , X^ be the co-ordinates of any point

with regard to this new tetrahedron then the co-ordinates of its homographic

correspondent are

=0.

where p1} p2 , p3 , p 4 are the four roots of the equation,

(11) -p (12) (13) (14)

(21) (22) -p (23) (24)

(31) (32) (33) -p (34)

(41) (42) (43) (44) -p
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In general there are four, but only four double points, i.e. points which

remain unaltered by the transformation. If however two of the roots of

the biquadratic equation be equal, then every point on the ray connecting
the two corresponding double points possesses the property of a double

point.

For if p1
= p2 , then

YI : Y2 :: X1 : X2 ,

and hence the point whose co-ordinates are

X,, Za , 0, 0,

being transformed into

F1; F2 , 0,

remains unchanged.

Let us now suppose that a certain quadric surface is to remain unaltered

by the homographic transformation.

At this point it seems necessary to choose the particular character of the

quadric surface in the further developments to which we now proceed. The

theory of any non-Euclidian geometry will of course depend on whether the

surface adopted as the infinite be an ellipsoid or a double sheeted hyperboloid
with no real generators or a single sheeted hyperboloid with real generators.

We shall suppose the infinite, in the present theory, to be a single sheeted

hyperboloid.

The homographic transformation which we shall consider will transform

any generator of the surface into another generator of the same system, for

if it transformed the generator into one of the other system, then the

two rays would intersect, which is a special case that shall not be here

further considered.

Let three rays R1} R2 ,
Rs be generators of the first system on the

hyperboloid. After the transformation these rays will be transferred to

three other positions jR/, R2 ,
R3 belonging to the same system.

Let S1} 83 be two rays of the second system. Then the intersection of

Rlt RI, R2 ,
R2 &c., with Si give two systems of homographic points. The

two double points of these systems on Si give two points through which two

rays of the first system must pass both before and after the transformation.

Two similar points can also be found on S2 . These two pairs of Double

points on Si and $2 will fix a pair of generators of the first system which are

unaltered by the transformation.
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In like manner we find two rays of the second system which are unaltered.

The four intersections of these rays must be the four double points of the

system.

We can also prove in another way that in the homographic transforma

tion which preserves intervene, the four double points must, in general, lie

on the fundamental quadric.

For, suppose that one of the double points P was not on the quadric.

Draw the tangent cone from P. The conic of contact will remain unaltered

by the transformation. Therefore two points 1
and 0.2 on that conic will

be unaltered (p. 2). So will R the intersection of the tangents to the conic

at Oj and 2 . The four double points will therefore be P, R, Ol and 2 .

But PR cuts the quadric in two other points which cannot change.

Hence PR will consist entirely of double points, and therefore the discri

minant of the equation in p would have to vanish, which does not generally

happen.

Of course, even in this case, there are still four double points on the

quadric, i.e. Oly 0.2 and the two points in which PR cuts the quadric.

We may therefore generally assume that two pairs of opposite edges of

the tetrahedron of double points are generators of the fundamental quadric,

the latter must accordingly have for its equation

with the essential condition

Every point on any quadric of this family will remain upon that quadric

notwithstanding the transformation.

Nor need we feel surprised, when in the attempt to arrange a homographic
transformation which shall leave a single quadric unaltered, it appeared
that if this was accomplished, then each member of a family of quadrics

would be in the same predicament. Here again the resort to ordinary

geometry makes this clear.

In the displacement of a rigid system in ordinary space one ray remains

unchanged, and so does every circular cylinder of which this ray is the

axis. Thus we see that there is a whole family of cylinders which remain

unchanged ;
and if U be one of these cylinders, and V another, then all the

cylinders of the type U+XV are unaltered, the plane at infinity being of

course merely an extreme member of the series. More generally these

cylinders may be regarded as a special case of a system of cones with a

common vertex
;

and more generally still we may say that a family of

quadrics remains unchanged.
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Reverting, then, to a space of which the several points correspond to the

objects of a content, we find, that for every homographic transformation

which corresponds to a displacement in ordinary geometry a singly infinite

family of quadrics is to remain unchanged, and the infinite quadric itself is

to form one member of this family.

Let us now suppose a range in the content submitted to this description
of homographic transformation. Let P, Q be two objects on the range, and

let X, Y be the two infinite objects thereon. This range will be transformed

to a new position, and the objects will now be P
, Q ,

X
,
Y . Since infinite

objects must remain infinite, it follows that X and Y must be infinite, as

well as X and Y. Also, since homographic transformation does not alter

anharmonic ratio, we have

(PQXY) = (P QX Y };

whence, by Axiom v., we see that the intervene from P to Q equals the

intervene from P to Q ;
in other words, that all intervenes remain unchanged

by this homographic transformation.

Every homographic transformation which possesses these properties must

satisfy a special condition in the coefficients. This may be found from

the determinantal equation for p (p. 458), for then the following symmetric
function of the four roots plt p.2 , p :i , p4 must vanish :

(Pi Pz
~

Pap*) (pip3
-

p2pi) (pip*
-

p2ps ).

418. The Geometrical Meaning of this Symmetric Function.

We may write the family of quadrics thus :

JVXs+ :

xrtx-.a,

All these quadrics have two common generators of each kind :

,
=

0, ^ 3
=

fZ
1
= 0, X, =

and and

For the rays ^ = 0, Xa
=

Q, and X
1
=

0, Z4
= 0, are both contained in the

plane X1; and therefore intersect, and, accordingly, belong to the opposed
system of generators.

The geometrical meaning of the equation

PiPz Psp*
can be also shown.

The tetrahedron formed by the intersection of the two pairs of generators

just referred to remains unaltered by the transformation. Any point on the

edge, Xl
= 0, X3

= 0, of which the co-ordinates are

0, *, 0, Z4 ,
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will be transformed to

0, p 2Xz , 0, p4X4 .

The question may be illustrated by Figure 45.

[418

Fig. 45.

Let 1, 2, 3, 4 be the four corners of the tetrahedron. Let the transfor

mation convey P to P and Q to Q . As P varies along the ray, so will P
vary, and the two will describe homographic systems, of which 2 and 4 are

the double points. In a similar way, Q and Q will trace out homographic

systems on the ray 1 3. We shall write the points on 2 4, in the order,

2, 4, P, P .

Through 2, the generator of the surface 2 3 can be drawn (1 2 is not a

generator), and through 4 the generator 4 1 can be drawn (4 3 is not a

generator) ;
thus we have, for the corresponding order on 1 3.

3, 1, Q, Q .

Points.Points. Co-ordinates.2010040001
P X2 X
P o P*X2 p,X

The anharmonic ratio of the first set is that of 0,

,, second

Co-ordinates.

3
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The theorem can otherwise be shown by drawing Figure 46.

Fig. 46.

1 4 and 3 2 are to be generators of the infinite quadric. This will show

that 4 (and not 2) is the correspondent to 1, and that 2 (and not 4) is the

correspondent to 3, and thus the statement of anharmonic equality,

(1 QQ 3) = (4 PP 2),

becomes perfectly definite.

1 2 and 3 4 are, of course, not generators; they are two conjugate polars
of the infinite quadric.

We can now see the reason of the anharmonic equality. Let PQ be a

generator of the infinite quadric, as is clearly possible, for 1, 3 and 2, 4 are

both generators of the opposite system. Then, since a generator of the

infinite quadric must remain thereon after the displacement, it will follow

that P Q ,
to which PQ is displaced, must also be a generator ;

and thus

we have four generators, 4 1, PQ, P Q ,
2 3, on a hyperboloid of one system

intersecting the two generators of another, and by the well-known property
of the surface,

We also see why the infinite quadric is only one of a family which remains
unaltered. For, ifPQ be a generator of any quadric through the tetrahedron,
1, 2, 3, 4; then, since P and Q are conveyed to P and Q ,

and since the

anharmonic equality holds, it follows that P Q will also be a generator of

the quadric, i.e. a generator of the quadric will remain thereon after the

displacement.

It is a remarkable fact that, when the linear transformation is given, the
infinite quadric is not definitely settled. We have seen how, in the first

place, the linear transformation must fulfil a fundamental condition; but
when that condition is obeyed, then a whole family of quadrics present
themselves, any one of which is equally eligible for the infinite.
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419. On the Intervene through which each Object is Conveyed.

Given an object, X 1} X 2 ,
Xs ,

X4 ,
find the intervene through which it is

conveyed by the transformation, when

is the infinite quadric.

In this equation substitute for Xl} Xl + 6Y1&amp;gt; &c.; and, remembering that

Y
l
=

p^X-L, &c., we have,

(X, + pjx,) (X,

or 6- (p1p2XlX2 + \p 3p4X3X4)

+ 6 (p^X^X^ + p2XlX2 + Xp3X3X4 + \p4XsX4)

+ X,X 2 + \X 3X4
= 0.

We simplify this by introducing

Pi 02
=

PS Pl,

and writing \X3Xt
-=-XXZ

=
(f&amp;gt;,

whence the equation becomes

ffifrpi (1 + 0) + 6
[Pl + p.2 + &amp;lt;/&amp;gt;

( Pa + p,)] + (1 + &amp;lt;/&amp;gt;)

=
;

hence if 8 be the intervene, we have,

cos 8 =
2 V/hp.

1 + &amp;lt;

or, if we restore its value to
&amp;lt;f&amp;gt;,

cos g _
1 ^1^2 (pi + p2H_(p3 + p4

V^L/o \j . . . ^^ ^^

H
Pt + P2

=
Pi + P*,

then cosS = ^il:

i.e. all objects are translated through equal intervenes. This is the case
which we shall subsequently consider under the title of the vector, as this

remarkable conception of Clifford s is called. In this case, as

and also, plp 2
=

p3p^ }

we must have
PI
= ps , and p2

= p4 ,

or
Pi
=

pt , and pa
= pa .

In either case the equation for p will become a perfect square.
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In general let X1
= 0,

then cos 8 = p3 tjgi

whence we find that all objects in the extent Za are displaced through equal
intervenes. This intervene can be readily determined for

whence

or

8 =

The intervene through which every object on X2 is conveyed has the
same value.

We could have also proved otherwise that objects on X1 and X^ are all

displaced through equal intervenes, for the locus of objects so displaced is

a quadric of the form

XtXt+XX^Tj-t),

and, of course, for a special value of the distance this quadric becomes

simply

^JT.-O.

If Xl
= 0, and X3

=
0, then cos 8 becomes indeterminate

;
but this is as

it should be, because all objects on X
l and X3 are at infinity.

420. The Orthogonal Transformation*.

The formulae

y,
=

(21) Xl + (22) x, + (23) x3 + (24) xti

7/3
=

(31) x, + (32) #2 + (33) x, + (34) a?4 ,

2/4
= (41 ) x, + (42) xz + (43) ^ + (44) x4 ,

denote the general type of transformation. The transformation is said to be

orthogonal if when xlt &c., are solved in terms of ylt &c. we obtain as follows:_
X, = (11) yi + (21) y, + (31) y, + (41) y4 ,

^2
= (12) y, + (22) ya + (32) y, + (42) y 4&amp;gt;

^3 = (13) yi + (23) ya + (33) ys + (43) y4 ,

** = (14) yx + (24) ya + (34) y, + (44) y4 .

This is employed in Professor Heath s memoir, cited on p. 452.

B &quot;

30
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From the first formulae the equation for p is, as before, 417

(11) -p (12) (13) (14)

(21) (22) -p (23) (24)

(31) (32) (33) -p (34)

(41) (42) (43) (44) -p
From the second, the equation for p must be

=0.

&amp;lt;&quot;&amp;gt;-$

(12)

(13)

(14)
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seen the necessary characteristic of the homographic transformation which

preserves intervene. The infinite quadric which the transformation fails

to derange can be written at once, for we have

x* + x? + #3
2 + #4

2 =
yi

2 + /2
2 + y? + y? = 0.

It is also easily seen that the expression

is unchanged by the orthogonal transformation. We thus have the following

quadric, which remains unaltered :

+ (24K]

^

or, writing it otherwise,

If this be denoted by U, and x? + x + x + #4
2

by H, then, more generally,
U AH is unaltered by the transformation.

We now investigate the intervene 6, through which every object on

V-MI = Q

is conveyed by the transformation.

If we substitute x1 + \y1 &c. for xl &c. in the infinite quadric we have

and, accordingly, the intervene 6, through which an object is conveyed by
the orthogonal transformation is defined by the equation

cos ^ = n ;

hence the locus of objects moved through the intervene is simply

u - n cos e = o.

422. Proof that U and H have Four Common Generators.

The equation in p has four roots of the type

These correspond to the vertices of the tetrahedron (fig. 47). Symmetry
shows that the conjugate polars as distinguished from the generators will be

the ray joining the vertices corresponding to

and p ,
*

302
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and that joining

p

Fig. 47.

Let a1} 2 , 3 , 4 and /31} /92 , /33) /34 be the co-ordinates of the corners at p

and
p&quot;.

If we substitute a: + X,^, a2 4- X/32 . . . &c., for x1} x2 &c. in fl = 0,

2\ (a, J3, + a2 /32 + a3 /33 + 4/34)
= 0.

Let us make the same substitution in U, we have, in general,

= (11) (a, + X&) + (12) (a, + \/3 2) + (13) (a, + X&) + (14) (a4 + X/34)

= p otj + Xp&quot;/3i ;

whence, remembering that

+
\p&quot;/32) + &c.,

and as a and /S are both on O, we have,

U=\(p+ p&quot;) (ai /3x + 2/92 + a3yS3 + a4/S4) ;

but since the line joining p and
p&quot;

is a generator of O, the last factor must

vanish, and the line is therefore also a generator of U.

It is thus proved that U has four generators in common with fl.

423. Verification of the Invariance of Intervene.

As an exercise in the use of the orthogonal system of co-ordinates, we

may note the following proposition :

Let #!, x.2 ,
x3 ,

#4 ,
and #/, a?2 ,

x3 , #/, be two objects which are conveyed by
the transformation to ylt y2 , ya , 7/4 , and y/, ya , y3 , y4 , respectively, it is

desired to show that the intervene between the two original points is equal
to that between the transformed. The expressions for the cosine of the

intervene are

(x* + x? + x? + xff (x^ + x? + x^ +
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and the similar one with y and y ,
instead of x and x . The denominators

are clearly equal, and we have only to notice that

as an immediate consequence of the formula? connecting the orthogonal
transformation.

424. Application of the Theory of Emanants.

We can demonstrate the same proposition in another manner by revert

ing to the general case.

Let U=0 be a function of x1} x2 ,
x3 ,

#4 . Let #/, x2 ,
x3 ,

x4 be a system
of variables cogredient with xlt x.2 ,

x3 ,
#4 ,

and let us substitute in U the ex

pressions x
l + kxi, #2 + kx2 , &c., for xlt x2 . The value of U then becomes

where
. _ ,

d , d , d , d
LA = Xi j -J- X.2 i

~
~\~ Xn ~^j -p X z

If U be changed into V, a function of y, by the formulae of transformation,

we have, of course,

U-Yt
but since yl is a linear function of xl} &c., i.e.

y1
= (11) x, + (12) x2 + (13) x3 + (14) x.,

it follows that if we change x^ into x
1 + kx1 , &c., we simply change y^ into

yl + kyl . Hence we deduce, that if U be transformed by writing x1 + kx1 ,

&c., for x, then V will be similarly transformed by writing y^ + %/ for y,

and, of course, as the original U and V were equal, so will the transformed

U and V be equal. It further follows that as k is arbitrary, the several

coefficients will also be equal, and thus we have

=yl ,

l dy,

Hence the intervene between two objects before displacement remains

unaltered by that operation ;
for

,dU*
dx

+&C
rx _ (Mil

and by what we have just proved, this expression will remain unaltered if

y be interchanged with x.
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425. The Vector in Orthogonal Co-ordinates.

Since, in general,

cos 6 = pr ,

12&amp;gt;

we have for the vector ( 419) the following conditions :

(11)
= (22) = (33) = (44),

and also,

[425

and the similar equations. In fact, U can only differ from fl by a constant

factor.

The orthogonal equations require the following conditions

+ (11) . (12)
-

(12) . (11) + (13) . (23) + (14) . (24)
=

0,

+ (11) . (13)
-

(12) . (23)
-

(13) . (11) + (14) . (34) = 0,

+ (11) . (14)
-

(12) . (24)
-

(13) . (34)
-

(14) . (11) = 0,

+ (12) . (13) + (11) . (23)
-

(23) . (11) + (24) . (34) = 0,

+ (12) . (14) + (11) . (24)
-

(23) . (34)
-

(24) . (11) = 0,

+ (13) . (14) + (23) . (24) + (11) . (34)
-

(11) . (34) = 0,

h(14)
2 =l,

h(24)
2 =l,

+ (13)
2 + (23)

2 + (11)- + (34)
2 = 1,

+ (14)
2 + (24)

2 + (34)
2 + (II)

2 = 1.

We now introduce the notation :

(!!) = ; (12) = 0; (13) = 7; (14) = 8,

and the equations give us

+ 7 (23)+ B (24)
=

(i),

-(23) + a (34)
=

-(24)- 7 (34) =

+ 7 +(24)(34) =

+ a2 + p2

+ /3
2 + a2

+ 7
2 + (23)

-(23)(34) =

+(23)(24) =

+ 7
2 + 8- = 1

+ (23)
2 + (24)

2 =l

+ a2 + (34)
2 =l

a2 -l)

(ii),

, (iii),

. (iv),

(vi),

(vii).
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From (iv),

From (v),

by multiplication,

but, from (vi),

whence, we deduce,

= -(24) (34).

= + (23) (34);

= -(23)(24)(34)
2

;

7S = -(23)(24);

ft
2 - (34)

2
.

The significance of the double sign in the value of ft will be afterwards

apparent ;
for the present we take

From (ii)
B = + (23),

From (iii) 7 = -
(24),

while the group (vii) will be satisfied if

The scheme of orthogonal transformation for the Right Vector (for so we

designate the case of ft
= + (34),) is as follows :

+ a + ft +7 + B

-/3 + a. + B - 7

-7 - B + a +/3

- B +7 -ft + a

If we append the condition

then we have completely defined the Right Vector.

We now take the other alternative,

= -(34);

then, from (ii),
B = (23),

then, from (iii), 7 = + (24).

We thus have for the Left Vector, the form,

+ a + ft +7 + B

ft + a. 8 +7
-7 +8 + a -ft

- B -7 +/3 + a
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with, as before, the condition,

a2 + /3
2 + r + S2 = 1-

If 6 be the intervene through which the vector displaces an object then

it is easily shown that cos 6 = c/.

426. Parallel Vectors.

The several objects of a content are displaced by the same vector along

ranges which are said to be parallel.

Taking the space representation, 413, Clifford showed that all right

vectors, which are parallel, intersect two generators of one system on the

infinite quadric, while all left vectors, which are parallel, intersect two

generators of the other system.

A generator intersected by two rays from a right vector may be defined by
the points whose coordinates are

+ &amp;lt; -/3, -7, -B,

+ & +a , -8, +7,

while a generator intersected by two rays from a left vector will be

defined by
+ &amp;lt;*o,

-
fio, ~7o&amp;gt; -&o,

To prove the theorem, it is only necessary to show that these four points
are coplanar, for then the two generators intersect, i.e. are of opposite

systems. We have, then, only to show that the following determinant

vanishes :

7 8a

a

70

This will be most readily shown by squaring, for with an obvious notation

it then reduces to the simple form

O a ]

[ /?]

whence we see that the original determinant is simply

[ ] [/8o ]



aa
fl

-
Q
-
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which expanded, becomes

(a + ftj3 + 770 + 88V

(a po py 760 + 070

= a 2 2 + #2
/3

2
-I- a 2

/3
2 + /2

/3
2 - 7

2

7
2 - S2S 2 -

&y&amp;lt;?

-
7

2S 2

= a 2

(a
2 + /3

2
) + ^ (a

/2 + /3
2

)
- 7

2

(7
2 + S 2

)
- 32

(7
2 + S 2

)

= (a
2

-I- /3
2

) (a,,
2 + /3

2

)
-

(7
2 + S2

) (7o
2 + 8 2

) 5

but, a 2 +/32 + 7
2 + 8 2 = 0;

whence this expression is

(a
/2 + /3

2

)(a
2
+/3

2 + 7
2 +S 2

)
= 0.

On the supposition that the vectors were homonymous, i.e. both right or

both left, the corresponding determinant would have been

a yS 7 8

n i ^
p a 6 7

o
- @o 7o &o

/3o a/ -^o 7o

Squaring, we get, as before,

but now,

whence the determinant reduces to

[aV]
2

+[/3 ?,

a value very different from that in the former case.

427. The Composition of Vectors.

Let an object x be conveyed to y by the operation of a vector, and let the

object y be then conveyed to z by the operation of a second vector, which we
shall first suppose to be homonymous (i.e. both right or both left) with
the preceding. Then we have, from the first, supposed right

yi
= + #! + /&r2 + 73.3 + 8x4 ,

2/4
= - Bxl
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and, from the second vector,

*i
= + ay, + ffy* + yya + 8 y4 ,

Substituting for yn y2 , .Vs. y*, we obtain the following values for zlt z%, zs ,
z4 .

The right vector, a, ft, 7, 8, followed by the right vector, a , /? , 7 ,
8

za= + aa - pp - 77 - 65 ^ + + a/3 + /3a + 75 - 7 x2 + ay -
fid + ya +dp X

3 + + ad + Py - yp + da x4 ,

z%= -ap -pa -y8 + dy x
l + + aa - pp - yy - 85 a;2 + a5 + 7 -

7(3 + Sa x3 + - ay + pS -ya -

= -a7 + /35 --ya -8/3 a;
1 + - aS - Py + 7/3

- da x.2 + aa - pp - yy - 88 x3 + + a/3 + /3a + 78 - dy x4 ,

5a x
1
+ +ay -

pd + ya +dp x2 + -
a/3

-
/3a

- 76 + 67 x
3 + + aa -

/3/3
- yy - 55 x

4 .

The right vector, a, ft , 7 ,
8

, followed by the right vector, a, ft, 7, 8

!= + aa -
/3/3

- yy - 55 ^ + + a/3 + /3a
- 78 + 87 rc

2 + +
a&amp;gt;

+ /35 + 701
-

S/S x
3 + + ad -

fiy + 7/3 + 8a x4 ,

z.2
= -

a/3
-

/3a + 78 - 87 x
l + + aa -

/3/3
- 77 - 55 x2 + + aS -

fiy + y{? + 8a x3 + - ay ~
/35

- ya + 5/3 xt ,

~ 7* + 8/3 ^i + - a5 + fty
-

7/8
- 5a J

2 + + aa -
/3/3

- 77 - 55 x
3 + + a/3 + /3a

- 78 + 87 x4 ,

yp -8a x
1 + + ay + /36 + ya -

5/3 x.2 + -
a/i

-
/3a + 75 -

57 x3 + + aa -
/3/3

- 77 - 55 x .

We thus learn the important truth, that when two or more homonymous
vectors are compounded, the order of their application must be carefully

specified. For example, if the object x be first transposed by the vector a

and then by a
,
it attains a position different from that it would have gained

if first transposed by a! and then by a.

We see, however, that in either case two homonymous vectors compound
into a vector homonymous with the two components.

We now study two heteronymous vectors, i.e. one right and one left.

The right vector, a, ft, 7, 8, followed by the left vector, a
, ft , 7 ,

8

z
l
= +aa -pp -yy -88 x

1 + + a/3 + pa + yd -
dy x2 + + ay -

p8 + ya + 5/3 x3 + +aS + py -
7/8 + 5a z4 ,

+ aa -
/3/3 + 77 + 55 x

2 + -a8 -py - yp + da x3 + +ay -
pd -ya -

dp

= -a7 -/35 -7a + S/3 a;
1 + + aS -

pS - yp - da x2 + + aa + pp - yy + 55 x3 + -
a/3 + /3a

- 78 - 8y x4 ,

Z4
- - a5 + 7 -

7/3
- Sa x

l + - ay -
pd + ya -

dp x2 + + a/3
- pa -

78 -
87 x3 + + aa + pp

1

+ yy - 55 x4 .

The left vector, a
, ft , 7 ,

8
, followed by the right vector, a, ft, 7, 8

!
= + aa - pp - 77 - 85 x

1 + -f a/3
7

+ /3a + 78 - 87 x2 + + 07 -
/3S + ya + 8p xs + + aS + Py - yp + da xt ,

2
= -

ap - pa + yd - dy X
1 + + aa - pp + yy 4 58 X2 + - ad - Py - yp + da X

3 + + ay -
pd - ya - dp X4 ,

Z3= -ay -pd -ya + dp x
l + + ad - py - yp - da X

2 + + aa + /3/3
- 77 + 55 X3 + -

a/3 + )3a
-
76

-

z4= - ad + Py - yp - da X-L+
- ay -

pd + ya -
dp x2+ +ap - pa -yd - dy x3 + + aa + pp + yy - 88 z4 .
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We thus learn the remarkable fact, that if a right (left) vector be followed

by a left (right) vector, the effect produced is the same as if the order of

the two vectors had been interchanged.

This is not true for two right vectors or two left vectors.

The theorems at which we have arrived may be thus generally

enunciated :

In the composition of vectors the order of two heteronymous vectors does

not affect the result, but that of two homonymous vectors does affect the result.

In the composition of two homonymous vectors the result is also an homony
mous vector. In the composition of two heteronymous vectors the result is not

a vector at all.

The theorems just established constitute the first of the fundamental

principles relating to the Theory of Screws in non-Euclidian Space referred

to in 396. Their importance is such that it may be desirable to give a

geometrical investigation.

428. Geometrical proof that two Homonymous Vectors com
pound into one Homonymous Vector.

Left vectors cannot disturb any

right generators of the infinite quad-
ric. Take two such generators, AB
and A H (Fig. 48). Let AA

,

BB
,
CC be three left generators

which the first vector conveys to

A^Ai, -BjjB/, eft-!, and the second

vector further conveys to A 2A 2 ,

B,B2 ,
C2C2 . Let X and Y be the

double points of the two homo-

graphic systems defined by A, B, G
and A 2 ,

B2 ,
(72 . Then we have

and

As anharmonic ratios cannot be

altered by any rigid displacement, it

follows that X and Y must each

occupy the same position after the

second vector which they had before

the first, similarly, X and Y will

remain unchanged, and as the two

rays, AB and A B are divided homo- lg 8
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graphically, it follows that XX and YY are both generators. We there

fore find that after the two vectors all the right generators remain as before,

and so do also two left generators, i.e. the result of the two vectors could

have been attained by a single vector homonyrnous therewith.

429. Geometrical proof of the Law of Permutability of Hetero-

nymous Vectors.

Let AB and A B be a pair of right generators (fig. 49), and CD and

C U a pair of left generators. Let the right vector convey P to Q, and

Fig. 49.

then let the left vector carry Q to the final position P . We shall now show

that P would have been equally reached if P had gone first to R, so that

intervene PR = QP ,
and that then R was conveyed by the vector, RB B,

through a distance equal to PQ.

Draw through P the transversal PRCC . Take R, so that

but, because this relation holds,

PQ, RP
, CD, G D

must all lie on the same hyperboloid.

Therefore RP must intersect AL and AM, and therefore, also,

(PQAA )
= (RP BB }.

Hence, finally, we have for the intervenes

PQ = RP and PR = QP .

430. Determination of the Two Heteronymous Vectors equi
valent to any given Motor.

If a right vector, a, ft,
&amp;lt;y,

B, be followed by a left vector, a, ft , 7 ,
8

,
then
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the result obtained is a displacement of the most general type called a

motor. We now prove Clifford s great theorem that a right vector and a

left vector can be determined so as to form any motor, i.e. to accomplish

any required homographic transformation that conserves intervene.

For, if we identify the several coefficients at the foot of p. 474 with those

of 420, we obtain equations of the type

(11)= ace - ftp - 77 - 88
,

(21)
= -a/9 -/9a + 78 -87 ,

(31) = - ay
- 8 - ya + 8/3 ,

(41) = - 08 + /3y
-

7/3
- 8a .

These can be simply reduced to a linear form
;

for multiply the first by a
,

and the second, third, and fourth by ft, 7 ,
8

, respectively, and add,

we obtain

for a 2 + /3
/2 + 7

2
-f 8 2 =1.

In a similar manner we obtain a number of analogous equations, which

are here all brought together for convenience

(11) a! - (21) ft
-

(31) 7
-

(41) 8 =
a,

-
(21) a - (11) ft + (41) 7

-
(31) 8 = &

-
(31) a -

(41) ft
-

(11) 7 + (21) 8 =
7,

-
(41) a + (31) ft

-
(21) 7

-
(11) 8 = 8.

+ (22) a! + (12) ft
-

(42) 7 + (32) 8 = a,

+ (12) a -
(22) ft

-
(32) 7

-
(42) 8 -

ft,

-
(32) a! - (42) ft - (12) 7 + (22) 8 = 8.

+ (33) a + (43) ft + (13) 7
-

(23) 8 =
a,

+ (43) a + (33) ft
-
(23)7 -

(13)8 = &
-

(13) a -
(23) ft

-
(33) 7

-
(43) 8 =

7,

+ (23) a! + (13) ft
-

(43) 7 + (33) 8 = 8.

+ (44) a -
(34) /3 + (24) 7 + (14)8 =

a,

+ (34) a! + (44) ft + ( 14) 7 -
(24) 8 = &

-
(24) a -

(14) ft + (44) 7
-

(34) 8 =
7,

+ (14) a! - (24) ft
-

(34) 7
-

(44) 8 = 8.

These will enable a, ft, 7, 8 and a
, ft, 7 ,

8 to be uniquely determined.
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431. The Pitch of a Motor.

Any small displacement of a rigid system in the content can be produced

by a rotation (see 417) a about one line followed by a rotation ft about its

conjugate polar with respect to the infinite quadric, the amplitudes of both

rotations being small quantities. The two movements taken together

constitute the motor. It will be necessary to set forth the conception in

the theory of the motor, which is the homologue of the conception of pitch

in the Theory of Screws in ordinary space. The pitch can most conveniently

be expressed by the function

2ct/3

P ~a? + 0*-

If either a. or ft vanish, then the pitch becomes zero. The motor then

degenerates to a pure rotation about one or other of the two conjugate

polars. This, of course, agrees with the ordinary conception of the pitch,

which is zero whenever the general screw motion of the rigid body degrades

to a pure rotation.

In ordinary space we have

pa.
=

dft,

where ft is zero and where d is infinite. In this case

&quot;a~ d

i.e. the pitch is proportional to the function now under consideration.

No generality will be sacrificed by the use of a single symbol to express

the pitch. We may make a = cos# and /3
= sin#; the pitch then assumes

the very simple form sin 26. We thus see that the pitch can never exceed

unity.

If the motor be a vector, then we have ft
= a, or 6 = 45, and the

pitch is simply + 1.

It should be noticed that a rotation a about the line A, and a rotation

ft about its conjugate polar B, constitute a motor of the same pitch as a

rotation ft about A and a about B.

432. Property of Right and Left Vectors.

To take the next step it will be necessary to discuss some of the relations

between right and left vectors. A right vector will displace any point P
in a certain direction PA

;
a left vector will displace the same point in the

direction PB. It will, of course, usually happen that the directions PA
and PB are not identical. It is, however, necessary for us to observe
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that when P is situated on either of two rays then the directions of dis

placement are identical. To determine these two rays we draw the two

pairs of generators corresponding to the two vectors. As these generators

belong to opposite systems, they will form four edges of a tetrahedron.

The two remaining edges are a pair of conjugate polars, and they form the

two rays of which we are in search. The proof is obvious : a point P on

one of these rays must be displaced along the same ray by either of the

vectors, for this ray intersects both of the generators which define that

vector.

Let a right vector consist of rotations + a, + a about two conjugate polars,

and let a left vector consist of rotations + a, a, also about two conjugate

polars. Without loss of generality we may take the two conjugate polars
in both cases to be the pair just determined.

Let 00 and PP be two conjugate polars (fig. 50). The right vector is

appropriate to the generators OP and O P. The left vector to the generators

Fig. 50.

OP and O P. If we take the intersections with the quadric in the order 00
for A, then we must take them on B in the order PP if we are considering
a right vector, and in the order P P if we are considering a left vector. This

is obvious, for in the first case we take the intersections of the conjugate

polar with the generators OP and O P , In the second case we take the

intersection of the conjugate polar with OP and O P.

If, therefore, the vector be right, we have for the displacements of X
and Y,

H log (XX 00 )
= # log (YY PP).
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If, however, the vector be left, then Y must be displaced to a distance F
,

defined by H log (XX 00 )
=H log (FF P P) :

we therefore have

H log (YY PP )
= Hlog(FF P P) ;

but from an obvious property of the logarithms,

H log (FF P P) = - H log (FF PP ) ;

whence, finally,

H log ( YY PP )
= -

fl&quot; log (FF PP ).

We hence have the important result, that the intervene through which a

point on one of the common conjugate polars is displaced by one of two

heteronymous vectors of equal amplitude, merely differs in sign from the

displacement which the same point would receive from the other vector.

433. The Conception of Force in non-Euclidian Space.

In ordinary space we are quite familiar with the perfect identity which

subsists between the composition of small rotations and the composition of

forces. We shall now learn that what we so well know in ordinary space is

but the survival, in an attenuated form, of a much more complete theory
in non-Euclidian space. We have in non-Euclidian space force-motors and

force-vectors, just as we have displacement-motors and displacement-vectors.

We shall base the Dynamical theory on an elementary principle in the

theory of Energy. Suppose that a force of intensity / act on a particle

which is displaced in a direction directly opposed to the force through a

distance 8, then the quantity of work done is denoted by fS.

434. Neutrality of Heteronymous Vectors.

We are now able to demonstrate a very important theorem which lies at

the foundation of all the applications of Dynamics in non-Euclidian space.
The virtual moment of a force-vector and a displacement-vector will always
vanish when the vectors are homonymous and at right angles. The analogies
of ordinary geometry would have suggested this result, and it is easily shown
to be true. If, however, the two vectors be not homonymous, the result is

extremely remarkable. The two vectors must then have their virtual moment
zero under all circumstances.

The proof of this singular proposition is very simple. Let the two
vectors be what they may, we can always find one pair of conjugate polars
which belong to them both. Let the two forces be X, A, on the two conjugate

polars, and let the displacements be p, p, then the work done is

X/4 XyU,
= 0.
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It seems at first sight incredible that a theorem demonstrated with such

simplicity should be of so much significance. It is not too much to say
that the theory of Rigid Dynamics in non-Euclidian space depends, to a

large extent, upon this result. This is the second of the two fundamental

theorems referred to in 396.

These two principles open up a geometrical Theory of Screws in non-

Euclidian space. This is a subject too extensive to be here entered into any
further. It is hoped that the present chapter will at least have conducted

the reader to a point from which he can obtain a prospect of a great field of

work. The few incursions that have as yet been made into this field (see the

bibliographical notes) have shown the exceeding richness and interest of a

region that still awaits a more complete exploration.

31





APPENDIX I.

NOTE I.

Another solution of the problem of 28.

LET the intensities of the wrenches on a, ft,
...

rj
be as usual denoted by

a&quot;, ft&quot;,
...

17&quot; respectively.

As the wrenches are to equilibrate we must have
( 12)

where A is any screw whatever.

If six different but independent screws be chosen in succession for A we have

six independent linear equations, and thus a&quot;

ft&quot;
and the other ratios are known.

But the process will be much simplified by judicious choice of A. If, for

instance, we take as A the screw
if/
which is reciprocal to the five screws

y, 8, e, , rj

then we have

tff
y^
= 0, t3-5l^

= 0, HT^
=

0, -ET^
=

0, Sr
r)vj,

= 0,

and we obtain

a&quot;walj,
+

ft&quot;
-orw = 0.

Let p be a screw on the cylindroid defined by a and
ft. Then wrenches on

a, ft, p will equilibrate ( 14) provided their intensities are proportional re

spectively to

sin
(ftp), sin (pa), sin (a/3).

It follows that for any screw
p. we must have

sin (ftp) CTaM + sin (pa) OT/Jjll
+ sin (aft) cr

p/ot

= 0.

This is indeed a general relation connecting the virtual coefficients of three

screws on a cylindroid with any other screw.

Let us now suppose that p. was the screw ^ just considered, and let us further

take p to be that one screw on the cylindroid (a, ft)
which is reciprocal to

if/.

Then

Tp*
= 0,

and we have
sin (ftp) iy

a&amp;lt;il

+ sin (pa) CT^ = 0.

31-2
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But since the seven screws are independent both C7a^ and trr^ must be, in

general, different from zero, whence by the former equation we have

a&quot;
ft&quot;

sin (ftp)
sin (pa)

Thus we obtain the following theorem
( 28).

If seven wrenches on seven given screws equilibrate and if the intensity a&quot; of

one of the seven wrenches be given then the intensity of the wrench on any one

ft of the remaining six screws can be determined as follows.

Find the screw ty reciprocal to the five screws remaining when a and (3 are

excluded from the seven.

On the cylindroid (aft) find the screw p which is reciprocal to
i/^.

Resolve the given wrench a&quot; on a into component wrenches on ft and on p.

Then the intensity of the component wrench thus found on ft is the required

intensity ft&quot;
with its sign changed.

NOTE II.

Case of equal roots in the Equation determining Principal Screws of
Inertia, 86.

We have already made use of the important theorem that if U and V are both

homogeneous quadratic functions of n variables, then the discriminant of U + A V
when equated to zero must have n real roots for X provided that either U or V
admits of being expressed as the sum of n squares ( 85).

The further important discovery has been made that whenever this deter-

minantal equation has a repeated root, then every minor of the determinant
vanishes (Routh, Rigid Dynamics, Part II. p. 51, 1892).

This theorem is of much interest in connection with the Principal Screws of

Inertia. The result given at the end of 86 is a particular case. It may be
further presented as follows.

Taking the case of an n system each root of A. will give n equations

l dT ! dT

Of these n - 1 are in general independent and these suffice to indicate the values
of *,...*,,.

But m the case of a root once repeated the theorem above stated shows that we
have not more than n - 2 independent equations in the series. The principal
Screw of Inertia corresponding to this root is therefore indeterminate.

But it has a locus found from the consideration that besides these u - 2 linear
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equations it must also satisfy the 6 n linear equations which imply that it belongs

to the ?z-system.

In other words the co-ordinates satisfy (n
-

2) + (6 n), i.e. four linear equations.

But this is equivalent to saying that the screw lies on a cylindroid. We have thus

the following result.

In the case when the equation for X has two equal roots, there must be n 2

separate and distinct principal screws of inertia and also a cylindroid of which

every screw is a principal Screw of Inertia.

For every value of n from 1 to 6 it is of course known that the celebrated

harmonic determinantal equation of 86 has n real roots.

But when the question arises as to the possibility of this equation as applied

to our present problem having repeated roots, the several cases must be dis

criminated. It is to be understood that the body itself is to be of a general type
without having e.g. two of the principal radii of gyration equal. The investigation

relates to the possibility of a system of constraints which, while the body is still of

the most general type, shall permit indeterminateness in the number of principal

Screws of Inertia.

Of course if n -
1 the equation is linear and has but a single root.

n 2. The equation under certain conditions may have two equal roots.

n = 3. The equation under certain conditions may have two or three equal

roots.

n = 4. The equation under certain conditions may have two equal roots or

three equal roots or four equal roots or two pairs of equal roots.

n 5. The equation can never have a repeated root.

n = 6. The equation can never have a repeated root.

Here comes in the restriction that the body is of a general type, for of course

the last statement could not be true if two of the radii of gyration are equal or if

one of them was zero.

The curious contrast between the two last cases and those for the smaller

^7,
Ifn 4- 1 ^

values of n may be thus accounted for. The expression for T will contain ^s -

a

terms and the ratios only being considered T will contain

n(n+l) _ _ (n + 2)(n-l)
~2~ ~1T~

distinct parameters. As a rigid body is specified both as to position and character

by 9 co-ordinates, it follows that the coefficients of T are not unrestricted if

- is greater than 9. But this quantity is greater than 9 for the cases
2i

of n 5 and n = 6.

We may put the matter in another way which will perhaps make it clearer.

I shall take the two cases of n = 4 and n = 5.
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In the case of n -- 4 the function T will consist of 10 terms such as

If any arbitrary values be assigned to A u ,
A

}a &c., it will still be possible to

determine a rigid body such that this function shall represent ue
2

(to a constant

factor), because we have 9 co-ordinates disposable in the rigid body. Hence for

n - 4 and a fortiori for any value of n less than four the function representing T
will be a function in which the coefficients are perfectly unrestricted. Hence

n = or &amp;lt; 4 the determinantal equation is in our theory of the most general type.

The general theory while affirming that all the roots are real does not prohibit

conditions arising under which roots are repeated. Hence Routh s important

theorem becomes of significance in cases n=2, n 3, n = 4: for in these equations

the roots may be repeated.

But in the case of n - 5 the function T consists of 1 5 terms. If arbitrary

values could be assigned to the coefficients then of course the general theory would

apply and cases of repeated roots might arise. But in our investigation the 15

coefficients are functions of the co-ordinates which express the most general place

of a rigid body, and these co-ordinates are not more than nine. If these nine co

ordinates were eliminated we should have five conditions which must be satisfied

by the coefficients of a general function before it could represent the T of our

theory even to within a factor. The necessity that the coefficient of T shall satisfy

these equations imports certain restrictions into the general theory of the deter

minantal equation based on T. One of these restrictions is that T shall have no

repeated roots. The same conclusion applies a fortiori to the case of n = 6.

The subject may also be considered as follows.

Let us first take the general theorem that when reference is made to n

principal screws of inertia of an n-system the co-ordinates of the impulsive wrench

corresponding to the instantaneous screw

are
( 97)

^a,.-- X
Pi Pn

For a principal screw of inertia the ratios must be severally equal or

Pi &amp;lt;*i Fa &quot;2 Pn a-n

These equations can generally be only satisfied if n - 1 of the quantities

be zero, i.e. there are in general no more than the n principal screws of inertia.

If however

Pi P-2
then though we must have

a, = 0...aw = 0,

aj and a2 remain arbitrary.
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But n - 2 linear equations in an -re-system determine a cylindroid and hence we

see that all the screws on this cylindroid will be principal Screws of Inertia.

In like manner if there be k repeated roots, i.e. if

Pi Pa &amp;gt;*

then a1} ... ak are arbitrary but afc+1 ,
... an must be each zero. We have thus n k

linear equations in the co-ordinations. They must also satisfy 6 - n equations

because they belong to the %-system and therefore they satisfy in all

Q-n + n k=6k equations,

whence we deduce that

If there be k repeated roots in the determinantal equation of 86 then to those

roots corresponds a k-system of screws each one of tvhich is a principal screw of

inertia and there are besides n -k additional principal Screws of Inertia.

So far as the cases of n = 2 and n = 3 are concerned the plane representations

of Chaps. XII. and XV. render a complete account of the matter.

Let (Fig. 10) be the pole of the axis of pitch, 58, then may lie either

inside or outside the circle whose points represent the screws on the cylindroid.

Let (Fig. 22) be the pole of the axis of inertia, 140, then must lie inside

the circle, for otherwise the polar of would meet the circle, i.e. there would

be one or two real screws about which the body could twist with a finite velocity

but with zero kinetic energy.

We have seen that the two Principal Screws of Inertia are the points in which

the chord 00 cuts the circle. If could be on the circle or outside the

circle then we might have the two principal Screws of Inertia coalescing, or we

might have them both imaginary. As however must be within the circle it is

generally necessary that the two principal Screws of Inertia shall be both real and

distinct.

But the points and might have coincided. In this case every chord through
would have principal Screws of Inertia at its extremities. Thus every point on

the circle is in this case a principal Screw of Inertia.

We thus see that with Freedom of the second order there are only two possible

cases. Either every screw on the cylindroid is a principal Screw of Inertia or

there are neither more nor fewer than two such screws, and both real.

If a and /3 be any two screws on the cylindroid then the conditions that all

the screws are Principal Screws of Inertia are

With any rigid body in any position we can arrange any number of cylindroids



488 THE THEORY OF SCREWS.

which possess the required property. Choose any screw a and then take any screw

ft whose co-ordinates satisfy these two conditions.

We shall also use the plane representation of the 3-system.

Let U = be the pitch conic.

V = be the imaginary ellipse obtained by equating to zero the expression for

the Kinetic Energy.

Then the vertices of a common conjugate triangle are of course the principal

Screws of Inertia and generally there is only one such triangle.

It may however happen that U and V have more than a single common

conjugate triangle, for let the cartesian co-ordinates of the four intersections of U
and V be represented by

Xlt 111. )
X2) 2/2J X3) 2/3J

a
4&amp;gt; 2/4

As all the points on V are imaginary at least one co-ordinate of each intersection

is imaginary. Suppose yl
to be imaginary then it must be conjugate to y.2 . If

therefore the conic U touches V yl
and y.A must be respectively equal to y% and y4

.

Hence we have only two values of y, and these are conjugate. Substituting these

in U and V we see that there can only be two values of x, and consequently the

intersections reduce to two pairs of coincident points.

Hence we see that V cannot touch U unless the two conies have double contact.

In this case the chord of contact possesses the property that each point on it is

a principal Screw of Inertia while the pole of the chord with respect to either

conic is also a principal Screw of Inertia.

If U and V coincided then every screw of the 3-system would be a principal

Screw of Inertia.

The general theory on the subject is as follows.

Let (7= be the quadratic relation among the co-ordinates of an ?t-system

which expresses that its pitch is zero.

Let V = be the quadratic relation among the co-ordinates of a screw if a body

twisting about that screw has zero kinetic energy.

The discriminant of S = U + A V equated to zero gives n real roots for A. These

roots substituted in the differential coefficients of S equated to zero give the

corresponding principal Screws of Inertia. If however there be two equal roots

for X then for these roots every first minor of the discriminant vanishes. In this

case S can be expressed as a function of n - 2 linear quantities. Perhaps the most

explicit manner of doing this is as follows.

Let S = au6f + a^O* + 2a,AO, + . . . + annOn\

and let ,-!^ -I !*?
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If all the first minors of the discriminant of S vanish we must have the

following identity

nn n &amp;gt;

by which we have

S = A 33s3
2 + A^s? + 2Aus3s4 ... 4- A nnsn

2
.

Hence U + XV = A^s.* + ^ 44s4
2 + 2^348^4 . . . + A nnsn

2
.

In the case of n = 3 we have

which proves that V and U have double contact as we already proved in a different

manner.

In the general case all the differential coefficients of S will vanish if s3=Q...sn ~0,

but these latter define a cylindroid and therefore whenever the discriminant of s

has two equal roots, every screw on a certain cylindroid is a principal Screw of

Inertia.

If the discriminant had three equal roots then S could be expressed in terms of

s4 ,
...sn and in this case every screw on a certain 3-system would be a principal

Screw of Inertia.

If n 1 of the roots of the discriminant were equal, then every (n 2)nd
minor would vanish, S would become the perfect square sn

2 to a factor.

And we have

In this case every screw of the n - 1 system defined by sn = will be a principal
Screw of Inertia.

NOTE III.

Twist velocity acquired by an impulsive wrench, 90.

The problem solved in 90 may be thus stated.

A body of mass M only free to twist about a. is acted upon by a wrench of

intensity tf&quot;
on a screw

rj.
Find the twist velocity acquired.

From Lagrange s equations we have, 86

d fdT\ dT- =
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But as the wrench is very great the initial acceleration is great and conse

quently the second term on the left-hand side is negligible compared with the first.

dT C

Whence -^
= 2^a \ifdt

= 2isr
1?a

i
7

&quot; ;

,

CX/CL J

but T=Mua*a*(89),

whence 2Mita
2a=2 ar

ria r) &quot;,

or
&quot;
=
77 &quot;2

V-

The kinetic energy

T=Mu^ =^^ &quot;\ (91).

NOTE IV.

Professor C. J. Jolys theory of the triple contact of conic and cubic.

Professor C. J. Joly has pointed out to me that the conies of 162 and 165
which have triple contact with the nodal cubic are but particular instances of the
more general theory which he investigates as follows.

Let t be the parameter necessary to define a particular generator on a given
cylindroid ;

we first show that the condition that a line, i.e. a screw of zero pitch
should intersect this generator may be expressed in the form

at3 + W + ct + d = 0,

where a, b, c, d are linear functions of the co-ordinates of and, of course, functions
also of the constants defining the cylindroid.

For if a and ft be the two principal screws on the cylindroid then the co
ordinates of the screw e on the cylindroid making an angle X with a are

cos Xc^ + sin X/3j ,
... cos Xa^ + sin X/?6 ,

whence OTf0 = cos Xwea + sin X-57
e/3 ,

cos
(fO)

= cos X cos (ca) + sin X cos
(e/3),

pf
= cos2

\pa + 2 cos X sin Xt3-
aj3

+ sin2

\pp.

If c and 6 intersect then

2-5Tte = cos

or putting t = tan X)

+ (COS (eo) pft
+ 2 COS (/?) -57a

- 2OTea )
t
2

+ (cos ( /3) pa + 2 cos
(
6a

)
-G7

a/3
- 2re0) t

which has the form just given.
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Conversely if we are given a, b, c, d we have a cubic equation in t which

on solution determines the three generators of the cylindroid which a given line

intersects.

If the generators are connected in pairs by a one-to-one relation of the type

lit + m
(t + t

)
+ n 0,

we may for convenience speak of the pairs of generators as being in &quot;involution.&quot;

Suppose that two of the generators met by an arbitrary line are in &quot;involution&quot;

we have two roots of the cubic

at3 + bt? + ct + d=Q,

connected by the relation

ItJz + m (^ + t.2 )
+ n =

0,

where ^ and tz are the parameters of the two generators and of course roots of

the cubic. Let the third root be t3 and form the product P of the three factors

lt- + m t + + n

t^ + m ts + ^ + n.

If we replace the symmetric functions of the roots by their values we find that

P is a homogeneous function of a, b, c, d in the second degree.

The equation P = represents the complex of transversals intersecting corre

sponding generators of the involution. This complex is of the second order

and the transversals in a plane therefore envelop a conic and those through
a point lie on a quadric cone.

In like manner the discriminant of the cubic itself when equated to zero

represents a complex Q of the fourth order which consists of all the tangents to

the cylindroid. The lines in a plane envelop a curve of the fourth class (the
section of the cylindroid) and the lines through a point are generators of the

tangent cone of the fourth order.

Let us now consider the lines common to the two complexes P and Q.

If we suppose two roots of the cubic equal, for example

*=**,

then P =
\ltJz + m (^ + t2) + n]

2

[lt.2
2 + 2mt2 + n].

The common lines fall into two groups (1) transversals of the united lines

of the &quot; Involution &quot; where the parameters of these united lines satisfy

IP + 2mt + n = 0, and (2) where the odd point on the transversal coincides with

one of the points in which the transversal meets the conjugate generators. The
occurrence of the square factor shows that these latter lines are to be counted

twice.

In any plane we have belonging to these complexes eight common lines which
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are the common tangents of a curve of the fourth and a curve of the second class.

Two and only two of these intersect the united lines of the involution. The

occurrence of the square factor indicates that the remaining six coincide in pairs

and hence we have the general result that the conic has triple contact with the

cubic.

NOTE V.

Remarks on 210.

Professor C. J. Joly has communicated to me the following theorems with regard

to the cubic which is the locus of the points corresponding to the screws of a

3-system which intersect a given screw of the system ( 210).

Let be the double point on the cubic and P1} P2 the two points correspond

ing to a pair of screws of equal pitch which intersect 0. Then all the chords P^P^

for different pitches are concurrent.

For the cylindroid denned by the screws corresponding to P^2 must be cut by
the screw corresponding to in a third point which lies on the generator of the

cylindroid such that and are at right angles ( 22). As there is only one screw

of the 3-system intersecting at right angles it follows that all the chords PjP2

will be concurrent. The point corresponding to is that whose co-ordinates are

given on p. 213, viz.

Ps-Pz Pi-P* Pa- Pi

al aa a
:i

where aj, a2 ,
a3 are the co-ordinates of 0.

There is also to be noted the construction for the tangents at the double point
of the cubic. They are the lines to the points in which the pitch-conic through
the double point is met by the polar of the double point with respect to the conic

of infinite pitch.

Let Sp = be the conic of pitch p. Let Pp - be the polar of with respect
to the conic of pitch p and let Sp = be the result of substituting the co-ordinates

of in the equation of the conic Sp = 0.

As all the conies have four points common, suppose

where k and I are certain constants.

Likewise P =kPp + lP^- S ^kSp + lS x ,

whence after a few steps (210) we have the new form for the cubic

2WJS -?&amp;lt;W +SJSA=Q,
If Sp = passes through the double point then Sp = and the cubic is
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we form the polar conic of the point by changing separately S to P and P to S
and we have its equation as

which as S^
= becomes

V.-J .A-o.

Repeating this operation we have for the equation of the polar of or the

tangent to the cubic the vanishing expression

ivar*-* .p,sa,

This proves the duplicity of the point.

Therefore PpP^ & XSP ~ represents the tangents at the point and these

accordingly pass through the intersection of Px = Q and Sp = 0.

I may also add that the principles here laid down will enable us to investigate

the various relations between the screws of a 3-system which intersect. Let us

seek for example the number of screws of the system which are common transversals

to two screws which also belong to the system and which are represented by and

. If we draw two cubics of the class just considered from and as double

points, they will in general intersect in nine distinct points. Of these, four will of

course be the points common to all these cubics on the conic of infinite pitch. We
have thus five remaining intersections each of which corresponds to a screw of the

system, whence we deduce the theorem that any two screws of a 3-system will in

general be both intersected by five other screws of the 3-system.

NOTE VI.

Remarks on 224 by Professor G. J. Joly.

If there is no speciality the nodal curve of the sextic ruled surface of the

quadratic 2-system is of the tenth degree with four triple points on the surface.

Of course every generator of the surface meets four other generators ;
this follows

from the plane representation. An arbitrary section is a unicursal sextic having

therefore J (G
-

1) (6
-

2) = 10 double points. A section through a generator is the

generator plus a unicursal quintic, and a section through two generators consists

of the generators and a trinodal quartic. When the director cone of the surface

breaks into a pair of planes, the nodal curve rises to the eleventh degree and

consists of the two double lines, the common generator and the remaining curve

of intersection of the two cylindroids into which the surface degrades. The four

triple points are those in which the double lines of one cylindroid meets the other

not on the common generator. We should expect to find four triads of con

current axes belonging to the quadratic system.

The locus of the feet of perpendiculars from an arbitrary origin is a twisted

quartic. The quartic is not the intersection of two quadrics. Only one quadric
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can be drawn through it. This is borne out in the case of the two cylindroids. The

two conies have but one point common, and the only quadric through both consists

of their planes. The line of intersection of the planes intersects the conies in three

distinct points, and hence another quadric cannot be drawn through the conies.

As regards the ruled surfaces generated by the axes of a three-system which

are parallel to the edges of a cone of degree m, the degree of the surface is

evidently 3m. For the axes of the enclosing system which meet any assumed line

are parallel to the edges of a cubic cone, and there are 3m directions common to

this cone and the director cone. Again the locus of the feet of perpendiculars on

the generators from any point is a curve of degree 2m which viewed from the

point appears to have three multiple points of order m situated on the axes of the

reciprocal three-system passing through the point. For if we take any plane and

consider its intersections with the curve, we find easily that the axes of the

enclosing system whose feet of perpendiculars from the point lie in the plane are

parallel to the edges of a quadric cone. The theorem about the apparent

multiple points follows from consideration of the cylindroids of the enclosing system

whose double lines pass through the assumed point.

We also note this construction for Art. 180. Assume a radius of the pitch

quadric, draw the tangent plane and let fall the central perpendicular on the

plane. Measure off on the radius and on the perpendicular the reciprocals of their

lengths, thus determining a triangle. Through the centre draw a normal to the

plane of the triangle equal in length to double the area of the triangle multiplied

by the product of the three principal pitches. This is the perpendicular to the

required axis if we consider rotation round the line from the perpendicular to the

radius as positive.

One more point may be mentioned. If we take the cone reciprocal to the

director cone, that is the cone whose edges are perpendicular to the tangent planes,

and if we use this new cone for selecting the generators of a ruled surface from

the reciprocal three-system, the two ruled surfaces have a common line of striction

and they touch one another along this line. This is the extension of the theorem

that the reciprocal screw at right angles to the generators of a cylindroid coincides

with the axis.

NOTE VII.

Note on homographic transformation, 246.

That there must be in general linear relations between the co-ordinates of the

screws of an instantaneous system, and the co-ordinates of the corresponding

impulsive screws is proved as follows.

Let a be an impulsive screw and let ft be the corresponding instantaneous screw

with respect to a free body.

Let A, B, C, D, E, F be six independent screws which we shall take as screws
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of reference. Let aly ... a
6 and /?1} ... /36 be the co-ordinates of a and (3 with

respect to A, B, C, &c.

Let A lt ... A 6 be the co-ordinates of A with respect to the six principal Screws

of Inertia and similarly let B
l ,

... B
6 be the co-ordinates of B and in like manner

for C, 1), E, &c.

An impulsive wrench on a of intensity a
&quot;

will have for components a
&quot;^

on
A ... and a &quot;a6 on F. These components on A, ... F may each be resolved into six

component wrenches on the principal screws of inertia, viz.

a &quot;a
1
A

l
+

o!&quot;o.^E^ ... + a&quot; a6F1 ,

a
&quot;^ A., + a

&quot;a^B.2 . . . + a &quot;a
6
F2 ,

But these impulsive wrenches give rise to an instantaneous twist velocity
about a whence by 80, we have, if A be a common factor, and a, b, c the principal
radii of gyration

i
= a

1
A

1
+ a^S1

+ a3 C\ + a^Dl + a
5
E

1
+ a

6 1̂5

ttj AZ + a2B2 + a.3 C.2 + a4 Z)2 + a5 E.2 + a
6 F.2 ,

hb(33 = a,A 3 + a.2B3 + a3C3
+ a4 D3

+ a5E3 + asF3 ,

+ hc(35 =0.^ + a.2B5 + a3 C5 + a4D5 + a,E5 + a
6
F5 ,

-
hc(36

= a,A 6 + a.2B6 + a
3Cs + a4 Z&amp;gt;

6 + a
5^6 + a6 6̂ .

Thus the linear relations are established.

NOTE VIII.

Remarks on 268.

It ought to have been mentioned that the relation between four points on a

sphere used in this article is a well known theorem, see Salmon, Geometry of Three

Dimensions, 56 and Casey s Spherical Trigonometry, 111.

It is also worth while to add that ^123 is the function which on other grounds
has been called the sine of the solid angle formed by the straight lines 1, 2, 3

(Casey, Spherical Trigonometry, 28). The three formulse of this article have been
proved as they stand for sets of six co-reciprocal screws. Mr J. H. Grace has
however kindly pointed out to me (1898) that the second of the formula; would be
also true for any set of five co-reciprocal screws, and the third would be true for

any set of four co-reciprocal screws. We thus have for a set of four co-reciprocals

p l
sin 2

(234) + Pa sin2

(341) + p3 sin
2

(412) + p, sin
2

(123)
=

0,

where sin
2

(234) is the square of the sine of the solid angle contained by the straight
lines 2, 3, 4.
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ADDRESS TO THE MATHEMATICAL AND PHYSICAL SECTION

OF THE BRITISH ASSOCIATION.

MANCHESTER, 1887.

A Dynamical Parable.

THE subject I have chosen for my address to you to-day has been to me a

favourite topic of meditation for many years. It is that part of the science

of theoretical mechanics which is usually known as the &quot;Theory of Screws.&quot;

A good deal has been already written on this theory, but I may say with some

confidence that the aspect in which I shall invite you now to look at it is a novel

one. I propose to give an account of the proceedings of a committee appointed to

undertake some experiments upon certain dynamical phenomena. It may appear

to you that the experiments I shall describe have not as yet been made, that even

the committee itself has not as yet been called together. I have accordingly

ventured to call this address &quot;A Dynamical Parable.&quot;

There was once a rigid body which lay peacefully at rest. A committee of

natural philosophers was appointed to make an experimental and rational inquiry

into the dynamics of that body. The committee received special instructions.

They were to find out why the body remained at rest, notwithstanding that

certain forces were in action. They were to apply impulsive forces and observe

how the body would begin to move. They were also to investigate the small

oscillations. These being settled, they were then to But here the chairman

interposed ;
he considered that for the present, at least, there was sufficient work

in prospect. He pointed out how the questions already proposed just completed a

natural group.
&quot; Let it suffice for

us,&quot;
he said, &quot;to experiment upon the dynamics

of this body so long as it remains in or near to the position it now occupies.

We may leave to some more ambitious committee the task of following the body in

all conceivable gyrations through the universe.&quot;

The committee was judiciously chosen. Mr Anharmonic undertook the

geometry. He was found to be of the utmost value in the more delicate parts of

the work, though his colleagues thought him rather prosy at times. He was much
aided by his two friends, Mr One-to-One, who had charge of the homographic

department, and Mr Helix, whose labours will be seen to be of much importance.
As a most respectable, if rather old fashioned member, Mr Cartesian was added to
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the committee, but his antiquated tactics were quite out-manoeuvred by those of

Helix and One-to-One. I need only mention two more names. Mr Commonsense

was, of course, present as an ex-officio member, and valuable service was rendered

even by Mr Querulous, who objected at first to serve on the committee at all.

He said that the inquiry was all nonsense, because everybody knew as much as

they wished to know about the dynamics of a rigid body. The subject was as old

as the hills, and had all been settled long ago. He was persuaded, however, to

look in occasionally. It will appear that a remarkable result of the labours of the

committee was the conversion of Mr Querulous himself.

The committee assembled in the presence of the rigid body to commence their

memorable labours. There was the body at rest, a huge amorphous mass, with no

regularity in its shape no uniformity in its texture. But what chiefly alarmed

the committee was the bewildering nature of the constraints by which the move

ments of the body were hampered. They had been accustomed to nice mechanical

problems, in which a smooth body lay on a smooth table, or a wheel rotated on an

axle, or a body rotated around a point. In all these cases the constraints were of a

simple character, and the possible movements of the body were obvious. But the

constraints in the present case were of puzzling complexity. There were cords and

links, moving axes, surfaces with which the body lay in contact, and many other

geometrical constraints. Experience of ordinary problems in mechanics would be

of little avail. In fact, the chairman truly appreciated the situation when he

said, that the constraints were of a perfectly general type.

In the dismay with which this announcement was received Mr Commonsense

advanced to the body and tried whether it could move at all. Yes, it was obvious

that in some ways the body could be moved. Then said Commonsense, Ought
we not first to study carefully the nature of the freedom which the body possesses ?

Ought we not to make an inventory of every distinct movement of which the

body is capable? Until this has been obtained I do not see how we can make any

progress in the dynamical part of our business.

Mr Querulous ridiculed this proposal. How could you, he said, make any

geometrical theory of the mobility of a body without knowing all about the

constraints 1 And yet you are attempting to do so with perfectly general con

straints of which you know nothing. It must be all waste of time, for though I

have read many books on mechanics, I never saw anything like it.

Here the gentle voice of Mr Anharmonic was heard. Let us try, let us

simply experiment on the mobility of the body, and let us faithfully record what

we find. In justification of this advice Mr Anharmonic made a remark which

was new to most members of the committee : he asserted that, though the con

straints may be of endless variety and complexity, there can be only a very limited

variety in the types ofpossible mobility.

It was therefore resolved to make a series of experiments with the simple

object of seeing how the body could be moved. Mr Cartesian, having a repu
tation for such work, was requested to undertake the inquiry and to report to the

committee. Cartesian commenced operations in accordance with the well-known

traditions of his craft. He erected a cumbrous apparatus which he called his three

B. 32
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rectangular axes. He then attempted to push the body parallel to one of these

axes, but it would not stir. He tried to move the body parallel to each of

the other axes, but was again unsuccessful. He then attached the body to one of

the axes and tried to effect a rotation around that axis. Again he failed, for the

constraints were of too elaborate a type to accommodate themselves to Mr Carte

sian s crude notions.

We shall subsequently find that the movements of the body are necessarily

of an exquisitely simple type, yet such was the clumsiness and the artificial

character of Mr Cartesian s machinery that he failed to perceive the simplicity.

To him it appeared that the body could only move in a highly complex manner
;

he saw that it could accept a composite movement consisting of rotations about

two or three of his axes and simultaneous translations also parallel to two or

three axes. Cartesian was a very skilful calculator, and by a series of experiments
even with his unsympathetic apparatus he obtained some knowledge of the

subject, sufficient for purposes in which a vivid comprehension of the whole was

not required. The inadequacy of Cartesian s geometry was painfully evident when
he reported to the committee on the mobility of the rigid body. I find, he said,

that the body is unable to move parallel to x, or to y, or to z
;
neither can I make

it rotate around x, or y, or z; but I could push it an inch parallel to x, pro
vided that at the same time I pushed it a foot parallel to y and a yard backwards

parallel to z, and that it was also turned a degree around x, half a degree the other

way around y, and twenty-three minutes and nineteen seconds around z.

Is that all? asks the chairman. Oh, no, replied Mr Cartesian, there are

other proportions in which the ingredients may be combined so as to produce
a possible movement, and he was proceeding to state them when Mr Commonsense

interposed. Stop! stop! said he, I can make nothing of all these figures. This

jargon about x, y, and z may suffice for your calculations, but it fails to convey to

my mind any clear or concise notion of the movements which the body is free to

make.

Many of the committee sympathised with this view of Commonsense, and they
came to the conclusion that there was nothing to be extracted from poor old

Cartesian and his axes. They felt that there must be some better method, and
their hopes of discovering it were raised when they saw Mr Helix volunteer his

services and advance to the rigid body. Helix brought with him no cumbrous

rectangular axes, but commenced to try the mobility of the body in the simplest
manner. He found it lying at rest in a position we may call A. Perceiving that
it was in some ways mobile, he gave it a slight displacement to a neighbouring
position B. Contrast the procedure of Cartesian with the procedure of Helix.
Cartesian tried to force the body to move along certain routes which he had

arbitrarily chosen, but which the body had not chosen; in fact the body would not
take any one of his routes separately, though it would take all of them together in
a most embarrassing manner. But Helix had no preconceived scheme as to the
nature of the movements to be expected. He simply found the body in a certain

position A, and then he coaxed the body to move, not in this particular way or in
that particular way, but any way the body liked to any new position B.
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Let the constraints be what they may let the position B lie anywhere in the

close neighbourhood of A Helix found that he could move the body from A to

B by an extremely simple operation. With the aid of a skilful mechanic he

prepared a screw with a suitable pitch, and adjusted this screw in a definite

position. The rigid body was then attached by rigid bonds to a nut on this screw,

and it was found that the movement of the body from A to B could be effected

by simply turning the nut on the screw. A. perfectly definite fact about the

mobility of the body had thus been ascertained. It was able to twist to and fro

on a certain screw.

Mr Querulous could not see that there was any simplicity or geometrical
clearness in the notion of a screwing movement

;
in fact he thought it was the

reverse of simple. Did not the screwing movement mean a translation parallel to

an axis and a rotation around that axis? Was it not better to think of the

rotation and the translation separately than to jumble together two things so

totally distinct into a composite notion?

But Querulous was instantly answered by One-to-One. Lamentable, indeed,

said he, would be a divorce between the rotation and the translation. Together

they form the unit of rigid movement. Nature herself has wedded them, and the

fruits of their union are both abundant and beautiful.

The success of Helix encouraged him to proceed with the experiments, and

speedily he found a second screw about which the body could also twist. He was

about to continue when he was interrupted by Mr Anharmonic, who said, Tarry
a moment, for geometry declares that a body free to twist about two screws is free

to twist about a myriad of screws. These form the generators of a graceful ruled

surface known as the cylindroid. There may be infinite variety in the conceivable

constraints, but there can be no corresponding variety in the character of this

surface. Cylindroids differ in size, they have no difference in shape. Let us then

make a cylindroid of the right size, and so place it that two of its screws coincide

with those you have discovered
;
then I promise you that the body can be twisted

about every screw on the surface. In other words, if a body has two degrees of

freedom the cylindroid is the natural and the perfectly general method for giving

an exact specification of its mobility.

A single step remained to complete the examination of the freedom of the body.

Mr Helix continued his experiments and presently detected a third screw, about

which the body can also twist in addition to those on the cylindroid. A flood of

geometrical light then burst forth and illuminated the whole theory. It appeared

that the body was free to twist about ranks upon ranks of screws all beautifully

arranged by their pitches on a system of hyperboloids. After a brief conference

with Anharmonic and One-to-One, Helix announced that sufficient experiments of

this kind had now been made. By the single screw, the cylindroid, and the family

of hyperboloids, every conceivable information about the mobility of the rigid

body can be adequately conveyed. Let the body have any constraints, how

soever elaborate, yet the definite geometrical conceptions just stated will be

sufficient.

With perfect lucidity Mr Helix expounded the matter to the committee. He

32-2
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exhibited to them an elegant fabric of screws, each with its appropriate pitch, and

then he summarised his labours by saying, About every one of these screws you

can displace the body by twisting, and, what is of no less importance, it will not

admit of any movement which is not such a twist. The committee expressed their

satisfaction with this information. It was both clear and complete. Indeed, the

chairman remarked with considerable force that a more thorough method of specify

ing the freedom of the body was inconceivable.

The discovery of the mobility of the body completed the first stage of the

labours of the committee, and they were ready to commence the serious

dynamical work. Force was now to be used, with the view of experimenting on

the behaviour of the body under its influence. Elated by their previous success

the committee declared that they would not rest satisfied until they had again

obtained the most perfect solution of the most general problem.

But what is force
1

? said one of the committee. Send for Mr Cartesian, said

the chairman, we will give him another trial. Mr Cartesian was accordingly

requested to devise an engine of the most ferocious description wherewith to attack

the rigid body. He was promptly ready with a scheme, the weapons being drawn

from his trusty but old-fashioned armoury. He would erect three rectangular axes,

he would administer a tremendous blow parallel to each of these axes, and then he

would simultaneously apply to the body a forcible couple around each of them;

this was the utmost he could do.

No doubt, said the chairman, what you propose would be highly effective,

but, Mr Cartesian, do you not think that while you still retained the perfect

generality of your attack, you might simplify your specification of it ? I confess

that these three blows all given at once at right angles to each other, and these

three couples which you propose to impart at the same time, rather confuse me.

There seems a want of unity somehow. In short, Mr Cartesian, your scheme

does not create a distinct geometrical image in my mind. We gladly acknowledge

its suitability for numerical calculation, and we remember its famous achievements,

but it is utterly inadequate to the aspirations of this committee. We must look

elsewhere.

Again Mr Helix stepped forward. He reminded the committee of the labours

of Mathematician Poinsot, and then he approached the rigid body. Helix com

menced by clearing away Cartesian s arbitrary scaffolding of rectangular axes.

He showed how an attack of the most perfect generality could be delivered in a

form that admitted of concise and elegant description. I shall, he said, admin

ister a blow upon the rigid body from some unexpected direction, and at the same

instant I shall apply a vigorous couple in a plane perpendicular to the line of the

blow.

A happy inspiration here seized upon Mr Anharmonic. He knew, of course,

that the efficiency of a couple is measured by its momentthat is, by the product

of a force and a linear magnitude. He proposed, therefore, to weld Poinsot s

force and couple into the single conception of a wrench on a screw. The force

would be directed along the screw while the moment of the couple would equal

the product of the force and the pitch of the screw. A screw, he said, is to be
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regarded merely as a directed straight line with an associated linear magnitude
called the pitch. The screw has for us a dual aspect of much significance. No
small movement of the body is conceivable which does not consist of a twist

about a screw. No set of forces could be applied to the body which were not

equivalent to a wrench upon a screw. Everyone remembers the two celebrated

rules that forces are compounded like rotations and that couples are compounded
like translations. These may now be replaced by the single but far more com

pendious rule which asserts that wrenches and twists are to be compounded by
identical laws. Would you unite geometry with generality in your dynamics ?

It is by screws that you are enabled to do so.

These ideas were rather too abstract for Cartesian, who remarked that, as

D Alembert s principle provided for everything in dynamics, screws could not be

needed. Mr Querulous sought to confirm him by saying that he did not see how
screws helped the study either of Foucault s Pendulum or of the Precession of the

Equinoxes.

Such absurd observations kindled the intellectuaPwrath of One-to-One, who
rose and said, In the development of the natural philosopher two epochs may be

noted. At the first he becomes aware that problems exist. At the second he

discovers their solution. Querulous has not yet reached the first epoch ;
he cannot

even conceive those problems which the &quot;

Theory of Screws &quot;

proposes to solve.

I may, however, inform him that the &quot;Theory of Screws&quot; is not a general dynami
cal calculus. It is the discussion of a particular class of dynamical problems
which do not admit of any other enunciation except that which the theory itself

provides. Let us hope that ere our labours have ended Mr Querulous may obtain

some glimmering of the subject. The chairman happily assuaged matters. We
must pardon, he said, the vigorous language of our friend Mr One-to-One. His

faith in geometry is boundless in fact he is said to believe that the only real

existence in the universe is anharmonic ratio.

It was thus obvious that screws were indispensable alike for the application

of the forces and for the observation of the movements. Special measuring
instruments were devised by which the positions arid pitches of the various

screws could be carefully ascertained. All being ready the first experiment was

commenced.

A screw was chosen quite at random, and a great impulsive wrench was ad

ministered thereon. In the infinite majority of cases this would start the body
into activity, and it would commence to move in the only manner possible i.e. it

would begin to twist about some screw. It happened, however, that this first

experiment was unsuccessful
;
the impulsive wrench failed to operate, or at all

events the body did not stir. I told you it would not do, shouted Querulous,

though he instantly subsided when One-to-One glanced at him.

Much may often be learned from an experiment which fails, and the chairman

sagaciously accounted for the failure, and in doing so directed the attention

of the committee to an important branch of the subject. The mishap was

due, he thought, to some reaction of the constraints which had neutralised the

effect of the wrench. He believed it would save time in their future investi-
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gations if these reactions could be first studied and their number and position

ascertained.

To this suggestion Mr Cartesian demurred. He urged that it would involve

an endless task. Look, he said, at the complexity of the constraints : how the

body rests on these surfaces here
;
how it is fastened by links to those points there;

how there are a thousand-and-one ways in which reactions might originate. Mr
Commonsense and other members of the committee were not so easily deterred,

and they determined to work out the subject thoroughly. At first they did not see

their way clearly, and much time was spent in misdirected attempts. At length

they were rewarded by a curious and unexpected discovery, which suddenly
rendered the obscure reactions perfectly transparent.

A trial was being made upon a body which had only one degree of freedom
;

was, in fact, only able to twist about a single screw, X. Another screw, Y, was

speedily found, such that a wrench thereon failed to disturb the body. It now
occurred to the committee to try the effect of interchanging the relation of these

screws. They accordingly arranged that the body should be left only free to twist

about Y, while a wrench was applied on X. Again the body did not stir. The

importance of this fact immediately arrested the attention of the more intelligent

observers, for it established the following general law : If a wrench on X fails to

move a body only free to twist about Y, then a wrench on Y must be unable to

move a body only free to twist about X. It was determined to speak of two screws

when related in this manner as reciprocal.

Some members of the committee did not at first realise the significance of this

discovery. Their difficulty arose from the restricted character of the experiments

by which the law of reciprocal screws had been suggested. They said, You have

shown us that this law is observed in the case of a body only free to twist about

one screw at a time
;
but how does this teach anything of the general case in

which the body is free to twist about whole shoals of screws &quot;? Mr Commonsense

immediately showed that the discovery could be enunciated in a quite un

objectionable form. The law of reciprocal screws, he said, does not depend

upon the constraints or the limitations of the freedom. It may be expressed in

this way : Two screws are reciprocal when a small twist about either can do no

work against a wrench on the other.

This important step at once brought into view the whole geometry of the

reactions. Let us suppose that the freedom of the body was such that it could

twist about all the screws of a system which we shall call U. Let all the possible

reactions form wrenches on the screws of another system, V. It then appeared
that every screw upon U is reciprocal to every screw upon V. A body might
therefore be free to twist about every screw of V and still remain in equilibrium,

notwithstanding the presence of a wrench on every screw of U. A body free to

twist about all the screws of V can therefore be only partially free. Hence V
must be one of those few types of screw system already discussed. It was

accordingly found that the single screw, the cylindroid, and the set of hyper-
boloids completely described every conceivable reaction from the constraints just
as they described every conceivable kind of freedom. The committee derived much
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encouragement from these discoveries
; they felt that they must be following the

right path, and that the bounty of Nature had already bestowed on them some

earnest of the rewards they were ultimately to receive.

It was with eager anticipation that they now approached the great dynamical

question. They were to see what would happen if the impulsive wrench were not

neutralised by the reactions of the constraints. The body would then commence

to move that is, to twist about some screw which it would be natural to call the

instantaneous screw. To trace the connection between the impulsive screw and

the corresponding instantaneous screw was the question of the hour. Before

the experiments were commenced, some shrewd member remarked that the issue

had not yet been presented with the necessary precision. I understand, he

said, that when you apply a certain impulsive wrench, the body will receive a

definite twist velocity about a definite screw; but the converse problem is

ambiguous. Unless the body be quite free, there are myriads of impulsive screws

corresponding to but one instantaneous screw. The chairman perceived the

difficulty, and not in vain did he appeal to the geometrical instinct of Mr One-to-

One, who at once explained the philosophy of the matter, dissipated the fog, and

disclosed a fresh beauty in the theory.

It is quite true, said Mr One-to-One, that there are myriads of impulsive

screws, any one of which may be regarded as the correspondent to a given instan

taneous screw, but it fortunately happens that among these myriads there is always

one screw so specially circumstanced that we may select it as the correspondent,

and then the ambiguity will have vanished.

As several members were not endowed with the geometrical insight possessed

by Orie-to-One, they called on him to explain how this special screw was to be

identified
; accordingly he proceeded : We have already ascertained that the

constraints permit the body to be twisted about any screw of the system, U. Out

of the myriads of impulsive screws, corresponding to a single instantaneous screw,

it almost always happens that one, but never more than one, lies on U. This is the

special screw. No matter where the impulsive wrench may lie throughout all the

realms of space, it may be exchanged for a precisely equivalent wrench lying on U.

Without the sacrifice of a particle of generality, we have neatly circumscribed

the problem. For one impulsive there is one instantaneous screw, and for one

instantaneous screw there is one impulsive screw.

The experiments were accordingly resumed. An impulsive screw was chosen,

and its position and its pitch were both noted. An impulsive wrench was

administered, the body commenced to twist, and the instantaneous screw was

ascertained by the motion of marked points. The body was brought to rest. A
new impulsive screw was then taken. The experiment was again and again

repeated. The results were tabulated, so that for each .impulsive screw the

corresponding instantaneous screw was shown.

Although these investigations were restricted to screws belonging to the system

which expressed the freedom of the body, yet the committee became uneasy

when they reflected that the screws of that system were still infinite in number,

and that consequently they had undertaken a task of infinite extent. Unless some
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compendious law should be discovered, which connected the impulsive screw
with the instantaneous screw, their experiments would indeed be endless. Was it

likely that such a law could be found was it even likely that such a law existed ?

Mr Querulous decidedly thought not. He pointed out how the body was
of the most hopelessly irregular shape and mass, and how the constraints were

notoriously of the most embarrassing description. It was, therefore, he thought,
idle to search for any geometrical law connecting the impulsive screw and the

instantaneous screw. He moved that the whole inquiry be abandoned. These
sentiments seemed to be shared by other members of the committee. Even the
resolution of the chairman began to quail before a task of infinite magnitude. A
crisis was imminent when Mr Anharmonic rose.

Mr Chairman, he said, Geometry is ever ready to help even the most
humble inquirer into the laws of Nature, but Geometry reserves her most gracious
gifts for those who interrogate Nature in the noblest and most comprehensive spirit.
That spirit has been ours during this research, and accordingly Geometry in this

our emergency places her choicest treasures at our disposal. Foremost among these

is the powerful theory of homographic systems. By a few bold extensions we
create a comprehensive theory of homographic screws. All the impulsive screws
form one system, and all the instantaneous screws form another system, and
these two systems are homographic. Once you have realised this, you will find

your present difficulty cleared away. You will only have to determine a few pairs
of impulsive and instantaneous screws by experiment. The number of such pairs
need never be more than seven. When these have been found, the homography is

completely known. The instantaneous screw corresponding to every impulsive
screw will then be completely determined by geometry both pure and beautiful.

To the delight and amazement of the committee, Mr Anharmonic demonstrated
the truth of his theory by the supreme test of fulfilled prediction. When the
observations had provided him with a number of pairs of screws, one more than
the number of degrees of freedom of the body, he was able to predict with in

fallible accuracy the instantaneous screw corresponding to any impulsive screw.
Chaos had gone. Sweet order had come.

A few days later the chairman summoned a special meeting in order to hear
from Mr Anharmonic an account of a discovery he had just made, which he
believed to be of signal importance, and which he was anxious to demonstrate by
actual experiment. Accordingly the committee assembled, and the geometer pro
ceeded as follows :

You are aware that two homographic ranges on the same ray possess two
double points, whereof each coincides with its correspondent ;

more generally when
each point in space, regarded as belonging to one homographic system, has its

correspondent belonging to another system, then there are four cases in which a

point coincides with its correspondent. These are known as the four double points,
and they possess much geometrical interest. Let us now create conceptions of an

analogous character suitably enlarged for our present purpose. We have dis

covered that the impulsive screws and the corresponding instantaneous screws form
two homographic systems. There will be a certain limited number (never more
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than six) of double screws common to these two systems. As the double points in

the homography of point systems are fruitful in geometry, so the double screws in

the homography of screw systems are fruitful in Dynamics.
A question for experimental inquiry could now be distinctly stated. Does a

double screw possess the property that an impulsive wrench delivered thereon will

make the body commence to move by twisting about the same screw 1 This was

immediately tested. Mr Anharmonic, guided by the indications of homography,
soon pointed out the few double screws. One of these was chosen, a vigorous

impulsive wrench was imparted thereon. The observations were conducted as

before, the anticipated result was triumphantly verified, for the body commenced

to twist about the identical screw on which the wrench was imparted. The other

double screws were similarly tried, and with a like result. In each case the

instantaneous screw was identical both in pitch and in position with the impulsive
screw.

But surely, said Mr Querulous, there is nothing wonderful in this. Who
is surprised to learn that the body twists about the same screw as that on which

the wrench was administered 1 I am sure I could find many such screws. Indeed,

the real wonder is not that the impulsive screw and the instantaneous screw are

ever the same, but that they should ever be different.

And Mr Querulous proceeded to illustrate his views by experiments on the

rigid body. He gave the body all sorts of impulses, but in spite of all his

endeavours the body invariably commenced to twist about some screw which was
not the impulsive screw. You may try till Doomsday, said Mr Anharmonic, you
will never find any besides the few I have indicated.

It was thought convenient to assign a name to these remarkable screws, and

they were accordingly designated the principal screws of inertia. There are for

example six principal screws of inertia when the body is perfectly free, and two
when the body is free to twist about the screws of a cylindroid. The committee

regarded the discovery of the principal screws of inertia as the most remarkable

result they had yet obtained.

Mr Cartesian was very unhappy. The generality of the subject was too

great for his comprehension. He had an invincible attachment to the x, y, is,

which he regarded as the ne plus ultra of dynamics. Why will you burden the

science, he sighs, with all these additional names ? Can you not express what you
want without talking about cylindroids, and twists, and wrenches, and impulsive

screws, and instantaneous screws, and all the rest of it? No, said Mr One-to-

One, there can be no simpler way of stating the results than that natural method
we have followed. You would not object to the language if your ideas of natural

phenomena had been sufficiently capacious. We are dealing with questions of

perfect generality, and it would involve a sacrifice of generality were we to speak
of the movement of a body except as a twist, or of a system of forces except as

a wrench.

But, said Mr Commonsense, can you not as a concession to our ignorance tell

us something in ordinary language which will give an idea of what you mean when

you talk of your &quot;principal screws of inertia&quot;? Pray for once sacrifice this
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generality you prize so much and put the theory into some familiar shape that

ordinary mortals can understand.

Mr Anharmonic would not condescend to comply with this request, so the

chairman called upon Mr One-to-One, who somewhat ungraciously consented.

I feel, said he, the request to be an irritating one. Extreme cases frequently

make bad illustrations of a general theory. That zero multiplied by infinity may
be anything is not surely a felicitous exhibition of the perfections of the mul

tiplication table. It is with reluctance that I divest the theory of its flowing

geometrical habit, and present it only as a stiff conventional guy from which true

grace has departed.

Let us suppose that the rigid body, instead of being constrained as heretofore

in a perfectly general manner, is subjected merely to a special type of constraint.

Let it in fact be only free to rotate around a fixed point. The beautiful fabric of

screws, which so elegantly expressed the latitude permitted to the body before,

has now degenerated into a mere horde of lines all stuck through the point.

Those varieties in the pitches of the screws which gave colour and richness to the

fabric have also vanished, and the pencil of degenerate screws have a monotonous

zero of pitch. Our general conceptions of mobility have thus been horribly

mutilated and disfigured before they can be adapted to the old and respectable

problem of the rotation of a rigid body about a fixed point. For the dynamics
of this problem the wrenches assume an extreme and even monstrous type.

Wrenches they still are, as wrenches they ever must be, but they are wrenches on

screws of infinite pitch; they have even ceased to possess definite screws as homes

of their own. We often call them couples.

Yet so comprehensive is the doctrine of the principal screws of inertia that

even to this extreme problem the theory may be applied. The principal screws

of inertia reduce in this special case to the three principal axes drawn through

the point. In fact we see that the famous property of the principal axes of a

rigid body is merely a very special application of the general theory of the

principal screws of inertia. Every one who has a particle of mathematical taste

lingers with fondness over the theory of the principal axes. Learn therefore,

says One-to-One in conclusion, how great must be the beauty of a doctrine which

comprehends the theory of principal axes as the merest outlying detail.

Another definite stage in the labours of the committee had now been reached,

and accordingly the chairman summarised the results. He said that a geometrical

solution had been obtained of every conceivable problem as to the effect of

impulse on a rigid body. The impulsive screws and the corresponding instan

taneous screws formed two homographic systems. Each screw in one system

determined its corresponding screw in the other system, just as in two anharmonic

ranges each point in one determines its correspondent in the other. The double

screws of the two homographic systems are the principal screws of inertia. He
remarked in conclusion that the geometrical theory of homography and the present

dynamical theory mutually illustrated and interpreted each other.

There was still one more problem which had to be brought into shape by

geometry and submitted to the test of experiment.
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The body is lying at rest though gravity and many other forces are acting

upon it. These forces constitute a wrench which must lie upon a screw of the

reciprocal system, inasmuch as it is neutralised by the reaction of the constraints.

Let the body be displaced from its initial position by a small twist. The wrench

will no longer be neutralised by the reaction of the constraints
; accordingly when

the body is released it will commence to move. So far as the present investiga

tions are concerned these movements are small oscillations. Attention was there

fore directed to these small oscillations. The usual observations were made, and

Helix reported them to be of a very perplexing kind. Surely, said the chairman,

you find the body twisting about some screw, do you not? Undoubtedly,
said Helix; the body can only move by twisting about some screw; but, un

fortunately, this screw is not fixed, it is indeed moving about in such an embarrass

ing manner that I can give no intelligible account of the matter. The chairman

appealed to the committee not to leave the interesting subject of small oscillations

in such an unsatisfactory state. Success had hitherto guided their efforts. Let

them not separate without throwing the light of geometry on this obscure subject.

Mr Querulous here said he must be heard. He protested against any further

waste of time
;

it was absurd. Everybody knew how to investigate small oscil

lations
;
the equations were given in every book on mechanics. You had only to

write down these equations, solve these equations again for the thousandth time

and the thing was done. But the more intelligent members of the committee took

the same view as the chairman. They did not question the truth of the formulae

which to Querulous seemed all sufficient, but they wished to see whether geometry
could not illuminate the subject. Fortunately this view prevailed, and new ex

periments were commenced under the direction of Mr Anharmonic, who first

quelled the elaborate oscillations which had so puzzled the committee, reduced the

body to rest, and then introduced the discussion as follows :

The body now lies at rest. I displace it a little, and hold it in its new

position. The wrench, which is the resultant of all the varied forces acting on the

body, is no longer completely neutralised by the reactions of the constraints.

Indeed, I can feel it in action. Our apparatus will enable us to measure the

intensity of this wrench, and to determine the screw on which it acts.

A series of experiments was then made, in which the body was displaced by a

twist about a screw, which was duly noted, while the corresponding evoked wrench
was determined. The pairs of screws so related were carefully tabulated. When
we remember the infinite complexity of the forces, of the constraints and of the

constitution of the body, it might seem an endless task to determine the connection

between the two systems of screws. Mr Anharmonic pointed out how modern

geometry supplied the wants of Dynamics. As in the previous case the two screw

systems were homographic, and when a number of pairs, one more than the

degrees of freedom of the body, had been found all was determined. This state

ment was put to the test. Again and again the body was displaced in some new
fashion, but again and again did Mr Anharmonic predict the precise wrench
which would be required to maintain the body in its new position.

But, said the chairman, are not these purely statical results 1 How do they
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throw light on those elaborate oscillations which seem at present so inexplicable?

This I shall explain, said Anharmonic
;

but I beg of you to give me your best

attention, for I think the theory of small oscillations will be found worthy of it.

Let us think of any screw a belonging to the system U, which expresses the

freedom of the body. If a be an instantaneous screw, there will of course be a

corresponding impulsive screw also on U. If the body be displaced from a position

of equilibrium by a small twist about a, then the uncompensated forces produce a

wrench
&amp;lt;j&amp;gt;,

which, without loss of generality, may also be supposed to lie on U.

According as the screw a moves over U so will the two corresponding screws

$ and
&amp;lt;f&amp;gt;

also move over U. The system represented by a is homographic with both

the systems of and of &amp;lt; respectively. But two systems homographic with the

same system are homographic with each other. Accordingly, the 6 system and the

&amp;lt; system are homographic. There will therefore be a certain number of double

screws (not more than six) common to the systems 6 and
&amp;lt;f&amp;gt;.

Each of these double

screws will of course have its correspondent in the a system, and we may call them

a
1}

o.2 , &c., their number being equal to the degrees of freedom of the body. These

screws are most curiously related to the small oscillations. We shall first demon

strate by experiment the remarkable property they possess.

The body was first brought to rest in its position of equilibrium. One of the

special screws a having been carefully determined both in position and in pitch,

the body was displaced by a twist about this screw and was then released. As
the forces were uncompensated, the body of course commenced to move, but the

oscillations were of unparalleled simplicity. With the regularity of a pendulum
the body twisted to and fro on this screw, just as if it were actually constrained to

this motion alone. The committee were delighted to witness a vibration so graceful,

and, remembering the complex nature of the ordinary oscillations, they appealed to

Mr Anharmonic for an explanation. This he gladly gave, not by means of com

plex formulae, but by a line of reasoning that was highly commended by Mr
Commonsense, and to which even Mr Querulous urged no objection.

This pretty movement, said Mr Anharmonic, is due to the nature of the

screw ttj. Had I chosen any screw at random, the oscillations would, as we have

seen, be of a very complex type ;
for the displacement will evoke an uncompensated

wrench, in consequence of which the body will commence to move by twisting

about the instantaneous screw corresponding to that wrench
;
and of course this

instantaneous screw will usually be quite different from the screw about which the

displacement was made. But you will observe that a
t
has been chosen as a screw

in the instantaneous system, corresponding to one of the double screws in the 6 and

&amp;lt;f&amp;gt; systems. When the body is twisted about c^ a wrench is evoked on the double

screw, but as
a,

is itself the instantaneous screw, corresponding to that double

screw, the only effect of the wrench will be to make the body twist about 04.

Thus we see that the body will twist to and fro on c^ for ever. Finally, we can

show that the most elaborate oscillations the body can possibly have may be

produced by compounding the simple vibrations on these screws c^,
a.2 , &amp;lt;fec.

Great enlightenment was thus diffused over the committee, and now Mr
Querulous began to think there must be something in it. Cordial unani-
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mity prevailed among the members, and it was appropriately suggested that

the screws of simple vibration should be called harmonic screws. This view was

adopted by the chairman, who said he thought he had seen the word harmonic

used in Thomson and Tait.

The final meeting showed that real dynamical enthusiasm had been kindled

in the committee. Vistas of great mathematical theories were opened out in many
directions. One member showed how the theory of screws could be applied not

merely to a single rigid body but to any mechanical system whatever. He sketched

a geometrical conception of what he was pleased to call a screw-chain, by which he

said he could so bind even the most elaborate system of rigid bodies that they

would be compelled to conform to the theory of screws. Nay, soaring still further

into the empyrean, he showed that all the instantaneous motions of every molecule

in the universe were only a twist about one screw-chain while all the forces of the

universe were but a wrench upon another.

Mr One-to-One expounded the Ausdehnungslehre and showed that the theory

of screws was closely related to parts of Grassmann s great work
;

while Mr
Anharmonic told how Sir W. R. Hamilton, in his celebrated &quot;

Theory of systems

of rays&quot;
had by his discovery of the cylindroid helped to lay the foundations of

the Theory of Screws.

The climax of mathematical eloquence was attained in the speech of Mr

Querulous, who, with newborn enthusiasm, launched into appalling speculations.

He had evidently been reading his Cayley and had become conscious of the

poverty of geometrical conception arising from our unfortunate residence in a

space of an arbitrary and unsymmetrical description.

Three dimensions, he said, may perhaps be enough for an intelligent geometer.

He may get on fairly well without a four dimensioned space, but he does most

heartily remonstrate against a flat infinity. Think of infinity, he cries, as it should

be, perhaps even as it is. Talk not of your scanty straight line at infinity and your

miserable pair of circular points. Boldly assert that infinity is an ample quadric,

and not the mere ghost of one
;
and then geometry will become what geometry

ought to be. Then will every twist resolve into a right vector and a left vector,

as the genius of Clifford proved. Then will the theory of screws shed away
some few adhering incongruities and fully develop its shapely proportions. Then

will But here the chairman said he feared the discussion was beginning

to wax somewhat transcendental. For his part he was content with the results of

the experiments even though they had been conducted in the vapid old space of

Euclid. He reminded them that their functions had now concluded, for they

had ascertained everything relating to the rigid body which had been com

mitted to them. He hoped they would agree with him that the enquiry had

been an instructive one. They had been engaged in the study of Nature, they had

approached the problems in the true philosophical spirit, and the rewards they had

obtained proved that

Nature never did betray

The heart that truly loved her.
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ment Jini ou infiniment petit d un corps solide libre. Ferussac, Bulletin des

Sciences Mathematiques, Vol. xiv., pp. 321-326 (1830).

The author shows that there always exists one straight line, about which it is

only necessary to rotate one of the bodies to place it similarly to the other. Whence

(p. 324) he is led to the following fundamental theorem :

L on peut toujours transporter un corps solide libre d une position dans une

autre position quelconque, determinee par le mouvement continu d une vis a laquelle

ce corps serait fixe invariablement.

Three or four years later than the paper we have cited, Poinsot published his

celebrated Theorie Nouvelle de la Rotation des Corps (Paris, 1834). In this he

enunciates the same theorem without reference to Chasles, but that it is really due

to Chasles there can be little doubt. He explicitly claims it in note 34 to the

Aperqu Historique. Bruxelles Mem. Couronn. xi., 1837.

HAMILTON (W. R.) First supplement to an essay on the Theory ofSystems of Rays.
Transactions of the Royal Irish Academy, Vol. xvi., pp. 4 62 (1830).

That conoidal cubic surface named the cylindroid which plays so fundamental

a part in the Theory of Screws was first discovered by Sir William Rowan
Hamilton.

In his celebrated memoir on the Theory of Systems of Rays he demonstrates

the remarkable proposition which may be thus enunciated :

The lines of shortest distance between any ray of the system and the other

contiguous rays of the system have a surface for their locus, and that surface is a

cylindroid.

We can illustrate this as follows by the methods of the present volume.

The Hamiltonian system of rays here considered form a congruency. If we
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except all rays save those contiguous to any one ray then the congruency may be

regarded as linear. Hence any property of a linear congruency must apply to

the Hamiltonian system as restricted in the proposition before us.

A linear congruency is constituted by those screws of zero pitch whose
coordinates satisfy two linear equations. They are the screws which belong to

a 4-system and which each have zero pitch ( 76). But we know that each such

screw must intersect both of the screws of zero pitch on the cylindroid reciprocal
to the 4-system ( 212). It has also been shown that any transversal meeting two
screws of equal pitch on a cylindroid must intersect at right angles a third screw

on that surface
( 22). Hence the shortest distance from any ray of the congruency

to the axis of the cylindroid must lie on a generator of the cylindroid. This is

however only true for one particular ray.
Hamilton s most instructive theorem shows, more generally, that the shortest

distances between any specified ray R of the congruency and all the other contiguous

rays have a conoidal cubic as their locus, such as might be represented by the

equation

z (x
2
+ y

2

)
= A y? + 2Bxy + Cy

2
.

There are two disposable quantities in the selection of the origin and the axis of x.

If these quantities be so taken as to render A ~
;

(7 = 0, then the equation is at

once shown to represent a cylindroid of which R is the axis. Of course all rays
of this congruency intersect two fixed rays, and the axis of the cylindroid must
also intersect both of these rays.

MOBIUS (A. F.) Lehrbuch der Statik (Leipzig, 1837).

This book is, we learn from the preface, one of the numerous productions to

which the labours of Poinsot gave rise. The first part, pp. 1355, discusses the

laws of equilibrium of forces, which act upon a single rigid body. The second

part, pp 1 313, discusses the equilibrium of forces acting upon several rigid
bodies connected together. The characteristic feature of the book is its great

generality. I here enunciate some of the principal theorems.

If a number of forces acting upon a free rigid body be in equilibrium, and if

a straight line of arbitrary length and position be assumed, then the algebraic sum
of the tetrahedra, of which the straight line and each of the forces in succession

are pairs of opposite edges, is equal to zero (p. 94).
If four forces are in equilibrium they must be generators of the same hyper-

boloid (p. 177).
If five forces be in equilibrium they must intersect two common straight lines

(p. 179).
If the lines of action of five forces be given, then a certain plane S through

any point P is determined. If the five forces can be equilibrated by one force

through P, then this one force must lie in S (p. 180).
To adopt the notation of Professor Cayley, we denote by 12 the perpendicular

distance between two lines 1, 2, multiplied into the sine of the angle between them

(Comptes Rendus, Vol. Ixi., pp. 829-830 (1865)). Mobius shows (p. 189) that if

forces along four lines 1, 2, 3, 4 equilibrate, the intensities of these forces are

proportional to

^23. 24.34, 713714734, ^12. 14.24, ^12. 13.23.

It is also shown that the product of the forces on 1 and 2, multiplied by 12,
is equal to the product of the forces on 3 and 4 multiplied by 34. He hence
deduces Chasles theorem (Liouville s Journal, 1st Ser., Vol. xii., p. 222 (1847)),
that the volume of the tetrahedron formed by two of the forces is equal to that
formed by the remaining two.
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MOBIUS (A. F.) Ueber die Zusammensetzung unendlick kleiner Drehungen. Crelle s

Journal; Vol. xviii., pp. 189-212 (1838).

This memoir contains many very interesting theorems, of which the following
are the principal: Any given small displacement of a rigid body can be effected

by two small rotations. Two equal parallel and opposite rotations compound into

a translation. Small rotations about intersecting axes are compounded like forces.

If a number of forces acting upon a free body make equilibrium, then the final

effect of a number of rotations (proportional to the forces) on the same axes will

be zero. If a body can undergo small rotations about six independent axes, it

can have any small movement whatever. He illustrates this by the case of a

series of bodies of which each one is hinged to those on either side of it. If the

first of the series be fixed then in general the seventh of the series will be perfectly

free for small movements (see Bittershaus, p. 524).

RODRIGUES (O.) Des lois geometriques qui regissent les deplacements d un systeme
solide dans Vespace, et de la variation des coordonnees prorenant de ces

deplacements consideres independamment des causes qui peuvent les produire.
Liouville s Journal Math.

;
Vol. v., pp. 380440 (5th Dec., 1840).

This paper consists mainly of elaborate formulae relating to displacements of

finite magnitude. It has been already cited for an important remark
( 9).

CHASLES (M.) Proprieties geometriques relatives au mouvement infiniment petit

dans un corps solide libre dans I espace. Paris, Comptes Rendus
;
Vol. xvi.,

pp. 1420-1432 (1843).

A pair of &quot;droites conjuguees&quot; are two lines by rotations about which a given

displacement can be communicated to a rigid body. Two pairs of &quot;droites con

juguees&quot; are always generators of the same hyperboloid.

HAMILTON (Sir W. R.) On some additional applications of the Theory of Algebraic

Quaternions. Royal Irish Academy Proceedings; Vol. iii. (18451847).
Appendix No. 5, pp. li. Ix. (Communicated Dec. 8, 1845.)

On p. Ivii. he states &quot;the laws of equilibrium of several forces applied to various

points of a solid body, are thus included in the two equations,

2/3 = 0; 2 (a0
-
0a) = ;

the vector of the point of application being a, and the vector representing the

force applied at that point being /3.&quot;
On the same page he writes,

&quot;Instead of the two equations of equilibrium, we may employ the single

formula
2 . aft

= -
c,

c here denoting a scalar (or real) quantity, which is independent of the origin of

vectors, and seems to have some title to be called the total tension of the system.&quot;

HAMILTON (Sir W. R.) Some applications of Quaternions to questions connected

with the Rotation of a Solid Body. Royal Irish Academy Proceedings ;

Vol. iv. (1847-1850) pp. 38-56. (Communicated Jan. 10, 1848.)

In this paper with the same notation as before, he takes the general case of a

Rigid Body acted on by forces and considers the Quaternion

2 Fa/3
- = w
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&quot;The number w&quot; which he sees does not depend on the choice of origin &quot;will

denote the (real) quotient obtained by dividing the moment of the principal
resultant couple by the intensity of the resultant force ;

with the known direction

of which force the axis of this principal (and known) couple coincides, being the
line which is known by the name of the central axis of the

system.&quot;
The vector

part of the quaternion is the vector &quot;perpendicular let fall from the assumed

origin on the central axis of the
system&quot; (p. 40). It is interesting to note that

the scalar w is what we would term the pitch of the Screw on which the wrench
acts.

POINSOT (L.) Theorie nouvelle de la rotation des corps. Liouville s Journal Math.;
Vol. xvi., pp. 9-129, 289336 (March, 1851).

This is Poinsot s classical memoir, which contains his beautiful geometrical
theory of the rotation of a rigid body about a fixed point. In a less developed
form the Theory had been previously published in Paris in 1834, as already
mentioned.

SCHONEMANN (T.) Ueber die Construction von Normalen und Normalebenen ge-
wisser krummer Fldchen und Linien. Monatsberichte der koniglichen
preussischen Akademie der Wissenchaften fiir das Jahr 1855, pp. 255-260.

Believing that this paper was but little known Herr Geiser reprinted it in

Crelle s Journal, Vol. xc., pp. 44-48 (1881). Schonemann there gave the im

portant theorem which has since been independently discovered by others, namely
that whenever a rigid body is so displaced that four of its points, A, B, C, D move
on fixed surfaces the normals to the surfaces which are the trajectories of all its

points intersect two fixed rays. Herr Geiser gives an analytical proof (Crelle,
Vol. xc., pp. 3943, 1881). In our language the two rays are the two screws
of zero pitch on the cylindroid reciprocal to the freedom of the body, and the

cylindroid is itself determined by being reciprocal to four screws of zero pitch on
the normals at A, B, C, D respectively to the four fixed surfaces. Another proof
is given by Ribaucour, Comptes rendus, Vol. Ixxvi., p. 1347 (2 June, 1873). See
also Mannheim (A.), Liouville s Journal de Mathematiques, 2e

Ser., Vol. xl., 1866.

WBIBKSTRASS (C.). Ueber ein die homogenen Functionen zweiten grades betreffendes.
Theorem nebst Anwendung desselben auf die Theorie der kleinen Schwin-

gungen. Monatsberichte der k. preus.sischen Akademie der Wissenschaften,
1858, pp. 207-220; and Mathematische Werke, Vol. i. pp. 233-246.

Let
&amp;lt;, ij/

be two homogeneous quadratic functions of n variables x
lt ... xn and

lety*(s) be the discriminant of
s&amp;lt;$&amp;gt;

-
^/.

If the discriminant of one of the functions, say &amp;lt;f&amp;gt;,

does not vanish, and if

further
&amp;lt;J&amp;gt;

is essentially one-signed vanishing only when all the variables vanish, it

can be shown that slt s2 ,
... sn the roots of/(s) = (assumed distinct) are all real

and
&amp;lt;, (//

can then be reduced to the forms

where y^...yn are all real linear functions of x
l

... xn and e is + 1 according as

positive or negative. See 86 and p. 484.

B. 33
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CAYLEY (A.) On a new analytical, representation of curves in space. Quarterly
Mathematical Journal; Vol. iii., pp. 225-236 (1860). Vol. v., pp. 81-86

(1862). Coll. Math. Papers, Vol. iv. pp. 446-455, 490-494.

In this paper the conception of the six co-ordinates of a line is introduced for

the first time. This is of importance in connection with our present subject
because the six coordinates of a screw may be regarded as the generalization of

the six coordinates of a straight line.

If ttj,... ag be the six coordinates of a screw then when we express that its

pitch is zero by the condition

we obtain the coordinates of a straight line. This is perhaps the most symmetrical
form of the quadratic condition which must subsist between six quantities consti

tuting the coordinates of a line. In Cayley s system it is given by equating the

sum of three products to zero.

SYLVESTER (J. J.) Sur Vinvolution des lignes droites dans I espace, considerees

comme des axes de rotation. Paris, Comptes Rendus
;

vol. Iii., pp. 741-746

(April, 1861).

Any small displacement of a rigid body can generally be represented by rota

tions about six axes (Mobius). But this is not the case if forces can be found

which equilibrate when acting along the six axes on a rigid body. The six axes in

this case are in involution. The paper discusses the geometrical features of such

a system, and shows, when five axes are given, how the locus of the sixth is to be

found. Mobius had shown that through any point a plane of lines can be drawn
in involution with five given lines. The present paper shows how the plane can

be constructed. All the transversals intersecting a pair of conjugate axes are in

involution with five given lines. Any two pairs of conjugate axes lie on the same

hyperboloid. Two forces can be found on any pair of conjugate axes, which are

statically equivalent to two given forces on any other given pair of conjugate axes.

In presenting this paper M. Chasles remarks that Mr Sylvester s results lead to the

following construction : Conceive that a rigid body receives any small displace

ment, then lines drawn through any six points of the body perpendicular to their

trajectories are in involution. M. Chasles also takes occasion to mention some
other properties of the conjugate axes.

SYLVESTER (J. J.) Note sur I involution de six lignes dans I espace. Paris, Comptes
Rendus; vol. Hi., pp. 815-817 (April, 1861).

The six lines are 1, 2, 3, 4, 5, 6. Let the line i be represented by the

equations

a
t
x 4- l&amp;gt;

iy + CiZ + diU = 0,

a
t
x + fay + jiZ + o

t
u - 0,

and let i, j represent the determinant

a
t

b
{

c
t

* A Ji

ttj bj Cj

a
j Pj 7j 8
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Form now the determinant A_
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He then considers the quaternion ? ^73 already mentioned (p. 512), and
i/3

&quot;S? /?

introduces the new quaternion Q = -- = c + y. The scalar c (the pitch) is inde-
Z/3

pendent of the assumed origin, and the vector y is the vector to a definite point C
on the central axis. This point does not vary with the position of the assumed

origin, and is called the &quot;Centre of the System of Forces.&quot; When the forces are

all parallel G coincides with the centre of the parallel forces. In general

or the tensor of the total moment is constant for all points situated on a sphere
whose centre is C, and becomes a minimum when coincides with C.

In Art. 396 Hamilton says &quot;the passage of a right line from any one given

position in space to any other may be conceived to be accomplished by a sort of screw

motion&quot; and on these kinematical lines he worked out his theory of the &quot;Surface of

Emanants,&quot; generated by a line moving according to some given law and constantly

intersecting a given curve in space.

PLUCKER (J.) Fundamental views regarding mechanics. Phil. Trans. (1866); Vol.

clvi., pp. 361380.

The object of this paper is to &quot;connect, in mechanics, translatory and rotatory
movements with each other by a principle in geometry analogous to that of re

ciprocity.&quot;
One of the principal theorems is thus enunciated: &quot;Any number of

rotatory forces acting simultaneously, the co-ordinates of the resulting rotatory
force, if there is such a force, if there is not, the co-ordinates of the resulting

rotatory dyname, are obtained by adding the co-ordinates of the given rotatory
forces. In the case of equilibrium the six sums obtained are equal to zero.&quot;

SPOTTISWOODE (W.) Note sur Vequilibre des forces dans Fespace. Comptes
Rendus; Vol. Ixvi., pp. 97-103 (January, 1868).

If P ... P
re_! be n forces in equilibrium, and if (0, 1) denote the moment of

P
,
P15 then the author proves* that

^(0, l) + Pf (0, 2)+...=0,

P
(2, 0) + P

1 (2, 1) +

As we have thus n equations to determine only the relative values of n quantities,
the redundancy is taken advantage of to prove that

p 2 p 2

[ofo]

=
[17T]

= &c
&quot;

where [0, 0], [1, 1], &c., are the coefficients of (0, 0), (1, 1), &c., in the determinant

(0, 0), (0, 1) ...

(1, 0), (1, 1) ...

* We may remark that since the moment of two lines is the virtual coefficient of two screws
of zero pitch, these equations are given at once by virtual velocities, if we rotate the body round
each of the forces in succession.
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When the forces are fewer than seven, the formula? admit of a special trans

formation, which expresses certain further conditions which must be fulfilled.

This very elegant result may receive an extended interpretation. If POJ Plt

P2 , &c., denote the intensities of wrenches on the screws 0, 1, 2, &c.
;
and if (12)

denote the virtual coefficient of 1 and 2, then, when the formulae of Mr Spottis-
woode are satisfied, the n wrenches equilibrate, provided that the screws belong to

a screw complex of the (n l)th order and first degree.

PLUCKER (J.) Neue Geometrie des Raumes gegrundet auf die Betrachtung der

geraden Linie als Raumelement. Leipzig (B. G. Teiibner, 1868-69), pp.
1-374.

This work is of course the principal authority on the theory of the linear

complex. The subject here treated is essentially geometrical rather than dynami
cal, but there are a few remarks which are specially significant in our present
subject; thus the author, on p. 24, introduces the word

&quot;Dyname&quot;:
&quot; Durch

den Ausdruck Dyname, habe ich die Ursache einer beliebigen Bewegung eines

starren Systems, oder, da sich die Natur dieser Ursache, wie die Natur einer

Kraft iiberhaupt, unserem Erkennungsvermogeii entzieht, die Bewegung selbst,
statt der Ursache die Wirkung, bezeichnet.&quot; Although it is not very easy to see

the precise meaning of this passage, yet it appears that a Dyname may be either

a twist or a wrench (to use the language of the Theory of Screws).
On p. 25 we read : &quot;Dann entschwindet das specifisch Mechanische, und, um

mich auf eine kurze Andeutung zu beschranken : es treten geometrische Gebilde

auf, welche zu Dynamen in derselben Beziehung stehen, wie gerade Linien zu

Kraften und Rotationen.&quot; There can be little doubt that the &quot;

geometrische
Gebilde,&quot; to which Pliicker refers, are what we have called screws.

As we have already stated
( 13), we find in this book the discussion of the

surface which we call the cylindroid, to which, as pointed out on p. 510, Sir W. R.
Hamilton had been previously conducted.

Through any point a cone of the second degree can be drawn, the generators of

which are lines belonging to a linear complex of the second degree. If the point
be limited to a certain surface the cone breaks up into two planes. This surface is

of the fourth class and fourth degree, and is known as Kummer s surface. See

papers by Kummer in the Monatsberichte of the Berlin Academy, 1864, pp. 246

260, and 495-499. It has since been extensively studied from various points of

view by many mathematicians. This theory is of interest for our purpose, because
the locus of screws reciprocal to a cylindroid is a very special linear complex
of the second degree, of which the cylindroid itself is the surface of singularities.
Kummer s surface has in this case broken up into a plane and a cylindroid.

KLEIN (F.) Zur Theorie der Linien-Complexe des ersten und zweiten Grades.

Math. Ann.; Vol. n., pp. 198-226 (14th June, 1869).

The &quot; simultaneous invariant
&quot;

of two linear complexes is discussed. In our

language this function is the virtual coefficient of the two screws reciprocal to the

complexes. The six fundamental complexes are considered at length, and many
remarkable geometrical properties proved. It is a matter of no little interest that

these purely geometrical researches have a physical significance attached to them

by the Theory of Screws.

This paper also contains the following proposition: If x
l , ..., x6 be the co-ordi

nates of a line, and &n ... k6 ,
be constants, then the family of linear complexes

denoted by
a,

1

!

2 x6
2

/Cj A, A/g A.
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have a common surface of singularities where A. is a variable parameter. If the

roots Aj, &c. be known, we have a set of quasi elliptic co-ordinates for the line x.

(Compare 234.)
It is in this memoir that we find the enunciation of the remarkable geometrical

principle which, when transformed into the language and conceptions of the Theory
of Screws, asserts the existence of one screw reciprocal to five given screws.

( 25.)

KLEIN (F.) Die allgemeine lineare Transformation der Linien Coordinaten.

Math. Ann.; Vol. n., pp. 366-371 (August 4, 1869).

Let /j, ... U6 denote six linear complexes. The moments of a straight line,

with its conjugate polars with respect to C/j, ... U6 , are, when multiplied by certain

constants, the homogeneous co-ordinates of the straight line, and are denoted by
xly ... x6 . Arbitrary values of a^, &c., do not denote a straight line, unless a

homogeneous function of the second degree vanishes*. If this condition be not

satisfied, then a linear complex is defined by the co-ordinates, and the function is

called the invariant of the linear complex. The simultaneous invariant of two
linear complexes is a function of the co-ordinates, and is equal to

A sin &amp;lt;

- (K + K
]
cos

&amp;lt;/&amp;gt;,

where K and K are the parameters of the linear complexes, A the perpendicular
distance, and &amp;lt; the angle between their principal axes.

The co-ordinates of a linear complex are the simultaneous invariants of the
linear complex with each of six given linear complexes multiplied by certain

constants. The six linear complexes can be chosen so that each one is in involution
with the remaining five. The reader will easily perceive the equivalent theorems
in the Theory of Screws. K and Ar are the pitches, and the simultaneous invariant
is merely double the virtual coefficient with its sign changed.

ZEUTHEN (H. G.) Notes sur un systeme de coordonnees lineaires dans I espace.
Math. Ann.

;
Vol. i., pp. 432-454 (1869).

The co-ordinates of a line are the components of a unit force on the line decom
posed along the six edges of a tetrahedron. These co-ordinates must satisfy one
condition, which expresses that six forces along the edges of a tetrahedron have a

single resultant force. The author makes applications to the theory of the linear

complex.

Regarding the six edges as screws of zero pitch, they are not co-reciprocal. It

may, however, be of interest to show how these co-ordinates may be used for a

purpose different from that for which the author now quoted has used them. Let
the virtual coefficients of the opposite pairs of edges be L, M, N. If the co
ordinates of a screw with respect to this system be Ol

... G ,
then the pitch is

(LBA + M030, + N6&\
and the virtual coefficient of the two screws

&amp;lt;/&amp;gt;,

is

\L (0^, + 0^)

BATTAGLINI (G.) Sulle serie die sistemi diforze. Napoli Rendicoiito, viii., 1869,
pp. 87-94. Giornale di Matemat, x., 1872, pp. 133-140.

This memoir deserves special notice in the history of the subject inasmuch as

already remarked in 13 it contains the earliest announcement of the dynamical
significance of the cylindroid. Battaglini here shows that the cylindroid is the
locus of the screws on which lie the wrenches produced by the composition of two
variable forces on two fixed directions. See also p. 520.

* This equation expresses that the pitch of the screw denoted by the co-ordinates is zero.
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BATTAGI.INI (G.) Sulle dinami in involuzione. Napoli Atti Accad. Sci., iv., 1869

(No. 14). Napoli Rendiconto, viii., 1869, pp. 166-167.

The co-ordinates of a dyname are the six forces which acting along the edges of

a tetrahedron are equivalent to the dyname. This memoir investigates the

properties of dynames of which the co-ordinates satisfy one or more linear equa
tions. The author shows analytically the existence of two associated systems of

dynames such that all the dynames of the first order are correlated to all the

dynames of the second. These correspond to what we call two reciprocal screw

complexes.

BALL (R. S.) A Problem in Mechanics. To determine the small oscillations of a

particle on any surface acted upon by any forces [1869], Quart. Journ.

Math., 1870, pp. 220-228.

With reference to this paper I may mention the following facts connected

with the history of the present volume.

In the spring of 1869 I happened to attend a lecture at the Royal Dublin

Society, given by my friend Dr G. Johnstone Stoney, F.R.S.

For one illustration he used a conical pendulum : he exhibited and explained
the progression of the apse in the ellipse described by a heavy ball suspended from

a long wire.

I was much interested by his exposition, and immediately began to work at the

mathematical theory of the subject I was thus led to investigate some general

problems relating to the small oscillations of a particle on a surface. Certain

results, at which I arrived, seemed to me interesting and novel. They appeared
in the paper now referred to. This paper was soon followed by another of a more

general character and the subject presently began to develop into what was soon

after called the &quot;Theory of Screws.&quot;

BATTAGLINI (G.) Sul movimento geometrico infinitesimo di un sistema rigido.

Napoli Rendiconto, ix., 1870, pp. 89-100. Giornale di Matemat., x., 1872,

pp. 207-216.

In this paper tetrahedral co-ordinates are employed in the analytical develop
ment of the statics of a rigid body, as well as the theory of small displacements.
Besides the papers by this author to which I have specially referred there are

several others (generally short) in Napoli Rendiconto, v.-x., both inclusive, which
are of interest in connection with the fundamental notions involved in the theory
of screws.

MANNHEIM (A.) Etude sur le deplacement d une figure de forme invariable.

Nouvelle methode des normales
; applications diverses. Paris, Acad. Sci.

Compt. Rend., Ixvi., 1868, pp. 591-598. Paris, Ecole Polytechn. Journ.,

cap. 43 (1870), pp. 57-121
; Paris, Mem. Savants Etrang., xx., 1872,

pp. 1-74.

This paper discusses the trajectories of the different points of a body when its

movement takes place under prescribed conditions. It has been already cited

( 121) for a theorem about the screws of zero pitch on a cylindroid. Another
theorem of the same class is given by M. Mannheim. When a rigid body has

freedom of the third order, then for any point on the surface of a certain quadric*
the possible displacements are limited to a plane.

* The reader will easily see that this is the pitch quadric.
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BALL (R. S.) On the small oscillations of a Riyid Body about a fixed point under
tlie action of any forces, and, more particularly, when gravity is the only
force acting. Transactions of the Royal Irish Academy; Vol. xxiv., pp.
593-628 (January 24, 1870).

Certain dynamical problems which are here solved for the rotation of a body
round a point were solved in subsequent papers for a body restricted in any
manner whatever. Some of the chief results obtained are given in 197.

This paper has its geometrical basis in the following theorem, due apparently to

D Alembert. Recherches sur la Precession des Equinoxes, Paris, 1749, p. 83.

Any small displacement of a rigid body rotating around a fixed point can
be produced by the rotation around an axis passing through the point.

In 1776 Euler proved that the same law was true for displacements of finite

magnitude. Formulae generales pro translations, quacunque corporum Rigidorum.
Novi Commentarii Academiae Petropolitanae ;

Vol. xx., pp. 189-207.

KLEIN (F.) Notiz betreffend den Zusammenhang der Liniengeometrie mit der
Mechanik starrer Korper. Math. Ann.; Vol. iv., pp. 403-415 (June, 1871).

Among many interesting matters this paper contains the germ of the physical
conception of reciprocal screws. We thus read on p. 413: &quot;Es lasst sich nun in
der That ein physikalischer Zusammenhang zwischen Kraftesystemen und unend-
lich kleinen Bewegungen angeben, welcher es erklart, wie so die beiden Dinge
mathematisch co-ordinirt auftreten. Diese Beziehung ist nicht von der Art, dass
sie jedem Kraftesystem eine einzelne unendlich kleine Bewegung zuordnet, sondern
sie ist von anderer Art, sie ist eine dualistiche.

&quot;Es sei ein Kraftesystem mit den Coordinaten E, H, Z, A, M, N, und eine
unendlich kleine Bewegung mit den Coordinaten H

,
//

,
Z

,
A

,
M

,
N gegeben,

wobei man die Co-ordinaten in der im 2 besprochenen Weise absolut bestimmt
haben mag. Dann reprdsentirt, wie hier nicht weiter nachgewiesen werden soil,
der Ausdruck

A H + M N + S Z + H A + HM + Z N
das Quantum von Arbeit, welches das gegebene Kraftesystem bei Eintritt der
gegebenen unendlich kleinen Bewegung leistet. Ist insbesondere

A H + M U + N Z + H A + H M H- Z N= 0,

so leistet das gegebene Kraftesystem bei Eintritt der gegebenen unendlich kleinen

Bewegung keine Arbeit. Diese Gleichung nun reprasentirt uns, indem wir einmal
H, H, Z, A, M, N, das andere H

,
//

,
Z

,
A

,
M

,
N als veranderlich betrachten, den

Zusammenhang zwischen Kraftesystemen und unendlich kleinen Bewegungen.&quot;

BALL (R. S.) The Theory of Screws a geometrical study of the kinematics,
equilibrium, and small oscillations of a Riyid Body. First memoir. Trans
actions of the Royal Irish Academy, Vol. xxv., pp. 137-217 (November 13,

1871).

This is the original paper on the Theory of Screws. At the time this paper
was printed (1871) I had no suspicion that the Cylindroid had been ever studied

by anyone besides myself. I subsequently learned that the same surface had
been investigated by Pliicker two or three years previously (1868-9) in connection
with the linear complex (see pp. 20, 517). It also appeared that about the same
time (1869) this surface presented itself in the Researches of Battaglini. Indeed,
to this mathematician belongs, I believe, the distinction of having been the first to

perceive that this particular conoid had a special dynamical significance (see
pp. 20, 518). Pliicker and Battaglini were certainly independent discoverers of the
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cylindroid, or rather rediscoverers, for neither of them was the earliest discoverer,

for as shown in p. 510 the cylindroid was first introduced into science by Sir

W. R. Hamilton so long ago as 1830. It is worthy of note that three investi

gators, and if I may add my own name a fourth also, following different lines

of research, have each been independently led to perceive the importance of this

particular surface in various theories of systems of lines.

In the paper now before us I had developed the doctrine of reciprocal screws

which is of such fundamental importance in the theory. I had arrived at this

doctrine independently, and not until after the paper was printed did I learn that

the essential conception of Reciprocal Screws had been announced by Professor

Klein a few months before my paper was read (pp. 17, 18, 520).
These facts have to be mentioned in explanation of the circumstance that this

first paper contains no references to the names of either Pliicker and Battaglini or

Hamilton and Klein.

SOMOFF (J.) Sur les vitesses virtuelles d une figure invariable, assujetties a des

equations de conditions quelconques de forme lineaire. St Petersb. Acad. Sci.

Bull., xviii., 1873, col. 162184.

This paper is an important one in the history of the subject. Its scope may
be realized from the paragraph here quoted.

&quot; Dans le memoire que j ai 1 honneur de presenter a 1 Academie je donne un

moyen analytique pour determiner les vitesses virtuelles d une figure invariable, en

supposant que ces vitesses doivent satisfaire & des equations de condition de la

forme geiierale que je vients de citer. Je prends en meme temps en consideration

les proprietes des complexes lineaires de Pliicker, auxquel les vitesses virtuelles

d une figure invariable sont intimement liees.&quot;

The analytical development of the Theory of the Constraints which follows is

founded upon the conventions proposed by M. Resal in his &quot; Traite de Cinematique
pure.&quot;

M. Somoff studies conditions of constraint which he has generalized from M.
Mannheim s

&quot; $tude sur le deplacement d une figure de forme invariable&quot;
(p. 519).

It is instructive to read M. Somoff s paper in the light of the Theory of Screws.
For example on p. 179 he gives the theorem that every system of &quot; virtual

velocities&quot; which satisfies three linear equations can be produced by two rotations

around two rays common to the three corresponding linear complexes. In our

language we express this by saying that any displacement of a body with three

degrees of freedom can be produced by rotation around two screws of zero pitch

belonging to the system. This is easily seen, for let be the screw about which
the required displacement is a twist. Let &amp;lt; be any other screw of the three-

system, then the two screws of zero pitch on the cylindroid (9, &amp;lt;)

are two axes of

rotation that fulfil the required condition.

The cases of four and five degrees of freedom are also briefly discussed by
Somoff, but without the conception of screw motion which he does not employ the
results are somewhat complicated.

Reference may also be made to Somoff,
&quot; Theoretische Mechanik&quot; translated

from the Russian by A. Ziwet, Leipzig, 18789.

CLIFFORD (W. K.) Preliminary Sketch of Biquaternions. Proceedings of the

London Mathematical Society, Nos. 64, 65, Vol. iv., pp. 381 395 (12th
June, 1873).

This is one of the modern developments of that remarkable branch of mathe
matics with which the names of Lobachevsky and Bolyai are specially associated.

A Biquaternion is defined to be the ratio of two twists or two wrenches or
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more generally of two Dynames in Pliicker s sense or of two &quot;motors&quot; as Clifford

prefers to call them. A &quot;

motor&quot; may be said to bear the same relation to a screw

which a vector bears to a ray. The calculus of Biquaternions is generalized from

that of quaternions and belongs to the non-Euclidian geometry. See Klein s

celebrated paper, &quot;Ueber die sogenannte nicht Euclidische Geometric.&quot; Math.

Ann., Band IV., pp. 573-G25. This paper of Clifford s has been the commence
ment of an extensive theory at which many mathematicians have since worked.

Chap xxvi. discusses some of Clifford s theorems and in the course of these

bibliographical notes there are several references to this theory. See under the

names of Everett, Padeletti, Cox, Heath, Buchheim, Cayley, Burnside, Joly,

Kotelnikof, and M Aulay.

BALL (R. S.) Researches in the Dynamics of a Rigid Body by the aid of the Theory
of Screivs. Second Memoir (June 19, 1873). Philosophical Transactions,

pp. 15-40 (1874).

The chief advance in this paper is expressed by the theorem that a rigid body
has just so many principal screws of inertia as it has degrees of freedom. This

theorem is a generalization for all cases of a rigid system, no matter what be the

nature and number of its constraints, of the well-known property of the principal
axes of a rigid body rotating around a fixed point.

It is shown that if the screws on one cylindroid be regarded as impulsive
screws, the system of corresponding instantaneous screws lie on another cylindroid.

Any four screws on the one cylindroid, and their four correspondents on the others

are equi-anharmonic. This theorem leads to many points of connexion between
theoretical dynamics and modern geometry. It has been greatly developed sub

sequently.
A postscript to this paper gives a brief historical sketch which shows the rela

tion of the theory of screws to the researches of Pliicker and Klein on the Theory
of the Linear Complex.

SKATOW. Zusaminenstellung der Sdtze von den ubriybleibenden Bewegungen eines

Kdrpers, der in einigen Punkten seiner oberfldche durch normale Stiitzen

unterstiitzt wird. Schlomilch s Zeitschrift fur Mathem. u. Physik, B. xviii.,

p. 224, 1873.

HALPHEN Sur le deplacement d line solide invariable. Bulletin de la Soc. Math.,
Vol. ii., pp. 56-62 (23 July, 1873).

The study of the displacements of a rigid body is distributed into six cases

according to the number of degrees of freedom. This paper like so many others on
the present subject has been suggested by the writings of M. Mannheim. It

gives for instance a proof of Mannheim s theorem that all the displacements of a

solid restrained by four conditions could be produced by two rotations around two
determinate lines. These are of course in our language the two screws of zero

pitch on the cylindroid expressing the freedom. Halphen considers in some cases

conditions more general than those of Mannheim and adds some theorems of quite
a new class. Thus still referring to the case of a body restrained by four con

ditions, i.e. with two degrees of freedom, he shows how the movements of every

point are limited to a surface, and then calling the two screws of zero pitch the

&quot;axes&quot; we have as follows. &quot; Les projections, sur un plan donne, des elements

superficiels, decrit par les points du corps, sont proportionelles aux produits des

segments intercepted, sur des secantes paralleles issues de ces points, par un para-
boloide passant par les deux axes, et ayant le plan donne pour plan directeur.&quot;
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LINDEMANN (F.) Ueber unendliclt, kleine Bewegungen und iiber Kraftsysteme bei

cdlgemeiner projectivischer Massbestimmung. Math. Ann., Vol. vii., pp.
56-143 (July, 1873).

This is a memoir upon the statics and kinematics of a rigid body in elliptic or

hyperbolic space. Among several results closely related to the Theory of Screws,
we find that the cylindroid is only the degraded form in parabolic or common space
of a surface of the fourth order, with two double lines. Lindemann both by this

memoir and by that entitled &quot;

Projectivische Behandlung der Mechanik starrer

Korper&quot; in the same volume has become the pioneer of an immense and most

attractive field of exploration. He has laid down the principles of Dynamics in

Non-Euclidian space. One small part of this subject I have endeavoured to

develop in Chap. xxvi.

WEILEK (A.) Ueber die verschiedenen Gattungen der Complexe zweiten Grades.

Math. Ann., Vol. vii., pp. 145-207 (July, 1873).

In this elaborate memoir the author enumerates fifty-eight different species of

linear complexes of the second order. The classification is based upon Kummer s

surface, which defines the singularities of the complex. These investigations are of

importance in the present subject because, to take a single instance, the screws

of a system of the fourth order form a linear complex of the second order. This

complex is of a special type included among the 58 species.

BALL (R. S.) Screw Co-ordinates and their applications to problems in the

Dynamics of a Rigid Body. Third memoir. Transactions of the Royal
Irish Academy, Vol. xxv., pp. 259-327 (January 12, 1874).

The progress of the present theory was much facilitated by the introduction of

screw co-ordinates. The origin and the use of such co-ordinates are here explained.
It is, however, to be understood that screw co-ordinates, though no doubt arrived

at independently, ought properly to be regarded as an adaptation for dynamical
purposes of Klein s co-ordinates of a linear complex referred to six fundamental

complexes, of which each pair are in involution or reciprocal, as we say in the

terminology of this volume.

The pitch of a screw a as expressed in terms of its six co-ordinates
a,, ... a6

is Sjt^a,
2 where p l

... p6 ,
&c. are the pitches of the co-reciprocal screws of reference.

The virtual coefficient of two screws a and (3 is 2/^/3,. In the dynamical part
of the subject the chief result of this paper is the fundamental theorem that,
when the six screws of reference are the six principal screws of inertia, then

PiaD P 2
a2} P6ae are the co-ordinates of the impulsive wrench which will make

the body commence to move by twisting about the screw a
}

... a
6 .

This was, perhaps, all that could be desired in the way of a simple connexion
between an impulsive screw and the corresponding instantaneous screw, so far as

their co-ordinates were concerned. Long before this paper was published I had
been trying to find a geometrical connexion between two such screws which would
exhibit their relation in a graphic manner. But the search was not to be successful

until the results in the Twelfth Memoir were arrived at.

EVERETT (J. D.) On a new met/tod in Statics and Kinematics. (Part I.)

Messenger of Mathematics. New Series. No. 39 (1874), 45, 53 (1875).

The papers contain applications of quaternions. The operator ta + Va-
( )

is a
&quot;

motor,&quot; -or and a- being vectors, the former denoting a translation or couple, the
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latter a rotation or force. The pitch is S . The equation to the central axis is

p = V xtr. The work done in a small motion is S-m^ S-ar^ . The existence
&amp;lt;r

of k equations of the first degree between n motors is the condition of their

belonging to a screw system of the first degree, and of order n k. Several of

the leading theorems in screws are directly deduced from motor equations by the

methods of determinants.

STURM (Rudolf). Sulleforze in equilibrio. Darmstadt, 1875.

This is an interesting geometrical memoir in which the beautiful methods of

Mobius in his Lehrbuch der Statik have been followed up.

BALL (R. S.) The Theory of Screws. A study in the Dynamics of a rigid body.

Dublin, 8vo., 1876, pp. (1-194).

The substance of this volume (now out of print) has been incorporated in the

present one. The necessity for a new work on the subject will be apparent from

these bibliographical notes, from which it will be seen how much the subject has

grown since 1876. It will be here sufficient to give an extract from the preface.

&quot;The Theory presented in the following pages was first sketched by the author

in a Paper communicated to the Royal Irish Academy on the 13th of November,
1871. This Paper was followed by others, in which the subject was more fully

developed. The entire Theory has been re-written, and systematically arranged, in

the present volume.&quot;

&quot; References are made in the foot-notes, and more fully in the Appendix,
to various authors whose writings are connected with the subject discussed in this

book. I must, however, mention specially the name of my friend Professor Felix

Klein, of Munich, whose private letters have afforded me much valuable informa

tion, in addition to that derived from his instructive memoirs in the pages of the

Mathematische Annalen.&quot;

An abstract dated Nov. 1875 of the chief theorems in this book has been

given in Math. Annalen, Vol. ix., pp. 541-553.

FIEDLER (W.) Geometric und Geomechanik. Vierteljahrschrift der naturforschenden

Gesellschaft in Zurich (1876), xxi. 186, 228.

This valuable paper should be studied by any one desirous of becoming

acquainted with the history of the subject. Dr Fiedler has presented a critical

account of the manner in which the Theory of Screws has grown out of the works

of the earlier mathematicians who had applied the higher geometry to Dynamics,

especially Chasles, Poinsot, Mobius and Pliicker. The paper contains an account

of the chief results in the Theory so far as they were known in 1876. Many of

the investigations are treated with much elegance, as might indeed have been

expected from a mathematician so accomplished as the German translator of

Dr Salmon s great works.

RITTERSHAUS (T.) Die Kinematische Kette, Hire Beweglichkeit und Zwanglaufig

keit. Der Civilingenieur, Vol. xxn. (1877).

This is the study of the kinematics of three rigid bodies whereof the first and

second are hinged together, as are also the second and third. The cylindroid is

employed to obtain many theorems. Of course it will be understood that the

&quot;Kinematische Kette&quot; is a conception quite distinct from that of the Screw-chain

discussed in the present volume (Chap. xxiv.). In a further paper (lac. cit. xxiv.

1878) the author develops cases in which the conditions are of increased generality.
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CLIFFORD (W. K.) Elements of Dynamics. 1878.

In this work, designed no doubt to be elementary but perhaps rather illus

trating the breadth of view so characteristic of its gifted author, the fundamental

theorem of the composition of twists and wrenches by the cylindroid is assigned an

important position at the basis of mechanics.

SCHELL (W.). Theorie der Bewegung und der Krdfte. 2nd edition. Leipzig, 1879.

Vol. ii.

This is a comprehensive and valuable treatise on Theoretical Dynamics. It

merits particular mention here because it contains an excellent exposition in the

German language of many of the most important parts of the Theory of Screws.

Part III., Chap, x., pp. 211-235, discusses the Cylindroid and reciprocal Screws,

and includes a general account of the properties of the different screw-systems.

Part IV., Chap, vni., gives a general account of the Dynamical parts of the

Theory, including the principal Screws of Inertia and Harmonic Screws.

BALL (R. S.) Note on the application of Lagranges Equations of Motion to Pro

blems in the Dynamics of a Rigid Body. Proceedings of the Royal Irish

Academy. 2nd Ser., Vol. iii., p. 213 (1879).

In this paper it is shown from Lagrange s well-known equations of motion in

generalized co-ordinates that if T be the kinetic energy of a body twisting about a

screw whose n screw co-ordinates referred to any co-reciprocal system with pitches

!, ... pn ,
are

1 ,
... 9n ,

then the impulsive wrench which would have been capable
of producing from rest the actual motion which the body possesses must have as its

coordinates ( 86)
! dT \dT

BALL (R. S.) Extension of the Theory of Screws to the Dynamics of any Material

System. (Fourth Memoir.) Transactions of the Royal Irish Academy, Vol.

xxviii., pp. 99-136 (1881).

The conception of a screw-chain is here introduced. The screw-chain is a

geometrical entity which bears to an entire system, no matter how complex its

parts or their connexions, the same relation which a screw bears to a single rigid

body. One screw-chain can always be found which is reciprocal to 6/u.
- 1 screw-

chains where
yu.

is the number of material parts in the system.
One of the chief results obtained shows the extension of the notion of the

principal screws of inertia of a single rigid body to a system of rigid bodies.

Chap. xxiv. of the present volume contains the essential parts of this memoir.

SCHELL (W.) Die sechs Grade der Beweglichkeit eines iinverdnderlichen Systems.
Central Zeitung fur Optik und Mechanik, 1881.

Here is an interesting geometrical study of the degrees of freedom of a rigid

body under the several conditions that 1, 2, 3, 4 or 5 of its points shall be con

strained to lie on given surfaces.

If a force be applied along a normal to the surface at the point of the body
which is constrained to lie on that surface then that force will be counteracted by
the constraints. Every motion of the body which is possible must be a twist

about a screw reciprocal to a screw of zero pitcli on that normal.
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Constraint of the most general nature cannot, however, be so produced. It is

sufficient to mention that in the case of freedom of the fifth order the screw

reciprocal to the system must have zero pitch, if the constraint is of the nature

supposed by Schell, while in the general case the pitch may have any value.

BALL (R. S.) On Homographic Screw Systems. Proceedings of the Royal Irish

Academy, Ser. 2, Vol. iii. p. 435 (1881).

The theory of Homographic Screws shows the connection between certain

geometrical theories of an abstract nature and Dynamics. The intimate alliance

between geometry and the higher branches of Rigid Dynamics is illustrated in this

paper. Invariant functions of eight screws are studied, and a generalized type of

homographic ratio involving eight screws is considered. (See Chap, xix.)

BALL (R. S.) On the Elucidation of a question in Kinematics by the aid of Non-
Eiiclidian Space. Report of British Association, York, 1881, p. 535.

Certain peculiarities which presented themselves in the geometrical representa
tion of the screws of a three-system by points in a plane are here shown to be due
to the conventions of Euclidian space. The screws of a three-system in non-

Euclidian space can be arranged in equal pitch hyperboloids, which have eight
common points and eight common tangent planes. In Euclidian space the cor

responding quadrics are inscribed in a common tetrahedron and pass through
four common points as explained in Chap. xv.

BALL (R. S.) Certain Problems in the Dynamics of a Rigid System moving in

Elliptic Space. (Fifth Memoir.) Transactions of the Royal Irish Academy,
Vol. xxviii., pp. 159-184 (1881).

The chief theorem proved in this paper is, that though the virtual moment of

two homonymous vectors is zero only when the two vectors are
&quot;rectangular,&quot; yet

the virtual moment of two heteroriymous vectors is always zero.

I may here mention another memoir which bears on the same subject. The
title is, On the Theory of the Content. Transactions of the Royal Irish Academy,
Vol. xxix., pp. 123-181 (1887).

In this it is shown that the order in which two heteronymous vectors in

elliptic space are applied to a rigid system may be inverted without affecting
the result, which is, however, not a vector at all. On the other hand, when two

homonymous vectors in elliptic space are applied to a rigid system, the result is,

in every case, a homonymous vector
;
but then the order of application could not

be inverted without changing the result.

These papers have contributed to Chap. xxvi. of the present volume.

PADELETTI (Dino) Osservazioni sulla teoria delle dinami (Theory of Screws).
Rendiconto della R. Accademia di Scienze Fis. e Nat. di Napoli, Fascicolo

2 Feb. 1882.

The author here gives a general account of the Theory of Screws so far as it

had been developed up to 1876. The method he has employed for deducing the

equations of the cylindroid is novel and instructive. The same author in the same

journal for May 1882 has a paper entitled, Su un Calcolo nella teoria delle

dinami analogo a quello dei quaternioni.
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Cox (Homersham) On the application of Quaternions and Grassmann s Aus-

dehnungslehre to different kinds of Uniform Space. Cambridge Philosophical

Transactions, Vol. xiii., Part n., pp. 69-143 (1882).

So far as the Theory of Screws is concerned the chief result in this paper is

the demonstration that the homologue of the cylindroid in non-Euclidian space
which Lindemann had already shown to be of the fourth degree may be represented

by the equation

The function known as the sexiant
( 230) is here generalized into the corre

sponding function of six screws in non-Euclidian space. It is of course a

fundamental theorem that a ray crossing two screws of equal pitch meets the

cylindroid again in a third screw which it cuts perpendicularly ( 22). This is here

generalized into the theorem that a transversal across two screws of equal pitch on

the cylindroid in elliptic space intersects that surface also in two other generators
which are conjugate polars with respect to the absolute.

I may take this opportunity to observe that the function 4 which enters
1-po.p?

into the above equation of the surface has an instructive property. If pa. and pp

be transformed into ~- and -s-^-
-

respectively, where m is different from
mpa

unity, then the above function is unaltered. Hence it follows that if the pitch p
of every screw on a screw-system of the nth order in non-Euclidian space receive

/v\ .1 n-y*

the transformation into ~- then the screws so altered will still constitute an
1 + mp

w-system. Thus we generalize that well-known feature of an ?^-system of screws

in ordinary space which asserts that if the pitches of the screws in an n-system be

augmented by a constant the screws so altered will remain an w-system. (See

Proceedings of the Royal Irish Academy, 2nd Series, Vol. iv., p. 256 (1884).)

PADELETTI (Dino) Sulla piu semplice forma dell equazioni di equilibrio di un
sistema rigido vincolato. Rendiconto della R. Accaclemia Scienze Fis. e

Mat. di Napoli, Fascicolo 1, 1883.

In this short paper the author discusses separately two different cases of

freedom and by the aid of the reciprocal screw-system gives in each case the

equations of equilibrium.

HEATH (R. S.) On the Dynamics of a Rigid Body in Elliptic Space. Phil. Trans.

Part n., 1884, pp. 281-324.

&quot;The special features of the method employed are the extensive use of the

symmetrical and homogeneous system of coordinates given by a quadrantal tetra

hedron, and the use of Professor Cayley s co-ordinates in preference to the Rotors
of Professor Clifford to represent the position of a line in

space.&quot;
The Theory of

Screws is considered and the nature of the cylindroid in Elliptic Space discussed.

The general equations of motion referred to any moving axes are then found, and
in a particular case they reduce to a form corresponding to Euler s equations.
When there are no acting forces these equations are solved in terms of the theta-

functions. This paper has been already cited in 412, 420.
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BUCHHBIM (A.) On the Theory of Screw* in Elliptic Space. Proceedings of the

London Math. Soc., Vol. xiv., p. 83; Vol. xvi., p. 15; Vol. xvii., p. 240;
Vol. xviii., p. 88.

In these papers the methods of the Ausdehnungslehre of Grassmann have been

applied to the Biquaternions of Clifford. Reference should also be made to another

paper by the same author, &quot;A Memoir on Biquaternions.&quot; (American Journal of

Mathematics, Vol. vii., No. 4, p. 23, 1884.) If A, B be two biquaternions they
determine a linear singly infinite series of biquaternions \A + p.B when X, p. are

scalars : this set is called a cylindroid, so that if (7 is any biquaternion of the

cylindroid -4, B we have C = \A+p.B. A remarkable investigation of the

equation to this surface in elliptic space is given, and a generalization of the plane

representation of the cylindroid is shown. In these writings it is the methods

employed that are chiefly noticeable. We find however much more than is implied

by the modest disclaimer of the lamented writer, who in the last letter I had from
him says, &quot;I have been but slaying the slain, i.e. discovering over again results

obtained by you and Clifford.&quot;

SBGRE (C.) Sur une expression nouvelle du moment mutuel de deux complexes
lineaires. Kronecker s Journal, pp. 169-172 (1885).

A remarkable form for the expression of the virtual coefficient of two screws on
a cylindroid is given in this paper. Translated into the terminology of the present
volume we can investigate Segre s theorem as follows.

Let two screws on the cylindroid make angles 0, &amp;lt;,

with one of the principal

screws, while the zero pitch screws make angles + a, a. Let p be the anharmonic
ratio of the pencil parallel to these four screws so that

sin (6 a) sin
(&amp;lt;j&amp;gt;

+ a)

sin (6 + a) sin
(&amp;lt; a)

Then as usual

Pe = Po + m cos 2
#&amp;gt;

= p -f m cos 2a
;

whence

p6
= 2m sin (a 0) sin (a + 6),

p$ ~ 2m sin (a &amp;lt;/&amp;gt;)

sin (a + &amp;lt;) ;

whence
4m2

sin2

(6 a) sin
2

(&amp;lt;p

+ a)
=

Thus

2m sin (0 a) sin
(c + a)

= Jp ^

2m sin (6 + a) sin
(&amp;lt;/&amp;gt; a)

= Jp~
1

adding, we easily obtain

If therefore we make

P = e
216

,

we have as the result Segre s theorem that

D EMILIO (R). Gli assoidi nella statica e nella cinematica. Nota su la teoria delle

dinami. Atti del Reale Istituto Veneto di scienze, (6) iii. 1135-1154

(1885).

This is an account of the fundamental laws of the different screw-systems.
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MINCHIN (G. M.) Treatise on Statics. 3rd edition, Vol. ii. (1886).

In pp. 1743 of this standard work the Theory of Screws is discussed. An
instructive construction for the cylindroid is given on p. 20. We may also note

the following theorem proved on p. 25,
&quot; If the wrench on any screw of the

cylindroid is replaced by a force and a couple at the centre of the pitch-conic

(centre of the cylindroid) the axis of this couple will lie along the perpendicular
to the diameter of the pitch-conic which is conjugate to the direction of the force

or in other words, the plane of the couple will be that of the axis of the cylindroid
and this conjugate diameter.&quot;

SCHONFLIES (Arthur) Geometrie der Bewegung in synthetischer Darstellung, pp.

1-194, 8vo. Leipzig, 1886.

The third chapter of this work, pp. 79-192, is devoted to the geometrical study
of the movement of a rigid system. The author uses the word parameter to express
what we have designated as the pitch. As an illustration of the theorems given I

cite the following from p. 92,
&quot;

Bewegt sich ein unverdnderliches System beliebiy im
Bourne, und ist in iryend einem Augenblick eine Gerade desselben senkreclit zur

Tangente der Bahn eines ihrer Punkte, so ist sie es zu den Bahntangenten oiler

Punkte.&quot;

In the language of the present volume in which the dynamical and kinetical

conceptions are so closely interwoven, this theorem appears as follows. Let two
screws a and ft be reciprocal and let the pitch of a be zero. A twist of a rigid

body about (3 can do no work against a force on a. But a may be considered to

act on the rigid body at any point in its line of application. Hence the displace
ments of every such point must be perpendicular to a.

The following suggestive theorems may be quoted from pp. 116, 117 :

&quot; Die sammtlichen Punkte des Systems deren Bahnen nach einem festen

Punkte D des Raumes gerichtet sind, liegen in jedem Augenblick auf einer Raum-
curve dritter Ordnung C.&quot;

&quot;Die Raumcurve C enthalt die unendlich fernen imaginaren Kreispunkte
der zur Axe der Schraubenbewegung senkrechten Ebenen.&quot;

This work contains indeed much that it would be interesting to quote. I must
however content myself with one more remark from p. 153, which I shall give in

our own terminology. When a rigid body has freedom of the second order it can
of course be twisted about any screw on a cylindroid. Such a twist can always
be decomposed into two rotations around the two screws of zero pitch P and Q.
The rotation around P does not alter P. Hence whatever be the small displace
ment of the system the movement of P can never be other than a rotation

around Q, and the movement of Q can never be other than a rotation around P.

BALL (R. S.) Dynamics and Modern Geometry : a new chapter in the Theory of
Screws. Sixth Memoir. Cunningham Memoirs of the Royal Irish Academy,
No. iv., pp. 1-44 (1886).

We represent the several screws on the cylindroid by points on the circum
ference of a circle. The angle between two screws is the angle which their

corresponding points subtend at the circumference. The shortest distance of any
two screws is the projection of the corresponding chord on a fixed ray in the plane
of the circle. Any chord passing through the pole of this ray intersects the circle

in points corresponding to reciprocal screws. The pitch of any screw is the
distance of its corresponding point from this ray. A system of points representing
instantaneous screws and the corresponding system representing the impulsive
screws are homographic. The double points of the homography correspond to the

B. 34
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two principal screws of inertia. This paper is the development of an earlier one.

See Proceedings of the Eoyal Irish Academy, 2nd Series, Vol. iv. p. 29. The

substance of it has been reproduced in Chaps v. and xn. of the present volume.

BALL (R. S.) On the Plane Sections of the Cylindroid. Seventh Memoir. Trans,

of the Royal Irish Academy, Vol. xxix., pp. 1-32 (1887).

This is a geometrical study of the cylindroid regarded as a conoidal cubic with

one nodal line and three right lines in the plane at infinity. Plane sections of the

cylindroid are shown in plates drawn to illustrate calculated cases. It is shown

that the chord joining the points in which two reciprocal screws intersect a fixed

plane envelops a hyperbola which has triple contact with the cubic curve in which

the fixed plane cuts the cylindroid. See Chap. xiu. of the present volume.

I may take this opportunity of mentioning in addition to what has been said

on the subject of models of the cylindroid in Chap. xm. that very simple and

effective models of this surface can now be obtained from Martin Schilling. Halle a

Saale. See his catalogue for Feb. 1900.

ROBERTS (R. A.) Educational Times, xlvi. 32-33 (1887).

In this it is shown that under the circumstances described the shadow of the

cylindroid z (x* + y
2

} 2mxy = on the plane z = exhibits the hypocycloid with

three cusps.

BALL (R. S.) A Dynamical Parable, being an Address to the Mathematical and

Physical Section of the British Association. Manchester, 1887.

This has been given in Appendix n. p. 496. It may be added here that it has

been translated into Hungarian by Dr A. Seydler, and into Italian by G. Vivanti.

TARLETON (P. A.) On a new method of obtaining the conditions fuljilled when
the Harmonic Determinant has equal roots. Proceedings of the Royal Irish

Academy, 3rd Series, Vol. i. No. 1, p. 10 (1887).

This discusses the case of equal roots in the harmonic determinant so important
in the Theory of Screws as in other parts of Dynamics. It should be studied in

connection with 85 of the present volume
;

also Note n. p. 484. See also

Zanchevsky, p. 531.

BALL (R. S.) How Plane Geometry illustrates general problems in the Dynamics oj

a Rigid Body with Three degrees of Freedom. Eighth Memoir. Transactions

of the Royal Irish Academy, Vol. xxix., pp. 247-284 (1888).

The system of the third order is of such special interest that it is desirable

to have a concise method of representing the screws which constitute it. We here

show that the screws of such a system correspond to the points in a plane. This

is the development of an earlier paper communicated to the Royal Irish Academy
in 1881. Proceedings, 2nd Series, Vol. iii., pp. 428-434.

In this method of representation the screws on a cylindroid belonging to the

system are represented by the points on a straight line. The screws of any given

pitch will have as their correspondents the points on a certain conic. A pair of

points conjugate to the conic of zero pitch will correspond to a pair of reciprocal
screws. The conic which represents the screws of zero pitch, and the conic which

represents the screws of infinite pitch, will have a common conjugate triangle.
The vertices of that triangle correspond to the principal screws of the system. It

is proved that the pitch quadrics of a three-system are all inscribed in a common
tetrahedron and have four common points on the plane at infinity.
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The points which represent a series of impulsive screws and the points which

represent the series of corresponding instantaneous screws are homographic. The
three double points of the homography represent the three principal screws of

inertia.

The three harmonic screws about any one of which the body would oscillate for

ever in the vicinity of a position of stable equilibrium are determined as the

vertices of the common conjugate triangle of two conies.

This memoir is the basis of Chap. xv. in the present volume.

HYDE (E. W.) Annals of Mathematics, Vol. iv., No. 5, p. 137 (1888).

The author writes: &quot;I shall define a screw to be the sum of a point-vector

and a plane-vector perpendicular to it, the former being a directed and posited

line, the latter the product of two vectors, hence a directed but not posited plane.&quot;

Prof. Hyde proves by his calculus many of the fundamental theorems in the present

theory in a very concise manner.

GRAVELIUS (Harry) Theoretische Mechanik starrer Systeme. Auf Grund der

Methoden und Arbeiten und mit einem Vorworte von Sir Robert S. Ball.

Berlin, 1889. 8vo., p. 619.

The purport of this volume is expressed in the first paragraph of the preface :

&quot;Das vorliegende Werk stellt sich die Aufgabe, zusammenhangend und als Lehr-

buch die in zahlreichen Arbeiten von Sir Robert Ball geschaffene Theorie der

Mechanik starrer Systeme darzustellen. Es umfasst somit dem Inhalte nach
sammtliche Abhandlungen des Herrn Ball.&quot; Thus the work is mainly a trans

lation of the Theory of Screws and of the subsequent memoirs up to the date 1889.

Herr Gravelius has however added much, and his original contributions to the

theory are specially found in Chap. xix. &quot;

Projective Beziehungen raumlicher

Schraubengebilde.&quot; I feel very grateful to Herr Gravelius for his labour in render

ing an account of the subject into the German language.

ZANCHEVSKY (I.) Theory of Screivs and its Application to Mechanics, pp. I xx.,
1131. Odessa, 1889.

I must first acknowledge the kindness with which my friend Mr G. Chawner,
Fellow of King s College, has assisted me by translating the Russian in whicli this

book is written. I here give some passages from the introduction.

Zanchevsky remarks that in the Theory of Screws I omitted to give a proof of

the reality of all the roots of the equation of the wth degree which determines the

principal Screws of Inertia, and then he gives a proof derived from a theorem
of Kronecker. &quot; Zur Theorie der linearen und quadratischen Formen.&quot; Monats-
berichte der Acad. der Wissenschaften zu Berlin, 1863, p. 339. The theorem is as

follows. Let U and V be two homogeneous quadratic forms with u variables. If

the discriminant of \U + p,V when equated to zero gives a single imaginary root

then no member of the system \U + p.V can be expressed as the sum of n squares.
We should, however, in this matter refer to the earlier paper of Weierstrass, p. 513.

From this theorem Zanchevsky proves the reality of the roots of the Harmonic
Determinant. (See 85.) Then follows a discussion of the principal Screws of

Inertia for a constrained system.

Chap. I. contains an exposition of Plucker s theory of the linear complex of

the 1st order. Here will be found the conception of the screw, its co-ordinates, the
virtual coefficient of two screws, and the connection between the systems of vectors
which determine reciprocal screws. He remarks that this connection may be

directly derived from the works of Lorrioff.

342
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Chap. ii. is devoted to groups of screws. He discusses in detail groups con

taining three members, investigating some special cases not dwelt on before. He
then gives the formulae for what are termed &quot;Oblique Co-ordinates.&quot;

In Chap. in. the application of the Theory of Screws to mechanics is discussed

and the leading parts of the Theory of Screws in relation to dynamical problems
with freedom of the th order are set forth, and he adds, &quot;The lack of books on the

Theory of Screws both in Russia and abroad makes us hope that our work will be

received with indulgence.&quot;

BALL (R. S.) The Theory of Permanent Screws. Ninth Memoir. Transactions of

the Royal Irish Academy, Vol. xxix., pp. 613 652. 1890.

Using Screw-chain co-ordinates an emanent (see Salmon s Higher Algebra,

125, or Elliott s Algebra of Qualities) is here shown to vanish. This involves a

general property of the function T which expresses the kinetic energy.

dT dT
X

l -j

--b ... + XH
-j

= 0.

CtOC-^ CvXft

It is shown that for the permanent screw-chains,

The special cases for the different degrees of freedom of a single rigid body are

considered in detail. If the rigid body has three degrees of freedom then there

are three permanent screws, about any one of which the body will continue to

twist if once set twisting.
In general, if the body be set twisting about a screw 6, a restraining wrench

on some other screw
rj
would be necessary if the motion were to continue as a twist

about 0.

To find
7)
we employ the plane representation. We construct first a system

of points homographic with the points 0. The double points of the homography
are representative of the three permanent screws. If we draw the ray connecting
6 with its correspondent, then

77
is the pole of this ray with respect to the conic of

zero pitch, while the pole of the same ray with respect to the conic of inertia gives
the screw about which the acceleration is imparted to 0.

For freedom of the first and second orders there is only one permanent screw
;

for freedom of the third, fourth, and fifth, there are three permanent screws.
When the body is quite free the permanent screws are triply infinite. The Theory
of Permanent Screws is given in Chap. xxv.

HENRICI (Q.)The Theory of Screws. Nature, xlii. 127-132. London, 1890.

Under the form of a review of the work of Gravelius (see p. 531) we have here
an original and suggestive discussion of the entire subject. Professor Henrici has

pointed out several promising lines along which new departures might be taken in
the further development of the present theory.

KUPPER (C.) Die Schraubenbewegung, das Nullsystem und der lineare Complex.
Monatshefte fur Mathematik und Physik. Vienna, 1890, pp. 95-104.

In this the theory of the linear complex has been developed from the Theory of

Screws. The object appears to have been to introduce the study of the subject
into the High Schools in Germany.
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CAYLEY (A.} Non-Euclidian Geometry. Transactions of the Cambridge Philo

sophical Society, Vol. xv., pp. 37-61 (1894). Read Jan. 27, 1890. See
also Collected Papers, Vol. xiii., p. 480.

This is perhaps the best paper in the English language from which to obtain a

general view of the Non-Euclidian Geometry. The development is here conducted

mainly along geometrical lines. On this account a study of this paper is specially
recommended in connection with Chap. xxvi. of the present volume.

BUDDE (E.) Allgemeine Mechanik der Punkte und starren Systeme. 2 vols. 8vo.

Berlin, 1891.

This comprehensive work may be cited in illustration of progress made in the
use of the Theory of Screws in advanced text-books of Dynamics in Germany.
There is an excellent account of the theory of the cylindroid in Vol. n., pp.
596-603. The only exception, and it is a very small one, which I feel inclined to

take to this part of Professor Budde s work is that he speaks of the composition of

Screws. It seems to me better to preserve the notion of a screw as simply a

geometrical entity and to speak of the composition rather of twists or of wrenches
on the screws than of composition of the screws themselves. Vol. n. pp. 639-644

gives an account of the fundamental parts of the theory of reciprocal screw

systems. The geometrical construction for the cone of screws which can be drawn
through any point reciprocal to a cylindroid ( 22), and which was originally given
in the Theory of Screws, 1876, p, 23, has been here reproduced. A good account
is also given, Vol. n., pp. 905-908, of the geometrical theory of the restraints of

the most general type. This subject is developed both by the elegant methods of

Mannheim and also by those of the Theory of Screws.

ROUTH (E. J.) Treatise on Analytical Statics, Vol. i., 2nd Edition, 1896.

In this standard work several of the fundamental Theorems of the Theory of

Screws will be found. See pp. 202-208.

KLEIN (.}Nicht-Euclidische Geometric : Vorlesuny. 188990. Ausgearbeitet von
Fr. Schilling. Gottingen, 1893.

This is a lithographed record of Klein s lectures. It is invaluable to any one
who desires to become acquainted with the further developments of that remark
able Theory which is of such great importance in the subject of this volume as in

so many other departments of Mathematics. The bearing of the Theory of Screws
in its relation to the Non-Euclidian geometry is discussed by the author.

BURNSIDE (W.) On the Kinematics of Non-Euclidian Space, London Math. Soc.

Proceedings, xxvi. 33-56, Nov. 1894.

The paper consists of a number of applications of a construction for the
resultant of two displacements (or motions), the construction being formally
independent of the nature of the space, Euclidian, elliptic or hyperbolic, in which
the motions are regarded as taking place.

II. of the paper gives the application to elliptic space. The main point
in this case is to deduce synthetically, from the construction, the existence of finite

motions which correspond to the velocity-systems that Clifford has called ri&amp;lt;
rht-

and left-vectors (the same words are here applied to the Unite displacements
themselves). This deduction is materially aided by considering the system of

equidistant surfaces of a given pair of conjugate lines, the two sets of generators
on which constitute respectively the right-parallels and the left-parallels of the
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given pair. In this way the existence of two set.s of finite motions, each

individual motion of which leaves unchanged each of a doubly-infinite number of

straight lines is demonstrated (the right- and left-vectors). It is also shown that,

when a right- (left-) vector is represented as the resultant of two rotations

through two right angles, the axes of the two rotations are left- (right-) parallels.

Hence from the original construction the resultant of two right- (left-) vectors is

again a right- (left-) vector.

Lastly it is shown, still synthetically, that every right-vector is permutable
with every left- vector, thus proving in a different way what is given in 427 of

this volume. See also p. 526. It is also shown that the laws according to which

right- (left-) vectors combine together are the same as those by which finite rotations

round a fixed point combine.

The remainder of II. is concerned with the determination of all distinct

types of &quot;continuous
groups&quot;

of motions in elliptic space.
III. gives the application of the construction to hyperbolic space. Here

attention is first directed to a type of displacement which leaves no finite point or

line undisplaced. It is also shown that no displacement in hyperbolic space
can leave more than one real line unchanged. This fact, combined with the

properties of the previously mentioned special type of displacements, is then used to

determine all the distinct types of continuous groups of motion in hyperbolic space.

JOLY (C. J.) The Theory of Linear Vector Functions. Transactions of the Royal
Irish Academy, Vol. xxx., pp. 597-647 (1894).

In this memoir the close connexion between the quaternion theory of linear

vector functions and the Theory of Screws is developed.
&quot; The axes of the screws

of the resultants of any wrenches acting on three given screws belong therefore to

one of the congruencies of lines treated of in the present paper, and every
geometrical relation described in it may be applied to problems in Rational
Mechanics.&quot; A remarkable quintic surface is discovered which under certain

conditions degrades into the cylindroid. At the close of the memoir the linear

vector functions expressing screw-systems of the third, fourth and fifth orders
are discussed.

BALL (R. S.) The Theory of Pitch Invariants and the Theorij of Chiastic

Hotnography. Tenth Memoir. Transactions of the Royal Irish Academy,
Vol. xxx., pp. 559-586 (1894).

It is shown that if a
x

... a6 be the six co-ordinates of a screw a, while 7i1} ... h6

are the angles which a makes with the six co-reciprocal screws of reference, then

expressions of the form
ax cos Aj + . . . + a

6 cos A
6

are invariants in the sense that they are unaltered for every screw on the same
ray as a.

If klt ... k6 be the similar angles for any other screw, then

cos AJ cos &
x cos A2 cos &2 cos hR cos k6+ + . . . + = U,

Pi P-2 P6

where i\ ... p6 are the pitches of the screws of reference.
If two instantaneous screws a and ft and the corresponding impulsive screws

77 and are so related that a is reciprocal to
,
then

ft
must be reciprocal to

77.

This clearly implied that there must in all cases be some relation between the
virtual coefficients wa and w^^. The relation is here shown to be

COS (077)



BIBLIOGRAPHICAL NOTES. 535

In this paper also the notion of chiastic homography is introduced. The
characteristic feature of chiastic homography is, that every three pairs of corre

spondents a,
&amp;gt;/ ; /3, E, ; y, ,

fulfil the relation

The homography of impulsive and instantaneous systems is chiastic, and the
relation has other physical applications. The substance of this paper has been

reproduced in Chaps, xx. and xxi. of the present volume.

APPELL (B.) Sur le Cylindroide. Revue de mathematiques speciales, 5th year,

1895, pp. 129, 130.

It had been shown in the Theory of Screws, 1876, that the projections of any
point on the generators of a cylindroid form an ellipse. Appell has here shown

conversely that if the projections of a point on the generators of a conoidal surface
lie on a plane curve, then the conoid can be no other than a cylindroid. ROUBADI
(C.), pp. 181183 of the same volume, gives some further geometrical investigations
about the cylindroid.

We may now enunciate a theorem still more general, that if the projections of

every point on the generators of a ruled surface other than a cylinder are to form
a plane curve then that curve must be an ellipse and the ruled surface must be
the cylindroid (see p. 20).

BALL (R. S.) Further Development of the Relations between Impulsive, Screws
and Instantaneous Screws. Eleventh Memoir. Transactions of the Royal
Irish Academy, Vol. xxxi., pp. 99-144 (1896).

It is shown that when
77

is the impulsive screw and a the instantaneous screw,
the kinetic energy of the mass M twisting about a with a twist velocity a is

J/a3

cos (arj)
aq

The twist velocity acquired by a given impulse is proportional to

cos

Pa

There is a second general relation, besides that proved in the last Memoir,
between two pairs of impulsive screws

t], ,
and their corresponding instantaneous

screws a, (3 for a free rigid body.
This relation is as follows

r cos.

cos
(aaj) cos

The following theorem is also proved.

If two cylindroids be given there is, in general, one, and only one, possible
correlation of the screws on the two surfaces, such that a rigid body could be
constructed for which the screws on one cylindroid would be the impulsive screws,
and their correspondents on the other cylindroid the instantaneous screws.

KOTELNIKOF (A. P.) Screws and Complex Numbers. Address delivered 5th May,
1896. Printed (in Russian) by order of the Physical Mathematical Society
in the University of Kazan.

After an introduction relating to the place of the Theory of Screws in
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Dynamics the author introduces the complex numbers called Biquaternions by
Clifford. Again, Mr Chawner translates :

&quot;The more I studied these numbers the more clearly I grasped two properties
in them to which I assign very great importance. First I found that I had only
to have recourse to a little artifice to make the Theory of Biquaternions perfectly

analogous, nay, perfectly identical, with the Theory of Quaternions. I found that
I had only to introduce the idea of the functions of complex numbers of the form
a + wb where w is a symbol with the property o&amp;gt;

2 and at once all formulae in the

Theory of Quaternions could be regarded as formulae in the Theory of Biquaternions.
Second, I found that to the various operations in biquaternions there correspond
various, more or less valuable, constructions of the Theory of Screws, and conversely
that to the constructions of the Theory of Screws, which are so important to us,
there correspond various operations with biquaternions. To these results I attach

great importance. Thanks to biquaternions I can produce perfect parallelism
between the constructions and theorems of the Theory of Vectors and those of the

Theory of Screws. This I call the Theory of Transference and devote a great
part of my book to it.&quot; (Theory of Vectors Kasan, 1899.)

He also mentions the Screw Integrals of certain differential equations and says,
&quot;If from two screw integrals corresponding to two given screws (we will call them
a and

/?) we construct a third with the aid of Poissori s brackets, then the screw of
the latter will be the vector product of the screws a and /3 of the given integrals.
This circumstance allows us to use biquaternions in order to investigate the

properties of screw integrals and their
groups.&quot;

BALL (R. S.) The Twelfth and concluding Memoir on the Theory q/ Screws, with
a Summary of the Twelve Memoirs. Twelfth Memoir. Transactions of the

Royal Irish Academy, Vol. xxxi., pp. 145-196 (1897).

At last I succeeded in accomplishing what I had attempted from the first.

I could not develop the complete theory until I had obtained a geometrical method
for finding the instantaneous screw from the impulsive screw. This has been set
forth in this Memoir, and in Chap. xxn. of this volume.

RENE DE SAUSSURE. Principle* of a new Line Geometry. Catholic University
Bulletin, Jan. 1897, Vol. iii. No. 1. Washington, D.C.

The distance and the angle between two rays are here represented as a single
complex quantity known as the Distangle, P + QI, where / is a geometrical unit

symbol like V- 1. The quantity (P+QI) + f will be regarded as the angular
measure of the same interval and will be known as the codistangle formed by the
two lines. A Codistangle is a complete representation of a wrench, and the laws
of the composition of wrenches are obtained.

McAuLAY (Alex.) Octonions, a development of Clifford s Bi-quaternions. 8vo.,
pp. 1-253. Cambridge (1898).

&quot; An octonion is a quantity which requires for its specification and is completely
specified by a motor and two scalars of which one is called its ordinary scalar and
the other its convert. The axis of the motor is called the axis of the octonion.&quot;

In Chap. v. a large number of examples are given of the applications of Octonions
to the Theory of Screws. Many of the well-known theorems in the subject are

presented in an interesting manner. A discussion of Poirisot s theory of rota
tion is also given by the octonion methods. On p. 250 Mr Mc

Aulay has kindly
pointed out that the &quot;reduced wrench&quot; is a conception which cannot have place in
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the special case when two reciprocal screw-systems have a screw in common. I had
overlooked this exception ( 96). The existence of n real principal screws of

inertia of a rigid body with n degrees of freedom is proved also by Octonions,

p. 248, and also the n harmonic screws, p. 248.

JOLY (C. J.) The Associative Algebra applicable to Hyperspace. Proceedings of

the Royal Irish Academy, 3rd Ser., Vol. v., No. 1, pp. 73-123 (1898).

The algebra considered in the present paper is that where units ilt i.2 ... in

satisfy equations of the type ia
- - 1 and is i t

+ i
t
is
= 0. In this profound memoir

there is a discussion of the Theory of Screws in a space of m dimensions. We
learn that &quot;when a system compounded from m screws is defined by a linear

function (_/), the reciprocal system is denned by the negative of the conjugate
of that function {f}&quot; The canonical representation of a screw in Hyperspace
is given and the vector equation to the locus which is the analogue of the cylindroid.
The following result, p. 106, is of much interest.

&quot; Thus in spaces of even order, the

general displacement of a body may be effected by rotations of definite amounts in

a number of definite hyper-perpendicular planes, one determinate point being held

fixed
;
in spaces of odd order, a translational displacement must be added to the

generalized rotation
;
but by proper choice of base-point this displacement may be

made perpendicular to all the planes of rotation.&quot; This remark is illustrated by
the well-known laws of the displacement of a body in two or three dimensions

respectively.

JOLY (C. J.) Bishop Law s Mathematical Prize Examination in the University
of Dublin, Michaelmas, 1898.

Many of Sir William Hamilton s discoveries in quaternions were first

announced in questions which he proposed from time to time at the Law Prize
examination. This is, so far as I know, the only examination in which quaternion
problems are still habitually proposed. Professor C. J. Joly in the Law Prize

paper for 1898 has given the following questions containing applications of Quater
nions to the Theory of Screws.

(a) The origin being taken as base-point, let
//,
and A denote the couple and

the force of any wrench, then the transformation

p=?.x=,sr.A+r.AA A A

contains Poinsot s theorem of the Central Moment.

is the vector equation of a ruled surface (the cylindroid) formed by the central

axes of wrenches compounded from two given wrenches
(//,,, AJ) and

(&amp;lt;u 2 , A.,).

(c) The form of this equation shows that the locus of the feet of per
pendiculars dropped from an arbitrary point on the generators of a cylindroid is a
conic section.

(d) If (M, A) is any wrench compounded from three given wrenches (/^, Aj),

(fji.,,
A

2),
and

(//..,,
A

;! ), the couple of this wrench is a determinate linear vector
function of the force, or // &amp;lt;/&amp;gt;A,

and the function adequately defines this three-

system of wrenclves.
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(e) Examine the scalar and vector parts of the quaternion &amp;lt;A . A.-
1
. Show

that the pitch of any wrench of the system is inversely proportional to the square
of that radius of a certain quadric which is parallel to its axis

;
also that the locus

of feet of perpendiculars drawn from the origin to the central axes of the system
is a surface (Steiner s Quartic) containing three double lines intersecting in the

origin.

(/) The screws
(/JL, A) and

(//. ,
A

) being reciprocal if
&amp;lt;6//A

+ &amp;lt;SA/^
=

0, show
that the screws reciprocal to the system p = &amp;lt;A belong to the system // = -

&amp;lt;/&amp;gt;

A
,

or that a linear vector function and the negative of its conjugate determine,

respectively, a three-system of screws and its reciprocal three-system.
Two other theorems communicated to me by Professor Joly may also find a

place here.

If a body receive twists about four screws of a three-system and if the ampli
tude of each twist be proportional to the sine of the solid angle determined by the

directions of the axes of the three non-corresponding screws, then the body after

the last twist will have regained its original position.
If four wrenches equilibrate and if their axes are generators of the same system

of a hyperboloicl, their pitches must be equal.

WHITEHEAD (A. N.) Universal Algebra, Vol. i., Cambridge (1898), pp. i xxvi,
1-586.

It would be impossible here to describe the scope of this important work, the

following parts of which may be specially mentioned in connection with our present

subject.
Book v. Chap. i. treats of systems of forces, in which the inner multiplication

and other methods of Grassmann are employed. Here as in many other writings
we find the expression Null lines, and it may be remarked that in the language of

the Theory of Screws a null line is a screw of zero pitch.

Chap. II. of the same book contains a valuable discussion on Groups of

Systems of Forces. Here we find the great significance of anharmonic ratio in

the higher branches of Dynamics well illustrated.

Chap. in. on Invariants of Groups continues the same theories and is of much
interest in connection with the Theory of Screws.

Chap. iv. discusses among other things the transformation of a quadric into

itself, and is thus in close connection with Chap. xxvi. of the present volume.
Whitehead s book should be specially consulted in the Theory of Metrics,

Book vi. The Theory of Forces in Elliptic Space is given in Book vi. Ch. 3, in

Hyperbolic Space in Book vi. Chap. 5, and the Kinematics of Non-Euclidian Space
of all three kinds in Book vi. Chap. 6. There are also some passages of importance
in Statics in Book vn. Chaps. 1 and 2, Book vm. Chap. 4, and on Kinematics in

Book vn. Chap. 2 and Book vm. Chap. 4. The methods of Whitehead enable

space of any number of dimensions to be dealt with almost as easily as that of

3 dimensions.

STUDY (E.) -Bine neue Darstellung der Krafte der Mechanik durch geometrische

Figuren. Berichte iiber die Verhandlungen der koniglich-sachsischen
Gesellschaft der Wissenschaften zu Leipzig. Mathematisch-physische
Classe, Vol. li., Part IL, pp. 29-67 (1899).

This paper is to develop a novel geometrical method of studying the problems
referred to.
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CABDINAAL (J.) -The representation of the screws of Ball passing through a point or

lying in a plane according to the method of Caporali. Koninklijke Akademie
van Wetenschappen te Amsterdam, 23rd Feb. 1899.

This is a development of a lecture before the Gesellschaft deutscher Natur-

forscher und Aerzte, Diisseldorf (Sept. 1898). The object of this memoir is to

obtain from the principles of the Theory of Screws a representation of the rays of

a certain quadratic complex treated of by R. Sturm and Caporali. See Sturm s

Liniengeometrie, iii. pages 438-444. See also a paper by Cardinaal,
&quot; Uber die

Anwendung der Caporali schen Abbildung des Strahlencomplexes zweiten Grades
auf die Bewegung eines starren Korpers mit Freiheit vierten Grades,&quot; Jahresbericht

der Deutschen Mathematiker-Vereinigung, vii. 1. This is the lecture above referred

to, and it should be studied in connection with the geometrical theory of screw-

systems of the fourth order.

JOLY (C. J.) Asiatics and quaternion functions. Proceedings of the Royal Irish

Academy, 3rd Series, Vol. v. No. 3 (pp. 366-369), 1899.

STUDY (E.) Die Geometric der Dynamen. Deutsche Mathematiker-Vereinigung
vni. 1, 1900.
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