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We study the photoproduction and electroproductions of the vector kaon off the proton, i.e., γ (∗) p →
K∗+π 0�0, and investigate the line shape of the π 0�0 invariant mass in an effective Lagrangian approach with the
inclusion of a K∗N�∗ interaction. Relevant electromagnetic form factors for the neutral hyperons and charged
strange mesons are constructed by considering experimental and theoretical information. We find that the �∗

peak is clearly observed for the photoproduction and electroproductions with the finite K∗N�∗ interaction,
whereas the clear peak signals survive only for the electroproduction, when we ignore the interaction. These
different behaviors can be understood by different Q2 dependencies in the K∗ electromagnetic and K∗ → γ K
transition form factors. We suggest a photon-polarization asymmetry � to extract information of the K∗N�∗

interaction. It turns out that � near the �∗ peak region becomes negative with a finite K∗N�∗ interaction while
positive without it for Q2 = 0, because of the different naturalities of K and K∗ exchanges. For Q2 �= 0, we
observe more obvious signals in the peak region owing to the additional contribution of the longitudinal virtual
photon for �∗.
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I. INTRODUCTION

Hadron spectroscopy is one of the most active fields to
understand the nature of the low-energy (nonperturbative)
strong interactions of quarks and gluons, being governed by
quantum chromodynamics (QCD). In the low-energy region,
it is believed that chiral symmetry plays an important role,
which provides nontrivial mechanisms to generate the masses
of hadrons as known by spontaneous breakdown of chiral
symmetry (SBCS). Based on this idea, effective field theories
have been developed in terms of the chiral dynamics with
the pseudoscalar (PS) meson degrees of freedom because the
PS mesons are the massless-mode realization of SBCS, i.e.,
chiral perturbation theory (ChPT) [1]. Beyond perturbation, p-
wave baryon resonances of negative parity have been explored
with the help of a unitarity condition in the coupled-channel
approach [2–5] with much success.

It is worth mentioning that the chiral unitary model
(ChUM) is a very useful theoretical tool to address low-lying
s-wave baryon resonances [5]. Among successful descriptions
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of the resonances, the model suggests that �(1405, 1/2−) ≡
�∗ is a meson-baryon molecular state rather than a simple
three-quark one. Moreover, the line shape of the production
data via γ p → K+π� can be interpreted by the destructive
interference of the two poles in the complex energy plane
[6], where the higher-mass pole at (1430 + 15i) MeV cou-
ples strongly to the K̄N channel and the lower-mass pole at
(1376 + 63i) MeV to the π� one by analyzing the residues
of the PS-meson-baryon scattering amplitudes in ChUM. Ba-
sically, the two poles appear in the second Riemann sheet as
resonances through the attractive S = −1 chiral interactions
in the coupled-channel amplitudes [5].

The pole positions were extensively investigated theoret-
ically fitting the experimental data via ChUM [7,8]. The
two-pole scenario was supported in various theoretical ap-
proaches, including the recent lattice-QCD simulation for its
strange magnetic form factor [9] and the detailed analysis
for the low-energy K̄N amplitude [10]. Recently, the CLAS
(CEBAF Large Acceptance Spectrometer) collaboration at
Jefferson laboratory (JLab) reported in Ref. [11] that the
invariant-mass line shape from the electroproduction of kaon
in γ ∗ p → K+π� shows two bump structures in the vicinity
of Mπ� = (1.35 ∼ 1.45) GeV which is quite different from
that of photoproduction data [12–14]. In our previous work
[6], this distinctive feature of the invariant-mass line shape
was explained by the different interference pattern from
the electromagnetic (EM) form factors of the two poles: The
interference between the two poles becomes constructive,
resulting in the two bumps appearing near the higher and
lower pole positions. Although there were some theoretical
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uncertainties, this observation supports the two-pole scenario
for the �∗ structure [15].

In the present work, we would like to investigate the inter-
ference effects of the two poles and the invariant-mass line
shapes carefully, in a different production-reaction process
with the vector kaon (K∗), i.e., γ (∗) p → K∗+π0�0. Because
there are so far only a limited experimental data for K∗ pro-
ductions, many of our results shown here are predictions and
provide a guideline for the future experiments. This reaction
process can be performed experimentally by the LEPS (Laser
Electron Photon beam-line at SPring-8) at SPring-8 (Super
Photon Ring - 8 GeV) and CLAS collaborations in the future.
Because this reaction process does not contain the �∗(1385)
contribution, one is free from the interference between �∗ and
�∗, resulting in a clear signal only from �∗ in the vicinity of
the invariant mass Mπ0�0 = (1.35 ∼ 1.45) GeV. In addition to
focusing on the differences between the photoproduction and
electroproductions of �∗, one of the theoretical motivations of
the present work is to estimate the strong-coupling strength of
gK∗N�∗ , which is rarely studied in theories and experiments.
For instance, in Ref. [16], gK∗N�∗ was estimated using the
ChUM approach with the Kroll-Ruddermann (KR) interaction
in terms of the vector dominance. Taking the present situation
into consideration, we also want to provide a unique experi-
mental method to determine the K∗N�∗ interaction strength
by taking into account the incident-photon polarizations. The
study of vector mesons provides information on their dynam-
ics which is as important as of the Nambu-Goldstone bosons.

As a theoretical tool to study the present reaction process,
we employ the effective Lagrangian method at the tree-level
Born approximation together with the theoretical and experi-
mental inputs for the strong and electromagnetic (EM) hadron
properties. As for the strong form factors, we make use of
the conventional Lorentzian type as done in our previous
works [6,17], whereas the neutral-hyperon EM form factors
are parametrized by using the information of their electric
charge radii, which were computed by various theoretical
models including ChUM [15,18]. The theoretical results of
Ref. [19] are used to parametrize the EM form factor of
the charged vector kaon, and the K∗ → γ K transition form
factor is devised by combining the light-cone sum rule [20]
and the kaon light-cone wave function, which was computed
using the nonlocal chiral-quark model based on the instanton
QCD vacuum by the authors [21,22]. The gauge-invariant
prescription is also taken into account to satisfy the Ward-
Takahashi (WT) identity for both of the photoproduction and
electroproductions [6].

As for the invariant-mass line shape dσ/dMπ0�0 , we find
that the lower-pole contribution of �∗ turns out to be much
smaller than the higher one, when results of ChUM results
are employed in reaction calculations. Therefore, we do not
have considerable interferences between the two poles for
�∗ in the present reaction process. The background (BKG)
contribution comes mainly from the destructive and construc-
tive interferences between � and � ground-state contribu-
tions for the photoproduction and electroproductions, respec-
tively, because their EM form factors change the relative

signs between the invariant amplitudes. We also find that
the �∗ peak is clearly observed for the photoproduction and
electroproductions with the finite K∗N�∗ interaction, whereas
the peak survives only for the photoproduction when we
ignore the interaction. These behaviors of the peak can be
finally understood by the different Q2 dependencies in the
K∗ electromagnetic and K∗ → γ K transition form factors. Fi-
nally, we suggest a photon-polarization observable �, which
identifies the strength of the K∗N�∗ interaction uniquely. It
turns out that the value of � near the �∗ peak region Mπ0�0 =
1.43 GeV becomes negative with the interaction and positive
without it for Q2 = 0, according to the different interaction
structure of K and K∗ with respect to the polarized photon. As
for Q2 �= 0, we observe similar but clearer signals, but the �

curves slightly change, because the scalar component of the
photon polarization enhances the spin-1 exchange.

The present paper is organized as follows: In Sec. II, we
briefly introduce the theoretical framework. The numerical
results and relevant discussions are given in Sec. III, and
Sec. IV is devoted to the summary of the present work.

II. THEORETICAL FRAMEWORK

In this section, we would like to describe the theoret-
ical framework briefly, based on the effective Lagrangian
approach in the tree-level Born approximation. The relevant
Feynman diagrams for γ (∗) p → K∗+π� are shown in Fig. 1,
in which we also define the four momenta for each particle
involved. Namely, the momenta k1∼5 are for the particles
participating in the reaction as shown in Fig. 1. Figures 1(a)
and 1(c) are responsible in that the amplitude satisfies the
Ward-Takahashi identity (WTI) for the pseudoscalar (PS)
PBB coupling scheme, where P and B indicate the PS me-
son and spin-1/2 baryon, respectively. Note that Fig. 1(b)
is gauge invariant by itself, owing to its magnetic photon-
coupling structure. Figure 1(d) denotes the PS kaon ex-
change. As for the diagrams, where hyperons Y (∗) ap-
pear as intermediate states, we consider �(1116, 1/2+),
�0(1192, 1/2+), H (1430, 1/2−), and L(1390, 1/2−), in
which H and L indicate the higher- and lower-pole contribu-
tions for �(1405, 1/2−), respectively.

Note that �∗0(1385) is not taken into account here because
it does not couple to the neutral π0�0 channel, owing to the
vanishing isospin Clebsch-Gordan coefficient. However, we
can consider the EM transition of �-�∗0(1385), which can
be shown in Fig. 1(b) with the π0�0� interaction vertex.
However, it turns out that the u-channel amplitude [Fig. 1(b)]
is suppressed when the empirical values for the magnetic
moments are employed, μ�∗0→γ� = (2.75 ± 0.25) μN [23]
and 2.28 μN [24], as compared to the others because of the
form factor. Therefore, we do not take into account that
contribution in the following discussions.

In addition, there can be the contributions from nucleon
resonances with MN∗ ≈ 2 GeV in Fig. 1(a) by interchanging
π0 and K∗+ for instance [25]. In general, the N∗ contributions
will appear as sloped bands in the Dalitz plot as a function of
M2

K∗+π0 and M2
π0�0 , and interfere with the hyperon resonances,
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FIG. 1. Relevant Feynman diagrams for γ p → K∗+π 0�0: (a) proton-pole diagram in the s channel, (b) hyperon ground-state and resonance
diagram in the u channel, (c) K∗ exchange in the t channel, (d) K exchange in the t channel, (e) and (f) background contributions from the
PB → V B Kroll-Ruddermann (KR) interaction, and (g) those from the PB → PB Weinberg-Tomozawa (WT) interaction. As for the hyperons
Y (∗), we consider �(1116, 1/2+), �0(1192, 1/2+), H (1430, 1/2−), and L(1390, 1/2−), in which H and L indicate the higher- and lower-pole
contributions for �(1405, 1/2−), respectively. See the text for details.

such as �(1405). As observed in the γ p → K+K− p reaction
process [26], such interference effects are not significant and
become negligible, when the decay width of the resonance
is considerably wide. Moreover, the coupling constants for
K∗N∗� are rarely determined experimentally, resulting in
the increase of theoretical uncertainties. Hence, we do not
consider the N∗ contributions in the present work somewhat
safely.

The diagrams are derived from the Kroll-Ruderman (KR)
V B → PB (e and f ) and Weinberg-Tomozawa (WT) PB →
PB (g) interactions [16]. Here, V stands for the vector mesons,
such as K∗(892, 1−). We note that there are more diagrams,
in which the photon couples to the outgoing �. We, however,
verified that their contributions are much smaller than those
from the diagrams shown in Fig. 1. Therefore, we ignore them
in the present work.

To compute the diagrams in Fig. 1, we define the effec-
tive Lagrangians for the electromagnetic (EM) and strong

interaction vertices as follows:

Lγ BB = −B̄

[
eB /A − eκB

4MN
(σ · F )

]
B for

B = N,�,�, H, L,

Lγ K∗K = gγ KK∗εμναβ (∂μAν )(∂αK∗
β )K + h.c.,

Lγ K∗K∗ = −ieK∗Aμ(K∗νK∗†
μν − K∗

μνK∗†ν ),

Kμν = ∂μK∗
ν − ∂νK∗

μ,

LK∗N (H,L) = −gV
K∗N (H,L)(H̄, L̄) /K∗

γ5N + h.c.,

Lπ�(H,L) = −igπ�(H,L)(H̄, L̄)π · � + h.c.,

LKN (H,L) = −igKN (H,L)(H̄ , L̄)KN + h.c.,

LWT = −igWT�̄(π† /∂K − K† /∂π )N + h.c.,

LKR = −iGKRgKRB̄γ μγ5(P†K∗
μ − PK∗†

μ )B + h.c..

(1)
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TABLE I. Relevant coupling constants for the present work. Note g = gKR defined in Ref [16].

gKN�H gK∗N�H gπ��H gKN�L gK∗N�L gπ��L

g = 0 2.4 + 1.1i 0.0 + i0.0 −0.2 − 1.4i 1.4 − 1.6i 0.0 + 0.0i −2.3 + 1.4i
g = 1 2.4 + 1.1i 0.1 − 0.9i −0.2 − 1.3i 1.4 − 1.6i −0.4 + 0.1i −2.3 + 1.5i

gKN� gK∗N� gπ�� gKN� gK∗N� gπ�� gK∗N�∗ gπ��∗ gγ K∗+K− gWT GKR

−13.89 −4.26 11.86 4.08 −2.46 11.89 −2.60 0.55 − 0.254
GeV

1
8 f 2

π

0.34
4 fπ

As for the π�B and KNB interactions we replace (H, L)
into γ5B in the Lagrangians. Because of the lack of exper-
imental and theoretical information, we ignored the tensor
coupling gT

K∗N (H,L) throughout this work. The PBB coupling
constants corresponding to H and L were estimated by the
residues for the higher and lower poles for the �(1405)
in the complex energy plane [5]. In Ref. [16], the val-
ues for gK∗N (H,L) and gKN (H,L) were given as functions of
the KR coupling gKR ≡ g = (1 ∼ 6). Because the values of
gK∗N (H,L) are nearly proportional to g [16], we examine the
case with g = 1 for the most part of the present work. As
for the charged transition γ PV vertex, we use gγ K∗+K+ =
0.254 GeV−1 [27].

In addition, we will take the �(1116, 1/2+) and
�(1192, 1/2+) contributions for Fig. 1(b) as the hyperon
backgrounds (BKG). The strong-coupling constants for �

and � are employed from the Nijmegen soft-core potential
model (NSC97) [28]. We also take the WT and KR contact
interactions into account as the BKG contributions. The cou-
pling constants for those contributions are given by gWT =
1/8 f 2

π and GKR = (D − F )/2 fπ for the π0�0 channels with
D − F = 0.34 and fπ = 93.3 MeV [4]. All the values for the
relevant couplings are listed in Table I.

The invariant amplitudes, shown in Figs. 1(a)–1(d), for
the resonance (H, L) contributions are computed from the
effective Lagrangians and resulted in

iMH,L
a = gH,LFcF p

EMū� (/q4+5 + MH,L )/ε∗γ5(/q1+2 + MN )/a(Q2)uN[
q2

4+5 − M2
H,L − iMH,LH,L

][
q2

1+2 − M2
N

] ,

iMH,L
b = gH,LFuF H,L

EM ū� (/q4+5 + MH,L )/b(Q2)(/q2−3 + MH,L )/ε∗γ5uN[
q2

4+5 − M2
H,L − iMH,LH,L

][
q2

2−3 − M2
H,L

] ,

iMH,L
c = gH,LFcF K∗

EMū� (/q4+5 + MH,L )/ε∗γ5c(Q2)uN[
q2

4+5 − M2
H,L − iMH,LH,L

][
q2

1−3 − M2
K∗

] ,

iMH,L
d = − ig′

H,LF K
t F K→K∗

EM ū� (/q4+5 + MH,L )(εμναβk1μενk3αε∗
β )uN[

q2
4+5 − M2

H,L − iMH,LH,L
][

q2
1−3 − M2

K

] , (2)

where qi± j = ki ± k j . The polarization vectors for the incident photon and outgoing K∗ are denoted by εμ and εμ, respectively.
We used the combined coupling constants gH,L = eK∗gK∗N (H,L)gπ�(H,L) and g′

H,L = gγ KK∗gKN (H,L)gπ�(H,L) for convenience. The
vertex functions a,b,c are given by

/a(Q2) = /ε + (
F p

1 − 1
)[

/ε + (ε · k1)/k1

Q2

]
− κN F p

2

4MN
(/k1/ε − /ε/k1),

/b(Q2) = F H,L
1

[
/ε + (ε · k1)/k1

Q2

]
− κH,LF H,L

2

4MN
(/k1/ε − /ε/k1),

c(Q2) = ε · (2k3 − k1) + (F K∗ − 1)

[
ε · (2k3 − k1) + (ε · k1)[ε · (2k3 − k1)]

Q2

]
. (3)

The phenomenological prescription for the vertices in
Eq. (3) satisfies the WTI for Q2 = 0 [17,29] and Q2 �= 0 [6]
simultaneously, and the invariant amplitudes defined in Eq. (2)
can be also used similarly for the � and � BKG contributions
by changing the baryon field (H, L) into γ5B. Note that the
invariant amplitude Md is gauge invariant by itself because
of the antisymmetric tensor-coupling structure.

In Eq. (2), we have introduced the strong (Fx) and elec-
tromagnetic (FEM) form factors to reproduce experimental

data, considering the internal structure of the hadrons. As for
the strong form factors, the following parametrized form is
employed:

Fx = �4
strong

�4
strong + (x − Mx )2

, Fc = 1 − (1 − Fs)
(
1 − F K∗

t

)
.

(4)
Here, �strong indicates the strong cutoff and the Mandelstam
variables x are defined as s = (k1 + k2)2, t = (k1 − k3)2, and
u = (k2 − k3)2. Note that the invariant amplitudes iMb and
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TABLE II. The electric and magnetic mean-square charge radii
for the high (H ) and low (L) pole contributions (fm2).〈
r2

E

〉
H

〈
r2

M

〉
H

〈
r2

E

〉
L

〈r2
M

〉
L

−0.131 + 0.303i 0.267 − 0.407i 0.018 + 0.002i −0.013 + 0.021i

iMd do not contain the common strong form factor Fc be-
cause they are gauge invariant by themselves. Mx stands for
the mass of the propagating particles: Ms,t,u = MK,K∗,Y . As for
the K exchange [Fig. 1(d)], we assign the strong form factor
F K

t with Mx = MK .
The Dirac (F1) and Pauli (F2) EM form factors for the

proton read with its anomalous magnetic moment κp = 1.79:

F p
1 (Q2) = Gp

E (Q2) + τGp
M (Q2)

1 + τ
,

F p
2 (Q2) = Gp

M (Q2) − Gp
E (Q2)

κB(1 + τ )
, τ = Q2

4M2
p

, (5)

where the Sachs form factors are defined by [30]

Gp
E (Q2) = GD(Q2), Gp

M (Q2) = (κB + 1)GD(Q2),

GD(Q2) =
(

1

1 + Q2/�2
D

)2

, �2
D = 0.71 GeV2. (6)

As for the neutral hyperons (Y ) such as �(1116), �(1193), H ,
and L, we make use of the following form-factor parametriza-
tion, which was employed to reproduce the data for γ ∗ p →
K+π� [18]:

GY
E (Q2) = −

〈
r2

E

〉
Y

6
Q2FK (Q2)

(
1

1 + Q2
〈
r2

M

〉
Y
/12

)2

GD(Q2),

GY
M (Q2) = μ

(
1

1 + Q2〈r2
M〉Y /12

)2

GD(Q2). (7)

To obtain the Dirac and Pauli form factors for those hyperons,
the following expressions are used:

FY
1 (Q2) =

[
GY

E (Q2) + τGY
M (Q2)

]
1 + τ

,

FY
2 (Q2) =

[
GY

M (Q2) − GY
E (Q2)

]
κY (1 + τ )

. (8)

We emphasize that the Sachs form factors in this parametriza-
tion of Eq. (7) are defined with the electric and magnetic
mean-square charge radii 〈r2

E ,M〉Y . Although there are various
theoretical estimations for �(1116) and �(1193), we use
〈r2

E 〉 = 0.029 fm2 and 0.209 fm2, respectively, from the rela-
tivistic quark model [31], and the values of 〈r2

M〉 are chosen to
be zero for simplicity. We verified that the finite values of 〈r2

M〉
do not make qualitative differences in the corresponding form
factors as far as we resort to the parametrization in Eq. (7).

From the ChUM calculations [15], the values of 〈r2
E ,M〉H,L

were estimated as listed in Table II and they will be used
to obtain the EM form factors for H and L. We note
that the complex values of 〈r2

E ,M〉H,L will provide additional
phase factors to the amplitude of electroproduction. The
anomalous magnetic moments for the hyperons are chosen

to be κ�,�,H,L = (−0.64, 0.72, 0.40, 0.30) from experiments
and theories [15,27].

The charged vector-kaon EM form factor is parametrized
with its mean-square charge radius by

F K∗
EM(Q2) = 1

1 + Q2〈r2〉K∗/6
, (9)

and 〈r2〉K∗ = 0.54 fm2, calculated from the Lorentz-covariant
Dyson-Schwinger method [19]. As for the EM transition
vertex with K∗ → γ K , F K∗→γ K

EM (Q2) is necessary and defined
by a simple flavor-SU(3)-symmetric extension of the result
given in Ref. [20]:

F K∗→γ K
EM (Q2) = FK

3FK∗
V (Q2, M2),

V (Q2, M2) ≈
∫ 1

0

du

u
φK (u) exp

[
−Q2(1 − u)

u�2
+ m2

K∗

�2

]
,

(10)

where φK (u) denotes the kaon light-cone wave function as a
function of the longitudinal momentum fraction u = (0 ∼ 1)
for a quark inside the meson. The value of � in Eq. (10) in-
dicates the nonperturbative scale at which φK (u) is evaluated.
In Refs. [21,22], the present authors employed the nonlocal
chiral-quark model to compute φK (u), based on the instanton
model, resulting in the following Gegenbauer polynomial
expression:

φK (u) ≈ 6u(1 − u)
[
1 + 3aK

1 (2u − 1)
]
, (11)

where the asymmetry coefficient turns out to be aK
1 = 0.06865

at the energy scale of � = 1.2 GeV with the empirical values
fK,K∗ = (156.1, 204) MeV. Because we are also interested in
the present reaction process in the low-energy region near the
threshold, it must be consistent for us to use the above φK (u)
for the transition form factor here. Using Eqs. (10) and (11),
we introduce the following dipole-type parametrization, for
numerical convenience,

F K∗→γ K
EM (Q2) =

(
�2

K∗→γ K

�2
K∗→γ K + Q2

)2

, �K∗→γ K = 1.1 GeV.

(12)

All the Q2 dependence of the relevant EM form factors are
plotted in Fig. 2. Note that we observe a tendency that F K∗

EM �
F K∗→γ K

EM for all the Q2 regions. In the numerical results, this
tendency will play an important role in making the invariant-
mass line shapes for the electroproduction with and without
the K∗N�∗ interaction.

Although we have used the PS coupling scheme for the
PBB and PB(H, L) Yukawa vertices, as shown in Eq. (1), there
can be the pseudovector (PV) coupling:

LPV
PBB′ = −gPV

PBB′

2 fπ
B̄′(5 /∂P)B + H.c., (13)

where 5 = (γ5, 14×4) for the positive- or negative-parity
B, whereas B′ is assumed to have positive parity. The
PS and PV couplings satisfy the Goldberger-Treiman (GT)
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FIG. 2. EM form factors of various neutral hyperons (a)–(d) and strange mesons (e) as functions of Q2 (GeV2). The solid, dashed, dotted,
and dot-dashed lines indicate ReF1, ImF1, ReF2, and ImF2, respectively. Here, F1 and F2 stand for the Dirac and Pauli form factors for spin-1/2
baryons.

relations [32] by

gPV
PBB′ = 2 fπgPS

PBB′

|�M + �′M ′| , (14)

where � and M indicate the parity and mass of the corre-
sponding baryon, respectively. In the PV scheme, we may
have an additional term corresponding to the γ PBB′ contact
interaction to preserve the WTI. However, in the present
reaction process, the contact interaction disappears, because
of the neutral pion electric charge. Using the PV Lagrangian

and GT relation in Eqs. (13) and (14), the corresponding
invariant amplitudes and coupling constants can be computed
in a straightforward manner. However, we have verified that
the PV scheme gives essentially the same results as the PS
scheme by tuning the cutoff parameter for the form factors,
defined in Eq. (4), by about 10%–15%. Hence, according to
this observation, we will show the numerical results only from
the PS scheme hereafter.

There are additional BKG contributions from the KR and
WT interactions as shown in Figs. 1(e)–1(g) and their invari-
ant amplitudes satisfying the WTI read

iMKR
e = eGKRF K∗

t F K∗
EMū�γ5/ε

∗(/q1+2 + MN )/a(Q2)uN[
q2

1+2 − M2
N

] ,

iMKR
f = −eGKRF K∗

t F K∗
EMū�γ5/ε

∗b(Q2)uN[
q2

1−3 − M2
K∗

] ,

iMWT
g = − igWTgγ KK∗F K

t F K∗→γ K ū� (/k1 − /k3 + /k4)(εμναβk1μενk3αε∗
β )uN[

q2
1−3 − M2

K

] . (15)

We verify that these KR and WT contributions are numerically very tiny in comparison to the others because of the small values
of gWT and GKR for g = 1–6.

The total amplitude for the present reaction process can be written with the resonance and BKG contributions as follows:

iMtotal = eiφ (iMH + iML )︸ ︷︷ ︸
Resonance

+ iM� + iM� + iMWT + iMKR.︸ ︷︷ ︸
BKG

(16)
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TABLE III. Input values for the masses and full-decay widths
for the higher- (H ) and lower-pole (L) contributions from the ChUM
calculation [2].

MH H ML L

1430 MeV 30 MeV 1376 MeV 126 MeV

Note that the phase factor between the � and � contributions
is determined by the Nijmegen potential model. Although
there can be certain phase factors between the hyperon con-
tributions and the (KR, WT) ones, we ignore them, by tak-
ing into account the numerical results showing |iM�,�| �
|iMWT,KR|. However, because the strengths of the resonance
contributions are compatible with those of the hyperon BKG
ones, we introduce a phase factor eiφ between them, whereas
the phase between the H and L contributions are determined
by ChUM. The phase angle φ will be treated as a free
parameter (0 � φ � π ).

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we demonstrate the numerical results with
relevant discussions in detail. The input values for the masses
and full decay widths for (H, L) are listed in Table III, based
on the ChUM results [16]. We note that the masses and
full-decay widths for the higher- (H ) and lower-pole (L)
contributions depend on the regularization schemes in general
in ChUM [33], providing about a few percent differences.
However, those differences do not make any considerable
changes in our conclusion of the present work.

First, we show the numerical results for the invariant-mass
line shapes as functions of Mπ0�0 ≡ MI , i.e., dσ/dMI , for
each contribution (H , L, �, �, WT, and KR) for Q2 = 0
(photoproduction) and Q2 = 2 GeV2 (electroproduction) in
Figs. 3(a) and 3(b), respectively. Here, we choose

√
s =

2.35 GeV and the strong cutoff parameter for Eq. (4) is set
to be 0.9 GeV, which was employed to reproduce the experi-
mental data for γ p → K+�(1405) [6], because we have not
had experimental data for the K∗ production to compare with

the theory at this moment. Note that the order of the cross
sections for the electroproduction is much smaller than those
for the photoproduction, because of the EM form factors as
shown in Fig. 2.

For the photoproduction and electroproductions, respec-
tively, we observe the strongly destructive and slightly con-
structive interferences between the � and � BKG contribu-
tions. The different interference pattern can be understood by
additional phase factors in the electroproductions as shown
in Fig. 1(b) and the EM form factors in Fig. 2. On the
contrary, we find that the WT contribution is relatively small
and the KR one almost negligible for g = 1. Thus, these �

and � BKG contribution make almost all the strengths of the
nonresonant BKG contributions. It also turns out that the EM
form factors for the electroproduction make the BKG strength
much smaller by a factor ∼10−2 and the BKG shape tilted
to the lower MI region in comparison to the photoproduction,
because of the interference pattern changes by the EM form
factors as mentioned.

In Fig. 3, we show various contributions to the π0�0

invariant-mass distributions (line shape). It turns out that the
lower-pole (L) contribution is almost negligible in compari-
son to the higher-pole (H) one for the photoproduction and
electroproductions because of the much wider decay width of
the lower-pole contribution as listed in Table III. Although the
lower-pole contribution couples strongly to the π� channel
as mentioned previously in Sec. I, |gK∗NH | is about two times
larger than |gK∗NL| as shown in Table I. As a result, it turns out
that the reduced coupling constants exhibit |gK∗NH gπ�H | ≈
|gK∗NLgπ�L|. Therefore, the strength difference between the
higher- and lower-pole contributions becomes more signifi-
cant in the K∗π� channel in comparison to the Kπ� channel,
which shows |gKNH gπ�H | < |gKNLgπ�L|.

If the K∗N�∗ interaction is absent (g = 0), the K exchange
dominates the reaction process and the H peaks show small
but finite strengths in comparison to the BKG contributions.
When the K∗N�∗ interaction turns on with g = 1, the sit-
uation changes drastically. As for the photoproduction, the
effects of the inclusion of the K∗ exchange gives about 0.1 μb
increase in the H peak position because of a constructive
interference between the K and K∗ exchanges. The increase
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FIG. 3. Each contribution for π 0�0-invariant-mass line shape (dσ/dMπ0�0 ) for (a) Q2 = 0 and (b) Q2 = 2 GeV2 at
√

s = 2.35 GeV.
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FIG. 4. π 0�0 invariant-mass plot (dσ/dMπ0�0 ) for (a) Q2 = 0, (b) Q2 = 1.0 GeV2, and (c) Q2 = 2.0 GeV2 at
√

s = 2.35 GeV for φ = 0,
using different choices of the parameter g = 1 and 0, which correspond to the cases with and without the K∗-exchange contribution in the t
channel. The vertical dashed line corresponds to the mass of �(1405). See the text for the details.

from the K∗ exchange is more pronounced for the electro-
production because the K∗ EM form factor is larger than that
of the K∗ → γ K transition one at Q2 = 2 GeV2 as shown in
Fig. 2, resulting in the clearer peak signal at MI = 1.43 GeV
over the BKG, as shown in Fig. 3(b).

Now, we present the numerical results for the invariant-
mass line shape including all the contributions, varying the
phase angle φ defined in Eq. (16) as a free parameter. For
simplicity, we only consider two cases with φ = 0 and π ,
and those results are shown in Fig. 4 and Fig. 5, respectively.
The vertical dashed line indicates MI = 1.405 GeV. As for
the case with φ = 0 and Q2 = 0 (photoproduction) shown
in Fig. 4(a), it turns out that the H and BKG contributions
interfere constructively, showing a very pronounced peak
in the vicinity of MI = 1.43 GeV, and a broad bump for
MI � 1.4 GeV because of the BKG contributions. Again, we
observe that the inclusion of the K∗ exchange gives small
increases in the peak region, but the line shape remains almost
the same.

As for the electroproduction for Q2 = (1, 2) GeV2 in
Figs. 4(b) and 4(c), the H peak becomes enhanced consider-
ably, according to the larger K∗ → γ K transition form factor
than the K∗ EM one as explained previously. From these
numerical results, we conclude that the �∗ peak can be clearly
observed both for the photoproduction and electroproduc-
tions, if the K∗N�∗ interaction is finite. On the contrary, if

the interaction is negligible, the clear peak signal survives
only for the photoproduction. Hence, the electroproduction is
better to test the effects of the K∗N�∗ interaction. In Fig. 5,
we also draw the same curves for φ = π and observe similar
tendencies, although the H and the BKG contributions inter-
fere destructively. It turns out that this destructive interference
makes the H peak more dubious for g = 0 than that with
φ = 0. In general, the peak signal decreases with respect
to Q2.

Finally, we are in a position to define a polarization observ-
able as a function of MI , which is similar to the photon-beam
asymmetry, and responsible for estimating the effects of the
K∗-exchange contribution:

�(MI ) = dσx/dMI − dσy/dMI − dσz/dMI

dσx/dMI + dσy/dMI + dσz/dMI
, (17)

where the subscripts x, y, and z denote the photon linear
polarizations εx (perpendicular), εy (parallel), and εz (longitu-
dinal). Here, the incident photon and outgoing K∗ determines
the y-z reaction plane in the center-of-mass frame, as shown
in Fig. 6(a). Note that the third term dσz/dMI in Eq. (17)
only exists for the electroproduction. In Fig. 6(b), we depict
the numerical results of � for the photoproduction (Q2 = 0),
using various choices of the model parameters. The shaded
area represents the H peak region.
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FIG. 5. π 0�0-invariant-mass plots in the same manner as in Fig. 4 for φ = π . See the text for the details.

015205-8



PHOTOPRODUCTION AND ELECTROPRODUCTION OF … PHYSICAL REVIEW C 100, 015205 (2019)

1.34 1.36 1.38 1.4 1.42 1.44
M( ) [GeV]

-1

-0.5

0

0.5

1
s = 2.35 GeV for Q  = 0

g=0, =0
g=0, =
g=1, =0
g=1, =
g=6, =0
g=6, =

(b)

1.34 1.36 1.38 1.4 1.42 1.44
M( ) [GeV]

-1

-0.5

0

0.5

1
s = 2.35 GeV for Q  = 1 GeV

g=0, =0
g=0, =
g=1, =0
g=1, =1
g=6, =0
g=6, =

(c)
(a)

FIG. 6. (a) Definition for the photon polarizations and the relevant momenta for �, defined in Eq. (17). (b) Numerical results for � with
Q2 = 0 varying g and φ. The vertical shaded area represents the higher-pole peak region. (c) The same with Q2 = 1 GeV2.

As for g = 0, i.e., the reaction process is dominated by the
K-exchange and the values of � are positive. This observation
indicates that the K-exchange contribution almost disappears
for the parallel polarization dσy/dMI ∼ 0 because of the
antisymmetric-tensor structure of Md in Eq. (2) ∝εγ × kK∗ .
In contrast, if we take into account the K∗-exchange contri-
bution with g = 1, the perpendicular contribution dσx/dMI

becomes negligible, resulting in the negative � values in the
peak region as shown in Fig. 6(a). Again, this behavior can
be explained by the Lorentz structure of Ma,b,c in Eq. (2)
∝εγ · kK∗ . As shown by the curves for g = 6, this tendency
becomes more apparent because the higher-pole contribution
dominates the cross section for the larger g values.

In Fig. 6(c), we show the numerical results of � for the
electroproduction in the same manner as the photoproduc-
tion. Because the spin-0 scalar component of the longitudinal
photon polarization enhances the spin-1 exchange contribu-
tion, i.e., the K∗-exchange one, the third term in Eq. (17) is
magnified. Hence, as shown in Fig. 6(c), the signals in the
peak regions become more obvious for g = 1. Note that we
observe the same tendency with respect to the larger g for the
electroproduction as well.

Taking these numerical results of � into account, if one
observes the positive � values for the photoproduction and
electroproductions in the vicinity of the peak region in ex-
periments, it indicates the K∗-exchange contribution must
be negligible. In contrast, one can conclude that K∗N�∗
interaction is sizable, when the negative values of � are
measured. Consequently, by examining the sign of � in the
peak region experimentally, one can estimate the strength of
gK∗N�∗ uniquely.

IV. SUMMARY

In the present work, we investigated the K∗ photoproduc-
tion and electroproductions via γ ∗ p → K∗+π0�0, in which
�(1405) ≡ �∗ appears as a dominant hyperon resonance
near the threshold. Moreover, this reaction process does not
contain �∗(1385), which can interfere with �∗ in the charged
channels such as γ ∗ p → K∗+π∓�±, resulting in a clear
signal only from �∗. The effective Lagrangian method was
employed at the tree-level Born approximation. We used
the phenomenological strong and electromagnetic (EM) form

factors for the relevant hadrons, and the EM form factors
for �∗ was parametrized by using the information from the
ChUM results. The K∗ → γ K transition form factor was
devised from the kaon light-front wave function, which was
computed by the nonlocal chiral-quark model in our previous
works, whereas the proton and vector kaon EM form factors
were taken from available data. Focusing on the two-pole
structure scenario of �∗ and the rarely known K∗N�∗ cou-
pling constant gK∗N�∗ , we provide the numerical results for the
invariant-mass line shape and the photon linear-polarization
observable �. We list important observations in the present
work as follows:

The lower-pole peak (L) turns out to be unseen because
of its larger width L ≈ 126 MeV � H ≈ 30 MeV,
when we resort to the ChUM results as theory inputs.
It also turns out that the background (BKG) contri-
bution comes mainly from the destructive and con-
structive interferences between � and � ground states
for the photoproduction and electroproduction, respec-
tively. This different interference pattern can be under-
stood by their EM form factors, which modify the phases
between the invariant amplitudes.

We find that the �∗ peak is clearly observed for the
photoproduction and electroproductions with the finite
K∗N�∗ interaction, whereas the peak survives only for
the photoproduction when we ignore the interaction.
These interesting behaviors of the peak can be under-
stood by the different Q2 dependencies in the K∗ electro-
magnetic and K∗ → γ K transition form factors. Taking
into account these observations, if the line shapes of the
photoproduction and electroproduction exhibit consider-
able differences in the peak region, it can be said that the
K∗NH interaction is not important.

To estimate the strength of the K∗N�∗ interaction more
precisely, we suggest a photon-polarization observable
�. As for the photoproduction, where the longitudinal
polarization does not exist, the K- and K∗-exchange
contributions are almost canceled out for the parallel
and perpendicular polarizations, respectively. Hence, by
construction, � becomes positive and negative in the
peak region MI ∼ 1.43 GeV for the finite and negligible
K∗NH interaction, respectively. When the longitudinal
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photon polarization, which gives the spin-0 scalar (natu-
ral spin-parity) component, comes into play for the elec-
troproduction, it enhances the K∗-exchange contribution
and the negative signal becomes more obvious. Thus, by
examining the polarization observable � in the vicinity
of the H peak, one can estimate the strength of gK∗NH in
the experiments.

Although there are several theoretical uncertainties, such
as the parametrization of the relevant form factors, we have
provided theoretical results for understanding the nature of
�∗ produced with the vector kaon and also suggested how
to estimate the K∗N�∗ interaction strength uniquely for the
future experiments by the LEPS and CLAS collaborations.

More realistic production processes including the decay of
K∗ → πK in the four-body phase space and the �∗ pro-
duction with the pseudoscalar-meson beam, such as πN →
Kπ�, are being studied, and the related works will appear
elsewhere.
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