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The ab initio understanding of hadronic three-body systems above threshold, such as exotic resonances
or the baryon spectrum, requires the mapping of the finite-volume eigenvalue spectrum, produced in lattice
QCD calculations, to the infinite volume. We present the first application of such a formalism to a physical
system in form of three interacting positively charged pions. The results for the ground state energies agree
with the available lattice QCD results by the NPLQCD collaboration at unphysical pion masses.
Extrapolations to physical pion masses are performed using input from effective field theory. The excited
energy spectrum is predicted. This demonstrates the feasibility to determine three-body amplitudes above
threshold from lattice QCD, including resonance properties of axial mesons, exotics, and excited baryons.
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Introduction.—Many pressing questions in hadronic
physics require the understanding of three-body systems
above threshold. An example is the emblematic Roper
resonance Nð1440Þ1=2þ that, despite its low mass, couples
strongly to the ππN channel leading to a very nonstandard
line shape and complicated analytic structure [1]. This
resonance is not only difficult to directly detect in experi-
ment but also considerably lighter than the Nð1535Þ1=2−
(parity-partner puzzle), a phenomenon that is difficult to
explain in the quark model [2]. In general, almost all excited
baryons have sizable couplings to ππN states, making the
understanding of the three-body problem mandatory for the
entire sector. Due to their key role in understanding confine-
ment and other properties of quantum chromodynamics
(QCD), and due to the missing resonance problem, excited
baryons are subject of large experimental campaigns at
Jefferson Lab, ELSA, MAMI, and other facilities [3–5].
Quantifying multineutron forces is also necessary for the

equation of state of neutron matter in the extreme conditions
of a neutron star [6]. Recent advances in latticeQCD(LQCD)
on few-nucleon systems [7,8] complement dedicated exper-
imental programs, e.g., at the FRIB facility [9].
Three-body effects play also a crucial role in the under-

standing of axial mesons like the a1ð1260Þ → πρ → 3π and
exotics whose existence would be a direct signal of gluon
dynamics at lowenergies.The first claim for an exoticmeson,
the JPC ¼ 1−þ π1ð1600Þ [10], was made by the COMPASS

collaboration by analyzing the three-pion final state; the
JeffersonLabHallDGlueX experiment is designed to search
for exotics for these and other produced mesons.
The calculation of the excited hadron spectrum and its

properties, directly in terms of the fundamental degrees
of freedom of QCD, has become possible in recent years
[11]; in LQCD, the QCD path integral is discretized and
calculated numerically in a finite volume with periodic
boundary conditions, leading to a discrete energy spectrum
in contrast to the continuous spectral density of scattering
states in the infinite volume. These finite-volume effects
become even more relevant for quark masses coming closer
to the physical ones as, e.g., bound states become reso-
nances in certain systems [12,13]. Furthermore, the limit
L → ∞ does not provide direct access to the scattering
amplitude at the Mandelstam sþ iϵ, either, because this
limit does not commute with the ϵ → 0 prescription (see,
e.g., Ref. [14]). However, as shown long ago by Lüscher,
each eigenvalue can be mapped to a phase shift [15,16] in
the elastic region of 2 → 2 scattering. On the other side, the
3 → 3 reaction has eight independent kinematic variables
while the 2 → 2 reaction has only two; clearly, an entirely
new formalism is necessary to map the eigenvalue spectrum
to the physical amplitude.
To connect ab initio LQCD to the rich resonance

phenomenology, there has been much progress to find
finite-volume formalisms for three-body systems above
threshold [17–31]. For a recent review, see Ref. [32]. Here,
we apply, for the first time, a relativistic finite-volume
formalism to a physical system. In particular, the formal
developments of Refs. [18,21] are used to analyze the
πþπþπþ system calculated by the NPLQCD collaboration
[33,34]. Historically, the infinite-volume extrapolation of
2πþ system was the first physical application of the original
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Lüscher formalism [35–39]; similarly, the 3πþ system is
the first system to make meaningful application of a three-
body formalism for excited levels, which is the subject of
this Letter.
The 3πþ system is, to a good approximation, free from

problems of coupled channels and spin. With the appli-
cability to real-world LQCD data demonstrated here, the
pertinent extension of the formalism to analyze the Roper
resonance and excited (exotic) mesons is the next mile-
stone. Yet, three-body LQCD energy eigenvalues exist
already [40–43] and such extensions are timely. For
example, puzzling LQCD results on the Roper resonance
[41] call for a better understanding of three-body effects in
the coupled channels πN; f0ð500ÞN; πΔ; ρN;….
Our program consists of the prediction of the full finite-

volume spectrum up to 4mπ using experimentally available
data. Subsequently, we will fix the remaining parameter
(genuine three-body coupling) to the ground-state energy
level of the πþπþπþ system [33,34], predicting higher
levels up to the 5π threshold. We note that, in the long run
(i.e., once excited levels are calculated in LQCD), the
reversed procedure is the goal of this research direction.
Namely, the extraction of the three-body amplitude from
ab initio Lattice QCD calculations of two- and three-body
finite-volume spectra (see, e.g., Ref. [44] for such a pro-
cedure in the two-nucleon case).
Formalism.—In a cube of size L, periodic boundary

conditions restrict the three momenta to values of
q ∈ ½ð2πÞ=L�Z3. Consequently, the continuous scattering
spectrum of the QCD Hamiltonian reduces to a tower of
discrete energy eigenvalues and rotational symmetry is
broken. For the mapping from finite to infinite volume, we
implement these changes in a three-body amplitude to
describe eigenvalues calculated in LQCD and then evaluate
the same amplitude in the infinite volume [18,21]. This also
allows us to simultaneously extract scattering amplitudes at
different kinematic points, which reduces the mentioned
underdetermination problem tied to the multiple kinematic
variables in the three-body problem.
The relativistic amplitude fulfills three-body unitarity

[45], which has the advantage that one explicitly knows
when all three particles are on shell. Only these configura-
tions lead to singularities of the scattering matrix in the finite
volume and, thus, determine the leading power-law finite-
volume effects. In contrast, off shell configurations lead only
to exponentially suppressed effects and are omitted like in the
original Lüscher approach for two particles.
Without loss of generality, we choose a parametrization

of the two-body subamplitudes by a tower of “isobars” that,
in the present case, consists only of the isospin I ¼ 2
πþπþ S-wave scattering amplitude (without left-hand cuts).
The full three-body scattering amplitude can then be written
in operator notation as T̂ ¼ vðτ−1 þ BÞ−1v. Here v, τ, andB
denote the isobar dissociation vertex, isobar propagator, and
isobar-spectator interaction kernel, respectively. Three-body

unitarity [45] determines the imaginary parts of B and τ,
such that, e.g., the former can be written as a one-pion-
exchange diagram plus an unknown real-valued function
C. Overall, this fully relativistic scattering equation is given
by a set of three-dimensional integral equation, which can
be depicted by the following expansion,

where single dashed and double lines denote pions and
isobar propagators, respectively. For the formal derivation
of T̂ see Refs. [21,45] aswell as Ref. [46] for a discussion of
analytic properties of such an amplitude. Here, we note that
the formalism is a priori dispersive and not tied to an
expansion in Feynman diagrams.
Through the discretization of momenta in finite volume,

the above equation for the scattering amplitude becomes a
real-valued matrix equation, whose singularities correspond
to the eigenvalues of the QCD Hamiltonian. In a formal
language, the three-body eigenvalues are determined through
the quantization condition [18]

det

�
BΓss0
uu0 þ 2EsL3

ϑðsÞ τ−1s δss0δuu0

�
¼ 0; ð1Þ

where the determinant is takenwith respect to the basis index
uð0Þ for a given irreducible representation of the cubic group
(irrep) Γ ∈ fA1; A2; E; T1; T2g and sð0Þ denotes the sets of
momenta related by cubic symmetry (“shells”) with cardi-
nality ϑðsÞ. In the following, we work in the center of mass
system of three pions with the total four-momentum P ¼
ðW3; 0Þ and pion energies denoted by Es ≔ Ep ≔ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ p2
p

. Finally, dealing with a three-pion system of
maximal isospin in S wave, only one isobar (πþπþ sub-
system) is of interest, while the irrepwill be fixed throughout
this Letter to Γ ¼ Aþ

1 .
The projection techniques to the irreps of the cubic group

can be found in Ref. [18], while the terms B and τ are given
for convenience in the Supplemental Material [47]. The
dissociation vertex is given by v ¼ fðQ2ÞλðσÞ, whereQ and
σ denote the four-momentum difference of the isobar decay
products and the invariant mass squared of the isobar,
respectively. The form factor fðQ2Þ yields a smooth cutoff
of an otherwise log-divergent self-energy part of the isobar
propagator. Thus, individual kernels entering the quantiza-
tion condition [Eq. (1)] are only defined in a given regu-
larization scheme. Ultimately, this dependence cancels out
after renormalizing (e.g.,C) as described below. Specifically,
we chose here fðQ2Þ ¼ 1=ð1þ e−ðΛ=2−1Þ2þQ2=4Þ in units of
the pion mass.
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Results: two-body subsystem.—The three-body scatter-
ing amplitude [45] corresponding to the quantization
condition [Eq. (1)] fulfills two- (in every subchannel)
and three-body unitarity by construction. The correspond-
ing normalized two-body scattering amplitude, projected to
S wave, reads in operator language T̂2 ¼ vτ̂v for

τ̂ðσÞ−1
32πλðσÞ2 ¼ K−1ðσÞ

−
X
�

Z
d3k
ð2πÞ3

f2½ð ffiffiffi
σ

p � 2EkÞ2 − 4k2�
4Ek

ffiffiffi
σ

p ð ffiffiffi
σ

p � 2EkÞ
;

ð2Þ
where τ̂ is the infinite-volume counterpart of the isobar
propagator τ andKðσÞ ¼ λðσÞ2=ðσ −M2

0Þ. Theyet unknown
parameters (λ andM0) will be constrained using the available
experimental phase shifts [48–50] in the following.
We have explored several Ansätze for the functional form

of λ, collecting the outcome as depicted in Fig. 1. In the
simplest case (λ ¼ const) we fit λ and M0 to the exper-
imental data obtaining only fair agreement with data; also,
no meaningful chiral extrapolation can be provided. The
perturbative amplitude of the next-to-leading chiral order
[51] and the unitarized amplitude using only the leading
chiral order describe the data well only in a close proximity
to the ππ threshold. We found that the inverse amplitude
method (IAM), see Refs. [52,53], i.e., T2

LO=ðTLO − TNLOÞ,
shows the best agreement with the data. Furthermore, it can
be expressed in the form of Eq. (2), demanding

λ2 ¼ ðM2
0 − σÞ

�
d
4π2

þ TLO − T̄NLO

T2
LO

�−1
; ð3Þ

where T̄NLO denotes the next-to-leading order chiral
amplitude [51] without the s-channel loop, which depends

on low-energy constants (LECs) taken from the same
reference. The constant d compensates for the fact that
dimensional regularization was used in Ref. [51], while in
the present Ansatz we use form factors to regulate the
divergences. We found that choosing Λ ¼ 42 corresponds
to d ¼ 0.86 such that the both formulations of the scatter-
ing amplitude coincide perfectly (see Fig. 1), which also
holds for all pion masses in question. The scattering lengths
read for unphysical pion masses

a291 ¼ −0.1478þ0.0356
−0.0550 ; a352 ¼ −0.2016þ0.0663

−0.1008 ;

a491 ¼ −0.3622þ0.1914
−0.1395 ; a591 ¼ −0.5406þ0.3645

−0.1728 ; ð4Þ

which agree with previous LQCD results, e.g., Ref. [54],
while a139.57 ¼ −0.0433ð37Þ for the physical one compares
perfectly with −0.0444ð10Þ from the Roy equation analysis
of Ref. [55]. The uncertainties are determined from sampling
of the LECs taking uncorrelated error bars from Ref. [51].
Note that the regulator dependence in the form factor plays
no role; all we have done here is parametrize the physical
region of I ¼ 2 ππ scattering; if we had to change the
regularization we simply needed to renormalize by refitting
the LECs to the ππ phase shifts.
Unitarity, correct description of data and proper chiral

behavior are the only features required for the realistic
prediction of the finite-volume spectrum. Therefore, having
fixed λ as described before, we predict the πþπþ finite-
volume spectrum (L ¼ 2.5 fm), determining the roots of τ−1

in the two-body energy
ffiffiffi
σ

p
. Note that this is equivalent to

Lüscher’s method [15,16] up to exponentially suppressed
terms [56].
The result is depicted in the right panel of Fig. 1, while the

numerical values for the physical and the pion masses used
in the lattice calculation [33,34] are collected in Table I
in the Supplemental Material [47]. The quoted error bars are

FIG. 1. Left: Comparison of available phase-shift data [48–50] with the prediction of the considered models. Right: Prediction of two-
body energy levels (full) as a function of mπ with dashed lines denoting noninteracting levels and error bars indicating the prediction
uncertainty (see Table I in the Supplemental Material [47]). The inset shows an enlargement on the ground level, where the red points
denote the result of the lattice calculation [33,34].
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determined in a 40-point sampling, varying the LECs from
Ref. [51].
The result for the postdicted ground state level agrees

nicely with the lattice calculation ( χ2p:p: ¼ 0.35), and is in
agreement with the large-volume expansion formula [57]
using the scattering lengths from Eq. (4) as input. Notably
and unexpectedly, the IAM-like chiral extrapolation seem to
work well up to very high pion masses. The excited energy
levels shown in the right panel of Fig. 1 are predictions. Note
that no four-particle cuts have been discussed, such that the
prediction is quoted up to

ffiffiffi
σ

p ¼ 4mπ .
Results: three-body energy shift.—With two-body input

at hand showing good agreement with the LQCD data, we
turn now to the main point of the present Letter, the finite-
volume spectrum of the πþπþπþ system. In a three-particle
system, the invariant mass of the two-particle system can be
subthreshold ( ffiffiffiffiffi

σq
p < 2mπ) for a sufficiently large momen-

tum of the spectator q. Note that only right-hand (physical)
two-body singularities are included in the derivation of
the three-body scattering amplitude [21,45], leading to the
quantization condition [Eq. (1)]. Furthermore, in the absence
of two-body bound states, the infinite-volume two-body
amplitude, derived through a dispersion relation [45], has to
be real and regular in the subthreshold region. In the three-
body framework, this two-body subthreshold contribution
is compensated by the (still) unknown real function C.
Furthermore, in finite volume, corrections from this region
are exponentially suppressed. In summary, at some σ0 in the
unphysical region one can simply setK−1

q to a (real) constant
that is smoothly connected to the physical region, where it
reproduces the IAMtype of scattering amplitude as described
before. Below, we check the dependence on σ0 explicitly.
The remaining unknown piece of the quantization

condition [Eq. (1)] is the three-body interaction term C,
which can only be determined from a fit to data.
Fortunately, lattice data are available for the ground state
[33,34] in the same setup as for the two-pion system. Note
that, in general, C is a function of the in- or outgoing
spectator momenta (q=p), total energy W3, and mπ . We
found that already the simplest choice Cqp ¼ cδð3Þðp − qÞ
leads to a good fit to the ground-state energies E1

3 [33,34],
i.e., χ2dof ¼ 0.05 for cfit ¼ ð0.2� 1.5Þ × 10−10, i.e., a value
compatible with zero. The statistical and systematic data
uncertainty were added for this fit, which explains the low
value of χ2dof .
The result of the fit to the ground level as well as

prediction of higher levels are depicted in Fig. 2 with the
uncertainties from a sampling of LECs as before. We
observe, that, while the first two levels have rather small
error bars, higher levels appear in two dense clusters (3,4)
and (5,6,7) and overlap with the 1σ uncertainty bands. For
clarity of the presentation we do not show the latter in the
Fig. 2 but Table I in the Supplemental Material [47] quotes
all uncertainties. This shows that when the levels are

obtained from a lattice calculation, they can put new strong
bound on the two-body amplitudes, which are the main
source of uncertainty for the calculated three-body energy
eigenvalues. Note that for mπ < 315 MeV (i.e., for the
lowest pion mass of the NPLQCD calculation) there might
be larger exponentially suppressed finite-volume according
to the rule of thumb that such effects can be safely
neglected only for mπL > 4.
As an additional check we have fitted the ground state

levels E1
3 [33,34] using the large-volume expansion formula

[57] using our scattering lengths [Eq. (4)] and adjusting the
unknown three-body contribution ηL3 {Eqs. (1)–(5) of
Ref. [57]}. The fit yields χ2dof¼1.32 for ηL3 ¼ 1.8 × 10−12

and E1
3 ¼ f3.1277; 3.1003; 3.0695; 3.0623gmπ for mπ ¼

f291; 352; 491; 591g MeV, respectively. It is interesting to
see that not only this confirms our result for the lowest level,
but also that the genuine three-body contribution is similar
to c determined before, keeping in mind that the latter was
introduced on the level of amplitudes and not a Hamiltonian
as ηL3 .
On a qualitative level, we observe that the energy levels

shown in Fig. 2 mimic the pattern of the noninteracting
ones shifted to higher energies. This is similar to the two-
body case with the novelty that interacting energy levels do
not always occur between two noninteracting ones.
Our method relies on regularization and renormalization

through the three-body interaction in intermediate steps.
We therefore discuss the renormalization procedure and
independence of the results on the regulator. Two different
cutoffs have been introduced in our two- and three-body
calculation: (i) a form-factor f regulates the log-divergent
integral in the self-energy [Eq. (2)] and also the divergence
of the three-body equation, i.e., as s; s0 → ∞ in the
quantization condition [Eq. (1)]. (ii) The determinant in

FIG. 2. Prediction of excited energy levels for the πþπþπþ
system as a function of pion mass with noninteracting levels
represented by dashed lines. The uncertainty on the first two
levels is indicated. The inset shows the enlargement on the
ground level, where the lattice data [33,34] are shown in red. Note
that mπL < 4 for the lowest pion mass of the data (see text).
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Eq. (1) is taken over a finite number of shells, which
effectively introduces a hard (spectator) momentum cutoff.
Regarding (i), we have checked that the eigenvalue
spectrum in the two- and three-body case barely changes
if one changes the form factor from fðQ2Þ ¼ 1=ð1þ
e−ðΛ=2−1Þ2þQ2=4Þ to fðQ2Þ ¼ Λ4=ðΛ4 þQ4Þ. These changes
vanish when the parameters of the two- and three-body
amplitudes (LECs and three-body force C in the present
case) are renormalized accordingly (see also the remark
after Eq. (4) on the renormalization of the two-body
amplitude). To demonstrate such a process we turn now
to (ii), which occurs due to a truncation of the matrix in the
argument of Eq. (1) with respect to the number of shells
s; s0 ≤ smax. Throughout the Letter, we have considered 20
shells, which corresponds to a momentum cutoff of
2.1 GeV. Truncating the matrices at a lower number of
shells without changing the three-body force, the eigen-
value spectrum changes as depicted in the Supplemental
Material [47]. However, renormalizing the three-body force
cfit ¼ 0.2 × 10−10 as

smax 2 (∼0.50 GeV) 4 (∼0.86 GeV) 20 (∼2.1 GeV)

c=cfit 0.97 0.99 1.00

returns the original result for all ground state levels E1
3.

In summary, we have demonstrated the renormalization with
a constant three-body term C. With future data on excited
levels from LQCD it will be possible to learn more about the
energy and momentum dependence of the three-body force.
Conclusion.—The finite volume spectrum for the πþπþ

and πþπþπþ systems has been analyzed using a finite-
volume method based on three-body unitarity that identifies
all power-law finite-volume effects of a three-body system.
Using experimental data and a nonperturbative Ansatz
for the two-body amplitude, we have predicted the πþπþ
energy levels in finite volume which are in perfect agree-
ment with the lattice data available for the ground state.
Finally, using this input and fitting the genuine three-body
contact term to the threshold level determined by the
NPLQCD collaboration we have predicted the excited level
spectrum of the πþπþπþ system up to W3 ¼ 5mπ. This is
the first prediction of excited levels in a physical three-body
system. Possible sources for systematics (choice of para-
metrization of the two-body amplitude and its subthreshold
behavior, three-body force, and regularization) and statis-
tical uncertainties have been identified and estimated.
In summary, we have demonstrated how the lattice

results for systems with three hadrons can be connected
with the experimental data. While the extensions to coupled
channels, 2 → 3 processes, unequal masses, and isobars
with spin are works in progress, this pioneering study opens
the way for analysis of hadronic systems like the Roper
resonance in the future.
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