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THE FORMER RATES OF THE EARTH'S ROTATION

AND THEIR BEARINGS ON ITS DEFORMATION.

In the treatment of the earth's deformations, which is to be the subject

of a following paper, it is essential to know whether changes in the rate of

the earth's rotation must be regarded as one of the important factors or

not. If the rate of rotation has appreciably varied during geological history,

it is almost certain that the oblateness of the earth-spheroid has also

varied, for unless the rigidity of the earth greatly exceeds that of any
known substance, it must have been modified in form under changing
rotation so as to approach the shape it would assume if it were a perfect

fluid. It would be an error to assume, as is sometimes done, that the

earth would conform to the fluidal shape perfectly, but that it would
approach to this with a measurable degree of closeness seems to be beyond
question. If there was a change from a high rotational speed, and con-

sequent high degree of oblateness, to a slower speed with less oblateness,

the surface area of the earth must have been reduced, because the nearer

such a body approaches a sphere, the less the area of its surface, the greater

its average gravity, and hence the greater its degree of compression. This
is brought out numerically, with a high order of approximation, in the
accompanying paper of Professor Slichter. There will be occasion in the
course of the present paper to consider in detail the application of this

supposed reduction.

Whatever therefore may be the difficulties attending a treatment of

past rates of rotation of the earth, it is imperative that this element of

the problem of deformation be recognized and evaluated so far as lies in

our power.

The problem may be approached on two rather distinct lines, one of

which is astronomic but rests back so radically on postulates derived

from theories of cosmogony that it may almost be called cosmogonic, and
the other of which is geologic and rests on the direct or implied teachings

of terrestrial evidence.

The ulterior purpose of this paper is to set forth the latter, but the

cosmogonic considerations can not be passed without notice, for the cogency
which will be thought to attach to geological evidences is certain to be
measured in no small degree by the presumptions which are entertained

on cosmogonic grounds, or on astronomic grounds with an essential cos-

mogonic factor. The recent literature of the subject indicates that a

belief in a former high rate of rotation of the earth based on cosmogonic
and tidal grounds has a strong hold on astronomers and, to some large

5



6 THE TIDAL PROBLEM.

extent, upon geologists. The extent of this belief is due in large measure,

no doubt, to the masterly papers of Sir George Darwin upon the origin

and tidal influence of the moon. It is obvious that if the arguments in

favor of a former high rate of rotation are accepted as decisive in them-

selves, such geological data as seem to conflict with them are likely to be

received with skepticism, or to be given interpretations consistent with

the accepted conclusions. It is therefore appropriate, if not necessary,

to review at the outset the grounds for the conclusions that have been

drawn from cosmogonic postulates and from tidal and other considerations

based upon these, so far at least as these have been thought to be weighty.

There is the more reason for this in the present series of papers, because

of the very different basal postulates which may be grounded on the mode

of planetary genesis set forth in them.

THE ASTRONOMICAL DEDUCTIONS.
CONSIDERATIONS BASED ON THE OLDER COSMOGONIES.

It scarcely needs to be recited that, during the past century, astrono-

mers and geologists almost universally accepted the hypothesis that the

earth was formed from the condensation of a spheroid of gas, and that

current doctrines as to the earth's early rates of rotation were founded

on premises derived from some form of this hypothesis. Under the original

Laplacian view it was affirmed that the rotations of the sun and the plan-

etary masses were progressively accelerated as they shrank from a more

expanded to a more dense condition. The rotation of the parent earth-

moon spheroid was supposed to have reached, at a certain stage, such a

velocity that a ring of matter was separated from its equatorial tract and

formed the moon by subsequent condensation. It was held that the speed

of rotation of the residual spheroid further increased, or tended to increase,

by reason of its continued contraction, and hence that the primitive rota-

tion of the earth was exceedingly rapid. As the present rotation of the

earth is relatively slow, it followed, as a necessary inference, that a very

marked decHne in the earth's rotatory velocity took place in the course

of geological history.

In the modification of the Laplacian view introduced by Sir George

Darwin,^ the material of the moon is supposed to have been separated

'G.H.Darwin:
On the bodily tides of viscous and semi-elastic spheroids, and on the ocean tides

upon a yielding nucleus. <Phil. Trans. Roy. Soc. Lond., part 1, 1879, pp. 1-35.

On the procession of a viscous spheroid, and on the remote history of the earth.

<Phil. Trans. Roy. Soc. Lond., part 2, 1879, pp. 447-538.

Problems connected with the tides of a viscous spheroid. < Phil. Trans. Roy. Soc.

Lond., part 2, 1879, pp. 539-593.

The determination of the secular effects of tidal friction by a graphical method.

<Proc. Roy. Soc. Lond., No. 197, 1879, pp. 168-181.

On the secular changes in the elements of the orbit of a satellite revolving about a

tidally-distorted planet. <Phil. Trans. Roy. Soc. Lond., vol. 171, part 2, pp.

713-891, 1880; Proc. Roy. Soc, vol. 29, 1879, p. 168, and vol. 30, 1880, p. 255.

On the tidal friction of a planet attended by several sateUites and on the evolution of

the solar system. <Phil. Trans. Roy. Soc. Lond., part 2, 1881, pp. 491-535.

Enc. Brit., article on "tides"; "The Tides," 1899.

Also Thomson and Tait's Natural Philosophy, 2, articles on tides.
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from that of the earth after the condensation of the common mass had

reached the liquid or perhaps even incipient solid state. In what precise

form the separation took place is not specifically affirmed and is not material

here, where the only essential point is the high rotatory velocity assigned

the earth at the time of the moon's separation.

Most or all of the meteoritic hypotheses of the earth's origin—using the

term meteoritic in the restricted sense defined in this series of papers

—

agree essentially with the gaseous hypotheses in assigning to the earth,

at its earliest separate stage, a molten condition and a rate of rotation

either identical with or closely approximate to that of the Laplacian

hypothesis and of its modifications. The presumption, therefore, that the

rotation of the primitive earth was of a high order of velocity had the

sanction of these two classes of cosmogonic theories, and, as they occupied

the field almost exclusively during the past century, this common inference

from them came to have, naturally enough, a strong hold upon the beliefs

of astronomers and geologists. If there shall finally be found reason to

set these conceptions aside, it should still be recognized that they have

been powerful instrumentalities in advancing knowledge and in stimu-

lating inquiry, and that the investigations founded upon them have been

scarcely less than necessary steps toward a final solution.

Besides being at one in postulating a rapid rate of primitive rotation,

these older hypotheses were essentially in agreement in assigning to the

earth a molten condition in its early stages, as already stated, and this

postulate has entered pervasively into the tidal and deformative theories

of the earth that have had currency. Until the later decades of the last

century, it was commonly believed that a molten condition was retained

by the interior of the earth, or by some notable part of it, throughout

the geological ages. In the latter part of the century, the conception of a

solid earth came to be more generally entertained, but there went with

this, almost universally, the postulate of such a degree of viscousness as to

profoundly influence conclusions relative to tidal deformation and earth-

movements generally. At the present time, when belief in an essentially

solid earth has gained a large, though not universal, adherence, the con-

ception that the spheroid is to be regarded as a viscous body in the treat-

ment of all the larger geological problems is still widely prevalent and
not only enters profoundly into the study of these problems but takes on

forms exceedingly diflScult to adjudicate. The embarrassment does not

arise so much from the theoretical recognition of a viscous property in

the substances of the lithosphere, as from the lack of firm grounds for

estimating its actual participation in the deformations and internal move-
ments of the earth. One of the most vital questions of earth-dynamics

relates to the respective values of viscousness and of elastic rigidity in

terrestrial diastrophism.

In this discussion the elastic rigidity of the earth will be regarded as

the dominant factor in its morphology, and the tidal deformations of the

lithosphere will be regarded merely as strains in an elastic body, involving

viscous or liquid flowage only as an incident affecting those portions of

the earth's body which are in a molten, gaseous, or temporarily unattached

state.
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Working upon the cosmogonic grounds prevalent in the past century,

and supported by the nearly universal consensus of opinion regarding the

early stages of the earth, Sir George Darwin, in a memorable series of

mathematical investigations/ developed the well-known doctrine of the

tidal retardation of the earth's rotation from a primitive period of less

than 5 hours 36 minutes to the present period of four times that length.

Besides being grounded in presumptions that were commonly accepted,

it had the merit of bringing these presumptions into historical consistency

with the existing state of things. Not only that, but the investigation

started with what then seemed to be a present rate of retardation deduced

from astronomical observations, and proceeded backward by logical steps

and current assumptions to the supposed original state, or at least to a

close approach to it. The confidence that has been reposed in the conclu-

sions so reached has not been placed without persuasive reasons, whatever

conclusions may ultimately be reached from radically different cosmogonic

postulates and from revised astronomical data.

Not a few inferences of vital geological importance were drawn from

this classic investigation, and specific data to support them were naturally

sought in the geologic record. For the greater part, this search met with

negative results, or with results which could be regarded as giving but

meager or equivocal confirmation. Notwithstanding this, the logical force

of the tidal argument as developed by Sir George Darwin, when its cos-

mogonic postulates were taken for granted, was such that inharmonious

geological phenomena were generally explained away, largely by assuming

that the internal solidification of the earth took place at a relatively late

date.

CONSIDERATIONS BASED ON THE PLANETESIMAL THEORY.

As to the grounds for postulating a radically different constitution of

the lithosphere, growing out of a new hypothesis of earth-genesis, I must

content myself here with references to what has already been written ^

and to a fuller exposition elsewhere in this series of papers. It is appro-

priate, however, to bring again to mind those inferences which are drawn

from the rotational features now shown by the solar system, since these

bear specifically upon the question in hand.

The doctrine that a prevalent forward rotation of the planets could

only mean that they were formed through gaseous or quasi-gaseous con-

densation, was one of the bulwarks of the older hypotheses. It was only

2 A OTOup of hypotheses bearing on climatic changes, T. C. ChamberHn, Jour. Geol.,

vol. 5, No. 7, 1897, pp. 653-683.

An attempt to test the nebular hypothesis by the relations of masses and momenta,

T. C. Chamberlin, Jour. Geol., vol. 8, No. 1, Jan.-Feb., 1900, pp. 58-73.

An attempt to test the nebular hypothesis by an appeal to the laws of dynamics,

F. R. Moulton, Astrophys. Jour., vol. 6, No. 2, Mar., 1900, pp. 103-130.

Certain recent attempts to test the nebular hypothesis, T. C. Chamberlin and F. R.

Moulton, Science, vol. 12, Aug. 10, 1900.
, ^ , , oi

The origin of the earth, Chamberhn and Salisbury, chap. I, vol. 2, Geology, pp. 1-»1

Dec, 1905.
Evolution of the solar system, F. R. Moulton, chap. XV, Introduction to Astronomy,

pp. 440-487, Mar. 24, 1906.
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when the inapplicability of this doctrine to natural cases was detected,

about a decade ago,* that there was a clear path opened and logical grounds
provided for developing a hypothesis of planetesimal accretion. It is

perhaps not too much to assume that the previous papers of this series

have shown that this hypothesis is even better fitted than gaseous con-

densation to give rise to the various rates of rotation actually presented

by the solar system. Under the planetesimal hypothesis, the primitive

rotation of the earth was not necessarily rapid, nor was the body of the

earth necessarily molten. Thus two of the primitive conditions, that were
formerly taken for granted on the basis of a nearly universal consensus of

opinion, have been brought into question and may now be fairly regarded

as being at best no more than working competitors with the alternative

of a solid elasti co-rigid earth, a view which is hampered by no compulsory
presumption as to any particular rate of primitive rotation, but is hospitable

to any rotational state which the direct evidences, astronomical, geological

and otherwise, may require.

The speculative freedom relative to primitive rotations, which the

planetesimal hypothesis thus affords, directs attention anew to the actual

facts and to their unembarrassed implications. The most fundamental

case is that of the controlling body of the solar system itself. The present

rotation of the sun is relatively slow and its axis is incHned appreciably

to the common plane of the planetary system. When it is considered that

the mass of the sun is more than 700 times that of all the planetary deriva-

tives combined, this rate and this inclination assume radical importance.

This slow rotation and this inclination of axis are perfectly consistent with

the planetesimal hypothesis and have peculiar suggestiveness in that

relationship. On the other hand, they seem to me very difficult to reconcile

with any theory under which the outlying bodies are supposed to be derived

from a gaseous or quasi-gaseous spheroid by contraction, particularly

any theory which postulates that the derived bodies were discharged from
the central mass by the equatorial velocity of its rotation. Obviously

the planetary material thus separated should be accurately adjusted to

the sun's equatorial plane, and to the common plane of the system. Obvi-

ously also the great residual mass should have a rate of rotation appro-

priate to such a discharge. Having separated a succession of masses

from its equator to form the planets, and having further shortened its

radius some 36,000,000 miles after the last known planetary mass was
detached, the sun should have a rotatory velocity somewhat near that

requisite for another planetary separation. The velocity of rotation at

the equator of the solar nebula when it was supposed to have detached

the material for Mercury must have been, according to the Laplacian hy-

pothesis, about 28 miles per second. The equatorial velocity requisite to

bring the centrifugal and centripetal components of the sun's equatorial

motion into equality if the sun now had a radius of 1,000,000 miles is 176

miles per second; the velocity required to bring about this state at the

present surface of the sun is 270 miles per second. We should then expect,

» Journal of Geology, vol. 5, 1897, pp. 668-669
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under any hypothesis that rests on centrifugal separation, that the present

speed of the sun's equator would certainly be much greater than 38 miles

per second, and should approach the higher figures given. As a matter of

fact, the sun's equatorial velocity of rotation is only about 1.3 miles per

second. Such a rate seems, therefore, to be altogether inconsistent with

the doctrine of centrifugal separation. If, for a moment, the thought be

entertained that tidal retardation may have reduced the sun's rotation

from a high primitive rate consistent with the centrifugal hypothesis, to

the present rate, it will become obvious, on a study of the nature and value

of the tidal influence of the planets on the sun, that this is wholly unten-

able. The quantitative estimates of Sir George Darwin are decisive on this

point.^ So also is the remarkable fact that the equatorial portion of the

sun has a higher rotational velocity than the portions in higher latitudes

instead of lagging, as it should if it were affected by tidal retardation.

The obliquity of the sun's axis is a further grave objection to all forms

of the doctrine of centrifugal separation. On the other hand, some such

obhquity is extremely probable under the hypothesis that the system was

developed by the influence of a passing star, for the axis of the ancestral

sun might obviously sustain any relationship to the orbital plane of the

disturbing body. The position of the present axis, under this hypothesis, is

the result of a composition of moments of momentum derived in part from

the ancestral rotation and in part from the passing star, and it could not

therefore be expected, except by a remote chance, to be exactly normal

to the common plane of the planetary system. Under this hypothesis the

obliquity of the sun's axis, together with its slow rotation, suggest, if they

do not distinctly imply, that the direction of rotation of the ancestral sun

was opposite to that of the present sun, and that its axis was more inclined

than now to the plane of the present system.

Of similar rotational import is the relationship between the time of

rotation of Mars and that of the revolution of its inner satellite, Phobos.

It is obvious that, under any hypothesis of centrifugal separation, if a

revolving spheroid acquires by contraction an equatorial velocity sufficient

to leave behind the material of a satelHte, and afterwards continues to

contract until its radius is but a small fraction of its value at the time of

separation, the rate of rotation of the spheroid must be greatly increased

and its period must be much shorter than the revolutionary period of the

derived satelHte, unless some very potent agency intervenes to reverse

the systematic process of the evolution. Now, the satelHte Phobos revolves

around Mars about three times while the planet rotates once. In an anal-

ogous way the little bodies that make up the inner edge of the inner ring

of Saturn revolve about that planet twice while the planet rotates once.

These are, on their face at least, seriously out of accord with the doctrine

of centrifugal separation by planetary contraction. Darwin has suggested

that tidal retardation may be a possible solution in the special case of

Phobos, but Moulton has called attention to the insuperable difficulties

of applying this explanation consistently to the Saturnian case and the

Martian case at the same time.^

' Trans. Phil. Soc. Lond., 1881. ^ Astrophys. Jour., vol. 11, Mar., 1900, p. 109.
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The retrograde revolution of the ninth satellite of Saturn still further

and seriously complicates the case from the centrifugal point of view.

The rotations of Uranus and Neptune are unknown, but, whether they
are concordant with the revolutions of their satellites or not, they present

difficulties under the centrifugal hypotheses because of the great obliquity

of the planes of revolution of their satellites to the common plane of the

s)'^stem, and because of their retrograde motions. This has long been
recognized, but these difficulties gain not a little in force when they are

associated with other rotational difficulties which have been insufficiently

considered in connection with them.

There are still other rotational features of the existing planets which
seem to be inconsistent with all forms of a contractional-centrifugal hypoth-
esis of planetary origin, and, what is especially to the point in the matter
in hand, which seem inconsistent with the very high rotational velocities

which such a hypothesis necessarily postulates. Among these are the great

differences in the rotational features of the members of the system. If

the system started from a common spheroid and if its derivatives were
shed by systematic centrifugal action, it is very difficult to see how so great

variety of rotational velocities, so varied inclinations of the rotational

axes, and so diverse directions of rotation as the system actually presents,

could have arisen.

Under the planetesimal hypothesis, the rotation of each planet is held

to have arisen independently of every other planet. Its rate of rotation

depended on the special conditions that attended the expulsion of its

nucleus from the sun, and on the mode of accession of the rest of its material

from the planetesimal state—conditions that were quite certain to vary
with each planet. Rotations, rapid or slow, direct or retrograde, with

inclinations of any degree, are consistent with the hypothesis. There is,

however, a decided balance of presumption in favor of forward rotations,

of moderate inclinations of axis, and of moderate velocities of rotation.

As none of the planets rotate at speeds that even remotely approach that

requisite for equatorial discharge, as their rates of rotation differ widely

from one another, as the inclinations of their axes vary greatly, and as the

majority of their rotations are direct and the minority retrograde, this

hypothesis seems to be concordant with the facts of the case.

If we are thus permitted to start with a genesis which leaves us free

to suppose that the rate of the earth's rotation at the outset may have
been essentially what it is to-day, or may have been faster or slower in any
degree, the preconceptions that have led to former rotational views do not

trammel us. The determination of the past history of the earth's rotation

rests unhampered upon the evidences presented by its own phenomena
and upon those deducible from the necessary influence of its neighbors.

The most important of the rotatory influences of neighboring bodies on
the earth is the friction of the tides, particularly of the lunar tides. The
assigned mode of this action is familiar and may be stated briefly as fol-

lows: If the tidal protuberance has a position in advance of the position

of the moon, as at A in fig. 1, a component of the moon's attraction tends

to antagonize the earth's rotation and to accelerate the moon's motion.
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If a tidal protuberance has a position behind the moon's position, as at

B, a component of the moon's attraction tends to accelerate the earth's

rotation and to retard the moon's motion. If a protuberance rises directly

beneath the moon's position, its forward and backward pulls are equal.

On the opposite side of the moon
there are complementary protu-

berances, as A', B', fig. 1, whose
rotatory effects are the reverse

of those on the moonward side,

but whose greater distances give

them less efficiency. It is merely

this difference in effectiveness

growing out of difference of dis-

tance that is usually appealed to

as influencing rotation.

I shall endeavor to show later

that, while the foregoing reason-

ing seems to be unimpeachable in

itself, there are counterbalancing

factors which seem to have been

overlooked, and which nuUify the

value of this mode of treatment.

They do not, however, nuHify

the proposition that tidal friction

tends to retard the earth's rota-

tion. It seems best, however, to

review the subject first on the

accepted lines.

The tides represented in fig. 1

are such as are assigned to the

direct pull of the tide-producing

body and are known as "direct."

The protuberance ^, fig. 1, repre-

sents a tide which is interpreted

as having lagged in its forma-

tion, and hence has been carried

forward by the rotation of the

earth to a position in front of

the moon's position; B represents

a tide which has been formed

behind the moon's position, but

both may be regarded as falling within the class of "direct" tides. This

class of tides are said to be built up when the natural free period of the

tidal wave is less than that of the tidal forces. If the natural free period

of the tidal wave is greater than that of the tidal forces, the tendency is to

produce " inverted" tides. The law underlying this difference of result, to

which Newton first directed attention, is thus stated by Darwin:^

Fig. 1.

The Tides, pp. 171-172.
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Now, this simple case illustrates a general dynamical principle, namely, that if a

system capable of oscillating with a certain period is acted on by a periodic force, when
the period of the force is greater than the natural free period of the system, the oscil-

lations of the system agree with the oscillations of the force; but if the period of the

force is less than the natural free period of the system the oscillations are inverted

with reference to the force.

This principle may be ap-

plied to the case of the tides in

the canal. When the canal is

more than 13| miles deep, the

period of the sun's disturbing

force is 12 hours and is greater

than the natural free period of

the oscillation, becavise a free

wave would go more than half

roimd the earth in 12 hours.

We conclude, then, that when
the tide-generating forces are

trying to make it high water, it

will be high water. It has been
shown that these forces are tend-

ing to make high water immedi-
ately under the sun and at its

antipodes, and there accordingly

will the high water be. In this

case the tide is said to be direct.

But when the canal is less

than 13| miles deep, the sim's

disturbing force has, as before,

a period of 12 hours, but the
period of the free wave is more
than 12 hours, because a free

wave would take more than 12
hours to get half round the
earth. Thus the general prin-

ciple shows that where the forces

are trying to make high water,

there will be low water, and vice

versa. Here, then, there will be
low water under the sun and at

its antipodes, and such a tide

is said to be inverted, because
the oscillation is the exact in-

version of what would be natu-
rally expected.

All the oceans on the earth
are very much shallower than
fourteen miles, and so, at least

near the equator, the tides ought
to be inverted. The conclusion of

the equilibrium theory will therefore be the exact opposite of the truth, near the equator.
This argimient as to the solar tide requires but little alteration to make it applicable

to the lunar tide.

The positions of a set of "inverted" tides corresponding to the fore-
going set of "direct" tides are shown in fig. 2.

Now since the rotation of the earth gives its surface an angular motion
greater than that of the tide-producing body, its effect must be to carry

Fia. 2.
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the protuberances forward towards positions which, according to the

above interpretations, are in some cases more favorable for influence on

the earth's rotation and in other cases less favorable, and if a wave is followed

through its whole course, it sustains various relations, favorable and unfa-

vorable, retardative and accelerative. The sum total of influences is thus

seen to be a product of much complexity. It has been held that the retar-

dative positions predominate in effectiveness. The case has usually been

treated on the assumption of a continuous ocean belting the earth and

permitting the tides to follow the tidal forces consecutively about the

earth. It will be shown later that this is not the actual case, and that

the tides are essentially hmited to individual water-bodies. This further

and greatly complicates the case. The problem is still further complicated

by the past relations of the moon to the earth, and this claims attention

before further considering the efficiency of the tides.

THE GENESIS OF THE MOON.

(1) The hypothesis of Laplace in its original form took no account of

tidal action. Under it the rotation of the earth, when it had become

condensed to a molten globe, was assumed to have had the velocity which

at an earher stage was necessary to separate the lunar ring, plus that

which was added by subsequent contraction. How this high rate of rota-

tion was reduced to the existing rate was not explained.

(2) The supplementary hypothesis of Sir George Darwin replaces this

defect of the Laplacian hypothesis by postulating a centrifugal separation

of the moon-mass from the earth-mass after the parent-body had been

condensed to a liquid or perhaps even incipient sohd state, and a subse-

quent recession of the moon by tidal influence, accompanied by a reduction

of the earth's rotation as its dynamic reciprocal. The postulated method

of this tidal action has been stated above. The fundamental proposition

that tidal friction will tend either to separate the two interacting bodies

or to draw them together—according to the precise nature of their rela-

tions—is not questioned, as it seems to be solidly founded on the laws of

energy, but it is necessary to consider the precise relations of the bodies to

determine the character of the action under the preceding mode of inter-

pretation, and we shall find occasion to question the mode itself. Darwan's

method of starting with what was thought to be a fairly reliable astronom-

ical indication of the present value of the earth-moon interaction and of

working backward mathematically to the primitive state, or so far as the

mathematical process would carry, is beyond praise. But as the present

value of the earth-moon interaction is open to serious question and is not

now replaceable by an unquestionable value, and as the postulates for the

backward tracing are themselves in question, it is necessary to consider

the hypothesis on more general lines. The value assignable to the tides in

each of the earth's ages depends on the assumptions made regarding the

physical states of the earth's interior. If the body of the earth be assumed

to be molten, or viscous in such a degree that the body tides are important

and are of the Hquid or viscous type, the results will be very different from
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those which will be reached on the assumption that the body tides are

merely strains in an elastico-rigid earth. So, too, if the ocean has been

growing in volume during the geologic ages, or has been changing in form

in any notable degree, the results would need to be modified accordingly.

Even when approached on the admirable lines of backward tracing by

computation, the results are therefore subject to wide variation accord-

ing as the postulates arising from one cosmogonic hypothesis are used or

those of another.

If we were to follow carefully the first stages of the moon's evolution

under Darwin's hypothesis, it would be seen how critically dependent

that hypothesis is on an underlying theory of cosmogony. The moon is

assumed to have been separated from the parent earth-moon mass by
some form of centrifugal action. While the precise form may have been

either one or another of two or more alternatives, the principle of action

is the same up to a certain point and is best illustrated by supposing that

the moon-mass separated as a unit, and that just after separation it was

a spheroid close beside the earth-spheroid and revolving in the period of

the latter's rotation. An objection to this supposition will be considered

later.

Now at this critical stage the earth was subject to the tidal action of

the sun, which, according to the fundamental theory of the hypothesis,

should tend to retard the earth's rotation. The earth was also subject to

contraction from loss of heat, which should tend to accelerate its rotation.

If the former was the greater influence, the lunar tide, which would have

begun to be generated as soon as a difference arose between the moon's

revolution and the earth's rotation, must have fallen behind the moon's

position and, according to the hypothesis, must have tended to draw it

backward and bring it down to the earth. To permit the evolution to

proceed at all it is necessary to suppose that the contraction from loss of heat

was a greater influence on the earth's rotation than were the solar tides. Now,
the earth's contraction from loss of heat at the present time is exceedingly

small. If, therefore, the constitution of the earth has been much the

same as it is now ever since its growth practically ceased, as assumed by

one cosmogonic hypothesis, the supposition that the tidal evolution of the

earth-moon system was started in the right direction for lunar recession

by the superiority of the influence of contraction over that of the solar

tides is either untenable or else the solar tidal influence was extremely

small. The initiation of the tidal evolution postulated by this hypothesis

is thus seen to be tied up with a very high rate of loss of heat in the initial

earth-stages, and this is only assignable under certain cosmogonic assump-

tions which give to the earth a very hot surface. These are, however,

not necessarily confined to the gaseous or meteoritic hypotheses. They
may possibly be made under the planetesimal hypothesis, but in any case

they are as speculative as the hypotheses themselves, and in the latter

case somewhat less well grounded, because the alternative phases of the

hypotheses seem to be the more probable.

It is worth while to note further in this connection that the evolution

of the lunar tide, under the theory of Darwin, would be a very slow process,
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and might be reversed before it escaped the critical conditions named

above. The speed of the earth's rotation and the speed of the lunar tide in

this early stage must not be confounded, for the speed of the tide is depend-

ent on the difference between the angular rate of the earth's rotation and

the angular rate of the moon's revolution. At the instant of separation

the two rates were the same, and the tide, if the stationary protuberances

caused by the moon can be called a tide at all, would be infinitely slow,

and the period of the tide—the time required for the tide to make a circuit

of the earth—infinitely great. At the first stage of difference in angular

rate, if the earth's rotation was accelerated by contraction more than the

solar tides retarded it, the movement of the tide would be infinitesimally

slow in the present direction, and the tidal period sub-infinitely long. The

movement of the tide over the face of the earth would be accelerated only

as the contractional acceleration continued to be superior to the solar

tidal retardation reinforced by the lunar retardation. If the rate of loss

of heat, which must have declined rapidly as the supposed molten earth

crusted over and the crust became thicker, fell below that at which its

accelerating value on the rotation of the earth was superior to the retar-

dational value of the solar and lunar tides, and the latter then became supe-

rior, the time of rotation of the earth might be forced back to coincidence

with the revolution of the moon, and the lunar tides temporarily suspended

and, a little later, reversed, and the moon brought back to the earth accord-

ing to the fundamental postulate of the theory.^ To escape this contin-

gency it is necessary to suppose that the contractional influence of the loss

of heat continued to be superior to the retardational influence of the solar

and lunar tides until the lunar tide, though developed with extreme slow-

ness, had extended the moon's revolutionary period so much that when

the retardational influence became superior to the contractional influence

it was too late for it to reduce the rotation-period of the earth to the revo-

lution-period of the moon at that end of the evolutional series. These

considerations serve to indicate how delicately poised were the initial condi-

tions assumed by the hypothesis and how completely they were dependent

on the heat-emission of the earth at the critical stage, which in turn was

dependent on the cosmogony that preceded it.

The argument that the balance of influence must have lain on the side

of heat-loss or else the moon would not be where it is at present, would

be pertinent if the earth-moon evolution were absolutely shut up to one or

the other of the alternatives just considered, but it has no force against a

hypothesis which entirely avoids these critical alternatives.

It is to be noted further that the tidal reactions in the initial stages of

the hypothesis of Darwin must apparently have been those of the earth's

body, for if the heat had been so far dissipated that the earth was crusted

over and the oceans were permitted to mantle the earth, the loss of heat

would possibly have been too small to start the evolution in the postulated

direction. The atmosphere must then have been of that vast vaporous

» The correctness of this is dependent on the soundness of the theory that the position

of the tides determines their accelerative or retardative character, which wiU be con-

sidered later.
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kind made so familiar to us by the geologic rhetoric of the last century.

Until the outward reach of this atmosphere was escaped by the receding

moon, the atmospheric friction must have kept the moon in consonant

revolution with itself and tidal action could not have been inaugurated.

This must have prolonged the critical stages and made the triumph of

contraction over the solar tides all the more doubtful.

The separation of the moon from the earth after the common mass
became a liquid spheroid is subject to another serious contingency, based
upon the same principle of differential attraction as the tides themselves.

Roche has shown that a satellite revolving within a given distance from its

primary will be torn to fragments. The fragments must revolve at velocities

strictly dependent on their distances from the center of the primary and
hence must disperse themselves into a ring of the Saturnian type.^ The
fragments so produced would be subject to further reduction by collisions

with one another, by changes of temperature, and by internal reactions,

and would probably only reach an approximately stable condition as to

size when they were well comminuted. For the earth-moon combination

the Roche limit of disruption lies about 11,000 miles from the earth's

center.^ The cogency of Roche's reasoning, supported by that of Clerk-

Maxwell and others, and the example of the rings of Saturn, seems to leave

no alternative but to suppose that a body of the mass of the moon could

not pass from the earth outward by tidal reaction without being torn to

fragments and converted into a ring, unless the fission of the earth-moon
mass and the initiation of the lunar tide took place outside the Roche
hmit, which is difficult to believe under the Darwinian hypothesis, though
consistent enough with the Laplacian. The laws of revolution seem to

forbid the supposition that the fragments produced by tidal disruption

could have been aggregated for any appreciable length of time on one
side of the earth so as to act jointly in producing an effective tide. Even
if some tide could be so produced there would still remain the question

whether it would have carried the fragments outward by reaction suffi-

ciently far for them to have escaped the dangers of reversal by the solar

tides, as pointed out in a preceding paragraph. There seem to be no
cogent theoretical grounds upon which it can be affirmed that the frag-

ments of a disrupted body of this kind would evolve into any other condi-

tion than that of a ring of discrete particles during the time available for

starting the recessional movement of the moon. They might perhaps

move outside the Roche limit or be drawn down to the planet in a period

sufficiently long, but probably not in the available period. The fact that

the Saturnian rings are present at this stage in the history of the solar

system suggests, if it does not definitely imply, that this form of organiza-

tion is one of much persistence.

If we pass by these peculiar difficulties that embarrass the supposed
separation of the moon from the earth, and if we set aside the special

consequences assigned to a molten or viscous earth-body, the remaining

* On the stability of motion of Saturn's rings. < Scientific Papers of James Clerk-
Maxwell, vol. 1, pp. 288-376.

2 Darwin's "Tides," pp. 358-360.
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problems respecting the influence of the tides on the earth's rotation are

essentially the same, whatever the genesis of the moon, and so these further

problems may well be deferred until it is seen where and how the various

genetic theories come onto common ground and may be treated in a com-
mon manner.

(3) There is nothing in the planetesimal hypothesis that is, in itself,

necessarily prohibitive of an origin of the moon by centrifugal separation

from the earth-mass, for under it the planetary bodies may have had very

high rates of rotation. So also the mass of the planetary nucleus may
have been so large and the ingathering of the planetesimals may have

been so rapid, by hypothesis, that a molten or even a gaseous condition

could have arisen. In the case of the larger planets such a primitive state

is quite within the limits of the probabilities. The case of the earth is

debatable, but it will be of no service in this discussion to follow the

gaseous or molten alternative, as it would be essentially identical with the

preceding.

There are two other possible modes of origin of the moon, in neither of

which was the moon-mass ever a part of the earth-mass. In both of these

it is supposed that the nebular nuclei of the earth and the moon were

separate knots of the parent spiral nebula. In the first case, they are

supposed to have been companions in projection from the ancestral sun,

and to have revolved about their common center of inertia from the out-

set. In the second case, the nuclei are supposed to have been at the outset

independent knots having separate orbits about the sun but near one

another. The two are supposed to have come into their present relations

in the course of the segregation of the parent nebula. Rather grave

dynamic difficulties attend this latter view, and it need not be pursued

further here, as the rotatory problems under it are not essentially different

from those of the first and much more probable alternative.

In this preferred alternative, the nuclei of the earth and moon, at the

instant they left the ancestral sun, are supposed to have been a single mass

which was given a forward rotation by the unequal resistances on its oppo-

site sides to the expelling impulse, for which there are assignable reasons.

Just after leaving the sun, the mass is supposed to have separated as an

incident of the expulsion, but the two parts are supposed to have continued

to revolve about their common center of inertia essentially as before, i.e., as

a rigid body. After separation, however, each was subject to the rotational

effects of the accession of planetesimals, and when their rotations came to

differ from their revolution about the mutual center of inertia they were

subject to tidal reaction. The extent to which such differences of rotation

arose is an essential part of the problem under this hypothesis.

There were many possible alternatives, theoretically speaking, as to

the relative sizes of these nuclei and the distances to which they separated

under the initial impulse, but there were limitations to these. If the com-
bined masses of the two nuclei were one-eighth of the combined mass of

the present earth and moon, the moon could not have been more than

460,000 miles from the earth, but as this is farther than it is at present the
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hypothesis is not hampered by this Hmitation. If the joint mass was
larger, their initial distances may have been greater; if smaller, they
must have been less. Within the limits thus imposed by the mechanics
of the case, the nuclei may have been separated by any distance, abstractly

considered, from the maximum permitted down to surface contact.

In fact, however, the degree of nearness consistent with the present

state of things, was hmited by the consequences of growth, for the increase

of the masses of the nuclei by the ingathering of the planetesimals may
have drawn the nuclei toward one another, or even together. This was
conditioned by the moment of momentum which the accessions carried

into the nuclei, which varied widely. Separation later by centrifugal

action would be theoretically possible, under assignable conditions, but not
at all inevitable, perhaps not at all probable. If the initial distance of the

nuclei were sufficient, however, the nuclei might approach one another so

long as growth was a ruling influence. Tidal action would run concur-
rently with this and would oppose approach, under most conditions, but
during the more rapid stages of growth, the tidal effect may possibly have
been less than the effect of increasing mass. But the tidal effect would
increase as the bodies were drawn toward one another, while in the later

stages of growth the increase of the mass would decline in rate. At a certain

stage the two effects may be presumed to have balanced one another, after

which recession would begin through the preponderance of the frictional

effect of the tides. From that stage, the history would proceed along the
lines determined by the mutual interaction of the matured bodies.*

It will be seen that the range of specific assignments under this phase
of the planetesimal hypothesis has a wide amplitude, embracing the per-

missible assignments as to the original distances between the nuclei, as

to the original masses of the nuclei, and hence as to the amount of their

growth, as to their planes of revolution, their eccentricities of orbit, etc.

Under this amplitude, it is possible to suppose that the two bodies at the
cHmax of their approach reached precisely the relations which were indi-

cated by Darwin in his backward tracing of their history. On the other
hand, so far as the hypothesis itself is concerned, it is equally possible

that the approach of the bodies was much less close, and hence that their

recession under tidal influence was correspondingly less. It will be seen,

therefore, that this hypothesis has very much greater adaptabiHty than
the hypothesis of centrifugal separation, and does not equally hamper us

respecting subordinate hypotheses, such as a molten state, a viscous
interior, or a particular amount or a particular distribution of the hydro-
sphere. We are quite free to follow backward from the present observa-
tional data, when it shall be possible to do this on firm ground, with the
utmost complacency as to the results, and to accept these as indicating the
original relations, whether they imply a former state of coalescence, or of

close approach, or of more distant approach. It is possible that the earth
and moon were drawn together by their growth into just those relations

which Darwin assigned to them when, in his backward tracings of their

' The effects of contraction are here neglected.
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history, his mathematics ceased to tell what lay beyond. At the same time,

the hypothesis is hospitable to any smaller numerical values for the fric-

tional effect of the tides which revised data may be found to imply.

We are now prepared to inquire with equanimity what is the degree

of trustworthiness of the astronomic data relative to the recent time-

relations of the earth and moon.

THE EVIDENCES OF A PRESENT CHANGE OF ROTATION.

Near the middle of the last century Adams, from a study of certain

data relative to the secular acceleration of the moon's mean motion, reached

the conclusion that the earth was then losing time at the rate of 22 seconds

per century. It is proper to add, however, that Adams laid but little stress

on the actual numerical values which he used in computation, and that he

was of the opinion that the amount of tidal retardation of the earth's

rotation is quite uncertain.^ At a later date, Newcomb made a computa-
tion based on the data then available, with the result that the rate was
reduced to 8 seconds per century.^ Darwin verified the computative part

of Adams' results and added a neglected factor for the obliquity of the

ecliptic and the diurnal tide which raised the estimate to 23.4 seconds per

century. Newcomb's estimate similarly revised is 8.3 seconds.^

A reliable answer to the question whether the earth's rate of rotation

is or is not now departing from constancy, and at what rate, depends not

only upon extremely refined astronomical observations, but upon the

interpretation of these observations by means of a perfect theory of the

lunar motions. This latter has not yet been attained. In a case where the

suspected variation from constancy is so slight, and where the logical

structure to be built upon it in tracing it back through tens of millions of

years involves so great a multiplication of any error it may contain, it is

obvious that extreme accuracy and complete soundness are necessary to

trustworthy results. In the judgment of cautious astronomers, these

prerequisites are not yet attainable. It is not, therefore, too much to say

that the deductions thus far made have not a sufficiently secure obser-

vational basis to give them authoritative value. This is not to say, by any

means, that these results, based on the best data heretofore available,

do not fully justify the elaborate mathematical investigations based upon
them, for these have proved extremely illuminating and stimulative,

and were almost necessary ^s precursors to the more critical work on both

observational and theoretical lines which is necessary to give the firm

foundation so eminently to be desired.

1 Thomson and Tail's Natural Philosophy, II, p. 419; also pp. 415-520 and 503-505,
edition of 1890, and the papers of Darwin previously referred to.

* Researches on the motion of the Moon, Washington, 1873. See also Thomson and
Tait's Natural Philosophy, II, p. 418.

^ Thomson and Tait's Natural Philosophy, II, p. 505.
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DEDUCTIONS FROM THE TIDES THEMSELVES.

As astronomical observations thus leave it uncertain at what precise

rate rotation is changing at the present time, it is necessary to fall back

upon such other evidences as the tides themselves present, and after that

upon the geological evidences. Each of the three fundamental divisions

of the earth, the atmosphere, the hydrosphere, and the lithosphere, is

affected differentially by the attraction of the moon and sun, and hence

they are all, theoretically at least, affected by the tides. They furnish a

suggestive combination for study in that the first is a highly fluent elastic

body, susceptible of great and easy changes of form and volume; the second

is extremely mobile, but sensibly incompressible; while the third is solid,

at least externally, and probably rigid as a whole and possessed of effective

elasticity of form. Because of the markedly different properties of these

three components of the earth, it would seem that comparisons of their

individual responses to the differential attractions of the moon and sun

might throw special light on tidal phenomena.

THE TIDAL PHENOMENA OF THE ATMOSPHERE.

Because the atmosphere is a highly symmetrical envelope, because its

continuity is broken by no barriers, because it is extremely mobile, because

it has great elasticity of volume, and because it presents greater differences

of distance from the tide-producing bodies than the hydrosphere or the

lithosphere, it would seem that it should give a tide of declared charac-

teristics. We are, however, almost wholly without evidences of such a tide,

notwithstanding the large mass of barometrical data at command. These
data stretch over a long term of years and are refined enough to show
several small periodic oscillations, but none of these, at least none of those

commonly recognized, are timed with the moon. Atmospheric tides play

no part in the science of modern meteorology. Laplace discussed the

tides of the atmosphere briefly and theoretically and found that if the sun
and moon were in the plane of the earth's equator and if the two bodies

were in the same line and at their mean distances, the variation of the

barometer would be 0.63 mm.* Darwin, without entering upon their

discussion, expresses the opinion that they are undoubtedly very minute.^

Other methods of estimating the atmospheric tides support Laplace in

showing that the amount of the forced tides should be just within the

limits of observation, from which it is inferred that they should become
quite appreciable if they were much reinforced by the cooperation of free

waves. The chief light which their scantiness seems capable of throwing
on the general problem in hand is that which bears on the dependence of

the actual tides upon the reinforcement of the forced waves by the com-
mensurable action of the free waves that spring from them.

The best observational data relative to the rate of propagation of a

free atmospheric wave arising from a forced oscillation are those furnished

» M^canique Celeste, Pt. I, Bk. IV, and Bk. XIII, vol. 5, p. 337.
'Enc. Brit., "Tides," p. 353.
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by the great explosion of Krakatoa on August 27, 1883, as set forth by
Lieutenant-General Strachey in the monograph of the Royal Society on the

"Eruption of Krakatoa and subsequent phenomena." He says:

The observed facts clearly establish that the successive repetitions of the disturbance

at the numerous stations, after varying intervals of time, were caused by the passage

over them of an atmospheric wave or oscillation, propagated over the surface of the globe

from Krakatoa as a center, and thence expanding in a circular form, till it became a great

circle at a distance of 90° from its origin, after which it advanced, gradually contracting

again, to a node at the antipodes of Krakatoa; whence it was reflected or reproduced,

traveling backwards again to Krakatoa, from which it once more returned in its original

direction; and in this manner its repetition was observed not fewer than seven times at

many of the stations, four passages having been those of the wave traveling from Kra-
katoa, and three those of the wave traveling from its antipodes, subsequently to which

its traces were lost (p. 63).

The velocities of propagation of these waves were found to vary from

674 to 726 miles per hour—somewhat below the normal rate of sound at the

surface of the earth, which is 757 miles per hour at 10° C. and 780 miles at

22° C. The average temperature of the air at its base is 15° C. to 17° C,
from which the temperature declines with ascent, as does also the density.

The mean time occupied by the Krakatoan waves in making a first

circuit of the earth, for the computation of which 27 stations were avail-

able, was 36 hours and 24 minutes, the angular rate being 9.89° per hour;

the mean of the second circuit, for which 18 stations were available, was

36 hours and 30 minutes, the angular rate being 9.86° per hour; the mean
of the last observed circuit, for which 10 stations were available, was 37

hours and 50 minutes, the angular rate being 9.77° per hour.

Now if the forced tidal wave be analyzed into instantaneous impulses

and these be regarded as discontinuous, they may each be treated as though

they gave rise to free waves similar to those derived from the volcanic

impulses of Krakatoa. If we compare the intermediate rate determined

for the free Krakatoan waves with the angular rate of the forced lunar tide,

it will appear that the latter would outrun the former at the rate of about

4.6° per hour. The free wave would therefore soon begin to flatten the

surface configuration of the forced tide by extending its amphtude, and in

less than ten hours its influence would begin to be antagonistic to the

forced tide. This antagonistic influence would reach its maximum about

ten hours later, but would continue with declining force for nearly another

ten hours, beyond which, because of the relatively high viscosity of the air,

it may be regarded as negHgible. It appears therefore that the periods of

the free atmospheric waves are not such as to effectively reinforce the

forced waves and hence they do not rise to appreciable value.

In addition to this there seems reason to suspect that the compressi-

biUty and the relatively high viscosity of the air may combine to cause a

portion of the atmospheric tide to take the form of an elastic wave rather

than of a fluidal movement; that is, the tidal force may produce alternate

expansion and compression of the air such as would not be possible in

water because of its incompressibility. Such expansional and compressional

states of the atmosphere would be reheved by a prompt return to the un-

strained condition as fast as the tidal forces were in any measure withdrawn
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and this would reduce the amount of fluidal movement on which a mass-

tide depends. It is not unlikely, therefore, that some part of the scantiness

of the atmospheric tide is due to the elastic constitution of the atmosphere.

There is a semi-diurnal wave of atmospheric pressure which has its

maximum about 10 o'clock a.m. and p.m. Lord Kelvin, interpreting

this as an increase of mass corresponding to the increase of pressure,

has computed that it would accelerate the rotation of the earth about

27 seconds per century.^ If however this oscillation is merely a transient

increase of elastic pressure at the base of the atmosphere due to basal

heat, the expansional effects of which are resisted for the time by the inertia

of the air above, as seems not impossible, the wave would have no direct

accelerative effects on the earth's rotation.

THE TIDES OF THE LITHOSPHERE.

There is reason to suspect that the water-tides are in part derived from
the pulsations of the lithosphere.^ It will therefore be best to discuss

these first. Since no body is absolutely rigid, and since abundant evidence

shows that the lithosphere is appreciably yielding, there can be no theo-

retical doubt that there are tides of the lithosphere of some kind and of

some magnitude. The only vital questions therefore relate to their magni-

tudes and their specific forms.

The experimental efforts of Sir George and Horace Darwin,' of Von
Rebuer-Paschwitz,* and of Ehlert,^ resulted in detecting only slight indica-

tions of body tides, and even these indications were of somewhat doubtful

interpretation. It appears, however, that the effort of these investigators

was directed toward the detection of the general deformations of the

spheroid directly assignable to the tidal forces, and it is not clear that the

observed results are to be interpreted as equally adverse to the existence

of shorter pulsations assignable to the normal vibrations of the spheroid,

induced by the tidal strains. The nature and likelihood of such shorter

pulsations will be considered later.

So far as opinion as to the value of the lithospheric tides is entitled to

weight we can not do better than to quote the conclusions of Sir George

» Natural Philosophy, Thomson and Tait, ed. 1890, p. 418.
* It should be understood that this is merely an individual view unsupported by the

expressed opinion of any special student of the tides, so far as I know, and without recog-

nition in the hterature of the subject. It is based on the conviction that wliile the direct

rise and fall of the surface of the lithosphere in response to attraction similarly affecting

the water tends to reduce the amoimt of the water-tides, the tilting of the lithospheric

bed in which the oceans lie first on one side and then on the other in the coiirse of the
progress of the lithospheric wave must develop an inertia tide very similar to the waves
produced by the rocking of artificial basins. It is also my view that the various free pul-

sations that may arise from the forced deformations of the Hthosphere may give impulses
to the waters resting in basins on its surface and that water-waves may spring from these

quite independently of the direct attraction of the tide-producing body, though of course

indirectly dependent on it.

^ Reports to the Brit. A. A. S. on Measurement of the Limar Disturbance of Gravity,

York meeting, 1880, pp. 93-126, and Southampton meeting, 1882, pp. 95-119; also

"Tides," G. H. Darwin, 1893, pp. 108-148.
* Das Horizontalpendel, Nova Acta Leop. Carol. Akad., 1892, vol. 60, No. 1, p. 213; also

Brit. Assoc. Repts., 1893; also Ueber Horizontalpendel-Beobachtimgen in Wilhelmshaben,
Potsdam, und Puerto Orotava auf Tenerifa, Astron. Nachrichten, vol. 103, pp. 194-215.

' Horizontalpendel-Beobachtungen, Beitrage zur Geophysic, vol. 3, Pt. I, 1896.
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Darwin relative to their present magnitude, remarking by way of pre-

caution that the quotations given, separated as they are from their context
and the qualifications it carries, are liable to convey misconception of the
author's views on points other than that for which alone they are quoted
here, viz, the magnitude of the tides of the lithosphere. He says:

The chief result of this paper [on Bodily tides of viscous and semi-elastic spheroids,
and on the Ocean tides upon a yielding nucleus] may be summed up by saying that it is

strongly confirmatory of the view that the earth has a very effective rigidity. But its

chief value is that it forms a necessary first chapter to the investigation of the precession
of imperfectly elastic spheroids, which will be considered in a future paper. I shall then,

as I believe, be able to show, by an entirely different argument, that the bodily tides in the
earth are probably exceedingly small at the present time.*

And again, at the end of the later paper referred to:

The conclusion to be drawn from all these calculations is that at the present time
the bodily tides in the earth, except perhaps the fortnightly tide, must be exceedingly
small in amount; that it is utterly uncertain how much of the observed 4" of acceleration

of the moon's motion must be referred to the moon itself, and how much to the tidal fric-

tion, and accordingly that it is equally uncertain at what rate the day is at present being
lengthened.^

It has already been made clear that Darwin's inquiry involved the

assumption that in an earlier state, when the earth was more largely

molten or viscous, the body tides were much greater and more effective

than now. But if we substitute the view that the rigidity of the litho-

sphere has been nearly what it is at present through the whole history of

the earth, as is permitted by the planetesimal hypothesis, the conclusions

quoted will apply to the whole period, with such modifications as may be
required for differences of distance between the earth and moon.

The substitution of an elastico-rigid earth for a viscous one affects the

rotational influences of the tides qualitatively also. If tidal deformation

causes a movement of the molecules of the lithosphere over one another

in fluidal fashion, friction is the result, and the tide, under present condi-

tions, must have a retardational influence. If, on the other hand, the mole-

cules are merely strained elastically in their relations to one another, but
do not shift these relations as they do in fluidal motion, the strain and
the resilience from it act almost coincidently with the straining force, the

original form and relations are almost perfectly restored on relaxation,

the friction is slight, and the rotational effect will be essentially negligible.

Now, when it is considered that a tidal protuberance, at the very most, can
warp a line of molecules only in some such measure as

g q^q q^q to 15,00^0.000 /

it seems clear that the deformation lies far within the strain-limits of crys-

talline rock, and probably within the strain limits of all rigid substances

in the lithosphere. The only known substances within the outer half of

the lithosphere that probably move as fluids under tidal stress, are the

relatively trivial threads, tongues, ' or pools of lava within it, and the iso-

lated molecules or groups of molecules here and there in the free form in

the rigid rock. If we postulate an earth of such a degree of elastic rigidity

» Phil. Trans. Roy. Soc. Lond., 1879, p. 31.
' On the precession of a viscous spheroid, etc. <Phil. Trans. Roy. Soc. Lond., Pt. II,

1879 (1880), pp. 483-484,
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as seems to be required by the concurrent evidences of astronomical,

geophysical, and seismic phenomena, it seems quite inconsistent to suppose
that a brief deformation of the tidal sort can be other than a minute, highly

distributive strain, which involves no flowage motion of the molecules
upon one another, with the exceptions noted, and hence no friction of the
fiuidal type. There is a large body of geological evidence which seems to

indicate that the lithosphere is able to accumulate stresses for long periods,

which are then relieved by permanent deformations. It is difficult to

understand how an earth could be possessed of this ability, if it yielded
fluidally to such transient and moderate stresses as those of the tides of

the outer part of the lithosphere. We therefore assume with confidence

that, whatever the amount of the lithospheric tide, it is only an elastic

strain which relieves itself almost instantly on the removal of the force

which caused it and involves little friction.

It does not appear probable, therefore, that the body tides of the earth,

under this view of the earth's constitution, are an efficient agency in reduc-
ing its rotation.

This conclusion, however, even if fully accepted, does not appear to

cover the entire possibilities of the case; for, even if the primary tidal

deformation of the lithosphere has little or no rotational effect, it may
possibly give rise to pulsations in the spheroid itself which will be com-
municated to the water upon its surface and give rise to water-tides. If

the periods of these pulsations are commensurate with those of the water-
bodies arising from the direct attraction of the moon and sun, they may add
something to these by sympathetic action, even though their independent
value might be inconsiderable. This leads to an inquiry as to the natural

oscillations of the spheriod and their relations to the oscillations of the
lunar and solar tides.

THE PULSATIONS OF THE LITHOSPHERE.

It appears to be possible to reach an approximate determination of

the fundamental susceptibilities of the lithosphere to oscillations of differ-

ent classes by combining the good offices of theoretical computations and
observational inductions. The types of oscillation which need to be consid-

ered here embrace those which traverse the interior as well as the surficial

parts of the earth as distinct waves of propagation, and those oscillations

of shape which affect the form of the earth as a whole. The latter are

treated as harmonic pulsations and may spring either from the transmitted
oscillations or from differential stresses arising from variations of attraction.

The data relative to transmitted oscillations have been furnished chiefly by
seismologists; the treatment of harmonic pulsations and fundamental sus-

ceptibility to such oscillation has thus far been chiefly mathematical.
Lamb, following earher work by Kelvin, has shown that several different

species of harmonic oscillations may arise from both the longitudinal and
transverse waves transmitted through the earth.^ For a steel body of the
size of the earth, he found the period of the slowest fundamental mode of

* On the vibrations of an elastic sphere, by Horace Lamb. <Proc. Lond. Math. Soc,
vol. 13, 1882, pp. 189-212.
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oscillation which assumed the form of a harmonic spheroid of the second

order to be 78 minutes. A series of other oscillations of lesser lengths

would be developed. He found that the compressibility of the matter is

not a vital factor, for if t be the time required by a wave of distortion to

traverse the earth's diameter, and if P be the period of oscillation of shape,

then P = t 0.848 if the material is incompressible, and P = t 0.840 if

the material preserves uniconstancy. Bromwich,^ bringing into the com-

putation the efifect of gravity, found that the gravest free period of a sphe-

roid of the size, mass, and gravity of the earth, with a rigidity about that

of steel, is 55 minutes. The corresponding period, if the effect of gravity

be neglected, is 66 minutes. If the rigidity be about that of glass, the

period is 78.5 minutes if the effect of gravity be included, and 120 minutes

if gravity be neglected.

Nagaoka == has made a study of the pulsations connected with the Kra-

katoan eruptions of August 26 and 27, 1883, as recorded by the gasometer

at Batavia, 94 miles from Krakatoa, on the supposition that these pulsa-

tions were derived directly from the volcanic explosions and thus registered

their relative times. He reached the conclusion that the series of eruptions

were rhythmical with a unit-period of 67 minutes and a tendency toward

the grouping of these shorter periods into larger ones of about 200 minutes.

The former he interprets as an expression of the fundamental period of

oscillation of the earth as a spheroid. Referring to the results of Brom-

wich, he cites the coincidence of the Krakatoan periods so deduced with

the computed periods when the assumption is made that the rigidity of

the earth lies between that of steel and that of glass. Nagaoka also cites

the apparent relationship of this period to seismic phenomena, and the

apparent connection of certain of these phenomena with the Chandlerian

nutation of the pole.

The correspondences may be carried appreciably further. While exact

determinations of the velocities of seismic tremors recorded at a distance

from an earthquake are not yet available, the time required by the fore-

most waves to traverse the earth's diameter may be taken provisionally

at 22.5 minutes. These vibrations are generally interpreted by European

and American seismologists as compressional waves and as passing through

the earth along chords, or along curves of adaptation departing slightly

from chords. The second set of tremors, generally interpreted as distor-

tional, require about 50 per cent longer for chords up to 140°, and perhaps

up to 180°, which would make their diametrical period about 33.75 min-

utes. For the chords between 140° and 160°, and perhaps up to 180°,

Oldham inferred a longer period from the available observations, which

are, however, thus far not sufficiently numerous for positive conclusions.

These problematical vibrations may be directly transmitted or may be

reflections. The period deduced for them is approximately double that of

the compressional waves. The foremost large seismic waves, which have

approximately a uniform velocity and which are interpreted as following

» On the influence of gravity on elastic waves, and in particular on the vibrations of

an elastic globe, by T. J. A. Bromwich. <Proc. Lond. Math. Soc, XXX, 1899.

2 Nature, May 25, 1907, pp. 89-91.
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the surface of the earth, pass from the point of origin around to the anti-

podal point in about 112 to 115 minutes. The largest and strongest group
of these large waves takes about 135 minutes. Comparing these with one
another, it appears that the period of the maximum group of the large waves
is six times that of the compressional waves, the former, however, travers-

ing a semicircumference and the latter a diameter. The period of the second
set of short vibrations for most chords is one-half more than that of the
first set, while that of the problematic set is approximately twice that of

the first set. Three times the period of the compressional waves, twice

that of the best recorded distortional waves, one and a half times that of

the problematic waves, and half that of the maximum long waves are

each approximately 67.5 minutes, or essentially the same as Nagaoka's
unit-period for the Krakatoan pulsations. The gasometer record of the

Krakatoan eruptions is rather coarse and can not be read with exactness,

but, taking Nagaoka's readings, the discrepancies between the recorded
times of the twelve eruptions of August 27 and the periodic times on the

67.5 minute basis are as follows in minutes: (starting-point, first erup-

tion on August 27); -29 ( = -33.5, the half period, + 4.5); +14; -1.5;

+ 2; -t- 16; -3.5 (strong); + 3 (strong); +23.5 ( = 22.5, one-third period,

+ 1); +33.5 (half period); -1.5 (the great eruption); -9 (the final erup-

tion, strong). In the interpretation it is assumed that the eruption of

August 26 at 5^ 20™ p.m. started a series of oscillations in the lithosphere

which, at the end of the sixth period of 67.5 minutes, with a lag of 4 min-

utes, had developed sympathetic relations with the volcanic forces and
stimulated the first of the twelve eruptions that followed. These have the
degree of correspondence to the assumed period just shown. Each erup-

tion falling at or near the critical stage of the pulsation previously developed
may be supposed to have strengthened the succeeding oscillations until

the series reached a first double maximum at the seventh and eighth erup-
tions, and a second and greatest maximum at the eleventh and twelfth.

If this interpretation be justified, it may mean that the vibrations which
arose from the earthquake developed into the form and periodicity of the

fundamental vibrations of the earth-spheroid. The inadequacy of the
data, quantitatively and qualitatively, to estabhsh this positively is obvi-

ous, and it may not be safe to rest much upon it; but the following are

curiously related to it.

The moon's synodical period, 1,490.5 minutes, is 22 times 67.75. The
solar period, 1,440 minutes, is about 21.25 times 67.75. If 67.75 minutes
be taken as the normal period of spheroidal oscillation, 22 of these con-

stitute a lunar day, 314 approximately the average fortnightly excursion

of the moon north and south of the equator, and 628 the lunar month.
If a represent the northerly fortnightly excursion, and a' the southerly,

each of these equahng 314 earth-pulsation periods, they will obviously

have close commensurate relations at the periods represented by aa',

a (a-\-a'), and (a + a'y, whose numerical values are 218, 436, and 870 days,

respectively. Now, 436 days is the recent estimate of Kimura * for the

» Physico-Math. Soc. Tokyo, Pt. II, 24, pp. 357-364, 1905; Sci. Obs., July 25, 1906.
Pop. Astr., Oct. 1906, p. 469.
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larger circular element of the Chandlerian nutation of the pole, and this

period of Kimura is perhaps to be regarded as a closer approximation

than the earher estimates of 427 to 430 days. As the sums of the tides

formed when the moon is on the equator, is north of the equator, and is

south of the equator, respectively, are different from one another, partly

because of the differences in the moon's position and partly because of

differences in the configurations of the lands and seas on the two sides of

the equator, there seems to be a fair presumption that there would be a

periodic difference in the tidal influences on the rotation of the earth

about its axis corresponding to the fortnightly excursions, which would

express itself in a nutation. Now if this period of forced nutation happens

to be commensurate with the free period of the earth as a rotating body,

the effect would be cumulative. Euler long ago computed that the period

of free nutation of the axis of the earth, if it were an absolutely rigid body,

would be 305 days. Newcomb, on the assumption that the earth has the

rigidity of steel, found that the period would be increased to 447 days.

This seems to imply that the earth is somewhat more rigid than steel

and has a free nutation period somewhere about 427 to 436 days. As the

fortnightly group of tides have a cumulative period commensurate with

the latter, the nutation of 436 days may perhaps be due to the agency

of this tidal group.

In addition to this larger circular nutation, whose radius is about 15

feet, there is a smaller elliptical nutation, of about 4 feet by 14 feet, with

an annual period. This is assignable to the annual migration of the sun

north and south of the equator, which gives rise to a variety of dynamic

effects in the form of changes in the circulation of the atmosphere and of

the ocean, in the accumulation and melting of snow and of ice, etc. This

is in line with the common explanation of this minor nutation.

It is an established principle that when the normal period of oscilla-

tion of a body is less than the period of the periodic force acting on it,

the oscillations of the body will agree in phase with those of the force.

On this principle the oscillations of the lithosphere should agree in phase

with the period of the tidal forces. There should therefore be direct co-

operation between the waves of the lithosphere and the forced water-waves.

On account of this close coincidence there is an obvious difficulty in dis-

tinguishing the contributions of the lithosphere to the water-tides from

those tides which spring directly from the attraction of the tide-producing

bodies. The two should merge into a common tide, but, if the view here

entertained relative to the development of water-tides through oscillations

of the lithosphere be valid, the actual tides are to be regarded as composite.

If the tides of the lithosphere were of the fluidal type and acted in strict

coincidence with the water-tides, they would reduce the latter to the extent

of their own magnitude, as urged by Kelvin and Darwin;^ but in so far as

the pulsations of the lithosphere have the effect of a series of tiltings of the

basins on the lithospheric surface, they must impart oscillatory movements

to the water held in the basins. It is safe, on observational grounds, to

Thomson and Tait, Natural Philosophy, Pt. II, p. 439.
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aflSrra that all the oceans behave, in the main, as if they were isolated bodies

held in basins on the surface of the lithosphere. There are no effective tidal

belts stretching around the earth parallel to the equator and furnishing an
opportunity for the development of a continuous tide of the canal type.

The Southern Ocean, once regarded as such, does not prove to act in this

way, nor do the Pacific and Indian Oceans act as a common body, as

represented on the old tidal charts.* For the purposes of this discussion it

may be assumed with practical safety that the seas occupy a chain of irregu-

lar basins linked to one another in various unsystematic manners, and that

each of these bodies is subject, in its own way, to such oscillations as the

rocking of its basin may impart to it. If the tides of the lithosphere are

as small as present evidence seems to indicate, this may not be important in

its own first effects, but as a periodic action it may become, by commen-
surate accumulation, a not unimportant factor. Some of the peculiar fea-

tures of the tides seem to be much more intelligible on the supposition that

they arise from the oscillations of the lithosphere than from the direct action

of the lunar and solar attractions. The rocking action of the basins would
generate tides as freely on the eastern as on the western sides of the oceans,

whereas the attraction of the moon and sun should be accumulative toward
the western side. The tides are, however, rather higher on the eastern than
on the western sides of the oceans. We shall have occasion to return to this

significant feature.

When a strain, or a deformation, or a movement of any kind is being

impressed with increasing or declining intensity upon an elastic body which
is already in a state of constant pulsation, as is the lithosphere, the super-

imposed action becomes itself pulsatory, however continuous and uniform

the increment or decrement of the superimposed action may be in itself,

for the existing pulsation of the body alternately opposes and coincides

with the superimposed action and gives it a corresponding pulsation. The
water-tides assigned to the rocking of the containing basins may therefore

be treated as composite pulsations, each advancing and each declining

phase consisting of an undetermined number of pulsations, each of which
gives rise to its own partial free wave. These, as do all waves of what-

ever source, react on the lithosphere. Each such reacting pulsation, so

far as it takes the form of a compressional wave, passes through the litho-

sphere to the antipodes in about 22.5 minutes. It there constitutes an
impulse acting at an angular distance of about 5.6° in the rear of the corre-

sponding part of the antipodal wave, tending, in its minute degree, to

strengthen it, but with a slight increase of amplitude. The return of this

wave requires an equal period which brings it into action at about 11.2°

in the rear of the crest of the wave from which it sprang. This wave will

therefore act several times in an approximately commensurate way before

any appreciable incommensurate effects will be developed, and by that

time its force will largely be spent. In so far as the reaction of the original

wave develops an undulatory wave on the surface of the lithosphere,

this wave will reach the antipodes in about 2.25 hours and will act in a

* See Tidal charts of the U. S. Coast and Geodetic Survey, Rept. Sept. 1900, App. 7,
Outlines of Tidal Theory, Pt. IV a, RoUin A. Harris. Also Pt. IV b, 1904.
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similar way on the antipodal wave, tending to increase its amplitude and

to reduce its surface gradient. On its return it will fall so far behind the

original wave as to have appreciable incommensurate effects. The waves

of intermediate period will have corresponding intermediate effects. In

so far, therefore, as water-waves react upon the lithosphere and develop

waves in it, these, while cooperating with the original waves commensur-

ably for a time, will tend to distribute the oscillatory action into broader

amplitudes. This may be looked upon as a tendency to develop a distribu-

tive series of small pulsations in lieu of the original more concentrated one.

It is observed that small pulsations attend the incoming and outgoing of

the tides, but they have not, so far as I know, been made the subject of

sufficient study to determine whether they are systematic or irregular,

and whether their periods are at all in accord with the natural periods of

the lithosphere or not.

It is assumed in the foregoing that tidal pulsations will move through

and over the lithosphere at the same rate as seismic pulsations, which

probably does not involve any essential error, though pulsations vary some-

what in their speed, even when of analogous classes. But only the general

order of velocity is of special moment here.

According to the mathematical investigations of Lamb, there should

be a double series of modes of oscillation in the spheroid derivable from

the initial impulse, of which one set should spring from the compressional

waves and another set from the distortional waves, and these should differ

in period. Only the gravest periods have been cited above. Without

attempting to determine what these shorter periods are in the case of the

lithosphere, it is probably safe to say that such as are commensurate with

the tides of any body of water would cooperate to build these tides up and

such as are incommensurate would have the opposite influence. Now if

the tides of each body of water are essentially individual and are radically

influenced by the breadth, depth, and configuration of the water-body,

it is not improbable that different species of both series of natural pulsa-

tions may cooperate with the tides of different oceans and assist in their

perpetuation and development.

If the distribution of the strains developed by increasing or diminishing

attraction takes place at a velocity similar to seismic vibrations, even the

larger tidal movements of the lithosphere will act almost simultaneously

with the tide-generating forces, for no strains of the same phase will extend

more than 4,000 miles from the center of development of that phase. The
extreme movement from the center to the circumference of the strained

area would occupy, at the observed rate of compressional waves, less than

12 minutes. In so far, therefore, as retardation of the earth's rotation is

dependent on lag of the tide, it will be inconsequential for this class.

Relative to the tides of an elastic earth, Darwin says:

The other hypothesis considered is that the- earth is very nearly^perfectly elastic.

In this case the semi-diiirnal and diurnal tides do not lag perceptibly, and the whole of

the reaction is thrown on the fortnightly tide, and moreover there is no perceptible tidal

frictional couple about the earth's axis of rotation. From this follows;,the remarkable

conclusion that the moon may be undergoing a true secular acceleration of motion of
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something less than 3.5" i)er century, whilst the length of the day may remain almost
unaffected.

The results of these two hypotheses (a viscous spheroid and a nearly perfectly elastic

spheroid) show what fundamentally different interpretations may be put to the phenom-
enon of the secular acceleration of the moon.

Under these circumstances, I can not think that any estimate having any pretension

to accuracy can be made as to the present rate of tidal friction.'

THE TIDES OF THE HYDROSPHERE.

If the preceding views are tenable, practically the whole tidal effect

on rotation at present is concentrated in the water-tides. A part of these

are assigned to the immediate action of lunar and solar attraction and a

part to the mediate action of the lithosphere. While the lithosphere is

thus supposed to contribute to the formation of the water-tides, this sup-

plementary action is supposed to be qualified by its distributive action

as previously explained. The water-tides are thus interpreted as more
complex in origin than they have usually been thought to be. This must
doubtless be regarded as an unwelcome infliction, for even under the simpler

conception of their origin from direct attraction only, they are, in many
of their phases, beyond complete mathematical treatment. These added
complexities put them still further beyond the reach of such treatment.

But this added complexity may, after all, only help to force us on toward
the adoption of naturalistic methods. It has been becoming increasingly

clear for some time that, to secure reliable results, the tides must be studied

on a direct observational basis. The more hopeless the purely theoretical

method becomes, the more assiduously is the observational method likely to

be pursued. If theoretical methods are given precedence, they should be such
as are based on the fundamental laws of energy, which hold good irrespective

of special forms of action, however multitudinous and irresolvable.

As already remarked, the tidal water-bodies have no systematic, much
less have they any symmetric, distribution. Innumerable idealizations

as to the forms and relations of the oceans have been framed, but beyond
a few of a very general sort, they are notable principally for their undue
emphasis of amenable concurrences and their neglect of refractory non-
concurrences. The north-south extensions of both the eastern and western
continents are particularly unfavorable for the development of a con-

tinuous forward movement of the tides. The southern ocean furnishes

the only continuous east-west belt of ocean encircling the earth's axis of

rotation, but, according to the cotidal charts of the U. S. Coast and Geo-
detic Survey, this is not affected by a continuous westerly tide. The
Pacific tides move easterly from New Zealand and, by interpretation of

the scant data available, easterly all the way to the straits between South
America and Antarctica, through which they move eastward and then
northward along the Patagonian coast. The tides of the northeastern part
of the Indian Ocean move easterly into the straits between Australia and
Asia, while the Pacific tides enter on the opposite side and the two sets

» On the precession of a viscous spheroid, etc. <Phil. Trans. Roy. Soc. Lond., Ft. II,

1879 (1880), p. 529.
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meet one another within the inter-island water-bodies. There seems to

be no definite perpetuation of the Pacific tides into the Indian Ocean,

these bodies, though connected both north and south of Australia, acting

in essential independence. While the long-prevalent view that the tides

of the Atlantic and Arctic Oceans are derivatives from the Southern Ocean

still has the apparent support of observational data, there are many facts

that seem to indicate that this is only a part of the truth. A derivative

wave should gradually die down as it progresses; but, notwithstanding

the distance of the North Atlantic from the Southern Ocean, the tides are

higher there than those of the South Atlantic. A derivative wave should

be intensified in passing a constriction and should be lowered in an expanded

water-body beyond; but, notwithstanding the reduction of the Atlantic

breadth between Brazil and Sierra Leone, the tides are particularly high

in the lee of the great nose of Africa north of this constriction. The north-

easterly-trending coast of New England and the Provinces stands directly

athwart an unobstructed stretch of sea reaching back to the Southern

Ocean along the line of assumed propagation, and yet the average tide on

this coast is notably less than that on the European coast of the same lati-

tudes, though this hes behind the African projection. Comparing the tides

on the Atlantic islands—whose isolation should render them measurably

free from local influences, save those of their own basal slopes and their

harbors—it is notable that the tides on the islands of the South Atlantic

average less than half as much as those of the islands of the North Atlantic.

The tides on the islands in the far North Atlantic, and even some of those

in the borders of the Arctic Ocean, are singularly high, such as those of the

Faroes, Shetlands, Orkneys, Hebrides, Iceland, Greenland, Jan Mayen, and

some Arctic Islands of North America. On the purely derivative theory,

these tides must be supposed to have been travehng 24 hours or more

since they left the place of their origin, and those in the high north have

been subject to the damping effects of polar ice.

There are not a few anomahes that are very puzzling on the supposition

of a westward drag of the waters by the moon and sun. The northeast

coast of South America trends northwesterly and the Central American

states continue the trend in fair alignment. Over against this, the North

American coast has a southwesterly trend, meeting the projection of the

northwesterly trend of South America on the coast of Guatemala, thus

forming a wide eastward-facing angle. From this point to Cape Race,

the angular distance is 40° and from it to Cape St. Roque, 50°, while the

open eastward-facing mouth between Cape Race and Cape St. Roque is

about 50°. On the hypothesis of a westward-moving tide, cumulative

toward the west, we should expect high tides in the Antilles, the Caribbean

Sea, and the Gulf of Mexico. If it is thought that the last two bodies are

protected from this high tide by the Antilles, the tides on the eastern side

of the Antilles should be markedly high. The record does not show this.

The tides on the African and European coasts opposite are notably higher

than those which might be supposed to be unusually concentrated within

this angle. As bearing on any supposed protection of the Gulf of Mexico

and the Caribbean Sea by the Antilles, a comparison may be made with
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Hudson Bay, which is far more land-locked and is in a much higher latitude

and much farther from the assigned source of derivation. Singularly-

enough, the tides in Hudson Bay are several times as high as those of the

Mexican Gulf and the Caribbean Sea.

If it be objected that the North Atlantic is too narrow and too peculiar

in its relations to give these singular features much weight, a similar Hne

of inspection may be apphed to the Pacific, whose breadth and equatorial

position make it preeminently favorable for a westward accumulation of

the tide. From the mass of data now made available by Harris's compila-

tions and harmonic reductions, it appears that the tides on the eastern

side of the Pacific as recorded on the American coasts are notably stronger

than the average tides on the Asiatic coasts. A comparison of the tidal

heights on the Pacific islands, though the data are inadequate, also fails to

show a concentration on the western side.

On the old cotidal charts, and more definitely on the new ones of Harris

(fig. 3), it appears that the dominant tide of the Pacific originates in a

singular loop near the Galapagos Islands, off the coast of South America,

from which, on one side, a wave moves easterly and southeasterly to the

South American coast in strong force, then down it to the extremity of

the continent, where, according to Harris, it rounds Cape Horn and moves

up the eastern coast of Patagonia to about the mouth of the Rio de la

Plata. On the other side of the Galapagos loop, a wave moves north-

westerly along the North American coast, and then westerly toward the

Asiatic coast. In the heart of the Pacific, Harris locates three amphi-

dromic centers of practically no tide (fig. 3). While these are not directly

based on observations, they are believed by this industrious and original

student of the tides to be in accord with the data derivable from the observed

tides of the central Pacific Islands. This singular dispersion of the Pacific

tides from the vicinity of the Galapagos Islands near the eastern border

of the great ocean, as shown on the old charts, suggested to me, perhaps

a decade ago, that the water-tides might be largely derived from the litho-

sphere rather than directly from the attraction of the moon and sun on the

water itself. The rocking of the basins, first by a lift on the east side and

later by a lift on the west, under the progressive influence of the tide-

producing body, seemed to me more compatible with this behavior of the

tides than direct attraction on the water itself, which I supposed should be

less effective on the east side than on the west. The greater strength of

the tides on the east side of the Atlantic also strengthens the impression

that, whether this suggestion of derivation from the pulsations of the

lithosphere be of any value or not, the actual evolution of the tides involves

much more than the simple upward pull and westward drag of the waters

by the moon and sun.

The recent theory advanced by Harris,^ that the tides are largely due

to the cumulative agency of stationary oscillations in such segments of

the oceans as may act commensurately with the tidal forces, goes far to

relieve the foregoing and similar features of the tides of their seeming

» "Outlines of tidal theory," Rollin A. Harris, Rep. U. S. Coast and Geodetic Surv.

1900, app. 7, pp. 535-699.
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incompatibility with the theory of direct attractional action on the water

itself; indeed, the concrete features of Harris's theory seem to have been

developed largely by a study of these remarkable features, and to be an
attempt to give them a dynamical expression in terms of the direct-action

hypothesis. Whatever shall be the final judgment regarding particular

aspects of this theory, whose author claims for it only a partial explana-

tion of the tides, it seems eminently probable that commensurate oscilla-

tion is a vital factor in building up the waves of the actual tides. The
attempt to work out a concrete theory of the tides from their specific phe-

nomena is greatly to be commended, for by concrete application alone are

the proximate sources of the tides likely to be determined. This may be

said without derogation of the value of the more general theories.

Concerning the insufficiency of simple attraction without sympathetic

intensification to explain the actual tides, Harris says:

In approaching the question of the actual causes of the tides, upon which so much
labor has been expended and concerning which so much has been written, one may well

surmise that the subject does not admit of accurate or complete treatment. It is there-

fore natural to consider, in the first place, only those sources which would seem to account

for the dominant tides in any given region under consideration, and to postpone, perhaps

indefinitely, the consideration of those sources whose importance in the production of the

tides must be relatively small. Considering the actual distribution of land and water a

few computations upon hypothetical cases will suffice to convince one that as a rule the

ocean tides, as we know them, are so great that they can be produced only by successive

actions of the tidal forces upon oscillating systems, each having as free a period, approxi-

mately the period of the forces, and each perfect enough to preserve the general character

of its motion during several such periods were the forces to cease their action.*

In another place he says:

Unless the free period of a body of water, or of some portion of this body, approxi-

mately agrees with the period of the tidal forces, the tide in the body proper must be small,

and generally smaller than the theoretical equilibrium tide for the body in question. But
in many parts of the oceans, the tide is several times greater than that which could be

raised by the forces, even if we could suppose sufficient depths and sufficiently complete

boundaries for enabUng equihbrium tides to occur. Hence regions the dimensions of

which approach critical values must exist in the oceans and account for the principal tides.

That stationary oscillations of unexpectedly large amplitude exist in the oceans there

is abundant evidence. In fact, a glance at the charts will show regions of large ranges

over each of which the time of the tide varies but little. As a nodal line is approached the

range diminishes, and the time of the tide changes rapidly in a comparatively short distance.

Moreover the dimensions of the oceans are such that areas having nearly critical lengths

can be readily discovered; these respond well to the forces, and their tides must be the

ruling semi-diurnal tides of the ocean.^

Harris has attempted to detect those portions of the oceans whose

lengths, depths, and relations make them susceptible to the development

of free oscillations whose periods are sufficiently near to the periods of the

tidal forces, or to some simple fraction of them, to permit cooperation in

building up effective stationary systems of oscillations. Of the major

order, he finds a northern and a southern system in the Indian Ocean, a

South Atlantic system, a North Atlantic system, and two systems in the

Pacific, as well as a large number of systems of the minor order. Diagrams

and details of the main systems are given in the original paper.

* Loc. cit., p. 624. ' Nature, Feb. 22, 1906, p. 388.



From Coast and Geodetic Survey Report, ier04

Fig. 3. Cotidal lines for the World.





DEDUCTIONS FROM THE TIDES. 35

Harris does not claim that the demonstration of these is complete

or final, and he recognizes that much additional data will be required for

a full verification of the postulated systems and for completing the full

category of systems, but he believes that those announced correspond

fairly well with existing knowledge. Question has been raised as to whether
the phases of oscillation which he assigns to his systems are such as would
naturally arise from the forced waves. Question has also been raised as

to the adaptability of the oceanic segments to oscillate as postulated.'

Harris contributes a new map of cotidal lines for the world (fig. 3) in which
interpretation is conveniently combined with the observed data which
are also given separately in tables and in sectional charts. By comparison
of this cotidal map with previous charts, it will be seen that Harris's inter-

pretation departs rather markedly from that implied by the previous

cotidal charts.

A significant feature of Harris's cotidal map is its amphidromic nodes,

centers of little or no tide about which the tidal wave swings in the course

of the twelve-lunar-hour period. Three of these amphidromic points are

located in the Pacific, one in the North Atlantic, and one in the Indian

Ocean (fig. 3). These points are associated with nodal lines that separate

the oscillating sections of the systems to which they are assigned. That
there should be such nodes of little or no tide in the heart of the great

oceans, where under the familiar mode of interpretation the tidal waves
should have their freest sweep and greatest strength, well expresses the

extent of Harris's interpretational departure.

It appears then that, under the broad mantle of the postulate that the

tides are due to the attractions of the sun and moon, there are three special

or proximate views as to the immediate origin of the actual tides: (1) the

direct attraction of the tide-producing bodies on the water; (2) the effect

of stationary oscillations promoted by such direct attraction; and (3) the

to-and-fro tilting of the rock basins in which the water-bodies rest by
the tides of the lithosphere. The older view has always recognized the
supplementary effect of the natural oscillations of the water-bodies, but it

has never given them a prominent place nor quite that distinctive form
which has been assigned them by Harris. Since the cooperation of oscilla-

tions is independent of their source, any waves that may come from the

lithosphere are as available for building up systems of stationary oscilla-

tions as are those springing from direct attraction, since they are likely to

be timed quite as well. Harris's theory, or any theory of its kind, may
therefore find as good a working basis in tides derived from the lithosphere,

so far as these go, as in those formed by direct attraction.

The vital question here is the bearing of the deductions from these three

points of view—assuming that each of them represents some truth—on
the rotational problem. Let us first consider this on the famihar assumption
that retardation is dependent on the position of the waves, assuming that

to produce retardation the wave on the moonward side must be in front

of that body pulling it forward and being itself in turn pulled backward

' Nature, Sept. 4, 1902, p. 444; Apr. 23, 1903, p. 583; Jan. 11, 1906, p. 248; Feb. 22
1906, p. 388.
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over the earth's surface (figures 1 and 2), Afterwards let us consider

the phenomena from a more radical point of view founded on the laws of

energy and the configuration of the interacting bodies.

From what has already been said, it is clear that no continuous tides

are being dragged around the earth acting as a frictional band. No single

tide moves westerly so much as one-half of the earth's circumference, and

most of the tides have a much less movement in that direction. On the

other hand, many tides move easterly and still others move northerly and

southerly. The position of these relative to the moon is various, and the

attraction of the moon upon them may be accelerative or neutral as well as

retardative, so far as instantaneous attraction while in the given positions

is concerned. A wave starting in the Southern Ocean and moving north

through the Atlantic for more than a day will run the whole gamut of

positional relations to the moon and sun, and will, considered simply as an

attached protuberance, be retardative, neutral, and accelerative in turn.

In the case of waves that move to and fro across the water-bodies in seiche-

like fashion, it is obvious that the positional relations may be various.

The most interesting cases are those of water-bodies whose periods of

oscillation are nearly commensurate with the periods of the tidal forces.

The breadth and depth of a water-body may be such that a wave started

under the moon when it passes over the eastern margin will cross to the

western side and return to the eastern just in time to fall under the moon's

next crossing of the eastern margin, and so be reinforced by every return.

In a body a little wider or a httle shallower, the return of the wave would

fall behind the moon's arrival and at its turn tend to retard the moon's

motion, while in a body a little less wide or a little deeper the turn will

come before the moon's arrival and the wave, at its turn, will tend to

accelerate the moon's motion. But if either of these waves were to be

followed through its whole course and its relations to the moon observed,

it would be found to be accelerative, retardative, and neutral at different

points.

Pursuing this line of inspection, it may be seen that the waves developed

in the basins of the lithosphere must have a wide range of periods, some

longer, many shorter, than the period of the tidal forces. Their rotatory

influence on this basis of treatment is thus extremely difficult to analyze

and evaluate, and the algebraic sum of all such influences is quite beyond

mathematical determination.

The case is even more complicated when we consider amphidromic

systems and those whose oscillations lie in lines oblique to the axis of

rotation and to the moon's course. In the case of a stationary oscillation

neither forward nor backward drag seems to be predicable as a total result,

on this basis of treatment.

When all of the multitudinous phases are considered, it is clear that

the case becomes so extremely complex that it can not be solved with any

assurance of a rehable conclusion by analyzing the rotational effects of

individual cases and summing the results. Some more basal method, so

chosen as to escape these complications and the uncertainties of their

interpretation, is required.
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Poincar^, after a mathematical treatment of the influence of the water-
tides on the earth's rotation in the endeavor to simpHfy the case, reached
the following conclusion:

L'influence des marges ocdaniennes sur la dur^e du jour est done tout k fait minime
et n'est nullement comparable k I'effet des marges dues a la viscosity et k I'^lasticit^ de la
partie solide du globe, efifet sur lequel M. Darwin a insists dans une sdrie de M^moires du
plus haut int^ret.'

A MORE RADICAL MODE OF TREATMENT.

To the foregoing method of treating the rotational effects of the tides
on the basis of the positions of the tidal protuberances and depressions,
as such, there seem to be, as previously intimated, graver infehcities than
those of mere complexity. The method appears to be defective in neglect-
ng the cooperating effects of the changes of kinetic and potential energy
that are associated with these differences in the distribution of matter.
These protuberances are not fixed masses of matter, but rather aggregates
of variations in the paths of the molecules of water in their revolutions
about the earth's axis. In the production of these protuberances and
depressions there are reciprocal increases and diminutions of the potential
and kinetic energies of the water particles involved. In analyzing the
influences of these on rotation, it will be serviceable to separate the factors
of inertia and friction—including under the generic term friction all obstruc-
tive effects growing out of the relations of one particle to another—because
the functions of these factors are contrasted, since the inertia tends to
perpetuate any given state of motion, while the friction tends to reduce the
amount of motion. There are also certain advantages in considering each
particle separately as a body in revolution about the axis of rotation.

Let therefore the lithosphere be regarded as a perfect spheroid sur-
rounded completely by an ocean of uniform depth, and let the matter of
each particle be regarded as concentrated into a point and separated from
its fellow particles by a complete vacuum, but let the collapse of the particles
be prevented by a hypothetical force taking the place of the resistance to
condensation which affects the water in nature. We shall then have an
ocean made up of mass-points which move in perfect freedom from fric-

tional and other obstructive relationships; in other words, these points
will constitute satellites of the Hthosphere which may here be regarded as
a rigid body acting as a massive point at its center. The behavior of the
mass-points may then be treated, qualifiedly, according to the principles
of celestial dynamics. In fig. 4, let E represent the earth, the circle L the
surface of the lithosphere, and the circle ABCD the ideal surface of the
hydrospheric satellites when revolving without perturbation by the moon.
Then, according to the principles of celestial mechanics, first appHed to
this class of cases by Newton,^ the orbit of a particle, p, will be a closed
curve, abed, closely resembling an ellipse, whose major axis is transverse
to a line joining the centers of E and M. The general configuration, it

will be noticed, is that of the "inverted tides." The particle p in passing

' Bulletin Astronomique, vol. 20 (1903) " Sur un Th^or^me G^n^ral Relatif aux Maries "

par M. H. Poincar^, p. 223.
^ Moulton's Celestial Mechanics, art. 156, p. 243.
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from a to & will lose velocity—and hence kinetic energy—and gain potential

energy. At the point b it will have the minimum of motion and the maxi-

mum of potential energy. From 6 to c it will fall back toward the center,

a portion of its potential energy being converted into kinetic, and its veloc-

ity being increased and reaching a second maximum at c. In the second

half of its orbit, cda, similar

exchanges of kinetic and poten-

tial energy will take place.

If p is affected by no friction

or obstruction in its course,

these exchanges of kinetic and

potential energy will be com-
pensatory and maybe continued

indefinitely without affecting

the rotation of E. The case is

that of an inner satellite or an

inner planet when all the bodies

involved are considered as rigid

bodies or massive points. But
if now friction be introduced

at any point in the orbit of p,

heat will be developed and
dissipated, and energy lost to

the system. Looked at in

detail, it would seem that the

retardation of p by friction on

E in some phases of its orbit

would be accelerative to E's

rotation, and in other portions,

retardative, for in some por-

tions p's angular motion ia

greater than E's, and in others

less, but traced out in its full

history it appears that what is

seemingly accelerative in one

phase is retardative in another

and that the ulterior effect is

precisely measured by the loss

of mechanical energy by con-

version into radiant energy and
dissipation. For example, fric-

tion between p and the normal
periphery of E as represented

by A BCD, at or in the vicinity of c, will be accelerative in its immediate

phase because p in this part of its orbit is moving faster than the contact

portion of E, but the retardation of p in this portion will reduce the rise

of p in the section at and near d which is retardative in its immediate

phase because in this position p is moving more slowly than the normal
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periphery ^5CZ). These would be precisely compensatory—outside action
neglected—if there were no loss of energy by dissipation. This loss reduces
the mechanical action of the system by precisely the mechanical equivalent
of the heat lost.

In the actual system the distribution of the loss of energy is necessary
to a complete solution. When the earth-moon tides alone are considered,
it is clear that the lost energy must come either from the rotation of the
earth or the revolution of the moon, or from both partitively. Now the
moment of momentum of the system must remain constant and the distri-
bution of the loss of energy must be such as to meet this requirement.
Just what this distribution must be in a given case depends on the con-
figuration of the system which then obtains, and is a question of celestial
mechanics rather than of tidal theory. For the purposes of the present
discussion it is of decisive moment to know whether the configuration of
the earth-moon system at present is such that the earth and moon may
recede with reduced rotation of the earth if the dominant phase of the tides
is what has been called retardative, or may approach with accelerated
rotation of the earth if the phase is what has been regarded as accelerative,
or whether the configuration of the earth-moon system is such that it can
move in one direction only when loss of energy by tidal friction takes place,
bearing in mind that all tides give rise to friction and dissipation of energy.
For a solution of this I appealed to Dr. Moulton, who found that, under
the present astronomic relations of the earth and moon, any loss of energy
by their interaction requires that the bodies recede from each other and
that the rotation of the earth be diminished. This he finds to be rigorous
under the laws of energy, and it seems to follow as a necessary inference
that the special phase of the tidal action which caused the loss of energy
is imnaaterial. While this determination at the time was wholly indepen-
dent, it was soon recalled that Sir George Darwin had made a similar deter-
mination so far as the dynamic relations of the earth and moon under loss
of energy are concerned. It does not appear, however, that he drew the
inference we have just drawn, for this seems to exclude any differential
effect dependent upon the positions or phases of the tides, other than such
as is expressed in the amount of friction involved, which is dependent
solely on the amount of the water-movement and not on its phase.

There are assignable configurations of the system in which a movement
in the opposite direction would take place if energy were lost by interaction.
Such a configuration would obtain if the centers of the earth and moon
were within 9,000 miles of each other or their surfaces about 4,000 miles
apart. The precise figure reached by Dr. Moulton, all computable influ-
ences being taken into account, is 9,241 miles. Dr. Lunn computed this
independently, using slightly different values for some of the factors—essen-
tially those of Darwin—and neglecting some inconsequential ones, and
found the distance 9,113 miles. From this the conclusion seems inevitable
that if, for any reason, the moon were separated from the earth within
this distance, the tidal interaction of the earth and moon would tend to
bring them together, an adverse tendency which the fission theory must
faCe in addition to those cited before.
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Relative to the question whether the lost energy, in the present con-

figuration of the earth-moon system, must come wholly from the rotation

of the earth or in part from the revolution of the moon, Dr. Moulton finds

Fig. 5.

that the loss would be derived partitively in the ratio of 27.3 from the

rotation of the earth to 1 from the revolution of the moon.^

* The eeneral relations here involved are shown grapliically by Sir George Darwin

in Thomson and Tait's Nat. Phil., II, p. 511. These are developed in much detail and with

many applications in the paper of Dr. Moulton in this series, some of the details and appU-
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Now, it being thus rigorously shown that the energy dissipated by the

reaction between the tide-producing bodies must be taken from the mechan-

ical energies possessed by the bodies, respectively, in the proportions

given, and it being further shown that the evolution must take this direc-

tion and no other, it is clear that it will be possible to determine the effect

of the water-tides on the earth's rotation if we can estimate the total

energy dissipated by the tides, for the proper proportion of this can then

be subtracted from the kinetic energy of the earth's rotation. We can of

course use only imperfect data at present, but the uncertainties of these

can be covered by allowances so as to approximate the true order of mag-

nitude, and if the value does not prove to be a critical one, the order of

magnitude may be as decisive for all geological purposes as a precise deter-

mination. If the value proves critical, the serial method may be applied

to make the results cover the whole range of uncertainty. By thus dealing

with the whole of the friction, and by applying it by means of the rigorous

laws of energy, we not only avail ourselves of a radical mode of treatment

but avoid the tangle of special interpretations and the discrepancies of tidal

theories.

Preparatory to an attempt to compute the total friction, it is worth

while to note that an altogether exaggerated impression of the friction

of the tides is inevitably conveyed by their association with wind-waves,

river-currents, sea-currents, and other water-movements. As all of these,

or nearly all of these, are the products of energy communicated to the earth

by the sun's radiation, they may be assumed to be neutral in their rota-

tional effects. If all these adventitious elements be removed in imagination,

and the hydrosphere be made to take on a perfect calm, save as affected

by the tidal forces, the picture of the frictional effects will be radically

transformed, as may be seen by simple inspection. In the mid-ocean a

water-particle will merely describe a circuit of a few feet in twelve hours,

its movement on its fellow particles which are pursuing a somewhat similar

circuit being almost imperceptibly slow; the movement on the bottom will

be very sHght. On a shore shelving at the rate of 1 foot in 50 feet, and

with a tide of 5 feet, the edge of the tide would advance 250 feet in about

6 hours, or a little over 40 feet per hour. On the exceedingly low slope

of 1 foot in 800 feet, the advance of a 5-foot tide would be only 666 feet

per hour. There are of course concentrations of motion in bays, straits,

cations of which were worked out after this was written. In the accompanying graphic

illustration by Dr. A. C. Lunn, the relations of the factors are somewhat differently

arranged. In the upper diagram, fig. 5, the line " i2 = M^" represents the angular velocity

of the rotation of the earth; the Hne, w, the angular velocity of the moon in its orbit; r, the

distance between the centers of the earth and moon; N, the relative days in the month;

X = Mj, the orbital moment of momentum of the system. In the lower diagram, E repre-

sents the total energy of the earth-moon system; Ky, the kinetic energy of the earth's

rotation.

The crossing of A and u, where the angular velocity of the earth's rotation and the

angiilar velocity of the moon's revolution are equal and they move as though a rigid body,

is somewhat over 9,000 miles from the line of reference at the left. From this point of

crossing to the left, where the distance of the centers is declining as shown by r, the total

energy is declining as shown by E in the lower diagram and loss of energy promotes move-
ment to the left. To the right of the crossing of ^ and w the centers move apart, the

total energy declines, and loss of energy promotes movement to the right.
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and other special situations, that give quite notable movements, but the

proportion of these to the whole is easily exaggerated. From a simple

inspection of this kind it may be seen that the actual movement of the

water, as distinguished from the wave-form, is of a low order and hence the

friction is relatively small.

If one were to entertain the thought that the energy of movement of

the tides arrested by the continents is a factor of much value in rotation,

it should be recalled that the arrest of the easterly moving tides is to be

set over against that of the westerly moving tides, and in the case of tides

moving obliquely to the earth's axis there are easterly components to

offset the westerly components. We have previously noted that the tides

on the eastern sides of the Atlantic and Pacific average higher than those

on the western side, so that, on the face of things, the balance of influence

would, if the reasoning were fundamentally sound, favor rotational accel-

eration. But an analysis of the action shows that it results chiefly in a

return wave, and this throws the problem back upon the dissipation of energy

through friction. Some part of the energy of impact is not recovered in

the return wave either through elastic resilience or the increased head which

actuates the tidal ebb, but if the return wave is computed as though it were

equal to the advance wave the loss will be covered.

Hough has made an important contribution to the frictional phase of

the tidal problem by an investigation of the influence of viscosity on tidal

waves and currents,^ in which he included stationary oscillations as well

as progressive waves. He considered separately the tides whose wave-

lengths are large in comparison with the depth of the water-body and

those in which the wave-lengths are small. If attention were confined to

the main tidal phenomena, it might be thought that the wave-lengths

small in comparison with the depth of water would have no representatives

in tidal action, since the greatest depths of the sea are small compared with

the ampHtude of typical tidal waves, but, on consideration, it is apparent

that these waves of great ampHtude, by their various interactions upon

one another, by the modifications which they suffer in their approaches

to the shores, their arrests and their retreats, as also by their multitudinous

interactions with wind-waves, sea-currents, etc., give rise to an indefinite

number of waves of lesser ampHtude, and that the length of these second-

aries may be short compared with the oceanic depths. Hough did not

consider the special effects of the irregularities of coasts and some other

modifying conditions and these must be recalled in interpreting his extra-

ordinary results. When these various agencies of modification are duly

considered, it seems probable that after a very few days the original tidal

oscillations largely lose their primitive ampHtudes and take on shorter

ones, and that in this way they pass beyond observation long before they

actually die out.

Hough did not attempt to determine the complete destruction of the

tidal waves by friction, but merely the time required for their reduction

to the value represented by lie, or 0.368 of their original value. He found

» Proc. Lond. Math. Soc, vol. 28, pp. 264-288.
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that for waves of the class corresponding in his terminology to n= 0, in

waters of abj^smal depths, the modulus of decay (to 0.368 value) is 42.6

years; for the class corresponding to n = l-, 31.7 years; while for that
corresponding to n = 100, it is 4.8 years. The types, n= 0, n = l, represent
the longest and strongest waves; while those in which n has a high value
represent waves of much shorter and feebler type and hence those first

to be reduced to the limit named, as indicated by the moduli. In a case

where the depth is 200 meters—the prevailing depth on the edge of the
continental shelf—the moduli of decay for the types w = and n= 1 are 4.5

and 3.3 years, respectively. For waves of 100 meters amplitude in water
with a depth of 1 meter, the modulus of decay is about 80 minutes, bottom
friction included. If there were no friction at the bottom, the modulus of

decay would be about 2.25 years. In summation Hough says:

These results indicate how little can be the effects of viscosity upon the motion of
the sea, except possibly in usually confined waters. It seems that wherever the depth
exceeds a very moderate amount, say 100 fathoms, the rise and fall of the waters due to

the Sim and moon will not be appreciably affected by friction.'

These determinations have a significant bearing upon the question how
much of a given tidal wave is due to the force that has just been acting
upon it during the current tidal period, and how much to the residual

motion inherited from previous tides. If the motion of the waters when
once generated requires these long periods for subsidence, it is obvious
that each tidal wave may be perpetuated so as to cooperate with a long
series of forcing actions in succeeding periods, if its period is commensurate
with these. This supports the view, previously discussed, that the waves
observed in those portions of the ocean most favorable for sympathetic
accumulation are the products of a considerable series of forcing actions.

This means that, at least in such cases, the element added with each tidal

period is not measured by the actual waves observed, but by some minor
fraction of it, and hence that the tidal friction which is daily exerted on
the earth is by no means the amount necessary to reduce the observed
tidal movement to zero, but merely that which is necessary to offset the

daily increment, or its equivalent, the daily factor of decay. A wave of

the type n = in water 200 meters deep, if commensurate action were per-

fect and dissipation, by giving rise to derivative waves, were wholly absent,

would need to have less than Y^tij of its value added to it daily to maintain
its value. This must not be taken as representing an actual case, but it

appears from considerations of this kind that the total energy of motion
expressed by the tides daily is by no means a safe basis for estimating

the energy lost through them. This must be computed directly from the
water-movements under the conditions that actually affect them.

There is a check on carrying considerations of this kind too far, in the
fact that the spring and neap tides and other special tides that depend on
variations in the relations of the tide-producing bodies pass through their

climacteric phases within one or two days of the astronomical configura-

tions that give origin to them. They increase and die away with a relative

» Loc. cit., p. 287.
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promptness which shows that no tidal agency perpetuates its special effects

in a special phase for a very long period.

There is a minor qualification of Hough's results that is worthy of

passing notice. He took for his coefiicient of viscosity 0.0178, which is

one of the determinations for 0° C. The viscosity of water is much in-

fluenced by temperature. The coefficient for 17° C. is 0.0109. As this is

about the average temperature of the surface of the earth, it may be taken

as roughly, though not accurately, the average temperature of the ocean

water. Salinity increases the viscosity. While I do not know of any direct

determinations on sea-water, the determinations for normal solutions of

sodium chloride imply that the viscosity of sea-water at 17° C. would be

about 0.012, which makes Hough's results very conservative, so far as affected

by the coefficient of viscosity used. This, however, is not so much the point

as is the difference in the viscosity of the bottom and the surface water,

respectively, in the low latitudes, that of the deep water being somewhere

about 0.0195, while that of the surface in the tropics is about 0.0099,

or but little more than half as great. This difference must increase rela-

tively the motion of the water on itself and reduce that upon the bottom.

It will thus substitute a distributive movement within the water, in which

the friction is very low, for a more concentrated movement between the

film of w^ater attached to the bottom and that immediately above it, in

which the friction is relatively high. The total effect is to reduce the fric-

tional value.

Radical as are the suggestions of Hough's inquiry, a way to apply them
directly, so as to secure a numerical expression of the total value of the

friction of the tides in terms of work done, has not been found, and I have

therefore tried to shape the problem so that it could be treated by the

method of the engineer, as a given mass of water, with a given amount of

flow, in a given time, under assigned conditions. To do this it seems neces-

sary to substitute for the actual ocean an equal body of water in a more
tractable form, but subject to equivalent friction. In doing this I have

endeavored to give to the movements of the substitute ocean at least as

great friction as that of the actual ocean. For the purposes of frictional

treatment the ocean may be regarded as consisting of three portions, (a)

the shallow water between the coast and the edge of the continental shelf,

(6) the water on the slope between the edge of this shelf and deep water,

and (c) the deep portion.

(a) The coast line is taken at 120,000 miles, which is nearly double the

simple outlines of the ocean and about 5 times the earth's circumference.

The depth of water on the outer edge of the continental shelf is taken at

600 feet, the accepted depth. The water is made to deepen uniformly

from the coast to the edge of the shelf, which very greatly exaggerates its

shallowness near the shore, where the friction is relatively greatest. The
area is taken at 12,000,000 square miles, or 20 per cent more than Murray's

estimate for this part of the actual ocean.

(5) The portion b is given a width of 50 miles, a descent from 600 to

9,000 feet, and an aggregate length of 120,000 miles. This length is much
greater than the actual length of the continental margin, the excess being
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intended to include a liberal allowance for the slope-tracts of the oceanic
islands, which, however, are not subtracted from area c.

(c) The abysmal section is given a depth of only 9,000 feet and an
area 20 per cent greater than that of the deep ocean, this reduction of

depth and increase of area being intended to offset the frictional effects

of the inequalities of the actual bottom.
The mean height of the tide in the substitute ocean is taken as 4,09

feet, which is equivalent to 4.9 feet for the actual ocean. The mean range
of the tide for the 280 available stations given in Harris's table of tides

harmonically analyzed is 4.548 feet.^ As these stations are chiefly in harbors
where local concentration is felt, 4.548 feet is probably rather high for the
average range of the tide, even on the coasts, and it is certainly much too
high for the mean range over the whole ocean. In using the equivalent of

4.9 feet for the substitute tide in addition to the large allowances made
above, it would appear that the computation is amply guarded against
underestimation.

In using the foregoing guards against underestimation, which seem to
me excessive, I have been somewhat influenced by the thought that there
are derivatives from the observed tides which are not recognized and
measured as such, but whose dissipation of energy should be covered by
the computation. But, however well guarded, it is not presumed that
any results now attainable will have much value beyond indicating the
order of magnitude of the total friction. With the foregoing precautions
the results should not be seriously less than the actual fact. But, if they
are thought to be so by any one, the results can easily be multiplied accord-
ingly.

With these data, a computation was made by Dr. W. D. MacMillan
in the manner set forth by him in a following paper of this series, p. 71.

This computation, it will be observed, was made for continuous motion;
but in estimating the rate, 12.5 minutes between each lunar tide were
allowed for the turn of the tide. He finds the yearly loss of energy to be
38,918 X 10^* foot-pounds. The rotational energy of the earth, reckoned
on the assumption that the Laplacian law of density obtains, is 157 X 10"
foot-pounds. At the computed rate of loss, this amount of energy would
last 40,440,000,000 years. The length of the day would be increased one
second in about 460,000 years. In 100,000,000 years the total lengthening
of the day would be about 3.6 minutes.

If this result does not wholly misrepresent the order of value of the
friction of the water-tides, it follows that, even if the allowances for the
irregularities of the tidal water-bodies be greatly increased, and if the
formulae of the engineers for the effects of friction be multiplied several
times, and other allowances be made in the most generous manner, the
effects of the water-tides on the rate of rotation of the earth during the
known geological period are neghgible. If the friction of the body-tides
and the air-tides is also very small, there is no reason to expect to find in
the geological evidences any appreciable deformations of the earth's body
bearing the distinctive characteristics of tidal effects. On the other hand,

' Rept. Coast and Geodetic Surv., 1900, pp. 664-677.
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if the deductions which have heretofore been drawn from the older cos-

mogonic and geophysical conceptions are true, there should be geological

testimony to support them. We turn therefore to the geological evidences

with heightened interest.

THE GEOLOGICAL EVIDENCES.

Perhaps the most important of the geological lines of approach to the

rotational problem, is found in the evidences of an appropriate change

or lack of change of the earth's form. At least it is this problematic change

of form that gives the subject its obvious importance in diastrophism, to

which this discussion is a preface. If the rotation of the earth were once

appreciably faster than now, either the form of the lithosphere would have

been more oblate than it is at present, or the surface-waters would have

been accumulated at the equator by the increased centrifugal force, or

both actions would have taken place conjointly; and a change from this

configuration to the present one must have followed. If the lithosphere

has changed its form appreciably within known geological times owing to

reduction of rotation, such a change should be manifest in its structural

deformations, especially in the deformations of the early ages. If the

lithosphere has not essentially changed its form because of reduced rota-

tion, but the waters served as the accommodating factor, this, if it were

of sensible amount, should have been manifested by deposits of the kinds

that imply prevalent and deep submergence in the equatorial regions

and by erosions signifying prevalent and pronounced emergence in high

latitudes in the former ages of higher rotation, and by the reverse in the

later ages, both of which would be shown by the geological records of those

regions.

THE EVIDENCES FROM THE LITHOSPHERE.

The bearing of a possible change of form, assignable to a change of

rotation, on terrestrial diastrophism has long been recognized in some

measure by geologists, but the first attempt to reduce it to numerical terms

seems to have been that made by President Van Hise several years ago.'

He inspired Prof. C. S. Slichter to make the computations necessary to

show in numerical terms what would be the reduction in surface area if

the rotation were changed to the degree postulated in Darwin's interpre-

tation of the past history of the earth and moon. It was thought by

him sufiicient to base the computations on the convenient hypothesis of a

homogeneous density. The change of surface area was shown to be large

and this made it clear that, if such a change of rotation has taken place, it

is an important factor in deformation. Even if the chief deformation took

place early in the history of the earth, the effects should be apparent still

in the inheritances of the regions most affected, and the record should show

them. For the purpose of a more critical study of the subject, Professor

Slichter has been kind enough to recompute for me the requisite data on

the basis of a distribution of internal density as near that of the actual

earth as our present knowledge permits. For this purpose Laplace's law

^ Van Hise, Jour. Geol., vol. 6, pp. 10-64, 1898; Slichter, ibid., vol. 6, pp. 65-68, 1898.
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of increase of internal density was taken as perhaps the best expression

of this factor and as being in fair accord with astronomical data. Pro-

fessor Slichter extended the computation to other constants of the earth

than those requisite for this inquiry and these give to his paper a value

quite independent of its application to the present problem. His paper

and table will be found on pages 61-67 of this volume.

Column 7 of this table (page 67) shows that ten periods of rotation

have been selected, ranging from 3.82 hours to the present period. Darwin's
hypothesis * leaves unassigned the precise period of rotation when separa-

tion took place, but from an inspection of the configuration of the spheroid

at the rotation-period, 3.82 hours, and of the gravity in different parts of

the spheroid at that stage, it seems safest to assume that a rotational

period less than 3.82 hours would be necessary to cause fission. It seems
best also to assume that at the 3.82-hour stage the earth was solid on the

exterior, whatever may have been its internal condition. If this shall not

seem so to any one, the arguments based upon the data of this rotational

period can easily be shifted to the numerical values of the next period of

4.03 hours, or to any of the later periods given in the table.

From column 11 it will be seen that the equatorial circumference at

the rotation-period, 3.82 hours, was 1,131 miles greater than it is at present,

while the meridional circumference was 495 miles less. In changing to

the present form, the tract immediately under the equator must have
become shorter by 1,131 miles. The tracts under the parallels adjacent to

the equator north and south would have become shorter by less amounts,
those still farther away by still less amounts, until a little beyond 30^

latitude, north and south, parallels are reached under which the crust would
have theoretically remained unchanged so far as this immediate factor is

concerned. These are the latitudes of mean radius for each stage of rota-

tion and are shown in column 9. It will be noted that these shift from
lat. 33° 20' to 35° 13' in the course of the series, but it is sufficient for our

purpose to speak of the neutral zone as lying at 35° latitude, north and south

respectively. The equatorial belt between these parallels, 70° in width
roundly speaking, would therefore, by the postulated change, have become
shorter along its central line by 1,131 miles, since the rotation-period of

3.82 hours. On its borders it would have suffered no change, and between
the borders and the central line it would have suffered a graded series of

shortenings.

That portion of the meridional circumference which lay within the

equatorial belt should have been shortened in the course of the change
from the rotation-period of 3.82 hours to that of the present, but the whole
meridional circumference should have been lengthened 495 miles. It

is obvious, therefore, that the areas north and south of the neutral zones

must have become extended meridionally 495 miles plus the amount of the

contraction in the equatorial zone, the precise value of which is unimpor-
tant here. It will be convenient to call these areas of expansion polar caps,

though they reach down to about 35° latitude. In the course of the change
named, the surface at the poles should have been raised and the curvature

' The Tides, p. 360.
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of the caps increased at all points. The extension should have been great-

est at the poles and should have died away to zero at the parallel of no

chano-e. There was therefore a climacteric stretching at the poles and a

climacteric compression at the equator.

Fig. 6 is intended to illustrate the nature of the change as seen from

a point of view above one of the poles. To keep the view as true to per-

spective as practicable, the equatorial belt is foreshortened. The excess

of area in the equatorial belt is represented by the black triangles, which

are too small on account of this foreshortening. The deficiency of area in

the polar region is represented by the white ground, which is more nearly

in true proportion.

Changes in the crust of the earth of this magnitude, or of such lesser

magnitude as would have followed a change from any of the other early

periods of rotation to the present one, could scarcely have taken place

without leaving a record of them-

selves in the form of compressional

and tensional phenomena. We
may, to be sure, suppose that the

interior of the earth has always

been sufficiently mobile, in one

form or another, to permit inter-

nal shift of material from areas of

compression to areas of tension,

and so to accommodate itself to the

progressive change of form, but

this can not reasonably be sup-

posed to have taken place in the

outer shell without having left evi-

dences of itself, for this shell must

be assumed to have been solid from

an early state and, being at the

surface, it was not under such pres-

sure as to fllow and hence must

have been deformed in the familiar

modes that characterize surface

thrust and tension respectively. It

is known from abundant geological

observation how the shell of the earth deports itself under conditions of

compression and tension resulting from forces of the kind that would arise

from the changes assigned. The data of SUchter's computations may there-

fore be interpreted by the usual methods.

The equatorial belt of the earth of the 3.82-hour rotation-period would

differ from that of the present earth to the extent of a broad swell 180

miles high. In settling down this might doubtless relieve its excess of

length in cross section by thrusting northward and southward into the

areas of tension, but as its equatorial length was 1,131 miles greater than

the present equator, it would seem that in an east-west direction the tract

must fold, crumple, and overthrust on itself after the familiar fashion of

Fio. 6.—Polar projection of earth's hemisphere
showing theoretical high-latitude tension and low-
latitude oompression involved in a change of rotation
from 3.82 houra to present rate. Figure is drawn to
true scale as seen from a point above pole, and in

consequence the equatorial tract is foreshortened.
The black triangles reduced in length by foreshorten-
ing show compression ; the white show tension in essen-
tially true proportions. The neutral line between areas
of compression and of stretching lies at 33° 20' latitude.
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folded mountains. To estimate the result comparison may be made with

estimates of the amount of crustal shortening involved in the formation

of folded mountains. It is obvious that the estimates which assign the

greatest amount of shortening to given amounts of folding are those which

would give the least mountain production to the sinking of the equatorial

belt in question and are hence the most conservative. One of the highest

estimates of the crustal shortening involved in the formation of a familiar

range of mountains, made by a competent geologist on the basis of much
personal field work, is that of Professor Albrecht Heim for the formation

of the Alps, which is 74 miles. Somewhat comparable estimates are those

of Dr. Peter Lesley for the folds of the Appalachians west of Harrisburg,

which is 40 miles, and that of Dr. G. M. Dawson for the Laramide Range
in British Columbia, which is 25 miles. In the opinion of some other geol-

ogists these estimates are too high. If therefore we apply these to the

equatorial belt the results will be relatively conservative. If we use Heim's

figure, the sinking of the equatorial belt to the assigned amount should

give 15 mountain ranges of the magnitude of the Alps standing across the

equator. They should be short ranges dying away within 35° of latitude

on either side. If we apply Lesley's estimate there should be 28 ranges of

the order of the Pennsylvanian Appalachians standing across the equator;

if the estimate of Dawson be used, there should be 45 ranges of the magni-

tude of the Laramides of British Columbia.

If we start with the 4.03-hour rotation-period instead of the 3.82-hour

period, these figures become, 13, 25, and 40, respectively; and they may
be easily reduced for later periods.

If, as an alternative, we choose to assign more mashing of the shell and
less corrugation, it will merely give us a massive equatorial ridge with less

cross-folding. If, as another alternative, we choose to assign more com-
pression into denser rock, we shall have greater resistance to subsequent

erosion and higher specific gravities to account for.

Under no tenable hypothesis, so far as I can see, can an equatorial

protuberance of 180 miles comparable to the 3.82-hour period, or of 160

miles comparable to the 4.03 period, or of 87 miles comparable to the 5.35-

hour period be assumed to have subsided to the present equatorial dimen-

sions without having left a distinct record of itself in the form of transverse

ranges of mountains, or of irregular protrusions, or of indurated terranes,

or of some combination of these or of the other modes in which exceptional

tangential stress is accustomed to express itself in the shell of the earth.

It is to be noted that, by the terms of the retardational hypothesis,

the tangential stress must have been applied constantly from the beginning

to the present time. It was indeed more rapidly applied in the earlier

stages, but some stress has been added constantly ever since. If compres-

sion to a more compact form is to be assigned at all, in any important

degree, it must be assigned to the first stages of stress, and the later pro-

trusions would be all the more enduring on account of this early induration.

Now it is for every one to examine for himself the equatorial tract to

see if it presents the character which the hypothesis requires. For myself,

I am quite unable to find it. There is not even an equatorial belt of land,
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much' less an elevated girdle accidented by cross-folds, or knots, or con-

torted protuberances; nor do I find evidences of the truncated remains of

these. Since the rotation-period of 15.63 hours, 40 miles of shortening

should have been added to all that preceded, and 15 miles of this should

have been added since the 19.77-hour period. Even if these were remote

in 5'ears, they should have served to perpetuate a phenomenon that in its

nature must have been dominant from the beginning, for it is difficult to

assign any other agency of deformation that should have overmastered

this, if it had this degree of efficiency. On the contrary, other agencies of

deformation should, according to an accepted generalization derived from

observation, have reenforced the deformation assigned to this cause, for

old lines of yielding usually determine new ones.

As a matter of fact the depressions below sea level on the line of the

equator are fully as great as the amount normal to a great circle; about

three-fourths of the equatorial zone is submerged and one-fourth emergent.

The oceans crossed are normally deep; the mountains of the tract are

scarcely normal in height or massiveness, the Andes of Ecuador being the

only conspicuous range within the equatorial tract. The mountains which

cross the equatorial tract show no special signs of limitation to it, as they

should if they were essentially dependent on the agencies involved in the

retardational hypothesis.

If we take into consideration the whole compressional belt from 35^*

north to 35° south, it is found to embrace but little more than the average

amount of land; indeed, the emergent surface within it is less, in proportion

to the submerged area, than in the region north of it, though it is more

than in the region south of it.

If we turn to the tensional areas that should, under the hypothesis of

reduced rotation, lie between 35° north and south and the poles, the inspec-

tion is unembarrassed by any doubt about the effect of the stress upon

the density of the rock, for appreciable stretching can not be assigned to

rocks, except as it expresses itself by Assuring and equivalent modes,

which leave an appropriate record. It is to be observed here again that,

while the larger part of this tension was brought to bear in the early stages,

it was, according to the hypothesis, continuous throughout the whole

history. The results naturally assignable to this progressive tension would

be a persistent Assuring and gaping radial from the poles, somewhat as

implied by fig. 6. This must have run through all geological time, except as

counteracted by some other agency. The cooling of the earth, or its shrink-

age from internal molecular change or from any similar pervasive agency,

would antagonize this, and if equal to it might prevent the actual opening

of the fissures. But, to be consistent, this shrinkage must be applied gen-

erally and such appHcation would intensify the difiiculties in the equatorial

belt in proportion as it reheved those of the polar caps. Simply to counter-

act the 495 miles of stretching required by the hypothesis in the rotational

reduction from a period of 3.82 hours to the present, leaving out of con-

sideration its special distribution, would require about 78 miles of vertical

shrinkage in the polar regions and of 1,600 miles in the equatorial belt.

But there is a special difficulty of distribution. The stretching required by
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the hypothesis of rotational reduction is concentrated toward the poles,

and hence, if tension is to be avoided in high latitudes, a very much larger

radial contraction than the amount named must be postulated.

It must also be considered whether cooHng, or any other similar con-

tractional agency that can be postulated consistently with the early states

of the earth assumed by this hypothesis, would be competent to offset the

tensional effects imposed by the change of rotation in the polar regions.

^ ^ If, to escape the difficulties arising from exceptional tension in high

latitudes, it be assumed that the whole shell of the lower latitudes crowded

toward the poles, this would involve meridional crowding and the forma-

tion of a system of folded ranges pointing to the poles, while east-and-west

ranges should be absent proportionately, and thus the effects should be

expressed in a distinctive manner. So it seems safe to conclude that, in

one way or another, the high-latitude tension should have expressed itself in

a characteristic way and, on account of its magnitude, its expression should

be declared.

In comparing the facts with the theoretical requirements it must again

be noted that the earlier formations should show the most evidence of

tension, the Archean most of all. As a matter of fact, the Archean of high

latitudes, as of low latitudes, shows abounding evidences of compression.

It was my privilege in 1894, as geologist to the Peary Auxiliary Expe-

dition, to see something of the ancient crystalHne rocks of Greenland at

latitudes as high as 77°. They bore the same evidences of crumpling,

contortion, fohation, and thrust-stress generally as are commonly shown

by the Archean rocks in lower latitudes. All descriptions of high-latitude

formations of this age are identical in dynamic characters with those of

lower latitudes, so far as my knowledge extends. The Archean terranes

of Scandinavia and Finland lie far within the area of hypothetical tension,

as do also those of Scotland and Canada, and even those of central Europe
and the northern United States. The Archean and Proterozoic rocks of

these regions bear evidences of tangential thrust of a most declared type, and

no distinction between the most ancient rocks of the high-latitude and the

low-latitude regions, in the matter of compressional characters, has, I believe,

ever been detected. The Hterature of the subject does not show any special

distribution of veins, dikes, normal faulting, and other evidences of tensional

stresses correspondent to latitude. Apparently these features are essentially

as prevalent in the equatorial belt as in the polar circles.

If the equatorial belt has been subjected from the beginning to constant

increments of tangential stress and of gravity (column 4 of Slichter's table,

page 67) while the polar regions have been concurrently subjected to incre-

ments of tension and decrements of gravity (column 5), it would seem that

volcanic action would always have found adverse conditions in the former

region and favorable ones in the latter, certainly so if pressure is adverse

to liquefaction and if tensional faulting facilitates eruption. It does not

appear, however, that volcanoes are in any appreciable degree infrequent

in the tropical zone or that they are specially frequent in high latitudes.

The prevaihng impression is that they are somewhat more abundant in

the tropics than in high latitudes, but there is little, if any, warrant for any
latitudinal discrimination.

4
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The distribution of folded mountains appears to be quite indifferent

to the latitudinal distinction which the hypothesis of rotational reduction

involves. The great Cordilleran belt of the Americas begins far within

the southern tensional area, is strong where it crosses the southern neutral

belt, is also strong in the southern half of the equatorial belt, becomes weak,

scattered, and tortuous in the northern half of this belt, attains strength

and broadens as it crosses the northern neutral zone, and reaches great

breadth and aggregate mass in the lower part of the north tensional area.

About 30° within that zone, still strong, it swings about toward the Asian

continent. The great tangled mass of mountains of central Asia lies chiefly

in the northern tensional area. According to Suess, the thrust movement
was generally from the northwest; that is, from the more highly tensional

to the less highly tensional area. The great east-westerly range of southern

Europe and Asia lies chiefly in the lower tensional and neutral zones and
only at the east passes obliquely into the equatorial belt. A thrust from the

compressional zone toward the tensional zone is indicated in the western

portion and the opposite in the eastern portion. If, neglecting the latter,

we fasten upon the former as dynamically probable under the hypothesis,

it is to be noted that, with tension increasing in the direction of the thrust,

it is not apparent whence came the resistance that was necessary to the

intricate folding and distorting of the east-west ranges. Rather should

we expect yielding in the direction of the tensional area and lateral crowd-

ing of the shell as it was pushed from the periphery toward the center of

the tensional cap, wdth short meridional ranges as the result. Without
reviewing the multitude of minor mountains, it may be sufficient to note

that the Urals, the ranges of Scandinavia and of the British Isles, the

Appalachians, and the mountains of Greenland testify to the dominance
of thrust phenomena in the northern zone of tension. Statistically con-

sidered, the facts now known give this northern zone precedence over all

others in thrust phenomena. The great Archean tracts of Canada, Green-

land, Scandinavia, and Finland carry the dominance of this thrust phenom-
ena back to the earliest known ages. Taking the facts as we now know
them, there seems to be no observational support for the compressional-

tensional distribution which the hypothesis of great tidal retardation

involves.

In the discussion thus far, agencies of compression and tension, other

than rotational, have largely been ignored for the sake of following out,

consecutively and uninterruptedly, the consequences of the hypothesis

of rotational reduction and comparing them with observed facts. It is

proper now to consider whether the intercurrence of other agencies of

deformation would mask the results of tidal retardation, if these were of

the order of magnitude implied by the fission theory of the origin of the

moon, or even the close approximation of the moon to the earth in its

early history under the planetesimal hypothesis. The existence of other

causes of crustal deformation is of course fully recognized. To bring these

under consideration in connection with the hypothetical tidal effects, it

is necessary to note first their qualitative relations and second their relative

values. y -
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Essentially all of the other assignable causes of deformation of the

major class seem to be general in their application and to affect all latitudes

practically alike. This is true of cooling, of internal redistribution of heat,

of molecular rearrangement, whether chemical, crystalline, or diffusive, of

atomic transformations and decompositions, of radioactivity and presum-
ably of igneous extravasations. Grant to these agencies whatever sep-

arate or combined effect may be their due, that effect, if it be general

and essentially indifferent to latitude, as it seems that it must be, should

be distinguishable from the effect of a superimposed agency that is pro-

nouncedly correlated with latitude, because of this peculiarity. Granted
a given amount of uniform earth shrinkage as the result of the general

agencies named, or any of them, the crustal stress arising from this in the

equatorial belt would be intensified by the addition of the stress of the same
kind arising from the retardation of the earth's rotation, while the crustal

stress which arises from these agencies in the polar regions would be propor-

tionately relieved by the tension arising there from rotational retardation.

A difference of result equal to the algebraic sum of the retardational and
general stresses should be manifest in the resulting deformations. The
conspicuousness of this difference must depend largely on the relative values

of the two classes of agencies, which is our second point of consideration.

If, on the tidal side, we take the higher deformative values given in

Slichter's table (page 67), and if, on the other side, we take estimates of

shrinkage made from a study of the foldings and faults of the earth, a
comparison may be made. Quite without thought of this application, I have
recently reviewed the data of the latter class in the endeavor to form a
reasonable estimate of the amount of shrinking which the earth has prob-
ably undergone; and, while this estimate has little claim to value in itself,

it may perhaps be taken to fairly represent the import of the present
imperfect data. It is as follows:

If one is disposed to minimize the amount of folding, the estimate may perhaps be
put roundly at 50 miles, on an entire circumference, for each of the great mountain-making
periods. If, on the other hand, one is disposed to give the estimates a generous figure so
as to put explanations to the severest test, he may perhaps fairly place the shortening at
100 miles, or even more. For the whole shortening since Cambrian times, perhaps twice
these amounts might suffice, for while there have been several mountain-making periods,
only three are perhaps entitled to be put in the first order, that at the close of the Paleo-
zoic, that at the close of the Mesozoic, and that in the late Cenozoic. The shortening in
the Proterozoic period was considerable, but is imperfectly known. The Archean rocks
suffered great compression in their own times, and probably shared in that of all later
periods, and if their shortening could be estimated closely, it might be taken as covering
the whole. Assimiing the circumferential shortening to have been 50 miles during a given
great mountain-folding period, the appropriate radial shrinkage is 8 miles. For the more
generous estimate of 100 miles, it is 16 miles. If these estimates be doubled for the whole
of the Paleozoic and later eras, the radial shortening becomes 16 and 32 miles, respectively.*

If we assign to the Proterozoic era a shrinkage equal to the Paleozoic,
Mesozoic, and Cenozoic eras combined, and to the known Archean twice as
much, the minimum and maximum estimates are 64 miles and 128 miles
of radial shrinkage, respectively, or roundly 400 and 800 miles circumfer-
ential shortening, respectively.

* Geology, vol. 1, Chamberlin and Salisbury, 1904, p. 551.
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The assigned equatorial shrinkage from reduction of rotation since the

3.82-hour rotation-period is 180 miles, which is to be compared with the

minimum 64 miles or the maximum 128 miles of the above estimate. Of

course, it must be recognized that the 180 miles covers a period preceding

the known Archean, which is not embraced in the latter figures; but if an

allowance of two-thirds be made for this, the remaining 60 miles vertical

shrinkage still bears a sufficiently large ratio to the stratigraphical estimates

to make its effects certainly discernible, when the contrasted influences

in polar and equatorial regions are brought into comparison.

The computation for maximum rotational change gives a meridional

elongation of 495 miles; the stratigraphic estimate gives a meridional

contraction of 400 and 800 miles minimum and maximum respectively.

Allowing two-thirds of the 495 miles for the period preceding the known

Archean, there remain 165 miles of elongation to reduce the effects of the

400 or 800 miles of contraction.

Combining equatorial and polar effects, the case stands 777 (400+377)

vs. 235 (400-165), on the minimum basis, and 1,177 (800 + 377) vs. 635

(800 - 165), on the maximum basis, when two-thirds of the retardation is

assigned to pre-Archean times. It would seem that differences of this order

of magnitude should be clearly manifest in the phenomena.

THE EVIDENCE FROM THE HYDROSPHERE.

If there be any doubt about the practicability of detecting the influ-

ence of any great change in the rotation of the earth by the distinctive

features of the deformation of its shell, we certainly have a very delicate

means of detecting deformations in the position of the sea-level relative

to the land. The position of the sea-level has been recorded by a series of

shallow-water and shore deposits extending from the Cambrian period to

the present, and this record was made with sufficient frequency and fidelity

to answer every purpose of an inquiry of this kind. To a much greater

extent than has usually been recognized, the known stratigraphic series

is the product of shallow water, as shown by shallow-water life and appro-

priate physical evidences. In many cases some latitude must be allowed

in the interpretation of these criteria of depth, but this can be the source

of no essential error in a problem of deformation whose units are miles

rather than feet; but, if required, a sufficient number of cases of irreproach-

able accuracy can be given, for at not a few geologic epochs there were

emergences and submergences between which some stage of the transition

marks the relations of the water surface to the land with positiveness and

exactness. If, for instance, we know that in the critical regions, whether

poleward or equatorward, a given horizon has been above the water-

level and below the water-level respectively at two successive stages, we

know that between these stages it was absolutely at the water-level.
^
By

means therefore of the successive emergences and submergences of given

horizons, the relations of the sea to the land can be determined very accu-

rately for a sufficient number of geological stages to be wholly decisive in

such a problem as that in hand, and approximately for most of the other

periods.
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If the lithosphere could be supposed to have acted under the forces of

gravity and rotation so nearly as though it were a perfect fluid that its form

would be at all times perfectly adapted in all its parts to its rate of rota-

tion, however much that may have changed, the argument here introduced

would have Httle or no force. If this assumption is made here, it must

of course be carried consistently throughout the whole range of deforma-

tive interpretation. If this is done faithfully, very grave difficulties will

be encountered, so grave that, for myself, I have found them insuperable.

It is indeed commonly thought consistent with experiments and geological

observations, to regard the lithosphere as a solid which acts rigidly toward

stresses of short period, and quasi-fluidly towards those of long period.

Under this proposition it is possible to assume that the accommodation of

the earth to a steady change of rotation might be so nearly perfect that

variations would escape detection by even so delicate a registration as

that of the sea-surface. But if this is done, it should be with the full con-

sciousness that this is not a deduction from the proposition, but merely

an assumption under it; for the general proposition that the lithosphere

will yield under stress applied for a sufficient time does not in itself carry

the conclusion that it will yield under the given stress in the given time.

A quartz crystal is under self-gravitative stress and may have also been

under terrestrial gravitative stress for eons, and yet it shows no signs of

becoming a gravitative spheroid. Mountains and continents are under

gravitative stresses and they probably yield to these, but at what rate is a

practical question of much geological importance. The postulate of quasi-

fiuidal accommodation is not a solution; it is only a broad generalization

under which a solution may be sought by specific evidence.

The shell of the earth is chiefly an aggregate of interlocking crystals

which are possessed of specific elasticities of form, and the whole aggregate

clearly has elasticity of form. If the great mass of the earth or even the

deep outer portion be similarly an elastico-rigid soHd, deformations will

only take place when the stress-differences rise to equality with the elastic

resistances, except in the limited form of strain, and to the limited degree

permitted by the individual transfer of molecules from one rigid attach-

ment to another. Deformations in this case await a certain accumula-

tion of stress-difference. As the crux of the whole deformative problem

lies largely in these basal conceptions, we may do well to turn to geological

phenomena to ascertain, if possible, whether the earth does habitually

yield concurrently with the accumulating stress-differences and thus con-

stantly accommodate itself to stress-demands, or whether stress-differences

do actually accumulate until the elastic limit is reached when deformation

proceeds with relative rapidity until an approximate equilibrium is reached.

This is but stating in dynamic terms the question of periodicity in geo-

logical deformation. On this question, a consensus of geological opinion

can not now be cited without qualification. Apparently views differ and

reserve predominates among cautious geologists. It appears to me, how-

ever, that strong evidence is steadily accumulating, from various quarters

of the globe, that there were great periods of base-leveling of essentially

world-wide prevalence, with concurrent sea-transgi-ession, separated by
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briefer periods of deformation of similar prevalence. For these it does not

appear that there will be found a consistent explanation except in the

ability of the great body of the earth to accumulate stresses to a notable

degree during the long periods of relative quiescence necessary for the base-

leveling and the sea-transgression.

It would be going beyond the proper limit of this paper to try to estab-

lish this thesis by the citation of evidence, for this would involve a review
of some large part of the great mass of stratigraphic, paleontologic, orogenic,

and physiographic data possessed by geology. Suffice it therefore to note
here that this is the one of the alternative views of the earth's deformative
methods that seems at present best supported by geologic evidence. It

is not wholly necessary to the following considerations, though it lends much
strength to them.

Let it be assumed merely that the earth-body offers some appreciable

resistance to deformation, an assumption which can scarcely be questioned,

since the irregularities in the form of the geoid imply this, even when allow-

ances are made for differences in the distribution of density. Let a limited

slackening of the earth's rotation take place. This will disturb the preced-

ing equilibrium between the centripetal and centrifugal forces and both the

body of the earth and the water on its surface will experience stress-differ-

ences which give a tendency toward a new equilibrium. This equilibrium

may be established by the subtraction of matter from the equatorial regions

and its transfer to the polar regions internally or externally. The earth-

body certainly offers some resistance to this transfer while the water on its

surface offers practically no resistance at all because it is in circulation as

the result of solar influence, and to effect the new distribution it is only

necessary that it stop where the new demands of gravity require, and in

this friction will lend its aid. The water surface may therefore be supposed
to fall in the equatorial regions and rise in the polar regions until the new
water surface of the globe conforms to the new equilibrium required.

This must relieve, in some large part at least, the stress upon the body of

the earth, for if the newly developed equilibrium required more matter

in the polar regions the water would supply it, unless it were previously

exhausted. Local stresses might remain where the land was left pro-

tuberant, but geological evidence shows that such protuberances can be

maintained for long periods by the effective rigidity of the earth, if they do
not exceed a certain measure. Such a protuberance of the equatorial land

may be treated as any other local protrusion of the earth's body. When,
therefore, in the case in hand, an equatorial mass became protuberant

above the surface of the geoid sufficiently to overcome the effective rigidity

of the part of the earth affected, the appropriate deformation would follow.

The determination of what mass is sufficient for such deformation is

qualified by the available time. Given infinite time and the requisite mass
would doubtless be relatively small in a body like the earth, even on the

hypothesis of elastic rigidity; for, even within the limit of elasticity,

deformations may take place by the transfer of molecules from one rigid

attachment to another individually. But whatever might be the results if

indefinite time were available, the practical case is one of limited time and.
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as implied above, geological evidences seem to show that stresses do accu-

mulate to certain large magnitudes before sensible deformations take place.

Meanwhile surface transfers by wind and water action are in progress.

The protuberant equatorial belt postulated must ever have been shedding

material northward and southward, mechanically and by solution, thus

building up sedimentary series in the flanking sea-borders. As the pro-

tuberant tendency was ever renewed by slackening rotation, this should

have become a perpetual process and, as we have seen, should have been

a pronounced factor, if not the dominant one, in the earth's deformation,

if the reduction in rotation was as great as the hypothesis of earth-moon

fission requires. It appears, therefore, that an annular latitudinal dis-

tribution of the sediments and of the lands derived from the sediments

should have arisen, and this should have cooperated with the tendency of

the waters to polar accumulation in giving a distinctive configuration to the

distribution of land and water. Yet, as a matter of fact, the surface con-

figuration is singularly free from latitudinal zones. There is a very rough

tendency toward a meridional arrangement, but the essential fact is that

the arrangement is irregular. The protuberances and depressions consist

of an unsymmetrical interspersion of independent triangular, quadrangular,

oval, and scarcely definable areas.

Going more into detail, and in this insisting only on the obvious general

proposition that the water-level in the equatorial zone should have tended

to a low position relative to the land and to a high position in the polar

regions, we may note that the Greenland Archean embossment not only

stands high above the water-level to-day but is singularly free from evi-

dences of submergence in the past. At various periods from the Cambrian
onwards, the water-level has stood low about its base and has risen above

and fallen below the present shore-line. Much the same may be said of

the great Archean tract of Labrador and of the region west of Hudson's

Bay, as also of that of Scandinavia and Finland. It is a remarkable fact,

in the light of the matter in hand, that the old lands which are now best

exposed, the lands that seem to have been longest out of water, and that

have been most persistently above sea-level, are more largelj'' the lands of

high latitude than of low latitude.

A candid and critical survey of the relations of land and water in high

and low latitudes alike, and in all longitudes, especially in the northern

hemisphere where best known, and where the protuberant lands furnish

the best record, seems to me to reveal a singular constancy of relations,

subject only to oscillations measured by a few thousands of feet at most,

an order of magnitude quite out of harmony with any hypothesis which,

to cite a very conservative example, requires that the equatorial tract

should have been 8 miles higher than at present when the rotation-period

of 14 hours prevailed.

If the moon were once much nearer the earth than now the tides should

have been much stronger and the littoral deposits of the early ages should

show not only greater coarseness but greater vertical range. Geologists

have not been generally convinced that the earlier sediments are different

in any such systematic way from those of later times.
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MINOR EVIDENCES.

If the earth's rotation were much more rapid than now in early times,

the gyratory component affecting the courses of the winds would have been

strengthened and probably trees would have required a corresponding

strengthening of the trunks, branches, and roots to meet this successfully.

Such provisions are not certainly detectable. In the coal-accumulating

eras trees grew to great heights without tap roots, and in some cases they

appear to have grown on accumulations of vegetal debris which could not

have furnished a very secure hold, and yet there is no evidence that they

were especially subject to overthrow. In no way is it clear that the life of

the early ages, either vegetal or animal, was adapted to atmospheric move-

ments essentially different from those of to-day.

A more rapid rotation should have caused a stronger deflection of the

streams to the right hand in the northern hemisphere and to the left in the

southern. This should have resulted in tilted aggradation planes. How-
ever, these might not now be capable of detection, even if present.

It is probable that some changes would arise from the shortness of the

day and night, but it is not clear just what these would be nor what would

be the criteria for their detection.

It seems safe to say, in summation, that no geological evidence of any

unquestionable kind, or even probable kind, is found that supports the

theoretical postulate of a former high rate of rotation of the earth.

The geological criteria are not delicate enough, however, to forbid the

belief that the rotation of the earth has changed in some minor degree

during the time over which the record extends. If the deformative effects

of such changes were small compared with those of the other diastrophic

agencies, they might be so far masked as to escape ready detection.

ACCELERATIVE AGENCIES.

There are some agencies, apparently not very potent ones, which tend

to accelerate the earth's rotation and to offset the influences of the tides.

Of these the most familiar is the shrinking of the earth. It was noted in

the review of the hypothesis of Darwin that in the initial stage the shrink-

age of the earth was made more effective rotationally than the tides of the

sun. It was of course assumed as a basis for this that the loss of heat at

that stage was quite exceptionally great. The computations of Wood-
ward ^ and others have shown that the present rotational effects of loss of

heat, assuming the correctness of current estimates, is exceedingly small.

Even if the estimates of loss of heat need to be increased, as seems probable,

such loss can not be a very efficient agency. Shrinkage from other sources,

as molecular rearrangement, atomic reconstruction, or other agencies, may
have a more considerable effect. The rotational results of the contraction

of the body of the earth from a radius of 4,160 miles to 3,960 miles, with

intervening stages, as computed by Dr. MacMillan on the assumption that

the Laplacian law of density is maintained, are as follows:

* " The effects of secular cooling and meteoric diist on the length of the terrestrial

day." <Astro. Jour., No. 502, 1901: " From this it appears safe to conclude that the length

of the day will not change, or has not changed, as the case may be, by so much as a half

eecond in the first ten million years after the initial epoch. " p. 174.
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Length of day for various lengths of earth's radius—Laplacian law of density.

~

Radius of earth
(miles).
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THE ROTATION-PERIOD OF A HETEROGENEOUS

SPHEROID.

It is a simple problem to determine the rotation-period of an ellipsoid

of revolution, if it be postulated that the density of the body is uniform,

and that the form is that assumed by a perfect liquid under like conditions

of rotation. A table of the rotation-periods of such a body having the same
volume and mean density as that of the earth, computed for various values

of the eccentricity of an elHptic meridian section, will be found on p. 327 of

Part II of Thomson and Tait's Natural Philosophy (edition of 1890). It

is the purpose of the present investigation to obtain analogous results for

an ellipsoid of variable density, assuming a law of increasing density from
surface to center approximate to that actually possessed by the present

earth. The law of density assumed in the computation is the well-known
law of Laplace:

,=QilB^ (1)

in which the symbols have the meaning given on page 64. According
to this law the internal layers or shells of equal density gradually change
from the shape of the surface to forms more and more nearly spherical
as the center of the spheroid is approached. The forms of these layers
are best expressed in the case of ellipsoids of revolution by the ellipticity

of a meridional section. This number is computed by subtracting the
length of the polar or short axis from the length of the equatorial or long
axis and dividing the result by the length of the equatorial axis.^ The
variation in the value of the ellipticities is shown by the dotted line in
fig. 7. In this diagram the polar axis is represented as divided into ten
equal parts. The elhpticities of the shells of equal density are expressed
as percentages of the ellipticity of the surface. Thus the ellipticity of the
shell that cuts the polar axis at 0.5 of the distance from the center to the
surface is equal to 85 per cent of the surface ellipticity, while the ellipticity

of the central shell is about 80 per cent of the surface ellipticity.

If we assume a surface density of 2.75 and a mean density of 5.50, the
above expression takes the form:

4.365 ao . 2.4605 a— " sm (2)a Go

The variation in density according to this law is shown graphically by
the continuous curve of fig. 7.

^ The mean axis or the polar axis is often used as the divisor. There is little difference
in the results for the small values of the ellipticity usually involved.
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An inspection of the diagram shows that the density increases quite

uniformly for a considerable distance as we pass from the surface toward

the center. We finally come to a central nucleus of nearly uniform density.

The density at the center, required by the Laplacian law, is 10.74. This

value would be modified if values different from 2.75 and 5.50 be assumed

for the surface density and mean density respectively.

10
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b-c
£ = -r— = ellipticity of any homogeneous internal shell of spheroid.

eo = ellipticity of surface of spheroid.

M = centripetal acceleration at equator of spheroid.

While the Laplacian law of density originated in an assumption of

Laplace which had little to recommend it beyond mere plausibility, the
law is now believed to be fairly close to the truth. The computed values
of the earth's precession based upon this law of density agree well with
the observed values. The law is probably quite as near to the truth as is

the measured value of the earth's mean density, which must enter as a

basal number into any formula of density we may adopt.

The plan of the investigation is substantially as follows: The attrac-

tion of the heterogeneous spheroid of given ellipticity is first found for

points on the equator and at the poles of the spheroid. These results are

substituted in Clairaut's well-known equation connecting gravity at the
pole and at the equator with the equatorial centripetal acceleration, and
hence with the rotation-period of the earth. In this manner the rotation-

period for any given ellipticity of meridional section becomes known.
Clairaut himself gave expression to formulas which give the attraction

at external points of any rotating liquid ellipsoid.* For polar and equa-
torial points these may be written as follows (referring to the preceding list

for the meaning of the symbols)

:

Equatorial i i % rdo s

attraction = a, =A~, K
-] / pda^ +A..^! pd(ah) I (3)

Polar

attraction = ap=i-.i^K-j / pda'--^^-^l pd{ah) [ (4)•^/;.(a.)}

In both formulas K is a constant whose value depends upon the units

of measure in which the various magnitudes are expressed.

These expressions assume that each stratum of density p has the
ellipticity e that would exist for the given rotation-period if all strata

were perfectly liquid. In other words, the formula is built upon the hypoth-
esis of the perfect fluidity of the spheroid. If we apply these expressions

to the present earth we assume that the rigidity of the earth is not sufficient

to withstand for geological intervals of time the stresses that would exist

if the form of its surface differed materially from that of a free liquid.

The above expressions (3) and (4) can not be integrated until we sub-
stitute for p the appropriate law of density from (1) above. Using the
notation

:

<p{o)='^ (sin qa^-qa^ cos qa^) (5)

* See "History of the theories of attraction and the figure of the earth," by I. Todhunt«r
London, 1873, vol. 1, p. 220.
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we may obtain

/ pd{ah)==ba,\e,—^)f{a,) / pda' = Z<p{a,) (6), (7)

from which we obtain

_47r
o. = ^Kfia,) (l + -|v[=.-t]) (8)

..=^K.W (l-f[.-f])
(9)

The relation between m and ^o depends upon the "degree of hetero-

geneity" of the earth: that is, it depends on the departure of the surface

and central density from the mean density. For a homogeneous earth we

may write, as is well known:

2eo =|m (10)

but for a body possessing the law of heterogeneity given by equation (2)

above, we can deduce the expression *

The change of the denominator of the fraction on the right-hand side

of the equation from 2 to 2.536 is brought about by the change of hy-

pothesis from
( Central density = 5.50

A J Mean density = 5.50

t Surface density= 5.50

to the hypothesis

r Central density= 10.74

B J Mean density = 5.50

t Surface density == 2.75

If we further assume that the mean attraction at the surface of the

earth is 982 dynes per gram of attracted matter, we may write the equa-

tions of equatorial and polar attractions in the simple form

a« = 982(l-0.1739g (12)

ap = 982(l + 0.3477£o) (13)

ilf = 982 (1.0144)^0 (14)

It is upon the numerical values here written that the results of the

following table have been obtained. The results can be checked by sub-

stituting for £ in equations (3) and (4) the expression

£=[0.09645 (a2+ a') + 0.807 l]£o (15)

which is an algebraic function approximately equivalent to the transcen-

dental relation between £ and a, within the interval with which we are

* See a "Treatise on attractions, Laplace's functions, and the figure of the earth," by-

John H. Pratt, London, 1871, p. 116.
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concerned. This expression was found in 1898 by Mr. H. C. Wolfif, then

a graduate student at the University of Wisconsin.

Investigations concerning the properties of the spheroid have usually

hypothecated an ellipsoid so nearly spherical that small error would be
introduced by neglecting the square of the ellipticity in comparison with

its first power. Such has been done in the present instance. For that

reason it is hardly possible to extend the computations to spheroids of

greater ellipticity than those given in the table. As a matter of fact, the

writer believes that he has extended the computations as far backward as

is practicable without straining the approximate formulas beyond their

limit of significance.

The Rotation-'period of a Heterogeneous Spheroid.

(1)

Polar radius
(mean radius
= unity)

.
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ON THE LOSS OF ENERGY BY FRICTION

OF THE TIDES.

In this paper the waters of the ocean will be conceived as concentrated
in a basin, rectangular in shape, the width of which will be taken as 2,860
miles and the length as 60,000 miles. The bottom will have a uniform
slope from the surface to a depth of 600 feet at 100 miles from the shore,

dropping then to a depth of 9,000 feet at a distance of 150 miles from the
shore, and then parallel to the surface out to the middle of the basin, the
opposite side having the same shape. The tide will be supposed to rise

4yt feet in 6 hours—falling at the same rate.

;
Sec. a ! Sec. 6 ! Sec. c !

• 100 mi. I SOmi. I i2aomi. I

i i

! I

„...j

Fio. 8. Cross-section of basin (showing one-half).

The rigorous determination of the motion of the water in such a basin
on the principles of hydrodynamics seems to be unattainable at the pres-
ent time. It is true that, to start with, we have the equations of motion of

a viscous incompressible liquid, but I have not succeeded in finding a solu-
tion for them with the assigned boundary conditions, and therefore am not
able to give an exact statement of the rate at which energy is dissipated.

We may, however, approach the problem through some of the formulae
of hydraulics and obtain an approximation, which, even though it be
rough, will permit us to form some idea of the order of magnitude of dissi-

pation. If we liken the ebb and flow of the tide to the flow of water in a
canal we can use the formulae of engineers for the loss of head due to fric-

tion and viscosity, and consequently the loss of energy.

Weisbach ^ gives us the following formula

:

h = e Xlength X
^"'"^^

'^'^•^' X ^^^^f
perimeter

2g area of cross-section

where h is the total fall of water in the canal necessary to maintain the flow,

f is the coefficient of friction, and g is the acceleration of gravity. We will

* Theoretical Mechanics. Translated by E. B. Coxe. 8th Amer. ed., see. 475.
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take g = 32 feet per second per second. The coefficient $ itself is dependent

upon the velocity. As a result of many experiments the following value is

assigned

:

f = 0.007409(1+^^)

where v is the mean velocity. From this formula it will be observed that

^ increases as the velocity decreases.

This formula is applicable to a canal in which the cross-section is uni-

form throughout its length. In order to adapt it to a canal of variable

cross-section and velocity an integration is necessary. Consider an element

of the canal between parallel cross-sections at distances I and l + dl from the

upper end, and put

r = velocity a = area of cross-section p = wetted perimeter

We have then, from the above formula,

dh _^ v^p

dl 2ga

or, since 2g = 64 and

this may be written

f = .007409(1 +^)
dh .007409, ,

, ,„„,,?

This expression represents the slope at the point I necessary to main-

tain the flow. The rate of fall of the water in this element of the canal is

obtained by multiplying the slope by the velocity, that is

v—ir- = T8ite of fall of the water
dl

The distance through which the water falls multiplied by its weight gives

the amount of work done expressed in foot-pounds. Consequently

E = I iw

Jl^
dl

where E is the amount of work done per unit time and w is the weight of

water in the element considered. The volume of water is equal to adl and

the weight of a cubic foot of water is approximately 62.3 pounds. Therefore

w;=62.3 adl

These values substituted in the expression for E give

„ 62.3 X.007409 , , ,
, 1non.2^ j/E= ^ / {v^ -{ .l^2Qm^) 'pdl
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Consider now a section of the basin 1 foot wide, and by means of this

formula compute the loss of energy in this strip in one second of time with
such a tide as has been supposed.

SECTION "a >f

Let us begin with section " a. " We will suppose the surface of the water
is level throughout the section. A tide of 4yt feet in 6 hours means a
constant flow throughout the section of 600 feet per hour or one-sixth

foot per second, i.e., v = J. The wetted perimeter is the bottom only,

that is p=l, and this also is constant throughout the section. We have,
therefore,

»528000/528000

^^^ 62.3X0^007409
, ,,^,+0,920,^)1,,

where E^^ is the work done in section "a", the length of the strip being
528,000 feet. Evaluating the above expression there results

E^ = 37.939 foot-pounds per second

SECTION "b"

The flow in section "a" shows that the surface sinks at the rate of

j^-g foot per second. We will suppose that the surface of section "b"
sinks at the same rate, remaining always level. If I be measured from the

beginning of the section the velocity at the distance I is given by r=—

,

when q is the volume of water flowing by the point I and a is the area of

the cross-section. Since the surface sinks ^^^ foot per second

g = 100 + ^47^ a = 600 • ^^

5280 ' 220
Therefore

1 ,, 528000 +Z
6^ 528000 + 28Z

The wetted perimeter is constant throughout the strip, so that p = l.

The length of the strip is 50 miles, or 264,000 feet. The dissipation of

energy in this strip is then

/264000

( ir 528000+? Y 0.1920r 528000+Z 1-
\

\ 6^528000 + 28d 6^ 1528000 + 280/'

•264000

J-,
oJ.o XU.007409 / I -^

I u^(j\jyj\j-ri' i , yj.xv^yjt u^ouuu-rfr i' i „

By putting Z = 264000a; this expression becomes

^^^ 62.3X0.007409X264000
, ^ ,^_^;^, +,.,52L_iX±_|- U.
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which may also be written

„ ^ 62.3 X 0.007409 X 264000
' 512X216X143

From the reduction of this expression is obtained

/ {hr+Tsr+^2.256[i+j^]'}d.

£'^ = 1.124 foot-pounds per second.

SECTION

Making the same assumptions with respect to this section that were

made with respect to section "b", we find in the formula v = --
a

«-i«°+546
« = «««»

so that

792,000 + Z

v =
9000 X 5280

As before, we take p= 1. The length of the section is 1,280 miles, or 1,280 X
5,280 feet. If now we put Z = 5280Xl280x, the expression for the lost

energy is

_ 62.3 X 0.007409 X 5280 X

1

280
""

900^X64

which reduces to

- / {(15 + 128x)« + 172.8(15-|-128x)2}da;

jBg= 142.484 foot-pounds per second

Combining these results, we have

^„= 37.939 E^ = IA24: E, = 142.484 Total, 181.547

The total work done in the entire strip is therefore 181.547 foot-pounds

per second. If the work done on the opposite shore of the basin be the

same, the total work done per linear foot of basin is 363.094 foot-pounds

per second. In a basin 60,000 miles long this would amount to 11,503 X 10^

foot-pounds per second, or 36,300 X 10" foot-pounds per year of 365i days.

The kinetic energy of the earth due to its rotation is given by the

formula rp u 2

where T is the kinetic energy, / is the moment of inertia of the earth, and

(o is its angular velocity. The moment of inertia depends upon the law of

density of the earth's interior which is not known. We will probably be

not far astray in using the Laplacian law of density, i.e.,

r*
sin m—

S = G ^
r

a

* See Tisserand, M6c. 061., 2, p. 234.
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where «S is the density at the distance r from the center, a is the earth's

radius, and
wi= 141° 40' 28" = 2.4727 G = 4.426

With the Laplacian law of density, then

^ = I ^^'
/ / r:

(^)' '^" "^ (^) '°' ^^^^^^ (^)

=|^a.
«/

=— ;ra^—J(3m^— 6) sin m— (m^— 6m) cos m]

With the same law of density the mass of the earth (M) is

M =Ga^ III f — j sin w— cos fd^d^df —

j

= 47rGa9

pa
' / — sinm — d(~)/a o \aj

= 47ra'—,[sin m—m cos m]
m^

Consequently, by the division of these two expressions,

2 r(3m^—6) sin w— (m^— 6w) cos ^"JTir 2

~3m^L sin m—m cos m J

Substituting in this the numerical value of m, there results

/ = .335 Ma}
and therefore

T = .168MaV

Taking the radius of the earth at 3,958 miles, its mean density at 5.5, and

the sidereal day as 86,164 seconds, it becomes

T = 159 X 10" foot-pounds

At the rate of loss due to tidal friction as calculated above, this amount

of energy would last 43,900x10" years. The day would be lengthened

by 1 second in about 500,000 years.
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ON CERTAIN RELATIONS AMONG THE POSSIBLE CHANGES IN THE

MOTIONS OF MUTUALLY ATTRACTING SPHERES WHEN

DISTURBED BY TIDAL INTERACTIONS.

I. INTRODUCTION.

Sir George Darwin has written a number of classical memoirs on the

subject of tidal friction which are remarkable not only for the profundity

and the thoroughness of the mathematical analysis, but also for the charm
and lucidity of the exposition of the nature of the problems treated, the

hypotheses upon which the investigations were based, and the conclusions

which were reached. Frequent references will be made to these memoirs
in this paper, and for simplicity they will be designated by numbers as

follows

:

1. On the bodily tides of viscoxis and semi-elastic spheroids, and on the ocean tides upon a

yielding nucleus. <Phil. Trans, of the Royal Soo., Part I, 1879, pp. 1-35.

2. On the precession of a viscous spheroid, and on the remote history of the earth, <Phil.
Trans., Part II, 1879, pp. 447-538.

3. On the secular changes in the^ elements of the orbit of a satellite revolving about a

tidally distorted planet. '<Phil. Trans., Part II, 1880, pp. 713-891.

4. On the tidal friction of a planet attended by several satellites, and on the evolution of

the solar system. <Phil. Trans., Part II, 1881, pp. 491-535.
5. The determination of the secular eflfects of tidal friction by a graphical method. < Pro-

ceedings of the Royal Society of London, vol. 29 (1879), pp. 168-181.

Darwin's method of treatment is to express the tide-generating poten-
tial as a sum of terms, each of which is the product of a second-order
soHd harmonic and a simple time harmonic, and then to derive the corre-

sponding surface harmonics which define the tidal deformations when the
system has assumed a condition of steady movement. The results are

adapted to viscous or elastico-viscous spheroids, the heights and lags of

the several tides being expressed in terms of the speeds of the tides and
the viscosity, or the rate of decay of elasticity of the tidally distorted body.
The effects of these tides upon the motions of the disturbed and disturbing

bodies are then derived with rare skill.

Apparently Darwin's work can be questioned, if at all, only where he
applies his analysis to the earth-moon system. Here he reaches the con-
clusion that very probably the moon once separated from the earth by
fission, and that it has been driven to its present distance by tidal friction.

In reading these conclusions we should heed his warning:*

The result at which I now arrive affords a warning that every conclusion must always
be read along with the postulates on which it is based.

' 2, p. 532, footnote.

79
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It is quite evident from Darwin's discussions that he accepts, as a general

basis for reasoning on the problems of cosmogony, the Laplacian nebular
hypothesis with its implication of a one-time fluid earth; indeed, in 2,

p. 536, line 3, and in 4, p. 530, first paragraph, he explicitly states that

he adopts this hypothesis in its main outlines. It is obvious that this

point of view might tend to give one a confidence, perhaps without his

realizing fully the postulates upon which it was based, that, even if the
spherical harmonic analysis should not be strictly applicable to a hetero-

geneous earth whose liquid parts are broken up by continental masses,

it still would be sensibly correct when applied to a fluid body such as the

earth was supposed, according to this theory, to have been in the past.

It is now known that there are very grave, and I believe fatal, objections

to the Laplacian ring theory. At any rate, one would not now make it a

postulate in a discussion involving so many and such serious complexities

as arise in the theory of tidal evolution, or allow it seriously to influence

his conclusion as to what is the most probable of the various possible

hypotheses. Darwin examined with great thoroughness the character of

the results for various conditions of viscosity and semi-elasticity, and onl}''

where he undertook to say what seemed to him the most probable of vari-

ous possible series of events was he influenced, possibly, by his preconcep-

tions as to the early condition of the earth. To illustrate the delicacy of

the discussion we shall enumerate a few of his conclusions together with the

hypotheses upon which they were based.

In 3, Part IV, and in its summary, pp. 871-876, Darwin discussed

the inclination of the moon's orbit and the obliquity of the ecliptic. Con-
sidering first the hypothesis of small viscosity and tracing back the system
until the day and month were equal, he found that, if this hypothesis is

true, the lunar orbit and the earth's equator must initially have had con-

siderable mutual inclination. "If this were necessarily the case, it would
be difficult to believe that the moon is a portion of the primeval planet

detached by rapid rotation, or by other causes." (3, p. 873.) Then taking

up the hypothesis of large viscosity and supposing that it was "large

enough," he found, tracing the system back, that when the day and month
were of equal length, then the lunar orbit was sensibly in the plane of the

earth's equator, which was inclined 11° or 12° to the plane of the ecliptic.

His final conclusion from this discussion (pp. 875-876) was that it will be

most nearly correct to suppose that the earth in the earliest times, though
plastic, possessed a high degree of stiffiiess, and that now the greater part if

not the whole of tidal friction is due to oceanic tides, and not to bodily tides,

for in this way the theory of the fission of the parent mass into two bodies

and the present inclination can be best reconciled.

In 3, Parts V and VI, the effects of tidal friction upon the eccentricity

of the lunar orbit were considered. The equations were integrated on the

hypothesis of small viscosity, and it was found that in past times the

eccentricity was much smaller than at present, nearly vanishing when the

day and month were equal. If it had been assumed that the viscosity was
very large, the eccentricity of the lunar orbit would have been the gi*eater

the farther back the system was traced. Since a large original eccentricity
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is incompatible with the fission hypothesis, it is found necessary to

conclude that, at least for a part of the earth-moon history, the viscosity

of the part of the earth distorted by tides has been small. Hence that

viscosity which best explains the inchnation of the lunar orbit causes

trouble when considering its eccentricity. Since numerical details were

not worked out in the discussion of the eccentricity for large viscosities, it

is not known to what quantitative extent the two things are antagonistic,

and it may very well be that a viscosity could be assumed which would

explain largely the inclination and not be particularly unfavorable to the

eccentricity. There were so many partial contradictions and so much

uncertainty that Darwin attempted to draw no final conclusion from this

discussion (3, p. 879).

Another question, still more critical, is the distance from the earth to

the moon when the day and month were of equal length. In 2, section 18,

neglecting part of the action of the sun, Darwin found that the day and

month were equal at 5*^ 36™, corresponding to a distance between the centers

of the earth and moon of 10,000 miles. In 3, section 22, including all the

action of the sun, he found that the initial period and distance were less.

The numerical results were not obtained, but he stated (3, section 22, p. 835)

:

It is probable that an accurate solution of oiu- problem would differ considerably from

that found in "Precession" (5'^ 36™), and the common angular velocity of the two bodies

might be very great.

In the summary of this same paper, p. 877, he said:

In section 22 it [the sun's action] is only so far considered as to show that when there

is identity of periods of revolution of the moon and earth, the angular velocity must be much

greater than that given by the solution in section 18 of "Precession."

Computations given at the end of the present paper, section 14, show

that the difference is actually unimportant.

Apparently, in order to make this fission hypothesis workable it must

be shown that if the day and month ever were equal they had such a period

that the distance from the earth to the moon was much less than 10,000 miles.

There are many places where it would be easy for a careless reader

of Darwin's work to lose the connection between the conclusions and the

hypotheses upon which they were based. For example, taking approxi-

mately that viscosity which would produce the most rapid tidal evolution,

he found ^ that 57,000,000 years ago the day was 6'' 45"" long, and that

the length of the month was 1.58 of our present days. Notwithstanding

the fact that this is quite a different thing from having proved that

the earth-moon system has actually gone through this series of changes,

undoubtedly many first-hand and more second-hand readers of Darwin's

work have supposed that this computation gives a fairly certain and

definite account of the evolution of these bodies. But it is interesting to

find in the same memoir, section 14, under the hypothesis that the observed

secular acceleration of the moon's mean motion is due entirely to tidal

friction, and also that the earth is purely viscous, the conclusion that the

length of the month is now being increased at the rate of only 2** 20" in

> 2, Section 15, Table IV, and pp. 529-531.
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100,000,000 years. Very different results were obtained by assuming that

the earth is elastico-viscous. Under this assumption in 700,000,000 years

the day will be about as long as at present, the month nearly a day shorter

than at present, and the obHquity of the ecUptic about 5° less than it is

now. The discussion of the secular acceleration of the moon was closed

with these remarks (2, p. 483, last paragraph)

:

The conclusion to be drawn from all these calculations is that, at the present time,

the bodily tides in the earth, except perhaps the fortnightly tide, must be exceedingly
small in amoimt; that it is utterly uncertain how much of the observed 4" of acceleration

of the moon's motion must be referred to the moon itself, and how much to the tidal friction,

and accordingly that it is equally uncertain at what rate the day is at present being

lengthened.

Notwithstanding these uncertainties, in the general discussion at the

end of the final paper of the series (4, pp. 532-533) Darwin states:

The previous papers were principally directed to the case of the earth and moon, and
it was there found that the primitive condition of those bodies was as follows; The earth

was rotating, with a period from two to four hours, about an axis inchned at 11° or 12° to

the normal to the ecliptic, and the moon was revolving, nearly in contact with the earth,

in a circular orbit coincident with the earth's equator, and with a periodic time only slightly

exceeding that of the earth's rotation.

Then it was proved that lunar and solar tidal friction would reduce the system from
this primitive condition down to the state which now exists by causing a retardation of

terrestrial rotation, an increase of lunar period, an increase of obliquity of ecliptic, an
increase of eccentricity of lunar orbit

It was also found that the friction of the tides raised by the earth in the moon would
explain the present motion of the moon about her axis, both as regards the identity of the

axial and orbital revolutions, and as regards the direction of her polar axis.

Thus the theory that tidal friction has been the ruling power in the evolution of the

earth and moon completely coordinates the present motions of the two bodies, and leads

us back to an initial state when the moon first had a separate existence as a satellite.

This initial configuration of the two bodies is such that we are almost compelled to

believe that the moon is a portion of the primitive earth detached by rapid rotation or

other causes.

The problem of tidal evolution is an extremely complicated one and
the uncertain factors which enter into it are very many. Darwin's treat-

ment of it as a mathematical problem was masterly and worthy in every

respect of the highest admiration. He was generally very cautious in

drawing conclusions with respect to the actual earth-moon system. The
danger lies in the ^formidable and protracted analyses coming in between

the hypotheses and the conclusions, which might lead one to suppose that

results drawn from a particular set of postulates necessarily belong to the

earth and moon, particularly if they, in a general way, coincided with his

preconceptions of cosmogony. Even though Darwin may have been with-

out fault in this respect, it is not certain that less criticrl minds, especially

if they were without the illuminating experience of finding by actual com-
putation how great changes in the results would be produced by admissible

changes in the hypotheses, would not attach undue importance to some
particular computation. There is nothing deduced from observations so

far made or from Darwin's investigations that would prevent one, if it

suited his fancy, from drawing the conclusion that the motions of the earth

and moon have been for 100,000,000 years about as they are at present.
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In questions of cosmogony, where immense intervals of time are in-

volved, the problem of tidal evolution is obviously one of great importance,
unless it shall some time be shown that it is not a sensibly efficient factor.

The two most obvious methods of determining its efficiency are by direct
attacks from the mathematical standpoint, or by comparing its certain im-
plications with as many facts given by observation as possible. The first

is mainly the method of Darwin, and he has written what will certainly
always be an extremely important chapter in the question when considered
in the broadest possible way. His results can be improved, apparently,
only by a determination of the physical properties of the earth as a whole,
and by an estimate of the loss of energy in the ocean tides. While there
is hope for the former from seismic vibrations, certain astronomical phe-
nomena, and the character of the crustal deformations as revealed by
geological studies, the results are not now so well established that they do
not need support from other sources. The second method, that of com-
paring the positive implications of the tidal theory with observed facts in
as extended a way as possible, is broadly speaking that adopted in this
paper. Since there can be no test of time-results except on the basis of
other doubtful hypotheses, and since it is impossible to draw any certain
conclusions in the questions involving the time, this variable has been
entirely eliminated from the discussion except in section 14. In a general
way it may be said that the energy of the system has been taken as the
independent variable, for it is known that under any sort of friction it

must degenerate into heat. The results are characterized by certainty
so far as they go, but as compared with Darwin's they are in most cases
much less explicit as to particulars. The discussion is mostly attached
to the fundamental equations of moment of momentum and energy. After
the work was well advanced it was found that Darwin had applied fun-
damentally the same methods to illustrate his results in a paper supple-
mentary to his main series and published in a different serial (No. 5 in the
hst previously given). The variables he used were different from those
employed here, but, though for certain purposes they may be more conve-
nient, nevertheless, for the sake of complete independence, those originally
selected have been retained.

When the discussion is based simply upon the moment of momentum
and energy equations, the number of quantities to be determined is greater
than the number of the determining equations. To attain the greatest
simplicity the general problem has been divided up into a number of
special cases covering altogether the entire field. In this way each special
problem is very easily understood and the question as a whole is much
illuminated.
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II. GENERAL EQUATIONS.

The problem treated will be that of the tidal interactions of m^ and m^,

which, in certain cases, are supposed to be disturbed by a large distant

mass S. The masses Wj and m^ will be assumed to be spherical. Then let

aj = radius of m^; 03 = radius of m^
r = distance from the center of nii to the center of Wj

-0, = ~—r = distance from m, to center of gravity of m, and m,

/),= ^—r = distance from w, to center of gravity of m. and w,

X, y, z= set of fixed axes with origin at center of gravity of m^ and m^
t = inclination of orbits of m^ and m^ to a;t/-plane

i\ = inclination of plane of equator of m^ to a^y-plane

t2= inclination of plane of equator of m^ to a;y-plane

e = eccentricity of relative orbit of w, and Wj
a = major semi-axis of relative orbit of w^ and Wj

6 = angular velocity of revolution of m^ and m^
±27t

av.d

a>, = angular velocity of rotation of w^

a>2= angular velocity of rotation of m^

Dj =—— = period of rotation of m^
,

-L.2i7t

D2 =— = period of rotation of Wj
a>2

S = & distant disturbing mass
r' = distance of S from center of gravity of lUi and mj
P' = period of revolution of S

M, M', M" = whole moment of momentum of system, exclusive of S,

about the z, x, and y-axes respectively

^ = whole energy, both kinetic and potential, of system exclu-

sive of ;S

The moment of momentum of m^ about the 2-axis is the moment of

momentum about its axis of rotation multiplied by cos i^ plus its moment
of momentum of revolution around the z-axis. The rotational moment
of momentum of Wj around an axis through its center and parallel to the

2-axis is
c-jn^aiOJi cos ij

where c^ is a constant depending upon the law of density. The corre-

sponding quantity for Wj is

02^112(120)2 cos 1*2

The moment of momentum of revolution of Wj about the 2-axis is

2

w, p,^ 6 cos i = 7

—

^, ^ ,, r^ 6 cos i
{m^-\-m2)
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and the corresponding quantity for Wj is

w, p^ d cos i = 7

—

^, ^ ,, r^ ^ cos i

Therefore the total moment of momentum about the 2-axis is

M =——-^"^d cos i-\-c,m,a,^o), cos i,-\-c^mna^o)^cos L (1)
rrii + m^ i i i i i • 2 2 2 2 2

The whole energy of the system is the kinetic energies of rotation, plus

the kinetic energies of revolution, plus the potential energy.

The kinetic energy of rotation of m^ is ^c^m^a^coi, and there is a similar

expression for the kinetic energy of rotation of m^.

The kinetic energy of revolution of m^ is

\dt / ^ ^Xnii + m^/ ^Knii + m^/ \dt /

and there is a similar expression for the kinetic energy of revolution Wz.

The potential energy of the system is ^—^, where k^ is the gravita-

tion constant. ''

Therefore the total energy is

_ . niiin- ,/,,,, m.m^ /drV k^m.m, , , , , , , .^^

^mj + Wj ^ m^ + m^Xdt J r
'21111122222 \ /

From the two-body problem we have

r^^=±fc-^(mi + W2)a(l— e^) (3)

the determination of the ambiguous sign depending upon the direction

of revolution, and

•"*'+
(i)'=*'('«'+'"')(7-i) (*)

k-J irii+ m^ (5)

By means of (3), (4), and (5) equations (1) and (2) reduce to

- +m,m2k^Ph ij—- 27zc{m,a,^ cos i^ 2Tzcim^a^ cos i^

(27r)Mm, +m3)4V^
e cost+

^^
+ -^^ (6)

^ _ —m^i7ijc^ 27tc{in itti^ 27:02171^2^

7:
~ (27z)Hmi + m2)i P^ D^ 5? ^^

the sign of P' depending upon the direction of revolution, and the signs of

Dj and Dj upon the directions of rotation of m.^ and m^ respectively.
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The units are so far arbitrary. We shall choose them so that

unit of time = mean solar day

2TiCja^ = 1

(27r)Hmi+m2)'~

Then equations (6) and (7) become

Tir Til l~,
',

• . Wli cost,
. C^fCL'A

\ Di Ci \ai/

m^ cos i^

D,

(8)

(9)

(10)

If we represent the ascending nodes of the planes of the orbit and of the

equators of m^ and wig by Q,, Qi, and 0,2 respectively, the moment of

momentum equations for the x and y-Skxes are similarly

M'=Pi-^l-e2sinisin Q rrii sin i\ sin 0>i c^ fo^zV ^2 sin ij sin ft.

D,
+ 2 /M

D,

Tir,, nx n ^ • • r^ , ^1 sinr, COS ^1 ,
Cj /a^Vm. smi, cos Q.M" = Pi Jl— 6 smt cos ^-^—^ ~ -* +-—) ^ ^ ^

(90
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III. THE LAPLACIAN LAW OF DENSITY.

In treating the rotations of such bodies as the earth it is not permissible

to regard them as homogeneous, for in the case of the earth the density

of the surface rock averages about 2.75, while the average density of the

whole earth is 5.53. If we let a represent the density of the sphere w,

the well-known expression for it suggested by Laplace is

G sin

o =
'°

(''s")

r

a

(11)

where r is the distance from the center of m, and where G and fx are con-

stants depending upon the constitution of the body. According to this

law the density of the body increases from the surface to the center, and is

finite at both the surface and the center. We shall determine G and n by
making both the surface density and the mean density agree with the

results furnished by observation.

The mass is found from the equation

/a pa

or^dr = 4;ra'G / — sin ( u—) d —=—?—[sin a— u cos u] (12)
/ a \ aj a p?

'^

Let a'^^ represent the surface density and a the mean density. Then
G and [i. are determined by the equations

a'**' = (j sin // djw2 = 3(T [sin /x— j« cos j«] (13)

The density at the center is

<7«'^ = G/X (14)

In the case of the earth a/"^ = 2.75, ai= 5.53, whence it is found from (13)

and (14) that

(? = 4.39633 /I = 2.46579 a^^''' = 10.840 (15)

In our ignorance as to the density of the surface material of the moon,
W2, we shall assume that for it //2 = ju and determine G^ from (12) so that

81.7^3= mi. We find, taking a, = 3,958.2 miles and 02= 1,081.5 miles, that

(?2= 2.6393 (16)

whence

^2 = 3.32 a2'«^ = 1.65 (T2'"^ = 6.51 (17)
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IV. MOMENT OF INERTIA FOR THE LAPLACIAN
LAW OF DENSITY.

Letting / represent the moment of inertia of the sphere m, we have

1=
I r^cos'^dm= II I o r* cos^ (p dr d(p dd (18)

Substituting the expression for (t from (11) and integrating, we find,

/ =^^[3 (fi'-2) sin /ji-fi (fi'-6) cos fx] (19)

or, making use'of (12),

J
2a'm[3 (/x^— 2) sin/i— /x(//^— 6) cosjm] ^^qn

3/j.^ sin fi—fi cos fji

Hence the values of Cj and Cj, occurring in (1), are determined by equations

of the form

^_ 2 [3(//''—2)sin/t— /f (/x''— 6)cos//] .gn
3/x^ sin pi— pi cos pi

When Wi represents the earth and m^ the moon, we find from this equation

and the value of /i given in (15) that

Ci = C2= 0.33594 (22)

instead of 0.4, the value for homogeneous spheres.



SPECIAL CASE. 89

V. SPECIAL CASE i=0 i,=0 a^=0 e=0 S =0*

This means that two bodies undisturbed by any exterior force revolve

in circles, that the radius, mass, and angular velocity of rotation of one of

them are so small that its rotational momentum and energy may be

neglected, and that the axis of rotation of the other is perpendicular to the

plane of their orbit. In this case equations (9) and (10) become, writing D
in place of D^,

(23)M =PhJ^^

E
71

1 W,
pi ' D'

(24)

We may choose the direction of revolution of the bodies as the positive

direction. Then only a positive P can have a meaning in the problem,

since a revolution in one direction can not be reversed without a collision

of the bodies. D is positive or negative according as the rotation is in the

same direction as the revolution or the opposite. Under the hypotheses

adopted M is rigorously constant. When D=+oo then P=M^; when

D = -^then P = 0: when D = lim(0-\-£) then P=-oo; when D = lim(0—e)

then P = + 00 ; when D = — cc then P = M\ Consequently the curve

defined by (23) is as given in fig. 9. The part of the figure to the right of

the P-axis belongs to the case where the rotation of m-i and revolution of

mj are in the same direction, and the part to the left where they are in

opposite directions.

,P

Fia. 0.

The slope of the curve, or the ratio of the rate of change of the period

of revolution to that of rotation, is found from (23) to be

dP / dD Sm^Pi

dt dt D'
(25)

For a similar treatment of this problem see No. 5 of Darwin's papers.
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The values of P and D must also satisfy equation (24). Starting from
any epoch, P and D must change, if at all, so that E shall decrease, for if

there is (tidal) friction in the system, some of its energy will degenerate

into heat and be dissipated.

The relations between P and E and D and E are found from (23) and

(24) to be respectively

(26)P?-2MP^

m,

^1 -^ \r'>

D^ E
Z)2 (MD-m,y 7z

(27)

In these equations P may vary only from to + oo while D may vary
from— 00 to + 00 .

The curve whose equation is (26) has two forms according as E, con-

sidered as a function of P, has a finite maximum and minimum or not.

In case there are a maximum and a minimum it has the form 7, fig. 10.

Since E can only decrease, it follows that if att=tg the period is on the part

Fig. 10.

of the curve ah it will decrease to the abscissa of the point b; if it is at b

it will permanently remain at that value; if it is between b and c it will

increase toward the value at 6; if it is at c it will remain there unless the

system suffers some exterior disturbance, when it will increase toward b

or decrease toward d according to the nature of the disturbance; if it is

between c and d it will continually decrease toward zero.

When the curve has no finite maximum and minimum it has the form

77, and then whatever may be the value of P &t t^t^ it will continually

decrease toward zero with decreasing E.

It is unnecessary to draw the curve whose equation is (27), for the

relation between the change in P and the change in D is given in (25).



SPECIAL CASE. 91

It is seen from this equation that when the rotation and revolution are

both in the same direction P and D either both increase or both decrease,

if they change at all.

The necessary condition for a maximum or a minimum of E is, from (26),

1/-»3

27t dP
P*-MP + Wi = (28)

The corresponding condition from (27) is

2;rWi dD

The only D having a physical meaning is real. Since no real negative D
satisfies this equation, it follows that when D is negative E has no finite

maximum or minimum. In this case by fig. 10, dotted curve, the period

of revolution must always decrease and the two bodies ultimately fall

together. Taking the last four terms to the right and extracting the cube

root, we have,
D*^=MD-mi

Since the roots of this equation are the same as those of (28), it follows that

when E is a maximum or minimum D = Pandthe system moves as a rigid body.

The real roots of (28) are the abscissas of the intersections of the curves

y = Pi y =MP— mi (29)

It is evident from fig. 11 that there are two, or no, intersections of

these curves.

Y

Fio. 11.

For a given m, the value of M may always be taken so great that there

will be two real roots; or, so small that there will be no real roots. The

limiting value of M, as it decreases, for which the real roots exist is that

value for which they are equal. The condition that (28) shall have equal

roots is

4p^-M = (30)
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Since this value of P must also satisfy (28) we have

whence

M = ~m,^ (31)

as the value of M for which there are two equal roots of (28). For greater

values of M (28) has two distinct real roots. The roots are the abscissas

of the points b and c, curve I, fig. 10. The smaller root corresponds to a

maximum of E, and the larger to a minimum. When the roots are equal

the curve has a point of inflection with tangent parallel to the P-axis.

We may express the rates of change of P and D in terms of the rate of

change of E by differentiating (23) and (24) and solving. We find

dP SPW dE dP _ PD^ dE

'di"~~27:iP-D) dt dt 2m,7i(P-D) dt
(32)

Consider the case first where the direction of rotation and revolution

dE
of mj are the same, i.e., when D>0. Since -^ can be different from zero

only when P%D, then when P>D both P and D must increase whatever

may be the character of the tides as determined by the physical condition

of Wi; and when P<D both P and D must decrease. When nii rotates

in the negative direction, i.e., when D<0, P must always decrease and

D always numerically increase. When P= D equation (23) becomes

-^(Pi—ilfP +mJ=0

for which, by (28), E is a. maximum or minimum.

We are supposing the orbit a circle and the axis of mj perpendicular

to this orbit. Consequently when P = D there can be no change in the

motion of the system due to the tides. Therefore the right members of

(32) must carry (P—Dy as a factor, where / > 1. The exponent / can not

be fractional for then the rate of change of P would be imaginary for P<D.
Consequently j is 2 or some greater positive integer. The velocity of the

p J)
tide with respect to the surface of w^ is , and the tidal force is pro-

portional to ^. If we assume that the friction is proportional to the height

of the tide and the first power of its velocity over the surface of Wj, and

that the loss of energy, i.e., the work done against friction, is proportional

to the square of the friction, equations (32) become

dP c,P-D
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Equations (32) are very instructive, for they prove rigorously, under

the hypotheses we have adopted in this section, that the rates of change

of both the day and the month are proportional to the rate of the loss of

energy, however it may be lost. That is, if tidal friction is now almost

exclusively in the ocean tides, as Darwin supposed,^ in so far as the earth-

moon system satisfies the hypotheses of this section it is quite immaterial

whether the energy is lost in the manner described by the spherical har-

monic analysis when applied to the viscous theory, or whether it degen-

erates after the waves have been time after time reflected from the con-

tinents and have run into narrow bays or into the high latitudes. The
relation of the tidal wave to the moon is not directly involved as it is in the

elementary geometrical discussions of tidal friction, though of course the

rate, and therefore the phase, of the friction depends upon the viscosity

of the water. This would increase one's faith in the spherical harmonic

analysis for such an earth and ocean as we have if it were not for the fact

that the irregularities in the depth of the ocean and in the outlines of the

continents undoubtedly greatly change the whole amount of friction.

The moon sets up motions in the waters of the ocean, but not all of the

energy possessed by this water is lost. At the succeeding disturbance of

the same region by the moon the phase of the tidal deformation still per-

sisting may be such that the moon's attraction will tend to destroy it rather

than generate a new wave; or, the phase may be such that the moon v/ill

augment the tide. On a world covered with oceans of many dimensions and

depths we should expect to find places where the natural periods of oscilla,-

tions in water basins are such that the moon's disturbance builds up consid-

erable tides, and others where they are kept low. In the former case the

friction of the water prevents their becoming excessively large; if the water

were entirely frictionless they would increase until the resulting alteration in

their period would lead to their destruction by the moon's disturbing forces.^

One method of finding the present rate of tidal friction, at least so

far as it is due to ocean tides, is to compute from tidal observations in all

parts of the earth, and from the frictional properties of water, the actual

waste of energy.^ If one were to observe the energy manifested when the

tide runs through a strait on our coasts, he would be apt to overestimate

the work the moon is doing upon the earth. In the first place such condi-

tions are quite exceptional, and in the second place only a very small part

of that energy degenerates into heat. When the run of the tide ceases the

kinetic energy has very largely become potential, and it becomes kinetic

again when the tide runs out. If the outgoing tide has the same energy

as the inflowing tide there has, of course, been no loss, and, according to

equations (32) and (33), there is no tidal evolution in such a system as

we are considering in this section.

In the units employed the kinetic energy of rotation of m^, the kinetic

energy of revolution of mj and m^ about their common center of mass,

» 2, pp. 483-484.
' For a discussion of the observational e^^dence see Harris, U. S. Coast and Geod.

Survey (1900), app. 7, pp. 535-699. Also Chamberlin's paper, ante, pp. 5-59.
' See paper by MacMillan, ante, pp. 71-75.
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and the potential energy of mj and m^ are respectively

(rotation) ^ ^^
(revolution)

^j
(potential) — 27r

Then from equations (32), (33), and (34) we find

(rot.) (rev.) (pot.)

dEm, ^ P dE dEm,+^n, ^ D dE dEn.+m, ^ -2D dE
(35)

dt P-D dt dt P—D dt dt P-D dt

whence

(rot.) / (rev.) (rot.) / (pot.)

dEjn, I dE^m,+m,) _ P dE^ / dEm.+m, ^ P (36)

dt / dt D dt I dt 2D

When the directions of the revolution and of the rotation are the same,

the loss of energy of rotation is to that of revolution of both bodies as

the period of revolution is to that of rotation, and the potential energy

gains twice the loss of the revolutional energy.

The number of periods of rotation in one of revolution is, from (23),

iV=^=~(M-Pi) (37)
D nil

When (28) is satisfied N = l. The maximum value of N is defined by

m,^ = (M-^Pl) = (38)

whence, at maximum N,

64 256 w,



APPLICATION OF SECTION V TO THE EARTH-MOON SYSTEM. 95

VI. APPLICATION OF SECTION V TO THE EARTH-
MOON SYSTEM.

This discussion neglects the rotational momentum and energy of the

moon, the eccentricity of the moon's orbit, the inclination of the equator

of the earth to the moon's orbit, the slight oblateness of the earth, and the

disturbing action of the sun. These factors have probably been of slight

importance in the series of changes which P and D may have undergone.

The observations show that at present, taking for the radius of the earth

that which would give it a volume equal to that of the actual oblate earth,

(40)

a^ = 3,958.2 miles S = 332,000 w,

02= 1,081.5 miles 1) = 0.997270 mean solar day
r' = 92,897,000 miles P = 27.32166 mean solar days

??ii =81.7 viz P' = 365.25635 mean solar days

From the two-body problem we have *

P'yjS+m. + m, (^1)

Consequently the second equation of (8) becomes

27rr'^Wi

P',(™.+iy(«+™.+iy
^

(42)

"2 ""2

With the data of (40) the first equations of (8) and (42) give

unit of time = mean solar day 0^=0.688303
unit of length = 1.45285 a^ Wi =0.626311
unit of mass =1.59665 w^

Using (40) and (43), equations (23) and (24) become

(43)

M= 3.01187 + 0.62803=3.639901 ....

£; = -0.34632 + 1.95689 = 1.61057 J
^^

It is found from (25) that at the present time the ratio of the rate of

the change of the month to that of the day is

With the value of m^ given above we find

4
^m^i =1.56

^ There is, of course, a corresponding equation for the motion of the moon about the
earth, but since the direct perturbing action of the sun increases the period for a given
distance of the moon, the k found from this equation would be too small.
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Since M is greater than this number it follows that (28) has two real roots.

It is easily found by approximation processes that the roots of (28) are ^

Pi =0.20535 days =4.9284 hours P2 = 47.705 days (46)

Since the present value of P lies between these limits it must always remain

between them and continually approach Pj. From the formula

_ 27ra'

where k is the Gaussian constant, and the units are the mean solar day,

r', and S, we find that the distances R^ and R2 corresponding to Pj and P^

*'®
Pi =9, 194.35 miles P2= 345,355 miles (47)

The maximum possible number of days in a month is at once found

from (39) to be
iV= 29.559 (48)

The corresponding length of the month expressed in terms of present

mean solar days is, from the first equation of (39),

P = 20.345 (49)

Since the month is increasing and now greater than 20.3 days, the system

is already beyond the condition of maximum number of days in a month.

Let us apply these results to Darwin's hypothesis of the separation of

the moon from the earth by fission, remembering, of course, that a number

of factors involved in the actual case have been omitted. At the time of

separation their periods of rotation and of revolution about their center of

gravity must have been equal. But the solution shows that they moved as

a rigid body when the surface of the moon was 9,194.4— (3,958.2 + 1,081.5)

= 4,154.7 miles from the surface of the earth, which contradicts the hypoth-

esis that they had just separated by fission. But this is neglecting the

earth's oblateness, which must have been great. To get an idea of the

possibilities let us examine a number of modifying hypotheses. First let

us suppose that the earth was then so oblate that its equator reached to

the moon, and that the law of density was such as to keep its moment of

momentum and volume unchanged. Then we find that

equatorial radius= 8, 112.9 miles polar radius= 942.2 miles

Obviously the spheroid would have broken up long before it attained this

degree of oblateness, and under the hypothesis that the moment of momen-

tum was as it would have been in a sphere the equatorial zone would have

been so rare that one could not account for the matter in the moon, f^}

In order to avoid the difficulty of the rare periphery, forced by the

condition on the moment of momentum, we may waive this condition.

Assuming simply that the earth was oblate, let us find the qualitative

effects on the initial distance of the moon. The moment of momentum for

» Darwin in 2, p. 508, taking the earth as a homogeneous spheroid and other^ data

somewhat different, foxmd F, ^^5.6 h., P2=:55.5 d.
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a given volume will have been greater than that which we have used, and

we may adjust our formulas for it by increasing the c^ which occurs in the

original equations (6) and (7). It follows from (8) that the unit of length is

now greater than before. Then by (42) the numerical value of w^ is greater

than with the original Cj, from which it follows by (29) and fig. 11 that the

distance of the moon from the earth when the month and day were equal

was greater than that computed above. This would necessitate an increase

in the oblateness in order that the earth's equator should have extended

out to the moon, and the difficulty of having an earth already improbably

oblate is increased.

Another hypothesis is that the earth was initially larger and, since the

separation of the moon, has shrunk to its present dimension. This is

quite in accord with the general ideas prevailing in the fission theory. We
can not apply directly the formulas which have been written down because

a change in volume would change the distance at which the system moved
as a rigid body. Consider an instantaneous change of any extent in the

radius of the earth. This does not change its rotational moment of mo-

mentum. Then if we employ the same units jj is not changed; that is, D

is changed so that when the new coefficient of m^ as defined in (8) and (42)

is used the quotient is constant. But an increase in the size of the earth

would result in an increase in D. Therefore wij is increased to fcrn, and the

condition for equality of the day and month is

From this equation we find

dP _ m^

dk ~M-4PJ

which is positive for the smaller root of PK Hence, if the earth has shrunk

from larger dimensions, the earth and moon moved as a rigid system at

a greater initial distance than that found above. That is, the hypothesis

that the earth has shrunk only adds to the embarrassment because of the

initial great distance of the moon.
We may try the hypothesis that the moon separated from the earth at

a distance of 9,194.4 miles, that the earth's law of density was such that

at that time its radius was equal to this number, and that the moment
of momentum of the earth's rotation was the same as if its density were

as it is at present. The latter condition is necessary, for the whole moment
of momentum is unchanged by contraction. This hypothesis amounts to

simply attempting to change the law of density as well as the volume so

that the implications of the hypothesis shall be reasonably satisfied.

We shall suppose the density is expressible by the Laplacian law, only

with different values of G and /^ from those which are used above. Letting

/2i
= 9,194.4, the moment of momentum of the whole system was

)i^ o // , N-^i' 2nc'mJ^ m2\ /9,194.4V 2 /KmM =2.c' (m,-f-m,) ^^^ =-^ (l
+;-^^)[^^ a,^ (50)
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where c' depends upon the new law of density. We have in the units defined

(51)

m
the Ci,

—
^, m^, M, P^, and R^ being given in equations (22), (40), (43),

TO

(44), (46), and (47) respectively.

With this value of c' we must determine a new value of /j., say //', from

(21). To faciUtate the solution (21) may be written in the form

(52)

We may draw the graph of this function. It is the sum of two functions

(53)
Vi

and

2/2

3 ""
ft''

4 tan fi'

^3 (tan/—/)
(54)

v

4
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for / = 2;r. Then it decreases to — oo in the fifth quadrant, changes sign

to +00 and decreases to zero at / = 3;r and to — oo again in the seventh

quadrant. In a general way this cycle of changes is repeated indefinitely,

the points where i/j becomes infinite approaching nearer and nearer to

/ = (2n + l) ^, n being an integer. The curves y^, 2/2 are given in fig. 12.

Both 1/1 and 2/2 being even functions of fx' the curves are entirely to the

right of the vertical axis.

From the diagram it is seen that the only places where 2/1+2/2 n^ay

vanish are at the left of tt as at a, to the right of k, as at b, to the right of 2?:,

as at c, and in general to the right of nvt, n any integer. There are, in short,

an infinite number of determinations of //'. But when we consider that

the law of density is

a' =

we see that if 7z<ix' <2r. the density will be negative near the surface and

elsewhere positive; if 27r</<37r there will be a single spherical layer

between the center and surface where the density will be negative; and if

nK<ii' <{ri + l)Tz there will be n layers of negative density if n is odd, one

of them being at the surface, and n— 1 layers of negative density if n is even,

the surface density being positive. Consequently in considering such a prac-

tical question as the separation of the moon from the earth, in which nega-

tive densities would have no meaning, we need consider only the possibility

of a solution to the left of r. The value of //, for which t/^ vanishes, is

-^2- 3c'

= 142.5=

From fig. 12 it is seen that 2/1 + 2/2 can not vanish between this point and k.

It is easily verified that no value of /< 142.5° will satisfy (52). For

example, we find the following corresponding sets of values

l/(/)=0.58

Consequently the smallest /x' satisfying the conditions is greater than k, and

the hypothesis of the separation of the moon from the earth requires, so far

as the factors and the law of density here considered are concerned, that we
assume that the surface density of the united mass was negative just previous

to the separation. If we had used the oblateness of the figure of the mass,

a still larger [x' would have been found. However, it is not impossible that

neglected factors may somewhat relieve the theory of these embarrassments.

Thus we see that when we add any of the hypotheses of an original

oblateness, shrinking, or different law of density singly, the difficulties of

the hypothesis are not relieved.

7
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VII. CASE i = i\ = t2= a^dizO e = S = 0*

This case differs from V only in that the rotational momentum and
energy of m^ are not supposed to be zero. In this case equations (9) and
(10) become, supposing that C2 = Ci,

In these equations only P, D^, D^, and E can vary, the last decreasing
through loss of energy by friction. If by means of (55) we eliminate one
of the variables from (56) we have a relation among the other three. This
equation may be considered as defining a surface. Let the £'-axis be pointed
upward. Then starting from any point on the surface the variables other
than E may change in any way, so far as these considerations show, so

that the point descends.

We shall now find the maximum and minimum values of E. In order
to simplify the algebra let us put

u =^1 „ = /M' ^2 _'^i (57)

Using this substitution and eliminating P between (55) and (56) we obtain

E -1 u^ v^

7z [M—u—vY nil '^^1

The necessary conditions for a maximum or minimum of E are

^

—

^ — -- =— w, +u [M—u—vf=0
27: du

———^r ~—-=—Km,+v[M—u—vf==0
ZlZ 01)

(58)

(59)

Multiplying the first equation by v, the second by u, and taking their

difference, we have ku = v; whence, by (57),

D, = Di (60)

Then the first equation of (59) becomes

-^ + [M-{l+K)uY=0 (61)

* See 5, pp. 178-181.
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which, after extracting the cube root, is

M = (^^)' + (l+«)w

Let the common value of 7), and Dj be D. Then this equation becomes

M =Di + (1 +«)^^ =Z)i +[m, + (^)
m,]^ (62)

But when Di = D^ = D, (55) becomes

M=Pi+K + (^^)m,]l (63)

where P* must be taken with the positive sign. Since (62) and (63) must
simultaneously be satisfied for a maximum or minimum, we must have,

when E is a maximum or minimum,

P = D, = D, (64)

That is, the energy is at a maximum, or minimum only if P= +D^= -\- D^,

i.e., if the whole system moves as a rigid body.

There can be a maximum or minimum only if (62) has real roots. The
treatment of this question is the same as that given in IV, except that we

must replace Wj of that section by Wj + f— ) wig. Hence the condition for

real roots, and therefore for a maximum and a minimum of E, is, by (31),

M ^ i- [m, + (^)'mJ =|-(1 + «)*m,J (65)

Let us suppose the inequality (65) is satisfied and then consider the

surface defined by (58). It will be most convenient to give E a series of

constant values and to draw the corresponding equi-energy curves. To
simplify the treatment let

w = u + v (66)

Eliminating u from (58) by means of this equation and solving for v we find

l±i„„„±J_!£!+li+^^+li±^!>^ (67)
K \ K k{M —W)^ KK

Consider first the function

/(^,)==_^ + ll+^^- +li±^ (68)

whence

''-^v=w±^f{w) (69)
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The derivative of (68) is

dw K k{M—wy (70)

It depends only upon w and is negative for all w>M. For w =M it is

infinite. For w less than, but near to, M it is positive; when M is large it

vanishes and becomes negative and again vanishes and becomes positive,

as w decreases from M to 0. It is positive for all w<0. From these facts

and equation (68) fig. 13 is drawn, the curves Ei, . . ., jE'^ belonging to four

values of E such that E^>Ei>E^>E^.

Fio. 13.

From equation (69) and fig. 13 the equi-energy curves in fig. 14 are

drawn, the corresponding curves being similarly lettered. There are two
points of particular interest, A and B. As the energy decreases, the energy

curves descend to a point at A. That is, on a section through A approxi-

mately parallel to the vE'-plane the point A is a minimum. With decreas-

ing E the energy curves separate at A and recede in opposite directions

nearly parallel to the liJ-axis. Hence a section by a plane through A approxi-

mately parallel to the ly^E^-plane has the point A as a maximum. Therefore

A. is a minimax point of the surface.

The minimax point A, fig. 14, corresponds to the point A, fig. 13, at

which /(w)=0. Therefore, by (69), for this point

v =
K

K+l
W (71)
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At the point A, fig. 13, we have also

Kdfjw) ^ (/c +l)m^ ^
2 dw ^'^(M-wy

which becomes by virtue of (71) and (66)

--H[M-(/c + l)wP=0
u

agreeing with (61), the condition for a maximum or minimum (or minimax).

Fig. 14.

The point B of fig. 14 corresponds to the point B of fig. 13. At the

point B, fig. 13, we have

Aw)=0
dfiw)

dw
=

which lead again to equation (61). Therefore the smaller real root of (61)

belongs to a minimum and the larger to a minimax.
However the system may change under loss of energy the w and v of

fig. 14 must always go from a curve of higher to one of lower energy. When
the energy is greater than that for which the point A appears in fig. 14,

the curves give us no positive knowledge regarding the series of changes

the system may undergo, except that if at any time w = u +v<M it has

always been, and will always be, less than M, and the opposite. But if

the energy is less than that for which A appears in fig. 14, then, if at any
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time the w belonging to the system is less than the abscissa of A, that is,

if the point is on the curve E^, it will always remain less than the abscissa

of A and will approach the point B as a limit; but if the w is greater than

the abscissa of A and less than M it will always remain between these two

values. The abscissa of every point on the oval part of E^ is in all possible

cases less than the abscissa of A, for the points on this branch of the curve

correspond to the points of the curve E^ of fig. 13 which are above the

u;-axis and to the left of the line w = M. This part of the curve is always

to the left of A, for the curves of fig. 13 are all derivable from any one of

them simply by vertical displacements.

A simple case is that in which the two bodies are precisely alike in every

respect and have at any time similar motions. Then from the symmetry

of the problem the motions of the two bodies will always be the same.

Equations (55) and (56) become in this case

The treatment of these equations is precisely like that of (23) and (24)

of section V if we replace m^ of that section by 2wi.
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VIII. APPLICATION OF SECTION VII TO THE EARTH-
MOON SYSTEM.

With the data given in (40) we find

(-) »^2 ==/cmi =0.000914 Wi (73)

Consequently the moment of momentum and energy of the earth-moon
system are respectively

M = 3.01 187 + 0.62803 + 0.00002 = 3.63992

E = -0.34632 + 1.95689 + 0.00001 =1.61058

.

(74)

The limiting value of M for which a maximum or minimum may occur is,

by (65), 1.5614, Since the actual M is greater than this quantity there

are a minimax and a minimum.
We shall now solve (61) and find the value of u corresponding to the

minimax. With the values of « and M given in (73) and (74) we find by
methods of approximation that the value of u satisfying (61) and corre-

sponding to the minimax is

w =3.04719 ti;= 2m =6.09438 (75)

The corresponding common period of the system and distance of the moon
are respectively

Pi =0.20554 day =4.9329 hours T^i =9,200 miles (76)

or more than 42 miles greater than when the moon's rotational momentum
and energy were neglected. The whole energy of the system for this value
"'"-"'^

£ = 10.666 (77)

At the present time in the earth-moon system we find from the data
of (40) and (73) and the condition D^ = P that

w =0.6280257 v =0.0000005 w=w+v =0.6280262 (78)

Since the present energy, given in the second equation of (74), is less than
that corresponding to A of fig. 13, which is given in (77), and since the

present value of w given in (78) is less than that corresponding to A, given

in (75), the energy will continually approach the value corresponding to

the minimum B, when the earth-moon system will move as a rigid body.
Although it is thus possible, under the hypotheses, to draw positive con-

clusions as to the conditions toward which the system is tending, it is, of

course, not possible to affirm, even aside from all factors neglected in this

section, that the system ever descended from the condition corresponding

to A. This discussion simply gives the numerical values belonging to the

condition corresponding to A, which may or may not have been verified.

Thus the real question of interest gets no conclusive answer by supposing
the moon of finite size; the introduction of this factor simply embarrasses
the fission theory a little more.
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IX. APPLICATION TO BINARY STAR SYSTEMS.

If the earth and moon were derived by the fission of a parent mass,

the process has presumably been exemplified elsewhere. We shall conclude

that the earth has had an exceptional origin only as a last resort. It has

been many times suggested that the binary stars may have originated by

the breaking up of larger masses, and See especially has urged this view

and applied Darwin's formulas in an attempt to explain the dimensions

and eccentricities of their orbits.^

We shall apply the methods developed here to the problem. In order

to simpUfy it as much as possible we shall suppose first that the parent

mass divided into two similar and equal masses. We know that this rela-

tion of the masses of the two members of binary stars is, in a number of

cases, nearly fulfilled, and nothing is known to make this assumption seem

improbable. We shall assume that immediately after the fission the system

moved as a rigid mass. Then the equations for the moment of momentum
and energy are F i 2m

differing from those in section V only in that m, has been replaced by 2m,.

The condition for a maximum or minimum of E is [cf. eq. (28)]

PJ-MP +2wi=0 (80)

As has been shown, when M is sufficiently large this equation has two

real roots. The smallest M for which there are real roots is that for which

the real roots are equal. The condition for equal roots of (80) is

M=|PJ =1^6^ (81)

Consider the system moving as a rigid body with the two stars in contact

.

Then their orbital moment of momentum will be — times their rotational

moment of momentum, or ^

pi=^,{&ndP=D) (82)

Consequently the whole moment of momentum of the system is, calling

this special value of the common period Pg,

M = (l+Ci)Po' (83)

In order that this may be at least as great as the value defined in (81)

we must have _

,

,o.s= 1
Ci>i

The value of c^ depends only upon the law of variation of density of the

bodies. When they are homogeneous Ci = 0.4. When the density varies

* Inaugural Dissertation, Berlin, 1892.
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according to the Laplacian law and vanishes at the surface (/i=180°),

we find from (21) that Ci = 0.26. The more the matter is condensed toward
the centers of the bodies, the smaller in general Cj will be. It is apparent

from these figures that c^ can not be much greater than 0.33, and therefore

that M can not greatly exceed the value for which there are equal roots.

Consequently the two roots of (80) can differ but little, which means that

tidal friction is not competent to drive two equal stars originating in this

way far from each other.

Let us suppose c, >0.33 so that E has both a maximum and a minimum.
By (82) we have 2Wi = CiPo^' Using the value of M given in (83), equation

(80) becomes
Pi-il+c,)P,iP+c,P,i=0 (85)

Since one of the roots of this equation is P^^ we may factor it into P^— Po*
and

P-c,P,^Pi-c,P,iPi-c,P,=0 (86)

whose real root gives the minimum value of E. To solve this cubic in

PMet

(87)

Then by the theory of cubic equations *

A=|^n*+^'p-l^ = i^(Ci)Po* (88)

Let us apply these equations to the case of two stars each equal in mass

and dimensions to the sun. Taking the radius of the sun at 433,000 miles,

we find from

that in this case

Po = 0.2324

We shall take for Cj the largest possible value, that is 0.4, which belongs

to a homogeneous sphere. We find from (88) the corresponding largest

value of Pi to be

Pi = 0.307

which is'the period for a separationof the centers of the bodies of 1,042,400

miles. The original separation was 866,000 miles. That is, under the

assumption that each of the two components of a binary system is equal

to the sun in mass and volume, and that they remain of constant size and

• Burnside and Panton, Theory of Equations, p. 108.
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shape, we have proved rigorously that after fission, tidal friction can not

have increased their initial distance more than 200,000 miles. Such an

inconsiderable increase as this in the distance between two stars can have

had no important effects on binary systems. If the system started at the

configuration corresponding to maximum energy of the curve of fig. 10,

either it must have gone toward the condition of minimum energy just

computed, or the two bodies must have fallen together.

Let us suppose the bodies to have shrunk as a consequence of loss of

heat so that their period of rotation would have become, except for tidal

friction, kD. Since the rotational moment of momentum is not changed

by shrinking, the wij becomes Km^, the mass changing its numerical value

because the definition of units depends upon the dimensions of the bodies.

Then equations (79) become

^-^^ kD 71
~ P^^ kW' ^^^^

Eliminating D we have

E 1
,

(M-Piy
(90)

71 pi 2/cmi

The condition for a maximum or a minimum of E is

P4-iWP + 2/cmi=0 (91)

QP 2m
From the derivative -t— = ^-?^i

—

h- it follows that, for given values of M
OK iP^—M

and Wj, the smaller k is the farther apart are the two roots of P. Let the

common initial value of P and D be Po- Then equation (91) becomes, by

(82) and (83),

PJ - (1 +Ci)PoiP + Acc,Po» =0 (92)

Since this equation is homogeneous in P and P^, its solution is of the form

P§=/(c„/c)Poi (93)

For a given amount of shrinkage of a body the constant k is determined,

because the moment of momentum is not changed by a decrease or increase

of volume. Hence, if we assume an initial Pq and the k, we may determine

the final (and greatest) P from (92), and compare the results with the data

given by observations of double stars. Or more simply, we may assume a

final P in accord with the data furnished by observations and compute the

K from
P[(l+C,)Po4-Pi]

K —
c.P.^

(94)

for various assumed values of Pq. Since the two stars are supposed to have

been initially in contact, the initial density may be expressed in terms of

Po, and the final density is determined by the initial density and the amount
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of shrinking, which is measured by k. Therefore the final density may
be determined, by the use of (94), in terms of the initial density and the

final period.

We shall assume that P=100 years, or approximately the period of a

Centauri and $ Scorpii. There are many binaries known with much longer

periods than this, as well as many with shorter periods. Since they have
presumably all originated in a similar manner, any correct theory must
explain the long periods as well as the shorter ones. We shall assume that

the bodies have always remained homogeneous, whence Ci = 0.4, which
has been shown to be most favorable to the theory of a large increase of

period through tidal friction. From the formula for the period in the
two-body problem we find, using the volume times the density for the

masses, and assuming that the bodies were originally in contact, that P^
varies inversely as the square root of Oq, or

n = constant

V^o
(95)

The constant of this equation is determined by the fact that the density

of the sun is 1.41, while in the case of two such stars as the sun we have
found Pq to be equal to 0.2324. Therefore the constant is 0.2760.

From the fact that the moment of momentum of a body simply shrink-

ing must remain constant, we find that

a, = ar^J K (96)

where a/"' is the initial radius and aj the final. Since the density varies

inversely as the cube of the radius we have

—— ^0 =~f = ^"1^1 density (97)

By formulas (94), (95), and (97), with P = 100 years, Ci = 0.4, the fol-

lowing table has been computed:

o-o
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With an initial density of 1.4 tlie final density comes out imaginary, indi-

cating that incompatible conditions have been imposed. That is, it is impos-

sible for a star having the density and twice the mass of the sun to divide

and be driven by tides into a binary system having a period of 100 years.

When (To
= 4X10~^" the final density is infinite, another impossible result.

When the initial density is 10~*** we find /c=1.03, indicating an expansion

instead of a contraction. The only initial densities compatible with the

assumptions lie between 4X10~^" and 10~'". Consequently a double star

having two equal components with combined mass twice that of our sun and
a period of 100 years could not originate by fission except when it was in

3
the nebulous state with a mean density not exceeding -—^ of that of our

atmosphere at sea-level. On the other hand, if the close binaries revealed

by the spectroscope have originated by the fission of a single star, their

period can never become great through the effects of their mutual tides.

It follows from (92) that this relation between the initial period and final

period depends only upon the law of density and the amount of the con-

traction, and is entirely independent of the mass of the system.

The question may be raised whether the results would not be less

unfavorable to the theory if the mass of the system were unequally divided

between the two stars. The discussion of section VII shows that the problem

remains in a general way the same, 2771^ being replaced simply by w^ + f —
j

We must conclude from this discussion that approximately equal

binary stars with long periods can have originated by the fission process

only when the parent mass was yet in the nebulous state. In fact, it

removes the chief support of the belief that there is any such thing as fis-

sion among the stars simply because of rapid rotations. From other con-

siderations Jeans ^ has arrived at the same conclusion.

iThe Astrophysical Journal, XXII (1905), p. 101.

,2
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X. CASE i = i^ = 1*2 = a2 = e^O 5 = 0.'

In this case equations (9) and (10) become

TV PS "^D'

Eliminating D and P in turn between these equations, we get

(98)

K
+
m,

(MD-w,)=^ ' D»
(99)

Solving'for'e we obtain

Vp»-[M±V"^H-|i]' e=Vl-©-f)^^V^ COO)

Pi

The conditions for a maximum or a minimum of the first of (99) are

M
27t de ^1-i

Pi e=0

1

^p§-||=p!(l_e2)_ /l_e2MP +mi=0

(101)

The first equation may be satisfied by the vanishing of any of its three

factors. P» = is a physical impossibility and makes E infinite. Setting

the second factor equal to zero and substituting in the second equation

we have mi = 0, which is impossible. The remaining possibility is e= 0,

and then equations (101) reduce to

e=0 PJ-MP+mi=0 (102)

the second equation being precisely the same as (28).

Similarly the second equation of (99) gives as the conditions for a

maximum or a minimum

e=0 -D*(MD-mi) + MD^-m,{MD-miy=0 (103)

The latter of these equations gives

D^-MZ)+?Wi=0 (104)

which, together with the second of (102), shows that for either a maximum
or a minimum

e=0 P=D

* See 3, parts V and VI, and the appendix, pp. 886-891.
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We shall now study the surface defined by the second equation of (100)

by considering the curves for various values of E. Consider first the curves

defined by

y.=i-gi(M-^y (105)

,.4(m-^)' (106)

From

i=t(«-'^')(*^-T) (^»^'

we find the positions of the maxima and minima of y^ and we can then

easily construct its graph.

We must now consider the curves defined by equation (106) for various

values of E, both positive and negative. They all pass through the point

j^^
= 0, D = ^, and are tangent to the D-axis at this point. All the branches

of the curves are asymptotic to the lines D = and y^^EWln, except in

the special case when E = 0.

The sum y = yi + yi must then be considered. Whatever the value of

E, all of these curves are asymptotic to D = and y= — QC. All of the

curves pass through the point D = ^, y=l, and their slope is zero at this

point. Their slope vanishes at the points defined by

^^?^rM-^ir-^+^-?^l=0 (108)

m.
The solutions of this equation are D= ± oo , D=:-^, and the two roots of

the last factor. When E is large the roots are small numerically, one being

positive and the other negative. With decreasing E the negative root

recedes to — oo which it attains at E = 0. It then becomes positive from

+ (X) and unites with the other positive root when

E= '''"

4?/?'

The curve has a point of inflection for this value of E, for which ^ = -^y

and for smaller values of E the slope is always negative for values of D

greater than -^-
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Those curves which are tangent to the axis are found by imposing the

condition (108) and

!/i + 2/2 = e^ = (109)

The first factors of (108) give no results of interest. Eliminating E between
the third factor and equation (109) we get

P-(M-9)' =

agreeing with (103), the conditions for a maximum or a minimum. If

equation (103) has no real roots then there is but one intersection of each
m.

curve with the D-axis to the right of D =—^ When the equation has real

roots then for certain values of E there are three intersections to the right

M
m,

As E approaches — oo the curves approach the line D =^
between ?/ = and y= -\-l.

We get the final equi-energy curves from

e = '^^jy = '^^jyl + Vi
(110)

Fia. 16.

They are given in fig. 15. The point A is one of the solutions of (103)
and is a minimax of E considered as a function of D and e. When this

point belongs to a positive value of E, as it does in the earth-moon system,
the curves for this and larger values of E are open on the right to infinity,

because the curves are asymptotic to the lines e= ±-^n^ . When

E decreases until EM^=—k the curves close at + oo
, and for smaller values

of E they are closed ovals until they vanish at a point B on the D-axis to the
right of A. This point corresponds to a true minimum of E considered as

a function of D and e. On the left of the e-axis the curves are shaped
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somewhat like parabolas and vanish at — oo for EM'^=—z. They are the

analytic continuations of the curves on the right, the union being at infinity.

When K recedes to — oc as jE'=— it reappears at +00 as jE^ continues

to decrease.

It follows from (105) and (106) that ?/i + 2/2 < 1 ^or ^^^ negative values of E.

Consequently for all points on the closed ovals we have |el<l, and the

system can not be wrecked by a collision of the bodies. Therefore, if at

any time the configuration of the system corresponds to any point on one

of the closed ovals to the right of A , it will always tend with decreasing E
through tidal friction toward the configuration corresponding to the point B,

and the evolution will end with this configuration. Because of the sym-

metry of fig. 15 with respect to the line e = 0, it follows that if at any

time e = it will always remain zero.

While under certain conditions the system will inevitably progress

toward a definite configuration, in the general case it is not possible, with-

out hypotheses as to the physical condition of the bodies, to determine the

character of the evolution. The question of greatest interest in the present

connection arises in the case where the conditions lead to doubtful results.

If the moon separated from the earth by fission and if its orbit were

originally circular, it would not become elliptic through tidal friction. Since

the orbit is now considerably eccentric, we must assume that it was some-

what eccentric at the time of separation. Consequently, let us suppose

the moon has just separated from the earth so that P= D, and, supposing

that e^O, let us find whether the moon will fall again to the earth or recede

from it. Since the orbital velocity will have been such that the moon's

motion will have fulfilled the law of areas, while the rotational velocity

will have been uniform, there will have been relative motion of the various

parts of the system, and consequently tidal friction. We are to find the

effects of this loss of energy on the distance of the moon.

Under what seem reasonable assumptions we have seen in section V,

equations (33), that when the orbits are circular the rate of change of the

month is given by
dP^c P-D
dt ~r« P^D

We shall now assume that when the orbit is elUptic the rate of loss of

energy at any instant depends upon the square of the product of the tide-

raising force and the angular velocity of the tide over the earth. This

assumption is equivalent to taking the circular case as applying instan-

taneously to the elliptic case, and omits the lag in tidal conditions due to

inertia. With this assumption the equation above becomes

dP c' e-io ^ ,....

dt
~

r" di ^ ^

where c' is a positive constant.

* This result agrees with that found by Darwin in 2, p. 497, eq. (79) after change of

variables, notation, and proper speciaUzation of his problem.
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By hypothesis the mean value of 6 is equal to w, and we have therefore
from the two-body problem

r = a[l — eco^(ji)t-\-- (1 — cos2w<) +

•]

(112)

Consequently equation (111) becomes

dP 14 43-— = — c"e [2 cos wf + -=- e + -^ e cos 2ojt +
at 3 6

•] (113)

where c" is a positive constant. The first and third terms produce no
secular results. The second shows that P secularly decreases. That is,

under the hypothesis that the loss of energy is proportional to the square of the

product of the velocity of the tidal wave and the magnitude of the tide-raising

force, it follows that if the moon had separated from the earth and originally

had been moving around it in a slightly eccentric orbit in a period equal to

that of the rotation of the earth, then the friction of the tides generated by the

moon in the earth would have brought the moon back to the earih.^ Since these
hypotheses certainly approximate the truth, we are led to the very probable
conclusion that the moon can not have separated from the earth in an elliptic

orbit and have been driven out to its present position by tidal friction.

Precisely similar reasoning applies to the hypothesis of the fission of a
star into a pair of equal stars, and is an additional strong argument against
the soundness of this theory regarding the origin of binary stars, which
generally have large eccentricities.

' Under the assumption that the planet is viscous and with different approximations,
Darwin's equations led to the same result. See 3, p. 854, eq. (292), also 3, p. 878 and p. 891

8
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XI. APPLICATION OF CASE X TO THE EARTH-
MOON SYSTEM.

Observations show that in the case of the moon's orbit e = 0.0549.

Then we find from (98) that in this case

M = 3.63082 £; = 1.61057

Consequently for the moon at present the curves of fig. 15 are yet open at

infinity, and so far as this discussion goes, the eccentricity may increase

to unity, and the system be wrecked by a coUision of the earth and moon.

The most interesting question relates to the least possible distance of

the earth and moon from each other. Suppose at the time of the assumed

separation the eccentricity of the orbit was very small, as apparently it

must have been if the bodies separated by fission. Then the configuration

at the time of separation corresponds to the point A of fig. 15. The abscissa

of this point is the smaller real root of equation (104), which for the present

value of M we find to be

Do = 0.206008 days = 4.944 hours

From the relation between the period of revolution and the distance we
find that the distance corresponding to this period is Rq = 9,214l.O miles.

Neglecting the eccentricity of the moon's orbit we found for the initial

distance 9,194.4 miles.

But, as was explained in the preceding section, the initial eccentricity

could not have been zero for the present eccentricity is different from zero.

The larger it was the shorter the initial period and the smaller the initial

distance. It will be a liberal assumption to suppose it was ^0 = 0.1, for then

the initial perigee and apogee distances differed by 1,800 miles. With this

value and putting D = P we find as the smaller root of the first equation

of (98) Do = 0.205797^ = 4.939 hours. This corresponds to an initial mean
distance of 9,207.7 miles, not differing materially from that found when the

initial eccentricity was neglected.
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XII. CASE iz^O i^d^O a2 = e = S = 0.

If i is to be taken different from zero and subject to change it is neces-

sary to suppose that i^ may vary also, for all the interactions are mutual.

In this case equations (9') become

M' =P'i sin i sin Q, -f

mj sin ii sin Qi
D

_ ... „i • • o . ^^1 sin i. cos ^iM" = P^ sin I cos Q +^ jz

(114)

We may choose the xy-plane so that it shall coincide with the invariable

plane of the system. Then M' = M" = 0, and equations (114) give

Q>i = Q-{-n7: (n=Oorl)

With this relation equations (114) become

[P^sint±

whence

m, sin i.l . ^ _ r„. . . Wj sin in ^^—^-yr—^ sin 86=0 P*sini±—i-yc—^ cos 8^=0

P* sm I ±—^-y^
—

* =0 (115)

In this discussion we shall take D as essentially positive and let i and t^

vary from to z. Then we must take the lower of the two signs in (115),

or Q>i=Q-\-7t. This equation and equations (9) and (10), under the

hypotheses of this section, give us

= P* sin I ^-yr—-

n^ Til • , ^1 cos t,M =Pi cos * + ~-v^

—

-

7t
~ Pi '^D^

(116)

Eliminating D and tj from the last of these equations by means of the

first two, we have

^ =-^ +P^-2McostP^+M2
TT P'

The conditions for a maximum or minimum of E considered as a func-

tion of i and P are

-^ -— =2MP* sm t =0
TT 01

rn^dE _2^^ ,
2 J^_2 M cos i _

li'dP~ZP^^^P^~^ Pi
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The first equation can be satisfied only by i = (the case i = 7z makes only

a change in direction of the axes in the final solution). Then the second

one gives, since P can not equal infinity, as the conditions for a maximum
or a minimum

i=0 P5-MP + mi=0 (117)

Then the first equation of (116) shows that either ii = or D=oo . In the

latter case i^ is indeterminate.

To investigate whether the roots of (117) correspond to a maximum
or minimum we form (at i = 0)

The right member of the first equation is positive for both roots of (117).

We must consider the function

For the smaller root of (117) the right member of this equation is negative,

and therefore E is neither a maximum nor a minimum for this set of values.

For the larger root of (117) it is positive and the corresponding value of E
is a true minimum. Whenever the system arrives so near the condition

corresponding to this point that the equi-energy curves are closed they

remain closed for all smaller values of E down to the minimum, and under

the influence of tidal friction the system will inevitably approach this

condition of minimum E, and having attained it will remain there.

It follows from the second of (116) that for either value of P satisfying

(117) we have D = P.
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XIII. APPLICATION OF CASE XII TO THE EARTH-
MOON SYSTEM.

There is a difficulty in attempting to determine the position of the

invariable plane of the earth-moon system, for the plane of the moon's

orbit is continually changed by the perturbative action of the sun. In

the course of about 9^ years the line of nodes of the moon's orbit makes a

complete revolution, and the inclination of the plane of the earth's equator

varies all the way from 23.5° -f 7° to 23.5°-7°. We shall suppose here

that the sun is not disturbing the orbit of the moon, and that the inclina-

tion of its orbit to the plane of the ecliptic is zero. Let us take the plane

of the ecliptic as the original a:?/-plane. Then the angle between the plane

of the ecliptic and the invariable plane is given by

. M Pi +^- cos (23.5°)

COS 1 ^— - =

V M'+ M'^+ M"^- ^p,^2jn^
,„, (23.5°) + 5^'

Since Qi=Q-\-7: we have
i, = 23.5°-i (121)

In the case of the earth-moon system we find

i:= 4° t\= 19.5° (122)

Then M of (116) becomes M = 3.59654. With this value of M the smallest

root of (117) is P = 0.20852. This period corresponds to a distance of

72= 9,364 miles. However, the initial inclinations could not have been

precisely zero, and consequently the initial distance must have been some-

what less than this amount. But the chief point of interest is that the

factors neglected in the discussion of section V so far all make the initial

distance greater than that found in that place.
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XIV. CASE i = t\= e = a2 = Sr^O.

The sun affects the evolution of the earth-moon system in two ways.

First, its direct perturbing influence on the moon makes the month longer

than it would be if the moon were revolving at its present mean distance

in an undisturbed orbit. In the second place the tides which the sun

raises in the earth retard its rotation and reduce the moment of momentum
of the earth-moon system. We shall consider these two influences separately.

The relation among the sum of the masses of the earth and moon, the

mean distance from the earth to the moon, and the moon's period is found

in the theory of the moon's motion to be

p2
a^[l+^(^)'. . ]=k^m, + m,) (123)

where P' is the length of the year. With this relation instead of having

equations (9) and (10) become, when e=i= i\= a2= 0,

The disturbing forces which have made these changes in the equations

are mostly radial, and so far as the radial components are concerned can not

change the moment of momentum. The tangential components are periodic

with equal and symmetrical positive and negative values in a period.

Consequently the M will not have changed under these influences.

At the time of the supposed separation of the earth and moon P = D,

and the first of (124) gives for the determination of P

We find from the first of (124) that the value of M is in this case M =
3.63428. The smaller root of (125) for this value of M is Po = 0.205760,

and this period corresponds to an initial distance of i^o^ 9,206.2 miles, a

little greater than that found when the sun's action was neglected.

Consider the direct tidal friction of the sun upon the earth-moon system.

The sun's tides lengthen D without producing a corresponding change in

the motion of the moon. Consequently in this case M is not constant.

Let us assume, as before, that the amount of tidal friction is directly

proportional to the product of the square of the tide-raising force and the

square of the velocity of the tidal wave along the earth. It also depends

upon the physical condition of the earth. Then we have, including the

tides produced by both the moon and the sun.
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where the first term comes from the tides raised by the moon and the second

from the tides raised by the sun. Since E can only decrease, C must be

positive. The factor of proportionality, C, is the same for both since it

depends only upon the physical condition of the earth.

Substituting (126) in the second of (32) we have the rate of change

of the day defined by

dD C w,

dt 2m{!t r^ i(--){-c^)'(ir(sy©i(-)
The length of the month is changed by the moon's tides alone, and

bears a definite relation to the rate of change of the day due to the moon's

tides. From (32) this relation is found to be

Zm^dP ^ 1 dP
D^ dt ~P^ dt

When the sun's action on the rotation of the earth is included we have

therefore

3?ni dD
h {^<7)'m\T-=^nTm ^-^

D' dt Pi

From the formulas for the month and year we have

\r') \S + m,-\-mJ \P')S-\-m^-\- m^i

Since m^ is large compared to m^, and S is large compared to m^, this rela-

tion becomes with sufl&cient approximation

(p)'=(I')'(f)'

Then equation (128) becomes

Zm.dD 1 j.,(mA'(P'-r>\'(P\'\dP ,.^^.

If we integrate this equation and determine the constant of integration

by the present values of P and D, and if we then put P = D and solve, we

shall have as one of the roots the value of P at the time of the supposed

separation of the earth and moon. But P and D enter this equation in

such a complicated manner that it is not possible to express its solution

in finite terms. The critical values of the variables are

P=o .=0 P-z>=o i-.(5y(^)'(;)'-

Only the third of these critical values will arise in the applications which

will be made here.
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In the present condition of the earth-moon system we find that

2 /p/ 2)\- /P\®

©(^)"(fO--
It will appear in the computations which follow that as P and D

decrease in such a way as continually to satisfy (129), this function de-

creases rapidly until P = 0.25 and D = 0.25 approximately. For 1 ^ D > 0.25

it is convenient for the purpose of solving (129) to let

<?=^^ +PJ-M (130)

With this substitution equation (129) becomes

dQ_ l/m,y 1 fP'-D\'/PydP (131X

dt S\mJ Pi\P-D) VP7 dt

If we should eliminate D from (131) by means of (130) the result would
have the form

^=F{P,Q) (132)

If we let Pq represent the present value of P, and M the total present

moment of momentum of the earth-moon system, then at P = Po we have

Q = 0, and an approximate solution of (132) is

.P

Q,= / F{P,0)dP (133)'JJp
Successive approximations may be found by the series of operations

.P

:/ F(P,Q,)dP Q,=Q,= / F(P,Q,)dP Q,= F(P,Q,)dP

*

Qn=
I

FiP,Qn-l)dP Q„+i= / F{P,Qn)dP
./p »/p
^0 -*

This series of approximations approaches the true value of the integral

provided the upper limit does not pass beyond a point for which F(P, Q)
has a singularity.^ In the application of these formulas we are explicitly

limiting ourselves to a region in which F(P, Q) is everywhere regular.

The integrations can be very easily carried out by mechanical quadratures

to the desired degree of accuracy.

Since we wish to trace the system back and find for what values of P
and D the two variables were equal, we must take P< Po in the integration.

» Picard, Traite d'Analyse, vol. 2, pp. 301-304.
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When the integration has been carried so far back that P—D is small

enough to make the second term in the right member of (129) the dominant
one, it is convenient to change from P to D as the independent variable

of integration. We may now write (129) in the form

^^
=f{P,D)

Sm,{P-DyPi
dD

C.[(P_D), + (a.)\p._D).(^y]
(134)

For P—D = this equation does not have a singular point when D is the

independent variable, for at this point/ (P, D) vanishes.

Suppose corresponding values of P and D have been found by (132)

and (130) until Pq and Dq are obtained, and that their difference is small.

Then P may be expressed in terms of D by an expression of the form

P-Po = lAi (D-D.y (135)
1=1

provided the modulus of D — D^ is sufficiently small. Substituting (135)

in (134), expanding the right member, and equating coeflScients of corre-

sponding powers of D— Dg, we find

where

dPo dD,
(136)

^ 3m,iP,-D,yP,i

a/(Po,Do) _ 2m,(Po-J)o)(4Po-Do)

^^°
Po'D,^ [{P,-D,y + {^)\p'-D,y (^«)]

67n,(P,-D,yP,^ [p^_Z)„ + 3(^^)'(P'-Z)„)^^]]

df (Pq, Dp) ^ 6m,(Po-Z)o)Po§

Qm,iP,-D,y Po? [p„-Do + (^)' (P'-D„) (^^)']
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Therefore

+ Ai

A- n ,
,

1 (4Po-Do) ^^,

[-.-««+©>'-^«)(f")°]

Since these equations are applied only when Pq-D^ is small and Z)«

small compared to P', we have approximately

.-^i^

Sm,' (P,-D,)P'* Zm,' (Po-D^Y i5Po-8D,) P'«

Vm^D,^ P. m^ D,* P^
(5Po-8Do)

D,{P,-D,)^' 3P„(Po-^o)^^i A^'

(137)

By successive application of (135) and (137) the corresponding values

of P and D can be followed until P-D passes through zero. The value

of P, for which P= D, can then be determined by interpolation. The corre-

sponding values of P and D in the following table have been computed

from equations (130), (131), (135) and (137). The third column gives

p, the ratio of the rate of the change in the rotation of the earth due to the

sun's tides to that due to the moon's tides.

p
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This is 149 miles less than that found when the action of the sun's tides

upon the rotation of the earth was neglected. That is, when the effects

of the sun's tides upon the rotation of the earth are included, it is found
that the possible initial distance of the moon is not materially diminished,

and that the theory of the jSssion of the earth and moon is still subject to

the serious embarrassment of wide separation immediately after the sup-
posed division into distinct masses.

XV. THE SECULAR ACCELERATION OF THE MOON'S
MEAN MOTION.

As is well known, there is a secular acceleration of the moon's mean
motion of about 4" per century which has not been explained by the ordi-

nary perturbation theory. It was long ago suggested by Delaunay that
it may be due to tidal friction, and Darwin has made an investigation of

the subject in 2, section 14.

If we accept the tidal explanation, the apparent acceleration of 4" is

due to an actual retardation of the moon, the only result possible accord-
ing to (32), and a greater retardation of the rotation of the earth. Since
the rotation of the earth is used to measure time, the period of revolution
of the moon on this basis apparently is accelerated. In making the discua-

sion we shall neglect the effects of Oj, e, I'l, i^ and S.

Let — A^i be the gain in longitude of the moon in a century, and —Av^
the corresponding gain in the angular distance of rotation of a meridian
of the earth. Then we have

Av2-Avi=4"

dP _ 2r. dd _27c Av^ _P^ /\v^

dt d^ dt e^ (lOOPO' 2;r (lOOP')'

dP _ 27C doj _27t AVg _D^ Ar^

dt
~

io^ dt~ (x)^ (lOOP')' ~ 2^ (TOOFP

From these equations and (32) we find

dD PiD^ 4" dP 3TOiP2 4"

(138)

dt 27r(P5-3mJ (lOOP')' dt 27r(P5-3m,) (lOOP')'
(139)

Representing the value of P at < = fo by P^, integrating the second equa-
tion, and determining the constant of integration, we have

The present rate of tidal evolution of the earth-moon system depends
upon the forces acting and upon the physical condition of these bodies.

If we regard the 4" per century of apparent gain in longitude of the moon
JET

as due to tidal evolution, we have a measure of the -3- of equations (32).
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We may use equation (140) to compute the time it— to) corresponding to

any value of P provided the physical condition of the system, and partic-

ularly that of the earth, has not changed sensibly in the mean time. The
data furnished by geology are showing more and more that the earth has

been sensibly in its present state, except for approximately periodic oscil-

lations in its climate, for many millions of years. For the purposes of

computation we shall assume that it has been indefinitely so. While this

assumption is not strictly true, the actual observational data show that it

IS almost certainly much less in error than the assumption, stimulated by
the Laplacian theory of the origin of the earth, that our planet was fluid

in the not very remote past. Remembering the fact that we are assuming

simply that the apparent secular acceleration of the moon's mean motion

is due to tidal friction and that it is a measure of the rate of tidal evolution,

and that we are assuming further that the physical condition of the earth

and moon has not changed in the time covered by our calculations, we find

from (23) that Avhen D = 20 hours the value of P was 24.096 days, and from

(140) that P had this value 220,700,000,000 years ago. If the action of

the sun had been included the interval Avould have been decreased by about

20 per cent. It is impossible to believe that the neglected factors, such as

the eccentricity and inclination of the moon's orbit, could reduce the time

enough to change the order of these results. This computation, which has

the merit of being based quantitatively on actual observations, points very

strongly to the conclusion that tidal evolution is so slow a process that it

can not have played an important role in the earth-moon system, even when
we consider an interval of a billion years.

There is, however, another possibility that may be considered. It is at

least conceivable that there may be unknown forces acting upon the earth-

moon system in such a way that they largely mask the relative secular

tidal acceleration of the moon. Any thing increasing the moon's distance

and period without otherwise disturbing its motion, or any thing acceler-

ating the rotation of the earth, would tend to offset the secular acceleration

produced by tidal friction. The possible secular contraction of the earth

is a factor working in the right direction. But from the numbers obtained

above it follows that, if we are to escape from the conclusion that tidal fric-

tion is now a negligible factor, we must assume that the actual relative tidal

acceleration of the moon is several hundreds of times 4" per century. Sup-

posing the reduction to 4" is due to the acceleration of the rotation of the

earth because of shrinking, it follows that at every epoch in the past the

day and the month were more nearly equal than they would have been

except for this factor. Finally, at the limit at which they were equal,

their common period was many times that computed above, and their

great initial distance fatal to the fission theory. If there are unknown
forces retarding the moon's revolution, the conclusions are the same.
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XVI. SUMMARY.
The object of this investigation has been to examine the theory of tidal

evolution in order to find out, if possible, not what might take place under
certain assumed conditions, but how important this process has been in the

actual development of our system. The aim has been to avoid, as far as

possible, assumptions regarding the uncertain factors depending upon the
physical conditions of the bodies involved. In order to compare the theory
with the actual facts the various methods of testing it have been carried to

quantitative results.

A large part of the discussion has been made to depend upon the com-
ponents of the moment of momentum and upon the energy of the system.

In section II the moment of momentum equations and the energy equation

are developed, and they are perfectly rigorous so long as the two bodies

are subject to no forces except their mutual attraction. Under this con-

dition the three components of moment of momentum are rigorously

constant, and the three equations which express these conditions are fixed

relations among the various quantities which define the dynamical state

of the system. The energy equation is a relation among the same quan-
tities, but unlike the components of the moment of momentum the energy
diminishes by friction. These relations are too few to determine the changes
which will actually take place, but they give important information about
them. They are particularly valuable, for they are true whatever the
physical conditions of the bodies involved.

One of the conclusions reached by Darwin was that it is probable that
the earth and moon have developed from an original mass by fission. One
critical test of this hypothesis is the determination of the smallest distance

at which the bodies could have revolved around each other consistently

with the present moment of momentum and energy. This test has been
worked out quantitatively, first with the problem simplified so that the
conclusions are absolutely certain under the hypotheses; then the effects

of various modifying conditions, which seem more or less probable, have
been examined, one after another, and their influence upon the final result

determined. The results reached are so near the border line separating what
is favorable to the theory from that which is unfavorable, that it is impor-
tant in applying this test to determine accurately the constants upon which
the system depends. One of these is the rotational moment of momentum
of the earth, which depends only upon the law of density of the earth as an
uncertain factor. In section III the constants of the density according to

the Laplacian law are worked out. It is found that according to this law
the density varies from 2.75 at the surface to 10.84 at the center. While this

is probably not an exact expression for the earth's density, the inherent
probabilities as well as the actually observed precessional phenomena lead
us to conclude that it is not sensibly in error for the purposes of this dis-

cussion. By the same law the surface and central densities of the moon are
respectively 1.65 and 6.51,

In section IV the moment of inertia for the Laplacian law of density
is found, and it comes out 0.336 times the mass instead of 0.4 times the
mass, as in the case of a homogeneous body.
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Section V is devoted to a consideration of the problem in which the

two bodies revolve in circular orbits undisturbed by exterior forces, and

in which the rotational moment of momentum and energy of one of the

bodies are so small that they may be neglected, while the axis of rotation of

the other is perpendicular to the plane of the orbit. Although the condi-

tions assumed in this section are not exactly fulfilled in any physical prob-

lem, still they are near enough those prevailing in the earth-moon system to

throw much light on what may possibly have taken place. But the chief

value of this investigation is that the variables are so few that the results

are precise, except as to the time rate at which the possible changes will

take place. The thing of greatest interest is that the rates of change of

revolution and rotation are proportional to the rate of the loss of energy

through friction, and are not directly dependent upon the phases and

lags of the tides or the surface peculiarities of the tidally distorted body.

These results show that, so far as the hypotheses upon which they are

founded apply to the earth-moon system, if we could from the direct tidal

observations calculate the rate of loss of energy in tides raised by the moon

upon the earth, then we could compute the rate of tidal evolution at the

present time. While this problem undoubtedly presents serious difficulties,

they are not more formidable than those of assigning to the earth a physical

constitution which shall agree reasonably with the truth.

Assuming that friction is proportional to the height of the tide and its

velocity relative to the surface of the tidally distorted body, and that the

loss of energy is proportional to the square of the friction, equations are

developed, (33), giving the rates of change of the periods of revolution and

rotation. They involve only one unknown constant depending upon the

physical constitution of the distorted body.

In section VI the equations of section V are applied to the earth-

moon system. The influence of the sun is neglected, later computation

showing that its effects upon the rotation of the earth are now about one-

fifth as great as the moon's. The rotational moment of momentum and

energy of the moon are small because of the small mass of the moon, its

small dimensions, and its slow rotation. Using the numerical data, it is

found that the moon's rotational moment of momentum is less than one

thirty-thousandth that of the earth. Since the eccentricity of the moon's

orbit is small and the cosine of obliquity of the ecliptic not much less than

unity, it is seen that the conditions of this investigation really approxi-

mate rather closely to the actual earth-moon system. It is found that the

month has always been increasing and that it can not pass beyond 47.7

of our present days, at which period the month and day will be equal and

the system move as a rigid body. There is no way of telling by this investi-

gation how long a time will be required for the system to reach that state.

But it is a more interesting fact that the month can never have been less

than 4.93 of our present hours, this being the period of revolution when

the distance from the center of the earth to the center of the moon was

9,194 miles. Consequently we must suppose that when the moon broke

off from the earth it was at this distance from it, or 5,236 miles from its

present surface. Or, including the radius of the moon and supposing that
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both the earth and moon were of the same density and shape as at present,

the distance from the surface of one body to the surface of the other was
immediately after fission 4,155 miles. Since this result is altogether incom-

patible with the obvious implications of the fission theory, we must either

abandon the theory or show that this number would be very largely reduced

by including the effects of the neglected factors. Consequently we examine

the effects of various neglected conditions and influences.

If the earth were rotating in 4.93 of our present hours it must obviously

have been very oblate instead of spherical as was assumed in the computa-

tion. In the absence of certain knowledge we may assume that its equa-

torial radius reached out to the surface of the moon when the distance of

its center was 9,194 miles, that the oblateness was such that the volume
was the same as at present, and that the law of density was such that its

rotational moment of momentum was the same as it would have been if

it were spherical and the Laplacian law of density prevailed. We find

that under these hypotheses the polar radius would have been only 942

miles. A scale drawing shows that this oblateness is out of the question,

and a little consideration shows that the equatorial zone must have been

60 rare as to make it impossible to account for the mass of the moon.

If we waive the condition that for a given period of rotation the law

of density was such as to keep the rotational moment of momentum the

same as when the body was supposed to be a sphere, we shall have to sup-

pose the moment of momentum was greater than this in order to get suffi-

cient matter in the periphery to account for the origin of the moon. But
this supposition leads to the conclusion that the nearest possible distance

of the moon was greater than the 9,194 miles found before.

Another hypothesis is that the earth was initially larger than at present,

and has shrunk to its present dimensions as it cooled. It was found in this

case also that the initial distance of the moon must have been greater than

the 9,194 miles found on the original hypothesis.

An examination was made of the hypothesis that the earth originally

had a radius of 9,194 miles and a density such as to keep its moment of

momentum the same as if it were of its present size. It was supposed the

density varied according to the Laplacian law and the constants of the law

were worked out by the conditions of the hypotheses. It turned out that

the density of the surface must have been negative, a result having no

physical interpretation and proving the falsity of at least one of the hypoth-

eses upon which the computations were made.
In sections VII and VIII the problem was treated without neglecting

the rotational moment of momentum and energy of the moon, but keeping

the earth and moon spherical. It turned out that the initial distance of the

earth and moon could not have been less than 9,200 miles. That is, when
this factor is included the result becomes less favorable to the fission theory

than when it was omitted.

Then in sections X and XI the hypothesis was made that the moon's
rotational moment of momentum and energy may be neglected, but the

eccentricity of the moon's orbit was given the value assigned by observa-

tions. It was found under these hypotheses that the initial distance of the
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moon could not have been less than 9,214 miles, a result more unfavorable

to the fission theory than that obtained when the eccentricity of the moon's

orbit was neglected.

In sections XII and XIII it was assumed that the rotational moment

of momentum and energy of the moon and eccentricity of the moon's

orbit may be neglected, but the incHnation of the plane of the earth's

equator to the plane of the moon's orbit was taken into account. Under

these hypotheses it was found that the initial distance of the moon could

not have been less than 9,364 miles, a result more unfavorable to the fission

theory than any of those heretofore derived.

All of the factors initially neglected and later taken up one by one

have made the initial distance greater than the originally computed 9,194

miles. Obviously all of them combined would operate in the same direction.

Since they only increase a difficulty which was in the first place serious, it

is not necessary to go to numerical results for all of them combined.

The factors which remain to be considered in attempting to test the

fission theory by computing the initial distance of the moon are^ the sun's

perturbations of the moon's orbit and its effect upon the rotation of the

earth. The first part of section XIII is devoted to a discussion of the direct

action of the sun upon the moon's orbit, and it is shown there that includ-

ing this influence alone the initial distance of the moon could not have been

less than 9,206 miles, which is somewhat greater than that found when the

sun's action was neglected.

The second part of section XIII treats the relative retardative effects

of the sun upon the rotation of the earth. The magnitude of the tide-

raising force of the sun compared to that of the moon can easily be com-

puted. Other things being equal there are good grounds for assuming that

the rate of tidal evolution is proportional to the square of the tide-raising

force. The friction depends also upon the speeds of the tidal waves with

respect to the earth's surface. At the present time the speeds of the moon's

and the sun's tides are about equal, but if we trace the system back until

the month and day were approximately equal this relation is no longer

approximately verified. We must resort, therefore, to some specific assump-

tion as to the way in which tidal friction depends upon the speeds of the

tides over the surface of the earth. The assumption was made that friction

is proportional to the first power of the velocity, and therefore that the

loss of energy is proportional to the second power of the velocity. It is

practically certain that this assumption will give results which are sensibly

true. Using this hypothesis and supposing that the rotational moment

of momentum and energy of the moon, the eccentricity of the moon's

orbit, the inclination of the plane of the earth's equator to the plane of

the moon's orbit, and the direct action of the sun on the moon's orbit may

all be neglected, it was found that the initial distance of the moon was

reduced from 9,194 miles to 9,045 miles. Thus it is seen that the one

factor which makes the moon's initial distance less than that found in the

first computation is not only of no particular consequence, but also that

it is less than some of the factors which increase it. Using all those factors

whose effects have been computed when they have been supposed to act
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separately, and supposing that they would be essentially the same when
acting jointly, we find that the smallest possible distance of the moon
compatible with present conditions is 9,241 miles. Fig. 16 shows the earth

and moon and their initial distance to scale, and obviously one would need
extremely strong confirmatory evidence to convince him that the moon had
just broken off from the earth. The distance from the surface of the earth

to the surface of the moon is 4,201 miles, or 243 miles greater than the

radius of the earth.

As a concession to the theory, we may assume that the earth and moon
have separated by fission so that their periods of rotation and revolution

are precisely equal, and then inquire whether the present system could

develop from it. If the original orbit were exactly circular the orbit would
always remain circular. Since the moon's orbit now has considerable

eccentricity it follows that we must assume that the orbit immediately
after separation was somewhat eccentric. But since the rotations would
be sensibly uniform while the revolution would be such as to fulfil the law

\

FiQ. 16.

of areas, there would be relative motion of the various parts and therefore

tidal evolution. The question whether this friction would drive the moon
farther from the earth or bring it back and precipitate it again upon the

earth is treated in section X, and it is found there, under the assumption
that the loss of energy is proportional to the square of the tide-raising

force and the square of the velocity of the tide along the surface of the

earth, that the tides would bring the moon again to the earth. Thus, unless

some of the neglected factors can offset this result, the direct implications

of the theory destroy it, and it may be noted here that these remarks apply
with equal force to the hypothesis that the binary stars have originated

by fission and that their present distances from each other and the eccen-

tricities of their orbits are a result of tidal friction.

If we neglect the rotational moment of momentum and energy of the
moon, the eccentricity of the moon's orbit, and the inclination of the plane of

the earth's equator to the plane of the moon's orbit, then it is certain, as was
shown in sections V and VI, that tidal friction will at the present time
lengthen both the day and the month, but at such relative rates that the
number of days in a month will decrease. Consequently if time be measured
by the rotation of the earth the moon will continually get ahead of its place,

9
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as predicted by the gravitational theory neglecting tidal evolution. This

relative gain in longitude, if established by observations, will give us the

measure of the rate of tidal evolution at the present time, and we can safely

apply it, by properly varying the factors depending upon the moon's dis-

tance, over any interval during which the physical condition of the earth

has been essentially as it is at present. Since the geological data go to show

that the physical state of the earth has been about as it is now for many
tens of millions of years, and do not give certain evidences of any radically

different general physical conditions, we are perhaps justified in boldly

applying results based on the present rate of gain of the moon for a very

long interval of time.

It is well known that a comparison of ancient and modern eclipses shows

that the moon has an acceleration in longitude of about 4" per century

which is not explained by perturbations. Let us assume that this is due

to tidal friction and is the measure of it at the present time. At this rate

it will take over 30,000,000 years for the moon to gain one revolution.

Consequently we see without any computation that it must have been an

extremely long time in the past when its period was a small fraction of its

present period.

The problem was treated in section XV, and it was found there that, if

the physical condition of the earth has been essentially constant, the length

of the day was 20 of our present hours, and of the month, 24 of our present

days not less than 220,000,000,000 years ago. It is extremely improbable

that the neglected factors, such as the eccentricity of the moon's orbit,

could change these figures enough to be of any consequence. This remark-

able result has the great merit of resting upon but few assumptions and

in depending for its quantitative character upon the actual observations.

If it is accepted as being correct as to its general order, it shows that tidal

evolution has not affected the rotation of the earth much in the period

during which the earth has heretofore been supposed to have existed even

by those who have been most extravagant in their demands for time.

And if one does not accept these results as to their general quantitative

order, he faces the embarrassing problem of bringing his ideas into harmony

with the observations.

If tidal friction has been an important factor in the evolution of the

earth-moon system, then presumably it has also been an important factor

somewhere else in the universe. Certainly one would expect to find the

theory encountering no difficulties in the case of any other planet. But

the place where it has been appHed most is in the orbits of the binary stars,

which have been supposed to have become binaries through fission and

to have become widely separated as a consequence of tidal evolution. The

first difficulty is, as has been pointed out, that there must have been an

initial eccentricity of the relative orbit, and this eccentricity would cause

the bodies to reunite as a consequence of tidal friction. But there is another

important difficulty, as was explained in section IX. If we suppose the

binary to be composed of two equal suns moving just after separation

as a rigid body, and if we waive the effects of the eccentricity for the sake

of the argument, we find that there is a maximum distance to which the
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bodies can be driven from each other as a consequence of tidal friction,

this maximum distance corresponding to a minimum of energy, and that

this maximum distance is not many times greater than the distance im-

mediately after separation. In particular, when the equations were applied

to two stars each equal in mass and dimensions to the sun at an initial

distance between centers of 866,000 miles, it was found, on the basis of

conclusive reasoning, that the greatest distance possible as a result of tidal

evolution would be only 1,042,400 miles. These results, which were ob-

tained under the hypothesis that the stars suffered no shrinkage with loss

of heat, were not radically modified when they were supposed to shrink to

any extent whatever. The conclusion is that the widely separated binaries

which our telescopes reveal to us can not have originated by fission, at least

from masses condensed beyond the nebulous stage.*

In a word, the quantitative results obtained in this paper are on the whole

strongly adverse to the theory that the earth and moon have developed

by fission from an original mass, and that tidal friction has been an impor-

tant factor in their evolution. Indeed, they are so uniformly contradictory

to its implications as to bring it into serious question, if not to compel us

to cease to consider it as even a possibility.

1 This of course refers only to spontaneous fission without the accession of moment of

momentum from some outside body.
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NOTES ON THE POSSIBILITY OF FISSION OF A

CONTRACTING ROTATING FLUID MASS.

I. INTRODUCTION.

In the speculations on cosmogony there are two fairly definite hypoth-

eses as to the manner in which a single body may give rise to two or more

distinct masses without the intervention of external agencies. The first, as

outlined by Laplace, is that possibly a rotating fluid may abandon an equa-

torial ring, which will subsequently be brought by its self-gravitation into an

approximately spherical mass. The second, the fission theory, had its rise

in Darwin's researches on tidal evolution, and in his speculations on the

origin of the moon. It has found extensive application in attempts at

explaining the great abundance of binary stars.

The hypothesis of Laplace has the support of no observational evidence,

unless we regard the rings of Saturn as such, and rests upon no well-elab-

orated theory. On the contrary, there are well-known considerations of the

moment of momentum of our system which compel us to reject it as being

an unsatisfactory hypothesis for the explanation of the development of the

planets. But the fission theory of Darwin, even if the origin of the moon is

left aside as being doubtful, has strong claims for attention because of its

immediate application to explaining the origin of spectroscopic and visual

binaries and certain classes of variable stars. Besides, it is in a general way
confirmed by the investigations of Maclaurin, Jacobi, Kelvin, Poincare, and

Darwin on the figures of equilibrium of rotating homogeneous fluids, and on

their stabiUties. In particular, considering a series of homogeneous fluid

masses of the same density but of different rates of rotation it is shown that

there is a continuous series of figures of stable equilibrium beginning with

the sphere for zero rate of rotation; then, with increasing rotation, passing

along a line of oblate spheroids until a certain rate of rotation is reached;

then, with decreasing rate of rotation but with increasing moment of

momentum, branching to a series of ellipsoids with three unequal axes, and

continuing until a certain elongation is reached; and finally, at this point,

branching to a series of so-called pear-shaped figures. It has been con-

jectured that if it were possible to follow the pear-shaped figures sufficiently

far, it would be found that they would eventually reach a point where they

would separate into two distinct masses. From this line of reasoning it has

been regarded as probable that celestial masses, through loss of heat and

consequent contraction, do break up in this way often enough to make the

process an important one in cosmogony.

Aside from the unanswered question as to what form the pear-shaped

figures finally lead, there are two reasons for being cautious in accepting the

conclusions. One is that the celestial masses are by no means homogene-
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ous. When they have reached, or are in, that condition of steady motion of

slow rotation postulated in the investigation, they are undoubtedly always

strongly condensed toward their centers. The other, and probably more

important, one is that isolated celestial masses do not change their rates of

rotation except when they change their densities or distribution of densi-

ties. While the theoretical discussions to which reference has been made
regard the rate of rotation as the single variable parameter, in the actual

case there is a corresponding change in density. The importance of not

neglecting the latter is easily seen.

Consider a slowly rotating homogeneous fluid having the form of a nearly

spherical oblate spheroid. The eccentricity of a meridian section depends
2

upon the quantity ^ , 2 , where a» is the angular rate of rotation, k^ the

gravitational constant, and a the density of the mass. The eccentricity of

the axial section increases with the increase of this function, provided it does

not go beyond a certain maximum. Now suppose the mass contracts in such

a way as to remain homogeneous throughout, and so that it continues to

rotate as a solid spheroid of equilibrium. Because the moment of momentum
of an isolated mass is constant, the contraction implies an increase in a>, and

therefore, as far as this factor alone is concerned, an increase in the oblate-

ness of the mass. But the contraction also implies an increase in a, and

therefore, so far as this factor alone is concerned, a decrease in the oblate-

ness of the mass. That is, keeping the moment of momentum constant, as

the dynamical situation requires, we find the eccentricity acted upon by

two opposing factors. If, under the influence of these factors, the figure

should become less oblate, the fission theory would get no support from the

discussion; if it should get more oblate, the question is at what rate the

mass must rotate and to what extent the contraction must proceed before

there is a possibility of fission. This paper will be devoted to a brief discus-

sion of these questions.
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II. THE ELLIPSOIDAL FIGURES OF EQUILIBRIUM OF
ROTATING HOMOGENEOUS FLUIDS.

For the applications which follow it will be necessary to review briefly

the facts regarding the spheroidal and ellipsoidal figures of equilibrium and
their conditions of stability. 2

Maclaurin* has shown that for very small values of „ ,., there are

two ellipsoids of revolution which are figures of equilibrium, one of them
being nearly spherical and the other very oblate, the limits for a» = being
respectively the sphere and infinite plane. For greater values of this quan-
tity, the figure corresponding to the former is more oblate and that corre-

sponding to the latter is less oblate. For ^ 72 =0.22467 . . . the two
2 Ztzk a

figures are identical. For
^ p > 0.22467 . . . there is no ellipsoid of

revolution which is a figure of equilibrium.
2

Jacobi has shown^ that if
^ ^ < 0.18709 . . . there is an ellipsoid of

three unequal axes satisfying the conditions for equilibrium. When this

quantity is very small, the axis of rotation and one other are very short and
nearly equal to each other, while the third is relatively very long. With
greater values of this quantity the shorter axes are longer and the longest

axis IS shorter. For
^ ^ =0.18709 . . . the figure becomes an ellipsoid

of revolution and is identical with the more nearly spherical Maclaurin
2

spheroid. For ^ ,, > 0.18709 . . . the Jacobian ellipsoids of revolution

do not exist. 2
(jj

In the case of the Maclaurin spheroids the relation between ^ ,3 and

the eccentricity, e, of an axial section is given by the well-known equation^

ay"

27:k

where
e

-=-^|-^^^tan-i.l-3| =<P(X) (1)

;=
e^^Jl-i

It follows from these equations that for /I = we have

^W^O M0=0 e= iA = l ^=1^ =
dA de de d/. de

and that for ^= cc we have

^(^)=0 e = l ^^"^

' Treatise on Fluxions, Edinburgh, 1742.
' Letter to the French Academy, 1834.
^Tisserand, Mecanique Celeste, 2, Chap. VI.
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dm
It is well known that -^V'^ passes through zero but once between .^ = and

>l= 00. Hence we may represent in figure 17 the facts so far enunciated.

As 0) starts from zero and increases, there is a series of figures of equilibrium

starting from and another from P, the two series coinciding and vanishing

at the point a.

Fig. 17.

We may also indicate the existence of the Jacobian ellipsoids of equi-

librium on this figure, without, however, being able to define completely

their shape by a single point on a curve. Let us represent the eccentricities

of the sections made by planes passing through the axis of rotation and each

of the other two axes of the ellipsoid by abscissas in figure 17. The Jacobian

ellipsoids branch from the Maclaurin spheroids at h. For a given value of

the corresponding point on the curve be gives the eccentricity of the

section through the longest axis and the axis of rotation, while the cor-

responding point on hd gives the eccentricity of the section through the

remaining axis and the axis of rotation. These two points together com-

pletely define the shape of the ellipsoid.

However, we shall regard the two series of ellipsoids he and hd as dis-

tinct, the properties indicated by a point on either of them being sufficient,

when taken with certain equations of relation not represented on the dia-

gram, completely to define the figure. That is, each curve of the whole

diagram will be regarded as carrying with it a certain set of equations which

serve to complete the definition of the shape of the figure of equilibrium

corresponding to each of its points. Thus, OaP carries with it the equation

which says that the eccentricity of every plane section through the axis is e.



ELLIPSOIDAL FIGURES OP EQUILIBRIUM. 141

The equations associated with db state that the figure is an eUipsoid, and

relate the eccentricity given by the point of this curve with the eccentricity

of the other principal section by means of elliptic integrals.* From this point

of view the figures corresponding to points on the curve bd are quite dis-

tinct from those on be, and it is regarded simply as an interesting fact that

they are the same in shape and differ only by their orientation in space. For

sufficiently small w there are two figures of this kind. When (o increases

= 0.18709 . . . they become identical with each other andso that
w

27:/cV

with the Maclaurin spheroid and vanish at this point.

Figure 18 is a scale drawing of an axial section of the Maclaurin spheroid

corresponding to the point b of figure 17, and is therefore the figure from
which the Jacobian ellipsoids branch. The eccentricity of its axial section

is 0.813, or more than twice that of Saturn. In fact, there is no known
celestial mass condensed beyond the nebulous state which approaches the

oblateness of this theoretical figure of equilibrium.

' Tisserand, M^canique Celeste, 2, Chap. VII.
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III. POINCARE'S THEOREMS RESPECTING FORMS OF
BIFURCATION AND EXCHANGE OF STABILITIES.

In a memoir^ remarkable for its powerful methods and important results,

Poincare has proved the existence of an infinite number of other forms of

equilibrium. He considered the equations for equihbrium as functions of the

parameter w. For a definite value of to, as w = a>o, they have a certain

number of solutions. For example, for -^^<0.22AQ1 there is a solution

on Oa and one on Pa of figure 17. If-^^ < 0.18709 there are also solutions

on he and hd. If for io = io^ two or more solutions unite and do not vanish

as ix) passes through lo^, then the figure of equilibrium corresponding to w^

is a/onn of bifurcation. If after uniting they vanish, the figure is a limit

form. Thus, in figure 17, h belongs to a form of bifurcation, for at this point

the Maclaurin spheroids and Jacobian ellipsoids are identical. The point a

belongs to limit form, fcr at this point the two series of Maclaurin spheroids,

Oa and Pa, unite and vanish. Likewise the point h belongs to a hmit form

for the series hd and he.

Poincare showed in the work cited that there are no forms of bifurcation

corresponding to points on the curve Oh, but that there is an infinite num-

ber of them on haP. He proved also that there is an infinite number of

them on 6c and hd between the point h and the axis co = 0. That is, in addi-

tion to the spheroids and ellipsoids of equilibrium an infinite number of

other forms exist. The first one on he is at /, and its deviation from the

Jacobian eUipsoid to the first order of small quantities depends upon the

third zonal harmonic with respect to the greatest axis of the ellipsoid. It

is the pear-shaped figure referred to above. Since it is unsymmetrical with

respect to the axis of rotation, there are really two similar figures, differing

by 180° in orientation, just as the two series of Jacobian ellipsoids differ by

90° in orientation. There is of course a precisely similar series on hd.

If two real series of figures of equilibrium, A and B, cross, and if before

crossing A is stable and B unstable, then after crossing A is unstable and B

has at least one degree less of instability. Poincare has also proved an en-

tirely similar theorem in periodic solutions of the problem of three bodies.=*

All the spheroids corresponding to points on the curve Ob of figure 17 are

completely and secularly stable. At h the spheroids lose their stability but

the branching Jacobian ellipsoids are stable. They remain stable until /is

reached. It is an interesting question whether the pear-shaped figures are

stable or unstable. Poincare threw the determination of the answer to the

question into a form capable of numerical treatment,^ and Darwin has

made an elaborate and detailed discussion of it." The rigorous answer turns

» Sur r^quilibre d'une masse fluide anim^e d'un mouvement de rotation. <Acta Mathe-

matica, 7, 1885, 259-380.
, , „, . ^.-1.0 qa? qaq

2 Les M6thodes Nouvelles de la Mecamque Celeste, 3, pp. 347-349.

3 Sur la stabilite de I'equilibre des figures pyriformes affect^es par une masse flmde en

rotation.<Phil. Trans., A, 198 (1902), pp. 333-373.
, v -^

*The stability of the pear-shaped figure of equilibrium of a rotating mass of liquid.

<Phil. Trans., A, 200 (1903), pp. 251-314.
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on the numerical value of the sum of an infinite series; and from a compu-
tation of its first terms Darwin regards it as certain, though not algebrai-

cally proved, that the pear-shaped figure is stable. However, Liapounofif

has stated^ that these figures are unstable. If so, the line of completely-

stable figures terminates at this point, and as soon as a body has passed be-

yond it a slight disturbance will cause it to undergo radical changes of form
and perhaps break into many fragments. Even if the pear-shaped figures

are at first stable, they may become unstable as well as all figures which
branch from them long before fission occurs. Indeed, this now seems prob-

able, for Darwin has found,^ in a memoir on the figure and stability of a

liquid satellite, that a satellite loses its stability before it can be brought
near enough to its primary to coalesce with it.

Consequently if a slightly viscous fluid mass were originally turning

slowly and had the form of a stable Maclaurin spheroid of equilibrium, and
if in some way greater and greater rates of rotation were gradually impressed
upon it without violently disturbing its figure, then we should see the series

of changes in its shape described by a point moving along the curve Ob to

the point b, then branching on to the line be of stable forms, again branching

at/, if the pear-shaped figures are stable, and continuing along lines of stable

figures until they terminate or until fission takes place. At any rate there

is no possible chance of fission until the change of shape has passed beyond
b, for up to this point there is secular stability and no branching. In fact,

we may feel assured that it can not occur until the shape of the mass has

passed at least to /. In order that we may see to what a remarkable extent

a rotating homogeneous fluid must depart from sphericity before there is a

possibility of fission starting, we give in figure 19 the most oblate section

Fig. 19.

of the ellipsoid belonging to the point/. Darwin has shown^ that its eccen-

tricity is 6 = 0.9386. The eccentricity of the other principal section through
the axis of rotation is e' = 0.6021, and the eccentricity of the principal section

perpendicular to the axis of rotation is e" = 0.9018.

* Acad. Imp. des Sci. de St. P^tersbourg, 17, No. 3 (1905).
2 Phil. Trans., A, 206 (1906), pp. 161-248.
^ On the pear-shaped figure of equiUbrium of a rotating mass of liquid. < Phil. Trans., A,

198 (1902), pp. 301-331.
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The points of bifurcation and conditions of stability or instability depend

only upon the shape of the figures, while the shapes of the figures in the va-

0?
rious series depend only upon the values of

^^-^^^
. Consequently if a rotat-

ing homogeneous fluid body contracts in such a way as to remain always

homogeneous, its shape and condition as to stability are determined by this

function throughout the whole series of changes.
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IV. FIGURES OF EQUILIBRIUM OF ROTATING
HETEROGENEOUS FLUIDS.

We now enter a field beset with formidable difficulties and in which

there are but few positive results. We shall consider masses which are

possessed of slow rotation, which grow continually denser toward their

centers, and which are approximately spherical in form. To simplify the

problem we may suppose first that we have under consideration a body
composed of a number of incompressible fluids of different densities, arranged

in order of increasing density from the surface to the center. This hypoth-

esis more nearly agrees with the conditions found in nature than that of

homogeneity does, and the results obtained under it may be taken as throw-

ing light on the actual problems.

Clairaut has shown* that such a body as we are considering will always

be less oblate than it would if its mass were uniformly distributed through-

out its volume. This is easy to see in considering the limiting case of a

dense nucleus surrounded by a homogeneous atmosphere of vanishing mass.

That this result may be legitimately applied to the celestial bodies is proved

by the fact that the earth, Jupiter, and Saturn are all less oblate than they

would be if they were homogeneous and rotating at their respective rates.

It is an interesting and important fact that the differences in oblateness

of these planets and the corresponding homogeneous figures of equilibrium

are greater the smaller the mean density. That is, if a low mean density

means the mass is largely gaseous and compressible, we may conclude that

the more a body is condensed toward its center the less oblate it will be for

a given rate of rotation. The facts for the earth, Jupiter, and Saturn are

given in the following table, where e has been computed from equation (1).
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6;2

For £ = and ^ ,; < 0.22467 . . . certain solutions are represented by

points on the curves of figure 17. Suppose for co = coq the solution a;i= x/'>^

is not a multiple solution. The F^ depend upon the gravitational potential

and the rotational energy, and are continuous functions of e. Consequently

the roots of (3) vary continuously with s, and we may represent their solu-

tion by a point in figure 17 in the plane £ = £, where as before, each linear

series with respect to a parameter, as ^ , ; or e, carries with it a set of

relations which completely defines the shape of the figure of equilibrium.

If w = a»o and e = belong to a multiple solution of (3) there is an o) near

(jJq such that for £ = e equations (3) have also a multiple solution. By this

process the curves of figure 17 become surfaces to ^every point of which

belongs a figure of equiUbrium. If in this figure e is set equal to a small

constant a new set of curves will be obtained in a general way similar to

the old, and possessing maxima and points of bifurcation. In general the

greater e the greater will be their deviation from the forms of the curves

in figure 17.

Now consider the question of stabihty. The necessary and sufiicient

condition for complete and secular stability of the figure of equilibrium

is that the total energy shall be a minimum for all variations preserving

constant moment of momentum.* All the quantities involved in these

conditions are continuous functions of e. Consequently, starting from an

ordinary point in figure 17 whose corresponding figure of equilibrium has

any properties of stability, it is found that the figure obtained by varying £

through a sufficiently small range will have the same properties of stability.

Consider the curves obtained by giving s. a constant value. At certain places

the figures of equilibrium will change the character of their stability ; but as

in the case of £ = 0, treated by Poincar^, wherever the stability changes a

new series of figures branches out. Since the curves for s = e are in the

analytic sense the continuation of those for e = 0, the figures of equilibrium

for £ = £ go through a series of changes of stability entirely analogous to the

changes in the figures for £ = 0. Of course, it is possible that two curves,

Co' and Co", might cross a curve C^ at a single point for £ = 0, and that the

corresponding curves, G/ and CJ', might cross the curve C^ in two distinct

points, or the opposite. For example, there might be such a definition of cr,

that, for a certain value of £, the point corresponding to / of figure 17 would

fall on the point corresponding to 6. However, in the present connection

such exceptional cases are trivial. The point of interest is that for £ =£>0
there is a line of stable figures of equilibrium corresponding to those for

which this parameter is zero.

In general, for £ > 0, the point of bifurcation corresponding to h, figure

17, will not appear for the same value of lo as that belonging to 6. We may
represent these two values of o) by a>« and Wq respectively. The question

of interest in the present connection is which is the greater; or, in other

terms, whether with increasing rotation instability occurs first in the het-

erogeneous or in the homogeneous body. We shall not attempt a positive

1 Thomson and Tait's Natural Phil., Part II, 778, (j) and (fc).
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answer to this question, but in view of the fact that for a given rotation
and mean density the homogeneous body is more oblate than the hetero-
geneous body, we are justified in concluding that probably instability first

appears in the figures of equilibrium for e = 0.

Now consider the case of a heterogeneous compressible rotating fluid.

The preceding remarks pertaining to the existence of the figures of equi-
Hbrium still hold, though all the explicit defining equations are immensely
more complicated. But the question of stabihty has a new element in it.

As Jeans has shown in an important memoir,* gravitation itself becomes a
source of instability. It is easy to see that if for any reason there is a local
condensation in a compressible fluid, gravitation will tend to augment this

condensation. On the other hand, the elastic forces called into play tend to
destroy the condensation. The two kinds of forces are in conflict, and the
state of stability depends upon which will predominate when the equilibrium
is disturbed. Jeans showed that an infinitely extended nebula, of density
such that it possesses the properties of gases, is in unstable equiUbrium
independently of its mean temperature and density. That is, in this case it

is possible to introduce such local variations in density that the decrease in

gravitational potential energy shall more than balance the increase in the
potential energy of the elastic forces.

There are as yet no quantitative results by means of which we may
measure the importance of this factor of instability. It is true that Jeans ^

and Love * have proved the stabihty of the earth under certain assumptions,
but in view of its present existence, notwithstanding the many vicissitudes
which it has survived, this result may be taken as reflecting favorably upon
the method employed in obtaining it, rather than assuring us of the perma-
nency of our planet. In the absence of positive quantitative results we are
able to make only more or less probable hypotheses as to the importance
of this factor.

There are seen to be two opposing factors entering into the question of
stability of heterogeneous compressible masses. As compared with homo-
geneous incompressible masses, the central condensation tends strongly
toward sphericity, as is shown both by theory and by the observed shape of
the sun and planets, and therefore presumably toward stability. But the
compressibility tends toward instability for local deformations and altera-

tions in density. We shall assume as appearing reasonable that in bodies
having strong central condensations and continuous changes in density these
two opposing factors approximately balance. To the extent to which this

assumption is justified, we may draw conclusions in regard to the actual
celestial bodies from what is known regarding the forms and stabiHties of
homogeneous fluids. For the purposes of additional safety in this procedure
we shall keep far from the conditions of possible disruption in the applica-
tions which follow.

* The stability of a spherical nebula. <Phil. Trans., A, 199 (1902), pp. 1-53.
' On the vibrations and stabihty of a gravitating planet. < Phil. Trans., A, 201 (1903),

pp. 157-184.
» The gravitational stability of the earth. <Phil. Trans., A, 207 (1908), pp. 171-241.

10
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V. THE EQUATIONS OF EQUILIBRIUM FOR CONSTANT
MOMENT OF MOMENTUM.

Equation (1) is the relation connecting the shape of the Maclaurin

spheroid, its density, and its rate of rotation. Let m represent its mass, a

its polar radius, and M its moment of momentum. Then we have

m= |;ra3(l+P)<T (4)

M = fma2(l+/l> (5)

Eliminating oj and a between equations (1), (4), and (5), we have

-2Kfc>^l_,S =ii+^ \ -X- tan-U-3 \ (6)
Qk^m^ [(?+i!)tan-U-3J

For a homogeneous body of given mass and moment of momentum, this is

a relation between the density and oblateness which must always be satis-

fied so long as the figure is a spheroid. It is easily verified that -tt^ is

positive for all real values of X, from which it follows that when the left

member of the equation is given there is but a single real solution for P.

The Jacobian ellipsoids are defined by the equations^

-/}

Jo

(7)

(8)

where the axes of the ellipsoid are a, b, and c, and

Equation (7) defines the relation between X and ^' which must be satisfied

io'
^

by these figures of equilibrium, and equation (8) expresses — in terms of

X' and A'^
"

The equations corresponding to (4) and (5) are in this case

w=|;ra3^1+P-^l+ra M=^i2 + X' + X'')(o (9)

By means of these relations, equation (8) reduces to

25(|;r)iM^ _ (2+X^ +n f^ C^d-C^X qO)

c/

Now we may write (7) and (10) respectively

d(X,X')=0 <p{X,X')=Ka'- (11)

* Tisserand's M(5canique Celeste, 2, Cliap. VII.
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where K is a constant depending upon m and M. From these equations we
have

dd

dX
dl >'=»

Then we find

dX =
1 K dd

3J o^ dX'
da ^r=+.^4^^.

3J a^ dX
(12)

where

J =
dX dX'

d<pw
Since X and X' enter d and (p symmetrically, it follows that when the

ellipsoid branches from the Maclaurin spheroid, i.e., when X = X\ we have
dd dd

,

JX^W' "^^^^^^ ^^ *^^ ellipsoid branches from the spheroid because of

increasing density, the eccentricity of one principal axial section increases
while that of the other decreases. This continues indefinitelv unless either

~dX
^^

'dX'
^^^^'^^^' which IS extremely unlikely. This means the figure

tends to become cigar-shaped. At a certain elongation (see figure 19) the
so-called pear-shaped figure branches. Certainly in homogeneous masses
there can be no fission before this elongation, with its corresponding den-
sity, is attained.
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VI. APPLICATIONS TO THE SOLAR SYSTEM.

In applying the formulas above to the solar system we must remember
that they are strictly valid only when the masses are homogeneous. Now
the sun and planets are certainly not homogeneous, but we have seen reasons

for believing that nevertheless the formulas will give results which are not

remote from the truth. But, because of this uncertainty, in the applica-

tions which follow we shall not attempt to draw conclusions except where

the margin of safety is extremely great.

Let us consider first the sun. We shall find its density for various de-

grees of oblateness, and its oblateness for a certain very high density.^ Re-

ferring to (6) we see that the greater the moment of momentum of a body
the less dense it will be for a given oblateness, and the more oblate it will be

for a given density. Consequently we shall be favoring the conclusion

that the sun will eventually suffer fission if we use too large a value of M.
The moment of momentum is most easily computed if we suppose the sun

is homogeneous, and the result obtained in this way will certainly be in

excess of the true value.

Using the mean solar day, the mean distance from the earth to the sun,

and the mass of the sun, as the units of time, distance, and mass respec-

tively, we find that the density of water is

<7water=l>567,500.

Taking the sun's density as 1.41 on the water standard, its period of rota-

tion as 25.3 days, and its radius as 433,000 miles, we find for its moment of

momentum 216

Now we may apply equation (6) to find how dense the sun will be before

the Jacobian ellipsoids branch off. It is hardly possible that the sun could

suffer fission before this point is reached, the shape of the spheroid being

given in figure 19. The computation shows that when the sun shall have

reached this degree of oblateness its density will be

<7 = 307 X 10" on the water standard.

This density corresponds to an equatorial radius of the sun of 11 miles.

Since this density is millions of times greater than it is supposed matter

ever attains under any circumstances, we must conclude that the oblate-

ness of the sun can never approach that for which the Jacobian figures of

equilibrium branch. Or, in brief, the sun can never contract so much that

its rotation will threaten it with disruption.

Notwithstanding the extreme character of these figures, one might still

be so ultra-skeptical as to doubt the conclusion, since it is based on the com-

putation of the point of bifurcation for homogeneous masses. However

that may be, we must admit that the sun will be stable until its oblateness

reaches that of Saturn at present. We have seen that the eccentricity of a

* Strictly speaking the computations are made for homogeneous bodies of the same
mass and having the same moment of momentum, but no confusion will result from this

mode of expression.
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meridian section of a homogeneous fluid having the mass and the mean
density of Saturn, and rotating in its period, would be 0.607. Since the
constitution of the sun is in a general way like that of Saturn, it will have
the oblateness of Saturn about when the section of the corresponding
homogeneous mass has this eccentricity. Making the computation from
equation (6) we find that the sun will not become so oblate as Saturn is now
until its mean density becomes 148 X 10^° on the water standard. This cor-

responds to a radius of 37.3 miles. If we may regard this as an impossibly
large density we may conclude that the sun will never be so oblate as Saturn
is now, and that its stabiHty will always be greater than that of Saturn at
present.

Apparently the chances that Saturn will separate into two parts because
of shrinking and rapid rotation are greater than that any other member of

the solar system will ever suffer fission. To examine the probabilities we
shall apply equations (4), (5), and (6) to Saturn. Taking the density, mass,
and period of rotation as 0.72, 37V2J and 10.25 hours respectively, and com-
puting the moment of momentum under the hypothesis that Saturn is now
a homogeneous sphere, in order to give the theory that fission is possible all

the benefits of the approximations, we find that when Saturn shall have an
oblateness equal to that of the spheroids from which the Jacobian ellipsoids

branch, its density will be 21 times that of water, its axial diameter 16,500
miles, its equatorial diameter 28,400 miles, and its period of rotation 1 hr.

24 m. The high mean density demanded seems to be fatal to the theory of

fission in this case.

In order to see how great changes in the density, dimensions, and period

the body will undergo by the time it reaches the state where the pear-

shaped figures branch, we may apply equations (7), (9), and (10) to Saturn.

Darwin has made the computations^ from equations equivalent to (7) and
(8), and has found that for this point

/I = 0.7544 A' = 2.7206 2^^ = ^.1420

Then equations (9) show that at this stage the mean density of Saturn
must be 93 on the water standard, its polar diameter 9,400 miles, its longest

diameter 27,000 miles, and its period of rotation 46 minutes. That is, the

mass is about four and one-half times as dense when the pear-shaped figures

branch as when the Jacobian ellipsoids branch. While the computation
was apphed to Saturn, it follows from equations (6) and (10) that this same
ratio for the densities at these critical forms is true, whatever the mass and
moment of momentum of the body under consideration.

The density which the earth will attain before it will reach one of the

critical forms is so great that the computation is without interest. But we
may examine the hypothesis that the earth and moon were originally joined

in one mass whose rapid rotation produced instability, and that resulting

fission gave rise to two bodies having great stability. It is to be observed

in the first place that the moment of momentum of the earth-moon system
has remained constant except for influences exterior to itself. There is none

^ Phil. Trans., A, 198 (1902), p. 326.
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readily assignable which could have increased it. Among those which may
have decreased it apparently the solar tidal friction is the only one which

can have produced sensible results.

The effect of the moon's tides in the earth has been to transfer moment
of momentum from the earth to the moon. According to the results given

in the preceding paper on tidal evolution, section XIV, the maximum
moment of momentum the earth-moon system could have had, including all

that the sun could have taken from it, is that belonging to the system mov-
ing as a rigid mass with a period of 4.8 hrs. Let P represent this common
period. Then, neglecting the inclinations of the planes of the equators of

the earth and moon to the plane of their orbit and the possible eccentricity

of their orbit, factors which reduce the moment of momentum, we have by
equation (6), loc. cit.,

{2tz) -^ {nil + ^2)

'

"
Jr

The quantities c^ and Cj depend upon the distribution of mass through-

out Wi and m^, m^ representing the earth, and Wj the moon. If the masses

are homogeneous 0^ = 0^ = A. If they obey the Laplacian law of density

Cj = C2 = 0.336. If the distribution of mass is such that the densities increase

from the surfaces to the centers of these bodies, the values of c^ and c^ are

less than 0.4. We shall certainly get too large a value for M by putting

Ci = C2 = 0.4. Adopting these values we find that for the earth-moon system,

in the units of this paper, ilf = 8X10~".
Since large moment of momentum tends to instability we shall favor the

theory of fission if we add 25 per cent to this number, supposing that per-

haps this amount may have been lost through meteoric or other friction.

Then, using ilf =10-^^ and m = 3 X 10~^ equation (6) gives for this united

earth-moon mass at the time when the Jacobian ellipsoid branched a mean
density 215 times that of water. We find similarly that this hypothetical

earth-moon mass could not become even so oblate as Saturn is now until

its density had become 10.4 times that of water. Since the present density

of the earth is only 5.53, this means that if the hypotheses upon which this

computation was made are valid, the earth-moon s)^stem can not have arisen

from the fission of a parent mass under the influence of rapid rotation.

In the preceding paper, starting with the earth-moon system as it now
exists and following backward in time the effects of tidal friction, it was not

possible to get the earth and moon in close enough proximity to make the

fission theory seem possible. Now, starting with the supposed initial sys-

tem with the critical factor, the moment of momentum, determined from

observations, we do not find the figure approaching an unstable form until

the density is more than 40 times the present density of the earth.
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VII. APPLICATION TO BINARY STARS.

Direct telescopic observations prove the existence of very many binary

stars. According to Hussey and Aitken about one star in 18 of those

brighter than the ninth magnitude is a visual double. There are many
stars whose spectra periodically consist of double lines. This phenomenon

is taken as indicating that these stars are binary systems, made up of

two approximately equal components, whose orbital planes pass nearly

through the earth. There are many more stars whose spectral lines period-

ically shift. This is interpreted as meaning that these systems are binaries

in each of which one component is relatively non-luminous. There are many
variable stars whose light curves are explained by supposing they are eclips-

ing binary systems. Unless the interpretations of these phenomena are

very much in error a considerable fraction of all the stars are binaries.

Granting that the interpretations are correct, the evolution of binary sys-

tems is a standard celestial process. We are raising the question here

whether these binaries may have originated from parent masses by fission

without external disturbing factors, and if so at what stage of condensation.

Before considering the question of the fission of single masses into binary

systems, we shall write down some of the implications of the interpreta-

tions of the spectra of spectroscopic binaries, particularly as regards limits

on their masses and densities.

Consider first the case where both spectra are visible. Let i be the com-

plement of the inclination of the plane of the orbit to the line of sight.

Suppose the orbit is circular. Let v be the maximum observed radial

velocity, mj and m^ the two masses, P the period of revolution, and a the

major semi-axis of the orbit.

Then we have

Pv ^ r. 27ra?
,

Pv^
, ,,

r = 27ra P =—
,

^1+ ^2 = 77-7^ -r-. (14)
cost fc-^m, + m, 2;rfc^cos3* ^ ^

Since i can not be determined in a star which is not also a visual binary we

have, reducing the units so that when v is expressed in kilometers per second

and P in mean solar days, the sum m^ -1- m^ expressed in terms of the sun's

mass by the relation ^^^
wii +m^^^Pv' (15)

Suppose the spectrum of only one star, m^, is visible, and let v^ be its

maximum observed radial velocity with respect to that of the center of

gravity of the system. Let r^ be the radius of its orbit, assumed to be cir-

cular, around the center of gravity of the system. Then we have

Pv, _ , p 2;rr^Kwi + W2)
-27rri m^T^ = m^r^ a^r^-^r^ P= ^^^-3cost

m,=
whence ^ \ mJ (1^)

^ 27rfc^ cos^ i



154 THE TIDAL PROBLEM.

In this case the lower limit of the mass of the system can not be computed
except an assumption be made regarding the relation between tw^ and Wj.

Suppose —-=ti- Then equation (16) gives

m,+ m,= (l+/.)m,^^^^i^^ (17)

When P is expressed in mean solar days, and v^ in kilometers per second, we
have , «j^

^n,Y1n,^^^Pv,'{l-\-|xy (18)

where mi-\-m2 is expressed in terms of the sun's mass. If it were true that

the more massive star always gives the observed spectrum we should have

/i>land ,424
^i+rn,>^Pv,' (19)

Let Oj and Oj represent the radii of Wj and Wj respectively. Let the dis-

tance between their surfaces be represented by ku. Then 0^k<1 and we
have o / I N-!

ai+ a2 = a(l— k) F= , (20)

fc(l —K)K/mj + W2

Suppose the two bodies have the same density o. Then we have from

Tw, = i^Traa,', Wj= -K^7raa/ and equation (20), putting —^ = /( as before

3;r (1+;^^)^
^

A;2P='(l-/c)3(l+//) ^ ^

The ratio /£ may vary from zero to infinity, and k from to 1. From the

derivative ^ o /1 1 '\2/i axda _ St: (1+^)^1 ~i"^)

d^~A;2p2(i_^)3 ^§(l+//)2

it follows that, for fixed values of P and «, (t constantly increases wliile fx

varies from to 1, and then constantly decreases while /x varies from 1 to

00 . Therefore, since (21) is a reciprocal equation in //, we have

12^ ^^^ Stt^
(22)

k\i-Kyp^^ '=k\l-Kyp-

OT, changing the units so that a will be expressed in terms of the density of

water when P is expressed in mean solar days, we have

100(l-/c)3P^-''-100(l-«)3p2
^^^^

The smaller k the smaller the limits for o. When the bodies are in contact,

and the period 4.57 hours, that of ^ Cephei,' we find

2.2><7>0.5

The Period of /3 Cephei, by E. B. Frost, Astrophysical Jour., 24 (1906), pp. 259-262.
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If they are separated so that their surfaces are at a distance from each

other equal to one-half the sum of their radii, i.e., if « = ^, equation (23)

gives 7.4^(7^1.8

According to Darwin's results, loc. cit., p. 232, this is about the minimum
distance at which homogeneous masses could revolve in stable equilibrium.

If they were separated farther the already high limits on the density would

be still greater. It follows that we must conclude either that these very

short period binaries and eclipsing variables are very dense, or that hetero-

geneous masses are more stable than homogeneous ones.

Now let us return to the question of fission of binary stars. Denoting

the periods of rotation of m^ and Wj by Dj and D^ respectively, we have for

the total moment of momentum of the system ^

(2;r)Hwii+ W2)^ i>i I>2

The signs of the second and third terms in this equation are determined

under the hypothesis that both bodies rotate in the direction in which they

revolve. But this is a necessary consequence of the fission theory, and

therefore an allowable assumption in testing it.

If P > Di and if P > D2 then the mutual tides of the two bodies tend to

bring P, Dj,, and Dj eventually to the same value. In the case of widely

separated visual binaries the fission theory implies that the tidal evolution

has proceeded far, and that Dj and Dj are closely approaching an equality

with P. If these conditions are satisfied and if Wj and m^ are approximately

equal, we see from (24) that the inequality

M> ,,yi^',. (25)

is nearly an equality. For example, in the case of a Centauri, assuming that

each component has the dimensions of the sun and that D^^D^^P approx-

imately, the ratio of the first term to the sum of the other two is roughly

10,000 to 1. In general, the greater P and the more nearly equal m^ and

m^, the more nearly the inequality (25) approaches an equality, and the

opposite.

Let us suppose the two stars were originally in one spheroidal mass

w = w?i + Wj. Then equation (6) gives the relation between its density and

oblateness, which reduces by means of (25) to

,f,W^»P^ ,<(l+ff!|(3+J2te,-U-3} (26)
6(37r)HWj + W2) X- [ X j

Now let —-=!i', then equation (26) gives
Wj

Letting /(//) = ^^
V^' we find for n = \ that -|^= 0, -|^>0 and that -j-

*See equation (6), p. 85.
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vanishes for no other value of [i. Consequently the right member of (27)

has a single minimum at f^L= 1. But for other values of // the inequality of

(27) diflfers more from an equality, and hence we are not certain that /i = 1

gives the least value of a for a given P and k. But in many stars // is

undoubtedly near enough unity to make equation (27) useful.

We shall suppose n=l and compute a for the value of X for which ap-
parently there is first any danger of fission. If we suppose that this first

occurs for that value of X for which the Jacobian ellipsoids branch, that is

for ^ = 1.395 . . . , we find, taking the units so that o will be expressed in

terms of the density of water when P is expressed in terms of mean solar

''"''

.<
"•"'«

r28><T<—p^— (28)

Or, if the fission occurred when the pear-shaped figures branched from the
Jacobian ellipsoid, we find similarly

0.071
^<-pr- (29)

Consequently, this discussion leads to the conclusion that in all binary sys-

tems in which the two masses are approximately equal, and in which the periods

are at least several years, as they are in the visual pairs, the fission must have
occurred, if at all, while the parent mass was yet in the nebulous state. The
data regarding binary systems as a class are so meager that probably no
stronger conclusion than this can be drawn from this line of argument.

There is, of course, no a priori objection to the theory that binaries as a
class have originated by fission in the nebulous state. But there are at least

two rather distinct hypotheses as to how and why such fission may have
taken place. The first is that in the origin of a nebulous mass the factors

which have determined its initial condition may have brought it into exist-

ence with at least two nuclei of condensation whose magnitude and density

were sufficient to have led to a binary, even though the moment of momen-
tum may have been so low that, if the mass had been spheroidal with the

same mean density, it would have been a stable figure. Fission in this type
of masses is not under consideration here. The second is that the mass in

its earliest nebulous stage was in an approximately spheroidal form, densest

at its center with density decreasing outward through approximately sphe-

roidal layers, and that as a consequence of its high moment of momentum
it lost its stability and divided into two masses. This is the type of fission

under consideration here.

Suppose a nebula of this latter type suffers fission. At the time of fission

all parts are rotating at the same angular rate, and one of the two parts

must have a mean density less than, or at the most equal to, the mean den-
sity of the original mass. Consequently one of the two fragments because of

its lower density and equal rotation, must have at least as great a tendency
to fission as that which led to the division of the initial mass, unless either

its form is one of greater stability, or the tidal forces of the other member of

the pair tend to keep it from breaking up. If, as seems probable, the ap-
proximate spheroid is the most stable figure of equilibrium, and if the mass
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under consideration has suffered fission by evolution along this line of figures,

as is assumed, then the former alternative is eliminated. It does not seem

that the tidal factor can tend toward stabiUty. This intuition is strongly

supported by the results obtained by Darwin, loc. cit., attacking the problem

from the other end, viz., that it is not possible to bring two homogeneous

fluid masses near enough to touch without their being certainly in unstable

equilibrium.

We observe next that the binary stars are now actual stars of consider-

able density. Consequently if they have originated from the fission of neb-

ulas they have undergone enormous contraction. The contraction implies

increased rotation which would increase the already dangerous tendency

for at least one part to suffer further fission. Tidal friction would offset

this tendency by decreasing the rotations, but considering all the factors

involved, it is seen that if a fluid mass ever gets to the state where fission

occurs, there is at least great danger of its breaking into many pieces.

Consequently we are led to believe that if binaries and multiple stars

of several members have developed from nebulas, the nebulas must orig-

inally have had well-defined nuclei. The photographs of many nebulas

support this conclusion. But we observe that if we are forced to this

position we do not explain anything—we only push by an assumption

the problem of explaining the binary systems a little farther back into

the unknown.
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VIII. SUMMARY.

The problem under consideration is that of the fission of celestial bodies
because of rapid rotation when they are not disturbed by important exter-

nal forces. The attack is made through well-known results concerning the
figures of equihbrium and conditions as to stability of rotating homogeneous
incompressible fluids. It is recalled that for slow rotation a nearly spherical

oblate spheroid is a stable form of equilibrium; that for greater rates of

rotation the corresponding figure is more oblate; that when the eccentricity

of a meridian section becomes 0.813 the figure loses its stability and at this

point a stable line of three axis ellipsoids branches; that when the longest
axis of the ellipsoid becomes about three times the axis of rotation a new
series, known as the pear-shaped figures (or better, perhaps, the cucumber-
shaped figures) branches, and that before this point is reached there is no
possibility of fission. We are almost entirely ignorant as to what may happen
after this point is passed, and it must be remembered that it has not been
proved that in any case fission into two stable bodies is possible.

The celestial bodies differ from those just considered in two important
respects. In the first place their densities increase toward their centers.

For a given rate of rotation and mean density this central condensation
makes them more nearly spherical, as is shown both by theory and by com-
parison of the observed figures of the planets with the computed forms of

corresponding homogeneous masses. In the case of Saturn, for example,
the eccentricity computed on the hypothesis of homogeneity is 0.607 while

the observed value is only 0.409. It seems certain that this central conden-
sation tends toward stability. The second important difference between
the ideal homogeneous incompressible fluids and the celestial bodies is that

the latter are compressible. This latter factor, at least under certain cir-

cumstances, tends toward instability.

The opposing quantitative effects of central density and compressibility

undoubtedly differ greatly in different masses and can not be easily deter-

mined in any case. However, if we may assume that they approximately
offset each other, we may reach some conclusion respecting the possibility

of the fission of the actual celestial bodies by discussing the corresponding

homogeneous incompressible body. This is the assumption adopted here,

but, because of its uncertainty, in the applications to the solar system, where
it turns out fission is impossible, all approximations are made so as to favor

fission, and it is assumed that in the actual bodies fission may be immanent
long before it is possible in the homogeneous ones. These safeguards and
simplifications are possible and easy because it is a negative result which is

reached.

The actual problem is not one in which the rate of rotation changes
while the density remains constant, though this is the one heretofore treated

in the mathematical discussion. In the physical problem the rate of rota-

tion and the density change simultaneously with the shape in such a way
that the moment of momentum remains constant. Imposing this condition,

we arrive in the case of the spheroids and ellipsoids at relations between
the density and respective shapes, the coefficients depending upon the mass



SUMMARY, 159

and the moment of momentum. When the oblateness of the spheroid is

given there is but a single density satisfying the conditions, and when the

density is given there is but one spheroid satisfying the conditions.

For the applications we assume that an actual celestial body will not be

in danger of fission until the corresponding homogeneous incompressible

body arrives at the state where the Jacobian ellipsoids branch. The density

at this stage is less than one-fourth that at which the pear-shaped figures

branch, and actual fission in the homogeneous bodies is certainly beyond

this form, if indeed fission into only two bodies is ever possible. With this

very conservative assumption we proceed to some calculations.

(1) We find that the sun can not arrive at this critical stage until its

mean density shall have exceeded 307 X 10*^ on the water standard. This

corresponds to an equatorial diameter of the sun of about 22 miles.

(2) We find that the sun can not become so oblate as Saturn is now until

its mean density shall have exceeded 148 X lO^" on the water standard. This

corresponds to an equatorial diameter of the sun of about 75 miles.

Since even the latter density is impossibly great we conclude that the

sun will never become so oblate as Saturn is now, and that it will always be

more stable than Saturn is now.

(3) We find that Saturn can not arrive at the critical stage at which the

Jacobian ellipsoids branch until its mean density shall have become 21

times that of water. This corresponds to a polar diameter of 16,500 miles

and an equatorial diameter of 28,400 miles. We conclude because of the

great density demanded that Saturn will never suffer fission.

(4) We assume that the earth and moon were once one mass and get

their original moment of momentum from its present value. In computing

it, however, we make certain approximations so as to get it too large and

thus favor the conclusion of fission, then we add to it the maximum amount

the sun's tides can have taken from the earth, and finally we add 25 per cent

for fear there may be some unknown sensible factors omitted. Then we
find that this hypothetical earth-moon mass could not get even to the

critical point where the Jacobian ellipsoids branch until its mean density

became 215 times that of water, or about 40 times the present mean density

of the earth and moon. It would not become even so oblate as Saturn is

now until its density had become 10.4 times that of water. Therefore we
conclude that the hypothetical case was false, and that the moon has not

originated by fission from the earth in this way.

(5) In applications to the binary stars the results are less definite because

of the meager data regarding these systems. But assuming that fission in

stars will occur when the Jacobian ellipsoids branch in the corresponding

homogeneous masses, we find for the density o in terms of water at the time

of fission when the two stars are of equal mass

0.016^<—p2-

where P must be expressed in mean solar days. Even though fission should

not occur until the density is ten times this amount (which, if true, makes

the evidence against fission in the solar system much stronger), all visual
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binaries of two approximately equal masses must have separated, if they

have originated by fission, while they were yet in a nebulous state. The
results are of the same order so long as the disparity in the two masses

of a binary is not very great, and this probably includes all of the visual

binaries.

(6) Certain formulas, not connected with the question of fission, were

developed for binary systems. If P represents the period in mean solar

days, n the ratio of the mass of the star whose spectrum is measured to the

mass of the other one, and v^ the maximum observed radial velocity ex-

pressed in kilometers per second, then the sum of the masses expressed in

terms of the sun's mass must satisfy the relation

178
mi + TWj ^-^ Pvi3(i jf-nY

When the spectra of both stars are measurable, and v represents the

maximum relative velocity of the stars, the corresponding formula is

If we let a represent the distance between the centers of a binary pair,

and Ka the distance between their surfaces, and suppose they have the same

mean density g, then o must satisfy the inequalities

8 -^ 2

100(1 -KfP^ =^= 100(1 -KfP^

where a will be expressed in terms of water when P is expressed in mean
solar days.

The results obtained by the computations above are quite adverse to the

fission theory, in general, except if it is applied to masses in the nebulous

state, and seem practically conclusive against it so far as the solar system

is concerned, either in the future or past. Perhaps the hypothesis that

stars are simply condensed nebulas, which has been stimulated by a cen-

tury of belief in the Laplacian theory, should now be accepted with much
greater reserve than formerly. Up to the present we have made it the

basis not only for work in dynamical cosmogony but also in classifying the

stars. It may be the time is ripe for a serious attempt to see if the oppo-

site hypothesis of the disintegration of matter—because of enormous sub-

atomic energies, which perhaps are released in the extremes of temperature

and pressure existing in the interior of suns, and of its dispersion in space

along coronal streamers or otherwise—can not be made to satisfy equally

well all known phenomena. The existence of such a definitely formulated

hypothesis would have a very salutary effect in the interpretation of the

results of astronomical observations. We should then more readily reach

what is probably a more nearly correct conclusion, viz., that both aggre-

gation and dispersion of matter under certain conditions are important

modes of evolution, and that possibly together they lead in some way to

approximate cycles of an extent in time and space so far not contemplated.
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THE BEARING OF MOLECULAR ACTIVITY

ON SPONTANEOUS FISSION IN GASEOUS SPHEROIDS.

It is a familiar view that a rotating spheroid of gas may, by cooling and
shrinking, so far accelerate its rate of rotation as to cause its own sepa-

ration into two or more parts. The resulting parts are assigned various

relative values, and the separated masses are given different forms, ranging

from fragments and rings to subequal masses. This view of possible self-

partition has found expression in various cosmogonic conceptions from the

nebular hypothesis to the formation of binary stars.

To consider the bearings of molecular activity in a representative case,

let a spheroid of gas be chosen whose mass is comparable with that of the

solar system and whose volume is such as may be hypothetically assigned

it. Let its rate of rotation at the outset be such that the value of gravita-

tion at the equatorial surface is greater than the centrifugal component of

rotation. Let cooling follow, in consequence of which the rate of rotation

will be progressively accelerated. Let it be assumed—as has usually been

done—that the rate of rotation would at length reach such a velocity that

separation in some form would take place regardless of any question as to

the manner of its realization. Our question relates to the effect of mo-
lecular activity on the transition from an undivided spheroid to a spheroid

divided in some way, whether by massive fission, into larger or smaller

fractions, or by individual molecules.

In a body whose molecules are bound together into a coherent mass,

such parts as may be affected by like general stresses are properly treated

as units, within the limits of cohesion, but in a body whose molecules possess

all degrees of freedom, and which act with complete individuality, the treat-

ment may with special appropriateness be based on the molecule as the

unit. Molecular action in a gaseous spheroid consists of encounters or

quasi-encounters, and of rebounds or quasi-rebounds along free paths be-

tween the encounters. Within the mass, the excursions and encounters of

the molecules give rise to an effect equivalent to viscosity which influences

the movement of one part of the gaseous mass upon another part, and may
perhaps have given rise to an impression of coherence; but on the outer

border of the mass—the critical portion in this case—this effect becomes a

vanishing quantity, and individuality of action is dominant.
According to the laws of gaseous distribution, the density of a gaseous

spheroid, when controlled solely by its own gravitation, declines from a

maximum at the center progressively toward the surface, where the limit

of gaseous tenuity is reached and an ultra-gaseous state supervenes. The
transition from the gaseous to the ultra-gaseous state is the critical factor

in the case, since it is at the extreme surface of the gaseous mass that the
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centrifugal component of rotation first comes into equality with the cen-

tripetal force of gravitation and constitutes a condition precedent to the

separation of any mass of gas as a body.

In the depths of the gaseous spheroid the paths between encounters

may be assumed to be relatively short and hence straight, since gravitation

can not sensibly affect paths of brief duration. At higher levels, the free

paths grow progressively longer, and at length horizons may be reached at

which the attenuation permits free paths of such length and duration that

they may be appreciably curved by the gravitation of the spheroid. At

still greater heights the attenuation reaches such a degree that curved

paths come to dominate and, at a certain stage of rarity, a portion of the

molecules rebounding from encounters in outward directions, find no

molecules in their paths, and therefore hold on their courses until arrested

and turned back by gravitation, if its force be sufficient, or else they pass

on beyond the limit of the spheroid's control. Theoretically, under

the Boltzman-Maxwell law of molecular distribution, a certain small per-

centage of molecules should reach the parabolic velocity of the spheroid

and escape, but for the purposes of the present discussion this fraction need

not be considered independently of a larger class to be described presently,

with which it may be merged as having like influence on the moment of

momentum of the spheroid.

Such of the outward-bounding molecules as are arrested by the sphe-

roid's gravitation obviously turn back toward the spheroid without a re-

versing encounter and thus describe elliptical loops. In this they differ

markedly from the molecules in the depths of the gaseous spheroid, whose

paths are sensibly straight and whose courses are terminated by encounters

at either end.^ In the elliptical courses the outward movement is ter-

minated by a gradual decline in the molecule's speed until its outward

progress is reduced to zero, when there follows a new movement inward

accelerated by gravitation.

If the to-and-fro, collisional activity of molecules constitutes the essen-

tial characteristic of a gas, the outer border of the strictly gaseous part of

the spheroid should be placed at the transition zone where the molecules

cease to-and-fro passages between encounters and begin to describe ellip-

tical loops limited outward by gravitation, but this demarcation is rather

a matter of convenience than an essential in the consideration of the modes

of action.

In the course of their outgoing and incoming movements, the molecules

pursuing elliptical paths are subject to collision with one another. The
phases of such encounters may vary indefinitely and the velocities of the

rebounding molecules may represent an indefinite variety of interchanges

of kinetic energies. Inspection shows that some of these molecules must

rebound toward the gaseous spheroid, that some must take distinctively

new elliptical paths, while a certain proportion will inevitably be thrown into

courses more or less tangential to the surface of the spheroid, and some of these

may have sufficient velocities to assume orbits about the spheroid, and thus form

* This distinction has been drawn by G. Johnston Stoney, Astrophys. Jour., vol. XI,

1900, pp. 251 and 325, and elsewhere.
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a revolutional system of molecules dynamically independent of the spheroid,

except that they act as minute satellites.

In a stationary spheroid the rebounds that give rise to revolutional

courses are as likely to take one direction as another, and if the mass of the

spheroid be great, the number of molecules which will acquire revolution

from molecular activity alone may be neglected in this discussion.

But in a spheroid in a state of rapid rotation, especially a spheroid

approaching the critical stage of centrifugal separation, the molecules shot

outwards in the direction of rotation will start with the sum of the common
velocity of rotation and the individual velocities acquired from the last

encounter, while the molecules shot in a direction opposite to the rotation

will have only the difference between the common velocity of rotation and
the velocity acquired from the last encounter, the meridional component
in each case being neglected as immaterial here. It follows from this that

when the velocity of rotation is high, the molecules starting from encoun-

ters in the direction of the spheroid's rotation will much more largely pass

into orbital paths than molecules starting in the opposite direction.

In a spheroid having the mass of the solar system and a radius equal to

the radius of Neptune's orbit, the equatorial velocity required for separa-

tion by mass is above 5 kilometers per second, while the average molecular

velocity of all known molecules, at a temperature of 2000° C. and standard

terrestrial pressure, falls below this. The average molecular velocity of

most known substances falls much below this even at 4000° C. It seems

clear therefore that, for most of the known molecules, the effect of molecu-

lar velocity directed backward is merely to destroy a part of their rotational

speed, and that they still move forward relative to the center of the sphe-

roid. With a spheroid having the solar mass and a radius equal to the dis-

tance of the earth from the sun, and hence a separation-speed of nearly 30

kilometers per second, only a very small fraction of the molecules could

acquire velocities sufficient to neutralize their rotational velocities at the

critical stage of separation. The number of molecules that could acquire

the 60 kilometers per second required to neutralize their rotational veloci-

ties and add sufficient velocity to give them an orbital course in a retro-

grade direction must obviously be negligibly small in a case of this kind.

Practically all molecules must be regarded as having forward courses with

velocities which are either enhanced by being shot forward or retarded by
being shot backward.

The velocity of centrifugal separation is practically identical with the

velocity of circular revolution about the spheroid in a minimum orbit.

Larger orbits involve lower velocities but require additional potential en-

ergy and moment of momentum. When the rate of rotation of the spheroid

is very near, or essentially at, the critical stage of centrifugal separation, a

slight addition to the velocity of an outer molecule in a forward direction,

arising from molecular interaction, will give to it a velocity greater than

that required for the minimum circular revolution; and before the critical

state has been actually reached, all molecules on the equatorial periphery

which receive forward impulses of any appreciable amount will have more
than the requisite velocity for minimum circular revolution. If all mole-
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cules whose projections have forward components are regarded as fulfilhng

these conditions, nearly half the molecules given outward projections will

be included.

Encounters and rebounds in gases under familiar terrestrial conditions

range into the billions per second, but encounters are much less frequent

in rare gases. Excluding outward flights that do not properly belong to the

true gaseous state, the maximum period between encounters is less than

the rotation-period of the spheroid, and the average period is much less

than that. Since interchanges are thus frequent, all molecules are liable to

receive a forward impulse within a brief period.

Molecules which simply receive a forward and outward projection

greater than that requisite for free circular revolution about the spheroid

do not, however, enter upon free orbits, directly, in most cases, because the

paths on which they enter, the orbital in type, normally lead back to their

starting-points, and in nearly all cases they cut the spheroid before they

return to these points and thus complete a free orbit. If this were univer-

sally and inevitably true, the way to free orbits along this Hne of evolution

would be effectually barred. There are three lines of escape from this

result, the first and second of which are probably unimportant; the third

is probably effective.

1. The first is the case in which molecules receive impulses from molec-

ular interaction in Unes tangent to the points of impact, and hence take

elliptical paths about the spheroid which return tangentially to the points

of impact as their peri-spheroidal cUmax. Their liability to encounter the

spheroid is thus limited to these tangential touches which, in the rare con-

dition of the gas at these vanishing points of gaseous organization, will

not necessarily involve capture. Such molecules will not, however, be free

from collision with the molecules pursuing elliptical loops above the gaseous

spheroid.

2. By hypothesis, the spheroid is shrinking, and if the rate of shrinkage

is appreciable during the free flight of molecules whose paths only slightly

cut the surface of the spheroid such shrinkage may leave these paths free,

so far as the gaseous spheroid is concerned.

3. The two cases just named are perhaps more serviceable in deJEining

conditions where gradations rather than sharp limits prevail than as

sources of free orbital paths. The most important case is built upon the

action of the ultra-gaseous molecules outside the gaseous spheroid, as Hm-

ited above. These molecules start from the outer part of the spheroid—

strictly, from all depths from which there is an open path outward in the

line of their projection—and pursue elliptical courses with return to the

spheroid, except in the cases just noted. We have seen that, in the rep-

resentative case of the solar system, the rotational velocity is so great,

relative to the average molecular velocity, that most of the molecules will

pursue forward courses, even when directed backward, and hence will be

moving in harmonious directions. Considered as independent molecules,

they constitute a corona of particles rising in curves, predominantly at low

angles, and descending at similar angles to the spheroid. They are liable

to collide in these courses and a certain percentage of coUisions is inevi-
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table. Collisions in the rising parts of the curved courses take precedence
in time, and hence in probability, over collisions in the declining courses;

for if collision is realized in the first part of the course the molecule is likely

to lose its chance in the latter part by being either thrown back to the sphe-
roid by the first collision or else thrown outwards where collisions are less

imminent. In any case, the collisions probably result either in an earlier

return of the molecules to the spheroid, or in throwing them into new
paths, of the orbital type, which will bring them back to this point of last

collision and not to the spheroid. This point of collision lies above the sphe-
roid, and does not require the orbit to cut any part of the spheroid, though
it may do so in a portion of the cases. The predominant effect will appar-
ently be to drive the outer molecules into larger orbits and throw the inner
ones back to the spheroid. Apparently this will be a self-adjusting process,

so far as frequency and efficiency are concerned, for the number of molecular
flights per unit of time will be cumulative as the acceleration of rotation

approaches the critical stage when, as we have seen, any molecular incre-

ment forward will lead to quasi-orbital flight. This will increase the
contingencies of collision, and hence a cumulative number of molecules
will be driven into independent orbits.

Now the most significant element in this process is the partition of mo-
ment of momentum that is involved. Each molecule that passes into a
free orbit necessarily takes with it more than a mean portion of moment of

momentum. Those molecules which make elliptical flights and return to
the spheroid without collision carry back whatever moment of momentum
they took out, but those thrown into permanent orbits retain, as a rule,

not only what they took out but also the additional moment of momentum
gained from the collisions which gave these free orbits. It follows that every
molecule that goes into a free orbit takes a disproportionate amount of the
moment of momentum of the spheroid and thus reduces its rotation, or else

retards its increase of rotation, to that extent.

If the quantitative value of this loss of moment of momentum by the
spheroid could be compared with the increment of rotation assignable to
shrinkage, it would be possible to determine whether the spheroid could
ever, under these conditions, reach the critical stage requisite for the sep-
aration of any portion of its mass bodily. A mode by which a rigorous
demonstration can be reached has not yet been found, but, from the nature
of the case, I entertain, with others, the view that the separation must take
place molecule by molecule, and it seems to me inevitable that these mole-
cules must go into orbits each carrying an excess of moment of momentum
at the expense of the spheroid, and hence that the critical stage of exact bal-
ance between the centrifugal and centripetal factors of the spheroid is never
reached. If so, bodily separation is excluded by the conditions of the case.

The conviction that such rotating gaseous spheroids must shed portions
of their matter molecule by molecule, if they do so at all, has long been
held by students of the subject, but I am not aware that the loss of moment
of momentum from the spheroid has been urged as a reason why the crit-

ical state prerequisite to bodily separation may not be attainable.
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GEOPHYSICAL THEORY

UNDER THE PLANETESIMAL HYPOTHESIS.

SYNOPSIS.

This paper is devoted mainly to a quantitative study of that portion of

the earth's internal energy which is supposed to have been derived from the

mechanical energy of a primitive system of planetesimals, of its transforma-

tion into thermal form during the epoch of accretion, and its subsequent

redistribution by conduction.

In Part I a theory initiated by Fisher is developed on the basis of the La-

placian law of density, together with certain auxiliary assumptions. Form-
ulas and tables are given showing the variation of dimensions and internal

densities of the mass during the epoch of accretion, the differential effect of

deposit of a stratum on the size and moment of inertia of the mass, and the

deformation of mass-elements accompanying the resulting compression. De-

termination, under alternative secondary postulates, of the original distri-

bution of temperature produced by the compression and its redistribution

by conduction shows the existence of a characteristic zone of rising temper-

atures during the earlier stages.

Part II comprises an inquiry as to what changes in the results of Part

I are produced by changes in the secondary hypotheses employed and a

critical examination of the latter. The computed masses of the nucleus at

various stages of accretion are compared with the observed masses of the

smaller planets in the solar system. The previous theory is reviewed, with

the substitution of Roche's formula for the density; and to serve as basis

of comparison, certain other laws of density are deduced to satisfy special

conditions.

Criticism in the light of general thermodynamics leads to a recognition

of the theory given as possibly an extreme view, referring to a substance

where the work of compression is mainly frictional.

In Part III is outlined a contrasting theory for the case of a substance

such that the work of compression is done mainly against volume-elasticity,

under the assumption that the successive strata deposited at the surface are

reduced to uniform entropy by free radiation while exposed. The thermal

phenomena in this case are compared with those under the conditions of

Part I.
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INTRODUCTION.

The following studies were undertaken at the suggestion of Prof. T. C.

Chamberlin, as auxiliary to the development of the hypothesis put forward

by him as to the origin of the earth by planetesimal accretion, a main
object being to secure quantitative inferences which might aid in forming a

j udgment regarding the probable efficiency of thermal energy, whose source

is gravitational, as an agent of geological importance under the restrictions

imposed by the hypothesis. Experimental evidence regarding the behavior

of substances under the enormous temperatures and pressures met with in

the interior of cosmic bodies must be considered almost wholly lacking, and

derived by highly uncertain extrapolation from determinations made within

the limited range accessible to laboratory measurement. Precise conclusions

based on accurate observed data could therefore not be looked for, but

it was felt that it should be possible to deduce with some confidence at least

the order of magnitude and general features of the thermal phenomena of

gravitational origin, under the conditions assumed by the hypothesis in

question, when supplemented by certain minor hypotheses.

The general hypothesis assumes that the earth, in common with other

bodies of the solar system, was formed by the accretion of planetesimal

masses, more or less similar in chemical composition, at least when consid-

ered on a large scale, so that the more important local differences in the body
of the resulting planet are to be ascribed to differences in physical condition,

chiefly in pressure and temperature; and that the history of the earth in

this aspect comprises two main epochs, the earlier one of growth by accretion,

first at a rapid, and later at a declining rate, shading into the subsequent

longer period of relative quiescence and constancy of mass, accompanied

by a gradual redistribution and partial loss of a store of thermal energy

derived from the primitive mechanical energies of the system.

According to the mode of transformation this energy may be treated as

mainly of three kinds: (1) that which is stored in the underlying mass,

through the progressive static compression which accompanies the deposi-

tion of the successive layers at the surface; (2) that derived directly from

the kinetic energy of the masses impinging on the surface, through the vis-

cous damping of waves and vibrations due to the impacts; (3) that derived

in a similar way from motions which arise from the continual disturbance

of equilibrium produced by the surface accretions, independently of the

momentum of impact.

To trace out exactly the final distribution of the second and third kinds

would be a matter of forbidding difficulty, even if an acceptable assumption

could be made regarding the precise law of accretion. No attempt will be

made here to account for the third, but from estimates made in the sequel,

where attention is confined to the first two, it would appear to be a rather

small portion of the whole, being in fact under a certain special set of con-

ditions strictly zero.

As to the second kind, however, the energy of impact, a useful estimate

can be made very simply if it be assumed that the single ideal substance

contemplated is highly viscous. For in such cases the motions produced by
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an impact do not travel far from their point of origin before being practi-

cally wiped out by friction, thus exhibiting a kind of mechanical radiation

of the energy brought in kinetic form by the impinging mass, but in such a

way that frictional absorption confines the distribution of that energy to the

neighborhood of its source. This sort of process would be closely imitated

if the surface structure were that of a loose aggregation of small masses,

even if the latter were perfectly solid. It is clear, therefore, that after the

transformation the impinging mass retains only a small part of its own orig-

inal energy, but it secures a certain compensation from the masses whose

deposition occurs in time and place near its own. Now, when the average

or normal energy of impact per unit-mass does not vary sensibly during the

time required for depositing a layer whose thickness is somewhat in excess

of the radius of influence implied above, then the compensation may be

regarded as practically exact, except as affected by direct radiation into

space during the time that the mass remains exposed.

With this interpretation it seems a fair equivalent to assume that each

planetesimal mass retains its own primitive kinetic energy after impact in

thermal form, but immediately loses a portion by ordinary radiation before

it is covered up. This setting of the matter will be accepted hereafter, and

it will be further assumed that the process of accretion, though slow enough

to permit the loss of a large portion of the heat of impact by immediate

radiation, is yet sufl^iciently rapid so that internal conduction has not time

to modify sensibly the distribution of heat arising from compression before

the growth is complete.

It may also be supposed that in connection with high viscosity the mass

would possess sufficient plasticity to enable its own gravitation to keep it in

a condition approaching hydrostatic equilibrium, with an approximately

spherical form, aside from the secondary effects of rotation and consequent

polar flattening; for it is supposed that in the long run the accretion would

be practically equable over the whole surface and that the effects of tem-

porary inequalities of serious magnitude would be quickly obliterated.

It is well understood, by analogy with the behavior of such materials as

wax and pitch, that the combination of plasticity and viscosity, such as

here contemplated as appearing under slow changes, is in no way inconsis-

tent with the appearance of extreme rigidity under the action of sudden

or rapidly varying forces. It should be noted, however, that a satisfactory

theory as to the history of the earth's dominant surface features seems to

require that to the earth-substance be attributed a rigidity sufficient to allow

the alternate accumulation and subsidence of shearing strains, deep in the

body of the earth, to such an extent that the periods involved, though short

perhaps in comparison with the durations implied in phenomena of thermal

conduction in bodies of cosmic size, are nevertheless of higher order than

the periods of precession, nutation, and tidal phenomena, which have

hitherto furnished the chief data pointing to the practically perfect extreme

rigidity of the rotating earth. The hypothesis of practical fluidity under

slow deformation must therefore be understood only as a crude first approx-

imation from a geological point of view. But on account of its simplicity,

and because of its occurrence in previous theories of the earth's constitution.
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it is desired to develop first the consequences of this assumption, leaving for

later study the question of the modifications needed to allow for rigidity.

The following developments refer entirely to the simple ideal case of a

spherical body, radially symmetric in every essential feature, originating by

deposition of successive spherical layers, and maintained under its own grav-

itation in hydrostatic equilibrium which is at least approximate during the

period of growth and practically exact thereafter. All variables represent-

ing the physical magnitudes concerned are therefore considered as functions

of the time and of the distance from the center of the mass. It is desired

to study the primitive distribution of thermal energy due to compression

and impact, together with the character and rapidity of the modifications

brought about by conduction and radiation.

The term " thermal energy " used in the foregoing refers to the entire in-

trinsic energy of the substance as depending on pressure, density, and tem-

perature; part being the stored or latent energy of the compressional strain,

the remainder appearing in a corresponding augmentation of temperature.

It is the latter portion only which is subject to direct transfer by pure con-

duction, though its redistribution in that way, through alteration of the

geometric distribution of the mass by thermal expansion and contraction,

may lead to the redistribution also of the energy of strain, accompanied in

general by further transformation of energy from gravitational to thermal

form. The character of the phenomena might easily vary radically with

variations in the relative importance of these two portions of the intrinsic

energ3^, without inconsistency with the general hypothesis.

It is thus essential, for the construction of a definite theory, to include

further assumptions as to the thermodynamic properties of the earth-sub-

stance, which should cover three main points: (a) the characteristic equa-

tion of the substance or relation between the thermodynamic coordinates

—

pressure, density, temperature; (6) the form of the intrinsic energy as a

function of these coordinates; (c) the value of the thermal conductivity in

terms of the same variables. Auxiliary coefiicients such as specific heats,

thermal expansion, and compressibility can then be deduced and the as-

sumptions checked or numerical parameters determined by means of obser-

vations or estimates of these physical magnitudes in the case of substances

at the earth's surface. It is evident, from the number of these secondary

hypotheses needed, that any sharply crucial test of the main hypothesis

from the present point of view is out of the question; all that can be done

is to form a judgment as to its plausibihty in accounting for the play of

thermal and gravitational forces in geologic history, by developing several

alternative suppositions on these secondary points.
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GENERAL EQUATIONS; NOTATION; NUMERICAL CONSTANTS.

The following notations will be used throughout, and special values of

the variable referring to the center and surface of the earth denoted by sub-

scripts 0, 1, respectively:

< = tinie. (P = loss of potential energy in con-

r = distance from center. traction from infinity.

x = rlr^. £-= total energy of compression.

,0 = density. e = energy of compression per unit-

p = pressure. mass.

w = mass within radius r. J = mechanical equivalent.

A; = constant of gravitation. fl^ = modulus of cubic compression.

9' = acceleration of gravity. a = specific heat.

y = gravitation potential. ^ = temperature.

X = conductivity.

Numerical values are given, unless otherwise stated, in terms of the units

centimeter, gram, second, and centigrade degree, for convenience in using

published data on the absolute values of the physical constants; and are

based chiefly on the following assumed constants, unless expressly stated

:

Total radius ri = 6.370X10' mean density (0^ = 5.516

surface gravity
g'i
= 981

From these are obtained the foliowins;:•b-

volume = 1.083X10" total mass 77^1= 5.972X10" fc = 6.665XlO-«

Further are assumed:

Pi = 2.70 to 2.75 (estimated average for surface-rock)

J = 4.2 X 10^ Hi= about 4 X 10" (t^ = about 0.2 /^ = about 0.005

As stated above, it is necessary to supplement the general hypothesis by
certain assumptions as to the physical properties of the earth-substance, in

particular the form of the characteristic thermodynamic surface

:

F(j),p,d)=0 (!)

and the form of the intrinsic energy, conveniently an expression of the type:

eH{p,d) (2)

The fundamental equations forming the basis of the theory may then be

grouped in two classes, related to two curves, not necessarily identical, on

the surface (1). The first curve belongs to the actual distribution of the

physical magnitudes within the earth at a given time, its projection in the

'p-p plane being determined in parameter form by the values of p and p as

functions of r. The second curve corresponds to the path of compression

traversed by a particular mass of the substance from the time of its deposi-

tion to the time when the growth of the planet is complete, and is practi-

cally an adiabatic curve if the accretion and consequent compression are

relatively rapid, as is here supposed.
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In the first class come the equations:

dp

dr

where

= —gp with 7)1=0 (3)

km ...

9=-^ (4)

and

=47z I prHr (^)

J a

m
Jo

which express the condition of hydrostatic equihbrium and yield the im-

portant relation:

d /r"^ dp

dr\p
subject to the conditions

P.=0 , f) =0

{ith'^^"'-"^ («)

To these must be added the expression for the potential energy ex-

hausted during contraction from infinity:

0=^h I Vdm=27ik I pVr''dr (7)

where

V=— I pr^dr-^in I fyrdr (8)

/r nr^

pr'dr-\-47: I prdr

Jr

the latter being equivalent to

.^ = -, (9)

with

•f fx
yj=4;r / prdr or ^1 =

Let
u =Y-Y^ (10)

then equations (9), (3) give

^(,=^)+4.^.=0 (11)

where p may be considered expressed in terms of u or r, since u is necessarily

and p most probably a monotonic function of r in the concrete case.

The preceding equations then suffice to determine in terms of r all vari-

ables involved, if supplemented by a single hypothetical equation, such as

an expression for p in terms of r or a relat-.on between p and p.
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The second class of equations, in addition to (1), (2), includes the equa-

tions of the particular path of compression in question, together with the

expression for the work done in compressing unit-mass:

e= / -^,dp (12)

'Pi

which gives through integration by parts the relations

ep-^p=ps d(ep)=sdp (13)

the useful auxiliary variable s being defined by

s= r^dp (14)

where the elastic bulk-modulus H is

i/=.f (.5)

The limits of the integrals correspond to the supposition that the mat-

ter is compressed from surface density and zero pressure. With e so deter-

mined, and expressed in terms of r by means of equations of the first class,

the total energy of compression is

/edm=4:7z I epr^dr =—^ / sE= I edm=^7z I epr'dr =-^ / sp'^dr (1^)

the last form being obtained by integration by parts and equation (13). It

may be noticed that the quantities ku and s are of the same physical dimen-

sions, but with distinct theoretical setting; in case, however, the two paths

on the thermodynamic surface are identical, they are equal at every point

in the body. In this special case the value of E may be given as

E= *^ I r'(F,-y)fdr

An essential feature of the present hypothesis is the necessity of suppos-

ing that most of the energy of impact is wasted by immediate radiation, so

that the compressional energy whose total is E plays the main part in the

succeeding phenomena. It is therefore important for purposes of compar-

ison to determine what ratio the quantity E bears to the total energy

transformed.

An idea on this point may be obtained by considering the case of a planet

formed by condensation of a primitive homogeneous sphere of density p^.

Suppose that a particle at distance r from the center in the completed planet

lay momentarily at distance r' when deposited at the temporary surface,

and in the homogeneous sphere would lie at distance r,^, these being subject

to the inequalities r^>r'>r. It may be considered that the particle fell
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from distance 7\ to distance r', striking the surface, and then being covered
up more and more deeply, settled finally to distance r. The diagram gives

an idea of the distribution of density at the instant of deposition of that
particle, A being the center, the part CD along the radius referring to the

An B C
homogeneous spherical shell which is being drawn up to supply surface

deposits at B, BC the empty region through which the particles are falling,

and AB the radius of the partially formed planet, the variation of density
within which is determined by the condition of equiUbrium under a definite

law of compressibility.

Since the mass already deposited is m, the energy of impact per unit-

mass is under these special conditions:

-Hhr) (i^>

where m, r', r,, are to be thought of as functions of r; then the total energy
of impact is

pjnQ--l-\r'dr (18)

The quantities E and E^ are portions of the potential energy <2> — (P,, ex-

hausted during condensation of the homogeneous sphere to a condition of

density matching that of the completed planet, 0,^ being the value of for

a sphere of assigned mass m^ and uniform density p^, and determined by

The remainder of the energy 0—0^, if any, is to be treated as of the third

kind named above; but in case the equilibrium in the mass already depos-

ited at each moment of the process is adiabatic, so that the two thermo-
dynamic curves mentioned are identical, it seems probable that this third

kind does not exist, and the total amount - 0j^ transformed is completely

accounted for as E + E^. This is later proved to be the case for one partic-

ular pressure-density law. In any case it is of course not meant that the

primitive distribution need be at all like that in the homogeneous sphere

mentioned, but any other supposition would modify only the energy of im-
pact, leaving the above point of view still useful as a check on the compu-
tation of the compressional portion E; this is verified by the expression of

Ef as the difference

4nk I ^r'dr-^Ttk I ^r'dr
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the first member being the energy of impact corresponding to parabolic

velocities, the second being identical with (P^. The former would corre-

spond to formation from a system of small particles each of density pi, but

infinitely dispersed, so that the potential energy available is (?>. It should

be noted also that the part E is not affected by the existence of velocities

in the primitive planetesimals due to attractions other than that of the

nucleus on which they fall, and can therefore be treated independently

of any supposition as to their distribution and motions previous to the

aggregation.

12



Part I.—THE THEORY OF FISHER.

GENERAL EQUATIONS.

A definite form for the development of the theory has been initiated by-

Fisher,^ on the basis essentially of three main suppositions as to the prop-

erties of the ideal earth-substance. These are: (1) that the path of com-

pression traversed by any particular element of the mass is identical as far

as it goes with that defined by the relation between density and pressure

within the earth in its final state; (2) that pressure and density are related

as specified by the classic law of Laplace; (3) that rise of temperature dur-

ing compression is proportional to increase of compressional energy, or of

work done to produce compression.

For critical purposes it will be necessary to undertake a close scrutiny of

these assumptions, as to their agreement with pertinent observed data, and

also, in the light of general thermodynamic laws, of their consistency with

each other, or at least of the exact interpretation to be accorded them in order

to assure consistency. But in view of their close affiliation with the stand-

points adopted in many previous studies of the constitution of the earth's

interior, it will be worth while to develop their consequences in some detail.

The pressure density law, proposed by Laplace,^ has been used by many
writers on geophysics, partly it would seem on account of its mathematical

convenience, being the only one which reduces equation (6) to linear form.

It is based on the condition

^=hp ;i=const. (20)
dp

which, when applied to the compression of an individual portion of the

mass, gives

P=^(P'-P^') (21)

and for equations (12) and (14) the particular forms

^^h {p-p,y
(22)

2 p

s=h{p-p,) (23)

Assumption (1), however, which gives s = ku, allows the use of the relation

(20) in the differential equation (6) or (11), which reduces to

the appropriate solution being

sin ^
P==Po P=qr (25)

» Rev. O. Fisher. On Rival Theories of Cosmogony. Am. J. of Sc, xi, 1901, p. 414.

* Laplace, Mecanique Celeste, book xi, chap. iv.
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leaving the constants p^, q to be adjusted according to observation and thus

determine h indirectly.

Formulas for the principal variables are, then,^

^(sin/3-/3cos/3) (26)

(27)

m= ,
g3

_^nkpQ sin ^—^ cos /?

also

whence

k k

^^ m, An , , T^ 47r Oq /sin ^9 ^ \
(29)

For comparison of the variables p, p, e, with their values at the center, there

are the ratios

p sin j9

^0 /?

(30)

^=4^ (31)
Po iOo^-^'i'

while the mean density is

ep (p-prY (32)

\P<s-pJ

or in form of power series:

sin ^1-/?^ cos ^x .oox

p^ p,A 3! 5!
'^

7! /

The expressions for E and (P take particular forms readily reduced to

c/

^^8n|^= /" |j|-?i^-cosft(sm^-;Jcos;3)}d^
Z

giving for these total energy values:

q'

^^,[l+2sin^._4(^i^^)V^ (34)

* Most of these formulas occur in Fisher's paper, or in antecedent writings where the

Laplacian law is used.
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= 4n^k p^M l+2cos2/9i'
o sin i^i

Pi
'! (35)

The constants p^, q, may be determined, for example, so as to give

accordance with any assumed values for mean density p^ and surface den-

sity pi, or the latter may give place to the condition resulting from obser-

vations of precession and polar flattening,^ which, according to somewhat

uncertain theory, indicate for the angle /?i a value in the neighborhood of

140°. The following computations are based on the assumed value 141.8°,

together with the numerical constants as listed in the introduction, giving

the following table under the assumed law:

/?!= 2.475 = 141.8° 5=3.885X10-"

pjp,= 0.25 H, = 4.096X10"

p,= 2.717 £; =3.620 X10=^«

^„ = 10.87 <? =2.456X10^^

h= 5.549X1010 <?>, = 1.768X10^*

The resulting value of the surface density p^, though perhaps rather

small, accords fairly well with estimates of the mean density of superficial

strata, and an additional check on the applicability of the density-law in

question is found, as pointed out by Fisher, in the fact that the surface

value Hi of the elastic bulk-modulus ranges close to values found by direct

measurement.^

The accompanying tables, then, show the distribution of the principal

magnitudes at the close of the epoch of aggregation. The columns referring

to p, p, g are of course not novel, but are inserted for the sake of having all

computations based on an uniform set of numerical constants.

Table 1.

r/ri
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~
In table 1, fifth column, / (x) stands for (l-^x^, tabulated for com-

parison because of its occurrence in an approximate formula for the density-

used later. The maximum value of g occurs at a; = 0.8411, or about 630

miles below the surface.

Table 2.

r/n
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densed by deposition of the remaining layers, so that in order to determine

the total amount and distribution of the energy of impact it is necessary to

know how the compression advances in the existing nucleus as material is

deposited at its surface.

HISTORY OF THE COMPRESSION.

It is possible, under the foregoing assumptions, to trace such a history

of the accretion, if it be supposed that the equilibrium of the mass is main-

tained at each stage of the process. For if the preceding equations can be

accepted as approximate representation of the action of the earth-substance

under compression, to a similar approximation equation (20) must be viewed

as representing a physical property of that substance, independent of the

dimensions of the mass into which it is aggregated, the constants li, q being

physical constants of the material. The distribution of density in a body of

any size is then represented by equation (25), without change in the value

of q, but with the maximum value of j9 chosen to agree with the total radius,

and with central density such as to give the surface density the fixed value

Pi. The distance of any particle from the center is then fixed by the angle

/?, which is the measure of that distance in terms of a unit of 1/g centi-

meters, or about 1,600 miles.

Let rj be the radius of the nucleus already formed at a certain epoch,

and Tg its radius when compressed under the total load afterwards depos-

ited; let /, r be the central distances of any interior particle at the same

epochs; then r/ is to be determined as a function of r^, and / as a function

of r and r^; the latter function describing the history of the condensation

in the sense that it fixes the position of any assigned particle at any epoch,

if the epoch is specified by the final location of the particles which then lay

at the surface. A translation into time-relations could then be made for any

postulated law of variation in the rate of accretion. Let p^ be the central

density at the earlier epoch. For brevity put

B=^ C=sin/?-/?cos/3 (36)

to be indexed, like the various values of j9, by analogy with the values of r

to which they refer, as in equation (25)

.

By equation (26) the identity of the masses within the radii r/, r, at the

respective epochs gives the condition

Po'C/=PoC. (37)

similarly for the corresponding radii r', r:

Po'C'=PoC (38)

and from the constancy of density at the momentary surface

P,'B:=p,B, (39)

These equations are to determine the values of p^, /?/, /?', for any assigned

values of ^^ and /?, for instance first ^/ from (37) and (39) which give

b: b.
(40)
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then pQ from (37) and finally ,5' from (38). The values of /9/ and p^'

as functions of ^^ are given in table 3 below. The former were obtained

by interpolation from an extended table giving CjB and CfB^ as functions

of j9. To trace the positions of interior particles at different distances and
different epochs would require a double-entry table, which could be supplied

by equation (38) after p^' has been computed.

The specific energy of impact, or Icinetic energy of a unit-mass falling

from infinity to the surface of a nucleus of mass m^ and radius r/ is, then,

e-=^ (41)

W.=^^.

where by (26) the attracting mass is

The values of e^ are given in table 4, in terms of ^g, which determines the

ultimate position of the particle.

The total energy transformed by impact is, then,

E,=^7t
I

p, • -^ r,Hr,

t/o
*

which, since p^^p^B^, is equivalent to

But by equation (40)

whence

Use of this relation to transform the variable of integration from ^^ to

/?/ gives

where the integrand is expressed entirely in terms of ^J, the upper limit

of^the integral being unchanged according to (40). The result of the inte-

gration is

\Qk%p,'B,' r(l -/?, cot /?,)=^ l -Acot/9, /3,n

q^ ^'V 2
+

2 ej

which may be written:

E,=^AV.{^'-^-^^^^ff^+feos'A-|j (43)
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Comparison with (34) and (35) gives the fundamental relation

E + Ei = (44)

showing that under the conditions here assumed the original store of poten-
tial energy is entirely accounted for as transformed by impact and static
compression. The proof refers to a primitive condition of infinite disper-
sion, but a similar conclusion would hold for any initial configuration and
distribution of velocities provided stands for the entire primitive store of
energy, potential and kinetic, a variation in which would make an equal
change in E^, but leave E unaltered.

As represented by the preceding equations the character of the process
of accretion, upon a nucleus composed of material of definite compressibihty,
implies that the deposition of a new layer of given thickness brings about a
certain increase of compression of the nucleus and a corresponding sinking
of the former surface toward the center; only part of the thickness of the
new stratum is thus effective in producing actual increase of geometric
dimensions. In order to specify this differential depression numerically, let

a factor of depression D be defined as the ratio, to the total thickness of
stratum, of the part which sinks below the level of the former surface;
then 1 -D is the ratio of geometric increment of radius to total thickness of
stratum.

For simplicity of notation let /? now stand for the angle equivalent of

the radius of the nucleus at a given epoch, the mass being by (25) and (26)

:

^=^{i9-/3^cot/3|

where /?, is the fixed density of surface rock, so that

c;7n=^|(l-/3cot^)2 + i?4d/?

dm being the increment of mass and d^ the increment of radius in the angu-
lar units defined. If, however, a stratum of the same mass dm were laid

down without producing compression of the nucleus beneath, the relation

to the total thickness d^ of the stratum would be given by

From these follows for the depression factor

D =l-t = 1

d^ /^sin /?y (45)
1 +{^)

where C is defined as in (36). The factor D is tabulated in column 6 of

table 3, in terms of /?/, which there represents the momentary radius of the
free surface.
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A similar situation occurs with respect to the effect of accretion on the

moment of inertia and period of rotation of the planet. The moment of

inertia is

l=-i^n I pr*dr

or, measured for convenience in terms of a unit equal to -^^^ G. G. S.

units, ^ /-j9

p^sin/Jd^
sini9 /

which reduces to

7=2/33—|- (6- i?^) (46)

Now, in the same units the stratum itself adds to the moment of inertia

the quantity

<57=/3M/?=i3^|l+(^y|d/3 (47)

But this is in excess of the true increment, because the differential conden-

sation diminishes the moment of inertia of the underlying mass. The true

increment by (46) is

which may be written:

dl =8I-2^'K (^- 1) d/3 (48)

where

giving for comparison:

K <"

P'B

dl ^^ 2K/SK(^-l)(l-Z)) (49)
dl /? V ^

which is tabulated in column 7 of table 3. Then by combination of equa-

tions (45) to (49) may be computed

dlog7^£ _±_ dl . .

dlog/3 I ' 1-D '

dl ^
^

which gives the ratio of the percentage increase of the moment of inertia to

the percentage increase of the radius. This would indicate also the percent-

age change in the length of the day if the stratum were deposited entirely

under normal incidence, or if the moments of momentum of the planetes-

imals with respect to the existing axis of rotation exactly compensated
each other. If, however, it be supposed that variations in the rotation, or

even the existence of the rotation, were brought about by lack of such com-
pensation, then the equations allow this effect to be distinguished from that

due merely to changes in the moment of inertia.
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As illustration may be considered the case of superficial strata deposited

when the earth had attained practically its final dimensions, and corre-

sponding therefore to the last entry in the tables. A stratum, for instance,

exerting the same pressure as a mercury column of 760 mm. would have a

thickness of 3.8 meters; the depression factor D is 0.737; hence that stra-

tum would depress the former surface 2.8 meters, giving actual increase to

the radius of only 1 meter. This increase bears to the total radius a ratio

;r-j^XlO~*, while the value of , , o is 7.08; hence, for the case of normal
6.37 ^ ' d log /3

impact, the corresponding increase of the period of rotation is about

-Q X 10"^ of the whole, or 0.096 of a second for a day of the present length.

To increase the period just one second out of 86,164 would require a

stratum 39.7 meters thick. The illustration also indicates that under the

assumed law of compressibility the mean pressure of the atmosphere is

responsible for a diminution of the earth's radius amounting to 2.8 meters.

The preceding computation of pressures and densities has been based

on the condition of hydrostatic equilibrium, which for any substance not

completely fluid can be considered strictly applicable only in case each por-

tion of the mass is subjected to compression in such a way as to avoid any

distortion of shape, which would call into play reactions against shearing

stresses. It will therefore be instructive to determine what kind of defor-

mation in the elementary portions of the mass is implied in the foregoing

account. In view of the radial symmetry assumed, the distortion at any

point in the completed planet may be expressed in terms of a distortion-

factor Sf defined as the ultimate ratio of vertical to horizontal dimensions

of a mass which when first deposited at the surface was cubical.

The ratio of final to initial horizontal dimensions is /^J/?/, being the

same as the ratio of radii of two spheres passing through the same particles

at the respective epochs. The vertical or radial ratio in the same sense is

^^wY> since conservation of the mass of a stratum implies

if <?/?', d^ represent the respective thicknesses. These give for the distor-

tion-factor

pMJ
whose value at various depths is given in column 5 of table 4, which shows

that the vertical compression throughout exceeds the horizontal, the differ-

ence being most marked about one-fourth of the way to the center, where

the ratio is 0.824. This would be a violent deformation for a body with

perceptible rigidity, but may be admitted in the present theory if it be

supposed that under extremely slow changes the substance is practically

plastic, even if highly viscous. The chief uncertainty would then relate

to the energy of compression, which should take account of the work done

against viscosity under shear. Further comment on this matter will be

reserved for another place.
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Table 3,

Pa

Pi
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Table 4 is a continuation of table 3, giving in terms of the same argu-

ment the specific energy of impact for a particle falling from infinity, in

billions of ergs per gram, the same in centigrade degrees under specific heat

0.2, the surface parabolic velocity in miles per second, and the distortion

factor indicating the permanent deformation of elements of the mass at the

various points along the radius.

THE THERMAL PROBLEM.

It has been supposed in the foregoing that the distribution of heat was
not sensibly affected by conduction during the relatively short epoch of

accretion. If, now, it be supposed that the subsequent changes in distri-

bution are determined by conduction only, in accordance with Fourier's

laws, then the form of the temperature curve d = d(r,t) at each instant

may be determined by the differential equation

provided the form of the curve at the initial instant, say t = 0, appropriate

conditions relating to the surface, and the values of the conductivity k and
specific heat o be assigned. Since the variations of X and o under changes

in the physical condition of the substance are almost purely matters of

conjecture, the chief value of such an inquiry might well be considered to

lie in the determination of features of the thermal phenomenon which seem

to persist under varied assumptions on these points. Since, however, the

method of superposition of special solutions is practically the only known
way of obtaining general solutions of equations like (52), it will be supposed

that the latter is linear, A and o being assigned in each special case as func-

tions of r but independent of 6, and that the surface equations are linear

and homogeneous in 6 and its derivatives.

According to Fourier's method, of expansion into an infinite series each

term of which is a solution of (52) and satisfies the surface condition, the

solution may then be sought in the form

n=l
where

and t/„ (x) or y {fi^, x) for n = 1 . . . oo are the appropriate fundamental

functions, which are to be determined from

where 4){x)=XjX^, <p{x) =oplaQPQ, and the successive values of /i employed
are those which allow the individual terms of (53) to satisfy the surface

condition. The coefficients in (53) will be given by

£ x^ f {x) F {x) i/„ {x) dx
.gg^

Cx'(p{x)yr,{xfd^
Ar.=d,
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if the primitive temperature curve is given in the form

d{r,Q)=d,F{x) (57)

6q being the initial temperature at the center.

To determine the form of this initial curve it is necessary to know in

what way the storage of the compressional and impact energy is mani-

fested in rise of temperature, which is again a matter of hypothesis. Fish-

er's third assumption, as stated above, implies that the energy stored in

unit-mass stands in a definite ratio to the increment of temperature. That
ratio is, then, of the nature of a specific heat, expressed in mechanical units,

but is subject to question as to its identification, as is tacitly done by Fisher,

with the specific heat in the ordinary sense, as relating to rise of tempera-

ture due to heat transferred by conduction or radiation. It will be shown

later, however, in connection with a detailed criticism, that the theory thus

developed may fairly be considered self-consistent, in the light of thermo-

dynamic laws, when associated with what appears as a certain extreme view

regarding the thermodynamic properties of the earth-substance. An effort

will then be made to develop an opposite extreme view, to permit comparison.

For the present, then, the primitive temperature will be supposed de-

fined by

e=-^ (58)

where v is the fractional value of that part of the energy of impact which

remains after the loss by dissipation at the surface, and o is the specific heat

identical with that occurring in equation (52). A variation of a with the

density need not be excluded, but any possible variation with the tempera-

ture will be disregarded, not only because of the practical value of keeping

the linearity of equation (52), but also because any uncertainty from this

source would be bound up with the inevitable obscurity of the very notion

of temperature under circumstances so far beyond the range of laboratory

tests.

The multiplier v may also vary for different portions of the mass, its

value depending on the rapidity of the accretion. It could be unity as one

extreme, for deposits made with such rapidity that each stratum is covered

up before its loss of heat by radiation is sensible; or zero as the other ex-

treme, for accretion so slow that the cooling of the momentary surface-

stratum by radiation is practically complete.

^ One curious possibility may be noted in passing. With sufficient veloc-

ities of impact and appropriate values of v, it would be possible for the

expression e+ye^ to have the same value for all strata; if then o were like-

wise constant, this would indicate a primitive temperature uniform through-

out the body. For example, if e^ should be for each stratum that derived

from impact at the corresponding parabolic velocity, as listed in table 4,

and V should range from 0.38 for the central portions to 0.27 for the surface

layer, then e+ve^ would have everywhere the value 1.7X10" ergs per gram
mass, and for a = 0.2 this would give a primitive temperature of about

20,000°. Since this value of a may be too low, and it is practically certain
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that not all of the energy can be considered as manifested in the raising

of the temperature, this number is probably somewhat too high. But in

any case it appears that the planetesimal hypothesis could thus plausibly

assign an origin for precisely the kind of initial thermal condition of the

mass postulated in Kelvin's famous theory, which would then serve to

indicate the subsequent thermal process, and in particular the probable

age of the earth reckoned from the close of the epoch of formation.

It seems, however, more in accord with the spirit of the general hypoth-

esis to assign no such relative importance to the energy of impact. For

the value of e^ should probably be assumed much less than its parabolic

value, being due to the relative velocities simply of bodies which might

partake more or less of a common motion; for instance of bodies moving

in similar directions around the sun in intersecting orbits of moderate eccen-

tricity. Moreover, even with what might be considered a rapid rate of

accretion, when compared with astronomical processes in general, by far the

greater part of the heat so generated must be expected to escape quickly

by radiation, thus making v a small fraction. The computations following

refer to the case when the value of ve^ is insignificant, so that the compres-

sional energy alone is effective in producing the primitive temperatures,

which are then to be computed from column 6 of table 2 and the assumed

values of o.

The same relative freedom of dissipation into space would tend to keep

the surface at a low and equable temperature after the accretion had

ceased. It will, therefore, be assumed that the surface temperature keeps

a fixed value, which may be taken as the zero of reckoning, and whose

place in an absolute scale would depend largely on the thermal influence

of the atmosphere. It is further supposed that the rise of temperature

produced by compression can be reckoned from this point. With these

stipulations the solution will be determined if definite hypothesis is made
regarding the conductivity and specific heat.

If >l and o are uniform throughout the mass, then <p{x)=l, and <p{x)

=
plPo' Since great precision is needless in these computations, the ratio

^/iOo will be replaced by the convenient expression (1-^x^y, whose close

accordance with it appears from columns 4 and 5 of table 1, and which

simplifies the determination of the solutions of equation (55), which then

reduces to

the required solution of which may be written:

2/(/i,a:)=T(-ir«i^" (60)
1=0

where the a's, which are functions of /x, are all positive and determined by

the simple recursion-formula

^i =
2i(2i + i)

(^^-i + ^^-2 + i«»-3) «o = l «.=! (^^^
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The values of /i required for the expansion (53), with the surface con-

dition named, are the roots, infinite in number, of the equation

i/(/^,l)=2(-iy«.=0 (62)

(63)

These roots may be determined as far as required by a trial and error tab-

ulation of yin, 1), the computation yielding also the coefficients a^, but

increasing rapidly in length with each succeeding root. The first two roots

and the corresponding fundamental functions are:

jMi = 13.0589

y,{x) = 1 - 2.17648 rc^ + 2.07407 x*- 1.39934 x" + .72867 x'- .31419 x^"

+ .11658 a:»2- .03812 x^^-H.01 120 a;!"-.00300 a:i«

+ .00074 rc^^"-.00017 a;" + .00004x2^-.00001 a:=^"' ....

/£2 =55.313

y,(x) = 1 - 9.21889 x^ + 28.26204 a:*- 49.69103 a;« + 61 .65731 x"

_ 59.54423 a;i» + 47.37952 x^^- 32.22346 xi^ + 19.21509 a:^«

- 10.23514 x'^ + 4.93949 x^"- 2.18394 x" + .89259 x'*

-.33971 a;^"» + . 121 14 0:28 -.04068x30 + .01292x32

- .00390 x^* + .00112 x3«- .00031 x^^ + .00008 x"

-.00002 x« ....

The number of terms to be included and the magnitude of the individual

coefficients increase rapidly with the index of the component, so that if

many components are of sensible influence in the representation of the

primitive temperature curve, the accurate determination by this method of

the transformations produced by conduction would require computations

of serious length. But the effect of the higher components on the general

features of the cooling process can be conjectured, with the aid of certain

general properties of the fundamental functions which are obvious in the

light of the theory of linear differential equations of the second order.

The constants /t^, [i^ . . . will show a rough proportionality to the

squares of the natural numbers. The solutions t/(/x„, x) or y^{x) will be

oscillatory in such wise that y^ has n-1 roots between and 1, the inter-

mediate half-waves having amplitudes all less than the central amplitude,

which is unity, and decreasing in order when counted from x = toward

x= 1, exhibiting these features in a more marked fashion than the functions

^^^ ^^^
, because of the fact that the coefficient f{x) decreases as x goes

mtx
from to 1.

For constant a the primitive temperature curve is obtained from the

curve for eje^, which has unit amplitude at the center, by multiplying

all ordinates by the central temperature, -^•, which for <t = 0.2 is about

20,000°, the temperatures being then given by column 8 of table 2} It

> The temperatures given by Fisher are larger than those here listed in the ratio of the

number of pounds in a cubic foot of water, presumably through some inconsistency in the

units used in the equivalents of formulas (21) and (22), which however does not occur in

the corresponding expressions in his "Physics of the Earth's Crust," p. 29.
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will be convenient however to express the temperatures and coefficients

Ai in terms of the central temperature as unit, to leave free choice as to

the numerical value of a. The coefficients A^, A^ then have the values

named below, computed according to (56) by mechanical quadrature.

The influence of the first two components appears from table 5. The

second and third columns give the first two fundamental functions, the

fourth the primitive temperature curve, and the next two the terms out-

standing after subtraction of the first and of the first two components re-

spectively.
Table 5.

X
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exhibiting the simple type of cooling described by Fourier, where conduc-

tion produces simply a progressive diminution in the ordinate scale of the

temperature curve, according to the time-exponential law, without change

in the ratios of the ordinates. Since yi(x) is everywhere positive, this

would mean an actual decUne of temperature at each point proportional

to the temperature itself. The gradient at the surface would be initially

1° in 417.5 meters, for o= 0.2, and would decline according to the same

law as the temperatures themselves. This shows that under the condition

for the moment assumed only a small part of the present observed gradient,

about 1° in 30 meters, could be ascribed to this component, unless the

specific heat were taken very low.

The time-rate of the process is specified conveniently by means of the

interval r, which is the time required to reduce the amplitude of the corre-

sponding component to - or 0.368 of its primitive value, and is to be deter-

mined by (54), when the value of— , the " thermometric " conductivity,

is assigned. If the latter be taken in the neighborhood of 0.01 for surface

rock, the value of —^ being one-fourth of this, the value of t^ is about

4 X 10" years. The time required to reduce the amplitude of the first com-

ponent by 1 per cent would be about four billion years.

Any higher component dies out in a similar way, at a rate indicated by

its value of r; but because of the alternation in sign of the fundamental

function, would, if occurring singly, indicate falling and rising of tempera-

ture for successive zones in alternate" order along the radius, the number

of zones being equal to the index of the component, with the central tem-

perature falHng or rising according to the positive or negative sign of the

coefficient A. Thus the second component has a negative coefficient, in

magnitude less than one-sixtieth that of the first, but with r^ somewhat less

than ^Ti,- since 1/2 is everywhere numerically less than y^, this means that

with respect to changes of temperature the second component simply modi-

fies the effect of the first nowhere to an extent more than one-fifteenth of

the total effect due to the latter alone. In the zone extending 0.43 of the

radius from the center the temperature falls somewhat more slowly and

thence outwards more rapidly with only these two components included

than would be the case with the first alone.

The influence of each further component could be traced in a similar

way, and many would doubtless be found to be sensible within the range

of accuracy of the tables above, if the computation to that degree of ac-

curacy should prove to be feasible. But in the absence of simple analytic

expressions for the functions involved it would be necessary to do this by
numerical calculations of extreme length on account of the greater and

greater number of the coefficients a^ needed, and the insufficiency for deter-

mining the coefficients ^^ of a tabulation of the functions with a moderate

number of entries.

The residuals in column 6 show that the influence of the higher compo-

nents is meager in the central portions, but relatively serious in the more

13
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superficial zones. It is accordingly in the latter region that such general

considerations as above are insufficient to give a just idea of the complete
thermal process.

Conjecture may, however, be made with some confidence as to the prob-

able character of the modifications produced by the higher components, by
direct inspection of the primitive temperature curve, which by (22) and

(58), with the substitution of the approximate expression used previously

for the density, becomes

e=d,{i-x'y{i-jx'y(i-^x')-' (64)

which is accurate enough for the purpose. Then, according to (52), the

initial rate of change of temperature becomes:

dt '^oPo'^i [ 9 9 3 9 9 j ( 2 J

in which the coefficient of —^-^ is that tabulated in column 7 of table 5.

Q0 '^oPo^'i

For the part of— due to any single component, say the nth, the corre-^
dt

sponding coefficient would be n^A^y^.
These figures indicate that from the center outwards over a distance of

about eight-tenths of the radius the thermal process is not very different

from that represented by the first component alone, except that the latter

exaggerates the rate of decline somewhat in the more central portions on

account of the opposing effect of the higher components. But in the outer

zone of about two-tenths of the radius the process is in the earlier stages

totally different; here the temperature actually rises for a certain interval

of time, which would be different for different depths, very short for points

extremely near the surface because of the constancy of the surface-tempera-

ture, and for points near the boundary between the regions of rising and of

falling temperature, but presumably of considerable length at intermediate

depths. Since this trend of temperature in the outer zone is brought about

by the higher components, which practically die out in a time sufficient to

produce only a relatively small change in the amplitude of the first com-
ponent, the whole process may be conceived to occur in two epochs, an

earlier one of gradual accommodation of the temperature-curve to the slowly

declining first component, and a later one where that component is left

practically isolated. During the latter epoch the temperature would decline

steadily at all points at rates nearly proportional to the existing tempera-

tures. But during a large part of the earlier epoch the heat lost from the

central portions is conducted through an intermediate zone, whose thermal

condition is nearly stationary, and thence outwards to produce an exaltation

of temperature in a zone a few hundred miles thick just below the surface.

Dissipation through the surface in the earlier stages is very slight, owing to

the smallness of the gradient, the primitive temperature-curve being tan-

gent to the X-axis at the point a; = 1, because of the occurrence of the squared

factor ip—piY in formula (22).
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The zone of rising temperature, which would be narrowed down and

finally disappear as the conduction progressed, extends at the start from

the surface to a depth of about 700 miles. The total rise of temperature

would be trivial near the extremes of this zone, but more marked toward

its interior. According to the residuals in column 6, table 5, the rise may
be expected to be most significant in the neighborhood of a depth of about

400 miles, reaching in that region, with allowance for even a considerable

percentage of decline in the first component, a value of probably at least two

one-hundredths of the central temperature, or 400°, which is the increase

over initial temperatures ranging about 1,200°. Such a change might

carry the substance through its temperature of fusion, even under the high

pressures there sustained.

The foregoing sketch of the thermal process lacks, of course, the pre-

cision which could be reached through a computation extended to include

all components of sensible influence; this also would alone suffice to yield

an accurate estimate of the time-intervals implied, which would probably

be counted in billions of years for the epoch during which rising tempera-

tures occur. It must be noted also that a small outstanding portion of the

energy of impact might alter the features of the thermal process seriously,

especially in the strata near the surface, where the very fact of the oc-

currence of the rising temperatures may be said to be due to that relative

deficiency in the heat from the purely compressional source which is rep-

resented by the upward concavity of the initial temperature-curve.

It is desirable, however, to know more precisely the result of the complete

computation, under at least one set of reasonable assumptions, which, in

the absence of experimental information, may fairly be conditioned by the

practicability of the calculations; for instance, through the use of a suitable

alternative hypothesis regarding the specific heat. This has thus far been

treated as a constant, but there would seem to be some reason, under a

molecular theory, for supposing it to decrease with increase of density, since

the consequent diminution of the intermolecular spaces might tend to throw

more of the energy into the " unordered " kinetic or thermal form, by inter-

fering with the " ordered " movements which have been conceived by Hertz

and others to account for the storage of energy apparently in latent or

potential form. It will be of interest to see how far the thermal process

described above is modified by supposing the specific heat thus variable.

A simple supposition on this point, hardly more arbitrary than any other

that could be made and having at least the merit of yielding tractable form-

ulas, is that o is inversely proportional to p, or op = o^^. With constant

" calorimetric " conductivity X this makes the " thermometric " conductivity

— also constant, and reduces equation (55) to the form:
op

giving for the fundamental functions:

^ sin nnx
(67)

^" rntx
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and for the expansion (53) the coefficients:

A„ = 2n;r / xF(x) sin mix dx (68)

if the initial temperature-curve is y = d^F{x) and the coefficients are ex-

pressed in terms of d^ as unit. The intervals z are determined by

and are thus in this case strictly proportional to the squared reciprocals of

the natural numbers.
To determine F{x), it may be noted that the initial temperatures can be

determined from those of the previous hypothesis by multiplying by pjpi,

giving for the central temperature

which for <t = 0.2 is about 81,000°; and for the curve in terms of the central

ordinate
^ F^^)JPlZPl) (71)

For convenience in determining the coefficients A^ the last equation will

be replaced by the formula

F{x)={\-x''y{l-jX-'-Vjx')

or

F{x) =l_^x^ + ||a;^-|a;« + |:c'' (72)

which, in comparison with (71), leaves residuals at most 3 units in the

fourth decimal place. By (68) the expansion has then the coefficients

where

2n\—S W-— ,<? (2)_|__^,Q (3)__^^ w_L_L^ (5)1

J '

which can be reduced through integration by parts, giving finally

4.=2(-l)-f-=l?^,-#?-.-?f-? +^| (73)

The first few of these coefficients are

:

A,= +0.70590 ^2- +0.36797 ^4= +0.05354 ile= +0.02240

vlg^ -0.10765 Ag= -0.03284 ^7= -0.01632
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The alternation of the sign begins with the second and the steady decline

in numerical value continues throughout.

A convenient unit of time for exhibiting the changes produced by con-

duction in the temperature-curve is the interval T required to reduce the

amplitude of the first component by 1 per cent, which with the same con-

stants as before, for the surface-stratum, would be about 1^ billion years.

The successive changes in the temperature-curve are shown in table 6,

abbreviated from an extended computation covering an epoch of 35 such

intervals, the number of terms of the series included ranging from 100 for

the earliest entries to 5 for the latest. The unit of temperature is the initial

temperature at the center.

Table 6.

X
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Table 7.

X



Part II.—CRITICAL AND SUPPLEMENTARY.

In the development of the theory in Part I, the attempt was made to

give explicit statement, though without critical setting, of the more impor-

tant of the secondary hypotheses which were used as auxihary to the gen-

eral hypothesis in order to give the theory a sufficiently definite form. But

since the main purpose is to seek such features of the geophysical phenom-

ena as seem to be essentially consequences of the general hypothesis, it is

necessary further to inquire how far the results are peculiar to the special

conditions adopted and how far they seem to persist under variations of

these secondary assumptions; and also to what extent these assumptions

are subject to obscurity or positive objection through the accessibility of a

direct or indirect test by observation or well-established theory.

The Laplacian law of density has been assumed chiefly because of its

analytic convenience, though it seems doubtful whether any geophysical

theory is likely to be sufficiently trustworthy in detail to afford more than

a crude test of any assumption on this point. Nevertheless, by inspection

of some of its consequences, it is possible to surmise the probable character

of its departure from the true law of compressibility of the average earth-

substance. It appears that the modifications which seem to be needed

from the standpoint of the planetesimal hypothesis agree, at least in kind,

with those famihar from the indications of general geophysical theory.

Column 7 of table 3 shows that in the earlier stages of the growth of the

planet the thickness of a stratum deposited is nearly all effective in enlarg-

ing the geometric radius of the mass, while toward the last not much more

than one-quarter of a new stratum remains above the former horizon; as

the mass grows larger the less significant becomes the actual increase of

dimensions produced by a new stratum of given thickness. Moreover, with

a strict interpretation of the law of compressibiUty assumed above, there ia

a definite limit to the possible radius of the planet, no matter how much
material might be laid down. For in equation (25) the factor g is a defi-

nite constant, depending solely on h, which is determined by the compressi-

bility as a physical constant of the material, independent of the dimensions

of the mass into which it may be aggregated; while if there are to be no

meaningless negative densities introduced, the angle /? can not surpass the

value TT, at which the density at the center becomes infinite. This means

that no amount of accretion could produce a mass with radius greater

than — centimeters, or about 5,000 miles.

Now, even independently of any supposition as to the actual origin of

the planets, there seems to be little reason for supposing that if deposits of

indefinite extent could be brought about at the surface of an existing planet

there would be such a limit of growth, at least of such comparatively meager

dimensions. This objection has not much force, for the reason that the law

might be practically accurate for the range of densities contemplated and

seriously in error for the higher densities; but its suggestion is that the true

201
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compressibility most probably diminishes, as the density increases, more
rapidly than is postulated by the Laplacian law. This would allow a larger

part of the compression to take place during the earlier stages, giving to the

nucleus, when it reaches a given radius, a larger mass than is assigned it

above.

In the light of the planetesimal hypothesis a similar conclusion can be

reached in another way. For in view of the like origin predicated of the

earth and other bodies of the solar system from the primitive planetesimals,

composed of more or less similar materials of definite compressibility, it may
be expected that at the successive stages when the earth-nucleus reached

dimensions equal to those of various planets at the present time its mass

should show some agreement with the observed masses of those planets.

The supposition of the small upper limit of diameter just mentioned is of

course negatived by the existence of the planets of the Jovian group. But
such comparison is futile, partly because of the uncertainty as to their

true dimensions, brought about by their extensive atmospheres, partly

because of the wide difference in physical condition as compared with the

earth, illustrated in particular by mean densities smaller than even the

surface-density assumed for the earth. Moreover, it is conceivable that

the discrepancies of an assumed pressure-density law might become serious

only outside of the range met with in smaller bodies like the earth. But a

comparison with the other planets of the terrestrial group should prove

instructive. Table 8 gives their observed radii and masses as compared

with the earth, and the hypothetical masses computed by interpolation

from columns 2 and 4 of table 3.

Table 8.
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The masses of the asteroids are purely conjectural, while that of Mer-

cury is too uncertain to be used. For Venus the computed mass exceeds

the observed; but at least part of the difference may be ascribed to the

influence of atmosphere and irradiation in bringing about an overestimate

of the planet's true diameter; for example, if the observed radius were

corrected by — 2 per cent of its value, the computed and observed masses

would agree. For the moon and Mars, the computed masses fall below

the observed by 15 per cent and 20 per cent, respectively.

From this, as before, the suggestion is that the assumed law of com-

pression should be modified in the direction of allowing greater compressi-

bility at the lower densities, and less at the higher, which would have the

effect of assigning greater mass to the nucleus at intermediate sizes, and to

the present earth a steeper density-gradient near the surface, together with

a relatively more nearly homogeneous central portion. This agrees with

conclusions which have been drawn from observations of precession and the

transmission of seismic disturbances.

In view of this comparison it seems quite conceivable that a law of com-

pressibility might be constructed, agreeing with the data furnished by the

earth in its present condition, and such that the observed masses of the

planets now existing in its neighborhood would prove to be the same as

those computed for the nucleus at epochs when the dimensions correspond.

It will accordingly be of interest to review the previous theory, with the

substitution of a density-formula whose variations from that of Laplace

have the general trend indicated.

A formula of this character for the density is the simple one proposed

byRoche:^
^=^„ (l-ca;==) c=const. (74)

From this, according to the general equations previously used, are derived:

w=^7:/>or3M—— cxM (75)

whence H is determined by (15) ; also:

•

p=^|(22_;3-^2) + (,3_^^3)| (77)

^ (,_,j3 . ^_±2^^ (78)
2p^c z

3
=<Oo(l-|c) p,^p,{\-c) (79)

E=%7:Ar^ • ^c(l-^c) (80)

0=%TzAr^{\-^c^^c^ (81)

Roche, Acad^mie des Sciences et Lettres de Montpellier, v. 8, 1848, p. 235.
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in which are put

A=^KkpQ^r^ z=-
Po

Zl = l—C

The constants p^, c may be determined by assigned values of the mean
and surface densities, which will here be supposed to be in the ratio 2:1,

giving c = -^, whence results

,00 = 9.653 |0, = 2.758 Hi = 3A5XlO''

^ = 3.110X10^8 (l>= 2.426X103'

and for the quantities p, p, H at various depths the values listed in table 9,

which for the present density-formula replaces the corresponding columns

in tables 1 and 2. This value of c is somewhat less than that used by Roche,

which seems to give rather too small an estimate for the surface-density,

when the more modern determinations of p^ are used.

Comparison with the tables of Part I shows that the range of values in

density, pressure, and specific compressional energy is in each case some-

what less than under the previous conditions, but that the modulus of com-

pression, while somewhat less at the lower densities, is decidedly greater at

the higher, showing that the departures of formula (74) from (25), which it

replaces, have qualitatively the character shown to be needed. Of the

energy-totals, 0^ is necessarily the same as before, while (P and E are respec-

tively 1.2 per cent and 14.1 per cent less than their former values, so that

relatively more of the primitive energy is transformed by impact and lost

by radiation. This is obviously due to the greater mass of the nucleus, at

a given radius, and the correspondingly larger velocity of impact in this as

compared with the former case.

Table 9.

X
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Table 9, based on the formula p=Po(l-p^), gives the values at va-

rious depths of the density, of the pressure and bulk-modulus in millions of

atmospheres, and the thermal measure for = 0.2 of the specific compres-

sional energy.

To estimate the modifications in the thermal process due simply to the

change in the formula for density, it will be well to repeat the former alter-

native hypotheses regarding the specific heat.

If a, k are constant, the primitive temperature-curve by (78) is

e=d,(i-xr{i-jx^)^(i-^x^) e,= '^j (82)

which is tabulated in column 5 of table 9, while equation (55) reduces to

giving for the fundamental functions

y=^{-iya,x'' (84)

where the coefficients a^ are determined successively from

«o = l «i=f ''^ =
2i{2l+r)^'''-''^'''''-'^

t = 2 . . .
.00 (85)

with the values of // which make y vanish at re = 1. The complete computa-

tion to sufl&cient accuracy to determine the details of the conduction is

again hardly practicable, but the first two fundamental functions with their

parameters fx, r, and coefficients A determined from (56) are:

yi = l- 2.04360 x^ + 1 .69080 x*- .91977 rc«+ .36231 a;^- .1 1362 x^»^

+ .02927 x''- .00645 x'' + .00123 x'^- .00021 x^*

+ .00003x2"- _
/ii = 12.2616 ^1 = 1.089^0 Ti =400 billion years

^2 = 1-8.59393x2 + 23.99826.1;''- 36.99908 x« + 38.77346 x« i /gg)

-30.56380 x»'' + 19.25673 x»2- 10.08879 xi^ + 4.52008 x^«

- 1.76799 xi8 + .61344 x-"- .19120 x" + .05409 x^"

-.01400 .x''' + .00334x28 -.00074x3" + .00015x^2

-.00003 .x3'*+ ....

//j = 51.5636 A2 = -.0705 (?„ T2=96 billion years

These are given in table 10, columns 2 and 3, together with the residuals

from the primitive curve due to components higher than the first and second

respectively in columns 4 and 5, the tabulation in all cases using as unit the

primitive central temperature d^, which for (7 = 0.2 is about 16,600°. The

last column of that table gives the initial rate of change of temperature,

computed from

dd

dt

dA ( 312
,
1268 , 132 ,

,

,_ , 100 ^l . L 5 )' .o^x

=^l-^+-49-^-^^+^'^-l9-^7"i'"7-^l
^''^
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which follows from (52) and (82), the tabulation using, however, as unit of

measure the value of —^, equivalent to a change of about 3J° in a billion

years.
Table 10.

X
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probably about as before. The time-scale of the phenomena can be con-

sidered practically the same as before, especially in view of the uncertainty

as to the appropriate values of the thermal constants.

Under the other supposition, that A and ap are constant, the funda-

mental functions are again defined by (67), while the primitive tempera-

ture is 1

(88)
1

d=d,{i-x'y{\—^x')

where now

d =-^

SnV"^ ri«7r« j

or about 58,000°. The coefficients of the series are given by

A„=2(-l)"-^|

the first few of which are

:

Aj = 0.80006 ^2 = 0.29146

^3= —0.14122

(89)

(90)

^8 = 0.03598A, = 0.08054

^g= —0.05174 A^= —0.02645

the alternation in sign and steady decUne in numerical value continuing

throughout.

The time-interval T, during which the first component declines by 1

per cent, is the same as with the former density formula, or about 1^ billion

years, with the thermal constants assumed. The effect of the conduction

in modifying the distribution of temperature is indicated in table 11, for

epochs differing by five such intervals. To the order of accuracy for this

table the numbers of components of sensible influence range from about 100

for the earliest epoch to 4 for the latest given.

Table 11.

X
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Here the zone of rising temperature extends at first to a depth of a Uttle

over 1,000 miles, and the chief features of its history may be thus sum-
marized:

Table 12.

X
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This condition means that if the curves be supposed given in the form

p=fir,a) (92)

where a is the parameter of integration, whose value corresponds, for

instance, to the total radius or the central density, then the modulus H
deduced therefrom must be a function of p only, independent of a. Equa-

tions (3), (4), (5), (15) show this to be equivalent to the condition that

shall be a function of p only, or in terms of the functional determinantm
dp

dr
dp

dr

dp

da

=0 (93)

in which is put, as before.

r» = 47r pr^ dr

By differentiation and elimination of m this fundamental condition can be

reduced to a partial differential equation for p, in rather cumbersome form.

Trial shows that (74) is not a solution for any manner of dependence of p^

and c on a; but (25) is a solution, if p^ be a function of a, and q a numerical

constant.

Another special solution of (93) in simple form is found to be

<==a^(l+^ayr^
)

jM= const.

for which

m =^ Ttr^a^ (^ "'"T
^*!^^^) 2

(94)

(95)

so that for various values of a it would give the density curves for masses of

different dimensions, if the substance were to satisfy the condition

dp
I.
-

h =
47rfc

5]f?
(96)

With such a substance the compressibility at various densities would be such

that not only would there be a definite limit to the dimensions which the

mass could attain, but this would be reached with a finite mass, and beyond

that point any further addition of strata at the surface would result in an

actual decrease in size, as appears from the following analysis.

If p^, pi, r^ be the mean and surface densities and total radius at any

chosen epoch, and a, the corresponding value of a, then

/0,;»=ai'(l+c)
(97)
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_ 5

where
p,=a,Hl+c) 2 (98)

c = 3-aiyn2

whence

^ = l+c (99)
Pi

Then since the surface density is not to change, the total radius r/ and the

parameter a at any epoch are related by

which, combined with (98), gives

RcA^- (I +c) A -{-1=0 (101)

a quadratic equation for A, in which are put

The condition for reality of the roots shows that the maximum possible

radius is

^/=| • ^ (102)

as may be deduced also from the transformed equation

From which it is seen that 72 as a function of A has a maximum value

R = ^ ' at A = ,. y As A increases indefinitely from its smallest

admissible value, which is r-—-, the mass also increases from zero without
i -tC

limit, but the total radius increases to the maximum value indicated and

then decreases toward zero. For any assigned radius less than the maximum
there would thus be two possible distributions of density, giving masses

less than and greater than the critical mass, and with mean densities less

and greater than double the surface density respectively.

If, however, the constants a^, c be determined by (97), (98), from the

values of p^, p^ heretofore assumed for the earth, the computation ac-

cording to (94) shows that for some distance downward from the surface

the density would increase more slowly than with either of the formulae

used before, but then rise more rapidly and at the center reach a value of

15 to 16. In view of the probable corrections mentioned above as needed

to change the Laplacian formula into one agreeing better with the data

available, it appears that in comparison with (25) the formula (94) is much
less satisfactory, as an approximation to the general distribution of density
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within the earth. It is here dwelt on briefly for the sake of the comparison
it affords with still another now to be considered, which also belongs to the
class for which ,

^-V (104)

of which (20) and (96) are examples.

It was shown in Part I that, with the particular law of compressibility

there postulated, the progressive condensation under the increasing load of

the material gathered at the surface would be accompanied by a deforma-
tion of the elements of the mass whose final amount is indicated by the
distortion-factor tabulated. Attention was called to the consequent uncer-
tainty introduced into the determination of the work of compression if it

be supposed that the substance offers appreciable resistance, either elastic

or viscous, to shearing stresses, so that the working pressure is not purely
hydrostatic. It is conceivable, however, that this deformation might be
widely different in character and amount under another acceptable pres-

sure-density law, so that the acceptance of the special formulas (20) and
(25) would lead to no just estimate of the essential obscurity in the theory
from this source.

As a guide to conjecture on this point it will be of interest to determine
whether there could be a law of compressibility assumed of such nature
that the condensation of the mass would lead to no such deformation, but
rather that the compression would be at all points purely cubical.

If X be an auxiliary variable, determining the location of a given par-
ticle at some chosen epoch, for instance as before the ratio of the ultimate
distance from the center to the total radius, then the distance r from the
center at any epoch may be considered as a function of a and x:

r=<Pia,x) (105)

Let x', x" be the values of x corresponding to two chosen particles; then
the mass of the spherical shell whose bounding surfaces pass through those
particles will be „

m(x',x")=4;r / pr^^dx (106);',x")=4;r /
Jx'

As the condensation progresses the spherical surfaces will shrink, but the
mass between them must remain constant. This means that the integral

(106) must be independent of a, whatever the values of x', x"; this gives

the condition

Br { f dp dp dr\ dr
]

dV .

which reduces to

in which is put

^(a,0=|^ (108)

14
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obtained from (105) by differentiation and elimination of x, which is admis-

sible, since r is a monotonic function of x.

Moreover, the variations in horizontal and vertical dimensions of a

given element of the mass are proportional to the variations of r and of

dv
-r— respectively as functions of a. The condition of no distortion demands

1 dr
therefore that —-^ shall be independent of a, which gives

r dr r
, =0 (109)

80 that P may be written in the form

P = -rQ(a) (110)

showing that, to satisfy the conditions named, a differential accretion at

any epoch must depress each particle an amount proportional to its dis-

tance from the center, but so that the factor of proportionality depends in

an indetermined way on the momentary total dimensions of the body.

The last equation reduces (107) to

'^-^^+^p=o (111)
dr Q da

of which the general solution is

where

P=^^'(0 (112)

/^=logr+ Qda (113)

The mass within the radius r is then

m=4:7t<p{0 (114)

provided that in the function <p, whose derivative is the arbitrary function

<p' in (112), the additive constant be chosen suitably, which the finiteness

of the mass would show to be possible.

It remains to impose the condition that the substance have a definite

compressibility. Equations (112) and (114) yield

i^ = _4^fc^j5|_, (115)
p dp ip"—6(p

and this must be a function of p only. This is equivalent to the condition

tliat if y-^f'

then r~'^0 and r"~V' niust be dependent functions oi r, !^\ or in terms of the

functional determinant
2(p /»'

-i =0
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This could be obtained from the general equation (93) by substitution of

(112) and change of variables from r, a to r, ^. It shows that, with C an
arbitrary constant, the relation must have the form

giving for determination of the function <p

f" -^<p' =C<p<p''^ (116)

on account of which (115) gives for the equation characteristic of the sub-
stance

^ = hpi A=-^ (117)

SO that C must be negative. This is, then, the condition which it is neces-

sary that the substance satisfy in order that the condensation under increas-

ing mass may not be accompanied by distortion of the mass-elements.

Conversely, if the substance satisfy this condition, the compression will

take place without deformation. For, with the substitution of (117), equa-
tion (6) takes the form

The solution which is finite at the center has the form

R=R,Q(u) Ro'=Po u=R,fir (119)

where .G is a definite function, which for sufficiently small values of u can
be expanded as a power series with numerical coefficients of alternate signs

If the radius of convergence be too limited, the function may be considered
as determined for any value of u by analytic continuation, since equation
(118) has no singularities to prevent. The density is then

p=p^oj{u) 0}{u)=[Q{u)Y (120)

so that 0) also is expansible for small values of u as an alternating series

with numerical coefficients

Then
• • • •

whence

r
Jo

dr
m=4;rO(, / r-(o{u)-^du

m^^e{u) (121)

where 6 is the definite function

e{u)= I uMu)du (122)

nU
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or as power-series

Since fx is in effect a physical constant of the material, equation (121)
shows that any particular value of u will determine a spherical surface,

of varying radius according to the varying value of p^, but always passing
through the same material particles, so as to inclose the mass determined
by that equation. If, then, u, v be two values of u corresponding to two
definite particles, a', /?' and a", /J", their distances from the center at two
stages of the compression when the central densities are p,/, p^' respectively,

then the definition of u gives

u =p,'ipia' =^o"M«" V =/>o'Mi5' =p,"ipi^'

whence

showing that the distances of two particles from the center remain in the

same ratio as the condensation progresses. This is precisely the kind of

contraction by which distortion of elements is avoided.

The constant /j. would be determined by the mean and surface densities

at a given epoch from the equations

p,=poco{u0 Pm=^Po—^ Ui=Po^tir^ (124)
t*,

which would yield also the central density p^ at that epoch; then for any

epoch the first of these would determine the central density for any assigned

total radius.

The determination of the exact distribution of density under these con-

ditions would rest on the computation of the coefficients so that R satisfies

the differential equation (118); but a sufficient idea of the curve may be

gathered simply by comparison of formula (117) with (96) and (20). All of

these belong to the class (104), with exponents :^, -^, and 1 respectively, so

that the first is a sort of average of the other two. With the same assigned

mean and surface densities, it may be inferred that the hypothesis now
considered would result in densities less in the outer strata and greater in

the central portion than those given by the Laplacian formula (25), but

deviating in that way to a less extent than those computed from (94).

Such departures are opposite to the corrections which the Laplacian law

seems to require, though the data from observation are but meager; so

that (117) must probably be rejected, as not giving a satisfactory approx-

imation to the actual distribution of density within the earth. The only

satisfactory curves of class (104) would seem to be those with exponents

somewhat larger than unity.

The intermediate character of (117) as compared with (20) and (96)

appears also in the phenomena which would attend unlimited accretion.
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Equations (117) and following, combined with the hydrostatic equation (3),

du u^

and (122) gives

du

from combination of which comes

-^=^ y=e z=uQ (125)
dy z^

This equation determines a family of curves in the y-z plane, of which the

one required for the present purpose passes through the origin, at which
the 2-axis is an inflectional tangent. In the neighborhood of the origin

this curve is given by the expansion

y-k^+y^w6''+ (^2«'

with coefficients all positive. The arc required is that lying in the quad-
rant where y and z are positive. j 3

In the half-quadrant where y>z, the inequality -i->2^ gives y>-i^,

which shows that the curve reaches the line y = z at some point {a, a)

such that 0<a<-y/3. Crossing this line, with tangent parallel to the y-

axis, the curve passes into the half-quadrant where y^z, where the in-

dz (X— 1/

equality -j-<—
i
— gives 2^<a^ — 2(,v — a)^, which shows that the curve must

ay z

cross the y-axis, with tangent parallel to the 2-axis, at a point (2 = 0, t/=i9)

a^ 1 /—
such that ^<a-\-—F= or j3<a(l +^^/6). The curvature does not change

^2 ^\

sign in this quadrant, since the differential equation gives

d'z

dy'

which is constantly negative where y and z are positive. This part of the

curve is therefore a simple arch concave to the y-axis and crossing per-

pendicularly at j/
= and at j/=j8.

This means that there is a finite critical mass which is reached only

when the function (i){u) becomes zero and consequently the density at the

center infinite. The corresponding value of u is then infinite, but the

radius is finite, since the density must be everywhere greater than p^.

This result may be compared on the one hand with the case n = -^, where

the limiting radius is reached while the mass and central density are both

finite; on the other hand with the case n = l, where the limiting radius is

approached only asymptotically as the mass increases indefinitely.

From the rejection of the hypothesis last developed it appears, there-

fore, that under the law of compressibility which would result from any

, = -[3(2-y)'-2(2-y)-h2*]^2^
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acceptable density-formula the compression in the interior as the mass

increased would inevitably be accompanied by local deformations, result-

ing from the inequality of vertical and horizontal compression, and prob-

ably ill character and magnitude similar to those described in Part I. Thus
the theory developed from the hydrostatic equations remains subject to

the uncertainty from this source in the computation of the compressional

energy, to an extent not easy to estimate.

The thermal process has thus far been outlined on two alternative

suppositions regarding the variation of p, and two regarding o, but in all

cases the conductivity was treated as constant. This condition might be

replaced by the supposition often made that it increases from the surface

toward the center on account of the increasing condensation of the mate-

rial. Such a variation would have the effect of facilitating the transfer of

heat from the interior to the superficial strata, probably raising the maxi-

mum gradient of temperature attained near the surface and perhaps short-

ening the time during which the temperature has anywhere an upward

trend. The effect on the depth of the region where -rr is at first positive

is seen by inspection of equation (52), which can be written

\ dry A dr dr)

In the second member, the first term, which alone has occurred hitherto,

is positive in the outer region and negative in the interior; — is every-

where negative, while if X increases toward the interior — is negative,

making the second term positive. This shows that the zone of rising tem-

perature would be deeper than with constant X, with the same original

temperature curve. The more improbable supposition that X decreases

toward the interior would have the contrary effect, but, as will be seen

presently, could by no means eliminate the outer zone entirely.

The fact that under a variety of suppositions regarding the thermal

coefficients p, a, X there occurs a thermal process marked by the same gen-

eral features, even with no radical differences in order of magnitude in the

numerical data, suggests that those features are not dependent on such

special hypotheses, but due to the general properties of the original distri-

bution of temperature and characteristic of its mode of origin. The follow-

ing general considerations show why they may be expected to persist under

any hypotheses on p, o, X, not differing too radically from those developed

above.

Whatever may be the actual variations of p, g, o, X, any equations

assuming to represent them as functions of r only can hardly be treated as

more than interpolation-formulas, representing the gross features of the con-

crete situation in the sense of averages, and disregarding the relatively trivial

local variations on account of which it is only to a certain degree of accuracy

that there can be said to be, for instance, a definite law of density at all.

It seems, therefore, practically general to assume in the neighborhood of the
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surface a representation in series ascending powers of s = fj — r, in the form

p=Pi+aiS + a2S^+ .... y=^i+&iS+M'+ ....
<T =flri + CjS + CjS^ + .... X=Xi + diS + d2S^+ ....

such that a few terms suffice to give all the precision which has useful mean-

ing under the circumstances. From these come

P=9iPiS+-2^9iai+Pibi)s^+ ....

P _9i^ ,
pA-^9iai „2

,

e= f\fds = '^^s^+ ....
/ p^ as 2pi

so that the temperature-curve in the neighborhood of the surface has the

form
17=08 "T" . • • • O =x ^

2pi OyJ

and is consequently tangent to the x-axis at the surface-point x = \. The

tangency is of ordinary parabolic type, since the vanishing of Oj would mean
that the surface material was incompressible. The temperature at first

changes at rate

—.=—._._( Xr^-^r- 1
= + terms with factor {r—r{)

dt op r dr\ drj a^pi

Since the first term here is essentially positive, there is necessarily a region

just below the surface where the temperature rises.

On the other hand, at the center there occur maxima of the curves for

p, p, and consequently for e. This would most probably happen also for

6, so that the appropriate expansion would be of the form

e=d^-Cr^ ....

with which the initial rate of change is

-—- = 5 4- terms with factor r^
dt Oopo

the first term of which is essentially negative, so that the temperature

falls in the neighborhood of the center. The only case in which this would

not happen would be when o would have a maximum at the center, strong

enough to throw the maximum of temperature to a point further out,

which is highly improbable, a necessary condition for this being that with

expansions of the type

/)=(Oo(l~6,r2 . . . .) 0=0^(1- CiT^ . . . .)

C V
the coefficients satisfy the inequality -A-^—

^

Ol Po^9
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These results do not exclude the occurrence of more than two zones,

alternating with fall and rise of temperature, but inspection of the anal-

ogous expansions for intermediate points seems to indicate that this would

demand variations of p, o, X which differ widely in character from those

thus far postulated, and which are perhaps improbable, but whose proba-

bility it is difficult to estimate with the meager data at hand.

Comparison of the various cases carried out in the computations gives

a fairly definite idea of a thermal process which, from the general point

of view hitherto adopted, can be considered characteristic of the planetes-

imal hypothesis so far as concerns independence of particular hypotheses

respecting the density, conductivity, and specific heat. Under the basic

assumptions made, the balance of evidence seems to favor its substantial

correctness in qualitative features, and even in general order of numerical

magnitudes, since the chief allowances to be made in the latter can be esti-

mated with confidence from the theory itself. For example, the lengths of

time involved may be overrated, about in the ratio that the true conduc-

tivity in the interior surpasses, as it probably does, the value used, which

is that obtained by observations on the rather loosely aggregated material

accessible at the surface.

There seems to be sufficient reason for supposing the energy of impact

to have little influence in determining the primitive temperature, espe-

cially if the impinging particles be retarded seriously by an atmosphere.

But aside from this there have been made certain general assumptions,

which, though fundamental in the foregoing theory, seem to be arbitrary

rather than essential to the general hypothesis, and thus to demand criti-

cal examination. This will be attempted in Part III, in connection with

the development of an alternative theory intended to aid in estimating the

allowance which should be made for possible modifications of some of these.



Part III.—THERMODYNAMIC THEORY.

As a strict theory, the foregoing deductions imply a sort of ideal earth-

substance, with respect to which certain assumptions are made, in a form

convenient for the purpose in hand, but not sufficient to define completely

its thermodynamic properties. How closely they represent the actual be-

havior of the substances composing the earth's interior is largely conjecture,

in view of the meagerness and limited range of direct experimental informa-

tion; but they may be examined as to their consistency with accepted

thermod3mamic laws regarding the interplay of thermal and mechanical

processes.

It has been supposed that a general idea of the thermal process, after

the earth was completely formed, could be obtained by treating it as a

matter of pure conduction and accompanying radiation at the surface.

But the significance for geological theory of the redistribution of heat lies

largely in the resulting expansions or contractions in different portions of

the mass, and these geometric changes would in general involve the passage

of energy between the mechanical and the thermal form, in amount perhaps

by no means negligible in comparison with the heat conducted. In par-

ticular, if the temperature should on the average fall, the energy thus lost

would be partly compensated by that developed out of gravitational work

during the contraction.

As to the possible relative magnitude of these, as it were, opposing move-

ments of energy, a summary estimate may be gathered from the case of a

homogeneous sphere at uniform temperature, contracting so as to remain

such, and supposed to have specific heat and coefficient of expansion con-

stant throughout. In this case the energy developed by ingathering from

infinite dispersion is

while the thermal content is

from which come

while

where a is the volume coefficient of expansion, or three times the linear

coefficient; so that
d0 _ hma (127)
dQ braJ

which is the ratio of the gain of energy from the gravitational store, to the

loss by decline of temperature; and with an assigned density is proportional

to the square of the linear dimensions. For small bodies it would be negli-

219
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gible; for example, in the case of a planetoid a mile in diameter, composed

of rock similar to the earth's surface strata and with a = 2X10~^, it would

be only two parts in a billion; but for a sphere having the same mass

and dimensions as the earth, with the same value of a, it would be over

one-fourth; in the latter case the treatment of the conduction of heat

independently of its mechanical effects could hardly give more than a crude

approximation. It seems conceivable that a planet considerably larger

than the earth, even though practically soHd, might exhibit the phenomenon

described by Lane as occurring in gaseous bodies, of contraction accompanied

by rise of temperature.

As compared, however, with the simple case just mentioned, there is

an essential contrast shown with a distribution of temperature like that

described above as characteristic of the mode of origin postulated by the

planetesimal hypothesis. Here not only are the initial temperatures near

the surface small in comparison with those developed in the interior, but

the changes are widely different at different depths, the interior steadily

shrinking as the heat is conducted outwards, while the outer strata tend at

first to expand under the rise of temperature which continues until the

maximum surface-gradient is reached. In the early stages the surface-

gradient is slight; the thermal energy is for the most part simply redis-

tributed within the earth, while comparatively little is lost through the

surface. Thus any gain of heat from potential energy on the whole could

come only through a preponderance of the internal shrinkage.

To estimate the nature of these movements let it be supposed that there

is continual accommodation of the density of each portion of the mass to its

temperature, while the accompanying variations of the pressure affecting a

given particle are relatively negligible, so that there may be considered to

be a definite coefficient of expansion a, a function of r.

If then d denote variations in time, the adjustment for equiUbrium is

determined by the conditions
*

ddv=advdd dv= ATtr^dr

where 5r is the change in the central distance r of a given particle, so that

r— At: I a

J a

dv=A.Ti
I

addr^dr

J a

The equation of expansion may also be written

8dv ^^ a

dv op

in which a is in effect the coefficient of specific volume expansion referred

to the variation in the heat content Q instead of the temperature d. Then

the rate of radial motion is

^=1 rnl(lr^-'l\dr (128)
dt r^ J dr\ dr /
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by substitution of the value of -^ from the equation of conduction, while

the total rate of work of gravity is

-^ = -A. f\nKur (129)=-"/"^
J

which by equation (3), through integration by parts, takes the alternative

forms ^y.^ ^f^

d0
dt
= -4./';al(..,^)*=4./V|i^)* (130)

This gives simply the total rate at which energy is transformed from the

potential form, while the manner of its localization remains undetermined.

The last integral, which contains only thermodynamic quantities, suggests

. , , ,3^ d(pa)
, ,

that the rate of transformation per unit volume might be X-r-
^

,
but

any such special interpretation is purely arbitrary as long as the thermo-

dynamic substance is so incompletely defined.

The rates of specific linear expansion horizontally and vertically are

The sum of the latter and twice the former gives by (128) the rate of spe-

eific volume expansion a— as it should. The moment of inertia is

1=^^ TpT'dr (132)

and since d(pr^dr) =0 its variation is

pr^ dr dr

dl
dt

which gives

^'P f\^r f\l{..^yr
(133)

t/ t/

Any supposition as to how a varies with the depth would appear to be

wholly gratuitous, but it may be worth while to follow out a simple one

suggested by the form of the equations, namely, that a is constant. Under

this condition the radial motion is

dr ,dd

dt dr

which is constantly negative at all depths, under all of the hypotheses en-

tertained above in the computation of the temperature-curves, so that the
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mass everywhere shrinks toward the center, even while the temperature is

rising in the outer strata. In particular the surface falls at a rate propor-

tional to the temperature-gradient there, so that its shrinkage is first accel-

erated and later retarded, the most rapid fall occurring when the zone of

rising temperatures is disappearing.

In this case equations (131) become

aXdd d /.dd\

r dr or «t)
The former is everywhere negative; but the latter, if X is constant, is nega-

tive where the temperature-curve is convex upward and positive where it

is concave; moreover, where £2 is negative it is numerically less than e,.

Thus the adjustment of density to temperature demands, in the interior,

both horizontal and vertical contraction, with the former more marked; in

the superficial strata, as long as the temperature rises, horizontal contrac-

tion and vertical expansion. To the extent to which the mass resists defor-

mation there are therefore developed at all depths a horizontal thrust and

a vertical tension, which accumulate at rate proportional to £2~^i! ^^^^

may be written . . ^n

e,-., =aAr-(--)

Numerical or graphic differentiation from the tabulated temperatures shows

that at any one epoch the shearing stress thus indicated is roughly propor-

tional to the square of the distance from the center.

The maximum possible shortening of the total radius, corresponding to

a reduction of the temperature from its initial value 6 down to zero through-

out the mass is

''Jo
Jr,=—r / adr^dr

which reduces to

'"^"^7,Ar^ =-^ I epr^ dr
AnJr^^

The value of ^r, between any two epochs can be found conveniently by
comparison of this last integral with that coming from (128) integrated

with respect to i by substitution of the appropriate value of dd. The

computation shows that this total shortening, with — constant, would be

something less than 10 per cent of the whole radius; and graphic integra-

tion from table 6 shows that about one-third of this would be accomplished

during the epoch of rising temperatures, so that up to the time of maximum
surface-gradient the circumference would diminish by about 800 miles.

This number would, however, vary considerably under the different hypoth-

eses, of which the one adopted for the moment is such as rather to exag-

gerate the influence of the shrinkage in the central parts, and unless the

conductivity has been seriously underrated must probably be held to refer
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to a period much longer than the whole of geological history. A measure-

ment of the actual shortening indicated by the crumpling of the strata

would allow an estimate of the length of time elapsed, or the "age of the

earth. " Near the beginning the shortening is roughly proportional to the

square of the time, and as an indication of the order of magnitude a graphic

integration from the same table gives about 100 miles in a billion years, the

time being, moreover, inversely proportional to the numerical value used

for the conductivity.

There remains to be considered what is perhaps the principal point of

obscurity in the theory—the way in which the initial temperature is deter-

mined from the work of compression. This was done above through the

supposition that between these two there existed a definite proportionality

indicated by the specific heat, while the latter term was not sharply defined,

but for numerical illustration was assigned the value 0.2, an average value

of the ordinary specific heats of certain rocks. Now if e represent the work of

de
compression per unit mass, the ratio -^ for any path of compression is of

the nature of a specific heat in physical dimensions, but its identification

with o in any definite sense of the latter (except of course that which might

de
be defined as -tk for the given path) amounts to a condition on the ther-

modynamic properties of the "working substance" whose import there is

need to determine.

As concerns the relation of work and temperature, there may be con-

sidered to be two extreme cases conceivable, illustrated by the simple

mechanical example of a weight in frictional contact with a horizontal

plane and drawn by a spring. If the spring is very stiff it is only slightly

extended, and the greater part of the work of the impressed force is done

against the friction at the area of contact; if the spring is weak, the dis-

placement of the point of appUcation of the force comes largely from the

extension of the spring and the corresponding work is stored as elastic

energy.

Corresponding to one extreme there is the fiction of a substance whose

resistance to compression is purely frictional, its transformation of energy

pure hysteresis—having at each density a certain critical pressure, the

maximum it could sustain without further crushing, and as a function of

the density to be used in formula (12) in computing the work of compres-

sion. Such a substance would show no tendency to restoration of volume

on relief of pressure; and though the manner of transformation be obscure

it seems natural to treat the heat derived from friction during compression

as equivalent to heat obtained by conduction or radiation, so that the ratio

of temperature to work would depend simply on the value, at the ultimate

density, of the specific heat in nearly the ordinary sense as related to con-

duction at constant volume or constant pressure, at least if the coefficient

of expansion be relatively small.

Such an interpretation read into Parts I and II would give a more

definite and perhaps reasonably self-consistent theory; but the conditions

described would fail to represent the behavior of surface-rock under the
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first moderate increments of pressure, and though they might be more
closely followed under pressures beyond the observable crushing point, yet
the agreement, for instance, of the theoretical and empirical values of the
modulus of compression would be little more than coincidence.

The other extreme corresponds to what may be taken as the definition

of a perfectly elastic substance in the thermodynamic sense, including for

the present purpose not only fluids but perfectly elastic solids, since the
work of shearing forces has been left out of account. Here the density

depends in a definite way on temperature and pressure, independently of

what series of changes the substance may have passed through; every path
of change is strictly reversible, and in any closed cycle the excess of mechan-
ical work is exactly accounted for by conduction and radiation, so that the

work of adiabatic compression may be considered as stored elastic energy.

The actual materials composing the earth may be judged to partake to

some extent of the properties of both extremes. Observed cases of the

flowage of rocks would seem to be concerned chiefly with permanent change
of shape, with little change of volume, but it is known that the equilibrium

of a body as large as the earth could not be purely that of an elastic solid,

unless it should possess elastic moduli much greater than those of known
substances, so that most probably the violent pressures occurring even at

moderate depths would lead to some permanent diminution of volume, or

such as partly to persist in the event of removal of the pressure. On the

other hand, direct experiments on the compressibility of rocks, under what
must here be considered small ranges of pressure, show approximately per-

fect elasticity, with a relatively trivial amount of hysteresis.

It may well be that both extremes could represent acceptably the be-

havior of the same substance under different circumstances; for instance,

according to the intervals of time involved. A bell made of pitch may
sustain well-developed vibrations counted by hundreds per second and yet

in a few hours flow into a permanently altered shape. Similarly the interior

of the earth may be capable of sustaining seismic tremors and tidal oscilla-

tions like an elastic solid, and yet under steady and long-continued stresses

3deld in such a way that the expenditure of energy must be counted almost

wholly dissipative.

Thus in view of the great length of time which must be assumed for the

epoch of aggregation, the notion of compression with purely frictional re-

sistance, accompanied by the production of permanent set or non-reversible

diminution of volume, may be the appropriate one under the circumstances

postulated by the planetesimal hypothesis, and would seem to demand no

material modification in the essential features of the theory given in Parts

I and II. For example, under a steadily progressive compression the pres-

sure actually occurring with a given density at the corresponding depth

would be at every epoch the critical pressure for that density, so that the

density-curve for any epoch would necessarily, as was assumed without

comment by Fisher, determine the path of compression traversed by a defi-

nite element of the mass.

It is likely that the phenomena of dynamical geology may themselves

ultimately furnish the material for the most satisfactory estimation of the-
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properties of matter here in question. Their indication seems to point dis-

tinctly to the possibility of accumulation of truly elastic strains over periods

of time much greater than those involved in the oscillatory movements
commonly pointed to as witness to the existence of true elasticity. A
reasonably complete theory would doubtless have to include the simul-

taneous contemplation of both elasticity and viscous plasticity, of volume
and of shape, so as to complicate the theoretical deductions enormously.

To allow comparison it may, then, be of use for the present purpose to

inquire what modifications are needed to give the previous theory the

added definiteness which may come from a complete definition of the ther-

modynamic substance, but on the supposition that this possesses the oppo-

site extreme property, of perfect elasticity of volume under all conditions.

There remains, of course, the same possibility as before of variety in the

secondary features; the following developments give in some detail a

single form as illustration, one which has the advantage of relative sim-

plicity in the analysis.

Let e now represent the total intrinsic energy per unit-mass; then a per-

fect fluid in the thermodynamic sense, or a substance which can do work
only through hydrostatic pressure, and has perfect volume-elasticity in the

sense described, finds its complete description conveniently in the analytic

form of p and e as functions of 6 and v = —. The condition of conservation

of energy as embodied in the first law

iQj^de + {j> +f^4v (134)

gives the following determinations of auxiliary quantities

dp

a=-yr o' =a—[p + -z—)-z:— «=— (135)
dd V dvj dp a ^ ^

dv

where o, a' are the specific heats, at constant volume and at constant pres-

sure; also 3p

K = -v^ H=kK a=-^ (136)
dv K

where K, H, are the isothermal and isentropic bulk-moduli and a the co-

efficient of volume-expansion. The existence of a definite entropy-function

£ imposes the condition of integrability

1 ae d

in which case

=A/'P^ (137)
e^dv dd\d

)

%-j 1-%-^^ (i^«>

so that the condition of integrability is equivalent to

1 da ^ d(Ka)
(139)

e dv dd
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In addition to special hypotheses as to the form of the functions p, e,

it would be necessary to specify the exact path of the compression in order

to determine the rise of temperature produced by a given amount of me-
chanical work. It has, however, been assumed from the beginning that in

view of the low conductivity of rock the compression might be considered

as relatively instantaneous and therefore adiabatic; under this condition

the path of compression would be a curve of constant entropy, and the

ratio of mechanical work to rise of temperature would be determined by

de\ _de p
ddj, dd

,
de (140)

dv

de \
Comparison of this with (135) shows that -^ j , which was treated pre-

viously as a specific heat, can be identified with the specific heat at constant

de
volume only at points where — = 0. This latter condition is satisfied

identically by a perfect gas, which the substance might perhaps resemble

in this respect, while differing widely in the relation between pressure,

density, and temperature.
de

If, however, -^==0 is satisfied everywhere, so that the intrinsic energy

is a function of the temperature only, equation (137) shows that p would
have the form p =6V and consequently by (136) that Ka=V; where V
is some function of v only. Since at the surface the pressure vanishes, V
would be zero for the argument v^, hence the surface material would have

to be either isothermally incompressible or have a zero coefficient of expan-

sion. Now the observed compressibility and expansion of surface rock are

enormously less than for gases, but the existence of an appreciable value

for both of these is a necessary element in the application to dynamical

geology, so that a correction is called for if the above be taken as the mean-
ing of the specific heat used in equation (58). Though there is nothing to

impose this special interpretation, the result still suggests one way in which

a coherent theory can be constructed, as a modification of the previous one,

but such as to take account of the measured values of all the thermal and

dynamical coefficients.

Let it be supposed that the specific heat o at constant volume is a con-

stant, understood henceforth as measured in mechanical units; that the

intrinsic energy, instead of depending on the temperature only, has the form

e=od + <p(v) (141)

where <p{v) is a function of v to be determined; and that the isentropic lines

have the form .

P =/i (^) ^ +/2 (^) (142)

The latter condition results from the Laplacian equation (21) by treating

h and p^ as functions of the entropy, and is suggested as a condition in view

of (the assumption hitherto made, that the path of compression is deter-
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mined by the relation between pressure and density as exhibited at various

depths within the earth at any single epoch. For since the compression has

been treated as adiabatic, this identification of the two thermodynamic

paths means that as long as the effect of the conduction is insensible the

nucleus would be in a condition of isentropic or convective equilibrium

such as described by Ritter and Kelvin. The generaUzation of equation (21)

consists in supposing that it would give the form of the pressure-density

curve corresponding to convective equilibrium for any value of the entropy

by proper choice of the constants h and p^. It is, then, required to deter-

mine the functions /i, /a, (p, so as to satisfy the given conditions.

Equation (134) shows that

de=^dd +^^dv (143)
o o

in which the coefficient of dv must therefore be a function of v only, which

for convenience may be written

p+y'w ,„ .m (144)
d (p{v)

and then the integral of (143) is

Oil,T=(^=e^ (e= Naperian base) ^ '

in which the constant of integration is considered to be absorbed in the

undetermined function ^.

Elimination of 6 from (144) and (145) gives

P=<^^-/ (146)

which must be identical with (142), and thus gives

Hence
/,(£)=aAc + a /,{£) = -oBc-h (147)

and

^ = (A^Bv +Cy' (148)

<p=--{-bv (149)

The constant of integration in (p is omitted, since only differences in the

intrinsic energy are in question, so that there remain five undetermined

constants. In terms of these auxiliary functions, then, the properties of the

substance are described by equations (141), (144), and (145), from which

may be deduced the following:

15

from which come
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V
<l>

2
ad-f" (150)

Ka=a'^ H=^{aAc + a) (151)

« =1+^^' (152)
o

Since the pressure-density curve at the close of the epoch of compression is

supposed to be an adiabatic hne, the variation at different depths of all the

magnitudes concerned, for a planet of definite mass, will be determined in

terms of the constants introduced, when a value is assigned for the entropy,

which may as well be taken equal to zero, since the level of reckoning is

arbitrary. The various surface-values are then fixed by the condition pi = 0,

with ej = 0, so that the constants are subject to the conditions:

, oA+a /IKON

e,=— +Bv,+C (154)

^^^=A. B (155)

^'=^oB+b (156)

If then Kj, Vi, ^1, ttj, a( are considered to be obtained by direct measure-

ment, a and H^ may be computed from

a=a^-K^v^e^a^ (157)

if,=K,|l+^^'| (158)

and then the solution of (153) to (156) gives

j^A_K^
(159)

V{ a

a=tL^-aA (160)

h==^-aB (161)

C=d.-— -Bv^ (162)

leaving the single parameter A undetermined. The Laplacian constant

^^^
h=H,v'' (163)

in terms of which the distribution of pressure and density are still given by

(21) and (25), while the excess of intrinsic energy and of temperature over

their surface-values are
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d-d,=—,{v,-vy + ^^^{v,-v) (165)

the former corresponding exactly to (22) above.

In the equation (165) for the temperature the first term corresponds,

except as to the value of the coefficient, to that which alone occurred in

the analogous equation in Part I for the case of constant specific heat;

while the second term is new and may be considered as the corrective term
needed to take account of the coefficient of expansion, which occurs as one
of its factors. The numerical value however of this corrective term is

small; for instance, with iCi = 4XlO", ^i = 300 (the absolute temperature

of the surface), ai = 2XlO"~^ and a = -^J, its maximum value, which occurs

at the center where the density is greatest, is about 80°, while it contributes

an initial surface gradient of 1° in 14,000 meters. The value here used for

Ki comes by comparison with the value deduced for H^ in Part I, which, as

is seen by (158), exceeds it by only one four-hundredth part and is known
to range well with the results of direct measurement on surface rock.

It appears thus that to take account of all the measured mechanical-
thermal constants relating to surface-rock it is sufficient to include only
this trivial variation from the distribution of temperature specified by the

first term of (165), which in algebraic form is identical with that occurring
in the corresponding case in Part I. But the absolute value of this prin-

cipal term depends on the coefficient A, which is here left undetermined,
instead of having the definite value hj2a as under the former hypothesis.

So far as concerns consistency with the conditions thus far assumed, this

constant might be chosen so as to give any assigned value to the central

temperature for example, or to the surface-gradient at some particular

epoch of the conduction. But to make even the maximum surface-gradient

match the present observed value of 1° in 30 meters it would be necessary

to choose A so that the initial temperatures, while similar in relative mag-
nitude at the various depths, would be in absolute value several times as

large as those listed in column 8 of table 2. This would perhaps be a rather

extreme supposition, though there seem to be no definite data to the contrary.

A suggestion from another source as to a fair mean value to be taken
for A is the following:

In the assumed expression (141) there are the two terms: ad, which may
be considered for vividness as the kinetic portion, and (f{v) the potential

portion, of the intrinsic energy e. The latter part, depending conceivably
simply upon the mutual distances of the constituent particles, may by
analogy with the dynamics of particles plausibly be supposed always to

increase as v increases. Now from (149), transformed by substitution of

the constants as determined in terms of the surface-data, comes

,'(»)=(.^-^-<)(^-i,) + /f,„A (166)
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SO that as v decreases from the value v^, the sign of (p' is ultimately that of

oA -—^, unless this be zero. If then ^ is to be an increasing function of

V, the most moderate value of A which can be assumed is

-H^V^A (167)

which as appears from (22) and (58) would give from the first term of (163)

a temperature distribution precisely the same also in absolute values as

that deduced under the first hypothesis in Part I.

This result shows that there is not necessarily any radical difference

between the temperature-distributions deducible from the two alternative

extreme suppositions described, though variations in the special hypotheses

may be expected to produce here, as under the opposite view, considerable

differences in the quantitative conclusions.

It has been pointed out that the surface-gradient of temperature as

deduced from the theory would probably never reach the value at present

found by observation, at least unless the conductivity increase consider-

ably from the surface downward. But the present theory has taken ac-

count only of the heat obtained from gravitational energy, to which must

be added that obtained from several other assignable sources. These might

be relatively unimportant, so that their effect could be included in the

sense of corrections to the above results; but if of sufficient magnitude they

might alter the features of the thermal process completely.

In particular, if heat were steadily generated in each unit of volume at

rate (fir), the equation of conduction would be

,p^^\l-Ur^^)+^(r) (168)
^ dt r^ dr\ drj

the solution of which may be written

» =„+
/''*

/'.VW* (169)

'-'*£H
where u satisfies the equation

and is to be determined so that 6 satisfies the given initial and boundary

conditions. For example, if (p is constant or the rate of generation per

unit volume the same throughout the mass, the steady component, defined

by the integral in (169), is, with X constant:

whence ^^ /? _^ k=^

so that with the flux corresponding to thermal equilibrium a surface gra-

dient of 1° in 30 meters v/ould mean a central temperature of 100,000°,
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whatever be the values of specific heat and conductivity. An effect of such

magnitude, produced by radio-activity or otherwise, is not to be lightly

assumed. It is perhaps more likely that the effect of these agencies is

largely confined to the superficial strata.

Another possible explanation of the discrepancy respecting the tem-

perature-gradient is that the assumed density laws may not properly repre-

sent the variation of density near the surface. For, independently of any

special hypothesis, it is plain that in descending from the surface the den-

sity would tend to increase on account of the increase of pressure, and to

decrease by virtue of the increase in temperature; which effect controls

depends on the values of elastic modulus, coefficient of expansion, and

thermal gradient.

Let the density p through its dependence on p and 6 be thereby a func-

tion of the distance s below the surface. Then

but since

dp

ds
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THE RELATIONS OF EQUILIBRIUM BETWEEN THE CARBON DIOXIDE OF THE

ATMOSPHERE AND THE CALCIUM SULPHATE, CALCIUM CARBONATE, AND

CALCRIM BICARBONATE OF WATER SOLUTIONS IN CONTACT WITH IT.

When two difficultly soluble salts, such as barium sulphate and barium
carbonate, are formed in a given medium, for instance by the addition of

barium chloride to a mixture of potassium sulphate and carbonate, they are

precipitated, as is well known, in the order of their insolubility. In the
given case barium sulphate, the less soluble salt, is precipitated first, the
more soluble carbonate last. We apply this principle in the familiar case

of the volumetric determination of chlorides by titration with silver nitrate,

in which potassium chromate is used as indicator; silver chromate is very
difficultly soluble, but silver chloride is less so, and is precipitated almost
completely and within the limits of exact quantitative analysis, before any
solid red silver chromate can permanently be formed, the first persisting

appearance of the latter being taken, indeed, as the evidence or indication

that the precipitation of the chloride has just been completed.

The application of the laws of physical chemistry, especially those of

chemical and physical equilibrium, to such cases of precipitation shows, how-
ever, that there must be a limit to this principle of the order of precipitation;

the principle itself may be derived by the application of these laws and is

always, of course, subject to them. The existence of such a limit and its rela-

tions to the solutions in contact with given salts have been investigated

experimentally in a number of cases, the most notable investigation being

the classical one of Guldberg and Waage * on the conditions of equilibrium

between barium sulphate and carbonate, and potassium sulphate and car-

bonate. The limiting values in all such cases are of extreme interest, as

from them certain definite conclusions may be drawn as to the nature of

precipitates formed in given cases; or, vice versa, from the nature of the pre-

cipitate, conclusions as to the composition of the medium may be drawn,
and the existence of a limiting value leads to the possibility of a complete
reversal of the usual order of precipitation under given conditions.

As has just been mentioned, and as will be shown in detail presently,

the limiting value is for two given, little-soluble salts most intimately asso-

ciated with the composition of the liquid medium from which precipitation

occurs; the composition of the medium may in turn be dependent for one
or more of its essential components, e.g., dissolved carbonic acid, on the

nature of the atmosphere above the solution, with the result that the com-
position of the atmosphere may become a function in the mathematical
expressions deduced by the application of the laws of physical chemistry

to the facts of precipitation.

» Journal fur Praktische Chemie (2), 19, 69 (1879).
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Considerations of this nature led the author in 1903/ in the course of a

conversation with Dr. T. C. Chamberlin on the remarkable freedom from

calcium carbonate of a deposit of gypsum,^ to suggest that possibly there

might be some connection between the purity of the gypsum and the carbon

dioxide content of the air at the period of the gypsum formation, since the

carbon dioxide in the atmosphere is one of the most important factors

influencing the solubility of calcium carbonate.

Inasmuch as climatic conditions, according to recent theories enter-

tained quahfiedly by Dr. Chamberlin, are also dependent to a certain degree

on the carbon dioxide in the atmosphere, it seemed possible that a study

of the precipitation of calcium sulphate and calcium carbonate from the

point of view of the laws of equihbrium might lead to conclusions which

would be of some use as a further source of information relative to condi-

tions existing at a remote period.

Partly on account of the possibility of obtaining results of some such

specific geological value for the work on the cHmates of the earth; chiefly,

however, in order to test the possibility of exploiting this method of investi-

gation for geological purposes, Dr. Chamberlin asked me to undertake, in

collaboration with himself, the work of making the necessary calculations

on the conditions of equihbrium determining the precipitation of calcium

sulphate and calcium carbonate.^

As is usual in these cases, it was decided to consider first the ideal case

of solutions containing only the two salts in question. But the work has

been extended to estimate proximately the influence of the presence of

other sulphates in the solutions in the proportions found in ocean waters of

the present day; and finally an attempt has been made to consider the

effect of concentrated salt (sodium chloride) solutions on the conditions

studied. The results obtained for the simpler case of equilibrium for dilute

solutions in the presence of sulphates and moderate amounts of sodium

chloride may, it is hoped, also prove useful in connection with present-day

problems on the calcium carbonate content of the oceans and of fresh waters.

The study of the equilibrium conditions controlling the precipitation of

calcium carbonate and sulphate falls naturally into two parts—a study, on

the one hand, of their relative solubilities, and the consideration, on the

other hand, of the conditions of equihbrium for saturated solutions of cal-

cium carbonate, calcium bicarbonate, and carbonic acid in equihbrium with

an atmosphere of some given content of carbon dioxide, the latter being a

determining factor in the total solubiHty of carbonate. This second and

more complex part of the study will be taken up first.

» Year Book No. 2, Carnegie Institution of Washington, p. 269.

» The observation was made by Mr. F. A. Wilder in the course of an investigation for

a doctor's thesis submitted to Professor Cham.berlin.
' Pressure of other work made it necessary to postpone the calculations to the year 1907
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EQUILIBRIUM IN AQUEOUS SOLUTIONS OF CALCIUM CARBONATE,
CALCIUM BICARBONATE, AND CARBONIC ACID IN CONTACT WITH
AN ATMOSPHERE CONTAINING CARBON DIOXIDE, AND THE SOL-
UBILITY OF CALCIUM CARBONATE IN WATER CONTAINING FREE
CARBONIC ACID.

The most reliable and complete experimental determinations of the

solubility of calcium carbonate in water containing free carbonic acid were

made by Schloesing.* The theoretical treatment of his results from the

point of view of equilibrium conditions we owe to Bodlaender.' The latter's

work, correct in its theoretical treatment,^ shows an error of moment in

the calculation of the solubility constant of calcium carbonate, the constant

most important to us, an error due largely to an error in one of the inves-

tigations from which Bodlaender drew his data.* McCoy's more recent work

on the equilibrium in aqueous solution for sodium carbonate, sodium bicar-

bonate, and carbonic acid^ gives the necessary material for the correction of

the above error in the following pages.

The complex conditions of equilibrium involved when water is saturated

with calcium carbonate and with carbon dioxide under any given partial

pressure may be developed as follows: For a saturated solution of calcium

carbonate, say in contact with the solid carbonate, we have

"

CaCOs ^ CaC03 (1)'

Calcium carbonate in aqueous solution is very largely ionized according

*^ CaC03±5Ca-+C03" (2)

At a given temperature in a saturated solution of a difficultly soluble

salt of this nature the product of the concentrations ^ of the ions is a con-

stant,* which is called the solubiHty product or the ion product of the salt:

CcaXCcO:, = KcaC03 (3)

That the product of the ion concentrations is equal to a constant for

saturated solutions of difficultly soluble salts must at present be considered

an empirically established fact. As is well known, the law of mass-action

does not give constants when applied to the ionization of strong electro-

lytes, such as salts are. For instance, for the reversible reaction

NaCl^Na-+Cl' (4)

•Comptes Rendus, 74, 1552 (1872); 75, 70 (1872).

'Zeitschrift fur Physikalische Chemie, 35, 23 (1900).
' See below, this page, in regard to a contested question of theory.

« McCoy, American Chemical Journal, 29, 437 (1903).
* Ibidem.
* Underscoring of a symbol is used to indicate that the substance is in solid form.
' See below in regard to the conclusion usually based on this equation that at a given

temperature the concentration of the dissolved non-ionized calcium carbonate molecules,

CaCOj, or the molecular solubility, has a constant value.
* The term concentration, for which C is used in all the equations, is taken, in accord

with chemical practice, to designate the number of gram molecules or moles of substance

in 1 liter of a solution or of a gas.
» Ostwald, Scientific Foundations of Analytical Chemistry; Nernst, Theoretical Chem-

istry, p. 531 (1904); Bodlaender, loc. cit.; A. A. Noyes, Zeitschrift fur Physikalische Chemie,

16, 125 (1895), 26, 152 (1898), 42, 336 (1902); Report of the Congress of Arts and Science,

vol. IV, 322 (1904); Le Blanc, Zeitschrift fur Anorganische Chemie, 51, 181 (1906).
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we find as a matter of experience that the proportion

CNaXCci xp-v—
7^ w;
v^NaCl

is not a constant for different concentrations, as the corresponding expres-

sion is for all other kinds of reversible reactions, including the ionization of

weak bases and weak acids. The above proportion for a strong electrolyte

grows larger with increasing concentration—the most promising explana-

tion of this apparently abnormal behavior being perhaps that the ionizing

power of the solution is changed by the presence of considerable numbers

of ions (the "salt-effect" of Arrhenius).

This result, applied to the ionization of calcium carbonate (equation 2)

,

would mean that the proportion

Cca X CcOa
(6)

, , CcaCOa
IS not a constant.

It is ordinarily assumed that for the saturated solutions of difficultly

soluble salts the molecular concentration of the salt (here CcacOa) is a

constant at a given temperature in all aqueous solutions: we would expect

then, from what has just been said, that the product CcaXCcacOa could

not have a constant value, since it is the numerator in the variable propor-

tion (6). As a matter of experiment, however, A. A. Noyes, Findlay, and

others found in a number of carefully studied cases of similar salts that

the solubility products are constants, whether the given salt is present alone

or in the presence of another salt modifying its ionization, such as a salt

with an ion in common with it.

The peculiar discrepancy between the empirical results expressed in (5)

and (6) on the one hand, and the empirical result expressed in the constancy

of the ion product on the other hand, as just explained, seems to find a

satisfactory explanation in the work of Arrhenius on the solubility of

salts in salt solutions.*

Arrhenius shows that the old view must be abandoned that in the pres-

ence of excess of the solid salt, the solubility of the molecular or non-ionized

salt is a constant in different saturated solutions {i.e., in solutions saturated

in the presence of other salts). His experiments on the solubility of the

silver salts of various organic acids (silver acetate, valerate, etc.) in the

presence of varying amounts of the sodium salts of the same acids show

that the solubility of the non-ionized silver salt grows smaller with increased

concentration of the sodium salt present. In other words, there is no con-

stant molecular solubiUty of a precipitate, as has so long been assumed.

The case is analogous to the decreased solubility of gases, such as oxygen or

carbon dioxide, in salt solutions as compared with pure water—a fact which

is used below in the discussion of the equilibrium conditions.

Arrhenius uses his data as an argument against the correctness of some

of Noyes's conclusions. No attempt, however, seems to have been made by

Arrhenius in this paper to study the ion-products for the silver salts in his

own experiments, and calculations were therefore made with his material to

' Zeitschrift fur Physikalische Chemie, 31, 221 (1899).
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ascertain whether, in spite of (or rather because of) the variability of the

molecular solubilities, the silver salts give constant solubility products or

not. As is seen from the tables given below, the extremely interesting

result was obtained that, according to Arrhenius's own experiments, the

silver salts, whether present alone or with varying amounts of sodium salts

with the acid ion in common with them, give rather good constants for

the solubility products.

As the question of the constancy of the solubility or ion product for a

difficultly soluble salt is of particular importance in the investigation this

paper treats of, space will be taken here to report the calculations made

with Arrhenius's data for three of the silver salts, the acetate, which is the

most soluble salt studied, the valerate, and the butyrate, which are very

much less soluble than the acetate.

In table 1, giving the solubility of silver acetate at 18.6° in the presence

of varying amounts of sodium acetate, column 1 gives the molar concentra-

tion of sodium acetate used; column 2 gives the degree of ionization of the

sodium acetate in the mixture; column 3 gives the concentration of the

ionized sodium acetate; column 4 the total solubility of silver acetate;

column 5 the degree of ionization of the silver acetate; column 6 the con-

centration of the ionized part of the silver acetate; column 7 the concentra-

tion of the non-ionized part, which represents therefore the molecular

solubility of the silver salt. Columns 1, 4, 5, 6, 7 are taken from Arrhenius's

tables; the degrees of ionization of the sodium acetate as given in column 2

were calculated with the aid of the isohydric principle, whose reliability has

been amply demonstrated.^ Column 3 is derived from columns 1 and 2.

For a saturated solution of silver acetate

CH^COjAg ^ CH3CO/ + Ag- (7)

the solubility product would be

CAgXCcH3C0,=K (8)

in which CcHaCOa represents the total concentration of acetate ions irrespec-

tive of their origin from silver or sodium acetate; in each of the experi-

ments it is the sum of the values given in a line under columns 3 and 6. The

values of the solubility product constant K, as calculated, are given in the

last column.

Table 1.

—

Silver Acetate.

1
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Tables 2 and 3 correspond to table 1.

Table 2.

—

Silver Valerate.

1
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would not have equal values, but they are dependent on each other to the

extent that the product of the two concentrations has a constant value for

the saturated solutions. For instance, if to a saturated solution of the

carbonate any acid is added, either a strong one like hydrochloric acid or

a weak one like carbonic acid, the hydrogen ions of the acid must imme-
diately combine to some extent with part of the carbonate ions, CO3", to

form more or less bicarbonate ions, HCO3': as the CO3" ions disappear, more
molecular calcium carbonate must ionize (equation 2) to re-establish the

equilibrium, leaving the solution undersaturated with molecular carbonate,

and the solid carbonate, if present, must dissolve. All this can be briefly

expressed in the equation

CcaX(Cco3"-a:)<Kcaco3 (9)

The solution is undersaturated when the product of the concentrations

of the calcium and carbonate ions is smaller than the solubility constant;

similarly oversaturated (precipitation resulting) when the product is greater

than the constant; and just saturated when the product equals the constant.

When the solubility of calcium carbonate is thus increased by the addi-

tion of an acid (say carbonic acid) owing to the formation of bicarbonate

ions, HCO3', calcium bicarbonate Ca(HC03)2 is formed; it remains, as most
salts do in dilute solutions, very largely ionized. In equations (3), etc.,

Cca means, of course, the total concentration of calcium ions, irrespective

of their origin from calcium carbonate or bicarbonate.

These relations which we have been discussing in a qualitative sense

may be developed quantitatively as follows:

The formation of calcium bicarbonate by the action of carbonic acid on
calcium carbonate is a reversible reaction:

Ca-+C03" + H-+HC03' ^ Ca-+2HC03' (10)

and
Ca- +2HCO3' ^ Ca(HC03)2 (11)

The calcium ions appearing on both sides of equation (10) in equal

quantities evidently do not affect the equilibrium, and we have more
simply

C03"H-H+HC03'^2HC03" (12)

and consequently:

Cco3XCHXCHco3 = fcXC2Hco, (13)

Canceling ChcOs on both sides, we have

CcOa X Ch
ChcOs

"• Ionization V '•'*/

The study of these equations shows that, except for the formation of some
non-ionized calcium bicarbonate, the formation of bicarbonate and the

equilibrium between bicarbonate and carbonate are largely independent of

the nature of the metal ion present, particularly since all salts (like calcium

bicarbonate) are largely ionized in dilute solutions and all similar salts are

about equally ionized in equivalent solutions. The above conclusion has



242 EQUILIBRIUM BETWEEN CARBON DIOXIDE OF ATMOSPHERE

been confirmed by the work of Bodlaender on calcium and barium bicar-

bonate and of McCoy on sodium bicarbonate.

Equation 14 represents the equilibrium condition between carbonate ions,

hydrogen ions, and bicarbonate ions, or the secondary ionization of carbonic

acid expressed in ^^q^, ^ g. +CO3" (15)

and the constant of the equation may be called the second ionization con-

stant of this acid.

The primary ionization of carbonic acid, which must supply the major

portion of hydrogen ions, is expressed in

HjCOg^H+HCO/ (16)

and we have then:

Ch X ChCOs _ T^f (\'7\
pr~ '^ loaizatioQ K'- ' /

'^H2C03

^'ionization ^^Y) t^en, be called the first ionization constant of carbonic

acid.

The concentration of carbonic acid in solution is, according to Henry's

law, at a given temperature, proportionate to the concentration or partial

pressure of the gaseous carbon dioxide in the atmosphere with which the

solution is in equilibrium, viz:

CH,C03=fcgasXCcO. (18)

This completes the equations involved in the complex condition of

equilibrium we are considering. Summarizing our conclusions, we have

the following four mathematical equations expressing the conditions of

equilibrium in saturated solutions of calcium carbonate and bicarbonate in

contact with the atmosphere, all the constants of which must be simul-

taneously fulfilled for the condition of equilibrium:

I^ CcaX CcOs = Ksolub. Prod.

11^ CH2CO3 = ^gas X CcOj

III' Ch X ChCOs = ^'ionization X Ch.COs

IV* Ch X CcOs = K"ionization X ChcOs

The solubihty of calcium carbonate, either as carbonate or as bicarbon-

ate, reaches a limit when the solubility product of equation I is reached,

and the value CcOg. the concentration of the carbonate ions, in this equa-

tion is in turn a function of equation IV; two values of this equation are

functions of equation III, in which in turn the concentration of the dis-

solved carbonic acid ChoCOs is dependent on the atmospheric carbon dioxide

as expressed in equation II.

The constants of equations II, III, and IV are known, and the constant

of equation I, which we wish to determine, can be obtained from the other

constants with the aid of Schloesing's experimental work on the solubility

of calcium carbonate.

' The solubility product of a saturated solution.

* The solubility of carbon dioxide under varying partial pressures.

* The primary ionization of carbonic acid.
* The secondary ionization of carbonic acid.
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The solubility factor of carbon dioxide in water, fcg^g of equation II, has
been determined by Bunsen^ for different temperatures. The solubility is

usually given in liters (a) of gas, reduced to 0° and 760 mm., absorbed by
1 liter of water; then to reduce this to terms of gram molecular concentra-
tions as required for the application of the mass-action law, we make

%a3 =
22 4

^^^^

since a gram molecule of a gas occupies 22.4 liters under normal conditions.

For instance, at 16°, 0.9753 liter is absorbed or 0.9753/22.4 = 0.04354 mole,
if the carbon-dioxide gas has the pressure of 1 atmosphere. For any other
pressure P of the gas, expressed in atmospheres, the molar concentration
of dissolved carbonic acid is, then, according to II

CH,COa=fcgasXP (20)

In salt solutions the solubility is considerably less than in pure water,

as determined by Setchenow^ and more recently by Geffcken,^ and, when
salts are present, corrections made on the basis of these determinations
will be used.

The first ionization constant of carbonic acid (equation III) has been
determined by Walker and Cornack* from the conductivity of aqueous
solutions of the acid. The secondary ionization is so small (see below)
that it scarcely contributes to the conductivity of carbonic acid and con-
sequently it can be neglected in the determination. The value found for

the first ionization constant is:

K'lonization =3.04X10-^ (21)

The second ionization constant of carbonic acid (equation IV) was cal-

culated by Bodlaender ^ from Shields's * experiments on the hydrolysis of

sodium carbonate, but, owing to an error in Shields's calculations, found by
McCoy,^ the value given by Bodlaender (1.295 X 10~") can not be accepted.

It was recalculated by McCoy from Shields's results and found to be 12.0 X
10~" or ten times as large as Bodlaender's value. McCoy then determined
the constant by a study of the condition of equilibrium between sodium
bicarbonate, carbonate, and carbonic acid, and from the values for deci-

normal solutions of bicarbonate he obtained 6.0X10~", which was only
half as large as the constant calculated from Shields's data; 0.3 normal and
normal bicarbonate solutions gave still other values.

A recalculation of this constant, which is important for our work, was
made from McCoy's data, and corrections which were indicated by the
latter, but not carried out, were made for changes in the solubility of carbon

1 Liebig's Annalen, 93, 20 (1855); Dammer, Handbuch der Anorganischen Chemie
II, 372. See also Geffcken, Zeitschrift fur Physikalische Chemie, 49, 257 (1904).

^ Dammer, Handbuch der Anorganischen Chemie, ii, 1, 367.
^ hoc. clt.

* Journal of the Chemical Society, London, 77, 8 (1900).
* Loc. cit.

'Zeitschrift fur Physikalische Chemie, 12, 174 (1893).
^ Loc. cit.

16
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dioxide in salt solutions and for the changes in the ionization of salts in

mixtures. While the recalculation did not change the order of the results,

it removed the uncertainty as to the effect of these corrections.

From the two equations for the ionization of carbonic acid, III and IV,

we get by dividing III by IV:

C HCO3 K Ionization

CO3X ChsCOs K"ionization

=K (22)

The constant K can be readily calculated from any of McCoy's results,

and then tt/ . q nd v i n-^Kn -'^ Ionization o-y)^ A -i-^ CyW
Ionization ^ tt" \^'^)

In 0.0999 normal solution of sodium bicarbonate according to table 2,*

under a partial pressure of 0.00161 atmosphere (P), McCoy found 68.2 per

cent bicarbonate and 31.8 per cent carbonate. The degrees of ionization

of these salts can be put equal to those of sodium acetate and sodium
sulphate, respectively, similar salts ionizing very much alike, and the deter-

minations of the ionization of the acetate and sulphate from their conduc-

tivities being far more reliable than the estimations from the conductivities

of bicarbonate and carbonate solutions which really represent complex

mixtures. A consideration of the curves for the conductivities for sodium

carbonate and sulphate shows them in fact to be practically parallel for

more concentrated solutions in which the hydrolysis of the carbonate is

small, but for more dilute hydrolyzed solutions the curve for the carbonate

bends and cuts the sulphate curve, which is an indication of hydrolysis.

Hence it was deemed safer to determine the degree of ionization from the

sulphate and acetate curves. Then in the experiment ^ mentioned we have

CHCO3 =0.0999 X0.682 X 0.783 =0.05335

Ccoa =0.0999X0.5X0.318X0.687 =0.01091

The solubility of carbon dioxide in salt solutions is smaller than in

water. A correction was made for this by putting the solubility equal to

that of 0.1 normal potassium chloride solution. From the results of Geff-

cken,^ whose work is the best on the subject, the decrease in the coefficient

of absorption is practically proportionate to the concentration of the salt,

the coefficients for pure water, for 0.5 molar and 1.0 molar solutions of

potassium chloride forming practically a rectilinear curve, the concentra-

tions and the coefficients being used as coordinates. By interpolation on

the curve, the coefficient of absorption for 0.1 molar potassium chloride

at 25°, the temperature at which McCoy worked, is 0.742, reduced to

* hoc. cit.

'The degree of ionization of 0.1 molar sodium acetate, Kohlrauech und Holborn,

Leitfahigkeiten, pp. 159 and 200, is calculated as 0.783.

The degree of ionization of 0.1 equivalent sodium sulphate, ibid., is 0.687. In a mix-

ture of the two, the degrees of ionization would be very slightly modified, but a calculation

of the change made on the basis of the principle of isohydric solutions showed the correc-

tion to be negligible.
^ Lnc. cit.
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0°.760 mm. and fc,as=^ =0.03313*

Then
Ch.,co3 =0.03313X0.00161 =5.33X10-^

Inserting the values determined for the functions in equation (22) we have

= 4.895 =KC='hco3 0.05335^

CH^cOaXCcoa 0.01991x5.33x10-*

The second ionization constant of carbonic acid is, then, according to

equation (23)
^^^^ 3.04X10"^

4895
K^^H.C03= T^^:^ =6.21 X10-"

A similar calculation for experiment 6, which McCoy considered as

presenting the most favorable conditions for accuracy and in which the

partial pressure of carbon dioxide was 0.00404 atmosphere, gave 6.205 X 10"".

For experiment 1, table 3,t 0.3 normal bicarbonate was used, 57.9 per

cent remaining as bicarbonate, 42.1 per cent being converted into carbon-

ate when equilibrium was established under a partial pressure of carbon

dioxide of 0.00319 atmosphere. We have % as before

Cncoa =0.3 X0.579 X0.70 =0.1216

Cco3 =0.3X0.5X0.421X0.584 =0.0369

By interpolation of Geffcken's results, the coefficient of absorption of car-

bon dioxide by 0.3 normal potassium chloride at 25° is 0.720 and /jgas is

0.03214.§ Hence

Ch,c03 =0.03214X0.00319 = 1.02X10-*
and

C==HC03 0.1216^
=3,910=K

Ch,co3 X Ccoa 1 -02 X 10-* X 0.0369

According to equation (23) we have, then,

K'''lonization =7.8 X 10"

We will use the mean of the two constants or 7 X 10~" for the calcula-

tions made in this investigation.

THE DETERMINATION OF THE SOLUBILITY CONSTANT FOR
CALCIUM CARBONATE.

With the aid of the constant for the secondary ionization of carbonic

acid, of the constant for its primary ionization as determined by Walker

and Cornack, and the experiments of Schloesing on the solubility of calcium

carbonate under the influence of varying partial pressures of carbon dioxide,

* McCoy used 0.0338 without correction for the changed solubility.

t Page 456, loc. cit.

X The degree of ionization of 0.3 normal sodium acetate, loc. cit., is 0.70; of 0.3 equiva-

lent sodium sulphate, loc. cit., it is 0.584.

? 0.0338 for pure water.

'M
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we can now determine the value for the solubility product of calcium

carbonate"
Cca X Cco3 = KcaC03

to which the precipitation of calcium carbonate is subject. As explained

above, the solution may be considered just saturated whenever the product

of the ion concentrations is equal to this constant. Excess of carbonic

acid increases the solubility through its hydrogen ions, which form bicar-

bonate ions HCO3' with the carbonate ions CO3" of the calcium carbonate.

^^^'^ CcaXCCcOa-^XKcaCOa

the solution is no longer saturated with calcium carbonate and the solid

carbonate will go into solution until we again have:

C'ca X C'cOa = KcaCOs

the concentrations C'ca and G'cOa being unequal now, calcium ions being

in excess.

As stated on page 242, the solubility will depend on all four of our

fundamental equations I to IV (on p. 242), the functions being dependent

on the various constants. They may all be combined as follows: Divid-

ing equation III by IV, we have first:

^ HCO3 ^ Ionization
(24:)

CcOs X ChoCOs K"Ionization

We may substitute in this equation for Ccog its value as obtained from

equation I, viz. —^^, and haveKcaCOa

Ca

Cca X C^HCOa K Ionization

KcaCOs X ChsCOs ^' Ionization

or

CcaXC HCO:j t^ vy ^ Ionization fon\
7S

= KcaCOs X -tTT; \^^)
^H2C03 -"^ Ionization

Now, when calcium carbonate is dissolved under the influence of excess

of carbonic acid in the absence of any other calcium salts, as was the case

in Schloesing's experiments, practically all of the calcium is present as

bicarbonate, the quantity of carbonate being minimal and quantitatively

negligible in comparison with the bicarbonate. Since

Ca(HC03)2 ^ Ca" + 2HCO3' (26)

the concentration of the calcium ions will be half that of the bicarbonate

^^^^ Cca = iCHC03 (27)

and by substituting this value in (25) we have

C HCO3 oir \y ^ Ionization
7^ = ^IVcaCOs X -T^,
^HjCOs -"^ Ionization

(28)

For the concentration of the dissolved carbonic acid we have, according

^^ CH.C03 = fe.asXP (29)

<^Vide Bodlaender, loc. cit.
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where fcgag is expressed in molar terms and P is the partial pressure of the

carbon dioxide above the solution (see p. 243).

Equation (28) may be transformed then into

^^ = 2 X fcgas X ^>"^^"" X KcaCOs (30)
JL "^ Ionization

an equation which holds for saturated solutions of calcium carbonate and

bicarbonate in equihbrium with sohd calcium carbonate and gaseous car-

bon dioxide of any pressure P at a given temperature. The composition

of such saturated solutions has been determined by Schloesing, and since

from his data the values of Chcos and of P can be ascertained, and since

all the constants excepting the solubility product KcaCOs are now known,

the value of this constant can now be determined."

The value of the first ionization constant of carbonic acid is 3.04 X lO"';**

the value of the second ionization constant is 7 X lO""." Geffcken's'* recent

very exact determinations of the absorption of carbon dioxide by water,

made with an improved apparatus, give somewhat higher values than found

by Bunsen years ago. At 16°, the temperature at which Schloesing's deter-

minations were made, by interpolation of the values found by Geffcken for

15° and 25°, the coefficient of absorption is found to be 0.9890 (reduced to

0°.760 mm.) instead of 0.9753. The change in solubility produced by the

presence of the small amount of salts present (in Schloesing's experiments

this is only 0.01 equivalent, as an average) is negligible. The coefficient

0.9890 corresponds to a constant feg^g equal to 0.04415 in molar terms.

Substituting the values of our three known constants in equation (30)

we obtain

:

pg q 04 v 1
0-^

^^=2X0.04415X^y|-^XKcaco3
= 383.4 xKcacOs

and „

^K ___t^HC03__ (31)

^^"°^"7.264xVP

Schloesing's results give the total amount of calcium carbonate dissolved:

it is present almost exclusively as calcium bicarbonate. The degrees of

ionization, a, of the calcium bicarbonate in the various solutions may be

put equal to the degrees of ionization of calcium acetate in equivalent con-

centrations;* then, in any given solufon

CHC03 = «X^Cca(HC03)2 (32)

" Bodlaender, loc. cit.

"Page 243.

"Page 245.

'^Loc. cit.

«Bodlaender used calcium chloride and nitrate for this purpose. As salts of organic

acids usually are somewhat less ionized than salts of stronger inorganic acids, it seemed

better to ascertain the degree of ionization by comparison with calcium acetate. The con-

ductivities for calcium acetate are given in Kohlrausch and Holborn's Leitfahigkeiten on

page 161 and the degrees of ionization are calculated in the usual way. There is an average

difference of about 4 per cent between these coefficients of ionization and those used by

Bodlaender.
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In table 4 the data are tabulated and the calculated values for-JKcacOs

given. Column 1 gives P the pressure of carbon dioxide in atmospheres,

column 2 the solubility of calcium carbonate as determined by Schloesing

and expressed in gram equivalents of calcium bicarbonate i ^—^ jper

liter. Column 3 gives the degree of ionization a of the corresponding

calcium acetate solutions, column 4 the concentration of acid carbonate

ions, Chco3> as calculated from the numbers given in columns 2 and 3.

In the last column we have the values for -J KcaCOs ^^ calculated according

to equation (31).
Table 4.

COa
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mination based on the direct solubility of calcium carbonate in water.
The latter method gives excellent results with salts like silver chloride,

calcium or barium sulphate, but calcium carbonate is largely hydrolyzed
by water into the hydroxide and carbonic acid and bicarbonate, and this

hydrolysis, together with the possibility of absorption of carbon dioxide
and consequent change in the equilibrium conditions, affects these direct

determinations. Bodlaender has estimated that about 80 per cent of the
calcium carbonate is decomposed by water in its saturated solution in pure
water. In Schloesing's experiments the hydrolysis is practically completely
overcome by the measurements being made in the presence of an excess of

carbon dioxide. No calculations were made by Bodlaender as to the extent
of any hydrolysis in these experiments of Schloesing, but we can readily
determine it as follows: In experiment 1, in which we have the smallest
pressure of carbon dioxide and therefore the most favorable conditions for

hydrolysis, we have as the pressure of carbon dioxide (P) 0.000504 atmos-
phere. Consequently, according to equation (29)

CH2CO3= 0.04415 X 0.000504 = 2.225 X lO"'

According to the table we have

Chc03= 0.001356

Now, for carbonic acid we have (equation III, p. 242),

ChXChcOs= 3.04x10-^XCh,co3

and inserting the given values for ChcOs ^^^ ChjCOs* we find

:

3.04X10-^X2.225X10-:^^^
0.001356

^.yyxiu

Npw, for the ionization of water at 16°, we have:

ChXCoh = 0.55X10-"
and consequently

0.55 X 10-"
, , ,^_.^^^-

4.99XlO->
^^-^X^Q"'

Calcium bicarbonate, the chief salt in solution, is hydrolyzed according
to

^Ca(HC03)2 + HOH1:; iCa(0H)2+ H^COg

and since the equivalent concentration of the bicarbonate ions in experi-
ment 1 is 0.001356, the part hydrolyzed is 1.1 X 10-*/0.001356, or about 0.08
per cent. So, even in this first, least favorable experiment, the hydrolysis
is negligible. In experiment 5, we find in a similar way

Ch = 7.43X10-8 CoH = 7.40X10-8

and the part hydrolyzed is 7.4x10-^0.0051, or 0.0014 per cent.

Hydrolysis is reduced therefore to almost nothing, and the value found
for KcaC03> 1.26X10~8, needs no correction from this source.
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EQUILIBRIUM BETWEEN CALCIUM CARBONATE AND GYPSUM.

THE SOLUBILITY PRODUCT OF CALCIUM SULPHATE.

For a saturated solution of gypsum, ionized according to

CaSO,^Ca"+SO/ (34)

we may put, as we did for calcium carbonate,

Cca X CsOi = KcaSOi (35)

The value of this solubility product constant can be determined from
the solubility of calcium sulphate in water and its degree of ionization in

the saturated solution, since the salt dissolves without any hydrolytic de-

composition. Kohlrausch and Rose^ give the solubility of gypsum at 18°

as 2.07 g. (anhydrous calcium sulphate) per liter of water. This represents

a concentration of 2.07/136.1 or 0.0152 gram molecule and 0.0304 gram
equivalent of calcium sulphate. The degree of ionization is best ascertained

from its conductivity in the saturated solution; the specific conductivity

of the solution is given ^ as 0.001891 reciprocal ohms at 18°; its equivalent

conductivity is, then

, 0.001891X1,000 __^
^^^so^ ^

0:0304 ^ ^^-^

The conductivity of calcium sulphate at extreme dilution^ is 123 and its

degree of ionization in the saturated solution therefore 62.2/123 or 50.6 per

cent. Then
Cca = Cso4= 0.0152X0.506 = 0.00769

and
Kcaso, = Cca X Cgo^ = 0.00769- = 5.92 X 10-^ (36)

The solubiUty product of calcium sulphate at 18° is therefore 5.92 X 10~^.

CALCIUM SULPHATE AND CALCIUM CARBONATE. ^
If we have a solution saturated both with calcium sulphate and with

calcium carbonate, for instance in contact with both solid salts, we have
in the saturated solution simultaneously

CcaX CcOs = KcaCOs (37)

and

Cca X CsOi = KcaSOi (38)

The value for Cca is the same now in both equations, representing as it

does the total concentration of calcium ions, irrespective of their source

from sulphate, carbonate, or bicarbonate. Then, dividing equation (38)

by equation (37), we have for a solution in equilibrium with both salts at

16° to 18°
^ j^^^^^ 5.92X10-^

CcOa KcaCOa 1.26X10"
= 4,700 (39)*

'Zeitschrift fur Physikalische Chemie, 12, 241 (1893).
' Kohlrausch and Holborn, loc. cit., p. 77.
» Jbid., p. 200, table 86.
* The value for KcaCOs determined at 16° is used ; no correction is made for the differ-

ence of 2°.
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This means that the concentration of sulphate ions must be about 5,000

times as large as that of the carbonate ions in a solution saturated with

both salts, and consequently one or the other salt will come down first pure,

when precipitation from a mixture is effected, until this ratio is reached.

Under ordinary conditions obtaining in nature or in laboratory experiments,

the excess of sulphate ions is not as large as this, and so the carbonate is

precipitated first until the concentration of carbonate ions has fallen to

about one five-thousandth that of the sulphate ions. On the other hand,

if in such a solution, which is in equilibrium with both solid salts, the con-

centration of the sulphate ions is by any means increased, e.g., by addition

of some sodium or potassium sulphate, the solution will be oversaturated

with calcium sulphate [Cca X C'sOi > Kcasoj; gypsum will be precipitated, and

owing to the loss of calcium ions the solution will now be undersaturated in

regard to the carbonate [(Cca— a:) XCco3< KcacOa]; and solid calcium car-

bonate must dissolve until the above ratio is reached. In the same way
the order of precipitation may be reversed if by any means the concen-

tration of the carbonate ions in a solution is persistently kept below one

five-thousandth that of the sulphate ions during the process of precipitation

or crystallization, for instance, by the addition of an acid.^

For an aqueous solution saturated with gypsum and calcium carbonate

at about 18°, the concentration of calcium ions may be taken as 0.00769,

as practically all of the calcium ions are derived from the sulphate. The

concentration of carbonate ions in such a solution is, then,

p KcaC03 1-26X10'~^ _. fi4vin-« (AVi\

With the aid of this value we can calculate, for varying partial pressures

of carbon dioxide, the maximum proportions of calcium carbonate and

bicarbonate which can be present in solutions saturated with gypsum and

calcium carbonate at approximately 18°.

CALCIUM SULPHATE, CARBONATE, AND BICARBONATE, WITH REFERENCE TO

GIVEN PARTIAL PRESSURES OF CARBON DIOXIDE.

The present average partial pressure of carbon dioxide in the atmosphere

is 0.0003 atmosphere. We may ask what is the maximum amount of cal-

cium present as carbonate and bicarbonate in 1 liter of a solution which

is in equilibrium with this partial pressure of carbon dioxide and which is

saturated both with gypsum and with calcium carbonate. The significance

of this quantity will be discussed presently; it can be calculated as follows,

with the aid of the equations developed above. We have:

Ch X ChCOs= ^'ionization X ChsCOj (111)

Ch X CcOa = K"ionization X CHCO3 (IV)

ChsCOs = ^gas X CcOs (I^)

* Analogous relations have been developed experimentally and theoretically in con-

nection with Guldberg and Waage's classical work on barium sulphate and carbonate.

Vide Nernst, Theoretical Chemistry, p. 533 (1904), and Findlay, Zeitschrift fiir Physikalische

Chemie, 34, 409 (1900).
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Combining the three equations by dividing III by IV and multiplying

by II, we find: tt-,

C=^HC03= ^;°""^'"° X A^gas X CcOaX CcO, (^1)
-1^ Ionization

and

ChcOs=V k^"'''"° X ^«- X ^coaX Cco, (42)
» -^ Ionization

Now, for a solution saturated with calcium carbonate and gypsum at

about 18°, Ccos ^^y ^^ ^^^^ ^^ ^ ^^^* approximation to have a maximum
value of 1.64 X 10~^ as shown above (equation 40), the calcium ions produced

from the bicarbonate being neglected in this first approximation and only

those from the gypsum being considered.^ At 18° the solubihty constant

for carbon dioxide,^ fcgag, is 0.04183 if Ccos be expressed in atmospheres.

In the given case Ccoo is 0.0003 atmosphere. Inserting all these values

and the two known ionization constants of carbonic acid into equation (42),

w^ ^^^
/ q CiA—i7w

Chco3=V 7 ox 10-" X0.04183X0.0003 X 1-64 X 10-«

and
CHCOa= 0.0003

For the calcium ions belonging to the bicarbonate we have

Cca=iCHC03= 0.00015

We have found then the ionized portion of the calcium bicarbonate in

the saturated solution. To determine the total dissolved bicarbonate its

degree of ionization in the mixture must be ascertained. Its degree of

ionization will depend not on its own concentration alone, but, according to

the principle of isohydric solutions, also on that of the calcium sulphate

present. We may imagine, according to the method of Arrhenius, the water

divided between the two salts in such a way that each in its portion yields

the same concentration of the common ion calcium. Since there is 50 times

as much sulphate as bicarbonate, the latter will secure only about 2 per

cent of the water, the sulphate about 98 per cent, and the sulphate will

ionize practically as if it were present alone. Its degree of ionization is then

50.6 per cent (p. 250), and its concentration of calcium ions 0.00769 or

0.01538 calcium ion equivalent. This, then, must also be the concentration

of the calcium ion equivalents in the isohydric bicarbonate solution, and so

^^ ^^^^
CjCa(HC03)2Xa = 0.01538

* The amount of calcium bicarbonate found in solution by this first approximation

corresponds to 0.00015 gram ion of calciimi. The calcium ions from the carbonate are

negligible and therefore the total concentration of calcium ions from sulphate and bicar-

bonate is 0.00769 + 0.00015 or 0.00784, and the maximum value for CcOs is, corrected,

1.26X10-V0.00784 (equation 40) or 1.16X10-* in place of 1.64 XlO^*. No correction was
made for this small difference, the results of the first approximation being considered suffi-

ciently accurate, especially in view of the facts that the solubility of calcium sulphate will

be slightly affected by the presence of the bicarbonate in such a way as to counterbalance

this error and that the degrees of ionization of salts are uncertain.
^ Geffcken, loc. cit. The total salt concentration (0.03 mole) is too small to require a

correction for the changed solubility of carbonic acid.
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By considering the bicarbonate to ionize like the acetate, we easily find

by trial that ^CaCHCOg)^ has a concentration of 0.0196 equivalent, whose

degree of ionization is found from the conductivity curve for calcium ace-

tate to be 78.5 per cent

0.0196X0.785 = 0.01538 calcium ion equivalent,

as required by the isohydric principle.^

Thus we find the degree of ionization of the calcium bicarbonate to be

78.5 per cent. The ionized portion of the bicarbonate is 0.00015 gram

molecule per liter, as was found above; consequently the total amount of

calcium bicarbonate in 1 liter is 0.00015/0.785 or 0.00019 gram molecule.

A solution saturated with gypsum and calcium bicarbonate and carbon-

ate at about 18° under a partial pressure of 0.0003 atmosphere would contain

therefore 1.9 X 10~* gram molecule of calcium bicarbonate. Such a solution

by evaporation would deposit an equivalent amount of calcium carbonate,

or 0.019 gram of calcium carbonate per liter,^ and gypsum deposited by

evaporation from such a solution would be contaminated with 0.019/2.07

or 0.9 per cent of calcium carbonate (referred to the anhydrous gypsum).'

For a solution saturated at 18° with gypsum and with calcium carbon-

ate and bicarbonate under a partial pressure of carbon dioxide 10 times as

great as the present average value in the atmosphere, the proportion of

calcium bicarbonate in solution can be calculated in a similar fashion. As

a first approximation we have

= -y/ 10X0.0003 = 0.00095

Since Cca is iCHcOa* the concentration of calcium ions in solution would

be close to 0.00769 + 0.00047 or 0.00816, and consequently in the saturated

solution the maximum value for the carbonate ions is

1.26XlO-« _ ,
^^0^— 0.00816

1-^^Xl"

Introducing this corrected value into the above equation, we find

Chco3 = 0.00916 and Cca = 0.00046

The degree of ionization for the calcium bicarbonate is found by the

method used above to be 78 per cent and the total calcium bicarbonate,

ionized and non-ionized, in 1 hter, is 0.000458/0.78 or 0.00059 gram molecule.

A solution saturated with gypsum and calcium carbonate and bicar-

bonate at 18° under a partial pressure of 0.003 atmosphere would contain

therefore 5.9 X 10"* gram molecules of calcium bicarbonate per liter, and by

» 20 c c of a 0.0196 equivalent or 0.0098 molar solution of calcium bicarbonate would

contain 0.000196 gram molecule and 0.000196X0.785= 0.00015 Cca, the total concentra-

tion of calcium ions derived from the bicarbonate in solution. The bicarbonate lomzes as if

it were all dissolved in about 20 c.c. water.
,

» The amount of calcium carbonate in solution in 1 hter is so minute as to be negligible.

' Cf. Findlay, loc. dl.
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evaporation such a liter would deposit 0.059 gram of calcium carbonate as
a contamination of the gypsum or 0.059/2.07, or 2.85 per cent (referred to
the dehydrated gypsum). Briefly the amount of calcium carbonate pro-
duced under a tenfold increase in the partial pressure for carbon dioxide is

very closely proportionate to the square root of 10.

For a solution saturated at 18° with gypsum, calcium carbonate and
bicarbonate under a partial pressure one-tenth as great as its present
average value, viz, 0.00003 atmosphere, we may put

ChcOs =V 0- 1 X 0.0003 = 0.000095

and Cca 0.0000475. The degree of ionization is 78.5 per cent, and the total

dissolved bicarbonate is 0.0000475/0.785 or 0.00006 gram molecule per liter.

A solution saturated with gypsum, calcium carbonate and bicarbonate
at 18° under a pressure of 0.00003 atmosphere of carbon dioxide would
contain 6X 10~^ gram molecules of calcium bicarbonate per liter, and would
deposit by its evaporation 0.006 gram of calcium carbonate, producing a
contamination of 0.006/2.07 or 0.3 per cent (referred to dehydrated gypsum).

In table 5 the results are summarized for the calculations made for

aqueous solutions under the conditions named. Column 1 gives the carbon
dioxide pressure in atmospheres; column 2 gives weight in grams of calcium
sulphate present in one liter; column 3 shows similarly the calcium bicar-

bonate present, but expressed in grams of carbonate per liter. Columns
4 and 5 give the values of columns 2 and 3 in terms of gram molecules per
liter. The last column gives the proportion of calcium carbonate which
would be found in gypsum separating from such an ideal solution by evapo-
ration, the proportion referring to dehydrated gypsum.^

Table 5.

COo
(atmosp.)

.
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-table 5, in columns 3 and 5, depending on the partial pressure of the atmo-

spheric carbon dioxide. When the solution becomes saturated with gypsum

this will, by continued evaporation, crystallize out, but no matter whether

it is deposited in the same locahty as, or in some other locality^ than, the

first great deposit of calcium carbonate, the gypsum must inevitably be

continuously contaminated with some calcium carbonate, varying from 0.3

to 2.85 per cent, according to the partial pressure of the carbon dioxide in

the atmosphere within the limits given. Perfectly pure gypsum would not

be formed under such conditions. Vice versa, a very exact determination

of the amount of calcium carbonate present in gypsum prepared under

such ideal conditions could be used as a criterion of the carbon dioxide con-

tent of the atmosphere under which the gypsum was formed.

Obviously such a hypothetical ideal condition as to constancy of tem-

perature and purity of the solutions never existed on the earth, and the

presence of other salts, notably of sulphates even in smaller quantities and

of chlorides in larger amounts, modifies decidedly the numerical values deter-

mined above: the foundation for the study of the relations of gypsum and

calcium carbonate having been laid for this ideal condition, it seemed desir-

able to pursue the inquiry to ascertain, at least roughly, the influence the

presence of other salts would have, especially the sulphates of magnesium,

potassium, and sodium, and the chloride of sodium. In the following pages

an attempt has been made to estimate only roughly the influence of the

presence of other sulphates.

CALCIUM SULPHATE, CARBONATE, AND BICARBONATE IN THE
PRESENCE OF SULPHATES.

The solubihty of a difficultly soluble salt like calcium sulphate depending

on its solubility product

Cca X Cs04= KcaS04

the presence of other sulphates in solutions that are not too concentrated

to interfere with the application of the laws of solution would, through the

increase in the concentration of the sulphate ions, have as its chief effect a

decrease in the concentration of the calcium ions, according to the equation

just given. Since about half of the gypsum is ionized in its saturated solu-

tion, a decrease in the concentration of its calcium ions would imply a

decrease in the solubility of gypsum. The decreased solubility of the gyp-

sum or the decrease in the concentration of calcium ions would, vice versa,

increase the solubiUty of calcium carbonate and bicarbonate; so, from both

causes, gypsum crystalHzing from a not too concentrated sulphate solution

under the conditions we are studying might be expected to be more contami-

nated with calcium carbonate than was found for aqueous solutions.

In order to study these effects, it was decided to examine from this

point of view the probable effect of the sulphates of magnesium, potassium,

and sodium in the proportion in which they are found with calcium sul-

phate in the present sea-water, determining also the effect of varying partial

pressures of atmospheric carbon dioxide, as was done before.

» Such a change of locality was suggested to the author by Dr. O. Willcox.
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At present we have in sea-water in 1,000 parts 1.239 grams or 0.009

gram molecule of calcium sulphate, 1.617 grams or 0.0135 gram molecule
of magnesium sulphate, and 0.860 gram or 0.005 gram molecule of potassium
sulphate.' Such a solution would contain 0.0275 mole or 0.055 gram equiv-

alent of total sulphates. The degrees of ionization of calcium and magnesium
sulphates are practically the same,^ and while potassium sulphate ionizes

far more readily, it forms a relatively small component of the system, and
we can, with sufficient accuracy for our purpose, consider the degree of

ionization for the sulphates to be that of a 0.05 equivalent magnesium sul-

phate solution or 48 per cent. Then

Cso4 = 0.0275x0.48 = 0.0132

Cca = 0.0091 X 0.48 = 0.0044

and
CcaXCso, = 0.000058

Since for a saturated solution the solubility product constant is 0.000059

(KcaS04)>' we see that this sea-water would be almost saturated with gyp-
sum were it not for the modifying influence of the presence of a large pro-

portion of sodium chloride and other salts in it.*

A purely aqueous solution of the above composition should be nearly

saturated with gypsum and a large part of the latter should crystallize out

during its concentration say to one-quarter its original volume. If at the

beginning, when the solution is practically saturated with gypsum, it also

at the same time be considered to be saturated with calcium carbonate and
bicarbonate in equilibrium with a partial pressure of 0.0003 atmosphere
carbon dioxide, we would have (see p. 250) a maximum concentration of

carbonate ions rt nmoo

Then, according to equation 42 (p. 252) we must have sufficient calcium

bicarbonate in solution to give a concentration of acid carbonate ions

VQ
04V 10—''

7 0X10-"
XQ0003XQQ41S3X 2.8X10

= 0.00039

and the concentration of the ionized calcium carbonate would be 0.000195

gram molecule. Its degree of ionization is 74 per cent, calculated by the

method used before, so the total calcium bicarbonate in solution is 0.000264

gram molecule per liter.

• Chamberlin and Salisbury, Geology, p. 309.
' Kohlrausch and Holborn, loc. cit., p. 200. For 0.01 eqmvalent the degrees of ioniza-

tion are 63 and 65 per cent respectively.

» Page 250.
* In this calculation we are not including a study of the effect of sodium chloride,

but are limiting ourselves to an examination of the effect of sulphates alone in an aqueous
solution. It is imderstood that the calculations are only for a rough orientation, the sim-

plicity of the laws for dilute solutions being lost as solutions become more concentrated and
more complex. Vide also E. C. Sullivan, Journal of the American Chemical Society, 27,
.529 (1905).

1—8
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If such a solution is now allowed to evaporate under a partial pressure

of 0.0003 atmosphere of carbon dioxide to one-quarter its original concen-

tration, we should have left a solution containing approximately 0.08 gram
molecule of sulphates per liter, whose degree of ionization may be taken as

39 per cent.' Then
Cso,= 0.08x0.39 = 0.0312

and the maximum concentration of carbonate ions would be

Consequently

Ooo.-°-§^= eMXlO-

Chco.= 0.00039X^11^

and the concentration of ionized calcium bicarbonate is 0.0003 mole. Its

degree of ionization is 63.4 per cent and the total concentration of calcium

bicarbonate 0.00047 mole. Comparing this result with the original solu-

bility of the bicarbonate (0.000264 mole), we find that while the solubility

of the gypsum is decreased (see below) by the accumulation of the other

sulphates, the solubihty of the bicarbonate increases, in consequence of the

decreasing concentration of the calcium ions.

The total original gypsum in solution was 0.0091 gram molecule per

liter. By evaporation of the solution to one-quarter of its volume, Cgo^

has become 0.0312, and consequently

0.000059 _
^^*-

0.0312
-00019

which we may consider as derived entirely from the ionization of the gypsum.
Its degree of ionization in a 0.08 molar solution of sulphates is about 39

per cent, and therefore the total concentration of the gypsum left in solution

is about 0.0019/0.39 or 0.0049 gram molecule. A quarter of a liter would
contain 0.0012 gram molecule, and therefore of the total original 0.0091

gram molecule 0.0079 gram molecule or about 90 per cent would have
crystallized out. The weight of this would be 1.07 grams (calculated as

calcium sulphate).^

The total original concentration of calcium bicarbonate was 0.000264

gram molecule, and we have left a quarter of a liter with 0.00047/4 gram
molecule. Consequently, 0.000147 gram molecule or 0.0147 gram of cal-

cium carbonate should be deposited with 1.07 grams of calcium sulphate,

corresponding to a contamination of 1.37 per cent.

A further evaporation to one-eighth of the original volume should de-

posit according to similar calculations 0.101 gram calcium sulphate with

0.0047 gram calcium carbonate, representing 4.7 per cent.

With a partial pressure of 0.00003 atmosphere of carbon dioxide the

original solubility of the bicarbonate would be 8.3 X 10~^ moles. By concen-

tration of 1 liter to one-quarter of a liter, the solubility would be increased

' The degree of ionization of magnesium sulphate, the chief sulphate left.

^ During the evaporation to one-half liter, we should expect a deposit of 0.72 gram sul-

phate with 0.0104 gram carbonate or 1.44 per cent, carbonate would be present.
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to 14.8x10-5 gram molecule per liter and only 0.0046 gram of calcium car-
JDonate would be deposited with 1.07 grams of calcium sulphate crystalliz-
ing out as gypsum by the concentration, representing a contamination of
0.43 per cent.

With a partial pressure of 0.003 atmosphere of carbon dioxide the
original solubility of calcium bicarbonate would be 10 times as great as in
the case just discussed, amounting therefore to 8.3 X lO"* moles. Evapora-
tion of the solution to one-quarter its volume would increase the solubility
to 14.8 X lO--* gram molecules per liter and 0.046 gram of calcium carbonate
would be deposited with 1.07 grams of sulphate, representing 4.3 per cent.

The results are summarized in table 6.^

Table 6.

COo
(atmos.).
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CALCIUM SULPHATE, CARBONATE, AND BICARBONATE IN THE
PRESENCE OF SODIUM CHLORIDE.

In both the previous cases discussed it was found that the absence of

calcium carbonate in gypsum crystalHzing from solutions containing cal-

cium carbonate in equilibrium with the carbon dioxide of the air would be

considered an indication of a very low partial pressure of the carbon dioxide.

Even if the great mass of the excess of calcium carbonate in solution were

deposited first, in the same locality or elsewhere, before the point of satura-

tion for gypsum were reached, the requirements for equilibrium would be

such as to keep so much of the carbonate in solution as to form an easily

discernible contamination of the gypsum formed by further concentration.

In nature the crystalhzation of gypsum is supposed to occur usually by

the concentration of waters containing a large excess of other salts, notably

of sodium chloride, and the last question we shall try to consider now is the

effect of sodium chloride on the conditions discussed in the preceding parts.

A salt like sodium chloride which has no ion in common with gypsum

should, according to the law of mass-action, increase the solubiUty of the

latter up to a certain point; the chloride and sulphate must react to a con-

siderable extent to form calcium chloride and sodium sulphate:

CaSO^ + 2NaCl ^ CaCl^ + Na^SO,

As the ionization of the new salts in moderately concentrated solutions is

by no means complete, considerable amounts of calcium and sulphate ions

must be suppressed to form these salts in non-ionized form, and this would

lead to an increased solubility of calcium sulphate according to equation

(35), page 250. In fact, a rough calculation of the result of Cameron's ^

determination of the effect of sodium chloride in 0.017 molar solution on

the solubility of gypsum, made with the aid of Arrhenius's principle of

isohydric solutions, led to a value for the ion or solubihty product for

calcium sulphate ^ ^ .^ «

CcaXCso4 = 9.5X10-'

in the presence of the salt, as compared with 6.5 X lO"', the value of the solu-

bility product at 23° in the absence of salt.

For concentrated salt solutions the conditions, as is always the case,

become more and more complex; we are more Ukely to have complex ions,

such as NaSO^, and double salts formed in large quantities and leading

not so much to abnormal changes in solubility as to changes which we have

no means of estimating at present.' Cameron, however, has given us a

large amount of empirical data which will be useful for the consideration of

our subject. In regard to gypsum and sodium chloride^ he finds the solu-

bility of the former is rapidly increased, rising from 2.37 grams calcium

sulphate (0.0174 mole) per liter to 7.50 (0.0555 mole) in the presence of

130 grams of sodium chloride, after which there is a gradual decrease in

^ » Loc. cit., 5, 560.
. , , .

' As to the lowering of solubility of the non-ionized calcium sulphate in salt solutions,

comparable with the decreased solubility of carbon dioxide, see pp. 237, etc.

17
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solubility again, which Cameron ascribes to the condensation of the solvent
in aqueous solutions of electrolytes.^

Entirely analogous effects must be anticipated for the action of sodium
chloride on calcium carbonate and bicarbonate, their ions also being sup-
pressed, for instance, according to

CaCHCOa)^ + 2NaCl±? CaCl^+ 2Na(HC0,)
calcium chloride and sodium chloride being formed in considerable quanti-
ties according to the principle of isohydric solutions.^

Again, the molecular solubility of calcium carbonate is liable to be
decreased, as was discussed for the sulphate, and we have in this case also

the fact that the solubility of carbon dioxide is considerably less in salt

solutions than in pure water, and this decreased solubility will reduce the
amount of bicarbonate dissolved approximately proportionately to the cube
roots of the change in the coefficients of absorption.* So we have forces

tending to increase the solubility as well as such as tend to decrease the
solubility of calcium carbonate. As a matter of fact, Cameron found that
at 25° for calcium carbonate and bicarbonate in equilibrium with air,* the
solubility was increased from 0.1046 gram bicarbonate per liter to 0.2252
gram by 51 grams (0.87 mole) sodium chloride, and then it was decreased by
additional sodium chloride. There is, therefore, at first an increase in solu-

bility and then a decrease, exactly as for gypsum. The characteristic bend in

the curve occurs earlier than in the case of gypsum, which was to be expected,

as the molecular solubility of carbon dioxide is also affected in this case.

Cameron ^ also determined the effect of sodium chloride on the solu-

bilities of calcium sulphate, carbonate, and bicarbonate simultaneously,

i.e., in mixtures in equilibrium with solid gypsum, solid calcium carbonate,

and the air. This is the work that is of most interest and importance for us,

and as we shall use the data the table is reproduced here (table 7)

.
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We note, first, the interesting fact that the solubility of the calcium

bicarbonate is very much reduced by the presence of the gypsum, as required

by the theory developed above. Cameron did not report any experiments

on the effect of a change in the partial pressure of carbon dioxide, but it

will undoubtedly be entirely analogous to that discussed in the previous

parts of this paper; it is probable that the solubility will increase roughly

proportionately to the square root of the pressure of carbon dioxide.^

We may now raise the question whether, owing to the displacement of

the bend in the curve of the solubility of bicarbonate as compared with

that of gypsum in the presence of sodium chloride, by a process of concen-

tration gypsum would crystallize out of any of the above solutions free

from carbonate, and if not what the contamination would be.

If we go from solution 2 to solution 3, the sodium chloride concentration

is increased from 0.0625 to 0.1979 mole, which would result if 100 liters of

solution 2 were concentrated to 31.54 liters of solution 3. Of the 272 grams
of calcium sulphate in 100 liters of solution 2, 108.7 grams would be retained

in solution and 163.3 grams deposited. At the same time, of the 4.5 grams

calcium carbonate in solution (as bicarbonate), 2.77 grams would be de-

posited, that is 1.7 per cent referred to pure calcium sulphate.

Table 8 gives the results of the calculations of this effect of progressive

concentration from solution 2, through solutions 3, 4, etc., to solution 8.

In column 1 the number of the solution used is given, referred to the num-
bers in table 7. In column 2 the number of liters used for concentrating is

given, and in the next column we have the number of liters to which the

solution has been concentrated. Column 4 gives the weight in grams of

calcium sulphate deposited, and the last column gives the proportion of

calcium carbonate to anhydrous sulphate deposited.

Table 8.

Solution
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Nothing is stated in Cameron's paper whether the air used was "labo-
ratory air" with an excess of carbon dioxide in it or pure country air.' If

laboratory air was used, the amount of calcium bicarbonate obtained in

solution and subsequently precipitated would be excessive and the results

in the last column of table 8 might be materially lower for air with a carbon-
dioxide content of 0.0003 atmosphere.

It is interesting to note that according to Usiglio's ^ work on Mediter-
ranean water, calcium sulphate began to be deposited when the water
reached a density of 1.13. This corresponds to a chloride content of about
17 per cent, or about 3 gram molecules of sodium chloride per liter, a con-
centration reached in Cameron's experiments for solution 7, from which,
going to solution 8, gypsum would be obtained with about 0.8 per cent car-

bonate. At this concentration, the concentration of other sulphates is

still so small that they would tend to increase the contamination with
carbonate, as described above, rendering the calcium sulphate less soluble

and the bicarbonate more so.

At a lower partial pressure of carbon dioxide than 0.0003 atmosphere,
the proportion of carbonate would be reduced approximately in the ratio of

the square roots of the ratios of the partial pressures,^ i.e., a partial pressure
of only 0.00003 atmosphere would reduce the carbonate to about og parts of

the values given in the last column of table 8, or to still less on the prob-
able assumption that the experiments on which the table is based were not
carried out with pure air, and would produce a very pure deposit.

THE EFFECT OF TEMPERATURE CHANGES.

Reliable data on the solubility of calcium carbonate at temperatures
other than 16°, the temperature at which Schloesing's experiments were
carried out, are not at hand, and so the effect of changes of temperature on
the conditions we are studying can not be estimated. It may be pointed out,

however, that aside from a probable increase in the solubility of calcium
carbonate, a higher temperature would affect chiefly the solubility coeffi-

cient of carbon dioxide, and through it would reduce the formation of

calcium bicarbonate. The solubility * of gypsum is about the same at 50°

to 65° as at 18° and ionization constants are usually not changed greatly

by changes of temperature; but the coefficient of absorption^ for carbon
dioxide at 65.5° is just about one-ninth as large as the coefficient at 18°.

This would result, according to equation (42), in reducing the formation of

calcium bicarbonate to -J ^ or one-third of the value found for 16°. In other

words, a rise of temperature of some 50° would probably have about the

same effect on the solubility of calcium bicarbonate as a decrease in the

* Results obtained by McCoy (American Chemical Journal, 29,461 (1903), in repeating
other work of Cameron on conditions of equilibrium involving the carbon dioxide of the
air and showing decided discrepancies, form a very strong indication that pure air was not
used by Cameron.

' Encyclopaedia Britannica.
^ See note 3, p. 260.
* Comey, Dictionary of Solubilities, p. 422.
* Dammer, Handbuch der Anorganischen Chemie, ii, 1, p. 371.
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partial pressure of carbon dioxide to one-ninth its present value. In view,

however, of the unknown change of solubility of calcium carbonate (the

change in the ion product constant), it must remain undecided whether a

rise of temperature would be a favorable or an unfavorable factor in the

crystallization of gypsum free from carbonate. The formation of bicarbon-

ate would also be directly proportionate to the square root of the solubility

constant according to equations (40) and (42).

SUMMARY OF RESULTS.

(1) From Arrhenius's data on the solubility of silver acetate, valerate,

and butyrate in the presence of the sodium salts of the same acids, it was

shown that the solubility or ion products are approximate constants, as

calculated on the basis of the well-estabhshed principle of isohydric solu-

tions. This, with the results of others,^ removes the discrepancy existing

in the relation between the solubility product and the ionization of strong

electrolytes and gives us a safer empirical foundation for the consideration

of the equilibrium conditions existing between two precipitates, one which

is in harmony with the fundamental work of Guldberg and Waage.

(2) The second ionization constant of carbonic acid may be taken as

7.0 X 10~" as calculated from McCoy's data with the aid of corrections sug-

gested but not carried out by the latter.

(3) The solubihty product of calcium carbonate is found to be 1.26 X 10~*

on the basis of Schloesing's experiments on the solubility of calcium car-

bonate at 16° under varying partial pressures of carbon dioxide.

(4) The solubility of calcium carbonate and calcium bicarbonate is ap-

proximately proportionate to the square root of the partial pressure of

carbon dioxide in the presence of a large excess of calcium sulphate.

(5) The theory of the equilibrium conditions between calcium sulphate

and calcium carbonate and bicarbonate has been developed and may prove

useful in the study of the natural waters of the present day.

(6) Considering the results given in tables 5,^ 6,^ and 8,* we find that the

favorable factors for the crystalHzation of pure gypsum should be:

(a) The absence of other sulphates which in moderate proportions

render gypsum less soluble and consequently enable solutions to take up

more calcium bicarbonate than pure aqueous saturated solutions of gypsum

can dissolve.

(6) The presence of sodium chloride in the proportion of about 8 to 25

per cent.*

(c) A very low partial pressure of carbon dioxide, the solubility of cal-

cium carbonate varying approximately as the square root of the partial

pressure of carbon dioxide, according to (4).

(d) An increase of temperature by decreasing the coefficient of absorp-

tion of carbon dioxide would possibly, but not certainly, be a favorable fac-

tor, the formation of calcium bicarbonate being proportionate to the square

root of the absorption coefficient of carbon dioxide, which falls with increase

of temperature.

' A. A. Noyes, loc. cit.; Findlay, loc. cit. ^ Page 254. ' Page 258. * Page 261.

« Solutions 5, 6, 7, table 7, p. 260.
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It is conceivable that the conditions (a), (6), (c), and (d) should lead to

a primary deposit of exceptionally pure gypsum, especially when acting

jointly. The considerations developed make it desirable to examine such

and other deposits of gypsum very carefully and exactly for even very
small quantities of carbonate.

(7) Even if the great mass of an excess of calcium carbonate in a solu-

tion were deposited first in some other locality before the point of satura-

tion for gypsum were reached, the requirements for equilibrium would be

such as to hold carbonate in solution and to make the question of the place

of deposit of the excess of carbonate in the first instance one of no moment.











.v* / at

MBL/WHOI LIBRARY




