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When we represent real-world systems as networks, the
directions of links often convey valuable information. Finding
module structures that respect link directions is one of the most
important tasks for analysing directed networks. Although
many notions of a directed module have been proposed, no
consensus has been reached. This lack of consensus results
partly because there might exist distinct types of modules
in a single directed network, whereas most previous studies
focused on an independent criterion for modules. To address
this issue, we propose a generic notion of the so-called truss
structures in directed networks. Our definition of truss is able
to extract two distinct types of trusses, named the cycle truss
and the flow truss, from a unified framework. By applying the
method for finding trusses to empirical networks obtained from
a wide range of research fields, we find that most real networks
contain both cycle and flow trusses. In addition, the abundance
of (and the overlap between) the two types of trusses may be
useful to characterize module structures in a wide variety of
empirical networks. Our findings shed light on the importance
of simultaneously considering different types of modules in
directed networks.

1. Introduction

Analysis methods developed in network science provide us with
useful tools for investigating and characterizing the kinds of
network structures observed in real-world systems [1]. Standard
techniques in network science include characterizing global
properties of networks, measuring centralities of nodes and
links, and classifying nodes into groups [2,3]. Finding relevant
subgroups of nodes, often called communities or modules, is
a fundamental problem. This problem is referred to as the
community detection problem [4,5], which has been studied in
different disciplines, including computer science, statistics and
statistical physics. Although there is no unifying definition of
a community, information regarding communities in networks
gives us a guide to summarize large-scale networks [6], to predict
the existence of links [7] and to reveal functional organization in
real networks [8,9].
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Within the community detection problem for real-world networks, the direction of links plays a
crucial role. Although the majority of previous notions of a community assume undirected networks
as their target, several of them are explicitly designed for directed networks. Examples include the
extensions of graph conductance [10-12], a generalization of the modularity function [13] and the map
equation [6] (see reference [14] for a comprehensive review on the community detection problem in
directed networks). These definitions of communities often successfully detect communities that satisfy
their criteria. Nevertheless, it remains an open problem as to how to choose a notion of modules when we
are given directed network data. For undirected networks, the local density of links within a subgroup
of nodes is arguably a suitable criterion for a module, regardless of the details of the definitions [5]. In
contrast, for directed networks, the directionality of links can alter the module structure, even when we
observe the same link density in two subgroups of nodes. The choice of algorithms crucially depends
on what types of modules we expect to find. In addition, some definitions of communities and their
associated algorithms are known to fail to detect certain types of module structure [14,15]; the impact of
this drawback is not clear until we analyse the network. Therefore, a generic notion of directed modules
is necessary for understanding the nature of module structures in real-world directed networks.

To address this issue, in this paper, we propose the notions of module structures in directed networks.
The following observations underlie the core concept of our work. First, there could be different types
of modules within a single directed network. For example, one part of a network can be an all-to-all
connected module, whereas another part can form a layered structure [14]. Second, it is not necessary
to divide the entire network into modules. For example, the World Wide Web network is well known
to exhibit the so-called bow-tie structure [16,17]. This fact implies that the different parts of a directed
network may not be regarded as modules to an equal degree. Instead of partition of networks into
modules, extraction of modules from the network should be considered. Previous studies often ignore
these observations: they aim at partitioning the entire network into modules based on a single objective
function. Therefore, we propose two distinct types of modules, called the cycle truss and the flow truss,
using a unified framework, and an algorithm for finding them. Our definition of trusses relies on pattern
matching and local agglomeration of directed triangles (i.e. connected subgraphs composed of three
nodes and three links).

We apply the proposed algorithm for finding trusses to a variety of empirical networks to verify
its practicality. First, we observe that the extracted trusses seem to capture meaningful subgroups of
nodes in networks with node label data. Second, because our method simultaneously detects the two
types of modules, we can use them as features for classifying different networks. Empirical networks
obtained from the same categories (e.g. social or biological) tend to show a similar degree of abundance
of the two types of trusses. In addition, the overlap between the two types of trusses captures another
kind of similarity between networks in a given category. Our findings demonstrate the importance of
simultaneously considering different types of modules in directed networks to understand the common
properties underlying the organization of modules.

2. Methods

2.1. Definitions of cycle and flow trusses

In this paper, we assume that the focal network is directed and simple, i.e. there are no self-loops and
no multiple links between any pair of nodes in the same direction. Bidirectional connections between
two nodes are possible: links from node i to node j and from j to i may coexist. We also assume that
links are unweighted. First, we define cycle and flow triangles as the elements of cycle and flow trusses,
respectively. A cycle triangle is a connected subgraph composed of three nodes all of which have out-
degree equal to one, namely a directed cycle composed of three nodes (figure 1a). A flow triangle
is a connected subgraph composed of three nodes that have out-degrees equal to zero, one and two
(figure 1b). A flow triangle is also called a feedforward loop [18,19]. Next, we define the cycle and flow
trusses by generalizing the k-truss, originally defined for undirected networks [20]. A cycle (flow) k-truss
is defined as a maximal connected subgraph of a network in which every link is involved in at least
k cycle (flow) triangles within the subgraph1 (see figure 1c for an example). Free parameter k takes a
non-negative integer value in 0 <k <dmax — 1, where dmax denotes the maximum node degree in the
network, and k controls the extent to which triangles are overlapped within a truss. It should be noted

!In the original definition for undirected networks [20], the k-truss is the maximal subgraph in which every link is involved in (k — 2)
triangles, not k triangles. We modify the definition in order to make the truss number of links involved in no triangles zero.
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Figure 1. Definitions of cycle and flow trusses. (a) A cycle and (b) flow triangles. (c) The cycle (blue) and flow (red) kK = 2-trusses in an
example network. The vertical arrow coloured purple at the centre represents the link that belongs to both of the cycle and flow 2-trusses.

that a cycle (flow) truss may contain flow (cycle) triangles. There are several relationships between the
cycle and flow trusses and other notions of directed subgraphs presented in previous studies, and we
will describe this point in the Discussion.

The definitions of the cycle and flow k-trusses satisfy the requirements described in the Introduction,
as we can see in the example shown in figure 1c. To be more precise, these definitions enable us to find
two distinct types of modules using the unified framework. In addition, this method extracts modules
from a network, instead of partitioning the entire network into modules. The algorithm for finding cycle
and flow k-trusses in a given network is a modified version of that for an undirected truss [21]. The
details of the algorithm are presented with pseudo-codes in the electronic supplementary material.

The definitions of the trusses lead to their basic properties as follows: first, there can be multiple cycle
(flow) k-trusses in a network. Second, cycle and flow (k + a)-trusses are, if they exist, subgraphs of cycle
and flow k-trusses, respectively (a=1,2,...). Third, the node sets of two k-trusses of the same type can
overlap, but their link sets must be disjoint because of the maximal property in the definition. Fourth,
the complete graph with k nodes in which all node pairs are connected for both directions is both a cycle
(k — 2)-truss and a flow 3(k — 2)-truss at the same time (k > 3).

We assign a link from nodes i to j with the truss number k;_; defined by

kisj =maxk | (i — ) € E), 2.1)

where Ej is the set of links involved in k-trusses. We denote the truss number for cycle and flow trusses
by ki j and sz i respectively. We use the superscripts ‘c’ and ‘f’ to represent the variables related to the
cycle and flow trusses throughout this paper. The truss number indicates the extent of agglomeration of
triangles around a link. For example, in the network shown in figure 1c, link (i — j1) has (kS, kf) =(2,0)
and link (i; — j2) has (k¢, kf) = (1,2). We are also interested in the maximum values of kS j and kf _jover
all the links. We call these values the maximum truss numbers; they are denoted by kS, and kf . for

cycle and flow trusses, respectively. For the network shown in figure 1c, kS, = kf,,, =2 holds.

3. Results

3.1. Trusses in empirical networks

We apply the proposed method to empirical network data that are assigned with predefined node labels
so as to demonstrate that cycle and flow trusses can extract meaningful modules. For this purpose, we use
two networks obtained from different fields: the neural network of Caenorhabditis elegans (C. elegans) [22]
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and the network between words collected via word association experiments, so-called the Edinburgh
Associative Thesaurus (EAT) [23].

3.1.1. Neural network of Caenorhabditis elegans

The C. elegans neural network comprises 279 nodes, which correspond to neurons, and 2990 links
between the nodes. A chemical synapse between two neurons is represented as a directed link, and
an electrical junction as two directed links in both directions between the node pair [22]. Each neuron
is assigned a unique name and additional information such as soma positions in the worm’s body and
functional categories (i.e. sensory neuron, interneuron or motor neuron), which allows us to interpret the
neuronal functions of the extracted trusses.

In figure 2, the resulting k-trusses are depicted. We focus on the cycle k5, =3- and flow kf ,, =9-
trusses, which are the most cohesive trusses in the network. In this case, the cycle 3-truss is a single
strongly connected component, and the flow 9-trusses is a single weakly connected component (i.e.
any pair of nodes in each of the trusses is connected if we discard the link direction). When we map
the cycle and flow trusses in the entire network (figure 2a), neither of these trusses is localized in any
particular part of the worm body, but instead, spans almost the entire range of the body (from head to
tail). We can see that a small number of nodes bridges most of the triangles in the trusses. The cycle
3-truss (figure 2b) consists of four command interneurons relevant for locomotion (AVAL, AVAR, AVBR
and PVCR) and three motor neurons in the ventral cord of the worm (VA08, VA09 and VB09). Here,
we follow the description of each neuron in reference [24]. These seven neurons in the cycle 3-truss are
tightly connected to each other; however, certain node pairs have a link in only one direction. On the
other hand, the flow 9-truss (figure 2c) consists of 13 interneurons relevant to locomotion (AVAL, AVAR,
AVBL, AVBR, AVDL, AVDR, AVEL, AVER, AVJL, AVJR, PVCL, PVCR and SABVR) and seven motor
neurons in the dorsal cord of the worm (DA1, DB03-06 and DVA), except for one in the ventral cord
(AS01). Although we need further explanation by biological experts as to why these neurons constitute
the cycle and flow trusses, the trusses seem to represent some functional modules of neurons. The cycle
and flow trusses overlap with each other and have four command interneurons AVAL, AVAR, AVBR and
PVCR in common. This fact arises logically, as the command interneurons related to locomotion should
play a central role in mediating the motor neurons in the ventral and dorsal cords [22]. This example of
the C. elegans neural network demonstrates the ability of our proposed method to extract different types
of cohesive modules from networks. In addition, the overlap between the two types of trusses can shed
light on the importance of nodes that bridge different modules.

3.1.2. Word network of the Edinburgh Associative Thesaurus

Our second example is the graph representation of the EAT, which was collected through word
association experiments with subjects [23]. A directed link from nodes (i.e. words) 7 to j represents the
associative relationship between the two: for subjects, word j comes to mind when they are shown word i
as a stimulus. After the aggregation of the results of word association experiments for many subjects with
different stimuli, the EAT network contains 23 219 nodes and 325 029 links between them.

In figure 3, the resulting k-trusses are depicted. We show the cycle kS, = 2- and flow kL, = 8-trusses.
Unlike the results of the C. elegans neural network (figure 2), there are multiple disjoint cycle and flow
trusses with kS, =2 and kf ., =8. We can see that each of the trusses consists of words related to a
topic, for example, religion, emotion, health and poem. All six of the cycle 2-trusses composed of five
nodes are fully connected, in which all node pairs have links in both directions. Each of the cycle 2-
trusses related to emotion, health and colour strongly overlap with one of the flow 8-trusses (top centre
and bottom right of figure 3). Only the flow 8-truss related to liquor, the largest one (bottom left of
figure 3), is less overlapped with the cycle trusses than the other flow 8-trusses are. We can intuitively
explain the difference between the cycle and flow trusses in this example network as follows. The words
constituting a cycle truss have an equal relationship with each other such that the experimental subjects
tend to recall all words based on each word. By contrast, the words constituting a flow truss have a
hierarchical relationship such that some words remind the subjects of other words but the converse rarely
occurs. If we discard the link direction, then we cannot distinguish the modules of the cycle and flow
trusses. Therefore, this example demonstrates that the link direction plays an important role in finding
modules.
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Figure 2. Cycle and flow trusses in the C. elegans neural network. We set k to k%, =3 and k{ . = 9 for the cycle and flow trusses,

respectively. The links are coloured with blue (in the cycle 3-truss), red (in the flow 9-truss), purple (in both) and grey (remainder). (a)
The whole picture of the C. efegans neural network. The nodes are ordered according to the soma position in the worm body (head to tail
from left to right and from top to bottom). A group of nodes composing a circle have the same position. (b) The cycle 3- and (¢) the flow
9-trusses. The node labels indicate the names of neurons.

3.2. (lassification of networks based on truss number distributions

We can use the truss number statistics to classify various networks.? In the following, we demonstrate the
classification of networks based on the truss number statistics in two ways. First, we separately quantify

2Sources of the network data (date accessed: 1 March 2016). The airport, communication, following and software
networks (http://konect.uni-koblenz.de/); the USairport500 network (http://toreopsahl.com/datasets/#usairports); the circuit
networks and the word networks (http://www.weizmann.ac.il/mcb/UriAlon/download/ collection-complex-networks); the allcites
network (http://fowler.ucsd.edu/judicial.htm); the cit-HepPh, cit-HepTh, social, slashdot-0902, twitter_combined, wiki-Vote,
P2P and the web networks (http://snap.stanford.edu/data/); the food webs and the Edinburgh Associative Thesaurus
(http:/ /vlado.fmf.uni-lj.si/pub/networks/data/); the gene regulatory networks (http://info.gersteinlab.org/Hierarchy); the
Caenorhabditis elegans (C. elegans) neural network (http://www.wormatlas.org/neuronalwiring.html); the brain connectivity
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Figure 3. Cycle and flow trusses in the EAT network. We set k to S, = 2 and k' ,, = 8 for the cycle and flow trusses, respectively.

The links are coloured with blue (in the cycle 2-trusses), red (in the flow 8-trusses) and purple (in both). The node labels indicate the
corresponding words.

the abundance of cycle and flow trussses and use them as two features. Second, we quantify the overlap
between the cycle and flow trusses with large k values.

Intuitively, a network is more cycle (flow) truss oriented if the links tend to have larger cycle (flow)
truss numbers. Note that a large truss number implies the agglomeration (and abundance) of triangles.
To quantify how much a network is truss oriented, we define a measure D as

D

K
& D (Frana®) — Foriglh), (3.1)
k=0

where F(k) is the complementary cumulative distribution of truss numbers defined by F(k) = Z],E,ZO f(K)
and f(k') (in the sum) is the frequency distribution of the truss number. In equation (3.1), the subscripts
‘orig’ and ‘rand’ represent the distributions for the original and randomized networks, respectively. We
randomize the original network by rewiring links in a uniformly random manner while retaining the
in- and out-degrees of all nodes (i.e. the configuration model for directed networks [25]). The range of
the sum over k is determined by K. Here, we choose K = min{k | Forig(k) > 0.9 A Frang(k) > 0.9}. We do not
assume K = kmayx, because kmax might be sensitive to noise in the network data. The measure D takes a
value in [—1, 1]; a large positive value of D represents that the links in the original network tend to have a
larger truss number than those in the randomized networks. We denote the measure D for the cycle and
flow truss numbers by D¢ and Df, respectively. In figure 4a,b, we plot the truss number distributions f(k)

and ff(k) of the C. elegans neural network and the randomized networks. The kS, and ki, values are

networks (https:/ /sites.google.com/site/bctnet/datasets); the mac95 network (http:/ /www.biological-networks.org/?page_id=25);
the polblog network (http://www-personal.umich.edu/~mejn/netdata/); the metabolic networks (Kazuhiro Takemoto 2015,
personal communication).
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Figure 4. Distributions of the truss numbers and the D measure. Distributions of (a) k and (b) k' for the original network and 100
randomized networks of the C. elegans neural network. (c) Scatter plot of D and D for (main panel) empirical networks of the 12 categories
and for (inset) the metabolic networks.

larger for the original network than those for the randomized networks. The proportions of links with
large k values are also larger for the original than the randomized networks. For this network, we obtain
(DS, Df ) =(0.122,0.329). Therefore, the C. elegans network is inclined to have more flow trusses than cycle
trusses, which agrees well with our intuition based on figure 4a,b.

The measure D allows us to compare various networks of different sizes in terms of truss tendency. In
figure 4c, we show the scatter plot of D¢ and Df for the empirical networks. As we can see, the networks
of certain categories such as airport, circuit, citation and food webs loosely fall into the similar positions
on the plane. The points are located around the diagonal, because networks with larger numbers of
triangles tend to have larger D values. This phenomenon occurs because our randomization procedure
does not conserve the number of triangles in the original network; the randomization tends to destroy
triangles, and consequently, destroy the truss structure. This reasoning is supported by the observation
shown in electronic supplementary material, figure S1. The elements of the first principle component
of the plot shown in figure 4c exhibit a strong positive correlation with the clustering coefficient [26]
after discarding the link directions. Nevertheless, figure 4c provides the information regarding network
topology beyond simply the count of the triangles. For example, there are several distinguishable classes
of network (such as citation and circuit networks) in which either cycle or flow trusses are dominant.
The neural, airport and web networks contain both types of trusses. The metabolic networks tend to
have few cycle or flow trusses when compared to those in the randomized networks. These observations
suggest the usefulness of the cycle and flow trusses to characterize different types of directed
networks.

The randomization method that we used above generally destroys triangles, and randomization
conserving the number of triangles is desirable to distinguish the abundance and agglomeration of
triangles. Such a randomization method is proposed in reference [27] which conserves the number of
focal motif counts, whereas it is basically a rejection sampling and computationally demanding and
feasible only for small networks. We applied this randomization method to the food web networks so as
to retain both the number of the cycle triangles and that of the flow triangles, and performed the same set
of analyses of the D measure (see electronic supplementary material, figure S2 for the resulting plot). The
result indicates that the food web networks are more flow-truss oriented than cycle-truss oriented, which
is consistent with the conclusion based on the randomization method without conserving the number of
triangles (figure 4).

wiié vivsis nsy Biosuandisoreiorsos [



(@) | (b)

10
8 4
e = 6 -
2 2
§ 5 ] 0.125 § 8?(5)
g = -
2 0.075 2 4 0.10
= =
=z 0025 & 0.05
g g
= = 27 -
0 - 04
0 1 2
(©) (d)
150 - : -
754
2 e ‘ -
5} 5 -
-g 100 —g - 0.100
2 0.10 2 50 0.075
2 2 0.050
2 005 g 0.025
3 z
50 -
g 2 251
0 - 0 -
0 20 40 20 30
cycle truss number k¢ cycle truss number k¢

Figure 5. Joint frequency distribution of (K¢, k). (@) The C elegans neural network. (b) The EAT network. (c) The USairport 2010 network.
(d) The web-Google network. The vertical and horizontal dashed lines indicate the k values that give the median value for kX and K,
respectively.

While we separately considered the properties related to the cycle and flow trusses so far, the overlap
between the two types of trusses can be another characteristic of the networks as we observed in the
example networks (figures 2 and 3). In particular, we are interested in the overlap between highly
cohesive cycle and flow trusses with large k values. To analyse the overlap, we plot the joint frequency
distribution of truss numbers (k°, kf) for four example networks, i.e. the C. elegans neural network, the
EAT network, the USairport 2010 network [28] and the web-Google network [29] (figure 5). In these plots,
a cell at (k°, k) indicates the proportion of links with these truss numbers. These plots indicate the unique
characteristics of the different networks. In the C. elegans neural network (figure 5a), the links with k¢ =3
haveonly 7 <kf <9 =kf . This property suggests that the size of the cycle kS, -truss is smaller than that
of the flow kf ., -truss and a large section of the cycle truss overlaps with the flow truss, as we observed
in figure 2. By contrast, for the EAT network (figure 5b), the majority of links have relatively small truss
numbers, as k =0 and 0 < kf < 3. Thus, the cohesive cycle and flow trusses are not strongly overlapped.
The plots for the USairport 2010 (figure 5c) and web-Google (figure 5d) networks look similar, such that
we can see the coloured cells along the diagonal of slope equal to three. This observation suggests that in
these networks there are complete subgraphs within which node pairs are connected in both directions.
This situation may correspond to airports within local regions and web pages under the same directories.

To quantify the overlap between the cohesive cycle and flow trusses in a network, we define

HeeEI(kS >k ) A K=K )N

He e E| (K > kK

R f f ’
med) Vv (ke > kmed)}|

(3.2)

where L is the set of all links and k4 and kfne q are the median values of f°(k) and ff (k) (indicated by
the dashed lines in figure 5), respectively. The measure R characterizes the proportion of links with large
k¢ and kf values among those with large k¢ or kf values. The measure R takes a value in [0,1]; a large
R value indicates a strong overlap between the cohesive cycle and flow trusses. For the four networks
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web networks.

shown in figure 5, we obtain R =0.531, 0.383, 0.983 and 0.540 for the C. elegans neural network, the EAT
network, the USairport 2010 network and the web-Google network, respectively.

In figures 6 and 7, we plot the R values for the empirical networks (i.e. the same set that we used
in figure 4, except for the metabolic networks). First, we can see that the networks of some categories
have the R values close to the extreme cases, i.e. 0 or 1. For the airport networks, the R values for the
three networks are almost equal to unity. This result follows logically, because the reciprocity of links,
defined by the double of the number of bidirectionally adjacent node pairs divided by the total number
of links, are large: 0.972, 1 and 0.781 for the openflights, USairport500 and USairport_2010 networks,
respectively (see electronic supplementary material, table S1). Therefore, any triplet of nodes is likely
to constitute a cycle triangle if it composes a flow triangle and vice versa. For the circuit, citation, gene
regulatory, P2P and software networks, the R values are close to zero because these types of networks
have huge gaps between the number of cycle and flow triangles (electronic supplementary material,
tables S1 and S2). The three circuit networks do not contain any flow triangles. For the citation, gene
regulatory, P2P, and software networks, the number of cycle triangles is much smaller than that of
flow triangles.
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Figure 7. Overlap measure R between the cycle and flow trusses for the gene, neural, P2P, software, web and word networks.

The following, neural, web and word networks tend to have R values greater than 0.5, although
fluctuations within a category are large. The food webs tend to have R values less than 0.5. The
results for the metabolic networks are shown in electronic supplementary material, figure S3; 166
out of 172 networks have R values in [0.4,0.6] (the mean R value =+ the standard deviation is equal
to 0.491 + 0.0481). These observations may indicate the usefulness of the R value to characterize the
tendency of module organization for different categories of networks.

4. Discussion

In this paper, we proposed the cycle and flow k-trusses in order to extract two distinct types of cohesive
modules from directed networks. We also developed an efficient algorithm for computing these trusses
and defined the measures used to quantify the module organization in a network based on the truss
properties. Applications of our method to a wide variety of empirical networks illustrated that most
empirical networks contain either type of trusses or both of them. We investigated the extracted trusses
for several networks with the given node labels and found that the trusses seem to capture relevant
subgroups of nodes. We also found that the abundance of (and the overlap between) cycle and flow
trusses helps us to classify empirical networks obtained from different fields. These findings suggest the
importance of exploring different types of modules in directed networks. We believe that our method
will be a useful tool for investigating module structure in directed networks.

It is worth noting several relationships between the cycle and flow trusses and other notions of
directed subgraphs presented in previous studies. Detecting directed triangles that are significantly
over-presented is a key idea of motif analysis [18,19]. The original notion of the motif often focuses on
subgraphs with a small number of nodes (e.g. three or four). Previous studies [27,30-32] considered the
generalization of motifs by aggregating the motifs sharing links so as to construct functional modules
larger than single motifs. In particular, the generalization of the feedforward loop motif (called the
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flow triangle in this paper) described in references [27,30-32] is an example of the flow 1-truss in our
definition. Another related notion is the directed k-clique [33]. A directed k-clique is a subgraph with
k nodes and k(k — 1)/2 links, in which the k nodes have a linear ordering and all nodes have directed
links to all the lower-rank nodes. A directed k-clique module is defined by a union of adjacent directed
k-cliques. Two directed k-cliques are said to be adjacent if the two have k — 1 nodes in common. A
directed k-clique module is a flow (k — 2)-truss (k > 3); however, the converse does not always hold true.
Therefore, the cohesiveness of the flow k-trusses is between those of the generalization of feedforward
loop motif and the directed k-clique modules. To the best of our knowledge, a cycle k-truss does not
exactly correspond to any of the previous notions. Based on the definition, a cycle truss is a strongly
connected component (i.e. any node in the cycle truss is connected to all the other nodes via directed
links).

Recently, a graph-partitioning method based on the so-called motif conductance has been
proposed [34]. This method focuses on a given motif (e.g. the cycle or flow triangle) and splits a network
into two parts so as to minimize the ratio of the number of the motifs crossing the two parts to the
number of the motifs contained by either part (taking the minimum value for the two parts). Repetitive
application of the method is expected to result in a partition of the network in which each part contains
many of the focal motifs. Although the aim of this method is different from our method, it would be
interesting to see the overlap and difference between the results of the two methods. As an example, we
applied the motif conductance method? to the C. elegans neural network (§3.1.1.). The method returned
four non-trivial components for the cycle triangle and two for the flow triangles. The node set of the four
components for the cycle triangle has no intersection with the node set of the cycle 3-truss (figure 2b).
The node set of a component for the flow truss contains the node set of the flow 9-truss (figure 2c).
In this sense, the motif conductance method for the flow triangle and the truss method are consistent
for this example. The cycle 3-truss is not captured by the motif conductance method, maybe because
the method prefers increasing the number of focal motifs inside of the two parts to decreasing the
number of motifs crossing the partition. Further analysis on comparison between the two methods is
future work.

Our definition of trusses in this paper assumes that the focal network is directed and unweighted.
However, the importance of link weight in many systems has been suggested in previous work [35].
This point is a clear limitation of the present method and a suitable generalization for weighted
networks is warranted. Although we determined the existence of truss structures in empirical networks,
the origins and functional roles of these trusses are not yet well understood. Functional roles of the
generalized motifs in biological networks have been investigated [27,30-32]. A similar investigation on
the functionality of trusses would be the next step and require the knowledge of field experts and well-
documented network data with link annotations such as gene ontology databases. Finally, dynamical
models of the growth processes of directed networks that yield truss structures will be potential future
work, providing further understanding of the organization of modules in directed networks.

Data accessibility. The network we used in this study is all publicly available online. Please see the URL references shown
in Results. The codes we used are available at https://github.com/yyoshida/k-truss.

Authors’ contributions. T.T. and Y.Y. conceived and designed the research. Y.Y. performed the coding. T.T. and Y.Y. analysed
the data, discussed the results and wrote the manuscript.

Competing interests. The authors declare no competing financial interests.

Funding. Y.Y. acknowledges the financial support through JST, ERATO, Kawarabayashi Large Graph Project, JSPS
grants in aid for Young Scientists (B) (no. 26730009), and MEXT Grant-in-Aid for Scientific Research on Innovative
Areas (no. 24106003).

Acknowledgements. The authors thank Naoki Masuda for insightful comments.

References

1. Newman MEJ. 2010 Netwaorks: an introduction. Cambridge, UK: Cambridge University 6. Rosvall M, Bergstrom CT. 2008 Maps of random
Oxford, UK: Oxford University Press. Press. walks on complex networks reveal community

2. Costa LF, Rodrigues FA, Travieso G, VillasBoas PR. 4, Porter MA, Onnela J-P, Mucha PJ. 2009 structure. Proc. Nat/ Acad. Sci. USA 105, 1118-1123.
2007 Characterization of complex networks: a Communities in networks. Not. Am. Math. Soc. 56, (doi:10.1073/pnas.0706851105)
survey of measurements. Adv. Phys. 56, 167-242. 1082-1097. 7. Clauset A, Moore C, Newman MEJ. 2008 Hierarchical
(doi:10.1080/00018730601170527) 5. Fortunato S. 2010 Community detection in graphs. structure and the prediction of missing links in

3. BarratA, Barthélemy M, Vespignani A. 2008 Phys. Rep. 486, 75-174. (doi:10.1016/j.physrep. networks. Nature 453, 98—101. (doi:10.1038/nature
Dynamical processes on complex networks. 2009.11.002) 06830)

3Codes were downloaded from http:/ /snap.stanford.edu/higher-order/ (date accessed: 13 October 2016).

022091 s Uado 205y Buo'Buysiqndizaposjeorsos:


https://github.com/yyoshida/k-truss
http://dx.doi.org/doi:10.1080/00018730601170527
http://dx.doi.org/doi:10.1016/j.physrep.2009.11.002
http://dx.doi.org/doi:10.1016/j.physrep.2009.11.002
http://dx.doi.org/doi:10.1073/pnas.0706851105
http://dx.doi.org/doi:10.1038/nature06830
http://dx.doi.org/doi:10.1038/nature06830
http://snap.stanford.edu/higher-order/

Chen J, Yuan B. 2006 Detecting functional modules
in the yeast protein-protein interaction network.
Bioinformatics 22, 2283-2290. (doi:10.1093/bioin
formatics/btl370)

Sohn Y, Choi M-K, Ahn Y-Y, Lee J, Jeong J. 2011
Topological cluster analysis reveals the systemic
organization of the Caenorhabditis elegans
connectome. PLoS Comput. Biol. 7, €1001139.
(doi:10.1371/journal.pcbi.1001139)

. Chung F. 2005 Laplacians and the Cheeger

inequality for directed graphs. Ann. Comb. 9,1-19.
(doi:10.1007/500026-005-0237-2)

Michoel T, Nachtergaele B. 2012 Alignment and
integration of complex networks by
hypergraph-based spectral clustering. Phys. Rev. £
86, 056111. (doi:10.1103/PhysRevE.86.056111)

. Yoshida Y. 2016 Nonlinear Laplacian for digraphs

and its applications to network analysis. In Proc. the
Ninth ACM Int. Conf. on Web Search and Data Mining,
pp. 483—-492. San Francisco, CA, 22-25 February
2016.

. Leicht EA, Newman MEJ. 2008 Community structure

in directed networks. Phys. Rev. Lett. 100, 118703.
(doi:10.1103/PhysRevLett.100.118703)

. Malliaros FD, Vazirgiannis M. 2013 Clustering and

community detection in directed networks: a
survey. Phys. Rep. 533, 95-142. (doi10.1016/j.
physrep.2013.08.002)

. KimY, Son S-W, Jeong H. 2010 Finding communities

in directed networks. Phys. Rev. £ 81, 016103.
(doi:10.1103/PhysRevE.81.016103)

. Broder A, Kumar R, Maghoul F, Raghavan P,

Rajagopalan S, Stata R, Tomkins A, Wiener J. 2000
Graph structure in the web. Comput. Netw. 33,
309-320. (doi:10.1016/51389-1286(00)00083-9)

. Corominas-Murtra B, Gofii J, Solé RV,

Rodriguez-Caso C. 2013 On the origins of hierarchy

20.

2.

2.

2.

24,

25.

26.

in complex networks. Proc. Nat! Acad. Sci. USA 110,
1331613 321. (d0i:10.1073/pnas.1300832110)

. MiloR, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii

D, Alon U. 2002 Network motifs: simple building
blocks of complex networks. Science (New York, NY)
298, 824-827. (doi:10.1126/science.298.5594.

824)

. Alon U. 2007 Network motifs: theory and

experimental approaches. Nat. Rev. Genet. 8,
450-461. (d0i:10.1038/nrg2102)

Cohen J. 2008 Trusses: cohesive subgraphs for social
network analysis. Technical report, National
Security Agency, Fort Meade, MD.

Wang J, Cheng J. 2012 Truss decomposition in
massive networks. Proc. VLDB Endowment 5,
812-823. (doi:10.14778/2311906.2311909)

Varshney LR, Chen BL, Paniagua E, Hall DH,
Chklovskii DB. 2011 Structural properties of the
Caenorhabditis elegans neuronal network. PLoS
Comput. Biol. 7, €1001066. (doi:10.1371/journal.
pchi.1001066)

Kiss GR, Armstrong C, Milroy R, Piper J. 1973 An
associative thesaurus of English and its computer
analysis. In The computer and literary studies (eds AJ
Aitken, RW Bailey, N Hamilton-Smith), pp. 153-165.
Edinburgh, UK: Edinburgh University Press.

Altun ZF, Hall DH. 2016 Nervous system, general
description, In WormAtlas. See http://dx.doi.
org/doi:10.3908/wormatlas.1.18 (date accessed 1
March 2016).

Newman MEJ, Strogatz SH, Watts DJ. 2001 Random
graphs with arbitrary degree distributions and their
applications. Phys. Rev. F 64, 026118. (doi:10.1103/
PhysRevE.64.026118)

Watts DJ, Strogatz SH. 1998 Collective dynamics of
‘small-world" networks. Nature 393, 440-442.
(doi:10.1038/30918)

27.

28.

29.

30.

31

32

3.

34.

35.

Michoel T, Joshi A, Nachtergaele B, VandePeer Y.
2011 Enrichment and aggregation of topological
motifs are independent organizational principles of
integrated interaction networks. Mol. Biosyst. 7,
2769-2778. (doi:10.1039/cImb05241a)

Opsahl T. 2016 Why Anchorage is not (that)
important: binary ties and sample selection. See
http://toreopsahl.com/2011/08/12/why-anchorage-
is-not-that-important-binary-ties-and-sample-
selection/ (accessed: 1 March 2016).

Leskovec J, Lang KJ, Dasgupta A, Mahoney MW.
2009 Community structure in large networks:
natural cluster sizes and the ahsence of large
well-defined clusters. Internet Math. 6, 29-123.
(doi:10.1080/15427951.2009.10129177)

Dobrin R, Beg QK, Barabdsi A-L, Oltvai ZN. 2004
Aggregation of topological motifs in the Escherichia
coli transcriptional regulatory network. BMC
Bioinform. 5,10. (doi:10.1186/1471-2105-5-10)
Kashtan N, Itzkovitz S, Milo R, Alon U. 2004
Topological generalizations of network motifs.
Phys. Rev. £ 70, 031909. (d0i:10.1103/PhysRevE.70.
031909)

Zhang LV et al. 2005 Motifs, themes and thematic
maps of an integrated Saccharomyces cerevisiae
interaction network. J. Biol. 4, 6. (d0i:10.1186/
jbiol23)

Palla G, Farkas IJ, Pollner P, Derényi, Vicsek T. 2007
Directed network modules. New J. Phys. 9,186.
(d0i:10.1088/1367-2630/9/6/186)

Benson AR, Gleich DF, Leskovec J. 2016 Higher-order
organization of complex networks. Science 353,
163-166. (doi:10.1126/science.aad9029)

Barrat A, Barthélemy M, Pastor-Satorras R,
Vespignani A. 2004 The architecture of complex
weighted networks. Proc. Natl Acad. Sci. USA

101, 3747-3752. (d0i:10.1073/pnas.0400087101)

022091 € s Uado 205y Buo'Buiysiqndizaposjeforsos:


http://dx.doi.org/doi:10.1093/bioinformatics/btl370
http://dx.doi.org/doi:10.1093/bioinformatics/btl370
http://dx.doi.org/doi:10.1371/journal.pcbi.1001139
http://dx.doi.org/doi:10.1007/s00026-005-0237-z
http://dx.doi.org/doi:10.1103/PhysRevE.86.056111
http://dx.doi.org/doi:10.1103/PhysRevLett.100.118703
http://dx.doi.org/doi:10.1016/j.physrep.2013.08.002
http://dx.doi.org/doi:10.1016/j.physrep.2013.08.002
http://dx.doi.org/doi:10.1103/PhysRevE.81.016103
http://dx.doi.org/doi:10.1016/S1389-1286(00)00083-9
http://dx.doi.org/doi:10.1073/pnas.1300832110
http://dx.doi.org/doi:10.1126/science.298.5594.824
http://dx.doi.org/doi:10.1126/science.298.5594.824
http://dx.doi.org/doi:10.1038/nrg2102
http://dx.doi.org/doi:10.14778/2311906.2311909
http://dx.doi.org/doi:10.1371/journal.pcbi.1001066
http://dx.doi.org/doi:10.1371/journal.pcbi.1001066
http://dx.doi.org/doi:10.3908/wormatlas.1.18
http://dx.doi.org/doi:10.3908/wormatlas.1.18
http://dx.doi.org/doi:10.1103/PhysRevE.64.026118
http://dx.doi.org/doi:10.1103/PhysRevE.64.026118
http://dx.doi.org/doi:10.1038/30918
http://dx.doi.org/doi:10.1039/c1mb05241a
http://toreopsahl.com/2011/08/12/why-anchorage-is-not-that-important-binary-ties-and-sample-selection/
http://toreopsahl.com/2011/08/12/why-anchorage-is-not-that-important-binary-ties-and-sample-selection/
http://toreopsahl.com/2011/08/12/why-anchorage-is-not-that-important-binary-ties-and-sample-selection/
http://dx.doi.org/doi:10.1080/15427951.2009.10129177
http://dx.doi.org/doi:10.1186/1471-2105-5-10
http://dx.doi.org/doi:10.1103/PhysRevE.70.031909
http://dx.doi.org/doi:10.1103/PhysRevE.70.031909
http://dx.doi.org/doi:10.1186/jbiol23
http://dx.doi.org/doi:10.1186/jbiol23
http://dx.doi.org/doi:10.1088/1367-2630/9/6/186
http://dx.doi.org/doi:10.1126/science.aad9029
http://dx.doi.org/doi:10.1073/pnas.0400087101

	Introduction
	Methods
	Definitions of cycle and flow trusses

	Results
	Trusses in empirical networks
	Classification of networks based on truss number distributions

	Discussion
	References

