DUKE UNIVERSITY

LIBRARY

Digitized by the Internet Archive in 2015

EARLY SCIENCE IN OXFORD

IX

EARLY SCIENCE IN OXFORD

BY
R. T. GUNTHER
VOL. IX
DE CORDE BY RICHARD LOWER
London 1669

WITH INTRODUCTION AND TRANSLATION BY

K. J. FRANKLIN

[^0]PRINTED IN GREAT BRITAIN AT THE UNIVERSITY PRESS, OXFORD
BY JOHN JOHNSON, PRINTER TO THE UNIVERSITY

EDITORIAL NOTE

THE association of Dr. Richard Lower with Robert Hooke, both members of Christ Church in Oxford, and the early recognition of the great merit of his work by the latter genius, has been noticed so recently in the last volumes of Early Science in Oxford, that it is appropriate that the work of Hooke should be followed by that of Lower.

That Lower's epoch-making Treatise on the Heart should be so little known at first hand, even to physiologists, is due to the fact that no English translation has hitherto been printed. All historians of science will now be grateful to Dr. Franklin for having repaired this omission as a labour of love. He has also provided the copy of the London 1669 edition, once in the possession of a Josua Edisbury, from which the facsimile of the text has been made. The plates have been copied and slightly reduced from the copy belonging to the Royal Society of Medicine.

THE OLD ASHMOLEAN, OXFORD.
R. T. GUNTHER. April 1932.
A facsimile edition of
ITEM
De Motu \& Colore
S A N G U I N I S
ET
Chyli in eum Tranfitu

B Y
Richard Lower, M.D. LONDON: MDCLXIX

Prefaced by

ANINTRODUCTIONAND TRANSLATION BY
K. J. FRANKLIN, D.M.
tutorand lecturer in physiology of oriel college, and universtty demonstrator of pharmacology, oxford

то
 E. A. F.

PREFACE

NO apology is really necessary for making Lower's De Corde more accessible by translation, but it will not be out of place if I explain briefly why I acceded to Professor J. F. Fulton's suggestion that I should do so. Medical history is not merely a fascinating hobby for one's leisure hours, or a means of keeping alive the memory of those who have done great things in the past ; it is, also, essentially the right prelude to research in the present, and should accompany any such research. My own chief interest is the venous system and my more general one the circulation, and I think the problems which arise can, and should, be approached from the historical side, as well as through research in embryology, anatomy, physiology, pharmacology, and the like. The older medical books, however, are too rare and too expensive for many of us to have them on our shelves, and the language in which they are written makes them useless to most people. There is, therefore, a need of facsimile editions and translations. I have already made one such of De venarum ostiolis, 1603, of Hieronymus Fabricius of Aquapendente (in press: Charles C. Thomas, Springfield, Ill.), William Harvey's De motu cordis is available, and the next important work on the circulation, which needs similar treatment, is Richard Lower's De Corde, London, 1669. This translation I have therefore undertaken in my
leisure time over a period of several months, and, if the result is not so perfect as I could wish, I trust that its defects will be ascribed, to some extent at least, to pressure of other work.

I have had generous assistance in my task from Professor J. F. Fulton, who lent me all his material and a copy of the rare French translation of De Corde, from Professor G. N. Clark, who supplied me with several new references, from Mr. H. E. Powell, Librarian of the Royal Society of Medicine, from Mr. T. Gambier-Parry and Mr. Strickland Gibson of the Bodleian Library, from Mr. W. J. Bishop, Assistant Librarian of the Royal College of Physicians, Mr. Le Fanu, Librarian of the Royal College of Surgeons of England, the authorities of the National Portrait Gallery, and last, but not by any means least, from the Rev. A. V. Schuster, Rector of St. Tudy, Cornwall, and Mrs. Schuster, and Major-General T. S. Baldock and his sister, the present occupants of Tremeer. I am most grateful to Dr. R. T. Gunther for undertaking the publication of the book, and to the Library Committee of the Royal Society of Medicine for the loan of their copy of De Corde, from which this translation has been made. This copy is unique, as far as my investigations go (see I8), in not having a cancel page (Sig. a 6) in the Preface. The facsimile follows the Royal Society of Medicine copy in respect of this page. The size of the pages in the original is $9 \frac{3}{16}$ inches by $4 \frac{3}{16}$ inches; the margin in the facsimile is of necessity larger.

The frontispiece is the only known portrait of Richard Lower, and is taken from the first edition of

Dr. Lowers, and several other Eminent Physicians Receipts . . ., London, 1700. It seems, from Clark's Life and Times of Ant. Wood, that copies of this book were being distributed in Wood's lifetime, but he died in 1695 and this 1700 edition is the earliest one known. William Huddesford in 1772 (3I, i. 298) noted that 'His name has been impudently affixed to many nostrums sold in the shops. The print of him is suspected to be a counterfeit.' I have discussed elsewhere other statements as to the authenticity of the portrait (I8). It was, however, in the Receipts not long after Lower's death, and is, as stated above, the only one in existence, so it has been reproduced as the frontispiece. Its size in the original is $4 \frac{7}{8}$ inches by $3^{\frac{1}{4}}$ inches. It was copied, but poorly, in the 4 th German edition of the Receipts, Leipzig, I710; whether in other editions or not I cannot say, for this, in the possession of the Royal Society of Medicine, is the only one I have seen.

The signature is reproduced from A Letter of $D r$. Lower, prescribing for a nobleman (6). There is another signature in the Tanner MS. (3), and I have stated elsewhere (18) where additional ones may be found.

De Corde was translated into French, with the omission of the preface ; and the translation was first published at Paris, in 1679, under the title, Tvaité du cour, du mouvement et de la couleur du sang, et du passage du chyle dans le sang. The translation is on the whole a good one, although certain difficulties are evaded. This work is, I believe, even more rare than the original 1669 edition. The Royal College of

Physicians has a manuscript English translation of De Corde, which was made by N. Peters in 1739, and which I have seen but have not used in any way. The translator was very probably Nic. Peters, Surgeon, who lived at Topsham, and published a paper in Phil. Trans., I744, xliii. I5I. The translation is entitled, A treatise of the heart, of ye motion and colour of ye blood, and of ye passage of ye chyle, by Rd. Lower, M.D. 1669. It is in an excellent hand, and has finely drawn copies of the seven plates at the end. Apart from these translations, only one other exists of even part of De Corde, namely, that of the chapter on Transfusion, which was published in the Annals of Medical History, I928, x. 213-25. This contains some errors and omissions.

The rest of this preface will be concerned with biographical and bibliographical notices, then will follow the translation, with marginal numbers corresponding with the pagination of the original text, and finally will come the facsimile and the plates. As the translation will show the pagination of the original, it needs no other numbering, and none such, therefore, has been given to it.

In the biographical notice are included certain details about contemporary events in the lay and in the scientific worlds, and also notes about certain figures, such as Harvey, Thomas Willis, John Mayow, and others, with whom Lower had personal or scientific contact. The material, however, is insufficient to make the narrative run in a connected fashion throughout the account, and I must apologize in advance for its disjointedness. Free quotation has
been made here and there from original sources, partly to add picturesqueness and to make the story more human, partly also to publish material which would not readily be accessible to the ordinary reader.

An evaluation of Lower's work, and of his position as an original contributor to anatomy, physiology, and medicine, is a task which needs much further study, and I have not therefore attempted it here, though I hope it may be possible for me to do so at some future date. ${ }^{1}$
${ }^{1}$ Franklin, K. J., The Work of Richard Lower (163I-I69I), Proc Roy. Soc. Med., I931, xxv, 113-118.

TREMEER, THE BIRTHPLACE OF RICHARD LOWER, AS IT IS TO-DAY
Photographed by Mrs. A. V. Schuster, with the kind permission of the present tenants

ST. TUDY CHURCH, CORNWALL, IN WHICH LOWER WAS BAPTIZED AND BURIED

bIOGRAPHICAL NOTICE

RICHARD LOWER was born of a very good family at Tremeer, near Bodmin, in Cornwall in I63I. Tremeer apparently came to the Lower family as the marriage portion of Mary Nicholls, Richard's grandmother, to whom was related Anthony Nicholls (I6II1659), a member of the Long Parliament. Mary Nicholls married Edward Lower, who was really of St. Winnow's Parish. Their son, Humphry, inherited Tremeer, and married Margery, née Billing of Hengar (the biggest house in the district), and widow of Samuel Trelawney. Margery Lower died on 27 August 1686, and there are monuments both to her and to Anthony Nicholls in St. Tudy Church. Humphry and Margery had three sons, Edward, who inherited Tremeer and bequeathed it to his daughter, Richard, and Thomas. Edward was buried at St. Tudy on I3 February 1690/I, ten days after Richard. Thomas became a physician in London, and later was imprisoned with George Fox in Worcester Gaol on account of his Quaker beliefs. Tremeer was also the birthplace of Sir William Lower, the dramatic writer, who was a kinsman of Richard Lower.

Richard was baptized at St. Tudy on 29 January 163I/2. In 1636 Thomas Willis, whose assistant he afterwards became and with whose fortunes he was to be so intimately associated, was entered at Christ

Church, being then fifteen years of age. Three years later Willis proceeded B.A. About 1640 Francis Potter (I, iii. 1156) entertained the notion of curing diseases by transfusion of blood out of one man into another, thereby anticipating Lower, as he himself was, apparently, anticipated by Libavius. In 1642 Willis became M.A. and about that time bore arms for the King. He then devoted himself to the study of medicine (23). In May 1643 John Mayow was born in the parish of St. Dunstan-in-the-West. In 1645 Thomas Millington, to whom Lower dedicated his De Corde in 1669, was elected to Trinity College, Cambridge, from Westminster, where Lower also received his early education. In this same year William Harvey was, by the King's mandate, elected Warden of Merton College, but he left the University, in July 1646, on the surrender of Oxford to the Parliament, and returned to London. On 8 December 1646 Willis became B.M., and 'entering on the practice of his profession, he regularly attended the weekly market at Abingdon; he took a house opposite Merton College, and at once appropriated one of the rooms to the performance of divine service.' In January 1649 Charles I was tried and executed. This same year Lower was admitted a student of Christ Church from Westminster (1 , opp. iv. 297), and he matriculated on 27 February 1650/I. On 17 February two years later he became B.A., and in June 1655 M.A. In 1656 Christopher Wren, assisted by Boyle and Wilkins, made the first successful intravenous injections, of opium and other drugs, into dogs. In 1657 Millington took his M.A. degree at Cambridge
and removed to Oxford. William Harvey died on 3 June of this year. In 1658 John Mayow entered as commoner at Wadham College, being then fifteen years of age, and the next year was admitted Scholar. In I659, also, Millington became M.D. and Fellow of All Souls, Willis published his Diatribae duae Medicophilosophicae, quarum . . . agit . . . altera de Febribus, \&c., and Peter Sthael was brought to Oxford by Robert Boyle to give public teaching in chemistry, 'and by him settled in the same house wherein he lived, viz. in that house (owned then by an apothecary) next on the west side of University Coll. somtimes knowne by the name of Deep hall' (3I, i. 290). Peter Sthael's later pupils included Christopher Wren and Lower. The next year saw the end of the Long Parliament and of the Commonwealth, and the return of Charles II as King; shortly after the Restoration, Willis was appointed Sedleian Professor of Natural Philosophy in place of Dr. Joshua Cross, and on 30 October was created Doctor of Medicine. John Mayow was elected a Fellow of All Souls in this, his second, year at Oxford, at the age of 17 ; he studied law and incidentally medicine. September 166I shows the first of a series of entries in Wood's Life and Times, which give a picture of the friendship between Lower and Wood, whose physician Lower was for some years. Sir William Lower died at the beginning of 1662 and by his will, proved on 7 May, 'defeated his kindred of Tremere of his estate', which caused Richard Lower to describe him to Wood as 'an ill poet and a worse man'. In the same year Charles II bestowed the charter on the Royal Society, and Boyle enunciated
his＇Law＇in a separate tract，appended to the second edition of The Spring and Weight of the Air $(19,6)$ ． Peter Sthael had moved from Deep Hall to the house of Tylliard，an apothecary，when his class increased， and stayed there until the end of 1662 ，but early next year＇removed his school or elaboratory to a draper＇s house called John Bowell，afterwards mayor of the Citie of Oxon，situat and being in the parish of Allsaints，commonly called Allhallowes．He built his elaboratory in an old hall or refectory in the backside （for the house it self had been an antient hostle）， wherein A．W．and his fellowes were instructed＇， Lower being of their number．＇In the yeare following Mr．Sthael was called away to London and became operator to the Royal Society．＇In January 1663／4， Lower told Wood，＇as he was a cutting up a calf＇s head on a Sunday morning，about 8 of the clock in his study，his dore stood so much open as that he might thrust his fist throug：and hearing a russelling in his chamber，looked through that open space of his doore and saw the appearance of a beautifull yong man with long flaxen haire to his middle and a silke studying gowne on：and going to his study doore and oping it aske〈d〉＂Who is there，Sir John ？＂（meaning Sir John Hales who was his opposite neighbour）：and going out into his chamber and seeing noe body， looked in his other study and none there neither． Then he went to his chamber doore，and that was shut and lached and could not be opened and shut without noise．And opeing the doore Sir J $\langle o h n\rangle \mathrm{H}\langle$ ales \rangle came out of his owne，who 〈i．e．R．L．〉 asked him whether he was in his chamber who 〈i．e．J．H．〉 answ〈er〉ed
faithfully that he was not. Wherupon he took this to be an appearance.'
'This put mee in mind of Mr. J. C., ${ }^{\text {I }}$ who when he lay awake in his chamber at $\mathrm{L}\langle$ incoln〉 $\mathrm{C}\langle$ ollege〉 and his violl standing in a corner, something played over his strings, etc.'

In April 1664 Lower, while travelling with Dr. Willis to visit patients, made a discovery of the medicinal water at East Throp, commonly called Astrop, near Kings Sutton in Northamptonshire, 'the doctor being then, as usually, asleep or in a sleepy condition on horseback. Afterwards, our author Lower imparting his discovery to the doctor, they in their return, or when they went that way again, made experiments of it, and thereupon understanding the virtue thereof, the doctor commended the drinking of it to his patients. Soon after the water was contracted into a well, and upon the said commendations, 'twas yearly, as to this time it is, frequented by all sorts of people.' This discovery may have suggested the analogy on pp. 71-2 of De Corde. 1664 is the date of publication of Dr. Willis's Cerebri Anatome Nervorumque descriptio et usus, and in the preface the author makes handsome acknowledgement of Lower's contribution to the work. From other sources also we learn how much it owed to Lower's anatomical skill. Wood, for instance, says that Lower practised 'under Dr. Tho. Willis, whom he helped, or rather instructed in some parts of Anatomy, especially when he was meditating his book De cerebro'; while Henry Stubbe, an old schoolfellow of Lower, wrote 'I think my self

[^1]obliged to add one thing more where I speak as if Dr. Willis had had little to do in the discoveries of Dr. Lower about Anatomy: that although that great Physician had not leisure to attend the Anatomical Inquiries, yet did he propose new matter for improving the discoveries, and put Dr. Lower upon continual investigation, thereby to see if Nature and his Suppositions did accord: and although that many things did occur beyond his apprehension, yet was the grand occasion of that work, and in much the Author' (28,178). In this year, too, Clarke and Henshaw, on pigeons, and Lower, on dogs, made preliminary experiments on transfusion from vein to vein, J. D. Major made the first successful intravenous injections in man (16,3), Mayow became B.C.L., and Dr. Willis, in December, Hon. Fellow of the College of Physicians. In 1665, the year of the Great Plague, ${ }^{\text {I }}$ Lower published his Diatribae T. Willisii de Febribus Vindicatio and crossed swords for the first time with the Irish doctor, O'Meara. On June 6 there was a chancellor's letter to accumulate-he 'being very well qualified for it, having given extraordinary testimony of his ability in that faculty', and on 28 June he became B. and D. Med. In Wood's Life and Times there are the following entries, 'July I8, T., Dr. Lower and I was at Gasington at . . ', 'Aug. 8, T., I was at Gasington to speake with Mrs. H. in relation to Dr. Lower his buisness, but she denied her selfe.', '29, T., at the Castle when we parted with Dr. Lower.' What the business was, I do not know, but it is referred to again

[^2]in letters from Lower to Wood and from Wood to Lower in the next year (3). In 1666, towards the end of February, Lower transfused dogs at Oxford ($D e$ Corde, 174), and Boyle wrote to him on June 26, asking him to communicate details to the Royal Society. This Lower did on July 6 (De Corde, 177, 180), and the account was published by the Society in their Philosophical Transactions in December I666 (De Corde, 176). In the earlier part of this year Dr. Willis, on the invitation of Dr. Sheldon, Archbishop of Canterbury, removed to London, and took up his abode in St. Martin's Lane. The reputation he had acquired at Oxford preceded him to town, and at once introduced him to an extensive and lucrative practice: 'in a very short time', says Wood, 'he became so noted and so infinitely resorted to for his practice, that never any physician before went before him, or got more money yearly than he.' Lower followed him later in the year, and settled at first in Hatton Garden. In September ${ }^{1}$ he was at Tremeer, as is shown by his letter to Antony Wood (3):-
$$
4 \text { Sept. } 66 .
$$

Deare freind

I have rec ${ }^{\text {d }}$ but one lre. from you since I came away \& yt was concerning Mr. H. but take no more notice of it, for I never intend to trouble my selfe any more in such matters: I hope to see you ag^{n} at Michaelmas or thereabout, in ye meane time remember mee to Honest J. C. etc. \& if you have any newes worth yr sending twill bee very welcome, but nothing more then to heare yt you are well: I am sorrie J. C. is leaving Oxford, but if hee intend noe

[^3]farther then London this winter, I hope I may have an opportunity to take my lea[ve] before hee travell

I am yr most
> Affectionate fr^{d} \& serv ${ }^{\mathrm{t}}$
> R. Lower

[Tre]meere in [Co]rnewall.

Wood replied (ibid):-

D^{r}
I have recd yrs dated 4 sept. for $\mathrm{w}^{\text {ch }}$ many thanks. I had sent oftner to y^{o} but y^{e} told me in y^{r} former letter y^{e} should be with us about y^{e} latter end or middle of aug: w^{ch} stayed my hand, I am very glad of y^{r} resolution against those matters y^{0} spoke off, I hope y^{0} will continue in it \& not play y^{e} foole any further in them to y^{r} loss of money \& time. I suppose by this time y^{0} have had soe great experience in them $y^{t} I$ need not tell or advise y^{0} against them any further. Wee all here upon watch \& wa ${ }^{\text {rd }}$ day \& night expecting y^{e} same doome $\mathrm{y}^{\mathrm{t}} \mathrm{y}^{\mathrm{e}}$ Londoners have lately recd. \& none can passe unless they bring sufficient testimonyes from whence they come; severall people have bin taken upon suspicion y^{t} come from London, \& others againe y^{t} set houses on fire at Wolvercot, \& Brightwell by Wallington, y ${ }^{e}$ plot as is generally reported was layd $\&$ acted by 8 papists french but how true I know not, time will discover all. by michaelmas, y^{e} time w^{n} you say youl come to us, y^{o} will find the scollers much changed in their habits for wee having a new vicecanc. (viz. Dr. Fell) all old laws $\&$ statutes are $\&$ will be revived $\&$ put in force nothing I have else to writ but
yrs now \& ever
A. W.
if we could know y^{e} day of y^{r} coming to us
wee would take a walk \& meet y^{0}.
Sept. I5. 66.
On 17 November 1666, Lower married Elizabeth, daughter of John Billing of Hengar, and widow of John Trelawney of Coldrinnick. By this marriage Hengar, parcel of the manor of Penrose-Burdon, ap-
parently came into the Lower family. After Lower's death it passed to his eldest daughter, Loveday [?], who married, first the elder son of Sir William Morice, secretary of state, and secondly Major-General Trelawney. Hengar afterwards passed to Lower's second daughter, Philippe [?], who also married twice, and also had as second husband a Major-General, named Wheeler. Hengar was in Lyson's time the occasional residence of Philippe's daughter-in-law by her first marriage.

On 15 June 1667, Jean Denis made the first successful transfusion into man at Paris; on I7 October Lower was elected Fellow of the Royal Society; and on 23 November he and Edmond King, before that Society, made the first successful human transfusion in England. Arthur Coga, variously described as a 'harmless lunatic' and an 'eccentric scholar', was the subject, and was given nine or ten ounces of blood from the artery of a sheep. 'The man, after the operation, as well as in it,' is said to have 'found himself very well', but Stubbe $(28,179)$ has the following rather contradictory statement from the patient:-

To the Royal Society the Virtuosi, and all the Honourable Members of $i t$, the Humble Address of Agnus Coga.

Your Creature (for he was his own man till your Experiment transform'd him into another species) amongst those many alterations he finds in his condition, which he thinks himself oblig'd to represent them, finds a decay in his purse as well as his body, and to recruit his spirits is forc'd to forfeit his nerves, for so is money as well in peace as warre. 'Tis very miserable, that
the want of natural heat should rob him of his artificial too: But such is his case ; to repair his own ruines, (yours, because made by you) he pawns his cloaths, and dearly purchases your sheeps blood with the loss of his own wooll. In this sheep-wrack't vessel of his, like that of Argos, he addresses himself to you for the Golden Fleece. For he thinks it requisite to your Honours, as perfect Metaplasts, to transform him without as well as within. If you oblige him in this, he hath more blood still at your service, provided it may be his own, that it may be the nobler sacrifice.

> The meanest of your Flock, Agnus Coga.

Mayow's Tractatus de Respiratione appeared in I668, and possibly also Lower's De Corde (3I), despite the date 1669 on the title-page. In I67o Mayow became D.C.L., and was also allowed to practise physic, though he had not the medical degree of the University $(20,8)$; in his Tractatus Quinque of 1674 he is described as Ll.D. and Medicus. Sthael returned to Oxford for a year in 1670 and then went back to the Royal Society. On 22 December 167I, Lower was a candidate of the Royal College of Physicians. In I672 he published Dissertatio de Origine Catarrhi et de $V e n a e s e c t i o n e ~ a s ~ a ~ s e p a r a t e ~ w o r k ; ~ i t ~ h a d ~ b e e n ~ a t t a c h e d ~$ to the 3rd edition of $D e$ Corde, Amst., I671. In this year Thomas Willis also published De Animâ Brutorum . . . Exercitationes duae . . . In 1673 Lower's younger brother, Thomas, was arrested with George Fox, the Quaker, at Armscott, Worcestershire, and was carried to Worcester Gaol, where he remained for more than a year. Through Lower's interest, a letter was obtained which would have secured his brother's release, but, as it did not mention Fox, both of the prisoners continued in restraint. In 1675

Mayow left Oxford for Bath, Sthael died [?], and Lower, on 29 July, became Fellow of the Royal College of Physicians. On the II November Dr. Willis died at his house in St. Martin's Lane, and was later buried in Westminster Abbey. Lower, who had lived successively in Hatton Garden, Salisbury Court near Fleet Street, and Bow Street, now moved to his final London residence in King Street, near Covent Garden; 'where being much resorted to for his successful practice, especially after the death of Dr. Willis . . . he was esteemed the most noted physician in Westminster and London, and no man's name was more cried up at court than his' (x, iv. 297). Dr. Tenison, ${ }^{\text {I }}$ Archbishop of Canterbury, was often heard by Wood to say 'that Dr. Lower was his special friend, and had the protestant interest very much at heart, and was for that reason a great lover of news and used to show that humour in every visit he made. He went very often to Nell Gwynne, ${ }^{2}$ and would pick out of her all the intrigues of the court of King Charles II. He was heartily against a popish successor, and against the proceedings of the court of King James II, that the King himself was used often to complain of him and say, he did him more mischief than a troop of horse' (x, iv. 299). But this is anticipating. On the outbreak of the Titus Oates plot in 1678 ' (about which time he left the royal society, and thereupon their experiments did in some manner decay)', Lower 'closed

[^4]with the Whiggs, supposing that party would carry all before them: But being mistaken, he lost thereby much of his practice at and near the court, and so consequently his credit. At that time a certain physician named Tho. Short a R.C. struck in, and carried all before him there, and got riches as he pleased ; but he dying in the latter end of Sept. 1685, most of his practice devolved on Dr. Joh. Radcliffe' (1653-1714). Mayow was elected a Fellow of the Royal Society on 30 November 1678, but died the next year, when still a young man, 'in an apothecaries house bearing the sign of the Anker in York Street, Covent Garden, London, having a little before been married not altogether to his content.' In 168x Lower discredited Dugdale by his evidence at College's trial $(9$ and 20$)$: he is described $(9,297)$ as being 'then the most celebrated physician in London'. In 1683 took place the opening of the Ashmolean Museum at Oxford, perhaps the oldest museum in Europe; and Lower's father died in this year. Charles II died in 1685, and Evelyn wrote ten years later, 'Had much discourse' with Lord Normanby 'concerning Charles the Second being poisoned. Also concerning the Quinquina, which the physicians would not give the King at the time when, in a dangerous ague, it was the only thing that could cure him (out of envy because it had been brought into Vogue by Mr. Tudor, an apothecary) . . . Being asked why they would not prescribe it Dr. Lower said it would spoil their practice or some such expression.' On the accession of James II Lower was deprived of his court appointment, and fell into disrepute (20).

References to Lower about 1687, and in 1688, occur in 25 , i. 26 , and in $26,33-5$. In the latter year occurred the Glorious Protestant Revolution, William of Orange landed at Torbay on 5 November, and James II fled. In 1689 followed the Declaration of Rights, and the accession of William III and Mary as joint sovereigns.

Lower died at five o'clock on the morning of Saturday, 17 January I690/I (26, 97), in his house in King Street (x, iv. 298). A few days before, 'his chamber chimnie beinge on fier he got out of his bed, called for water, and a sheete to clap [on] the chimnie, and stayed so long about it that he caught cold, which put him into a feauour' $(4,364)$. On the 15 th he was at the point of death, and his physicians had given him over (3I, iii. 35I). Wood D. 26, no. I4, is a leaf, 'Gualteri Charleton Scripta jam in lucem emissa'. It has this note (?by Aubrey), 'Jan. I5', corrected by Wood to 17, 'Dr. Lower died in Convent Garden, the bell now rings out for him. Dr. Charlton remembers him to you and tore this for you out of his book of anatomical lectures' (ibid.). Wood refers to him as 'the learned doctor', and 'the famous Dr.', and Luttrell as 'the famous physician'. His body was conveyed to St. Tudy (where some years before he had purchased an estate), and was buried in a vault under part of the south side of the church there (I, iv. 298). An entry, very faint, in St. Tudy's parish register reads, 'Dr. Richard Lower was buried 3 of Feb. I6go. No affidavit brought.' By his will Lower 'gave (as it was then said) roool. to S. Bartholomew's hospital in London, 500l. to the

French protestant refugees, 500l. to the Irish protestant refugees, $50 l$. to the poor of the parish of S. Paul in Cov. Garden, 4ol. to the poor of two parishes in Cornwall where he had land etc.' (x, iv. 298-9). There are in existence two epitaphs on Lower, but they give very conflictng views. The first (2) reads:-

An
ELEGY
on THE

Death of that Learned and Famous PHYSICIAN Dr. RICHARD LOWER
Unhappy Age! That must at last resign
A Soul so great, and so Adorn'd as thine:
Adorn'd with all that former Times could shew;
All that the Ancients taught, or Moderns knew.
When the learn'd WILLIS dy'd, he did impart
His utmost Skill to thy capacious Heart.
Full well he knew, there was no other Shrine
So fit to keep his Treasure in, as thine.
So the Old Seer did to his Son dispense,
A double Portion of Prophetick Sense,
When in his fiery Chair he mounted hence. $\}$
WILLIS Expiring, joy'd in Thee, to find
He'd such a Legacy for Human kind.
A Legacy more valuable far,
Than both the Indies and their Riches are.
They cannot to our Days one Minute give;
But thousands by thy powerful Art still live.
And live thou wilt in them, till Time shall be
Quite swallow'd up in vast Eternity.
How many Millions did thy Art restore?
Just to the Rich, and Tender to the Poor:
In Consults serious, in Debating sound;
Free in Advice, in Judgment most profound.
Thy Friendship Courted equal with thy Art,
Unenvy'd Greatness, and diffusive Heart;

None ever did with more Success embrace
The Peoples Wishes, and the Prince's Grace.
Oh had kind Heaven, e'er thou from hence wer't hurl'd,
Been pleas'd to lend Thee longer to the World!
What lasting Monuments had'st thou design'd,
Both to relieve and to support Mankind,
When our wise King thy Worth and Parts had try'd,
And found Thee fit for Armies to provide?
Then gave Thee leave his Bounties to dispense,
Best for thy Countries Honour, and thy Prince.
And Reader, now would'st thou his Equal know,
Go follow him, for there's none left below;
Go, follow to that Blessed Place Above, Where all your Admiration will be LOVE.
LONDON ; Printed for E. REYNER. I6gi.

The second (7) is briefer:-

upon Dr. Lowers death being A man of a morose disposition. By Dr. Baynard:

Had not good nature o're ye ill prevail'd Death in attempting Dr. Lower had fail'd who might have lived with us many a yeare prepared (in his owne pickle) vinigar.
But when ye Alkali had kill'd ye soure His blood being sweetened off went dr. Lower.

BIBLIOGRAPHICAL NOTICE

Lower wrote:-

I. Diatribae Thomae Willisii, M.D. et Prof. Oxon. De Febribus Vindicatio, adversus Edm. de Meara Ormondiensem Hibern. M.D., Lond., 1665.

Another edition was published at Amsterdam in 1666.
2. Tractatus de Corde. Item de Motu et Colore Sanguinis et Chyli in eum Transitu, Lond., 1669. ${ }^{\text { }}$
An Elzevir edition was published at Amsterdam in 1669. ${ }^{2}$ Editio tertia, cui accessit dissertatio de origine catarrhi, Amst., 167I.
[The 'dissertatio' was published separately in 1672.]
Editio quarta . . . aucta, etc. Lond., I68o.
Editio quinta . . . auctior . . . \bar{c} figuris aeneis, Lugd. Bat., I708. Editio sexta, I728?
3. An Appendix of The Heart, and its Use: With the Circulation of the Blood, and the Parts of which the Sanguinary Mass is made, \&c., published posthumously in John Browne's Myographia Nova, I697.
The following should also be referred to:-
4. Fabricius (W.) von Hilden. Cista . . militaris . . . Also, a description of Dr. Lower's Lancet for the more safe bleeding, \&c., I674.
${ }^{1}$ The Royal Society of Medicine copy has the following inscription:
Hic liber est meus
Testis est Deus
Si quis me quaerit
Hic nomen erit
W^{m} Stevens.
The British Museum copy has Walter Charleton's autograph, and his dating, 1668.
${ }^{2}$ A copy in the possession of Dr. R. T. Gunther is inscribed Mic. Theobald, 1669.

xxxii

BIBLIOGRAPHICAL NOTICE

5. Dr. Lowers, and several other Eminent Physicians Receipts: containing the Best and Safest Method for Curing most Diseases in Humane Bodies. Veryuseful for all sorts of People, especially those who live remote from Physicians. ed. by J. W., Lond., I700.
2nd edition, Lond., I70I.
3rd edition, Lond., 1704. 4th edition, Lond., 1716 .
6. Haber $=$ Beschreibung zu allerhand Kranckheiten Gebrechen und Schwachkeiten des menschlichen Leibes als ein UniversalMedicin dienlich, in 4th edition of the German translation of the Receipts, Leipzig, I7Io.

REFERENCES

I. Bodleian Library. Athenae Oxonienses, 3rd ed., annotated by Philip Bliss, iii. 545, I05I, II56, iv. 297.
2. Bodleian Library. Godw. Pamph. 2226. An Elegy on the Death of that Learned and Famous Physician Dr. Richard Lower. Lond., 1691, fol.
3. Bodleian Library. Tanner MS. xlv. f. Io3. Letter of R. Lower to A.W. 4 Sept., I666. Letter of A. W. to R. Lower. I5 Sept., I666.
4. Bramston. Autobiography of Sir John Bramston, K.B. (Printed for the Camden Society), 1845, 335, 364, 38I, 401, 412.
5. British Museum. Lower's De Corde, Lond., I669, annotated by Dr. Walter Charleton (1619-1707), and dated by him 1668.
6. British Museum. Add. MS. 15858, f. 62. A Letter of Dr. Lower, prescribing for a nobleman. Probable date between 1675 and I69I. ${ }^{\text {I }}$
7. British Museum. Sloane MS. I73I A, f. I5I. Verses to William III by 'Dr. Lower'. Writing is of latter part of 17 th century. ${ }^{\text { }}$
8. British Museum. Stowe MS. 305, f. 216. Epitaph on Richard Lower. The hand is early I8th century and, a considerable number of poems in the same script being dated 1703, that or not long after may be the date. ${ }^{\text {r }}$
9. Burnet's History of my own Time, ed. by O. Airy, Oxf., I900, ii. 295-7.
io. Dict. Nat. Biog. Article, Walter Charleton (1619-1707).
II. Ibid. Article, Edmund Meara or O'Meara (-1680).

I2. Ibid. Article, Sir Thomas Millington (1628-I704).
${ }^{1}$ Robin Flower, Dept. of Manuscripts, British Museum, is my authority.

REFERENCES

13. Ibid. Article, Richard Lower (1631-I691).
14. Ibid. Article, Thomas Lower (1633-1720).
15. Ibid. Article, Sir William Lower (1600?-1662).
16. Doan, Charles A. Physiological Reviews, 1927, vii. I-84. Contains the history of transfusion, to which add note on Potter in (I, iii. II56).
17. Foster, J. Alumni Oxonienses, I500-1714, 1891, 943 a.
18. Franklin, K. J. Some notes on Richard Lower (163I-1691), and on his De Corde, London, 1669. Ann. Med. Hist., 193I, n.s. iii. 599-602.
19. Fulton, J. F. Selected Readings in the History of Physiology, 1930, 6.
20. Gotch, F. Two Oxford Physiologists. Richard Lower I63I to 1691. John Mayow i643 to 1679. Clarendon Press, 1908.
21. Leathes, J. B. The Birth of Chemical Biology, Harveian Oration, 1930.
22. Luttrell, N. A Brief Historical Relation of State Affairs from September 1678 to April I7I4, i. 136-7, ii. 160-I.
23. Munk, W. The Roll of the Royal College of Physicians of London, vol. i, 1878, 338-42, 379-82, \&c.
24. Ordnance Survey Office, Southampton. Map of xvii Century England.
25. The Petty Papers, ed. by the Marquess of Lansdowne, 1927, i. 26, ii. 155.
26. The Portledge Papers, being extracts from the letters of Richard Lapthorne, Gent., of Hatton Garden, London, to Richard Coffin Esq. of Portledge, Bideford, Devon from December Ioth 1687-August 7th 1697, ed. by R. J. Kerr and I. C. Duncan, 1928, 33-35, 97.
27. MS. Letters from the Rev. A. V. Schuster, Rector of St. Tudy, Cornwall, to Drs. J. F. Fulton and K. J. Franklin. ${ }^{\text {I }}$

I I have sent a duplicate of the relevant portions to Mr. Strickland Gibson, for inclusion in Bliss's annotated copy of Athenae Oxonienses in the Bodleian Library.
28. Stubbe, H. Legends no histories . . . together with the 'Plus Ultra' of Mr. Jos. Glanvill reduced to a non-plus, \&c. Lond., 1670.
29. Uffenbach. Oxford in 17IO, from the Travels of Zacharias Conrad von Uffenbach, ed. by W. H. Quarrell and W. J. C. Quarrell, Oxf., 1928, 19-24, \&c.
30. Walmsley, T. Quain's Elements of Anatomy, Irth ed., vol. iv, Pt. III, 1929. The Heart, passim.
31. Wood's Life and Times, ed. by A. Clark (Oxf. Hist. Soc. XIX), i. $290,410,428,472,473$, ii. $2,4,5,12,13,30,42,43,44$, 172, iii. 351, \&c.
32. D'Arcy Power. Trans. Med. Soc. Lond., xl. I5, I6, I8; xliii. 273, 276, 277.
33. Thayer, W. S. Osler, and other Papers, 1932, I59.
34. Aubrey's Brief Lives, ii. 166.
35. North, R. The Lives of the Norths (Bohn's Standard Library), ii. 329, 331, 336.
36. Memoirs of the Verney Family during the Seventeenth Century, 2nd ed., 1904, ii. 446.

A TREATISE ON

THE

HEART
 ON THE

Movement \& Colour OF

THEBLOOD

AND ON THE
Passage of the Chyle into the Blood

$$
\stackrel{\text { BY }}{\text { Richard Lower, M.D. }}
$$

$$
L O N D O N
$$

Printed by 70 bn Redmayne for Fames Allestry at the Sign of the Rose and Crown in the Street commonly called Duck-lane. MDCLXIX

To the most distinguished

Thomas Millington $\mathfrak{M} . D$.

Ome will be surprised-you yourself perhaps among them, honoured Sir-that I am making a further contribution to the literature on the heart and on the blood, after the apparently exhaustive treatises so many famous men have already produced on this subject. Harvey, for [ii] instance, in so far as it concerned his magnificent discovery of the circulation, described the structure of the heart and the movement of the blood in a way that left practically nothing to be added or desired by his successors. But, just as in the Ptolemaic hypothesis of the heavens smaller epicycles are allotted to the planets when the enormous revolutions of the worlds have been dealt with, and these epicycles are indispensable for the explanation of observed facts, so in the system of the human body, as also in that of other [iii] animals, there are points not mentioned in Harvey's circulation which need consideration. These points are, I grant you, of minor importance, but they do definitely help in the rational study of a number of symptoms. Harvey himself, indeed, seems to promise further contributions, had age and time allowed, where in his Book on the Circulation of the Blood, Chapter 9, he says:-'But how much is

[DEDICATION]

expelled in each by the separate beats, when more and when less, and why, I shall perhaps reveal later in more detail as a result of many observations.' Most [iv] unfortunately, however, he did not fulfil his promise and we were disappointed in our hope. So, as no one has yet undertaken to supplement his work, either by a complete account of the structure and movement of the heart itself, or by an accurate estimation of the velocity and quantity of the circulating blood, or by a clear picture of the difference in colour [v] of venous and arterial blood-has not, at all events, satisfactorily explained them-I have myself tried to fulfil the promises of that excellent man, and to bring them nearer to completion than they have hitherto been. I have attempted to descend into the very depths of the heart, to examine and reveal the fount of life itself. In doing this, I have not hoped or planned to give a complete account of the heart, nor an exposition of all its various states and conditions. Rather I have attempted a somewhat fuller and wider consideration and explanation of the abovementioned structure and movement of the heart: I have similarly treated its various anomalies, and [vi] their causes and symptoms, so far as I have been able to follow them by observation, and so far as such seemed to make for advance in medicine. If, however, this account is in any way imperfect, or gives too meagre a description, in view of the functional importance of the organ, I shall perhaps later produce a fuller account, when I have collected more observations on this subject.

Meanwhile, it is a shame and a disgrace that, while

[DEDICATION]

some in this age of ours engage in work so beneficial to mankind and so likely to produce a healthier [vii] knowledge of Nature, others are not lacking, whose ill-will towards all, or envy of particular persons, is such that they place every obstacle they can in the way of so worthy a project, although for ignorance they cannot do more. Among these an Irishman, Meara, takes first prize for sheer per[viii] versity and stupidity. Himself unskilled, he is pained that others know anything, as is clearly seen in his writings, lately published under the pseudonym of Conlo Cassinius. But I pass over these personal passages because, if I had to contend with him in this matter, I should not have to go into the ring so much as into the cess-pit, and a victory in those regions would not compensate me for the filth I picked up in gaining it. On the other hand, the erroneous views [ix] he holds, especially about the function of the heart, the movement of the blood, the nature of the chyle and its passage into the blood (on these subjects he has written with so little skill that he might have been deep in sleep for the last forty years, and still be imperfectly aroused from it), should not, in the interest of others, be passed over in like silence. I have therefore written four consecutive chapters in this Treatise on these matters. All these I have written clearly, less with the idea of further exposing his ignorance-obvious, indeed, long before this[x] than with that of promoting general scholarship and profit.

While engaged on these matters, I have interspersed here and there not a few original observations

[DEDICATION]

on the Structure of Muscles, which I have found far different from what has hitherto been accepted; on the outflow of Serum from the brain, now discovered for the first time; on the Colour of arterial blood, and on various symptoms. Finally, I have added a whole chapter on Transfusion for two reasons: first, that the [xi] subject is a kindred one, and, secondly, so that the credit for the discovery of this celebrated experiment may be given to the Author, to whom it is rightly due.

Your generous nature will, I hope, excuse anything in these chapters which fails to pass the test of your critical judgement, and you will not, I trust, disdain to accept this token and testimony of my feeling towards you-a testimony whose lasting powers among others I cannot forecast, but one which I surely owe you.

Yours most affectionately,
Richard Lower.

The Anatomy of the Heart

CHAPTER I

The Position ©o Structure of the Heart

T is of very great importance for a true knowledge of the nature and qualities of the blood to have investigated not only its circular movement, but also to know and to compare its movements, its amounts, its elements, its various changes and their causes, as well as to estimate the quantity of the same fluid thrown out [p. 2] in individual beats. I have, therefore, thought it worth while to give a clear and concise account of the whole matter (which has been omitted hitherto by most authors, and desired, rather than explained, by others, including even Harvey himself), so far as I shall be able to achieve this object by conjecture and by experiment.

But as the movement of the Blood depends on the movement of the Heart, and in the absence of the latter can neither be understood nor exist, I must preface my account of it by some remarks on the Position and Structure of the heart. When these have been duly considered and collated, it will be easier to grasp how carefully both its Fabric and Position are adapted for movement, and how fittingly everything is arranged for the distribution of the blood to the organs of the body as a whole.

Thus in Man, and in almost all Carnivorous animals, the

THE POSITION AND

seat of the heart has been placed, not in the centre of the body, but in its upper part, so that it might thereby more easily send the necessary share of blood up to the head. For the output and distribution of blood is entirely dependent on [p. 3] the systole of the heart, and the fluid is by its nature not so readily propelled to parts above as to vessels on the same level, or downwards to vessels below; hence it would either be necessary, were the Position of the heart farther from the head, for that organ itself to be more strongly built to give a more powerful drive to the expelled blood, or else the head would often become unsteady through lack of blood. In those animals, however, which have a rather long neck, the better to equip them in their search for food, the position of the Heart is equidistant from the head and other parts; and this causes them no inconvenience, because they seek their food for the most part with their head hanging down, and to that extent the blood, while it has farther to go than in other animals to get to the head, yet travels thither along a more horizontal course, and more often, indeed, than not, along a downward one.

The part next the heart (about which I must preface a few remarks) is its membranous capsule, called the Pericardium, because it completely envelops the Heart itself (as the shell of a nut does the kernel). It is a strong and robust Membrane common and continuous everywhere with the Pleura, except where it is pierced by vessels; it has, in addition, the same [p. 4] shape and practically the same size as the Heart itself. For this organ it constitutes so necessary a support, that it is never found lacking in the smaller birds, serpents, frogs, and in all other animals, even the most minute, which I have hitherto been able to dissect. Its function is best conjectured from the fluid which it contains; for, besides the fact that the heart parenchyma, being protected by the pouch in question, is not affected by empyema, does not adhere to the lungs, and is less exposed to the ills of adjacent organs; there is always to be found in the clear space between the heart and the membrane some Serum, or watery fluid. By its means the external surface of the heart is constantly moistened, whereas, but for this action, it might shrivel and dry up through its continuous motion and heat, and so be rendered unfit for movement.

The origin of this fluid and its most probable source have

STRUCTURE OF THE HEART

not, however, been correctly stated hitherto. Several authors assert that the serous humours are raised into a cloud by the heat of the heart, and are kept in by the thickness of this membrane. They condense to form the fluid we are discussing, and this is, in consequence, according to the diversity of temperament, greater in amount in warm-blooded people, [p. 5] and less, on the other hand, in cold-blooded. But if we are to agree that such is the origin and cause of this fluid, there remains to be explained why, in particular, it does not often accumulate here in larger amount ; for, as the humours must be raised into a cloud by the continuous heat of the heart and be kept inside by this membrane and turned into water, what is there to prevent its accumulating in unduly great amount, so that this capsule shall be unable to hold it ? Further, since it will be continuously on the increase, unless it has at the same time some outlet, it may either be corrupted by excessive stagnation, or at least the heart itself may be overwhelmed by its over-production.

In seeking elsewhere, therefore, for the source of this fluid, we must notice that Nature uses much the same mechanisms and instruments in the various organs of the body, where the same or similar type of work or of functions exists; and, just as she sets lachrymal glands to collect fluid to anoint and moisten the eyes (and in its absence they would become dry [p. 6] and unfit for movement), so likewise has she placed various glands round the base of the heart. From these fluid trickles out inside the capsule, and, shaken hither and thither in the clear space we have already described, bathes the entire surface of the heart, and thereby renders its movement more ready and more easy of accomplishment.

Further, that this fluid is not entirely excretory in nature, or watery like the dropping dew, but rather part of the nutrient Serum oozing from the blood, is shown by the fact that it sets into a white jelly when heated only a very little at the fire, exactly as the serum swimming in the blood after venesection does, or the lymph secreted from glands. Such consistency is not acquired by sweat or by urine after any amount of boiling ; they are either evaporated completely, or leave a sandy residue. One thing only must be noted, in passing, in this connexion, namely, that only that pericardial fluid is suitable for this experiment, which is found in a healthy

THE POSITION AND

animal suffering a violent death: the blood of such an [p. 7] animal contains nutrient serum. In animals dying of disease, or worn out by long-continued lack of appetite and ability to eat, the blood is completely devoid of chylous juice, and the result is as different as are the circumstances. But in healthier animals the fact is so clear that you find a large amount of mostly solid jelly in the opened pericardium of a slaughtered Bull. It only needs the heat of the organ to fail for it to set to that consistency: the effect is due to spontaneous action or to cold, and may be paralleled by the sudden setting into a jelly of a decoction of Hartshorn, when exposed to cold air.

Enough, however, has been said of the Fluid contained within the capsule: with regard to the membrane itself, there still remains the question, What is the final and efficient cause why the human pericardium is always attached to the diaphragm, when the same structure in the quadruped is free, and separated by a clear space from the diaphragm? As regards the final cause, the reason for the difference does not seem to lie in the fact that the human diaphragm has not to expand like that of other animals, for the similar functional necessity for respiration in man and other species makes such [p. 8] expansion necessary. Man, however, walks and stands upright, and the abdominal viscera therefore descend more easily through their own weight; hence there is less need in man for a strong diaphragmatic systole to help inspiration. Further, in expiration it is equally necessary for the same diaphragm to relax and to lessen its tension, so it had to be properly joined to the capsule of the heart in Man, lest, while he walked erect, it should be so depressed by the weight of the liver and other attached viscera, that the lung could neither collapse sufficiently nor expiration be properly effected. In quadrupeds the abdominal viscera rest on the diaphragm itself, and drive it up into the thoracic cavity by their weight, so in them a similar junction of pericardium and diaphragm would not have helped expiration, and would have been directly disadvantageous in inspiration, by interfering with the proper contraction of the diaphragm.

The Pericardium is, therefore, left free in lower animals so that it should not obstruct the systole of the diaphragm; in Man, on the other hand, it is attached to the diaphragm to help its diastole during expiration.

STRUCTURE OF THE HEART

[p. 9] If, however, one asks what is the efficient cause of such a connexion in the human thorax, I would reply, as a suggestion only, that it is as follows. The Infant, shut up in its Mother's womb in the last months of pregnancy, lies for the most part with its head downwards (fitting the organ better so) ; thus the abdominal viscera rest all their weight on the diaphragm, which is as yet inactive and unoccupied with any movement, and so move it nearer the heart ; they detain it in contact with this organ until it gradually adheres, and is finally so firmly attached as to be unable to free itself or to resume its old position.

From this same settling down of the lower viscera into the thoracic region of the foetus comes not only, I think, this adherence of the pericardium to the diaphragm, but it is also, I suspect, the reason for the greater deflection of the apex of the heart in the human being as compared with the rest of the animal kingdom. The diaphragm is applied to the whole side of the human heart and not to the apex only; this [p. Io] could scarcely have happened but for the downward pressure of the mass and weight of the viscera. If you ask me, however, why the apex of the human heart inclines to the left, I imagine it is because the trunk of the Vena cava, by passing through the diaphragm and travelling up along the right side of the heart, prevents this organ falling in that direction. On the other hand, a space lies free and unobstructed in the left half of the thoracic cavity, and so the apex of the heart is always deflected to the left by the mass of the superincumbent viscera, and comes to lie so close to this same left side (especially when the lung is collapsing during expiration, and the heart is turned to the left) that we can quite easily feel its vibrations with the hand.

Now that these points have been dealt with, it is necessary to show the supports on which the Heart itself rests, the stays with which it is fastened, and further how all these help, or at least are favourable to, its movement.

There are indeed many helping hands, so to speak, stretched out to assist the heart, but the chief support and [p. II] stay of its parenchyma are the blood-vessels, which are like so many roots for its attachment. Also, since the base of the heart was designed to receive the blood into openings and wide apertures and to press it out again, it was

THE POSITION AND

absolutely necessary for it to be rendered specially fit and suitablefor that office. But the peculiarly firm foundation that the blood-vessels provide for the performance of the heart's movements will be described at greater length later on, when I speak of the heart's movement.

The next remaining subject will therefore have to be discussed, namely, the parts of the heart. Among these, the nerves and blood-vessels which pass across its external surface are the first to meet one's eye, and should therefore be dealt with before the other parts.

It used to be a question of dispute whether the bloodvessels take their origin from the heart, or rather terminate in it. But since the Illustrious Harvey has shown that the first threads and beginnings of life are housed in a small scar-like mass, and that from the movement and pulsation of that very small sphere the arteries are moulded like so many pipes and channels for the carriage of the blood, there is no reason for us to delay long on that point. As regards [p. 12] the veins, however, the case is different. These vessels have come into being solely and exclusively to return the blood from the organs of the body, and hence they should undoubtedly be considered to arise everywhere in the peripheral regions of the body, and equally so to have their termination in the heart, into which they empty. No one will say that rivers arise from the sea into which they empty, but from their springs and rivulets. There are, however, other vessels which both arise from, and terminate in, the heart; for, while the Heart parenchyma provides heat and nourishment for the whole body, it also looks after itself in the same respects. It is warmed not only by the blood seething within its ventricles, and sated not only by the nutrient juice prepared within the ventricles, but in addition the chyle, which cannot adhere to the walls of the heart without danger to life (as will appear later) is distributed through the vessels together with the blood to the whole of the parenchyma. It there carries out the nutrition of the heart, and, as it is continuously used up, so an ever fresh supply of food-material comes to replace it.

It is true that the vessels which carry blood to the heart parenchyma are but two in number; they each divide, however, into two trunks soon after they are given off. The

STRUCTURE OF THE HEART

[p. 13] orifices of the vessels open off the aorta near its beginning, just outside the semilunar valves; they are called coronary vessels, because the trunks do not go off at once to the parenchyma, but first describe a circular course to ensure a better general distribution, and encircle and surround the base of the heart. From such an origin they are able to go off respectively to opposite regions of the heart, yet around the extremities they come together again, and here and there communicate by anastomoses. As a result fluid injected into one of them spreads at one and the same time through both. There is everywhere an equally great need of vital heat and nourishment, so deficiency of these is very fully guarded against by such anastomosis.
Moreover, just as there are two arteries carrying blood to supply the heart with food and heat, so are there two veins, also called coronary from their roundabout course, which serve to bring the blood back again. And, lest any one doubt later whether the capillary veins open into each other by anastomoses, let him look at the apex of the heart in a [p. I4] calf or any newly-born animal, in which these vessels are wider, and with the point of a small knife move and push the blood forward from this vein into that. He will then clearly see the fluid blood run from a vein on this side into a vein on the other side, and vice versa. I am sure that the same thing happens in the vessels of the bladder, intestines, stomach, and brain, so I have no doubt that capillary vessels (of the same kind) open freely into one another throughout all the organs of the body.

On the subject of the Nerves which are embedded in the heart earlier Authors, who were ignorant of the movement of the heart and the blood, were mostly silent, and not unnaturally. Next after them come those who recognize, it is true, a circulation, but believe it to proceed so slowly and in so tortoise-like a fashion that they say the blood is poured out drop by drop, and only leaves the heart when it bubbles over ; little concerned, therefore, whether or not the heart's movement helps the circulation of the blood, they attach little or no importance to the muscular structure of the heart, and to the numerous nerves. If, however, one considers the tendi[p. 15] nous and fibrous material of which the heart is made, and how it is interwoven everywhere with so many nerves,

THE POSITION AND

one must also conclude that all this endowment was not made without purpose, but that it was constructed and set up to fulfil the same function as do the remaining muscles. It receives many nerve-fibres and offshoots from the nerves of the eighth pair, all of which give off various branches to each auricle, as they pass along between the pulmonary artery and the aorta, and are then distributed widely to the heart-substance. These nerves are more clearly seen in the heart of a calf or of some new-born animal, where they are visible over the whole of the external surface of the organ. What service they perform for the heart will be related later.

Meanwhile it will not be out of place to turn one's attention to the different ways, in which the spirits flow through the nerves into the heart, according to the diversity in shape of animals. For the brain has no power or property of movement, to enable it to drive out the animal spirits (as the Heart drives out its blood), and the nerve fluid and spirits therein enclosed drop downwards only, owing to their nature, like water from its Retort; hence it comes about that the [p. I6] head, or the spinal cord, is placed above the rest of the body in every kind of animal, or else is able, at the will of the animal, to be lifted up to such a position. And, while one must admit that the inflow of blood into the brain drives the spirits out through the apertures and pores of that organ, as in the rest of the body, and that they are forced into the nerves and spinal cord in a continuous stream by this vis a tergo, yet, since this nerve fluid will be more difficult to drive and push upwards than downwards, the brain, or at least the spinal cord, is placed at a higher level than the rest of the animal, to allow the animal fluid to flow down with more ease into all the underlying organs. It was the difference in origin of the nerves from the spinal cord in Man and in quadrupeds which first led me to this interpretation. In Man, who has been fashioned with head and spine upright, all the nerves leave obliquely and are carried obliquely downwards; but in Brutes, the spinal cord of which is placed at a higher level than the body as a whole, all the nerves leave the cord in a vertical direction, and are also carried vertically downwards from it, once they have passed outside the verte[p. 17] brae. In addition, while nerve-branches are inserted into the human Heart from the nerves of the eighth pair only,

STRUCTURE OF THE HEART

in the majority of the Brutes it is far otherwise; for, apart from the branches distributed from the nerve of the eighth pair, the parenchyma of the heart also receives very many nerve-offshoots from the intercostal nerve, as it crosses directly over the Heart. By these means the animal spirits flow into the Heart more easily to assist its movement, as one will see at once on first glance in calves, horses, and larger Animals. Clearly nature made this as an extra provision for Brutes, in case their heads, which are bent down in looking on the ground, should impart the animal spirits with insufficient ease or in insufficient amount to the rest of the body.

The Vessels of the Heart thus explained, we come at last to the Parenchyma or, rather, to the Muscular Substance of the organ. This, it is to be noted, is more carefully fashioned than all other Muscles of the Body. For its work is more necessary and continuous than that of all other muscles, and hence it was particularly appropriate that it should also far surpass them in the elegance of its structure. Yet, though it [p. I8] is obviously designed for a nobler purpose than are ordinary muscles, and surpasses them by reason of a certain special texture it possesses, it has this in common with them, that its fabric and movement are based on exactly the same kind of fibres and mechanical devices, even if these are differently arranged. To make this clearer, straight muscles must be compared with oblique muscles: but it is certain that any muscle you like in the whole body, whose fibres and whose movement are straight, is not provided with a single belly only (as Anatomists have stated hitherto-they admit only two doublebellied Muscles in the neck), nor with a head and a tail; it is equally certain that the fibres are not carried directly from one tendon to another (as they are usually pictured: see Plate 3, Fig. I). But all have two bellies and their fleshy fibres are carried from a different origin to different and opposite terminations. This is shown in Plate 3, Fig. 2. In this figure
aa are the Tendons on the two sides.
$b b$ are the two bellies of the double Muscle, with their fibres terminating respectively at opposite ends of the muscle. [p. I9] cc are the outer aspects of the two tendons into which all the fibres are inserted.
This is the structure of all the Muscles throughout the body,

THE POSITION AND

whether in the upper or lower parts of the leg, the arm, or the neck of Man; further, the Muscles of the abdomen, the Maxillary muscles, the Temporal muscles, the Diaphragm, and the external and internal Intercostals, so called (of which each and all are twin bellies of one Muscle), are fashioned in the same regular manner. In order not to confine my examples to one single figure of a simple two-bellied muscle, I may perhaps put forward one or two diagrams of a more complex Muscle, such as is revealed in the different views of the dog's lumbar Muscle in Plate 3, Figs. 3, 4, and 5. Fig. 3 shows the part of that Muscle which lies nearest the abdomen, with its perfectly parallel fibres ending in a long tendon at the end of their downward course. In this figure
a is the fleshy part of the muscle near the kidneys.
b is the lower part of the muscle where the tendon is inserted into the leg bone.
[p. 20] cc are fibres going to end directly in one or the other tendon.
The fourth Figure shows the lateral aspect of the same lumbar Muscle as it lies on the spinal vertebrae. This aspect is made up of a number of separate Muscles, and the tendon of each one of them is inserted into a separate vertebra. In this figure
a is the inner part of the muscle going away down to the tendon.
bbbbb are the small muscles on the opposite aspect. Their tendons
ccccc are inserted in each case into the nearest vertebra, and point upwards.
The structural arrangements of the two aspects of the muscle are shown simultaneously in Figure 5, so that one may see at a glance that it is one and the same Muscle, but with its fibres going in opposite directions.

In Figure 6 of the same Plate is depicted a certain Muscle which I call Plumaris on account of its shape. It occurs at [p. 2I] the extremity of the Leg of the sheep, has its origin in the femur, and ends in a long tendon, which is inserted into the animal's tibia. While most other muscles give a picture closely resembling a feathered quill, this particular one is composed of a double feather; and, fashioned as it is on the

STRUCTURE OF THE HEART

pattern of a two-bellied muscle, it is also, apparently, designed for a corresponding movement. But the most complex of all muscles is that called the Deltoid; it has several bellies; these, by alternately facing in opposite directions, show clearly that, although nature is often apt to vary her manner of forming Muscles in different parts of the body, yet she always aims at the methodical arrangement of the two-bellied Muscle. This is clearly seen in Plate 4, Fig. I. In this figure aaa is the upper tendinous portion of the Deltoid Muscle, which is inserted into the scapula and the clavicle. $b b b b$ is the lower tendinous portion inserted into the middle of the arm. ccc are the bellies of the muscle which point upwards. ddddd are the bellies which point downwards.
[p. 22] The reason why the so-called two-bellied Muscles in the neck join in common central tendons, contrary to what one may see in all other Muscles of the body, lies, I imagine, in the following fact. They pass up over the jugular vein on each side of the neck, and hence, by compressing it, would interfere greatly with the descent of the blood from the brain, had it not been arranged that they should thin out at this point and be united by tendons. This is clearly seen in Plate 4, Fig. 2. In this figure
aa is the jugular vein.
$b b$ is the two-bellied muscle.
$c c$ are the two tendons.
d is the point of junction of the tendons from each of the two bellies.
I could have pictured several other straight Muscles without displeasure to the eye, but, as the texture of all is on a similar plan, the next thing which remains is for me to show the points of similarity between the Muscle, whose fibres and movements are obliquely circular, and the straight muscle.
[p. 23] According to Geometry's laws, the straight line is the guide to the oblique. Similarly, the common standard of the Structure of the straight Muscle is the best approach to the study of this circular Fabric of the Heart. For, just as the straight muscle is composed of a double series of fibres pointing towards different and opposite ends of the Muscle, and these, on contraction, draw their respective tendons nearer

THE POSITION AND

to one another, so exactly does it happen in the making of the Heart's Fabric and in the carrying-out of its movement. It is formed for the most part of a double set of fibres which go off from a common origin to opposite portions of the Heart. Nothing is clearer than this, whether we consider the termination of the Heart's fibres, or their course and sequence.

In a Heart, which has been well boiled and has had its auricles and larger vessels removed, there is seen a fairly strong tendon which passes right round and encircles the edge of the heart about its openings. In certain animals a part of this tendon at the top of the septum is ossified and hard. [p. 24] The fleshy fibres which enfold and make the external surface of the Heart pass upwards and to the right everywhere to be inserted into this tendon. The inner fleshy fibres, on the other hand, which lie next to the ventricular cavities, are inserted into the same tendon in exactly the opposite direction, as can be seen in Plate 2, Fig. I. In this figure
a is the opening through which the Right ventricle receives blood from the vena cava.
b is the opening through which it expels it into the lung.
c is the opening through which the left ventricle receives the blood as it returns from the lung.
d is the opening through which it ejects the inflow of blood into the aorta.
eeee is the tendon set all round the openings of the Heart.
fffff are fibres returning on all sides from their passage round the outside of the Heart, and brought to an end in its tendon.
ggggg are inner fibres ending in the same tendon in a direction exactly opposite to that taken by the external ones.
Now that it is clear that the Heart's fibres end in two [p. 25] different ways, it is next necessary to show that they also encircle the whole circumference of each ventricle in a similar sequence, with the exception of a few rather delicate fibres, which are carried straight up over the external surface of the right ventricle to terminate in the base of the heart, as they are pictured doing in Plate 2, Fig. 2. In this figure
a is the base of the Heart.
b is the apex.
ccc are straight fibres pointing up towards the base.

STRUCTURE OF THE HEART

All the other fibres common to each ventricle pursue an order and sequence which is double only, but diametrically opposite in its two parts. The fibres immediately underneath these straight external fibres in the right ventricle pass up obliquely to the right to terminate in the base of the Heart, and by their spiral course recall quite well Helix or the snail. As is to be seen in Plate 2, Fig. 3. In this figure
> a is the base of the Heart.
> b is the apex.
> c are the fibres which enfold the left ventricle.
> [p. 26] d are the fibres which enfold the Right ventricle.
> e is the groove separating the two ventricles, which is hollowed out to receive the vessels of the Heart.

Under these external fibres are placed others directly opposite to their predecessors. Whereas the outer ones are carried across from the left side of the Heart to terminate in its base, these others pass in exactly the opposite direction. They arise all round the right side of the Heart, from there are carried obliquely across to the left side, and, encircling both ventricles of the Heart, pass up to the base of the left side, forming a second, inverted, Helix. As is clear in Plate 2, Fig. 4. In this figure
a is the base of the Heart.
b is the apex.
c is the right side.
d is the left side.
e are the fibres of the right ventricle.
f are the fibres of the left ventricle.
The orderly sequence and infolding of all these fibres will [p. 27] easily be grasped by any one who tries dissecting the Heart of an ox or of a sheep. Those in the first layer can easily be seen at first glance when the cuticle of the Heart has scarcely yet been removed, while the others, which are more deeply hidden, only come into sight when the first are taken away. In following them out, moreover, there is no need of any great caution, for their courses and convolutions are so obvious and distinct that they appear to be formed by a line of thread. Yet, although one may certainly liken them at first glance to rather thick threads wound into balls, they

THE POSITION AND

are not interwoven in the same way or, further, on the same plan as such balls; for, if one may pursue the metaphor, they do not encircle the Heart in a continuous thread, or in regular series of loops, and cannot, therefore, be unwound, like balls of thread, in a continuous sequence. For, though one might think, after separating off the external membrane of the heart, that, as far as one can judge from ocular inspection, all the fibres reach in one continuous course from the base of the apex of the Heart, yet, if one tries to measure out their courses from one end or the other, one will readily perceive that a very few fibres travel about half at least of that [p. 28] distance, but, having gone a little way from the aforesaid tendon, they soon twist under the preceding fibres, and are at once lost to view. Indeed, with regard to the external fibres, one has to confess that they do not all reach from the base to the apex; certain of them are shorter than the others, and, as soon as they have passed half way across the Heart, curve in at once like a bent bow and are inserted obliquely into the tendon of the other side and ventricle. The way in which they bend in and mutually support one another by the interdigitations of the fleshy fibres, is evident in Plate 2, Fig. 5. In this figure
a is the tendon round the opening of the right ventricle.
b is the tendon round the opening of the left ventricle.
c are fibres stretching from one tendon to the other with intermediary fibres passing hither and thither for mutual support.
[p. 29] d is the place where, having enfolded the right ventricle, they curve to end obliquely in the tendon of the left ventricle.
Now that we have seen clearly the course of the fibres common to both ventricles, it remains for us to dissect off the right ventricle, and to give equal consideration to the arrangement of the fibre-course in the left ventricle. As both sets, indeed, perform the same function, their structural scheme and form is similar; in other words, it is composed of a double set of fibres ending in opposite tendons. The external fibres pass upwards and to the right over the whole circumference of the left ventricle, and curve spirally upwards to end in the base of the Heart, as shown in Fig. 6.

STRUCTURE OF THE HEART

In this figure the left ventricle is pictured lying on its side, to demonstrate the way in which the fibres converge at the apex of the Heart. In it
a is the base of the ventricle.
b is the apex.
ccc are fibres ascending obliquely upwards and to the right towards the base of the heart.
d is the side next the right ventricle.
e is the left side.
[p. 30] But in this ventricle also the whole of the fibres do not reach from the base to the apex, and, only after a number have been removed, can the others be separated that far ; for several are deflected from the general course and path in the middle of their passage across the Heart, and disappear under the next preceding fibres to ascend obliquely to the tendon of the opposite side, and so describe by their passage a shorter circle. As was seen above in Fig. 5 .

The inner fibres, on the other hand, all ascend obliquely upwards and to the left, in exactly the opposite direction to the outer fibres, to reach the base of the heart. They are inserted into the tendon at the base and form the inner wall of the ventricle.

The longer fibres of the opposite set run together to the apex of the Heart, and pass round it to form a whorl, in such a way, however, that the space which is left in the centre becomes the thinnest part of the Heart. The fashion of this whorl, and the meeting in it, at the apex of the Heart, of the fibres of the outer wall of the left ventricle with those [p. 31] of the inner wall, are quite well shown in Fig. 7. In this figure
> a is the tendon of the right side.
> b is the tendon of the left side.
> c are some fibres of the outer wall.
> d are fibres of the inner wall, together with the whorl formed by fibres of both sets near the apex.

From this it is obvious enough that the fibres of the outer and inner walls have contrary courses and also perform antagonistic movements, but that they do this in such a way that, while they cause the walls of the heart to shorten in

THE POSITION AND

opposite directions, they make both walls contract into a closer and more confined space. This will be shown more clearly later.

One point remains for me to mention, namely, that not all the fibres end at once in the tendon placed round the openings of the Heart; some of them protrude from the two sides of the left ventricle to end in the so-called fleshy columns. These columns, however, give off various tendons [p. 32] to the so-called mitral membranes, and these membranes are joined to the tendon at the base of the Heart. As regards the Heart's movement, therefore, the result is the same by whichever route they reach the base of the Heart.

Up to now we have seen the diverse way in which the fleshy fibres surround the sides and walls of the Heart. It remains only for us to explain how skilfully they are arranged round the apex of the Heart. This arrangement is more easily and neatly pictured than described, and it will therefore suffice to remark that, as the movement of the Heart and of the blood is circular, so also all the fibres and motor mechanisms of both here form more or less of a circle with its centre. This is shown by the apex of a boiled and dissected ox-Heart in Plate 2, Fig. 8. In this figure
aaaaa are outer fibres running in a spiral course to the apex as to the centre of a circle.
And, while the inner fibres of the ventricle proceed in an opposite direction to the outer ones, if the inner part of the [p. 33] apex next to the ventricular cavity is considered, it will be seen that its fibres also form a sort of circle in the reverse direction to that formed by the outer fibres.
Finally, greater vibratory effort is necessary to drive the blood to the most distant organs of the body than to drive it only to the lungs, which are near by and spacious; hence it is to be noted that the left ventricle is stronger than the right, its fibres being individually thicker and more powerful than those in the other ventricle.

Up to now I have described the external structure of the Heart. It is only fitting that I should here say something about the auricles, for they are not less skilfully devised than is the Heart itself, even if they are smaller in size. The function and structural plan of both is the same. Each is a muscle

STRUCTURE OF THE HEART

and they are built up of a double arrangement of fibres. Nay more, as their movement precedes that of the Heart, they receive nerves from the branches of the eighth pair before these nerves reach the Heart itself. Their fibres are inserted into opposite tendons, for the tendon at the base of the Heart is common to the auricles also, and they rest on it as on a [p. 34] couch. The right auricle, however, on the opposite side, where it faces the vena cava, is strengthened by a harder, truly tendinous band. The fibres end, some in one, some in the other of these tendons, as is clearly seen in the everted and opened-out right auricle of the Human Heart in Plate 5, Fig. 2. In this figure
aaa is the base of the auricle where it joins the tendon of the Heart.
$b b b$ is the tendinous band which separates it from the vena cava.
ccc are fleshy fibres passing hither and thither to the two tendons, and forming with their small intermediary fibres a feather-like pattern.
d is the large coronary vein.
ee are some smaller veins designed to return the blood from the Heart.
f is the upper part of the auricle.
I shall speak of their function below. Meanwhile, it should be noted that the comparative relations of the right and left auricles are not the same as occur in the case of the ventricles. [p. 35] The latter move simultaneously and with ever-equal paces; also, for a proper and regular lung circulation, more blood must not be poured out by the right ventricle than could be dispatched through the left ; hence it was necessary that they should have practically the same capacity. For, with the exception of an extremely small portion of the blood (which is removed by the lymphatic vessels in the lung and serves to nourish and to moisten the lung) both chambers of the Heart hold and impart an equal quantity of this fluid.

Seeing that the features and conditions of the two ventricles are so regular and uniform in every respect, why is it that the auricles have no similar correspondence at all? I can only conceive that it is for the following reason. The auricles were apparently created and made to expel the blood into the

THE POSITION AND

ventricles, but the inflow of blood from the vena cava into the right ventricle proceeds slowly, and a larger and more capacious auricle is therefore needed on the right side, to receive within itself and to throw into the ventricle an amount of blood approximately sufficient to fill the cavity of the [p. 36] latter. On the other hand, owing to the collapse and subsidence of the lung in expiration, the blood is expelled and driven out at once in large amount from the pulmonary vein. Hence the only requisite is, apparently, that a more forcible movement shall be imparted to the blood as it flows past into the left ventricle, and that its passage shall be somewhat assisted. Thus there is no need of the help of so large an auricle on this side.

Now that we have in this way explained the external surface and texture of the Heart, the next thing that remains is for us to see the mechanism of its general internal structure. To facilitate the movement of the Heart, its external surface is smooth and even; for the same reason its inner walls are uneven in the extreme, and are irregular in their texture. Throughout its interior the Heart is hollowed out into various spaces and furrows, and is interlaced with fleshy fibres going in all directions. But this does not happen to an equal extent in the hearts of all animals, nor are the fibres similarly arranged or of the same size in the hearts of all animals in which they are present. Indeed, as the most illustrious Harvey noticed, they vary very much according to the kind of animal, [p.37] and according to the size and strength of animals within a single species. In the larger animals, whose blood requires to be carried further afield and to be propelled with greater force, the ventricles of the Heart are strengthened internally by fleshy fibres and by small muscles, as it were, which stretch out hither and thither on many sides, and are variously divided into little trenches. The larger the Animals, the greater and fewer are these fleshy fibres, but in turn the deeper is the impress of the trenches. In the human Heart the fibres are smaller, but are arranged in a complex and inconstant order; they are also more numerous than in the hearts of all other animals I have hitherto been able to see. Their order and arrangement are shown in Plate 5, Fig. I, in which the internal cavity of the left ventricle is opened out. In this figure

STRUCTURE OF THE HEART

aa is the pulmonary vein opened out just before its entry into the Heart.
b is the left auricle of the Heart.
c is the foramen ovale, through which the blood flows in from the vena cava just in front of the opening of the left ventricle.
[p. 38] dd are the two mitral membranes.
ee are fleshy columns swelling up from both sides of the ventricle.
f is the base of the heart, where the blood flows into the ventricle from the pulmonary vein.
g is the place under the mitral membranes where it is discharged into the aorta.
h is the apex of the Heart.
iiii are fleshy fibres inwoven here and there throughout the whole of the inner surface of the ventricle.

Further, while the ventricles of the Heart in the larger Brutes are distinguished from the human by their larger internal fibres, the auricles, certainly in the horse and ox, are distinguished by wider fibres stretching here and there like fingers for varying distances. When these contract, the sides of the auricles close together to expel the blood. There should be no doubt in any one's mind that the other fibres in the ventricles help the movement of the Heart and the contraction of its sides.

While these fleshy fibres do indeed assist greatly in the [p. 39] contraction of the walls of the Heart, those fissures or grooves in the hearts of the larger animals are of the greatest service in ensuring that this contraction shall be tighter, and that the inner parts of the ventricles shall approach each other more closely, for a smooth and even internal surface would not permit this same action. For this reason such spaces or clefts occur chiefly in the left ventricle, inasmuch as they are necessary and useful to this ventricle only. The parenchyma of the left ventricle is composed chiefly of obliquely circular fibres, and they contract down on all sides towards the centre; such a closing down into so confined a space could not have occurred had these furrows and depressions not been hollowed out to fit the part for such movement. The wall of the right ventricle, on the other hand, is much

THE POSITION AND

thinner and is attached to the side of the left ventricle like some appendage; it contracts also through half a circle only; consequently it did not need deep pitting of its parenchyma to the same degree as did the left ventricle. But it might become unduly distended, either by the inrush of a torrent of blood against its thin walls, or by too great a quantity of [p. 40] blood collecting within it through heart-failure. This might go so far as to deprive the fibres of power to contract back to their normal (in the left ventricle such a misfortune is not to be dreaded at all on account of the strength and thickness of the ventricular wall). The better, therefore, to provide against such mishaps in the right ventricle, a certain round fleshy Muscle of reasonable strength stretches across the middle of the ventricle from the septum of the Heart to the opposite side. Such can be seen in the Heart of the sheep, ox, and other animals. In the Human Heart two or three such fleshy fibres are commonly found; these, if they do not help to draw the walls together, assist at all events in no small measure in preventing undue dilatation.

Now that we have described the inner surface of the Heart, we must next say a word about the papillae and fleshy columns, and about the valves situated at the various openings of the Heart, both where it receives blood from the veins, and also where it expels the same into the Arteries.

The papillae in the right ventricle are certain round, [p. 4I] elongated, fleshy projections, which reach upwards from its sides and from their tips give off tendinous fibres to join the membranes called, from their shape, Tricuspid. These membranes rise from the edge of the ventricle, and completely encircle the entrance into it. Thus, when the apex of the Heart is drawn nearer the base in each Systole, the papillae also move upwards and slacken their fibres to very loose reins; the membranes to which they are attached follow suit, and, hanging loose, are driven upwards like bellying sails by the expulsion of blood at each Systole of the Heart. In consequence of this they close the opening of the Heart so exactly that not even the smallest drop can flow back into the auricle, but is expelled into the lungs, where no such hindrance bars its way. But, while the apex is drawn nearer the base at each Systole of the Heart, and the papillae slacken their fibres, in diastole the apex goes

STRUCTURE OF THE HEART

back again and draws down with it the papillae and their fibres. Hence the membranes are likewise withdrawn, and uncover at once the entrance into the heart, opening the doors, as it were, to the inflow of blood from the auricle.
[p. 42] It is sufficiently well established that the above does so happen, and that the valves do react and function thus at every systole and diastole of the Heart. It is not so easy, on the other hand, to grasp the method of their action and the manner of its performance, except from a study of the position and structure of the papillae to which they are attached. For, even if it is an undisputed fact that the tricuspid membranes belly out, sail-like, under the backrush of blood in Systole, until they completely close the entrance into the ventricle; it is, nevertheless, very well worth our while to see how and by what conformation of the parts in question this is effected. The method of it all, and the mechanical device which is used, depend on three facts. These are
I. That the papillae project and bulge out rather far on the inside surface.
2. That they are situated in different parts of it, and not all in one place.
3. That the papillae are situated on the side opposite to the membranes, to which they are attached.

This situation and structure of the papillae doubtless [p. 43] ensures that the membranes shall always be separated by some interval from the sides of the ventricle, and that they shall thus easily be raised by the first thrust of the blood which is driven upwards at each Systole. For, when the fibres of the papillae are relaxed, the membranes hang slackly across in the middle of the ventricle, and so it is inevitable that they should be pushed up by the blood flowing back into these pockets, as sails are blown out by the wind, and that they should unfurl just as far as the relaxation of their attachments permits. These attachments nature has allowed to move far enough for the membranes to stretch out on all sides and completely to close the entrance into the ventricle.

If, however, these membranes rose straight from the same sides of the ventricles, the membranes would lie too near the

THE POSITION AND

inner wall of the Heart and would be unable either to receive the blood behind them, or to be raised from the ventriclewall; they would therefore let the blood go out again by its route of entry.

Any one will better understand the function and purpose of the papillae if he considers carefully the fleshy columns, which swell up on the sides of the left ventricle and are [p. 44] designed for exactly the same function. They are not made for movement, nor do they cause a contraction of their attached membranes (which would be more likely to keep open the entrance into the Heart) ; but they are placed there, and project to this extent from the rest of the inner surface of the ventricle, solely that they may keep the membranes sufficiently far away from the sides of the ventricle for them to be driven back by the blood flowing up from below, and completely to close that opening of the Heart, to which they are attached. This raising of the membranes from below, and the consequent closure of the opening, can be easily imitated and clearly seen by any one, who introduces a tube through the opening or the apex of the Heart and injects water through it, provided the auricle and pulmonary vein at the base of the Heart are first dissected off. Precisely the same thing will occur if the Heart is almost filled with water and pressure is applied at the apex.

Not all the membranes in the right ventricle receive their fibres directly from the papillae: but by their means they are equally able to check the back-flow of blood. The membranes are everywhere contiguous, and hence it must happen that directly those, whose fibres are inserted into papillae are [p. 45] lifted by the blood, the others which are joined to them are simultaneously raised, and fully distended by the upward flow of blood. That this shall more readily happen, one must believe that the blood thrown into the chambers of the Heart at each diastole penetrates back between those membranes and the walls of the ventricle, and that the membranes themselves rise upwards and puff out more as the ventricular cavity becomes fuller. This can be demonstrated by pouring water into the ventricle until it is full, or by injecting it through a tube placed in the opening. What helps a great deal towards this is that the fibres, which stretch from the fleshy columns and papillae, allow free

STRUCTURE OF THE HEART

passage along their interspaces to the blood flowing in behind those membranes. For, apart from the possibility of their sifting and mixing the blood, they seem to be specially designed for the following function, namely, to keep the stretching of the membranes within due bounds, and to allow freer ingress to the blood, so that it may penetrate more readily into the deepest windings and recesses of the ventricles, and so these fibres may help to quicken the dilatation of [p. 46] the Heart and the raising of the membranes. For the blood which is thrown into the Heart and received among the fibres soon fills the ventricle, and simultaneously, by its raising of the membranes, prevents its own escape through them. Hence, when the Heart contracts, it must of necessity expel the blood through the open channel into the aorta.

Further, the left ventricle, designed as it was for heavier work and greater effort than the right ventricle, had necessarily to excel it far in the strength and thickness of its wall. Hence its fleshy columns, fibres, and membranes far surpass in size and denseness the similar mechanisms in the right ventricle. The Systole of the left ventricle is a much more powerful contraction than that of the right ventricle, and so needed stronger instruments of this sort to withstand the pressure and to direct the blood into the aorta. To prevent regurgitation of the blood back into the chambers of the heart after it has rushed out through the arteries, three membranes, called from their shape semilunar, are placed [p. 47] at each exit from the Heart, the first set where the blood leaves for the lung, the second where it enters the aorta. These membranes unfold whenever the blood is forced back, and fit so tightly together that they close completely the arterial channel. This is clearly seen if the arterial trunk is divided close to its origin, and water or spirit is poured into it. Plate 4, Fig. 3 shows the membranes relaxed to allow the outflow of blood. In this figure
aa is part of the left ventricle opened up.
$b b b$ are the three semilunar valves collapsing to allow egress to the blood.
c is the trunk of the aorta opened up.
dd are the two coronary arteries leaving the trunk of the aorta just beyond the semilunar valves.

THE POSITION AND

eee is the root of the aorta at its junction with the tendon of the Heart.
ff are the mitral membranes divided and turned back to either side to allow a sight of the semilunar valves.

The situation of the valves shows clearly how they facilitate [p. 48] the passage of the expelled blood. The extent to which they help to check any backflow of the same will appear equally well from Plate 4, Fig. 4. In this figure
aaa is the trunk of the aorta cut off at its root.
$b b b$ are the three semilunar valves closing on each other, and blocking the passage against any back-rush of blood. cc are the two coronary arteries.

Now that we have examined the usual arrangement of every part and corner of the Heart's abode, it will also be pertinent to see the means adopted to provide a pathway to and from the Heart itself.

Just before the threshold of the right auricle, that is to say, where the ascending vena cava joins the descending and prepares to discharge into the auricle of the Heart, a certain small swelling is formed by underlying fatty tissue. This swelling is well worth attention. Its interposition at this point causes the blood, which falls down the descending vein, to be diverted into the auricle, when it would otherwise [p. 49] have continued on down into the ascending vein, and would have caused great hindrance and slowing to the bloodflow up through that vein into the Heart. The danger from this was greater in the upright position and form, and hence the swelling in the vena cava of man was made larger and much more prominent, so that, if you put a finger into either of the two trunks, you will only with difficulty reach the other. As is shown in Plate I, Fig. I. In this figure
> a is the trunk of the vena cava descending on the right side.
> b is the trunk of the vena cava ascending on the right.
> c is the swelling interposed right between the two veins.
> d is the opening of the auricle.
> e is the foramen ovale.
> f is the Heart lying over to the left in its natural position.
> g is the coronary vein.

STRUCTURE OF THE HEART

On the other hand, in quadrupeds, such as the Sheep, Dog, Horse, and Ox, the passage of the blood from either end of the body is more level and horizontal, and, owing to [p. 50] the mass and weight of the dependent Heart, the trunks of the venae cavae slope down a little from above to the Heart; one may assume, therefore, that so large a barrier was not needed in their case, though it is not completely absent. As is seen in Plate I, Fig. 2. In this figure
> a is the trunk of the ascending vena cava.
> b is the trunk of the descending vena cava.
> c is the swelling separating the two veins.
> d is the right auricle.
> e is the foramen ovale.
> fis the opening of the Heart.
> g is the coronary vein.
> h is the Heart itself hanging down from its vessels, but supported underneath in this position by the lungs.

Further, in order that the blood shall not seethe and swell in this meeting-place while the auricular contraction denies it free ingress, the whole circumference of the vena cava is muscular at this point in the larger Animals, both Man and Brutes; the object of this is twofold, to keep the vein trunk within due limits of extension, and to drive the blood it contains into the auricle without intermission and with more [p. 5I] force than were otherwise possible. That the auricle may seize this blood more firmly and drive it into the ventricle of the Heart, its internal fibres stretch right out from the root of the auricle, where it joins the base of the Heart, towards the vena cava, and seizing within themselves the blood collected therein, grasp it, so to speak, in their fingers, and soon, in their turn, pass it on to the Heart. These fibres, indeed, in the auricle of one of the larger Animals, such as the Horse or Ox, are as large as monkey's fingers, and doubtless have the same function.

While the above-mentioned swelling at the threshold of the right ventricle, where the ascending vena cava meets the descending vena cava, prevents blood flowing down the latter vein and pressing down on that which is coming up the former vein; equal ingenuity has been employed outside the opening of the left ventricle, to prevent the blood, which

THE POSITION AND

is ejected with such force, from being unequally distributed to the various organs. For this opening of the Heart faces directly upwards, and hence, if the channel, which receives [p. 52] directly the first shock of the blood, led it likewise to the cranial region, too much blood would inevitably be sent to the brain; it would also of necessity gradually increase owing to the force of vibration, with the result that the lower parts of the body would be cheated of their appetite and food. To avoid such a disaster, the divine Artificer constructed the trunk of the aorta (next the Heart) with such skill in Animals, whose Hearts move rather forcibly, that the blood does not run straight into the axillary and cervical arteries, but first turns through part of a circle. Midway between the ventricle and these arteries, the aorta (to a varying degree in different animals) is strongly arched. Consequently it is the curved angle which bears the shock and the full force of the ejected blood, and directs the greatest part of the rushing stream into the descending trunk of the aorta. But for this too much of it would be distributed to the higher branches of the aorta; these it would distend unduly, and would soon by its impetus put an end to the head. All this is fully shown in Plate I, Fig. 4. In this figure
> [p. 53] a is the root of the Human aorta.
> b is its descending trunk.
> c is the angle where it curves on itself.
> d is the right axillary artery.
> e is the right cervical artery.
> f is the left cervical.
> g is the left axillary.
> h are the two coronary arteries.

In the Figure, the curving of the aorta at [c] deflects a very large part of the rushing stream of blood ejected from the Heart into the descending trunk, but, to prevent it all from going in that direction, the intervening axillary and cervical arteries are so made that they must receive their requisite share of the blood as it flows past. The right side of any one of these arteries is much higher than the left, and hence some part of the fluid in the larger trunk must be intercepted by them. This will be more readily grasped from Plate I, Fig. 5. In this figure

STRUCTURE OF THE HEART

aaa is the right-hand and higher part of each successive artery.
b is the angle of the aorta curving on itself.
[p. 54] ccc are the lower sides of the arteries which intercept the blood as it flows past, and against which the blood dashes.
d is the descending channel of the aorta.
If these arteries, on the other hand, left the aorta perpendicularly, practically the whole of the blood would pass by their orifices without any diminution, as Plate I, Fig. 6 shows. This figure, though it represents a condition which never actually exists, is put side by side with Fig. 5 to allow a better understanding of the arrangement therein depicted.

Before we pass from the subject of the Heart-muscle, one further point claims our attention. In the Foetus still enclosed in the womb respiration cannot take place, and there is therefore no need for the whole of the blood to pass through the lungs. An alternative channel has in consequence wisely been provided for the greater part of it. In the as yet unborn foetus, just below the swelling we have recently described, a foramen (called the foramen Ovale) opens into the neighbouring pulmonary vein just before the entrance into the left ventricle. Through this foramen the greater part of the [p. 55] blood returning in the vena cava passes, from just in front of the entry into the right ventricle, across into the pulmonary vein, and is sent down into the left ventricle together with the rest of the blood returning from the nutrition of the lung. To prevent its return by the same route, a membrane is attached all round the edge of the foramen, except at its lowest part, and, overlapping, sail-wise, the lowest part of the orifice, hangs down loosely in the pulmonary vein. Hence it yields readily to the blood-flow from the vena cava, and throws open the door. On the other hand, if strong pressure is exerted on the blood to flow back from the pulmonary vein into the vena cava, the membrane is closely applied to the pulmonary vein at the first approach of the blood, and so effectively prevents any inflow. In just such a way the duct of the ureter, passing through the double coat of the bladder, allows the urine a free and unrestricted inflow, but absolutely prevents any backflow. And, since

THE POSITION AND

there is no need for all the remaining blood, which flows into the right ventricle of the Heart and is ejected by it into the pulmonary artery, to make the circuit of the lungs, an [p. 56] arterial channel opens in addition between the pulmonary artery and the aorta proper. Hence the blood expelled from the right ventricle is in large measure passed on through this channel into the aorta, and is dispersed throughout the body with the rest of the blood. But, when the foetus is born and begins to breathe, this foramen and channel have no longer any function, and narrow little by little from day to day, until the foramen at length closes completely, and the channel slowly turns into a ligament, through which nothing can any longer pass. The shape of this foramen and membrane is shown in Plate I, Fig. 3. In this figure
aaaa is the edge of the foramen ovale, to which the membrane is attached.
$b b$ is the same membrane, hanging down below the circumference of the foramen.
c is the blood flowing along in the vena cava.
d is where it flows into the pulmonary vein.
eee is where it drives back the membrane, and rushes on through an open door.
[p. 57] I have now given a description of the Heart. It remains for me to detail the various differences it shows in animals of diverse kind, birds, fish, serpents, frogs, and other still smaller creatures, and to give reasons for these differences. But the compass of them is so great that weariness, rather than profit, would attend their enumeration. It will suffice if I make mention here of their more important characteristics, and of those which help most to elucidate the Heart's story in the more perfect animals. Thus in Birds, such as the dove, hen, chicken, goose, and others, the Heart is built up of a complex of fibres, which correspond exactly with those found in larger animals and which are, relatively, equally as large. For, though the outer side of the transverse septum nearest to the right ventricle shows a smooth, even surface, the inner part, comprising what is left of this side, is entirely fibrous. Both ventricles, too, are provided with semilunar valves at their respective openings

STRUCTURE OF THE HEART

into the lung and into the aorta. At the orifice or entry into the right ventricle there is a complete absence of tricuspid [p. 58] valves, but in their place, just above the entry from the auricle into the ventricle, there hangs down a fleshy valve, exactly semilunar in shape ; this valve always opens towards the apex, and receives eagerly and greedily the blood which flows up from below at each contraction; the more it is filled out, the closer it lies against the ventricular orifice, and prevents there any outflow of the rest of the blood. Though the right ventricle, moreover, is flat and smooth on one side, the left is fibrous all over in every kind of Bird, however small ; it is also provided with fleshy columns rising clear of the other fibres, and with mitral valves so skilfully made that no blood is allowed to pass back to the lungs. If the apex of the Heart is cut off and water is injected into the ventricle through a tube, a very pleasant demonstration results. The membranes in question soon swell up under the pressure, and, approximating very closely to one another, completely shut off this opening into the Heart, so that, however strongly and forcibly the water is injected, none is [p. 59] allowed to pass, and it all goes out through the aorta.

This organ, it is clear, is as perfectly formed in these smaller animals as it is in the larger for the distribution of the blood to the rest of the body. It is equally beyond doubt that it is never entirely absent even in the smallest of all Nature's creatures; they may not rejoice in a heart with two chambers, but can at least boast a heart with one. As, however, its structure cannot be seen sufficiently well with the naked eye, I will not speak further of it.

CHAPTER II

The Movement of the Heart

In the previous Chapter, we dealt at sufficient length with the Position and Structure of the Heart. In it we realized the extreme perfection of the Heart's fabric, formed with diverse means and with a skill beyond all comprehension [p. 6o] of the spirit of man. We must now show next what, and of what kind, are the movement and function of this wonderful mechanism.

This noble structure, the Heart, received the name of muscle from Hippocrates and the earlier physicians because of its intricacy of fibres: that its movement was equally Muscular, the very illustrious Harvey rightly observed from his dissection of Living Animals. It seemed to him to become tense all over, and to contract throughout its whole fibrous structure, to rise up, and get smaller and harder at each movement, so it was natural for him to say that its action was one which it shared with the remaining muscles. This, indeed, we see him state formally in Chapter 2, 'de Motu Cordis'. When the muscles are in active motion, they become stronger, are tensed, become hard where before they were soft, rise $u p$ and get thicker, and in similar fashion does the heart. After Harvey, then, has so carefully and painstakingly observed the movement of the Heart, and has taught that it vibrates extremely strongly and forcibly, one may perhaps be surprised at the fact that the distinguished Descartes, Hooghelande, and other famous men (because they did not pay close enough attention either to the strength of the Heart's structure and [p. 6I] its great efforts at every Systole, or to the rapidity of the blood's movement) have been in doubt if the Heart causes its own movement, or if it is not rather put into motion by the blood. They observed that various fluids prepared by chemical methods, and mixed together, interacted violently and frothed up to such an extent as to break

THE MOVEMENT OF THE HEART

their containing vessels, unless freely exposed to the air. Scarcely deigning to change the name, they have given the same story about the blood. Moreover, that this view may more readily find acceptance, they have taught that there lodges in the left ventricle of the Heart in particular a nitrosulphureous ferment: that the blood is full of heterogeneous particles very ready to ferment, and that, as soon as it reaches this active material, it instantly becomes lighter and swells up. Seeking more room in consequence, it is forced to escape into the aorta more by its own action than by that of the Heart.

But it will be easy to show that no such ebullition is provoked within the blood, and that no such ferment is present [p. 62] in the Heart ; for, although great effervescence and interaction result from the mixture of bodies of totally different saline nature, and a great deal escapes, the blood fluid is quite different in character and is too inert to effervesce so violently and suddenly in the Heart or in its vessels. We know how innocuous this fluid is, how gentle the spirit which usually imbues it, how smooth and peaceful its return along the veins to the Heart ; and, when an opening is made for it and it is caught in suitable receptacles, how quickly it clots like milk, without any sign of effervescence or upset.

Those, moreover, who claim the existence of such a ferment in the Heart, should have shown the source from which it is continuously replenished. For, if they say that the coronary arteries distributed throughout the Heart pour a certain juice into its ventricles, they should notice that the inner membrane of the ventricle is so impervious that it allows [p. 63] nothing to penetrate into its cavity; as is clear if one forcibly injects the arteries with some dye. If, on the other hand, they state that this ferment is derived and replaced from the particles of blood hidden in the hollows and cracks of the ventricles, it is certain that these furrows and hollows were made for the closer contraction of the ventricle, as stated above; and that they close and adhere so tightly that none are any longer visible, nor do they leave any place or space for hiding the remnants of blood.

Indeed, ebullition of blood within the Heart, if it exists, is so far from helping at all in its movement, that it appears to

THE MOVEMENT OF THE HEART

be directly opposed and antagonistic to such movement ; for Diastole does not occur as a result of the expansion of the ventricular walls by the increase of blood, but partly through the weight and amount of the same which is injected by the auricles, and partly through the movement of restitution. Thus the Heart's diastole alternates continually with its and the Auricle's Systole. That ebullition is not of use in the execution of the Heart's Systole is shown by the following [p. 64] fact, namely, that its movement is one of expansion, and would therefore serve rather to draw apart the walls of the heart than to bring them together.

Further, what ebullition is so regular, or has phases of swelling of such equal duration, or is powerful enough to be able to eject fluid with such force from the Heart to the most distant organs of the body (and much further if it is provided with egress) ? If the blood moves through its own power, why does the Heart need to be so fibrous and so well supplied with Nerves? It could be formed of much simpler ventricles with flat inner surfaces, if it had been made solely to receive blood, and not to expel it.

Moreover, if we consider the amount of blood sent into the ventricles of the Heart at any diastole, we shall find no place in the Heart suitable, or large enough, for ebullition such as described. For the blood does not fall down from the auricles drop by drop, as Descartes and others have imagined, but is sent out by the auricles in such amount as to fill the whole internal cavity of the Heart; further, the Ventricle expels at any Systole the whole of the blood it has received during the previous diastole, as will be seen more clearly [p. 65] later. In addition, I do not clearly see, and I imagine no reasonable argument can be put forward, why the ferment is said to be lodged chiefly in the left ventricle and the ebullition rising therein to be attended by so much more effervescence; why it is not equally so in the right ventricle, since the action of each ventricle is the same, and they are distinguished only by the thickness and strength of their fibres for the reason given above ; finally, why it is not chiefly found in the auricles, for they are the first to move, and provide incessantly not only the first impulses for the Heart's motion, but the spark which sets off the whole.

Besides this, the blood stays too short a time in the Heart

THE MOVEMENT OF THE HEART

for the production of such ebullition. It passes through the ventricles faster than the winking of an eye, and gunpowder, on being lighted, does not burst into flame any more quickly. In addition, blood expelled from an artery is not light or foamy in any way, if it is received into a vessel placed near by, but is of a venous consistency and weight, and like venous blood in all except its colour.
[p. 66] Finally, the movement of the Heart is shown to be independent of any ebullition of blood by the fact that a Heart taken from a living animal and entirely emptied of blood does not cease to move, even if it is cut into small pieces. It is a matter of common knowledge that the Hearts of fairly young animals, long after they have been cut out of the thorax, pick up their pulsations at once, and continue them for a long time, if they are gently stimulated with a small pin. Eels' Hearts, similarly stimulated with a needle several hours after they have been taken out, are seen to pulsate once more, since their spirits are entrapped and entangled in the rather viscous matter and are unable to escape so quickly.

But, to decide experimentally whether or not any ebullition of blood helped the blood's movement at all, it occurred to me to see if the Heart would continue its movement undiminished, after I had drawn off the blood, and had replaced it intravenously by an equal quantity of other fluids, less liable to become lighter or to froth up. With this object in mind I drew off through the jugular vein of a Dog almost half of its total blood volume, injecting instead through [p .67] the crural vein an equal amount of beer mixed with a little wine. This procedure I repeated several times in succession until, instead of blood, the fluid coming from the vein was merely a solution with less colour than the washings of meat, or than claret several times diluted. The Heartbeat, meanwhile, became only slowly more feeble, so that practically the whole of the blood was replaced by beer before life was replaced by death.

It is easier, however, to produce an experiment than to produce conviction, and I may therefore, perhaps, be allowed to add this one story, which was told me by a doctor of impeccable veracity. A youth of sixteen was troubled (for some unstated reason) by a large flux of blood, which lasted

THE MOVEMENT OF THE HEART

without cessation for two days, and no treatment or skill availed to check it. Friends and neighbours tried to restore him to fitness with broths: these he desired so much and consumed so greedily that the flux became progressively greater, and at last things came to such a stage that he had lost practically all his blood, and such as did still flow out [p. 68] was watery and pale, and had neither the character nor the appearance of blood; it was more like the broth he had so often swallowed than blood. For two days this watery flux lasted without change, the Heart meanwhile going on beating as usual ; then the flux at length came to an end, the Youth slowly convalesced, and thereafter developed into a strong, well set-up man.

Before, however, the door is finally closed on this subject, one must note that two observations of Harvey can be, and usually are, brought forward at this point by the opposition. These are, that the Blood has motion both before the Heart is formed, and also after it is dead, which easily shows that its movement is independent of the Heart. But the answers to these objections will be obvious.
r. Although it must be admitted that that little vital drop lodged in the little scar is stimulated by the broodingwarmth and expands, we shall, nevertheless, have to attribute the credit for this to the membrane which encloses it, for this membrane both checks and restrains it. When that productive fluid enclosed within the scar is warmed for a [p. 69] long time by the external heat, the spirits concealed within it expand in various directions. Some strike the enclosing membrane, and are entrapped; others distend the membrane to make room for their expansion. The membrane is unable to provide sufficient room to free itself from such tension, and contracts down on itself. As a result the fluid is put under pressure, and, seeking an outlet, makes a way for itself and forges out a channel. In such manner the very first beginnings of our life and threads of our body appear to arise. In addition, muscular movement depends entirely on contraction, and so we must consider the origin of this movement as beginning from the Systole of that vesicle, rather than from the ebullition or expansion of the spirits in that little drop of fluid. For the vesicle was in existence before the actual blood, and when, later, the fluid changes to

THE MOVEMENT OF THE HEART

blood and becomes activated, the vesicle is simultaneously seen to begin its movements. Pulsating from the very beginning, it is not only the receptacle for the fluid so [p. 70] converted into blood, but also its propulsive mechanism. By its effort and assistance the blood proceeds beyond the bounds of the little scar, and hammers out arteries to provide room for itself, and veins to bring back nourishment.
2. As regards the blood-waves in the vena cava after the death of the auricle, I think they occur through no intrinsic movement of the blood, but by local contractions of the vessels, caused by the passage of spirits in all directions down the nerves, and analogous to the long-continued tremulous movement of muscles after death, when the spirits are wandering at random within them. So much for this ferment pictured by some authors within the ventricle, particularly the left ventricle, of the Heart, a ferment which causes ebullition of the inflowing blood. We must now consider the next theory, put forward by other writers, who state that the Heart contains a sort of vestal Fire, which so heats the inflowing blood that it must immediately pass on out into the arteries. It is almost as if they think that every inflow of blood is warmed by the fire of the Heart and straightway [p. 7r] rushes out, as though the ventricles were alight and glowing with heat, and the blood ready to burst into flames at the first touch of fire, like gunpowder. How far this is from reality we shall quickly consider.

Apart from the fact that it is hard to imagine that the Blood becomes so rarefied that, on falling into the ventricles of the Heart at each diastole, it is broken up at once into its constituent particles, and shoots into the vessels, like lighted gunpowder (a property given to no fluid), there is also the fact that the Heart-rate is immediately increased by food and by moderately large draughts of fluid, while the chyle, which passes with the rest of the blood through the ventricles of the Heart, is as yet imperfect and therefore less liable to rarefaction.

I am so far from believing the movement of the blood to be dependent on any heating of it within the Heart, that I do not think it owes any of its heat to this organ. Although the Heart should, rightly enough, be acknowledged as the

THE MOVEMENT OF THE HEART

source of heat (and heat is carried from it to all parts of the body), it will not perhaps be any truer to say that heat is produced only in this organ, or that the blood is warmed only [p. 72] by it, than that the waters of hot springs receive their heat from the bath into which they discharge, and not from the intrinsic fire of the parts which they bathe and wash against in their passage in the bowels of the earth. For there is nothing in the Heart which is sufficient to produce so much heat. It is certain, in any case, that the Heart does not produce its own heat, but needs to be warmed just as it is nourished entirely by the blood flowing into it from the arteries. It is improbable, as Velthusius says, that there exists in the Heart a heat of sufficient intensity for this organ to produce by its activity and by its own heat so sudden and so powerful an ebullition of the blood which enters it: and the structure of the Heart is not so strong and lasting as to bear for so many years a heat of this strength. If we insert the fingers into the Heart of an animal during a vivisection experiment, we do not feel a heat of this intensity, and the pericardial fat could not solidify, as it does, under such circumstances.

The great heat of the blood must therefore be attributed to the Heart no more than to the vessels and viscera as a whole, and especially to those which are enclosed within the [p.73] thorax and the abdomen. For, while the blood is cooled in the extremities, where it is exposed, practically without covering, to the external air during its passage, it is equally certain that it warms up as soon as it enters the enclosed cavities of the thorax and the abdomen. It is thus that fat, well-covered men, whose blood-vessels lie more deeply and are buried in flesh, are better able to withstand cold than thin men, although the Hearts of such excessively fat men are not so active and strong as are those of men, who are more slender and thinner.

The blood is, therefore, entirely responsible both for the heat of the Heart itself, and for the activity and life of our bodies, which its heat produces. Nevertheless we admit that, though nature has not given the Heart greater heat than other Muscles, yet, in so far as it is ceaselessly and continuously in movement in so confined a place, it is endowed with more constant and active a heat than the other members of the body. Hence, perhaps, on this account, by contact with

THE MOVEMENT OF THE HEART

[p. 74] itself, it does warm and heat up to a somewhat greater extent the blood which it receives.

Now that these matters have received due consideration, I think it is clear that the movement of the Heart does not in any way depend on ebullition of the blood, nor the heat of the blood on any fire within the Heart.

But we are certainly warmed by a fire that is more than fictitious or metaphorical, and so it would be worth while in the next place to explain at somewhat greater length how the blood itself becomes heated and in its turn provides warmth for the whole of the body. However, since this would be outside the plan of the present work, and I also understand that the learned Dr. Willis is giving the matter some thought in his book on 'The Spirit, and also the heating of the Blood', I should not like to depart so far from professional courtesy as to forestall him in this matter.

The foregoing passages have established to our satisfaction that the movement of the Heart is independent of the blood; it remains to state next the instruments and devices by which it is accomplished.

These are of two kinds, the immediate, which are directly responsible for the movement, and the remote, which assist it.
[p. 75] Those which accomplish the movement are to be sought for on the spot within the Heart itself; for in that organ are all the parts ready and fitted for the production of movement within it, as is shown by the fact that no Muscle is better arranged than these parts. That it receives Spirits from the abundance of nerves which are inserted into it and which form a dense network all over its Surface, that it is strengthened by all kinds of fibres which make an intricate pattern with their ramifications, and that its base is surrounded by a tendinous border, is clearly seen ; and in the Heart of even a very small animal, where the structure of this organ can still be made out, there seems to be no one of these structures absent or missing.

This mechanical provision shows clearly that the Heart is definitely a Muscle, and has a movement exactly similar to that of the other Muscles. To explain more clearly, however, the movement of the Heart, we will begin with the more simple movement of a straight Muscle, and use this as a standard.

THE MOVEMENT OF THE HEART

The straight Muscle is composed of two bellies with a tendon attached to each, and, corresponding with this [p. 76] double structure, its movement is also double. The fibres of the two bellies end in opposite tendons, so that, while the parts to which the bellies are joined by the tendons seem to draw nearer to one another by one and the same action, this is, nevertheless, not accomplished by a single movement of the two bellies. For, even if they contract from opposite ends to the same centre, the two opposite bones or members to which they are attached only respond simultaneously to opposite contractions of the two bellies, and approach one another as a necessary consequence of this response. All muscular movement seems, therefore, to resemble in its execution the handshake of two men, which leads to their subsequent close embrace. Also, there exists no muscle with only one belly, or with fibres stretching in one continuous line from tendon to tendon, but each muscle is two-fold with fibres running to opposite ends, and so one might wonder in passing if the movement of any muscle may not more rightly be attributed to the opposed contractions of the two bellies, rather than to a simple swelling-up of the [p. 77] muscle. Nay further, if the movement of a muscle occurred through such swelling, what is there to prevent the fibres of any muscle (seeing they are straight and attached to one another only by the slenderest of membranous fibrils) from being parted from one another and torn asunder, at any rate until the separation leads to pain? In addition, a Muscle distended outwards by such swelling should be extremely noticeable, whereas the opposite is actually the case, namely, that a Muscle constricts down on itself at each movement, and gets smaller and harder. In other words, the character of its movement is exactly opposite to a process of swelling-up.

Further, if movement occurs through the conflict of spirits of different nature meeting in the Muscle, or through a mixture of air with animal spirit, why are all parts of the muscle not in a state of perpetual movement, as both components are continuously flowing into it? And what command has the Spirit over us, if it is responsible only for the impulse to movement, serves only to fire the tinder, and arouses a tumult which it will be unable to quell at will ?

THE MOVEMENT OF THE HEART

[p. 78] It is surely scarcely credible that things so antagonistic can exist, at all events in a well-ordered body, or can be united, without the spirit being able to control them.

We are not to imagine within ourselves the presence of a spirit so ridiculous that it is able, so to speak, to brandish a sword, to turn it hither and thither, to advance it and withdraw it, and is yet unable to sheath it at its pleasure. We are able to control our movements, and keep them within such bounds as we please; Muscles also seem to be designed so that they may accomplish their movements by the effort, and with the help, of fibres pulling from opposite ends. I do not see, then, why we should seek in so violent a source for the manner and cause of this movement. Let all this, however, be a passing reference.

It has previously been shown that the Structure of the Heart is analogous and similar to that of the other Muscles in the body in plan, if not in shape, and so it remains for me to prove that its movement also is similar, and is carried out in conformity with the general arrangement of its fibres.

The movement of any two-bellied muscle is effected in general by the fleshy fibres drawing the opposed tendons [p. 79] together towards a central point, and the Heart is also essentially composed, on the plan of the other muscles, of a double row of fibres facing in opposite directions-the outer ones stretching across from left to right and encircling the whole of the parenchyma in their folds, and the deeper ones being carried in the directly opposite direction-and so, since they draw the walls of the Heart more closely together on all sides, the intraventricular spaces must necessarily be greatly diminished and constricted. The process can, therefore, not unfittingly be compared with the wringing of a linen cloth to squeeze out the water, or with the closing of a purse by the traction of a double string in opposite directions. The fibres act in exactly the same way in constricting the Heart, and it is they principally which effect its movement.

Moreover, some of the fibres of the Heart are straight, but all the others twist round the apex and the whole of its surface in an oblique and contrary direction to end in spiral lines in its base. Hence these fibres not only compress and [p. 8o] diminish the intraventricular cavity, whenever they contract on both sides, but they also bring the apex nearer

THE MOVEMENT OF THE HEART

the base. For, however great is the effort of the fibres to pull the base of the Heart downwards, this latter rests on a support which is so steady and so strong that it cannot respond at all to their pull. Hence the only thing that can happen is for the movable part to give way to the stationary one, with the double result that the Heart-structure as a whole becomes more constricted, and its apex comes nearer to the base. This is very similar to what takes place, when in the popular sport a man hanging on a rope contracts his arms strongly and carries himself up aloft.

Moreover (to mention this in passing), every movement is effected by a contraction, and the fibres of the Heart are made solely for such a purpose, so it is also clear that the whole movement of the Heart is located in Systole ; and, as the fibres are overtensed at every contraction of the Heart, therefore, when that effort abates, the Heart relaxes again by a sort of movement of restitution, and is once more [p. 8r] distended by the inflow of blood from the veins. By no movement of the Heart, save one of tension-diminution, and the inrush of blood, its diastole follows regularly on its systole.

As a result of the examination of the heart's movement, that of the auricles is more easily understood, since the fibres which are common to both auricles and which stretch from one to the other are perhaps the mechanism which ensures that they both commence their movements together ; but some fleshy fibres are attached to the common tendon of the heart, while others are inserted into the fibrous ring next to the vena cava, and therefore, since their contractions are from opposite ends, they cause a shortening of the intervening space, and so in similar fashion expel the contained blood into the chambers of the heart.

That the movement of the heart, however, is accomplished by its own fibres needs no other evidence or proof than the fact that its ventricles differ from one another in their fibrous structure, as much as in their function and in the degree of movement necessary for each. A short and a long journey require different degrees of strength for their performance. [p. 82] So, according as the distance the blood is projected and propelled is shorter or greater, the ventricles are endowed with thinner or with thicker fibres, and the left ventricle

THE MOVEMENT OF THE HEART

greatly excels the right in the strength of its fibres, as it does in its work and importance. Yet, though the fibres of the right ventricle are much more slender and thinner than those of the left ventricle, it is not lacking in any set of these fibres; and it is not to be regarded as non-pulsatile because it beats less forcibly, nor is one to think of it as moving much less solely because of the nearness of the left ventricle. For, though the right ventricle is attached to the left, and contracts as a whole towards that ventricle at each Systole, thereby describing only half a circle in its movement, it accomplishes this by its own fibres, and not by the aid of the other ventricle. So far, indeed, is the left ventricle from helping in any way the movement of the right ventricle, that the side of the transverse septum which is next the cavity of the right ventricle is almost always (especially in smaller animals) flat and smooth; while the same septum, on the side facing the cavity of the left ventricle, is completely [p. 83] fibrous and hollowed out by deep trenches; a clear proof that the septum helps the contraction of the left ventricle only, as I have shown above.

It is abundantly evident from this fibrous structure of the internal septum that it is of great assistance in the movement of the left ventricle; and, indeed, it could not be otherwise, since this septum is part of the left ventricle, and its fibres are continuous everywhere with the general surface of the left ventricle and merge into it.

Further, it has been shown that those furrows and spaces hollowed out in the septum help the ventricle to contract down to a smaller size than would otherwise be possible, and hence it is obvious how inept is the statement that they help the passage of blood from one ventricle to the other. They are in fact completely impervious, and are designed solely for the function above described.

We have seen up to now how strong is the structure of the heart, how reinforced everywhere by fibres. It is our duty to see next what is the force by which it carries out its movements. No one, who denies that it vibrates extremely powerfully and forcibly, seems to understand really well its wonderful structure or to consider it with sufficient care. It [p. 84] is quite clear, not only from the great force with which the blood is ejected, but also if one takes the heart itself in

THE MOVEMENT OF THE HEART

one's hand, or inserts a finger after cutting off the apex, that its movement and contraction are extremely strong and forcible ; so much so that its Systole not only causes a narrowing of the intraventricular space, and expulsion of blood to a corresponding extent, but the heart vibrates strongly and violently, and the blood is driven out and expelled by the vigorous and powerful upward leap and activity of its walls. Indeed, while I may at least note here that Fernel, Forest, and C. Piso have described how a heart was once attacked by a spasm of such violence as to fracture the ribs, and each Systole could be heard in the street far away from the bed: further, how the patient's garments were agitated by the continuous pulsation of the thorax and heart as though by a fan, and the very thorax and sternum were displaced by the movement from their natural position and forcibly protruded ; there is also the fact that one can hear from afar the individual heart-beats in horses returning from a long ride. The blood is at this time being sent through the vessels [p. 85] with such force and violence that you can count the individual beats from far off, and can proclaim them as surely as if you had your finger on the artery. Indeed I have often noticed that, even with men who were not really strong, the curtains of the beds in which they lay were thrown upwards at each movement of the heart, and followed closely the rhythm of its beat.

This being the case, it will be fitting to inquire what impulse causes the heart's movement, and whence it is given such power or strength, that it can perform this movement without intermission throughout the course of life.

I should here speak of the ultimate way in which the heart's movement is effected, but, as it is over-difficult to obtain any due conception of this, and it is the privilege of God alone, who comprehends the heart's secrets, to understand its movement also, I will not waste effort in examining it further.

It will suffice, therefore, if I merely observe that the force and strength, by which the heart expels with regular, even [p. 86] beat the blood that falls continuously into its chambers, do not arise from anything within the heart, but come down into it from the head above, as if from heaven. The heart is, functionally, extremely important and necessary, and nature therefore exerts such care and solicitude in the

THE MOVEMENT OF THE HEART

execution of its movement, that, in addition to the important nerve-branches distributed thickly all over it, she has also prepared the cerebellum as a perpetual storeroom of animal spirits, so that there may be a continuous inflow of them into the heart. This organ is so dependent on their liberal and continuous inflow that, if this is cut off for even the smallest period of time, the heart's movement ceases there and then. If the nerves of the eighth pair are tightly ligatured in the neck, or are divided (which is much the same thing as far as the animal is concerned) it is remarkable how great a change suddenly occurs! The heart, which before beat quickly and regularly, begins to palpitate and quiver as soon as the ligature is applied; the wretched animal prolongs a weary life for a day or two to the accompaniment of hearttremor and excessive dyspnoea, and finally dies without warning.
[p. 87] The degree of cardiac distress which the animal soon feels as a result of such section or ligature is well shown by the rapid onset of convulsive movements, which are so pronounced and violent that it is difficult, without using strong cords, to keep the animal in the same place or position of the body.

The reason the animal does not die at once from the application of such a ligature is as follows. Besides the help afforded by the recurrent nerve, various nerve-branches are implanted, below the ligature, into the nerves of the eighth pair, before they send their offshoots to the heart. These branches come from the intercostal plexus below the entry into the thorax, and by their means spirits are supplied, albeit in smaller amount, to sustain the weakened movement, as long as the blood remains fluid and thin. The blood-fluid, however, commences to stagnate and to clot on account of the sluggish action of the exhausted heart, and so these reserves of spirits are not long equal to continuing the pulsation, and in consequence life finally becomes extinct through failure of this movement. These facts are so definite [p. 88] that I have no doubt the animal would at once faint and the heart cease to beat, if the nerves in question were ligatured a little below that communication with the intercostals. It is not easy to put this to the test, because the junction of the nerves occurs just below the clavicle, and near

THE MOVEMENT OF THE HEART

the larger blood-vessels, so that it can neither be seen by the eyes nor explored by the fingers.

It has been shown that the heart's movement is caused solely by the inflow into the nerves, with which it is abundantly supplied. I ought next to state the number of ways in which this movement undergoes variation and the causes of the same. The heart's movement, however, is greatly increased or decreased according to the general state of agreement and co-operation among the organs, and so I think it will be pertinent if I first show which are these organs, and what kind of assistance they give.

The nearest connexion of the heart is with the thorax and the lungs, and by that natural relationship their functions are mutually united, so that neither can move easily without [p. 89] the other, or long survive it; the lungs, however, function through no effort of their own, but only through outside assistance; hence the fact that they offer the air a free passage into the blood must rather be placed to the credit of the diaphragm and of the intercostal muscles.

Any internal obstruction in the pulmonary passage, or excessive external compression of the same, any prevention of, or hindrance to, the free contraction and relaxation of the diaphragm and intercostal muscles, therefore, affects in similar fashion also the movement of the heart. Affections of these organs, into which category fall such things as quinsy, lung abscess, internal swelling, pleural effusion, empyema, convulsive fits, immoderate and prolonged laughing, cause difficulty either by occlusion of the trachea or the pulmonary blood-vessels, or by pressure on the heart and lungs through their weight and size, or by opposition to the free expansion of the thorax in inspiration. They therefore alter the heart's movement in varying ways.
[p. 90] It would take too long, though, to explain the nature of each of these several maladies, or its secondary action on the heart. In so far, however, as the movement of the heart and blood is often seriously upset by distorted movement of the chest, especially of the diaphragm, it will be worth while to show what are the chief affections of this organ, and how they make their mark upon the heart.

Respiration is hindered by two things in particular, namely, laughing and hiccough.

THE MOVEMENT OF THE HEART

I. In laughing the diaphragm seems to be driven up into the thoracic cavity by the abdominal muscles forcing the viscera against it, and to give way to this force in jerks, as if with the object of driving air through the parts and so producing a laugh within the larynx. Hence, as the diaphragm is attached to the pericardium, it pushes and forces the heart and its base close to its own vessels, both in the region of blood-inflow and in that of blood-outflow. The doors of the heart being closed, there is, therefore, a [p. 9I] temporary intermission of the circulation. This is clear from the generalized venous swelling which occurs in the neck, face, and forehead. As soon, however, as the laugh finishes, and the return of the diaphragm to its proper level pulls the heart down, so that it can recommence its systole and diastole, the circulation is restored, and the venous swelling, which was previously visible while the laugh was in progress, disappears completely with the re-emptying of the vessels. It is quite certain that this is the case, because during too prolonged a laugh, especially in children (whom their nurses often incite to laugh far too long), not only does the face begin to get livid through superabundance of blood, which is prevented from returning, but in addition death itself sometimes follows these unwise practices, as the literature shows from time to time.
2. In hiccough (this is properly speaking an affection of the diaphragm-though it very often owes its pernicious effect and its origin to the stomach-and we can therefore at will imitate its convulsive movement, or prevent it for a time by holding the breath), as the pericardium is attached on all sides to the fibrous ring of the diaphragm, the latter must [p. 92] necessarily pull on the former when it contracts, and so disturb the heart's movement. And, although a brief upset like this does not annoy the heart very much, yet in malignant fevers, when it persists overlong, perhaps over many hours and days, it excites and tires the heart-muscle to such an extent that, after a wearisome bout of such disturbance, patients complain chiefly of cardiac pain and unrest. In addition the heart-beat is very weak: indeed, it is inevitable, with the connexion between the diaphragm and the heart, that spasm of the former should hinder their mutual functions. The diaphragm cannot be contracted so

THE MOVEMENT OF THE HEART

often and so violently, without at the same time dragging the heart down with it, and so upsetting the heart's movement by its antagonistic action throughout the course of the paroxysm.

But while it is true that the movement of the blood and of the heart depends entirely on the brain, as seen above, yet, so that such great advantages should not be thought to be freely conferred on one of them only, it will not be amiss to note in passing that, although the brain is master over all [p. 93] the organs of the body below it, as a king over his subjects, and rules and governs all at its will and command, it is not so placed above them that it can survive or have any power in the absence of their help and service. On the contrary, the animal spirits, and life itself, are so dependent on the continuous supply of blood to the brain, that every kind of suppression of this supply soon leads to syncope and unconsciousness, and, further, if such processes persist unduly long, the life of the animal ceases completely. The reason for this is simply that the animal spirits, through the constant inflow of blood, trickle down the nerves from the brain to provide for the continuation of the movement of the chest and of the heart, and must therefore be replenished by a constant supply of blood. So the brain, if deprived of its right and continuous contribution of this fluid, suffers a sort of eclipse, and the animal, robbed of sensation and movement, falls of its own weight; as one can see in those attacked by syncope.

On the mutual service rendered by brain to heart and heart to brain sensation and movement essentially depend. By the heart's movement blood is continuously sent to the [p. 94] brain and cerebellum for the production of the spirits. The spirits, in turn, flow into the heart through the nerves, and ensure it a perpetual and constant movement. The heart is responsible for the unfailing supply of spirits in the brain: the brain for the perpetual movement of the heart.

While, however, these two organs help and serve each other, so that neither can exist without the other, both are dependent in equal degree on the action of the stomach. The cause of our life consists essentially in the manufacture of chyle from food in the stomach, in the production of blood from chyle in the heart and its attached vessels, and, finally,

THE MOVEMENT OF THE HEART

in the passage of the purer and most delicate part of the blood into the brain. Many fluids are always leaving our blood, and there is a constant loss of blood-mass and of animal spirits. The vital heat must, therefore, be revived by continuous fresh blood, and nature has thus provided for the manufacture of chyle in proportionate amount within the [p. 95] stomach. This chyle replenishes the diminishing blood-fluid in corresponding measure. But this is insufficient in itself for the supply of chyle in due amount and measure to the blood. It is in addition of the greatest importance for the chyle first to be properly prepared ; for, if the chyle mixes with the blood in an unprepared and unpurified condition as a result of bad digestion, with the spirituous, active constituents not yet set free by fermentation, it will never afterwards become volatile or spirituous (just as, if you distill fresh beer or unfermented wine, you will only extract a crude, bitter fluid with a minimum of spirit). So, as it will be suitable neither for the manufacture of good blood, nor for the proper separation of spirits, the animal's economy suffers in turn from these faults of the stomach, and they redound next on the heart itself. Thus, when the stomach rejects food, or receives it but does not properly digest it, the heart-beat at once departs noticeably from its usual regularity. This one can see in persons of feeble constitution, or in those weakened by frequent intoxication.
[p. 96] These are the nearest-removed mechanisms and causes, by which the heart's movement is aided or altered. There remain others which are more local, and so to speak intrinsic causes, which alter or destroy the movement. This occurs in four ways in particular: I. By the fault of the heart itself; II. By the fault of the containing vessels; III. By the fault of the blood ; IV. By the fault of the inflowing spirits.
I. I must first speak of the factors resulting from the heart itself, and from its Pericardium.
I. It is not only requisite for the furtherance of the blood's movement that the two ventricles of the heart should correspond, both as regards the size of their chambers and as regards the number of their beats. It is also necessary, from the nature of the case, that the sides of the heart should be endowed with like strength to carry out this function of preserving a constant circulation of blood, and of driving

THE MOVEMENT OF THE HEART

this fluid everywhere in regular sequence and in due quantity through the vessels. From this it follows that, when any of these postulates is lacking, the blood's movement also must [p. 97] be considerably altered. But, as such an error of nature, through which the exact proportion between the ventricles of the heart is lacking, rarely or never occurs, there is no reason for us to speak further of it. On the other hand, the parenchyma of the heart is subject to various illnesses and disorders, and so its movement also must be considerably affected. If the parenchyma of the heart, for instance, is too heavily laden with fat, or suffers from inflammation, ulcer, abscess, or a wound, so that it is unable to pulsate and contract without great difficulty and hardship, or without serious inconvenience, its movement is greatly reduced, and it gives out what blood it can, though not as much as the rest of the body needs. The blood's movement also is, therefore, correspondingly feeble and slow.
2. Moreover, while the heart is sometimes troubled by its own internal condition, it is also occasionally oppressed from outside through some defect of its own or of its capsule. The fluid enclosed in the pericardium renders great service in lubricating the surface of the heart and in facilitating its [p. 98] movement; it likewise occasionally oppresses and floods the heart when it is in excess. For instance, when that envelope is full in hydrops Cordis, and the walls of the organ are compressed on all sides by the surrounding fluid to such an extent, that they are unable to dilate sufficiently to receive the blood, the heart-beat diminishes greatly, until at length it is completely suppressed by too great an outflow of fluid, and syncope and death result. A similar process can be seen in hydrops pectoris, where the lung is unable to distend sufficiently. The thoracic cavity is filled with water, and no room is left for dilatation of the lungs. Respiration becomes difficult and finally impossible for those thus afflicted, although they make the greatest effort to inspire, as I have often observed in such patients.

I may mention here in passing that, as an excessive amount of that fluid contained in the pericardium so hinders its movement, that it finally abolishes and suppresses the same, it is more likely that it follows on palpitation of the heart than that this movement, arising in the heart, is provoked

THE MOVEMENT OF THE HEART

by the fluid. What renders this more probable is the fact that this complaint attacks the healthy and often gives no [p. 99] warning, that it arises also from other causes, and announces its coming by no sign or token. This will be referred to when the complaint is further analysed below.
3. While the heart's capsule is stated to be of service to it on more than one count, serving, indeed, both for its moistening and for its protection from outside harms, it is also often injurious to the heart in more than one way. For, just as it injures the heart by accumulation of fluid within it, so, when this is completely absent, it approaches so close to the heart, that at length it adheres everywhere to this organ. Hence, as it is also joined to the diaphragm, it must combine and unite the heart's movement with that of the diaphragm. How great a hindrance and disadvantage this must be for both organs, I have shown above, and it will be still clearer from the following story.

The wife of a certain citizen of London, aged 30, healthy and active enough previously, became very dejected and melancholy during the last three years of her life, suffered from breathlessness on the least exertion, had a small and often an intermittent pulse, and complained almost continuously of attacks of pain and of great physical discomfort [p. IOO] in the precordium. She had at last become subject to frequent fainting-fits, and to loss of consciousness and chilling of the extremities on the gentlest movement of the body. No treatment was of any avail to her in this condition, and, her strength at length slowly exhausted, she died. When the body was opened, no abnormalities at all were visible among the abdominal viscera. While examining the other organs, however, we discovered a pathological condition of the heart, to which we may rightly attribute the cause of all her troubles. The thorax was opened and the lungs were healthy enough; the pericardium, however, had become closely attached all over to the whole surface of the heart, so that it could only with difficulty be separated from it. Further, this membrane had become thick, opaque, and hard, instead of being thin and transparent, as it should naturally have been. Hence, as there was no space for the free movement of the heart, and no fluid for moistening its surface, it is little wonder that she complained all the time of these

THE MOVEMENT OF THE HEART

ills. Further, as the diaphragm is always attached to the pericardium in man, when the heart itself was also united to [p. IOI] the pericardium, the diaphragm must of necessity have carried the heart down with it at every inspiration, and during that time must have held up and suppressed its movement. So the observed intermission of the pulse succeeded regularly at every inspiration.
4. But just as the heart's movement (as was stated just now) is liable to be suppressed altogether by increase of this fluid, so it is liable to be violently excited and disordered by other inhabitants of this capsule. Very often worms, born inside the capsule, cause great trouble to the heart by their gnawing, and reveal their presence by the quivering of the heart, distress, frequent intermission of the pulse, stinging pain, and syncope. This crowd of symptoms and animals I have often seen completely dispersed by two applications to the region of the heart of a plaster made of the leaves of artichoke, tansy, and common wormwood, cooked in a very little vinegar of white wine, and mixed with a little mithridate. So far I have spoken of the alterations which [p. 102] result from the fault of the heart itself, together with its pericardium.
II. While it has been shown that both ventricles of the heart must necessarily correspond, both in the volume of their chambers and in the rhythm of their beat, for the proper distribution of the blood to all the organs; the agreement between the vessels and ventricles must also be exact and their symmetry mutual. The heart, however, is the actual agent which, in driving the blood from itself, simultaneously fashions the vessels for its carriage; hence we cannot believe it possible that there is any organ where vessels were not simultaneously present. Therefore, as the blood-vessels are double and designed for diverse function, and assist the alternate movement of the heart and of the blood, it will be worth while to note how they are endowed for the purpose of helping both objects, or later how they can sometimes be a hindrance.

It is a matter of general knowledge that arteries were made to take blood from the heart, and to carry it to the whole of the body, while the veins, on the other hand, were designed to carry it back and return it to the heart: that

THE MOVEMENT OF THE HEART

the former vessels were provided with a thicker coat to [p. I03] withstand the force and rush of the blood, while the latter, in which the blood runs more slowly, were given a much thinner one.

But, while the blood-vessels were formed, from their very beginning, either by the blood thrown out by the heart, or by that returning within it, they can afterwards be changed by the blood in various ways, so as profoundly to alter the movement of the heart and of the blood. And, as the arteries are the functional unit nearest to the heart, it is right to discuss their failings first.

The trunks of the arteries, then, are endowed with a thicker and stronger coat, and so they are kept everywhere within their proper limit, when there is equally open access for the blood to all organs. When, however, their lumen is blocked and closed by some impacted matter, or they are obliterated and dried up by the wasting of the parts, or the channel of any particular one is compressed and constricted by any external body or circumstance, then, as the amount [p. IO4] of blood is proportioned to the body as a whole, and the force imparted to it by the heart is constant, whenever the blood's passage is hindered in any one artery, those arteries nearest to it and in association with it must sustain the rush of the expelled blood, and themselves take up the whole amount destined for this other artery. Hence it sometimes happens that, when the lumen of some artery has been too long obstructed or ligated, the blood busies itself in opening a wider channel for its passage in the neighbouring artery; and, until this happens, the movement of the blood in all the arteries around must of necessity be greatly accelerated and conducted with greater haste. The blood, impeded in its passage in this vessel, must drive and buffet all the more into the next ones, until it has considerably dilated them to give itself room.

Arterial obstruction anywhere produces in the remaining vessels the same effect as does arterial wasting and thinning. The ventricles of the heart and the blood are proportioned to the vessels as a whole; hence, if some organ or member of [p. I05] the body begins to waste away, the blood previously allotted to it must be applied to the other organs of the body; so its vessels dilate more, and carry a fairly large increment

THE MOVEMENT OF THE HEART

of blood. The learned Glisson very rightly attributes the large size of the liver and the head in spinal patients to the wasting of the other organs, and observes that the intelligence, as well as the brain, increases on account of the greater bloodsupply. For, when some part of the body wastes away and gets thinner, the blood which is usually allotted to that part must be sent to the other parts of the body; and, as no part of the body is less resistant, and more fitted to yield to the force of the blood, than the liver and the brain, these organs are easily distended by the inrush of a larger amount of blood, and become more massive and greater in size.

In just the same way also, when an artery is constricted or compressed, the course of the blood in neighbouring organs is accelerated as a result of the greater driving power. If, for instance, one cervical artery is ligatured, the pulsation in [p. 1o6] the opposite cervical artery, and also in both axillary arteries, immediately undergoes a great increase on account of the greater blood-supply. The extent to which constriction of even the smaller arteries is able to hasten the movement of blood in others, is obvious from the tight binding of the lumbar region which we employ to keep off cold. The reason for this is not only that it keeps the clothes closer to the body, but that, by preventing the blood from moving in the smaller, external vessels, it renders it more rapid in its flow and more abundant in the internal ones. Thus, those, who are naturally warm in the kidneys, will not suffer their clothes to be at all closely bound to the lumbar region, for fear they become too warm inside, through the diversion of the blood from its external course. Moreover, while constriction of smaller arteries is often beneficial or the reverse to the rest of the body, hindrance to the blood's descent through the trunk of the aorta a little below the heart [p. 107] can only be effected with very great disturbance and danger to the heart, since there is exact agreement between the vessels and the ventricles of the heart, and the amount of blood ejected at each systole is proportioned to the branches of the aorta as a whole. The blood due to the whole of the body, and proportioned to it in correct measure, cannot all be taken up by half of it, and must therefore flood the brain and heart; and, as it cannot be expelled from the heart for lack of space, the ventricles of this organ must

THE MOVEMENT OF THE HEART

of necessity be overfilled and choked up. This I have indeed often found in various dogs. I have opened the left side of the thorax, and, inserting a finger a little below the region of the heart, I have pressed the descending trunk of the aorta back against the spine. The dogs would resist with such struggling and howling, that they would almost tolerate more quietly excision of the very heart itself from the chest. But when I tried the same experiment in other dogs, after previous withdrawal of a large amount of blood, so that the organs above the point of compression were equal to taking the rest of the blood and had room enough for it, they suffered the application of my finger with scarcely any sign of annoyance.

While the blood, when impeded anywhere, dilates the [p. Io8] nearest vessels to provide for its passage, sometimes, either because of the weakness of the vessels, or because the blood is being diverted and drawn to some organ in greater amount than it requires, it so stretches and distends the vessels, which are giving it passage, by its additional amount and speed, that its inflow into the organs next this one is less in amount than is due. It is thus that the spine of those suffering overmuch from simple gonorrhoea, or from excessive uterine discharge, is so weakened that they are scarcely able to walk erect or to bend themselves in any way. This is not because the spinal medulla, or the nerves arising from it, by expending too much of their fluid (if such exists) on the testes or uterus, deprive themselves of that which is essential to them-they are not, nor can they be, so generous as some have foolishly suggested, for the nerve-fibres which are distributed to the testes are very few and scarcely visible -the reason lies rather in the fact that the expanded spermatic and uterine arteries deposit the nutrient juice of the blood in too great and unusual an amount in the testes and uterus. Hence they deprive the vertebral arteries, which are situated opposite them, of their blood, and the spinal [p. IO9] medulla also, which should be supplied by these arteries, of its nourishment. This is shown more clearly by the treatment ; for anything that compresses and constricts the spermatic vessels restores simultaneously and in equal measure the even distribution of the blood and the due tone of the parts.

Any obstruction or constriction of an artery renders the

THE MOVEMENT OF THE HEART

movement of the blood more rapid in the neighbouring parts; when, on the other hand, any blood-channel is opened or completely severed, so as to allow free exit to the rushing stream of blood, because it could flow out more freely and rapidly through such an open door than it could be driven through the pores of the body, it flows in great amount to the part where resistance is less, and gushes forth by the freer way which is offered to it, with the result that the pulse is much diminished in the neighbouring parts in correspondence with the diminished inflow. From this one can best explain why section of arteries helps so much in alleviating pains, inflammations, and many such symptoms, that it [p. IIo] always seems to afford immediate relief. This is so because the blood, which is expelled from the heart through the arteries, circulates with some trouble and difficulty through the pores and body-structure. Hence, when it has got a free and unimpeded pathway, it all rushes out and overflows at once in a torrent, and in consequence its rapidity and pulsation is much diminished in the neighbouring vessels, emptied and deprived as they are of their accustomed fluid. This process is akin to that which occurs in a river, which is divided into two streams or rivulets and runs peacefully and steadily along in a flat country. If the bank which previously held in one stream, breaks down and this stream bursts headlong from its channel, it not only causes an outflow from the stream opposite the breach, but in addition the level of the neighbouring stream to which it is joined by various ditches and brooks (like so many anastomoses), sinks at once, and its current is slowed. Each stream has found an easier outflow, and runs out through the freer channel. A process exactly similar to this occurs in the vessels of the body. At any rate I have found that, if the cervical artery of one side be opened, the pulse in its fellow of the opposite side is at once greatly diminished; similarly, [p. III] if one crural artery is perforated, the pulsation of the artery in the opposite leg instantly becomes very much less.
We have seen up to now how potent are the dilatation, constriction, and amputation of an artery in altering the movement of the blood; it remains for us to demonstrate that the same can occur on the venous side.

While it is of less importance for me to explain the causes

THE MOVEMENT OF THE HEART

of venous dilatation than the alteration of the blood's movement effected by such dilatation; I must remark that veins are chiefly enlarged either through the compression of some organ, or through abundance of blood, or (whether it be due to the weight of the blood itself, or to a relaxed tone of the veins, or to the heart propelling the blood with insufficient force) through difficulty in its return. Therefore, in pregnant women, through the pressure of the uterine mass on the vena cava and both iliacs in the pelvis, and through the increase of blood and fluids and the difficulty of their upward movement from the lower organs; and, in those of a sad and melancholy disposition, through the slowness of the heart's [p. II2] movement; the veins of the tibiae are often distended to form large varices. The blood, through obstruction to its return, or through insufficient propulsion from behind, is delayed overlong in the lower veins, and distends them finally by its weight and mass, to provide more room for itself. So, when the patients go back to bed, or, in the case of the pregnant women, when they are delivered, these veins immediately empty because of the easier return of blood to the heart. When, however, they have been too long accustomed to this increase in size, they cannot easily recover their former tone or contract, so as to prevent the diversion of blood from the heart and vena cava, and not seriously disturb the regular, orderly circulation of the blood. A defective pulse and languor of spirit are thus the sequel to over-dilatation of these veins. I made careful observations of this condition not so long ago in a countryman about forty years of age, and almost worn out by long-continued melancholy. He was troubled with a varix or venous dilatation on the anterior surface of the left tibia, which was so large that the swelling stretched like a large sausage from the malleolus [p. II3] to the knee, and was a very considerable impediment to him in walking. As far as I could estimate from the size of the swelling, it contained almost two pounds of blood. Yet, when he lay down on the ground and raised his tibia, or when he exerted pressure with his hand on this bag of blood from below upwards, the swelling slowly subsided through the transference of blood to the crural vein and to the vena cava. When, on the other hand, he stood upright again on his feet, the bag soon rose to its former size, and

THE MOVEMENT OF THE HEART

this must have been due to inflow of fresh blood. As, however, he complained of weakness in addition to the annoyance of this heavy weight, and of marked listlessness when the swelling lasted a little overlong (which I think must be attributed to the retention of blood and undernourishment of the heart), I advised him, as a preventive of both evils, to keep the tibia always compressed with a pretty tight halfboot or bandage, and to apply an astringent plaster. By these means he was definitely relieved for the future.

But, while venous dilatation anywhere diminishes the movement of the heart very appreciably, by diverting the [p. II4] due supply and inflow of blood, just the same trouble affects this organ, where veins are confined in so narrow a space, that they do not allow a sufficiently free passage to the blood. In very fat animals compression of the veins by the excessive mass of adipose tissue prevents the blood from being supplied in proper amount for the continuance of the heart's movement; hence it is apt to stagnate and clot in its vessels and in the heart, and so renders the animals liable to sudden death (especially such as are not endowed by nature with a strong, robust heart). Moreover, while compression of any vein, albeit rather a small one, makes a certain difference by preventing the blood's movement, the more and the larger their vessels which are blocked and constricted, the more immediate is the danger threatening the heart. Compression of the aorta a little above the diaphragm causes an accumulation, in the upper organs only, of the blood due to the whole body and accurately apportioned to the vessels as a whole; it therefore brings [p. II5] ruin and calamity to the head and to the heart. If, on the other hand, the vena cava is tightly ligatured a little above the diaphragm-where it passes towards the heart in a trunk which is free and unconnected with any other organs -so that the passage of blood through it is instantly suppressed, the amount of harm this means for the animal can scarcely be told. For, though it reveals no feeling of pain or torment by struggling or howling as a result of the application of the ligature to the vein, it nevertheless soon begins to weaken, and to become exhausted to such a degree, that it can scarcely stand on its feet. Indeed, I once saw a rather fierce mastiff not so much prostrate himself as

THE MOVEMENT OF THE HEART

tumble and fall on the ground, as if he had been altogether deprived of life. The reason they bore so differently and so quietly ligature of the vena cava, while they were extremely upset by compression of the aorta, seems to be nothing but this. When the vein is ligatured in that spot, the blood due to the body as a whole is chiefly expended on the lower part of the body only. Hence the head is deprived in great measure of its life-giving inflow, and is so unable to impart [p. II6] spirits to sustain the heart's movement, that both organs necessarily become much feebler and weaker in their actions, and this happens painlessly to both. On the other hand, when the aorta is compressed above the diaphragm, the blood, which is in large measure destined for the lower portion of the body and for the abdominal viscera, is all poured into the upper and smaller portion of the body. This portion is quite incapable of receiving it, and so must necessarily be oppressed and choked by the excessive amount of blood. As this quickly causes great disturbance to the brain and to the heart itself, the animal is annoyed in the way described, as soon as pressure is exerted, and makes every effort to get away. The experiment is noteworthy in more than one respect, and hence I think it will not be amiss, if I describe at this point the operative technique. The right side of the thorax must be pierced between the seventh and eighth rib, a little below the level of the heart. Then a finger must be inserted to feel the position of the vena cava, the right side of the chest pushed as near to the vein as possible, so that a string may be more easily passed round the vein, and the ligature must be drawn tight at this point within [p. II7] the chest. The chest must then be relaxed and the wound sewn up. When the experiment has been completed, the dog soon becomes very weak, and dies within a few hours. Further, when the abdomen is opened, one sees a large quantity of serum within it, as if the animal had suffered long from ascites. I had previously found that this fluid was secreted as the result of an interrupted circulation of blood from arteries to veins; for not long before I had passed a string under the jugular veins in a dog and ligatured them tightly; after some hours all the parts above the ligature were remarkably swollen, and within two days the dog died with all the appearances of suffocation by a quinsy. All this

THE MOVEMENT OF THE HEART

time not only did its tears flow rather plentifully, but a large amount of saliva also dribbled from its mouth, as if the flow were being stimulated by a dose of mercury. When the animal was dead, I separated its skin from the swollen parts, and thought myself to find the swollen parts distended by extravasated blood. What had happened was quite otherwise, since I was able to see practically no trace or [p. II8] colour of blood. On the contrary, all the muscles and glands were obviously very greatly distended and rendered highly transparent by a clear serum. This definitely proves that serum is secreted whenever the blood is unable to pass from arteries into veins, because it has, as in a filter, paths which are more open to it, and pores adapted to its form and more suitable for it to flow into. The thicker part of the blood, however, is unable to pass through at all, as it is too gross for these paths, and it is therefore forced to stagnate within its vessels. I leave it to others to judge how far these findings help in the investigation of Ascites and of anasarca ; one point only I must note, namely, that ascites does not always, if ever, result from rupture of lymphatics. I have dissected very many sheep, which had died of hydrops pectoris and abdominis, and I have nowhere seen lymphatic vessels more swollen and full than they were everywhere in these animals. So, if any one intends to write a complete account of the lymphatic veins, no bodies will afford him better material for the scheme he has in view.
[p. II9] Up to now I have shown how the movement of the heart is affected through the fault of that organ itself and of its vessels.
III. We have next to explain how far the blood may be regarded as responsible, and by what defect in it the heart's movement is impaired.

It disturbs the heart's movement in three ways in particular:
I. By solidification and coagulation.
2. By being present in excess.
3. By being present in subnormal amount.
I. The movement of the heart is changed by the blood when it is coagulated and congealed, either by mixture with a foreign substance, or by withdrawal of its own constituents,

THE MOVEMENT OF THE HEART

so that it completely closes its own path and passage. This sometimes happens in plague and in poisoning, and as a result there follow those very serious symptoms, namely, heart-trouble, tremor, palpitation, intermittent pulse, and finally syncope and sudden death. All these I once sawnot without great compassion-in a fair-sized mastiff, after injecting into the crural vein half a pound of moderately warmed fresh milk (for the sake of a test). I had previously withdrawn an equal quantity of blood to make room for the [p. 120] milk. Scarcely half an hour elapsed before the animal was affected by very great internal unrest, cardiac oppression, and convulsive movement of the diaphragm (to accelerate the circulation of blood). Soon after there followed rapid palpitation, tremor, and very deep sighs, and finally it died of syncope amid pitiful cries and wailings. In the post-mortem examination I soon saw that the vena cava, both ventricles of the heart, the pulmonary vessels, and the aorta, were filled with a solid mass of milk and blood; and so closely was the blood united throughout with the milk, that it could not easily be torn apart or separated by the fingers. I have no reason to doubt that the coagulation occurring in plague is similar, as it manifests itself by exactly the same signs and symptoms.
2. The setting and congealing of the blood-mass causes cessation and suppression of the heart's movement by blocking its own paths in the vessels and in the heart. At the same time, if the blood is present in too great an amount, or is swollen by an undue quantity of serum or of chyle, it [p. I2I] sometimes so fills and overburdens its vessels and the ventricles of the heart, that they must necessarily be over-distended, and cannot, moreover, contract adequately. They are, therefore, completely overwhelmed by their excessive content of blood. Thus constant choking is common in men who always feed luxuriously and fully, and especially in drunkards, unless the blood-vessels are emptied by a copious and timely venesection, and some part of the intoxication is removed by clysters, so that the circulation may once more be unimpeded.
3. A plethora of blood, then, causes choking and oppression of the heart's movement by overfilling the ventricles of the heart and its own vessels. On the other hand, when there has

THE MOVEMENT OF THE HEART

been so great a loss of blood and emptying of the vessels, that the blood only excites the ventricles of the heart without adequately filling them, the heart often works in vain and at length ceases to move. Such often happens in profuse haemorrhages, and in long-continued fasting.
IV. Let it suffice to have shown hitherto how much the heart's movement is changed by the heart itself, or by its vessels, or by the blood. It remains for me lastly to explain [p. 122] how its movement is changed by variation in the inflow of spirits.

The orderly movement of the heart depends on the due inflow of spirits through the nerves, and so the movement of the heart will be very greatly changed by variation in their inflow.
I. The movement of the heart is accelerated in violent exercise in proportion as the blood is driven and poured into its ventricles in greater abundance as a result of the movement of the muscles. The heart must pass on the blood as fast as it receives it, and so it distributes it in larger amount to the brain as well as to the other organs. To discharge a mutual obligation, the spirits are likewise sent out in larger amount to hasten the movement of the heart. In fevers, also, the movement of the heart is remarkably accelerated, not because the blood boils out fiercely into the aorta, but because its heat and feeling of warmth is inimical to the ventricles of the heart, and, transmitted to the cerebellum, excites the spirits to quicken the heart's movement for its [p. 123] expulsion; partly, too, because some very fierce, uncurbed portions of the blood are deposited in the brain, and stir up the spirits dwelling there to a state of excitement: just as the movement of the heart is surprisingly increased through drinking good wine or any highly spirituous beverage, because the spirituous portions are distilled in large amount from such liquids into the brain, and excite the spirits dwelling in the brain to similar disorders.
2. The movement of the heart is diminished in large haemorrhages, fastings, long-continued illness or grief of any kind, prolonged lassitude, fainting disorders, and malign fevers: inasmuch as the blood, through deficiency in total amount, or through lack of fresh food, or through the ravages of long-continued fever, or its constitutional weakness, is

THE MOVEMENT OF THE HEART

so far degenerate and impoverished that its exhausted, effete, or aged mass is quite unequal to the distillation of spirits for the brain. Hence, through the incorrect nature of the spirits, or diminution in their due inflow, or deficiency, the heart must necessarily reduce its movement, until the [p. I24] blood increases in amount, or is renewed by fresh food, or is more perfectly compounded.

These effects are only indirectly due to the brain and to the spirits. I must next show how the movement of the heart is changed through the fault of the spirits themselves.
3. It is perverted in emotional states, such as anger, joy, and sudden fright, when the spirits fly to the heart in excessive and unwonted amount or with a greater rush than usual, accelerate its movement very greatly, and excite and convulse it with bounding movements that are sometimes terrific. This condition writers have from time to time called by the diminutive term palpitation, not perhaps giving it adequate consideration; but actually the heart-muscle is subject to the same ills as other muscles, just as it performs work identical with theirs. It is equally liable to spasm and to convulsive movement, and is much more often attacked by such conditions. In so-called palpitation (which is really a convulsive movement) the heart is often seized by a systole so violent that it has been known to move the very ribs from [p. 125] their place, and to fracture them. Further, like other spasms, it is excited by the same causes, and recurs periodically; and, while those so seized usually advance the plea of sudden fright or anger, they fall once more into the same plights for any cause similar to that which first excited them. For, when the spirits have once been driven into tumult and confusion, and have been carried too hurriedly to the heart, they will thereafter adopt the same path and movement, and will cause a similar spasm to attack the heart, when they are equally excited by any cause, however trivial. This can be seen in those subject to so-called palpitation.
4. The spirits, then, in the brain and cerebellum sometimes overstimulate the heart-muscle, when they are driven to disordered activities. When, on the other hand, they are carried off and drawn away in another direction, this muscle is often contracted so tightly and firmly that it has no diastole for a long time. Hence nothing is more usual than

THE MOVEMENT OF THE HEART

for women who are affected by hysterical emotion or by epilepsy to complain very much, as the paroxysm gets worse, of spasm and constriction of the heart (as if it were being [p. I26] compressed by the hand). If at this time you apply a finger to the artery, you will not feel the least trace of a pulse. Similarly, when the paroxysm is over, they complain of great cardiac trouble and oppression, because, owing to the impeded movement of the heart, the blood, which collects and piles up within it, oppresses it with its weight and overburdens it. For this reason most epileptics strike and beat upon their breasts repeatedly while the paroxysm lasts, in order to stimulate the heart to movement, and to prevent the blood from clotting. Because, if the paroxysm lasts too long, there is danger of the blood clotting to such an extent that the heart will never again be able to loosen it or to shake it free. Hence too long continued epileptic paroxysms often end in death.
5. While the heart's movement ceases awhile when the spirits are drawn off elsewhere, it fails completely when their inflow is altogether cut off: as in Apoplexy. In this complaint the whole of the medulla oblongata is apparently obstructed at one and the same moment, and in like manner the whole [p. 127] nervous network arising from it suffers eclipse. The heart, together with the rest of the body, is completely deprived of sensation and of movement, and rests from its labour, until perhaps the paroxysm ceases, a very rare happening in this complaint.

As it is evident, from what has been said above, that the heart's movement depends on external influences, and undergoes various alterations in sympathy with the other organs of the body, I must next show what affections and symptoms follow on the various disorders of its movement.

The changes which occur in its movement are manifold and various, and so the other organs most in sympathy with the heart share its injury in various ways. And, as nothing is so nearly related to the heart itself as is the blood, and there is nothing on which the brain depends more closely, so there is nothing which causes disorder or failure of the heart more rapidly than the blood or the brain.

The troubles and symptoms which are induced in the blood-fluid are two in particular.

THE MOVEMENT OF THE HEART

I. If the heart's systole, which shakes up the blood-fluid and dashes it against the sides of the ventricle and the walls [p. 128] of the vessels, delays a little too long, the nutrient juice of the blood begins to separate into parts, to pile up and thicken like jelly, and finally to be caught up among the cardiac fibres hanging here and there, to adhere to the very walls of the ventricles, and to harden by the heat of the heart; and oftentimes to increase to such an extent as almost to fill both chambers of the heart, and greatly diminish its movement. Thus it is usual and customary in patients suffering from wasting diseases, poor constitution, or scurvy (as their pulse is weak and intermittent), for the ventricles of the heart and all the blood-vessels to be stuffed almost full of clotted chyle. This I have often seen in many such after death, and in those exhausted by long illness, especially if they have become bed-ridden by such weakness. It has, indeed, been cause for wonder that the heart contracted at all, or that the remaining blood, which was still fluid, was able to penetrate within those vessels to preserve life and warmth in the organs of the body. I once, for instance, saw [p. 129] in a patient, who died of wasting at Oxford, and who was often subject to fainting a little before his death, that the entry into the right ventricle was so closed up by such a fleshy clot, and the clot had become so tightly fixed among the tricuspid fibres, that a passage scarcely large enough to introduce a goose-quill remained for the blood-inflow. The left ventricle, moreover, was closed up in almost identical fashion, so that the entry into the heart could with difficulty be disclosed by the fingers. Such clots I have seen so changed to flesh that I have noticed large numbers of veins and fibres within them; when I dissected these into small pieces, they poured out blood as if some organ of the body were being incised; showing clearly that the nutrient juice within the blood provides food for the organs, since it was thus fitted, not only to change within its vessels into tissues as such, but also to assume the very colour and structure of flesh. The cause of this coagulation seems to be as follows: the heart's movement is feeble for a long time, and the patient is simultaneously bed-ridden; as a result of this horizontal posture of the body the blood is carried along at a slow rate, and [p. I30] because of such slowness and delay in its movement

THE MOVEMENT OF THE HEART

(especially as the nutrient juice in the blood is highly viscous) it gradually solidifies, and assumes a shape which varies with that of the heart and containing vessels. Hence it has occasionally been taken for a polyp of the heart, a worm, or a serpent. From these facts it is obvious how useful exercises and movements of the body are as an aid to health; for the more often the blood is shaken up within the heart and thrown against the walls of the vessels, and is moved and activated in the body by contraction of the muscles, and finally driven through the pores of the body; the more must it be thinned and freed from those stagnations, to which the nutrient portion of the blood is otherwise over-subject.
2. While stagnation and clotting of the blood are induced by a small, weak movement of the heart, the mixture of the blood is best maintained, on the other hand, when the heart's movement is vigorous and strong. But, if the movement becomes violent, the blood-fluid is very greatly thinned as a result of the extreme shaking it receives, and hence sweating occurs on exercise, bathing, and dry or steam [p. I3I] sweating-baths. If this excessive activity is occasioned for too long a time and to an undue extent, the blood is deprived of its means of transport through loss of serum, and is rendered unfit for circulation; and the heart itself becomes tired in its work through the loss of spirits. As a result fainting and syncope occur.

These are the symptoms and effects which redound most directly on the blood itself through alteration in this way or that of the heart's movement. There are, however, other things which affect equally the organs containing the blood.
I. When the movement of the heart is weak and intermittent, it predisposes to such head affections as vertigo, scotoma, blindness, and fainting. The reason for these symptoms lies in the fact that the animal spirits and life itself depend on a continuous supply of blood to the brain. Hence, if the circulation is stopped for a little while, or the supply is insufficient in amount, then, because of the failure of blood, the head immediately becomes unsteady, the eyes are shrouded in darkness, and the whole fabric of the body [p. I32] is liable to fall flat on the ground. For this reason we lay those affected by syncope on their backs on the ground, so that they may the more quickly be restored to

THE MOVEMENT OF THE HEART

life; because, though the heart is weak, it will nevertheless be able, in that posture, to propel the blood to the head along a fairly horizontal course, although it was unable to send the blood thither in the erect position of the body. Through the inflow of blood, sensation and life are restored, and that likeness of night at once disappears.
2. On the other hand, when the heart's movement is accelerated, and blood is supplied too rapidly to the head, it causes headache by twitching and shaking the membranes, and it induces wakefulness by exciting and driving from their place the animal spirits, which have collected through sleep within the brain, and are resting, so to speak, from their labours. Perhaps in similar fashion to the way in which sleep soon attacks us beside a slow and gently-murmuring stream, but we are excited rather by fear and kept awake beside eddies and cataracts.

These are the chief effects which follow changes in the heart's movement as one's shadow does one's body. It remains next for me to show how the blood-flow is changed [p. I33] according to variation in the position and shape of the body, and the result of such change.

The inflow of spirits into the heart (as stated above) varies according to the variety of animals; and similarly the bloodflow undergoes a difference according to the diversity in position and shape of the body. It is an undisputed fact that the return of the venous blood is the result of the impulse given to the arterial blood, and not of any attraction by the heart. Hence it is easy to imagine how much the position of organs helps in facilitating or retarding this movement. In man, standing upright on his feet, the blood from the jugular veins and the descending vena cava falls down into the heart chambers comparatively quickly and easily by its own weight (just as the veins in the hand are soon seen to be empty when it is raised, but swollen and full when it hangs down) ; but the blood which is in the lower parts and in the ascending vena cava is only driven and forcibly moved on towards the heart by the arterial blood, and this with greater difficulty and against its own [p. I34] inclination ; in the body lying flat on the ground, however, the blood returns with equal ease from both extremities. It will therefore be worth while to consider what is

THE MOVEMENT OF THE HEART

the position of a member in which the blood-flow is faster through that organ, and what is the effect of a quicker or of a slower circulation.

While night and day, then, and sleep and waking hours, follow each other in mutual succession, the position of the body is erect or recumbent according to the needs of nature.
r. Thus in Man, standing upright, the blood flows down into the heart from the upper part of the body with practically no external assistance; and the blood is only driven upwards from the lowest part of the body with difficulty through the impulse of the arterial blood, and at times by the contraction of the muscles in exercise; and so the circulation of the blood in the upper parts must also be more rapidly effected than in the lower. This will be more clearly seen later.
2. In the recumbent position of the body, however, when it is at rest from movement, the circulation of the blood through the extremities is carried out more rapidly or more slowly, according to their degree of elevation above the rest of the body.
[p. I35] The effects and disadvantages which a quicker or slower passage of blood leaves behind it in the organs are two in particular.
r. An accumulation of serous fluid.
2. A diminution of vital heat.

These affect chiefly the extremities of the body (the feet and the head).
I. In the feet, especially of sick persons and of those who are unable to indulge in proper exercise, the blood ascends with some difficulty (in the erect position) towards the heart, and through its stagnation and delay in passage it distends the smaller capillary vessels by its bulk, and accumulates in this position of the body. Hence come oedematous, dropsical swellings of the feet. The proof of this view is that when these persons go to bed, and lie down with their feet at the same level as the rest of their body, this serum is reabsorbed into the venous blood in its circuits, and so the parts are again emptied and before the next day the swelling completely disappears.
2. In addition to the collection of fluids and the slower [p. I36] circulation in the lower organs, there ensues also

THE MOVEMENT OF THE HEART

a diminution of heat ; though we feel less cold in the daytime, because the blood is well propelled as a result of exercise and of walking, and hence the way is open for fresh blood, newly forged on the heart's anvil. If, however, we go to bed and put ourselves at rest with the feet lower than the rest of the body, they will not begin to grow warm, until the bed is so arranged that they are at a higher level. The reason for this seems to be that the venous blood leaves the feet more rapidly in consequence of such raising, and the arterial blood therefore flows in more freely and in greater abundance; with the latter heat is restored to the part.

This is so usual in the majority of comparatively coldblooded men, whose blood is over-rich in serous fluid, that sleep only creeps over them, owing to the feeling of cold, when the bed has been remade to raise the feet higher.

The feet, then, swell and grow cold owing to the over-slow return of venous blood. At the same time, if the head is too low during sleep, the brain reveals the presence of an exces[p. 137] sive amount of blood because, though this organ feels the cold less for its inclusion within the covering of the skull, the blood returns with greater difficulty from this position. Every one of those who sleep thus complains next morning of mental sluggishness, sleepiness, cold in the head, ringing in the ears, and swelling of the face. All of which troubles disappear by degrees after he has arisen, and the blood, reabsorbing those serous fluids in its passage, has carried them back with it to the heart.

As mention of sleep has occurred here in passing, it will be appropriate to show here in a few words the position of the head which is most conducive to healthy sleep. Inasmuch, then, as the human brain is completely destitute of a rete mirabile (to receive part of the serous overflow from the blood and to keep it from the brain), and the blood-vessels, although formed with a tortuous pathway to break the rush of blood, set it down unimpaired in the brain-as shown in Plate 5, Fig. 3. In which
[p. I38] a are the two carotid arteries at their entry into the skull. $b b$ is where they pass through it in a twisting course. cc is where they discharge blood at the base of the brain, their mouths opening directly upwards.

THE MOVEMENT OF THE HEART

dd are the vertebral arteries at their entry into the skull. ee is the point where the two vertebral trunks join in one and go in a straight channel towards the carotid arteries to join with them by anastomosis.
-a comparatively serous and watery blood must of necessity flow into the brain, especially when the body is lying flat and the head is likewise bent backwards; as, further, the blood poured into the head in such a position does not flow back from the brain so rapidly and promptly as it does when we are erect, the brain itself, and in addition the whole nervous system, must inevitably be inundated by too much serum. This is proved to their cost by such as are subject to [p. 139] spasmodic complaints, hydrops cerebri, vertigo, paralysis, sluggish perception, and brain disease. For, if they go to sleep with the head lowered and on a level with the rest of the body, next morning, owing to the excessive flooding of the brain and nerves with serum, they complain at random and exhibit signs of vertigo, dimness of vision, cold in the head, tremor of the limbs, lisping speech, and swelling of the whole face. Moreover, they are often attacked during sleep by troublesome dreams or by nightmare, and the whole of the next morning seem to themselves to be sluggish, sleepy, and heavy; and they are scarcely able, if at all, to shake off their sleepiness for a long time afterwards. On the other hand, those who go to bed with the head at a higher level have a pleasant and restful, though shorter, sleep, because in that position the blood and its serum flow down from the brain comparatively easily through their own weight ; and next morning they awake much more active and vigorous, and are more alert and ready for every kind of work and occupation.

It will not be amiss to remark here in passing on that very bad habit common to some people, who indulge in heavy drinking late at night (a time at which, especially in large [p. 140] cities and in universities, they are most free from studies and business). Nothing can be more pernicious and harmful to the brain than such procedure. Owing to the recumbent position of the body, the urine secreted by the kidneys does not pass down the ureters into the bladder so easily and so quickly as it does when we are erect (though it

THE MOVEMENT OF THE HEART

cannot be denied that the ureters, like the oesophagus, consist of a muscular coat, and so serve not only to carry but to propel fluid, and can dilate or contract as needed). Further, the neck of the bladder is not so subject to pressure from the weight of urine in the recumbent position, and the bladder itself does not feel its burden so keenly, with the spirits collected in the brain and at rest in sleep, but, forgetting its duty, it sometimes becomes distended by a quantity of urine so great, that there is scarcely room to receive more. Hence this fluid flows back into the body as a whole, owing to obstruction to its downward flow through the kidneys and ureters; and, if purging does not occur next [p. I4I] morning, or if it is not evacuated by nocturnal sweating, part of it must be deposited within the brain ; and, by long continuance of such procedure, accumulate there to such an extent that it finally causes paralysis, tremor, hydrops cerebri, lethargy, or apoplexy. That this is really so I have often learned from the unfortunate and common experience of others; for I have many times seen large numbers of men, of otherwise faultless health, undergo a succession of attacks of such diseases through over-indulgence in this sort of life. In order to escape these evils, I should advise any one, who is unable to refrain from this habit of drinking, not to go to bed before he has satisfied himself that he has got rid of the greatest part of the ingested fluid via the bladder. This he will accomplish more thoroughly and quickly if he undresses, or slackens his clothing, and exposes himself cautiously to the surrounding air; for the prevention of perspiration and the constriction of the body so produced will increase the amount of urine to a remarkable extent. This is proved by the fact that the bladder passes urine more often and in greater quantity when the body is exposed to the air than when it is relaxing in the warmth of one's bed; hence, if [p. I42] one passes the urine which has accumulated throughout the night immediately one rises from bed, one will have to empty the bladder again (if the weather is cold and wintry), and will pass a larger amount of urine within a quarter of an hour of the last micturition, than had previously collected in many hours of sleep. It is just the same if one empties the bladder before going into the water to swim, for, despite this precaution, as soon as one is immersed

THE MOVEMENT OF THE HEART

in the cold fluid, owing to the contraction of the skin and the closing of the pores, one will once more pass urine in larger measure than before, though it had collected in the bladder for a long time.

As a result of this precaution (i.e. not going to bed before he had taken the trouble to pass a sufficiently large amount of urine) I have known a man prolong his drinking very often till late at night, and his life also for many years, and indeed, they say, to an active and vigorous old age.

But these remarks are by the way; and as the supine [p. I43] position of the body approaches nearest to the horizontal, it will be pertinent to show briefly also what inconvenience results from that position of the body in sleep. To make this clearer, I ought first to say that the brains of animals have a construction which varies with the difference in shape of their bodies, but the chief divergences are in respect of the sinuses and ventricles of the brain. In quadrupeds, which go along with their head down on the ground, the cerebellum lies a little above the cerebrum, and so the lateral sinuses which pass down between the two organs are also superior, and likewise the fourth ventricle, which lies under the cerebellum, is situated at a higher level than the other ventricles of the cerebrum.

In man, however, the head stands above the rest of the body, and the cerebrum definitely rests on the cerebellum (with the interposition, nevertheless, of the dura mater, the attachments of which to both sides of the skull are strong enough to prevent the cerebrum compressing the cerebellum by its weight), the lateral sinuses are likewise also situated at a lower level, and pass obliquely along the lower wall of the occiput on both sides before ending in the jugular veins. [p. 144] Hence, when the body is laid flat on a bed with the neck at a higher level than the occiput, the supine position it occupies must result in the blood going upwards to the jugular veins rather than flowing into them. So, through delay in its movement and circulation, the blood is continually arriving, but not so easily escaping, and therefore it forms those deep pits on both sides of the occiput. And, as a man usually goes to rest on one side or the other, these sinuses are always more hollowed out on one side than on the other. This is obvious to any one who looks at the inner

THE MOVEMENT OF THE HEART

side of the occiput on which the cerebellum lies. The idea that these pits are formed in the occiput as a result of hindrance to the return of blood, and the consequent swelling of the vessels, is proved by the following fact. The blood flows down freely enough from the longitudinal sinus, and above this sinus there is not the least impression caused by it on the skull, except in the lower portion, where it discharges into the lateral sinuses already mentioned. But, if such prevention of the return of blood can in time so affect a bone of this hardness, as to hollow out deep and tortuous [p. I45] pathways for itself within the bone, how much more may the blood itself and the serum flood into the brain, and exert pressure on it, though the veins receiving blood from the vein at any point do not all open directly into the sinuses, but pass for a short distance between the folds of dura mater, in similar fashion to the way in which the common duct enters the duodenum, or the ureters enter the bladder? In addition it is a very noteworthy fact that they have their openings directed, not towards the occiput (which would give the outgoing blood a straighter course to the lateral sinuses), but towards the forehead, away from which the blood is flowing. As a result the blood cannot-for instance, in laughing, convulsions, \&c.-be poured or driven back from the sinuses into the cerebral veins; but the more the sinuses become swollen with accumulation of blood, the more they prevent regurgitation of blood into the veins by pressure on the folds of dura mater. These points will all be better appreciated by inspection of Plate 5, Fig. 4. In this figure
aa is the longitudinal sinus opened $u p$.
b is its commencement near the cock's comb bone. The commencement is a blind end.
c is the point at which it discharges into the lateral sinuses. $d d$ are the two lateral sinuses.
[p. I46] e is the fourth sinus.
$f f$ is the place where all the sinuses empty their blood, outside the skull, into the jugular veins.
hhhh are veins carrying blood into the sinus on each side of the brain.
iiiii are their mouths discharging blood against the stream in the sinus.

THE MOVEMENT OF THE HEART

Plate 6, Fig. I shows the manner in which the lateral sinuses of the brain end in the jugular veins outside the skull. In this figure
a is part of the longitudinal sinus cut away.
$b b$ are the two lateral sinuses.
cc is the place where the lateral sinuses enlarge on either side within the occipital bone and hollow out pits in the bone.
dd is where they pass their blood outside the skull.
ee are the points at which the lateral sinuses, in their exit from the skull, communicate with the vertebral sinuses.
ff are two twisting sinuses hollowed out within the skullbone to prevent backflow of blood into the cerebral sinuses.
[p. 147] gg are two channels just outside the skull, through which the pituitary gland in the human brain discharges into the jugular vein of either side the fluid which it receives from the ventricles of the brain.
hh are the jugular veins.
But in whatever way the blood is checked in the sinuses or in the veins, the evil effect recoils at length on the brain, and therein amasses matter for future illnesses, and, so to speak, prepares the tinder for the spark. The serum which collects for such reasons among the convolutions of the brain stretches the pia mater until at length it either eats it away by its sharpness or ruptures it through its bulk. It flows down from here to the base of the brain, and injures the medulla and the nerves arising from it by forming a pool there, or irritates them by its sharpness. The results are hydrops cerebri, convulsions, and the accumulation within the head of the dread preparation for death. If, on the other hand, this serum is taken up by the brain-substance, it leads to paralyses, sluggishness of perception, lethargy, sleepiness, and other serious head-troubles.
[p. I48] Moreover, the fourth ventricle, lying under the cerebellum, is more on a slope and more deeply placed than the other ventricles within the brain, and even than the infundibulum itself: and so the lymph secreted by the choroid plexus into the ventricles of the brain flows into the fourth ventricle, which slopes down more than the others, rather than into the infundibulum. This is especially so if

THE MOVEMENT OF THE HEART

one goes to sleep with the head bent back; as a result of this recumbent position the afore-mentioned cavity is completely filled with fluid, and is so overburdened that a feeling of its weight is communicated to the precordium, and gives rises to cardiac oppression and nightmare. Almost all hydrocephalics, therefore, find it dangerous to sleep in a supine position. They are obliged to lie on one side or the other the better to avoid such injuries. Indeed, I knew one man who was formerly extremely subject to nightmare, though he was otherwise quite strong and healthy, and during the whole of two years he never slept on his back without an [p. 149] attack of that trouble. So much so that he had to take a manservant to share his bed. This man would turn his master on to his other side as soon as he heard groans and sighs, the usual prelude to the trouble, and this treatment always resulted in prevention of these attacks.

One may indeed see large numbers of new-born children unable to sleep long or quietly in their cradles, if they are subject to convulsive movements, but attacked by various spasms and twitchings of the limbs. The reason for this seems to be that their brains have an excessive amount of fluid, and, owing to the horizontal position such as exists in cradles, the fluid held in the ventricles of the brain flows into the fourth ventricle rather than into the infundibulum, on account of the more dependent position of the former. Hence it weighs on the medulla oblongata (whence arise the nerves of the precordium), and, by compressing this structure, hinders the passage of spirits into the nerves. As a result there follow heart-trouble and convulsions. This is the more [p. 150] credible, inasmuch as in the opposite position, that is to say, in the arms or in the lap of their nurses, where the head is held more upright, they sleep in comparative peace and quiet. I happened, moreover, to see the same thing in an Oxford graduate, who died four years ago of hydrops pectoris: this patient, in the last stages of his disease, could only sleep with his face flat on the bed and his head down. If he composed himself for sleep with his head resting flat on a couch, he always woke up within twenty minutes distressed by lack of sleep and by terrifying dreams. Indeed, he was troubled for a long time after waking by hearttremor and extreme cardiac oppression. When the brain

the movement of the heart

was opened after his death, the ventricles were found extremely distended with fluid, but no other abnormality of importance was seen in the whole of the head.

I am convinced by many experiments that no fluid passes down from the brain into any organs below. It will therefore be worth my while, before I lay aside the pen, to show the route and channel by which all the fluid, coming from the choroid plexus and the post-cerebellar glands, is carried and passed through to the ventricles of the brain and, through [p. 151] the infundibulum, to the pituitary gland, and then escapes outside the skull. Some time ago in a calf's skull I found that on injection of water, or of milk even, into the foramina, which are hollowed out in the skull bone to receive the serum from the gland, the whole of this fluid came pouring out of the jugular veins of either side. So all the fluid secreted by the brain in this animal finally overflows into the blood and is so discharged. This same fact I have recently found to be true in the human skull; for, although foramina never occur in the human skull-bone near this gland, yet the membrane on which it lies is pierced in many places like a sieve, and the fluid which passes through the holes is taken up eagerly by other vessels on either side of the so-called sella turcica, close to the ascending carotid arteries, and passes into the jugular veins on either side a little below the tortuous sinus. The channels of these vessels will easily be shown if water or milk is forcibly injected with a syringe into either of the jugular veins a little below [p. 152] the tortuous sinus; for it will soon be seen to burst out and gush forth in various places near the pituitary gland. A clear proof that any serum secreted by the brain is finally returned to the blood and mingles with it.

CHAPTER III

The Movement and Colour of the Blood

The rapidity of the circulation, and the difference between arterial and venous blood.

HAVING thus established the nature of the heart's structure, the source of its movement, the reasons for this movement's variation, and the kind of effects and symptoms such variations produce in the blood, it remains for me next to show how rapidly the whole of the blood circulates through the heart.
[p. 153] Whatever statements writers before Harvey made about the movement of the blood through the ventricles of the heart are so empty and worthless that they have already spontaneously disappeared into oblivion. And however much those of his successors who have accepted Harvey's discovery of the circulation affirm, under the necessity of that hypothesis, that the whole of the blood circulates through the heart, yet they have written about the rate of its passage and about the amount of blood forced out at any beat in such a way that I must think that they have not adequately considered the structure of the heart and its movements. For the majority of them give a few drops only, or a scruple, or one drachm, a few half an ounce, as the amount of blood expelled at each beat. I grant that, in various animals, the ventricles of the heart contain and eject more or less according to the difference in size of the animal's body; but it will be clear from what follows how ill-advised it is to state that so small a quantity is expelled at a beat in man or any larger animal.
I am convinced that the whole mass of blood is ejected [p. 154] by the heart not once or twice within an hour, but many times. To make this clearer, we must consider carefully how much blood flows into the ventricles of the heart each

THE MOVEMENT AND

time they dilate, and how much flows out from them while they are contracting. It is apparent from simple inspection that the ventricles dilate maximally in each diastole, but that in systole, on the other hand, the sides of the heart come together and are contracted so closely, that you can scarcely compress the small finger (introduced through the cut apex) more strongly with the hand itself. This is the reason I am absolutely certain that each ventricle receives in diastole as much blood as it can hold, and, on the other hand, expels completely in systole all that it has previously received. This is very obvious and clearly visible with the naked eye in the hearts and auricles of new-born animals, frogs, eels, and snakes. The hearts of these creatures are so completely emptied in any systole by the output of all their contained blood, that they appear quite white; but in diastole (when the blood flows back into them) their colour [p. I55] returns again. One cannot doubt that the same thing happens in the heart of larger animals, though it cannot be seen so clearly in them owing to the thickness of the parenchyma.

If one makes this assumption and counts the pulsations, it will not be difficult to calculate how much blood passes through the heart in an hour's time. Let us assume, then, that the left ventricle in a strong, healthy, human heart holds two ounces at one time, as the great Harvey observed (though I have observed it hold much more in some people). If the whole of that amount of blood is expelled by the heart at each systole, and the counted beats are two thousand within the hour (and this is, indeed, the lowest estimate), then the heart must eject four thousand ounces within the hour. This number of ounces makes three hundred and thirtytwo pounds: given, however, that there are twenty-five pounds of blood in this man (a greater amount than is conceded to most men by nature or by Anatomists, for they say [p. I56] that the measure of all the blood contained in the human body rarely exceeds twenty-four pounds, or is less than fifteen pounds), it will most surely follow that the whole of this man's blood circulates through the heart six times within a single hour. But as it is seldom that there is so great an amount of blood in a healthy man, or that the heart beats so few times in the passing of an hour, it is reasonable

COLOUR OF THE BLOOD

to believe that the blood in most people passes through the ventricles of the heart somewhat more often than six times.

It is so in all animals, provided they are in enjoyment of good health; but it must be supposed that the blood sometimes passes through the heart much more rapidly, for example, in fevers and in violent exercise, and during convulsive movement of the heart; for the beats are then far faster, and the blood is consequently ejected twice as often. On the other hand, the blood passes through the heart much more slowly in jaundice, scurvy, and other such diseased conditions, which cause slowing and irregularity of the heart's movements, or in cases in which the vessels and ventricles [p. I57] of the heart are blocked by means of chyle. Further, the pulse is liable to variations in respect of temperament, sex, and age, so that it is impossible to estimate and to define with accuracy the amount of blood which is ejected, and the circulatory changes. But it is clear enough from the very size of the chambers of the ventricles, and from the number of heart-beats, that the blood is carried along and passes through the heart in strong and healthy animals at a much faster rate than is commonly believed, or has yet been described. And it must definitely be so, if one properly considers the constituents of the blood, and their liability to separate and to clot, unless they are continuously stimulated by vigorous movement.

Let no one imagine, from what I have said, that part of the blood-namely, that which is carried along by the vessels of, or near to, the heart, and not very distant from its source -does not circulate through the heart much more quickly and more often than the rest, which is carried through the extremities. The very nearness of the vessels and organs proves otherwise. But what I do assert is that, although all parts of the blood are not carried along at the same rate [p. I58] or so often through the heart-chambers, yet whatever amount or quantity of blood is present circulates through the heart as often as I have stated above.

How quickly all the blood is distributed by the heart through the whole of the body can be most easily grasped by the very rapid passage through the kidneys of fluid which has been mixed with the blood. Two or three pounds of beer, taken into the stomach as a morning drink, are almost

THE MOVEMENT AND

completely passed by the bladder within half an hour, or sooner if the weather is cold. This fluid, moreover, formed for the most part only half of the blood carried to the kidneys. Is it not right, therefore, to say that four or six pounds of blood are passed from the heart to the kidneys through the two (so-called emulgent) arteries? But, if this large amount of blood passes in this very short space of time through vessels which are small by comparison with the others, it will not be difficult to understand how vigorously the whole of the rest of the blood-mass is carried along in the other regions of the body. This is still more obvious in those, who drink bitter mineral waters in quantities so large, that I [p. I59] have known some who have drunk almost two gallons of water in discrete draughts in a single morning, and they have passed almost all of it through the bladder within four hours. This amount of water is more than double the quantity of blood in most men, and it is likewise certain that it passed quite often through the two ventricles of the heart in common with the rest of the blood, before it could be secreted by the kidneys or passed by the bladder. For nature provides no other passage or route to the kidneys and bladder for any fluid from the stomach or intestine than that through the blood and the heart. But, if so much fluid (which, as stated above, is only half the amount of blood brought to the kidneys) passes through arteries of this calibre in so short a time, what, I ask, are we to think of the passage of the rest of the blood through all the larger vessels?

It is easy to show by experiments, without relying only on estimates, the rapidity of movement of this blood ejected by the heart. For, if almost the whole of the blood may flow [p. 160] out from an opening in one cervical artery within five minutes, may one not suppose that the whole bloodmass circulates through the heart in a much shorter space of time? When almost the whole of the blood escapes thus quickly through one arterial branch, how much more quickly would it flow out from the trunk of the aorta or from all its branches opened simultaneously?

But for the careful estimation of the blood-flow and its remarkable rapidity it will be sufficient to quote one single experiment. I divided both cervical arteries in a fair-sized dog, and at the same time I compressed the trunk of the

COLOUR OF THE BLOOD

aorta below the heart with a finger, which I passed through an aperture made in the left side of the chest near the heart, so that no blood should pass down the aorta; finally, I took care to constrict the brachial arteries below the axillae. As a result practically all the blood (except that passing through the vertebrals) was expelled from the heart by way of the cervical arteries; and, strange to say, it all flowed out within three minutes; so that it cannot be denied that the whole mass of it had passed through the heart in that time. One [p. I6I] may, indeed, see in cases of trauma, which involve section of any large artery, how brief a period suffices for people so mutilated to lose their life and practically all their blood. This blood, however, must all have first circulated through the ventricles of the heart.

But here I see it objected that the heart pulsates much more quickly, and therefore ejects blood much more rapidly, amid such woundings and torments. Yet, if the blood is held in check for a short while, after these incisions are made, so that all pain and fear first disappear-and this takes place rapidly in younger dogs, which are not so upset by, or so long mindful of, such lesions-the heart-beat is definitely not thus quickened and accelerated. And, though one must admit that the beat becomes more rapid, after most of the blood has escaped and the animal begins to weaken, yet that does not occur until all the vessels have been so emptied, that the blood which remains is insufficient to fill the ventricles of the heart. Hence, pari passu with the continued loss of blood, the heart-beat becomes progressively smaller and faster, until with the complete failure of blood-inflow the [p. I62] movement of the heart too ceases altogether.

It may, however, be objected that the blood flows out from a cut artery more easily, and therefore more rapidly, than it circulates through the body; since in the former case it is carried along in a free, full-rushing stream, and in the latter only reaches the veins through various windings and obstacles, and the narrow places and pores in the flesh-in the same way, perhaps, that a stream flows along in an open channel more quickly than it does when passing through a grating.

To this objection it will be easy to answer that, notwithstanding the narrow places of the viscera and of the body-

THE MOVEMENT AND

framework, the blood flows out from open veins almost as rapidly as it does from arteries, so long as the heart's movement is strong, although, granted, the rate of flow is not absolutely so fast in the former as in the latter case. Indeed, I have often found in dogs that if, as in the previous experiment, the neck is tightly ligatured and the trunk of the aorta compressed below the heart, so as to direct the bloodflow to the head, then, when one of the two jugular veins is divided, an almost equal quantity of blood will be drawn off [p. 163] from this vein in a given time as from the cervical artery, at all events until most of the blood is removed. But, after this stage is reached, it must be admitted that the heart's movement slackens on account of so great a loss of blood, and the remaining fluid flows out from the vein in smaller amount and more slowly, in correspondence with its more feeble expulsion from the heart.

If, however, this rapid circulation of the blood is accepted (and I think I have given sufficient proof of it), it will be evident that there is not so much difference between arterial blood and that contained in the veins, as is commonly supposed.

I have spoken elsewhere of the different returns of the two kinds of blood, and of the sources from which they are derived. I have also in the same place discussed their colourvariation, and the cause of this very noticeable difference between them. But as I relied more in this matter on the authority and preconceived opinion of the learned Dr. Willis than on my own experience, and confused too far the torch of life with its torchbearer ; as, too, the lapse of time has now [p. I64] taught me differently, I shall not be loth to exchange my former view for a better one. It is not my intention to attack the beliefs and opinions of others, or to bring scorn on myself by changing my own, but what is suggested by reason and confirmed by experience carries more weight with me and will always have my allegiance.

It is certain, then, that the difference in colour, which is found between venous and arterial blood, is quite independent of the heating of the blood in the heart (even if some such heating must be conceded there) ; for, granted that heating does occur chiefly in the heart, then, as the function of both ventricles is the same, and they do not differ in any other respects than, as stated above, in the strength and thickness

COLOUR OF THE BLOOD

of their fibres, why should the colour not undergo a similar change in the right ventricle? But it is quite certain that blood withdrawn from the pulmonary artery is similar in all respects to venous blood, and is only reddish on the surface. Indeed, it will be shown by a very convincing experiment that this fresh red colour is not conferred on the blood by the left ventricle either. For, if the trachea is exposed [p. 165] in the neck and divided, a cork inserted, and the trachea ligatured tightly over it to prevent any ingress of air into the lungs, then the blood flowing from a simultaneous cut in the cervical artery (or, at least, such blood as comes out some time after the asphyxiation of the lung) will be seen to be as completely venous and dark in colour, as if it had flown from a wound in the jugular vein. I have tried this fairly often, and the same truth is more evident still from the fact that the blood within the left ventricle of the heart and the trunk of the aorta of an animal, which has been strangled or has died a natural death, and in which air is prevented from passing into the blood, is found to be entirely akin to venous blood.

Finally, to abolish any possible room for doubt, it occurred to me to make an experiment on a strangled dog, after sensation and life had completely deserted it, and to see if the still-fluid blood in the vena cava would all return equally bright in colour through the pulmonary vein, after being driven to the right ventricle and to the lungs. So I drove on the blood, and carried out a simultaneous insufflation of [p. 166] the perforated lungs. The result corresponded very well with my expectation, for the blood was discharged into the dish as bright-red in colour, as if it were being withdrawn from an artery in a living animal.

I have shown that the bright red colour of arterial blood is not acquired through any heating in the heart or anywhere else at any time. In like manner also the dark colour of venous blood is independent of any extinction of its heat within the veins. For, if this were so, why should the arterial blood not take on a like colour after it has left its vessels, since it has now beyond all doubt lost its heat?

This being so, we must next see to what the blood is indebted for this deep red coloration. This must be attributed entirely to the lungs, as I have found that the blood,

THE MOVEMENT AND

which enters the lungs completely venous and dark in colour, returns from them quite arterial and bright. For, if the anterior part of the chest is cut away and the lungs are [p. 167] continuously insufflated by a pair of bellows inserted into the trachea, and they are also pricked with a needle in various places to allow free passage of air through them, then, on the pulmonary vein being cut near the left auricle, the blood will flow out into a suitably placed receptacle completely bright-red in colour. And, as long as the lungs are supplied with fresh air in this way, the blood will rush out scarlet, until the whole perfusate reaches several ounces, nay pounds, just as if it were being received from a cut artery. What I had written earlier about the blood withdrawn from the pulmonary vein being like venous blood was said as a result of experimental work, but at a time when I did not yet know from experiment that one could keep life in an animal by continuous insufflation of pricked lungs; so that all the air had been forced out of the lung before I was able to seize and to lance the pulmonary vein. I acknowledge my indebtedness to the very famous Master Robert Hooke for this experiment-by which the lungs are kept continuously dilated for a long time without meanwhile endangering [p. I68] the animal's life-and the opportunity thereby given me to perform this piece of work.

If any one, however, argues that this bright colour of the blood is to be attributed to its fragmentation in the lungs rather than to the mixture of air with the blood, he should consider whether the blood can really be broken into fragments better in the lungs than in the muscles of the body, or even as well. For the lungs are kept constantly dilated for the right conduct of this experiment, and I fail therefore to see how the blood can undergo fragmentation save in passing through their pores, as in the rest of the body-framework.

Further, that this red colour is entirely due to the penetration of particles of air into the blood, is quite clear from the fact that, while the blood becomes red throughout its mass in the lungs (because the air diffuses in them through all the particles of blood, and hence becomes more thoroughly mixed with the blood), when venous blood is received into [p. 169] a vessel, the surface and uppermost part of it takes on this scarlet colour through exposure to the air. If this

COLOUR OF THE BLOOD

is removed with a knife, the part lying next below will soon change to the same colour through similar contact with the air.

Indeed, if the cake of blood is turned over after remaining stationary for a long while, its outer and uppermost layer takes on the red colour in a short space of time (provided the blood is still fresh). It is a matter of common knowledge that venous blood becomes completely red when received into a dish and shaken up for a long time to cause a thorough penetration of air into it. And let no one be surprised at a loss or admixture of air causing such marked colour-changes in the blood, since we see other fluids also acquiring various colorations, according as their pores take up or refract in greater or lesser amount the rays of light.

If you ask me for the paths in the lungs, through which the nitrous spirit of the air reaches the blood, and colours it more deeply, do you in turn show me the little pores by which that other nitrous spirit, which exists in snow, passes into the drinks of gourmets and cools their summer wines. For, [p. I7o] if glass or metal cannot prevent the passage of this spirit, how much more easily will it penetrate the looser vessels of the lungs? Finally, if we do not deny the outward passage of fumes and of serous fluid, why may we not concede an inward passage of this nitrous foodstuff into the blood through the same or similar little pores?

On this account it is extremely probable that the blood takes in air in its course through the lungs, and owes its bright colour entirely to the admixture of air. Moreover, after the air has in large measure left the blood again within the body and the parenchyma of the viscera, and has transpired through the pores of the body, it is equally consistent with reason that the venous blood, which has lost its air, should forthwith appear darker and blacker.

From this it is easy to imagine the great advantage accruing to the blood from the admixture of air, and the great importance attaching to the air taken in being always healthy and pure; one can see, too, how greatly in error are those, who altogether deny this intercourse of air and blood. Without such intercourse, any one would be able to live in as good health in the stench of a prison as among the most [p. I7I] pleasant vegetation. Wherever, in a word, a fire can burn sufficiently well, there we can equally well breathe

CHAPTER IV

The Transfusion of Blood from one animal to another. The time and occasion of its discovery by the Author

THE statements made hitherto about the blood relate to its circular movement, which takes place within the sphere of a single body; we have, so to speak, compared the credit and debit accounts, and have given a strict reckoning of the measure of fluid, and of the lapse of time necessary for the passage of the blood from the veins through the ventricles of the heart to the arteries of the same animal. With regard to our next subject, The Transfusion of blood from one [p. I72] animal to another, I do not know if the hope of accomplishing this, or the thought of trying it, occurred to any one earlier than three years ago. For, even after it was openly suggested as likely to have great applications in medicine, most people, nevertheless, withheld their hands completely from the experiment, or moved them to it in vain, either through fear of the operative difficulty, or in discouragement at its strangeness. As in the almost forgotten fable of Pythagoras, another, even less substantial, transmigration of the soul would seem to be more desired by the ignorant than hoped for by the learned.

I wish, therefore, to reveal the conduct of the whole affair, and at the same time to show by what train of thought I first reasoned it out and undertook it, and, finally, by what means and aids it was carried into effect.

For many years at Oxford I saw others at work, and myself, for the sake of experiment, injected into the veins of living animals various opiate and emetic solutions, and many medicinal fluids of that sort. The technical procedure for this is now quite well known, and this is not the place to describe the individual results and outcomes of these

THE TRANSFUSION OF BLOOD

[p. I73] experiments. But when, in addition, I likewise injected many nutrient solutions, and had seen the blood of different animals mix quite well and harmoniously with various injections of wine and beer, it soon occurred to me to try if the blood of different animals would not be much moresuitable and would mix without danger or conflict. And, because in shed blood (no matter how well coagulation should be guarded against by repeated shaking) the natural blending and texture of the parts must of necessity change, I thought it much more convenient to transfer the unimpaired blood of an animal, which was still alive and breathing, into another. I thought this would be more easily effected, inasmuch as the movement of blood through its vessels is so rapid and swift, that I had observed almost the whole mass of blood flow out in a few seconds, where an outlet offered. Taking hope from this, I turned mind and hands to put the matter to a practical test.
[p. I74] And first I tried to transfer blood from the jugular vein of one animal to the jugular vein of a second by means of tubes between the two; but, seeing the blood clot at once in the tube and block its own passage on account of the slow movement of the venous blood, I soon began to try another way, and guided, as it were, by nature herself, I finally determined to transfer blood from an artery of one animal into a vein of a second; and by this new device to extend the circulation of the blood beyond the boundaries prescribed for it.

As everything answered expectation as I wished, I finally showed this new experiment at Oxford towards the end of February 1665 , in an interesting demonstration and under the most happy circumstances. There were present the learned Doctor John Wallis, Savilian Professor of Mathematics, Thomas Millington, Doctor of Medicine, and other Doctors of the same University.

Having got ready the dogs, and made other preparations as required, I selected one dog of medium size, opened its [p. 175] jugular vein, and drew off blood, until it was quite clear from its howls and struggles that its strength was nearly gone and that convulsions were not far off. Then, to make up for the great loss of this dog by the blood of a second, I introduced blood from the cervical artery of a fairly large

THE TRANSFUSION OF BLOOD

mastiff, which had been fastened alongside the first dog, until this latter animal by its restiveness showed in its turn that it was overfilled and burdened by the amount of the inflowing blood. I ligatured the artery from which the blood was passing, and withdrew blood again from the receiving dog. This was repeated several times in succession, until there was no more blood or life left in two fairly large mastiffs (the blood of both having been taken by the smaller dog). In the meantime blood had been repeatedly withdrawn from this smaller animal and injected into it in such amount as would equal, I imagine, the weight of its whole body, yet, once its jugular vein was sewn up and its binding shackles cast off, it promptly jumped down from the table, and, apparently oblivious of its hurts, soon began to fondle [p. 176] its master, and to roll on the grass to clean itself of blood; exactly as it would have done if it had merely been thrown into a stream, and with no more sign of discomfort or of displeasure.

The report of these matters soon reached London, and I was earnestly requested by the Honourable Boyle in a letter to acquaint the Royal Society with the procedure of the whole experiment. This communication I made not so long afterwards, and it was published in the Philosophical Transactions of the same Society in December of the following year, I666. Thereafter talk of it wandered across to nations abroad and to France, where, attracted by the novelty of the thing, some soon began to follow it up more thoroughly, to extend and embellish it by other further experiments, and to apply to the use of man that which I had only accomplished in animals. This is seen clearly in their writings published for the first time in the following March, 1667. So far so good, and all credit to that nation for their activity in the embellishment and extension of natural knowledge and of medicine. But, as this recent discovery of blood-transfusion is now a [p. 177] general subject of conversation, and a certain Denis, Professor of Philosophy and Mathematics, seeks in a recently published letter to deprive me of priority in the discovery of this experiment, and to claim it for himself, let me be permitted to insert here the letter of the Honourable Boyle to me and my reply to it, so that the reader may see how rightly or wrongly Denis so acted.

FROM ONE ANIMAL TO ANOTHER

LONDON, June 26.

I666.

I was present last Wednesday (Honourable Sir) at the stated meeting of the Royal Society, held in Gresham's College. Here I heard from Dr. Wallis that you had at last (in his presence) successfully accomplished that most difficult experiment on the transference of blood from one to the other of a pair of dogs. I judged the matter clearly worthy of being communicated to that very celebrated assembly. I therefore proposed that they should ask that distinguished gentleman for an account of the [p. 178] way in which it had been performed. His description of it was such as to increase not a little our opinion of your reputation. But, when asked for various details about so unusual and so unhoped-for an experiment, he voiced the opinion that it would be more profitable for you to reply in writing about the individual points than for him to attempt it orally. I therefore stated publicly that you had promised me, a little while before, that you would describe the matter to me (if at any time your desires were answered). I took it upon myself to say that you would do this, and that the more fully, when you knew that this celebrated assembly wished for a more careful account of the success of this experiment. I therefore entreat you to accede to this request, and to relate in order the whole of the highly successful procedure you adopted for the accomplishment of this task. This I urge the more strongly, because some highly gifted men with fair powers of judgement, and not over-credulous, though the experiment a difficult one, and considered that I had spoken rashly, when I mentioned it incidentally a ferw months ago, in reply to a question from the Royal Society as to what you had previously attempted at Oxford; and said that, although at that time the matter had not succeeded in every way as you [p. I79] wished, owing to some unsuitability of the instrumental equipment, I had not, however, given up hope of your ultimate success. I am being called away at the moment, so that I have not time to ask your pardon for putting you to this trouble. I have done so with less reluctance, because I thought it would be to your advantage, if this celebrated assembly became acquainted with you at this propitious moment. There are many

THE TRANSFUSION OF BLOOD

among its members who esteem you at your right worth and are your friends, but none more so than

Yours affectionately
Rob. Boyle.
To be delivered to My most honourable friend Richard Lower, Doctor of Medicine: Oxford.
[p. I8o] OXFORD, July 6. I666.

I have received your letter, Honoured Sir, and, in accordance with your request, I will briefly expound to you the whole technique of transfusion in the same order as that in which I performed it. In a dog, then, or any other animal, whose blood you wish to transfuse into another animal of the same or of a different species, first lift up one Cervical Artery, free it from the nerve of the eighth pair, and clean its surface for about the distance of one finger. Then ligature the upper, brainwards, portion firmly and tightly with a cord, as there no need to loosen it again or to unfasten it during the whole course of the operation. Next, lower down towards the heart, apply a second ligature to the same vessel at half a finger's distance from the aforesaid cord, using a slip-knot so that, as need arises, you can at will tighten or slacken the cord. When you have so placed your two ligatures in position, and have passed two strings under the artery in the intervening space, open the vessel with a scalpel [p. 181] and insert a quill into the incision in the direction of the heart. The external opening of the quill must be closed with a wooden rod. In addition pass the aforementioned strings closely round the portion of artery enclosing the quill and tie them tightly.

In the second animal, which is to receive the blood of the first, clean a small part of the surface of the Jugular Vein about half a finger long, and apply a ligature at each end, knotting the cord in each case in such a way that you can loosen it or tighten it at will. Two strings again should be passed under the vein in the intervening space, and, when the incision is made, two quills are to be inserted into the opening. One of these is directed towards the trunk of the descending vena cava, and is to receive

FROM ONE ANIMAL TO ANOTHER

blood flowing in from the other dog; the second is pushed upwards towards the brain and is to discharge this Animal's own blood into suitable vessels. Both quills must be closed meanwhile with wooden bungs and only opened as required. Finally, the vein must be ligatured with the strings, as described above.

When you have done this you lay the dogs on their side and fasten them closely together as best you may to ensure the [p. I82] connexion of the two quills. But, as they cannot approach thus near owing to the twist of the animals' necks, some intermediate quills are necessary in addition to the two end ones, in order to join these latter together and to effect the transference of blood.

On the completion of these preliminary arrangements, open the two quills for the first time, that is to say, in the one dog the quill passing down into its Jugular Vein, and in the other the quill coming from its Cervical Artery. Then insert in between as many extra quills as will be necessary and join them together; and now, if the knots, which we decided should be slip-knots, are loosened, the blood immediately passes quite rapidly through the quills, just as through an artery prolonged by anastomosis. Quickly tighten a noose round the neck of the receiving Animal, as in venesection, or at all events compress the vein on the opposite side of the neck with your finger, then take out the stopper and open the upper Jugular Quill, so that, while the foreign blood is flowing in through the Lower Quill, the animal's own blood flows out from the upper into suitable receptacles (this, however, with intervals of rest interposed, out of regard for the animal's comfort and for the preservation of its strength) [p. 183] until at last the second animal, amid howls, faintings, and spasms, finally loses its life together with its vital fluid.

When the tragedy is over, take both quills out of the jugular vein of the surviving animal, tie tightly the former slip-knots, and divide the vein. This can be done with practically no inconvenience to the Dog, inasmuch as there is a very abundant anastomosis of the jugulars round the larynx and one of them is, therefore, sufficient for the return of blood from the head. After the vessel has been divided, sew up the skin, slacken the cords binding the dog, and let it jump down from the table. It shakes itself a little, as though just aroused from sleep, and runs away lively and strong, more active and vigorous, perhaps, with the blood of its fellow than with its own.

One further instruction I must give you, distinguished Sir.

THE TRANSFUSION OF BLOOD

It was impossible to tie the quills sufficiently tightly in the vessels, or to join them to one another securely enough, to prevent them from frequently getting slack and loose again. I therefore concluded that it would be better in future to use silver tubes made for this purpose. These should be provided at one end with a projecting ring, to prevent the possibility of their being torn out of the vessels into which they are inserted, and this ring is [p. 184] to be a double one to ensure safer tying of the vessels over the tubes. Such a ring is pictured in Plate 7, Fig. I. And so that the experiment can be conducted with less difficulty in Transfusion, or danger of obstruction within the vessel, especially when the animals toss and twist about, they should be united by two smaller tubes which you must insert into a Cervical Artery taken from a horse or an ox, the complete series so joined carrying blood from the donor on one side to the recipient on the other. We have this further advantage from the substitution of an artery in between, that it yields to the struggles of the animals however varied they are, and also that you will be able, if by any chance the blood inside it clots, to push it onwards, should you so wish, or to stop its flow at once, if occasion arises. I have written this to fulfil the pledge given by you on my behalf to the most illustrious Society, and, further, that you may know that you will never find me wanting in any good-will or duty towards you.

Yours most respectfully, Richard Lower.
To be delivered to
The Honourable Dr. Robert Boyle in London.
[p. 185] I have reproduced these letters here, not so that they should shed light on the actual transfusion, which is now sufficiently well known, but that my reader should be better informed about the date and Author of the Discovery. All the apparatus for this experiment, and the technique for its accomplishment, are shown so clearly in the next plate that it would be superfluous for any one to give any further description of it. In Plate 7, Fig. I
a is a silver tube.
b is the part of it which is to be inserted into the vein or artery, and is provided with a double, circular, raised ring, to make more secure the tying of the vessel over $i t$.

FROM ONE ANIMAL TO ANOTHER

Fig. 2 shows a silver tube shaped to convey blood to the human arm. In this figure

a a is the silver tube.

b is the smaller portion of it, which is to be inserted into the arm-vein.
c is its larger portion where it receives the blood.
dd are its two leaves pierced with holes on both sides for [p. 186] the passage of the string, which is to bind the plate to the arm.
e is the groove hollowed out between the two leaves to receive more easily the emissary tube. This groove compresses the underlying vein so that no blood could ooze or flow out from it during the operation, and it can be compared quite aptly with the recess in the middle of the upper lip in man.

Fig. 3 shows the tubes which are to be fitted into the emissary artery and the receiving vein before blood transfusion. In this figure
a is the emissary cervical artery.
b is the same artery ligatured tightly with a slip-knot.
c is the tube inserted into the artery for the passage of blood.
d is the place where the artery is ligatured tightly over the tube between the rings.
e is the tube for the reception of the blood and for its transmission into the jugular vein.
f is the jugular vein.
g is the place where the vein is bound tightly to the tube.
h is the vein ligatured with a slip-knot.
[p. 187] Fig. 4 shows the cervical artery taken from a horse or an ox fitted on to a silver tube on either side. In this figure
a is the cervical artery.
$b b$ are the two tubes fitted one on each side of the artery.
Fig. 5 shows in one piece the whole apparatus for the transfusion of blood from one animal to another. In this figure
a is the jugular vein near the heart of the Animal, into which blood is to be passed.
b is a silver tube inserted into the jugular vein.
c is the vein bound tightly over the tube.

THE TRANSFUSION OF BLOOD

d is the vein ligatured with a slip-knot beyond the tube. eee are the tubes and intervening cervical artery, which carry the blood from the emissary tube into the receiving one.
f is the silver tube receiving blood from the emissary artery. g is the artery of the second animal which emits the blood. h is the place where the artery is tightly bound on to the enclosed tube.
i is the place where this artery is ligatured beyond the tube with a knot, which can be slipped as occasion arises.
[p. I88] Fig. 6 shows the same apparatus for transfusion of blood from an animal to man. Its use can be quite well understood from the last.

Transfusion was therefore first performed by me at the end of February 1665, the Honourable Boyle's letter was given to me on the 6th of the following June, and my reply was inserted next December in the Philosophical Transactions, which were then going to press. Denis, on the other hand, made no mention of transfusion until a whole year later, and, further, he himself admits (though he says he had thought of it ten years before) that he learned first from philosophical books the possibility of transfusion and the technique for its achievement. I therefore leave it to others to judge who should receive the credit for the discovery of this experiment.

But, though some are so constituted that nothing satisfies them which they have not themselves discovered, and nothing is well and successfully planned without their claiming [p. I89] priority for themselves, I shall not take it too much to heart, as I was quite unacquainted with any transfusion plans of any other worker, and I am, in addition, abundantly furnished with evidence from very Distinguished men of its accomplishment by myself. Meanwhile, I have no doubt that this discovery, whose soever it is, will be employed with great profit for the human race, if it is practised with due consideration and care.

For there is no reason to think that the blood of other animals mixes less well with human blood than with animal blood. This view is abundantly confirmed by recent experiments of French workers, and I also found it so not very long ago in the case of a certain A.C., who was the subject of a

FROM ONE ANIMAL TO ANOTHER

harmless form of insanity. I superintended the introduction into his arm at various times of some ounces of sheep's blood at a meeting of the Royal Society, and that without any inconvenience to him. In order to make further experiments on him with some profit also to himself, I had decided to repeat the treatment several times in an effort to improve [p. Igo] his mental condition; he, on the other hand, consulted his instinct rather than the interests of his health, and completely eluded our expectations.

Every one, however, is not equally qualified to receive the blood of others, and no treatment is so useful that its rash and unsuitable administration does not easily bring it into disrepute. I think, therefore, that it will be worth while for me to intimate briefly, in a few words only, the sort of cases and the condition of health most suitable for the employment of transfusion.

Patients, whose blood is definitely putrid and has been long corrupt, or is very deeply tainted by a poisonous ferment from without, those, too, whose viscera are polluted and spoilt, as sometimes happens in cases of scurvy, venereal disease, leprosy, poisoning, or long-continued illness, cannot hope for any benefit or help from transfusion.

The impure blood, in its repeated passage through the viscera, imparts to them its defects and its pollutions, corrupts their ferments, and finally taints them with its own [p. I9I] character and properties, so that fresh blood, substituted from without from however healthy an animal, by circulating constantly through the same organs, will pick up the disease and quickly degenerate into the same condition, just as wine soon picks up a smell and defect from a mouldy vessel.

> Sour will turn whate'er you pour In vessel not quite clean before.

But, if blood is withdrawn or is lost from bodies in good condition, by unsuitable venesection, trauma, or haemorrhage of any kind, in such amount as to require immediate replenishment from elsewhere, I have no doubt that the blood of animals can safely and advantageously be substituted in the place of that which has been lost. Further, in arthritic patients and lunatics, whose bodies are strong and viscera

THE TRANSFUSION OF BLOOD

firm, the composition of whose brains is not yet spoilt, and whose blood is affected by no putrid disease, perhaps as much benefit is to be expected from the infusion of fresh blood as from withdrawal of the old.

Therefore, that the practice of this very celebrated [p. I92] experiment may be established by the greater Faith men have in it and by greater acquaintance with its performance, and that its usefulness may become known; I have thought the subject worthy of recommendation to the care of all doctors and to the whole world, whenever an opportunity occurs of trying it.

Meanwhile, let it at least be attributed to the felicity of our Nation, or even to its praise, that, while Harvey first taught that the blood by its Circulation within its own vessels ensures life to the body, we also first revealed that it could be transferred outside the confine of its own body for the health of a second.

The Chyle, its passage into the Blood, and its transformation into Blood

WE have discussed in the previous chapter how blood can be directly administered in certain unusual circumstances and in large haemorrhages. It now further remains to consider how the necessary loss of blood, and (so to speak) its daily expenditure are replaced. This can only take place by inflow of chyle into it. The Chyle, however, is manufactured from the ingested foodstuffs in the stomach by the help of its ferment, so I will first say in a few words how the continuous supply of this ferment is achieved, before discussing at greater length the passage of the Chyle into the Blood and its transformation into Blood.

Most of the older writers, and some even of the younger ones, who hold the authority of the older ones in veneration, express here and there the opinion, that there is some sort of communication through the vas breve between the spleen [p. 194] and the stomach, and that the stomach borrows from that viscus the acid menstruum which provides its digestive power. Although the circalation of the blood quite openly contradicts this view, the falseness of it will, nevertheless, be more evident from the actual structure and design of the vessels which are common to both, and I will give here a full description of them, so that no one through ignorance may cause any further difficulty on this point.

Apart from nerves and lymph-ducts the only vessels reaching the spleen and the stomach are veins and arteries. First, as regards the coeliac artery, it arises from the aorta, a little above the mesenteric artery, in a single trunk, which soon divides into several branches. Of these

The first supplies only the liver, pancreas, and duodenum.
The second is distributed throughout the whole upper region of the stomach, and is therefore called the epigastric artery.

THE PASSAGE ETC. OF CHYLE

The third branch of the coeliac artery, the largest of all, divides into two smaller vessels. Of these the First passes [p. I95] forward to the left portion of the spleen, but, when it is near the spleen, splits into two, and sends one radicle to the fundus of the stomach, the other to the spleen. The Second division of this branch is carried a little further on and divides at once near the other half of the spleen into four radicles. Two of these pass in a serpentine course to the spleen, the others, in similar fashion, to the stomach.

If ink or milk is injected with a syringe into one or other of these larger branches, it will be clearly and distinctly seen that the fluid, after reaching that point of division into two or into four, is carried simultaneously to the spleen and to the stomach. So, if the circulation of the blood were not convincing enough, it is nevertheless clearly evident that nothing can be carried through these arteries from the spleen to the stomach, or vice versa, as the blood passes from another source to both organs simultaneously.

Moreover, the circulation of the blood is sufficient proof that the splenic veins cannot accomplish this, but, in order [p. I96] that this too may be clearer from their arrangement, I will give a brief explanation of the splenic veins, and of their divisions, which merge their contained blood with that in the veins returning from the stomach.

While, then, all the arteries which carry blood to the liver, pancreas, duodenum, the whole of the stomach, the spleen, and omentum, arise in a common trunk from the aorta, all the veins, which come from all those organs and bring blood back from them, likewise join in one trunk and end in the portal vein.

So those veins, which communicate quickly with each other by short radicles between the stomach and the spleen, and are therefore called vas breve, are nothing other than venous branches descending from the fundus of the stomach, which are met half-way by others coming from the spleen, and which, joining with them for mutual advantage, unite into one trunk, which conveys the mixture of blood returning from both organs towards the portal vein. So that the blood leaving the stomach, and meeting the other coming from the [p. 197] spleen, and received with it into a common trunk, resembles two small streams flowing together into a single

INTO THE BLOOD

one, and hurrying along together to the bosom of an Ocean common to both. The same arrangement exists in other veins which are observed to make a communication between the right or anterior portion of the spleen and the right part of the fundus of the stomach. Two veins go from each to meet half-way like the union of so many roads, and then, joining to form a single trunk, end in the portal vein.

Moreover, that nothing is carried to the stomach through the vas breve or through these latter veins, is also proved by the structure of the valves, apart from any circulation of blood. For valves are present at that junction of the veins coming from the spleen and the stomach, and they prevent backflow of blood towards either the stomach or the spleen; for, if the trunk of the splenic Branch is tied below that junction, and you try to force blood from the splenic veins into the hypogastric veins, the veins at once swell up on [p. 198] the near side of the valves, and will burst rather than allow any blood to pass. This any one can test quickly and easily in a moderately large animal, in which these vessels are fairly wide.

One can also see that dogs, whose spleen has been cut out, are no less greedy and eager for food, but consume whatever they take as quickly as if they had not had that organ removed.

It is certain, therefore, that the spleen transfers nothing directly to the stomach, but that this ferment, which dissolves all the ingested food into a milky cream, is to be sought for elsewhere and in the blood itself. No light proof of this is the fact that patients suffering from hypochondriac melancholia are very often attacked by ravening hunger, when the salt fluid passes into their stomach, and are immune from all bodily pain as long as that desire for food persists; but when that fierce and bitter fluid, by a kind of transition, passes into other organs of the body, torments and convulsions are evoked, while all appetite and digestion [p. 199] in the stomach ceases completely for lack of it. This is usual in almost all hypochondriacs, and must be ascribed to bad blood-constitution rather than to any fault of the spleen.

The stomach is composed of every kind of fibre, and so, while at first it enfolds and presses gently on the food passed

THE PASSAGE ETC. OF CHYLE

into it, later, when some part of this food has been dissolved and reduced to a soft substance by repeated separation of its constituents, it propels it into the intestines by a prolonged contraction of its fibres. Here it is absorbed by the lacteal veins distributed at intervals through the intestines.

And, since the lacteal vessels are extremely narrow and are provided with very fine openings, so as to take from the intestines only the purer and cleaner portion of the fermented mass, the total length of the intestines has been made very great to admit thereby a greater number of such vessels. The small size of the vessels is therefore balanced by their number. Hence, as the lacteal vessels in the upper intestines are quite insufficient either in number or in diameter for the absorption of a large amount of chyle, the intestines are cunningly contrived, so that they contract one after the [p. 200] other with a continuous movement of the fibres, which passes in succession from the pylorus right to the rectum, and they push the chyle downwards in such a way that a halt is made before the openings of all the vessels. During the passage of this juice by the mouths of these vessels, the useful and nutrient portions are separated from the refuse, and only the cleaner and purer tincture passes into the lacteal veins, the more solid and impure portion being deposited in the rectum as so much dead stock.

One can only understand the mechanism of this separation on the assumption that the various pores in the inner coat of the intestine are so arranged and shaped that they allow entry of the milky cream alone. The thicker portions, having no resemblance to, or correspondence with, the pores of the intestines, through which is the way into the lacteal veins, pass by untouched and are driven ever downwards by the movement of the intestines. If, however, the lacteal veins opened directly and widely into the lumen of the intestines, not only the more impure and unclean portion of the mass [p. 20I] in the intestines, but also bad-smelling, faecal gases and fumes would pass in similar fashion into the blood, and would very seriously contaminate it.

To test this matter, I ligatured tightly the so-called jejunum, where it crosses to the lumbar region, in an animal which had previously been given a full meal; and I inflated it with a pair of bellows introduced through the pylorus.

INTO THE BLOOD

When this intestine was sufficiently distended, I tied off the pylorus equally strongly. Then I exerted pressure with my hands on the air-filled, swollen intestine, and looked for an immediate flow of chyle within the lacteal veins towards the receptaculum commune as a result of the pressure of air from behind. This, however, did not follow at all, so the lacteal veins quite definitely do not open widely and directly into the intestines, nor do they allow any gas or flatus to pass into them.
As entry of air into the lacteal veins was definitely impossible, it occurred to me to try, in another animal similarly fed, if there was not an easier entry open to any kind of thin fluid. I therefore tied off the same portion of intestine, and poured in through the pylorus spirit of wine tinted [p. 202] with ink. I then tied the pylorus, and exerted pressure on the intestine swollen with this black tincture, under the idea that this thin and delicate fluid at all events would be able to enter as easily as chyle. But the exact opposite took place, for the chyle in the lacteal veins next to the intestine was not seen to be coloured by this dye, nor was it observed to move any further along towards the receptaculum commune. So one may venture the view that the lacteal veins do not open straight and directly into the intestines, but are carried obliquely between their coats before penetrating into the cavities of the intestines, perhaps in the same way that the common duct ends in the duodenum, or the ureters in the bladder. Hence, the more strongly the sides of the intestine or of the bladder are distended by their contents, the more tightly are their openings closed. Therefore it seems probable that the chyle is not forced into the lacteal veins at all, assuch contraction and corrugation of the intestines tends to prevent its entry, inasmuch as it constricts the apertures and channels of the lacteal veins as they pass through the [p. 203] coats of the intestines. So that continuous, so-called peristaltic movement of the intestines seems to be designed solely to push the chyle already in the lacteal veins towards the receptaculum commune, to drive downwards the mass of chyle passed out from the stomach, and to deposit it for absorption by the lacteals as a whole. As, however, this movement is like that of a worm, and comes on at intervals, it is probable that chyle is taken into these veins only when

THE PASSAGE ETC. OF CHYLE

some part of the intestine is at rest from movement and contraction, and when, therefore, the mouths of the lacteals are more open and distended.

Since, however, the chyle passes through such narrow pores from the intestines into the lacteals, it is not unreasonable to suppose that it is diluted and thinned by the fluid which the pancreas secretes into the duodenum in order to facilitate its passage. For that gland is so like all others as to seem the same in substance and in structure, and the fluid from [p. 204] all glands is absolutely alike, being thin and clear, so why should we not believe that it serves the same purposes? The glands situated round the mouth and fauces secrete their fluid during mastication, in order to moisten and to soften the foodstuffs, and so render them easier to move around in the mouth, and to be more rapidly swallowed. In the same way, I think, it is very highly probable that that large gland is situated there, and its duct opens into the intestines, so that the fluid it secretes may mix with the descending chyle, and this may thereby more readily enter the narrow lacteal channels, and effect its passage more freely and with less hindrance. The chyle, too, is sometimes liable to stagnate and to clot in the lacteal vessels, either through its thickness or through insufficient intake of drink (which should act as a medium for its carriage), and is therefore likely to overfill and to distend these vessels, as I once saw in a dog whose pancreas was sclerosed. So glands seem to have been placed here and there in the mesentery in order to pour a similar watery fluid into the chyle as it passes by, so that it may become ever thinner and more [p. 205] dilute (as it always quite obviously does beyond the glands of the mesentery). And, though this watery fluid may have other functions as well, yet, as there is such danger of the chyle halting within those fine hair-like ducts, and obstructing its own passage by its thickness, it would seem that the Creator provided for its mixture with the watery fluid passed into the intestines by the Pancreas-to facilitate its passage into the lacteals-and also for its dilution, in the middle of its course from the intestines to the receptaculum, by the same very thin, watery fluid secreted in the glands of the mesentery-so that it might complete the rest of its journey towards the receptaculum commune.

INTO THE BLOOD

Into this receptaculum discharge all the lacteal veins like so many pipes into a common milk-reservoir; and, to prevent stagnation and clotting therein, all the lymphatic vessels coming from the whole of the lower part of the body, and from all the viscera and glands in the abdomen, give up their [p. 206] lymph to the receptaculum. In this their object is twofold, first, to keep it always clean and in good condition by their very thin fluid, and, secondly, to dilute the chyle further and to facilitate its passage through the thoracic ducts. And, to prevent its clotting for any reason between the receptaculum and the subclavian vein, numerous smaller glands are placed all round the thoracic viscera, and secrete their lymph into the chyliferous ducts at various points, God, apparently, making sure that the sole support of our life should not anywhere lack a free passage.

Further, the chyle ascends with greater difficulty through the thoracic vessels, especially in the erect position of the body, as in man, and is therefore more liable to clotting on account of its slow movement. So this large receptacle is placed between the tendons of the diaphragm at their spinal attachments; as a result these tendons, being strongly stretched every time the diaphragm contracts on inspiration, compress and stimulate this milk-sac very forcibly, if it is [p. 207] distended. In this way they expel its contained chyle through the chyliferous ducts into the subclavian vein, and replenish by this constant inflow the continual loss suffered by the blood-mass.

Moreover, as the blood and life itself depend on a constant inflow of fresh chyle, this fluid must always have a free, unimpeded entry into the blood. So the chyliferous ducts, through almost the whole of their course from the receptaculum to the subclavian vein, with the exception of the cardiac region, are two in number, and communicate with one another like the sides of a ladder. The object of this is clearly that the chyle may pass up by the second, if the first is blocked.

Finally, to prevent its encountering resistance or obstruction of any kind at its actual entry, it passes into the subclavian vein by two openings as a rule, and sometimes by more (or, if only one is found, by a relatively wider mouth); and, to prevent the passing blood from entering this aperture

THE PASSAGE ETC. OF CHYLE

and filling it, a valve is drawn across it like a lid. This repels the blood returning from the jugular and axillary veins, [p. 208] and with the spread of its sail protects this opening from the inflow of the hurrying blood. This will be clear from the explanation, which follows later, of Plate 6, Fig. 2.

This is the one and only way by which the chyle from the stomach and intestines passes into the blood and into the heart. But, as some people still indulge in the same mistake as did the older writers, and state boldly that the mesenteric veins take up chyle from the intestines, I myself once gave the matter careful attention, and finally satisfied myself, as a result of many experiments, that the whole store of chyle passes into the blood by no other way than the chyliferous ducts. If the passage of chyle through the thoracic vessels is impeded, the animal, no matter how sated it is with food, will die within a few days of utter starvation. This I found in two dogs, though by different methods. In one I opened the thorax on the right side between two of the lower ribs, inserted my finger, and, using the nail which I had cut like a saw, burst and tore open the receptaculum [p. 209] commune, which was very distended three hours after food. Free exit into the thoracic cavity was thus provided for the chyle, and its passage into the chyliferous ducts was completely interrupted. After I had done this and sewn up the wound, I gave the animal as much food as it wished to take. However, when it died in a few days' time, and I made an immediate dissection of it, I found the stomach and intestines very full, and the lacteal veins themselves distended with chyle, yet no chyle was visible in the whole of the thoracic duct, while two pounds of it were discovered on the side of the chest on which I had ruptured the receptaculum commune. Hence I think it quite clear that this animal died of starvation, owing to obstruction to the passage of chyle through the thoracic ducts, although its stomach was crammed with food.

To render this more certain, however, I made a hole in similar fashion in another dog, but on the opposite or left side between the third and fourth upper ribs. In this region the two chyliferous ducts usually join to form a single trunk; this trunk then goes along on the lower side of the oesophagus, where it rests on the underlying muscle, under the common

INTO THE BLOOD

[p. 2Io] coat of the thorax to the subclavian vein. I inserted my finger, then, through the opening of the wound, and ruptured this duct in similar fashion; when this had been done, the chyle could get out into the cavity of the left side of the chest, but could not pass any further. I attended to the wound as before and kept the dog well fed for a few days. From this time it began to weaken, and died a little after. When, however, I dissected its thorax, I found the compartment of the thorax, where this duct was ruptured, completely filled with chyle, and the lung glued to that side. To convince myself still further that this channel had been ruptured so well that it was no longer able to transport any chyle, I injected water from a syringe into the chyliferous duct lower down, but it was unable to pass beyond the point where the channel had been interrupted, and all exuded into the thoracic cavity. A clear proof that chyle does not pass in through the mesenteric veins, and that no other way is open for it to mix with the blood, since an animal perishes so surely as a result of obstruction to the chyle's passage through the thoracic vessels. The following fact is, however, [p. 2II] the most convincing argument for the chyle not flowing into the mesenteric veins. If blood is taken after a day or two from an animal so treated, no chyle will be visible in it, although it has fed very well a few hours before, while the direct opposite should have happened, if the inflow had not been completely interrupted in this way.

After this clear treatment of the subject, it will surely be a cause of wonder that any one should undertake any further defence of the Liver, and that, in order to reclaim for it its old blood-forming function, he should oppose Pecquet with the experiment of Louis Bils. I have often tried that experiment of Bils without success, and I shall also, by this experiment of my own, ensure for the future a general acceptance of the view, that the Chyle is instilled into, and mixed with, the blood by no other way than by the ducts of Pecquet.

All the chyle flows out into the thoracic cavity when these ducts are ruptured. In similar fashion, if this duct on the left side of the thorax (with the hole made in the same place as before) is compressed for an hour by the insertion of one's finger, the chyle is unable to pass by any other route to the

THE PASSAGE ETC. OF CHYLE

blood. It therefore causes such swelling and distension in the receptaculum commune, and indeed in all the lacteal [p. 212] vessels in the mesentery and lower part of the abdomen, as a result of this obstruction, that they can never be more clearly or visibly demonstrated. It is certainly extremely pleasant to see their structure, valves, and anastomoses, their different windings in and out, the dense network they make as they pass through the whole circumference and surface of the intestines, and the swellings, like the joints in girls' necklaces, which they show in their orderly concentration below the receptaculum. All this far surpasses anything that any one has hitherto written or drawn on this subject.

It is, further, well worth noting that, as a result of this obstruction to the thoracic duct, the chyle is so thrust and pushed back into the lymphatic vessels in the chest and in the abdomen generally, despite the resistance offered by the valves, that at first glance it may perhaps deceive the unwary, and lead them to believe in the presence of the dewbearing ducts of Bils; though actually this is due solely to the fact that this white juice is prevented from flowing along its proper course, and so regurgitates into those vessels. Just, perhaps, as rivers are pushed back into their beds by [p. 2I3] the incoming sea and yield before the force of its inrush. Similarly, just as the rivers drop to their old level when the tide has gone out, when that pressure is removed and the entry of chyle into the blood is restored, it is all absorbed back again into the thoracic ducts, and leaves behind it no trace in those lymphatic vessels.

Plate 6, Fig. 2 shows the way in which this experiment is carried out. In this figure
a a are the two chyliferous ducts joining to form a single trunk on the left side of the chest.
b is the place where this trunk is compressed by the insertion of a finger.
cccc are its valves, which swell up on both sides below the point of compression, as a result of the backflow of chyle caused by the blocking of the duct.
d is the trunk lying collapsed above the point of compression, as a result of hindrance to the passage of chyle.

INTO THE BLOOD

e is the jugular vein.
f is the axillary vein.
g is the same vein at its junction with the descending vena cava.
[p. 214] h is the opening of the chyliferous duct, where the chyle brought from the receptaculum commune is poured into the subclavian vein.
i is the valve placed at that opening, which carries the blood returning from the jugular and axillary veins across it, so that they shall not hinder the inflow of chyle.

This experiment, moreover, is so pleasing, and can so easily be performed by a skilful hand, that I will describe more in detail the manner and the method of its execution.

Draw back the left forelimb of the dog, and pierce the thorax between the third and fourth upper ribs a little above the heart. Here the duct passes in a single trunk, on the lower side of the oesophagus, over the underlying muscle of the gullet. Then insert a finger and press the whole oesophagus on to that muscle; this will ensure the closure of the duct also. The finger should be inserted, however, in such a way as to keep clear of the axillary artery lying next door, and must be kept thus for an hour (and, if the limbs [p. 215] of the dog are relaxed a little after the insertion of the finger, it will suffer this more patiently). When all this has been done, it is most noticeable that no trace of chyle is apparent in blood which is withdrawn, as long as this compression interrupts the movement of chyle, provided such operation is effected immediately after feeding. Within half an hour, however, after the pressure is relaxed, a large amount of undigested milk will be seen floating on the surface of a further sample of blood.

Now that I have thus shown the whole course of the chyle from the intestines to the subclavian vein, the only thing left for me to demonstrate is the way in which it unites with the blood, and the successive changes it undergoes before it is fitted to accomplish the nutrition of the organs, or to be turned into actual blood. It will therefore be right to remark that the chyle is continuously flowing into the blood, and, joining slowly with it, is carried along in its company, and is purified and elaborated more or less in

THE PASSAGE ETC. OF CHYLE

proportion as it ferments and circulates in the blood-mass for a greater or lesser time.

For, if it is deposited in the breasts and udders, while it is still fresh and has not yet been purified in the blood for [p. 216] several hours, it retains its character and original appearance to such an extent, that it cannot be distinguished from chyle itself either by taste or by colour. This I have often found in pregnant animals. For, on comparing chyle from the receptaculum commune, chyle floating on the surface of drawn blood, and milk squeezed from the udders, I was never able to perceive any difference at all (except that the chyle in the receptaculum was somewhat more salt to the taste). One cannot doubt, therefore, that the whole of the milk is deposited in the udders and breasts from the blood itself through the mammary arteries ; and one must not go searching in vain for other ducts to transfer this milky juice more directly from the stomach and intestines to these glands. For the blood is turgid with such chyle, and this fluid is driven with the blood to all the organs of the body. Why, then, should one not be permitted to suppose that, at the individual arrivals of fluid, this white juice is separated off in the filter of the udders, and passes into the excretory vessels and milk-tubules?
[p. 217] For, when the chyle is mixed with the blood-mass, it does not lose its nature and character with such rapidity as to give up its whiteness at once; indeed, it remains quite unchanged for some considerable time, and circulates with the blood like milk. This any one will be able to try daily, for, if blood is withdrawn from any vein or artery in an animal four or five hours, or longer, after a fairly good meal, a large amount of actual milky chyle will be seen floating on the surface of the clotted blood, as I have stated elsewhere. I have tried this in various human beings; in these subjects all the vessels appeared fuller of milk than of blood, if a vein was incised after a good breakfast or luncheon. This Phenomenon was observed, I grant, by the doctors of earlier days, but they were quite unaware of its cause.

While, however, the chyle retains its colour for several hours despite its admixture with the blood, if it circulates somewhat longer with the blood, it completely loses its whiteness as a result of the long-continued interaction with

INTO THE BLOOD

[p. 218] this fluid, and is reduced to serum. If venesection is performed a long time after a meal, there remains no appearance of milk, and serum only will be seen floating on the surface of the blood-clot. Yet, although they appear to differ so much in thickness and in colour, this at all events the chyle poured into the blood, the serum floating on drawn blood, and the milk squeezed from udders, have in common, namely, that, if they are gently heated until they have lost their watery constituents, they all set equally into a jelly.

The better to understand how and by what successive steps the chyle is converted into blood and carries out the nutrition of the organs, you must know that the vital spirit and other active principles in the blood-fluid act on the constantly-inflowing chyle, and break it up into very fine particles. When, for example, the chyle is very full of salt, sulphur, and spirit, these active constituents acquire freedom of movement as soon as its structure is loosened by fermentation, and they at once join with the blood-constituents which are of similar or of related character. In the blood, indeed [p. 219] (as in wine and other such fluids) the spirits, on acquiring control, dislodge, and free their mass of, all thicker and cruder particles which come into contact with them, and so render the remainder of the fluid clearer and purer.

After the chyle is so perfected, it is completely fitted both for the restoration of blood-fluid and for the nutrition of the body as a whole. For, being composed of various principles and constituents, and being of diverse and varied character and properties, it is added in varying ways to the organs according to the varying functional need of each, and according as it answers and conforms to the different pores and openings. Hence the most volatile and ethereal portion of it is separated off in the brain, and is allotted to the renewal of spirits, while the more viscous portion is set apart for the body's nutrition, and the sulphurous portion is designed to renew the body's heat. Moreover, while it is being carried with the rest of the blood throughout the body, the watery saline portion of it is separated through the kidneys, and is got rid of by insensible [p. 220] transpiration or sweating: the burnt-up portion is deposited in the liver: and the refuse of it which is left

THE PASSAGE ETC. OF CHYLE INTO THE BLOOD departs like so many casts-off in the various cleansing processes of the body, so that its remaining mass becomes thereby purer and clearer.

The cause of our life consists in this alone, that the blood in its continuous passage through the whole of the body carries round heat and nutriment to all the organs, and that ever-fresh chyle passes into the blood in due measure and amount, restoring with equivalent supplies the daily loss of blood-fluid, and refreshing it with its continuous inflow.

SUMMARY OF CHAPTERS

CHAPTER I

THE POSITION AND STRUCTURE OF THE HEART.

** [The page numbers here given refer to the pages of the originaltext, as repeated at the beginnings of the lines of the transla-tion.]
Knowledge of the heart's movement is highly necessary for a correct understanding of the nature and of the patho- logical conditions of the blood Page I
The varying position of the heart in different animals and the cause of this 3
The description and function of the pericardium 4
The source of the serum within the pericardium and its function 6
The nature of the fluid ibid.
The final cause why the pericardium is attached to the diaphragm in man, contrary to what happens in lower animals 7
The efficient cause for this adhesion 9
The reason why the apex of the human heart is deflected to the left much more than that of lower animals ibid.
The base of the heart is supported chiefly by its vessels, and hangs down from them 10
The vessels which arise from the heart, and those which end in it II
The heart is fed by the nutrient juice deposited in its sub- stance by the arteries, and not by that which it receives into its ventricles 12
The vessels of the heart I3
The nerves of the heart I4
The variation in inflow of animal spirits into the heart through the nerves, its relation to the variation in shape of the animal, and its cause I5
The substance of the heart is entirely muscular 17
No muscle in the body consists of a single belly as Anatom- 18, I9,
ists have hitherto held, but all have two bellies 20
The boiled Deltoid muscle is seen to be very complex $2 I$

SUMMARY OF CHAPTERS

Even the separate portions of the 'biventral muscles' in the neck, on either side of the jugular veins, are double- bellied. The reason for their union in common central tendons 22
The heart-muscle is two-bellied 23
The heart-fibres are inserted into a tendon situated at the base of the heart and round its openings 24
The heart must be boiled for the fibres to show 27
The reason why the left ventricle of the heart is supplied with thicker and stronger fibres 33
The fibres of the auricles are inserted into the tendon of the heart ibid.
The proportion between the ventricles of the heart, Why is it not the same between the auricles? 35
The reason the outer surface of the heart is smooth, and the inner not 36, 39
The reason the clefts and fissures are larger in the left ventricle of the heart ibid.
The function of the papillae and the tricuspid membranes 41, 42, 43
The function of the fleshy columns in the left ventricle, the way in which it is effected, and the reason for their protuberance above the rest of the surface 43, 44
The reason the fleshy columns and fibres in the left ventricle are larger than the fleshy papillae and fibres in the right 46
The function of the swelling within the vena cava just in front of the right auricle 48
The reason the vena cava and pulmonary vein are fleshy and muscular just in front of the heart-openings 50
The reason the aorta curves in a little above the heart 51
The description and function of the foramen ovale 54, 55
The heart is muscular in substance in all animals 57

CHAPTER II

THE MOVEMENT OF THE HEART

There is no ferment, or ebullition of blood, within the heart 62,63
Ebullition of blood within the heart a hindrance to its systole, and unnecessary for its diastole
Experimental proof that the heart's movement is not dependent on ebullition of blood

66, 67
Objections are refuted
68, 69
The heart of the blood does not come from the heart

SUMMARY OF CHAPTERS

The immediate mechanisms of movement in the heart are its own fleshy fibres, nerves, and spirits flowing in through them 73
The action of the heart is the same as that of the other muscles 74
The movement of any muscle is not produced by its inflation, or by the conflict of inflowing spirits 76, 77
The manner in which the heart-muscle becomes more contracted, and the apex rises up towards the base, at each systole 79, 80
The whole of the heart's movement is located in systole, diastole is but a movement of restitution 80
The reason the left ventricle is stronger and thicker than the right 8I
There is no passage of blood through the septum of the heart 83
The force and strength of the heart's systole 84
The whole of the force and activity is communicated to the heart by the inflow of spirits along the nerves 86
When their inflow is prevented, the heart's movement fails ibid.
The number of ways in which the heart's movement is changed, and the causes of such changes 88
The way laughing is accomplished, and the way it impedes the circulation of blood if it is excessive 90
The way hiccough interferes with the heart's movement 92
The interdependence of heart and brain is demonstrated 93
Both depend on the stomach 94
The way the heart's movement is upset by the heart's own disorders 97
The degree of disturbance of the heart's movement by hydrops cordis 98
Excessive accumulation of serum within the pericardium is not the cause of palpitation ibid.
The harmful effects on the heart caused by lack of this serum
The kind of symptoms produced by worms born within the pericardium IOI
The reason arteries are provided with a relatively thick coat, but veins with a thin one 103
The effect on the organs of obstruction, compression, or wasting of arteries 104, IO5
The effect of compression of the aorta below the heart 107
The reason patients with chronic gonorrhoea or uterine discharge suffer from excessive weakness of the spine Io8
The mechanism by which arterial section relieves pains IIO
The way varices are produced, and the kind of harm theydo to the heart, if they are largeII3

SUMMARY OF CHAPTERS

The effect of ligature of the vena cava above the diaphragm in the dog
The manner of ligaturing this vein is demonstrated

ibid.
II7
II8

ibid.
The result of ligatre of the jugular vins in the dog Ascites is not produced by rupture of lymphatic vesselsExperimental proof of the amount of harm caused to theheart by coagulation of blood
II9, 120
The effect of excessive plethora I2I
What accelerates the heart's movement 122
What diminishes it 123
What perverts it 124
What suppresses it 125
What abolishes it completely 126
The result of diminution of the heart's movement 128
The way the so-called heart-polyp is produced 129
The usefulness of exercise is demonstrated I30
The effects produced in the head by feeble movement of the heart I3I
The effect produced in the head by rapid movement of the blood 132
The way the blood-flow changes with variation in the position and shape of the body 133
The circulation of blood is quicker in the upper parts of the body, slower in the lower 134
The effects of quicker or of slower circulation in the organs 135
The position of the head in sleep which is most conducive to health 137
Late nocturnal drinkings very disadvantageous to health I40
Why the supine position is disadvantageous in sleep 143,147, I48
Passage of fluid down from the brain does not occur 150
The path by which serum passes from the brain into the blood ibid.
CHAPTER III
THE MOVEMENT AND COLOUR OF THE BLOOD
The number of times the whole of the blood circulates through the heart I54
The measure of the circulation is estimated by the urine- outflow 158
It is further confirmed by experiment I59
The red colour of arterial blood does not result from any heating of it within the heart I64
This is proved by experiment I65

SUMMARY OF CHAPTERS

The dark colour of venous blood does not result from any extinction of its heat I66
The red colour of arterial blood is entively due to the lungs I66
The same is proved by experiment I67
This red colour does not result from fragmentation of the blood in the lungs, but from its admixture with the in- spired air I68
The blood does not undergo fragmentation in the lungs any more than in the rest of the body ibid.
Experimental proof that this bright colour is due to admix- ture with air I69
The source of the dark colour of venous blood I73
CHAPTER IV
TRANSFUSION OF BLOOD
The train of thought by which transfusion of blood was first reasoned out, and the means by which it was accomplished 172
Where, and by whom, it was first attempted 174
The cause of its publication 176
The complete apparatus for blood-transfusion is described I85
The bodies, and state of health, in which it should be tried 190
CHAPTER V
THE CHYLE, ITS PASSAGE INTO THE BLOOD, AND ITS TRANSFORMATION INTO BLOOD
The daily expenditure of blood is constantly replaced by fresh chyle 193
Nothing is deposited within the stomach from the spleen through the vas breve 194
Description of all the vessels common to spleen and stomach ibid.
The stomach ferment comes directly from the blood itself 198
Proof of this ibid.
The reason the intestines are made so long 199
The chief function of their peristaltic movement 200
The way chyle is separated off in the intestines ibid.
The fluid secreted by the Pancreas is of very great use in diluting the chyle 203
The reason all the glands in the abdomen and in the whole of the lower part of the body deposit their lymph in the receptaculum 205

SUMMARY OF CHAPTERS

The reason the receptaculum is placed between the tendons of the diaphragm 206
The reason the chyliferous ducts are double 205
The function of the valve situated in the subclavian vein at the point where the chyle flows into the blood 207
All the chyle flows into the blood through the thoracic ducts alone 208
This is proved by various experiments 209, 2 II
The way in which the chyle is converted into blood, andthe successive steps in the process218
The way it serves to nourish the organs 219
THE END

TRACTATUS

D E
 CORDE

1 TEM
De Motu \& Colore
SANGUINIS
ET
Cbyli in cum Tranftu.

ALTHORE
Richardo Lower, M. D.

> LONDINI:

Typis Jo. Redmayne impenfis facobz atleffry ad Infigne Rofa-Coronate
in Vico vulgò dicto Ducklane. MDCLXIX.

Clariffimo viro
Dno Thome Millington, M. D.

5 ${ }^{2}$ 腮Irabuntur alii,forte \& ipfe miraris, vir ornatiffime, de corde \& fanguine, poft tot viros celebres, qui materiam hanc non tantùm tractaffe fed $\&$ exhaufffe videantur, a me quicquam amplius proferri : Et quidem Harveius quantum ad nobiliffimum circulationis

A 3 in.
inventum pertinuit, fabricam cordis, motumque fanguinis ita defcripfit, ut pofteris nihil fere aut addendum aut defiderandum reliquerit. Verium ut in coolorum Hypother Ptolemaicâ, prxter immenfas orbium revolutiones, minores quoque epicycli planetis affignantur', ipfi etiam ad phænomena explicanda neceffarii ; Sic in humani corporis fyftemate, etiam in illoaliorum animalium, proter circulationem
culationem Harveianam, funt $\&$ alia porrò confideranda, quæ minutioralicet, ad folidamtamen variorum fymptomatun atiologiam haud parùm faciunt. Quid quod \& Harveius, fi per xtatem \& otium licuiffet, plura polliceri videtur ipfe Lib.de Circul. Sang. cap. 9. Sed quantum in unoquoquc propellatur fingulis pulfationibus, or quando plus quando minus, é quà de causâ, accuratius pofthac ex mult is obfervationibus a me forfan palam fiet.

$$
\text { A } 4 \text { Sed }
$$

Sed, quod maximè dolendum eft, \& ille voto fuo, \& nos fípe noftrâ excidimus: Cum itaque nemo hactenus, quo fuppleantur ifta, vel cordis ipfius fabricam motumque plenè enarrandum, veltranfeuntis fanguinis velocitatem \& menfuram rectè com. putandam, vel venofi atque arteriofi quoad colorem difcrimen clare illuftrandum fufcepe. rit; faltem in iis explicandis quicquam fatis perfecerit, ut votisex-cel-
cellentiffimi viri aliquâ in re ultra quam adhuc præftitum fit occurrerem, in ipfa cordis pe. netralia defcendere, ipfumque vitx fontem rimari \& recludere conatus fum: Non quòd totam ejus hiftoriam tradere, vel affectus ejus omnes \& pathemata edocere aut fpei noftræ fitaut confilii : Verùm ut quan dixi fabricam, motumque ejus, variafque ejufdemanomalias, earumque caufas \& fymptomata, quantum ob-
obfervando affequi po tui, \& ad rem medicam facere videatur, maturiùs expenderem \& fufiùs explicarem. Si quid autem mancum adhuc \& pro partis ufu \& dignitate non fatis amplc̀ dictum fierit, id pofthac forfan, cum plures hâc in re obfervationes congefferim, pleniùs abfolvam.

Pudet interim pigetque dum nonnulli in hoc noftro fæculo faniori philofophix promo. vendx tam utilem, tamque
que Humano generi falutarem operam impendunt, non deeffe tamen alios, quorumea eft five malitia in Univer los, five in fingulos invidia, ut huic tam laudabili inftituto ponant omne illud quan. tum poffunt impedimenti, illud bene, quod per infcitiam majus non poflunt : Inter quos fummæ protervix \& Atuporis Meara quidam Hyberims cxteris omnibus palmam prxripere videtur: Cui, Im-

Imperito ipfi, alios Icire quicquam dolet; id quod fcripta ab illo, utcunque fub larvato titulo Conlonis Cajsiniinuper edita, palam faciunc. Verùm ifta omitto, quia eâ in parte fí cum illo cerrandum effer, non tam eflet mihi in arenam quam fterquilinium defcendendum, ubi contractas fordes victoria non compenfet. Atqui crrores quod attinct, cos prxfertim qui de cordis ulu, motuque fanguis nis,
nis, tum etiam de chyli naturâ, ejufque in fanguinem tranfitu (de quibus tam imperitè fcripfit, ac $\mathbb{f i}$ jam annos quadraginta altum dormiviffet, nec dùm evigilaffet fatis) quia eos filentio non præteriri aliorum intereft, quatuor fpeciatim feq. Tractat. capita $\mathrm{a}^{\text {® }}$ me confcripta funt; quæ omnia diftinctè tradidi, non tam ut ejus infcitiam (fatis utique jamdiu perfpcctam) magis detegerem, quam
ut. communi ftudio \& commodo profpicerem.

Dum in his fum, de ©Mufculorum Structurit, quam longè aliam atque hactenus credita eft, deprehendi ; de Seri e cerebro exitu jam primùm detecto; de Colore fanguinis arterioft, \& de variis fymptomatis non pauca a me primò obfervata hic illic interfperfi. Denique de Transfufione caput integrum adjunxi, cum ob materix affinitatem, tum etiam

ut celeberrimi hujus

 experimenti inventio, cui jure debita eft, Authoriafferatur.Quicquid horum Judicii tui examini probatum non erit, excufabit ingenii tui candor, nec refpues hoc affectûs in te mei pignus \& teftimonium nefcio apudalios quamdiu duraturum, certè a me debitum

Tui Amantifimo

> Ricbardo Lower.
> ER-

ERRATA.

P
 1. fibrazum, p.3r. 1.8.1. fibras, p.33.1.23. pro \& quidem, l. quarum, p.37. 1.2. 1. \& robore, p.39. 1.7. 1. ventriculo, p.40. 1.2. 1. quod, p: 4I. 1.17. 1. guttula, 1.23. 1. earumque, 1.2.7. 1. foras, p.42, 1.12. 1. quo, 1.ry. 1.conformatione, p.44. l.2.1,quod; l.s8.1. cor aquâ, p.45. 1.ult. 1. eoque dilatationem, p.47. I.18. 1. aortx, p. 49. 1.18.1. in lævum, p.52. lult. 1. fig. quartâ, p.53.1. 2o.1. fig. quintâ, p.54. 1 18. 1. nondum. p. 55.1.1.1. limen, p.57.1.2.dele totum, p. 661. I-.1. quarum, p. 78 . 1.ro.l. iterum, p.82. 1.8. 1.earum, p.88.1.g. 1.fit, p.89. 1.18. 1.paroxyfmi, p.94. 1.to I. tranfinittitur, p.iorid l.ar. I.applicaco,p.ro6. 1.24.1. ramis, p.rio.i..r8.í. quocum; p.iri. l.4.1. quantum, p.II4.l.I8. 1 inhibendo, 1.16.1. earum, p.irg.1.17. 1. precludat, p.125.1.30 1.plerunque a, p.131.1i2. 1. par; p. 134. 1.14.1. fanguis ab, p. 135. l. 13. proin, l.ab, p.13 6.1.1. ld namutut, 1. 6. pro etiam, 1. autem, p. 137. 1.10.1. experrectus, p.138,1.8. dele intra, 1.15: 1. aquofior, p.142. 1. 14 . 1. confuetudine, $I_{1} 5$. 1. lecto, p.I43.1 4. I.quod, p. 145.1.24. 1. impervia, p.147.1.8. pro tamen, l.tandem, l.ry. 1. deflueus, p.iřit.t.3. pro \& quîdem, l. Atque; p.165.1.21, 1. vita, p.169.1.20.1. alacriores, p: 171. 1.9. 1.circularem, p.174. 1.22. 1. experimentum, p. 188. 1. antipenult, 1 quod, poisio 1.9. 1. acelcit, 1. ult, 1. Fiduciổ.
(I)

Cordis Anatome.

CAP. I.

Cordis Situs \& Structurd.

Ulm ad Sanguinis naturam 8 e affectus dignofcendos, non tantùm circularem ejus motuminveftigâfle, fed \& motus illius, numeros,principia, \& diverfas alterationes, earumque caufas cognofcere atque inter fe conferre, nec non ipfius liquoris copiam fingulis pulfibus trajeCtam juxtà eftimare, pluri- Cordis fitus Cap.1. mum interfit ; operx pretium exiftimavi rem totam (à pleriique adhuc omiffam, ab aliis, $\&$ ab ipfo quoque Harveio optatam potius quàm explicatam,) quantum conjecturâ \& experimentis affequi potero, clarè \& breviter enarrate.

Verum cummotus Sanguinis Cordis motui debeatur, abfque quo nec fatis intellig1 poteft necperfiftere; de hujus Situ \& Structura, quxdam prafanda funt, quibus rite perpenfis atque invicem collatis magis in promptu erit concipere, quàm accuratè tum Fabrica tum Situs ejus ad motum comparantur, \& quàm apte conftituuntur omnia ad fanguinem in partes univerfi corporis diftribuendum.

Iraque Homini, \&z Carnivoris fere quibufque animalibus cordis fedes non in centro fed in fuperiore corporis parte conifituta eft, ut debitam fanguinis portionem eò facilius furfum in capur effunderet: Nam cuin trajectio \&s diftributio fanguinis à cordis fyftole omninò dependeat, nec liquor ejus ex naturâ fuâ tampromptè in partes fuperiores,

Cap.1. \& Structura.

 riores, quàm in v̌afa parallela aut deorfum in fubjecta propellitur: fi cordis Situs à capite remotiòr effet, fieri non poffet, quin ant ipfum robuftius formatum oportuit ut fortiore ictu liquorem projiceret, aut ob defectum fanguinis fæpenumerò caput vacillarer. In animalibus autem qua longiore collo \& quafi ad victum porrecto donantur, à capite æquè ac cæteris partibus remotus eft Cordis fitus; neque incommodi quicquam exinde fentiunt, quia capite plerumque pendulo victum quærunt, adeóque fanguis, ut longiore quàm in cæreris intervallo ita ductu planiore \& fæpius declivi in caput transtunditur.Pars cordi maximè vicina (de quâ pauca præmittenda funt) eft membranofa ejus capfula, Pericardium inde dicta quod ipfum Cor (ut cortex nucleum) undíq; amplectatur: Membrana eft firma \& robufta cum Pleura undique communis $\&$ continua, nifi ubi ì valis perforatur, ejufdem quoque figurx\& pœnè magnitudinis eft cum ipfo Corde, cui fubfidium tam neceffarium

$$
\text { B } 2 \text { preftar }
$$

4 Cordis 万itus Cap.I.

 praftat, ut in avibus minoribus, ferperttibus,ranis, \& in omnibus praterea vel minimis animalculis qua hactenus diffecare licuit, nunquam defideretur. De ufu ejus optima fit conjectura ex liquore quem continet; Preterquam enim quiod cordis parenchyma involucro ifto munitum nec corrumpitur ab empyemate, nec pulmonibus adnafcitur, \& caxteris adjacentium partium mjuriis minus exponitur; praterca in vacuo inter cor \& membranam ambitu Serum quoddam, feu aqua tenuis, femper reperitur, quâ externa cordis fuperficies continuò humectatur, qux alioqui ex Perenni agitatione \& calore inarefcere as cortugari, adećque ad motum inepta reddi porerir.Unde autem humor ifte proveniat \& à quo potifimùm fonte profluat, hactenus non ita recte pronuntiatum eft : Plerique enim humores ferofos ab aftu cordis in nubem elevatos ac denfitate hujus membranx coercitos in aquam iftam condenfari \& proinde pro ratione temperamenti plus in calidioribus, in frigidis autem minus abundare

Cap.i. \& Structura.

 bundare ftatuunt. Verum fi hanc originem hujus aqua arque caufam effe concedamus, utique non apparet quare majore copiâ plerumque hic loci non congeritur: quippe cum humores à continuo cordis æftu in nubem fufcitari atque à membranâ hâc intuis cohiberi $\&$ in aquam converti debent, quid impedit quò minus in copiam jufto majorem, quantamque hæc capfula continere non poterit,augeatur; Præterea, cum continui incrementi fuerit, ni fi$\mathrm{mul} \&$ exitum alicubi habeat, aut diutinâ ftagnatione corrumpi, adeoque cordi infefta reddi, aut faltem nimia cjus inundatione, cor ipfum obrui neceffe fit.Quare ut aquæ hujus fontem alibi quæramus, advertere oporter Naturam in variis corporis partibus ubi operıs aut functionum eadem aut par ratio eft, iifdem plerumque machinis atque inftrumentis uri ; \& quemadmodum glandulas lacrymales adhumorem fuggerendum quo oculi illinantur atque madefiant, (abfque quo ficci,\& motui inhabiles, evaderent) pariter \&x juxta B_{3} cordis

6 Cordis fitus Cap.1. cordis bafin diverfas glandulas conftituit, è quibus humor intra capfulam exfillat, $\& 8$ in vacuo ifto fípatio huc illuc agitatus cordis fuperficiem undique alluit, quò promptior \& facilior ejus. motus redderetur.

Porro humoremiftumnon merè excrementitium aut inftar roris ftillatitii aqueum, fed Seri potius nutritii è fanguine promanantis , partem effe, exinde conftat, quòd ignis calori vel paululum admotus, non aliter quàm ferum fanguini polt venx feetionem innatans, aut lympha è glandulis fecreta in gelatinam albam incraffatur: Qualem quidem confiftentiam nec fudor neque urina qualicunque coctione acquirit, fed vel omnino in auras exhalat, aut in Sabulum induratur. Unicum tantum fuper hâc re obiter notandum eft, nempe aquam in pericardio contentam illam folummodo huic experimento idoneam effe, qux in animali bene conftituto \& violentâ morte perempto reperitur, cujus utpote fanguis fero nutritio diluitur : Nam in animalibus morbo defunctis aut longâ

Cap.1. \& Structura. 7 inappetentiâ \& inediâ confectis, quorum nempe fanguis fucco chyloro prorfiss deftituitur ; neque eadem ratio eft, \& impar fucceffus: Cxererum in fanioribus tam manifefta res eft ut ${ }^{2-}$ perto jugulati Bovis pericardio magnam plerumque concretx gelatinx copiam invenias, quxe extinfto tantum calore partis, aut Íponte fuà aut à frìgore in iftam confiitentiam condenfatur, non aliter quàm decotum C . cervi, ubi frigido ä̈ri expomrur in gelatinam fubito concrefcit.

Verum de Liquore intra capfulam contento, di tum fatis : de membranâ ipsâ adhuc inquirendum reftat que fit caufa tum finalis tum efficiens, quod pericardium in Homine fepto traniverTo femper accrefcat, cum idem in qua= drupedum genere liberum \& aliquanto Spatio ab iplo remotum fuerit. Itaque fratem quod attinet, diverfitatis ratio non in eo pofita videtur, quod diaphragma humanum pariter ac cxterorum animalium expandi non oporteat, cum par utrinque refiriationis ufus \& neceffitas id exigat ; fed cum erectus

8 Cordis 万tus Cap.1. fir hominis inceffus atque figura, cóque facilius abdominis vifcera fuo pondere defcendant, minore diaphragmatis nixu atque fyftole ad infípirationem opus eft ; porrò, cum iñ exfpirarione pariter neceflarium fit idem diaphragma relaxari \&s tenfionem fuam remittere ; cum cap pulâ cordis omninò connectendum fuit in Homine, ne forte, quamdiu crectus incedit, ab hepatis aliorumque vifcerum appenforum pondere deorfum adeò deprimeretur, ut neque pulmo fatis concidere, neque exfpiratio debito modo pcragi potuerit. Quocirca in quadrupedibus ubi abdominis vifcera in ipfumdiaphragma incumbunt, ipfumque in pectoris cavitatem fuo pondere impellunt, ifta partium accretio exfpirationi quidem inutilis, infirationi autem, debitam diaphragmatis tenfionem impediendo, prorfius incommoda fuiffet.

Ideoque Pericardium in brutis liberum relinquitur, ne diaphragmatis fyftolx officeret; in Homine autem fepto alligatur, ut ejufdem inter exfpirandum diaftolem adjuvaret.

Verum

Cap.1. Structura.

Verum fi quæratur, quid fit quod hujufmodi connexionem in humano pectore efficiat; ego caulam (fi conjecturælocus fit) certè aliam non video, quàm quod Infans in utero materno conclufus, poftremis geftationis menfibus, capite deorfum admatricem demiffo (quò partui magis opportunus fiat) plerunque jaceat; unde fir ut vifcera infimi ventris toto pondere fuo diaphragmati incumbentia otiofo adhuc \& ab omni motu ferianti, iplum cordi propiùs admoveant, \& contiguum eoufque detineant, donec fenfim agglutinetur, \& tamarctè tandem accrefcat, ut liberare fe non poffitaut iterùm recedere.

Ex eodem hoc vifcerum inferiorum in fæetûs thoracem decubitu, non tantum fieri arbitror quòd fepto tranfverfo pericardium adhærear, fed $\& x$ eundem in causâ effe fufpicor, quod Conus cordis in humano genere multo magis quàm in cxteris animalibus deflectitur ; neque enim apici tantum humani cordis fed 8 r toti lateri applilicatur diaphragma ; id quod nifi ob molem

10 Cordis fitus Cap. 1.

 molem \& gravamen innitentium vifcerum contingere vix poterat: quare autem cordis humani conus in finiftrum latus vergat, hoc ideò fieri arbitror quòd truncus Venx cavx diaphragma pervadens \& juxta dextrum cordis latus afcendens, illud inibi advolvi non finit ; cum verò in finiftro pectoris clauitro liberum detur fpatium neque quicquamprohibeat, ab accumbentium vifcerum mole cordis conus femper in lievum deflectitur, ipfique lateri finiftro tam prope accumbit, ut ex hâc parte vibrationes' ejus (concidente prafertim pulmone inter exfpirandum, atque in lxyum converfi) admota manu tam facile palpare videamur.His ita premiffis proxime oftendendum venit quibus fulcris Cor ipfum innitatur, quibus fuftentaculis alligetur \& quàm motui ejus inferviant hxac omnia aut faltem obfequantur.

Et quidem plurima funt qux fuftinendo cordi auxiliares manus preftant, precipuè autem à vafis fanguiferis (quibus velut tot radicibus accrefcit)

Cap.i. \& Structura. 11

 parenchyma ejus dependetatque fub.tenditur; quin $\&$, cum bafis cordis in hiatus $\&$ orificia lata recipiendo exprimendoque fanguini contormata fit, ita omnino fieri debuit, quo muneri iftimagis opportunum atque idoneum redderetur. Quàm ftabile autem fundamentum ad cordis motum perficiendum preftent vafa fanguifera, poftea fufiùs, cum de cordis motu, dicetur.Quare quod proximè reftar, de sartibus cordis agendum erit; inter c. as fiquidem nervi vafaque fanguifera exrernam ejus fuperficiem perreptan ia primò in confpectum veniunt, prima quoque ante c:eteras tractanda funt.

Difceptatum eft olim, An vafa fanguifera à corde originemfumerent, aut potius in ipfum terminarentur. Verum ex quo $C l$. Harveius prima vite Itamina atque rudimenta in cicatriculâ nidulari docuit, atque ex motu \& pulfu minutulx ejus bullæ arterias velut tot fiftulas \& canales fanguini convehendo excudi, non eft quod diu in quæfione hæreamus: Quod autem venas fectat, cùm fanguini tantum referendo

12 Cordis frtus Cap.I.

ferendo à partibus corporis omnino natefint, utique exiftimandum eft, ab extremo undique corpore oriri, \& in cor, ubiliquorem fuum exonerant, pariter terminari : Neque enim quis dixeritflumina à mari in quod fefe exonerant, fed à fontibus \& minoribus rivulis originem fuam haurire. Verum alia funt vafa que tum originem à corde capiunt, tuin in ipfum quoque terminantur: Cordis enim parenchyma uti toti corpori calorem \& nutrimentum porrigit, ita \& fibi eodem modo profipicit; neque enim x ftuante intra ventriculos fanguine folum calet, aut fuico nutritio intra ventriculos cocto faturatur, fed chylus qui parietibus cordis fine manifefto vitx difcrimine (ut poitea patebit) agglutinari non poteft, per vała unà cum fanguine per totum ejus parenchyma diftribuitur, ibique in nutrimentum ejus faceffit, \& pro conrinuo difipendio novo fubinde pabulo reparatur.

Vafa autem qux fanguinem in cordis parenchyma convehunt duo tantum funt, fed $\&$ in duos truncos utrinque

Cap.1. Structura. 13

 moxab origine divifa. Quorun orificia circa principium aorta immediate extra valvulas femilunares aperiuntur, coronarix inde dictro quòd truncis non ftatim in parenchyma demiffis, fed facto prius circuitu quo commodius undique fefe explicent, cordis bafin amplectuntur \& cingunt : Et licet ab ipsầ origine in oppofitas cordis regiones ab invicem recedant, circa extremas tamen partes rurfus conveniunt \& paffim apertis ofculis invicem communicant, adeò ut fi unil liquor aliquis injiciatur, per utramque fimul \& femel difpergatur: Cum enim eadem ubique caloris vitalis atque nutrimenti neceffitas urgeat, ne alibi deficiant, anaftomôfi hâc abunde providetur.Uti autem arterix dux fanguinemad alimentum \& calorem cordi fuppeditandum, fubminiftrant, pariter \& dux venx ab ambitu fuo coronarix quoque dieter, reducendo fanguini inferviunt. Et nequis in pofterum dubitet an venæ capillares apertis ofculis in fe invicem hient, fi intueatur conum cordis vitutulini aut cujulpiam animalis recens nati

14 Cordis fitus Cap.I.

 in quo vafa hxc planiora exiftunt ; \& culcelli apice fanguinem ab hâc in illam venam urgeat propellatque, manifefto videbit, liquorem fanguineum facilè̀ à venâ hujus lateris in illam alterius percurrere ; \& vice versâ. Idem in vafis veficx, inteftinorum, ventriculi, \& cerebri evenire certus fum, ut nullus dubitem vafa capillaria (ejufdem generis) per onmes corporis partes in fefe mutuò aperiri.De Nervis cordı implantatis, Authores qui cords \& fanguinis motum nefciverunt, non immeritò plerique olim filebant, Atque proximè accedunt, qui, circulationem licèt agnofcant, eam tamen tam lento \& teftudineo paffu fierı ftatuant, ut fanguinem guttatim inftillari, \& ebullitione folum excitatum è corde prolabi autument; atque proinde, an cordis motus ad fanguinis circuitum aliquid conferat parum folliciti, de mufculosâ cordis ftruCturâ, arque numerofis nervis parum aut nihil dignum opinantur ; verum fi quis tendinofam\& fibrofan cordis fubftantian, eamque tat nervis ubique

Cap.i. \& Structura. 15

 intertextam perpendat, exiftimare eum quoque oportet, non tantam vim illi fruftra datam, fed eidem officio cum reliquis mufculis faceam atque conftitutam effe : Plurimas enim nervorum fibras atque furculos à nervis octavi paris accipit, qui omnes inter arteriam pulmonalem \& aortam incedentes in auriculas utrinque varias propagines dimittunt, \& deinde in cordis iubftan-tiam varie explicantur, qui in corde vituli aut recens nati cujufpiam animalis per totam extimam fuperficiem manifeftiùs apparent; quale vero minifterium cordi prxftant, pofteà dicetur.Interea advertere non alienum erit, quomodo feiritus pro diversâ animalium figurâ per nervos varic in cor influant: cum enim nulla vis aut facultas fe movendi cerebro infit, quâ fpiritus animales (ut Cor fuum fanguinem) difpellat ; cúmque liquor nervofus \& fpiritus eo involuti ex naturâ fuâ folum deorfum velut aqua ex Alembico fuo pondere deftillant; ideo fit ut caput, aut fpinalis medulla fupra reliquum corpus in omni animalium genere

16 Cordis fotus Cap. 1.

 conftituatur, aut pro libitu erigi atque attolli poteft : Et licèt fatendum fit, à fanguinis in cerebrum appulfu firitus per meatus \& poros cerebri, prout in reliquo corpore, propelli, atque à fubfequentibus continuâ quadam feric \& fucceffione in nervos \& fpinalem medullam urgeri, cum tamen difficiliùs liquor ifte nervofus furfum quàm deorfum ufque impelli atque protrudi poterit, rum fir ut cerebrum aut faltem Spinalis mcdulla fupra reliquum corpus collocetur, quo liquor animalis facilius in omnes partes fubjectas influat \& defcendat. Etquidem huic conjecturx diverfius nervorum è fpinali medulla in Hominte atque in quadrupedibus exortus primam mihi anfam dedit ; Quippein Homine qui capite \& fpinâ erectầ factus eft, nervi omnes obliquè exorti obliquè ctiam deorfum feruntur; in Brutis autem quorum medulla fpinalis fupra corpus collocatur, nervi omnes reftè dcorfum exorti, reate ctian è épinali medulla extra vertebras defcendunt: Quin \&, cum propagines nervofa à folo octavi
Cap.i. \& Structura. 17

 paris nervo in Cor humanum inferancur, in Brutis plerifque longè aliter fe res haber, quippe prater propagines à nervo octavi paris diftributas plurimi infuper nervorum furculi à nervo intercoftali ubi recta fuper Cor tranfit in ejus parenchyma dimittuntur, quo faciliùs ad Cordis motum adjuvandum influant, prout cuilibet in vitulis,equis \& majoribus Animalibus primo ftatimı intuitu occurret; manifefto indicio hoc ideo à naturâ quafif fubfidium Brutis comparatum effe, ne capita, quar terram prona fpectant, non fatis facilè aut copiosè feiritus animales impertirent.Explicatis ad hunc modum Vafis Cordis, tandem ad Parenchyma feu: potius Mulfoularem cjus Subfantiam pervenimus, de quâ quidem obfervare eft, ipfam fupra omnes Corporis Mufcuilos accuratè conformari. Cum c nim cateros oinnes operis neceffitate \& conftantiâ multum excellat, utique par fuit ut ftructurx quoque elegantiâ eofdem longè tuperaret. Quanquam autem nobiliori ufui deftinari \& pecu-

18 Cordis fitus Cap.r.

liari quadam texturâ fua multum preftare videatur, at hoc habet cum reliquis Mufculis commune quòd iifdem plane fibris\& inftrumentis, licèt diverfầ ratione difpofitis, tum fabrica ejus tum motus inflituuntur. Quod ut clariùs innotefcar, Mulculi recti cùm obliquis conterendi funt: Mufculum autem quemlibet in toto corpore cujus fibre atque motus recti funt non unico \& fimplici ventre (uti ab Anatomicis hactenus frriptum eft, qui duos folummodo Mufculos in collo biventres agnofcunt) neque capite \& caudâ donari, neque fibras ab altero extremo tendine in alium rectà ferri certum eft, (prout in Tab. 3. Fizg. I. delineari folet.) Sed omnes biventres funt, \& fibrx corum carnex prout à diversâ origine ita in diverfos \& oppofitos fines feruntur. Prout Tab. 3. Fig. 2. exhibet. In quâ
> a a Tendines utrinque.
> b b Duo vertres five duplex Nuf Culus cum fibris in oppofitos fines refpicientibus.

Cap.1. S Structura.

c c Tendinis utriufGue pars exterior in quem fibre omnes infervontur.

Atque hæc quidem eft fabrica Mufculorum omnium in univerfo corpore, five in femore, tibia, brachio, \& collo Humano ; porro, Múculi abdominis, Maxillares, Temporales, Diaphragma, Intercoftales externi \& interni, ut vocant,(quorum quidem finguli funt unius Mufculi bini ventres) eodem ordine \& modo conformantur. Atque ne unum tantùm fpecimen fimplicis cujufvis Mufculi biventris exhibeam, libet unum \& alterum Mufculi magis compofiti Schematifmum proponere: Qualem in Tab.3. Figg. 4. © 5. Mufculi lumbaris in cane varia facies manifento oftendir. Tertia enim Figura Mufculi illius partem abdomini proximam cùm fibris omninò rectis deorfum in longum tendinem definentibus exhibet. Inqua
a Pars ejus carnofa prope renes.
b Pars ejus inferior ubitendo ofla cruris affigitur. $\mathrm{C}_{2} \mathrm{cc}$

20 Cordis fitus Cap.1.

c c Fibre recte utrinque in tendinem definentibus.

Quarta autem Figura ejufdém Mufculi lumbaris latus exhibet quà feinæ vertebris accumbit, quod quidem diverfis quafi Mufculis conftat, quorum cujufque tendo in diverfam vertebram affigitur. In qua,
a Muf culi pars intcrior deorfum in tendinemabiens.
bbbbb Mufouliparvi adverf lateris; quorum tendines.
ccccc In fingulis vertebras juxta fitas implantantur, fo jurfum tendurt.

Cujus quidem utríuque lateris dúctus atque ordinem, in Figura quinta fimul reprefentantur; Ut uno intuitur confter, cundenx Mufculum effe, fed fibris in diverfatendere.

In fexta autem Figura cjufdem Tabulx, exhibetur Mufculus quidam ob formam Plumaris mihi dictus qui in exrremitate Cruyis ovini occurrit, \& ab offe femoris exoritur \& in longum

Cap.I. \& Structura. 21

 tendinem definit, qui offi tibix ovinæ annectitur: Et cum alii Muf́culi plures, fibris fuis plumam cùm pennâ accuratè referant, hîc quidem è duplice plumâ conftat ; atque uti ad Mufculi biventris normam, ita \& ad fimilem quoque motum componi videtur. Verumr pre his omnibus maximè compofitus eft quem Mulculum Deltoeidem vo cant; cujus quidem plures ventres fuint atque vario in oppofita refpectus planè oftendunt naturam, quanquam in diverfis corporis partibus circa formandos Mufculos varia arte \& fapiùs ludat, at femper ad Mufculi biventris ordinem atque rationem collimare. Prout in Tab. 4. Fig. I. Juculenter apparet. In quâa a Pars MufouliDeltoeidis tendinoa a uperior que offi fapula do claviculd annectitur.
bbbb Pars tendinofa inferior quia medio brachio annectitur.
c c c Ventres ejus, jipcrius tendentes. ddddd Ventres ejus; deor/um tendentes.

$$
\mathrm{C}_{3} \quad \text { Quare }
$$

22 Cordis ftus Cap.1.

Quare autem Murculi biventres in collo fic appellati junctis tendinibus in medio conveniunt contra quam in aliis omnibus totus corporis Mufculis obfervari poteft, in causầ conjicio effe, quòd cùm venam jugularem ex utroque colli latere tranfcendant, nifi ibidem attenuari \& per tendines committi provifum effer, venam comprimendo fanguinis è cerebro defcenfum multum impedirent. Prout in Iab. 4. Fig.z. planè patet. Inqua
a a Vena jugularis.
bb Muf cullus biventer.
c Duo terdines.
d Vbi tendines utriufque conjunguntur.

Poteram hic plures alios Mufculos rectos non injucundo fpectaculo delineare, fed cüm omnibus eadem texturx ratio fir, proximè reftat ut oftendam quid Mufculus cujus fibrx utque motus obliquè circulares funt cùm recto commune habet.

Cap.1. \& Structura. 23
Ur autem, ad Geometrix Leges, linea recta obliqux Index eft, ita ex Structurâ Mufculi recti tanquam communi normâ circularis hxc Cordis Machina optimè edifcenda eft. Quemadmodum enim rectus è duplici fibrarú ordine conftat, in diverfas \& oppofitas Mufculi partes tendentium, quæ ubi contrahunrur, tendines fuos propiùs fibi invicem adducunt, ita\& confimili planemodo in Cordis Machinâ conftituendâ ejưque peragendo motu accidit. Quippe è duplici fibram ordine ab ipfo ortu in contrarias Cordis partes abeuntium potiffimum conformatur ; quo neque quicquam luculentius apparet, five fibrarum Cordis terminationem, five ductum \& feriem earum perpendamus.

Etquidem in Corde benè excocto \& ab auriculis fuis $\& x$ vafis majoribus feparato, tendo fatis validus apparet qui marginem ejus circa oftia undique cingit * amplectitur, cujuspars aliquain fummitate fepti in quibufdam animalibus in offeam fubetantiam induratur. In quem quidem tendinem fibra carC 4 nex

24 Cordis frus Cap. 1. nex qux externum Cordis ambitum complicant \& conftituunt dextrorfum ubique inferuntur. Verum fibrecarnex interiores qux ventriculis proximx funt, ductu plane oppofito in ipfum illum rendinem inferuntur, uti videre eft in Tab.2. Fig.f. UUbi,
a Oftium quì Dexter ventriculus fanguinem à venâ cavâa excipit.
b ofitiun quà ìpfum in pulmomem expellit.
c Ostium quì finifer ventriculus fanguinem à pulmone redeuntern excipit.
d ostium quà immijJum in aortam expellit.
cee e Tendo undique circa oftia Cordis conjitus.
fffff Fibre abexteriore Cordis am bitu undiquaque redeuntes, in terdinem Cordis delate.
$\mathrm{g} \mathrm{g} \operatorname{gg}$ Fibre interiores ductuplanè exterioribus oppofito in curadem tendinem definentes.
Cum itaque conftiterit fibras Cordis duplici \& diverfo modo terminari, proximè

Cap.1. \& Structura. 25

 proximè oftendendum eft ductu quoque fimili per totum utriufque ventriculi circuitum complicari; exceptis itaque paucts' \& tenuioribus fibris qux per extimam dextri ventriculi fuperficiem rectè furfum elatx in bafin terminantur, uti in Iab.2. Fig. 2. delineatur. In quâa Bafis Cordis.
b Conus.
ccc Fibra rectia furfum verfus basfon tendentes.
Reliqux omnes utrique ventriculo communes duplicem tantùm feriem atque ordinem fed penitus contrarium affectant : Fibre quidem rectis hilce exterioribus in dextro ventriculo proximè fubjectx obliquè dextrorfum afcendentes in bafin Cordis terminantur, \& fipirali fuo ambitu Helicem five cochleam fatis aptè referunt. Prout Tab. 2. in Fig.3: videre eft. Inqua
a Bafis Cordis.
b Conus.
c Fibre qua finijtrum ventriculums complicant.

$$
\text { d } 2 \mu
$$

26 Cordis [etus Cap. 1.

d 2ua Dextrum.
e Sinus in interfitio utriufque ven triculi pro vafis Cordis excipiendis excavatus.
Externis hifce fubjectæ funt alix fibre prioribus prorfus contrarix: Uti enim exteriores à finiftro Cordis larere verfus dextrum porrectæ ad bafin ejus terminantur, hæ ductu plane oppofito tcruntur; Emergunt enim circumquaque à dextro Cordis latere unde obliquè verfus finiftrum latx, \&x utrumque Cordis ventriculum circumplexx ad bafin finiftri lateris affurgunt, alteramque Helicem inverfi ordinis conftituunt. Prout in Tab.2. Fig.4. manifeftumeft. In quâ
a Bafis Cordis.
b Conus.
c Dextrum latus.
d Sinistrum.
e Fibra dextriventriculz.
f Fibra finiftri.
Quarum omnium fëriem complicationem atque ordinem facilè percipiet qui Cor bubulum aut ovinum excarnare

Cap.i. © Structura. 27 nare tentaverit. Quæ prioris ordinis funt cuticulâ Cordis vixdum feparàtâ primâ velut facie facilè confici poffunt, alix autem quæ magis in profundo latent, non nifi prioribus ademptis in conipectum veniunt. In iis autem perfequendis magnâ non opus eft cautelà, ipfi enim tractus eorum \& convolutiones adeó planæ funt 8 obviæ ut filo quafi ducente ultro feprodant. At verò licet fila craffiora in glomeres convoluta primò afpectu valdè referant, ad corum tamen morem atque codem prorfus ordine non contexuntur; neque enim continuo quafi filo, aut repetito frepius circuitu ventriculos Cordis circumambiunt, ideoque velut glomeres filorum perpetuâ rerie revolvi non poffunt: licèt enim externâ Cordis membranâ feparatà, quantum ex oculis conjicere fuerit, putaret aliquis fibras omnes oblique à bafi ad Cordis apicem uno \& continuo ductu pertingere, qui tamen ipforum ductus ab alterutro extremo emetiri tentaverit, facilè comperiet pauciffimas carum vel dimidiaturn faltem fatii iftius

28 Cordis 今tus Cap.I.

 iftius ambitum conficere, fed ubi panlulum ab ipfo tendine emerferint, fub pracedentibus fibris mox intorquentur, $\mathbb{\&}$ vifum prorfus aufugiunt: de fibris enim obliquis exterioribus neutiquam fileri debet, Non omnes à bali in conum pertingere, fed quadam illarum breviores funt $\&$ ubi medium Cordis ambitum extra attigerunt, inftar arcus inflexi ftatim incurvantur, $\&$ in tendinem alterius lateris $\&$ ventriculi obliquo ductu inferuntur. Qux quali ordine inflectantur \& fibris carneis hinc inde communicatis quafi arreptis invicem manibus fibi mutuò fuccurrant, ex Tab.2. Fig.5. plane conftat. Ubi,a Tendo circa ofiium ventriculi dextri.
b Tendo circa offinms ventriculi finiAri.
c Fibre ab una tendine in aliumparrecte e cum fibris intermediis binc inde in mutuum fubfdiwns porrectis.
d Locis ubi polquam dextrum zen triculum

Cap.1. \& Structura. 29

 tricullum complexaf /unt, incurvan. tur, ひૅobliquè in inijfri ventriculi tendinem definurt.Perfpecto fibrarum utrique ventriculo communium duatu, reftar ut, abfciffo dextro ventrieulo quo ordine finiftri fibtre ferantur pariter expendamus ; \& quidem uti eidem officio ambo inferviunt, ita fimilis ubique machinx ratio atque forma occurrit, duplici enim fibrarum ordine iifque inoppofitos omninò tendines définentib ${ }^{\circ}$ inftruitur. Fibrx enim exteriores per totum finiftri ventriculi ambitum dex-
 gunt ibidemque in bafin Cordis terminantur uti Figura 6. exhibet in quã finititer ventriculus in latus recumbit ut quo ritu fibre circa conum Cor'dis conveniunt, palam fiat. Ubi,
a Bafis ventriculi.
b Conus.
ec c Fibre obliquè dextrorfum a/cendentes verfus bafin.
d Latus dextro ventriculo proximum.
e Latusfiniftrum.

30

 Cordis fitus Cap.1.At neque omnes in hoc ventriculo ab ipsâ bafi in conum pertingunt, \& non nifi pluribus abruptis coufque feparari poflunt, plurim x enim in medio Cordis ambitu è communi viâ $\&$ traftu deflectunt, \& fub fibris proximè procedentibus demerfx in tendinem oppofiti lateris obliquè afcendunt, adeoque breviorem duftu fuo circulum defcribunt. Prout in Fig. s. fupra conftitit.

Interiores autem fibre contrario prorfus incedendi ordine furfum oblique finiftrorfum omnes in bafin afcendunt, ejufque tendini inferuntur atque interiorem ventriculi parietem conflituunt.

Qux quidem contrarii ordinis fibre quotquot longiores fuerint ad conum Cordis concurrunt, \& circa ipfum in fefe mutuò contorquentur, adeo tamen ut relitum in medio centrum tenuiffima Cordis pars fit: Cujus quidem contorfionis modum atque fibrarum in exteriore finiftri ventriculi parietecum illis in interiore circa apicem Cordis concurfum \& contorfionem

Cap.1. \& Structura. 31

 fionem apte fatis exhibet Fig. 7. In quâa Tendo dextri lateris.
b Tendo finifrri.
c Fibre aliquot exterioris parietis.
d Fibre interioris parietis è fibrarum utruufque ordinis circa conum Cordis contorfio.

Ex quo perfpicuum fatis viderur, fibrarum externi \& interni parietis prorfus contrario fibi modo ferri motufque etiam oppofitos perficere, verum adeo ut dum Cordis parietes in diverfa conftringant, utrofque in arctius $\&$ angufius fpatium contrahere. Prout infra magis patebit.

Unicum hoc comminifcendum reftat, Non omnes quidem fibras in tendinem circa oftia Cordis confitum immediate definere, verùm aliquas in carneas quas vocant columnas ex utroque ventriculi finiftri latere protuberantes terminari; quie tamen columnx varios tendines in membranas mitrales dictas \& cum ipfo tendine in bali

32 Cordis ftus Cap.1. bafi Cordis conjunctas emittunt; Adeò ut ad motum Cordis perinde fuerit five hoc aut illo modo bafin Cordis affequantur.

Vidimus huc ufque, quàm vario \& diverifo ordine fibrex carnex Cordis latera \& patietes cingunt: fupereft unicè, ut quàm affabrè omnes circa conum Cordis complicentur, exponamus; quod quoniam elegantiùs delineare quàm defcribere in promptu eft, hoc folum advertere fufficiet, prout motus ordis \& Sanguinis circularis eft, ita \& fibras omnes motrices utriufque machinas hîc velut propiùs in circulum \& quafi centrum adduci. Prout conus Cordis bubuli excocti \& abfciffi oftendit, in Fig.8. Tab. 2. In quâ
aаa.a Fibraexteriores Jpirali ductu in conum velut in cchtrum coenntes.
Et ficuti internX ventriculi fibre contrario ad externas ductu feruntur, ita fi ooni pars interior 8 ventriculi cavitati proxima perpendatur, con-
ftabit

Cap.1. G Structura. 33

ftabit quoque fibras ejus, inverfo prioribus ordine, velut in circulum parites componi.

Quandoquidem denique majore nixu \& vibratione opus eft ad fangulnem in remotiffimas corporis partes quàm in vicinos tantùm \& laxos pulmones propellendum, ideò obfervandum eft, ventriculum finiftrum majori fibrarum robore, iifque craflioribus, quam dextrum firmari.
Structurâ Cordis exteriore hactenus perluftratâ, de auriculis merito hîc aliquiddicendum eft, neque enim dininore artificio formantur, quàm Cor ipfum, licèt minore mole conitent; Quin 85 par utriufque ufus \& fabricx ratio eft. Mufculus enim utraque eft \& duplici fibrarum ordine conftruuntur ; Quinimo uti motus earun Cordis motum antecedit, ita \& nervos ab octavi paris furculis prius, quam ipfum attingunt, fortiuntur: Et quidem fibre duplici \& contrario refpectur in oppofitos. tendines feruntur, quippe tendo in Cordis bafi auriculis etiam communis eft, cui veluti fulcro innituntur: ex alterầ

34 Cordis fotus Cap.1. autem parte auriculx dextrx quà venam cavam refpicit, duriore \& tendinofo planè circulo firmatur: inter quos fibrex alix in hunc, in illum alire ter. minantur, uti in Cordis Humani auriculầ dextrâ inversâ \& explicatâ conftat, in Tab.5.ffg. 2. In quâ
> àa Ba/fis auricule wbitendini Cordis unitur.
> Ђbb Tendinofus circulus quà à vena cavâ dijtinguitur.
> c cc Fibre carnce, binc inde in diverfos tendines delate cum fibrillis intermedizs quaf in plumam efformatu.
> d Venamagnacoronaria.
> e e V̀ena aitie minores,_/anguini à Corde referendo conflituta.
> f Pars auricula /uperior.

De ufu carum infrà dicetur: interea obfervandum ett, inter auriculam dextram \& finittram, non eam proportionem dari, qualis inter Cordis ventriculos mutuò intercedit. Ventriculi enim cum fimul \& xquis femper paffibusmoveantur, cumque ad regularem

Cap.1. Wo Structura. 35

 $\&$ commodum per pulmones circuitum, plus fanguinis à dextro Ventricalo. fuffundi non debuit, quàm pe^{r} finiftrum expediri potuit; neceffe ideờ fuit, ut pari ferè capacitate conftarent; pauciffim â enim fanguinis parte (qux valis lymphaticis in pulmone ablegatur \& pulmonis nutrimento atque irrigationi infervit) exceptâ, utrique Cordis finus xqualem continent \&x diftribuunt menfuram.Cumitaque tam regularis $\&$ ubiquè in omnibus contans ventriculorum refpectus \& habitudo fuerit,quid in causâ fit quòd auriculx etiam pari invicems proportione nullatenus refpondeant, aliud in promptu concipere non eft, quàm cum auriculx ad conjiciendum in ventriculos fanguinem natx atque conftitutx vidcantur, fanguinis autem ë venâ cavà in dextrum Cordis ventriculum influxus lenis fit, ideo majore illic \& ampliore auriculâ opus eft, qux fanguinem tantâ copiâ intra ambitum fuum excipiat \& ventriculo injíciat, quanta ferè ad finum illius explendum fufficiat: è venâ pulmonali autem cùm

36 Cordis fitus Cap.I. propter pulmonis in exfiratione callapfum \& fubfidentiam, fanguis expreflus confeftim \& copiofius urgetur; hoc folum requiri videtur ut praterlabenti in finiftrum ventriculum fanguini motus fortior imprimatur, ejuique curfus promoveatur aliquantulum, adeóque tantx auriculx fubfidium non defiderat.

Poftquam ad hunc modum externam Cordis fuperficiem atque texturam explicuimus, proximè reftat, ut quo intus apparatu inftruuntur omnia, confíiciamus. Prout autem externa Cordis facies levis' \& æqualis eft propter commodioren motum; ita ob eandem caufan interni ejus parietes inxquales maximè funt $\&$ difpari ritu contexuntur ; quippeper totam intus cavitatem in diverfa interfitia \& fulcos Cor excavatur, \& fibris carneis huc inde portectis intertexitur: Verum nec in omnium animalium cordibus x què hoc accidit, neque quibús adfunt, fimili ardine atque nole fabricantur. Quippe, uti Imfignijsimus Harveius oblervavit, pro diverfo animalium

Cap.i. \& Structura. 37

 malium genere, atque ejufdem fpeciei magnitudine atque robore plurimùm difcrepant. In majoribus enim Animalibus, quorum fanguis longiùs trajici \& fortiore motu urgeri poftulat, ventriculi Cordis carneis fibris \& parvis quafí mufculis multifariam hinc inde protenfis intus firmantur ; atque in fcroliculos variè finduntur ; quóque grandiora Animalia fuerint, eo majores atque pauciores ifte fibry carnex reperiuntur, fed \& fcrobiculi altiùs imprimuntur. In humano autem Corde, fibrx minores funt, fed perplexa \& 8 multiplici ferie difponuntur, \& fupra quàm in aliis omnium cordibus qux hactenus videre licuit, numerofiores exfiftunt. Quarum quidem feriem atque ordinem exhibet Tab. .s. Fig. I. in quâ finifftri ventriculi interior finus explicatur. In quâaa Vena pulmonalis recte ante ingreffum Cordis cxplicatur.
b Aurcula Enizitra Cordis.
c Foramen ovale, per quod fanguis à venâ cava rectè ante finjfri ventricali ffium infuit.
D 3
d d

38 Cordis fitus Cap.i.

 dd Duicmerabrana mitrales.ee Carnea columne cx utroque ventriculi latere protuberantes.
f Bafis Cordis, wbi Sanguis è vena pulmonali in ventriculum infuit.
g Locus fub membranis mitralibisubi cmittitur in aortam.
h Conits Cordis.
i ii i Fibra carnea binc inde per totam interioris ventriculi ambitum attext.e.

Porrò,utiin majoribus Brutis ventriculi Cordis majoribus intus fibris quàm in homine; ita auriculx quoque, nempe in equo $\&$ bove, largioribus fibris veluti digitis huc illuc protenfis in diverfa fpatia diftinguuntur, quibus invicem adductis latera illaruim ad exprimendum fanguinem mutuò complicantur: Quin \&, de cxteris ventriculorum fibris nulli dubium elfe debet, quin motui Cordis \& lateribus ejufdem conftringendis inferviaint.

Uti verò fibre iftx carnex ad Cordis parietes conftringendos plurimum conferunt, ita quo aretius hoc fiat \&

Cap.1. \& Structura. 39

 internæ ventriculorum partes fibi magis appropinquent, fifluræ iftæ five fulci in animalium grandiorum cordibus apprimè conducunt: neque enim lxvis \& æqualis intus fuperficies idem pateretur. Quocirca hujufmodi interftitia five fiffuræ in ventriculum potiffimum finiftro occurrunt utpote qux huic folum neceffarix atque ex ufu effe videntur : Quippe cuim parenchyma ventriculi finiftri è fibris obliquè circularibus prxcipuè conftet, atque undique in fefe velut in circulum conitringatur, non potuit tam propè, $\&$ in ambitum tam arctè contrahi, nifi excavati intus fulci \& rugæ hujufmodi motui locum accommodarent; Ventriculi autem dextri paries cùm multò tenuior $\&$ finiftri quafi appendix, ejufdein lateri attextus fir, motuque tantum femicirculari coarctetur, in eo tam profund x fove x non admodum requiri videbantur: Verùm, cùm propter lateris tenuitatem $a b$ irruente fanguinis torrente aut fuppreffum Cordis motum à nimiâ ejus copiâ ultra debitum tonum diftendi coufque D 4 polfic,40 Cordisfitus Cap. 1. poffit, ut fibro ejus fefe conftringere iterum \& reftituere non valcant (quòd in finintro ventriculo propter parietis robur \& craffitiem neutiquam timendum eft) in dextro hujufinodi incommoda quò melius pracaveantur, carneus quidam Muiculus rotundus \& fátis validus circa mediam ipfius regionem à fepto Cordis in latus oppofitum porrigitur; proutin Corde ovino, bovino, aliifque videre eft; in Humano autem Corde dux vel tres carnex hujufinodi fibre plerunque reperiuntur; quarum quidem ufurn fi non adducendo ejus parieti, at. falem ne nimis diftrahatur, plurimùm conducunt.

Cordis internà faciè huc ufque explicatî̀, proximè reftat dicendum de papilitis \& columnis carncis, valvulifque circa diverfa Cordis oftia confiris, tum quà fanguinem à venis excipit, tum quà cundem in arterias expellit.

Qux itaque in dextro ventriculo occurrunt papillx, funt carunculx quxdam teretes \& oblongx, è lateribus excrefcentes \&x furfun porrecta, è quarum

Cap.1. ES Structura. 41 quarum fummo apice fibrx quxdam tendinofx procedunt, \& membranis qux à figurà Triculpides dictr funt, annectuntur. Membranx autem iftx circa marginem hujus ventriculi exortx, undique oftii ejus limencingunt, adeò ut cum mucro Cordis in omni Syfole verfus bafin adducatur, papillx quoque furfum motx fibras fuas quafi lora multum relaxata remittunt; quo fit, ut membrane quoque, quibus alligantur, laxè pendentes à fanguine in omni Cordis Syftole expreffo, quafi vela à vento impleta furfum propellantur, proindéque oftium illud Cordis tam accuratè occludant, ut liquoris ne una guttulla in auriculam refluere poffit, Sed in pulmones, quâ data porta,totus expellatur: Verùm, ut in omni Syftole Cordis, cono ad bafin propius adducto, papillæ fibras fuas multum relaxant, ita in diaftole conus iterum recedens, papillas corumque fibras fecum fimul deducit; unde fit ut membranx quoque detractx oftium Cordis protinùs recludant, \& fanguini ab auriculâ impulfo foràs quafi aperiant.

Atque

42 Cordis fitus Cap.1.

Atque hxc quidem ita fieri \& in omni Cordis fyitole ac diaftole hanc effe actionem\& munus valvularum, fatisconftat; verùm agendi rationem\& perficiendi modum non nifi ex fitu \&: ftructurâ papillarum quibus alligantur, ita facile eft concipere. Nam, licèt certiffimum fit, membranas tricufpides ì fanguine furfum in Syfole regurgitante eoufque, veli inftar, inflari donec ventriculi orificium prorfus obturent ; quò tamen modo \& partiuur confirmatione hoc contingat, oblervatu digniffimum eft. In his autem tribus, rei totius ratio $8 \times$ machine artificium confiftit.

I Quòd papillix extra lateris interni fuperficiem longiùs eminent \& protuberant.
2 Quòdnon in eâdemomnes,fedin diversâ lateris parte,confitzfunt. Quòd papillx in latere membranis, quibus alligantur, oppofito, conftitute funt.

Nimirum hoc firu \& tabricî papillarum efficitur,ut membranx aliquanto
femper

Cap.r. \& Structura. 43

 femper fpatio à lateribus ventriculi diftantes primò quafi ictu fanguinis in omni Syftole furfum repercuffi, facilè attollạntur; cùm enim, remiffis papillarum fibris, tam laxè \& tranfverfim ferè in medio ventriculo pendeant, fieri non potèt, quin à regurgitante fanguine $\&$ intra ambitumipforum excepro, non aliter quàm vela à vento, impellantur, \& quoufque lora remittunt, explicentur: Illa autem coufque cedere à naturâ datum eft, donec membranx undique extenfx orificium ventriculi omnino occludant.Verum exdem fibre fii immediatè ex ipfis lateribus ventriculi orirentur, utique membranx interno parieti Cordis propiùs accubantes fanguinem retrò excipere ; atque ab codem furfum attolli inon poffent, fed eâdem quâ influxerit vià iterum expelli paterentur.

Papillarum verò ulum atque rationem meliùs intelliget quifpiam, fi carneas columnas è lateribus finiftri ventriculi extuberantes atque eidem prorfus officio deftinatas attentè perpendat ; Non enim ad motum factr funt,

44 Cordis 今tus Cap.r.

 aut membranas fibi annexas contrahunt (quodd oftiolum Cordis apertum potius retinerer) fed ideò folum contituitx funt, \& extra reliquam interni ventriculif fuperficiern in tantùm eminent, ut membranas à lateribus yentriculi fatis diftantes reneant, quod facilins à fanguine ab infra fuffufo repulfe brificium illud Cordis, cui attextafunt,prorfus clandant. Quam quidem inembranarum fubleyationem \& orificii iftius inde occlufionem, immiffo per oftiumvel conum Cordis fyphone, \& injectâ aquâ facilè quis imitari poterit, \& aperte confíicere, modo auricula 2\% yena pulmonalis ad bafin Cordis priùs. ablcindantur ; Idemque patiter fiet, fi Cora quâ ferè repletum circa conum comprimatur.In dextro ventriculo membrana omnes fibras fuas à papillis haud directè àccipfunt; illarum tamen ope hoc praftant, ut fangtinis recurfum pariter impediant:quippe cùm undique contigux fuerint, quam primùm metnbranx illx qux reate frioras à papillis infertas habent, à fariguine fubleven-

Cap.1. Structura. 45

 tur, reliquas quoque quibus conjunctx funt fimul attolli \& à fanguine fuperius vergente impleri \& diftendi neceffe eft : Quòdut commodius fiat, exiftimare par eft,fanguinem inomni diaftole in Cordis thalamos injectuminter membranas iftas \& parietes retro fe infinuare, eafdemque, quo plenior ventriculi cavitas evadit, cò magis attolli \&r quafi fufflari, prout ex aquâ ad plenitudinem ei inftillatâ, vel è fyphone per apertum ejus orificium injectâa apparet. Cui multum etiam conducit, quòd fibre à carneis columnis \& papillis porrectx fanguini apertum per fpatia fua tranfitum pone membranas iftas influenti prabent ; praterquam enim quòd fanguini quafi per cribrum fuccutiendo \& mifcendo tortè infervire poffint, huic infuper ufui inprimis deftinari videntur, tum ut membranas intra debitos extenfionis limites contineant, tum ut fanguini aditum faciliorem patefaciant, quò fe undique in penitifimos ventriculotum anfractus \& receflus commodiús infinuer, eóque addilationem Cordís \&t
46 Cordis /tus Cap.r.

 valvularum elevationem accelerandam magis conferant: Sanguis enim Cordi immiffus \& intra fibras receptus mox adplenitudinem affurgit, fimulque intumefcentiâ fuâ membranas fublevando fibiipfí hâc viầ exitum precludit, adeò ut cùm Cor fe conftringat, fanguinem per patulum orificium in aortans propellere neceffe habeat.Uti autem finifter ventriculus, quia majori operi deftinatur \&\& fortiore nixu utitur, tum robore tum parietis craffitic dextrum longè antecellere debuit; ita carnex columnx ejufque fibre \& membranx ob eundem finem dextri ventriculi confimilem apparatum magnitudine atque firmitate longè fuperant: Quippe, uti Syftole finiftri ventriculi multo fortius vibratur, ita robuftioribus hujufmodi machinis opus fuit ad fuftinendum ejus impetum, eumque per aortam dirigendum. Sanguis autem, pofquam per arterias eruperit, ne quacunque de causâ denuò eâdem viâ in Cordis finus regurgitare poffit , - membrana tres à Figura femilunares diatx circa utrumque Cor-

Cap.r. © Structura. 47

 dis oftium, tum quà fanguinem in pulmonem, tum quà in aortam expellit, conftiturx funt, qux à fanguine repreffo, fiquando id fieri contingat, explicata, adeò arctè fibi invicem adaptantur, ut arterix canalem prorfus obturent. Prout ablciffo ferè ad radicem arterix trunco \&z aqua vel fpiritu immiffo luculenter patet: quas quidem laxatas \& fanguini emiffo cedentes Tab.4. Fig.3. exhibet. In quâa a Pars finifri ventriculi aperta. bbb Tres valvula Semilunares laxe concidentes ut fanguini erumpenti exitum prabeant.
c Aortatruncus apertus.
dd Due arterie coronarici immediatè extra valvulas Semilunures ex orta trunco dij Fedentes.
eee Radix corta ubi cumterdine Cordis unitur.
ff CNembrane mitrales divife \& utrinque reflexe ut valvula femilunares in conjpectum veniant.
Exquo valvularum fitu fatis coniftat quàm facilem ejecto fanguini exitum
pra.

48 Cordis ftus Cap.i.

 prabeant ; quantum verò eidem, fi regurgitare contigerit, reprimendo inferviant, in Tab. 4. Fiz. 4 etiam conftabit. In quâaaa Aorta truncus ad radicem ab. foifus.
bbb Tres valvula Cemilunares arctè invicem fibi accedentes, er plend quafi ore fanguinis recurfum obfiruentcs.
cc Due arteric coronarie.
Cordis domicilio hucufque peromthes partes \& recelfus luftrato, uti in more pofitum eft, ita è requoque crit invifere quali apparatu languini ad illud confluo \&e moxdifceffuro ductus \& via fternitur.

Itaque ante limen auricule dextra nempe eo loci ubi vena cava afcendens cum defcendente congreffa alveum fuum in auriculam Cordis exonerare parata eft, tuberculumquoddam a fubjectà pinguedine elatum \& notatu valde dignum occurrit, cujus obtentu fanguis per venam defcendentem deJapfus in auriculam divertitur, qui alioquin

Cap.1. © Structura. 4.9 alioquin in venam afcendentem decumbens fanguinem per iftam Cor verfus affurgentem reprimeret valdè \& retardaret: Et fiquidem in erecto corporis fituf arque figura majus inde perịculum immineret, ideò vena cava in humano genere hoc majus \& longè eminentius obtinuit, adeò ut fi digitum alterutri trunco immiferis, in alteram vix pertingas. Prout in Tab. I. Fig.I. oftenditur. In quâ
a Venc cave truncus recto Jitio defcenders.
b Truncus vena cave rectà afcendens.
c Tubercutlum recte inter utramque intercedens.
d Curicula ofium.
e Foramen ovale.
f Cor larumin proprio fitu recumbens.
g tena Coronaria.
In quadrupedibus autem veluti Ove, Cane, Equo, Bove, ubi curfus fanguinis ab alterutro corporis extremo æquabillor \& quafi in plano eft, \& Eropter Cordis dependentis molem atque pondus uterque venx cavx trunctus aliE quantuluna

50 Cordis fitus Cap.1.

 quantulum infuper verfus Cor declives funt, licèt tanto diverticulo opus non fir, omni tamen non prorfus deftituitur. Prout in Tab.I. Fig.2. apparet. In quâa Vesze carie afiendentis truncus.
b Vear defcendentis truncus.
c Tuberculum utramque venam difinguens.
d Aurctula dextra.
c Foramen ovale.
f Cordis oftium.
g Versa Coronoria.
h Cor ipfum è vagis fius propendens, fed a pulmonibus in hoc Situ fuffultum.

Porro ne fanguis hic in confluvio xftum aut gurgitem faciat dum auricula contracta liberum ei ingreffum non concedit, ideò vena cava hic loci in majoribus Animalibus tam Homine quàm Brucis tota circumcirca mufculofa eft, tum ut ven \mathscr{X} truncum intra juftos extenfionis limites cocrceat, tum etiam ut fanguinem quem finu fuo complectitur in auricula amplexum continuò

Cap.1. \& Structura. SI

 tinuò \& validiùs urgeat. Quem quidem ut auricula arctiùs comprehendat \& in Cordis ventricuium ulteriùs propellat, ideò fibre ipfius internx à radice auriculx, ubi bafi Cordis conjungitur, rectà extrorfum verfus venam cavam porriguntur, fanguinemque $a b$ illa fuggeftum in fe rapientes, quafi digitis complectuntur \& continuâ vice mox Cordi tradunt : Et profectò fibræ iftex in auriculis majoris Animalis veluti Equi \& Bovis fimiarum digitos mole fûâ æquant, atque officium procul dubio idem exequuntur.Et uti ante dextri ventriculi limen protuberantia ifta in venæ cavæ afcendentis cum defcendentis congreffut memorata impedit quò minùs fanguis ab illa defluens, alterum ab illâafcendentem decubitu fuo deprimat ; ita extra finiftri ventriculi oftium non minore artificio cautum eftste fanguis, qui cum impetu projicitur, in has aut illas partes iniquè diftribuatur : cum enim oftium illud Cordis furfum rectè aperiatur, fi canalis qui primum fanguinis impulfum excipit rectà, pariter E 2 ad

52 Cordis fotus Cap. 1.

 ad capitis regionem duceret, fierinon poffer quin rapidè nimis fanguinem in cerebrum fuffinderer: Et propter vibrationis impetum ampliari fenfim, adeoque partes inferioris corporis vitali fuo genio \& pabulo fraudare necefle haberet. Quod incommodum ut divinus Arcifex prorfus evitaret, ideò in Animalibus quorum Corda fortiùs movertur, aortx truncum (qui Cordi proximus oft) adeò affabrè contexuit, ut fanguis in atterias axillares \& cervicales non rectè, fed ambituvelut facto, incurrat ; nam, in medio inter ventriculum $\& \approx$ arterias iftas fpatio, aorta (vario tamen in diverfis difcrimine) plurimum inflectitur: quo quidem fit ut incurvatus ifte angulus fanguinis ejecti impetum \& primum ictum fuftineat, \& maxinum ojus torrentem verfus aortx truncum defcendentem dirigat, qui aliter fuperioribus arterix aorta ramis nimius impenderecur , eafque plus fatis diftenderet, \& impetu fuo caputcitò peflundaret. Qux omniaplenè exhibet Tab.I. Fg.I. In quâ
Cap.1. GStructura. 53

a Aorta Humanie radix.
b Truncus ejus dc ©cenáens.
c Angulus ubi incurvatur.
d Arteria axillaris dextra.
e Arteria cervicalis dextr.a.
f Cervicalis finittra.
g (Axillaris finiftra.
h Due arteric coronarie.
In quâ Figurâa,aorta in [c] incurvata fanguinis à Corde projecti imperum \& torrentem in truncum defcendentem plurimùm reflectir; ne verò totus illac propellatur, arteriæ axillares \& cervicales intermedix co modo conftruexx funt, ut praterfluentis fanguinis partem debitam neceffario excipiant; quippe latus arterix cujulibet dextrum finiftro multo elatius eft, unde liquoris in majore trunco transfufi pars aliqua intercipi oportet. Prout è Tab.r. fg.z. faciliùs concipietur. In quâ
> aan Pars arteria cujufois dextra \& elatior que excipit.
> b Angulus aor te incurvatus.
> ccc Latcra aiter iarum demijfa que fon-
> E $_{3}$ gunem

54 Cordisfotus Cap.ı.

 guinem preterffuentem intercipiunt, of ad qua fanguis allidi. iur.d Canalis aorte décfondens.
Si veró artcrix iffx ex utroque latere xque rectè difcederent, fanguis ferè totusillibatus earum ora praterlaberetur, uri Tab. r. Fig.j. oftendit; quam, licèt nunquam occurrat, apponere vifum eft, quò prioris ratio melius percipiatur.

Antequam verò Cordis Muículum de manu dimittamus, fupereft ut advertamus quòd in Fretu adhuc inutero conclufo ubi rclíitatio liberè feri non potert, \&z proinde totus fanguis per pulmones pertranfire neceffe non habet, Providè cautum effe ut maxima pars ejus aliâ viâ transferatur ; quippe in fectunodum cxclufo immediatè infra tuberculum illud nuper memoratum, foramen (Ovale ditum) in venam pulmonalem proximè adjunctam rectà ante finiftri ventriculi foras aperitur, per quod maxima pars fanguinis à venâ cavà reducti immediate ante dex-

Cap. I. \& Structura. 55

 tri ventriculi limem in venam pneumonitam infufa cum reliquo fanguine a nutritione pulmonis redeunte fimul in finiftrum ventriculum demittitur. Ne autem câdem viâ redeat, membrana quxdam undique foraminis ejus limbo nifi in parte infima attexitur, \& tanquam velum infra oftii ejus infimum ambitum in venæ pulmonalis trunco laxè dependet, adcò ut fanguini a yenâ cav̀a affluenti facilè cedar, \& foras quafi ultro pandat ; ex adverfo autem latere, fi fanguis e venâ pulmonali in venam cavain remeare forte urgeatur, membranaifta primo fanguinis appulfu venæ pulmonalis lateri arctè applicatur, adeóque incurfum ejus omnino repellit, non abfimili prorfus modo ac ductus ureteris inter duplicem vefice tunicam perforatus, liberum $\&$ apertum urin \mathfrak{x} influx: um, refluxum verò omninò prohiber. Et fiquidem fanguinis reliqui in ventriculum Cordis dextrum influentis, $\& x$ ab illo in arteriam pulmonalem c jecti copiă omnem per pulmones adhuc pertranfire nulla cogit neceffitas, ideo$$
\mathrm{E}_{4} \text { ad }
$$

56 Cordis fitus Cap.1.

 ad partem ejus à pulmone divertendam canalis infuper arteriofus ex arteria pulmonali in aortam ipfam aperitur, unde fanguis e dextro ventriculo expulfus, magnâ ex parte per intum canalem in aortam trajicitur, atque unà cùm reliquo fanguine in totum corpus difpergitur; quum autem fretus excluditur \& refpirare incipit, foramen $\&$ canalis ifte, utpote quibus nihil ultra opus eft, fenfim $\&$ indies coalefcunt, donec hoc tandem penitus occluditur, ille in ligamentum impervium paulatim degenerat. Cujus foraminis \& membranx figurâ, in Tab. 1 . Fig. 3 c conltar. In quaiaaaa Limbus foraminis ovalis ad quem membrana ista attexitur.
bb Eadem membrana, infra foraminis orbutam dependens.
c Sanguis in venà cavâ affluens.
d tbridem in venam pulmonalem in: fuzt.
e e e Locus wbi membranam repellit, \& per apertum quafi ostium incurrit.

Cordis

Cap.i. \& Struttura. 57

Cordis defrriptione jam traditâ, reffat ut varia ejus difcrimina, totum in diverfi generis animalibus, avibus, pifcibus, ferpentibus, ranis, reliquifque minorum gentium animalculis, recenfeam; eorumque rationes explicarem: verum cùm tantus fit corum ambitus ut txdio majore quàm fructu enumeranda fint, fufficiet potiora eorum phxnomena, \& quxad Cordis in perfectioribus animalibus hiftoriam elucidandam maximopere inferviunt, hîc loci commemorare. In Avibus itaque, veluti columbâ, gallinâ, pullo gallinaceo, anfere, aliifque, Cordis fabrica fimilibus omnino fibris, iifque pro proportione æquè magnis ac in grandoribus animalibus contexitur: licèt enim exterius fepti tranfverfi latus quod ventriculo dextro proximum eft, lavem \& xqualem faciem exhibet; at interior reliqui \& extimilateris pars tota fibrofa eft, quin \& valvulis femilunaribus quà in pulmonem \& aortam utrique ventriculi parent, ambo donantur ; in orificio autem five ingreffu in ventriculum dextrum valvule tricufpides omninò

58 Cordis fotus Cap.I.

 omninò defunt, fed illarum vice rectè fuper oftium ventriculi quà auriculam refpicit, carnea quedann valvula dependet,figurx prorfus femilunaris, qux quidem verfus Cordis conum patula femper, fanguinem in omni contractione fuffufum, pleno $\&$ aperto femper ore mox excipit, \& quò magis repletur cò arđiùs véntriculi orificio incumbit, reliquique fanguinis ibidem effluxum prohibet: quanquam autem dexter ventriculus ex uno latere planus \& lavis tuerit; finifter tamen in omni Volucrûm genere, quantum cunque parvi fuerint, ex omni parte fibrofus eft, carneifque columnis extra reliquas fibras eminentibus, quin \& valvulis mitralibus adeò affabrè conftructis donatur, ut nihil fanguinis in pulmones remitti finant. Jucundo enim fectaculo conftat, fi cono Cordis abfcifo aqua è fyphone in ventriculum injiciatur,membranas iftas quafi fuflatas mox extumefcere, \& aretiffimè fibi undique occurrentes, oftium illud Cordis penitus prxcludere; adeò ut quâcunque vi arque impetu aquain.

Cap.2. WStructura. 59 injecta fuerit, nihil prexerfluere patiantur, fed per aortam tota exilit.

Et uti in minoribus hifce ad fanguinem reliquo corpori diftribuendum, partis hujus conformationem xque ac in majoribus animalibus perfectam effe conftat; ita dubitandum non eft, in minimis omnium Naturx productis nunquamomninó defiderari, fed Corde licèt biventre non gaudeant, fimplici tamen non prorfusdertitui; cujus tamen fabrica cùm oculis non adeò obvia fuerit, de illâa amplius non differam.

> C A P. II.

Cordis Motus.

IN priore Exercitatione, 〔atis fusè egimus de Siru \& Structurâ Cordis; ubi fabricam ejus perfectiffimam, \& fupta omnem humani ingenii captum vario apparatu \& arte conformatam effe conftitit. Quis autem qualilque

60 Cordis motus. Cap. 2.

 lifque nachin x hujus admirand x morus ufurque fuerit, jam proximè oftendendum eft.Itaque nobilis hxcCordis compages, uti ex vatio fibrarum ordine mulculi nomen apud Hippocratem \& antiquos medicos obtinuit ; ita motum ejus pariter Mufcularem efle, Infignifimus Harveius ex Vivorum diffectione reltè obfervavit. Nam cum ex omni parte tendi, for fecundum omnem fibrarum ductum confaringi, erigi, minorari, of durefcere in omnimotu: Illi videbatur, quidni actionem ejus cum reliquis mufculis communem effe pronuntiaret? Idquod Cap.2. de Motu Cordis conceptis ferè verbis videtur afferere, Muf ciuli enim, inquit, cum moventur © thactu funt, vigorantur, tenduntur, ex mollibus duri fiunt, attolluntur, of in crafantur, ơ Similiter Cor. Poftquam igitur Harveius Cordis mótum, datî operâtam accuratè obfervavit, ipfumquecum maximo vigore atque impetu vibrari docuit, miretur fortè aliquis Cl. Cartefum, Hogelandum, aliofque celebresviras (five quód robuftam Cordis fabricam,

Cap.2. Cordis motus. 61

fabricam, magnofque ejus in omni Sytole nixus, five celerem fanguinis mocum non fatis attentè perpenderent) dubitâffe, at Cor feiplum moveat, an potiusà fanguine moveatur. Quippe cum diverfos liquores chymicé proparatos, arque invicem commiflos magnâ partium luctâ atque effervefcentiâ ebullire, intumefcere, $\&$, nifi libero aeri exponantur, vafa quibus continentur diffringere obfervarent, mutato vixnomine defanguine eandem fabulam narrârunt; quo autem faciliùs hxc fententia fidem obsineat, fermentum quoddam nitrofulphureum in Cordis ventriculo pretertim finiftro hofpitari docuerunt; fanguinem autem particulis heterogeneis, \& valde fermentativisfaturatum quamprimum hujufmodi fomitem attigerit, illico rarefieri, inflari, acturgefcere; ut jam amplius fpatium requirens fio potius quàm Cordis impetu in aortam c rampere atque exilire neceffe habeat.
Verum nec in fanguine talem ebullitionem excitari, nec in Corde hujufmodi fermentum adeffe facile erit oftendere;

62 Cordis motus. Cap.2.

 oftendere ; quanquam enim inter corpora qux ex falibus contrariâ prorfus indole preditis conftant, ubi commifcentur, magna effervefcentia atque lucta exoritur, multaque effluvia difcedant; diffimilis tamen omnino \& magis benignæ naturx fanguinis liquor exiftit, quàm ut in Corde aut vafis fuis tam æftuosè \& fưbito effervefcat; quippe novimus, quàm mitis ejus liquor, quàm benigno picrumque fucco perfufus, quàm lenis \& placidus ejus in venis verfus Cor refluxus, atque ubi exitus ci aperitur \& in vafcula excipitur, quàm cito inftar lacticinii concrefcit, \& nullum ebullitionis aut luctx indicium prodit.In Corde autem hujufmodi fermentum dari qui conteridunt, unde illud continuò fuppeditetur oftendere debuiffent. Si enim arterias coronarias ubique in Cor diftributas in ventriculos cjus fuccum quendam effundere dicant, advertere oportct membranam ventriculí interiorem adeò imperviam effe, ut nihil in cavitatem ejus penetrare patiatur; prout à tincturâ quâvis arteriis

Cap.2. Cordis motus. 63 arteriis iftis vi injecti manifefto apparet. Si autem à particulis fanguinis inter fulcos \& fifluras ventriculorum delitefcentibus fermentum hoc provenire atque inftaurari afferant, certum eft frrobiculos \& fulcos iftos ad accuratiorem ventriculi conftrictionem factos efle, prout fupra dictum; adeóque in omni Cordis Syitole, connivere invicem \& arctè cohxrefcere ut nulli prorlius apparcant, nec quenquamrcliquiis fanguinis recondendis locum aut fpatium relinquant.

Quinimo tantum abcft, utebullitio fanguinis in Corde, fi qux daretur, ad motum cjus quicquam conferrer, ut illi prorfus obeffe atque adverfari videatur ; quippe Diaftole nonab intumefcentiâ fanguinis ventriculorum parietes diftendente, fed partim ex pondere \& quantitate ejufdemab auriculis injeAt, nec non motu reftitutionis ex parte provenit, ideóque Cordis diaftole fuam atque auricularum Syftolem continua vice excipit. Ad Syftolem verò Cordis perficiendam, ebullitionem non convenire, exinde conftat;

64 Cordis motus. Cap.2.

 quià ciurn motus ejfis expanfivus fit, ad diducendos potius quàm contrahendos ejus parietes inferviret.Praterea qux ebullitio tam regularis, aut xquis vicibus, aut qux tali orgafmo agitatur, ut poffit tanto impetu liquoreme Corde in remotiffimas corporis partes (\& ultra longè fi exitus daretur) cjaculari? Quinimo fif fanguinifuus motus debeatur,quid opus Corde ita fibrofo \& tor Nervis inftructo? cum fimplicioribus \& planis intus ventriculis formaripoffer, fifanguinem folum excipere, cundem autem non cxpellere, natum effer.

Deinde, fi copiam fanguinis qualibet diaftole in ventriculos Cordis immiiflam perpendamus, nullus in Corde locus hujufnodi ebullitioni aptus aut fatis amplus reperietur. Neque enìm fanguis ex auriculis guttatim depluit, uti Cartefio aliifque vilum eft; fedtanta cjus copia ab auriculis immittitur, ut tota Cordis capacitas penitus expleatur; quantumcunque autem infe qualibet diaftole excipit ventriculus, proximî Syfolo expellit totum, uti infra

Cap.2. Cordis motus. 65 infrà clariùs patebit. Porrò, cur iri finittro potiffimum ventriculo fermentum hofpitari $\&$ ebullitio longè fpumofior excitari dicatur; quare non in dextro ventriculo pariter cùm utriufque eadem actio fit, atque fibrarum craffitie \& robore folùm ob caufam fupra traditana difcriminentur ; denique quare non in auriculis pracipuè, quarum motus primarius eft, \& Cordi non tantum primos ad motum impetus fed s fonitem continuò fubminiftrant, fanè nec video, nec rationem reddi poffe exittimo.

Pratereà, brevem nimis in Corde moram trahit fanguis, quàm ut ab illo tantam ebullitionem concipiat, quippe nitu oculi citius per ventriculos ejus tranfit; ut pulvis pyrius accenfus non citius deflagret; cui etiam accedit quod fanguis ex arteriâ emiffus nullo modò rarefactus aut fpumofus fí vafculo propè admoto excipiatur. fed venofo confiftentiâ \& pondere, \& per omnia prater colorem non abfimilis.

66 Cordis motus. Cap.2.

Denique motum Cordis à fanguinis ebullitione nullo modo dependere, hoc ipfum arguit, quòd Cor vivenu animali decractum $\&$ omni fangune depletum vel in fruftula divifum, non* dumtamen à motu ceffar; quin $8 x$ anis mailium juniorum Corda longo tempore poftquam e pectore exfciffa funt If leviter acicula iraitenrur, ftatim pulfus fuos reperere, eofque diu continuare nimis notum eft; quin \&, anguillarum Corda fimiliter acu fimulata pluribus horis poftquam exempta funt, itcrum pulfare animadvertuntur; utpote quorum fpiritus in materiâ magis vifcosầ irretiti atque implicati tam citò avoiare non poifunt.

Verum ut experimento mihi conftaret utrum fanguinis ebullicio ulla omninò aliquid ad fanguinis motum conferret, experiri fubiit an detradto fanguine, aliifque liqtoribus, quiminus sareficri aut ebullire apti funt, pari copiâ pervenam fuppeditaris, Corinterea motum fuum nihilominus conrinuaret. Itaque fanguinem e venâ yugulari Canis ferè ad totius maffo dimidium

Cap.2. Cordis motus. 67

 midium detraxi, injectâ per vices in venam cruralem pari cerevifix cum pauco vino mixtx quantitate; \& hoc alternis vicibus toties repetii, donec loco fanguinis pallidior folùm tinctura loturx carnium aut clareto plurimâ aquâ diluto fimilis c vena proflueret, Corde interim de pulfu priftino paululum tantum remittente, adeò ut totum ferè fanguinem cum cerevifiâ, priufquam vitam cum morte commutares.At fiquidem facilius eft experimentum quàm fidem facere, hiftoriam hanc unicam quamà medico fide digniflimo accepi aftruere libet; Adolefcenti 16 annos nato cum magna fanguinis copia (quâ de causâ non refert) per biduum continuò erumperct, neque medicamentis aut arte ullà cohiberi potuit; jufculis eum reficere \& recreare amici \& aftantes curarunt; cumque ea valdè avidè expeteret atque affumeret, fluxus fubinde concitatior quoque factus eft, \& tandem res eò devenit, ut maflà fanguinis ferè totâ cmiffâ, quicquid jam efflueret, dilurum

68 Cordis motus. Cap. 2.

 \& pallidum, fanguinis neque naturam neque fpeciem pre fe fertet, ipfij jufculo quòd toties haulerar quàm fanguini fimilius: Atquc càdem formâ per diemunern aut alterum duravit hic aqueus fuxus, conftante interim Cordi motu fuo, donec fluxudemum confopito Juvenis paulatim integre faluti reftitutus eft, \& exinde in virum robuftum \& quadratum accrevit.At priufquam ultima huic argumento janua claudatur, adverterc oportet duo Harvai obfervaza poffe hic \& fokercobjici, Sanguinenr ante formatum Cor, \& pof idem emortuuna moveri, unde facile arguitur, moram ipfius non polfe à Corde dependere ; verum hifce in promptu ericreferre.

1. Quanquam agnoficendum effc vizalem illann gutulam in cicatriculà hofpitantem, ealore incubatûs exciratam fe ex pandere: Verùm id dicendam erit membran x eam continentis beneficio deberi; que intumefcentem illam guttulam reprimit finnul ac cocrcct. Cùm enim liquor ille feminalis metra cicatriculam contentus à calore

Cap.2. Cordis motus. 69

 externo diu foverur, fpiritus ín co latentes fefe quaquaverlium explicant; atque partim in membranam continentem impingunt, atque invifcantur; partim, pro explicando fibi fpatio, membranam illam diftendunt; quæ cum locum fatis amplum concedere non poteft, quò fe à tenfione iftâ liberet, feipfam contrahit \& conftringit : Quo fit, ut liquor intro compulfus, extrum quarens, viam fibi faciat arquc canalem procudat ; Atque ad hunc modum ipla vitx noftre primordia \& corporis ftamina ortum ducere videnrur. Cúmque omnis infuper motus mufcularis in contractione pofitus fit, non tam ab ebullitione illâ five partium fipirituofarum in iftâguttulâ expanfione, fed à veficulx iftius Syfole motus hujus principium ordiri putandum eft. Quippe qux veficula iplo fanguine prior erat; \& poftea, ubiin fanguinem mutaturifte liquor, \& actuaturs fimul ea motus fuos exerit : Veficula enim pullans ab ipfo principio, liquoris in fanguinem mutati non tantum conceptaculum, fed \& machina motiva Fi eft.
70 Cordis monss. Cap.2.

eft ; qui hujus nixu \& beneficio extra cicarriculx ambitum fe profert; \& arterias, pro dilatando fibi fpatio, venafque pro reportando pabulo, procudit.
2. Quod ad undulationem iftam fanguinis invenâ cavâ poft emortuam auriculam ; arbitror illam nullo fanguinis intertino motu, fed vaforum, à fipiritibus per nervos ubique diftraatis, corrugatione contingere : Non aliter quàm fipiritus in mufculis ubique oberrantes, motum illum tremulum poft mortem diu protrahunt. Atque hactenus de fermento hoc quod in Cordis ventriculo, potifimum finiftro, imaginantur aliqui, quodd fanguinem affluentem ebullire faciat. Sequitur aliorum qux ad hanc proximè accedit fententia perpendenda, qui Ignem quafiveftalem quendam in Corde conftituuar, qui immiffum fanguinem fic accendat, ut in arterias ftatim exilire debeat. Parum abcft enim, quin fan guinem per vices influum à Cordisigne non aliter accendi \& ftatim protumpere opinentur, quàm fi ventriculi

Cap.2. Cordis motus. 71

 ejus candentes prorfus effent $\&$ igniti, $\$$ fanguis vclut pulvis pyrius à primo ignis conractu in flammas accendí aptus; quod quantum ì ratione ablit, mox expendemus.Preterquam cnim quodarduum eft concipere, Sanguinem eoufque rarefieri, ut, in Cordis ventriculos unaquaque diaftole dilapfus, tam fubitò colutis omnibus particulis, velut pulvis pyrius accenfus, in vafa exiliat; (quod nulli liquori conceffum eft:) hoc accedit, quòd Cordis pulfus multò celcrior eft ftatim à paftu \& pleniore poru, dum chylus adhuc crudus, $\&$ proinde rareficri minùs aptus, cum reliquo fanguine Cordis ventriculos pertranfit.

Tantum ètiam abeft ut credam fanguinis motum à fua in Corde accenfrone ulla dependere, ut nec Cordi calorem fuam jure aliquo debere videatur: Quanquam enim Cor caloris fons, (unde calor in totum corpus emanat,) rectè fatis agnofcendus fit: non ideo camen in illo folo calorem iftum excitari, aut fangtinem ab illo

F 4 tantum

72 Cordis motus. Cap.2.

 tantum incalefcere, veriùs forte dicetur, quàm aquas thermarum à balneo ubi crumpunt, \& non ab inteftino partium reitu, quas in vifceribus terrx in tranfitu lambunt alluuntque, calorem fuum concipere; nihil enim in Corde eft quod tanto calori producendo fufficiat : Conftar utique Cor ex fe non calere; fed, quemadmodum fanguine per arterias in fe depofito omninó alitur, ita quoque foveri defiderat. Tam crim intenfum calorem, (uti Nilthbiffus dicit,) in Corde reperiri, qui vi (uà ऊ calore proprio in afufo fanğine tam !ubitam é fortem ebullitio. nem excitet, non eft verifimile; neque ea Cordisfirma 灾 confanns partuum confiriutio, it tot amzas ferendo fit tam acrem calorens : Non expcrimur etiam digitis in Cor animalis dijfecti \& adhuc viventis immidis samn interfun calorem; nec etiam pingueds qua circa Cor eff, in tantam duriticmpoffet concreffere.Cordi itaquenon magis tribuendum ef quàm valis \& vifceribus omnibus, iifqueprecipuè quax in pectoris $\& a b-$ dominis clauftro conclufa funt, quòd
fanguis

Cap.2. Cordis motus. 73

 fanguis tantùm incalefcat: Quippe, uti fanguinem in extremis partibus, ubi externo aëri ferè nudus 2 expofitus fertur, refrigerari accidit ; ita pariter certum eft, ubi in pectoris 8 abdominis cavitatem recipitur, in locis adeò conclufis protinus incalefcere ; atque hinc eff quòd homines obefi \& pingui aquiliculo donati, quorum vafa fanguifera profunde magis \& quafi in carne fepultx latent, pro macilentis frigoris patientes fint; quanquam Corda hujufmodi prepinguium hominum non adeò vegeta $8 x$ robufta, ac illorum qui magis funt graciles \& ftrigofi.Sanguini itaque in totum debemus quòd Cor ipfum calear, quòd corpora noftra calore fuo actuet \& vivificer. Concedimus interim, licèt major illi calor quàm caxteris Mufculis à naturâ datus nonfit, in quantum tamen continuo motu \& in loco adeò conclufo indefinenter exercetur, ita prx cexeris corporis membris calore magis conftante \& vegeto donari; unde forfanfit,ut fanguinem in fe receptum

74 Cordis motus. Cap. 2.

 aliquantulum à contactu fuo magis adhuc fovear, calfaciatque.Quibus rite perpenfis clarum fore arbitror, Nec motum Cordis à âanguinis ebullitione, nec fanguinis calorem à Cordis foco ullo, omninò dependere.

Sed quandoquidem certum eft nos igne pluiquam poetico $\&$ metaphorico incalefcere,operx pretium foret proxim mo in loco plenius explicare, quomodo fanguis ipfe xitum in fe concipit, \& calorem roti corpori fubminiftrat. Verum cum prexter. fufcepti operis inftitutumfuerit, atque infuper C. Willijum in tractatu De Avima, de Sanguinis quoque incalefrentiti, aliquid meditari compererim,tei medicx adeò anjurius effe nollem, ut eianfam hujufmodiatque occafionem praripiam.
Cùm ex pramiflis fatis conftiterit motum Cordis non dependere à âanguine, proximè dicendum reftat, quibus inftrumentis\& machinisperficiatur.

Ea autem funt vel proxima qux motum ejus immediatè perficiunt, vel remota qux ipfum adjuvant.

Cap.2. Cordis motus. 75

Quæ motum ejus perficiunt ab ipfo Corde proximè petenda funt ; quippe in illo ipfo partes motui ejus ciendo pares atque accommodas adefle omnes exiade conftat, quòd nullus Mufculus is inftructior fit: Nervis enim copiofe ei infertis \& per totam ejus fuperficiem denfe explicatis ipfum infipiari, fibris quoque omne genus, quaquaverfum intertextis \& undique complicatis firmari, atque tendinofo margine bafin ejus cingi, clarum \& obviam eft ; nec irr animalis vel minimi Corde cujus fabrica oculi aciem non eludit, iftorum quicquam omninò deeffe aut defiderari videtur.

Qui quidem machinx apparatus certò demonftrat ipfum proffus Mufculum effe, morumque cum reliquis Múfulisomnino fimilem fortiri. Quo autem Cordis motum clarius explicemus, à fimpliciore Mufculi recti motu tanquam reliquorum omnium norma ordiemur.

Itaque Mufculus rectus uti eduplici ventre cum appenfo utrique tendine conftituitur, ita motus ejus duplex

76 Cordis motus. Cap. 2.

 quoque eft; quippe cum utriufque ventris fibra in oppofitos tendines atque fines terminentur, ut ut membra, quibus per tendines conjuncti fint, unầ câdemque operâ propius invicem adduci videantur, non unc tamen utriufque motu hoc perficitur: Quïppe cùm à contrariis metis licèt ad idem centrum fe contrahant, inde tamen fit ut oppofita offa aut nembra cui annectuntur, utriufque adverfix contractioni fimul obediant, proindeque artius fibi mutuò accedere debeant; adeó ut motus omnis mufcularis non aliter perfici videatur, quàm ubi duo homines acceptâ invicem dextrâ in mutuum amplexum fefe arctè \& propiùs attrahunt. Et cùm mulculi cujufque neque unicus venter fit, neque fibra unầ \&̌ continuâ ferie ab uno tendine in alium pergant, verùm e duplici mufculo $\&$ fibris in oppofitum refípicientibus confter, dubitari obiter poffer, Annon adverfx corum contractioni cujufque mufculi motus quàm fimplici ejufdem inflationi, meliore jure debeatur: Quin \&, fi mulculi motus inflando
Cap.2. Cordis motus. 77

flando fieret, quid impedit quo minus cujufvis mufculifibre (qux reat funt \& per tenuiflimas folummodò membranarum fibrillas inter fe cohxrentes) à fe mutuò difflentuif atque divellantur, coufque faltem, ut fibfatum diftractio dolorem inferat ? Cui etiam accedit, quòd Mulculus ab hujufinodi inflatione extrorfum difteneus vel maximè apparere deberet; verùm cx adverfo conftat,Mufculum in omini motu admodum artè \& in fefe intror fum conitringi, minorari \& durefccre, adeóque modo inflationi prorfus conrrario moveri.

Prixterea fi ad explofione diverfe indolis fpirituum fibi muruò in Mufculo concurrentium, five aëris cumt fpirituanimali concurfu fiat, cum utrique continuo influant, quidni perpetuo motu partes omnes exerceantur? Et quid Animx in nos imperium valet fí folum inftinctum motûs praftaret \& fomitiigniario tantüm accendendoinferviret, turbinemque excitaret, quem pro fibitu fuo cohibere rurfus non poterit ? Certè vix credibile cet rcsadcò diverfas

78 Cordismotus. Cap. 2.

 diverfas faltem in corpore benè conftituto exiftere, aut invicem committi, aut quas anima fuo nutu non poterit coercere.Non enim tam fclopeta in nobis explodere exiftimanda eft anima, quàm enfem quafi vibrare, \& hùc illùc variè contorquere, adigere, retrahere, quem \& pro placito fuo recondere item poteft: Cum enim motus noftros regere poffimus, \& quocunque placet gradu moderari, cuinque Mufculi in id facti videantur, ut fibrarumab oppofitis trahentium nixu atque ope motus fuos perficiant, non video quare à principio tam violento ejus modum arque caufam petere debeamus. Verùm hec obiter difta funto.

Quoniam verò Cordis Structuram reliquis in corpore Mufculis ratione, atut vonfigurâ, analogam effe \& conformen, prius oftenfum eft ; reftat ut motum quoque ejus confimilem effe \& fecundum omnium ibrarum ductum peragi, evincam.

Cum itaque motus cujufque Mufouli bivencris ubique fiat à fibris carneis

Cap.2. Cordis motus. 79

 neis oppofitos tendines in fefe ad medium contrahentibus 8 cum ad aliorum normam Cor duplici quoque fibrarum in diyerfa reficientium ordine potifimùm confter; quarum qux exteriares funt à leva dextram verfius porrecto undique parenchyma cjus cingunt complicantque, qua verò profundiùs latent, dưuu planè constario ferantur ; Fieri non poteft, ubifibra illa fimul contrahuntur, quatenus parietes Cordis undique adducunt, quin fpatia ventriculorum intus coarcari multum \& conftring ineceffe fit, adeò utnon ineptè linteoutrinque ad exprimendam aquam contorto, aut crumenæ à duplici filo in diverfa trahente occlufx comparari pofit; quippefibre in conftrigendo Corde idem omanno preftent, motumque primariò efflcimtQuin 8, cùm fibrx Cordis aliquot tette, alix omnes circa conum 82 univer fum ejus ambitum contortx obliquo \& oppofito ducta fpiralibus velut lincis in bafini terminentur, non folùm fits, nut quoties fibre bx utrinque cen-
trahuntur,

80 Cordis motus. Cap. 2.

 trahuntur, ventriculorum finus intus comprimant \& anguftent; fed ut conum bafi propiùs adducant: Fibrx enim cùm quolibet nixu fuo bafin Cordis deducere conentur, illa autem à fulcro tam inftabili \& firmo dependeat, ut attractioni earum neutiquam cedere poffit, ficri nequit, quin mobile ad quiefcens accedat, unde tum Cordis compages conftrictior fit, tum conus ejus ad bafin propiùs accedat ; quòd non aliter omninò neque diffimili plane modo fit, quàm in communi lufu quis de fune pendens adductis fortiter brachiis fefe erigit \& in alturn evehit.Quin \& (ut obitèr hoc moneam) cum omnis motus contractione perficiatur, \& Cordis fibre ad conftrictionem folüm factx int, apparet quuque C. ordis motum totum in Syfole pofitum effe; cumque fibre ultra tonum fuum in omni conftrictione ejus tendantur, idcirco ubi nixus ifte abfotvitur, motu quafi reftitutionis Cor iterum relaxacus \& languine à venis in. Guenre rurfus diftenditur ; à nullo enim

Cap.2. Cordis motus. 81

 enim cordis motu, nifi tenfionem fuam remittente; \& ab irrucnte fanguine diaftole ejus libratis adeo vicibus fuccedit.Ex perfpecto autem cordis motu, auricularum ille faciliùs cognofci poteft, fiquidem fibrx utrique auricularum communes $a b$ unâ in alteram. porrectæ efficiunt forfan ut fimul motus ineant; at cum fibre carnex alix in rendinem cordis communem protenfx fint, alix vero in circulum neryofum venæ cavæ proximum inferantur, quatenus ab oppofitis partibus fefe invicem trahant, fpatium inttis coarctant valdè, adeóque fanguinempariter contentum in cordis finus depellunt.

Motum autem cordis à fibris fuis perfici non alio opus eft indicio, auk argumento, quàm quòd ventriculi ejus pro vario ufu atque motûs exigentiâ, tanto inter fe difcrimine, fibras quòd fpectat, conftruantur: Quippe uti non æquis viribus ad breve atque ad longum iter conficiendum opus eft, ita prout fanguis ad minorem diftan-

$$
G \quad \text { tiam }
$$

82 Cordis motus. Cap.2.

 tiam, vel procul projici \& propelli debeat, ventriculi pariter craffioribus vel tenuioribus fibris donantur; ideóque finifter ventriculus, ut labore \& penfo, ita \& fibrarum robore dextrum multùm antccellit. Sed licèt dextri ventriculi fibrex multò magis graciles \& tenues funt, nullo tamen eorum ordine deftituitur ; neque inde putandum eft, non omninò, quià non xquè fortiter pulfare; multò minus proprer finiftri tantum viciniarnmoveri; quippe lieèt dexter finittro accrefcat \& totus ad illum in omni Syftole contrahatur, adeóque dimidiatum tantum circulum motu fino defcribat ; Nors tamen alterius adminiculo, fed propriis fibris hoc perficit: Quippe tantum abeft ut finifter ventriculus ad dextri motum conferat, ut fepti tranfverfilatus quod cavitati dextri ventriculi proximum eft, ferè femper (prefertim in minoribus animalibus) planum \& in minoribus lave fit; idem tamen feptum quà finiftri ventriculi cavitatem refpieit torum fibrofum $8 z$ altis fcrobiculis excavatumeft; indiciofatismanifefto,
Cap.2. Cordis motus. 83

 ad finiftri tantùm ventriculi conitrictonem conferre, ut fuperius monftravi. Atque ex hâc etiam interioris fepri fibrosâ texturâ, abunde conftar, ad ventriculi finiftri motum multum conducere; neque vero aliter fieri potuit, cùm feptumhoc finiftri ventriculi pars fit, fibreque toti ejus circulo undiquaque continux \& communes fuerint.Et fiquidem fulcos iftos $8 z$ interftitia in fepto excavata ad arctiorem ventriculi confrictionem infervire oftenfum fit, patet inde, quàm ineptè ad fanguinis ab uno ventriculo in aliumtranfitum ifta infervire dicantur; cùm revera nullibi pervia fuerint, fed huic folùm muneri deftinata.

Vidimus huc ufque quam robufta cordis fabrica, quàm fibris undique firmata fuerit. Proximè incumbit, ut quali vi motus fuos exerat, videamus: Et reveranemo ejus fabricam fatis mirari aut attentè fatis perpendere videtur, qui illud non cùm maximo vigore atque impetu vibrari concedit; Siquidem non folum à fanguine tantâ vi

84 Cordis motus. Cap.z.

 projecto, fed \& ipfo corde manu tractato, vel abfciffo ejus cono \& digito immiffo, manifefto apparet, maximo illud robore \&x nixu moveri atque conftringi; adeò ut, ex Syftole ejus non folun ventriculos anguftari, fanguinemque ob fpatii defectum exprimi; fcd cor cirm imperu $\&$ vigore vibrarí, atque fanguinem vegeto $\&$ valido parietum fubfultu \& concuffione excuri atque expelli conftet; quin, utid faltem hoc in loco commemorem, quod cor a fafino aliquando correptum tanto imperu concitari, ut coftas ipfas perfregifle, omnemque ejus Sy ftolen à cubiculo in plateâ procul exaiditam fuiffe; Item, ab affiduo thoracis à cordis motu $\&$ diverberatione, indumenta veluti flabello motitata; verùm etiam thoracem atque fternum ab illo motu e fede naturali dejecta atque extuberare coacta à Fernelio, Forcisto, \& C. Pijone fcriptum eft; Etiam hoc accedit, quòd in equis à longo curfu redeuntibus, fingulos cordis pulfus è longinquo exaudiri folenne fit ; quippe fanguis tanta vi \& impetu tunc temporis
Cap.2. Cordis motus. 85

 temporis per vafa trajicitur, ut fingulos pulfus longe procul enumerare atque xquè certò edicere poflis ac fii digitum falienti arterix juxta admoveris; quin \& fxpe obfervavi in viris non admodum robuftis dum in lecto decumberent, cortinas ad omnem cordis motum fuccuti, \& accuratum pulfus rythmum fervare.Qux cùm ita fe habeant, opportunum erit in quirere quomodo cordi inftinctus fui motûs advenit $\&$ unde vis illa five robur data funt, ut per torum vite curricalum motum fuum in. definenter proftare valeat.

Atque hîc de modi ratione quâ coldis motus perficitur dicendum effer: fed cum nimis arduum fit de eâ quicquamrite concipere, atque dei folius, qui fecreta ejus rimatur, motum quoque ejus cognofcere prarogativa fir, in eo ulterius perfcrutando operam non perdam.

Sufficiet itaque hoc in loco advertere tantùm, cordi vim illam \& vigorem quo fanguinem in finus fuos continuo illabentem pari \& conftanti paffu G_{3} expellit,

86 Cordis motus. Cap.2.

 expellit, à nullo intus contento excitari, fed fupernè \& velut colitus à capite in illuddefcendere. Si quidem enim nobilifimi atque fummè neceffarii $\mathbf{\text { dfus }}$ fuerit, ideò pro motu ejus preftando tam fedula \& folicita eft natura, ut, preter infignes nervorum propagines ubique in illud denfè diPtributas, pro continuo etiam fpirituum animalium influxu, cerebellum in fuper, quafi perenne eorum promptuarium, ei accommodaverit: A cujus benignâ \& conftante influentià adeò dependet, ut, fi fpirituum influxus velminimo tetnporis momento impediatur, motus efus illico deficiat. Nervis enim octavi paris, in cervice artte ligatis, aut penitus abfciffis (quod animali petinde eft,) mirum dictu quanta fubito mutatio! Cor quod moderate antea \& æqualiter motus fuos obiit ftatim ab injectâ ligarurà palpitare $\$$ contremifcere incipit, atque ita diem unum \& alterum miferum animal Corde tremulo \& pectore admodum fufpiriofo languidam vitam protrahit, \& brevi tandem expirat.Quantas

Cap.2. Cordis motus. 87

Quantas autem cordis anguftias ex prxcifione aut ligaturâ iftâ mox patitur animal, fatis conftat ex immediate confequenti corporis luctâ \& contentione, quæ tanta $3 x$ tam vehemens eft, ut, nifi firmis vinculis cohibeatur animal, difficile fit ipfum in codem loco aut corporis fitu continere.

Cur autem ab hujufmodi ligatura animal non ftatim extinguitur, ratio hæc eft ; nempe, quia preter fuppetias à nervo recurrente allatas, etiam infra ligaturam illam diverfæ propagines nervofx à plexu intercoftali fub ingreffu pectoris in nervos octavi paris, priufquam furculos fuos cordi dimittunt, proximè implantantur ; quarum ope pro fuftentando debili motu, quoufque fanguis fluxilis \& tenuis eft, fpiritus ut ut in minore copiâ fuppedicantur: Verùm cùm propter cordis languorem \& fatifcentiam liquor fanguinis ftagnare \& grumefcere incipit, fublidiar ia iftxe (pirituum copix ad pulfum continuandum diu pares non funt, ut neceffe fit vitam ob defectum iftius motûs tandem extingui. Hæ๐ G_{4} ita

88 Cordis motus. Cap.2.

 ita effe tam certum eft, ut nullus dubitem, fi nervi ifti paulo infra communicationem illam cum nervis intercoftalibus ligarentur, quinanimal ftatim fyncope \& cor alpheuxiâ corriperetur : cujus quidem experimentum commode fieri nonpotef, quia netvorum communicatio illa fub ipsâ claviculà fit \&̛c juxta vafa fanguinis majora, ut nec oculis difcerni poffit, nec digitis ex plorari.Cùm igitur motum cordis ab influxu in nervos, ci copiofe infertos, tolùmperfici oftenfum fit ; proximè dicendum foret, quor modis $\& 2$ quibus de caulis morus cordis altcretur.Quoniam verò pro magno partium confenfu \& fympraxi, cordis motus plurimum intenditur \& remittitur, ideò ad rem fore arbitror, fi prius oftendero quenam partes illx funt, \& quale praftant fubfidium.

Et quandoquidem cordis proxima eft cum pectore \& pulmonibus affiniras, eâque neceffitudine nature mutua ịforum opera conjuncta fint, ut neuirum fine altero commodè moveri poffit,

Cap.2. Cordis motus. 89

 poffir, vel diu fupereffe; Cumque pulmones interim nullo fuo nifu, fed fecundariâ tantum operâ hoc perficiant ; diaphragmati potius \& mufculis intercoftalibus acceptum referri debet, quòd illi liberum aëri commeatum in fanguinem concedant.Quicquid igitur aut ductum pulmonum intus obftruit, aut ipfos extra nimis comprimit, vel diaphragma \& mufculos intercoftales libere contrahi \& relaxari omninò prohibet, aut valdè impedit, cordis quoque motum fimili modo afficiet. Siquidem partium iftarum affectus, quales funt angina, pulmonis vomica, tuberculum intus enatum, hydrops peatoris, empyema, paroxyfimi fpafmodici, rifus immodicus \& continuus, quatenus vel canalem afperx arterix vel vafa pulmonum fanguitera occludendo, vel onere \& mole fua cor \& pulmones opprimendo, vel liberam pectoris ad excipiendum aërem expanfionem cohibendo impediunt, cordis motum variis modisalterant.

90 Cordis motus. Cap.2.

Longum autem omninò effet explicare,quomodo fingularis hic affectus accidat, aut in cor fecundariò redundat: In quantum tamen ex motu pectoris depravato, atque diaphragmatis precipuè, fanguinis \& cordis motus frepe \& graviter pervertitur; operx pretium erit oftendere quinam potiffimum iftius partis affectus fuerint \& quornodo labem fuam cordi affigunt:
Refpiratio autem a duobus precipue impeditut, à rifu nempe 8 dingultu.

1. In rifu enim diaphragma à mufculis infimi ventris, vifcera fua in id impellentibus, in pectoris cavitatem furfum uifque adigi, \&s tremulo gradu veluri ad aërem per partes excuriendum, pro formando intra laryngem rifu, relaxari videtur; quo fit, ut, cùm pericardio ipfi accrelcat, cor ipfum ejufque bafin ad fua iplius vafa, tam quà fanguinem excipere quàm quà ejicerefolet, arđtè adigat, impingarque ; adeo ut, occlufis quafi cordis foribus, circuitus fanguinis pro tempore intermittatur ; quod ex tumore venarum

Cap.2. Cordis motus. 91

 venarum omnium in collo, facie, \& fronte planè patet. Quamprimum autem rifus definit, \& diaphragma ad debitum fitum rediens cor iterum deducit, ut fyftolen fuam $\&$ diaftolem reperere valeat, fanguini circuitus fuus redit \& venarum tumorifte, qui priùs in rifu apparuit, vafis iterum depletis omninò evanefcit: Rem ita fe habere conftat, quoniam in longiore rifu prefertim in parvulis (quem nuttices fæpe juftò diutius provocant) non folum facies à nimiâ fanguinis copiâ, propter impeditum ejus recurfum, livefcit ; fed \& mors ipfa importunas iftas blandirias aliquando excipit: prouthiftorix paffim teftantur.2. In fingultu, (qui quidem, licèt noxam atque occafionem ventriculo plerunque debeat, diaphragmatis tamen propriè affectus eft; \& ideò pro libitu noftro (pafmum ejus imitari, aut fpiritus retentione pro tempore cohibere poffumus :) Cumdiaphragmatis circulo nervofo pericardium undique accrefcat, fieri non poteft, quin convulfione fuâ hoc in confenfumtrahat, adeóque

92 Cordis motus. Cap.2.

 adeóque motum cordis interturbet. Et licèt brevishujufmodi affectio magnas cordi moleftias non faciat, in febribus tamen malignis, ubi diutius \&t per plures forfan horas $\&$ dies perfeverat, cordis mufculum adeò laceffit \& defatigat, ut, pofthujufmodi irritationis txdium, nihil magis quàm de cordis dolore \& anxietate conquerantur ; quin \& pulfus plurimum inrermittit : fieri enim aliter non potelt quin à partium iftarum adhæfione, \& alterius fpafmo, mutua ipforum opera impediatur ; neque enim diaphragma roties \& tam violentâ Syftole corripi poteft, quin cor fimul fecum trahat, adeóque antipraxi fuâ motum ejus durante, paroxyfmo multum peryertat.Uti verò fanguinis \& cordis motus à cerebro totus dependet, prout fupra patuit; ita ne tanta beneficia alrerutri gratis data videantur, advertere obiter non alienum erit; quòd, quamquam cerebrum ipfum in partes omnes inferoris corporis velut rex in fuos fubditos dominatur, \& pro nutu \& im-

Cap.2. Cordismotus. 93

 perio fuo omniaregit \& gubernat; non tamen ita fupra eas fitum eft, ut absque illarum ope $\&$ minifterio, ípfum fuperefle poffit, aut quicquam valeat. Quippefipiritus animales, vitaque ipfa, à continuo fanguinis in cerebrum appulfu adeò ex adverfo dependent, ut omnimodx ejus fuppreffioni mox fyncope \& lypothymia fuiccedant; \& quidem fi diutius affectus ifti perfeverent, animalis vita prorfus evaneicit. Cujus ratio alia non eft, quàm quòd, ut f piritus animales conftante fanguinis influxu pro motu cordis \& pectoris continuando è cerebro per nervos deftillant, ita conftante fanguinis penu in cerebrum depofito relarciri debeant; ideóque fidebito \& perpctuo ejus vectigali defraudetur, cerebrum quafi ecclipfin patitur, \& animal fenfu motuque privatum fuo pondere concidit ; uti in fyncope affectis videre eft.A mutuâ verò cordis cùm cerebro, \& fibi invicem accommodatà operâ, tota fensûs motûfque ratio depender: Dum fcilicet a cordis motu, fanguis continuò in cercbrum \& cerebellium,

94 Cordis motus. Cap.2.

 pro exillandis fipiritibus tranfmittitut; \& fpiritus, vice versâ, per nervos in cor influentes, motum cjus perennem \& conftantem vicifim confervant: Adeò ut cordi debeatur, quod fpiritus in cerebro nunquam deficiant: quin \& cerebrum hoc agit ue cordis motus nunquam ceffet.Uti autem hec ambo mutuum fibi fubfidium \& minifterium preftant us neutrum fine altero fupereffe queat ; ita non minore officii neceffitudine a ventriculo utrumque dependet: Quippe vitx noftre rato in his potiffimum confifit, ut cibus in ventriculo inchylum praparetur, ut chylus in corde \& vafis appenfis affimiletur in fanguinems, $\&$ denique ut purior $\&$ fubtiliffima pars fanguinis in cerebrum extilletur; cúmque a fanguine noftro plurima fertiper effluvia fecedant, atque conftans maffx fanguinis \& fpirituum animalium difpendium fiat, neceffe eft ut continuo \& recenti pabulo vitalis calor refocilletur; atque idcirco anaturâ caurum eft, ur pari proventu chylus in ventriculo conficiatur, qui liquorens fanguinis

Cap.2. Cordis motus. 95

 fanguinis pereuntem æquè certò refarciat. Verùm neque hoc folùm fufficit, utichylus ufque in debitâ copià \& menfurà fanguini fuppeditetur ; fed, ut is rectè prius conficiatur, fumme neceffarium eft : Quippe fi, ex malâ concoctione, chylus, partibus fipirituofis \& activis nondum fermentatione diffolutis \& liberatis, crudus \& impuratus fanguini mifceatur; nunquam poftea volatilis aut fipirtuofus fiet: (pari modoac, ficerevifiamnovellam, vel vinum infermentatum deftillationi tradas; non nifi crudum \&s aufterum minimèque firituofum liquorem extrahes:) Er proinde cùm neque laudabili fanguinigenerando, nec 1piritibus rite extillandis aptus fuierit, œconomia animalis defectus hofce ventriculi fecundario luit; verum ita ut in ipfum cor proximè redundent. Adcóque ubi formachus cibumrejicit, aut acceptùm non rectè concoquit; pulfus ftatim a naturali tenore valdè deficit: Prout in cachecticis, \& crapulà frequente debilitatis, cuilibet obfervare eft.Atque

96 Cordis motus. Cap.2.

 Atque hre, funt inftrumenta, \& caufx proxime-remotx, quibus motum cordis fuftentari aut alerari conungit. Reftant alix propiores, \& velut inteftinx caulx, qux motum ejus alterant, \& labefactant: Idque quatuor prafertim modis accidit, r. Cordis ipfius; 2. Vaforum continentium; 3. Sanguinis ; 4. Spirituum influentium culpâ.I. Et primò quidedm de iis qux ab ipfo corde, ejufve Pericardio proveniunt, dicendum.
I. Cùm enim non folum ad fanguinis motum expediendum requiritur, ut uterque cordis ventriculus tum finûs caritate,tum pulfuum nurnero invicem refpondcant; fed $\&$ ad continuandum fanguinis circuirum cumque fucceffive ufque \& in juftâ copiâ per vafa rite propellendum, ex rei naturâ neceflarium fucrit ut pari robore ad fuftentandum hoc munus latera cordis firmentur: Exinde fequitur, ubiquicquam horum defideratur, fanguinis quoque motum inde multùm alterari. Quandoquidemverò ifte error naturz,

Cap.2. Cordismotus. 97

 quo ventriculorum cordis exacta habitudo non fit, rarò aut nunquam occurat ; non eft quòd de eo verba faciamus. Sed cùm parenchyma cordis variis morbis \& injuriis obnoxium fuerit, motum ejus multum quoque alterari necefle eft. Si enim cordis parenchyma, aut nimia pinguedine oneretur, aut inflammatione, ulcere, abfceffu, aut vulnere faboret, adeo ut fine magnâ moleftiâ atque difficultate aut abique gravi offensâ fele vibrare \& contrahere non poffit ; motum fuum valdè remittit, \& fanguinem quantum poteft, licèt non quanto opus eft reliquo corpori diftribuit; unde fanguinis quoque motus debilis admodum \& languidus exiftit.2. Uti autem cor proprio velut affectu intus aliquando laborat; ita quandoque, five fuo, five capfulx fuæ vitio, ab extra opprimitur. Quemadmodum enim aqua ifta pericardio inclufa ad lubricandam cordis fuperficiem \& facilitandum motum valdè infervit ; ita nonnunquam evenit, ut nimiâ copiâ cor opprimat \& inunder,

H quum

98 Cordis motus. Cap.2. quum enim in Cordis hydrope involucrum iftud impletum fit, \& latera cjus $a b$ incumbente undique aquâ eoufque comprimantur, ut pro excipiendo fanguine fatis dilatari non poffint; tum pulíus valdè diminuitur, donec tandeminundante magis aquâ prorfus fupprimitur, unde fyncope \& mors ipia fuccedit. Pari ritúhoc fieri videtur acinhydrope pectoris, ubi pulmo latis diftendi non poteft ; quia cùm cavitas thoracis aquâ repletur, pro dilatatione pulmonum nullum reftat fatium; unde morbo ifto affectis difficilis, \&r tandem nulla refpiratio fupereft, licèt fummo conamine fpiritum attrahere contendant ; prout in hujufmodi ægris non rarò obfervavi.

Atque, ut obiter hîc dicam, cùm aquæ iftius pericardio contentæ nimia copia cordis motui adeo officiat, ut iplum tandem obruat fupprimatque, verifimile eft cordis palpitationi fucccdere potiùs, quàm concitatum hunc cordis motum ab illâ irritari ; quod quidem cò magis verifimile eft quòd aftectus ifte fanos \& improviso frpe,

Cap.2. Cordis motus. 99

 aliifque de caufis exoritur, \& nullo figno aut indicio adventum fuum denuntiat ; prout in affectu illo magis explicando infrà dicetur.3. Atque, prout capfula cordis non uno nomine illi officium praftare dicitur, tum quòd illi irrigando \& ab externis injuriis muniendo inferviat; ita neque uno modo ipfi nocumento effe aliquando accidit. Sicuti enim aquam nimis in fe accumulando cordi nocumentum affert; ita, ubi illa prorfus deficit, artè aded cordi accedit, ut ipfi tandem undique adharefcat; unde, cùm diaphragmati accrefcat quoque, cordis motum cum illo confundere $8 x$ committere, neceffe habet: Quòd quanto utriufque impedimento atque incommodo fieri debeat,fupra oftendi: Atque ex hâc hirtoriâ magis patebit.

Uxor cujufdam civis Londinenfis xtat. 30 Annorum, olim fatis fana \& alacris per tres ultimos vite fux annos moefta valdè \& melancholica, porro $\&$ ad motum quemvis anhela, cum pulfu parvo \& femper intermittente, de dolore infuper cum infigni gravaH_{2} mine

100 Cordismotus. Cap.2.

 mine prexcordia infeftante continuờ fere querebarur ; quin \& crebris lipothymiis, \& a levi quovis corporis motu fpirituum deliquiis \& extremorum infrigidationi obioxia demum evaferat: in quo ftatu a nüllis medicamentis juvata, tandem viribus fenfim attritis, interiit. Cadavere aperto circa vifcera inferioris ventris nulla omninò vitia apparebant; dum verò alias partes perfcrueanur,, cordis affectionem deprelyendintus, in quamromnium malorum caulas merito referanus. Thorace enim aperto pulmones fatis fani fuerunt, cordi tamen toti pericardium ubique adeó atatè accreverat, ut digitis non niff x grc ab illo feparari potuerit; porrò haxc membrana non, uti oportuit, tenuis $\&$ pellucida, fed craffa opaca \& velut callofa evaferat ; hinc cum nulla intercapedo pro libero cordis motu, \& nulla, quâ humectaretur, aqua adfuerat, nihil mirum fi de malis his omnibus continuò quereretur. Praterea cùm pericardio humano diaphragma femper accrefcat, ubi cor ipfium quoque pericardio uniriaccidit, fieri
Cap.2. Cordis motus. Iol

 fieri non potult quin in omni infpiratione cor ctiam fecum deducere, adeóque motum ejus tamdiu fiftere \& fup. primere necellè habuit; unde pulsû̀s ifta intermiffio omni infpirationi perpetuâ vice tam conftanter fuccedebat.4. Quemadmodum verò (ut modò dictum erat) cordis motus ab incremento hujus aquie omninò fupprimi; ita ab aliis capfule hujus incolis valdè irritari, atque perverti nonnunquamfolet: Quippe fxpenumerò vermes, intra captulam hancgeniti, arrofione fua magnas cordi aliquando moleftias faciunt ; atque cordis tremore, anxietate, pulfu fxpe intermittente, dolore pungente, \&\& fyncopê, fe produnt: Quam quidem fymptomatum atque animalium catervam cataplafmate e folis cinare, tanaceti, of ab/jnthii vullaris, aceto vini albi acerrimo incootis, of sum pauco mitbridatto mixtis, regioni cordis bis applịcatio penitus diffipatam vidi. Atque haitenus quidem de iis alterationibus diet:me eft, que ab ipfius cordis, H_{3} cum

102 Cordismotus. Cap.2.

 cum pericardio fuo', culpâ proveniunt.II. Cùm verò ad fanguinem in omnes partes debitè diitribuendum, utrumque cordis ventriculum, tum finûs capacitate tum pulsûs rythmo, invicem neceffariò convenire, oftenfum eft; ita vaforum ad ventriculos cordis accurataquoque analogia\& commenfuratio mutua efle debet. Sed cùm cor id ipfum fit, quod fanguinem a fe propellendo, vafa ad illum convehendum fimul procudit; non eft quòd fieri poffe credamus, ut pars aliqua fit, ubi vafa fimul non adfuerint; Quare, cùm vafa fanguinis duplicia lint \& di. verfo muneri deftinata, tum cordis \& fanguinis motui reciproco inferviant; operx-pretium erit advertere, quomodo utrique aut opem fuam conferre nata fint, aut poftea impedimento aliquando effe poffint.
Notum itaque fatis eft, arterias pro fanguine a corde excipiendo, \& in totum corpus deferendo ; venas autem ad eundem reportandum, $\&$ cordi inferendum, conftitutas effe : Et, pro fanguinis

Cap.2. Cordis motus. 103

 fanguinis impulfu atque impetu fuftinendo, illas craffiore tunicâ, has verò, in quibus fanguis curfu magis leni decurrit, tenuiore multum donari.At ficuti vafa fanguifera ab ipfo ortu a fanguine extrapropulfo, aut inrus redeunte, conformata fuerint ; ita deinceps poftea ab ipfo variè immutari poffunt ; Verùm ita, ut cordis \& fanguinis motum valdè alterent. Et fiquidem arterix proximum cordi minifterium preftant, primum quoque earum defectus explicare oportet.

Quandoquidem igitur arteriarum trunci craffiore \& robuftiore tunicâ donantur ; idcirco, ubi fanguini in omnes partes xquus \& apertus aditus patet, intra debitum ambitum ubique continentur ; ubi verỏ eas a materiầ aliquà impactà oppleri intus atque obturari, vel a partium marcefcentiâ obliterari \& exarefcere, vel ab externo aliquo corpore aut accidente ductum cujufipian comprimi aut conftringi contingit; $\underset{\mathrm{H}_{4}}{\mathrm{H}_{4} \text { coniam fanguinis }}$

Io 4 Cordis motus. Cap. 2.

 roti corpori commenfurata, \& vis illi a corde impreffa eadem eft ; ubicunque fanguinis curfus in arteriâ aliquâ impeditur, proximx \& focix ejus totum impulfi fanguinis imperum fuftinere debent, $8 x$ copiam ifti deftinatam in fere omnem excipere ; unde nunquam non accidit, ubi ductus alicujus arterix diu obftructus aut ligatus fuerit, quin fanguis in proximâ fibi fparium amplius aperire atque patefacere fatagat; atque, dumhocfiat, motus fanguinis in arteriis omnibus juxtà poffitis multum corripi atque impetuofiùs trajici, neceffe haber. Sanguis fc. in hoc vafc obftructus \& prepeditus, in proxima impelli magis atque arietare debet, donec pro explicando fibi fpatio illa multum dilataverit.Quod verò arteriarum alicubi obftructio, idem carum marcefcentia atque extenuatio reliquis vafis preftat. Cùm enim ventriculi cordis, \& fanguis, omnibus vafis commenfurati fint; fi pars aliqua aut mernbrum corporis marcefcat, fanguis ifti prius deftinatus

Cap.z. Cordis motus. 105

 deftinatus in alias partes corporis impendi debet; proindeque tum vafa cjus dilatare magis, majufque incrementum deferre ; Atque ideò Doctif. Gly/Jonius, in Rachitide affectis, hepatis \& capitis magnitudinem ab aliarum partium marcefcentiâ rectiffimè deducit; ingeniumque fimul cùm cerebro, ob majorem fanguinis copiam affufan, incrementum capere obfervat. Quippe cùm pars aliqua corporis marcefcit \& extenuatur, fanguis ifti parti impendi folitus in alias corporis partes mandari debet : Et , cùm nulla pars corporis, hepate \& cerebro mollior, \& impulfui fanguinis magis cedere apta fuerit; facile ab irruente fanguinis majore copiâ diftenduntur ea, \& in tantam molem, atque incrementum affurgunt.Pariter omnino, \& ubi arteriam aliquam conftringi aut comprimi contingit ; curfus fanguinis in vicinis partibus majore impetu \& vi acceleratur. Ligata enim arteriâ cervicali alterầ ; pulfus ftatim in adversâ cervicali, tum etiam in axillari utrâque,

106 Cordis motus. Cap. 2.

 propter majorem fanguinis copiam affuram, valdè augetur. Quantum autem arteriarum licet minorum conftrictio ad motum fanguinis in aliis corripiendum valet, ex arctâ lumborum ftriiturà̀, quâ ad arcendum frigus utimur, clarè apparet'; cujus quidem ratio non ea fola eft, quòd veftes corpori arctiùs complicat, fed quatenus motum fanguinis in minoribus \& exterioribus valis coarCat, curfum cjus in interioribus conoitatum magis \& plenum intus reddit. Ideóque qui renes a naturà calidos obtinuerunt, nullo modo veftes lumborum regioni arctè alligari patiuntur, ne fimul cum repreffo fanguine ab exteriore corporis ambitu, majus incendiu intus excitent. Ulit autem arteriarum minorum conftrietio ad reliqui corporis commodurm aut detrimentum fxpe fit ; ita, cùm vaforum ad cordis ventriculos exacta commenfuratio fuerit, \& fanguinis copia omni fyitolê ejecta aortx ranis omnibus proportionetur ; fi decurfus ejus per ipfum ejus truncum paulo infra cor impediatur, non line maxima cordis
Cap.2. Cordis motus. 107

 cordis moleftiâ \& periculo contingits quatenus nempe fanguis toti corpori debitus, \& juftâ menfurâ proportionatus, a dimidiatâ ejus parte totus excipi non poteft; adeò ut neceffatiò in ipfum cerebrum $\& 2$ cor redunder; $\&$, cùm ab illo propter fatii defectum expellinon poteft, ipfius ventriculos opplere nimis \& fuffocare neceffe haber: Atque hoc quidem in variis canibus frepius expertus fum, quòd cùm, apertâ thoracis lrevâ parte, \& immiffo paulo infra cordis regionem digito aortx truncum defcendentem penitus ad finam comprefferim ; tantâ corporis conrentione atque ejulatu obnitebantur, ut cor ipfum pœne e pectore exfcindi magis tranquille ferrent. At verò cùm, fanguine plurimo detracto prius, idem experimentum in aliis repererem, adcò ut partes fupra compreffionem fanguini reliquo excipiendo pares \& fatis capaces fuerint ; nullo ferè moleftiæ figno digiti adpulfum patiebantur.Uti verò fanguis alicubi prexpeditus vafa proxima pro expediendo fibitran-
fitu

108. Cordis motus. Cap.2.

 fitu brevi dilatat ; ita aliquando fivè vaforum debilitate, five quod fanguis in partem aliquam jufto magis quàm pro cjus ufu derivatur atque allicitur, vafa quibus defertur copix fux atque impetûs incremento adeò diducit atque diftendit, ut in proximas partes minus copiofe \& debitè influat. Atque hinc eff, quod, gonorrhœea fimpli ci, zut fluore uterino nimio laborantium fpina adeo debilitetur, ut vix erecti incedere aut fefe quoquomodo flectere queant; non quod fpinalis medulla, aut nervi inde orti, fuccum fuum (fi quis hujufmodi fit) nimis in teftes aut uterum imbendendo fuo fe fraudent genio; quippe non adeò liberales funt aut effe poffunt, prout quidam vanè commenti funt, pauciffimx. enim \& vix vifibiles nervorum fibre in teftes diffeminantur : ratio autem potius in hoc fita eft, quod arterixe fpermaticx \& uterinx laxatx, fuccum fanguinis nutritium nimiâ \& plus folità copiâ in teftes \& uterum deponunt ; \& proinde arterias vertebrales, e regione oppofitas, fuo fe fanguine,
Cap.2. Cordis motus. 109

 fanguine, \& fpinalem medullam ab iis irrigandam fuo quoque alimento defraudent; quod ex medelâ quoque magis patet: quicquid enim vafa fpermatica conftipat \& confringit, æqualem pariter fanguinis diftributionem, fimul \& debitum partium tonum reftituit.Sicuti verò arterix cujuppiam obftrutio aut conftrictio quevis fanguinis motum in partibus vicinis concitatiorcm reddit; ita, ubi canalis ejus aliquis aperitur aut prorfus difcinditur, adeò ut fanguinis torrenti exitus pateat ; quoniam per apertum quafí oftium magis liberè \& expeditè effluit, quàm per poros corporis urgeri poterat, ideò ubi facilius poteft, copiofius aflluit, \& viâ quâ datur liberiore erumpit; adeò ut pulfus fimul cùm influxu ejus in vicinis partibus multum diminuatur. Atque hinc optima reddi poteft ratio, quare arteriotomia, ad dolores, inflammationes, \& plurahujufmodi fymptomata mitiganda in tantum conferat, ut prafens juvamen afferre femper videatur : Hoc autem ideo ac cidit;

110 Cordis motus. Cap.2.

 accidit; quòd cùm fanguis, per arterias e corde impulfus, ægrè magis \& difficulcer per poros \& habitum corporis circulatur; ; idcirco, ubi liberam \& apertan viam nactus fuerit, totus torrens ejus fimul etumpit \& exundat; unde proximis valis folito fuo liquore depletis \& deftitutis, impetus \& pulfus inibi multum diminuitur: Pari quippe ritu hòc fieri videtur ac cùm fluvius, in duos amnes aut rivulos divifus, in plano folo placidè \& xquis paffibus decurrat; fí alter dejectâ ripâ (quâ prius continebatur) extra alveum preceps ruat; non folum fluentum ejus quod ultra hoc apertum precipitium pergit, quin \& proximus amnis quo cùm per diverfas foffas \& rivulos (quafi tot anaftomôfes) communicat, itatim fubfidit, \& in curfu fuo retardatur ; uterque fc. amnis, faciliorem exitumnactus, quò magis liberè poteft, decurrit: Similem planè in modum fe habet in vafis corporis; expertus utique fum, fi arteria cervicalis ex hoc latere aperiatur, ftatim pulfum alterius cervicalis multum fatifcere; pariter etiam
Cap.2. Cordis motus. 1 It

 etiam fif arteria cruralis altera pertundatur, pulfum ilico arterix oppofiti cruris plurimum deficere.Vidimus huc ufque quantùm vafis cujufpiam arteriofi dilatatio, conftrictio, atque amputatio ad morum fanguinis alterandum preftet; fupereft, ut idema venis contingere poffer, oftendamus.

Cùmitaque non tam refert, quibus de caufis ven \mathfrak{x} dilatentut, quàm, quid carum dilatatio ad fanguinis motum alterandum faciat, explicare; notandum eft aut ob partis cujuldam compreffionem, aut fanguinis copiam, vel (five id ipfius ponderi, five relaxato venarum tono, five cordi fanguinem non debitâ vi impellenti debeatur) refluendi difficultatem, venas potiffimum ampliari; \& propterea in gravidis, propter venam cavam \& utramque iliacam in infimo ventre a mole uteri compreffam, tumpropter fanguinis \& humorum incrementum \& difficilem ab inferioribus partibus afcenfum; \& in triftibus 8 melancholicis, propter cordis motum languidum ; venas tibi-

112 Cordis motus. Cap. 2.

 tibiarum in magnos varices diftendi frepe numero contingit: fanguis fc. in reditu prepeditus, aut fufficienti vi a tergo non impulfus, in venis inferioribus diutius fiftitur, \& tandem pondere fuo ac mole eas diftendir, ue fibì amplius fatium acquirat. Atque ideò ubí lecto rursis fe tradunt, vel ifte fretum enixx funt, propter faciliorem fanguinis verfus cor recurfum, venx iftr protinus inaniuntur : verùm cùm longâ confuetudine ampliatx fuerint, non ita facilè in priftinum tonum reftitui poflunt aut coar'tari, quin, fanguinem a corde $\&$ venâ cavâ divertendo, circulationis filum feriemque valdè in tarrumpant; unde, pulŝ̂s deficientia, \& virium languor propter venas illas valdè dilatatas fuccedunt: Atque hoc non ita pridem in quodam ruftico, quadraginta circiter annos nato, \& longâ triftitiâ puene confecto, accuratè oblervavi; tantâ enim varice five venà dilatatâ in parte anteriore tibix finiftrx adeò verè laboravit, ut magni farciminis inftar a malleolo ad genu ufque turgeret, \&ejus

Cap.2. Cordis inotus. 113

 ejus inceflui valdè molefta fuerit; quantumquoque ex tumoris magnitudine conjicere porui, fere duas libras fanguinis continebat: Cùm verò in humum reclinatus tibiam erigeret, aut manu faccuium iftum fanguinis furfum verfus leviter urgeret, tumor exfanguine in venam cruralem \& cavam tranfmiffo, paulatim evanuit ; cùm autem in pedes iteruin ereftus flaret, intra breve fpatium folliculus ifte in priftinam molem affurgebat ; quod a Tanguinis novi influxu fieri certum eft: Cüm verò prater ponderis illius moleftiam fe infuper imbecillum, \& fi paulo diutius ifte tumor perfeveraverit fe valdè languidum conquereretur, (quod detento fanguini \& intercepto cordis pabulo imputandum puto) ad utramque moleftiam precavendam corfiului ut valdè frtiictî caligâ aut fafciâ tibiam femper accingeret, \& emplaftrum aftringens imponeret, quo in pofterum valde levatus fuit.Uti verò venarum alicubi dilatatio, fanguinis fupplementum $\& 8$ influxum

114 Cordis motus. Cap.2.

 debitum divertendo, cordis motum valdè diminuit; ita ubi venæ in anguftum adeò ambitum compinguntur ut fanguini commeatum fatis liberum non concedant, idem omninò incommodum cordi advenit: Quippe in valdè obefís animalibus propter venas a nimia pinguedinis mole $\& 2$ incremento compreffas, quia fanguis pro motu cordis continuando debitè fuppeditari non poteft, proinde in vafis fuis \& corde ftagnare \& concrefcere aptus eft, adeòque morti repentinæ (prexcrtim quibus a naturâ cor vegetum \& robuftum datum non eft) obnoxios reddit. Ut autem venæ cujufpiam, minoris licèt, compreffio fanguinis motum inihibendo aliquantulum alterat, ita quo plura st majora: eorum vafa obftructa aut conftrieta fuerint, eo prefentius cordi periculum impendit. Et ficuti aortx paulo fupra diaphragma compreffio fanguinem toti corpori debitum \& omnibus fimul valis quantitate proportionatum in partes folum fuperiores congerendo caput ipfium \& cor obruit \& peffundats
Cap.2. Cordis motus. 115

 ita fi vena cava paulo fupra diaphtagma in dextro pectoris latere, ubi trunco $a b$ omnibus partibus diftincto $s x$ difcontinuo verfus cor incedit, adeò arctè ligetur ut fanguinis per illam affluxus prorfus fupptimatur, dici vix poteft, quanto animalis derrimento hoc fiat: Quippe licèt ab injectâ venx ligaturâ nullum doloris aut cruciatus fenfum corporis contentione aut ejulatu fatetur, mox tamen adeò oblanguere \& fatilcere incipit, ut pedibus vix ftare poffit; quin 82 non tam procumbere quàm in terram ruere $\&$ concidere femel vidi ferociorem moloffum, non aliter quàm fi vitâ omnino deftitutus effer. Ratio autem, quare tanto difcrimine venam cavam \& tàm tranquillè ligari, aortam vero adeo ànxiè comprimi futulerint, alia effe non videtur, quàm quod venâ inibi ligata fanguis toti corpori debitus, inferiori folum parti ejus plurimum impenditur ; adeóque caput vitali ejus influxu valdè orbatum firitus pro cordis motu fuftentando impertire adco porens non eft ; ut utrumque I 2 vacillare
116 Cordis motus. Cap.z.

vacillare \& deficere multum neceffe fuerit, quod nullo utriufque dolore perficitur: Compreffâ autem aortâ fupra diaphtagma, fanguis qui maximâ ex parte inferiori corpori \& vifceribus ventris debetur, totus fuperiori \& minori parti fuffunditur ; quem cùm exciperc omnino incapax fit, nimiâ cjus copià prorfus opprimi \&: furfocarı debet; atque ideò cùm mox ccrebro \& cordi ipfi, tantam moleftiam afferat, ad primam compreffionem animal rem tam iniquè patitur \& fiummo conatu amoliri nititur. Quod quidem experimentum cùm non uno refpectu obifrvatu dignum fit, non abs re forc arbitror fi adminiftrandi methodum hic oftendero : Perforato itaque dextro latere thoracis infra feptimam \& octavam coftam paulo infra regionem cordis, \& immiffo digito venx cavx fitus palpandus eft, deinde peetoris latus illud ad venani quàm prope compellendum eft, quo filum ei faciliùs obducatur, atque in ifto pectoris fitu arate ffringendum eft vinculum ; dein pectore

Cap. 2 Cordis motus. 117

 pectore relaxato vulnus confuendum eft : Peracto aurem experimento canis mox oblanguet valde, \& intra paucas horas expirat. In diffectiautem abdomine magna feri quantiras innatare confpicictur, non aliterquàm fí afcite diu laborafict ; quod quidems ab impedito fanguinis ab arteriis in venas circuitu fecerni prius expertus fueram; haud pridem enim venas jugulares fubducto iis filo in canc arctè ligaveram, \& poft aliquor horas, partes omnes fupra ligaturam mire intumefcebant, \& intra duos dies canis quafi anginâ fuffocatus interiit: Toto hoc tempore non folùm lacrymx copiofiús fluebant, fed \& plurima faliva ex ore profluxit, non aliter quam fi mercurio affumpto fluxus ille concitaretur; poft obitum cutem ejus a partibus tumefactis feparavi, atque expectavi quidem ut partes tumefact:e fanguine extravafato turgerent; fed aliter omnino evenit, fiquidem nulhum veftigium aut colorem ferè fanguinis obfervare potui; fed mufculi onnes \& glandule fero limpido maxi
118 Cordismotus. Cap.2.

 mè diftentx \&x admodum pellucidx apparebant ; quod clarě้ arguit ex conftrictione venarum cùm fanguis ab arteriis in venas tranfire nequit, fcrum utcunque fecerni; utpote velut in filtro meatus apertiores \& poros configuratos \& aptiores habens in quos fluat ; craffior autem fanguinis pars propter meatuum difproportionem non omnino in illos recipitur, \& propterea intra vafa fua ftagnare cogitur. Quantum hrec ad Afcitis \& anafarcx caulas inveftigandas conducant, aliis judicandum relinquo; hoc folum advertere oportet afciten non ex ruptis lymphaticis femper, fi omninò unquam, provenire ; Quippe plurumas oves hydrope pectoris atque abdominis defunctas diffecui, in quibus vafa lymphatica ita turgida \& repleta ubique inveni, ut nufquam magis ; adeò ut fiquis venarum lymphaticarum hifloriam plenè abfolvere in animo habeat, nulla corpora ad votum ejus \& propofitum magis ceflerint.Hactenus

Cap.2. Cordis motus. 119

Hactenus oftenfum eft quâ cordis \& vaforum ejus culpâ motus ipfius alteratur:

JII. Sequitur, ut in quam criminis, fufpicionem vencrit fanguis, \& quo ejus vitio cordis motus hedatur, explicemus.

Atque tribus pracipuè modis cordis motum pervertit,
I. Incraflatione $\&$ coagulatione.
2. Abundantiâ nimia.
3. Defectu.
I. Motus cordis a fanguine alteratur, cùm aut ab alieni mixtione, aut propiarum partium feceffione coagulatur, \& grumefcit, adsò ut viam fibi ipfi \& tranfitum omninò predudat; prout in pefte $\$ 2$ veneno aliquando ac: cidit, unde graviffima illa fymptomata, cordis fc. anxietas, tremor, palpitatio, pulfus intermiffio, \& tandem fyncope \& mors repentina fuccedunte Qux omnia in majore moloffo poft injectam libram femis lactis recentis modicè calefacti (experimenti gratiâ) in venam cruralem detractâ prius.parifanguinis copiâ, quò lađti recipiendo I 4 locu

120 Cordis motus. Cap.2.

 locus effer, non fine magnâ conmiferatione femel vidi : Vix cnim femihora elapfa eft, quin ınaximâ precordiorum anxietate, \& oppreflione cordis, \&z diaphragmatis fummâ contentione (pro expediendo fanguinis circuitu) afficiebatur ; quin \& mox crebrâ palpitatione, tremore, \& graviffimis fufpiriis fuccedentibus, tandem inter miferandos planctus \& querclas fyncope extinctus eff. In diffceto, mox obfervavi venam cavam, utrofque cordis ventriculos, vafa pulnonum atque aortam, lacte cum fanguine penitus concreto impleta; \& adeò inter fe compactus cùm lacte fanguis fuit, ut digitis non ita facile divelli aut feparari porcrat: Unde fimilem in pefte coagulationem effe non eft quodd dubitem, cùm iifdem prorfius fignis \& 1ymptomatibus fe prodar.2. Sicut autem maffe fanguinex concretio \& grumefcentia vias fibi in valis \& corde obftruendo ejus morum tandem eludit, fupprimitque; ita fi nimia fanguinis copiafuerit, autplus debitâ feri aut chyli quantitate turgefcat,

Cap.2. Cordis motus. 121

 gefcat, vafa fua \& ventriculos cordis ita replet aliquando aggravatque ut diftendi nimis fit neceffe, fatis autem contrahi non poffint: adeóque, nimiâ ejus plethorâ penitus obruantur. Atque ided folenne eft, homines lauto 38 pleno viftu femper utentes, atque ebrios precipue frequenter fuffocari, nifi largà \& maturâ venx fectione vafa fanguinis depleantur, \& clyfteribus aliqua pars crapulx detrahatur, quò libera rurfas circulatio fiat.3. Quemadmodum verò fanguinis plechora cordis ventriculos ejufque vafa nimis implendo fuffocat, \& cordis motum opprimit ; ita e contra cum tanta fanguinis jactura \& waforum inanitio fuerit, ut vencriculos cordis irritet folum, \& non fatis expleat, cor in opere fuo frpe fruftratum a motu deffitit ; uti in hamorrhagiis magnis, \&ediuturna fame frepe contingit.

I V. Hactenus oftendiffe fufficiat quantum cordis motus a feipfo, vafis fuis, aut fanguine alteretur; ultimo explicandum reltat, quomodo pro

122 Cordismotus. Cap,2,

 vario fpirituum influxu motum ejus alterari contingat.Proutautem regularis cordis motus a debito firituum per nervos influxu omninò dependet, ita pro vario illorum influxu motus ejus plurimumalteratur.

1. Acceleratur cordis motus in exercitio concitatiore, quatenus a motu mufculorum fanguis in ventriculos ejus uberius urgetur atque ingeritur; quem cuim neceffe habear pari paffu expedire, in cerebrum quoque non aliter ac in cxteras partes majore copia fuffiundir, unde firitus etiam pro mutno prxftando beneficio ad cordis motum corripiendum majore quoque copia in ipflum amandancur. In febribus quoque cordis motus valdè corripitur, non quod fanguis immaniter ebulliens in zortam exiliat; fed quia aftus ejus \& caloris fenfus cordis ventriculis infentus, \& in cerebellum tranfmifus, fpiritus ad motum ejus pro exigentiâ accelerandum irritat; partim quoque quia partes aliqux fanguinis efferx \&

Cap.2. Cordis motus. 123

 indomite in cerebrum depofita, fpiritus inibi hofpitantes exagitant \& 8 in orgafmum rapiunt: Prout etiam a potu vini generofi \& liquoris cujufliber admodum fipirituofi motus cordis mirè augetur, quia partes fpirituofe ab hujufmodi liquoribus in magnâ copiâ in cerebrum extillatx fpiritus cerebri incolas in fimiles tumultus incitant.2. Diminuitur cordis motus in magnis hæmorrhagiis, jejuniis, diuturnâ quavis ægritudine feu mærore, longo languore, affectibus fyncopalibus, tebribus malignis ; in quantum vel ob fanguinis inopiam, autrecentis pabuli defectum, aut longioris morbi depradantem calorem, aut malam fanguinis diathefin, ufque adeò degener \& depauperatus eft fanguis, ut exhaufta, effreta, vel veterana cjus maffa fipitiobus in cerebrum extillandis omninò impar fit : Et exinde propter fipirituum aut non rectam confticutionem, aut non debitam influentiam five penuriam, cor motum fium remittere neceffe habet ; donec fanguis vel copiâ

124 Cordis morus. Cap.2.

 copià augetur, vel novo pabulo recreatur, aut crafis ejus emendatior evadit.Arque hire quidem fecundarià cerebri $\&$ f firituum culpâ accidunt; proximè oitendendum, quo fuo fprituum vitio cordis motus alteratur.
3. Depravaturnempe in paffionibus, veluxi irâ, gaudio, terrore fubito; quum fpiritus nimiâ \& plus folitâ copià aut majore impetu cordi advolant, moturnque ejus maximè corripiunt, 2 horrendis aliquando fubfultibus exagitant \& convellunt. Quem quidem affectum, quum non fatis forfan perpenderent, diminuto vocabulo palpitationem authores paffim nominarunt: At revera cordis mufculus uti eafdem cum careris mufculis adtiones perficit, ita ab iifdem morbis haud immunis eft ; quippe Spafmo \& motui convulivo xque obnoxiuseft \& fepius multo tentatur. In palpitatione enim fic dieta (qui morus convulfivus verè eft) cor tam violenta fy fole fapenumero corripitur, ut ipfas coftas loco fuo moviffe, atque perfregiffe notum fit ; quin ${ }^{2}$, aliorum fpafmorum

Cap.2. Cordis motus. 125

 morum more, ab iifdem caufis excitatur, \& periodicè recurrit; \& uti fic correpti occafionem plerumque fubito terrore, vel irâ accipiunt, ita fimili quâvis de causâ in cofdem affectus denuò incidunt, a quâ primò excitati funt; ubi enim fipiritus femel in tumulturn \& confufionem acti impetuosè nimis in cor delati fuerint, deinceps poftea ob levem quamcunque occafionem pariter irritati ; eandem viam \& choream affectabunt, \& fimili fpafino cor corripient: prout videre eft in ís qui palpitationi fic dictx obnoxii fant.4. Prout autem fpiritus in cerebro \& cerebello in tumultus \& orgafmos acti cordis mufculum aliquandonimis exagitant: Ita fxpe accidit, ut, fpiritibus aliò raptis aut diftractis, ille adeò artè̀ \& rigidè ftringatur ut a diaz ftole diu vacer. Quare nihil magis folenne, quàm, feeminas hyftericâ paffione aut epilepfiâ affectas, in gravefcente paroxyfmo, de cordis fpafmo \& conftrictione (quafi manu comprimeretur) plurimum queri; quo tempore,

126 Cordismotus. Cap.2.

 pore, fi digitum arterix applices, ne minimum quidern pulfus veftigium deprehendes : Atque ideò, difculfo paroxyfmo, de magno cordis gravamine \& oppreffione conqueruntur ; quia, ob impeditum cordis motum, fanguis in co ftagnans \& grumefcens, illud onere fuo opprimit, \& valdè gravat: Quâ de causâ epileptici plerique, durante paroxyfino, pectora fua repetitis ictibus concutiunt \& contundunt, quò cor ad motum incitent, \& a congulatione fanguinem impediant: Quòd fi diutius paroxyfmus duret, periculum eft ne talis coagulatio fanguini inducatur,quam cor nunquam iterum diffolver \& excutiet; unde longiores epilepfix paroxyfmi frepe in mortem terminantur.5. Quemadmodum verò fyiritibus alio diffractis cordis motus pro tempore ceffat ; ita ubi influxus corum penitus intercipitur, ejus motus omnino deficit: Uti in Apolexià; in quà tota medulla oblongata fimul \& femel obftrui, \& proinde tota fyltafis nervofa inde orta eclipfin pati videtur:
unde

Cap.2. Cordis motus. 127

 unde cor fimul cùm reliquo corpore fenfu motuque penitus privatur, $\& z a b$ opere fuo feriatur; donec paroxyfimus fortè difcuflus fuerit, quod rarò admodum affectui illi conceflum eft.Cüm ex predictis conftitit, motum cordis aliunde dependere, atque ex confenfu partium diverfas mutationes fubire ; proximè incumbit ut oftendam, qui affectus \& fymptomata diverfas motûs cjus anomalias confequantur.
Prout autem multe ac diverfe alterationes in ejus mota fiunt; ita partes alix qux proximum cùm corde confenfum liabent, diverfimodenoxam ejus participant. Cúmq́; cordinihil ipfo fanguine magis affine fuerit, nihilque fit aquo cerebrum propiùs dependet; nihil eft quod, iftis citius, cordis inordinationem aut defectum luit.
Noxx autem \& fymptomata que fanguinis liquori inducuntur, duo pracipue funt.

1. Si cordis fyftole, quâ liquor fanguinis conquaflatur ufque, $\&$ ad venriculi latera \& vaforum parietes alliditur,

128 Cordis motus. Cap.2.

 ditur, paululum diutius elanguefcat; fuccus ejus nutritius in partes fecedere, grumefcere, \& gelatinx in modum incraffari, tandemque intra fibras cordis hinc inde pendentes implicari; \& ipfis ventriculorum parictibus accrefcere, \& a cordis x eftu indurari incipit ; eâque quantitatis mole frpenumero augeri, ut utramque cordis cavitatem ferè expleat, motumque ejus multum diminuat. Atque hoc in tabidis, cachecticis, fcorbuticis folenne \& familiarc eft (utpote quorum pulfusdebilis \& intermittens eft;) ventriculos cordis \& vafa omnia fanguifera chylo coagulato infarta \& ferè repleta effe ; prout in pluribus hujufmodi defunctis \& longa xgritudincattritis, prexertim fif fub ifto languore in lecto decubucrint, frpe oblervavi; adeo ut mirandum fuerit cor ullo modo conftringi, aut reliquum fanguinem ad huc fluidum ad vitam \& calorem in partibus confervandum in vafis intis preterlabi potuiffe; quin \& femel, in quodam oxonii tabe extinato, \& paulo ante obitum lipothymiz
Cap.2. Cordis matus. 129

 mix frequenter obnoxio, obfervavi, dextriventriculi oftium ufque adeò ab hujufmodi carneấ concretione obturatum, eamque tam artè inter fibras tricufpides impactam fuiffe, ut pennx anferine aditus in ventrieulum, pro influxu fanguinis, vix reftaret: Quin $\&$ finifter ventriculus pari fere modo obturatus fuit, ut ægre oftium cordis digitis recludi potuerit Quin \& hujufmodi concretiones ufque adeò in carnem mutatas vidi, ut plurimas venas $\&$ fibras in iis adverterem; quas cùm in fruftula diffecarem, fanguinnem non liter quàm fipars aliqua corporis incideretur, recentem effuderunt ; clato argumento, nutritium in fanguine fuccum alimentum partibus preftare, cùm ita intra vafa fua non folùm in parenchymata concrefcere, fed in ipfum carnis colorem \& fubftantiam mutari aptus fit. Cujus quidem coagulationis hxe ratio effe videtur, quòd, cùm cordis morus diu elangueat, \& fimul æger lecto dffixus fit ; ex plano \& xquali ifto corporis fitu, fanguis lento fluxu delatus, ob motus K iftam
130 Cordis motus. Cap.2.

intam tarditatem $\&$ moram (prefertim cum fuccus nutritius in fanguine admodum glutinofus fit,) fenfim con. crefcit, \& , procordis \& vaforum continentium figurâ, variè configuratur ; unde pro cordis polypo, verme, \& ferpente interdum habitus eft. Ex quibus conftat, quantâ cùm utilitate exercitia \& agitationes corporis ad falutem conferant; nam quo frpius in corde fanguis conquaffetur, ad valorum parietes allidatur, in habitu corporis a contractione mufculorum agitetur \& concutiatur, \& denique per poros corporis ufgeatur; cò magis attenuari, \& aftagnationibus iftis liberari necefle eft, in quas aliter pars fanguinis nutritia fatis prona eft.
2. UTi a debili \& parvo cordis motus fanguinis ftagnatio $\&$ concretio inducitur ; ita; e contra, ubi motus cordis cùnrobore aliquali $\&$ vigore vibratur, mixtio ejus optimè confervatur : Si verò intenfior fiat motus, ex violentâ concuffione fanguinis liquor valdè attenuatur, unde exercitio, balneo, laconico ficco aut vaporario; fuidor fupervenit:

Cap.2. Cordis motus. 131

 venit: Quii fi diutius \&̌ ultua quàm per eft provocetur ; propter feri defectum, fanguis, vehiculo fuo froliatus, circulationi ineptus redditur ; \&* cor ipfum, propter firitituum difpendium, in opere fuo delaffatur ; unde lypochymia \&e fyncope fuccedunt.Atque hace funt fympromata \& effectus, qux, ob cordis notum hoc aut illo modo alteratum, in ipfum fanguinem proximè redundant; alia aurem funt quix partes continentes pariter afficiunt.

1. Cùm motus cordis debilis $\&$ intermittens eft, hos capitis affectus, fc. vertiginem; fcotomiam, caliginem oculorum, \& lypothymiam inducit ; Quorum fymptomatum ratio in hoc fita eft ; quia, cùm fpiritus animales vitaque ipfa a continuo fanguinis in cerebrum appulfu dependent, fi curfus ejus fiftarur paululum aut fufficienti copiâ non fuppeditetur, tum, propter ejus defectum, caput ftaxim vacillat, oculi caligine obducuntur, \&e tota corporis compages in pronum ruere apta eft: arque ideo fyncope affectos in K 2 dorfum

132 Cordis motus. Cap. 2.

 dorfum \& humum fternimus, ut citius ad vitam reftaurenrur; quoniam, utue cor debile fulerit, porerit tamen, ineo fitu, fanguinem quafi ductu horizonzali in caput projicere, quainquam in erecto corporis fitu fanguinem eo futfunderenon potuerits ex cujus influxu fenfus $\&$ vita redit, ${ }^{2}$ imago ittanoctis flatim evanefcit.2. Ex adverfo autem, ubi cordis motus corripitur, \& fanguis impetuofe nimis in caput trajicitur ; membranas vellicando \& furcutiendo, capitis dolorem infert ; st fpiritus animales, per formnum in cerebro concentratos \& quafi ab opere feriantes, rapidiore motufuo exagitans \& loco pellens,vigilias inducit - Non abfimili forfan ricu ac, juxta lenem \& placidè murmurantem rivulum, fornnus nos citò occupat ; at, juxta vortices \& cataractas, terrorc porius excitamur \& expergifcimur.

Atque hi furt effectus pracipuiqui motus cordis varios velut umbra corpus fequuntur: Proximè reftat, ut oftendam, quomodo fluxus fanguinis,

Cap.2. Cordis motus. 133

 prodiverfo corporis fitu \& figurâ, alteratur; \&s, quid alterationem iftam confequitur.Quemadmodum (ut prius dittum) pro animalium diverfitate, influxus fipiritum in cor diverfus quoque eft; ita, pro vario corporis fitu \& figura, fanguinis per partes fluxus difcrimen fubit. Cưm enim certifimum fit fanguinis venodi refluxum non ab attraatione cordis ulli., fed a propulfu arteriofi languinis provenire ; facile eft concipere, quantrum partium quoque fitus ad facilitandum aut retardandum hunc motum conferar. Veluri enim in homine, cùm in pedes crigitur, fanguis a venis jugularibus, \& venâ cavâ defcendente, citius \& facilius fuo quafi pondere in cordis finus delabitur; (fimili modo atque venx, in manu elevatâmox vacux; in demiffà verò, turgidx \& plenx cernuntur ;) qui verò eft in partibus inferioribus, \& venâ cava afcendente, difficilius \& contta naturam fuam, folum ab arteriofo fanguine verfus cor propellitur, \& vi quadam urgetur, in planum autem jaccite K_{3} corporo

134 Cordis motus. Cap.2. corpore fanguis x que facile ab utrifue redit: Operx pretium erít advertere, in quo membri fitu fanguis citius partem eam pervadat, \& quid citior \& tardior ejus curfus producat.

Prour itaque nox \& dies, fomnus \& vigilia, mutuò fe excipiunt \& vices mutant; ita fitus corporis humani, pro naturx indigentia, crectus aut proclivis eit.

1. In Homine iraque erecto, quo. niam fanguis a fuperiore corporẹ nullo ferè alterius adminiculo fatis facielè in cor defluit ; \& fanguis in inferiore parte corporis non nifi languinis arteriofi impulfu, \& quandoque mufculorum contractione in exercitio, ægrè ufquefurfum urgetur : Ideò circuitum ejus in partibus fuperioribus celeriorem quoquic fieri neceffe eft. Quod \& poftea magis patebit.
2. In proclivi autem corporis fitu, cùm corpus a motu quoque quiefcit, prout partes extrenx magis reliquo corpore elevantur, ita circuitus fanguinis citiùs aut tardius per illas expeditur.

Effectus

Cap.2. Cordis motus. 135

Effectus autem \& incommo da qua celerior aut tardior fanguinis tranfitus in partibus poft fe relinquit, duo precipuèfunr.
I. Humoris ferofi accumulatio.
2. Vitalis coloris diminutio.

Qux\& in extremas corporis partes (pedes \& caput) maximè redundant.
I. In pedibus, prefertim morbidorum, \& eorum qui exercitio commode uti non pofluint, cùm fanguis x griùs (dum ere tif funt) verfus cor afcendat, ideò ftagnatione fuâ 8 tranfitus morâ vafa capillaria minora fuâ copià diftendit, $\&$ in habitu corporis aggeritur; unde pedum tumores ædematofi \& hydropici: Remita fe habere conftat, quoniam cùm lecto fe tradunt, \& pedibus cum reliquo corpore in xquali fitu collocatis recumbunt, ferum illud cum venofo fanguine percircuitus reforbetur, unde partibus iterum inanitis, tumor ante proximumdiem prorfus evanefcit.
2. Prater autem humorum congeftionem \& tardiorem in partibus interioribus circulationcm, etiam caloris
K_{4} dimi-

136 Cordismotus. Cap.2.

 diminutio fupervenit; ut ut de die minus frigoris féntiamus, quia exercitio \& ambuldtione fanguis ufque propellitur, \& proinde novo fanguini $\&$ a cordis quafi incude adhuc recenti via aperitur. In lecto etiam repofiti fi pediqus reliquo corpori declivioribus quieti nos tradamus ; non ante incalefcent, quàm pedibus magis elevandis lectus componitur: Cujus quidem hæe ratio effe videtur, quia ex elevatione iftâ fanguis venofus citius a pedibus recedit $\&$ proinde liberiùs \& copiofiùs fanguis arteriofus influit ; $\&$, cùm illo calor in partem reftituitur.Atque hoc adeò familiare eft plerifque frigidioris temperaturx hominibus, quorum fanguis ferofo latice magis abundat, ut propter frigoris fenfum fomnus non ante obrepat, quàm lectus ad pedes altius crigendos de novo fternitur.

Uti autem pedes propter tardiorem fanguinis venofi recurfum intumefcunt, \& infrigidantur ; ita cerebrum, fir caput in fomno nimis demif-

Cap.2. Cordis motus. 137 fum fuerit, licèt calvarix integumento inclufum frigus minùs fentiar, quia tamen ex ifto fitu fanguis non ita facilè redit, inundationem $\&$ irrigationem nimiam confitetur; quis enim ex illis eftqui ita cubat, quin proximo mane de capitis torpore, fomnolentia, gravedine, aurium tinnitu, $\mathrm{fa}_{2}-$ cici in tumefcentià conqueritur? qui omnes affectus, poftquam exporrectus eft, \& fanguis denuò humores iftos ferofos in tranfitu reforbens fecum in cor detulerit, paulatim evancfcunt.

Et cùm fomni obiter hicmentio incidit, opportunum erit hic paucis oftendere, quis capitis fitus inter dormiendum maximè faluti conferr. In quantum igitur cerebrum humanum rete mirabili (quod feri fuperflui partem a fanguine excipiar \& a cerebro pravertat) omninó deftituitur, atque vafa fanguifera tortuofo licèt ductu ad frangendum fanguinis impetum formata fuerint, eum tamen illibatum in cerebrum deponunt, prout 7 Th6.5. fig. 3. oftendit. In quâ

138 Cordis motus. Cap.2.

a a Arteria duse carotides ubi os calvarie intrant.
bb Vbi finuofo ductu per ipfom feruntur.
c c Vä of culis rectà furfumbiantibus in verebri bafin fanguinem emitrunt.
d d Artexice vertebrales ubi intracalvariam penetrant.
e e Vbi ambo carrom trunci in unums coeunt \& canali recto verfus arterias carotidas incedunt ut cum iis anaflomofi jungantur.
Ideò fieri non poteft quin ferofior \& aquafior fanguis, prefertim fuper planum jacente corpore 8 capite pariter relinato, in cerebrum influar : Cúmque præterea în ejufmodi fitufanguis in caput fuffufus, non tam promprè 8 fubito quàm cùm erecti fumus a cercbro recurrat; neceffe omninò eft, ut ipfum, $8 z$ preterea totum fyffema nervofum, a nimio fero irrigetur. Id quòd malo fuo experiuntur, quotquor affectibus fpafmodicis, hydropi cerebri, vertigini, paralyfi; fenfưum torpori,

Cap.2. Cordis motus. 139 torpori, \& hujuffmodi capiris morbis obnoxii funt: Si enim, capite demiffo \&.cum reliquo corpore æquali, fomno fe tradant ; propter cerebrum \& nervos fero nimis irriguos, proximo mane de vertigine, fcotomiâ, capitis gravedine, membrorum tremore, lingure balbutic, totius faciei tumore paffim queruntur, \& profe ferunt; quin $\&$ fxpenumero inter dormiendum aut turbulentis infomniis aut incubo tentantur, $\&$ toto mane infequente torpidi, fomnolenti, \& graves fibi videntur, fomnumque vix aut ne vix diu poftea excutiunt: Econtra quicapite altiore decumbunt, quia ex ifto fitu fanguis cjufque ferum fiuo pondere a cerebro facilius delabitur, ideò dulces \&x quietos licèt breviores fomnos capiunt, \& proximo mane multo alacriocres \& yegetiores evigilant, \& adomne opus \& fludium magis prompti atque expedit. funt.

Atquchic advertere obiter alienum non erit in peffimum illum aliquorum morem qui nocturnis \& feris potationibus (prefertim in magnis urbibus

140 Cordismotus. Cap.2.

 \& academiis quo tempore a fludiis \& negotiis maximè vacant) potiffimum indulgent ; quo quidem nec cerebro magis adverfum aut injurium quicquam poteft effe. Cùm enim propter proclivem corporis fitum, urina a renibus fecreta non ita facile \& promprè uti cùm creeti fumus in veficam per ureteres idelabatur (quanquam nec diffitendumeft ureteres non aliter quàm æfophagum ex tunica mulculofa conftare, adeóque non folum convehendo fed propellendo etiam fero infervire, atque pro rei exigenria dilatari aut conftringi poffe). Cumque veficx cervix, ex proclivi fitu, urina pondere non adeò gravetur, atque fpirtribus per fomnum in cerebrum aggregatis $\&$ quiefcentibus vefica oneris cjus fenfum non ita percipiat, fed officiiquafí oblita, eâ copià urinæ aliquandodiftenditur, ut majori recipiendx fatium vix detur; inde fit ut, propter impeditum per renes \& ureteres urin x decurfum, in totum corpus regurgitet ; \& nifi diarrhxâ proximo mane fecedat, aut nocturno fudore
Cap.2. Cordis motus. 141

 fudore evacuetur, in cerebrum pars ejus deponi debet: Et, longâ hujufmodi confuetudine, coufque illic accumulari, donec tandem in paralyfin tremorem, hydropem cerebri, lethargum, aut apoplexiam coniiciat. Rem uta fe habere, malà \&̌ crebrâ aliorum experientiâ frepe cdidici; multoties enim oblervavi plurimos homines, in culpata aliter valetudinis, in hoc vitx genere fibi nimis indulgentes, hujufmodi morbos frequenter incurriffe. Qux mala ut effugiat aliquis, qui bibendi tamen couluetudine abftinerc non poteft, confillo ut non lecto prius fe tradat quàm confcius fibi fuerit fe maximam ingefti liquoris copiam per veficam itcrum reddidiffce ; quàm multò largius \&e citius evacuabit, fi, veftibus exutis aut paululum relaxatis, aëri ambienti fe cautè exponat ; prolibita enim tranfpiratio \&s conftrictio corporis illa mirè auget urin x copiam. Quod ex hoc conftare poteft, quia fepius velica \& majore quantitate urinam reddit cùm corpus aëri expofitum eft , quàm cùm tepore lecti relaxatur;
142 Cordismotus. Cap.2.

laxatur ; adeo ut fi quis leito expertectus flatim urinam totâ nocte collettam reddat, veficamiterum cxonerare coactus erit, \& majorem urinz copiam (fi hyemalis \& frigida tempeltus fuerit) intra quartam horx partem ab ultima mittione reddet, quàm pluribus horis per fomnum prius accumulata fuerat ; non aliter quàm fi quis veficam exoneret antequam natandi gratia in aquam defcendat, quamprinum tamen frigidx immerfus fuerit, excontractione cutis\& pororum occlufione majori menfurâ urinam mox iterum deponct quàm antea, licèt longo temporc in velicâ congefta fuerit.

Quin ex cautâ hâc (a lecto abftimentiâ priufquamlargam fatis urin X copiam reddidiffe fecurus effet,) novi quendam pocula ad feram plerumque noctcm, vitam quoque fuam ad multos annos imó ad vividam, viridemque ut aiunt fenectutem protuliffe.

Verumhxc obiter ; \& quoniam fuus corporis firus ad planum proxipin

Cap.2. Cordis motus. 143

 mè accedit, non abs re erit paucis oftendere quid incommodi quoque $e x$ ifâ corporis pofitione, in formnis evenit. Quod ut clarius fiat, premittere oporter, animalium cerebra pro diversâ corporìs figurâ variè quoque conftituta effe, nullibi verò magis quàm quoad finus \& ventriculos cerebri difcrimen occurrit. In quadrupedibus enim qux prono in terram capite feruntur, uti cerebellum fupra cerebrum aliquantulum incumbir, ita \& finus laterales inter utrumque defeendentes fuperiores quoque funt, \&r ventriculus pariter quartus cerebello fubjectus furpra reliquos cerebri ventriculos collocatur.In homine auten, cui caput fupra feliquum corpus eminet, cerebrum utique cercbello incumbit, (intercedente tamen dura matre \& ad u trumque calvarix latus fatis firmiter atrensầ, ne cerebellum pondere fuo comprimat) pariter quoque \& finus taterales magis in demiffo fiti funt, \& ex latere inferiore occipitis utrinque obliquè feruntur antequam in venas jugulares

144 Cordis motus. Cap. 2.

 jugulares terminantur; unde fit utproftrato in lectum corpore ex fupino ejufdem fitu, ubi collum occipite magis attollitur,fanguis in venas jugulares afcendere potius quam influcre neceffe habet ; atque hinc eft quòd, propter retardatum ejus motum \& circuitum, continuo aggeftus, nec facilem exirumnactus, profundas ittas foveàs utrinque in occipite imprimit ; atque prout homo in hoc aut illud latus quiefcere foler, ita finus illi plus in uno latere quàm in alio femper excavantur ; prout cuilibet internam ocpitis partemin quo cerebellum recumbit contemplanti facile patet: Ob fanguinis autem refluxum impeditum, St vaforum exinde intumefcentiam, foveas iftas int occipite imprimi, ex hocconftat, quia fupra finum longitudinalem, e quo languis fatis libere decurrit, ne minimum ejus in calvariâ veftigium extat, nifi in inferiore parte ubi in finus iftos laterales fere exonerat. Si verò refluxûs iita cohibitio in tam durum os temporis tractuadeò valear, uz finuofos \& profundos tractus
Cap.2. Cordis motus. 145

 in eo fibi excavet; quanto magis fanguis ipfe ejufque ferum in cerebrum redundet, ipfumque aggravet: \& licèt venx omnes fanguinem quaquaverfum a cerebro excipientes in finus non directè aperiantur, fed velut ductus communis in duodenum, aut ureteres inveficam, fe. intra duplicaturam durx matris aliquanto fpatio incedant; Et,quod maximeobfervari dignumeft, non ofculis verfus occiput (qui rectior exeunti fanguini in finus laterales via foret) fed verfus frontem, retro quam curfis ejus eft, apertishiant; quo quidem fit, ut in rifu; fpafmis,\&c. in venas cerebri a finubus refundi auturgeri non poffit ; fedquo magis frnus ejus copiâ turgefcunt, eò magis duplicaturam iftam comprimendo, regurgitationem cjus in venasprohibet, qux omnia melius percipientur ex Tab.5. fig.4. In quâa a Sinus longitudinalis apcrtus.
b origo ejus circa os crifta galliubi imperia ef.
c Dbi in finus laterales utrinque fefe exonerat.
dd Duofinus laterales.

146 Cordis motus. Cap.2.

e Sinus quartus.
if Locus ubi finus omnes fanguinem extra calvariam in venas jugulares deposurat.
h hh h vena ex utroque cerebrilatere fanguinem in finum deferentes.
iiiiii O/cula illarum ubi (anguinem retro quam fanguinis in finucurfus ef exonerant.

Tab. 6. Fig. 1. Exhibet finus cerebri laterales prout in venas jugulares extra calvariam terminantur. In quâ
a Pars finus longitudinalis abfijfa.
b b Duo finus laterales.
c c Locius ubi finus laterales wtrinque in offe occipitis ampliantur or foveasin offe excavant.
dd Lbi fanguinem extra calvariam deponunt.
ce tbi finus laterales in cgreffu extra calvariam cum finubus vertetralibus conimunicant.
f f Duo finus tortuof in calvarice offe. excavati ad reprimendam Sanguinis regurgitaionem in finus cerebri.
gg Dwe

Cap.2. Cordis motus. 147

 gg Duo ductus immediate extra calvariam per quos glandula pituitaria in bumano cerebro aquam, quam a ventrictulis cerebri excipit, in wenam jugularem utrinque exonerat. h h Vena jugulares.At verò quocunque modo five in finibus five in venis fiftitur, malum tamen in cerebrum refilit, atque inibi futuris morbis \& materiam congerit \& fomitemabunde fubminiftrat; quippe ferum ob hujufmodi caufas inter anfractus ccrebri accumulatum, piam matrem coufque diftendit, donec tandem vel acrimoníâ fuâ eam erodit, vel copiâ fuâ perrumpir; unde in bafin cerebri defluxens, medullam oblongatam arque nervos ex ea ortos, ftagnatione fua corrumpit, aut acredine fûâ continuo laceffit; unde hydrops cerebri, convulfiones \& dirus mortis apparatus in capite accumulatur : Si verò ferum illud a fubftantiâ cerebri imbibatur, paralyfes,fenfuum torpores, lethargum, fomnolentiam, aliofque graves affectus capiti inducit.

$$
L_{2} \quad \operatorname{Pr} x-
$$

148 Cordismotus. Cap.2.

Prxterea, cum ventriculus quartus cerebello fubjectus, multo declivior \& magis in protundo fitus fit quam reliqui in cerebro ventriculi, \& quam ipfium ctiam infundibulum ; ideò fit ut lympha in ventriculos cerebri e plexuchoroeide fecreta, in ventriculum quartum reliquis magis declivem, potius quann infundibulum defluar; preKertim fi capite reclinato fomnum quis capiat; ex quo quidem humorum decubitu cavitas illa plurimum repletur, \& eoufque aggravatur, ut, ponderis ejus fenfu netvis precordiorum communicato, fape cordis oppreflio, \& incubus inducantur. Atquc ideò folenne eft hydrocephalis ferè omnibus, ut nunquam fupinì impunè dormiant; quin in latus hoc aut illud decumbere cogantur, quo melius hujufmodi moleftias prevertant: Imo novi quendam incubo olim maximè obnoxiunt, virum alias robultum \& fatis fanum, qui per duos annos nunquam in dorfum converfus dormivit, quin fimul affectuifto corriperetur ; adeò ut necelfe haberet fervum con-
tubernalem

Cap.2. Cordis motus. 149

 tubernalem in eodern lecto decumbentem admittere, quiftatim ac gemitus \& fufpiria, quibus affectus itte incipere folebat, exandiret, ipfum in latus alterum converteret; quo quidem factum eft femper ut infultus ifti precaverentur.Quin \& plurimos infantes recens editos, fi motibus convulfivis obnoxii fuerint, nunquam diu aut placide in cunis dormire, fed variis 1pafmis \& artuum fubfultibus corripi obfervare eft. Cujus quidem hæec caufa videtur, quod fiquidem eorum cerebra multâ aquâ abundent, ex hujufmodi fupino decubitu, qualis in cunis eft, aqua in ventriculis cerebri contenta propter fitum magis declivem in ventriculum quartum potius quam ad infundibulum defuit, \& proinde medullam oblongatam (ex quâncrvi precordiorum oriuntur) valde aggravat, \& comprimendo illam, (pirituum in nervos tranfitum impedit; unde cordis gravamen, \& motus convulfivi tandem fuccedunt. Atque hoc ideò magis verifimile eft, quia in contrario fitu, fc. intra ulnas

$$
\mathrm{L}_{3} \text { nutrj- }
$$

150 Cordismotus. Cap. 2.

 nutricum, vel in earum finu, ubi caput magis attollitur, placide \&fecure magis obdormiunt: Hoc ipfum prxterea obfervare contigit in Academico oxon.4. ab hinc annis hydrope pectoris extincto; qui poftremo morbi decurfu, fomnum nifi pronâ facie $\&$ inclinato capite capeffere non potuit; fi enim capite in pulvinar reclinato fomno fe componerct, intra tertiam horx partem horrendis infomniis \& terroribus triftis femper evigilavit; quin \& tremore cotdis $\&$ cjufdem oppreffione maximâ diu poftea aflliftus fuit. In cerebro auten poft mortem aperto ventriculi aquâ fummè diftenti reperiebantur, nulla autem praterea notabilis culpa in toto capite apparuit.Et fiquidem pluribus experimentis certò mihi confter nihil catarrhi a cerebro in partes inferiores ullas defcendere, priufquam hic de tabulâ manum aufero, operx prxtium eritoftenderc quâ vià atque ductu aqua omnis e plexu choroeide \& glandulis pone cerebellum in ventriculos cerebrị, \&

Cap.2. Cordis motus, 151 per infundibulum in glandulam pituitariam depofita \& percolata, extra calvarix limites defcratur. Et quidem in cranio vitulino olim expertus fum aquam aut lac ipfum in foramina, in offe calvarix pro fero a glandulâ excipiendo excavata, injectum, ftatim omne in venas jugulares utrinque exilire \& effundi ; adcò ut humor omnis a cerebrofecretus in hoc animali in fanguinem denuò redundet, atqùe exoneretur: Quód ipfum in cranio humano nuper etiam expertus fum ; quanquam enim in offe calvarix humanx, glandulx huic fubjecto, foramina occurant nunquam, at membrana in quam recumbit, pluribus in locis ad modum cribri perforatur, per quæ aqua deftillans $a b$ aliis vafis ex utroque fellæ turcicæ, ut yocant, latere, ubi arterix carotides juxta afcendunt, hiantibus quafi ofculis excipitur, \& in venas jugulares utrinque paulò infra finum tortuofum effundirur; quorum dustus facile patebunt, fi aqua aut lae e fyphone in venam jugularem utramvis paulo infra tor-

$$
\text { I } 4 \text { tuofum }
$$

152 Sanguinis motus C.3.

 tuofum finum vi injiciatur, mox enim confpicietur, prope glandulam pituitariam diverfis in locis erumpere arque fcaturire: certo utique indicio, quicquid feri a cerebro fecernitur, in fanguinem denuò refundi, eique commilceri.
CAP. III.

Sanguinis Motus \& Color.

> De celeritate circulationis \&o que fit differcntia inter Sanguinem venofum © arterisfin.

POftquam ad hunc modum conflitit qualis cordis fabrica fit, unde ejus motus provenit, quibufque de caufis motus ejus alteretur, \& quales effectus \& fymptomata altepationes iftex fanguini inducant, reftat ut quàm celeri curfu fanguis omnis per cor circuletur proximè oftendam.

De

Cap.3. E color. 153

Demotu fanguinis per ventriculos cordis quæcunque ante Harveium authores tradiderunt, tam inania \& futilia funt ut fponte fuâ jam evanuerint: Quinimò \& inter pofteros qui inventam ab ipfo circulationem amplexi funt, utcunque, ipfa hypothefi cogente, totum fanguinem tranfire cor \&z circulari ftatuunt, de tranfitûs tamen celeritate $\&<$ quantitate fanguinis qualibet vibratione exprefliita fcripferunt, ut fabricam cordis motufque ejus non fatis attendiffe videantur : Nam plerique gurtulas aliquot, aut fcrupulum, aut drachmam unam, pauci femiunciam tantùm fanguinis fingulis pulfibus expelli concedunt. Et quidem fatendum eftin diyerfis animalibus pro variâ corporis magnitudine, cordis ventriculos plus aut minus continere \& ejicere; verum in homine aut majore quovis animali tam exiguam quantitatem quolibet pulfu tranfmitti,quàm fit inconfultum afferere ex fequentibus patebit.

Equidem in eâ opinione fum totam fanguinis maffam qualibet horâ non

154 Sanguinis motus C.3.

femel atque iterum fed frpe cor trajicere, quod ut magis perfpicuum reddatur, fedulò advertendum eft quantum fanguinis in cordis ventriculos, quoties dilatantur, influit; quantumque ex iis, dum conitringuntur, effunditur: Cüm autem in omni diaftole ventriculos fummâ diftenfione dilatari ex autopfiâ apparear, contra verò in fŷtole cordis latera tam ftritè invicem coire \& coarctari ut digitum minorem (ii cono ab(Ciffo intromiferis) ipsâ manu vix fortius comprimas; hinc eft quòd certiffimum arbitrer utrumvis ventriculum in diaftole tantam fanguinis copiam. quantam capere poteft, reciperc; in omni autem fyftole, quicquid prius receptum eft, totum penitus expellcre. Atque hoc quidem in cordibus \& auriculis animalium recens editorum, ranarum, anguillarum, \& ferpentunn oculis ipfis plane obvium $\&$ perfpicuum eft; quippe quorum corda \& auriculx in qualiber fyftole, excuffo omini fanguine, ita penitus deplentur ut prorfus albx appareant; rubicundus verò color in diaftole (cum fanguis iterum

Cap.3. \&r color. 155 iterumin eas influit) per vicesiplis redit ; quin $\& 8$ idem cordibus majorum anitnalium contingere extra dubium eft, licèt ob parenchymatis craffitiem tam clatè oculis percipi non poffit.

Quo fuppofito fi pulfus criam numerentur, haud arduum erit conjicere quantum fanguinis intra horx f fatium per cortrajicitur; fupponamus itaque in fano \& vegeto homine cordis ventriculum finiftrum duas uncias, prout Clariff. Harvaus obfervavit, fimul capere (quanquam multò capaciorem in aliquibusfxpe obfervaverim) \& fi tota illa fanguinis quantitas in omni fyftole e corde expellatur ; numeratis intra horam duobus millibus pulfuum (que quidem minima omnium compuratio eft) neceffe eft fanguinis uncias quatuor mille intra horam cor trajicere. Totidem veró uncix trecentas triginta \&c duas libras conflituunt, dato autem in hoc homine viginti quinque libras fanguinis ineffe (qux major eft quantitas quàm plerifque hominibus a naturâ aut ab Anatomicis conceffa eft, dicunt

156 Sanguinis motus C.3.

 enim totius fanguinis in corpore humano contenti menfuram raro viginti quatuor libras excedere, autminorem effe libris quindecem) certiffimè fequetur, totum hujufce hominis fanguinem intra unicam horam fexties per cor circulari. Verum cùm rarò accidat tantam fanguinis copiam homini fano inefle, aut cor tam paucis pulfibus intra horæ decurfum moveri, rationi confonum ef fanguinem in plerifque aliquanto feppiùs quàm cordis ventriculos fexties pertranfire.Atque ita fc habet in omnibus animalibus modo integra valetudine fruantur; aliquando autem multò celerius prout in febribus, exercitio violento, \& motu cordis convulivo tranfire putandum eft ; pulfus enim tunc longè velociores funt, \& proinde fanguis duplo frpiùs trajicitur. E contra autem in ictero, fcorbuto, aliifque hujufmodi affectibus, propter quos cordis motus languidus \& inxqualis evadit, aut fi quando vafa \& ventriculi ejus chylo grumefcente inferciantur,fanguis multò tardius pertranfit ; Quinetiam re\{peatu

Cap.3. \& color. 157
fpectu temperamenti, fexûs, \& xtatis pulfus variari folet, ut trajecti fanguinis menfuram, atque circuitûs vices accuratc $\mathfrak{x t i m a r e}$ atque definire impoffibile fit; at in fanis \& robuftis animalibus fanguinem multò velocius ferri \& coripfum pervadere, quam vulgò creditur aut hactenus feriptum eft, ipsà ventriculorum cavitate \&z pulfuum numero fatis patet: Atque ita omnino fieri debuir, fi partes fanguinem ipfum conftituentes, \& nifi perpetuo \& concitato motu exagitentur, ab invicem fecedere \& grumefcere aptas quis recte perpendat.

Verùm ne quis tac ita dicta intelli. gat, qualif fanguinis portio aliqua,utpoté quæ vafis cordi propriis aut vicinioribus, \& ab cjus fonte non adeò remotis feratur, non multò citius \& frequentius, quàm reliquus per extrema corporis delatus, per cor circuletur ; ipfa enim vaforum \& partium vicinitas aliud arguit. Verùm hoc eft quod contendo, licèt omnes fanguinis partes non æquis paffibus aut tot vicibus per cordis finus deferantur,' quæcunque

158 Sanguinus motus C.3.

 tamen ea fanguinis copia aut quantitas fuerit, tantam certe \& toties per cor circulari, prout prius dictum eft.Quàm celeri autem paffu fanguis omnis a corde per totum corpus tra. jicitur, non aliunde facilius eft concipere, quàm ex feri cum eo mixti citiflimo per renes decurfu: Quippe cùm dux veltres libre cerevifix matutino hauftu in ventrem demiffe intra femihoram ferè totx, \& citius multò fi frigida tempeftasfuerit, a veficâiterum reddantur ; \& cum ferum illud plerumque dimidiata tantum fanguinis in renes delati pars fuerit, quidni afferere fas fit quatuor vel fex libras fanguinis fero diluti per duas arterias emulgentes (ut vocant) in renes a corde tranfimitri. Si autem per vafa tam parva, fi cum reliquis conferantur, tanta liquoris fanguinei copia tantillo fpatio pertranfeat, haud arduum erit intelligere, quàm concitato motu reliqua tanguinis maffa omnis in catem ris corporis partibus feratur: Quod magis adhuc manifeftumapparet in iis qui aquas acidulas minerales tantà copiâ

Cap.3. © color. 159 copiâ exhauriunt, ut aliquos noverim qui duos ferè congios aqux unico mane partitis hauftibus epotaverint, atque intra quatuor horas totam ferè iterum per veficam reddiderune. Qux aqux copia fanguinis quantitatem in plurimis hominibus plus duplo exce. dit, \& pariter certum eft eam per utrofque cordis ventriculos unà cum reliquo fanguine fxpius pertranfiiffe, antequarm per renes fecerni, aut a veficâ deponi potuit: neque enim alius a ventriculo \& inteftinis liquori cuilibet nifi per cor \& fanguinem in renes \& veficam tranfitus aut vaa a naturâ conceditur; fî autem tantâ copiâ aquxe (que ue prius dicturn dimidiata tantùm fanguinis in renes delati portio eft) tam exiguo tempore \& per tam exiles arterias pertranfeat, quid precor de reliqui fanguinis tranfitu per vafa omnia majora exiftimandum eft?

At neque conjecturis folum fed \& experimentis infuper demonftrare facile eft celerem hunc fanguinis a corde projecti motum ; fi enim fanguis ex unicâ arteriầ cervicali apertâ intra

160 Sanguinis motus C.3.

 intra duodecimam horx partem ferè totus effluat, quidni conjicere licèt, totam fanguinis maffam multo breviore lpatio per cor circulati: Quicnim tam citò per unicunr arterix ramum ferè totus effunditur, quanto citius idem ex trunco aortx, aut omnibus ejus ramis fimul difciffis efflueret?Sedur accuratè magis fanguinis curfus \& admiranda celeritas x eftimetur, experimentum hoc unicum proferrì fufficier. Nimirum in cane majore utramquè arteriam cervicalem difcidi, fimulque per orificium int finiftro pectoris latere e regione cordis factum digito aortæ truncum infra cor compreffi ne quid fanguinis per illam defcenderet, \& arterias denique brachiales fub axillis coarctari curabam, quo factum eft at ormis ferè fanguis per cctvicales (prxter illum in vertebrales tranfmiffum) e corde impelleretur ; atquemirum diatu, intra vigefimam hore partem totus effluxit; adeò ut negandum non fit omnem ejus maffam ifto fpatio cor tranfiiffe: Quinctiam ob-
fervare

Cap.3. G color. 161

 fervare eftin vulneribus, ubi atteria aliqua magna difcinditur, quàm brevì momento ita truncati languincm ferè omnem cum animâ profundunt, quem tamen neceffe fuit totum priûs per cordis ventriculos circulari.Verùm hic objici video cor inter hujufmodi vulnera \& torturas multò celerius pulfare \& proinde fanguinem multò citius trajicere ; at fi languis, poftquamiftre incifurx facte fint, paulo fupprimatur, adeò ut dolor omnis $8=$ metus priùs evanefcant, quod citò ini junioribus canibus fit, qui hujufmodi injurias neque tam x grè, nec tamdiu in animo ferunt, pulfum cordis non ita corripi \& accelerari certumeft. Et revera licèt fatendum fit, poftquamplurimus fanguis profufus eft $\& 2$ animal pœne fariicere incipit, pulfum celeriorem reddi, id tamen non antea fit, quam vafa omnia ita depleta fuerint, ut reliquus cordis ventriculis fatis implendis non fufficiat; atque ideò pro continuo fanguinis difpendio pulfus continuò minor \& crebrior redditur, ufque dum fanguinis influxu penitus defiM cient

162 Sanguinismotus C.3.

 ciente etiam cordis motus omninò ceffer.Si autem objiciatur fanguinem facilius \& proinde citiùs ex arteriâ difciffa effluere, quàm per habitum corporis circulari; cumillic libero \& pleno torrente, hic non nifi per varios anfractus $\& z$ obices, \& ipfius quoque carnis anguftias atque poros in venas feratur, nonalio forfandifcrimine, ac cum fiuvius aperto alveo magis celeriter decurrit, quàm fi per cribrum trajiciatur.
At huic objeCtioni facile eritreferre, quod, non obftantibus vifcerum \& habitus corporis anguftiis, fanguis licèt non x què celeriter a venis $a c a b$ arteriis apertis eflluat, in ipfis tamen venarectionibus quamdiu cordis mozus viget, non multò tardius effunditur; quippe in canibus fxpenumero expertus fum, fi collo arctè ligatò \& aortxe trunco infra cor, prout tactum prius, compreffo, quo fluxus fanguinis in capur dirigatur, vena jugularis alteta difcindatur, pari pane fpatio ac copiầ ex venầ iftầ, ac exarteriâ cer-

Cap.3. Wr color. 163

 vicali detrahetur, faltem ufque dum maxima pars fanguinis adimitur: Poftea verò cum ob tantum ejus difpendium, cordis motus oblangueat, reliquum, prout debilius a corde propelli, ita multò parciùs \& tardius e venâ quoque profluere agnofcendum eft.Pofito autem tam celeri fanguinis circuitu (quem etiam mefatis probaffe arbitror) utique non apparebit tantum effe difcrimen inter fanguinem arteriofum \& illum in venis contentum, quantum vulgo creditur.

Qui funt utriufque fanguinis varii reditus, \& vectigalia ex quibus conftant, alibi a me dittum eft, eodemque in loco differui de coloris diverfitate $\&$ a quâ causâ differentia hro inter utrunque maximè notabilis procedit ; Verùm cumpro tuendâ \& continuandâ nimis per omnia biolychnii cum lampade analogiâs Doctiff. Wrillijii authoritati \& preconceptx opinioni, quàm proprix encheirix hac in re magis confifius fuerim, atque longior dies me aliud jam edocuit, M 2 fen

164 Sanguinis motus C.3.

 fententiam priorem meliore mutare non pigebit; neque enim aliorum dogmara ac opiniones vexare, aut propriam mutando mihi ipfi ludibrium Eacere in animo eft, fed quid ratio fuggerit \& experientia confirmat, apud me plus valuit \& femper obtincbit.Itaque coloris diverfitatem qux inter fangutnem venofum \& arteriofum invenitur, a fanguinis in corde accenfione (fi qua tamen illic concedenda (ii) neuriquam dependere certum eft: Pofito enim illam potiffimùm in corde fieri, cum par fir utriufque ventriculi officium, neque alios ob ufus quàm ut fupra dictum eft fibrarum robore \& craffitic difcrepent, quidni color in dextro pariter immurari debuit? At certò conftar fanguinem ex arteriâ pulmonali eductum venofoper omnia fimilem effe, craffamentum ejus nempe atri coloris eft, \& fuperficie tenus folùm rutilat : Quinimò nec a finiftro cordis ventriculo novum hunc ruborem fanguini impertiri certiffimo experimento conficietur; fienim afpera arteria

Cap.3. of color. 165

 arteria in collo nudara difcindatur, \& immiflo fubere aretè defuper ligetur, ne quid aëris in pulmones ingrediarur, fanguis ex arteria cervicati fimul difciffă effluens (faltem qui aliquandiu poft prafocatum pulmonern crumper) totus venofus pariter \&s atri coIoris perfpicietur, non aliter quàm fi exvenâ jugulari pertusâ protufus cffer. Hoc ego fepius expertus fum, idemque ex eo adhuc clariùs apparet quod fanguis intra finiftrum cordis ventriculum \& aortx truncum ftrangulati animalis aut morte naturali confecti, in quo aëri in fanguinem commeatus precluditur, totus venofo fimilis femper reperitur.Poiftremo ne quis ultra vel dubitandi locus fuperfit, experiri animum fubiit in cane ftrangulato, poftquam fenfus' illum \&s vita onnis deferuetunt, an fanguis adhuc fluidus in venà cavâ undique in dextrum cordis ventriculum \& pulmones impulfus, parirer floridus per venam pricumonicam torus rediret; itaque propulfo fanguine, atque infufflatis fimul, nee non

166 Sanguinis motus C.3.

\& perforatis pulmonibus, expectationi eventus optimè refpondit, fiquidem xquè purpureus in patinam redditus eft ac fí ex arteriầ viventis detraheretur.

Quemadmodum yerò fanguinis arteriofi colorem floridum \& purpura. fcentem non ab accenfione in corde ullầ $_{2}$, aut alibi alias acquiri oftenfum eft, ita neque ater fanguinis venofi color ab ullâ ejus in venis extinctione dependet: Si enim hoc fieret quidni fanguis arteriofuspofquam extravafatus eft, cum jam procul omni dubio penitus extinguatur, fimilem colorem obtineret.

Quocirca cum ita fe res habeat ${ }_{3}$ proximo in loco videndum eft, cui tandem fanguis acceptum refert quòd colore tam rutilo \& Durpureo penitus imbuatur: Atque hoc pulmonibus totum tribuendum eft, fiquidem experrus fum fanguinem, qui totus venofi inftar atro colore pulmones intrat, arteriofum omning̀ \& floridum ex illis redire: fi enim ablcifsâ anteriore parte pectoris \& folle in afperam arteriam

Cap.3. ve color. 167 riam immiffo pulmonibus continenter infufflatis, \& , quo liber per cos aëri tranfitus fiat, acu fimul undique perforatis, vena pneumonica prope auriculam finiftram pertundatur, fanguis totus purpureus \& floridus in admotum vafculum exiliet; atque quamdiu pulmonibus recens ufque aër hoc modo fuggeritur, fanguis ad plures uncias, imo libras per totum coccineus erumpet, non aliter quàm fi arteriâ pertusâ aliquâ exciperetur. Quòd verò fanguinem e venâ pneumonicâ detractum venofo fimilem prius fcripferam, id etiam expertus dixi, led cum pulmones perforatos contínentèr infufflando animali vitam tamdiu confervare nondum experimento mihi innotefceret: Adeò ut aër omnis e pulmone prius exclufus fuerit, quàm venam pneumonicam arripere $\&$ pertundere potuerim: Quod experimentum quo pulmones in continuâ diftentione, falvâ interim animalis vitâ, diu continentur, Celeberrimo Domino Rob. Hooke deberi, atque M_{4} inde

168 Sanguinis motus C.3.

 inde mihi anfam hujus conficiendi datam effe agnofco.Verùm fí quis comminutioni fanguinis in pulmonibus, potius quàmaëris cum fanguine mixtioni, floridum hunc ipfius colorem tribuendum effe contendat, perpendere oportet an revera fanguis in pulmone magis quàm in corporis mufculis, fí omninò $x q u e ̀$, comminui atque confringi poffit ; quippe cum pulmones in continuâ dilatatione ad experimentum hoc rectè conficiendum contineantur, non video quomodo aliter quam per poros eorum tranfeundo, ficut in reliquo corporis habitu, comminuatur.

Praterea colorem hunc rutilum paraculis aëris fefe in fanguinem inlinuantibus omninódeberi ex eo fatis perfpicuum eft, quód ficut in pulmonibus per totum floridus redditur, quid in illis aërper omnes fanguinis particulas diffufus cumipfo intimiùs permifcetur; ita fanguinis venofi in vafe excepti fuperficies \& pars fumma, quatenus aëri expofita eft, coccineum quoque colorem

Cap.3. © color. 169

 colorem aquirit: Qux fi cultello auferatur, proxima qux fubjacet a fimili aëris contactu in eundem brevi mutabitur. Quinetiam fiplacenta fanguinis poftquam diu refederit, invertatur, brevi fpatio cuticula ejus exterior 82 fumma (dummodò fanguis fit incorruprus) purpureum colorem induit, quin \& vulgò notum eft fanguinem venofum in patinâ exceptum 8% diutina agitatione commotum, quo aërem penitius intromittat, purpureum omninò evadere: Nec miretur aliquis fecretionem aut admixtionem aëris fanguini tantas colorum mutationes conciliare, cum videamus alios etiam liquores, prout eorum pori lucis radios plus minufve excipiunt aut refringunt, diverfas quoque colorum fpecies fortiri.Si per quos pulmonum meatus fpiricus aëris nitrofus in fanguinem tranfit, eumque copiofius imbuit, a me quæras, oftende \& tu milhi quibus porulis alter ille fpiritus nitrofus qui in nive eff,per delicatulorum pocula tranfir \& aftiva vina refrigerat: Quòd fi vitrum

170 Sanguinis motus C.3.

 virrum aut metallum fpiritui huic non fint impervia, quantò faciliùs laxiora pulmonum vafa penetrabit? Denique fi fuliginibus \& ferofo humori exitum non negamus, quidni per cofdem porulos vel fimiles nitrofo huic pabulo introitum in fanguinem concedamus.Quare fanguinem in fuo per pulmones tranfitu aërem haurire, ejufque admixtioni floridum fium colorem omninò debere maximè verifimile eft; poftquam autem in habitu corporis 82 vifcerum parenchymatis aër rurfus a fanguine magnâ ex parte avolavit, atque per poros corporis tranfipiravit, fanguinem venofum illo privarum ob. fcuriorem\& nigrioremillicò apparere, rationi pariter confentaneum eft.

Ex quo conjicere facile eft, quantum fanguini beneficium ab admixto aëre accedat, quantumque interfit, eum falubrem femper \& ferenum haurire, quantumque aberrant illi, qui aëris hoc cum fanguine commercium omninò negant ; abfque quo fieret ut poffer aliquis non minus falubriter verfari in prodore carceris quàm inter

Cap.4. or color. 171

 amxe miffima vireta, ubicunque fc. ignis fat commodè ardere poteft, ibi \&z nos x què commodè refpirare.$$
C A P_{0} I V .
$$

De Transfufone Sanguinis ex animali alio in aliud: 240 tempore ơ quâ occafione ab Anthore inventa fit.

QUx hactenus dicta funt de fanguine ea pertinent ad circularem ejus motum, qui intra ßberama unius corporis abfolvitur; Nimirum collatis quafi rationibus accepti atque expenfi, menfuram liquoris \& temporis fpatium, quo fanguis per ventriculos cordis e venis in arterias ejuydem animalis trajicitur ${ }_{2}$ ad calculos revocavimus. Nunc quòd porrò tradituri fumus, De ipfus transfufione ex boc ins aliud

172 Sanguinis Cap.4.

 aliud animal neicio ante triennium proximè elapfum, an cuiquam injecta fit aut perficiendi fpes aut experiendi cogitatio. Nam \& poftquam in publicum propofita res eft tanquam magnos ufus in medicinâ habitura ; plerique tamen operis difficultate abfterriti \& novitate perculfi, aut manus ab experimento abftinebant prorfus, aut fruftra admovebant: Ult tandem yelutiobfoleta Pythagora fabula, \& vanior altera $\mu \varepsilon \tau \varepsilon \mu \psi u \chi \omega \sigma \sigma_{s}$ optari potiùs ab inconfultis quam a fapientibus fperari videretur.Itaque lubet mihi rem totam, ut yefta cft, exponere, fimulque oftendere, \& quâ ratiocinandi ferie, a me primum excogitata arque fufcepta, \& quibus demum mediis \& auxiliis ad effectums perducta fit.

Complures anni funt cum alios axomiz viderim, $\&$ ipfe experiendi causâ, varios liquores opiatos, emeticos, multofque id genus medicinales in vivorum animalium venas injecerim; quoid fiat artificio jam faris notum, nec hujus loci eft dicere quos

$$
\text { Transfufio. } \quad 173
$$

eventus atque exitus fingula experimenta habuerint: Cum verò infuper plures alimentares fuccos fimili modo infuderim, atque cum variis vini, tum cerevifir injectionibus fanguinem diverforum animalium fatis aptè \& amicè congruere vidiffem, animummox fubiit experiri, annon multò magis fanguis diverforum animalium inter fe conveniret $\& x$ fine periculo aut luctâ commifceretur. Et quoniam in cruore extravafato (utcunque fatis precaveri poffet, crebrâ agitatione, ne coaguletur) nativa tamen crafis partiumque textura ut immuteturneceffe eft ; idcirco longe mihi commodius videbatur, animalis vivi \& adhuc fpirantis fariguinem illibatum in aliud tranfmittere ; quod etiam facilius peragi videbatur, quod motum fanguinis per vafa fua tam citatum \& rapidum, ut in momentis aliquot totam ferè fanguinis maffam quâ datâ portâ effluere obfervaffem; Quare fpem hinc animo concipiens ad experimentum ejus tentandum animum \& manus adhibui.

174 Sanguinis Cap. 4.

Er primùm fiftulis hinc inde adaptatis a venâ jugulari hujus, in jugularem alterius tranfmittere conatus fum; fed cum propter languidum fanguinis venofi motum, cum in fiftulâ concrefcere ftatim \& fibi ipfi viam obftruere viderem, mox aliam viam tentare cxpi \& prxeunte quafí ipsâ naturâ ftatui tandem ex arteriâ unius in venam alterius fanguinem tranfvehere, novoque hoc artificio ipfius circulationem quafi ultra prafinitos limites extendere.

Quocirca cum ex voto omnia expectationi refponderent, tandem 0×0 nii fub finem Februarii, anni $16 G 5$. prefentibus Dotilf. viris Doctore Iobanne vTallis Mathematices Profeffore Savilliano, Domino Thomâ Millington, Medicina Doctore. Aliifque ejufdem Academix Medicis experimentum hoc novum jucundo fane ipectaculo atque optimis aufipicis exhibui.

Nimirum comparatis canibus, cx terifque qux ex ufiu effe videbantur, ex corum uno mediocris magnitudinis, apertâ

Cap.4. Transfű̃o 175

 apertâ venâ jugulari, fanguinem coufque detraxi, donec ejulatu $\&$ fummâ contentione vires jam fatifcere 2 \{pafmos imminere fatis conftaret: Deinde ut tanto hujus difpendio alterius fanguine fubvenirem, e cervicali arteriâ moloffi majoris ad latus ipfius alligati atque compofiti fanguinem coufque immifi, ufque dum ab irruentis ejus copiâ fefe impleri nimis atque opprimi inquietudine fuâ rurfus fateretur: Quocirca arteriâ immittente iterum ligatâ, e cane recipiente rurfus fanguinem detraximus, quod alternis vicibus toties repetitum eft, donec in duobus majoribus moloflis, (quorum utriufque fanguinemminor canis exceperat) nec fanguis amplius nec vita fupereffer: Interea utminorifte, licèt tantum fanguinis per vices ipfi detraatum fit inmiffumque, quantum opinor totius corporis pondus æquarer, jugulari tamen confutà, \& vinculis, quibus detinebatur, folutis, a mensâ protinùs defiliit, \& quafi injuriarum oblitus mox domino fuo adblandiri, \& quò a fanguine fe mundaret, in gramine
176 Sanguinis Cap.4.

 mine fefe volutare, non alitèr omnind, neque majore incommodi aut offenfx indicio, quàm fii in profluentem folummodò conjetus fuiffet.Horum fama cum mox Londinum pervolaret, acceptà Epiftola a Clarijfimo Boylao impenfé rogatus fum, ut totius experimenti methodum Societati Regice Impertirem, quod non ita multò poft a me preffitum, in Philofophicis ejufdem Societatis Tranfactionibus Decembre infequente anno 1666. publici juris factum eft. Et tum rumor cjus ad exteras gentes \& Galliam pervagatus eft, ubi mox rei novitate allceti diligentiùs illam profequi, \& aliis fubinde experimentis augere, illuftrare, quodque ego folum in brutis perfeceram, ad hominis ufum accommodare cxperunt ; uti in fcriptis illorum Seq. CNartio, anni 1667. tunc primùm editis apparet: Atque hxc latis bene $\&$ ad gentis iftius laudem quòd philofophiam \& medicinam quoquo modo ornare vel adaugere fatagunt. Verùm cum per hominum ora jam ubique volitet hace nuper in-

Cap.4. Transfulio. 177 venta fanguinis transfufio, \& Dionyfitus quidam Philofophix \& Mathematices Priofeffor, in Epiftolâ nuper editâ celebertimi hujus experimenti inventionem mihi præripere \& fibi arrogare conerur: Uli quo jure, quâve injuriî id fecerit, lectori appareat, licear Clarifimi Boylai ad me literas \& meum ad eas refponfum hic loci infe= rere:

L ONDINI, Junii 26.

$$
\pm 666 .
$$

ADeram (wir Clarifime) proximoz die Mercurit, infolenni Societatio Regia convertu, in Collegio GreThamenfi habito, ubi cum a D. $D^{\text {re. }}$: Wallis exaudiveram, difficillimum illuad experimentum de fanguine ex Canum aítero in alterum tranfmittendo te tandem (fe prafente) felicitèr abfolvife: Rem planè dignam judicavi que celeberrimo ifficatui innotefceret. Esdeóquc author eram ut illi, a Reverendo viro, rei prous geftafuerat marrationem exigerent: Cujus水

178 Sanguinis Cap. 4.

ille eam relddidit rationems que apud nos exiftimationem fama tua non parum commendiret. Verium de tam infolito of injperato conamine varia particulatim intcriogatus, expedire potius cenfuit, ut th de fingulis foripto refponderes, quàm ille vivâ voce. 2uapropter fo ego coram indicabam, te mini dudum pollicirum effe, rem illam (fiquando votis refponderst) te mibi e_{-} narraturum: Quod on te prafiturum $^{\text {on }}$ in me-fufcepi; idque co pleniùs cum cetum bunc tum celebrem de ejufdem fucceffu accuratius enarrando folicitum intelligeres. Hoc itaque ut jam digrari velis obnixe rogo, totamque bujus negotii peracfi methodum ordine exponere, qua tamproßerè fucceßit. Quod eo prifiùs argeo, quod ingeniofi ado modum viri aliguot of Satis Criticz. nec creditio numsum, rem arduam judrcaverint, of audacter dictum, cum ego ante aliguot menfes obiter indicaveram, a Societate Regiâ ad id rogatus, quid tu antchac jams tum Oxonix tentaveras ; of quanquam tum temporis, propter infirumentorum apparatam non fatis ido.
neums

Cap.4. Transfufio. 179

 neum, non per omnia res ex voto fuccefferat ; Non defperaffe tamen me, quin illud postmodrm abfoluturus effes. LTvocor ego jamiboc momento, we non vacet mibi veniam deprecari quòd hec tibi fa. cefferim negotii. Quod tamcn co minus invitus feci, quorsiam tuo nor ceffurum incommodo judicavi fo bâc occafione tam aujbicatá celcberrimus bic catus te cog. noverit. Inter quos complures funt qui te or debitè aftimant or amicè colunt: or quidem pre cateris,
Tui amantißimus

Rob. Boyle.

Amico plurimum honorando
D. Richardo Lozper, Mediciniz Dodtori, tradantur,

Oxonid.
N_{2} Oxomiz,

180 Sanguirtis Cap. 4.

OXONII, fulii 6.

 1666.ACcepi litcras tuas, Honoratißime vir, eo prout a me expctes, totam transfufionis methodum eodem, quo ippe ordine perfeci, tibi breviter exponam; Itaque canis aut cujufcunque onimalis Sanguinem lubct in aliud feu ejufdem feu diverf generis transfundere, promio attollatus Arteria Cervicalis abtera, eademque a nervn octavi paris feparata ferèad digiti longitudinem denudetur: Dezzede pars ejufdem Juperior cerebrum verfus vinculo firingatur firmo arctoque utpote quod laxare iterum aut folvere per totum operationis proce/fum non opus eft. Wox inferius quà cor re-乃icit, eidcm vafa ad diftantiam femidigiti a predicto vinculo altera colligatio aptetur nodo ita folubili, ut pro datâ occafone, vinculum adáucas cum velis aut remittas. Lignturis ad bunc modum ex utrâque parte difpofitis \& Batio intermedio duobus filis fub arteriâ trajectis fsalpello ip \sqrt{a} aperiatur \&o calamus inci-
fura

Cap.4. Transfufo. 181

 fure cor verfus inferatur, cujus exterius foramen ligneo bacillo obturandum eft: Arteria autcm, quì calamo inclufof fuperjacet filis iffis arctius circumductis firmiter vinciatur.In altero animali quod prioris fanguinem admittere oportet, dcnudanda eft Venx Jugulatis portiuncula femidigiti longa, cujus utrique extremo adbibenda ligatura nodis utrinque ita connexis, ut ad-libitum laxare po Fis aut confiringere; quorum inferfitio bina quoque fila fubter venam ducenda funt, exinde factâ incifone, foramini duo Calami Inferendi, quorum alter truncum vene defcendentem 乃pectans cruorem ex alio cane infuum excipiat atque ad cor deferat; alter furfum verfuscerebrum intrufus pro. prium bujusce Animalis fanguinem in fcutellas effundat: Vitrunque autem, non nifi ex occafione aperiendum, ligneo interim epifomio obturare oportet, \& flizs denique, ut fupra, venam circumbligare.

2uo facto candem ipf canes in latus inclinati juxta fè invtcem quàms commode ficri poteft ita deligentur, ut calar morum unum alterexcipiat: Verum quia

$$
N_{3} \quad \text { absortis }
$$

182 Sanouinis Cap. 4.

 obtortis collis tana prope admoveri non poßint, idlco preter extrenios duos calamos, aliquot intermediis opus eff, quibus ob copulentur rlli \& $\begin{gathered}\text { anguis tranf vehatur. }\end{gathered}$Jamque rebus ad banc rationem infrructis atque apparatis, jann primùm aperiastur duo calami, nempe in hoc Animali is quii in venam ipsius Jugularem defeendit; in altero qui prodit ex Arteriâ ejus Cervicali; inter quos pofquiam alii, quot ufus erit, interjectif funt atque invicem craptati, Ji in utroque laxentur. Nodi, quos pro arbitrio Solubiles efe sußimus, fanguis illico per calamos, non alitèr quam per continuatam arteriams factà veluti ©Anafomofs, impetuofius trangilit: 2uamprimum igitur Animalis recipientis collum laqueo frinxerris, wt fieri folet in Phebotomia, aut altem in oppofitu cervicis latere venam digito comprefferis, exempto protinus obturacula aperiatur Calamus Jugularis fuperior, nimirum ut, Janguine alieno per Inferiorem irruente, proprius interime ex isito in patellas effluat (partitis tamaen hoo vicibus atquc interpolation babitâ femper

Cap.4. Transfuto. 183

 dem alter canis inter ejulatus, languores, of Pafmos pofiremò animam curis vitali fucco effuderit.Peractà bâc Tragadiâ, e Iuzulari fuperfitis Animalis eximatur uterque calamus, nodifque, qui prius erant folubiles, jams firmius obnexis difcindatur vera, id quod fieri poteft nullo ferè Canis incommodo, eo quod, Iugularium circa laryngeriz pre-
 ficiat Sanguini e capite deferendo. Difcifo vale confuatur cutis, laxentur vincula, 心permittatur cani profilive è mensà: Enimverò ille tanquam fufcitatus e fomno, conculfo paululim corpore, vivus valenfque abit alterius fanguine alacrior forte ev vcgetior quaim fuo.

Inicumb hoc infuper monendus es, Prefantijime vir, fiquidem calami non ites firictè vafis alligari aut fibi invicem adaptari poffent, quin ex animalium contentione Laxari atque folvi denuo or appe contingat ; ideò confultius duxi in pofterum fiffulis argentcis in hoc conftructis orminò uti: Que ne a vafis, quibus ikferuntur, rurfiss avelli pofint, ideo ins altero extremo, circulari aliquo annulo N_{4} eminenti,

184 Sanguinis Cap. 4. cminenti, ¿~ quäfecuriùs vafa defuper Aringantur, eo duplici firmentur, qualem Tab. 7. fig. I. exhibet. Et quo minore Transfufionis incommodo, five vaforum pericullo aut impedimento, prafertim ubi animalia variè \int e jačant \& contorquent, res peragatur, uniende funt per duas minores fifulas inferendas Arteria Cervicali ex equo vel bove exempte, que omnes ita conjurctie fanguinem ab immittent ex Illà, ad recipientem ab hâcparte fìtu lam convebazt: Cuyus Artcric intermedie atque Jubfitutute hoc habemus amplius beneficium, quòd animalibus variè licet renitentibus obedat, tum quod fanguisem in illa contentum, f fortè flagnare contigerit, pro libitus propellere ulterius ¿心urgere, velpro re data proy us Jupprimere poteris. Hec frripfo quo fidem vefiram illuftrifizme Societati pro me datann libcrarems atque amplius ut innotef/Gat nullo fudio ant offrio tibi unquam defuturum

Tui obfervantijimum

Honoratiflimo D. D. - 'Roberro Boyle, tradantur Londini.

Richardum Lower.
Hxc

Cap.4. Transfufio. 185

Hxc igitur non eo in hunc locum tranftulimus, ut transfufioni ipfi, jam fatis note lucem fanerentur, fed ut lectori de Inventionis tempore atque Authore melius conftaret, omnis enim ad experimentum illud apparatus atque in illo praftando operatio in fequente tabula tam clare exhibetur, ut alioqui fupervacuum fuerit de eâ quicquam amplius memorare. Tab. 7. fig.r. $\ln q u a ̂$
> a Fistula argentea.
> b Pars ejus, que vena vel arteria in ferendaesit, © curculari annuloduplici ঔ eminenti donatur quo Securior defuper ligitura fat.

Fig. 2. Exhiber fiftulam argenteampro fanguine in brachium humanum convehendo formatam. In qua
aa Fijuluargentea.
b Pars ejus minor que vena bracbii injerenda.
c Pars ejus major ubi fanguinem excipic.
dd Due ejus folia utrinque perforata

186 Sanguinis Cap.4.

 pro trajiciendo filo quo bractea brachio alligetur.e Sinus in medio inter utrumque foli, wo excavatuspro ffyulà immittente commodius excipiendî, qui vervam Jubjectumadeè comprimit, ut nibil interim fanguinis ex illa extillare aut erumpere popfet, arque fatis aptè comparari potelt fovea is medio labri fuperioris humani.
Fig. 3. Exhibet fiftulas arterix emitrenti $\&<$ venx recipienti adaptandas ante fanguinem transfundendum. In qua,
a Arteria cervicalis emittens.
b Eadem arteria nodo iterum Solubili arctè ligata.
c Fijfull pro fanguine convehendo arzeric immifa.
d Locus ubi arteria fuper ffitulam inster anaulos arciè ligatur.
c Eifula pro fanguine excipiendo कर in venam jugularem tranfmittendo.
f. Vena jusularis.
g Locrus ubi vena ad fifulam arctê alligatur.
h. Venaligata. nodo iterium Solubili.

Fig

Cap.4. Transfufio. 187

Fig.4. Exhibet arteriam cervicalem ex equo vel bove exemptam \& fiftulx argentex utrınque adaptatam. In qua
a Arteria cervicalis.
b b Fijfula utrinque arteris adaptara.
Fig. 5. Exhibet totum fimul apparatum fanguinis ab uno animali in aliud transfundendi. In qua
a Vena jugularis ad cor Animalis in quod Sanguis sranfmittendus eft.
b Fiftula argentea in venam jugularem immiffu.
c Vena artà ligaza fuper fofulam.
d Vena ligata nodo facile Solubili ultra fifulam.
cee Fiffula \&o cervicalis arteria intermedia qua fanguinnem a fofutá immiftente in recipientems convebunt.
f Fiffula argentea ab arteriá emittense Sanguinem excipiens.
g Arteria alterists animalis Sanguinem emitrens.
h Locus ubi arterin ad fftulam inclufams ađè alligatur.
i. Losus ubi eadems ultra fftulam ligatur noid prooccafione it erum folxbili.

Fig:

188 Sanouinis Cap.4.

Fig. 6. Exhibet eundem apparatum pro transfundendo fangune a bruto in hominem, cujus ufus ex priore fatis intelligr poteft.

Cùm igtur exeunte Februario, anns 166. Transfufio a me primo perfeza fiverit; atque Clariff. Boylai literx ad me datx fexto Iunii Sequentis; \&a proximo Decembre Refponfum noftrum Philofophicis Tranjactionibus, qux jam tum typis mandabantur, infertum: Dionyfii autem nulla fuper ea re mentio nifi integro poft anno facta fuerit, \& preterea ipfe fateatur (utcunque jam ante decennium, ut ait, de ea aliquid animo conceperat; effe tamen transtufionem poffibilem \& quo ea modo fieri polfet ex libellis philofophicis primùm intellexiffe ; Cui demùm tribuenda fithujufce experimenti inventio aliis judicandum relinquimus.

Sed cum quorundam hominum ea indoles atque animus fit ut nihill placeat, quòd ipfi non invenerint, nihil bene\& feliciter excogitatumfit, cujus fefe

Cap.4. Transfusio. 189

 fele Authores effe non venditent, non crit mihiadmodum moleftum, utique nullatenùs conicio vel cogitatide ea re cujufpiam a quopiam alio, atque infuper de ea a me perfecta Clarifimorum virorum teftimoniis abunde ornato : Nullus interim dubito quin magno generis humani commodo inventum illud, cujus cujus fit, celebrabitur fi confultà \& prudenti manu peragatur.Quippe non eft quòd cogitemus fanguni humano illum cxterorum animalium minùs quàm inter fe mutuờ congruere, quod tum nupera Gallorum experimenta abundè confirmant, \& nos eciam non ita pridem experti fumus in quodam (A. C. amabili quadam infania detento, cujus brachio diverfis temporibus fanguinis ovini aliquor uncias in conventu Regie Societatisis immitti curavimus, atque id abfque omni ejus incommodo: Verùmamplius ut nos hoc in eo cum aliquo ctiam ipfrius fructu experiremur, ftatueramus hoc idem ad mentem illi faniorem procurandam aliquoties repetere,

190 Sanguintis Cap. 4.

 repetere, nifi genio ille magis quàm faluti fux confulens fpes noftras omninờ elufiffet.Verùm enim verc̀ cumn ex xquo non omnibus competat alienum fanguinem admittere, neque ullum fit tam utile remedium cui temeraria atque importuna adminiftratio infamiam non facile intulerit, operx pretium fore exittimo fi paucis faltem \& breviter innuam, inquibus corporibus \& quo potiffimum valetudinis ftatu transfufio tentanda fir.
Quorum igitur fanguis valde purtidus druque corruptus eft, aut extraneo \& venenato fermento penítiffimè imbutus, tum quibus vifcera inquinata \& labefactata funt, prout in feorbuto, lue venerea, lepra, veneno, aut morbo aliquo diuturno \& putrido infectis paffim accidit, non eft quòd beneficiiim aliquod aut juvamen cx transfufione expectent.

Nimirum impurus fangus repetito per vifcera tranfitu vitia atque inquinamenta fua iis affigit, fermenta corum cortumpit, 8 zandempropria qualitate

Cap.4. Transfufio. 191

 ac indole ita imbuit, ut novus aliunde e quocunque licèt fano animali fubftitutus, dum per ealdem partes continuo circuletur, contracta labe in candem diathefin citò degencrabir, non aliterquàm vinum a mucido vale odorem \& vitium mox contrahit.Sincerum niff vas quodourgue insfundis actefcit.
Verùm ecorporibus benè canfticuris fi forte importuna venz fectione, illato vulnere aut quacunque demùm hrmorrhagia, fanguis ea copia detractus aut deperditus fit ut fubfidium aliunde prafentancum requirat; nullus dubito quin brutorum fanguis in amiffilocum fecurc̀ poffit \& cum fructu fubftitui. Quinetiam in arthriticis \& maniacis quorum corpora robufta, firma vifcera, \& cerebri crafis nondum vitiata, quin \&z fanguis nulla putredinis labe infectus eft, fortaffis non minus beneficium ex recentis fanguinis infufione quàm veteris detractione fperandum eft.

[^5]192 Sanguinis, \&c.Cap. 4. berrimi hujus experimenti ufus confirmetur, atque utilitas innotefcat ; mihi profecto res vifa eft nor indigna qux medicorum omnium curx \& ubicunque experiundi occafio fefe obtulerit, univerfo orbi commendetur.

Interim hoc faltem Gentis noftre feu foclicitati, feu eciam laudi tribuacur, quòd uti Harveius fanguinem intra propria vafa Circulantem corpori fuo vitam preftare primò doćuerit: Ita \& eum extracorporis fui ambitum ad alterius falutem transferri poffe anobis primò deteCtum eft.

Car.

Сар. 5.

CAP. V.

De Chylo, cjufque in Sanguinem tras. fitu, ơ tranfmutatione.

QUâ ratione, in cafibus quibufdam extraordinariis \& magnis hæmorrhagiis, fanguis immediatè fubminiftrari poffit in capite fuperiore differuimus. Jam porrò confiderandum reftat, quomodo neceffaria ejus difpendia, atque (ue ita dicam) quotidianæ expenfæ inftaurantur ; quod aliunde fieri non poteft quam ex Chyli in illum influxu. Chylus autem cum ex ingeftis alimentis in ventriculo, fermenti ipfius ope, conficiatur, unde illud continud fuppeditetur paucis prehbabimus, prius quàm de Chyli in Sanguinem tranfituatque tranfmutatione fufiûs differemus.

A veteribusplerifque, \&z quibufdams etiam Neotericis, apud quos facrain omnibus veterum eft authoritas, paffirm ftatuitur per vas breve commercium quoddam dari inter lienem \&

$$
0 \text { ven. }
$$

194 Cbyli infanguinem C.5.

ventriculum, atque ab illo vifcere ventriculum menftruum acidum mutuari quod facultatem ejus concoatricem conftituat. Cui opinioni licet circulatio fanguinis fatis apertè reclamet, cum tamen ex ipsâ fabricâ \& conformatione vaforum qua lieni cum ventriculo communia funt, magis elucefcet, \& quo nemo ignarus hâc in re amplius moleftus fit, corum hic defcriptionem plenè abfolvam.

Vafa itaque ad lienem \& ventriculum prexer nervos \& lymphæductus, nulla nifi venx \& arterix pertingunt, \& primò quidem quòd arteriam caliacam fpectat, illa ex aortà paulò fupra arteriam mefentericam exoritur, unico rrunco, qui mox dividitur in plures ramos, quorum.

Primus hepati pancreati\& inteftino duodeno totus impenditur ;

Secundus ubique per totam ventriculi fuperiorem regionem diffeminatur, atque idcò arteria epigaftrica appellatur.

Tertius verò arterix celiacx ramus qui \& omnium maximus eft, in duas propagines

tranftus © tran mutatio. 195

 propagines dividitur, quarum Prior verfus finiftram lienis partern procedit, fed ubi lieni appropinquat, diffifa quafi in bivium, furculum unum in ventriculifundum exporrigit, alium in lienem rèflectit: Secunda verò ramì hujus propago paulo ulierius provecta prope alteram lienis partem fimul in quatuor furculos dividitur, quorum duo in lienem reliqui in ventriculums hùc illùc quaquaversùm explicantur.Si autem alterutri horum ramo majori atramentum vel lac e fyphone iniiciatur, clarè \& perfpicuè videbirur, poftquam liquor ad commune iftud bivium vel quadrivium pervenerit, in lienem \& ventriculum fimul \& femel deferri ; Adeò ut fí circulatio fanguinis id ipfium non fuaderet, clare tamen patear nihil per has arterias a liene in ventriculum, aut vice versầ deferri poffe, cum fanguis aliunde fimul in utrumque projiciatur.
Venas antem fplenicas hoc non poffe praftare circulatio fanguinis multo magis probat, verum ut hoc quo. que clarius adhuc ex ipforum confor
O_{2} ma:io

196 Chyli in fanguinem C.5.

 matione appareat: Venas lienares, earumque divaricationes, qua liquorem fuum cum venis a ventriculo redeuntibus communicant, breviter explicabimus.Uti igitur omnes atterix qua fanguinem in hepar, pancreas, duodenum, ventriculum totum, lienem 8 c omentum deferunt unico trunco ex aortâ oriuntur ; ita pariter venx omnes qux ab omnibus iftis partibus proveniunt \& languinem ab illis reducunt, in urrum truncum coeuntes in venam portam terminantur.

Venx itaque illx qux inter ventriculum \& lienem brevibus furculis fibi invicemn ciro occurrunt, \& ideò vas breve appellantur, nihil aliud funt, quàm rami venarum a ventriculi fundo defcendentes, quibus in medio ferè fpatio, alii a liene provenientes obvii funt $\&$ melioris conductûs gratià fimul juncti in unum truncum cocunt, qui fanguinem ab utroque redeuntem \& jam commixtum verfus portam convehit; adeò ut fanguis aventriculo reductus, alteri a liene obviam
factus

traņitus \& tranfmutatio. 197

 factus $\&$ in unum truncum exceptus, fit quafi duo rivuli minores in unum fluvium confluentes \& verfus communem utrinque Oceani gremium fimul properantes. Eodem modo fit in aliis venis qux inter dextram five anticam lienis partem, \&s ventriculi fundum dextrum commercium quoddam facere videntur : Nimirùm dux venx utrinque prodeuntes in medio inter utrumque fatio quadi plate x plures in communem aream excurrentes, \& poftea in unicum truncum coalefcentes in venamportam terminantur.Quód autem nihil per vas breve five venas iftas a liene in ventriculum deponitur, prxter circulationem fangui, nis, valvularum etiam ftructura fatis probat; Quippcinifto venarum a liene \& vencriculo provenientium congreffu valvulx adfunt, qux refluxum fanguinis in ventriculum aut lienem utrinque impediunt, nam fit truncus Rami fplenici infra congreffum iftum ligetur, \& fanguinem a venis fplenicis in venas hypogaftricas urgere tentaveris, ftatim venx citra valvulas inO_{3} tumefcent ${ }_{2}$

198 Chyli in fanguinem C.4.

 rumefcent, \& difrumpentur potius, quàm aliquid fanguinis tranfmittent, prout cuilibet promptum \& facilè crit in animali majore experiri, in quo vafa hece ampliora exiftunt.Quin obfervare eft canes,quibus lien exfectus eft, nihilo minus voraces effe atque ciborum avidos, fed affumpta qualibet x què citò conficere ac fí vifcere illo mutilati non effent.

Conftar itaque lienem nihil ad yentriculum immediatè transferre fed aliunde atque ex ipfo fanguine petendume eft fermentam hoc quod ingefta omnia in cremorem lacteum diffolvit. Cujus quoque id non leve eft argumentum quòd melancholiâ hypochondriacâ affecti, humore falino in ventriculum depofito, magnâ boulimiâ fæpifflimè tentantur, $\& x$ quamdiu appetitus iftedurat, ab omni dolore corporis immunes funt ; humore verò ifto acri $\&$ ferino, mataftafi quafi factâ, in alias corporis partes depofito cruciatus \& fpafmi cientur, interca etiam ut ventriculi appetitus omnis \& digeftio propter defectum ejus penitùs flac-

tranfetus \& tranfmutatio. 199

flaccefcat; quod hypochondriacis ferè omnibus folenne eft, atque malx fanguinis diatheff, quàm licnis vitio proximè imputari debet.

Cùm autem ventriculus omni fibrarum genere inftructus fit, uti cibum demiflum primò undique complicat \& blandè amplectitur, ita pofquam pars ejus aliqua diffoluta \& in mollem materiam disjunctis ab invicem particulis redacta fuerit, continuatâ fibrarum consractione in inteftina propellit, ubi a yenis lacteis paffim per inteftina difpofitis abforbetur.

Et quoniam vafa lactea angufta admodum \& perexiguis orifciis predita funt, ut puriorem tancùm \& defrcatiorem maffr fermentatx partem ex inteftinis excipiant, ideò tantus inteftinorum ambitus factus eft, ut eo plura hujufmodi vafa admittant; quo fit ut vaforum parvitas ab ipforum numero compenferur s quare cum vala lactea in fuperioribus inteftinis fufficienti Chyli copix affumendx tumnumero tum meatu omnino impares fint, ideo inteftina eo ingenio conflituta

200 Chyli in fanguinem C.5.

 funt, ut continuo fibrarum motu a pyloro ufque ad inteftinum rectum fucceffivè propagato, lefe perpetuâ xice contrahant, $\&$ ita chylum deorsùm detrudant, quo vaforum omnium orificiis fiftatur. Dum verò eorum ora praterlabitur ifte fuccus, utiles \& alimentofx partes ab excrementis feparantur, atque tinctura folum defrecatior \& purior in venas lacteas tranfit, craffiore \& fxeculentiore parte, velut capite mortuo in inteftinum rectum, demifsâ. Quo autem modo fecretio hec perficitur non aliunde datur inteligere, quàmquod diverfi pori in interiore inteftinorum tunicâ ita difpofiti \$2 configurati funt ut cremorem folum lacteum admittant ; craffiores verò partes, cum nullam habeant fimilitudinem aut proportionem cum inteftinorum poris, per quos in lacteas tranfitusfit, ideo illibatx pretereunt \& a motu inteftinorum deorfum ufque depelluntur; fiautem venx lactex inlcavitatem inteftinorum apertis ofculis \& immediatè hiarent, non folum frculentior $\& x$ impurior parsmaffe in inte-ftinis

tranfitus do tran Fmutatio. 201

ftinis contentz, fed \& flatus \& halitus feridi \& ftercoracei perinde in fanguinem tranfirent, eumque peffimè inquinarent.

Verùm ut hujufce rei experimentum facerem, in animali cibis prius optime fatiato inteftinum jejunum, vulgò ita dietum, ubi in ilia tranfit, arctè ligavi atque folle per pylorum immiffo aerem valide immifi, cumque inteftinum illud fatis diftentum fuerit, pylorum pariter fortiter ftrinxi, \& dein poftea inteftinum aëre ufque adeò repletum \& tumefactum manibus compreffi, \& expectaviilicò chylum in venis lacteis ftatim ab infequente aëre verfus commune receptaculum urgeri, quòd neutiquam tamen fucceffit, adeò ut certum fit venas lacteas in inteftina rectè non hiare, neque firitum ullum autflatum in illas admitti.

Etcùm prxpeditus aëriaditus in venas lacteas conftaret, experiri fubiit in alio animali fimiliter pafto,annon facilior liquori cuilibet tenui ingreffus pateret; ligatâ itaque eâdem inteftini parte per pylorum fipirtum vini atramento

202 Chyli in fanguinem C. 5.

 mento tinctum infudi,eoque conftricto inteftinum atra hâc tincturâả tumidum leniter primò, deni arctiùs compreffi furpicione quâdam ductus, tenui faltem \&: fubtili huic liquori zquè ac chylo aditum preberi, fed aliter omnino evenit; neque enim chylus in ve. nis lacteis inteftino proximis colore ifto infici, aut ulteriùs quicquam verfus commune receptaculum impelli videbatur; quare opinarilicet venas lacteas non directè \& immediatè in inteftina hiare, fed obliquè inter corumtunicas ferri antequam in caviates inteftinorum penetrent, non aliter forfan ac ductus communis in duodenum, aut ureteres in veficam terminantur ; quo fit, ut quo fortiùs latera inteftini aut vefice ab intus contentis diftenduntur,eo arctiùs eorum oftia claudi contingat. Quare verifimile etiam videtur chylum non omninò in venas lacteas exprimi, cum hujufmodi inteftinorum contractio \& corrugatio ipfi potius aditum precludat, inquantum ic. lactearum meatus \& canales inter tunicas inteftinorum perreptan-
tranfitus do tranfmutatio. 203

 tes conftringit. Adeò ut motus ifte inteftinorum continuus \& periftalticus, ut vocant, cum folummodo in finem fieri videatur, tum ut chylum in lacteas receptum verfus commune receptaculum urgeat, tum etiam ut maffam chyli e ventriculo demiffam deorsum ufque propellat \& lacteis omnibus abforbendam fiftat; cum autem motus ifte vermicularis \& per vices interpolatus fuerit, probabilc eft tunc temporis tantùm chylum in venas iftas affumi quando pars aliqua inteftini a motu \& corrugatione conquiefcit, \& proinde orificia lactearum laxiora \& patentiora fiunt.Cùm autem chylus per hujufmodi poros \& anguftias ex inteftinis in lacteastranfeat, a ratione alienum non videtur ab humore e pancreate induodenum fecreto pro faciliore tranfitu magis dilui \& attenuari; quippe cùm glandula illa reliquis omnibus adeò affinis fuerit ut ejufdem fubftantix atque texturx videatur, atque humor omnis eglandulis quibufcunque fepa-

204 Chyli in fanguinem C. 5.

 ratus fimilis omninó, \& velut lympha renuis \& pellucidus fit, quidni eif dem ufibus infervire credendum fit. Quocirca uti glandulx circa os $8 x$ fauces confitx lymphain fuam inter mafticandum extillant, quâ cibosperfundant \& emolliant, tum ut faciliùs in ore volutandos, tum ut prompte magis deglutiendos reddant, ita maxime verifinnile mihi videtur magnam illam glandulam eo loci confitam effe, atque ductum iftum in inteftina aperiri, ut lympha inibi fecreta defcendenti chylo mifceatur, quo anguftos latearum canales promptiùs ineat $\&$ magis liberè \& expeditè pertranfeat ; \& fi quidem chylus in vafis lacteis aut ob craffitiem fuam aut liquoris potulenti inopiam (qui pro vehiculo effer) aliquando ftagnare \& concrefcere, \& proinde vafa illa penitus opplere \& infercire aptus fit, prout in cane cujus pancreas obduratum eft femel obfervavi, ideò glandulx in mefenterio parfim quoque conftitutx videntur ut fimilem prxterlabenti chylo lympham affundant, quò tenuior \& dilutior (qua-
traņitus \& tranfmutatio. 2.05

lis femper ultra glandulas mefenterii apparet) continuò evadar. Et licèt in alios pratereaufus lympha hxe infervire poffit, cum tamen tantum periculum fit ue chylus intra minutos 8 capillares iftos ductus fubbiftere \& crafficie fua fibi ipfi viam obftruere, aut longiore morâ concrefcerc poffit, idcò prexcipuè a fummo conditore cautum effe videtur, tum ut lymphâ e Pancreate in inteftina tranfmifsâ perfunderetur, quo facilius in lacteas tranfeat, tum ut in mediâ inter inteftina \& receptaculum viâ, eâdem renuiffimâ lymphâ iterum in glandulis mefenterii feparatâ dilueretur, quo reliquum cursûs fui ftadium verfus commune receptaculum abfolveret.

In quòd receptaculum venx lactex omnes velut toridem fiftulx in commune lactis caftellum fefe exone, rant; \& ne inibi ftagnare \& concrefcere contingat, vafa lymphatica omnia quax ex toto inferio re corpore, - tum 8z vifceribus \& glandulis omnibus in abdomine contentis proveniunt, lympham fuam in receptaculum deponunt,

206 Chyli infanguinem C.5.

 tum ut tenuiffimo liquore fuo illud nitidum femper \& elime confervent, tum ut chylum pro faciliore per ductus thoracicos tranfitu magis diluant: Etne in medio inter receptaculum \& venam fubclaviam itinere quâcunquc de causâ concrefceret, glandulx plurimæ minores ubique circa vifcera pectoris difpofitx lympham fuam in ductus chyliferos diverfis in locis extillant, Deo quafi providente ne vitx noftre fubfidium unicum commeatu libero ullibi careret.Et quandoquidem chylus per vafa thotacica, prafertim in erecto corporis fitu ficut in homine, difficiliùs afcertdit, \& proinde ob motûs tarditatem ad coagulandum proclivior fuerit, ideò inter tendines diaphragmatis, ubi foina alligantur, magnum hoc receptaculum conftituitur, quo fit uc quoties diaphragma in omni infpiratione contrahitur, tendines ifti valdè attracti facculum hunc lacteum, modo chylo turgidus fuerit, plurimum comprimant, \& exagitent, adeóque chylum in illo contentum per ductus chyliferos

tranfitus do tranfmutatio. 207

feros in venam fubclaviam propellant, \& conftante vectigali maffam fanguinis continuò pereuntem æquè certò inftaurent.

Quoniam autem fanguis, vitaque ipfa a continuo recentis chyli influxu dependet, neceffe fuit ut viâ liberâ s_{-}^{-} expeditâ femper in eum tranfeat; quare ductus chyliferi per totum ferè tractum a receptaculo ad venam fubclaviam ufque, nifi prope cordis regionem, duo funt \& velut fcalx latera mutuò inter fe communicant; non alium certè ob finem, quàm ut fí alter obftructus fuerit, chylus per alterum afcendar.

Ne denique ad ipfum limen impingat aut quoquo modo prepediatur, ided oftio plerunque duplici, nomnunquam etiam pluribus (aut ficubi unicum tantum reperiatur, eolaxiore hia$t u)$ in venam fubclaviam fuffunditur; \& ne fanguis praterlabens aperturx ejus incurrat, ipfamque oppleat, ideò valvula ilti quafí operculum obducitur, qux fanguinem a venâ jugulari \& axillari redeuntem rejiciat \& obtento quafe

208 Cbyli in fanguinem C.5.

 quafi velo foramen illud ab irruentis fanguinis affluxu premuniat, prout in Tab.6. Fig. 2. infra explicatâ apparebit.Atque hxc via fola atque unica eft quâ chylus e ventriculo \& inteftinis in ipfum fanguinem $\& \%$ cor infunditur: Verùm quia nonnulli in eodem cum veteribus errore etiamnùm verfantur, venafque mefaraicas chylum ex inteftinis excipere confidentè̀ flatuunt, ipfe ut de hâc recertior fierem, feriam aliquando impendi operam, atque non uno experimento tandem mihi conftitit, torum chyli penum nullâ aliâ viâ quàm per ductus chyliferos, in fanguinem infundi; fi enim curfus ejus pervafa thoracica impediatur, animal qualicunque cibo fatiatum intra paucos dies fame penitus interibit ; quod in duobus canibus diverfo licèt modo expertus fum. Alterius enim thorace dextri lateris incra duas coitas inferiores aperto, digitum immifi \& ungue velut in ferram refecto commune recepraculum tribus horis a paftur valdè turgidum perfregi

tranfitus © traiknutatio. 209

\& laceravi, ut chylo in cavitatem thoracis exitu dato, tranfitus ejus in ductus chyliferos penitùs interciperetur; quo facto \& confuto vulnere animal hoc cibo quantum capere voluit, poftea fatiavi, cum anten intra paucos dies expirarer, \&又 a me flatim diffecaretur, ventriculum atque inteftina valdè repleta, quin \& venas lałteas chylo plenas inveni, nihil autem ejus in toto ductu thoracico alpparuit, verum in eo pectoris latere, in quod commune receptaculum difruptum eft dux libre chyli reperta funt; unde certò conftare arbitror ob prxpeditum chyli per ductus thoracicos tranfitum animal hoc ventriculo licèt cibis referto utcunque tame periiffe.

Quod tamen ut certius redderem, alium canem fimili modo, fed in adverfof feu finiftro latere intra tertiam \& quartam coftam fuperiores perfodi, quà in regione ambo ductus chyliferi, in unum plerunque truincum coeunt, quideinceps ex latere x fophagi infertore ubi mulfulo fubftrato incumbit, verlus venam tubclaviam tub communi

210 Chyliin Janguinem C.5.

 pectoris tunicâ incedit ; immiffo itaque per vulneris orificium digito ductum ifum pariter diffregi, quo difrupto, chylus in cavitatem lavi pectoris exire, ulterius vero penctrare neutiquam potuit ; quare vulncre ut prius curato canem per paucos dies benè paftum detinui, ex quo tempore elanguefcere cxpit, \& paulò poft obiit; Cum aurem thoracem ejus diffecarem, clauftrum illud pectoris, ubi ductusifte difruptus fuit, chylo penitus repletum, \& pulmonem lareri ifti aggletinatum inveni, quo autem certior forem, canalem iftum ufque adeò perruptumefle, ut nihil chyli ulteriùs deferre potucpre, aquam e fyphone in duCtum chyliferum inferius injeci, verùm ultra quam canalis ifte perruptus fucrat, penetrare non potuit, fed in cavitatem pectoris tota cxiliit; claro fatis argunento, chylum per venas mefaraicas non intrare, neque ullam ailam dari viam quâ fanguini mifceatur, cum'animal ex tranfituper vafa thoracica impedito tam sertò intereai. Quin \& hoc denique anre omnia con-firmat,

tranficus er. tranjmutatio. 211

 firmat chylum invenas mefaraicas non influere, quia fi fanguis ab animah ita tractaro polt diem unum aut alterum adimatur, nihil chyli in illo apparebit, licèt paucis anrea horis optime partus fuerit, quod aliter omnino fieri debuit, nifi influxus cjus hoc modo prorsùs in terciperetur.Et profectò mirandum erit, quenquam re ita clare perrattatâ Heparis patrocinum amplius fufcipere, atque ut ipfi ianguificationis munus pofliminiò afferatur, Ludov. Bilfiiexperimentum Pccquetto objicere. Nam \& Bil \bar{j} anum illud fruftra femper tentavi, \&s experimento infuper hoc noftro conficiam, ut Chylus nullâ aliâ viâ nifí per duct: Pecquetrianos fanguini inflillari \&z commifceri in poftcrum credatur.

Quemadmodum enim ductibus iftis difruptis chylus omnis in cavitarem thoracis effluit, ita fi ductus ifte in levo pectoris latere (orificio ubi prius facto) immilfo digito per horam comprimatur, chylo, qua alius in fanguinem cranfrtus non datur, commune receptaculum, quin \& vafa lactea omnia in

$$
P_{2} \quad \text { me- }
$$

212 Cbyli in fanguinem C.5.

 mefenterio, atque infimâ parte ventris ab hâc obftructione adeò turgefcunt \& diftenduntur, ut nunquam clariùs aut perficuè magis oftendi poffint ; fiquidem jucundiffimo fpectaculo conftar, qualis corum fabrica, valvulx, anaftomofes, quam varii prxterea Meandri corum fuerint, quam densà ferie totum inteftinorum ambitum \& fuperficiem perreptant, quam infra receptaculum multipliciordine difpofitx non fecus ac uniones in puellarum monilibus turgefcunt, ut certè quicquidde iis hactenus a quopiam fcriptum aut delineatum fuerit prorfusnihil fit.Quin \& obfervatione prxterea val. dè dignum eft ex obftructo hoc ductu thoracico, chylum in vafa lymphatica tum in pectoreubique \& abdomine difpofía, renitentibus licèt valvulis, adeò mfinuari $\&$ retrò urgeri, ut primo forfan intuitu incautis imponere \& ductus bilfii roriferos adefle fuadeat; licèt revera non aliunde hoc evenit, quam quod fuccus ifte albus proprià vià prepeditus, in vafa illa regurgitat, non aliter forfan quam ab inundante

tranßtus © tranfmutatio. 213

undante mare fumina in alveos fuos repreffa irruenti reftui locum cedunt: Atque ideò uti refluente mari flumina iterum intra ripas fuas fubfidunt, ita remotâ iftâ compreffione \& chyli in fanguinem introitu reftituto totus iterum in ductus thoracicos reforbetur \& in vafis illis lymphaticis nullum fui veftigium poft fe relinquit.

Cujus experimentiadminiftrati modum exhibet $\mathcal{T a b}_{a b-6 \text {.fg-2. In quâ }}$
a a Ductuschylfferi due in unum trunsum in finifro pectoris latcre cocuntes.
b Locus wbi immifo digito truncus ife comprimitur.
cccc Valvule ejus que a regurgitante chylo ex obffruito duttu utrinque infra comprefionem intumefout.
d Truncus upra compreßßioxem propter impeditum chyli tranßitum faccef. cens.
e Venajugularis.
f Venaaxillaris.
g Eademvena ubi vena cave defeen. denti accedit.

$$
P_{3} \quad \text { h ofium }
$$

214 Cbyli in fanguinem C.5.

h oftiwm ductüs chyliferi ubi chylus a comomuni reccptaculo allatus in venam_ Jubclaviam infunditur.
i Vatvula aperture ifi appofita qua fanguinerna vexa jugulari \& axillari redenntems ita transvebitut influenticicylo impedimento non fit.

Cum autem experimentum hoc adeo jucur:dum fuerit, atque tacile ab exerciratâ manu perfici poffit, ejus expediendi modum atque rationem pauló accuratiùs enarrabo.

Rerratto itaque canis, ur iradicam, brachio finiltro, perforetur thorax paulof fupra regionem cordis intra tertiam \& quartam coftam fuperiores, quâ in regione ductus ifte ex latere afophagi inferiore fupra mufculum gulx fubftratum fingulari ferè trunco incedit, dein immiffo digito totus afophagus ad mufculum iftum compeilendus eft, quo fict, ut ductus quoque obturetur; ita tamen infinuari digitus debet, ut ab arteriâ axillari proximè incumbente abftineat, atque ra per horam detincatur (efi artus cakis poft immiflnm

tranfitus dr tranfonutatio. 215

 immiflum digitum paulalum laxentur, magis tranquillè feret) quibus peractis nocaru digniffimum eft, quarndiu compreffione utâ morus chyli intercipitur, nihil ejus in detraato fanguine apparere, modò hujufmodi operatio ftatins a paftu adminiftretur ; intermiifsà autem compreffione intra dimi. dium horz fanguini rurfus detracto lactis crudi magna copia innatabit.Poftquam autem totum chyli tractum ab inteftinis ad venam fubclaviam ulque ad huar modum exhibui, unicum reftat utoftendam, quomodo illi cum fanguine conveniat, \& quot mutationum vices fubeat antequam in nutrimentumpartium faceffere, aut in ipfum fanguinem affimilari aptus fueric. Quare adyertere oportebit chylum perenni influxu fanguini inftillatum, eique fenfin commiffum finul cum illo deferri, \& pro longiore aut breviore ejus in malsâ angguinis fermentatione \&z circuitu plus aut minus excoqui is elaborari.
Si enim dum adhuc recens eft 8 r nondum per plures horas in fanguine P + ex-

216 Chyli in fanguinem C. 4.

 excoctus in mammas \& ubera deponitur, adeò naturam \& priftinamfaciem fuam retiner, ut neque guftu aut colore ab ipfo chylo diftingui poffit, prout in gravidis animalibus fxpe expertus fum; cum enim chylum c communi receptaculo exceptum, $\&$ ipfum fanguini detracto innatantem, \& lac ipfum $a b$ uberibus expreflum inter fe conferrem, nullum omninò difcrimen percipere unquam potui (nifi quod chylus in receptaculo aliquantum falfior) atque ideò dubitandum non eft lac omne in ubera \& mammas ab ipfo fanguine per arterias mammarias deponi ; neque fruftra quxtendi funt alii ductus qui immediatè magis e ventriculo \& inteftinis łacteum hunc fuccum in illas transferrent ; nam cum? 'anguis hujufmodi chyloturgefcat, cumque is continuò fimul cum fanguine in omnes partes corporis propellatur, quidni conjicere liceat ad fingulos ejus appulfus album hunc fuccum iṇ uberûm colatorio feparari \& in vafa excretoria \& tubulos kateos rranfire.Neque

tranfitus \& tranfmutatio. 217

Neque enim chylus fanguinis maffe confufus naturam \& indolem fuam mox adeò exuit ut albedinemfuam ilicò deponat, quin diuturno aliquo fpatio crudus omninò, \& lactifimilis cum illo circulatur, quod quifpiam quotidie experiri poterit, fi enim animali quatuor vel quinque horis, aut longiore temporis intervallo poft largiorem paftum fanguis e quacunque venâ vel arteriâ detrahatur, magna ipfiffimi chyli lastefcentis copia cruori coagulato innatare confpicietur, prout alibiobfervavi. Quin \& hoc ipfum in diverfis hominibus expertus fum, quibus cum poft largum jentaculum aut prandium vena incideretur, vafcula omnia lacte magis quam fanguine repleta videbantur; quod Phœenomenon licèt ab antiquis medicis obfervatum fucritratio tamen ejus eos prorfus latebar.

Uti autent chylus fanguinilicèt commiffus colorem fuum pluribus adhuc horis retinet, ita fi diutiùs cum illo illo circuletur, a diuturnâ illius ctım fanguine coctione, albedine prorfus depofirâ in ferum attenuatur; fi enim

2 I8 Cbyli infanguinem C. 5.

$l_{\text {ongo }}$ poftpaftum intervallo venx $f_{\text {ectio fiat, nulla lactis fpecies fupereft, }}$ fed ferum folummodò cruori coagu${ }^{1}$ ato innatabit. At verò licèt craffiric \& colore multum inter fe differre videantur, hoc tamen chylus ille fanguini fuffufus, tum ferum cruori detracto innatans $\&$ lac ipfum uberibus expreffum commune habent, quod fi lento igni admoveantur, quoufque partes aquofiores exhalaverint, in gelatinam pariter omnia concrefcant.

Quibus verò modis \& quali mutationis gradu chylus in fanguinem affimi. latur $\&$ in nurrimentum partium faceffit, ut melius intelligatur, fciendum eft Spiritum vitalem aliaque in liquore fan. guineo principia activa in chylum jugiter inftillatum agere, eumque minutifGimè fubigere ; quin \& cum chylus fale fulphure \& firititu copiosè turgefcat, quamprimum compages ejus a fermentatione laxatur, particulx ifte active motus libertatem adepte, cum partibus fanguinis qux fimilis $\&$ congeneris naturx fuerint fefe promptè aflociant ; quin $8 \times$ in fanguinc, (uti in vino aliifque ejufmodi
trinfotus of tranfmutatio. 219 cjufmodi liquoribus) accidit, utuni ppiritus dominio potiti fint, particulas omnes craffiores \& freculentiores quibus impinguntur: a malsâ fuâ deturbent\& expediant, quo reliquam liquoris partem defxeatiorem \& puriorem reddant.
Poftquam verò chylus ita perficitur, idoneus omninò fit, tum qui liquori fanguineo reftaurando, tum corpori toti enurriendo fufficiat, cum enim ex diverfis principiis \& partibus confter, atque varix \& diverfimodx indolis \& natura fuerit, ideo pro vario partis cujufque ufu \& indigentiâ, \&̌ juxta ac poris diverfis \& meatibus refpondet \& configuratur, ita varie partibus apponitur ; unde pars ejus maxime volatilis \& fubtilis in cerebro fecernitur \& fpiritibus reficiendisaddicitur,pars verò glatinofior corpori nutriendo apponitur, pars ejus fulphurea calori redintegrando deftinatur ; Dum verò per totum corpus unà cum reliquo fanguine trajicitur, pars cjus ferofa \& falina per renes feparatur \& tranfiriatione infenfibili aut fudore evacuatur, adufta in hepate

220 Cbyli in, (Gc. C.)..

hepate deponitur, reliquaque ejusrecrementa in diversâ corporis emunctoria quafi totidem fecernicula ablcedunt, unde reliqua ejus maffa depuratior ufque $\&$ clarior evadit:

Atque in hoc foro vitx noftre ratio omnis confiftit, tum ut fanguis continuo fuo per corpus univerfum ambitu calorem \& nutrimentum undique circumferat, tum ut recens ufque chylus debitâ copiầ \& menfurâ fanguini inftilletur, qui liquorem ejus indies decrefcenrempari pabulo recreet, \& perenni irrigatione exhilaret.

Elenchus Capirum.

Cap. ${ }^{1 .}$

De Situ \& Structura Cordis.
\triangle D fanguinis naturam do affectus dignof. cendos cordis motus cognitu fummè nece/farius

Pag. 1.
Differentia fitus cordis in diverfos animalibus ejufque ratio
Pericardii defcriptio ov uJus

Vnde

Disde ferim pericardio contentum provenit © cui ufui infervit
Qualisforhmor ibid.
Caula finalis quare pericardium in bomine fepto tranfverjo accre Cit fecus ac in brutis 7
Caufa adbrefonis iflus efficichs

9
Quare conus cortis bumane mulio magis in lavim defleztitur quan ille brutorum ibid.
Cordes bafis priecipue a vafos fuis fuftinetur, σ dependet 10
Oure bafa a corde orgintem sa. piunt, es quce in ipfumterminantur
minantur
Cor a fucco nutritio ab arteriis in fuE/tantiam juam depollto, non intra ventriculos fuos recepto aititur 12
De rajes cordis
Denervis ejus
14
Devario piritusm animalium per nervos in cor influxu pro variâanimalis figurâ, ejuf= que causib
Cordis Jubftantia ommino mufcularis eft
chufculus nudius an corpore fomplicis ventris eft, uti bactenus traditum eft ab eAnatomicies, fed omnes bi. ventres funt

$$
18,19,20
$$ Mujculus

Mufculus Deltoeides excoclus valde compoftus videtur 21
-Mujculi biventres in collo, ex utroque venarum jugularium latere finguli etiam biventres funt; et quare junctis tendinibus in medio conveniunt
Cordis mulculus biventer eft 23
Fibre cordis in tendinem in bafi circa oftia ejus confitum inferuntur.
Cor excoquendum eft ut fibre appareant
Quare finilter cordis pentriculus craßioribus et robuftioribus fibris donatur.
eAuri-

- Auricularum fibre in tendinem cordis inferuntur 33
Qualis proportio intercedit inter ventriculos cordis; quare non eadem inter auriculas?

35

Quare externa cordis fuperficies levis eft, quare interiornon ita 36,39
Quare fcrobiculi atque fifuree majores in Iniltro ventriculocordis
Quale officium praftant papilla \& membrane tricupides in dextro ventriculo \& qualimodoidperficiunt, 41, $(42,43$
Quid preftant carnece columnce Q in
in finiftro ventriculo Go quomodo, \& quare ita ex. trarcliquam ejus fuperficiem protuberant.
Quare carnere columne of fibree in finiftro ventriculo majores papillis carneis 6 fibris in dextro 46
Cui ufui tuberculum intra ve. nam cavam recte ante dextram auriculam corlis inferjit

48
Quare vena cava G pulmonaris recte ante oftia cordis carnere of mufculares funt 50
Quare aorta paulo fupracor incurvatur

51
For.

Foraminis onalis defriptio © ufus 54,55
Cor ommibus anmalibus mufcularis fubftantixe ef $\quad 57$

CAPBII,

De Motu \& Cordis.
NUllum in corde fermen. tum, aut ebullitio jan-
guintis 62,63 Ebullitionem janguinis in corde, ejus yyfoli obeffe, addiaftolen non requiri 64
Cordis motum ioon dependere a fanguins ebullitione probdturexperimentis 66,67 Objectiones refelluntur 68,69

$$
\text { Q } 2 \text { Calor }
$$

Calor fanguinis non a corde 71
Proximâ moius inftrumenta in corde funt ipfous fibrece carnea, nervi, © Pirtus percos influentes
Cordis eadem eft ac reliquorum mufculorum attio 74

- Motus mufculi cujufuis non fit ab in flatione cjus, aut explofone 乃irituum influ. entium

$$
76,77
$$

Modus quo cordis mufculus conftrictior fit \& conus ad bafon affurgit inomilyyfo. le

$$
79,80
$$

Cordis motus totus in fy focle pofitus, diaftole Jolius reftitutionis motuis eft

80
Quare

Quare finifter ventriculas dextrorobuftion er craßior 81 Sanguis nomommino tranferper Septum cordis 83
Qualiviai robore cordis fyfole perficitur $8+$
Cordivisomnis ac vigor a Biritibusper nervos influentibus communicatur 86
eAb corum infuxu impedito cordis motus deficit ibid.
Quot modis et quibus de caulis motus cordis alteratur 88
Quomodo rifus perficitur, et f_{8} nimius (It quomodo circulationem fanguinis impedit 90
Quomodo fingultus cordismo-
Q 3
titi

Mutua neceßitudo inter cor © cerebrum oftenditur 93
Virumque a ventriculo dependet
Quomodo motus cordis a ei ipfo malé affecto lcedatur 97
Quid bydrops cordis ad motum ejus' pervertendum confert 98
cardium accumulatanon eft caufapalpitationis ibid.
Seri iftius defectus quale nocumentum cordi affert 99
Oualia fy:nptomata vermes intra pericardium geniti producunt 101 Quare

Quare arterize craßiore tunici, vence aatem tenui donantior

103
Quid arteriarum obftructio, compre ßio aut marcefcentia inpartibusproducit 104,
(105
Quid compreffio aortee infra cor preefat

107
Quare gonorrberâ fimplici aut fluore uterino diulaborantizm Pina adeo debilitatur 108
Quaratione arteriotomiadolo. res aufert

110
2 uomodo varices producuntur \& $\sqrt{2}$ magni fuerint quale nocumentum cordi afferunt

113
24 2nid

Quidligatio vene cave fupra diaphragma in cane proflitit
Modus venam i!tam ligandi oftenditur
ibid.
2 uid venis jugularibus in cane ligatis fuccedit 118
eAfcites non fit a ruptis lymphaticis vafos ibid.
Quantum fanguinis coagulatio cordis motui officiat expemento demonftratum 119 ,

120
2uid nimia pletbora preftat
121
2uid motum cordis accelerat
Quiddiminuit 123
2 nid

2 uid deprovat
2 nid fupprimit
O uid penitus tollit
Ouida diminuto cordis motre fuccedit

128
2 nomodo polypus cordis ita ditlus generatur 129
Exercitii utilitas oftenditur

$$
130
$$

2 uales effectus in capite producit debilis cordis motus

$$
131
$$

2 uid rapidus fanguinis motus producit in capite
2 uomodo fuxus Janouinis pro diverfo corporis fitu \& figu. râalteratur 133
Circuitus Janguinis in fuperio. oribus
oribus partibus celerior, in inferioribustardior 134 Effectus quos celerior aut tardior circulatio in partibus adfert 135
Quis capitisfous inter dormiendum maxime faluti confert 137
\mathcal{N} Octurnce \mathcal{O} ferce potationes faluti maxime incommode 140
Supinus decubitus quî ratione incommodus $143,147,148$ Catarrbi non funt a cerebro 150
Quo ductu ferum a cerebro in fanguinemderivatur ibid.

> Car.

De Motu \& Colore Sanguinis.

Voties Janguis omnis per corcirculecur 154
©Menfuracirculationis aburine decurfu aftimatur 158 Experimentis preterea confirmatur

159
Purpureus color Sanguinis arteriof non procedit ab ullì ejus in corde accenfione 164
O nod probatur experimentis 165
Ater Janouinis venofi color non procedit abullà ejus extinetione

166
Pur.

Purpureus arteriof janouinis color totus debetur pulmonibus 166
Idem probatur experimentis
167
Color ille purpureus non provenit a comminutione fangninis in pulmonibus fed mixtione ejus cum admiflo acre

168
Sanguis non comminuitur in pulinonibus magis quam in reliquo corpore ibid.
Colorem iftum floridum aeris mixturce deberi probatur experimentis 169
Unde ater Sanguinis venofi color procedit 173
Cap.

CAPIV.

De Transfufione San. guinis.

Vâratiocinandi Serie excogitata, \& quibus medis perfecta Jot Janguinis transfufio 172
Vbi ぶ a quo primim tentatas
fuit
174
Occaffo camdinulgandi 176 Totus apparatus fanguinis transfundendi defcribitur.
In quibus corporibus oo quo valetudinis Jtatu tentanda eft.

Cap.

De Chylo, ejufque ins Sanguinem tranfitu \& tranfmutatione.

Qotidiana fanguinis dif-- pendia a recenti chylo femperinffaurantur 193 \mathcal{N} (ibil per vasbreve a liene in ventriculum deponitur 194
 que lieni cum ventriculo communiafunt ibid.
Fermentum ventriculi ab ipfo
fanguine immediate proce-
dit 198 communiafunt ibid.
Fermentum ventriculi ab ipfo
fanguine immediate proce-
dit 198 communiafunt ibid.
Fermentum ventriculi ab ipfo
fanguine immediate proce-
dit 198 Probatur © Argumento ibid. 2 uare inteftina tanto ambitus con.
conftituta funt
199
Cui ufui potifimum infervit motus illorum periftalticus 200
(1) uomodo fecretiochyli ininte. finisperficitur ibid. CFqua a Pancreate fecreta diluendo cbylo maxime infer. vit 203
2. uare glandule omnes in abdomine er in toto inferiore corpore in receptaculum lympbam fuam deponunt 205
Q uare receptaculum inter tendines diaphragmatis compituitur

206
Ductus chyliferi quare duplices funt

205
Officium

Officium valuulce in venâ fub. claviin appo/ite ubi chylus in fanguinem fuffunditur 207
Chylus omnis per ductais folum Thoracicos in fanguineminfunditur 208
2uod variis experimentis probatur 209,211
Quali mutationis gradu \& modo chylus in fangrinem faceßit 218
Quomodo nutrimento partium infervit 219

+

$T_{a} b-4$.

Fig 1

Fig. 2.

Date Due

[^0]: OXFORD
 PRINTED FOR THESUBSCRIBERS

[^1]: I John Curteyne, no doubt.

[^2]: I The Plague began in the winter $1664-5$, became more serious in spring, and reached its full virulence in summer 1665.

[^3]: 1 The Great Fire of London began on 2 Sept. 1666, and lasted for five days.

[^4]: ${ }^{1}$ Dr. Tenison was Rector of St. Martin-in-the-Fields for eleven years from 8 Oct. 1680. He studied physic for a year or two at Cambridge after taking his B.A. in 1657. (Dict. Nat. Biog.)

 2 Nell Gwynne ($1650-1687$) was mistress to Charles II from 1668. (Dict. Nat. Biog. article Charles II.)

[^5]: Quamobrem ut majore hominum fiducia \& operandi confuetudine celeberrimi

