

Digitized by the Internet Archive in 2016 with funding from Getty Research Institute

ARCHITECTURE,

HISTORICAL, TIEORETICAL, AN゙D PRACTICAL.

FIINTHD HY
SHUTTKWUOLE AND (U, NEH-STEIERT \& UCABR
1.0. 以い

AN ENCYCLOP ÆDIA

OF

A R C

HISTORICAL, THEORETICAL, \& PRACTICAL.

BY
JOSEPH GWIL.T, F.S.A., F.R.S.A.

ULUSTRATED WYTM ABUUT SEFENTEEN MUNDRED ENGR.ITAGS ON WOHD.

New Edition,

REVISED, PORTIONS REWRITTEN, AND WITH ADDITIONS
BI

WYATT PAPWORTH,

FELIOW OF THE ROYAL INSTITUTE OF BRITISII ARCHITECTS.

$$
\begin{aligned}
& \text { LONDON: } \\
& \text { L O N G M A N S, GREEN, } \quad \text { N N D CO. } \\
& \text { AND NELV YORK: } 15 \text { EAS'T } 1 G^{\prime \prime} \text { STREET. } \\
& 1888 .
\end{aligned}
$$

PREFACE

TO
THE FIRST EDITION.

An Encyclopedia of any of the Fine Arts has, from its nature, considerable advantage over one which relates to the sciences generally. In the latter, the continual additions made to the common stock of knowledge frequently effect such a complete revolution in their bases and superstructure, that the established doctrines of centuries may be swept away by the discoveries of a single day. The arts, on the other hand, are founded upon principles unsusceptible of change. Fashion may, indeed - nay, often does-change the prevailing taste of the day, but first principles remain the same; and as, in a cycle, the planets, after a period of wandering in the heavens, return to the places wnich they occupied ages before, so, in the arts, after seasons of extravaganza and bizzareria, a recurrence to sound taste is equally certain.

It is unfortunate for the productions of the arts that the majority of those who are constituted their judges are little qualified for the task, either by education or habits; but on this, as it has been the complaint of every age, it is perhaps useless to dwell. This much may be said, that before any one can with propriety assume the name of architect, he must proceed regularly through some such course as is prescribed in this work. The main object of its author has been to impart to the student all the knowledge indispensable for the exercise of his profession; but should the perusal of this encyclopmdia serve to form, guide, or correct the taste even of the mere amateur, the author will not consider that he has laboured in vain.

An encyclopædia is necessarily a limited arena for the exhibition of an author's power; for although every subject in the department of which it treats must be noticed, none can be discussed so extensively as in a separate work. An attempt to produce a Complete Body of Arclitecture the author believes to be entirely original. In his celebrated work, L'Art de Bâtir, Rondelet has embodied all that relates to the construction of buildings. Durand, too (Legons et Précis d'Architecture), has published some admirable rules on composition and on the graphic portion of the art. Lcbrun (Théorie d'Architecture) has treated on the philosophy of the equilibrium, if it may be
so called, of the orders. The Encyclopédie Méthodique contains, under various heads, some invaluable detached essays, many of which, however, suffer from want of the illustrative plates which were originally projected as an appendage to them. All these, with others in the French language, might, indeed, be formed into a valuable text-book for the architect; but no such attempt has hitherto been made. Neither in Germany nor in Italy has any complete work of the kind appeared. In the English; as in other languages, there are doubtless several valuable treatises on different branches of the art, though not to the same extent as in French. In 1756, Ware (London, folio) published what he called A Complete Body of Architecture. This, though in many respects an useful work, is far behind the wants of the present day. It is confined exclusively to Roman and Italian architecture; but it does not embrace the history even of these branches, nor does it contain a word on the sciences connected with construction. The details, therefore, not being sufficiently carried out, and many essential branches being entirely omitted, the work is not so generally useful as its name would imply. From these authorities, and many others, besides his own resources, the author of this encyclopædia has endeavoured to compress within the limits of one closely-printed volume all the elementary knowledge indispensable to the student and amateur; and he even ventures to indulge the belief that it will be found to contain information which the experienced professor may have overlooked.

Though, in form, the whole work pretends to originality, this pretension is not advanced for the whole of its substance. Not merely all that has long been known, but even the progressive discoveries and improvements of modern times, are usually founded on facts which themselves have little claims to novelty. As a fine art, architecture, though in its applications and changes inexhaustible, is in respect of first principles confined within certain limits; but the analysis of those principles and their relation to certain types have afforded some views of the subject which, it is believed, will be new even to those who have passed their lives in the study of the art.

In those sciences on which the constructive power of the art is based, the author apprehended he would be entitled to more credit by the use of weightier authorities than his own. Accordingly, in the Second Book, he has adopted the algebra of Euler ; and in other parts, the works of writers of established reputation. The use of Rossignol's geometry may indeed be disapproved by rigid mathematicians; but, considering the variety of attainments indispensable to the architectural student, the author was induced to shorten and smooth his path as much as possible, by refraining from burdening his memory with more mathematical knowledge than was absolutely requisite for his particular art. On this account, also, the instruction in algebra is not carried beyond the solution of cubic equations; up to that point it was necessary to prepare the learner for a due comprehension of the succeeding inquiries into the method of equilibrating arches and investigating the pressures of their different parts.

In all matters of importance, in whicl the works of previous writers have been used, the sources have been indicated, so that reference to the originals may be made. Upon the celebrated work of Rondelet above mentioned, on many learned articles in the Encyclopédie Méthodique, and on the works od Durand and other esteemed authors, large contributions have been levied; but these citations, it will be observed, appear for the first time in an English dress. In that part of the work which treats of the doctrine of arches, the chief materials, it will be seen, have been borrowed from Rondelet, whose views the author has adopted in preference to those he himself gave to the world many years ago, in a work which passed through sevcral editions. Again, in the section on shadows, the author has not used his own treatise on Sciography. In the one case, he is not ashamed to confess his inferiority in so important a branch of the architect's studies; and in the other, he trusts that matured experience has enabled him to treat the subject in a form Jikely to be more extensively useful than that of treading in lis former steps.

The sciences of which an architect should be cognisant are enumerated by Vitruvius at some length in the opening chapter of his first book. They are, perhaps, a little too much swelled, though the Roman in some measure qualifies the extent to which he would have them carried. "For," he observes, "in such a variety of matters" (the different arts and sciences) "it cannot be supposed that the same person can arrive at excellence in each." And again : "That architect is sufficiently educated whose general knowledge enables him to give his opinion on any branch when required to do so. Those unto whom nature hath been so bountiful that they are at once geometricians, astronomers, musicians, and skilled in many other arts, go beyond what is required by the architect, and may be properly called mathematicians in the cxtended sense of that word." Pythius, the architcct of the temple of Mincrva at Priene, differed, howcver, from the Augustan architect, inasmuch as he considcred it absolutely requisitc for an architect to have as accurate a knowledge of all the arts and sciences as is rarely acquired even by a profcssor dcvoted exclusively to one.

In a work whose object is to compress within a comparativcly restricted space so vast a body of information as is implied in an account of what is known of historical, theorctical, and practical architccture, it is of the highest importance to preserve a distinct and precise arrangement of the subjects, so that they may be prosented to the reader in consistent order and unity. Without order and method, indecd, the work, though filled with a large and valuable stock of information, would bc but an uscless mass of knowledge. In treating the subjects in detail, the alphabet has not been made to perform the function of an index, except in the glossary of the technical terms, which partly serves at the same time the purpose of a dictionary, and that of an index to the principal subjects noticed in the work. The following is a synop,tical vicw of its contents, cxhibiting its different parts, and the node in which they arise from and are dependent on each other.
[. A List of the Contents was here inserted.]

Perfection is not attainable in human labour, and the errors and defects of this work will, doubtless, in due time be pointed out; but as the subject has occupied the author's mind during a considerable practice, he is inclined to think that these will not be very abundant. He can truly say that he has bestowed upon it all the care and energy in his power; and he alone is responsible for its errors or defects-the only assistance he has to acknowledge being from his son, Mr. John Sebastian Gwilt, by whom the illustrative drawings were executed. No apology is offered for its appearance, inasmuch as the want of such a book has been felt by every architect at the beginning of his career. Not less is wanted a similar work on Civil Engineering, which the author has pleasure in stating is about to be shortly supplied by his friend, Mr. Edward Cresy. [This work has since been published. 7

Without deprecating the anger of the critic, or fearing what nay be urged against his work, the author now leaves it to its fate. His attempt has been for the best, and he says with sincerity,

> " Si quid novisti rectius istis Candidus imperti ; si non his utere mecum."
J. (t.

September 30, 1842.

ADVERTISEMENT.

GWILT'S ENCYCLOP EDIA, first published in 1842, has now passed through eight impressions, those of 1867 and 1876 having. received extensive revision and many important additions at the hands of Mr. Wyatt Papworth. In this, the ninth impression, besides many requisite amendments and additions throughout the pages, the chapters entitled Materials used in Buildina and Use of Materials, which constitute a main portion of the work, have been largely revised, parts rewritten and added to in important particulars, especially in regard to the details of Fireproof and Sanitary construction, in order to record the results of later theories and the numerous inventions introduced since the previous revision. The scction Specifications has been recompiled and enlarged. Several sections of the chapter on Public and Private Buildings have been withdrawn, and some re-inserted in other partions of the work: a few added revised. The Lives of eminent Architects have been brought down to date; as are also the Publications, which have been partly re-arranged in additional classes; while the Glossary of Terms has been amended where desirablc. The Index has been carefully revised to include all new matter.

CONTENTS.

BOOK I.

HISTORY OF ARCHITECTURE.

PHAGB

CHAPTER I.

ORIGIN OF ARCHITECTURE.
page
Sect. 1. Wants of Man, and first Buildings

1
2. Origin and Progress of

Building 2
3. Different Sorts of Dwellings arising from different Occupations3

CHAPTER II.

architiecture of various countries.
Sect. 1. Druidical and Celtic . . 4
2. Pelasgic or Cyclopean . . 10
3. Babylonian 15
4. Persepolitan and Persian . 19
5. Jewish and Phomician . 24
6. Indian 25
7. Egyptian 30
8. Chinese 43
9. Mexican 47
10. Arabian, Moresque, or Sara-
cenic 50
11. Grecian 57
12. Etruscan 74
13. Roman 75
14. Byzantine and Romanesque 107
15. (a) Origin of the Pointed Arch

119
(b) Modiæval Artificers . 125

Sect. 16. Italian 131
17. French 152
18. German 157
19. Spanish and Portuguese . 158
20. Russian 162

CHAPTER III.

architecture of britain.
Sect. 1. Early Houses and Architecture of the Britons . . $16 t$
2. Norman 169
3. Early English . . . 175
4. Ornamented English . . 178
5. Florid English or Tudor . 183
6. Elizabethan . . . 197
7. James I. to Anne . . 204
8. George I. 220
9. George II. 223
10. Gcorge III. . . . 225

CHAPTER IV.

POINTED ARCHITECTURE.
Sect. 1. France 233
2. Belgium 242
3. Germany 245
4. Spain 251
5. Portugal 255
6. Italy 258
7. Sicily 263
BOOK II.THEORY OF ARCHITECTURE.
CHAPTER I.
mathematics and mechanics of construction.
Sect. 1. Geometry
PAGE $26 \pm$
2. Practical Geometry 291
3. Plane Trigonometry 296
4. Conic Sections 302
5. Descriptive Geometry 317
6. Mensuration 380
7. Mechanies and Statics 339
8. Piers and Vaults 356
9. Walls and Piers 392
10. Beams and Pillars 415
CHAPTER II.
materials used in building.
Sect. 1. Stone 449
Decay of Stone 478
Preserpation of Stone 480
Artificial Stone 482
2. Granite 484
3. Marble 488
4. Timber 494
Preservation of Timber 504
Decay and Dry Rot 50%
5. Iron 508
Steel 512
Corrosion of Iron 513
6. Lead 515
7. Copper 517
8. Zine 518
9. Slato 520
10. Brick 522
Tile 528
Terra-cotta 530
11. Lime, Sand, Water, Mortar, Concrete, Cement 532
12. Glass 545
CHAPTER III.
use of materials, on practical beilding.
Sect. 1. Foundations and Drains 548
Sewerage 551
Drainage 553
Sect. 2. Bricklaying and Tiling
page
page 558Fireproof Floors
567
Con Bili
Concrete Building 569
Paring 572
Terra-cotta 574
3. Masonry 578
Columns 584
Staircases 587
Stone-cutting 588
Gothic Vaulting 607
Marbles 613
4. Carpentry 615
Roofs 623
Domes 646
3. Joinery 649
6 Slating 676
7. Plumbery 681
Water-closets 686
Traps 688
Cisterns and Filters 690
Copper, Zinc, Brass 697
8. Glazing 700
9. Plastering 704
Cements 710
10. Smithery and Ironinongery 713
Ornamental Metal Work 718
Gas Fitter 723
Electric Appliances. 726
11. Foundery 728
Testing and Machinery 739
12. Painting, Gilding, Paper- hanging 732
13. Ventilation of Buildings 740
14. Warming of Buildings 746
15. Specifications 751
16. Measuring and Estimating 780
CHAPTER IV.
MEDIUM OF EXPRESSLON.
Sect. 1. Drawing in general 804
2. Perspective 811
3. Shadows 324
4. General Principles of Com- position 833
5. Drawings uecessary in Com- position 835
6. Working Drawings 836

BOOK III.

PRACTICE OF ARCHITECTURE.

CHAPTER I.
GRECIAN AND ITALIAN ARCHITECTURE.PAGE
Secr. 1. Beauty in Architecture 837
2. The Orders 814
Mouldings 847
3. Tuscan Order 854
4. Doric Order 857
5. Ionic Order 863
6. Corinthian Order 869
7. Composite Order 873
8. Pedestals 877
9. Intercolumniations 879
10. Arcades and Arches 882
11. Orders above Ordors 892
12. Arcades above Arcades 896
13. Basements and Attics 898
14. Pilasters 899
15. Caryatides and Persians 902
16. Balustrades and Balusters 903
17. Pediments 909
18. Cornices 910
19. Profiles of Doors 912
20. Windows 915
21. Niches and Statues 922
22. Chimney-Pieces 025
23. Staircases 927
24. Ceilings 931
25. Proportions of Rooms 933
CHAPTER II.
principles of proportion.
Secr. 1. General Remarks 935
2. Horizontal and Vertical Com- binations of Buildings 93\%
3. Subdivisions and Apart- ments of Buildings, and their Points of Support 938
4. Combination of the Parts in Leading Forms 939
5. General Principles of Pro- portion (by E. Cresy) 942
CHAPTER III.
MEDIEVAL ARCHITECTURF.
Scct. 1. The Style in general 964
2. Periods of the Style 967
Sect. 3. Mouldings 969
4. Piers and Columns 975
5. Capitals 977
6. Basps 979
7. Vaulting Shafts and Ribs 980
8. Hood Mouldings and String Courses 981
9. Base Courses or Plinths 982
10. Parapets 983
11. Mouldings in Woodwork 984
12. Windows 988
13. Window Jambs and Arch Planes 992
14. Circular Windors 993
15. Tracery of Windows 994
16. Doorways 997
17. Porches 998
1S. Towers and Spires 1000
CHAPTER IV.
MEDIEVAL PROPORTION.
Sect. 1. Effect or Use of Numbers . 1015
2. Early Use of Geomttry and of a Measure 1008
3. The Vesica Piscis 1010
4. Modern Investigations 1011
5. Mouldings 1019
6. Principles of Proportion(by E. Cresy).1020
CHAPTER V.
special subjects.
SECT. 1. Theatres 1066
2. Hospitals 1076
3. Infirmary 1079
4. Private Buildings 1080
5. In Towns. 1081
6. In the Country 1083
7. Farm-House 1085
8. Cottages 1086
9. Town Dwellings fur the Industrial Classes 1088
10. Sanitary Aspect of House Construction 1091
11. Technical School and Col- lege Buildings 1093

A List of ARCHITECTS of all Countries, and their
PRINCIPAL WORKS 1129
Index to the NAMES therein 1157
A List of PUBLICATIONS relating to Architecture, arranged under Classes 1160
A GLOSSARY OF TERMS used in ArChitecture and in BUILDING 1201
INDEX 1395 to 1443

ENCYCLOP ÆDIA

OF .
 A R CHITECTURE.

BOOK I.

HISTORY OF ARCHITECTURE.

CHAP. I.
ON THE ORIGIN OF ARCHITECTURE.

Sect. I.

WANTS of MAN, AND FIRST RUILDINGS.

1. Protection from the inelemency of the seasons was the ancestor of arehitecture. Of ttle account at its birth, it rose into light and life with the civilisation of mankind; and. roportionately as seeurity, peace, and good order were established, it became, not less than s sisters, painting and seulpture, one method of transmitting to posterity the degree of uportance to which a nation had attained, and the moral value of that nation amongst the ingdoms of the carth. If the art, however, be considered strictly in respeet of its actual tility, its principles are restrieted within very narrow limits; for the mere art, or rather ienee, of construction, has no title to a place among the fine arts. Such is in various egrees to be found among people of savage and uneivilised habits; and until it is brought to a system founded upon certain laws of proportion, and upon rules based on a refined aalysis of what is suitable in the highest degree to the end proposed, it ean pretend to no ank of a high class. It is only when a nation has arrived at a certain degree of opulence ad luxury that architecture ean be said to exist in it. Hence it is that architecture, in its rigin, took the varied forms which have impressed it with such singular diflerences in ifferent countries; differenees which, though modified as each country advanced in eivilisaon, were, in each, so stamped, that the type was permanent, being refiaed only in a higher egree in their most important examples.
2. The ages that have elapsed, and the distance by which we are separated from the ations annong whom the art was first practised, deprive us of the means of examining the rades of difference resulting from climate, productions of the soil, the precise spots upon hich the earliest societies of man were fixed, with their origin, number, mode of life, and cial institutions; all of which influenced them in the selection of one form in preference to other. We may, however, casily trace in the architecture of nations, the types of three stinct states of life, which are clearly diseoverable at the present time; though in some fises the types may be thought doubtful.

Sert. Il.

ORIGIN ANJ: PROGRFSS OF BUllidiNg.

3. The original classes into which mankind were divided werr, we may safely assume, those of hunters, of shepherds, and of those occupied in agriculture; and the buildings for protection which each would require, mast have been characterised by their several ocenpations. The hunter and fisher found all the accommodation they required in the elefts
 and caverns of rocks; and the indolence which those states of life induced, made them insensible or indifferent to greater comfort than such naturally-formed habitations afforded. We are cersin that thus lived such tribes. Jeremith (chap. xlix. 16.), speaking of the judgment upon Edom, says. "O thon that dwehest in the clefts of the rock, that holdest the height of the hill;" a text which of late has received ample illustration from travellers, and especially from the labours of Messrs. Leon de Laborde and Linant, in the splendid engravings of the ruins of Petra (fig. 1.). To the shepherd, the inhabitant of the plains wandering from one spot to another, as pasture became inadequate to the support of his flocks, another species of dwelling was more appropriate; one which he could remove with him in his wanderings: this was the tent, the type of the architecture of China, whose people were, like all the Tartar races, nomades or scenites, that is, shepherds or dwellers in tents. Where a portion of the race fixed its abode for the purposes of agriculture, a very different species of dwelling was necessary. Solidity was required as well for the personal eomfort of the husbandman as for preserving, from one season to another, the fruits of the earth, upon which he and his family were to exist. IIence, doubtless, the hat, which most authors have assumed to be the type of Grecian architecture.
4. Authors, says the writer in the Euryc. Muthodique, in their search after the origin of architecture, have generally eonfined their views to a single type, withont considering the modification which would be necessary for a mixture of two or more of the states of mankind; for it is evident that any two or three of them may co-exist, a point upon which more will be said in speaking of Egyptian architecture. Hence have arisen the most discordant and contradictory systems, formed without sufficient acquaintance with the customs of different people, their origin, and first state of existence.
5. The eaיliest habitations which were sonstructed after the dispes sion of mankind from the plains of Semar (for there, certainly, as we shall hereafter see, even without the evidence of Scripture, was a great multitude gathered together), were, of eourse, proportioned to the mems which the spot afforded, and to the nature of the climate to which they were to be adapted. Rceds, canes, the branches, bark, and leaves of trees, clay, and similar materials would be first used. The first houses of the Egyptians and of the people of l'alestine were of reeds and canes interwoven. At the present day the same materials serve to form the houses of the Peruvians. According to Pliny (1. vii.), the first houses of the Greeks were only of clay; for it was a considerable time before that nation was acquainted with the process of hardening it into bricks. The Abyssinians still build with clay and reeds. Wond, however, offers such facilities of construction, that still, as of old, where it abounds, its adoption prevails. At first, the natural order seems to be that which Vitruvius describes in the first chanter of his second book. "The first attempt," says our author " was the mere erection of a few spars, united together with twigs, and covered with mud. Others built their walls of dried hmps of turf", connected these walls together by means 0 timbers laid aeross horizontally, and covered the erections with reeds and boughs, for the purpose of sheltering themselves from the inclemeney of the seasons. Finding, however that flat coverings of this sort would not effectually shelter them in the winter season, the: made their roofs of two inclined planes, meeting each other in a ridge at the summit, th whole of which they covered with clay, and thos carried off the rain." The same autho
afterwards observes, "The woods about Pontus furnish such abondance of timber, that they build in the following manner. ' wo trees are laid level on the earth, right and left. at such distance from each other as will suit the length of the trees which are to cross and
 eonnect them. On the extreme ends of these two trees are laid two other trees, transversely : the space which the house will enclose is thus marked out. The four sides being so set out, towers are raised, whose walls consist or trees laid horizontally, butkept perpendicularly over each other, the alternate layers yohing the angles. The level interstices, which the thickness of the trees alternately leave, is filled in with chips and mud. On a similar principle they form their roofs, except that gradually reducing the length of the trees which traverse from side to side, they assume a pyramidal form. They are covered with boughs, and thus, after a rude fashion of vaulting, their quadrilateral roofs are formed." The northern parts of Germany, Poland, and Russia still exhibit traces of this method of building, which is also found in Florida, Louisiana, and elsewhere, in various places. See fig. 2.
6. We shall not, in this plaec, pursue the discussion on the timber hut, whieh has certainly, with great appearance of probability, been so often said to contain within it the types of Grecian arehitecture, but shall, under that head, enlarge further on the subject.

Sect. 111.

DIFFERENF SORTS OF DWEILLNGS ARISING FROM DIPFERENT OCCUPATIONS.

7. The eonstruction of the early habitations of mankind required little skill and as little knowledge. A very restricted number of tools and machines was required. The methol of felling timber, which uncivilised nations still use, namely, by fire, might have served all purposes at first. 'lhe next step would be the shaping of hard and infrangible stones into cutting tools, as is still the practice in some parts of the continent of America. These, as the metals becarne known, would be supplanted by tools formed of them. Among the Peruvians, at their invasion by the Spaniards, the only tools in use were the hatehet and the adze; and we may fairly assume that similar tools were the only ones known at a period of high antiquity. The saw, nails, the hammer, and other instruments of carpentry werc unknown. The Greeks, who, as Jacol, Bryant says, knew nothing of their own history, ascribe the invention of the instruments necessary for working materials to Dadalus; but only a few of these were known even in the time of Homer, who confines himself to the batchet with two edges, the plane, the auger, and the rulc. He particularises neithem the square, compasses, nor saw. Neither the Greek word $\pi \rho t \omega \nu$ (a saw), nor its equivalent, is to be found in his works. Daedalus is considered, however, by Gognet as a fabulous person altogether, the word meaning, according to him, nothing more than a skilful workman, a meaning which, he observes, did not escape the notice of l'ausanias. The surmise is borre out by the non-mention of so celebrated a character, if he had ever existed, by llomer, and, afterward; by Ilcrodotus. The industry and perseverance of man, however, in the end, overcame the difficulties of construction. For wood, which was the earliest material, at length were substituted bricks, stone, marble, and the like; and edifices were reared of mparalleled magnificence and solidity. It seems likely, that bricks would have been in use for a considerable period before stone was employed in building. They were, probably, after moulding, merely subjected to the sun's rays to acpuire hardness. These were the materials whereof the 'Tower of Babel was eonstructed. These also, at a very remote period, were used by the Egyptians. Tiles seem to have been of as high an antiguity as bricks, and to have been used, as in the present day, for covering roofs.

8 The period at which wrought stone was originally used for architectural purposes is
quite unknown, as is that in which cement of any kind was first employea as the medium of uniting masonry. They were both, doubtless, the invention of that race which we have mentioned as cultivators of land, to whom is due the introduction of architecture, property so called. To them solid and durable edifices were necessary as soon as they lad fixed upon a spot for the settlement of themsclves and their families.
9. Chaldæa, Egypt, Phœenicia, and China are the first countries on record in which architecture, worthy the name, made its appearance. They had certainly attained considerable proficiency in the art at a very early period; though it is doubtful, as respects the three first, whether their reputation is not founded rather on the enormous masses of their works, than on beauty and sublimity of form. Strabo mentions many magnificent works which he attributes to Semiramis; and observes that, besides those in Baloylonia, there were monuments of Babylonian industry throughout Asia. He mentions λ iobou (high altars), and strong walls and battlements to various cities, as also subterranean passages of communication, aqueducts for the conveyance of water under ground, and passages of great length, upwards, by stairs. Bridges are also mentioned by him (lib. xvi.). Moses has preserved the names of three cities in Chaldæa which were founded by Nimrod (Gen. x. 10.). Ashur, we are told, built Nineveh : and (Gen. xix, 4.) as early as the age of Jacob and Abralam, towns had been established in Palestine. The Chinese attribute to Fohi the encircling of cities and towns with walls; and in respect of Egypt, there is no question that in Homer's time the celebrated city of Thebes had been long in existence. The works in India are of very early date; and we shall hereafter offer some remarks, when speaking of the extraordinary monument of Stonehenge, tending to prove, as Jacob Bryant supposes, that the earliest buildings of both nations, as well as those of Phoenicia and other countries, were crected by colonics of some great original nation. If the Peruvians and Mexicans, without the aid of carriages and horses, without scaffolding, cranes, and other machines used in building, without even the use of iron, were enabled to raise monuments which are still the wonder of travellers, it would seem that the mechanical arts were not indispensable to the progress of architecture; but it is much more likely that these were understood at an exceedingly remote period in Asia, and in so high a degree as to lave lent their aid in the erection of some of the stupendous works to which we have alluded.
10. The art of working stone, which implies the use of iron and a knowledge of the method of tempering it, was attributed to Athôthis, the successor of Menes. It seems, however, possible that the ancients were in possession of some secret for preparing bronze tools which were eapable of acting upon stone. Be that as it may, no country could have been called upon earlier than Egypt to adopt stone as a material, for the climate does not favour the growth of timber; hence stone, marble, and granite were thus forced into use; and we know that, besides the facility of transport by means of canals, as early as the time of Joscph waggons were in use. (Gen. xlv. 19.) We shall hereafter investigate the liypothesis of the architecture of Greece being founded upon types of timber buildings, merely observing here, by the way, that many of the columns and cntablatures of Egypt lad existence long before the earliest temples of Greece, and therefore that, without recurrence to timber construction, prototypes for Grecian architecture are to bc found in the venerable remains of Egypt, where it is quite certain wood was not generally employed as a material, and where the subterranean architecture of the country oflers a much more probable origin of the style.

CHAP. II.

ARCHITECTURE OF VARIOUS COUNTRIES.

Sect. I.

DRUIDICAI AND CELTIC ARCHITECTURE

11. If rudeness, want of finish, and the absence of all appearance of art, be criteria for judgment on the age of monuments of antiquity, the wonderful remains of Abury and Stonchenge must be considered the most ancient that have preserved their form so as to indicate the origimal plan on which they were constructed. The late Mr. Godfrey Higgins a gentleman of the highest intellectual attainments, in his work on the Celtic Druids (published 1829), has shown, as we think satisfactorily, that the Druids of the British Isles wert a colony of the first race of people, learned, enlightened, and descenoants of the persons whe escaped the deluge on the borders of the Caspian Sea; that they were the earliest occu piers of Greece, Italy, France, and Britain, and arrived in those places by a route nearl!
along the forty-fifth parallel of north latitude; that, in a similar mamer, colonies advanced from the same great nation by a southern tine through Asia, peopling Syria and Africa, and arriving at last by sea through the Pillars of Hercules at Britain; that the languages of the western world were the same, and that one system of letters - viz. that of the Irish Druids-pervaded the whole, was common to the British Isles and Gaul, to the inlabitants of Italy, Greece, Syria, Arabia, Persia, and Hindostan; and that one of the two ahphabets (of the same system) in which the Irish MSS. are writtcn-viz. the Beth-luis-nion-came by Gaul through Britain to Ireland; and that the other - the Bobeloth-came through the Straits of Gibraltar. Jacob Bryant thinks that the works called Cyclopean were executed at a remote age by colonies of some great original nation ; the only difference between his opinion and that of Mr. Higgins being, that the latter calls them Druids, or Celts, from the time of the dispersion above alluded to.
12. The uniewn stones, whose antiquity and purport is the subject of this section, are found in Hindostan, where they are denominated "pandoo koolies," and are attributed to a fabulous being named Pandoo and his sons. With a similarity of character attesting their common origin, we find them in India, on the shores of the Levant and Mediterrancan, in Belgium, Denmark, Sweden and Norway, in France, and on the shores of Britain from the Straits of Dover to the Land's End in Cornwall, as well as in many of the interior parts of the country. They are classed as follows: - 1. The :ingle stone, pillar, or obelisk. 2. Circles of stones of diferent number and arrangement. 3. Sacrificial stoncs. 4. Cromlechs and cairns. 5. Logan stones. 6. Tolmen or colossal stones.
13. (1.) Single Stomes. - Passages abound in Scripture in which the practice of erecting single stones is recorded. The reader on thiss point may refer to Gen. xxviii. 18., Judges, ix. 6., 1 Sam. vii. 12., 2 Sam. xx. 8., Joshua, xxiv. 27. The single stone might be an emblem of the generative power of Nature, and thence an object of idolatry. That mentioned in the first seriptural reference, which Jacol set up in his journey to visit Laban, his uncle, and which he had used for his pillow, seems, whether from the vision he had while sleeping upon it, or from some other cause, to have become to him an olject of singular veneration; for he set it up, and poured oil upon it, and called it "Bethel" (the house of God). It is eurious to obscrve that some pillars in Cornwall, assumed to have been erceted by the Phoenicians, still retain the appellation Bothel. At first, these stoncs were of no larger dimension than a man could remove, as in the instance just cited, and that of the Gilgal of Joshua (Josh. iv. 20.) ; but that which was set up under an oak at Sheehem (ibid. xxiv.26.), was a great stone. And here we may notice another singular coincidence, that of the Bothel an Cornwall being set up in a place which, from its proximi y to an oak which was near the spot, was called Bothel-ac ; the last syllable being the Saxon for an oak. It appears from the Scriptures that these single stones were raised on various occasions; sonetimes, as in the ease of Jaeob's Bethel and of Samuel's Ebenezer, to commemorate instances of divine interposition; sometimes to record a covenant, as in the case of Jacob and Laban (Gen. xxxi. 48.) ; sometimes, like the Greek stelx, as sepulchral stones, as in the case of Rachel's grave (Gen. xxxvi. 20.), 1700 years в.c., according to the usual reckoning. They werc occasionally, also, set up to the memory of individuals, as in the instance of Absalom's pillar and others. The pillars and altars of the patriarchs appear to have been erected in honour of the only truc God, Jehovah; but wherever the Canaanites appcared, they seem to have been the objects of idolatrous worship, and to have becn dedicated to Baal or the sun, or the other false deitics whose altars Moses ordered the Israelites to destroy. The sinilarity of pillars of single stones almost at the opposite sides of the earth, leaves no doult in our mind of their being the work of a people of one common origin widely scattered; and the hypotheses of Bryant and Higgins sufficiently account for their appearance in plaees so remote from eaeh other. In eonsequence, says the latter writer, of some cause, no matier what, the Hive, after the dispersion, casted and sent forth its swarms. Onc of the largest descended, aecording to Genesis (x. 2.), from Gomer, went north, and then west, pressed by succeeding swarms, till it arrived at the shores of the Atlantic Ocean, and ultimately colonised Britain. Anothcr branch, obscrves the same author, procecded through Sarmatia southward to the Euxine (Cimmerian Bosphorus) ; another to ltaly, founding the states of the Umbrii and the Cimmerii, at Cuma, near Naples. 'Till the time of the Romans these different lines of mareh, like so many sheepwalks, were without any walled citics. Some of the original tribe found their way into Grecce, and between the Carpathian mountains and the $A l_{p s}$ into Gaul, scattering a few stragglers as they passed into the beautiful valleys of the latter, where traces of them in Druidical monuments and language are occasionally found. Wherever they settled, if the conjecture is eorrect, they employed themselves in recovering the lost arts of their ancestors.
14. To the Canaanites of Tyre and Sidon may be chiefly attributed the introduction of these primeval works into Britain. The Tyrians, inhabiting a small slip of barren land, erere esscntially and necessarily a commercial people, and becane the most expert and udventurons sailors of antiquity. It has been supposed that the constaney of the needle to the pole, "that path which no fowl knoweth, and which the vulture's eye hath not seen."
aras known to the 'lyrians; and, indeed, it seems scarcely possible that, by the help of the tars alone, they should have been able to maintain a commerce for tin on the shores of Britain, whose western coast furnished that metal in abmance, and whose islands (the
 Scilly) were known by the title of Cassiterides, or tha islands. In this part of Britain there seems unguestionable evidence that they scttled a colony, and were the architects of Stonehenge, Abury, and other similar works in the British islands. In these they might have been assisted by that part of the swarm which reached our shores through Gaul; or it is possible that the works in question may be those of the latter only, of whom traces exist in Iritany at the monmment of Carnac, whereof it is eomputed 4000 stones still remain. From anong the number of pilars of this kind still to be seen in Lingland, we give (.tol.3.) that standing at Rudstone, in the east riding of Yorkshire. It is deseribed by Drake, in his Eboracum, as "coarse rag stone or millstone grit, and its weight is computed at between 40 and 50 tons. In form (the sides being slightly concave) it approaches to an ellipse on the plan, the breadth being 5 ft .10 in ., and the thickness $2 \mathrm{ft}, 3 \mathrm{in}$., in its general dinensions. Its height is 24 ft . ; and, according to a brief accommt communicated to the late Mr. Pegge, in the year 1769 (Archuologiu, vol. v. p. 95.), its depth underground equals its height above, as appeared from an experiment made by the late Sir William Strickland."
1.5. (2.) Circles of Stume.-The Israelites were in the habit of arranging stoncs to represent the twelve tribes of Israel (Exol. xxiv. 4.), and for another purpose. (1)out. xxvii. 2.) And in a circular form we find them set up by Joshua's order on the passage of the Israelites through Jordan to Gilgal (ל2ל2) ; a word in which the radical Gal or Gil (signifying a wheel) is doubled to denote the continued repetition of the action. In this last case, Joshua made the arrangement a type of the Lord rolling away their reproach from them.
15. 'Jhough traces of this species of monument are found in various parts of the work, even in America, we shall confine our observations to those of Abury and Stonehenge, merely referring, by way of enumeration, to the places where they are to be found. 'Thus we mention Rolbrich in Oxfordshire, the Hurlers in Cornwall, Long Meg and her daughters in Cumberland, remains in Derbyshire, Devonshire, Dorsetshire, at Stanton Drew in Somersetshire, and in Westmoreland. They are common in Wales, and are found in the Western Isles. 'There are examples in Iccland, Norway, Sweden, Denmark, and various parts of Germany. Clarke, in his description of the hill of Kushumlu Tepe in the Troad, observes, that all the way up, the traces of fomer works may be noticed, and that, on the summit, there is a small oblong area, six yards long and two broad, exhibiting vestiges of the highest anticuity; the stones forming the inclosure being as rude as those of Tiryns in Argolis, and encircled by a grove of oaks covering the top of this conical mountain. The entrance is from the sonth. Upon the cast and west, outside of the trees, are stones ranging hike what we in England call Druidical circles. Three circles of stones are known in: Anerica, onc of which stands upon a high rock on the banks of the river Wimipigon. The stapendous monument of Carnac in lbritany, of which we have above made mention, is not of a circular form the stones there being arranged in eleven straight lines, from 30 to 33 ft . apart, some of which are of enormous size. They are said to have formerly encmated three leagues along the coast A aeserprion of this momment is given in vol xaii. of the Archeologia; and in Gailhahaud, Nonumens, 4to, Paris, 1b42-52.
16. Abuy, or Avebury, in Wiltshire, of which we give a view in a restored state (fg.4.), is a specimen of this species of building, in which the chmax of magnificence was attained. Stukely, who examined the ruins when in imnch better preservation than at present, says, "that the whole figure represented a snake transmitted through a circle;" and that, "to make their represcntation more natural, they artfully carried it over a variety of elevations and depressions, which, with the curvature of the avenues, produces sufficiently the desired effect. To make it still more elegant and picture-like, the hoad of the snake is carried up the southern promontory of Hackpen Hill, towards the village of West Kennet; nay, the very name of the hill is derived from this circumstance;" for acun, he obscrees, signifies a serpent in the Chaldaic languagc. Dr. S. then goes on to state, "that the dracontiue was a name, amongst the first-leamed nations, for the very ancient sort of temples of which they eould give no account, nor well explain their maning upon it." The figure of the serpent extended two miles in length; and but a very faint idea can now be formed of what it was in its original state. Two domble circles, one to the north and the other to the south of the centre, were placed within the large circle, which formed the principal body of the serpent, and from which branehed out the head to IIackpen Hill, in the direction of

West Kemet, as onc avenue; and the other, the tail, in the dircetion of Beckhampton. Dr. Stukcly makes the number of stones, 652 in all, as under: -

Stoltes.	atonc	Stontes.
The great circle . . 100	Central pillar and altar, south	Long stone. Cove jambs - 2
Outer circle north of the centre 30	circle . . 2	A stone he calls the ring stone
Inner ditto . . . 12	Kennet avenue . . 200	Closing stone of the tail
Outer circle, south . . 30	Beckhampton avenue . 200	
Inner ditto 12	Outer circle of Hackpen - 40	Total 652
Cove and altarstone, north circle 4	Inner ditto . . . 18	

Of these, only sevcuty-six stones remained in the Kennct avenue in 1722. The large circle was enclosed by a trench or vallum upwards of 50 ft . in depth and between 60 and
 70 ft . in width, leaving entrances open where the avenues intersected it. The colossal mound, called " Silbury hill," close to the Bath road, was probably connccted in some way with the circle we have described, from the circumstance of the Roman road to Bath, made long afterwards, being diverted to avoid it. Dr. Owen thinksthat the Abury circle was one of three primary circles in Great Britain, and that SilLury hill was the pile of Cyvrangon (heaping) characterised in the 14th Welsh triad; but the conjecture affords us no assistance in determining the pcople by whom the monnment was raised. If it be in its arrangement intended to represent a serpent, it becomes immediately connected with ophiolatry, or serpent worship, a sin which beset the 1 sraclites, and which would stamp

Fig. s^{3}
phan or atankinama N it as proceeding from the central Mr. Higgins sets out. Sce Observations on Dracontia, by the Rev. John Bathurst Deane, Archavi. vol. xxv.

* Eoliam l'itanen a fava parte reliuquit,
l'netaque de saxo longi simulacra Draconis,"-Ovid, Met. vil. 357.
which is a picturesque deseription of Abury.

18. Stonchenge, on Salisbury Plain, about seven miles from Salisbury and two miles
to the west of Ambresbrry, is certainly more artifieial in its structure than Abury, and its construction may therefore be safely referred to a later date. Fig. 5. is a restored plan of this wonder of the west, as it may well be called. The larger circle is 105 feet in diameter, and between it and the interior smaller cirele is a space of about 9 feet. Within this smaller eircle, which is half the height (8 fect) of the exterior one, was a portion of an ellipsis formed by 5 groups of stones, to which Dr. Stukely has given the name of trilithons, beeanse formed by two vertical and one horizontal stone: the former are from 17 to $18 \frac{1}{2}$ feet high, the middle trilithon being the highest. Within this eliipsis is another of single stones, half the height of the trilithons. The outer circle was crowned with a course of stones similar to an architrave or epistylium, the stones whereof were let into or joggled with one another by means of egg-shaped tenons formed out of the vertical blocks. The ellipsis was connected in a similar manner. Within the inner elliptical enclosure was a block 16 ft . long, 4 ft . broad, and 20 in . thiek. This has usually been ca'led the altar stone. Round the larger cirelc, at the distance of 100 ft ., a vallum was formca abont 52 ft . in width, so that the external dimension of the work was a diameter of 42 f . The vallum surrounding these saered places seems to have been borrowed by the Canaanites in imitation of the enclosure with which Moses surrounded Mount Sinai, in order to prevent the multitude from approaching too near the sacred mysteries. The number of stones composing this monument is variously given. In the suljoined account we follow Dr. Stukely :-

Northwards from Stonehenge, at the distance of a few hundred yards, is a large single stone which, at the period of its being placed there, has been by some thought to have marked a meridian line from the centre of the cirele.
19. Fig. 6. is a view of the present state of this interesting ruin from the west. Mr.

Cumnington, in a letter to Mr. Higgins, gives the following aceount of the stones which remain of the monument : - "The stones on the outside of the work, those comprising the outward circle as well as the large (five) trilithons, are all of that speeies of stone called 'sarsen' found in the neighbourhood; whereas the inner circle of small upright stones, and those of the interior oval, are composed of granite, hornstone, \&c., most probably procured from some part of Devonshire or Cornwall, as I know not where such stoues could be proeured at a nearer distance."
20. Authors have in Stonehenge discovered an instrument of astronomy, and anong them Mauriee, whose view as to its founders eoincides with those of the writers already cited, and with our own. We give no opinion on this point, but shall conclude the section by plaeing before the reader the substance of M. Bailly's notion thereon, reeominending him to consult, in that respect, authonities better than we profess to be, and here expressing our own belief that the priests of ancient Britain were priests of Baal; and that the monuments, the subjects of this section, were in existence long before the Greeks, as a nation, were known, alleeit they did derive the word Druid from $\delta \rho u s$ (an oak), and said that they themselves were avto $\chi \theta 0 v \in s$ (sprung from the earth).
21. M. Bailly says, on the origin of the sciences in Asia, that a nation possessed of profound wisdom, of elevated genius, and of an antiquity far superior to the Egyptians or Indians, immediately after the flood inhabited the country to the north of India, between the latitudes of 40° and 50 , or aloout 50° north. He contends that some of the most celebrated observatories and inventions relating to astronomy, from their peculiar character, could have taken place only in those latitudes, and that ar's and improvements gradually
travelled thence to the equator. The people to whom his description is most applicable is the northern progeny of Brahmins, settled near the lmaus and in Northern Thibet. We add, that Mr. Hastings informed Maturice of an immemorial tradition that prevailed at Benares, wiich was itself, in modern times, the grand seat of Indian learning,-that all the learning of India came from a country situate in 40° of N. latitude. Maurice remarks. "This is the latitude of Samareand, the metropolis of Tartary; and, by this circumstance, the position of M. Bailly should seem to be confirmed. This is the country where, according to the testimony of Josephus and other historians cited by the learned Abbé Pezron, are to be found the first Celter, by whom all the temples and caves of India were made. Higgms observes on this, that the worship of the Mithraitic bull existed in India, Persia, Greece, Italy, and Britain, and that the religion of the Druids, Magi, and Brahmins was the same.
22. (3.) Sucrificial Stones. - These have becn confounded with the cromlech, but the difference between them is wide. They are simple stones, either encircled by a shallow trench (valium) and bank (agger), or by a few stones. Upon these ahnost all authors concur in believing that human immolation was practised; indeed, the name blod, or blood-stones, which they bear in the north of Europe, seems to point to their infernal use. We do not think it necessary to pursue further inquiry into them, as they present no remarkable nor interesting features.
23. (4.) Cromlechs and Cairns. - The former of these seem to stand in the same relation to the large cireles that the modern cell does to the conventual church of the Catholics. 'They consist of two or more sides, or verticai stones, and sometimes a back stone, the whole being covered with one not usually placed exaetly horizontal, but rather in an inclining
 position. We here (fig. 7.) give a representation of one, that has received the name of Kit's Cotty House, which lies on the road between Maidstone and Rochester, about a mile northeastward from A y lesford chiurch, and is thus described in the Beauties of Enyland and Wales. It "is composed of four huge stones unwrought, three of them standing on end but inelined in. wards, and supporting the fourth, which lies transiersely over them, so as to leave an open reeess beneath. The dimensions and computed weights of these stones are as follows: - height of that on the south side 8 ft ., breadth $7 \frac{1}{2} \mathrm{ft}$., thickness 2 ft ., weight 8 tons; height of that on the north side 7 ft ., breadth $7 \frac{1}{2} \mathrm{ft}$., thickness 2 ft ., weight $8 \frac{1}{2}$ tons. The middle stone is very irregular ; its medium length as well as breadth may be about 5 ft ., its thickness about 1 ft . 2 in ., and its weight about 2 tons. The upper stone or impost is also extremely irregular ; its greatest length is nearly 12 ft ., and its breadth about $9 \frac{1}{4} \mathrm{ft}$.; its thickness is 2 ft ., and its weight about $10 \frac{1}{2}$ tons: the width of the recess at bottom is 9 ft ., and at top $7 \frac{1}{2} \mathrm{ft}$. from the ground to the upper side of the covering stone is 9 ft . These stones are of the kind called Kentish rag. Many years ago there was a single stone of a similar kind and size to those forming the cromlech, about 70 yards to the north-west: this, whieh is thought to have once stood upright, like a pillar, has been broken into pieces and carried away." Another cromlech stood in the neighbourhood, whieh has been thrown down. The nonsense that has been gravely written upon this and sinilar monuments is searcely worth mention. It will hardly be helieved that there existed people who thought it was the sepulehral monument of king Catigern, from similarity of name, and others who consider it the grave of the Saxon chief, Horsa, from its proximity to IIorsted. Cromleehs are found in situations remote indeed, a specimen being seated on the Malabar coast; and in the British isles they are so numerous, that we do not think it necessary to give a list of them.
24. The cairn or carn which we have in this section compled with the cromlech, perhaps improperly, is a conical heap of loose stones. Whether its ctymology be that of Rowland, from the words קרך (kern-ned), a coped heap, we shall, from too hittle shill in Hebrew, not venture to deeide; so we do not feel quite sure that, as has heen asserted, they were raised over the bodies of deceased heroes and chicftains. Onr notion rather inclines to their having been a species of altar, though the heap of stones to which Jacoh gave the name of Galeed, if it were of this speeies, was rather a memorial of the agreement between hine and Laban. It can seareely be ealled an architectural work; but we should have considered our notice of the earlicr monuments of antiquity incomplete without naming the cairn.
25. (5.) Logrn or Rocking Stomes. - These were large blocks poised so nicely on the points of rocks, that a small force applied to them produced oscillation. The weight of the celebrated one in Cornwall, which is granite, has been computed at upwards of 90 tons.

The use of these stones has been conjectured to be that of testing the imocence of persone aceused of crime, the rocking of the stone being certain, unkess wedged up by the judge of the tribunal, in cases where he knew the guilt of the criminal: but we think that such a purpose is highly improbable.
26. (6.) Toimen or Colossal Stones. - The Tolmen, or hole of stone, is a stone of
 considerable magnitude, so disposed upon rocks as to leave an opening between them, through which an object could be passed. It is the general opinion in Cornwall that invalids were eured of their diseases by being passed through the opening above mentioned. "The most stupendous monument of this kind," (see fig. 8.) says Borlase, "is in the tenement of Men, in the parish of Constantine, in Cornwall; it is one great oval pebble, placed on the points of two natural rocks, so that a man may creep under the great one, between the supporters, through a passage of about three feet wide, by as much high. The longest diameter of this stone is 33 ft , being in a direction due north and south. Its height, measured perpendicularly over the opening is, 14 ft .6 in , and the breadth, in the widest part, 18 ft .6 in ., extending from east to west. I measured one half' of the eircumference, and found it, aceording to my computation, $48 \frac{1}{2} \mathrm{ft}$., so that this stone is 97 ft . in circumferenee, lengthwise, and about 60 ft . in girt, measured at the middle; and, by the best information, it contains about 750 tons." We close this section by the expression of our belief that the extraordinary msonuments whereof we have been speaking are of an age as remote as, if not more so than, the pyranids of Egypt, and that they were the works of a colony of the great mation that was at the earliest period settled in central Asia, either through the swarm that passed north-west over Germany, or south-west through Phoenicia; for, on either route, but rather, perhaps, the latter, traces of gigantic works remain, to attest the wonderful powers of the people of whom they are the remains.

Sectr. II.

reLasgle or cychorean archirectuhe.

2i. I'elasgic or Cyclopean architecture, (for that as well as the architecture of Phonicia, seems to lave been the work of branehes of an original similarly thinking nation) presents for the notice of the reader, little more than massive walls composed of huge pieces of rock, scarcely more than piled together without the comecting medium of cement of any species. The method of its construetion, considered as masonry, to the eye of the architect is quite sufficient to comect it with what we have in the preceding section called Dridical or Celtic architecture. It is next to impossible to believe that all these species were not executed by the same people. The nature and principles of Egyptian art were the same, but the specimens of it which remain bear marks of being of later date, the pyramids only excepted. The Greek fables about the Cyclopeans have been sufficiently exposed by Jacoi, Bryant, who has shown that the Grecks knew nothing about their own early history. Herodotus (lib. v. cap 57. ei st \boldsymbol{q}.) alludes to them under the name of Cadmians, saying they were particularly fanious for their arehitecture, which he says they introduced into Greece; and wherever they came, erect d noble structures remarkable for their height and beanty. These were dedicated to the Sun under the names of Elorus and Pelorus. Hence every thing great and stupendons was called Pelorian; and, transferring the ideas of the works to the founders, they made them a race of giants. Homer says of Polyphemus, -

Virgil, too, describes him "Ipse arduus, alta pulsat sidera." Famous as lighthouse builders, wherein a round casement in the upper story afforded light to the mariner, the Greeks turned this into a single eye in the forehead of the race, and thus made them a set of monsters. Of the race were 'rophonius and his brother Agamedes, who, according to Pausanias (lib. ix.) contrived the temple at Delphi and the Treasury constructed to Urius. So great was the fame for bnitding of the Cyclopeans that, when the Sybil in Virgil shows Ancas the place of torment in the shades below, the poet separates it from the regions of bliss by a Cyolopean wall:-
"
Ain. Bib. vi. v. 630
28. The walls of the city of Mycene are of the elass denominated Cyclopean, thus deounced for ruin by Hercules in Seneca: -

> " $\overline{\text { Bellum Mycenis restat, ut Cyclopea maius mihi }}$ liversa manibus incenia nostris concidant." Hercules Frurens, act. 4. v. 9 ! 6.
29. The grate of the enty and the chief tower were partienlarly ascribed to them (Pausanias, b. ii.) Argos had also the repuataion of being Cyclopean. But, to retnm to Mycene, Empipides, we should observe, speaks of its walls as being built after the Phonician rule ind method: -

$$
\begin{aligned}
& \text { IIcroules Furens, v. 94. }
\end{aligned}
$$

30. Fig. 9 is a representation of a portion of the postern gate of the walls of Myeene,

Fig. 9. Pari of tile walds oy mieknis. for the purpose of exhibiting to the reader the character of the masonry employed in it.
31. The walls of 'Tiryns, probably more ancient than those we have just named, are celebrated by Homer in the words Tipov $\theta a \quad \tau \in \backslash \chi$ loє $\sigma \sigma \alpha \nu$, and are said by Apollodorus and Strabo to have been built by workinen whom Pretus brought from lycia. The words of Strabo are, T $\uparrow \rho \nu \nu \theta_{l}$ оря $\ell \eta \tau \eta \rho \iota \geqslant \chi \rho \eta \sigma \alpha \sigma \theta a l$ סокє

 Iratus "ppoars to have used Tiryns as a harbour, and to have walled it by the assistance of the Cyclops, who were seven in mumber, and called Gastrocheirs (bellyhanded), lewng by their labour. "These seven Cyclops," says Jacob IBryant, "were, I make no doubt, seven Cyclopean towers built by the people." Further on, he adds, "'These towers ware ereeted likewise for P'urait, or I'uratheia, where the rites of fire were performed: but l'urait, or Puraitus, the Greeks changed to Iractus; and gave out that the towers ere built for lraetus, whom they made a king of that eountry." The same author says hat the Cyclopeans worshipped the sum under the symbol of a serpent; thus again

Fif. 10.
 Ifcene; also at I'iesole, Arezzo, and other places.
33. We slall now return to some further particulars in relation to 'Tiryns and Mycene, rom which a more distinct notion of these fortresses will be obtaned ; but furthor investiation of those in Italy will herealtur be necessary, mender the section on bermsean architecture. "ine Acropolis of 'liryns, a little to the sonthecist of Argos, is on a monnt riving about filty
feet above the level of the plain, the foundations of its inclosure being still perfect and traceable, as in the annexed figure (fig. 11.). The ancient city is thouglit to have sur.

rounded the fortress, and that formerly the city was nearer the sea than at present. Bryant, with his usual ingenuity, has found in its general form a type of the long ship of Danaus, which, we confess, our inagination is not lively enough to detect. On the east of the fortress are quarries, which firnish stone similar to that whereof it is built. It had entrances from the east and the west, and one at the south-eastern angle. That on the east, lettered A, is pretty fairly preserved, and is approached by an inclined access, $\mathbf{B}, 15 \mathrm{ft}$. wide, along the eastern and southern sides of the tower, C , which is 20 ft . square and 40 ft . high, passing, at the end of the last named side, under a gateway, composed of very large blocks of stone, that which forms the architrave being 10 ft . long, and over which, from the fragments lying on the spot, it is conjectured that a triangular stone was placed; but thereon is no appearance of sculpture. D is the present entrance. The general thickness of the walls is 25 ft , and they are formed by three parallel ranks of stones 5 ft . thick, thus leaving
 two ranges of gallerics each 5 ft . wide and 12 ft . high. The sides of the galleries are formed by two courses of stone, and the roof by two other horizontal courses, sailing over so as to meet at their summit, and somewhat resembling a pointed arch. (Sce fig. 10.) That part of the gallery, fog. 12., now uncovered, is about 90 ft . long, and has six openings or recesses towards the east, one whereof seems to have afforded a communication with some extcrior building, of whose foundation traces are still in existence. The interval between these openings varies from 10 ft .6 in . to 9 ft .8 in . ; the openings themselves being from 5 ft .6 in. to 4 ft .10 in . wide. It is probable that these galleries extended all round the citadel, though now only accessible wherc the walls are least perfect, at the southern part of the inclosure. There are no remains of the south-eastern portal. It appears to have been: connected with the castern gate by an avenue enclosed between the outer and inner curtain, of which avenue the nse is not known. Similar avenues have been found at Argos and oxher ancient cities in Greece. The northern point of the lill is least elevated, and smaller stiones have been employed in its wall. The exterior walls are built of rough stones, some of which are 9 ft .4 in . in length and 4 ft . thick, their common size being somewhat less When entire, the wall must have been 60 ft . high, and on the eastern side has been entirely destroyed The whole length of the citadel is about 660 ft ., and the breadth about 180 ft ., the walls being straight without regard to inequality of level in the rock.
34. The Acropolis of Mycene was probably constructed in an age ncarly the same as that of Tiryns. I'ausanias mentions a gate on which two lions were sculptured, to which the name of the Gate of the Lions has been given (fig. 13.) These are still in their original position. It is situate at the end of a recess about 50 ft . long, commanded hy projections of the walls, which are here formed of huge blocks of square stones, many placed on each other without breaking joint, which circumstance gives it a very inartificial appearance. The epistylium of the gate is a single stone 15 ft . long and 4 ft .4 in . high. To the south of the gate above mentioned the wall is much ruined. In one part something like a tower is discernible, whose walls, being perpendicular while the curtain inclines a little inward from its base, a projection remained at the top by which an archer could defend the wall below. The blocks of the superstructure are of great size, those of the sulsstructure much smaller. 'The gates excepted, the whole citadel is built of rough masser nf rock, nicely aljusted and fitted to each other, though the smaller stones with whicl: the
interstices were fille! have mostly disappeared. The southern ranparts of the citadel and all the other walls follow the natural irregularity of the precipice on which they stand. At
 its eastern point it is atticherl by a narrow isthmus to the momntain. It is a long irregular triangle, standing nearly east and west The walls are mostly of welljointed polygonal stones, although the rough construction occasionally appears. The general thickness of the walls is 21 ft ., in some places 25 ; their present height, in the most perfect part, is 43 ft . There are, in some places, very slight projections from the walls, resembling towers, whereof the most perfect one is at the south-east angle, ito breadth being 33 ft . and its height 43 ft . The size of the block whereon the lions are sculptured is 11 ft . broad at the base, 9 ft . high, and about 2 ft . thick, of a triangular form suited to the vecess made for its reception. This block, in its appearance, resembles the green basalt of Egypt.
35. In this place we think it proper to notice a building at Mycene, which has been called by some the Treasury of Atreus, or the tomb of his sin Agamemnon mentioned by
 Pausanias. This building at first misled some authors into a belief that the use of the arch was known in Greece at a very early period; but examination of it shows that it was formed by horizontal courses, projecting beyond cach other as they rose, and not by radiating joints or beds, and that the surface was afterwards formed so as to give the whole the appearance of a pointed dome, by cutting away the lower angles (fig. 14.). It is probably the most ancient of buildings in Greece ; and it is a curious circunstance that at New Grange, near Drogheda, in Ireland, there is a monument whose form, construction, and plan of access resemble it so strongly that it is impossible to consider their similarity the result of accident. A repre-
 sentation of this may be seen in the work by Mr. Higgins which we have so often quoted, and will, we think, satisfy the reader of the great probability of the hypothesis hereinbefore assumed having all the appearance of truth. By the subjoined plan (fig. 15.) it will be seen that a space 20 ft . wide, between the two walls, conducts us to the entrance, which is 9 ft .6 in . at the base, 7 ft .10 in . at the top, and about 19 ft . high. The entrance passage is 18 ft . long and leads to the main chamber, which, in its genera! form, has some resemblance to a bee-hive, whose diameter is about 48 ft . and height about 49. (fig. 16) The blocks are placed in courses as above shown, 34 courses being at present visible. They are laid with the greatest precision, without cement, and are unequal in size. Their
 the vertex. This monument has a second chamber, to which you enter on the right from the larger one just deseribed. This is about 27 ft by 20 , and 19 ft . high ; but its walls, from the obstruction of the earth, are not visible. The doorway to it is $9 \frac{1}{2} \mathrm{ft}$. high, 4 ft .7 in . wide at the base, and 4 ft .3 in. at the top. Similar to the larger or principal doorway, it has a triangular opening over its lintel. The stones which fitted into these triangular openings were of enormous dimensions, for the height of that over the principal entrance is 12 ft ., and its breadth 7 ft .8 in . The vault has becn either lined with metal or ornamented with some sort of decorations, inasmuch as a number of bronze nails are found fixed in the stones up to the summit. The lintel of the door consists of two pieces of stone, the largest whercof is 27 ft . long, 17 ft . wide, and 3 ft .9 in . thick, calculated, therefore, at 133 tons weight ; a mass whieh can be compared with none ever used in building, exeept those at Balbee and in ligypt. The other lintel is of the sane height, and probably (its ends are lidden) of
the sane lengtlo as the first. Its breadth, however, is only one foot. Its exterior has two farathel mouldings, which are continued down the jambs of the doonway.

36. The stone employed is of the lard and beantifill breceia, of which the neighivouring rocks, and the contignoris Mount Euborit, consist. It is the hardest and compactest breecia
 which Grecee produces, resembling the antique marble called Breceia Tracagnina antica, sometimes found among the ruins of Rome. Near the gate lie some masses of rosso antien decorated with guillache-like and zigang ornaments, and a columnar base of a Persian character. Some have supposed that these belonged to the decorations of the doorway ; but we are of a different opinion, inasmuch as they destroy its grand cha1atter. We think if this were the tomb of Agamemmon, they were much more likely, to lave been a part of the shrine in which the body or ashes were deposited.
37. It is conjectured that the trea sury of Minyas, king of Orchomenos, whercof I'ansanias speaks, bore a resemblance to the building we have just described; and it is very probable that all the subterrancan chambers of Greece, Italy, and Sicily were very similarly constructed. Fig. 17. represents the entrance to the building fro ${ }^{\text {a }}$ the outside. The architccture of the early races of which we have been speaking will be further noticed in investigating other monurents. Sce the nublications by Fergusson, Rude Stone Monuments in all Countries, 8vo., 1872; and Schiomam, Justarches, \&ic., at Mycence and Tiryns, 8vo., 1878.

Sect. III.

babyionian architecturf.

38 The name prefixed to this section must not induce the reader to suppose we shall be able to afford him much instruction on this interesting subjeet. The materials are scanty; the monuments, thongh once stupendous, still more so. "If ever," says Keith, in his Evidence of the Truth of the Christian Religion, " there was a city that seemed to bid defiance to any predictions of its fall, that city was Babylon. It was for a long time the most famous city in the Old World. Its walls, whieh were reckoned among the wonders of the world, appeared rather like the bulwarks of nature than the workmanship of man." The city of babylon is thus described by ancient writers. It was situated in a plain of vast extent, and divided into two parts by the river Euphrates, which was of considerable width at the spot. 'The two divisions of the city were connected by a massive bridge of masomry strongly comected with iron and lead; and the embankments to prevent inroads of the river were formed of the same durable materials as the walls of the city. Herodotus says that the city itself was a perfect square enclosed by a wall 480 furlongs in circunsference, which would make it eight times the size of London. It is said to have had numbers of houses three or four stories in height, and to have been regnlarly divided into streets ruming parallel with each other, and cross ones opening to the river. It was surrounded by a wide and deep trench, from the earth whereof, when excavated, square bricks were formed and baked in a furnace. With these, cemented together through the medium of heated bitumen intermixed with reeds to bind together the viscid mass, the sides of the trenches were lined, and with the same materials the vast walls above mentioned were constructed. At certain intervals watch-towers were placed, and the city was entered by 100 gates of brass. In the centre of each of the principal divisions of the city a stupendous publie monument was erected. In one (Major lennel thinks that on the eastern side) stood the temple of Belus; in the other, within a large strongly fortified enclosure, the royal palaee. The former was a square pile, each side being two furlongs in extent. The tower erected on its centre was a furlong in breadth and the same in height, thus making it higher than the largest of the pyramids, supposing the furlong to contain only 500 feet. On this tower as a base were raised, in regular succession, seven other lofty towers, and the whole according to Diodorus, crowned with a bronze statue of the god Belus 40 feet high.

See fig. 18., in which the dotted lines slow the present remains, according to Sir R. K. Porter's account in his Travels. The palace, serving also as a temple, stood on an area $1 \frac{1}{2}$ mile square, and was surrounded by circular walls, which, according to Diodorus, were deeorated with sculptured animals resembling life, painted in their natural colours, on the bricks of which thes were depicted, and afterworls burnt in. Such was the city of Babyton in its meridian splendour, that city whose founder (if it were not Nimrod, sometimes called Belus, is unknown. Great as Fis. is. was enlarged by Semiramis, and still further enlarged and fortified by Nebuchathezar. We shall now present, from the account of Mr. Rich, a gentleman who visited the spot early in this century, a sketch of what the city is now. 'The nirst grand mass os ruins marked A (fig. 19.), wheh the above gentleman describes, he says extends 1100 yards in length and 800 in its greatest breadth, in figure nearly resembling a quadrant ; its height is irregular, but the most elevated part may be about 50 or 60 ft . above the level of the plain, and it has been dug into for the purpose of procuring bricks. This mound Mr. K. distingnisles by the name of Amran. On the north is a valley 550 yards long, and then the second grand heap of mins, whose shape is nearly a square of 700 yards long and broad: its south-west angle being comnected with the north-west angle of the mounds of Amran by a high ridge nearly 100 yards in breadth. This is the place where Beanchamp made his observations, and is highly interesting from every vestige of it being composed of buildings far superior to those whereof there are traces in the eastern quarter. The bricks are of the finest deseription, and, not withstanding this spot being the principal magazine of them and constantly used for a supply, are still in abmadance. 'The operation of extracting the hricks has cause; much confinsion, and increased the difficulty of deciphering the use of this mound. In some places the solid mass has been bored into, and the superincumbent strata falling in, frequently bury workinen in the mbhish. In all these excavations walls of burnt brick laid in lime mortar of a good quality are to be seen; and among the mins are to be fomed fragments of alabaster vessels, fine earthenware, marble, and errent puantities of varnished tiles, whose glaxing and colonring are surprisingly fresh. "In a
hollow," obstrves Mr. Rich, " near the southern part, I found a scpulchral urn of earthen.

Pig. 19. than oy habklin. ware, which had heen broken in digging, and near it lay some human bones, which pulverised with the touch." Not more than 200 yards from the northern extremity of this mound, is a ravine near 100 yards long, hollowed out by those who dig for bricks, on one of whose sides a few yards of wall remain, the face whereof is clear and perfect, and appears to have been the front of some building. The opposite side is so confused a mass of rubbish, that it looks as if the ravine had been worked through a solid building. Under the foundations at the southern end was discovered a subterranean passage floored and walled with large bricks in bitumen, and covered over with pieces of sandstone a yard thick and several yards long, on which the pressure is so great as to have pushed out the side walls. What was seen was near seven feet in height, its course being to the south. The upper part of the passage is cemented with bitumen, othcr parts of the ravine with mortar, and the bricks have all writing on tham. At the northern end of the ravine an excavation was made, and a statue of a lion of colossal dimensions, standing on a pedestal of coarse granite and rude workmanship, was discovered. This was about the spot marked E on the plan. A little to the west of the ravine at B is a remarkable ruin catled the Kasr or I'alace, which, being uncovered, and partly detached from the rubbish, is visible from a considerable distance. It is "so surprisingly fresh," says the author, "that it was only after a minute inspection I was satisfied of its being in reality a Babylonian remain." It consists of several walls and piers, in some places ornamented with niches, and in others strengthened by pilasters of burnt brick in lime cement of great tenacity. The tops of the walls have been broken down, and they may have been much higher. Contiguous to this ruin is a heap of rubbish, whose sides are curiously streaked by the alternation of its materials, prohably unburnt bricks, of which a small quantity were found in the neighbourhood, without however any reeds in their interstices. A little to the N. N. E. of it is the famous tree which the natives call Atheh. They say it existed in ancient Babylon, and was preserved by God that it miglit afford a convenient place to Ali for tying up his horse after the battle Hellah !" "It is an evergreen," says Mr. R., " something resembling the lignum vite, and of a kind, I believe, not common in this part of the country, though I am told there is a tree of the description at Bassora." The valley which separates the mounds just described from the river is white with nitre, and does not now appear to have had any buildings upon it except a small circular heap at D. The whole embankment is abrupt, and shivered by the action of the water. At the narrowest part E, cemented into the burnt brick wall, there were a number of urns filled with human bones which had not undergone the action of fire. From a eonsiderable quantity of burnt bricks and cother fragments of building in the water the river appears to have encroached here.
39. A mile to the north of the Kasr, and 950 yards from the bank of the river, is the last ruin of this series, which Pietro della Valle, in 1616, described as the tower of Belus, in which he is followed by Rennell. The natives call it, according to the vulgar Arab pronunciation of those parts, Mujelibè, which means overturned. They sometimes also apply the same term to the mounds of the Kasr. This is marked F on the plan. "It is of an oblong shape, irregular in its height and the measurement of its sides, which face the cardinal points as follows: the northern side 200 yards in length, the southern 219 , the eastern 182, and the western 136. The elevation of the south-east or highest angle, 141 feet. The western face, which is the least elevated, is the most interesting on account of the appearance of building it presents. Near the summit of it appears a low wall, with interruptions, built of unburnt bricks mixed up with chopped straw or reeds and cemented with clay mortar of great thickness." The south-west angle seems to have had a turret, the others are less perfect. The ruin is much worn into furrows, from the action of the weather, penetrating eonsiderably into the mound in some places. The summit is covered with heaps of rubbish, among which fragments of burnt brick are found, and here and there
whole bricks with mscriptions on them. Interspersed are innumerable fragments of pottery, brick, bitumen, pebbles, vitrified brick or scoria, and even shells, hits of glass, and mother
 of pearl. The northern face of the Mujelilé (fig. 20.) contains a niche of the height of a man, at the hack whereof a low aperture leads to a small cavity, whence a passage branches off to the right till it is lost in the rubhish. It is called by the natives the serdaub or eellar, and Mr. Rieh was informed that four years previous to his survey, a quantity of marble was taken out from it, and a coffin of mulbery wood, in which was contained a human body enclosed in a tight wrapper, and apparently partially covered with bitumen, which crumbled into dust on exposure to the air. About this spot Mr. R. also excavated and found a coffin containing a skeleton in high preservation, whose antiquity was placed beyond dispute by the attachment of a brass bird to the outside of the eoffin, and inside an ornament of the same material, which had seemingly heen suspended to some part of the skeleton. On the western side of the river there is not the slightest vestige of ruins exeepting opposite the mass of Amran, where there are two small mounds of earth in existence.
40. The most stupendous and surprising mass of the ruins of ancient Babylon is situate in the desert, about six miles to the south-west of Hellah. It is too distant to be shown on the block plan above given. By the Arahs it is called Birs Nemroud; by the Jews, Nebuchadnezzar's Prison. Mr. Rich was the first traveller who gave any accom. of this ruin, of which fiy. 21. is a representation; and the description following we shall present in Mr. Rich's own words. " The Birs Nemroud is a mound of an ohlong figure, the total circunference of which is 762 yards. At the eastern side it is cloven by a dcep furrow, and is not more than fifty or sixty feet high; but at the western it rises in a conical figure to the elevation of 198 ft ., and on its summit is a solid pile of brick 37 ft . high by 28 in breadth, diminishing in thickness to the top, which is broken and irregular, and rent by a large fissure extending through a third of its height. It is perforated by small square holes disposed in rhomboids. The fine burnt bricks of which it is built have inscriptions on them ; and so adinirahle is the cement, which appears to be limemortar, that, thongh the layers are so close together that it is difficult to discern what substance is between them. it is nearly impossihle to extract one of the bricks whole. 'The other parts of the summit of the hill are occupied by immense fragments of hrick work, of no determinate figure, tumbled together and converted into solid vitrified masses, as if they lad undergone the action of the fiercest fire or been hlown n with gumpowder, the layers of the bricks being perfectly discernible,-a curious fact, and one for which I am utterly incapahle of accounting. These, incredible as it may seem, are actually the ruins spoken of by Pére Emamel (See D'Aurille, sur l'Enphrate et le T'igre), who takes no sort of notice of the prodigious mound ou which they are elevated." The mound is a majestie ruin, and of a people whose powers were but lost, if the hypothesis brought befare the reader in the previous section an Celtic and Druidical architecture be founded on the basis of truth, but shown afterwards, on their separation from the parent stock, in Abury, Stonchenge, Carnac, and many other places. Ruins to a considerable extent exist round the lBirs Nemroud; but for our purpose it is not necessary to particularise them. The chance (for more the happiest conjecture would not warrant) of conclusively enabling the reader to come to a certain and definite notion of the venerahle eity, whereof it is our object to give him a faint idea, is far too indefinite to detain him and exhatst his patience. One circumstance, however, we must not onnit; and again we shall use the words of the traveller to whon we are umber so many obligations. 'They are, - "I'o these rnins I must add one, which, thongh wot in the shme direction, bears such strong characteristics of a Bahylonian origin, that it would be
improper to omit a description of it in this place. I mean akerkonf, or, as it is more gemerally ealled, Nimrod's 'lower ; for the inhabitants of these parts are as fond of attributing every vestige of antiguity to Nimrod as those of Egypt are to Pharaoh. It is situate ten miles to the north-west of bagdad, and is a thick mass of unburnt brickwork, of an irregular shape, rising out of a base of mbbish; there is a layer of reeds betweer every fifth or sixtl, (for the number is not regulated) layer of bricks. It is perforated witt. small square holes, as the brickwork at the birs Nemroud; and about half way up on the east side is an aperture like window; the layers of cement are very thin, which, considering it is mere mud, is an extraordinary circumstance. The height of the whole is 126 ft ; diameter of the largest part, 100 ft . ; circumference of the foot of the brichwork above the rubbish, 300 ft ; the remains of the tower contain 100,000 cubie feet. (Vide Lees's Travels, p. 298.) To the east of it is a dependent mond, resembling those at the birs and Al Hhcimar."
41. The inguiry (following Mr. Rich) now to be pursued is that of identifying some of the remains which have been described with the description which has been left of them. And, first, of the circuit of the city. The greatest circumference of the city, aceording to the antho:s of antiguity, was 480 stadia (supposed about 500 ft . each), the least 360 . Strabo, who was on the spot when the walls were sufficiently perfect to judge of their extent, states their eireuit at 385 stadia. It seems probable that within the walls there was a quantity of arable and pasture ground, to enable the population to resist a siege; and that, unlike modern eities, the buildings were distributed in groups over the area inclosed; for Xenophon reports that when Cyrus took Babylon (which event happened at night) the inhabitants of the opposite quarter of the town were not aware of it till the third part of the day; that is, three hours after sumrise. The accounts of the height of the walls all agree in the dimension of 50 cubits. whieh was their reduced beight from 350 ft . by Darius IIystaspes, in order to render the town less defensible. 'The embankment of the river with walls, according to Diodorns 100 stadia in length, indicates very advanced engineering skill; but the most wonderfil structure of the city was the tower, pyramid, or sepulchre of Belus, whose base, according to Strabo, was a stadium on each side. It stood in an enclosure of two miles and a half, and contaned the temple in which divine honours were paid to the tutelary deity of babylon. The main interest attached to the tower of Belus arises from a belief of its identity with the tower which we learn from Scripture (Gen. xi.) the descendants of Noah, with Belus at their head, constructed in the plains of Shinar. The two masses of ruins in which this tower must be songht, seem to be the Birs Nemroud, whose four sides are 2286 Euglish feet in length; and the Mujelibé, whose circumference is 2111 ft . Now, taking the stadium at 500 ft , the tower of Belus, according to the accotants, would be 2000 ft . in eircumference; so that both the ruins agree, as nearly as possible, in the reguisite dimensions, considering our meertainty respeeting the exact length of the stadium. Mr. Rich evidently inclines to the opinion that the Birs Nemroud is the ruin of this eelebrated temple, though he allows "a very strong objection may be bronght against the Birs Nemroud in the distance of its position from the extensive remains on the eastern bank of the Euphrates, which for its accommodation would oblige ns to extend the measurement of each side of the square to nine miles, or adopt a plan which would totally exclude the Mujelibe, all the rinins above it, and most of those helow : even in the former case, the Whjelibe and the Birs would be at opposite extremities of the town close to the walls, while we have every reason to believe that the tower of Belus oceupied a eentral situation."
42. The citadel or palace was surrounded by a wall whose total length was 60 stadia, withm which was another of 40 stadia, whose inner face was ornanented with painting, a practice (says Mr. Rich) among the Persians to this day. Within the last-maned wall w is a third, on which hunting subjects were painted. The old palace was on the opposite sile of the river, the outer wall whereof was no larger than the imner wall of the new one. Aloove the palace or citadel were, according to Strabo, the hanging gardens, for which, in some respects, a site near the Mujelibs would sutficiently answer, were it not that the sceletons found there combarrass almost any theory that may be formed on this extraordinary pile."
43. As yet, no traces have been found of the tunnel under the Euplmates, nor of the obelisk which Diodorns says was erected by Semiramis; it is not, however, impossible that the diligence and perseverance of future travellers may bring them to light. Rich believes that the mumber of buildings within the city bore no proportion to the extent of the walls, -a circumstance which has already been passingly noticed. Ile moreover thinks that the houses were, in gencral, small; and further, that the assertion of Herodotus, that it abounded in houses of two or three stories, argues that the majority consisted of only one. He well observes, "The peculiar climate of this distriet must have cansed a similarity of habits and accommodation in all ages; and-if, upon this principle, we take the present fashion of building as some example of the mode heretofore practised in babylon, the bonses that had more than one story must have consisted of the ground foor, or basse-cour, necupied by stables, magazines, and serdabs or cellars, sunk a little below the gromid. for
the comfort of the inhabitants during the heat; above this a gallery with the lodging zooms opening into it ; and over all the flat terrace for the people to sleep on during the summer." In these observations we fully concur with the author, bclieving that climate and habits influence the arts of all nations.
44. At Nineveh the extraordinary discoveries of Botta and Layard have made us familiar with at least the decorations and arrangement of Assyrian arehitecture. The city, founded. as supposed, by Ninus or Assur about 2,200 r.c., fell bef,re the rising wealth of Babylon. Here, from the palace of Kouyunjik, Rawlinson establishes the identity of the king who built it witl the Sennacherib of Scripture. Its date would therefore be about $713 \mathrm{~B} . \therefore$ The sculptures at this place so much rescmble those at Persepolis, and the arrow-headed characters also are so similar to them, as well as those of Babylon, that we may fairly conjecture similarity of habits and taste. Indeed, as the Persian empire grew out of the ruins of the Assyrian empire; and Persepolis, as a capital, succeeded to the capitals of Assyria, we may, withont much far of being wrong, judge by its architecture of that of its predecessors. Greater almost at its birth than ever afterwards, in this part of Asia the art seems all at once to have risen, as respects absolute grandeur, to the highest state of which it was there susceptible; and, d:generating successisely under the hands of other pcople, we may reekon by the periods of its decay the cpochs of its duration.
4.5. No trace of the arch has been found in the ruins either at the Kasr or in the passages at the Mujelibe. Massy piers, buttresses, and pilasters supplicd the place of the column. The timber employed was that of the date tree, posts of which were used in their domestic architecture, round which, says Strabo, they twist reeds and apply a coat of paint to them. Thickness of wall was obtained by casing rubble work with fine brick, of which two sorts were made. The one was merely dried in the sun, the other burned in a kiln. The latter was 13 in . square and 3 in . thick, with varieties for different situations in the walls. They are of various colours The sum-dried is considerably larger than the kiln-dried. There is reason for believing that lime cement was more generally used than bitumen or clay; indeed, Niebuhr says that the bricks laid in bitumen were easily separated, but that where mortar had been employed, no force could detach them from each other without breaking them in pieces.

Sect. IV.
persefolitan ant fersian architecture.
46. Persepolis was the ancient capital of Persiis proper. The ruins now remaining are situated (lat. about $30^{\circ} \mathrm{N} .$, long. about $53^{\circ} \mathrm{E}$) in the great plain of Merdasht or Istakhr, one of the most fertile in the world, being watcred in all directions by rivulets and artificial drains, which ultimately unite in the Bundemir, the ancient Araxes. The site would, like Memphis, have scarcely left a vestige by which it could have been identified, but for the celebrated ruins called Chel-Minar (fig. 22.), i.e. Forty Pillars, by the natives, which are believed to be the remains of that palace of the masters of Asia

to which Alexander set fire in a moment of madness and debanch. The deseription which follows is obtained from De Bruvi, who examined the ruins in 1704, with some reference also to Niebuhr and Sir R. K. Porler. Mons. Texier, ene of the latest travellers, has rlevot d many platrs to these antiquities, in his large work. Arménie, \&̧c., 1842 ; see also Vaux, Nineveh and P'ersepulis, $\&$ c., 1855 ; and Fergusson, Pulaces of Nineveh and Persepolis Restorel, 8vo., 18.5 t.
47. The ruins are situated at the foot and to the weat of the mountain Kulirag met. On three sides the walls are rumainiug, the moun'ain to the east forming the other side.

From north to south the extent is 600 paces (1425 ft), and 390 (802 ft .) from west to east to the mountain on the sonth side, having no stairs on that side; average height about 18 ft .7 in . On the north side it is 410 paces (926 ft .) from east to west, and the wall is 21 ft . high in some places. At the north-west corner of the wall, about 80 paces in extent westward, are some rocks before the prineipal stairease. On mounting the steps there is found a large platform 400 paces in extent towards the mountan. Along the wall on three
 sides a payement extends for a width of 8 tt. The principal staircase A (fig. 23.) is not placed in the middle of the west side, but nearer to the north. It has a double flight, the distance between the flights at the bottom being 42 ft ., and the width of them is 25 ft .7 in . The steps are 4 in. ligh, and 14 in. wide. Fiftyfive of them remain on the north side, and fifty-tluree on the south; and it is probable that some are buried by the ruins. The half spaces at the top of the first flight are 51 ft .4 in . wide. The upper flights are separated from the lower by a wall which runs throngh at the upper landing. The mper flights are in forty-eight steps, and are cut out of single blocks of the rock. The upper landing is seventy-five feet between the fights.
48. Forty-two feet from the landing, at 13 , are two large portals and two columns (originally four). The bottom of the first is covered with two blocks of stone, which fill two thirds of the space; the other third having been destroyed by time. The seeond portal is more covered by the earth than the first, by five feet. 'They are 22 ft .4 in . deep, and 13 ft .4 . in. wide. On the interior side-faces of their piers, and nearly the whole length of them, are large figures of bulls, cut in bas-relief. The heads of these animals are entirely destroyed; and their breasts and fore feet project from the piers: the two of the first portat face to the stairease, and those of the other face towards the mountain. On the "pper part of the piers there are some arrow-headed eharacters, too small to be made out

Fig. 24. and gromm. From hence to the northe:n wall of the platform is eovered with fragments; and the remains of one eolumn not chametled as the others are; this is 12 ft .4 in . hioh.
49. At one hundred and seventy-two feet from the portals, southward, is anceher starase of two flights (lettered C), one west and the other cast. On the top of the ramp of the steps are some foliages, and a lion tearing to pieces a bull, in bas-relief, and larger than hature. This staircase is half buried. The western flight has twenty-eight steps, and the sther, where the ground is higher, has only eighteen. These steps are 17 ft . long, 3 in . igh, and $14 \frac{1}{2} \mathrm{in}$. wide. The wall of the landing is sculptured with three rows of fignres, me above the other, and extending ninety-eight feet. 'The faces of these inner terrace walls are all decorated with bas-reliefs, of
 which $f g .25$. is a specinen. On arriving at the top of this staircase, was found another large platform, paved with large blocks of stone; and at the distance of twenty-two feet two inches from the parapet of the landing, are the most northern columns (lettered D), originally twelve in number, whereol in Sir R. K. Porter's time only one remained. At seventy-one feet southvard from these stood thirty-six columns more, at intervals of twenty-two feet two inches rom each other, whereof only five now remain; the bases, however, of all the others are in heir places, though most of them are much damaged. This group of cclumns is lettered E. 'T'o the east and west of the last-named group are two other groups of twelve each narked F and G, whereof five still remain in the castern one, and four in the western one. l'he columms of the central group are fifty-five feet high; and those of the other three roups are sixty feet in height. To the south of the three groups of columns is situate the nost raised building on these ruins. On the east, towards the mountain, a large mass of nins is visible (lettered HI), consisting of portals, passages, windows, \&c. The first are lecorated with figures on the interior ; and the whole plot on which they stand is 95 paces rom east to west, and about 125 paces from north to south. The centre part of the plot is overed with fragments of colmmas and other stones; and in the interior part there seems o have been a group of seventy-six colmmns, whereof none are represented by Sir R. K. l'orter, nor are they shown in either of Le Bruyn's views. The highest building as to evel, narked I, is 118 ft . distant from the colnmms lettered G. Some foundations are isible in front of this buidding, to which there is not the slightest trace of a starcase. At ifty-three feet from the façale of it to the right is a staircase of double flight, marked k, whese again bassi relievi are to be found, near which are the remains of some portals vhich Le Bruyn thinks were destroyed by an earthquake. The next ruin (L) is $54 \frac{1}{2} \mathrm{ft}$. in xtent, and has portals similar to those in other parts of the place. To its north, M xhibits uniform features, with windows, and what travellers have agreed to call niches, which are nothing more than square-headed recesses. Sculpture here again abounds, whereof we do not think a deseription necessary, as in fig. 25. a specimen of it has bern civen, sufficient to indicate its character. Behind this edifice is another, in some respects imilar, except that it is thirty-eight feet longer. It is marked N on the plan. One hundred feet to the south of this last set of ruins (lettered O), Sir R. K. Porter seems o have found traces of columns, which, if we read le bruyn rightly, he does not mention. in this, the last-named traveller found a stairease leading to snbterranean apartments, as he lought, but nothing of interest was discovered. 'The general dimensions of the building l) extend about 160 ft . from north to sonth, and 190 ft . from east to west. It exhibits ten portals in ruins, besides other remains; and there are traces of thirty-six olums, in six ranks of six each. The spot is covered with fragments, under which have reen traced conveyances for water. To the west of the last-named building was another intirely in rnins : to the east of it are visible the remains of a fine staircase, much resembling hat first described, and which, therefore, we do not think it necessary to particularise, nore than we do the numberless fragments seattered over the whole area, which was equal o ncarly thirty English acres! The ruins at Q are of portals. At $I R$ and S are tombs ont in the rock, of curious form, but evidently, from their character, the work of those who onstructed the enormous pile of bnilding of which we have already inserted a repreentation. Letween the leading forms of the portals of these ruins, or porticoes, as le Brnyn calls them, and those of the structures of Egypt, there is a very striking resemblance. (On comparison of the two, it is impossible not to be struck with the large crowning holowed member, which seems to have been common to the edifices on the banks of the Nile and those on the plain of Merdasht. In both, this member, forming, as it were, an enablature, is omamented with vertical ribs or leaves, and the large fillet above the hollow ppears equally in each. In the walls of the Persepolitan remains, there is perhaps less real nassiveness than in those which were the works of the Eitryptians; but the similarity of prearance between them points to the conjecture that, though neither might have bodn nrowed from the other, they are not many removes firm one common parent. The an-
nexed diagram (fig. 26.) will give the reader some notion of the style of the architecture of

Persepolis. The diagram (fig. 27.) exhibits a specimen of a column and eapital. Fig. 28. is a capital from one of the tombs. The walls forming the revetement of the great esplanade are wonderfilly perfect ; and appear still capable of resisting equally the attaeks of time and barbarism. The surface of the platform, generally, is inequal, and was of different levels: the whole seems to lave been hewn from the monntain, from whenee the marble has been extracted for construeting the edifices: hence the pavements appear masses of marble, than which nothing more durable or beautifill ean be conceived. No cement appears to tave been used, hut the stones seem to have been comeeted by cramps, whose removal, however, has neither deranged the comses from whieh they lave been removed, nor affeeted their nice fitting to each other; Figsiz. cornans they are, indeed, so well wronght that the

Fín. 2 S . CAPHTAS FRUB A TOBM.
and capranto joints can searcely be perceived.
50. No person ean look at the style of composition and details of Persepolis withont a conviction of some intimate connection between the architects of Persia and those of Egypt.

Fix. 29.
Arbow-hikhila clianacters. The principles of both are identical ; and without inguiring into the exaet date of the monument whose deseription we have just left, there is sufficient to eonvince us that the theory started in respect of the Cyclopean architecture, of the arts travelling in every direction from some eentral Asiatic point, is fully borne out; and that the Eg:ptian style had its origin in Asia. We are quite aware that eonjectures, bearing a semblance of probahility, have assigned the erection of this stappendons palace to Egyptian eaptives, at a comparatively late period, after the conguest of Egypt by

Fig. $\overline{0} 0$.
AAKSHI BUSTAA.

Cambyses; but we think they are answered by the similarity o arrow-headed eharacters used therein to those of ancient babylon, whereof an example i here given (fig. 29.) fron one of the portals of l'ersepolis. A few miles to the sonth o Persepolis, tle hill of Nakshi IGustân (fig. 3C.) presents a number of seuptured tomb:
the highest supposed to be coeval with Perscpolis, and formed for the scpulture of the early kings of Persia; and the lower to have belonged to the Parthian Sassanide dynasties.

51a. The early Persians wele doubtless indebted to the still earlier Assyrians for the principles on which their art was haser. Persepolis lies castward of Nineveh; its remains afford a more intmate acquaintance with the details and construction empliyed. In beth piaces we find the same ariangement of bassi rilievi against the walis-entrances decorated with gigantie winged animals, beating himan beads-similarity in ornament and costume -processions like those at Nimroud and Khor-abad. The enneiform character (see fig. 29.) is nov a known langrage; and from an inseription found on the third terrace. the structure is a signed to the bine of Darius. Susa, the ancient Shushan, the winter residence of Cyrus, was explored by Mr. Loftns in 1851; and in 1886 by Mons. Dieulafoy, "ho has brought to the muccum at the Louve some fine examples of coloured tile wall wonks of the tine of Darius. b.c. $521-485$. The plan much resembled that at Persepolis, ar d both may have heen designed by the same architeet.

ㅎ h . The present arehitecture of Persia mueh resembles that of other Mahometan comtries. The city of Ispahan, in its prosperity, is said to have been surrounded by a wall wenty miles in eircuit. The houses are generally mean in exteroal appearance: they commonly consist of a large square court, surrounded with rooms of varying dimensions for different uses, the sides of the area being planted with flowers, and refreshed by fountains. Distinct from this is a smaller court, round which are distributed the apartments belonging to the females of the family ; and almost every dwelling has a garden attached to it. The interior apartments of the richer chasses are splendidly finished, though simply furnished. 'Inose iohabited by the governor, public officers, and opulent merchants, may alonost vie with palaces. Nearly all are constructed with sun-dried bricks, the publie edifices only being built with burut bricks; the roofs, mostly flat, have terraces, whereon the inhabitants sleep during several months of the year. According to Clardin, there were in his time within the walls 1 t 0 mosques, 48 eolleges, 1802 earavanseras, 273 baths, 12 cemeteries, and 38,000 houses. But the city has since fallen into great ruin. 'The Shah Meidan, however' (figs. 31.

and 32.), or royal square, is still one of the largest and finest in the world. It is 440 paces in length, and 160 in breadth. On its south side stands the royal mosque, erected by Shah Abbas, in the sixteenth eentury, and constructed of stone, covered with highly varnisherl bricks and tiles, whereon are inseribed sentences of the Koran. On another side of the Meidan is a Mahometan coliege called the Medresse Shah Sultan Hossein. The cutrance is through a lofty portico decorated with twisted columns of Tabriz marble, leading through two brazen gates, whose' extremities are of silver, and their whole sur ace sculptured and embossed with flowers, and verses from the Koran. Advaneing into the court, on the right side is a mosque, whose done is eovered with lacquered tiles, and adoroed externally with ornaments of pure gold. This, and the minarets that flank it, are n w falling into decay. The other sides of the square are oecupied, one, by a lofty and beautiful portico, and the remaining two by small square cells for stndents, twelve in cach front, disposed in two stories. In the eity are few hospitals; one stands, however, beride the earavanserai of Shal Abbas, who erected both at the same tume, that the revenue of the later might support the proper wficers of the hospital. That the reader math have a proper idea of one of thene inns of the

Honst, is they may be so ealled, we have here given the plan of that just above named (fi!/. 33.). 'The palaces of the kings are enelosed in a fort of lofty walls, about three miles in cireuit; in general the front room or hall is very open, and the roof supported by carved and gilded eolumns. The windows glazed with euriously stained glass of a variety of colours; each has a fountain in front. The palaee of Chehel Sitoon or forty pillars, is placed in thr middle of an inmense square intersected by canals, and planted with trees. Towards the garden is an open saloon whose eeiling is borne by eighteen columns, inlaid with mirrors, and appearing at a distance to eonsist entirely of glass. The base of each is of nimble, seulptured into four lions, so placed that the shafts stand on them. Mirrors are distributed on the walls in great profusion, and the eeiling is ormmented with gilt flowers. An arehed recess leads from the apartment just deseribed into a spacions and splendid hall. whose roof is formed into a variety of domes, deeorated with painting and gilding. The walls are partly of white marble, and partly eovered with mirrors, and are moreover decorated with six large paintings, whose subjects are the battles and royal fetes of Shah Ismael and Shah Abbas the Great. Though of considerable age, the colours are fresh, and the gilding still brilliant. Adjoining the palace is the harem, erected but a few years ago. The bazaars are much eelebrated; they consist of large wide passages, arched, and lighted from above, with buildings or stores on each side. One of these was formerly 600 geometrical paces in length, very broad and lofty. From these being adjacent to each other, a person might traverse the whole city sheltered from the weather. In Ispahan, we must not forget to notiee that some fine bridges exist, which eross the river Zenderond.

Sect. V.

JFWLSII ANH PIICENICIAN ARCHITECTURE.

52. We are seareely justified in giving a seetion, though short, to the arehiteeture of the Jews, since the only buildings reeorded as of that nation are the Temple of Jerusaiem eonstrueted by Solomon, and the house of the forest of Lebanon. The shepherd tribes of Israel, indeed, do not seem to have required sueh dwellings or temples as would lead them, when they settled in eities, to the adoption of any style very different from that of their neighbours. Whatever monuments are mentioned by them appear to have been rude, and have been already noticed in the scetion on Druidieal and Celtic arehiteeture. When Solomon asended the throne, anxious to fulfil the wish his father had long entertained of erecting a fixed temple for the reception of the ark, he was not only obliged to send to Tyre for workmen, but for an arehiteet also. Upon this temple a dissertation has been written by a Spaniard of the name of Villalpanda, wherein he, with consummate simplieity, urges that the orders, instead of being the invention of the Greeks, were the invention of God rimself, and that Callimachus most shamefully put forth pretensions to the formation of the Corinthian eapital which, he says, had been used centuries before in the temple at Jerusalem. The following aceount of the temple is from the sisth ehapter of the First Book of Kings, Its plan was a parallelogram (taking the eubit at 1.824 ft ., being the length generally assigned to it) of about $109 \frac{1}{2} \mathrm{ft}$. by $36 \frac{1}{2} \mathrm{ft}$., being as nearly as may be two thirds of the size of the chureh of St. Martin's in the Fields. In front was a pronaos, or portico, stretehing through the whole front ($36 \frac{1}{2} \mathrm{ft}$.) of the temple, and its depth was half its extent. The cell, or main body of the temple, was $54 \frac{3}{4} \mathrm{ft}$. deep, and the sanetuary beyond $36 \frac{1}{2}$ feet, the height of it being equal to its length and breadth. The height of the middle part, or cell, was $54 \frac{3}{4} \mathrm{ft}$. ; and that of the portico the same as the sanetuary, - that is, $36 \frac{1}{2} \mathrm{ft}$, - judging from the height of the eolumns. In the interior, the body of the tomple was surrounded by three tiers of chambers, to which there was an aseent by stairs; and the central part was open to the sky. The ends of the beams of the floors rested on corb. Is of stone, and were not inserted into the walls, whieh were lined with eedar, carved into
cherubims and palm trees, gilt. In the sanctuary two figures of cherubs were paced. whose wings tonched each other in the centre, and extended outwards to the walls. These were 10 cubits ligh. In the front of the portico were two pillars of brass, which were cast by Hiram, "a widow's son of the tribe of Naphtali," whose "father was a man of Tyre,"
 and who " came to king Solomon and wrought all his work." These two pillars of brass (1 Kings, vii. 14, 15.) were each 18 cubits high, and their circumference was 12 cubits; hence their diameter was 3.82 cubits. The chapiters, or capitals, were 5 cubits high; and one of then was deeorated with lilies upon a net-work gromed, and the other with pomegranates. From the representation ($f i g, 34$.) here given, the reader must be struck with their resemblance to the eolumns of Egypt with their lotus leaves, and sometimes net-work. In short, the whole description would almost as well apply to a temple of Egypt as to one at Jerusalem. And this tends, Fir. 31. though slightly it is true, to show that the Phonician workmen who were employed on the temple worked in the same style as those of Egypt.
53. The house of the forest of Lebanon was larger than the temple, having been 100 cubits in length, by 50 in breadth; it also had a portico, and from the description scems to have been simitar in style.
54. Phemician Architecture. - That part of the great nation of Asia which settled on the coasts of Palestine, called in scripture Canaanites, or merchants, were afterwards by the Greeks called Phoenieians. Sidon was originally their capital, and Tyre, which afterwards becane greater than the parent itself, was at first only a eolony. From what we Lave said in a previous section on the walls of Mycene, it may be fairly presumed that their architecture partook of the Cyclopean style; but that it was much more highly decorated is extremely probable from the wealth of a people whose merchants were princes, and whose traffiekers were the honourable of the earth. Besides the verses of Euripides, which point to the style of Plomician architecture, we have the authority of Lucian for asserting that it was Egyptian in character. Unfortunately all is surmise; no monuments of lhoenician architecture exist, and we therefore think it useless to dwell longer on the subject.

Sect. VI.

INHAN ARCHITECTURE.

55. Whence the countries of India derived their architecture is a question that has occuphed abler pens than that which we wield, and a long period has not passed away since the impression on our own mind was, that the monuments of India were not so ohd as those of Fgypt. Upon maturer reflection, we are not sure that impression was false; but if the arts of a country do not change, if the manners and habits of the people have not varied, the admis-
 sion of the want of ligh antiquity of the monuments actually in existence will not settle the point. The capitals and columns about Persepolis have a remarkable similarity to some of the Hindoo examples, and seem to indicate a common origin; indeed, it is our opinion, and one which we have not adopted without considerable hesitation, that though the existing buildings of India be comparatively modern, they are in a style older than that of the time of their erection. Sir William Jones, whose opinion seems to lave been that the Indian temples and edifices are not of the highest antiquity, says (3rd Discourse), "that they prove an early eonnection between India and Africa. The pyramids of Egypt, the colossal statnes described by Pausanias and others, the Sphinx and the Hermes Canis (which last bears a great resemblance to the Varáhávatír, or the incarnation of Vishmu in the form of a boar), indicate the style and mythology of the same indefatigable workmen who formed the vast excavations of Canárah, the various temples and images of Suddha, and the idols which are continually dug up at Gayá or in its vicinity. 'The letters on many of these monuments appear, as I have before intimated, partly of Indian and partly of Abyss.aian or Ethiopic origin ; and all these indubitable facts may induce no ill-gronnded opinion that Ethiopia and Hindustan were peopled or colonised by the same extraordinary race." In a previous page (fig. 27.), the reader will find a Persepolitan column and capital ; we place before him, in fig. 35., an example from the Indra Subba which much resembles it in detail, and at the Nerta Chabei at Chillambaram are very similar examples. Between the styles of Persepolis and Egypt a resemblance will be hereafter traced, and to such an extent, that there seems no reasonable doubt of a common origin. The monuments of India may be divided into two classes, the excavated and constructed; the former being that wherein a milding has been hollowed, or, as it were, quarried out of the rock; the latter, that built of separate and different sorts of materials, upon a regnaiar plan, as may be seen in those buildings improperly called pagodas, which ornament the enclosnres of the sacred edifiess, of
which they are component parts. 'The chass first named seems to have interested travellers more than the last, from the aparent difliculty of excention; hat on this acconnt we are not so sure that they ought to create more astonishment than the constructed temple, except that, according to Daniel (Asint. Res. vol. i.), they are hollowed in hard and compact granite.
56. 'The monmments which belong to the first chass are of two sorts; those actually hollowed out of rocks, and those presenting forms of apmarently constructed buiddings, but whichare. in fact, rocks shaped by human hands into architcetural forms. Of the first sort are the caves of Lilephanta and Ellora ; of the last, the seven large pagodas of Mavalipowram. It will immediately occur to the reader that the shaping of rocks into forms implies art,. if the forms be imposing or welt arranged: so, if the hollowing a rock into well-arranged and well formed chambers be conducted in a way indicating an acyuaintance with arehitectural eflect, we are not to assume that a want of taste must be consequent on the first sort merely because it cannot be called constructive architecture. And here we must observe, that we think the writer in the Encyclopélie Mithodique (art. Areh. Indienne) fails in his reasoning; our notion being simply this, that as far as respects these monmments, if they are worthy to be ramked as works of art, the means by which they were produced have nothing to do with the question. It must, however, be admitted, that what the architect understands by ordommance, or the composition of a building, and the proper arramgement of its several parts, points which so much engaged the attention of the Grecks and Romans, will not be found in Indian architecture as far as our acquaintance with it extends. Conjectures intinite might be placed before the reader on the antiquity of this species of art, but they would te valueless, no certain data, of which we are aware, existing to lead him in the right road; and we in:ist, therefore, be content with cnumerating some of the principat works in this styte. 'The caves at LHora consist of several apartments; the plan of that called the Jndra Subba (fig. 36.) is here given, to show the species of plan which these places

exhibit; and fig. 37. is a view of a portion of the interior of the same. The group of temples which compose these excavations are follow: -

demple of Diagannatha.External witth of the excavation				'I'emple of Indra.			ft. in	
		- 57	0	Leugth -	-		- 51	0
I, ength (interior)	- -	- 34	0	Width	-	-	- 41	0
Width (ditto)	- -	- 20	0	lleight	-	-	- $\quad 27$	${ }^{\prime}$
Height -	- -	- 13	0	Ueight of columms		-	- 22	0
Ileight of the pillars	- -	11	0	Another T'emple.				
Temple of Parocona.				Length	-	-	- 111	0
Length internally	- -	35	0	Wicth	-	-	- 212	4
Width	- .	25	0	lleight	-	-	- 1.3	0
Height	- -	8	0	Temple of Mabadeo.				
Temple of Adi - Natha.				l.ength -	-	-	- 68	0
I.ength - -	- -	- 15	0	Width	-	-	- 17	0
Height	- -	9	0	Height	-	-	- 12	0
T'imple of Djenonask.				Temple of Ramichouer.				
Height	-	- 11	2	Length - -	-	-	- !	0
lemple of Domma - Leyma.								
l.ength - -	-	- 55	0	T'emple of Liailiça.				
Width	- .	- 18	$1)$	l.engtlı	-	-	- N8	0
Height	- -	- 16	10	lleight	-	-	- 47	0

57. The most celebrated excavated temple is that of Elephanta (fig. 38.), near Bombay,
 of whose interior composition the reader may obtain a faint idea from the sulpoined representation (fig. 39.). It is 130 ft . loug, 110 ft . wide, and $14 \frac{1}{2} \mathrm{ft}$. high. The eeiling is Hat, and is apparently supported by four ranks of columns, about 9 ft . high, atad of a balustral form. These stand on pedestals, about one third of the height of the columms themselves. A great portion of the walls is covered with colossal human figures, forty to fifty in number, in high relief, and distinguished by a variety of symbols, probably representing the attributes of the deities

that were worshipped, or the aetions of the heroes whom they represented. At the end of the cavern there is a dark reeess, about 20 ft . square, entered by four doors, each Hanked by gigantic figures. "These stupendous works," says Robertson, " are of such high antiquity, that, as the natives camot, either from history or tradition, give any information coneerning the time in which they were executed, they universally ascribe the formation of them to the power of superior beings. From the extent and grandeur of these subterraneous mansions, which intelligent travellers eompare to the most celehrated momments of human power and art in any part of the earth, it is manifest that they conld not have been formed in that stage of soeial life where men continue divided into small tribes, unaeeustomed to the efforts of persevering industry." Excavations similar to those we have named are found at Canárah, in the Island of Salsette, near Bombay. In these there are four stories of galleries, leading in all to three hundred apartments. 'lie front is formed by eutting away one side of the rock. The principal temple, 84 ft . long, and 40 ft . broad, is entered by a portico of columns. The roof is of the form of a valt, 40 ft . from the ground to its crown, and has the appearance of being supported by thinty piltars, octagonal in plan, whose eapitals and bases are formed of elephants, tigers, and horses. The walls contain eavities for lamps, and are covered with seulptures of hmman figures of both sexes, elephants, horses, and hons. An ahtar, 27 ft . high and 20 ft . in diameter, stands at the further end, and over it is a dome shaped out of the rock. Though the seulptures in these caves are low in rank compared with the works of Greek and litrurian artists, yet they are certanly in a style superior to the works of the ligyptims; and we infer from them a favourable opinion of the state of the arts in ladia at the period of their formation. "It is worthy of notice," observes the historian we have just quoted, "that althongh several of the fignes in the caverns at lilephanta be so diflerent from those How exhibited in the parodas as objects of vencration, that some leaned Liuropeans
has inagined they represent the rites of a religion more ancient than that now catablished in Hindostan; yet by the Hindoos themselves

Fig. 40, style of the architecture whercof we ar

Fig. 11. phrasigen frim thes nerta chabel. of part of the paroda at Chillambarm, near Porto mandel coast ; one which is, on account of its antiquity, held in great veneration. The monnment would be perhaps more properly deseribed as a cluster of pagodas, enclosed in a rectangular space 13392 ft . in length, and 936 ft . in width, whose walls are 30 ft . in height, and 7 ft . in thickness, each side being provided with a highty decorated frustum of a pyramid over an entrance gateway. The large enclosure is subdivided into four subordinate ones, whereof the central one, surrounded by a colonnade and steps, contains a piscina or basin for purification. That on the southern side forms a cloister enclosing three contiguous temples called Chubei, lighted only by their doors and by lamps. The court on the west is also claustral, having in the middle an open portico, consisting of one hundred columns, whose roof is formed by large blocks of stone. The last is a square court with a temple and piscina, to which is given the name of the Stream of Eternal Joy. To the temple is attached a portico of thirty-six colamms, in four parallel ranks, whose central intercolumniation is twice the width of those at the sides, and in the centre, on a platform, is the statue of the Bull Nundu. It is lighted artificially with lamps, which are kept constantly burning, and is much dccorated with sculpture. The central inclosure, on its eastern side, has a temple raised on a platform, in length 224 ft , and in width 64 ft ., having a portico in front, consisting of a vast number of columns 30 ft . high; at the end of it a square vestibule is constructed with four portals, one whereof in the middle leads to the sanctuary, named Nerta Chaliei, or Temple of Joy and Eternity, the altar being at the end of it. The temple is much decorated with sculpture, representing the divinities of lndia. The pilaster fog. 41. is placed at the sides of the door of the Nertu Chabei, and is extremely curious; but the most singular object about the building is a chain of granite carved out of the rock, attached to the pilasters, and smpported at four other points in the face of the rock so as to form festoons. The links are about 3 ft . long, and the whole length of the chain is 146 ft . The pyramids
above mentioned, which stand over the entrances of the suter enclosure, rise from rectangular bases, and consist of several tloors. The pasage through them is level with the ground.
59. A very beautiful example of the Indian pagoda exists at Tanjore, which we aere insert (.fig. 42.).
60. One of the largest temples known is that on the small inland Seringhain, near Trichinopoly, on the Coromandel coast. It is situate about a mile from the western extremity of the island, and is thus described by Somerat. It is composed of seven square enclosures, one within the other, the walls
lijg. 42. whereof are 2.5 ft . high, and 4 ft . thick.

Fig. 4.3. сhoultry at maderan.
of the temple at this place (fiy. 44.).

These enclosures are 350 ft . distant from one another, and each has four large gates with a high tower; which are placed, one in the middle of eaeh side of the enclosure, and opposite to the four cardinal points. The outward wall is near four miles in circumference, and its gateway to the south is ornamented with pillars, several of which are simple stones, 33 ft . long, and nearly 5 ft . in diameter; and those which form the roof are still larger. In the inmost inclosures are the chapels. About half a mile to the cast of Seringham, and nearer to the river Caveri than the Coleroon, is another large pagoda, called Jembikisma, but this has only one enclosure. The extreme veneration in which Seringham is held arises from a belief that it contains that identical image of the god Vishnu which used to be worshipped by Brahma.
61. We shall conclude this section with some observations on Choultry (or Inn) at Madurah (fig, 43.). Its effect is quite theatrical, and its perfect symmetry gives it the appcarance of a work of great art, and of greater skill in composition than most other ladian works. Yet an examination of the details, and particularly of the system of corbelling over, destroys the charm which a first glance at it creates. In it, the ornaments which in Grecian architecture are so well applied and balanced, seem more the work of chance than of consideration. We here insert an external view The essential differences between Indian and Egyptian architecture, in connection with the sculpture applied to them, have been well given in the Encyclopédie Méthodique, and we shall here subjoin them. In Egypt, the principal forms of the louilding and its parts preponderate, inasmuch as the hieroglyphes with which they are covered never interfere with the general forms, nor injure the cflect of the whole; is India, the principal form is lost in the ornaments which divide and decompose it. In ligypt, that which is essential predominates; in India, you are lost in the multitude of
accescories. Tn the Egyptian architecture, even the smallest edifices are grand; in that of India, the infinite subdivicion into parts gives an air of litteness to the targest buildiags. In Egypt, solidity is carried to the extreme; in India, there is not the slightest appearance of it. ['nblications on Indian and Eastern Archiecture, written by the late James Fergusson and others, are mentioned in the Catalogue of Books.

Secr. VII.

EGYPTIAN ARCHITECTURE.

62. We propose to consider the architceture of Egypt - First, in respect of the physical, political, and moral causes which affected it. Secondly, in respect of its analysis and development. Thirdly, and lastly, in respect of the taste, style, and character which it exhibits.
63. 64. In omr introluction, we have alluded to the three states of life which even in the present day distinguish different nations of the earth - hunters, shepherds, and agriculturists; in the second class whereof are included those whose subsistence is on the produce of the waters, which was most probably the principal food of the earliest inhabitants of legypt. Seated on the banks of a river whose name almost implies fertility, they would have been able to live on the supply it afforded for a long period before it was necessary to resort to the labours of agriculture. In such a state of existence nothing appears more probable than that they should have availed themselves of the most obvious shelter which nature afforded against the extremes of heat and cold, namely, the cavern; which, consisting of tufo and a species of white soft stone, was easily enlarged or formed to meet their wants. Certain it is, that at a very early period the Egyptians were extremely skilful in working stone, an art which at a later time they carried to a perfection which has never been surpassed. As the Tyrians, Sidonians, and other inhabitants of Palestine were, owing to the material which their cedar forests afforded, dexterous in joinery, so the Egyptians received an impulse in the style of their works from an abundance of the stone of all sorts which their quarries proluced. Subterranean apartments, it will be said, are found in other countries; but they will mostly, India excepted, be found to be the remains of abandoned quarries, exhibiting no traces of architecture, nor places for dwelling. Egypt, on the contrary, from time immemorial, was accustomed to hollow out rocks for habitation. l'liny (lib. xxxvi. c. 13.) tells us, that the great Labyrinth consisted of immense excavations of this sort. Such were the subterranean chambers of Biban el Melook, those which have in the present day received the name of the Labyrinth, and many others, which werc not likely to have been tombs. When the finished and later momments of a people resemble their first essays, it is easy to recognise the influential causes from which they result. Thns, in ligyptian architecture, every thing points to its origin. Its simplicity, not to say monotony, its extreme solidity, almost heaviness, form its principal characters. Then the want of profile and pancity of members, the small projection of its moukdings, the absence of apertures, the enormous diancter of the columns employed, much resembling the pillars left in frarries for support, the pyramidal form of the doors, the omission of roofs and pedinents, the ignorance of the arch (which we believe to have been unknown, though we are aware that a late traveller of great intelligence is of a different opinion), -all cmable us to recur to the type with which we have set out. Jf we pursue this investigation, we do not discover timber as an clement in Egyptian compositions, whilst in Grecian arelitecture, the types certainly do point to that material. It is not necessary to inumire whether the people had or had not tents or honses in which timber was used for beams or for support, since the character of their architecture is specially influenced by the exclusive use of stone as a material ; and however the form of some of their colmms may not seem to bear out the hypothesis (such, for instance, as are slaped into bundles of reeds with imitations of plants in the eapitals), all the upper parts are constructed without reference to any other than stone construction. It is, moreover, well known that Egypt was extremely bare of wool, and especially of such as was suited for buikling.
1. The climate of Lgypt was, doubtless, one great cause of the subterrancan style, as it must be in the original architecture of every nation. Materials so well adapted to the coustruction it induced, furnishing supports incapable of being crushed, and single blochs of stone which dispensed with all carpentry in roofs or coverings, a purity of air and evenness of temperature which admitted the greatest simplicity of constraction from the absence of all necessity to provide against the inclensency of seasons, and which permitted the inscription of hieroglyphies even on soft stone without the fear of their disappearance, - all these concurred in forming the character of their stupendous edifices, and stimulated them in the development of the art.
2. The monarchical govermment, certainly the most favourable to the construction of great monuments, appears to have existed in Egypt from time immemorial. The most
mportant edfices with which history or their ruins lave made us acquainted, were raised moder monarehies; and we scarcely need cite any other than the ruins of l'ersepolis, of which an account is given in a previous section, to prove the assertion : these, in point of extent, exceed all that Egypt or Greece produced. Indeed, the latter nation sought beauty of form rather than immense edifices; and Rome, until its citizens equalled kings in their wealth, lad no monuments worthy to be remembered by the historian, or transmitted as nodels to the artist.
3. Not the least important of the causes that combined in the erection of their monunents was the extraordinary population of Egypt : and though we may not perhaps entirely ely on the wonderful number of twenty thousand cities, which old historians have said were seated within its boundaries, it is past question that the country was favourable to the earing and maintenance of an immense population. As in China at the present day, there uppears in Egypt to have been a redundant population, which was doubtless employed in he pullic works of the country, in which the workman received no other remuncration han his food.
4. The Egyptian monarchs appear to have gratified their ambition as much in the prorision for their own reception after this life as during their continuance in it. If we except the Memnonium, and what is called the Labyrinth at Memphis, temples and tombs are all that emain of their architectural works. Diodorus says, that the kings of Egypt spent those enormous sums on their sepulchres which other kings expend on palaces. They considered hat the frailty of the body during life ought not to be provided with more than necessary pro. ection from the seasons, and that the palace was nothing more than an inn, which at thecit leath the successor would in his turn inhabit, but that the tomb was their eternal dwellng, and sacred to themselves alone. Hence they spared no expense in erecting indestrucible edifices for their reception after death. Against the violation of the tomb it seenss o have been a great object with them to provide, and doubts have existed on the minds of ome whether the body was, after all, deposited in the pyramids, which have been thought :o be enormous cenotaphs, and that the body was in some subterrancous and neighbouring pot. Other writers pretend that the pyramids were not tombs, assigning to them certain nystic or astronomical destinations. There are, however, too many circumstances contralictory of such an assumption to allow us to give it the least credit; and there is little innropriety in calling them sepulchral monuments, whether or not the bodies of the monarehs were ever deposited in them. The religion of Egypt, though not so fruitful, perhaps, as lhat of Greece in the production of a great numher of temples, did not fail to engender an ibundant supply. The priesthood was powerful and the rites unchangeable : a mysterions wthority prevailed in its ceremonies and outward forms. 'The temples of the country are mpressed with mystery, on which the religion was based. Here, indeed, Seeresy was deified : the person of Harpocrates; and, according to Plutarch (De Iside), the sphinx, which decoated the entrances of their temples, signified that mystery and enblem were engrafted on Heir theology. Numerons doors closed the succession of apartments in the temples, leaving he holy place itself to be seen only at a great distance. This was of little extent, conaining merely a living idol, or the representation of one. The larger portion of the emple was laid out for the reception of the priests, and di-posed in galleries, porticoes, and vestibules. With few and mimportant variations, the greatest similarity and uniformity is ,hservalble in their temples, in plan, in elevation, and in general form, as well as in the letails of their ornanents. In no comntry was the connection between religion and architecture closer than in ligypt, and as the conceptions and execution in architecture are lependent on the other arts, we will here briefly examine the influence which the religion of the comintry hat upon them.
5. P'ainting and sculpture are not only intimately comected with architecture through the embellishments they are capable of aflording to it, but are handmaids at her service in what lepends upon taste, upon the primeiples of beanty, upon the laws of proportion, upon the preservation of character, and in varions other respects. Nitture, in one sense, is the modeh apon. which architeeture is founded; mot as a subject of imitation, but as presenting for imitation. rinciples of the harmony, proportion, eflect, and beanty, for which the arts generally are undelted to bature. We think it was Madane de Staibl who said that architecture was frozen music. Now, though in architecture, as in the other arts, there is no sensible imiation of nature, yet by a study of her mode of operating, it may be tempered and modified (1) as to give it the power of language and the sublimity of poetry. In respect of the connection of the art with senlpture, little need be said: in a material light, arehiteeture is but i seuptured prodnction, and its beauty in every comery is in an exact ratio with the skill which is exhibited in the use of the chisel. Facts, however, which are worth more than argments, prove that as is the state of architecture in a comntry, so is that of the other arts. Two things prevented the arts of imitation being carried beyond a certain point in the country under our consideration; the first was political, the other religious. The first essays on art are subjects of vencration in all societies; and when, as in Ligypt, all change wis forbidden, and a coustant and inviolable respect was entertained for that which had existed be-
fore, when all its institutions tended to preserve social order as established, and to discourage Snd forbid all innovation, the duration of a style was doomed to become eternal. Religion, however, alone, was capable of effecting the same object, and of restraining within eertain loouds the initative faculty, by the preservation of types and primitive conventional signs for the hieroglyphic language, which, from the sacred purposes for which it was employed, soon acquired an anthority from which no indivioual would dare to deviate by an improvement of the forms under which it had appeared. Plato observes, that no change took place in painting among the Egyptians; but that it was the same, neither better nor worse,

 $\tau \iota \kappa \alpha \lambda \lambda \iota o \nu \alpha$, ou $\tau^{\prime} \alpha \iota \sigma \chi \iota \omega, \tau \eta \nu \alpha \nu \tau \eta \nu \delta \epsilon \tau \epsilon \chi \nu \eta \nu \alpha \pi \epsilon \iota \rho \gamma a \sigma \mu \epsilon \nu \alpha$. - De Legilus, lib. ii.
6. Uniformity of plan characterises all their works; they never deviated fror the right line and square. "Les Égyptiens," observes M. Caylus," ne nous ont laissé aucun monument public dont léélévation ait été circulaire." The uniformity of their elevations is still more striking. Neither division of parts, contrast, nor effect is visible. All this necessarily resulted from the political and religious institutions whereof we have been speaking.
7. I1. In analysing the architecture of Egypt, three points offer themselves for consideration, - construction, form, and decoration. In construction, if solidity be a merit, no aation has equalled them. Notwithstanding the continued effeet of time upon the edifices of the country, they still seem calculated for a duration equally long as that oif the globe itself. The materials employed upon them were well adapted to insure a defiance of all that age could effect against them. 'The most abundant material is what the ancients called the Thebaic granite. Large quarries of it were seated near the Nile in Upper bgypt, between the first cataract and the town of Assouan, now Syenc. The whole of the country to the east, the islands, and the bed of the Nile itself, are of this red granite, whereof were formed the obelisks, colossal statues, and columns of their temples. Blocks of dimensions surprisingly large were obtained from these quarries. Basalt, marble, freestone, and alabaster were found beyond all limit compared with the purposes for which they were wanted.
8. We have already observed, that Egypt was deficient in timber, and especially that sort proper for building. There are some forests of paln trees on the Lybian side, near 1)endera (Tentyra) ; but the soil is little suiterl to the growth of timber. Next in quantity to the palm is the acaciat ; the olive is rare. With the exception of the palm tree, there is none suited for architectural use. The oak is not to be found; and that, as well as the fir which the present inhabitants nse, is imported from Arabia. Diodorus says, that the early imhabitants used canes and reeds interwoven and plastered with mud for their huts; but he confines this practice to the country away from towns, in which, from fragments that have been found, we may infer that brick was the material in most common nse.
9. Bricks dried in the sun were employed even on large monuments; but it is probable that these were originally ficed either with stone or granite. The pyramids described by Pococke, called \mathbb{K} toube el Meuschich, are composed of bricks, some of which are $13 \frac{1}{2} \mathrm{in}$. long, $6 \frac{1}{2} \mathrm{in}$. wide, and 4 in . thick; others 15 in . long. 7 in . wide, and $4 \frac{1}{2} \mathrm{in}$. thick. They are not minted by cement, but in some instances cements of a bituminous nature were employed and in others a mortar composed of lime or plaster and sand, of which it would seem that this secont was exrecdinglv nowerfut as well as durable.
10. The Egyptians arrived at the highest degree of skill in quarrying and working st.me, as well as in afterwards giving it the most perfect polish. In their masonry the placed no reliance on the use of cramps, but rather on the nice adjustment of the stones to one ansther, on the avoidance of all false bearings, and the nice balance of all overhanging weight. Of their mechanical skill the reader will form some idea by reference to volume iii. p. 328. of Wilkinson's Manners and Cus:ams of the Ancient Egyptituns, from a representation in a grotto at El Bersheh. A colossus on a sledge is therein pulled along by 172 men, but none of the mechanical powers seem to be called in to their assistance. ". The obelisks," says Mr. Wilkinson, "transported from the r $_{1}$ uarries of Syene to Thebes and Heliopolis, vary in size from 70 to 93 ft . in length. They are of one single stone ; and the largest in Egypt, which is that at the great temple at Carnae, 1 calculate to weigh about 297 tons. This was brought about 138 miles from the quarry to where it now stands; and those taken to Heliopolis passed over a space of 800 miles." Two colossi (one of them is the vocal Memnon), each of a single hlock 47 ft . in height, and eontaining 11,500 cubic fuet, are carved from stone not known within several days' journey of the Hace; and at the Memnonium is a colossal statue, which, when entire, weighed 887 tons. We consider, however, the raising of the ohelisks a fir greater test of mechanical skill than the transport of these prodigions weights; but into the mode they adopted we have no insight from any representations yet discovered. We can scarcely suppose that in the handling of the weights whereof we have spoken, they were unassisted by the mechanical powers, although, as we have observed, no representations to warrant the onjecture have been brought to light.
11. In the construction of the pyramisis it is manifest they would serve as their own

Fig. 45. SFCTION OF PYRAMID OF CTLEOPS. scaffolds. The oldest monuments of Egypt are the pyranids at Geezeh, to the nortb of Memphis, of which we give a view (fiy. 46.), with a section of the largest of them built $1: y$ Suphis I., the Cheops of the Greeks (fig. 45.). Sir G. Wilkinson supposes them to have been erected 2190 years b.c., Lepsins 3426 в.c.; but the former admits that, previous to the reign of Osirtasen, 1740 в.c., little certainty cxists as to dates. Thise pyramids (fig. 46.) known by the names of Cheops, Chepheren, and Mycerinus, are extraordinary for their size and the consequent labour besconed upon them; lut as works of the art they are of no further importance than being a link in the chain of its history. They are constructed of stone from the neighbouring mountains, and are in steps, of which in the largent there are two hundred and three, varying in height from 3 ft . to about 4 and even 5 ft ., decreasing in height as they rise towards the summit. Their ridth diminishes in the same proportion, so that a line drawn from the base $t \boldsymbol{o}$ the summit touches the edge of each step. So great a difference exists in the measures given in the descriptions by the several travellers, that we here subjoin those given of the
Fis. 46.
PYRIMIDS OF GEEZELI. yranid of Cheops, whitst believing that the careful admeasurements taken by Mr. Perring we those to be relied upon :-

Ir Perring, a recent traveller, in respect of the proportions of the great pyramid, has enleavoured to prove that the unit of Egyptian measurement is an ell equal to $1 \cdot 713$ English iet, and tbat it is expressed a eertain number of times without remainder in a correct geasurement of the pyramids of Geezeh. Thus, he says, the perpendieular height of the reat pyranid is exactly 280 of such ells, the base 448 ; and that $\frac{1}{2}$ base : perpendicular eight :: slamt height: base. Upon the top thereof is a platform 32 ft . square, consisting in nine large stones, each about a ton in weight, though inferior in tbat respeet to others in be edifice, which wary from 5 ft , to 30 ft . in length, and from 3 ft . to 4 ft . in heigbt. From his platform Dr. Clarke saw the pyramids of Sakkarahto the south, and on the east of tbem malicr monuments of the same kind nearer to the Nile. He remarked, moreover, an appearnine of ruins which might be traced the whole way from the pyramids of Gizeh to those of faccara, as if the whole had once constituted one great city. The stones of the phatform are oft limestone, a little harder and more compoet than what in Eogland is called clunch. The
 pyramidsare bult with common mortar externally, but no apperance of mortar ean be discerned in the more perfect parts of the masonry. The faees of the pyramid are directed to the fonr cardinal points. The entrance is in the north front, and the passige to the central chamber is shown on the preceding section. 'lhat in the pyramid of Chepheren (fig. 47.) is thus described by Belzoni: - The first passage is built of granite, the rest are eut out of the natoral sandstone rock which rises above the level of the basis of the ermmid. 'I'lis passage is 104 ft . long, 4 ft . high, and 3 st. 6 im . wide; desconding at an ngle of 26 degrees: at the bothom is a porteullic, beyond which is a horizontal parssage
of the same height as the first, and at the distance of 22 ft . it descends in a differen direction, leading to some passages below. Hence it re-ascends towards the centre of the pyramid by a gallery 84 ft . long, 6 ft . high, and 3 ft .6 in . wide, leading to a chamber alsi cut out of the solid rock. The chamber is 46 ft . in length, 16 feet wide, and 23 ft . 6 . in. in height, and contained a sarcophagus of granite 8 ft . long, 3 ft . 6 . in. wide, and 2 ft .3 in . deep in the inside. Returning from the chamber to the bottom of the gallery a passage descends at an angle of 26 degrees to the extent of 48 ft .6 im ., when it takes a horizontal direction for a length of 55 ft ; it then again ascends at the same angle and proceeds to the base of the pyramid, where another cotrance is formed from the outside. About the middle of the horizontal passage there is a descent into another chamber, which is 39 ft . long, 10 ft . wide, and 8 ft .6 in . high. The dimensions of this pyranid, as given by Pering, are a base of 707 It . and a height of 4.54 ft . Those of the pyrawid of Mycerinus are a base of 354 ft , and a height of 218 ft . The pyramids of Sakkarah, which are as many astwenty in number, vary in form, dimensions, and construction. They extend five miles to the north and south of the village of Sakkarali. Some of them are rounded at the toll, and resemble hillocks cased with stone. One pyrmid is constructed with steps like that of ('heops; there are six steps, each 25 ft . high, and 11 ft . wide. The height of one in the group is 150 ft .; another, built also in steps, is supposed to be as high as that of Cheops. The stones used are much deeayed, and more crumbling than those of Gizeh; hence they are considered older. One is formed of umburat bricks, containing shells, gravel, and chopped straw, and is in a very mouldering state. About 300 paces from the second pyramid stands the gigantic Sphinx (fig. 48), whose length from

Fig. 48. The sphinx. the fore-part to the tail has been found to be 150 ft . ; the paws extend 50 ft . Belzoni c'eared away the sand, and found a temple held between the legs and another in one of its paws. It was excavated by Captain Caviglia in 1816; also in 1869 to the level on which the paws rest. Tie journals of 1886-7 describe the new works by Irof. Maspero in excavaring and securing them from being refilled by the sand.

74a. The antiquity of the Egyption tempies may be comparatively determined from their size; the larger ones being posterior to the smaller. Since the insight obtained into the meaning of the hieroglyphics, much information has been gained as to their history. Solidity reigns through the whole of them. 'The walls by which they are enclosed are sometimes 26 ft . thick, and those of the entrance gate of a temple of Thebes are as much as 53 ft . thick at their base, and are composed of block-of enormous size. The nasonry employed is that called by the Greeks emplectum ($\epsilon \mu \pi \lambda \epsilon \kappa \tau \sigma \nu$), all filling in of an inferior or rubble work being discarded. They are masses of nicely squared and fitted stones, and are built externally wath a slope like the walls of a modern fortification. The colımns are absolutely necessary for the support of the ceilings, which consist of lirge blocks of stone, and are therefore of few sliameters in height. Sometimes they are in a single piece, as at Thebes and Tentyrit. The stones of which the ceilings are composed ar usually, according to Pococke, $1 \dot{4}$ it, long, and $5 \frac{1}{2} \mathrm{fr}$. in breadth, but some run much larger.
75. Before adverting to the form and disposition of the Egyptian temple, we think it here necessary to notice the recent discovery of an arch in a tomb at Sakkarah, said to be of the time of Psammeticus II., and of one also at Thebes in the remains of a crude brick pyramid. (See Wilkinson's Customs of the Aucient Egyptians, vol. iii. p. 263. 321.) That exhibited in the tomb of Saccara, from the vignette given, is clearly nothing but a lining of the rock, and is, if truly represented in the plate, incapable of bearing weight, which is the othee of an arch. That, however, at Thebes, to which Mr. W. assigns the date of 1500 e.c., with every respect for his great information on the subject, and with much deference to his judgment, not having ourselves seen it, we cannot easily believe to be of such antiquity. Its appearance is so truly Roman, that we must be permitted to doubt the truth of his conjecture. We are, moreover, fortified in the opinion we entertain by the principles on which the style of Egyptian architectme is founded, which are totally at variance with the use of the arch. We have ventured to transfer this (fig. 49.) to our pages, that the reader may form a judgment on the subject, as well as ourselves. We will only add, that the reasons assigned by Mr. W. for the Egyptians not preferring such a mode of construction as the arch, because of the difficulty of repairing it when injured, and the consequences attending the decay of a single block, are not of any weight with us, because, practically, there is an easy mode of accomplishing such repair. And, again, the argnment that the sumerincumbent weight applied to an arch in such a case as that hetore
us will not hold good, inasmuch as the balance on the back of each course would almost pre-
 serve the opening without any arch at all.
76. The form and isposition of the Egyptian temple seem to have been founded on immutable rules The only points wherein they differ from one another are in the number of their subdivin sions and their extent, as the city for which they served was more or less rich. Unlike the temples of the Greeks and Romans, whose parts were governed ly the adoption of one of the orders, anit whose whole, taken in at a single glance. could be measured from any one of its, parts, those of ligypt were an assemblage of porticoes, courts, vestibnles, galleries, ipartments, communicating with each other, and surrounded with walls. Strabo, in his 17 th book, thus describes the temples in futestion. "At the entrance of the consecrated spot the gromd is paved to the width of 100 ft . ($\pi \lambda \in \theta \rho o \nu$) or less, and in length three or four times its width, and in some places even more. 'l'his is called the court (opopos, course) ; thus Callimachus uses the words -

'O dsouos ieqas oitas Avoubidos.

Thronghout the whole length heyond this on each side of the width are placed sphinxes of stone, 20 cubirs or more distant from one another, one row being on the right, and the other (1) the left. Beyond the sphinxes is a great vestihule ($\pi \rho o \pi \nu \lambda o v$), then a further one, and beyond this ancther. The number, however, of the sphinxes, as of the vestibules, is not. always the same, hut varies according to the length and breadh of the course. Beyond

 the restibules ($\pi \rho 0 \pi v \lambda a t \alpha$) is the temple ($\nu \in \omega s$), having a very large porch (π povaos), which is worthy to be recorded. The chapel ($\sigma \eta \kappa o s$) is small, and withont a statue; or, if there be one, it is not of human form, but that of some beast. The porch on each side has a wing ($\pi \tau \in \rho \alpha)$; these consist of two walts as high as the temple itself, distant from each other at the bottom a little more than the width of the foundations of the temple, then they incline towards each other, rising to the height of 50 or 60 cubits. These walls are sconlptured with large figures, similar to those which are to be seen in the works of the Etruscans and ancient Greeks." This accomut is not at all exaggerated, as we shall immediately show by the introduction in this place of the plan, section, and elevation of the celebrated temple at Apollinopolis Magna, between Thebes and the first cataract, which, though, as we learn from the deciphering in these days, the hieroglyphies upon it are not of the time of the [hamohs, seems admirably callulated to give the reader atmost all the information necessary for maderstanding the suljeet. 'l'his will, moreover, so much more fully explain it than words, that we shall not need to do more than aterwards come to some recital of the details.
77. '1'his edifice, seated near lidfoo, about twenty miles south of 'Ihcbes, is one of the largest in Exypt, and is comparatively in good preservation Its form is rectangutar, and its general dimensions 450 fl . by $1-10 \mathrm{ft}$. (fig. 50.) la the centie ol one ol the short sides is the (ontrance, which consists of two buildings, cath 100 ft. long, and 32 ft . in widtar ; both pyramidal in form, and

 nore on the contrance side, all standing a few fert within the walls, and thms forming a co-
 It the firther cond of the quadrangle (which rises by corded ateps) oprosite to the erbrance, is a portico rextending the whole bucodth of the puadrangle, sund 4.5 ft. in lepth. It has three ranks of colmons, continning six in eachank, is covered by a llat wof, sud is enclosed by walls on three sides. the fourth, or that opposite the entrance,
being open. 'This is, however, closed breast high by a speeies of pedestals half inserted in the eolnmms, and in the central intereolmmiation a doorway is constructed with piers, over whieh are a lintel and corniee eut through. From this portieo a doorway leads to an inner vestibule, in whieh are three ranks of four columns each, smaller than those first deseribed, but distributed in the same way. Beyond this, in Cousin's plan, are simdry apartments, with staireases and passages, whereof the smaller central one was

Fig. 51.

doubtless the cetl. Fig. 51. is a longitudimal section. Fig. 52. is the elevation. iVe

I ig. 52.
RTEVATHON

Fìs, 53.
may here add, that there is so little difference between the earlier and later specimens of bgyptian architecture, that thongh, as we have hinted, this is of the latter, it will convey a pretty eorrect know-
 ledge of all. The general appearance of the temple is given in fig. 53., and a view of the interior in tiy. 54. The plan of the Egyptiai temple is always uniform, symmetrieal, and rectangular. Its most brilliant feature is the great mumber of columns employed, in which is displayed a prodigality umapproached by any other nation. 'This, however, was indueed by the necessity for employing bloeks of stone for the eeilings or roofs. The greatest irregularity oceurring in any of the plans known, is in that at the island of Pliilæ (see fig. 55.), and it is rery evident that the cause was the shape of the ground on which it is placed. The intercolmmniations were very sinall, rarely exceeding a diameter, or one diameter and a half of the cohmm. We know of no specimens of peripteral temples simitar to those of Grecee, that is, those in which the cell is surrounded by columns. In the elevations of those of Egypt, the spirit and eharaeter of their arehitecture is more particularly developed. But they are monotonous. The repetition of the same forms is earried to the utmost pitch of toleranee. The pyramidal form prevails in all the combinations, whether in walls, doors, general masses, or details. In eonsidering the prineipal parts of the elevations, the first feature that presents itself is the column, which we will notice without its attendant base and capital. If it were possible to establish a system relative to their invenrion and subsequent perfection, we might easily arrange them in distinct classes, principally as respeets their decoration; but as far as regards gencral form, the Egyptian eolumn may be reduced to two varieties, the cirealar and polygonal. The first are of two sorts. Sime are found quite plain or smooth, hut ornamented with hieroglyphics (see fig. 56.). Some
re eomposed with ranges of horizontal cireles, and look like an assemblage of bundles
 of rods tied together at intervals. The only differenee among those: eolumns whiels are eireular and plain is in their having hieroglyphies, or not. Of the second sort there are many varieties, of which we here present tluree specimens (fig. 57.). They have the appearance of being bound together by hoops, like barrels. These are usually in three rows with four or five divisions in eaeh; but these arrangements seem to have been subjeet to no ecrtain laws. The species of celumns in question is certainly eurions, and appears based upon the imitation of stems of trees bound together, so as out of a number to form one strong post. It seems seareely possible that they eould have had their origin in mere whim or caprice. Many polygonal columns are to be formd in Egypt. Some square speeinens are to be seen in the grotos at Thebes cut out of the roek itself. Simiar examples oeeur at the entrance of the sanctuary of a temple in the same eity. Hexa-

Fig. 5\%. Nllatis. gonal ones are deseribed by Norden, and loowke mentions one of a form triangular on the plan. We do not at present remember any fluted specimen, execpt in the tombs of Beni-Hassan, of which a representation will be given in the section on Greeim arehitecture. Their character is shortness and thiekness. They vary from three to eleven feet in dianneter. the last dimension being the largest diancter that Poeocke observed, as in lociglit the tallest was forty feet. Such were some of those he measured at Carnak and Luxor, hut this le gives only as an apmovimation from the cireumstanee of so much of them being buried in the earth.
78. Pilasters, properly so called, are not found in Egyptian architecture. The base of lie eolumn, when it appears, is extremely simple in its form. Among the representations "Denon's work is one in which the hase is in the shape of an inverted ogee. It belonge o a colnmn of one of the buildings at 'Tentyra.
79. In their capitals, the Pgyptians exlibited great variety of form. They may, how-
 ever, be rednced to three species, - the square, the vase-formed, and the swelled. The fisst (fig. 58.) is nothing more than a simple abacus, merely placed on the top of the slaft of the eolumn, to which it is not joined by the intervention of any moulding. This abaeus is, however, sometimes liggh enough to athit of a head being senlptured thereon, as in the amexed bo rek. It does not appear, as in Greeian architceture, that in that of Eggyt diflerently proportioned and formed eolumns had different eapitals assigned to them. The notion of imparting expression to arehiteeture by a choiee of forms of different nature, and more or less complieated according to the elarateter of an order, was monown in Eigypt. It was an architetural langurge which the people knew not. The vase-shaped capital (fig.59.) is varionsly modified: sometimes it oceurs quite plain; in other cases it is lifferently decomited, of wheh we here give two examples. It eertainly has all the appenr-

Fı, 39. ance of having afforded the tirst hint for the bell of the Corinthian eapital. The third or swelled eapital is also found in many varicties; but if the form be not fombled on that of the bud of a tree, we searcely know whercin its original type is to be cught. Two examples of it are here appended.
80. The entablature, for sueh (however unlike it be to the same thing in the anclitecture

F1s 60. of (Breces) we suppose we must call the massive loating placed on the walls and colhmins of ancient ligypt, is very little subdivided. The upper part of it, which we may call the comice, projects eonsiderably, having a large comeave momher, in some cases consisting of ornaments representing a series of reeds parallel to cench other from top to bottom in other cases in Egronps of three or six in a gromp, the mervals between them being senptured with winged globles, as on the portico of the temple at Tentyra, given in fig. 60. Sculptures of animals, winged globes, and searabei, are the almont constant deceratimens placed on what inay be ealled the arclitrave of the Egyptian temple. Of the winged ghobe, nsumbly fimind on the centre of it, as also of the great emeave cornice, fig, fis, is a representationi.

We clase onr observitions om the cornices of the bigyptian teniple by requestine the remder, if he have the smallent denthon the common migin of the athe
tcetures of Egypt and Persepolis, to refer to fig. 26., where he will find a preeistly similar use of the great eavetto which erowned the buildings of both countries. 'lhe writer who, in the Description Abrigée des Momumens de la Houte Egypt, has found that this great curve is borrowed from the bending leaves of the palm tree, has mistaken the dements of decoration for substantial constructive art, and has forgotten that the first object follows long after the latter. But we doubt if he really meant what his words import. The ceilings of ligypt are invariably monotonous. The non-use of the arch, whereon we have tonched in a preeeding page, and the bloeks of stone whieh the country afforded, allowed little scope for display of varied form. In the colonnades of the country, architraves of stone rest on the eolumns (see fig. 54.), on which transversely are plaeed those whieh aetually form the ceilings, just like the floor boards of a modern economical English building. On them are often found some of the most interesting representations that are in existence: we allude to those of the zodiacal constellations disposed circularly about the eentre of the apartments in which they are placed. Though nothmy has been deduced from these to satisfy us on the date of then eontinent buiddings, they are not the less worthy of further invertigation, whieh, however, it is not our provinee hure to pursue.
81. 'The gates and portals of the Egyptian temples were cither plaeed, as at Carrak

Fis. 62. and Luxor (figs, 62. and 63.), in masses of masonry, or between columns, as already noticed, inclined upwards, having generally a reed moulding round them, and the whole crowned with a large cavetto. They were plentifully covered with hieroglyphies; frequently fronted by a pair of obelisks; and on their sides were placed staircases, of very simple construction, leading to platforms on their summits. It is now diffieult to account for the extraordmary labour bestowed on these masses of masonry. More than pictorial effeet must have been the motive. The reader will, by turning back t.) fiy. 52, be equally surprised with ourselves when he contemplates, in the gateway at the T'emple of Apollinopolis Magna, such The masses in these are always py-
vast efforts developed on hos apparently minor a point.

Fig. 63, tglptian portal at carmak. ramidal, and bear great resemblance to the gates of modern fortifications. Sometimes they are extremely simple, and do not rise so high as the adjaeent buildings whieh flank them. Their thickness is enormous, some of them extending to the extraordinary depth of fifty feet.
82. Window, were not frequently used. When they oceur they are long smali parallelograms, rarely ornamented, but splayed inside. Many of the apartments were without windows at all.
83. We have, in a previous page, alluded to the Pyramids; to which we here add, that. whatever might have been their purpose, it is eertain that the form adopted in them - one that, among other people, was devoted to the purposes of sepulture-was of all architectural forms that caleulated to ensure durability, and was, moreover, well suited to the views of a nation which took extraordinary means to preserve the body after life, and expended large sums on their tombs.
84. Ornament or Decoration may be considered under two heads, - that which eonsists in objects foreign to the forms of the edifices themselves, sueh as statues, obelisks, \&c.; and that which is actually affixed to them, such as the carving on the frie\%es, basreliefs, \&c.
85. The former of these are remarkable for the size and beauty of the materials whereof they are composed. First for notice are their statues of colossal dimensions, which are mostiy, if not always, in a sitting attitude. The two here given (fiy. 64.) are from the Memmonimn.

They are eqenerally isoluted, and placed on simple pedestals. The use of Caryatides, as
 they are called, perhaps improperly, in Egyptian architecture, if' we may judge from remains, does not appear to have been very frequent. In the tomb of Osymandyas, we find, aceording to Diodorus, that there was a peristylimm, 400 feet square, supported by animals 10 cubits high, each in one stone, instead of columns. The same author (vol. i. f. 56. ed. Wesseling), speaking of 1'sammetieus, says, "Ilaving now obtained the whole kingdom, he built a propylam, on the east side of the temple, to the God at Memphis; which temple he encircled with a wall; and in this propylaum, instead of co'umns, substituted colossal statues 12 eubits in height." Statues of sphinxes In allies or avenues were used for ornamenting the dromos of their temples. Of this species of ornament the ruins of Thebes present a magnifient exampte. 'They were placed on plinths facing one another, and about ten feet apart. Examples of hons also oceur. The form of the Egyptian obelisks is too well known to need a deseription here. They have been alleged to be monuments consecrated to the sun. From the situation they often oceupy, it is elear they were used neither as gnomons nor solar quadrants.
86. Amongst the ornaments affixed to their

Fig. 6.5. buildings, or rather forming a part of them, the most frequent are hieroglyphics and bas-relicfs. The enstom of cutting the former upon almost every building was, as we now find, for the purpose of record; but it is nevertheless to be considered as omamental in efleet. The figures that are sculptured on the walls of the temples are mostly in low relief, and are destitute of proportion; and, when in groups, are devoid of sentiment. Painting was another mode of decoration. The grottoes of the Thebaid, and other subterranean apartments, abound with pictures, not only of hieroglyphies, but of other subjeets. But the taste of all these, either in drawing, colonring, or composition, is not better than that of their seulpture. (See an example in fig. 65.) Vet in both these arts, from the precision with which they are ent and the uniformity of line and proportion they exhihit, a eertain effect is produced which is not altogether displeasing
87. The nymphaea lotus, or water lily, seems to have been the type of much of the omament used for the purpose of decoration. The leaf of the palm tree was another object of imitation, and is constantly found in the capitals of their columns. The use of the pahm leaf in this situation may have been derived from a popular notion mentioned by Plutareh, (Sympesiace. hib. vi. calp. 4.), that the pathn tree rose under any weight that was placed upon it, and even in proportion to the degree of depression it experienced. 'This supposed peculiarity is also mentioned by Aulns Gellins (lib. iii. cap. 6.). The reed of the Nile, with its head, enters into some eombinations of ornament, and moreover fishioned inta bundies, seems to have been the type of some of the speceies of their colnmms. In their emtablatmres and elsewhere, ammils of all sorts oceasionally find a phace as ormaments, even down of fishes, which oecur in a friese at A ssonan ; and, ats we have before observed, there are few boildings of importance in which the winged globe does not appear as an ornament.
88. Some observations on the taste, style, and character of Egyptian architecture, will conclude this section. If the type was, as we imagine, derived from the early subterramean edifices of the people, whose customs allowed of no change or improvement, we cimnot be surprised at the great monotomy that exists in all their momments. The absence of varicty in their profites, loy means of projecting and re-entering parts, of the nse of the anch, of the inclined roof, and of all deviation from those shades of diflerent developments, which impart character to a work of art, gencrated the monotony, the subject of our complaint. It camot be denied that in those arts which have nature for their motel, the artists of ligypt never songht exeedlence in true representation. Now arehitecture is so allied to the other arts, that the principles !y which they were guided in these latter were carried though in
the former. It was impossible that the abstract imitation of nature, which constitutcs almost the essence of architecture, which is founded upon the most refined observations of the impressions of different objects on our senses, which indicates numberless experiments and suceessive trials, and which therefore requires the indenendence of the artist, eould be developed in a eountry where the restrictions of religion and the spirit of routine became the dominant genius of all the arts. In positive imitation, whose existence and principles have been already traced from grottoes and hollowed subterrancan apartments, the types of Egyptian architeeture were unsusceptible of variety, and very remote from that which characterises invention. The monotony thenec resulting was attended by another effect, that of endeavouring to correct it by a profusion of hieroglyphics. As to the other ornaments employed, they seem to have flowed from caprice, buth in selection and employment, resting on no fixed principles of necessity or fitness, nor subject to any laws but those of chance. The original forms, indeed, of Egyptian architecture, unfounded, like those of Greece, on a eonstruction with timber, would not suggest the use of ormament. Nothing seemed fixed, nothing determined by natural types. We must, however, execpt some of their columns, which do appear to have been formed with some regard to imitation.
89. In the architecture of Egypt we find great want of proportion, or that suitable ratio which the different parts of a body should bear to each other and to the whole. lin all organised beings, their parts so correspond, that, if the size of a single part be known, the whole is known. Nature has thus formed them for the sake of dependenee on and aid to each other. In works of art, the nearer we approach a similar formation, the more refined and elegant will be its produetions. Solidity is abused in the works of the Egyptians; the means employed always seem greater than were necessary. This discovers another cause of their monotony. 'The masses of material which the country produced measured their efforts and conceptions, and their invention was exhausted by a very restrieted number of eombinations. Their monmments are doubtless admirable for their grandeur and solidity; but the preponderance of the latter, when carried beyond certain bounds, becomes ehumsiness; art then disappears, and character bccomes caricature. Though we think it useful thus to analyse Egyptian art, it must not be supposed that we are insensible to its imposing, and often pieturesque, effect. It can never be revived, and our observations upon it must be understood as in comparison with Greek art, which has proved so susceptible of modification that it is not likely to be abandoned in any part of the world where civilisation has appeared.
90. Though the private dwellings of the Egyptians were not comparable with their public edifices, they were not altogether devoid of splendour. Examples of them from sculptures may be seen mir G. Wilkinson's work above quoted. In tue townstaey of couse varied in size and plan. The streets were narrow and laid out with regul.rity; and the muxture, as frequently met with in eastern towns, of large houses with low hovels, appears to have been avoided. In Thebes, the number of stories were, according to Diodorus, in some cases as mueh as four and five. Houses of small size were usually connected together, rarely exceeding two stories. They were regular in plan, the rooms usually occupying three sides of a court-yard, separated by a wall from the street; or on each side of a long passage from a similar entrance court. The court was sometimes common to several houses. Large mansions were detached, having often different entrances on their severul sides, with portals very similar in form to those of their temples. These portals were about 12 or 15 ft . high, and on each side was a smaller door. Entering through the porch, the passage was into an upen court wherein was a reeeiving room for visitors, and this was supported by columms, and closed in the lower part by intereolumnal panels. On the opposite side of the court was another aoor, by which the receiving room was entered from the interior. Three doors led from this court to another of larger dimensions, ornamented with trees, communicating on the right and left with the interior parts of the building, and having a back entranee. 'The arrangement of the interior was the same on each side of the court; six or more ehambers, whose doors faced eaeh other, opened on a corridor supported by eolumns on the right and left of the area, whieh was shaded by a double row of trees. Λ sitting room was plaeed at the upper end of one of these areas, opposite the door leading to the great court; and over this and the ehambers were the apartments of the upper story. On eaeh side of the sitting-room was a door opening on to the street. Of eourse there were houses on other plans, which are given by Wilkinson; but the above eonveys a sufficient idea of their general distribution. On the tops of the houses were terraces, serving as well for repose as exereise. The walls and ceilings were richly painted, and the latter were formed into eompartments with appropriate borders. Some of their villas were on a very Jage scale, and were laid out with spaeious gardens, watered by canals eommunicating with the Nile.
91. We close this seetion with a list of the principal aneient remains in Egypt (for which we are indebted to the Handbook, 1873, by Sir Gardiner Wilkinson), whose situations are marked on the accompanying map ($f \dot{q} .66$.). At Heliopolis, modern name Matureprth (No. 1.), a little to the north of Cairo, the obelisk of Osirtasen I., and the remains of walls

1 in. if.
MAD OE THE NHA,
and houses. Near Cairo, on the west bink, the pyramids (fig. 46.) of Geezeh (No 2.), Sakkarah and Dushoor. At Mitrahenny, on the east bank (No.3.), a colossus of Rameses II.; the mounds of Memphis, fragments of statues, and remains of buildings. About thirtyeipht miles above Cairo, are the mounts of Apbroditopolis (No. 4.) ; and on ti.e opposite bank a lalse pyramid. At seventy-three miles on the west bask is lbenisoulf (No, 亏..). where a road leads to the Fyoom ; a l riek pyramid at Illahoon (No. 6.), another at Hawarah and traces of the Labyrinth; an obelish of Ositasen I. at Biggig; with uius near lake Moeris, and at Kasr (l) kharoon (No. 8.). Mounds at Aboo Girgeh (No. 9.), from whence a road to Oxyrhinchus (Behnesa) (No. 10.), whele are mounds but no ruins. At Gebel el Tayr is an underground church. Eight miles below Minieh (No. 11.) is Acôris (Te hneh), on the east bank, where is a Greek l'tolemaic inseription on the eliff, tomb, in the roek with inscriptions on the doors, hieroglyphie tablets, \&e. On the east bank, seven miles above Minieh, Kom Ahmar, where are mounds of ant old town; at a short distanee beyond is Metahara with sepulchral grotoes.
27 Nine miles further up are the grottoes (fig. 90.) of Beni Hassan (No 1थ.); and about a mile and a half further on a roek-cut temple of Bubastis or Diana, At Antinoe (Sheylh Alúdeh), some traces of the town, theatre, streets, baths, hippodrome, \&c., erccted by Hadrian. At El Bersheh or El Dayr, a groto, wherein is a colossus on aslidge. Hermopolis magna, on the west bank (Oshmonnayn) (No 13.), ouly tombs. Not fir away is Gebel Toomer with mummy pits and statues in high relief. At Soeed or Upper Egypt (No. 14.), the mountains recede to the eastward, leaviner the river ; a little beyond the village of Tel el Amariat, are eatacombs, and to the north of whieh are the remains of a small town, and to the south the ruins of the eity, having houses built of crude brick, from which a more correct ide:a al the gromind plans can be obtained than any in the valley of the Nile. To the east are grottoes with seuptures; and on the summit of the hills an alatbaster quarry. At Ell IIareib (No. 15. ', the ruius of an old town. At Asyoot (Lycopolis) (No. 16.), are tonbs. At Gou (Antaropolis), a few stones of the tomple close to the river. At Sheylh Ihereeder, small caves; and a slatue of a man clad in the Roman toga sit the base of whe motutain ent out olltar rock. Wiest of Suolatg (No. 17.) , is the old town of dhribis, where is a ruined fomple, "ill calensive
mounds, and rock-cut tombs. Opposite is Ehhmeen (Panopolis) (No. 18.), Greek inserip)tion of Temple of Pan, and remains of other stone buildings. Extensive mounds at Menshecyah (No. 19.) (l'tolemais Hermii); twelve miles south from Girgeh, is Abydus (Arabat el Matfoon), where are two temples and inany tombs. How (Diospolis parva), a few mounds. Dendcrah (No. 20.) (Tentyra) has
Fig. 67.
temple at tentyra. two temples (figs. 67. and 68.), inscriptions, zodiac, \&c. At Ku/t (Coptos), on east side, ruins of the old town, a pillar, and of temples ; and at the village of El Kala,

Fig. 68. TNTERIOR OF TEMLLE AT TEATMHA, to the north, a small Roman Egyptian temple. Kons (No. 21.) (Apollinopolis parva), no ruins. At Thebes or Kenel (Diospolis magna), ou the east bank, - re Carnak an Il Luxor (No. 22.) (figs. 62. and 63.); on the west, tomhs of the kings, private tombs, several temples, coiossi of the plain, \&e. At Erment (No. 23.) (Hermonthis), a temple and early Christian chureh. At Tofnees and Asforn (No. 24.) mounds of old towns. Esneh (Latopolis) (No. 25) possesses a fine portico (fig. 69.) cleared out in I 842, zodiac, and quay. On the east bank, four miles beyond, is El Kab (Eleithyias), ruins of a very ancient town; the temples lately destroyed; grotoes in the mountain; aud a short distance
 up the valley three small temples. Edfoo (No. 26.) (Apollinopolis magna), has two temples, one cleared 1864 (figs. 50. to 54.). At Gebel Silsileh, west and east banks, are the sand hone quarrics. At KimOmbo (No. 27.) (Ombos) are two templis, and a stone gateway in a crude brick wall on the east side of the inclosurc, showing an earlier temple. At Assoorm (No. 28.) (Syene), ruins of a small Roman temple, columus, and granite quarries, in one of which is a broken obelisk. Island of Elephanta, opposite to Assooan, is a part of the Niloneter, with Greek inscriptions relating to the rise of the Nile; a quay, and a granite gateway. At Philæ (No. 29.) temples (fig. 55.), and ruins. On the Jsland of Biggeh, opposite Phile, a small ruined temple, tablets, \&c.
92. In Nubia, temples at Dabor (No. 30.) (Parembol'), and at Kalabsheh (No. 31.) (Tamis), apnarently thrown down before it was completed. To the north of the last at Bayt el Welly a small but interesting rock-cut temple, of the time of Rameses II. A temple at Dendoor (No. 32.); and one rock-cnt, of the time of Rameses H., at Gerf Hossayn (Tutzis), un west bank. At Wady Sibooah (No. 33.), a temple of the same

Fig. 70.
temple at LPSAMBOOL.

Fig. 71.
TEMPLE AT IPSAMBOOL.
period, with an avenue of sphinxes, the adytmon rock-cut, the rest built. At Amada (No 34.), a temple of Thotlmes III.; and nearly opposite, on the east bank, is Dayr, the capital of Nubia, where is a rock-ent temple, of the date of Rancses II. It Aboo Sinabei
or Ipsambool (No. 35.) two fine temples (figs. 70. and 71.) cut in the rock, of the time of Rameses II., and the finest out of the Thebes. Above the last named phace there are 110 buildings of importance mentioned by our author.

Sect. Vill.

CHINESE ARCHITECTHRE.

93. In the first ehapter, the reader will remember, we have said that in the tent is tobe found the type of this architecture; and one which, M. de Panw justly observed, camot be mistaken. We are not aware of the utility of a very mimute investigation of its style, which in this eountry is of no importance, the decoration of gardens with imitatious of its productions being no linger attempted; but as the ohject of this work would not be fully attained without some account of it, we propose to consider it, firstly, with respeet to its prineiples, charaeter, and taste; seeondly. with respect to its buildmgs, their parts, and the method of constrnetion adopted in them.
94. (1.) 'To judge of the arts of a pcople, we ought to he acquainted with the people thenselves, the eonstitution of their minds, their power, their habits, and the connection of the arts with their wants and pleasures. As one man diflers from another, so do these difler anong nations. The desire of improving on what has been done before us, no less distinruishes mations than individuals from each other. Whatever may be the eause, this faculty does not seem to be possessed by the Chinese. Unlike their Indian neighbours, amongst whom appears an exuberanee of invention, the arts of imitation in China have been bound in the ehains of meehanical skill. 'Their painters are rather naturalists than artists; and an European, engaged on the foreground of a landscape, tells us that the eriticism by a native artist on his work was confined to the obscrvation that he had omitted some fibres and sinkings in some of the leaves of the foliage cmployed in it. The politieal and moral subjection of the people seems to have doomed them to remain in that confined circle wherein long habit and repugnanee to change have enelosed them
95. In speaking of the primeiples of Chinese architecture, the word is used in applieation to those primitive causes which gave birth to it, and whieh, in every speeies of architeeture, ure the elements of its elaracter and the taste it exhibits. The imitation of the tent, as we ave before observed, is the true origin of their buildings ; and this agrees with our knowedge of the primitive state of the Chincse, who, like all the Tartar tribes, were nomadie. On this is founded the singular eonstruction of their dwellings, which would stand were he walis destroyed; inasmueh as, independent of them, their roofs rest upon timber framing, int as though they had surrounded tents with enelosures of masonry. Indeed, from the beeounts of travellers, a Chinese city looks like a large permanent encampment, as well in espect of its roofs as its extent. If, again, we recur to their concave sloped sides, we em irrive at no other conclusion; and though the carpentry of which they are raised has for ges been subjected to these forms, when we comsider the natural mareh of human invention, specially in cases of necessity, we cannot believe that, in a country where the primitive onstruction was of timber, the eoverings of dwellings would at onee have been so simple and so light. Their framing seems as though prepared merely for a canvas eovering. Igain, we have, if inore were wanting, another proof, in the posts employed for the support of their roofs. On them we find resting nothing analogous to the architecture for reeciving nd supporting the upper timbers of the carpentry; on the eontrary, the roof projects over and beyond the posts or columns, whose mper extremities are bidden by the eaves; thus uperseding the use of a capital. A canvas covering requires but a slender stpport: hence ightness is a leading feature in the edifices of China. 'lhe system of carpentry (if such it an be called) thus induced, will be noticed under the second head; but we must here bserve, that lightness is not at all incompatible with essential solidity of construction; and hilst other materials than those which formed tents have been substituted for them, the urns of the original type have been preserved, making this lightness the more singular, hasmuch as the slightest analogy between those of the original and the eopy is impereptible. This change of material prevents in the copy the appearance of solidity, and ems a defect in the style, unless we revir to the type.
96. A characteristic quality of Chinese architecture is gaicty of effect. Their coloured ofs, compared by their pocts to the rainbow, - their porticoes, diapered with variegated outs, - the varnish lavished on their buildings, - the keeping of this species of decoration ith the light forms of the buildings, - all these mite in producing, to eyes aceustomed to ontemplate them, a species of pleasure which they would with dillieulty relinequish; mad it ems reasonable that the architecture of bimope minst apoar cold and monotonous to men hose pleasure in the arts is more dependent on their senses than on their judgnent.
97. 'lastr in art is a quility of varne signification, exeept amongst those whose lives ane
passed in its practice; neither is this the place to say, upon that subject, more than that, in the application of ornament or decoration to architecture, it must depend on the method of construction. 'This is not found in that whereof we are writing. With the Chinese, the art of omamenting a building is an application of capricious finery and patehwork, in which grotestue representations of subjects comected with their mythology often prevail: yet, in this respect, they exhibit a fertility of invention, and produce beantiful abstract combinations quite in character with the general forms. Indeed, the parts of their architecture are in harmony with each other. All is based upon natural principles, and is so adapted to the few and simple wants of a nation whose enormous population alone seems to render it independent of every other people, that no period can be assigned to the future duration of an architecture which, we apprehend, has existed amongst them from the earhest date of thein dwelling in cities.
98. (2.) Tinutr is the chief matrial in use among the Chinese; that of which the comntry produces, the principal is the nan-mo, which, according to some, is a species of cedar; others have placed it among the firs. It is a straight thick tree, and improves with age. De Pauw says that it furnishes sticks from twelve to thirteen fect high, of useful wood; but Chambers limits it to a smaller size. Respecting its beauty and duration, all travelless agree. Davis (Description of the Empire of Chinu) s.ys that the man-mo is a kind of cedar, which recists insects and lime, and appears to be exclusively used for inperind dwellings and temples. It was an article of impeachment against the minister of Kien-loong. that he had presmmed to use this wood in the construction of his private palace. According t.) D_{a} Hadde, the iron-wood, the ly-mo, is as tall as the oaks of Europe, but is less in its truok, and differs from it in colour, which is darker, and in weight. The anthor does not tell us whether it is employed for columns. 'The tsc-lâu, also called mo-uang, or king of woods, resembles what we call rosewood; but its use is confined cl:ieffy to articles of furniture. The tchou-tse or bamboo, grows to a g eat height in China. Though hoilow, it. is very hard, and capable of bearing great weight. It is employed.for scaffolding and sheds of all kinds; and the frame-work of their matted houses for theatrical exhibitions is carried up with bamboos in a few hours. It is in universal use. The missionaries inform us that Bick has been in use with the nation from the earliest period, and of both species, - burnt and merely dried m the sun. Chambers describes the walls of the houses built of this material as generally eighteen inches thick. He says, the workmen bring up the foundations for three or four courses in solid work; after which, as the walls rise, the bricks are used in the alternate conrses as headers and stretchers on the two faces of them; so that the headers mect, and thus occupy the whole thickness, leaving a void space between the stretchers: they then carry up another course of stretchers, breaking the vertical joints. Srone and marble are little employed; not on account of their scarcity, for they are abundant, nor on the score of economy, for they are acquainted with the method of working them, as is proved from their use in public buildings and tombs. Neither can it arise from the difficulty or want of acquaintance with the means of transport ; for we find in their gardens immense blocks introduced for the purposes of ormament; and in their marble staircases, the steps, whatever the length, are always in a single piece. The fear of earthquakes, moreover, does not appear to have been a motive for their rejection. 'That is rather to be found in the clinate, which, especiatly in the southern parts, would, from the great heat and moisture, tend to render their houses unwholesome. In the scaffolding they use for the erection of their buildings, security and simplicity are the principal features; not, however, unmixed with skill. It consists of long poles, so inclined as to make the ascent easy, and is executed without any transverse bearing pieces.
99. 'The police of architecture among the Chinese is, to an European, a singular feature in its practice; and we cannot refain from presenting to the reader the curions restrictions imposed upon cvery class in their several dwellings. Police, indeed, may be said to govem the arts of China. Its laws detail the magnitude and arrangement permitted for the lon, or patace of a prince of the first, second, or third degree; for a noble of the imperial family, for a grandee of the empire, for the president of a tribunal, for a mandarin, - for, indeed, all classes. They extend, also, to the regulation of the public buildings of capitals, and other cities, according to their rank in the empire. The richest citizen, unless bearing some office in the state, is compelled to restrict the extent of his house to his exact grade in the comtry ; and whatever form and comfort he may choose to give to the interior, the exterior of his dwelling towards the street must be in every respect consistent with these laws. According to the primitive laws on this subject, the number of courts, the height of the level of the ground floor, the length of the buildings, and the height of the roofs, were in a progressive ratio from the mere bourgeois to the emperor ; and the limits of each were exactly defined. The ordinary buildings are only a single story high : the climate seems to discountenance many stories. Though Pekin is in the fortieth degree of north latitude, the police oblires the shopkecpers and manufacturers to sleep in the open air under their penthouses in the bottest part of the summer.
100. The leou is a building of several stories. Of this sort are almost all the small pabares
built by the emperors in their pleasure gardens. The taste for this class of building at one period prevailed to such an extent that houses were constructed from $: 50 \mathrm{ft}$. to 200 ft . in height, flanked by towers extending to 300 ft . 'Though the emperors have, generally, abandoned these enormous buildings, they are still occasionally erected. Most houses of the country are so slightly built as to be incapable of bearing more than one story. Indeed, the necessity for making the most of an area by doubling and tripling its capacity, which exists in the capitals of Europe, does not operate in China.
101. The houses of the Chinese are uniform in their appearance. We here annex the

Fig. it. nnum mbins. plan and elevation of one (figs. 72. and 73.) ; from which it will be seen that a large portion of the area is occupicd by courts, passages, and gardens. Sir W. Chambers describes those of the merchants at Canton as being, gencrally, a long rectangle on the plan, two stories high, and the apartments divided on the ground floor by a wide passage, which extends through the whole length. On the side towards the strect the shops are placed, beyond which a quadrangular open vestibule leads to the private apartments, which are distributed on the right and left of the passage. 'There is a salon, usually about 18 ft . or 20 ft . long, and 20 ft . wide, open towards the vestibule, or with a screen of canework to protect it from the sun and rain. At the back are doors extending from the floor about half way to the ceiling; the superior part being of trellis work, covered with painted gauze, which gives light to the bedroom. The partition walls are not carried higher than the ground story, and are lined with mats to the height of three feet, above which a painted paper is used. 'I'he pavement is of differently coloured stone, or marble squares. The doors are generally rectangular, of wood, and varnished or painted with figures. Sometimes the communication between apartments is in the form of an entire circle, which some have compared to the aperture of a bird-cage. The windows are rectangular, and filled in with framework in patterns of squares, parallelograms, polygons, and circles, variously inscribed in or intersecting each other. The railwork to the galleries is similarly ornamenterl. The compartments of the windows are generally filled in with a tramsparent oyster shell instead of glass. The upper floor, which oc-

Fig. i3. hibvation of a chinesk house. honse, is divided into several large apartments, which are, occasionally, by means of temporary partitions, converted into rooms for visitors, apart from the funily. 'Ihe sleeping roons for the people connected with the business are over the shops. The roof stands on wooden columns; and its extremities, projecting beyond the walls, are usually decorated with the representation of a dragon.
102. In the system of carpentry practised by the Chinese, the colnmns and beams look more like the bars of a light cage than the supports and ties of a solid piece of framing, or like a collection of bamboos fastened to one another. The accompanying diagram (fig. 74.) will convey our meaning to the reader. Their colnmns vary in their forms and in their proportions from eight to twelve diameters in height, and are without capitals. 'They are generally of wood, standing on marble or stone bases, and are occasionally polygonal as well as circular. Some are plated on moulded bases.
103. The palaces are constructed on nearly the same plan. Nothing, say the missionaries of l'ekin, gives a more impressive idea of a palace and the greatness of its inlalitant, whether we consider its extent, symmetry, elevation, and miformity, or whether we regard it for the splendour and magnificence of its parts, than the palace of the emperor at Pekin. 'The whole, they say, produced an eflect mpon them for which they were not prepared. It occupies an area of upwards of 3600 ft . from cast to west, and above 3000 ft . from north to sonth, withont including the three fore-conrts. Mr. Barrow,
Mig. 73. chamanax in his Acconnt of Lom Morntheys Limbussy, describes it as a vast enclosme of a rectangulas form, surromaled by donble walls, having between them rampes of oflices, covered by roofs sloping towards the interior, The inchuded area is oceupied by buiblings not more than fino stories high, and forming several quadrangutar conts of varions siaes, in the centres of which are buildings standing on grante platforms, 5 ft . or 6 ft . high. These are surrommed by colmmis of wood, which smport a projereting roof turned mp at the angles. One of these bildings, serving as a hall of andience, stamels like the rese on a platform, aide
its projecting roof is supported by a double row of wooden columns, the intervals between which, in each row, are filled with brickwork to the height of 4 ft ; the part above the wall being filled in with lattice work, covered with transparent paper. The courts are intersected by canals spanned by several marble bridges. The gateways of the quadrangles are adorned with marble columns on pedestals, decorated with dragons. The courts contain sculptured lions 7 ft . or 8 ft . high ; and at the angles of the building, surrounding each area, are square towers, two stories high, crowned with galleries. The reader will find a delineation of this extraordinary building in Cousin's work, Du Genie de L'Architecture, 4 to, Paris, 1822 , pl. 26 . The peristylia of the interior buildings of the palace are built upon a platform of white marble, above which they are raised but a few steps; but this platform is reached by three flights of marble steps, decorated with vases and other ornaments.
104. It is said that there are 10,000 miao, or idol temples in Pekin and its environs. Some of these are of considerable size, others are more distinguished for their beauty; there 1s, however, no sufficient account of them, and we shall therefore proceed to those of Canton, which have been describedby Chambers. IIe says that in this city there are a great number of temples, to which Europeans nsually apply the name of pagoda. Some of these are small, and consist of a single chamber ; others stand in a court surrounded by corridors, at the extremity of which the ting, or idols, are placed. The most extensive of these pagodas is at Ho-nang, in the southern suburb of Conan. Its interior area is of the length of 590 ft ., its width 250 ft . This area is surrounded by cells for 200 bonzes, having no light but what is obtained from the doors. The entrance to the quadrangle is by a vestibule in the middle of one of the short sides; and at the angles are buildings 30 ft . square, in which the principal bonzes reside. In the middle of each of the long sides is a rectangnlar area, surrounded by cells, one containing the kitchens and refectories, and the other, hospitals for animals, and a burying ground. The great quadrangle contains three pagodas or pavilions, each 33 ft . square on the plan. They consist each of two stories, the lowest whereof is surrounded by a peristyle of twenty-four cohmms. The basement to each is 6 ft . high, to which there is a flight of steps on each side, and the three hasements are connected by a broad wall for the purpose of communication between them, with steps descending into the court. The roofs of the peristylia are concave on the exterior; and the angles, which are curved upwards, are decorated with animals. The sides of the upper story are formed with wooden posts, filled in with open framework. Round the foot on the exterior is a balcony with a rail in front. The roof resembles that of the peristyle, and has its angles similarly ornamented. The buitdings are all covered with green varnished tiles.
105. The Chinese towers, which also Europeans call pagodas, are very common in the country, The most celebrated, whereof a diagram is presented here (fig. 75.), is thus described by P. Le Comte. Its

Fig. ${ }^{\text {ans. }}$
chinesk tower, or pagoda. form on the plan is octagonal. and 40 ft . in diameter ; so that each side is full $16 \frac{1}{2} \mathrm{ft}$. It is surrounded by a wall at a distance of 15 ft , bearing, at a moderate height, a roof covered with varnished tiles, which seems to riee ont of the body of the tower, forming a gallery below. The tower consists of nine stories, each ornamented with a cornice of 3 ft . at the level of the windows, and each with a roof similar to that of the gallery, except that they do not project so much, not being supported by a second wall. They grow smaller as the stories rise. The wall of the ground story is 12 ft . thick, and $8 \frac{1}{7} \mathrm{ft}$. high, and is cased with porcelain, whose lustre the rain and dust have much injured in the course of three centuries. The staircase within is small and inconvenient, the risers being extremely high. Each floor is formed by transverse beams, covered with planks forming a chamber, whose ceiling is decorated with painting. The walls are hollowed for numberless niches, containing idols in bas-relief. The whole work is gilt, and seems of marble or wrought stone; but the author thinks it of brick, which the Chinese are extremely skilful in moulding with ornaments thercon. The first story is the highest, but the rest are equal in leight. "I counted," says M. Le Comte, " 190 steps, of ten full inches each, which make 158 ft . If to this we add the height of the basement, and that of the ninth story, wherein there are no steps, and the covering, we shall find that the whole exceeds a height of 200 ft . The roof is not the least of the beanties which this tower boasts. It consists of a thick mast, whose foot stands on the eighth Hoor, and rises thirty feet from
he outside of the huilding. It appears cnveloped in a large spiral band of iron, clear by everal fect from the pole, on whose apex is a gilt globe of extraordinary dimensions.
106. The word tower has been vaguely applied to all these huildings; but in China here are diffurences in their application, which are classed under three heads :-1. Tat, or blatforms for astronomical or meteorological oiservations, or for enjoying the air and landcape. 2. Hou, such as that just descibed in detail, being edifices of several stories, isolated nad circular, square and polygonal on the plan, built of different materials in different places.
3. Ta, which are sepulchral towers; these are usually massive, of strange but simple forms.
107. The Pay-l ou, or triumphal arches of the Chinese, are to be found in every city. They are crected to celebrate particular events. Those at Ning-po are winh a central and wo smaller side openings, and are ornamented with polygonal stone columns, supporting m entablature of three or four fascia. These are usially without monldings, the last but me excepted, which is a species of fritze filled with inscriptions. They are crowned with roofs of the usual fomm, having broad projections, whose angles are turned upwards. l'he apertures are sometimes square, and sometimes circular headed.
108. China abounds in hridges; but Du Ilalde and the missionaries have made more of hem in their accounts than they appear to deserve. What they have described as a bridge of ninety one arches between Soo-chow and Hâng-chow, was passed by Lord Macartney, and ound $t \cdots$ be nothing more than a long canseway. Its highent arch, however, was supposed to be between 20 ft . and 30 it . high; the length about half a mile. Sir George Staunton (vol. ii. 3.177.) observed a bridge which ippearcd to be skilfully constructed. They were acquain'cd vith the use of the arch composed of wedge-shaped voussoirs, perhaps before it was known
${ }^{n}$ Europe. Their great wall is a remarkahle monmment. In most parts it consists of an arthen mound retained on each side by walls of brick and masonry, with a terraced plat orm and a parapet of bricks. Its height is 20 ft . including a parapet of 5 ft . The
 thickness at the base is 25 ft , and it diminishes to 15 ft . at the platform. Towers, at intervals of about 200 paces, are 40 ft . square at the base, and 30 ft . at the top; their height is about 37 ft . ; some of them, however, are 48 ft . high, tuld consist of two stor'es. (Sce fig. 76.) In other parts the wall is little better than an earthen parapet with a ditc!?; in some places only rude stones heaped up. It extends a length of 1500 iles, and is conducted over mountains, valleys, and rivers. Mr. W. Simpson, in the Papers the lnst. of Brit. Architoete, 1873-74. carefnlly describes the important series of the ing tombs, dating 1425-1629. Many works have been published of late on Chinese d Japanese architecture and ornament.

Sict. IX.
NEXICAN ARCHITVCTVRE.
109. 'The architecture of the people who had possession of America hefore its discovery Colmmhns has a considerable claim upon our attention. When a people appears to have 1 no means of modelling their ideas through study of the existing monuments of older ions, nor of preserving any traces of the style of building practised by the race from ish they originated, their works may he expected to possess some novelty in the mode of nibnation or in the nature of the objects combined ; and, in this point of view, American hitecture is not without interest. It is, moreover, instructive in pointing out the bent the human mind when mhiassed by example in the art.
110. North America was fomed by the Spaniards advanced in agriculture and civilisation, 1 more enpecially so in the valleys of Mexico and Oaxaca. These provinces seem to have n traversed by different migratory trihes, who left behind them traces of cultivation. It not cur intention here to discuss the mode of the original peopling of America; but we 't, in passing, olserve that the vicinity of the continents of Λ sia and Λ merica is such as finduce us to remind the reader that one of the swams, which we mentioned in the rion on Druidical and Celtic Arehitecture, might have moved in a direction which ultitely brought them to that which, in modern times, has received the name of the Now ortd. The Tonltees appeared in 648, making roads, huilding cities, and constracting at pyranids, which are yet admired. 'locy knew the use of heroglyphical paintings,
founded metals, and were able to cut the hardest stonc. (Humboldt, New Spain.) The Aztees appeared in 1196, and seem to have had a similar origin and language. Their works, thougl? they attest the infancy of art, bear a striking resenblance to several monuments of the most civilised people. The rigid adherence of the people to the forms, opinions, and customs which habit had rendered familiar to them, is common to all nations under a religious and military despotism.
111. The edifices crected by the Mexicans for religious purposes were solid masses of carth of a pyramidal shape, partly faced with stone. They were called T'eocullis (Houses of God). That of ancient Mexico, 318 ft . at the base and 121 ft . in height, consisted of five stories; and, when seen at a distance, so truncated was the pyramid that the monument appeared an chormous cube, with small altars covered by wooden cupolas on the top. The place where these cupolas terminated was elevated 177 ft . above the base of the

Fig. 77.
paramids of teothugacan. edifice or the pavement of the enclosure. IIence we may observe that the '「eocalli was very similar in form to the ancient monument of Babylon, called the Mausoleum of Belus. The pyramids of Teotihuacan (fig. 77.), which still remain in the Mexican Valley, have their faces within 52 minutes of a degree of the cardinal points of the compass. Their interior is clay, mixed with small stones. This kernel is covered with a thick wall of porous amygdaloid. Traces are perceived of a bed of lime, which externally covers the stone.
112. The great pyramid of Cholula (fig. 78.), the largest and most sacred temple in
 Mexico, appears, at a distance, like a natural conical hill, wooded. and crowned with a small churelı; on approaching it, its pyramidal form becomes distinct, as well as the four stories whereof it consists, though they are covered with vegetation. Humboldt compares it to a square whose basc is four times that of the Place Vendome at l'aris covered with bricks to a height twice that of the Louvre. The hight of it is 177 ft . and the length of a side of the base 1423 ft .. There is a flight of 120 steps to the platform. Subjoined is a comparative statement of the Egyptian and Mexican pyramids : -

Dimensions.	l.gyptian. After Peming.				Mexican.	
	Cherps.	Chepheren.	Mycerinus.	Saccara (of five stories)	Teotilauacati.	Cholula
Height in feet - -	480	454	218	150	171	172
Length of base in feet	764	707	351	210	$6+5$	135

The Cholula pyramid is constructed with unburnt bricks and clay, in alternate layera. As in other Teocallis, there are cavities of considerable size, intended for sepulchres. In cutting through one side of it to form the present road from Puebla to Mexico, a square chamber was discovered, built of stones, and supported by beams of erpress wood. Two skeletons were found in it and a number of curiously painted and varmished vases. Humboldt, on an examination of the ruins, observed an arrangement of the bricks for the purpose of diminishing the pressure on the roof, by the sailing over of the bricks horizontally. The area on the top contains 3500 square yards, and was occupied by the Temple of Quetzalcoatl, the God of Sir, who has yielded his place to the Virgin. By the way, we may here mention that tumuli are found in Virginia, Canada, and Peru, in which there are galleries built of stone communicating with each other by shafts; but these are not surmounted by temples.
113. In the northern part of the interdney of Vera Cruz, west from the mouth of the Rio Tecolutla, two Ieagues distant from the great Indian village of Papantla, we meet. with a pyramidal edifice of great antiquity. The pyramid of Papantla remained unknown to the first conduerors. It is seated in the middle of a thick forest, and was only discovered by some lunters about the year 1816. It is constructed of immense blocks of stone laid in mortar; but is not so remarkable for its size as for its form and the perfection of its finish, being only 80 ft . sinare at the base, and not quite 60 ft . high. A fight of fifty-seven
teps leads to the trimeated pyramid. Like all the Mexican te callis, it is compred of tages, six whereof are still distinguishable, and a seventh appears to be concealed by the egetation with which its sides are covered. The facing of the stories is ormanented vith hieroglyphies, in which serpents and crocodiles, carved in relievo, are discemible. Liach story contains a great number of square niches symmetrically distributed. In the irst story twenty-four are on each side; m the second, twenty; and in the third, sixteen. the number of these niches in the body of the pyramid is 366 , and there are twelve in the tairs towards the east.
114. The military intrenchment of Xochiculco, near 'letlana, two leagues south-west f Cuernavaca, is another remarkable ancient momment. It is an insulated hill, 370 ft . igh, surrounded with ditches or trenches, and divided by the hand of man into five terraces overed with masonry. The whole has the appearance of a truncated pyramid, whereof he four faces are in the cardinal points of the compass. The masonry is of porphyry, very egularly cut, and adorned with hieroglyphies; among which are to be seen a crocodile ponting n, water, and men sitting cross-legged after the Asiatic fashion. On the platorm, which is very large, is a small square edifice, which was most probably a temple.
115. Thongh the province of Oaxaca contains no monuments of ancient Aztec architecure, which astonish by their colossal dimensions, like the houses of the gods of Cholnta, 'apantla, and 'leotihuacan, it possesses the ruins of edifices remarkable for their symınetry nd the elegance of their ormanents. The antiquity of them is unknown. In the district. if Oaxaca, sonth of Mexico, stands the palace of Mitla, contracted from Miynitlan, signiying, in Aztee, the place of woe. By the Tzapotec Indians the ruins are called frobu, or luico burial, or tomb), alhading to the excavations fom beneath the walls. It is conjectured to ave been a palace constructed over the tombs of the kings, for retirement, on the death of relation. The tombs of Mitla are three edifices, placed symmetrically in a very romantic ituation. That in the best preservation, and, at the sane time, the principal one, is nearly 30 ft . long. A staircase, formed in a pit, leads to a subterranean apartment, 88 ft in ength, and 26 ft . in width. This, as well as the exterior part of the edifice, is decorated vith fret, and other ornaments of similar character (fig. 79.). But the most singular
 feature in these ruins, as compared with other Mexican architecture, was the discovery of six porphyry columns, placed for the support of a ceiling, in the midst of a vast hall. 'They are ahmost the only ones which have been fonnd in the new continent, and exhihit strong marks of the infancy of the art, having neither base nor capital. The upper part slightly diminishes. Their total height is 19 ft ., in single blocks of porphyry. 'The ceiling under which they were placed was rmed by beams of Savine wood, and three of them are still in good preservation. The oof is of very large slabs. 'The number of separate buildings was originally five, and they were disposed with great regularity. 'The gate, whereof some vestiges are still discrinble, led to a court 150 ft . square, which, from the rubbish and remains of subteranean apartments, it is supposed was surromeded by four oblong edifices. That on the ight is tolerably preserved, the remains of two colnmes being still in existence. The prinipal buitding had a terrace, raised betweon three and four feet above the level of the court, nd serving as a base to the walls it surronnds. In the wall is a niche, with pillars, four or ve fect above the level of the floor. The stone lintel, over the prineipal door of the hall, * in a single block, 12 ft . long and 3 ft . deep. The excavation is reached by a very wide tairease, and is in the form of a cross, supported by columns. The two portions of it hich intersect each other at right angles, are each 82 ft . long by 2.5 ft wide. The inner ourt is surrnmeded by three small apartments, having no commonication with the moth, which is behind the niche. The interiors of the apartments are decorated with aintings of werpons, sacrifiees, and trophies. Of windows there are no traecs. Ihmboldt bas struck with the resemblance of some of the ornaments to those on the Etrusean vases f Iower Italy: In the neightourhood of these rinins are the remains of a large pyramid, nd other buidtings.
116. In the intendeney of Sonora, which lies north-west of the eity of Mexico, and in fe Gulf of California, on the banks of the lio Gila, are some remarkable rans, known by Ie mane of the Casa firande. 'Ihey stand in the middle of the vestiges of an ancient Aatere fity. The sides are in the direction of the fonr cardinal points, and are 445 from worth
to scuth, and 276 ft . from east to west. The materials are unburned brick, symmetrically arranged, but unequal in size. The walls are 4 ft . in thickness. The building was of three stories. The principal edifice was surrounded by a wall with towers in it at intervals. From vestiges which appear, it is supposed the town was supplied with the water of the Rio Gila, by an artificial canal. The plain in the neighbourhood is covered with broken earthen pottery painted in white, red, and blue colours.
117. The capital of Mcxico, reconstructed by the Spaniards, is undoubtedly one of the finest cities ever built by Europeans in either hemisphere. Perhaps there scarcely cxists a city of the same extent which, for the uniform level of the ground on which it stands, for the regularity and breadth of the streets, and the extent of its great square, can be eompared to the capital of New Spain. The religions edificcs are extensive and greatly decorated, but the architecture is much debased. To the dwellings ornament is sparingly applied; coloured tiles are used. The stones are a purons anygdalcid called telzontli, and a porphyry of vitreous feld-spath, without any quartz; these give to the Mexican buildings an air of solidity, and sometimes even of masnificence. The wooden balconies and galleries which distigure the European cities in both the Indies are discarded; the balustrades and gates are all of Biscay iron ornamented with bronze ; and the houses, instead of roofs, have terraces, like those in Italy and other southern countries. It must, however, be admitted, notwithstanding the progress of the arts there since abont 1820, that it is less from the grandeur and beauty of the edifices, than from the breadth and straightness of the streets, and their uniform regularity and extent, that Mexico commands the admiration of Europeans.

Sicer. X.

abablan, molesque, ok saracenic abchitecture.

118. Before the appearance of Mahomet, in the seventh century, and the consequent establishnent of Islamisin, the Arabians were by no means celebrated for their skill in architecture. The beatifinl comstry of Happy Yemen, wherein were scated the most ancient and populous of the forty-two cities of Arabia enumerated by Abulfeda, does not appear to have produced what might have been expected from the neighbours of the Egyptians, Syrians, Chaldeans, and Persians. The arts of the surrounding nations seem to have been lost upon them. Though a part of their time and industry was devoted to the management of their cattle, still they were collected into towns, and were employed in the labours of trade and agriculture. The towers of Saana, compared by Abulfeda to Damascus, and the marvellons reservoir of Merab, were constructed by the kings of the Homerites, who, after a sway of two thousand years, became extinguished in 502. The latter, the Meriaba, mentioned by I'liny as having been destroyed by the legions of Augustus, was six miles in circumference, and had not revived in the fourteenth century. " But," says Gibbon, "the profane lustre of these was eclipsed by the prophetic glories of Medina and Mecca." Of the ancient architecture of Arabia there are so few examples remaining, that no satisfactory account can be given of it. Excavations, still seen in rocks, are said to be the houses of the people called Thamud; but the Caba of Mecca is the only one of the seven temples in which the Arabians worshipped their idols now ir existence. It is a quadrangular building, about 36 ft . long, 34 ft . broad, and abont 40 ft . high. It is lighted by a door on the east sidc, and by a window, and the roof is supported by three octangular pillars. Since its adoption by Mahomet, it has been enclosed by the caliphs with a quadrangle, round which are porticoes and apartments for the pilgrins resorting to it. Ilere were the tombs of the eighty descendants of Mahomet and of his wife; but, in 1803, they were destroyed by the Wahabees, who, however, respected and spared the Caaba and its enclosures.
119. The extraordinary conquests from the Indus to the Nile, under Omar, th:e second caliph, who, after a reign of ten years, died in A. D. 644, brought the victorions Moslems in contact with inations then much more civilised than themselves. As their empire extended, their love for the arts and sciences increased. The first mosque built out of the limits of Arabia is supposed to be that which was founded by Omar on the site of the ancient temple at Jerusalem. Under the dynasty of the Ominiades, of which race Omar was a member, the cultivation of architecture was carried on with success. The seat of the empire was renoved to Damascus, which was considerably enlarged and improved. Among its numerous splendid buildings was the celebrated mosque founded by Alwalid II. It was he who introduced the lofty minaret, which, though an innovation at the time, seems, in later years, to have been as nccessary a portion of the mosque as the main body of it. This caliph made considerable additions to the mosque at Medina, as he also did to that which had been built by Omar on the site of the Temple of Solomon, above mentioned. His generals and governors of provinces seem to have been equally zealons in the cause of art and the prophet; witness the mosque built by one of the former on taking Samarcand, and
the universal improvement in the provinces under the sway of the latter. Great as were the works just mentioned, the removal of the seat of the empire to the western frontier of Persia, by the second caliph of the dynasty of the Abassides, gave a lustre to Arabian architecture which almost surpasses belief. Almansor, the brother and successor of Salfah, laid the foundations of Bagdad in the year 145 from the Héjira (A. d. 762), a city which remained the imperial seat of his posterity during a period of five hundred years. The chosen spot is on the castern bank of the Tigris, about fifteen miles above Modain; the double wall was of a circular form ; " and such," says Gibbon, " was the rapid increase of a capital, now dwindled to a provincial town, that the funeral of a popular saint might be attended by eight hundred thousand men and sixty thousand women of Bagdad and the adjacent villages." 'l'he magnificence displayed in the palace of the caliph could only be excecded by that of the Persian kings; but the pious and charitable foundation of cisterns and caravanseras along a measured road of seven hundred miles, has never been equalled.
120. About A. b. 6660-5, the prudence of the victorious general Akbah had led him to the purpose of founding an Arabian colony in the heart of Africa; and of forming a citadel that might secure, against the accidents of war, the wealth and families of the Saracens. With this view, under the modest title of a caravan station, he planted the coiony of Cairoan, in the fiftieth year of the Héjira. "When," observes Gibbon, "the wild beasts and serpents were extirpated, when the forest, or rather wilderness, was cleared, the vestiges of a Roman town were discovered in a sandy plain: the vegetable food of Cairoan is brought from afar ; and the scarcity of springs constrains the inlabitants to collect, in cisterns and reservoirs, a precarious supply of rain water. These obstacles were snbdned by the industry of Akbah; he traced a circumference of three thousand and six hundred paces, which he encompassed with a brick wall ; in the space of five years the governor's palace was surrounded with a sufficient number of private habitations; a spacious mosque was supported by five hundred columns of granite, porphyry, and Numidian marblc."
121. "In the West, the Ommiades of Spain," says the same author, "supported with equal pomp the title of Commander of the Faithful. Thrce iniles from Cordova, in honour of his faithful Sultana, the third and greatest of the Abdalrahnans constructed the city, palace, and gardens of Zehra. Twenty-five years, and above three millions sterling, were employed by the founder: his liberal taste invited the artists of Constantinople, the most skilful sculptors and architects of the age; and the buildings were sustained by twelve hundred colamns of Spanish and African, of Greek and ltalian marble. The hall of audience was incrusted with gold and pearls, and a great bason in the centre was surrounded with the curious and costly figures of birds and quadrupeds." The streets and houses at this place are hollowed out of the rock, which stands 1200 feet above them.
122. Whether we contemplate the materials furnished by Babylon and its neirhbour. hood, the dismantled towns of Syria, or the abundant ruins of Egypt, and from Tripoli to the Atlantic, it is curious, as the historian of the western Arabs has remarked, to oliserve that no people constructed, without recourse to the quarry, so many magnificent ediliees. In Spain, this was most remarkably the case, whereof the reader will be convinced by reference to Murphy's Arabion Antiquities, and Laborde's Voyage Pittoresque de l'L'spagne.
123. From the latter half of the eighth century to nearly the middle of the ninth, the progress of the Arabians in the sciences was wonderful. Their merit, however, in the art which it is our province to investigate, was of a class inferior to that of the people who invented and carried into execution, though later, the principles which regulated the stupendous monuments of Gothic architecture in Europe. 'They certainly understood the science of architecture; and works on it were written for the benefit of those whose occupations led them to take an interest in the art.
124. We regret that our limits do not permit us to dwell on the progress in the sciences made by the Arabian:, though some of them arc intimately comnected with our subject. But the information we omit will be much more satisfactorily obtained by the reader consulting the pages of the historian of the decline and fall of the Roman Empire. Onr purpose is now to present a concise view of the architecture of the Arabians from Laborde's Voynge Pittoresque de l'Espugne (vol, ii. part 1. xliii. et seq.) ; observing, by the way, that, from our own study of the subject, we are inclined fully to adopt it. In Spain there is a sufficient number of monuments of architecture to class them chonologically, and to assign an epoch to the different styles they exhibit. Though the species does not resemble that which has been denominated Gothic, which is clearly not an imitation, the one and the ather sprung from the same source. The point of departure was the arehitecture of Byzantium, in which city, after the fall of Italy, a totally new style arose, whose development in different modes was the basis of all modern architecture. As thongh the Colisemm had furnished the hint, the immense edifices, in the style of the period, were constructed with a moltiplicity of stories, - they were heavy without, though lightly and richly decorated within; the artists employed in their erection seeming to aim at a transference to the architecture and seulpture on which they were engaged of the oriental profinsion of ornanent visible in the stufls of India. 'ihis byantine school procinced the I،ombard and

Saxon styles in the North, on which we shall enlarge in the section on Gothic architecture; and, in the South, it produced the Arabian, Saracenic, or Moresque style, by whichever name the reader may choose to distinguish it. Both were strongly impregnated with the vices and defects into which the Roman architecture of the period had fallen. For the sake of illestrating what we mean, we refer, as examples, to the Baths of Dioclesian, to that emperor's palace at Salona, and to the buildings of Justinian and Theodosius, - from all which may be learned the abuses and incongruities which attended the fall, not only of architecture, but of all the other arts. We find in them arches springing from capitals, columns without entablatures, and cven zigzag ornaments. But, with all this perversion of taste, the general form of the plans of the edifices altered not : that of the temples more particularly continued unchanged. Some great convulsion was necessary before they could undergo alteration, and such was the introduction of Christianity. Thus, says Saint Isidore, the basilica suffered transformation into the Cluistian church: - "Basilice olim negotiis plenæ, nune votis pro salute susceptis." Of this, in a succeeding page, we shall have more to say. But the change was not confined to the basilica; the palace and domestic dwelling equally partook of the alteration of wants. The Romans, whilst masters of the world, were careless in protecting their cities by walls. Defence was only necessary on their frontiers; and there, walls and towers were constructed, from which was the first hint for the castle, of which the Roman villa, fortified, is the type. When, however, Italy was invaded, the fate of war soon caused exterior decoration to be sacrificed to internal comfort and luxury; and even Rome, under Delisarius, was surrounded by walls and towers. The pcople, whose prowess made these precautions necessary, soon found the convenience of adopting similar habits and buildings.
12.5. The Arabians, whose wandering life could scarcely be imagined capable of such a change, ultimately established themselves in Roman castles, and turned the Christian charches, which, at the period, were extremely numerous, into mosques. For some time, the architecture of the Goths, of the Arabians or Moors, was, as respects plan, the same; not less so was the character of the ornaments employed by both nations; but it was not long before these diverged into styles which possessed each its peeuliar beautics. The Christians soon used the pointed arch; and the style they adopted became slender and tall, whilst that of the Moslems, from the nature of the climate and their peculiar habits, was deficient in elcvation, though in the end it acquired a lightness and elegance which it did not at its origin possess. But it is proper, here, to impress on the mind of the reader that Gothic and Arabian architecture have nothing in eommon between them, except their origin from a common source. It is an error to confuund them, or to suppose that the pointed arch is found in any strictly Arabian edifices. That, as far as we can ascertain, did not exist before the eleventh century. It seems to have been a developinent in the parts of a style which, as it passed into more northern latitudes, became more acute in the roofs, from the necessity of discharging the rain and snow with greater facility. This pointed style spread itself over some parts of India; but, there, none of the examples are older than the fourtcenth or fiftcenth century. Except in ornamental detail, whereof we append two spectinens (figs. 80, 81.) from the Alhambra, the Arabs were not inventive. It is not

Fik. 70.
mhkely that their skill in geonetry greatly assisted them in the extraordinary combination of lines to be found in their decorations, which nothing can surpass; nor was it till the time of the Abassides that the Arabians becam. fully accuatinted with what had been done by the Greeks. Ihis knowledge was not confined to them, for there is abundant proot: 1. That :th the modern arts, as well of the North, as of the West and South, had their origin from the Greek empire at Constantinople, which at that period gave the fashion in them, as did Italy five centhries afterwards. 2. That the phans of clurches and mosques are traccable to that of the ancient basilica, as in the citadels of the middle ages, and the palaces of the Greek emperors, are to be found the types of the Gothic castie and of the Moresque alcazar. 3. That the Gothic and Saracenic styles attained their several perfection in very different mamers as to the details of their distribntion and ornament,
Fig. 81 capital, alifiabihra and acquired peculiar characters, which in both may be divided into three periods, the last in each being lost in the change that took place in Italy on the revival of the arts. 'Ihe periods of the Gothic will be noticed under the proper section
126. The first period in the history of Moresque architecture is from the fombdation of Islanism to the ninth century, of which the finest example was the Mosque of Cordowa in Spain. This was commenced in 770 by Abderahman, and linished by his son and successor, llisham. Its $\boldsymbol{f}^{\text {lan }}$ is a parallelogram, whose longest side is 620 ft . by 440 , formed by a wah and counterforts, both of which are embattled. The height of the wall varies from 35 to (io) ft ., and its thickness is 8 ft . The whole of the quadrangular space is internally divided into two parts, viz. a court of 210 ft . in depth, the mosque itself cevering the remainder of the area. The mosque consists of nincteen havas (of a portion of one whereof fig. 82. is a diagrann) formed by sevente.n ranks of columns, and a wall pienced with arches, from south to north, and thirty-two narrower naves from east to west. Each of these naves is abont 16 ft . wide from north to sontl, and about 400 ft . long, their width in the opposite direction being less. Thus the intersection of the naves with each other produces 850 columns, which, with fifty-two columns in the court, form a total of upwards of 900 columns. They are about 18 in . in diameter, the mean height of them is about 1.5 ft ., and they are covered with a species of Corinthian and Composite capital, of which there are many varieties. The columns have neither socle nor base, and are connceted by arches from one to mother. The ceilings are of wood, painted, each range forming, on the outside, a small roof, separated from Pis. 82 . noseug at coknova. those adjoining by a gutter. The variety of the marbles of the columms
produces an effect of riehness which all agree is very striking. They were most probably procured from the Roman ruins of the city. It is imposible to pass over the description of this mosine without calling to mind the resemblance it bears in its arrangement to the basilicas at Rome. The reader who has seen St. Agnese and St. Paolo fuori le innra, we are sure, will think with us. After the conquest of Cordova in 1236 , this mosque was converted into a cathedral. In 1528, it was moch disfigured by modern erections, which were necessary for better adapting it to the service of the Christian religion. Tbese, however, have not so far ruined its ancient eflect as to prevent an idea being formed of it when in its splendonr. 'The decorations throughont are in stnceo, painted of various colonts, decorated with legends, and occasionally gilt hike the churches of the Lower Empire.
127. In the second period, the style greatly improvea in elegance. It lasted till the close of the thirteenth century, just before which time was founded the royal palace and fortress of the Alhambra, at Granada (fig. 83.), perhaps the most perfect model of pure Arabiam architecture that has existed. During this period, no traces of the Byzantine style are to be found. An exuberance of well-tempered ormament is seen in their edifices, whose distribution and luxury manifest the highest dearec of refinement. Speaking of the interior of the building above mentioned, M. de Laborde siys, that it exhibits" tont ce que la voluptr, la grice, lindnstrie peuvent remir de plos agréable et de plus parfait." After passing the prineipal pn'rance, you arrive at two oblong conrts; one whereof, celcbrated in A rabian history, called the Court of the Lions, is in fig. 84. represented on the following parge. 'lhis court is 100 ft . long and 50 ft . broad, having 128 columns of white marble. Round these two courts, on the ground floor, are disposed the apartments of the palace. Those for state look out towards the country; the rest, cooler and more retired, have openings for hight under the interior porticoes. 'The whole is on one plane, the walls being phaced so as exactly to suit the platean of the rock; its entire length is abont 2300 ft ., and breadth 600 ft . The doors are few and large, and the windows, exeept on the side where the landscape is most magnifiecnt, are chichly towards the interior. In one of the apartments, the Arabian arehiteet Has, in an inseription, given his reason for this adoption, in the following terms: - "My vindows admit the light, and exchude the view of external objects, lest the beanties of
nature should divert your attention from the beaties of my work." The walls are covered with arabesques, apparently cast in moulds, and afterwards joined together. 'Ihe orna-

ments are in colours of gold, pink, light blue, and a dusky purple, the first colour being nearest the eye, and the last furthest from it; the general surface, however, is white. Jhe

Fig. 81.
COURE OF THE hHONS, Al.GAMBRA. walls, to the height of four feet, were lined witl variously figured and coloured porcelain mosaics, as were the floors. The Arabs of the Spanish caliphate appear to have known some mode of preventing the decay of paint and timber, for the printings, in which the medium for the colour is not oil, retain the original fresthness of their colours, and the woodwork of the ceilings presents no symptoms of decomposition. It has been conjectured that the soundness of the wood throughout has an isen from the trees being lanced or drained of their sap at the time of felling ; lut it may be, that the coating of paint has had some effect in producing the result. Description conveys no notion of this extraordinary edifice: the reader who wishes to obtain one must refer to Murphy's work, already mentioned.
128. The third period of Arabian archisecture is from the end of the thirteenth century to the decline of the Saracen power in Spain. During a portion of this period. it was used by the Spaniards themselves, and like the Gothie, in the northern and middle parts of Europe, was engrafted on the style which crept from Italy into all countries till the Renaissance. During this period were built the castles of Benavento, Penafiel, and Tordesillas; and the alcazars of Segovia and Seville. The plans continued much the same; but Greek ornaments began to appear, with Moresque arches on Corinthian columns. At this time, also, representations of the human figure are to be seen, which, by the laws of Mahomet, were strictly forbidden. 'There was a charm about this architecture which makes one almosi regret that reason and advance in civilisation have extinguished it.
129. We are not to look to the works of the Arabians for the real grandeur which is exhibited in the works of Egypt. Greece, or Rome. Brick was the material most used. When shone was employed, it was covered with a coating of stucco. In their constructive com. binations there is nothing to surprise. The domes which crown their apartments are neither lofty nor large in diameter, neither do they exhilit extraordinary mechanical skill. The Arabian architects seem to have been unacquainted with the science of raising vaults on lofty piers. In the specimen cited at Cordova, the span, from pier to pier is less than 20 ft ., which would not have required much skill to vallt, yet we find the ceilings of timber. The use of orders was unknown to them ; the antique columns which they introduced were employed as they found them, or imitations of them, without an acquaintance with the types from which they were derived, with their principles or proportions. In truth,
sir eolumns arc posts. We do not find, in the forms of Arabian art, that charaeter of ginality which can be traced from local causes. The Arabians had spread themselves tin every direction, far from their own eountry, in which they had never cultivated the is; hence their architecture was founded upon the models before them, whieh the
 Byzantine seloool supplied. Of the forms of their arches, some whereof arc here exhibited (g .8 .85 .), the most favourite seems to have been the horse-shoe form. They may be ranged into two classes, - that just named, and the other, that wherein the curve is of eontrary flexure, and described from several eentres. Both elasses are vicious in respeet of construction, from the impossibility of gaining resistance to ust at the abutments. In masonry, sueh arehes could not be executed on a large seale. briek arches, however, the surfaee of the cement is so increased, that if it be good, and great re be used in not removing the eentres till the cement is set, great variety of form in them ry be hazarded. If the pleasure - perhaps we may say sensuality - of the eye is alone to be nsulted, the Arabians have surpassed all other nations in their architeeture. The exquisite es on whieh their decorations are based, the fantasticness of their forms, to which eolour was ost tastefully superadded, are highly seduetive. Their works have the air of fairy enehantent, and are only to be eompared to that imagination with whieh the oriental poetry ounds. The variety and profusion wherewith they employed ornament impart to the erior masses of their apartinents the appearanee of a congeries of painting, inerustation, osaie, gilding, and foliage; and this was probably mueh augmented by the Mahometan v, which excluded the representation of the human figure. If a reason be unneeessary -the admission of ornament, nothing eould be more satisfactory than the splendour and illiancy that resulted from their eombinations. One of their practices, that of introducing ht into their apartments by means of openings in the form of stars, has a magieal effect. 130. We have principally eonfined ourselves, in the foregoing remarks, to the arehitecture
 of the Aralians as it is found in Spain, which, it is proper to olserve, is only a class of the edifices in the style. There is so elose a resemblanee between the buildings of that country and those of other places that were, till lately, under the dominion of the Moors,

Fig. 87. eleevaition, house at algiers. that, allowing only for difference of elimate, we might have left the subjeet without further illustration, but that we think the representation in figs. 86. and 87. of a Turkish house at Algiers, which we have extraeted from Durand's Paralléle des Edifices, may give a better idea of Arabian architccture than a host of words.
131. In Micca, the city of the Prophet, the houses are of stone, and three or four stories in height. The material employed inSG. piax, noeskaranorrs, dieates solidity of construction. The streets are regular. The
uling features are - the baleonies eovered with blinds; fronts of the houses mueh ornaented ; doors, with steps and small scats on both sides; roofs terraced, with very gh parapets, opened at intervals by a railing formed of briek, in which holes are left the eireulation of the air, at the same time giving an ornamentai appearance to the front; hireases narrow and inconvenient ; rooms of good dimensions and well-proportioned, ving, besides the principal windows, an upper tier. Damascus, of which a slight view y. 88.) is amexed, has been described as resembling a large eamp of eonical tents, which, a nearer approaeh, are found to be small cupolas to the houses. Brick, sun-dried, is the ineipal material, and the forms of the roofs mentioned are absolutely necessary to protect ainst the winter rains. Strects generally narrow, houses well supplied with fountains, d containing a large number of houses that may be ranked as palaces. Mosques, nany number, but presenting none that are very remarkable. The bazaars and baths of eonlerable size and splendour. In Bagdud, there are many large squares. The gates erected the caliphs are still in existenee, and are fine specimens of Arabian art. Its walls of ad are 2.5 ft . in height, but within them are ramparts, earried on arches. In Bussorah, e most remarkable feature is the mode in which they construet their arehes, which is ceted withont centres.
132. We do not think it neeessary to detain the reader on the architeeture of Moorish Western Arabia. As in the eastern parts of the ancient empire, the houses usially nsist of a court, whereof some or atl of its sides are surromed by galleries. Narrow ons rin gencratly parallel with the gallery, usually without any opening but the door
opening on to the gallery. Roofs are flat or terraed. Walls varionsly built, often of lime plaster, and stones, carried up in a sort of easing, which is removed when the work is sot

From want of good timber, the rooms are narrow. The mosques are by no means wordy of notice. Fez, an ancient Arabian city, contains some lofty and spacious houses. Its streets are narrow, and on their first floors have projections which much interrupt the hight. In the eentre of each house is an open quadrangle, surrounded by a gallery, eommmieating with a staircase. Into this gallery the doors of the apartments open. 'The ceilings are lofty, the floors of brick. All the principal honses are supplied with cisterns in the lowet parts, for fumishing a supply to the baths, a luxury with which also every mosque is pro. vided. In this town there are nearly two hundred earavanseras or inns, three stories high. in each of whose apartments, varying from fifty to one hundred, water is laid on for ahhrtion. The shops, as in Cairo, are very small; so much so, that the owner ean reach all the articles he deals in without ehanging his posture. In lripoli, the houses rarely exceed one story in height ; but we must be eontent with observing that the eharater is still the same. "Nee faeies omnibus una, nee diversa tamen." Though the late Sultan built a new palace in the Italian styfe at Constantinople, the Mostems will not easily relinquish a style inti-

mately allied to their habits and religion, a style whereof fig. 89. will eonvey some itha ic the reader. He is also referred to figs. 31,32, and 33., as examples of the same style ir Persia.

Sečr. XI.

GRECLAN ARCHITECHURE

133. The architecture of Greece is identical with colummar architecturc. Writers on de suljeet have so invariably treated the hut as the type on which it is formed, that, though ve are not thoroughly satisfied of the theory being correct, it would be difficult to wander fom the path they have trodden. In the section on Egyptian architecture, we have alluded o the tombs at Beni-hassan, and we here present a representation of a portion of them fom a sketh with which we were favoured many years since by the late sur charles,
 Barry 'fig. 30.). The reader will perceive in it the appearance of the Dorie column almost in its purity. Wilkinson (Munners and Customs of the Ancient Egyptians) is of opinion that the date of these tombs is $1740 \mathrm{~b} . \mathrm{c}$. , that is, in the time of the first Osirtesen, an antiquity which can be as. signed to no example in Grece. These tombs are excavated in a rock, a short distance from the Nile, on its right bank, abonit forty-eight French leagnes south of Cairo. 'Two of them have architectural fronts like: the above plate. The columms are five diancters and a half in height. The number of the flutes, which are shallow, is 90 , and the capital consists of a simple abacus. There are no indications of a base or plinth. Boove the architrave, which is plain, there is a projecting ledge of the rock, somewhat recombling a comice, whose soffit is sculptured, appurently in imitation of a series of reeds, laid rinsversely and horizontally. There certainly does, in this, appear some reference to mitation of a hat, and the refinement of the Greeks, in after ages, may hase so excinded the analogy as in the end to account for all parts of the contablature. 'lhe tralition donbtless existed long before Vitruvins wrote, who gives us nothing more than the elicf of the architects of his time. The point is not, at this time, likely to be answered atisfactorily; if it could, it might be important, as leading to the solution of some points of detail, which limit the propricty or impropriety of certain forms in particular sitnations. Having thus cautioned the reader asoinst implicit faith in the system we are about to levelope, we shall prefice it by the opinion, on this subject, of M. Quatremere de Quiney, 11 anthority of great value in everything that relates to the art. Carpentry, says that riter, is incontestably the model upon which Greck architecture is founded ; and of the liree models which nature has supplied to the art, this is, beyond doubt, the finest and most erfect of all. And again, he observes, whocver bestows his attention on the suljeect, will anily perceive that, by the nature of it, it includes all those parts that are effective for itility and beanty, and that the simplest wooden hut has in it the germ of the most magificent palace.
134. We must here premise that this section is strictly confued to the arditecture of Greece and its colonies. Much confusion has arisen from the want of strict limits to the crm Cirecian Architecture, one which has been indiscriminately applied to all !atildings in wheh the orders appear. 'lhe orders were altered in their profiles, proportions, imd details e the Romans; and thongh between them and those of the Greeks there is a general resemdanee, and their members are generally similar, yet, on a minute examination, great dillernee will be found. In the former, for instance, the contour ol every monding is a portion of a eircle; in the latter, the eontours of the mondengs are portions of eonic sections. la lfomans architecture, we hud the donc, which in Greek architecture never oceurs. In the atter, the arch is never seen; in the former, it is often an important lianne. ladeed, the olnmar style, as used by the Greeks, rembered arches monecessary ; lemee, in all initation of that style, its introduction produces a discord which no skill can render agrevable tor the ducated eye. Attempts have been male by the modem (ierman anchitects to introdace be nse of the arch with Greck forms; but they have been all signal failures, and that seamse it is incapable of amalgamation with the solemm majesty and parity of Greck comwition, lbefore such blending ean be accomplished with success, the mature of pure (ineck relitecture must be changed.
13.5. Following, then, the anthors, ancient and modern, on the origin of the art, we now roseed to a development ol its origin. 'The first trees or posts which were fixed in the arls for supporting a coner against the clements, were the origin of the ionlated eoblatas which afterwards became the smports of perticoes in temples. Diminishinf in diameter
135. Shey rose in height, the tree indicated the diminution of the colnmn. No type, however of base or pedestal is found in trees: hence the ancient Doric is without base. This practice, however, from the premature decay of wood standing immediately on the ground, caused the intervention of a step to reccive it, and to protect the lower surface from the damp. Scamozzi imagines that the mouldings at the bases and capitals of columns had their origin in cinctures of iron, to prevent the splitting of the timber from the superincumbent weight. Others, however, are of opinion that the former were used merely to elevate the shafts above the dampness of the earth, and thereby prevent rot. In the capital, it secms natura. that its upper surface should be increased as much as possible, in order to procure a greater area for the reception of the architravc. This member, or chief bcam, whose name bespeaks its origin, was placed horizontally on the tops of the columns, being destined, in affect, to carry the covering of the entire buitding. Upon the architrave lay the joists of the ceiling, their height being occupied by the member which is called the frieze. In the Doric order, the ends of these joists were called triglyphs, from their being sculptured with two whole and two half glyphs or channels. These, however, in the other orders in strictly Greek architecture, do not appear in the imitation of the type, though in Roman architecture it is sometimes otherwise, as in the upper order of the Coliseum at Rone, where they are sculptured into consoles. The space between the triglyphs was, at an early period of the ant, left open, as we learn from a passage in the Iphigenia of Euripides, where Pviades advises Orestes to slip through one of the metopæ, in order to gain admission into the temple. In after times, these intervals were filled up, and in the other orders they altogether disappear, the whole length of the frieze becoming one plain surface. The inclined rafters of the roof projected over the faces of the walls of the building, so as to deliver the rain clear of them. Their ends were the origin of the mutule or modillion, whereof the former had its under side inclined, as, among many other examples, in the Parthenon at A thens. The elevation, or as it is technically termed, pitch of the pediment, followed from the inclined sides of the roof, whose inclination depended on the chimate (See sect. 2030). Thus authors trace from the hut the origin of the different members of architecture, which a consideration of the annexed diagram will make more intelligible to the reader. Figs. 91. and 92. exhibit the parts of a roof in elevation and section: a a are the architraves or

Fig. 91.
EIEVATION:
Fig. 92
section.
trabes; bb the ridge piece or columen; cthe king-post or columna of a roof; dd the tie-beam or transtrum; e the strut or caprcolus; ff the rafters or cantheriz; $g g g g$ the purlines or .empla; h h che common rafters or asseres. 'The form of the pediment became an object of so much admiration, and so essential a part of the temple, that Cicerosays, if a temple were to be built in hearen, where no rain falls, it would be necessary to bestow one upon it. "Capitolii fastigium illud, et cætcrarum ædium, non venustas sed necessitas ijsa fabricata est. Nan cum esset habita ratio quemadmodum ex utraque parte tecti aqua delaberetur utilitatem templi fastigii dignitas consecuta est, ut ctiam si in coelo capitolium statueretur ubi imber esse non potest, nullam sine fastigio dignitatem habiturum fuisse videatur." (De Orature, lib. iii.) The inclination of the pediment will be hereafter discussed, when se speak on the article Roof, in another part of the work. Under the section on Cyclopean Architccture, mention has been made of the works at Tiryns and Mycene. We do not think t here is sufficient chain of evidence to connect those ruins with the later Grecian works, though it must be confessed that the temples of Sicily, especially at Selinus, and perhaps those at Pæstum, are connecting links. Perhaps the sculptures at Sclinus might be properly called Cyclopean sculpture, in its more refined state.

1:36. Architccture, as well as all the other arts, could only be carried to perfection by slow stcps. Stone could not have been uscd in building until the mechanical arts had been well known. It is curious that Pliny gives the Greeks credit only for caves as their origiual dwellings, from which they advanced to simple huts, built of earth and clay. His words are (lib. vii. S. 57.), "Laterarias ac domos constituerunt primi Euryalus et Myperbias
ratres Athenis: antea specus erant pro domibus." This. perhaps, is no more than a tradiionary fable. Fables of this kind, however, often have some foundation in fact. We are not always inclined to discard them, for we have little more than tradition for the early ex. cellence of the Athenians in civilisation, a nation among the Greeks who first became a body politic, and whose vanity caused them to assume the name of Auto $\quad 60 \nu \in s$, from a belief, ahost sanctioned by l'lato, that their ancestors actually rose from the earth. How strong the prevailing opinion was of the original superiority of the Athenians, may be gathered from Cicero, in his oration for llaccus. "Adsunt," he says, " Athenienses, unde humanitas, doctrina, religio, fruges, jura, leges ortre, atque in omnes terras distribute putantur: de quorum urbis possessione, propter pulchritudinem, etiam inter doos certamen fuisse proditum est : quae vetustatc eal est, ut ipsa ex sese suos cives genuisse dicatur," But we shall not attempt, here, an early history of Greece; for which this is not the place, and, if accomplished, would little answer our views. The Greeks exhibited but little skill in their carliest editices. The temple of Delphi, mentioned by Homer, in the first book of the Iliad (r .40 t . et secq.), which Bryant supposes to have been originally founded by Egyptian:; was, as we learn from I'ausanias (Phocic. c. 5.), a mere hut, covered with laurel branches. Liven the celebrated Arcopagus was but a sorry structure, as we learn from Vitruvius (lib. ii. cap. 1.), who judged of it from its ruins. The fabulous Cadmus - for we cannot help following Jacol Bryant in his conjectures upon this personage - has been supposed to have existed abont 1519 в. c., to have instructed the Greeks in the worship of the Ligyptian and Phœenician deities, and to have taught them various useful arts; but this carries us so far back, that we should be retracing our steps into Cyclopean architecture, if we were here to dwell on the period ; and we must leave the reader - as is our own, and as we apprehend will be the case with ail who may succeed us - to grope his way out of the darkness as best he may.
137. The earliest writer from whom gleanings can bc made to choidate the architecture of Greece is the father of poets. To Homer we are obliged to recur, little as we approve of the architectural graphic flights in which the poet is wont generally to indulge. Though the Odyssey may not be of so high antiquity as the Iliad, it is, from internal evidence, of sreat age, for the poem exhibits a government strictly patriarchal, and it sufficiently proves that the chief buildings of the period were the palaces of princes. We may here, in passing, observe, that in Greece, previous to Homer and Hesiod, the sculptor's art appears to have been unknown, neither was practised the representation of Gods. The words of
 $\alpha \nu \delta \rho เ \alpha \nu \tau о \pi о \iota \eta \tau i \kappa \eta \eta \sigma \alpha \nu$, ov $\delta є \in \nu o \mu \zeta \delta \nu \tau \sigma$. The altar, which was merely a structure for sacred use, was nothing more than a hearth, whereon the victim was prepared for the meal; and it was not till long after llomer's time that a regular priesthood appeared in Greece. In Sparta, the kings performed the office. In Egypt, the dignity was obtained by inheritance; as was the case in other places. The Odyssey places the altar in the king's palace; and we may reasonably assume that the spot was occasionally, perhaps always, used as the remple. From such premises, it is reasonable to conjecture that until the sacerdotal was separated from the kingly office, the temple, either in Greece or elsewhere, had no existence. It may not be without interest to collect, here, the different passages in the Odysscy, which bear upon the nature and construction of the very earliest bnildings of importance, Between the $\alpha u \lambda \eta$ and the $\delta o \mu o s$ there must have bcen a distinction. The former, from its etymology o. ω, must have been a locus subdialis; and though it is sometimes used (Iliad, Z. 247.) for the whole palace, such is not generally its meaning in the Odyssey. The $\alpha u \lambda \eta$ was the place in which the female attendants of Penclope were slain by 'Telemachus (Odyss. X. 146.), by tying them up with a rope over the \mathcal{N} o λ os or ceiling. Hence we arrive at the conclusion that this Aodos belongesl to the $\alpha \Delta \theta o v \sigma \alpha$ or cloister, supposing, as we have done, that the $\alpha v \lambda \eta$ was open at top, and the $\alpha i \theta o v \sigma \alpha$ is described (Iliad, $\Upsilon .176$.) as $\epsilon p i \delta o v \pi o s$, that is, sonorous or echoing, and as circumscribing the open part of the $\alpha u \lambda \eta$. The No入os was upported by $\kappa t o \nu \epsilon s$, posts or columns, and in the centre of the $\alpha \nu \lambda \eta$ stood the $\beta \circ \mu o s$ or altar. If our interpretation be correct, the $\mu \in \sigma o \delta \mu \alpha t$ in this arrangement must be the spaces between he columns or posts, or the intercolumniations, as the word is usually translated; and the assage in the Odyssey (T. 37.), wherein Telemachus is said to iave ssen the light on the walls, becomes quite clear. 'The passage is as follows:-
l'here seems no doult that the word $\alpha \Delta \theta o v \sigma \alpha$ will bear the interpretation given, and the arrangement is nothing more than that of the hypathral, and even correspondent with the Figyptian temple, particularly that of the temple at Ldfou, described by Denon, and reprerented in his plate 34.
138. Before we quit this part of our sulbject, let us consider the description which lorner (Otyss. H. 81.) gives of the honse of Alcmous as ilhnstrative of Greek arehitecture lhis dwelling, which Ulysses visiteal, had a braten threshold, oudos. It was viepeqךs a
lofty-a yofed. The walls were brazen on every side, from the threshold to the imnernost part. This, however, is rather poetic. The coping iptroos was of a blue colour. The interior doors are described as gold. The janbs of them, $\sigma \tau \alpha \theta \mu o$, were of silver on a brazen
 dogs, in gold and silver, which had been curiously contrived by Vulcan himself, guarded the portal. Thus far, making all due allowance for the poet's fancy, we rain an insight into what was considered the value of art in his day, more dependent, it w, uld seem, on material than on form. Seats seemed to have been placed round the interior part of the house, on which seats were cushions, which the women wrought. But we must return to the construction of the $\alpha \nu \lambda \eta$, inasmuch as in it we find considerable resemblance to the rectangular and columar disposition of the comparatively more recent temple.
139. It would be a hopeless task to comect the steps that intervened between the sole use of the altar and the establishment of the temple in its perfection; though it might, did our limits permit the investigation, be more easy to find out the period when the regular temple became an indispensable appendage to the religion of the country. It is closely connected with that revolution which abolished the civil, judicial, and military offices of kings leaving the sacerdotal office to another class of persons. Though in the patace of the king no portion of it was appropriated to religious ceremony, the spot of the altar only excepted, yet, as it was the depository of the furniture and utensils requisite for the rite of sacrifice, when the palace was no more, an apartment would be wanting for them; and this, conjoined with other matters, may have suggested the use of the cell. Eusebins has conjectured that the temple originated in the reverence of the ancients for their departed relations and friends, and that they were only stately monuments in honour of heroes, from whom the world had received considerable benefit, as in the case of the temple of P'allas, at Larissa, really the sepulchre of Acrisius, and the temple of Minerva P'olias at Athens, which is supposed to cover the remains of Erichthonius. The passage in Virgil (AEn. ii. v. 74.).

Venimus -
is explanatory of the practice of the ancients in this respect; and, indeed, it is well known that sacrifices, prayers, and libations were offered at almost every tomb; nay, the restingplace of the dead was an asylum or sanctuary not less sacred than was, afterwards, the temple itself. From Strabo (lib. ii.) it is clear that the temple was not always originally a structure dedicated to a god, but that it was occasionally reared in honour of other personages.
140. Before proceeding to that which is more accurately known, it may not be uninstructive to the reader to glance at the houses of the Greeks, as may be gathered from passages in the Iliad and the Odyssey. We slall merely remind him that Priam's house had fifty separate chambers, though he lived in a dwelling apart from it. These houses were, in some parts, two storics in herght. though the passages supporting that assertion (Ilad, B. 514-16. 184.) have been pronounced of thonb.ful anti fuity. There is, how. ewer, not the slightest doubt that the dwellings of the East consisted of more than a single story. David wept for Absalom in the chamber over the gate (2 Sam. xxiii. 33.). The altars of Alaz were on the terrace of the upper chamber (S Kings, xxiii. 12.). The stumner chamber of Eglon had stairs to it, for by them Ehud escaped, after he had revenged Israel (Judges, iii. 20.; 1 Kings, vi. 8.). In the Septuagint, these upper stories are all represented by the word ínepwov, the same employed by lloner. The Jewish law required (Dent. xxii. 8.) the terraces on the tops of their houses to be protected by a battlement; and, indeed, for want of a railing (Odyss. K. 559. et seq.) of this sort, Elpenor, one of the compranions of Ulysses, at the palace of Circe, fell over and broke his neck. The use of the word $k \lambda \mu \mu \xi$ in the Odyssey, connected with the words avaBatvelv and катавalvet, and the sulstant've $i \pi \epsilon p \omega o v$, is of frequent occurrence: it is either a ladder or a staircase, and which of them is unimportant; but it clearly indicates an upper story. 'To a comparatively late period, the Greek temple was of timber. Even statues of the deities were, in the time of Xenophon, made in wood for the sinaller temples (lib). iv. c. 1.), where the revenue of them was not adequate to afford a more expensive material. But time and accidents would scarcely permit their prolonged duration, and none survived long enough to allow of a proper description of them reaching us. The principle of their construction necessarily bore some relation to the materials employed, and the use of stone must have imparted new features to them. In timber, the beam (epistylium), which was borne by the columns, would probably extend in one picce throngh each face of the building. But in a stone construction this could not take place, even had blocks of such dimensions been procurable, and had mechanical means been at hand to place them in their proper position. From this alone follows a diminution of spaces between the columns. The arcl, be it recollected, was unkt own. It is curious to observe that the relative antiquity of the examples of Grecian Dorie may be expressed in terms of the intercolumnations; that is, the number of diancters forming the intervals between the columns. 'There is, moreover, another point worthr of notice, which is, that their antiguity may be also estimated by the comparison of the heights of the columns compared with their dianeters. Tlais, however, will require
irther consideration when we come to treat of the orders: here it is noticed only meilentally. 'Though we are not inclined to place reliance on the account given by Vitruvius of the origin of the orders of architecture, we should scarcely be justified in its omission ere. It seems necessary to notice it in any work on architecture; and, after remarking hat the age which tbat autior assigns for their origin is long before Homer's time, at which there seems no probability of their existence, from the absence of all reference to hem in his poems, we here subjoin the account of Vitruvius (Iib. iv. c. 1.) :-"Dorns, son if Hellen and the Nymph Orseis, reigned over Achaia and Pelopomnesns. He built a emple of this (the Doric) order, on a spot sacred to Jnno, at Argos, an ancient city, Hany temples similar to it were afterwards raised in the other parts of Achaia, though, t that time, its proportions were not precisely established. When the Athenjans, 1 a general assembly of the states of Greece, sent over into Asia, by the advice f the Delphic oracle, thirteen colonies at the same time, they appointed a governor ver each, reserving the chief eommand for Ion, the son of Xuthus, and Creusa, fiom the Delpbic Apollo had acknowledged as son. He led them over into Asia, here they occupied the borders of Caria, and built the great cities of Ephesus, Hiletus, Myus (afterwards destroyed by inundation, and its sacred rites and suffrages ansferred by the Ionians to the inhabitants of Miletus), Priene, Samos, Teos, Colophon, hios, Eirythrie, Phocea, Clazomene, Lebedos, and Melite. This last, as a punishment for re arrogance of its citizens, was detached from the other states in the course of a war vied on it, in a general council, and in its place, as a mark of favour towards king ittalus and Arsinoe, the city of Sinyrna was received into the number of the Ionian states. hese received the appellation of Ionian, after the Carians and Lelegse had been driven Int, from the name of Ion, the leader. In this country, allotting different sites to sacred urposes, they erected temples, the first of which was dedicated to Apollo Pimionius. It sembled that which they lad seen in Achaia, and from the species having been first used 1 the cities of Doria, they gave it the name of Doric. As they wished to erect this mple with columns, and were not acquainted with their proportions, nor the mode in hich they should be adjusted, so as to be both adapted to the reception of the superinunbent weight, and to have a beautiful effect, they measured a man's height by the agth of the foot, which they found to be a sixth part thereof, and thence deduced the roportions of their columns. Thus the Doric order borrowed its proportion, strength, 1d heauty from the human figure. On similar principles, they afterwards built the temple
Diana; but in this, from a desire of varying the proportions, they used the female gure as a standard, making the height of the column eight times its thickness, for the rpose of giving it a more lofty effect. Under this new order, they placed a base as a we to the foot. They also added volutes to the capital, resembling the graceful curls of ie lair, banging therefrom, to the right and left, certain mouldings and foliage. On the aft, channels were sunk, bearing a resemblance to the folds of a matronal garment. hms were two orders invented; one of a masculine character, without ormanent, the other a character approaching the delicacy, decorations, and proportions of a female. The ccessors of these people, improving in taste, and preferring a more slender proportion, signed seven diameters to the height of the Doric column, and eight and a half to the mic. That species, of which the Ionians were the inventors, has reecived the appellation Ionic. The thirl species, which is called Corinthian, resembles, in its character, the aceful elegant appearance of a virgin, whose limbs are of a more delicate form, and bose ornaments should be unobtrusive. The following is the fabulous aceount of the gin of the capital of this order. (Fig. 93.) A Cerinthim virgin who was of mar-

- 23. umbin oy cohinthian cabitad. pening at this time to pass by the tomb, observed the basket d the delieacy of the foliage that surrounded it. I'leased with the form and novelty of the mbination, he took the hint for inventing these columns, insing them in the country about rinth," \&c. Now, thongh we regret to danage so elegant and romantic a story, we ist remind those who wonld willingly trust the authority we have quoted, that Vitruvins aks of matters which oceurred so long before lis time, that in such an investigation ats it before us we mnst have other authentication than that of the author we quote, and ust especially in the case of the Corinthian capital, whose type may be referred to in a
vast number of the examples of Egyptian capitals, one of which, among many, is seen in fiy. 94.

141. The progress of the art in Greecc, whose inhabitants, in the opinion of the Egyptian priests in the time of Solon, wero so ignorant of all science that they neither unlerstood the mytho$\log y$ of other nations nor their own (Plato, in Timan), cannot be satisfactorily followed between the period assigned to the siege of Troy and the time of Solon and Pisistratus, or about 590 b. c. But it is, however, certain that within four eenturies after Homer's time, notwithstanding their originally eoarse manners, the Grecians attained the highest exeellenee in the arts. Gognet is of opinion the nurture of the art was prineipally in Asia Minor, in whieh eountry, he thinks, we must seek for the origin of the Dorie and Ionie orders, whilst in Greece 1roper the advancement was slow. The Corinthian order
Fug. 91. kompilan capitas. w:is, however, the lavt invented, and it seems generally agreed that its invention belongs to the mother country; but this we shall not stop to discuss here. 'The Temple of Supiter, at Olympia, one of the earliest temples of Greece (Pausanias, Eliuc. Pr. c. 10.), was built about 630 years before the Christian rera; and after this period were reared temples at Samos, Prienc, Ephevus, and Magnesia, and other places up to that age when, miler the administration of Pelicles, the architecture of Greece attained perfeetion, and the highest beauty whereof it is supposed to be susceptible, in the Parihenon (fig. y5.)

Fics. 95,
viEW of tha parthenon,
at Athens. The date of the erection of one of the temples of Disma, at Ephesus, was as remote as ihat of the temple of Jupiter. If Liry had sufficiently our confidenee, and we concede that other writers corroborate his statement (lib. i. e. 45.), its date is as ancient as the time when Servius Tullius was king of Rome. Great, however, as were the works wheh the Grecians executed, the mechanical powers werc, if one may judge from Thucydides (lib. iv.), not then compendiously applied for raising weights.
142. The origin of the Duric ordes is a question not casily disposed of. Many province of Greeee bore the name of Doria; but a name is often the least satisfactory mode of ar. eomting for the birth of the thing whieh bears it. We have already attempted to aceonn1 for the parts of this order by a referenee to its supposed eonnection with the hut. Thu writer, in the Encyclopédie Méthodique, truly says that if the Doric had an inventor, thai inventor was a people whose wants were, for a long period, similar, and with whom a stylc of building prevailed suitable to their habits and climate, though but slowly modified and carried to perfeetion. At the begiming of this seetion, tee have, however, suffiricntly spoken on this matter. But there are some peeuliarities to be noticed with respeet to the Dorie order, whieh we think will be better given here than in the third book, where we propose to treat of the orders more fully; and these consist in the great differenees which are found in its proportions and parts in different examples. For this purpose, several buildings have been arranged in the following table, wherein the first column exhibits the name of the building; the second the height of the column, of the example as a nume-
rator, and its lower dianeter as a denominator, both in English feet; the third is the puotient of the seeond, showing the height of the column, expressed in terms of its lowe liameter; the fourth eolumn shows the height of the entablature in terms of the diameter of the column; the fifth column gives the distance between the columns in the same erms; and the sixth shows the height of the capitals also in the same terms : -

Example,	Height divided by tower Diameter in English Feet.	$\begin{aligned} & \text { Diameters } \\ & \text { high. } \end{aligned}$	Height of Entablature in Terms of Diameter.	Interco lumniations	Iteight of (apital in terms of Diameter.
Temple at Corinth * -	$-\frac{23 \cdot 713}{5 \cdot 83}=$	4.065	- -	$1 \cdot 362$	-405
Hypæthral Temple at Pæstum *	$\frac{28 \cdot 950}{7 \cdot 00}=$	4•131	1.741	I•167	-549
Enneastyle Temple at Pastum -	$\frac{21 \cdot(60)}{4 \cdot 85}=$	4329	$1 \cdot 140$	$1 \cdot 064$	-500
Greater llexastyle 'remple at Selinus	$\frac{32 \cdot 6: 8}{7 \cdot 49}=$	$4 \cdot 361$	$2 \cdot 200$	$1 \cdot 490$	490
Temple of Minerva at Sytacuse -	$\frac{28 \cdot 665}{6 \cdot 50}=$	4410	- •	- -	-486
Octastyle Hypæthral Temple at Selinus	$\begin{aligned} & 18 \cdot 585 \\ & 10 \cdot € 2 \end{aligned}=$	4 572	$2 \cdot 038$	1.023	$\cdot 450$
Temple of Juno Luciba at Agrigentum	$\frac{-21 \cdot 156}{4 \cdot 59}=$	$4 \mathrm{C05}$		- -	-570
Temple of Concord at Agrigentum	$\frac{22.062}{464}=$	4.753	1.976	$1 \cdot 071$	-487
llexastyle Temple at Pastum -	$\frac{20 \cdot 353}{4.24}=$	4795	1.917	$1 \cdot 111$	$\cdot 564$
Temple of Jupiter Panhellenins at Egina	$\frac{17351}{322}=$	$5 \cdot 395$		$1 \cdot 680$	486
Parthenon - * -	$\frac{34.232}{6.15}=$	5.563	1.977	$1 \cdot 275$	-459
Temple of Theseus at Athens -	$\frac{18 \cdot 717}{3 \cdot 30}=$	5.669	$1 \cdot 664$	$1 \cdot 2.50$. 502
Temple of Minerva at Sunium -	$-\frac{19 \cdot 762}{3 \cdot 34}=$	$5 \cdot 890$	$1 \cdot 928$	1.472	$37{ }^{\prime}$
Doric Portico of Augustus at Athens	$\frac{26 \cdot 206}{4 \cdot 33}=$	6.042	1.721	1.046	374
'remple of Apollo, Island of Delos -	$\begin{array}{r}18.721 \\ 3.02\end{array}=$	60.9	1900	1500	$\cdot 555$
Temple of Jupiter Ncmens - -	- $33932=$	6.55	1.560	1-348	$\cdot 383$
Portico of Philip of Macedon -	$\frac{19 \cdot 330}{2.6}=$	6.535	1-867	$2 \cdot 700$	-4,30

143. Casting our eye down the third column of the above table, we find the height of re column in terms of its lower diancter varying from 4.065 to 6.535 . Lord Λ berdeen Inquiry into the Principles of Beruty in Greeh Architecture, 1822) seems to prefer the proortion of the capital to the column, as a test for determining its comparative antiquity ; It we are not, though it is entitled to great respect, of his opinion, preferring, as we do, judginent from the height as compared with the diameter to any other criterion; although must be admitted that it is not an infallible one. The last colnmns shows what an inonstant test the height of the capital exhibits. There is another eombination, to whieh eference ought to be made, - the height of the entablature, whieh forms the third column f the table, in which it appears that the most massive is about one third the height of the hole order, and the lightest is about one fourth, and that these proportions coineide with the thickest and the thinnest columns.
144. The entasis or swelling, which the Greeks gave to their eolmmen, and first veried by the observations of Mr. Allason, was a refinement introduced probably at a ite period, though the mere diminution of them was adopted in the carliest times. Che practice is said to have its type in the law which Nature observes in the formation f the trunks of trees. This diminution varies, in a number of examples, from une th to one third of the lower diameter; a mean of sixteen examples gives one fourth. be mere diminution is not, however, the matter for consideration; but the cursed utine of the slaft, which is attributed to some refined perception of the Greeks
relative to the apparent diminution of objects as their distance from the eye was increased, which Vitrivitus inagines it was the object of the entasis to correct. It cannot be denied that in a merely conical shaft there is an appearance of concavity, for which it is difficult to account. The following explanation of this phenomenon, if it may be so called, is given by our csteemed and learned friend, Mr. Narrien, in the Encyc. Metropol. art. Architecture. "When," he observes, " we direct the axis of the eye to the middle of a tall colmmn, the organ accommodates itself to the distance of that part of the object, in order to obtain distinctness of vision, and then the oblique pencils of light from the upper and lower parts of the column do not so accurately converge on the retina: hence arises a certain degree of ohscurity, which always produces a perception of greater magnitude than would be produced by the same object if seen more distinctly. The same explanation may serve to account for the well-known fact, that the top of an undiminished pilaster appears so much broader than the body of its shaft; to which, in this case, may be added some prejudice, caused by our more frequently contemplating other objects, as trees, which taper towards their upper extremities." Connected in some measure with the same optical deception is the rule which Vitruvius lays down (book iii. chap. 2.) for making the columns, at the angles of buildings, thicker than those in the middle by one fiftieth part of a diameter, - a law which we find followed out to a much greater extent in the temples of the larthenon and of Theseus, at Athens, where the colmmns at the angles exceed in diameter the intermediate ones by one forty-fourth and one twenty-eighth respectively. Where, however, the columns were viewed against a dark ground, some artists think that a contrary deception of the eye seems to take place.
145. In the investigation of the Doric order, among its more remarkable features are to be noted the longitudinal strix, called flutes, into which the column is cut; every two whereof mite, in ahmost every case, in an edge. 'Their lorizontal section varies in different examples. In some, the flutes are formed by segments of circles; in others, the form approaches that of an ellipsis. The number all round is usually twenty; such being the case at Λ thens; but at Pæstum the exterior order of the great temple has twenty-four, the lower interior order twenty, and the upper interior sixteen only. It has been strangely inagined, by some, that these flutings, which, be it remembered, are applied to the other orders as well as to the Doric, were provided for the reception of the spears of persons visiting the temples. The conjecture is searcely wor th refutation, first, because no situation for the doup iбok η (blace for spears) would have led to their more continual displacement from accident ; and secondly, because of the sloping or hemispherical form in the other orders, the foot of the spear must have immediately slid off. Their origin may probably be found in the polygonal column, whose sides received a greater play of light by being hollowed out, - n refinement which would not be long unperceived by the Greeks.
146. We shall now notice some of the more important Doric edifices, as connected with the later history of the Doric order, which was that most generally used by the European states of Grece, up to their subjugation by the Romans. The temple of Jupiter I:anhellenius, at Ígina, is probally one of the most ancient in Greece. The story, however, of l'ansanias, that it was built by Racus, before the war of Troy, is only useful as showing us its high antiguity. (Fig. 96.) 'The proportions of its columns and entablature are to lie

nd in a preeding page. The seupture with which this builing was decorated is now Munich. Though, perhaps, not so old as the building itself, it is of an antipuity coeval h the l'ersian invasion. 'The name of the architect of this temple was Libon, if whom other work is known; its age is, periaps, from about 600 years before Clirist. The rie temple at Corinth, of which five columns, with their architrave, are still in existence, very early specimen of Greeian architecture. The assertion that it was dedieated to aus is unsupported by testimony.
147. The Grecian temples in Sicily were erceted at periods which it is not easy to fix ; with respect to them, we ean only, from ciremmstanees connected with the island, reason the dates to be assigned to them. The founding of the city of Selinus or Selinuns, on south-west coast of the island, has usually been attributed to a colony from Megara; we are of opinion with the Baron lisani (Memoria sulle Metope Selinuntine) that it ited as a Phonician eity long previous to the settlement there by the Megarams. The e and forms of the seupture of the Sclinuntine temples seem to bear marks of a hoter age than is usually allowed to them, that is, $500 \mathrm{b.c}$. ; they are dated $600 \mathrm{s.c}$. by gell \& Evans. (See B. III.) Of the means and the circumstances under which the tiples were raised we are ignorant; but their ruins sufficiently indicate the wealth and porr that were employed upon them, as well as a considerably advaneed state of the art.
148. The temple of Jupiter Olympius, the largest in the island, and one of the most bendous monuments of antıquity, was, as we learn from Diodorns (iib. xiii. p. 82.), ner completed. The Agrigentines were oecupied upon it when the city was taken Hamilcar, cir. 247 B. c . Irs columns were on such a scale that their fiutes e sufficiently large to receive the boty of a man. The temples of Peace and of
of the few restiges that remain of them, attest the ancient magnificence of the
of Agrigentum, and are among the most beautiful as well as the best preserved ains of antiquity. A Corinthian colony established itself at Syracuse, as is said, 750 ; but no details of the history of the city furnish us with the means of aseertaining 'n the first temples there were ereeted. Its riches and magnificence were, however, I that it soon became an object of temptation to the Carthaginians. Its temple of acrva is evidently of very remote antiquity.
149. The great Hyprthral temple at Pestum was probably eonstructed during the od that the eity was under the power of the Sybarites, who dispossessed its original bitants, cnjoying, for upwards of two hundred years, the fruits of their usurpation.
-ks of Greek art are visible in it, and the antiquity of the Hypathral temple itself is irmed by the cxample. The city fell into the hands of the Lucanians about 350 years
wing is perhaps the chronological order of the prineipal buildings of Sicily and Magna cia, viz. Syracuse, Prestum, Selinus, Segeste, and Agrigentum.
150. The dates of the edifiees at Athens are, withont difficulty, aecurately fixed. The ylarum (figs. 97 and 98.) was commenced by Mnesieles about 437 b.c., and, at a great

Fig. 98.
elevation of tie pagpilatim.
expense, was completed in five years. It is a specimen of the military architecture of period, and at the same time forms a fine entrance to the Acropolis of Athens. At the r of its Doric portico the roof of the vestibule was supported within by two rows of Ion columns, whose bases still remain. By the introduction of these an increased height obtained for the roof, the abaci of the Ionic capitals being thus brought level with the

terior frieze of the building. The Parthenon (figs. 99. and 100.) erected a few years lat under the superintendence of Ictinus, is well known as one of the finest remains of antiqui

Fig. 100.
ELEVATION OF THE PAתJILENON
As well as the building last mentioned, it was reared at the period when l'ericles had management of public affairs, and was without a rival in Athens. Phidias was the sul intendent sculptor employed; and many of the productions which decorated this magy cent edifice have doubtless become known to the reader in his visits to the British Muset where a large portion of them are now deposited. Nearly coeval with the lropylxum Parthenon, or perhaps a little carlier, is the temple of Theseus (fig. 101.), which was is supposed, erected to receive the ashes of the national hero, when removed from Scy to Athens. The ruins of the architectural monuments of this city attest that the boas power and opulence of Greece was not an idle tale. Pericles, indeed, was charged by enemies with having bronght disgrace upon the Athenians by removing the public t
 with statues and temples that cost a thousand talents, as a proud and vain woman tricks hereelf out with jewels. (P / u trirch's Life of Pericles.) The temple of Minerva, at Sunium, was probably by Ictinus; but one of the happiest efforts of this architect was the temple of Apollo Epicurius, in Arcadia, still nearly entire. The peculiarities found in it we wiil shortly detail. The front has six columns, and instead of thirteen in each flank (the usual number) there are fifteen. In the interior, buttresses on each side, to the number of six, re-- n inwards from the walis of the cell, each ending in semicircular pilasters of the Ionic order. rese seem to have been brought up for the facility of supporting the roof, which was of ne. With the exception of the temple of Minerva at Tegea, its reputation for beauty was h, that it surpassed, if that lee a true test, all other buildings in P'eloponnesus. Its situon is about three or four miles from the ruins of Phigatia, on an elevated part of Mount tylus, commanding a splendid landscape, which is terminated by the sea in the distance. 151. About 370 в.c., Epaminondas restored the Messenians to independence, and built city of Messene. The ruins still extant prove that the art at that period had not marially declined. Its walls, in many parts, are entire, and exhibit a fine example of Grecian 1 itary arehitecture in their towers and gates. At no distant time from the age in ques; the portico of Philip of Macedon, at least his name is inscribed on it, shows that the 1 ric order had undergone a great change in its proportions. This portico must have been ceted about 338 s.c., and after it the lonic order seems to have been more favoured and ctivated. The last example of the Doric is perhaps the portico of Augustus, at Athens. 52. Before proceeding to the investigation of the Ionic order, it may here, perhaps, be avell to speak of the proportions between the length and breadth of temples, as compared h the rules given by Vitruvius (book iv. chap. 4.), that the length of a temple shall be ble its breadth, and the cell itself in length one fourth part more than the breadth, incling the wall in which the doors are placed. Though in the Greek exanples these Iportions are approximated, an exact conformity with the rule is not observed in any. The 1 rth, for instance, of the temple of Jupiter, at Selinus, is to the breadth as 2.05 to 1 ; in temple of Theseus, as $2 \cdot 3$ to 1 ; and from the mean of six examples of the Doric order, cted in Grecce and Sicily, is 2.21 to 1. If the flanks be regulated in length by making number of intercolumnations exactly double those in front, it will be immediately seen the proportions of Vitruvius are obtained on a line passing through the aves of the uns. But as in most of the Greek temples the central intercoluminiation in front is or than the rest, the length of the temple would necessarily be less than twice the width. he earlier specinens of the Doric order the length is certainly, as above mentioned in temple of Jupiter at Sclinus, very nearly in accordance with the rule; but in order to ateract the effect of the central intercolumniation being wider, the number of colmms, sad of intercolumniations on the flank, is made exactly double those in front. In later examples, however, as in the temples of Thescus and the Parthenon, and some rs, the number of intercolumniations on the flank was made double the number of inns in the front, whence the number of colunns on the tlanks was double the mumber nose in front and one more ; so that the proportion became nearly in the ratio of 2.3 to 1 . simplicity which flowed from these arrangements in the Grecian temples was such it seems little more than arithnetical architecture, -so symmetrical that from the three the dianeter of the colum, the width of the inturcolmumation, and the mumber of $i n n s$ in front, all the other parts might be foumd.
3. The lovic order, at first chiefy conlined to the states of A sia Minor, appears to have coeval with the Doric order. The most ancient example of it on record is the temple
 ed by the Greeks. In the Imian Antiquities (2 d edit. vol. i. c. 5.) is to be found an ant of its ruins. It was erected about 540 years n.c., by Rhaecus and Theodorus, two es of the island. The oetastyle temple of Bacelhis, at Teos, in whose praise Vitruvius lavish, shows by its ruins that the old moster of our art was well capable of appreug the beauties of an edifice. Ilermogenee, of Alabanda, was its arehitect, and he 4 to have been the promoter of a great change in the taste of his day. Vitrurius
(lib. iv. c. 3.) tells us that Hermogenes, "after having prepared a large quantity of marhle for a Doric temple, changed his mind, and, with the materials collected, made it of the Ionic order, in honour of Bacchus." We are bound, however, to observe upon this, that the story is not confirmed by any other writer. It is probable that this splendid building was raised after the Persian invasion ; for, according to Strabo (lib. xiv.), all the sacrect edifices of the Ionian cities, Ephesus excepted, were destroyed by Xerxes. Besides this netastyle temple, those of Apollo Didymacus, near Miletus, built about 376 в.c., and a Minerva Polias, at Priene, dedicated by Alexander of Macedon, are the chief temples o this order of much fame in the colonies. We slall therefore contine our remaining re marks to the three Ionic temples at Athens, and shall, as in the Doric order, subjoin. synoptical view of their detall.

Example.	Heighe divided by lower lliameter, in English Feet.	Diameters hign.	Heitht of Entahature in terms of Dianeter.	IntercoIumniations.	Height of Capitat in terms of Diameter.	Upper Diame'er, lower Dian. Leing I.000.
Temple on the Ilpssus -	$\frac{14604}{17 \times 3}=$	8241	$2 \cdot 265$	2090	6.610	-850
Temple of Minerva Polias -	$\frac{2.5387}{27.6}=$	$9 \cdot 119$	$2 \cdot 287$	$3 \cdot 500$	$0 \cdot 700$	$\cdot 8.33$
Temple of Erectheus -	$\frac{21.625}{2317}=$	$9 \cdot 337$	- *	2000	$0 \cdot 773$	-816

154. We here see that the Ionic column varies in height from eight diameters and nearl a quarter to nearly nine and a half, and the upper diameter in width between $\frac{85}{100}$ and $\frac{860}{100}$ The dissimilarity of the capitals renders it impossible to compare them. The mean heigl of the entablature is about a fourth of the height of the whole order. The height of t Grecian Ionic cornice may be generally considered as two-ninths of the whole entablatur
155. The age of the double temple of Minerva Polias (fig. 102.) and Erectheus h

now been stated as not completed in b.c. 409, at which time a committee was appointe report on its condition. Fergnson, ©On the Erechthenm, read at the Royal Institut British Architects, 1875-76, and 1878-79.
156. In the bases applied to the order in the Athenian buildings there are two tori, a scotia or trochilus between them, a fillet below and above the scotia separating it f the tori. The lower fillet generally coincides with a vertical line let fall from the extr projection of the upper torus. It the temple on the Ilyssusthe lower fillet projects al half the distance between the hollow of the scotia and the extremity of the inferior to The height of the two tori and scotia are nearly equal, and a bead is placed on the u;
rus for the reception of the shaft of the column. The temples of Erectheus and that on e Ilyssus have the lower tori of their bases uncut, whilst the upiper ones are fluted horintally. In that of Minerva Polias, the upper torus is sculptured with a guilloche. The se just described is usually denominated the Artic Base, though also used in the lonies. The bases, however, of the temples of Minerva Polias at I'riene, and of Apollo idymæus near Miletus, are very differently formed.
157. The Volute, the great distinguishing feature of the order, varies considerably in e different examples. In the edifices on the Ilyssus and at Priene, as well as in that of pollo Didymxus, the volute has only one channel between the revolutions of the spiral; ailst in those of Erectheus and Minerva Polias, at Athens, each volute is furnished with o distinct spirals and channels. In the temple on the Ilyssus, the capital is terminated a tle below the eye of the volute; in the others it reaches below the volutes, and is derated with honeysuckle flowers and foliage. The number of flutes, whiel, on the plan e nsually elliptical, is twenty-four, and they are separated by fillets from cach other. In me examples they descend into the apophyge of the shaft.
158. The tomb of Theron, at Agrigentum, in which Ionic columns and capitals are awned with a Doric entablature, has, by some, been quoted as an example of the Ionic ler; hut we do not believe it to be of any antiquity, and, if it were, it is so anomalous pecimen that it would be useless to pursue any inguiry into its foundation.
159. In the anta or pilasters of this order, as well as of the Doric, their capitals differ profile from the columns, and are never decorated with volutes. Their breadth is usually is than a diameter of the column, and they are not diminished.
160. The highest degree of refinement of Greek arelitecture is exhibited in its examples the Corinthian order, whose distinguishing feature is its capital. We have, in a preling page (139), given Vitruvius's account of its origin; but we much doult whether llimachns was its inventor.
161. The capitals of Egyptian columns are so close upon the invention, that we ap-

162. chofabsic monveahat or L.'vichatkg prehend it was only a step or two in advance of what had previonsly been donc. The palm leaf, lotus flower, and even volutes, had been used in similar situations in Egypt, and the contour of the lotus flower itself bears no small resemblance to the bell of the Corinthian capital.
163. We are inclined to assign the period of the latter part of the Pelopomesian war as that in which the order first came into use. We find from l'ausanias (Arcad. e. 45.) that Scoplas, the celebrated arehitect of Paros, rebuilt the temple of Minerva at 'T'cgea, which was destroyed hy fire about 400 years b.c., and that, according to that author, it was the largest and most beautiful ehifice in the l'eloponnesus. The cell, which was hyprthral, was surrounded by two ranks of Doric columns, which were surmounted by others of the Corinthian order. The peristyle of this temple was Ionic.
164. The delicacy of formation of this order has, doubtless, subjected its examples to carlier destruction and decay than have attended the other orders: hence our knowledge of it is almost confined to the examples we meet of it in the Tower of the Winds, and the Choragic monument of Lysicrates (fig. 103.), both at A thens; the former whereof can seareely be considered Corinthian, and the latter not very strictly so. It was erected about 330 years s.c., as appears from the inseription on the frieze. These Choragie buildings, usually of small dimensions, were erected in honour of those who, as choragi or leaders of the chorus in the musical games, were honoured with the prize, which was a tripod. The following are the proportions observed in the Choragic monument of $\mathrm{L} y$ sicrates:-

mn which it appears that the entablature is less than a fifth of the total height of the er. The intercolumniations are $2 \cdot 200$ dianeters. The base is little difterent from that d in the Ionic order.
G4. In the ornaments applied for the decoration of the sacred mifices of the Greeks,
they imitated the real and symbolical objects used in their worship. Thas, at the templof Apollo at 'reos, the lyre, tripod, and grithin occur; in the 'Temple of the Winds a Athens, the winds are personified on the walls; the Choragic monunent of Lysicrates ex hibits the consequences of a eontempt of music; on the temple of Victory, at the entrancs of the Acropolis, was recorded, on the very spot, the assault and repulsion of the Amazous the Lapithe are vanquished again in the temple of Theseus, the founder of the city; ant lastly, in the larthenon is brought before the eye, on a belt round the cell of the temple the Panathenaic procession, which, issuing from the door of the cell, biennially perambatated the edifice, whilst its pediment perpetuates the contest between Neptune and Minerva for the honour of naming the city, and calls to remembrance the words of Cicero, "De quorum,' (Atheniensium,) "urbis possessione, propter pulchritudinem etiam inter deos certames fuisse proditum est," \&c. In the capitals of the Corinthian examples just noticed the leave: are those of the olive, a tree sacred to the tutelary goddess of Athens, and on that account a well as its beauty of form and simplicity adopted by a people whose consistency in art ha never been excelled.
165. Besides the method of supporting an entablature by means of columns, the employment of figures was adopted, as in the temples of Ereetheus and Minerva Polias betore mentioned (see fig. 102.). They were called Caryatides; and their onigin, according to the account of it loy Vitruvius (lib. i. c. l.), was that Carya, a city of Peloponnesus, having assisted the Persians against the Grecian states, the latter, when the country was freed from their invaders, turned their arms against the Caryans, captured their city, put the males th the sword, and led the women into captivity. 'The architects of the time, to perpetuate the ignominy of the people, substituted statues of these women for columns in their porticoes faithfully copying their ornaments and drapery. It is, however, certain that the origis of their application for architectural purposes is of far higher antiquity than the invasion 0 Greece by the Persians, and in the above account Vitruvius is not corroborated by an! other writer. Herodotus (Polymnia), indeed, observes that some of the states whom hi enumerates sent the required offering of salt and water to Xerxes; but no mention is madt of Carya, whose conduct, if punished in such an extraordinary manner, would have been toc curious a matter to have been passed over in silence. Whether the use of statues to perforn the office of columns travelled into Greece from India or from Egypt, we will not pretent to determine. Both, however, will furnish examples of their applieation. In the latte country we find them employed in the tomb of King Osymandyas (Diodorus, tom. i. f. 56. Wesseling). Diodorus also, speaking of Psammoticus, says that having obtained the whol kingdom, he built a propylxum on the east side of the temple to the god at Memphis which temple he encircled with a wall ; and in this propylæum, instead of columns, substi tuted colossal statues (κ одот $\tau o u ̀ s ~ i \pi o \sigma \tau i, \sigma \alpha s$) twelve cubits in height.
166. The application of statucs and representations of animals is a prominent feature in the architecture of Egypt, whereof the temple at lpsambool is a striking example, though is that the figures do not absolutely carry the entablature (see fig. 71.). In India many instances of this use of statues occur, as in the excavations of the temple near Yellon described by Sir C. Mallet (Asiat. Res. vol. vi.), whercin heads of lions, elephants, ane imaginary animals apparently support the roof of the cave of Jugnath Subba; and at lilephanta, where colossal statues are ranged along the sides as high as the underside of the entablature (see fig. 39.). But as the settlement of the clains of either of these countrie to the invention is not our object, we shall proceed to consider how they obtained is: Grece the name that has been applied to them long before the period of which Vitruviu: speaks.
167. Kapv́a, the nut tree (Nux juglans), which Plutarch (Sympos. lib. ii.) says received its name from its effect (κ áoos, sopor) on the senses, was that into which Bacehus, after co habitation with her, transformed Carya, one of the three daughters of Dion, king of Laconia by his wife Iphitea. 'The other daughters, Orple and Lyco, were turned into stones for having too closely watched their sister's intercourse with the lover. Diana, from whon the Lacedemonians learnt this story, was on that account, as well perhaps as the excellenci of the fruit of the tree, therefore worshipped by them under the name of Diana Caryatis (Servies, note on 8th Eel. of Virgil, edit. Burman.) Another account, however, not at al affecting the hypothesis, is given of the name of Diana Caryatis in one of the old commen tators of Statius (Bartlius, lib. iv. v. 225.). It is as follows. Some virgins threatenet with danger whilst celebrating the rites of the goddess, took refuge under the branches o a nut tree ($\kappa \alpha o v a$), in honour and perpetuation whereof they raised a temple to Dian: Caryatis. If this, however, be an allusion to the famous interposition of Aristomenes it protecting some Spartan virgins taken by his soldiers, it is not quite borne out by thi words of Diodorus. Salmasius (Exercit. Plinianc, f. 603. et seq.) says, that Diana wa worshipped at Carya, near Sparta, under the name of Diana Caryatis; and that at her templ and statue the Lacedemonan virgins had an anniversary festival, with dancing, accordingt the custon of the country.
168. But to return more closely to the subject, we will give the words of Pausanias (Laco
cs) on the temple to the goddess at Carya. "The third turning to the right leads to Carya, d the sametuary of Diana; for the neighbourhood of Carya is sacred to that gooldess and -r nymplis. The statue of Diana Caryatis is in the open air; and in this place the Lacemonian virgins celebrate an anniversary festival with the old eustom of the dance." uhbius on the passage in question, after reference to Ilesychius, says, "Caryatides etiam cuntur Lacene saltantes, simistri ansata, uti solebant Caryatides puellæ in honorem 'іаш."
169. From the circmmstances above inentioned, we think it may be fairly coneluded that e statues called Caryatides were originally applied to or used about the temples of Diana, d that instead of representing captives or persons in a state of ignominy, they were in ct representations of the virgins engaged in the worship of that goddess. It is probable at after their first introduction other figures, in buildings appropriated to other divinities, cre gradually employed; as in the Pandroseum (attached to the temple of Minerva Polias), for instance, where they may be representations of the virgins

ig. 104.

Fig. 105. called Camephora, who assisted in the Panathenaie procession. Fig. 104. is a representation of one of those used in the Pandroseum (sce also $f i g .102$.) ; and fig. 105. is from the 'rownley collection, now in the British Museum. Piranesi conjectured that this last, with others, supported the entablature of an ancient Roman building restored by him from some fragments found near the spot where they were discovered, which is rather more than a mile beyond the Capo di Bove, near Rome. Four of the statues were found; and on one of the three, purchased by Cardinal Albani, The following inscription was found: - KPIT Ω N KAI NIKOAAOZ EnOIOTN; showing that it was the work of Greek artists.
170. The republican spirit of Greece tended to repress all appearance of luxury in their private dwellings. The people seem to have thrown all their power into the splendour and magnificence of seir temples; and it was not till a late period that their houses received much attention. ixcept in the open courts of them, it is difficult to conceive any application of the orders. t is centain that they frequently consisted of more than one story; but beyond this all is onjecture. In the time of Demosthenes (Orat. adv. Aistocratem) the private houses had egrun to be increased in extent ; and the description of them by Vitruvius, who knew thens well, proves that they were then erected on an extent implying vast luxury.
171. Within the last few years discoveries have been made at Athens, which would lead s to the belief that it was the practice of the Greeks to $\mathrm{p}^{\text {raint }}$ in party colours every portion f their temples, and that in violently contrasted colours. This has received the name of olychrome architecture. It is rather strange that no ancient writer has spoken of the praeiee, and the only way to aecount for the omission is by supposing it to have been so comon that no one thought of mentioning it. From late investigatiors (Inst. of Brit. rehitects, Trans. i., 1836.), it appears that many parts of the Parthenon were painted r gilt. Thus the coffers of the ceiling were painted, and its frieze ornamented with fret in colours. The whole building, says M. Schaubert, as well as other temples, as thickly painted, ia the metopæ, in the pediment, on the drapery of the figures, n the capitals, and on all the mouldings. So that, as he says, with great simplicit?. ith its mouldings and carvings variously coloured, the simple Doric temple of 'heseus was in effect richer than the most gorgeous example of Corinthian ; and it would e worth the trouble to restore with accuracy a polyehrome temple. From M. Quast Mitheilmyen über Alt und Neu Athen, Berlin, 1834), we learn that the colour was not used I a fluid state merely for the purpose of staining the marble, but in a thick eoat, so that ie material was completely eovered; and that in the temple of Theseus this is more raceable than in any other. Though the colours, that of blue smalt more especially, ave left but a grey crust, yet their original tone is still apparent. In this building deep lues and reds are the predominant colours, so as to relieve one another. The corona was eep blue, and the guttæ of a brown red; the foliage of the cymatiun was alternately reaked with blue and red, the ground being green, which colour is apphed to the small aves on some of the lesser mouldings. Some of the eoflers are coloured of a red inelining ? purple, on which the ornament is given; others exhibit a bhe gronnd, with red stars. 'he architrave of the portico was a bright red; the figures in the frieze were painted in eif proper natural colours: traces of the colour show that the walls were green. It as not diseovered that in the eolumns more than the arrises of the flutes were painted, thongl! the echinus wac. We do not dontht the aceuracy of MM. Semper and Quas, Hr writers on the same subject, but after all it is possible that all this paintiner may have en execoted at a period much later than that of the bmidings themselves.
172. The most ancient thatres of (irecece were constructed in a temporary manner; but ie little security from aecident they aflorded to a large coneourse of persons soon made the reeks more cautions for their security, and led to edifiees of stone, which, in the end, ex-
ceeded in magnitude all their other buildings. Their form on the plan (see fig. 1u6.) was rather more than a semieircle, and consisted of two parts; the $\sigma \kappa \eta \nu \grave{\eta}$, scena, and коияд.

cuved. The seena was at first merely a partion for the actors reaching quite across the stage, dressed with boughs and leaves, but in after times was very difterently and more expensively constructed. It had three principal gates, two on the sides and one in the centre; at which last the prineipal characters entered. The whole scene was divided into several parts, whereof the most remarkable were-the Bpovteiov, brontaum, under the floor, where were deposited vessels full of stones and other materials for imitating the sound of thunder; the $\epsilon \pi t \sigma \kappa \eta \nu t o \nu$, episcenium, a place on the top of the scene, in which were plated the machines for changing the various figures and prospects; the $\pi \alpha \rho a \sigma \kappa \dot{\eta} \nu o \nu$, parascenium.
 the performers acted ; the o $\rho \chi \dot{\eta} \sigma \tau \rho a$, orchestra, was the part in which the performers danced
 hyloscenium, was a partition muder the pmlpitum, where the musie was placed; the noinov, croved, was for the reception of the spectators, and consisted of two or three divisions of several seats, each rising above one another, the lowest division being appropriated to persons of rank and magistrates, the middle one to the commonalty, and the upper one to the women. liound the eavea porticoes were erected for shelter in rainy weather, the theatre of the Greeks having no roof or covering. 'The theatre was always dedicated to Batechus and Venus, the deities of sports and pleasures; to the former, indeed, it is said they owe their origin: hence, the plays acted in them were called Δ ovvorak $\dot{\alpha}$, Miomysiuch, as belonging to atonaoos, or Bacchus. Every citizen shared by right in the public diversion and public debite; the theatre was thercfore open to the whole community.
173. The Athenian α oopai, or fore, were numerous; but the two most celebrated were the old and new forum. 'Ihe old form was in the Ceramicus within the city. The assemblies of the people were held in it, but its principal use was as a market, in which to every trade was assigned a particular portion.
174. 'The supply of water at Athens was chiefly from wells, aqueduets being searcely known there before the time of the Romans. Some of these wells were dug at the public expense, others by private persons.
175. The first gymnasia are said to have been erected in Lacedemonia, but were afterwards much improved and extended, and became common throughout Greece. The gymnasium consisted of a number of buildings united in one enclosure, whereto large numbers resorted for different purposes. In it the philosophers, rhetoricians, and professors of all the other sciences, delivered their lectures; in it also the wrestlers and dancers practised and exereised; all which, from its space, they were enabled to do without interfering with one another. The chief parts (fig. 107.), following Vitruvius (lib. v. cap. 11.), are - A, the $\pi f-$
 $\{, 2,3$, are the σ toal, porticus, with в в, $\epsilon \xi \in \delta$ рat, cxhcdra, where probably the scholars used

phebi or youths exercised, or, as some say, where those that designed to exercise met and greed what kind of excreise they should contend in, and what should be the victor's revard; n , is the coryceum ; e, the кoviotippov, conisterinin, where the dust was kept for jurinkling those that had been anointed; F is the cold bath (frigida lavatio); c , the $\epsilon \lambda$ aco-
 $\theta \in \sigma$ ov, elaothesium, or place for anointing those that were about to wrestle; н, the frigidarium, ot cold chamber; :, passage to the propigncum, or furnaee; i., the propigneum ; 1 , the arched sudutio, for sweating; N , the laronicum; o, the hot bath (culide lavatio); 5, 7, the two porticoes described as out of the palastra, of which 7 forms the xystus, and 6 a donble portico; a a , the margines, or semitte of the xystus, to scparate the spectators fiom the wrestlers; $b b$, the middle part excavated two steps, cc, down; Q Q, gardens; $d d$, walks; e e, stu-
 sometimes called $\pi \in \rho \dot{i} \delta \rho o \mu \nu \delta \in s$, for walking or exercises; s , the stadium, with raised seats round it.
176. The roofs of the edifices of Athens vary from $14 \frac{1}{2}$ to $15 \frac{1}{2}$ degrees in inclination, a sulyject which will be hereafter fully considered, when we come to investigate the prineiples of constructing roofs. In Rome, as will hereafter be seen, the inclination is much more. There is nothing to war. rant us in a belief that the arch was known to the Greeks till after the age of Alexander. Indeed, the want of a name for it in a language so generally copious as the Greek, suffices to show that they were unacquainted with it. t was mast probably in much earlier use in Italy. The words নo入os, a $\psi \stackrel{1}{ }$, and $\psi a \lambda e s$, are ot used in a sense that signifies an areh until after the reign of the above-named moarch; nor is any deseription extant from which may bs conceived the construction of an reh on scientific principles.
177. From the time of Pericles to that of Λ lexander, all the arts, and most especially bat of arehitecture, seem to have attained a high state of perfection. Every maral and hysical cause had concurred in so advancing them. But perfection, when onee reached t the works of man, is only the eommencement of their falling away from it. Liberty, te lave of country, anbition in every department of life, had made Athens the focus of the its and scienees: the defeat of the l'ersians at Marathon and other celebrated victories ad brought peace to the whole of the states of Grecec. In the space of tine preceding ic l'eloponnesian war, there seems to have been, as it were, an explosion of every species of Lent, and it was at this period that they set about rebuilding the temples and other edifices bat the l'ersians had thrown down, of which a wise policy lad preserved the ruins, so that 1e contemplation of desolation and misfortune afforded them an eloquent reminiseence of 1e peril in which they continually stood. It was indeed only after the flight of the gecral of Xerxes, and the victory gained by Themistocles, that a general restoration of their onuments and the rebuilding of Athens were set about. These were the true trophies of re battle of Salamis. About 335 years b.c. Alexander beeame master of Greece. Fired ith every species of glory, and jealous of leaving to posterity monuments that should be nworthy of his greatness and fame, or other than proofs of the refinement of his taste, is prince gave a new impulse to genius by the exclusive choice that lie made of the ost skilful artists, and by the liheral rewards he bestowed upon them. The sacking of orinth by the Romans in less than two centuries (about $146 \mathrm{~b}, \mathrm{c}$.) was the first disater at the fine arts encountered in Greece; their overthrow there was soon alterwards cometed by the country leeoming a lionan provinee. At the former oceurrence l'olybius
(cited by Stralo) says, that during the plunder the loman soldiers were seen casting their dice on the celebrated picture of Bacehus by Aristides. Juvenal well describes such a scene (Satire xi. 100.) : -

> Tunc rudis et Graias mirari nescius artes,
> Urhibus eversis, prædarum in parte reperta
> Magnornm artifieûn frangehat pocula miles.

The well-known story of the consul Mummius shows either that the higher ranks mong the Roman citizens were not very much enlightened on the arts, or that he was a singular blockhead. We have now arrived at the period at which Greece was despoiled and Rome emiched, and must pursue the history of the art among the Romans; incidental to which a short digression will be necessary on Etruscan architecture.

Secr. Xil.

ERKUSCAN ARCHITECTURE.

178. 'The inhabitants of Etruria, a country of Italy, now called Tuscany, are supposed to have been a colony from Greece. They certanly may have been a swarm from the original hive (see Druidical, Celic, 13.; and Cyclopean Architecture, 32.) that passed through Greece in their way to Italy. The few remains of their buildings still existing show, from their construction, that they are cocval with the walls of Tiryns, Mycene (figs. 9. and 10.), and other works of a very early age ; and it is our own opinion that the wandering from that great central nation, of which we have already so much spoken, was as likely to conduct the Etrurians at once to the spot on which they settled, as to bring them through Greece to the place of their settlement. It is equally our opinion that, so far from the country whercof we now treat having received their arts from the Grecks, it is quite as possible, and even likely, that the Grceks may have received their arts from the Etruscans. The history of Etruria, if we consult the different writers who have mentioned it, is such a mass of contradiction and obscurity, that there is no sure guide for us. It seems to be moving picture of constant emigration and re-emigration between the inhabitants of Greece and Italy. The only point upon which we can surely rest is, that there were many ancient relations between the two countries, and that in after times the dominion of the Etruscans extended to that part of Italy which, when it became occupied by Grecian colonies, took the name of Magna Graccia. The continual intercourse between the two countries lessens our surprise at the great similarity in their mythology, in their religious tenets, and in their early works of art. We are quite aware that the learned Lanzi was of opinion (Saggio di Lingua Etrusca), that the Etruseans were not the most ancient people of Italy. We are not about to dispute that point. He draws his conchasion from language; we draw our own from a comparison of the masonry employed in both nations, from the remains whereof we should, if there be a difference, assign the earliest date to that of Hetruria. This, to be sure, leaves open the question whether the country was preoccupied; one which, for our purpose, it is not necessary to settle. We have Winkelman and Guarnacci on our side, who from medals and coins arrived at the belief that among the Etruscans the arts were more advanced at a very early age than among the Greeks; and Dr. Clarke's reasoning tends to prove for them a Phenician origin.
179. Great solidity of construction is the prominent feature in Etruscan architecture. Their cities were surrounded by walls consisting of enormous blocks of stone, and usually very high. Remains of them are still to be seen at Volterra (.fig. 108.), Cortena, Fiesole

fig. lus. wall. at voletera. (fig. 109.), \&c. "Meenibus," says A1berti (De Re Addific. lib. vii. c. 2.) "veterum prasertim populi Etrurie quadratum eumdemque vastissinum lapidem probavêre." In the walls of Cortona some of the stones are upwards of 22 Roman feet in length, and from 5 to 6 ft . high, and in them neither cramps nor cement appear to have been employed. The walls of Volterra are built after the same gigantic fashion. In the earliest
 specimens of walling, the blocks of stone were of an irregular polygonal form, and so disposed as that all their sides were in close contact with onc another. Of this species is the wall at Cora, near Velletri. The gates were very simple, and built of stones of an oblong sipuare form. The gate of Hercules, at Volterra, is an areh consisting of nimetcen stones ; a
sireumstance which, if its antiquity be allowed to be oaly of a moderately remote period, would go far to disprove all Lanzi's reasoning, for, as we have noticed in the preceding article, the arch was unknown in Greece till after the time of Alexander. According to Gord (Museum Etruscum), vestiges of theatres have been discovered anong the ruins of some of their citics. That they were acquainted with the method of conducting theatrical representations is evident from Livy, who mentions an occasion on which comedians were bronght from Etruria to Rome, whose inhabitants at the time in question were only accustoned to the games of the circus. The gladiatorial sports, which werc afterwards so much the delight of the Romans, were also borrowed from the same pcople. They constructed their temples peripterally; the pediments of them were decorated with statues, guadrigx, and bassi rilievi, in terra cotta, many whereof were remaining in the time of Vitruvits and Pliny. Though it is supposed that the Etruscans made use of woud in the entablatures of their temples, it is not to be inferred that at even the carliest period they were unaçuainted with the use of stone for their architraves and lintels, as is sufficiently proved in the Piscina of Volterra.
180. The Romans, until the conquest of Grecce, borrowed the taste of their architecture from Etruria. Even to the time of Augustus, the species called Tuscom was to be seen by the side of the acclinatised temple of the Greeks.
181. The atrium or court, in private houses, seems to have been an invention of the Ftruscans. Festus derives its name from its having been first used at Atria, in Etruria : " Dictum Atrium quia id genus edificii primum Atriee in Etruria sit institutum." We stall, however, allude in the next section to Etruscan architecture as connected with Roman; merely adding here, that in about a year after the death of Alexander the nation lell under the dominion of the Romans.

Sect. Xlll.

homas architecture.

189. The Romans can searecty be said to have had an original architecture; they hat rather a modification of that of the Greeks. Their first instruction in the art was received from the Etrucans, which was prohably not until the time of the Tarquins, when their edifices began to be roistructed np on fixed principles. and to receive appropriate decoration. In the time of the first Tarquir., who was a native of Etruria, much had been done towards the improvement of Rume. He brought from his native country a taste for that grandeur and solidity which prevailed in the Etrusean works. After many victories he had the houour of a trimmph, and applied the wealth he had acquired from the conquered cities to building a circus, for which a situation was chosen in the valley which reached from the Aventine to the Palatine IIill. Under his reign the eity was fortified, eleansed, and beautified. The walls were built of hewn stone, and the low gromids about the Forum drained, which prepared the way for the second Tarquin to construct that Cloaca Masima, which was reckoned among the wonders of the world. The Forum was surrounded with galleries by him ; and his reign was further distinguished by the erection of temples, schools for both sexes, and halls for the administration of public justice. This, according to the best chronologies, must have been mpwards of 610 years в. c. Servius Tullius enlarged the city, and among his other works continued those of the temple of Jupiter Capitolinus, which tad been commenced by his predecessor ; but the operations of both were eelipsed by momuments, for which the Romans were indebted to Tarquinius Superbus, the seventh kiug of Rome. Under hion the Circus was completed, and the most effective methods taken to tinish the Cloaca Maxima. This work, on which neither labour nor expense wats spared to make the work everlasting, is of wrought stone, and its height and breadth are so considerable, that a cart loaded with hay could pass through it. Hills and rocks were cint through for the purpose of passing the filth of the city into the Tiber. Pliny calls the Cloace, "operum omniun dietu maximum, suffossis montibus, atque urbe pensili, sub terpue navigatâ." The temple of Jupiter Capitolinus was not finished till after the expulsion of the kings, 508 в. c. ; but under Tarquinius Superbus it was considerably advanced. In the third consulship of P'oplicola, the temple was consecrated. As the name, which was ehanged, imports, this temple stood on the Mons Capitolinus, and embraced, according to l'lutarel, four acres of ground. It was twiee afterwards destroyed, and twice rebuilt on the same foundations. Vespasian, at a late periad, rebuilt it ; and upon the destruction of this last by fire, Domitian raised the most splendid of all, in which the vilding alone cost 12,000 talents. It is impossible now to trace the arelitecture of the lomans through its various steps between the time of the last king, 508 b. c., and the sub)lugation of Greece by that people in the year 145 b . ce, a period of 363 years. The
disputes in which they were continually engaged left them little leisure for the arts of peace; yet the few monuments with which we are acquainted show a power and skill that inark them as an extraordinary race. Thus in the year $397 \mathrm{~B} . \mathrm{c}$., on the occasion of the siege of Veii, the prodigy, as it was supposed, of the lake of Alba overflowing, when there was little water in the neighbouring rivers, springs, and marshes, induced the authorities to make an emissarium, or outlet for the superfluous water, which subsists to this day. The water of the lake Albano, which runs along Castel Gondolfo, still passes through it. A few years after this event an opportunity was afforded, which, with more care on the part of the authorities, might have considerably improved it, after its demolition by Bremmus. This event occurred 389 в. c., and was nearly the occasion of the population being removed to Veii altogether, a place which offered them a spot fortified by art and nature. good houses ready built, a wholesome air, and a fruitful territory. The eloquence, however, of Camillus prevailed over their despondency. Livy (b. vi.) observes, that in the rebuilding, the state furnished tiles, and the people were allowed to take stone and other materials wherever they could find them, giving security to finish their houses within the year. But the haste with which they went to work caused many encroachments on each other's soil. Every one raised his house where he found a vacant space; so that in many cases they built over the common sewers, which before ran under the streets. So little taste for regularity and beanty was observed, that the city, when rebuilt, was even less regular than in the time of Romulus; and though in the time of Augustus, when Lrome had become the capital of the world, the temples, palaces, and private houses were more magnificent than before, yet these decorations could not rectify the fanlt of the plan. 'Though perhaps not strictly within our own province, we may here mention the temple built in honour of Juno Moneta, in consequence of a vow of L. Furius Camillus when before the Volsci. This was one of the temples on the Capitoline hill. The epithet above mentioned was given to the queen of the gods, a short time before the taking of Rome by the Gauls. It was pretended that from the temple of Juno a voice had proceeded, accompanied with an earthquake, and that the voice had admonished the Romans to avert the evils that threatened them by sacrificing a sow with pig. She was hence called Moneta (from monere). The temple of Juno Moneta becoming afterwards a public mint, the medals stamped in it for the current coin took the name of Moneta (money). This temple was erected about 345 years b.c., on the spot where the house of Marcus Manlius had stood.
190. In the time that Appius Claudius was censor, about $309 \mathrm{~b} . \mathrm{c}$., the earliest paved road was made by the liomans. It was first carried to Capua, and afterwards continued to Brundusium, a length altogether of 350 miles. Statius calls it regina viarum. l'aved with the hardest stone, it remains entire to the present day. Its breadth is about 14 ft . ; the stones of which it is composed vary in size, but so admirably was it put together that they are like one stone. Its bed is on two strata; the first of rough stones cemented with mortar, and the second of gravel, the thickness altogether being about 3 ft . To the same Appius Claudius belongs the honour of having raised the first aqueduct. The water with which it supplied the city was collected from the neighbourhood of Frascati, about 100 ft . above the level of Rome. The Romans at this time were fast advancing in the arts and sciences; for in about nineteen years afterwards we find lapirius, after his victory over the Samnites, built a temple to Quirinus out of a portion of its spoils. Upon this temple was fived (I'liny, b. vii. c. 60.) the first sun-dial that Rome ever saw. For a long while the Romans marked only the rising and setting of the sun ; they afterwards observed, but in a rude clumsy manner, the hour of noon. When the sun's rays appeared between the rostra and the house appointed for the reception of the ambassadors, a herald of one of the consuls proclaimed with a loud voice that it was mid-day. With the aid of the dial they now marked the hours of the day, as they soon after did those of the night by the aid of the clepsydra or water-clock. The materials for carrying on the investigation are so scanty, and moreover, as in the case of Grecian architecture, without examples whereon we ean reason, that we will not detain the reader with further speculations, but at once procced to that period (145 в.c.) when Greece was reduced to a Roman province. Art, in the strict application of that word, was not properly understood by the victorious IRomans; and a barrenness nppears to have clung about that whereof we treat, even with all the advantages that Rome possessed. It may be supposed that the impulse given to the arts would have been immediate; but, like the waves generated by the ocean storm, a succession of them was necessary before the billows would approach the coast. Perhaps, though it be only conjectural, the first effect was visible in the temple reared to Minerva at Rome, out of the spoils of the Mithridatie war, by l'ompey the Great, about sixty years b.c., after a triumph unparalleled perhaps in the history of the world ; after the conclusion of a war of thirty years' duration, in which upwards of two millions of his fellow-creatures had been slain and vanquished; after 846 ships had been sunk or taken, and 1538 towns and fortresses had been reduced to the power of the empire, and all the countries between the lake llaotis and the Red Sea had been subdued. It is to be regretted that no remains of thas temple exist. The inseription (llin. lib. vii. c. 26.) was as follows: -.

CN . POMPFIUS . CN . F. MaGNUS . IMP. BE1.1.O . XXX . ANNORUAI . CONFECRO . -tsts . FIJGATIS . Occisis . IN . DEDITIONEM . AICPINIS HoMINUMI CENTIES . VICIES . SEMEL . CFNTENIS . LXXX11I. M.
DEPRESSIS . AUT. CAPT . NAVIBUS . DCCCXLVI OPRIDIS . CASTELiAS . MDXXXV111
IN . VIDEM - RECEDTIS .
TVRBIS . A . MAEOTI . I.ACU . AD. RUBRUM . MARE
SURACTIS .
votum . MERITO. MINERVE

184. The villas of the Romans at this period were of considerable extent; the statues of Greece had been acquired for their decoration, and every luxury in the way of decoration that the age could afford had been poured into them from the plentiful supply that Greck art afforded. To such an extreme was carried the determination to possess every thing that talent could supply, that we find Ciccro was in the habit of employing two architects, Chrysippus and Cluatius (ad Atticum, lib. iii. cpist. 29. and lib. xii. epist. 18.): the first certainly, the last probably a Greek. Their extent would scarcely be credited but for the corroboration we have of it in some of their ruins.
185. Until the time of Pompey no permanent theatre existed in Rome: the ancient discipline requiring that the theatre should continue no longer than the shows lasted. The most splendid temporary theatre was that of M. Amilius Scaurus, who, when adile, erected one capable of eontaining 80,000 persons, which was decorated, from all accounts, with singular magnificence and at an amazing cost. History (Plin. xxxvi. 15.) records an extraordinary instance of mechanical skill, in the theatre erected by Curio, one of Casar's partisans, at the funeral exhibition in honour of his father. 'Two large theatres of timber were constructed back to back, and on one side so connected with hinges and machinery for the purpose, that when the theatrical exhibitions had closed they were wheeled or sling round so as to form an amphitheatre, wheiein, in the afternoon, shows of ghadiators were given. Returning, however, to the theatre erected by Pompey, which, to avoid the animadversion of the censors, he dedicated as a temple to Venus: the plan (P liny, vii. 3.) was taken from that at Mitylene, but so enlarged as to be capable of containing 40,000 persons. Kound it was a portico for shelter in case of bad weather : a curia or senate house was attached to it with a basilica or hall for the administration of justuce. The statues of male and female persons celebrated for their lives and characters were selceted and placed in it by Atticus, for his attention to which Cicero (Epist. add Attrc. iv. 9.) was commissioned by Pompey to convey his thanks. The temple of Venus, which was attached to avoid the breach of the laws committed, was so contrived that the seats of the theatre served as steps to the temple; a contrivance which also served to escape the reproach of encountering so vast an expense for mere luxury, for the temple was so placed that those who visited the theatre might seem at the same time to eome for the purpose of worshipping the goddess. At the solemnity of its dedication the people were entertaned with the most magnificent shows that had ever been exhibited in Rome. We cannot prolong the account of this edifice by detailing them,-_indeed that would be foreign to our purpose; lut we may add, that such a building presents to us a genuine idea of the vast grandeur and wealth of those principal subjects of Rome, who from their own private revenues could rear such magnificent buildings, and provide for the entertaimment of the people shows to which all the quarters of the globe contributed, and which no monarch now on earth eould afford to cxbibit. This theatre was finished about 54 e.c.
186. In the year 45 в.c. Rome witnessed a triumph not less extraordinary than that we have just recorded, - that of Julius Casar on his return from Lica. From the commencement of the civil war that had raged he had found no leisure for celcbrating the triumplis which induced the people to ereate him dictator for ten years, and to place his statue in the Capitol opposite to that of Jupiter, with the globe of the earth under his feet, and the inseription "To Casar the Demi-God." We need scarcely remind our readers that his first triumph was over the Gauls ; that this was followed by that over I'tolemy and Egypt ; the third over Pharnaces and Pontus; and the fourth over Juba. The trimmph recorded these appropriately; but we leave that-merely observing, by the way, that the fruit of his victories amounted to 65,000 talents and 2829 crowns of gold, weighing togrether 20,411 lkoman ponnds, - to state that on this occasion the Circus was enlarged, a lake sunk for the exhibition of Egryptian and Tyrian galleys, and that in the same year he dedicated a temple to Venus Genetrix, and opened his new formm. Warriors are not often inclined to call in the aid of the arts, except for commenorating their own actions. Not so with Caesar. la the yerr 44 b.c., after his triumphover the sons of lompey, we once more find him engaged in the arts of peace. A temple to Clemency was coected by him, in which his stathe was placel near to that of the goddess, and joining hands with ler. In the next year he laid
the foundations of what at the time were considered two magnificent edifiees for the ornament of the eity : a temple to Vemus, which for grandeur it is supposed would have surpassed every example of that kind in the world; and a theatre of very gigantic dimensions, -both which were afterwards eompleted by Augustus. But the projects he conceived were only equalled by those of Alexander. He began the rebuilding and repair of many towns in Italy; the drainage of the Pontine marshes, the malaria of which is the curse of Rome to the present day; the formation of a new bed for the Tiber from Rome to the sea, for the purpose of improving the navigation of that river ; the formation of a port at Ostia for the reception of first-rate ships; a causeway over the Apennines from the Adriatic to Rome; the rebuilding of Corinth and Carthage, whither colonies had been sent by him, a scheme afterwards perfected by Augustus; a canal through the Isthmus of Corinth to avoid the navigation round the Peloponnesus; and lastly, the formation of an exact geographical map of the Roman empire, with the roads marked thereon, and the distances of the towns from each other. Such was Cesar, whom to culogise would be impertinent.
187. Augustus deprived the Romans of their liberty, and in return for the deprivation consoled them with all the gratification the arts could supply. The victorious Romans had known little of the arts in their highest state of refinement, and the degraded Greeks were constrained to neglect them. They were in a state of barrenness during a portion of the last age of the Roman republic; nor did they exlibit any signs of fruitfulness until Cesar had established the empire on the ruins of the expiring republic, and his successor, giving peace to the universe, closed the temple of Janus, and opened that of the arts. By him skilful artists, pupils of the great masters, were invited from Greece, where, though languishing, they were yet silently working without fame or encouragement. Some who had been led into slavery, like Rachel of old, carried their gods with them - the gods of the arts. Encouraged by the rising taste of their masters, they now began to develop the powers they possessed, and their productions became necessary to the gratification of the people. Thus it was that our art, among the others, born and reared in Greece, made ltaly its adopted country, and there shone with undiminished splendour, though perhaps less happy and less durable. Though the exotie might have lost some beauties in the soil to which it was transplanted, the stock possessed such extriordinary vigour that grafts from it still continue to be propagated in every quarter of the globe.
188. The Greek architects who settled in Italy executed works of surprising beauty: they raised up pupils, and founded a school. It must be eonceded that it was more an imitative than an original school, wherein it was neeessary to engraft Roman taste which was modified by different habits and elimate, on Greek art. And here we cannot refrain from an observation or two upon the praetice in these days of eomparing Greek and Roman arehitecture. Each was snitable to the nation that used it; the forms of Greek columns, their intercoluminations, the inelination of the pedinent, were nccessarily changed in a eountry lying between four and five degrees further north from the equator. But the superficial writers. whose knowledge occasionally appears to instruct the world, never take these matters into their eonsideration ; and we regret, indeed, to admit that in this country the philosophy of the art is little understood by the public, from the professors being generally too much engaged in its practice to afford them leisure for diffusing the knowledge they possess.
189. The Romans were trained to arms from their eradle: and that they were very averse to the cultivation of the arts by their youth, the passage in the Aneid (b. vi. v. 847.), which has been so often quoted, is a sufficient proof: -

> Excudent alii spirantia mollius ara
> Credo equidem; vivos ducent e marmore vultus.
> 'Tu regere imperio populos, Romane, mementa; Ha tibi erunt artes.
190. They were at all times anxious to subjugate for their own purposes those nations that suceessfully cultivated the arts; a motive which, joined to the desire of aggrandisement. indueed them at a very early period to earry their arms against the Etruseans, who were in a far higher state of cultivation than themselves. This was also one motive to their conduct in Sicily and Asia Minor; whence, as well as from Greece, they drew supplies of artists for Rome, instead of employing their own citizens. Though in Rome arehitecture lost in simplicity, it gained in magnificence. It there took decper root than the other arts, from its affording, by the dimensions of its monuments, more splendour to the eharacter of so dominating a nation. Its forms are more susceptible of real grandeur than those of the other arts, which are put in juxtaposition with nature herself; and hence they were more in keeping with the politics of the people. The patronage of the fine arts by Augustus has never before or sinee been equalled. They followed his good fortune, they dwelt in the palace, and sat on the throne with him. Hlis boast was not a vain one, when he asserted that he found his eapital built of briek and left it of marble. By him was reared in the eapital in question the temple and formon of Mars the Avenger: the temple of Jupiter

Tonams, on the Capitol ; that of Apollo Palatime, with public libraries; the portico and basilica of Caius and Lucius; the porticoes of Livia and Octavia; and the theatre of Marzellus. "The example," says Gibbon, " of the sovereign was imitated by his ministers and grenerals; and his friend Agrippa left behind him the immortal monument of the Pantheon."
191. Under Tiberius and Caligula architecture scems to have been in a state of latiguor. nor do we know of any thing in the reign of Clandius the fifth Cæsar, save the completion of one of the finest aqueducts of Rome, that of Aqra Claudia, whose length is 38 miles, in more than seven whereof the water passes over arches raised more than 100 ft . from the s:irface of the ground. Nero's reign, though his taste bordered more on show than intrinsic beauty, was on the whole favourable to architecture. Much could not be expected of a man who covered with gilding a statue of Alexander, and decapitated fine statues for the purpose of substituting his own head for that of the original. The colossal statues of liunself which he caused to be sculptured indicate a mind prone to vice and excess. The same taste for exaggeration was carried into his buildings. His prodigality in every way was inexhaustible; he seems rather to have left monuments of expenditure than of taste. A palace, which from its extraordinary richness has been called the Domus Aurea, was erected for him by his architcets Severus and Celer, than which nothing could be more brilliant nor gorgeeas; beyond it no pomp of decoration could be conceived. In the midst of so much wealth the only object of contempt was its possessor. The reader may form some notion of it when told (Plin. lib. xxxvi.) that in finishing a part of it Otho laid out a sum equivalent to near $404,000 \mathrm{l}$. sterling.
192. Galba, Otho, and Vitellius scarcely rei ned It was reserved for Verpasian and his son 'ritus, to astonish the world by masses of architecture such as it may be predicted will never again be reared. The
 Coliseum ($f i_{i}$ s. 110. and 129.), named, according to some fiom its gigantic dimensions, to others from its proximity to a colossal statine of Nero, was commenced by the father and finished by the son. Aecording to Lepsius, the seats held 87,000 persons. Fontana says it was capable of containing l09,000, who could view the sports in the arena. This we think an exaggeration. 'laking the clear length at 615 feet, and breadth at 510 feet, we have ant area of 246,340 sup. fect, whence deducting 38,842 for the arena, the remainder is 207,498 . Now supposing this surface covered with persons standing upright, each occupying only $2: 385$ sup, feet, we have but 87,0 . 0 , and in the cirenit of the upper portico and parts relied upon by Fontana, 22,000 could not be placed. Hence the estimate of l.epsins seems worthy of confidence. The reader will, from the above description, identify the structure mentioned by Martial:-

Omnis Cassareo ced.t labor amphitheatro,
U'um pro cunctis fama loquitur opus.
" Biennio post ae menses novem amphitheatri perfecto opere," is the expression of Victon in respect to the time enployed in its construction. 'Though the monument itself be astonishing, still more so is it that such a mass should have taken only two years and nine months in building, cven with all the means that the emperors had under their power. We shall reserve a more particnlar deseription of it. (See p. 94. and 95.) 1n sute of the ravages of time, and the hands, aneient and modern, which have despoiled it for its materials, enomgh still remains completely to exbibit the original plan, and to enable the spectator to form a perfect idea of the immense mass. The baths of Titus were another of the: wonders of the age. The remains of them are not so perfect as others, but they are still majestic. Besides the edfifies erected by Vespasian and his son, they made it a part of their duty to take measures for the preservation of those which existed, and were in need of repair and restoration.
193. The last Casar, Domitian, was of a disposition too wicked to be of service to his conntry: his reign was, fortunately for it, but short. In the year 98 , on the death of Nerva, 'I'rajan became master of the empire. He had served against the Jews under Vespasian and Titns, and probably acquired from them and their example a great taste for architecture, in which he shed a lustre upon the country as great as his splendid vietories over the l'ersians and Dacians gained for it in the field. Of his works, which, as Gibon says, bear the stamp of his genius, his bridge over the Dimnbe must have been a surprising Mint. According to Dio Cassius, this bridge was constructed with twenty stone piers in
the river, 1.50 ft . ligh and 60 feet wide, bearing arches of 170 ft . span. It was destroved by Iladrian, his snceessor : some say out of envy; but the plea was, that it served the barbarians as an inlet to the empire, as much as it facilitated the passage of its troops to keep them in subjection. Ilis trimmphal arches, his column (fig. 111.), and forum, and other
 works, attest the vigour and beauty of the art under the reign of Trajan. The formm was a quadrangle sur.. romeded by a lofty portico, into which the entrance was through four triumphal arches, and in the centre was the columt. Apoltodorus was his principal architect, by whom was erected the colnmn above mentioned, which was not only the chef-d'ocuvre of the age, but has never been surpa-sed. It is 115 ft . high with the cap, 132 ft . with the figure, marking the height of the hill levelled to form the formm. "The public monnments with which Hatrian adorned every province of the empire were executed not only by his orders, but under his inmediate inspection. He was himself an artist; and he lored the arts, as they conduced to the glory of the monarch. They were encouraged by the Antonines, as they contributed to the happiness of the people. But if they ware the first, they ware not the only architects of their dominions. Their example was universally imitated by their principal subjects, who were not afiaid of declaring to the world that they had spirit to conceive and wealth to accomplish the noblest undertakings. Scarcely had the proud structure of the Colisenm heen dedicated at Rome, before edifices of a smaller scale indeed, but of the same design and materials, were erected for the 1 c and at the expense of the cities of Capna and Verona. The inscription of the stupendous bridge at Alcantara attests that it was thown over the Tagus by the contribution of a few Lusitanian commanities. When Pliny was entrusted with the government of Bithynia and Pontus, provinces by no means the richest or most considerable of the empire, he found the cities within his jurisdiction striving with each other in every useful and ornamental work that might deserve the curiosity of strangers, or the gratitude of their citizens. It was the duty of the pioconsul to supply their deficiencies, to direct their taste. and sometimes to moderate their emulation. The opulent senator: of Rome and the provinces esteemed it an honour, and ahnost an obligation, to adorn the splendour of their age and country ; and the influence of fashion very frequently supplied the want of taste or generosity. Among in crowd of these private bencfactors, we select Herodes Atticus, an Athenian citizen, who lived in the age of the Antonines. Whatever might be the motive of his conduct, his magnificence would have been worthy of the greatest kings." We make no apology for so long a quotation from the historian of the Decline and Fall, whose expressions are so suitable to our purpose. The family of Iterod was highly descended; but his grandfather had suffered by the hands of jnstice; and Julius Atticus, his father, must have died in poverty, but for the discovery of an immense treasure in an old house, the only piece of his patrimony that remained. liy the law this would have been the property of the emperor, to whom Julius gave immediate information. Nerva the Just, who was then on the throne, refused to accept it, desiring him to keep it and use it. The cautious Athenian hesitatingly replied, that the treasure was too large for a subject, and that he knew not how to use it. The emperor replied, "Abuse it then, for 'tis your own." Ile scems really to have followed the monareh's bidding, for he expended the greatest part of it in the service of the public. 'This man's son, Herodes, had acquired the prefecture of the free cities of Asa, among which the town of 'Troas being ill supplied with water, he obtained from the monificence of Hadrian a sum equivalent to $100,000 /$. sterling for constructing a new aqueduct. The work on execution amounted to double the estinate; and on the oflicers of the revenue complaining, Atticus charged himself with the whole of the additional expense. Some considerable ruins still preserve the fame of his taste and munificence. The Stadium which he erected at Athens was 600 ft . in length, entirely of white marble, and capable of receiving the whole body of the people. To the memory of his wife, Regilla, he dedicated a theatre, in which no wood except cedar was employed. IIe restored the Odeum to its ancient beanty ana magnificence. Ilis boundless liberality was not, however, confined within the city of A thens. "The most splendid ornaments," says Gibbon, "bestowed on the temple of Neptune in the Isthmus, a theatre at Corinth, a stadiun at Delphi, a batio at Thermopyla, and an aqueduct at Canusium in Italy, were insufficient to exhaust his treasures. The people of Epirus, Thessaly, Eubcea, Bceotia, and Peloponnesus experienced his favours, and many inseriptions of the cities of Grece and Asia gratefully style Ilerodes Attieus their patron and benefactor."

194．Architecture was still practised with success under the Antonines，the successors of ladrian，anong whom Marcus Aurelius was a great patron of the arts．On these history linost instructs us，that the effect of the individual character of the sovereign，and the ；eneral and leading circumstances of his reign，are so influential as to enable us from the wo last to estimatc the prosperity of the first．
195．The rapidity with which after the time of Commodus，that most unworthy son of worthy father，the emperors succeeded each other，was as unfavourable for the arts as for leir country．A little stand was made against their rapid decli：c，under Septimius ieverus，whose triumphal areh still remains as a link in the chain of their decay，and erhaps the first．It is difficult to conccive how in so short a period from the time of Harcus Aurelins，not thirty years．sculpture had so lost ground．In the arch commonly alled that of the Goldsmitlis，the form and character of good architecture is entirely bliterated．Its profiles are vicious，and its ornaments debased and overeharged．
196．The art was somewhat resuscitated inder Alexander Severus．but it was fast follow－ ig the fate of the empire in the West，and had become almost lifeless under Valerian nd his son Gallienus，whose arch is an index to its state in his reign．＇The number of com－ etitors for the purple，and the incursions of the barbarians，were felt．Aurelian and ＇robus suspended its total amihilation；but their reigns were unfortunately too short to 0 it substantial service．The extraordinary structures at batbec and lahyra have been ferred，on the authority of a fragment of John of Antioch，sumamed Malala，to the age f Antonimus lius；but we are inclined to think the style places them a little later than 1at period．Bathee．or，as its Syrian meaning imports，the City of Baal，or the Sun，is thate at the north－enstern extremity of the valley of Becat or Beka，near that place

ドゥ 112.
PIAN OF THR TRITPIR AT BAAFMES．
Here the two L．ebmons mite，about fifty miles to the north－west of Damascus．The st traveller who deseribed it with aceuracy was Mandrell，in his Journey from Aleppo
 to Jerusalem，in 1697．It has， however，been since visited，as well as P＇ahnyra，hy Messes．Wood and Dawkins，in 1751，and by M． Vohney at a later period．The principal building，the temple，is of a rectangular form，and is sented in the econtre of the western ev－ tremity of a large flladramgnlar enelosure，two of whose sides were parallel to those of the temple；and parallel to its front was the thad． ＇ro this was attached an hexagonal court，serving as a vestibule，in front of which wats the grand en－ trance portico．＇The length of the quadrangle is about 360 ft ．and breadth about 350 ft ．（Seefig． 11% ） The temple，marked A ，is，in romed numbers， $2(0) \mathrm{ft}$ ．in length，and 100 ft ．ill breadtli ；it was dipteril， and liad tell eolumms in froset d nineteen on the sides．＂Ihat the reader may form onne idea of the style，whel was the lint degree deliased．and would not justify by anj utility the extending this ac－
connt, we have in fig. 113. given the sketch of a circular temple standing near the above. Of Finesa, the other celcbrated Colo-Syrian city, not a vestige remains.
197. Of Tadmor, or Palmyra, denoting both in Syriae as well as Latin a multitude of palm-trees. Solomon was said to have been the original founder. It lics considerably to the east of Ihaalbec, and upwards of 200 miles from the nearest coast of Syria. Situate between the Roman and Parthian monarchies, it was suffered to observe a humble neutrality until after the victorics of Trajan; when, sinking into the bosom of Rome, it flourished more than 1.50 years in the subordinate though humble rank of a colony. "It was during that peacefil period," observes Gibbon, "if we may judge from a few remaining inscriptions, that the wealthy Palmyrenians constructed those temples, palaces, and porticoes, whose ruins, seattered over an extent of several miles, have deserved the curiosity of our travellers." The ruins of it were discovered by some English travellers towards the end of the 17 th century, and were more lately visited by the Messrs. Dawkins and Wood, already mentioned. The power of Zenobia, who wished to shake ofl' the subjection to Rome, was insufficient to withstand the forces of Aurelian, and Pahnyra fell into his hands about the year 237 . A slight sketch of the ruins (fig. 114.) is here

Flg. 114.
mitis or palimiza. given. The style of architecture is almost the same as that of Baal. bec ; and, like that, so vitiated in almost every profile, that we do not think it necessary longer to dwell upon it, although great the extent of its ruins. In the same way, we must pass over those of Djerash, which were visited by Mr. Barry, and of other considerable cities, though some are said to contain cxamples in a better and purer style.
198. The reign of Dioclesian was extended, and was illustrions from his military exploits. It was also remarkable for the wisdom he displayed in dividing with others the discharge of duties he could not himself perform ; as well as, finally, by inis abolication and retirement to Spalatro. Architeciure was, however, too far sunk for him to raise it ; and, though momuments of great grandeur were rearcd by him in Rome and his native town of Salona, they were degenerated by imovation and a protinsion of ornaments which sometimes proved disastrous to those beneath, upon whom they occasionally fell, but the taste for which, among the Romans, had increased by their intercourse with the East. At a period when no seulptor existed in Rome, this monarch raised the celebrated baths there which bear his name. His palace at Spalatro (fig. 115.) covered between nine and ten Englishacres. Its form was quadrangular, flanked with sixtcen towers. Two of the sides were 600 ft , and the other 700 ft . in length. It was constructed of stone little inferior to marble. Four streets, intersecting each other at right angles, divided the several parts of the editice; and the approach to the principal apartment was from a stately entrance, still called the golden grate. By comparing the present remains with the Treatise by Vitrivius, there appears a coincidence in the practice here with the precepts of that author. The building consisted of only one story, and the rooms were lighted from above. Towards the south-west was a portico upwards of 500 ft . long, ornamented with painting and sculpture. We do not think it necessary to follow up further the decay of the arts in the West; it is sufficient to add that the fitth century witnessed the contemporaneous fall of them and of Rome itself.
199. 'rowards the year 330, the seat of the Roman empire was removed to Constantinople, where the reign of Constantine, though brilliant, was unsuccessful in restoring the arts, upon which religious as well as political causes had begun to act. The establishment of Christimity had less effect on architecture than on her sister arts. The new species of worship could be performed as well in the old as in temples of a new form, or the old columns might be employed in new edifices, in which, indecd, they were eminently serviccable; but statues of the gods were no longer wanted, and the sculptor's art was abandoned. 'The removal, however, of the government to the Bosphorus retarded the dechine of the empire in the East. Byzantium, on whose foundations was placed the city of Constantinople, owed its origin to a colony of Megarians; and little was it to be imagined that its disasters would have closed in so glorious a termination as occurred to it. The ancient city still continued to possess some splendid productions of the schools of Asia Minor. which it almost touched, and in common with which it enjoyed the arts. Constantine protited by the circumstance, restored the monuments, and transported thither the best examples of sculpture.
200. Architecture was called in by the emperor to aid him in affording security, convenience, and pleasure to the inhabitants of the new metropolis. Vast walls surrounded the city; superb porticoes, squares of every kind, apucducts, baths, theatres, hippodromes, obelisis,

Fing. 115.

trinmphal areines, stately and magnificent temples, were provided for the public. Schools of arclitecture, which none but persons of good birth were allowed to enter, were established. with professors and pizes for the meritorious. From all this care, one night bave supposed a plentiful harvest would have been reaped. But, alas! with all the expense, with all the fine marbles that were employed, with the bronge and gold lavidted on the construction and deeoration of the edifices erected, the art was mot re-estallished on its true principles. Every thing was rich; but, notwithstanding the exaggerated praises of the ignorant writers of the day, every thing was deficient in real heanty, Riemess of material will never compensate for want of elegance in form. "The buildings of the new city," observes Gibbon, "were excented by such artificers as the reign of Constantine conld afliord, but they were decorated by the hands of the most celebrated masters of the nge of Pericles and Alexander. To revive the genins of l'hidias and Leysiphus surpassed, indeed the power of a Loman emperor ; bint the immortal productions which they had hequesthed to posterity were exposed withont defence to the rapacions vanity of a despot. By his
commands the cities of Greece and A sia were despoiled of their most valuable ornaments. The trophies of memorable wars, the objects of religious veneration, the most finished statues of the gods and heroes, of the sages and poets of ancient times, contributed to the splendid trimmph of Constantinople, and gave occasion to the remark of the historian Cedrenus, who observes, with some enthusiasm, that nothing seemed wanting except the sonls of the illustrious men whom those admirable monuments were intended to represent."
201. In Rome, the trimmphal arch erected in honour of Constantine presents, to this day, an example of the Imarbarons and tasteless spirit of the age. It is nothing less than in incongruous mixture, in sculpture and arshitecture, of two periods remote from each other. 13ut, discordant as the styles are, the absurdity of placing on it part of the triumphs of 'lrajan, whose arch was robbed for the oceasion, is still greater. Not only was Trajan's arch despoiled of its bas reliefs, but the columns and capritals, which the architect, from ignorance, scarcely knew how to put together, were stolen for the occasion. We have used the term ignorance of the architcet, who, (if the monument were not standing, the fact could scarcely be creditech.) with the finest models before his eyes, pataed modumons with dentils in the cornice, athl has used the same parts in his impost.
202. 'Ihe partition of the empire at the death of Constantine was iniurious as well to the arts as to the empire; and at its remion by Constantius in 353, he exhibited but little solicitude about their prosperity. On a visit of thirty days to Rome, he presented the eity with the obelisk that now stands in front of the Basilica of S . Giovami Laterano. It had been intended by Constantine for his new city; and, after being brought down the Nile from the I'emple of the Sun at Heliopolis, was conveyed to the banks of the Tiber instead of those of the Bosphorus. Alter being landed about three miles from the city, it was first elevated in the Cirens Maximus. 'This piece of granite is aloout 118 ft . in length.
203. Julian's name is in bad odour with the Chistian world; but he onght, nevertheless, to have justice rendered to him for his administration of the affairs of the empire, his love of freedom, and his patronage of the arts. This emperor, at Constantinople, constructed some porticoes and improved the port; and, even at so remote a spot as l'aris, there still remain the ruins of a palaee and baths of his construction ; a circumstance wnich should make his memory an object of respect, perhaps veneration, to the inhabitants of that city.
204. Under Valentinian and Valens the arts received little attention, thongh the former manifested some eare for them. Gratian was entitled to a sort of negative praise for leaving the empire of the West to his brother Valentinian II., and that of the East to Theodosius; who, after the death of the former, held the sway of the whole empire, patronising architecture, and urecting many large edifices in Constantinople. After this the empire was lastingly divided. On the death of Theodosius, Arcadius succeeded him in the East, and in the West Ilonorus, under whom, whilst he was inghorionsly enjoying the pleasures and luxuries of his palace at Ravenna, Alaric, king; of the Visigoths, entered and pillaged Rome in the year 410. Honorius raised or repaired several of the Basilice at Rome; amonn them that of S. Paolo fuori le Murà ; and, in honour of the two emperors, a trimmphal arch was erected in the city in 406 , but of this no remains are in existence.
205. After this time, for sixty years the empire of the West was in a state of distraction. Nine princes filled the throne during that period, on and off the stage, rather like actors than monarchs. But the extinction of the Roman name could be no longer protracter. In 4.5.5, Genseric, king of the Vandals, gave up Rome for pillage to his soldiers for the space of three days, and some yeats after, his example was followed by Ricimer. In 476 , the Roman empire in the West was annihilated.
206. We have thus, in this and the preceding section, shortly traced the history of Roman architecture from its dawn among the Etruscans to the close of the regal power in Rome; and from that period to the time of its culmination und: r Augustus, an age of great splendour in the art, comparable even with the Lest days of Athens, if allowance be made for the respective habits of the nations and the climates modr which they were placed. From the zenith we have followed it in its setting under Dioclesian, and after that through its crepusculum, which, in 476, was succeeded by total darkness; a darkness, however, not without meteors and cornscations which occasionally enabled us to enlighten the reader in the journey he has undertaken with us. The revolutions, however, of empires, like those of the globe on its avis, bring other dawns: such is the case with the arts, which follow those revolutions; and we shall hereafter have to record another dawn of them, which, like the light of our great luminary, had its day-spring in the east, whence came the architects of Venice and l'isa. But, before we approach that period, it will be necessary to take a coursory glance at those monuments of Rome and other places moder its dominion, in which the mins alone attest the extraordinary power and magnificence of that State, and to examine the details of their construction as respects what simply presents itself to the eye.
207. We now, therefore, proceed to a view, 1. Of the religions buiddings of the Romans in quadrangular and circular temples; 2. Of their public buldings in fora, triumphal arches, bridges, atpueducts, theatres, amphitheatres, and baths and eirci; 3. Of their private
loouses and tombs ; confining ourselves to those ruins in the city, and occasionally the provineus, "hich hest illustrate the subject.
208. Temples - 1. The quadrangular Roman temple partook very much of its Greek, or perhaps Etrascan, original ; though occasionally, as in the Cemple of Peace, there is a very emsiderable duviation from the type. But the exceptions to the general rule are very few indeed in number. The nost beatutiful temple of the Corinthian order that perhaps ever existed in the world was the (formerly so called) Temple of Jupiter Stator, i:1 the Campo Vaccino or more propetly the Formm at Rome, and now designated the 'l'emple of the Dioscuri or of Castur and Pollox. in consequence of recent excavalions. It was an octastyle periptiral temple, with eleven columns in flank, and the cell occupied eight columis on each side. No Greek work could surpass in elegance and beauty the profile of the Corimhian order employed in this edifice. The capital, witether considerel as to design or exccution, is unparalleled. At the same time it must be admitted that it bears every mark of the improvements that had been effected through the medium of Greek artists. Three columus with their entatiature remain; these are $47 \% 5 \mathrm{ft}$. high, the lower diancter being 4.81 ; so that the colnmins are 9.8 diameters high. The height of the entablatnre is a small fracion less than one quarter the height of the column. The intercolumniations are, as nearly as possible, 1.5 diameter of the column; whence the size of the temple will be easily decermined.
209. At the foot of the Ca itol stands the Coriothian Temple of Jupiter Tonans (so called), also called Temple of Saturn, but now of Vespasian, of which, as of the last, only three columns remain. This was an hexastyle peripleral (except on the side towards the rork) temple, 115 ft . long and 92 ft . wide, measured from outside to outside of column. The columns are 47.08 ft . high, and their lower diameter is 460 ft .; their height, therefore, in terms of the dianeter, is very nearly $10 \frac{1}{4}$ diameters. The height of the emablature is 9.77 fi , or not galite one fith of the heisht of the column. The intercolumniations are 1.56 diameter. There is a tale in Suetonius, that Augistus had bells suspended round this temple on the occasion of his dreaming that the god complained of a falling off in the number of his warshippers. Its style is inferior to the one above described, yet it is not sithont beauty, though the conice is, as compared with it, deficient in effect. (The deseription of the different species of temples mentioned by Vitruvius is giten in the Glossary, s. v. Temple.)
210. 'The Temple of Mars Ultor was one of those erected by Augustus, Its profile exlibits a fine and bold example of the Corinthian order. Ins whole length was about 116 ft ., and its breadiln about 73 ft . The cornice of the entablature is wanting. The intercolumniations are about $1 \frac{1}{2}$ diameter.
211. In the Cimpo Vaccino are the remains of a Coninthian temple, built by M. Aurelius in honour of Antoninus, his predecessor, an I Faustina, the wife of M. Aurefius, about the iniddle of the 2 ond ceutury. in a high style of art, and is considered the last pure building in IRome It was prostylos and hexastylos; the colunans are 46.10 ft . high; the entablatnre $11^{\circ} 03 \mathrm{ft}$; diancter of the columns $485 \mathrm{ft}^{\prime}$; and the intercolumniations, except the centre one, which is wider than the others, are $1 \frac{1}{2}$ diancter of the columns; the columns are $9 \frac{1}{3}$ dianeters high, and the entablature rather less than one fourth that lieig't ; the fricze is ormamented with griflins and candelabra. It is not our intenti n to descibe more thin the principal temples, with their parts, but to aflord to the reader in this place a general view of the art; we shall therefore merely mention those of the Maison Carrée at Nismes, and the little edifice at 'Irevi, which last is urected in a very vitiated style: both are of the Corimthian order, and quadrangular in form.
212. Kome is very poor in examples of lonic temples, the only two remaining being that of Fortuna Vtrilis and that of Concord; the first not very pure in its detail, and the latter in the very worst style. 'The Temple of Fortma Virilis is of the species eatled prostyle and tetrastyle; that is, with four colnmns in trunt and seten on the sides, whereof the cell ocupies four intereolnmations. The height of the colmmas is 27.35 ft ; the lower diannter of the colmmus $3 \cdot 1 \mathrm{ft}$. and the weisht of the entablatmre 6.78 ft . A peculiarity las been noticed in this example of the different centres of the ornamented members being rauged so as to lall with exactuess over the axes of the columms,
213. 'The (formerly so called) 'Temple of Concord, now of Saturn, or the Srarimm, which is a restoration of a furmer temple, is probably of the age of Constantine, and searecly deserves the notice here taken of it, except as a connerting lan in the ehain of ar. It was hexastyle and peripteral. The eight colnmos which remain are of red and white granite of different diancters. The bases are Attic, and withont pliuths, except those of the angular colunans. Ihe eapitats are indegant and chmosly senlptured. The atundings of the arehin rave have beren chiselled atwy to form a plane surfine for comatining the inseription. Modilions and demils are met wibh in the eornice, and whe frieze in the interior was scolptured. The lowight of the eolmmes is 42 Hf fio, and their lower diameter 1.48 fi . so that they are abont $9 ?$ diameters high, lige leeghte of the entathlature is $7 \cdot 2 \mathrm{ft}$, or about one sixth of the height ol the colan...
214. The circular temples of Rome and its meighbourhood will next be mentioned. T'wo of them, that of Vesta at lome and of the Sybil at Tivoli, of the Corinthian order, are on considerable antiquity. 'lleir cells are eylindrical, and are supposed to have been covered with domes resting on the walls, thougit that is by no means certain. The Temple of Vesta is raised on three steps, whilst that of the Sybil is raised on a circular basement about five feet high. Both the eellee are encircled about with a colonnade of the Corinthinu order. The eapitals of the Tempte of the Sybil are extraordinary as pieces of effective art 'lhe leaves of the empital, instead of being appliques to the bell, as in other examples, ar in this ell into it, and impart a mageal appearance to it. 'The tout ensemble of this temple seems to have been eonceived with an eye to its situation, and the order seems ealculated only for the spot on which it stands (see fig. 116.). The circular 'lemple

of lachas is of a late date. In its exterior there is nothing to remark, except that it has lost a portico at its entranee which originally belonged to it. It consists of a central circular cell, if such it may be called, surrounded by a circular aisle, the former being separated from the latter by twelve pairs of double columns, eoupled in the direction of the radii of the plan; from which columns arches spring, earrying a cylindrieal wall $39: 36 \mathrm{ft}$. diancter, covered with a hemispherieal dome 656 ft . high from the pavement. The aisle or corridor is 14.75 ft wide, surrounding the double colonnade, from which to the exterior wall is a semieircular vault. whose sofite is 32 ft . high from the pasement. Of the former so ealled 'Jemple of Minerva Medica, now considered to be a Hall or Nymphaum belonging to the great Therma of the Srd century, of the time of Decius,
 littie more than half of it is s'anding. It was 110 ft . in diameter; but the inturior was formed into ten plane faces, eaeh having a semieircular recess towards the interior. A hemispherical brick dome was 113 ft . from the pavement. A semicircular wing, covered by a hemisphericall, formed vault, stood on each side of the building, but they are now in ruins. Fig. 117. shows the ruin as it was in 1816 , from a menorandum we then made. A rectan. gular vestibule with fous Corinthian columns formed
the entrance, and was surmounted by a pediment roof. The teimple now stands in a private zarden.
215. We have reserved for the latt example of a circular temple the celcbrated Pantheon, supposed to have formed at one time a portion of the bahls of Agrippa, and erected about в с. 27. The body of the temple was probably erected in the time of the republic with simple larye niches, as in figs. 118. and 119.; the left side shows it as originally built, and the right side as now standing ; the fortico was probably erected by M. Aurelius Antoninus, cir. A.d. 166, and com-

driginal phan oy pan filkon.
prifignt plan of pantition.
 pleted by Septimius Severuc, a.d. 222 , at which time the columns were added to the niches, and other alteralions madr, as seen on the right half of the plan and section. The interior is circular and about 139 ft . diameter, measuring from inside to inside of the colunms, which are about 83 ft . high. At a height of 75 ft . from the ground in the interior springs the hemispherical d me, which las: five horizontal ranks of caissons or panels, the top of the dome being terminated by what is technically termed an eye, or circular opening, about 27 ft . diameter. All that is found in the temple is of the Corinthian order.
216. Fig. 120. is an elevation of the l'anticon, with the portice of the Parthenon below it, for the purpase of comparing the relative sizes of the porticoes of the two huitdings. 'The portico, it witl be seen, is octastyle, and projects 62 fit from the ciremmference of the circular part of the edifice. The shatts of the columms are pain, and the portico is surmonnted by a pedinent similar to that on the wall of the building. The colnmes are 47.03 ft . high, and their lower dimeter 4.79 lt . 'The of the height of the column. 'The protile of the arder is bold and well conceived, and the exechtion in at good style. It has been strippled of its ornaments, many whereof were bronze, by the enpidity of the possessors of power at various times. Though the present interior is comparatively modern, we think it right to give the following particulars of the order : - The colimme are 34 - 67 ft. high, the lawer diancter being $3 \cdot 64 \mathrm{ft}$. The slatts are fluted, and have what are catled cablings up one third of their lecight. It wilt be seell on inspection of the plan that these colnmus are placed in frome of the great niches. We are not aware that the circmastance whereto we are 4Dont to advert has been heretolione noticed, and we give the resilt of our calculation in round mumbers only, as an approximation to the truth. The rules for lighting apartnents will form the sibloeet of a future seetion. W'e shall here merely olsserve, that the contents of the bilding, measuring romed the inmer convesity of the colanns, mut not culenlating the niches, is abont $1,787,300$ enbic feet, and that the area of the eye of the
 bilding are lighted by 1 fuot superficial of light. I'lu" building is meither gloong nor
dark: on the contrary a pleasant light is diffused throughout. and darkness is not fomed in anlo corner of it. 'Ilis is a subject well wortly of consideration, and one wnetn wr bropose hereafter to turn to practical account.

Fig. 120.
B! EVATION OF PANTHGON.

Fig. 120.
fohtico of pardienons,
217. 'The Temple of l'eace has been reserved by us to close the notices of the Roman temples, because of its deviation from the general form of other Greek and Roman temples, which in the quadiangular species are so formed on one general plan that ab uno disce ommes is the expression applicable to them. The figs. 121. and 122. represent the plan and section of this

Pig. 121. pJAN OF JHT TVMPIR OF PFACF, OR BASILTCA OF CONGTANTINP
tral one. The height of the vaulting from the appears to have bern decorated with sunk panels. building. The former will be seen to have been rectangular, witio a porch extending along the whole breadth of the building in front. This was vaulted, the summit interionly being 35 ft . high; and in front were seven semicircular-hearled apertures serving as entrances. 'Ilse length of the temple outside, not including the depth of the porch, was 294 ft ; depth of the po:ch 30 ft. ; width of the building 197 ft . The temple was longitudinally divided into three nearly equal parts, whereof the contral one was a rectangular sa'ome of the whole length of the temple, whose breadth was one third of its length. The roof of this was a vault with three groins, formed by the intersection of semicylindrical vaults af right angles to the conpavement was about 116 ft ., and We shall not however pursue the
verbal description of this edifice, which will be much better understood ly an inspection of the diagrams. We will only add, that although the columas in the interior are entirely gone, and the building is in a sall state of dilapidation, cnough has been discovered to prove that the restoration here submiated

Fig. 122.

TVMPIE IIF PKNCR. to the reader is not very far from the truth. In many cases the restorations of Pallatio, whose works it is the fashion amongst lalf-instructed arehiteets and still less informed anoratens to decry, are not to be wholly relied on in his capacity of auticmary, and certainly must not be taken for granted; bot his restoration of this temple cannot widely diffier from the truth. It a ${ }^{2}$ pears to have been fanded by Chandin, and tiaished by Vespasian after the emblecest of Judea, and seems to bave been the depository of the spoils of the temple at Iernsalem. It is mencertion by what icecident in the reign of Commodus it was destroyed, bout it is conjectured it was rectored during his reign. It may not be here altogether ont of place to notice that the temple in question seems in some measure to have furnished the hint for the nave of the Italian Dnono with its side aisles. It was but in the addition of the transepts and choir, whose type is indicated even in the basilicar of the finst Clristians, that a variation is to be seen. If the cross, however, be not sufficiently apparent in the basilica, it camot be mistaken in the chorehes but little later.
218. Fora. - 2. The Forum of the Romans is described generally in V"truvins (Book vi. (chap. 1.). He directs that it shomb the a large rectangular area, whose breadth is to be allont two thirds of its length. The basitica or conrt of justice, serving atso as an exchacenge for the inerchents, is to be attached to it. The form in a Roman city wats the arena on which business, politics, and pleasure were equ:dly transacted, disenssed, and enjoyed. Acougg the Greeks it was callecl the aropa, signifying a place in which the citizens were conlected. It is here to be obecrved, that the fora of the Romans were of two socts: Porn Cirilin and Pira Venalia; the former whereof were designed as well with the object ol orcannenting the cities in which they were erected, as for admitting a site for the pmblic conrts of justice, and other public baikdings; the litter were intended to provide for the nevessities and conveniences of the inkabitants, and no doubt bore a resemblance to enr mirrkets. The great Pormn at Rome was seated between the P'alatine and Capitoline lulls Its boundary has of late years been more satisfactorily traced, by the extensive excavations which have laid bare the pavements and other details of the original Innildings erected around it. The theuries of Bunsen, Becker, Dyer, and Canina, are arranged and explained by the late Mr. A, Ashpitel, in the peiper read ly him at the Inst. of 13rit. Arehitect:, 1857. The explorations since 1870 arc to some extent s'own in Barn's Rome and the Campagna, 1871; and in Taylor \& Cresy, Antiquities of kome, new edit. fol. 1874. Photographs of a large size have likewise bech pub. lished, not only of the exiuting enins but ol the discoveries. 'I'he Forum of Ner'a is said to have been 367 fr . lone and 164 ft , widre. At one end were five arehed entrances, and at the other the Temple of Nerva. The Kormm of Trajan, built by the emperor whose name it bears, was erected from the foreign sposils taken by him in his wars. The coverings of its edifices were all of brass, and the portieoes and their colmmes ronstracted in an execedingly splendid style of execution. Ammianus Mecredlinus (Hiv. lib. x vi.) describes, with mueh force, the detight of ('onstantins on contemplating it when lie made his triomplaal entry into loone. The representations make its lengeth 11.50 ft ., ath:l its mean breadth alount 470 ft . In it was the emperor's magnificent colman (fity. |11.), at onee end was the "emple of Trajac, and at the other his Trimuphal Arch. This Vonn contained the celebated sond splendid Basilica Chpanas. The other example we statl teention was at Fanco, and we mention it becanse it contaned a basiliaa by Vitenvins himself He deceribes the portico of the 'lemple of Angnstas as joining that site of the basiliea whels was farthest from the ecentre of the Formon, and a terople of 'Jupiter iss standing at the opposite end. He goes one to deseribe the Treasury, P'riam, and Coris, as pheed on the longer sides of the fiornom exteriorly to the shopls whick surcomated the
 pliat of the basilicat of this boilding from the verbal dencription of it by the anthor, perlaips nome of them with greater suceess than ohd Dindiel Barlano.
219. But no words convey the dencription of :p phee ho well as as diagram of the abjuct buder ennideration; and as there exises at l'mapeii a formon soperfert, that whe the rula Lewe by our great master :cre exemplified in it, we lere place the place (fiy. 123.) of the formin there before the reader, so that he may lowe a cimphete metion of the arrmgement.

whence the aceess to it is by a fight of steps downwards, through an arch in a brick wall, still patially covered with stucco. It has been conjectured with probability, that the entrances to it were occasionally closed, from the remains of iron gates having been found at some of them. A smaller passage occurs to the right of the arch just mentioned, and a fountain attached to the wall between them. A is supposed to have been a temple of Venus; 13, a public granary; C, a temple of Jupiter; D, probably a Senaculum, or council chamber: F , a temple to Mercury; F , a Chatcidicmo ; G G, curix; H, treasury; l. trimphal areh; \boldsymbol{K}, wastyle portico with ambulatory above.

Fif. 123.
ghrim or panperi.
zeo. Tromphal Arches. - The Romans were the first people who crected trimmphal arches; them earliest examples being extrenely simple and plan. A plain arch with a statue of the victor and his trophies on the summit, was for a long period the only method practiset. The arch by degrees expanded in after times, the style becane enriched, and the whole was at length loaded with a profision of every sort of ormanent. Satterly they were a rectangular mass (see fig. 124. of the areh of Constantine), penetrated by three arches, a central and two smadler side ones. The upper part eonsisted of a very high attie, frequently covered with inscriptions and bas reliefs, statnes, trimmphal ears and ornaments of that kind. The keystones were sometimes decorated with figures of victory. Of the trimphal arehes that remain there are three classes : - first, those consisting of a single areh, as the arch of I'ajat? at Ancona, and 'litus at lhome; second, those in which there are two arehes, as in the example at Verona; third, those with three arches, whereof the central was the prmcipal one, and those at the sides much smatler, as the arches of Constantine, Septimins Severus, \&c. 'Ihe most ancient of the remaining arches is that of Augustus at Rimini. It was erected on the occasion of his repairing the Flaminian way from that town to Rome. 'I'he erection of these trimophal arches afforded the means of gratifying the extraordinary vanity of the people with whom they originated. Many of them are in very bad taste; a remark that applies even to the Arch of Titus, which was erected before the arts had more than begrm to droop. (See figs, in Book III.) The orders applied to them are unnecessury to be described in detail, because inapplicable except under precisely similar circumstances

221 . Bridges. - There is perhaps no single point in the history of architecture by which the civilisation of a people is so casily recognised as by that of their bridges. Latterty, in this country, the division of science as well as labour has so changed, that it seems almost necessary to refer to other works for knowledge on this subfect; but as this is one in which architecture in all its branches must be considered, we shall here, as in the other sections of this work relating to the point in question, treat it in such manner as to give the reader some notion of the subject. I'he listory of the bridges in every nation is comnected with local canses, which have great influence on their construction; and thongh in other respects a mation may in the arts have aftained a high pitch of excellence, yet it is possible that in bridge buiding their progress maty be very himited as respects semere. The matter
will depend entirely on the nature of the country. In our view of Grecian Architecture this subject has not been even mentioned, and it is neaty certain that Greece boasts no

158.121.
phian and view of the arch oy constantina.
hridge whose date is anterior to its occupation by the Romans. But, independent of its wint of açuaintance with the areh, the eireumstance maty be accomed for by the comitry not being intersected by any river of magnitude. 'Those to which one might be inclined to attach the name of river, are rather mountain torents than sheets of water rolling their btreans down to the oecan. A single arch in most cases would be all that was necessary to connect opposite banks, and the rocks themselves would form abutments for the single urch that was to connect them, withont danger of failure.
222. In Italy, however, a comatry watered by many and considerable rivers, the study of the architecture of bridges was indispensable, as well for the accommodation of the eities with which it abounded, as for the serviee of the constant military expeditions of the restless and craving people who inhabited its surface. lrom its very carliest foundation, no city in the world would sooner bave been placed in the predicament of requiring bridges than Rome herself; besides which, skill was required in their construction over a river like the 'Tiber, rapid and liable to be swelled by sudden floods. The earliest bridges of the homans were of timber: snch was that which joined the Janiculum to the Mons Aventimes, called the Poms Sublicius from the sublice, stakes (Liv. i. c. 33.), whereof it was composed. It is not here our intention to enmanerate the ancient bridges of Rome; but the ruins of those which bave come nuder our observation exhibit skill and science not inferior to the most extraordinary examples which modern art can exhibit; witness the Pons Namiensis on the Flaminian way suar Narni, about sixty miles from leome. It was buift by Augustas, and at the present day there remains, as though standing to mock moderin science, au arch of a span of 1.50 ft , whose intrados is 100 ft . above the level of the river below. But of the works of this kind exeented by the lomans we know of none, either in ancient or modern thmes, that is somparable with that erected by 'Irajan over the Dambe, whose piers from their fom dation were 150 ft . in height, and the span of whose arches was 170 ft ., and to the number of twenty. The bridge was 60 ft . in widtl. This work, whose existence is saarecly credible, putting in the backgronnd all that of which in the present day it is our habit to bosist, is reputed to have been destroyed by llabiam, the suceessor of its fomblen, under a pretence that if the barbarimes becane misters of it, it might serve them as well
for making incursions on the empire, as for the empire in repressing those incursions. I lut other less creditable motives have been attributed to Hadrian for its destruction, one of them the envy he had of the name of its founder. There are still partial remains of an: ancient Romem beidge over the Togus near Alcantara. 'This consisted of six arches, each :30 ft. span, extending altogether 800 ft . in length, and some of them 200 ft . high above the river. We do not, in closing our brief view of the bridges of the Romans, more than mention the extraordinary temporary bridge which Casar threw over the Rhine.
223. Aqueriucts. - It is obvious that of all the requisites for a city, the supply of wholesome water is only equatled by that of discharging it, which latter we have before sen was well provided for in the Jiternal City. The aqueducts by which the Romans supplied their cities with this necessary element, are among the largest and most magwificent of their works. 'lheir ruins alone, without other testimony, supply the means of estimating their extraordinary power, skill, and industry. They are works which sink into nothingness all other remnants of antiquity, not even exchuding the amphitheatres, Which we shall soon have to notice, because they were for the comfort, not the pastime, of the people. The earliest aqueduct was that of Appius Claudius, which we have above noticed as constructed in the $442 d$ year of the city. It conveyed the Aqua Appia to Kome, from a distance of between seven and eight miles, by a deep snbterraneous chamel upwards of eleven miles in length. We shatl here digress for a moment, by observing that mon the discovery of good water at a distance from the city at a moch higher level than the service thevein indicated, it was the practice to supply by means of a chamel raised at any height as the case needed, through a stone-formed trough raised on the tops of arehes as the conrse of it required over valleys, and otherwise became necessary from the nature of the face of the country, such a quantity as the source would afford. Hence the arcades raised to eary this simple trough of supply were often of stupendous height, and their length was no less surprising. In the present day, the power of steam has afforded other means of supplying a great city with water; but we much question whether the supply afforded by all the concealed pipes of this vast metropolis can compete in refreshnent and general utility to its inhabitants with those at the present day poured into Rome, without becoming a burthen to the respective inhabitants, and this principally from the means which their predecessors provided.
224. 'The aqneduct of Qaintus Martius, erected 312 years before Christ, is among the most extraordinary of the Roman aquedncts. Commencing at a spring thirty-tlaree miles distant from Rome, it made a circuit of three miles, and then, after being conveyed through a vault or tumel of 16 ft . in diameter, continued for thirty-eight miles along a series of arcatles 70 ft . in height. It was formed with three distinct chamets, one above the other, eonveying the water from three different somees. In the upper one was the Agna Julia, in the next the Aqua 'lepula, and in the lowest the Aqua Martia. The Aqua Virginia was constructed by Λ gripp:i, and in its course passed through a tumnel 800 paces in length. 'lhe Aqua Claudia, begun by Nero, and finished by Claudius, of which fig. 125. shows several arches, conveyed water to

Fith. 120.
aqua claldma.
 lome from a distance of thirty-eight mites; thirty miles of this length was subterraneous, and seven mites on arcades, and it still affords a supply of water to the city. 'lhe Anio was conveyed to Rome by two different channels: the first wascarried over a length of forty-three miles, and the latter of sisty-three, whereof six mites and a half formed a eontined series of arches, many of them upwards of 100 ft . in height above the gronnd on which they stood. At the beginning of the reign of Nerva, there were nine great aqnedncts at Rome. That emperor, under the superintendence of Julias Frontims, constructed five others, and at a later period there were as many as twenty. According to Prontinus (de Aquadnctibus) the nine earlier aqueducts supplied 14,018 quinaria daily, which are equal to $27,743,100$ eubie ft ; and it has been computed that when all the aqueducts were in delivery, the surprising quantity of $50,000,000$ of cubic ft. of water was afforded to the inhabitants of Rome, so that, rectioning the population at one million, which it probably never exceeded, 50 cubic it. of water were allowed for the consumption of each inhabitant. More magnificent Roman agueducts are, however, to be found in the provinces than those that supplied the city. That of Detz, whereof many of the arcades remain, is one of the most remarkable; extending across the Moselle, a river of considerable breadth where it crosses it, it conveyed the water of the Gorse to the city of Aletz. From the reservoir in which the water was received, it was condncted throngh subterranean channels of hewn stone, so spacious that in them a man might stand upright. 'The arches appear to have been about fifty in number, and about 50 ft . in height. 'lhose in the middle of the river have been swept away by the ice, those at the extremities remaning entire. In a still more perfect state than that at Metz is the aqueduct of Sergia.
of which one hundred and fifty of the arehes remain. all formed of large blocks unconnected hy cement, in two ranks of areades one above the other.
22.5. It has been conjectured that the causes for not carrying these aqueducts in straight lines were first to avoid excessive height, where low grounds were crossed, and, secondly, to diminish the velocity of the water, so that it might not be delivered to the city in a turbid state. Jlong the line of an aqueduct, according to Montfauçon, at certain intervals, reservoirs called Castelle were formed, in which the water might deposit its silt; these were round towers of masonry raised of course as high as the aqueduct itself, and sometimes highiy ornamented. The same author observes that below the general bed of the channel, pits were sunk for the reception and deposit of the earthy particles which the water containcol. Vitruvius directs the chanmels to be covered over to protect the water from the sun's rays, and (lib. viii. chap. 7.) he moreover dirccts that when water-pipes are passed across a valley, a venter should be formed, which is a subterrancan reservoir wherein the water may be collected, and hy which its expansion may be diminished, so that the hydrostatical pressure will not burst the joints. He also recommends that open vertical pipes shonld be raised for the escape of the air which accompanies the water, a practice which the moderns have found it necessary to adopt wherever it is necessary to bend pipes upwards, and thus permit the escape of air, which would impede, and even stop altogether, the movement of the water in them. (Some additional details are given in the. Glossary.)
226. Theatres. - The earliest stone theatre of Rome, as we have before stated (18.5.), was that of I'ompey; but it must be recollected that as there are notices in history of this theatre having been more than once consumed by fire, there can be little douht that a portion, probally the seats and scenes, were of wood. The second theatre of stone was raised by Julins Ciesar, after which Augustus reared one in honour of Marcellus, the son of his sister. The scanty ruins of this last enable one to do little more than trace its elevation, and from their curve to compnte its extent. There was no essential difference between the form of the Roman and Greek Theatre, of which latter we have given a diagram in fig. 106 . We nevertheless think it right here to present the reader with one of the Roman Theatre fig. 126.), as nearly as it can be made out from the description of Vitruvius. (Book v. Chap. 6. "The form of

will separate the pulpitum of the prosecminu from the orehestro. a theatre," according to that auther, " is to he adjusted so, that from the centre of the dimension allotted to the base of the perimeter, a circle is to be described, in which are inscribed, at equal distances from cach other, four equilateral triangles whose paints must touch the circuinference of the circle." -.." Of these triangles the side of that which is nearest the scene determines the face of it, in that part where it cuts the circumference of the circle. A line drawn parallel to it through the centre Thus the pulpitum hecomes more spacions and convenient that that of the Grecks, beeanse our actors remain chicfly on the scena. In the orehestra are assigned seats to the senators: the height of its pulpitum must nat exceed 5 ft ., so that the spectaters in the orchestra may have a elear view of the motions of the actors. 'The partions between the staircases (cunei) of the theatre are to he so divided that the vertices at the triangles, that wuth the ciremmference, may point to the directions of the ascents and steps between the emmei an the first pracinction or story. Above these the steps are placed alternatety and form the upper cunci in the middle of those below. 'lloe angles thus pointing to staircases will be seven in momber, and the remaining five will indieate certain points on the seenc. That in the centre, for instance, is the situation for the royal door, those on the right and left the doors of the guests, and those at the extremities the paints at which the road diverges. The seals (grolns) for the spectators are not to be less than 20 in . in height nor more than 22 . Their width is mot to be more than $2 \frac{f}{} \mathrm{ft}$, nor less than 9 ft ." Besides the theatres naned, that of Cornelina 13, br::s, huilt hy hum in homour of Augustus, was on a seale of eomsiderahle margifieconee.
297. The large theatre at Pompeii, as was frequently the ease, was formed upon the slope of a hill, the corridor being the highest part, whence the audience descended to their seats, and staircases were saved. The grudus at this theatre were about 1 ft .3 in . high, and 2 ft . 4 in. wide, and from a part which is divided and numbered off, $1 \mathrm{ft} .3 \frac{1}{2}$ in. appear to have been allotted to each spectator. There still remain some of the iron rings, for the reception of the masts from which the relurium or awning was suspended.
298. Amphithentres. - The anphitheatre was unknown to the Greeks. At an early period, however, in Rone, human beings were compelled to fight for the annusement of spectators. The taste for such spectacles increased with its indnigence; bat it was nevertheless not until the time of the em-

Fig. 127.
ALIDHITHRASHE AT POHA perors, that buildings were erected solely for exhibition of gladiatorial shows. The principal amphitheatres, of which remains still exist, are one at Alba, a small city of Latium; another near the 'riber at Otricoli; one of brick near the banks of the Garigliano; one at Puzanoli, wherein parts of the ar. cades and caves for wild beasts sti!l remain; one at Capua; another at Verona; a very fine one at Pola in Istria (fig. 127.). In Framce, Arles, Saintes, Autun, Nismes, and Nice possessed amphitheatres. ln short, wherever the Romans went, they erected those extraordinary monuments of their power and skill. But all that we have enumerated were far surpassed by the Coliseum, which has been already bricfly mentioned by us at page 79. The form of this building on the phan is an ellipse, whose transverse exterior axis is 61.5 ft and its conjugate 510 ft ., covering therefore nearly six English acres of ground. The whole mass is placed on an ascent of six stages, which encircle its whole circumference. In the centre is the arema, a name which it received from being strewed with sind, the transverse and conjugate aves whereof are 281 and 176 ft . respectively. Round the arena was a wall on which was the poolinom or fence; and immediately behind this wall all round was a row of cells in which the beasts were placed preparatory to their entrance into the arena. In the rear of the cells was a corridor from which vaalts radiated in directions perpendicular or nearly so to the curve of the ellipse, and serving to support the lirst manianam or interior range of seats. In some of these vanults were steps leading to the podium ; others were merely passages between the first corridor and the next towards the interior. The second corridor was lighted by apertures ent throngh its vault to the pracinctio which separated the first and second horizontal division of the seats. In rear of the second corridor, vaults agaiu radiated, in some whereof were steps leading to the second division of the seats, and in others were galleries which led from the corridor to the double arcade, surrounding the whole edifice. The description will be better comprehended by reference to figs. 128. and $129 .$, in the latter whereof a portion of the exterior side is removed, to exhibit the section.
299. Ahont the whole exterior of the buiding, there are three orders of cohumns rising above each other, and one of pilisters crowning the whole. The columns are of equal diancter, and are filled in between with eighty areades in each story. The arches of these arcades have all archivolt monldings round then. Four of the areades in the lower tier were reserved for the admission of distinguished personages, the remainder for the populace: these last were called vomitoria, serving both for ingress and egress to and from the places of the spectators, by means of steps mider the vaults that supported the seats. The piers which suppoit the arches are 7 ft .4 . in. wide; on each is a half column projecting from the general face of the wall. The opening between the piers is 17 ft . $3_{10}^{6} \mathrm{in}$. Impost monldings are placed at the springing of the arches, and encircte the building except where interrupted by the cohmms and openings. The lower order resembles the Doric, except that the frieze is without triglyphs and the cornice without mutules. Desgodet\% makes the height of the columns 27.63 ft ., and their lower diameter 291 ft . 'I'heir dianinution is very small. The height of the entablature is 6.64 ft ., and the height, therefore, of the whole order above the pavement is $34-27 \mathrm{ft}$. The second order is Ionic, and stands on a dado 6 ft . high, broken under the columns to receive their projection from the wall. The columns are 2.53 ft . high. The volutes of the capitals are without ornament; the eyc being mercly marked by a circle. 'The entablature is 6.64 ft . high, and its subdivisions are like that in the order below. There are neither modillions nor dentils in the cornice. The height of the whole order is $38: 37 \mathrm{ft}$. The third order is Corinthian, standing on a dado $6: 39 \mathrm{ft}$. high. The columns are $2.5 \cdot 58 \mathrm{ft}$. high, the entablature 6.59 ft ., and the beight of the cotire order, including the dado, is 38.57 ft .

The upper story is decorated with a series of Corinthian pilasters on subplinths 2.79 f . bigh, placed on a dado of the height of 7 ft . The height of the pilasters, whicid ale not

diminished, is 28 ft , and the height of their entablature is $\mathbf{7 . 3 7} \mathrm{ft}$. The friezc and archisruve are broken vertically in each interpilaster over three corbels, on which it is supposech

Fis- 129.
afecton and ghestation of comiseum.
rumning through the back part of the cornice, poles were placed for holding the relarium, which was occasionally stretched over the building to proteet the spectators from the sun or rain. The whole lieight of the façade above the steps was 162 ft . The columns project rather more from the walls than their semidiameter; and the faces of the walls are not in the same vertical plane, but recede from it towards the interior of the building. The widths of the piers vary in the different stories, being respectively from the lower part upwards as $8.71,8.38$, and 7.28 ft . Between the pilasters, in the fourth order, are spuare windows. The velarium was attached to the poles round the circmmference with a fall towards the interior, so that the rain was delivered into the arena. "The following has been supposed as a method of spreading the velarium, of which Fontana gives a representation, but no deseription. To a cable placed round and made fast on the edse of the podimm, and following its curve, stroug ropes were attached in the direction (on the plan) of the radiating walls. These ropes passed through pullies in the pules, 240 in number, at the sop of the building, whielt rested on the eorbels above mentioned, and thas raised the velarium to the reguired height. It wond follow the inclimation of the seats, and the eloth, of whatever fabrie or materials it might be, being formed in grores equal on the onter edges to the distance of the masts from. each other, might move on the radiating ropes by rings attached to the edges of
each gore, so as to be moved backwards and forwards by persons stationed on the parapet. idnaine soldiers were employed for this purpose. 'The velariun was sometimes of silk, but more usnally yellow or brown woollen cloth. Nero once had a purple velarium stretched across the building, representing the heavens with stars of gold on it, and a design embroidered thereon of the Chariot of the Sun.
230. It has been conjectured by some Roman antiquaries that the arena was boarded; and, from the changes that could be made on it in a very short period, the conjecture is highly probable. Iomitian covered it with water for the purpose of exhibiting marine shows and naval fights. Sometimes it was changed into the representation of a forest with wild beasts roaming about. These alterations were effected by means of machines called pegmutce. In particular parts of the building, pipes were provided for the distribution of perfumes, which it was a common practice to sprinkle in showers; but, on particularly great occasions, the perfumes were allowed to flow down the steps or gradus of the amphitheatre.
231. The conjecture relative to the boarded floor of the arena has been corroborated by the discoveries made while the French had possession of Rome. They excavated the arena, and found vaults and passages under its whole area. It is much to be regretted that these infuiries were not carried on, owing to an accumulation of waters, for which no drainage having been provided, they became anwholesome from stagnancy, and it therefore was necessary once more to close it again by obvious means. Great care was bestowed on the Arainage of this edifice, which was encircled by a large sewer for the reception of the water of the interior drains, that were all conducted into it. Another drain, 30 inches wide, was carried round under the second corridor, into which are conveyed the water from the perpendicular conduits and that from the third corridor, whose drain is 3 ft . in depth and 17 inches in width. The sides of these drains are lined with tiles. Another drain runs on the outer side of the third corridor, and is of the same size as the last named. Other drains communicate with these towards the arena i. various directions.
239. Paoli thinks that amphitheatres were first used by the Etruscans, and by them introduced into Rome; that the people in question first exhilited their games in narrow valleys, and that the spectators were ranged around on the sides of the hills; that when these sports were exhibited in cities, an arena was dug into the level ground, and the earth thrown ont was formed into seats; and that when the community became rich enough, or the games came to be held in greater esteem, the amphitheatre was enclosed with a wall, and the seats formed of wood or stone. It certainly appears to us that l'aoli's conjecture is reasonable, and that Etruscan bildings or formations were the original type.
235. The amphitheatre at Nismes was eapable of containing l7,000 persons: it was 433 ft . long and 333 ft . broad; it is two stories in height with an attic, and is the most perfect specmen in existence after that at Verona, upon whose age antiquaries are divided in opinion, some maintaining that it was built in the time of Augustus and others as late as the time of Maximian; it is 508 ft long and 403 ft brad ; and in far better preservation than the Colossemm. Its exterior wall has three stories of Tuscan pilasters on the fuce of the wall; between these pilasters are arcades of semicircular-headed aperturec. Maffei days this edifice would seat 22,000 spectators But in this there must be some mistake.
234. Baths. - Publius Victor says that the city of Rome contaned public and private baths to the amazing number of 850. Some of these we know, from their ruins, were buildings of great extent and magnificence. They were all constructed, we mean the public ones, on plans very similar ; and, in order to a description of them, we give in fig. 130. a restored plan of the baths of Caracalla, at Rome. Those of 'litus and Dioclesian may also be traced; the chief others being those of Agrippa, Nero, and Domitian. 'The baths of Antoninus Caracalla are thus described by Eustace (vol. i. p. 226.): "Repassing the Aventine Ilill, we came to the baths of Antonims Caracalla, that occupy part of its declivity, and a considerable portion of the plain between it, Mons Caliolus and Mons Cadins. No monument of ancient architecture is calculated to inspire such an exalted idea of Roman magnificence as the ruins of their thermee, or baths. Many remain in a greater or less degree of preservation; such as those of Titus, Dioclesian, and Caracalla. 'I'o give the untravelled reader some notion of these prodigious piles, I will contine my obscrvations to the latter, as the greatest in extent and as the best preserved; for, thourgh it be entirely stripped of its pillars, statues, and ornaments, both internal and external, yet its walls still stand, and its constituent parts and principal apartments are evidently distingrishable, 'The length of the therme was 1840 ft ., its breadth 1476 . At each end were two temples; one to Apollo, and another to Esculapius, as the tutelary desties (genii tutelures) of a place sacred to the improvement of the mind and the care of the body. The two other temples were dedicated to the two protecting divinities of the Antonine family, Hereules and Bacchus. In the principal building were, in the first place, a grand circular vestibule, with four halls on each side, for cold, tepid, warm, and steam baths : in the eentre was an immense square for exereise, when the weather was unfavourable to it in the

pen air ; beyond it a great hall, where 1600 marble seats were placed for the convenience of the bathers : at each end of this hall were libraries. This building terminated on both ides in a court surrounded with porticoes, with a spacions odeum for musie, and in the niddle a spacious basin for swimming. Round this edifice were walks shaded by rows of rees, particularly the plane; and in its front extended a gymnasium for running, wrestling, ze. in fine weather. The whole was bounded by a vast portico, opening into exedra, or pacious halls, where the poets declaimed and philosophers gave lectures to their auditors. This immense fabrie was adorned within and without with pillars, stucco work, paintings, md statues. Tlie stucco and paintings, though faintly indeed, are get in many phaces pereptible. Pillars have been dug up, and some still remain amidst the ruins; while the Farnesian bull and the famous Hercules, found in one of these halls, amomee the multidieity and beauty of the statues which adorned the therme of Caracalla. The flues and eservoirs of water still remain. The height of the pile was proportioned to its extent, and till appears very considerable, even though the ground be raised at least 12 ft . aloove its meient level. It is now elanged into gardens and vineyards; its high massive walls form eparations, and its limy ruins, spread over the surface, burn the soil and check its natural ertility."
235. Returning to the plan of the batlis in question, we have now to explain that the ireular apartment, lettered A, was called the solar cell. It was 111 ft . in diameter, and ontained the different lalra of the baths. This solar cell, Spartianus says, eould not be qualled by the best architeets of that age. The dome was lined with brass, of which maerial also were the lattices to the windows. B, the apodyterum, or undressing room. c, a $x y s t u s$, or apartment for exercise in unfivourable weather, D eontained the piscina, or large reservoir for swimming. Le, vestibule for speetators and the dresses of the bathers. \&, entrance vestibule of the therma, having libraries on each side. G G, rooms wherein he athlete prepared for their excreises. 11, a eourt, having a piscina for bathing in the entre. I, iphebema, place of exercise for the youth. K K, the eleotherimm, or apartment for nointing the bathers with oil. L L, vestibules. M, lacomicum, an apartment so called, as t is said. from the name of the stove by whieh it was heated, and from the custom of the udatio, or sweating, having originated in Laeonia. N, culdurium, or hot water bath, which vas most frequented. O, trpidurium, or tepid water bath. I', fripiderium, or cold water math. Q, exelrce for seats for the nse of the philosophers and their scholars. W, romms for onversation. R 12, exedra, or large recesses for the use of the philosophers. Y', conistcrium, r place where, after anointing, the wrestlers were sprinkled with dust.
236. We have just given the eommon explanation to the word laconicmm; but it is right he reader should know that its true meaning is in some donbt. Galiani considers it a great hamber wherein the people underwent sweating. To this Cameron adds, "I for myself old it certain that the apartment for this purpose has been by some authors improperly ermed ; the laconicum is nothing more than a little conola which covered an aperture in he pavement of the hot bath, throngh which the vivid lame of the hypocanstum, or urnace, passed and heated the apartment at pleasme. Withont this means," contimes that uthor, " hae hot bath would not have had a greater heat than the other chambers, the
remperature of which was milder. I have been induced to form this opinion, not only from the ancient paintings found in the baths of Titus, but also by the authority of Vitruvius, who says that the hot bath (concamerata sudutio) had within it, in one of the corners, or rather ends, the laconicum. Now, if the laconicum was in the corner of the hot bath, it is clear that it is not the bath itself, but merely a part of it ; and if, as others have thonght, it was the hot bath itself, to what purpose served the concamerata sudatio?"
237. The baths and thermæ of the Romans, like the gymmasia of the Greeks, were highly ornamented with bassi relievi, statues, and paintings. The basins were of marble, and the beatiful mosaic pavements were only equalled by the decorations of the vaults and cupolas. Nothing more strongly proves the magnificence and luxury of the ancient Liomans than the ruins of the baths still to be seen in Rome. Agrippa decorated his baths with encaustic paintings, and covered the walls of the caldarium with slabs of marble, in which small paintings were inserted. All these luxuries were introduced under the emperors; and the mere act of bathing: as described by Seneca in the instance of Scipio Africanus, appears to have been almost lost in the effeminacy of the later practice. The splendour of the places may be judged of by calling to the remembrance of the reader that the celebrated statue of the Laocoon was one of the decorations of the baths of Titus, and that of the Farnese Hercules of the baths of Caracalla.
238. We have, in the section on Aqueducts (224.), stated the extraordinary quantity of water with which the city was supplied by them, and there can be no doubt that the baths caused a very great consumption of that necessary article of life. After the removal of the empire to Constantinople, we hear of no therme being erected; and it is probable that at that period many of those in the city fell into decay. The aqueducts by which they were supplied were, moreover, injured by the incursions of invaders, another canse of the destruction of the baths. Remains of Roman baths have been discovered in this country, for descriptions whereof the reader is referred to the Jrchatogia.
239. We shall conclude our observations on the Roman baths by the mention of some curious paintings in the baths of Titus, very similar in their features to those found in places on the walls of Pompeii; we allude to representations of slender twisted columns, broken entablatures, and curvilinear pediments, columns standing on corbels attached to the walls, a profusion of sculpture, with fantastic animal figures and foliage, and many other estravaganzas, which found imitators after the restoration of the arts, and, in some cases, with great success.
240. Circi. - The circus of the Greeks was nothing more than a plain, or race course;
 Romans it became a regular building of great dimensions and magnificence. The Circus Murimus, constructed originally in a rude manner by Romulus, and afterwards rebuilt by the elder Tarquin, is, in its external dimensions, computed to have been 2000 ft . long and 550 ft broad, consisting of two parallel walls in the direction of its length, united at one extremity by a set of apartments, called carceres, arranged in the form of the segment of a circle of about 430 ft . radius; and, at the opposite short end, by a semicircular enchosure. The carceres contained the chariots ready for starting. The arena, or space thas enclosed. contained a long low wall called the spina, 1300 ft . in length, running along its longitudinal axis, and commencing at the centre of the semicircular end, having a meta, or goal, at pach of its extremities. Like those of the theatre and amphitheatre, the seats of the spectators were placed round the arena with a podinm in front ; between which and the spina tue races of the chariots were exhibited. The circus of Nero was nearly of the same form, Lut neither so long nor so broad, being only 1400 ft . in length and 260 in breadth, and its spina but 800 ft .
241. 'The remains of the circus of Caracalla, of which Bianconi has given a very good acconnt, are still sufficiently abundant to trace the plan (fig. 131.). It was nearly of the same dimensions as that of Nero. There are in this building some curious examples of Jightening the spandrels of the arches over which the seats were constructed, by filling them In with light vessels of pottery; a practice which has been partially adopted in some modern buiddings, and is still usefully practised on the Continent. Generally speaking, the circus was a parallelogram, whose external length was from four to five times its breadth. It was surrounded by seats ranged above each other and bounded by an exterior wall, probably pierced with arcades. The spina was about two thirds the length of the building, and was ornamented with statues, obelisks, and other ornaments, terminated at each end by the meta, which consisted of three obelisks or columns. The carceres were closed by gates in front and rear, which were not opened till the signal was given for starting. In the enreus of Caracalla, it will be seen that these carceres were placed obliquely to the long sities of the edifice, so as to equalise the length of their course from the starting point to the goat. So that it would seem there was as much nicety in a chariot race of old as in a modern horse race.
242. Prieale Honses. - The domestic architecture of the Romans possesses great interest; the general instructions spread over the sixth book of Vitrivius upon their parts and pro-

$17 v, 131$
portions have rcceived much illustration from the discoveries at Pompeii; and it is pleasant to find that, following his merely verhal directions, a building might be plamed which would correspond as ncarly with what we now know was the case, as two houses, even in a modern city, may be expected to resemble one another. In the following observations we have used most abundantly the elegant little work of Mazois (Le Palais de Scourus, 2d cd. 8vo. I'aris, 1822), and feel a pleasure in thns aeknowledging our obligations to that author ; but, before more immediately using his observations on the later habitations of the Romans, we shall premise that until after the war of Pyrrhus, towards the year $280 \mathrm{~b} . \mathrm{c}$., the use of tiles as a covering for them appears to have been unknown. 'Till then thatch or shingles formed the covering of the houses. They consisted of a single story; for, according to Pliny (lib. xxxiv. e. 15.) and Vitruvius (lib. ii. c. 8.), a law was in force forbidding walls of a greater thickness than one foot and a half; whence it is clear they could not have been safely raised higher than a single story with the unbaked bricks then in use. But the space within which the city was confined, with an increasing population, rendered it necessary to provide in height that which eould not beobtained in area; so that, in the time of Augustus, the height of a house was limited to 70 ft . (Aurel. Vict.; and Strabo, lib. v.)
243. The extraordinary fortunes that were realised in Rome towards the last years of the republic, when the refinements of the arts of Greece were introduced into the eity, soon led its more favourcd eitizens to indnlge in architeetural splendour. Lucius Cassius had decorated his dwelling with columns of foreign marble; but all other private edifices were thrown into shade by that of Scaurus, in which were cmployed hlack marble columns of the height of 38 ft . Manurra lined his apartments with marble; and, indeed, such was the prodigality, for it deserves that terin, of the Ronans, that Iliny (lib. xvii. c. 50.) tells us of Domitius Ahenobarbus having offered a simn equivalent to 48,5001 . sterling (sexagies sestertium) for the house of Crassus, which was refused. Their villas were equally magnificent. Cicero bad two of great splendour-his Formian and Tuscutan villas; but these were excceded in beauty by those of Luculhs and Pollio, the latter near Posilippo, where some remains of it are still to he seen. Though Augustus attempted to stop this extraordinary rage for nagnificence, he was unsuceessful; and the ex. amples which were afforded by later emperors were unlikely to restrain the practice where the means existed. In the Domus Aurea of Nero, domestic architecture appears, from all accounts, to hive reached the ntmost dearee of splendour and maguifieence.
244. In the better class of Roman dwellings, certain ipartments were considered indispensable; and these, in different degrecs of size and decoration, were always found. There were others wheh were or were not so found, aecording to the wealth and fancy of the proprictor. 'Thus, every private house of any pretension was so planned that one portion was assigned to the reception of strangers, or rather for public resort, and the other for the private use of the family. The publie part was destined for the reeeption of dependints or clicnts, who resorted to the honse of them patron for advice and assistance.

The number of these elients was honourable and useful to the patron, as they might, in civil matters, be depended on for their votes. Hence lawgers especially had their houses thronged with chem; and it is amusing in the present day to see the term of client still kept tap among our barristers: for although his state of dependence has lost nothing or its extent, the cminence of the patron is now measured by the quantity and amount of fees his elients enable him to consume. Vitruvius describes the public portion as consisting of the porticus, vestibulum, cavadium or atrium, talhinum, ala, fazces, and some few others, which were not added except at the especial desire of the party for whom the building was to be prected.
24.5. The parts which were sacred to the
 use of the family were the peristyle, the cubiculte (sleeping apartments), the trichinum., the aci, the pinacothece, or picture galleries, the biblictheca, or library, baths, exedru, xysti, and others.
246. ln the more extended mansions of the lomans was an area, surromaded on two sides by porticoes and shops, and ornamented with statnes, trophies, and the like, and on the third (the fourth being open) was the decorated entrance or portico of the honse. But in smaller dwellings this entrance or portico was in a line with the front of the houses in the street; the vestibule or m thyrum (fiy. 132.) being in the Roman houses merely a passage room, which led from the street to the entrance of the atrium. In this vestibule, or rather by its side, the astiarias or porter was stationed, as in French houses we find a concierge. When there were two courts, we are inclined to think that the one nearest the street was called the atrimm, and the farthest from it the amverlium; but in many cases we also think that the atrimm served equally as a camadiun ateording to the owner's rank. The explanation of Varro will certainly answer for one as well as the other. It may be that the cavedium was a sccond atrium of larger size.
247. Of the atrium Vitrusins deseribes five sorts: 1. The Tuscan, wherein the prorecting roof was a sort of pent-house on the four sides, supported by beams framed at right angles into each other ; the space in the centre forming the compluviam, and the basin or area in the centre the inphuvium. 2. The tefrostyle atrium (one with four

eolumns），which was similar to the Tuscan，except that the angles of the beams of the ronf or pent－house rested on four colmans．3．The Corinthian atrium（fig．133．），which dif－ fered only from the last in its size，and the nmmber of its colmmns．4．The atrium dis－ plaviatum in which the slope of the roots was towards the body of the building．5．The utrium testudinatum，which was covered with a ceiling，and with nothing more than an aperture therein to afford light．The compluvium was sometimes（Plin，xix．e．i．） provided with a sort of awning The roof of the four sides of the atrium was covered with ornamental tiles，the eares＇faces whereof were terminated between their sloping junc－ tions with carved faces ealled antefixe，similar to those in the roots of the Grecian tem－ ples．The atrim was，moreover，freguently embellished with fountains．It was in the ntrium that the splendid columns which we have mentioned，as decorating the house of Scaurus，were placed．The walls were either lined with marble or painted with various devices，and the pavement was decorated with mosaic work or with precious marbles．
248．The tablinum，which uswally opened towards the atrium，seems to have been a sort of levee room，wherein the master of the mansion reeeived his visitors or clients，lists of whom were therein recorded，and where the maestro di cumera announced their nanes．Some have thought，and we do not say they are wrong，that this apartment contained（which it might also do without affecting the truth of the first supposition）the family archives， statues，pietures，pedigree，and other appurtenanees incident to a long line of ancestors．
249．The apartments on the sides right and left of the tablinum were called，as their name signifes，ala．These were also furnished with portraits，statues，and other pieces re－ lative to the family，not omitting inseriptions commenorative of actions worthy their nane．
250．＇Two corridors，one on each side of the atrium，which led to the interior of the house from the atrimm，were called fuates（jaws）．
2．51．In hooses of moderate dimensions，clambers were distributed round the atrium for

1 ド・ 15 F ． the reception and lodging of strangers；but in establishments of importanee，wherein the proprictor was a person of extended con－ nexions，there was a separate hospitiam ap propriated to that purpose．

252 ．We have stated that the peristyle was a portion of the private part of the house． It was mostly，if not always，placed beyond the atrium，with which it commmatated by means of the tablinum and tiuces．Similar in general form and design to the atrimm， for it was surrounded by columns（see fig． 134．），it was larger than that aparment． The centre was usually provided with a par－ terre in whell shrubs and flowers were dis－ tributed，and in its middle a fish pool．＇l＇his portion of the peristyle was called the xystus （Vitr．lib．vi．e．IO．）．In better houses there was an ante－room called proceton，to each of the bed－chambers，of whose arange－ ment very little is known．The triclinimu （ $\tau \rho \in ⿺ 𠃊 ⿴ 囗 十 一$ citval，three beds），or dining－room， was so called from its having three couches round the table on which the dimner was served；the fourth side being left open for the servants（see fig．135．）．It was raised two steps from the peristyle，and separated from the garden by a large window．Winter triclinia were placed towards the west，and those for summer to the east．In large houses there were several triclinia，whose conches would eontain a greater or less number of people．The aci were large salons or halls， of Greck origin，and，like the atria，were of more than one specics；as for instance the tetrastyle，the Corinthian，and the Legyptian．＂There is this diflerence，＂observes Yi－ truvius（lib．v．cap．6．），＂between the Corinthian and Egyptian ocos．The former has a single order of eolumns，standing either on a podimn or on the gromnd，and over it arehitraves and eornices，either of wood or plaster，and a semicircular ceiling above the connce．In the Egyptian oeus，over the lower eolumn，is an architrave，from which to the surrounding walls is a boarded and paved floor，so as to form a passage round it in the open air．Then，perpendicularly over the architrave of the lower columns，colmmes one fourth smaller are placed．Above their architraves and cornices，they are decorated with ceilings，and windows are placed between the upper colmons．＇Thus they have the appar－ ance of hasilise rather than of Corinthian triclinia．＂The oens，called Cyzicene by the Gieeks，was diferent to those of laty．Its anect was to the north，towards the gar－

Fig. 135.
dens, and had doors in the middle. It was made long, and broad enough to hold two triclinia opposite to each other. The Greck ocus was not, however, much used in Ital!. The pinacutheca (picture room), where possible, faced the north : both this and the libliothece (library), whose aspect was east, do not require explanation. 'The exedra of the Roman houses were large apartments for the general purposes of society. The upper stories of the house, the chief being on the ground floor, were occupied by slaves, freedmen, and the lower branches of the family. Sometimes there was a solarium (terrace), which was, in fine weather, much resorted to.
253. Fig. 136. is a plan of the house of I'ansa at l'ompeii, by reference to which the reader will gain a tolerable notion of the situation of the different apartments whereof we have been speaking. Λ is the prothyrum, which was paved with mosaic. I B B B , 'Tuscan atrium, in whose centre is the comphavium or basin (b) for the reception of the water from the roof. One of the proportions assigned to the atrium by Vitruvius is, that the
 length shall be once and a half the breadth; and here it is precisely such. e, a pedestal or altar of the household god. C C, ala. They were on three sides surrounded by seats, and, from Sir W. Gell's account, are analogous to similar recesses in the gallerics of l'urkish houses, with their divans: the thresholds were mosaic. Vitruvius directs them to be two sevenths of the length of the atrimm; which is precisely their size here. D, tablinum. It was separated from the atrium by an anlacum, or curtain, like a drop scene. Next the innor court was sometimes, perhaps gencrally, a window, occupying the whole side. The tablinum was used as a dining-room in summer. E E E E, peristyle, which, in this example, exactly corresponds with the proportions directed by Vitravius. F F l' F were domestic apartments, as penaria, or cubicula, or celle domesticæ. G, probably the pinacotheca, or apartment for pictures. II, fances, or passage of communication between the outer and inner divisions of the house. l, cubiculum. Its use cannot be doubted, as it contains a bedstead, filling up the whole width of the further end of it. K, triclinium, raised two steps from the peristyle, and separated from the garden by a large window. In this room company was received, and chairs placed for their accommodation. L L L, exedre. M M M, cellx familiarix, or family chambers: the further one had a window looking iuto a court at d. N, lararinm or armariun, a receptacle for the more revered and favourite gods O, kitchen with stoves therein, and opening into a court at e, and an inner room P, in which were dwarf walls to deposit oil jars. Q, fauces conducting to the garden. Along the back front, l $R \mathrm{R} R$, is a portico or pergula, for training vines and creepers on the back front of the house, before the windows of the triclinium. S S : these two rooms, opening into the pergula, were, it is presumed, cubicula. T T, \&e. : the apartments thus marked scem to have constituted a distinct portion of the house, and communicated with the strect by a separate door. 'llat they were in-
cluded in the establishment of Pansa seems certain, from their being connected with the peristyle by the large apartment U. On excavating here, four skeletons of females were found marked by their gold ear-rings; also a candelabrum, two vases, a tine marble head of a tam, gold bracelets, rings with engraved stones, \&e. \&c. V V V are thops, which appear, by the remains of staireases, to have had apartments above. 'They contain dwarf walls for ranging oil jars and other goods against. W W, \&e. are diffirent shops. One is of a baker, and to it the necessary conveniences are appended. X X. apotheca or store-rooms. Y is the bakehouse, containing the oven Z, the mills, kneading trongh, \&c. : it is paved with voleanic stone in irregular polygons. gg, place for the wood and charcoal. happears to have been almost a distinct dwelling : two of the apartments had windows to the street, which runs southward to the formo. f f f entrances from the street to the house of Pansa. The house was surrounded by streets, or, in other words, was an insula. We have thus named the principal apartments, and identified them by an example. In more magnificent houses there were the sacrarimn, the veneremn, the pharisterium, the alcatorium, Sc. Sc. The painting fiy. 137. is in the kitchen of the house of Dansa, and represents the worship of the lares, under whose care and protection the provisions and cooking utensils were placed.

Fis. 137.
painting ar pomprit.
2.54. Tombs.- The Romans were rather given to magnificence in the tombs crected for their lead. Some of these were public, and others for the interment of individuals or fanilies. The fommer were often of vast extent, and have been eompared to subteranean cities; the others were pyranids, concal and cylindrical towers, with ranges of vaults in them for arpulture.
255. Perhaps the earliest tomb at Rome is that of the Horatii, now known as that of Aruns, son of Porsenna, which stands on the Arpian Way, and was probably constructed hy Etrusean wi rkinen. It las a basenent 45 ft square on the plan, on which stand five masses of rubble or eath, faced with masonry, in the form of frusta of cones, four of which are ten feet dawe er at the buttom, and are placed at the four angles ot the bise. uncit. 'The fifin stands in the centre of the whole mass, and is larger than the others.

4,56 . The proneipal tombs alont Romeare: I Tte pyramid of Caius Cestins, whosesides re 102 ft . long. and it, heisht about the same momber of feet. The interior contains in the centre a rectangul, r coll, 20 fi. k ng, and 13 ft . broad. At each external angle of this pyramid slands a Doric eolumn, without any portion of entablature over it. It is nossible thene ware intended as ornaments, though it has often prazhed us to find ont how they ever could have beon so thought. 2. 'The tomb of Hadriall, now converted into the Castel St. Ang.lo, had origimally a square basement, who e sides were 170 ft . long. From his substructure rose a cylindrical twwer, 115 ft . diameter, probably at one time encincled "y a colonnate. It is now used as a fortress, and was considerably altered by lope I'al 111. 3. The mansolemu of Cecilia Metella is circular, 90 ft . in diameter, and $62 \mathrm{ft}^{2}$. high, standing on a basoment of the same furm, which up to the frioge is of Travertine stone, used as a casing to a rubble wall: it is the calic-t use of Travertine, \boldsymbol{B} c. for, homing some writer, state 50 mes. The tric\%e is of mable. In what may be called the core is a cell, l9 ft. diameter, to which there is an entrance by a passage.
257. We do bot, however, think it neessary further to detail the Roman tombs wheh maly be fond in Rome or the provinces, but, in leen of extending our description on this
head, to give the reader a notion of their forms in fig. 138. ly a group from Pompeii,

Fis. 15s.
tuans at poarlent. among the remains of which city there are a great many and various examples. 'They are in general of small dinensions, and stand so near one another as to form a street, called the Street of the, 'Tombs. Some of these are decorated very highly, both as respects ornament in the architecture and bassi relievi on the different faces. The Romans were particular in keeping alive the memory of the dead, hence their tombs were constantly looked after and kept in repair; a matter which, in this country of commerce and politics, a man's descendants rarely think of, after dividing the spoil at his death.
2.58. Character of Roman Architictarc.-The character of the Roman arehitecture in its best period was necessarily very diflerent from the Grecian, on which it was fomded. We cuvy not those who say that they feel no beanties except those which the pure Grecian Doric of the Parthenon possesses. Each style, in every division of architecture, has its beanties; and those, among other canses, arise from each style being suited to the country in which it was reared; neither ean we too often repeat the answer which Quatremere de Quincy gives in the Encychoredic Méthodique to the quention mamy years since propounded by the French Academy of Inscriptions and Belles Lettres, "Whether the Greeks horrawed their architecture from the Egyptians?" The answer of that highly talented writer is, " That there is no such thing as general human architecture, becanse the wants of mankiud must vary in different countries. The only one in which the different species of architerture can approach each other is intellectual; it is that of impressions, which the qualities whose effects are produced by the building art can work upon the mind of every man, of every country. Some of them result from every species of architecture, - an art which sprung, as well from the luts of Greece, as from the subterrancous excavations of Egypt, from the tents of Asia, and from several mixed principles to us mhnown. 'Thus the use of the word architecture is improper. We ought to name the species; for between the idea of architecture as a genus and as a species there is the same difference as between language and tongue; and to seek for a simple origin of arehitecture is as absurd as a seareh wonld be after the primitive language. If so, the hut of Vitruvius would be but an ingenions fahle, as some have said; but it would be a ridiculous falsehood if he had pretended that it was the type of all architecture." If we must confine ourselves to the simplicity and purity of line which the Greek temple exhibits,-circumstances, be it observed, that no future occasion can ever again effectually call up, -all the admiration of the numberless manuments of the IRomans is based upon false data, and we are not among those who feel inclined to set ourselves up against the universal consent of our race. Thus far we think it necessary to observe on the silly rage which a few years ago existed for setting up in this metropolis pure Greek Dorie porticoes and pure Greek profiles. What could more exhibit the poverty of an artist's imagination, for instance, if the thing exist, than appending to a theatre the Doric portico of a temple? But the thing is too ridiculous to dwell on, and we proceed to our purpose. Whether the Romans invented the Tuscan order we much doubt. No example of it exists similar in formation to that described by Vitruvius: it must, however, be admitted that it is a beantiful combination of parts, and worthy so great a people. It seems highly probable that this order was used by the Etruscans, and that to them its origin is attributable. The use of timber in the entablature, which we know was practised by them to a great extent, seems to sanction such an hypothesis. Its detail, as well as that of the other orders of architecture, belong to another part of this work; we shall not therefore firther speak of it than in the language of Sir Henry Wotton, who says, with his usual quaintness and simplicity, that it is a sturdy labourer in homely apparel.
239. The Doric order with the Romans was evidently not a favourite. In their hands its character was much changed. The remains of it in the theatre of Mareellus, in the examples at Cora and Pompeii, and the fragment at the baths of Dioclesian, are not sufficient, the case of the first only excepted, to justify us in reraining the reader on the matter. The
-ower order of the Colisemm, be it olserved, wants the triglyph, the distinguishing feature of the order; so that although in a previons page we have described it as Doric, we scarcely know whether we have not erred in our description. But to approach the subject of the Roman Doric more closely, we will examine the general form of the example which the theatre of Marcellus affords. Therein the whole height of the order is 31.15 ft . whereof the entablature is rather more than one fifth, and the columns are 7.86 diameters high. From the intercolumniations nothing can be deduced, because the arcade which separates puts them out of comparison with other examples. Its profile is clearly that which has formed the basis upon which the Doric of the Italian architects is founded; they have, however, generally added a base to it. There is great difference between it and the Grecian Doric, which in its form is much more pyramidal, and would, even in ancient Rome, have been out of character with the decorations applied in the architecture of the city, in which all severity of form was abandoned. The details, however, of the Roman as well as of the Grecian Doric will be given, and, from the representations, better understood by the reader, when we come to treat of the Orders in the third book of this work, where some varieties of it are submitted to the reader.
260. In the examples of Roman Ionic, that of the theatre of Marcellus excepted, there is a much greater inferiority than in the instance of Roman Doric to which we have just alluded; inded, that of the Temple of Concord, now knewn as the 'Timple of Saluru, is composed in so debased a style, that allusion onght scarcely to be made to it. The following table exhibits the general proportions of the four Roman profiles of it :-

Examplos.		Ilaight divided by lower Intameter in English Feat.	Diameters in lleight.	Entablature in 'l'erms of the Diameter.	Inter. columnuation.	Ileight of Capital in Terins of the Diameter.	Upper Dlameta r of Shaft.
Fortuna Virilis	- -	$\underset{ }{27.348} 3.109 .0$	8.796	$2 \cdot 182$	$2 \cdot 125$	$\cdot 457$	-874
Concord, now S.turn	-	$\begin{array}{r}4.861 \\ 4+66\end{array}=$	$9 \cdot 5.54$	$1 \cdot 605$	$1 \cdot 807$	-500	- 2.5
Marcellus ('Tlieatre of)	-	23 2.140	9.000	2.391	-	-557	-849
Coliseun	- -	$\begin{gathered}25731 \\ 291\end{gathered}=$	$8 \cdot 842$	$2 \cdot 280$		-466	-833

261. From the above it appears that, except in the case of the Temple of Saturn, the entablature is about one fifth of the height of the whole order, and that the columndiminishes about $\frac{16}{100}$ of its lower diameter. The capitals of the Roman are much smaller than those of the Grecian lonic, and their curves are by no means so elegant and graceful. There is no appearance of refinement and care in their composition, for which the rules of Vitruvius give an altogether much more beautiful profile than those examples, we have here quoted, present. In the Temple of Saturn, the volutes are placed diagonally on the eapital, so that the four faces are similar in form. In the Greek specimens, as also in the Temple of Fortuna Virilis, this is done on one angle only of the eapital of the columins, and that for the purpose of again bringing the faces of the volutes on to the flanks of the building, insteal of showing the baluster sides of the capitals. On the whole, we think the modern Italian architects sucseeded in producing much more beantiful profiles of this order, which never appears to have been a favourite in Rome, than their ancient predecessors.
262. The Corinthian seems to have been greatly preferred to the other orders by the luxurious Romans. There is little doubt that the capitals were generally the work of Greek srulptors, and some of those they have left are exceedingly beautiful; one that we have alrcady mentioned, that of Vespasian, points to sculpture of the highest class. The following table contains the general proportions of six well-known examples in Rome:--

Exansples.	Height divided by lower Diamoter in English leet.	Diametiersin Height.	Entablature in Terms of the Diameter.	Inter-columniation.	Height of (apltal in Terms of the Diameter.	$\begin{aligned} & \text { Upper } \\ & \text { Dia- } \\ & \text { meter of } \\ & \text { Shaft. } \end{aligned}$
1'antheon, Portico	${ }^{47} 0029=$	$9 \cdot 804$	$2 \cdot 317$	$2 \cdot 092$	1175	-8.55
l'antheon, Interior	$31674=$	$9 \cdot 499$	$2 \cdot 251$	1-8.3.4	1.000	.866
Jupiter 'Tonans, now Vespasian -	$\begin{aligned} & 47.086 \\ & 4898\end{aligned}=$	10.241	$2 \cdot 069$	1.558	$1 \cdot 167$	-867
Jupiter Stator, now Dioscuri -	476614	$9 \cdot 820$	2.534	$1 \cdot 575$	$1 \cdot 08$	-891
l'acade of Nero - -	${ }^{63 \%} 50$	$9 \cdot 973$	$2 \cdot 439$		$1 \cdot 969$	-88:3
Arch of Constantine	$\begin{array}{r}28.0137 \\ 2902\end{array}=$	9.661	2:388		$1 \cdot 095$	-882

263. From the above, it appears that a mean of the whole height of the Corinthin order in the Roman examples is $12 \cdot 166$ diameters, and that the cutablature is less than a fitth
of the height of the order, being as $1586: 1 \cdot 0000$. The diminution of the shaft is not so mech as in the lonic, being only $\frac{12 t}{106}$ of the lower diameter. The Temple of the Sybil at 'livoli presents quite a distinct species, and is the romance of the art, if we may be allowed sueh an expression. The mean height of the columns is 9.833 diameters, being rather slenderer than the leeight recommended by Vitruvius (Lib. iv. c. 9.). The attic base, which will be considered in another portion of the work, was frequently employed by the Roman artists.
264. The invention of the Composite order is attributed, with every probability, to the Romaus. It resembles generally the Corinthian, the main variation consisting in the part above the second tier of leaves in the capital. The following table exhibits the general proportions of three examples: -

Example.		$\left\lvert\, \begin{aligned} & \text { Height divided } \\ & \text { hy lower Dla } \\ & \text { meter inl Hing lish } \\ & \text { Feet. } \end{aligned}\right.$	$\begin{aligned} & \text { Diame- } \\ & \text { ters in } \\ & \text { Ileight. } \end{aligned}$	Entablature in Terms of the Diancter.	lleight of Capital in Terms of the Dit meter.	$\begin{aligned} & \text { Dia- } \\ & \text { meter at } \\ & \text { top of } \\ & \text { Shaft. } \end{aligned}$
Arch of Titus	- -	55	10.662	2.533	$1 \cdot 287$	887
Arch of Severus	- -		8.260	2.316	$1 \cdot 144$	$\cdot 882$
Baths of Dioclesian	- -	$=$	10.495	$2 \cdot 3$	1/181	-802

265. The mean of these makes the entablature a little less than one fifth of the entire height of the order, the ratio being as 1955: 1•0090. The diminution of the shaft is $\frac{143}{7.15}$ of the lower diameters. The mean height of the columns is 9.806 dianneters. A strongly marked feature in Roman architecture is the stylobate or pedestal for the reception of columns, which was not used by the Greeks. In the examples, it varies in height, but, gencrally speaking, it is very nearly four diameters of the column; a mean of those used in the triumplial arches comes out at 3.86 diancters. Another difference from Greek architecture is in the form of the Roman pilaster, which was sometimes so strengly marked as to form a sort of spuare column with capitals and bases similar to those of the columns it accompanies, except in being square instead of circular on the plan. It is diminished in some buildings, as in the portico of the Pantheon, and in that of Mars Lltor, while in others, no such diminution takes place. The reader will recollect that the Greek antie were never diminished, that their projection was always very small, and that the mouldings of their capitals were totally different from the columns with which they are connected.
266. But the most wonderful change the Romans effected in architecture was by the introduction of the arch; a change which, by various steps, led, throngh the basilica, to the comstruction of the extraordinary Gothie cathedrals of Europe, in its progress opening beauties in the art of which the Greeks had not the remotest conception. These matters will be more entered into in the next section: we only have to observe here, that its importance was not confined to the passage of rivers by means of bridges, but that it enabled the Romans to supply in the greatest abundance to their cities water of a wholesome quality, without which no city can exist. To the introduction, moreover, of the arch, their triumphal edifiecs were indebted for their principal beauties; and without it their theatres and amphitheatres would have lost half their elegance and magnificence. Whence the arch came is not known. It is now considered to have been borrowed from the Etricans, and was employed at Rome in the oldest constructions of the Kings, as early as B.c. 640 . In the seetion on Egyptian arehitecture, the subject has already been noticed.
267. The use of coupled columns and niches exhibits other varieties in which the Ronans delighted; but the former are not found till an age in which the art of architecture had bergun to dectine.
268. There is still another point to whieh the reader's attention must be directed, and it is almost a sure test of Roman or Greek design; namely, the form of the mouldings of ant order on their section. In purely Greek arehitecture, the contours of the mouldings are all formed from sections of the cone, whilst in that of the Romans, the eontours are all portions of circles.
29i9. Under the climate of Rome it became necessary to raise the pitch of the roof higher thaa was neeessary in Greece; hence the Roman pediment was more inclined to the to izom. As, however, when we consider the practieal formation of roofs generally, we shall investigate the law which, forced by climate upon the architect, governed the inclination of the pediment, the reader is referred, on that point, to the place in this work where the suljeet of roofs is treated. (See Book II. Ch LII., sec. iv., par. 2027.)

Sect. XIV.

BYZAN'IINE AND KOMANESQUE ARCHITECTURE.
270. We propose in this section to take a soncise view of the state of debased Roman chitecture, from the year 476 , in which the Homan empire in the West was destroved, to e introduction of the pointed arch at the latter end of the 12th century, It will be nessary to premise that the term Romanespue is very general, and comprises the works of e Lombards as well as those of a later species, whicb in this country are catted Saxon and orman, for the character of all is the sane, and we think much confusion will be preinted by the arrangement we propose. Between the fifth and the eighth centuries, at e beginning of which latter period the whole of Europe formed one great Gothic kingdom, e prospect is over a dreary desert in which the onses of our art are few and far between. he constant change of power, the division of the empire, which was so overgrown that it uhd no longer hang tegether, the irruptions of the Goths, whose name has been most iproperly connected with all that is barburous in art, make it no easy task to give the unarned reader more than a faint idea of what accurred in the extended period through nich, often in darkness, we must proceed to feel our way. But, previous to this, we shall ntinue the state of the architecture in the East: because, having already given some account Saraeenic architecture, which had its origin about the seventh century, we slall not ain have to divert his attention from the subject until the reader is introdueed to the inted style: an arrangement which, we trust, will assist his memory in this history.
271. The emperor Theodosius, who died A. n. 395, exhibited great tatent in arms, and is desirous to extend the benefit of his influence to the arts, in which he did much for e empire. His sons, Arcadius in the city of Constantinople, and Ilonorius at Rome, re ineapable of doing them any service, though by them was raised the fandous Theodosian lumn at the first named eity, which was surrounded with bassi relievi, after the fashion that ereeted long before in honour of Trajan at Rome. The ascent of Theodosius II. the throne promised as well for the empire as for the arts. He called architecture to aid for embellishing the cities of the empire. Under him, in 413, Constantinople was surunded with a new wall ; some extensive baths, and a magnificent palace for the two sisters Pulcheria were ereeted. In 447, an earthiuake nearly destroyed the city, which was so mirably restored under this emperor that he migbt with propriety have been called its cond founder. Except some trifling matters under A nastasius II., and Justin his successor, tle was done till Justinian, the nephew of the last named. ascended the throne of the East, in 7. By hion the celebrated architect Anthemius was invited to Constantinople. 'Ihrough egenius of this artist, aided by his eolleague Isidorus of Miletus, on the ruins of the ineipal ehurch of the city, which, dedicated to Saint Sophia or the Eternal Wisdom, hat en twice destroyed by fire, was raised so splendid an edifice, that Justimian is said on its mpletion ta have exclaimed, as Gibbon ohserves, "with devout vanity:" " Glory be to God, to hath thought me worthy to accomplish so great a work. I have vanquislied thee, 0 lomon." We shall make no apology for giving the description in the words of the torian we have just quotel; a representation of the building being appended in figs. 9. and 140. " Bent the pride of the Roman Solomom, before twenty years had clapsed, was hombled by an earthquake, which overthrew the eastern part of the dowe. 1ts splendour was restored by the perseverance of the same prince; and in the thirty-sixth year of his reign, Justinian celebrated the seeond dedication of a temple, which remains, after twelve centuries, a stately monument of his, fime. The architecture of St. Sophia, which is now converted into the principal mospue, has been imitated by the 'Turkish sultans, and that venerable pile continues to excite the fond admiration of the Greeks, and the more rational coriosity of European travellers. The eye of the splectator is disippointe. by an irregutar prospect of half domes and shetving roots: the western front, the prineipal aproach, is destitute of simplicity and magnificence; and the seate of dimemsions has been much surpassed by several of the Latin eathedrats. But the arclitect who first erected an cierviad empola is entitled to the praise of botd design and skiffut execution. 'the Nome of sta Sophiat, illuminated by four and twenty windows, is formed with so suball a curve, that the oth is orly one-sixth of its diancter: the measure of that diameter is $106 \mathrm{ht} .7 \frac{1}{2} \mathrm{~m}$.

F゙in. 14:).

and the lotty centre, where a crescent has supplanted the cross, rises to the perpendicular height of 182 ft . above the pavement. The circle which encompasses the dome lightly reposes on four strong arches, and their weight is firmly suppoted by four massy piles" (piers). "whose strength is assisted on the northern and sont)ern sides by four columns of Egyptian granite. A Greek cross inscrited in a quadrangle represents the form of the udifice; the exact brealth from b. to b. is 231 ft ., and 268 fr . from a. to a., or the extreme length; the width under the dome from c. to c. is 109.6 ft . The vestibule opened into the narthex or exterior portico. That portico was the humble station of the penitents. 'The nave or body of the chureh was filled by the congregation of the faithful; but the two sexes were prudently distinguished, and the upper and lower galleries were alloted for the more private devotion of the women. Beyond the northern and southern piles" (piers), "a balustrade, terminated on either side by the thrones of the emperor and the patriarch, divided the nave from the choir; and the space, as far as the steps of the altar, was occupied by the clergy and singers. The altar itself, a name which insensibly became familiar to C'hristian ears, was placed in the eastern recess, artificially built in the form of a demi-cylinder, and this sanctuary commmicated by several doors with the sacristy, the vestry, the baptistery, and the contiguous buildings, subservient either to the pomp of worship or the private use of the ccclesiastical ministers." We should be fearful of thus continuing the quotation, but that we prefer the language of Gibbon to our own: beyond which, the practical knowledge the rest of the description discloses is not unwortly the scientific architect, and the subject is the type of the great modern cathedrals, that of St. Paul, in London, anong the rest. "The memory," he continues, " of past calamities inspired Justinian with a wise resolution, that no wood, except for the doors, should be admitted into the new edifice; and the choice of the materials was applied to the strength, the lightness, or the splendour of the respective parts. The solid pilcs " (piers) "which sustained the cupola were composed of huge blocks of freestone, hewn into squares and triangles. fortified by circles of iron, and firmly cemented by the infusion of lead and quickline; but the weight of the cupola was diminished by the levity of its substance, which consists either of punice-stone that floats in the water, or of bricks from the Isle of Rhodes, five times less ponderous than the ordinary sort. The whole frame of the edifice was constructed of brick; but those base materials were concealed by a crust of marble; and the inside of St. Sophia, the cupola, the two larger and the six smaller semi-domes, the walls, the hundred columns, and the pavement, delight eren the eyes of barbarians with a rich and variegated picture." Various presents of marbles and mosaics, amongst which latter were seen representations of Christ, the Virgin, and saints, added to the magnificence of the edifice, and the precious metals in their purity imparted splendour to the scene. Before the building was four feet out of the ground its cost had anounted to a sum equivalent to 200,0002 sterling, and the total cost of it when finished may, at the lowest computation, be reckoned as exceeding one million. In Constantinople alone, the emperor Icdicated twenty
ve churches to Christ, the Virgin, and favourite saints. These were highly decorated, and nposing situations were found for them. That of the Holy Apostles at Constantinople, nd of St. John at Ephesus, appear to have had the chureh of St. Sophia for their types; ut in them the alta: was placed under the centre of the dome, at the junction of four orticoes, expressing the figure of the cross. "The pious munificence of the emperor was iffinsed over the I loly Land; and if reason," says Gibbon, " should condemn the monasaries of both sexes, whieh were built or restored by Justinian, yet charity must appland ie wells which he sank, and the hospitals which he founded, for the relief of the weary itgrins." "Ahmost every saint in the ealendar acquired the honour of a temple; ahmont very city of the empire obtained the solid advantages of bridges, hospitals, and aqueduets; ut the severe liberality of the monareh disdaned to indulge his subjects in the popular "xury of baths and theatres." He restored the Byzantine palace; but selfishness, as repected his own comfort, could not be laid to his charge: witness the costly palace he ereeted or the infamous 'Theodora, and the munificent gifts, equal to 180,0001 . sterling, which e bestowed upon Antioch for its restoration after an earthquake. His care was not anited to the peaceful enjoyment of life by the empire over which he presided; for the fortications of Europe and Asia were multiplied by Justinian from Belgrade to the Euxine, con the conflux of the Save to the mouth of the Danube ; a chain of above fourscore fortied places was extended along the banks of the great river, and many military stations aneared to extend beyond the Damube, the pride of the Roman name. We might considerbly extend the catalogue of the extraordinary works of Justinian; but our object is a eneral view, not a history of the works of this extraordinary person, of whom, applying the erses architecturally, it might truly be said -

Si Pergama dextra
Defendi possent: etiam hac defensa lillosemt;-
ad by whom, if architecture could again have been restored, such a consumnation would ave been aceomptished.
272. In 565 , Justin suceceded to the throne of the East, after whose reign nothing ocnrs to prevent our proceeding to the Western part of the empire, except the notice necesury to be taken of Leo the lsaurian, who ordered the statues in the different churehes to e broken in pieees, and the paintings which deeorated them to be destroyed. Under hinn lavenna was lost to the Eastern empire, and under his predecessors Mahomet appeared; nd in his suceessors originated the Saracenie arehitecture described in a previons seetion. t was under Justin, in 571, that the prophet, as he is called, was born, and was in 632 weeeded by Abubekr.
273. We now return to the empire in the West, whose ruin, in 476 , drew after it that of ie arts, which had grievously degenerated since the fourth eentury, at whieh period their ecudence was strongly marked. But we must digress a little by supplying a chasin in the istory of our art relative to the ancient basilice of Rome, the mondonbted types of the mpratively modern cathedrals of Lurope; and within the city of Rome we shatl find inple materials for tracing the origits whereof we speak.
974. The severe laws against the Craristians which Severns had passed expired with his uthority, and the persecuted race, between A. D. 211 and 249 , enjoyed a calm, during which rey had been permitted to ereet and consecrate convenient edifiees for the purposes of regious worship, and to purehase lands even at Rome for the use of the community. Under fioclesian, however, in many places the churches were demolished, though in some situations ey were only shat up. This emperor, as if desirous of committing to other hands the ark of persecution he had plamed by his edicts, no sooner published them, than he divested inself, by abdication, of the imperial purple.
275. Uuder Constantine, in the begiming of the fonrth century, the Clristians began gain to breathe ; and though that emperon's religion, even to the period of his death, is inolved in some doubt, it is certain that his opinion, as far as we can judge from his acts, as much inelined towards Christianity. Ont of the seven principal charehes, or basilicie, Rome, nancly, Sta. Croce di Gierusatemme, S. Giovami Laterano, S. Lorenzo fuori te Iurà, S. Paolo, S. Pietro, S. Sebastiano, and Sta. Maria Maggiore, all hot the last were maded by Constantine himself. The ancient basiliea, which derived its name from aroneus (a king), and otkos (a house), was that pint of the patace wherein justice wios lininistered to the people. The building for this purpose retaned its name long after ecextinction of the kingly office, and was in use with the Romans as well as the Grecians. itruvins does not, however, give ns any specific diflerence between those erected by one r the other of those people. la lib. v. c. . . he gives us the details of its form and armgement, for which the reader is referred to his work. 'The nume of basilica was afterards tranferred to the lirst buildinge for Christian worship; not because, as some hane upposed, the first Christian emperors nsed the ancient basiliea for the ecelebration of their dixions rites, but mose probably with reference to the idea of sovereignty whielt the reliion excreised, thongh we do not assort that such conchasion is to be necessarily drawn

There can be no donbt that the most ancient Christian hasilice were expressly constructed for the purpose of religion, and their arehitecturat detaits clearly point to the epoch in which they were erected. These new temples of religion borrowed, nevertheless, as well in their whole as in their details, so much from the ancient basitice, that it is not surprising they should have retained their hame. We here place before the reader (fig. 141.) a plam of
Fig. 111.

> PLAN of THE BASUBCA OF SF. PAULI.
the ancient basilica of S. Yaolo fuori le Muri, and (fy. 142.) an interior view of it, wherety

Fig. 112.
interior or bastitca of st. paul.
its general effect may be better understood. The latter shows how admirably it was adapted to the reception of an extremely numerous congregation. The numberless columns which the ancient buildings readily supplied were put in reguisition for constructing these basilica, whereof, adopting the buildings of the same name as the type, they proportioned the elevation to the extent of the plans, and, in some cases, decorated them with the richest ornaments. lnstead of alway connecting the columns together by architraves on their summit, which might not be at hand, arches were spanned from one to the other, on which walls were carried up to bear the roofing. I'hough the practice of vaulting large areas did not appear till a considerable time after the building of the first Christian basilica, it must be recollected that the Temple of Peace at Rome had previously exhibited a specimen of the profound knowledge of the Romans in the practice of vaulting: in that example, groined vanlts of very large dimensions were borne on entablatures and columns. Nor does this knowledge appear to lave been lost in almost the last stage of decline of Roman architecture under the emperor Diuclesian. In the baths of this emperor are to be seen not only groined vaults in threp
divisions, whose span is nearly 70 ft ., but at the back of each springer a buttress, preeischy of the nature of a Hyiny buttress, is contrived to counteract the thrusts of the valulting.
276. In recording the annihilation of the arts on the invasion of Odoaeer, at the end of the fifth and during the course of the sixth century, historians have imputed it to the Gothie nations, qualifying by this name the barbarous style which then degraded the produetions of the arts. Correct they are as to the epoch of their ruin, which coineided truly enough with the empirc of the Goths; but to this nation they are unjust in attributing the introduetion of a barbarous style.
277. History informs us, that as soon as the prinees of the Goths and Ostrogoths had fixed themsalves in Italy, they displayed the greatest anxiety to make the arts again flourish, and but for a number of adverse eireumstanees they would have sueceeded. Indced, the people whom the Romans designated as barbarous, were inhabitants of the countries to the nortll and east of Italy, who actually acquired that dominion and power whieh the others lost. Instrueted at first by their defeats, they ultimately acquired the arts of those who originally eonquered them. Thus the Gauls, the Germans, the Pannonians, and Illyrians, had, from their submission to the Roman people, acquired quite as great a love for the arts as the Romans themselves. For instance, at Nismes, the birthplace of Antoninus Pius, the arts were in a state of high eultivation; in short, there were schools as good out of as in Italy itself.
278. Odoaeer, son of Edicon, the ehief of a Gothie tribe, after obtaining possession of lome in 476 , preserved Italy from invasion for six years; and there is little doubt that one of his oljeets was the preservation of the arts. He was, however, stabbed by the hand, or at least the eommand, of his rival and suceessor, Theodorie, in 493. Theodoric, the son of 'I'heodemir, had been edueated at Constantinople, and though personally he neglected the eultivation of science and art, he was very far from insensible to the advantages they conferred on a eountry. From the Alps to the extremity of Calabria, the right of conquest aad plaeed Theodorie on the throne. As respects what he did for the arts, no better record of his fame could exist than the volume of publie Epistles composed by Cassiodorus, in the royal name. "The reputation of Theodoric," says Gibbon, " may repose with confidence on the visible peace and prosperity of a reign of thirty-three ycars; the unanimous esteem of his own times, and the memory of his wisdom and courage, his justice and humanity, which was depply impressed on the minds of the Goths and I talians." The residenee of 'Theorlorie was at Ravenna chicfly, oceasionally at Verona; but in the seventh ycar of his reign he visited the eapital of the Old World, where, during a residence of six months, he proved that one at least of the Gothie kings was anxious to preserve the monuments of the nations he hat subdned. Royal ediets were framed to prevent the abuses, neglect, or depredations of the eitizens mpon works of art; and an architect, the annual sum of two hundred pounds of gold, twenty-five thousand tiles, and the receipt of customs from the Lucrine port, were assigned for the ordinary repairs of the public buildings. Similar eare was bestowed on the works of sculpture. Besides the capitals, I'avia, Spoleto, Naples, and the rest of the Itailan cities, aequired under his reign the useful or splendid decorations of ehurches, aqueduets, baths, porticocs, and palaces. Ilis architeets were Aloysius for Rome, and Daniel for leavenna, his instruetions to whom manifest his care for the art ; and under him Cassiodorus, for fifty-seven years minister of the Ostrogoth kings, was for a long period the tutelary genius of the arts. The death of Theodorie oceurred in 526 ; his matusolemm is still in existence at Ravemna, being now called Sta. Maria della lotunda. 'That city eontains also the chureh of St. Apollinaris, which shows that at this period very little, if any, change had been made in the arrangement of large churches on the phan of the basilica. The front of the convent of the Franeiscan friars in the same town, which is reputed to be the entranee to the palace, bears eonsiderable resemblance to the I'orta Aurea of Dioclesian, at Spalatro. These buitdings are all in a heavy debased Roman style, and we are quite at a loss to maderstand the passage quoted by 'liabosehi, from Cassiodorus, who therein gives a particular description of the very great lightness and elegance of columns; thus-" Qaid dicamus colummarum juncean proceritatem? Moles illas sublimissimas fabnicarum quasi quibusdan erectis hatilibus eontineri et substantion qualitate concavis canalious excavatas, nt magis ipsas astimes fuisse transfusas; ahins ceris judices factunn, quod melallis durissimis videas expolitnm." (Lib. vii. Var. 15.) We know no examples of the period that bear Ont these assertions of Cassiodorus; on the contrary, what is known of this period indicates a totally diflerent style.
279. If the suceessers of 'Theodorie had succeeded to his tilents as well as his throne, and if they had been assisted by ministers like Cassiodorus, the arts and letters of Italy might have reeovered; but, after the retirement of that miniter, from the suceession of Viniges, towards 538 , the arts were completely extinct. In 543-7, liome was taken and phondered by l'otila; and afterwards, in 5.53 , this ill-fated eity was again mited to the Eastern empire by the talents of belisarins and Nases.

2xo. lirom the year 568 up to the conquest of laty by Charlemagne, in 774, the eountry vias overrum by the Lombards, a people who quickly attained a high degree of civilization,
rnd were much given to the practice of architecture. Maftei, Muratori, and Tirabosehi have ciearly proved that neither the Goths nor the Lombards introduced any particular style, but employed the architects whom they found in Italy. Fig 143. is the west end

Fyg. 113.

Sr. MICHIAEL, PAVIA.
of the church of St. Michael, at Pavia, a work executed inder the Lombards, and, therefore. h. re inserted as an example of style. The anxiety, however, of the Lombards to preserve the arts was not sufficient to prevent their increasing decay, which daily became more apparent. Not more tham the Goths do they deserve the reproach for their treatment of and indifference to them. Besides fortifications and citadels for defence, they built palaces, baths, and temples, not only at Pavia, the seat of their empire, but at Turin, Milan, Spoleto, and Benevento. Ilospitals under them began to be founded. The Queen 'Theodelinda, in particular, signalised her pious zeal in founding one at Monza, near Milan, her favourite residence, and endowing it in a most liberal mamer.
281. In the eighth century the inflence of the popes on the fine arts began to be felt. John VI. and Gregory III., at the commencement of the eighth century, showed great solicitude in their behalf. During this age the popes gained great temporal advantages, and their revenucs enabled them to treat those advantages so as to do great good for Italy. In the ninth century Adrian I. signalised hinself in this passion to such an extent, that Ni-

F1, 1.14. cholas V. placed on his monument the in-seription,-

Restituit mores, menia, templa, Domos.
His works were many and admirable. Among: those of great use, he constructed porticoes from the city to San Paolo and S. Lorenzo fuori le Murà.
289. Before we advance to the age of Chimlemagne, it will be necessary to notice the church of St. Vitalis, at Ravenna, which we have reserved for this place on account of the singularity of its construction. It was crected, as is usually believed, under the reign of Justinian, in the sixth century. See figs. 144. and 145. The exterior walls are formed in a regular octagon, whose diameter is 128 ft . Within this octagon is another concentric onc, 54 ft . in diameter, from the eight piers whereof (55 ft . in height) a hemispherical vault is gathered over. and over this is a timber conical roof. The peculiarity exlibited in the construction of the cupola is, that the spandrels are filled in with earthen vases; and that round the

Fig. 145.
section of st. vitafis, ravenna.
cxterior of its base semicircular headed windows arc introduced, each of which is subdivided into two apertures of similar forms. Betwcen every two piers hemicylindrical recesses are formed, each covered by a semidome, whose vertex is 48 ft . from the pavement, and each of them contains two windows subdivided into three spaces by two columns of the Corinthian order, supporting semicircular-headed arches. Between the piers and the external walls are two corridors, which surround the whole building, in two stories, one above the other, each covered by hemicylindrical vaulting. The upper corridor above the vault is covered with a sloping or leanto roof. We have before notiecd the introduction of vases in the spandrels at the Circus of Caracalla; and we cannot help being struck with the similarity of construction in the instance above cited. It fully bears out the observation of Mibler (Dcnhmahler der Deutschen Bankunst), " that, though beauty of proportion seems to have been unappreciated in these ages, and architecture was confined within a scrvile imitation of the carlier forms, the art of compounding ecment, the proper selection of building materials, and an intimate acquaintance with the principles of solid construction with which the ancients were so conversant, were fully understood."
283. The ara of Charlenagne, which opened after the middle of the eightl century and continued into the early part of the ninth, gave rise to many grand edifiecs dedieated to Christianity. This extraordinary man, rising to extensive dominion, did mach towards restoring the arts and civilisation. "Meanwhile, in the sonth-east," says an intelligent anonymous writer, "the decrepid Grecian empire, itsclf maintaining but a sickly existence, had nevertheless continued so far to streteh a protecting wing over them [the arts] that they never had there equally approached extinction. It seems probable that Charlemagne drew thence the architect and artisans who were eapable of designing and building such a chureh as the cathedral of Aix-la-Chapelle, in Germany." "If Charlemagne," says Gibbon, "had fixed in Italy the seat of the Western empire, his genius would have aspired to restore, rather than violate, the works of the Casars; but as policy confined the French monarch to the forests of Germany, his taste could be gratificd only by destruction, and the new pataee and church of Aix-la-Chapelle were decorated with the marbles of Ravemal and Rone." The fact is, that the Byzantine or Romancsque style continued, with various degrees of beauty, over the Contincut, and in this comery, till it was superseded by the introduction of the pointed style. Mïller, from whon we extract fig. 146. which represents the portico of the Convent of Lorsel, situate about two and a half German miles from 1)arinstadt, considers it as all that remains of the first ehurch built in the time of Charlenagne. The same learned anthor observes, that, on comparison with each other of the ancient charches of Germany, two leading differences are discoverable in their styles, of which all others are grades or combinations. The first, or earlíest, whose origin is from the Sonth, is, though in its later period much degenerated, of a highly finished character, listingnished by forms and decorations resembling those of Roman buildings, by flat roofs, in hemicyliudrical vaults, and by great solidity of construetion. 'The second and later stwe sill preserves the semicircular forms; but the high pitehed roof, more adapted to the seakons

Fig. 146.
pofrico or bonsen.
of a northern elimate, begins to be substituted for the flat roof of the Sonth, as at the cathedral of Worms on the west side, the western tower of the ehureh at Gehnhausen, and in many other examples.
284. We are now approaching a period in which more light can be thrown on our subject than on that we have just quitted. In the ninth century, on, as it is said, the designs of a Greek artist, rose the cathedral of St. Mark at Venice, the largest of the Italian churches in the Byzantine style. Its plan is that of a Greek eross, whose arms are vaulted hemicylindrically, and, meeting in the centre of the building, terminate in four semicirenlar arelas on the four sides of a square, about 42 ft . in length in each direction. From the anterior angles of the piers, pendentives gather over, as in St. Sophia, at Constantinople, and form a circle wherefrom rises a eylindrical wall or drum in which windows for lighting the interior are introduced. From this drum, the proncipal dome, which is hemispherical, springs. Longitudinally and transversely the church is separated by ranks of columis supporting semicircular arches. The aisles of the nave and choir, and those of the transepts, intersect each other in futur places about the centre of the cross, over which intersections are small domes; so that on the roof are four smaller and one larger dome. In the exterior firont towards the Piazza Sim Marco, the façade consists of two stories, in the centre of the lower one whereof is a large semicircularly arehed cntrance, on each side of which are two other smaller archen entrances of the same form. These have all plain arehivolts springing from the upper of two orders of eolumns. On each flank of the façade is a smaller open areade springing at each extremity from an upper of two orders of insulated columns. A gallery with a balustrade extends round the exterior of the church, in front whereof, in the eentre, are the four fanous bronze horses which once belonged to the arch of Nero. The second story towards the Piazza San Marco consists of a central semicircular aperture, with two blank semicircular arches on each side, not quite so high and wide. These five divisions are all crowned by canopy pediments of eurves of contrary flexures, and ormamented with foliage. Between each two arches and at the angles a turret is introduced eonsisting of three stories of columns, and terminated by a pimaele. The building has been considerably altered since its first construction; and, indeed, the ornaments last named point to a later age than the rest of the edifice, the general eharacter of which has, nevertheless, been preserved. There is considerable similarity of plan between this church and that of St. bopma.
285. Very mueh partaking the character of composition of St. Mark, but dissimilar in
general plan, is the church of St. Anthony at Padua, which has six domes over the nave, transepts, centre, and ehoir. It is, moreover, distinguished by two slender towers or minarete, which inpart to it the air of a Saracenic edifice.
286. The Italian arehitecture in the Byzantine or Romanesque style preserved a very different sort of character from that of the same date in Germany and other parts of Europe. Thus, - taking the cathedrals of lisa and Worms, whose respective periods of construetion are very chose together, - the former is separated into its nave and aisles by columns with Corinthian eapitals, reminding one very mueh of the early Christian basiliea; in the latter, the separation of the nave from the aisles is by square piers. The cathedral at Pisa, with its baptistery, campanile, and the campo santo or cemetery, are a group of buildings of more euriosity than any four edifices in the world, and the more so from being so strongly marked with the distinguishing features of the Byzantine and Romanesque styles. The eathedral (fig. 147.), whose architect was Buschetto of Dulichio, a Greek, was built in the beginning in the llth eentury. It consists of a nave, with two aisles on each side of it, transepts, and choir. Its bases, eapitals, cornices, and other parts were fragments of antipuity colleeted from dif. ferent places, and here with great skill brought together by Buschetto. The plan of the chureln is a Latin cross; its length from the interior face of the wall to the back of the reeess is 311 ft ., the width of the nave and four side aisles 106 ft .6 in ., the length of the transejt 237 ft .4 in , and its width, with its side aisles, 58 ft . The eentre nave is 41 ft . wide, and has twentyfour Corinthian columns, twelve on each side, all of marble, 24 ft . 10 in . high, and full 2 ft .3 in . in diameter. From the capitals of these colmmens arches spring, and over them is another order of eolumns, smaller and morenu. merous, from the eircumstance of one being inserted over the centre of an intereolumniation below, and from their accompanying two openings under arches nearly equal to the width of sueh intercolumniations. 'These form an upper gallery, or friforium, aneiently appropriated to the use of females. The four aisles have also isolated columns of the Corinthian order, hat smaller, and raised on high plinths, in order to make them range with the others. The tra: septs have each a nave and two side aisles, with isolated columns, the same size as those of the other. The soffit of the great nave and of the transepts is of wood, gilt, but the smaller ones are groined. The height of the great nave is 91 ft ., that of the transepts about 84 ft ., mind that of the aisles, 35 ft . In the centre nave are four piers, on which rest four large arehes, supporting an elliptical eupola. The chureh is lighted by windows above the second order of the interior. The edifice is surrounded by steps. The extreme width of the western front, measured above the plinth moulding, is 116 ft ., and the height from the pavement to the apex of the roof is 112 ft .3 in . The façade has five stories, the first whereof consists of seven arches, supported by six Corinthian columns and two pilasters, the middle arch being larger than the others: the second has twenty-one arehes, supported by twenty columns and two pilasters; the third is singular, from the fagade contrating where the wo aisles finish, and forming two lateral inclined planes, whence in the middle are eolumns with arches on them as below. The columns which are in the two inclined planes gradually liminish in height: the fifth story is the same, and forms a triangnlar pediment, the columns ind arches as they approach the angles becoming more diminutive. The two exterior sides rave two orders of pilasters, one over the other. 'The roof of the nave is supported, externally, y a wall decorated with columns, and arches resting on their eapitals. The whole of the puilding is covered with lead. The drum of the eupola is externally ornamented with dighty-eight columns comected by arehes, over which are pediments in marble, forming a pecies of crowns. The principal point of difference in these cathedrals from the old msiliea, in imitation whereof they were doubtless built, is in the addition of the transepts, ,y which a crnciform plan was given to these edilices. Fhe style of the building in fuestion is much lighter than most of the bildings of the period. But, whatever the taste
and style, the architect of it was a very skilful mechanic. One of his epitaphs, at lisa, we subioin, in proof of what we have stated.

Quod vis mille boum possent juga juncta movere,
Et quod vix potuit per mare ferre ratis,
Buschetti nisu, quod erat mirabile visu,
Dena puellarmm turba levavit onus.
287. In Germany, the lOth and 11 th centuries afford some edifices very important in the history of the art. Such are the eathedrals of Spire, Worms, Mayence, and others, stil! in existence to testify their extraordinary solidity and magnificence. In that country, as Möller remarks, there was a great disparity between its several provinces, as respected their degrees of civilisation. On the banks of the Rhine, and in the south, cities were established when those parts became subject to the Romams, and there the arts of peace and the Christian religion took root, and flourished; whilst, in the nor thand east, paganism was still in existence. Christianity, indeed, and civilisation gradually and generally extended from the southern and western parts. The clergy, we know from history, themselves directed the building of churches and convents. The buildings, therefore, of these parts are of great importance in the history of architecture. The leading forms of these churches, as well as of those that were huilt about the same period in lirance and England, are founded upon the ancient basilice; that is, they were long parallelograms with side aisles, and transepts which represent the arms of the cross, over whose intersection with the nave there is frequently a louver. The choir and chancel terminate semicircularly on the plan. 'The semicircle prevails in the vaultings and over openings. 'The nave is lofty, frequently covered with groined vaulting, sometimes with flat timber covering; the gailes are of small inclination. In the upper parts small short columns are frequently introduced. The prevailing feature in the exterior is horizontality, by which it is distinguished from the style which came into use in the 13th century. The profiles of the mouldings are, almost without exception, of Roman origin ; the impost mouldings under the arehes are, in this respect, peculiarly striking; and among the parts the Attic base constantly appears. The Roman basilicæ were always covered with flat horizontal ceilings; those of the churches we are speaking of are mostly vaulted. Hence the necessity of substituting pillars or piers for the insulated columns, which had only to carry wooden roofs. There are, however, a few churches remaining, which preserve the ancient type, as a church at latisbon, and the conventual churches of Daulinzell and Schwarzach. Fig. 148. shows the plan, and fig. 149, a sketch of one bay in a

PLAA OF CATHEDRAL AT WORAS.
Fig 11s.
longitudinal section of the north side of the nave of the cathedral at Worms, which was commenced in the year 996, and consecrated in 1016. It is one of the most ancient of the German clurches, and one of the most instructive. On our examination of it, recently, we were astonished at its state of preservation. The plan, it will be seen, is strongly distinguished by the cross: the square piers are alternately decorated with half columns; and the chancel, at the east end, terminates with a semicircle. The western end of the church, which is octagonal, seems to be more modern than the rest, inasinuch as the pointed arch appears in it. Fig. 150. is a view of the edifice.
288. Parts of the cathedral at Mentz are more ancient than any part of that at Worms; hence it may be studied with adrantage, as containing a view of the styles of several centuries. The south-eastern gate of the cathedral is given by Möller in his work (Jlate VI.).
289. Whittington, a highly talented author, of whom the world was deprived at a very early age (Historical Survey of the Ecclesiastical Antiquities of France, 41o. Lond. 1809), oliserves, that the buildings in France of the 9 th and IOth renturies were inn-

tated from the works of Charlemagne; but that his feeble successors, defieient both in riehes and power, were unable to equal them in magnitude or beauty of materials. During a large portion of the 9 th century the country was a seene of conster. nation and bloodshed. The most celelorated, and almost the only foundation of eonsequence whieh took place during this dreary period, was the abbey of Clugny. It was built, about 910 , by Berno, abbot of Balme, with the assistance of William, Duke of Aquitaine and Auvergne. But there is little doubt that the present eliurch was built in the following oentury. During the 11 the eentury, the French, relieved from their disordered state, hastened to rebuild and repair their ecelesiastieal strmetures, and their varions eities and provinees vied with eaeh other in displays of enthusiastie devotion. Robert the lious, by his example, eneouraged the zcal of his clergy and people; and the seience of architeeture revived with majesty and effeet from its fallen state. Morard, the abbot of St. Germain des Prés, was enabled by this monareh to rebuild the chureh of his eonvent on a larger seale. St. Geneviéve wes also restored, and a eloister added to it, by his order. He, moreover, made preparations for erecting a cathedral at Paris in a style of as great magnificence as the times would allow. At Orleans, the place of his nativity, he built the ehurehes of Nôtre Dame de bonnes nouvelles, St. Peter, and St. Aignan, which last was eonseerated in 1029. But our space does not allow an enumeration of all the works undertaken during his reign. About this time, the cathedral of Chartres was rebult by Fulbert, its bishop, whose great reputation, in France and the rest of leurope, enabled him to execute it in a mamer till then unknown in his country. Camate, the king of Eingland, and IRichard, Duke of Normandy, were among the princes who assisted liin with contributions. His successor, 'lhierri or Theodoric, eompleted the building. The nerthern part was afterwards erected in 1060, at the expense of Jean Cormier, a native of Chartres, and physician to the king. The length of the church is 420 ft ., its height 108 ft ., and the nave 48 ft . wide. The transepts extend 210 ft . The abbey ehurch of Cluny, which succeeded that above mentioned, was one of the largest and most interesting of the ecelesiastical monuments of France. It was begren in the eommencement of the lltheentury, by the abbot Odi'o, and finished by his suseessor Hugh, in 1069. The ceremony of its dedieation did not, however, take place till many years after. Ti.e style of architeemre in France, in the ! 1 th, was the same as in the preeeding eenturies; but the ehurehes were larger and more solidly eonstrueted. The oldest buildings of France, with some exceptions, are traecable to this ara; such are the venemable fabries of St. Germain des l'rés at Paris, St. Benigne at Dijon, those of Chartres, La Charité sur Loire (Cluny was destroyed 1789), and others; these all remain to illustrate the history of the arts at this period. But as we have said before, and eannot too often repeat, the style whieh prevailed was no more than a debased and feeble attempt to imitate the ancient architeeture of Rome, and its best examples are not, in style even, equal to those of the art in its lowest state under the reign of Dioelesian; indeed the investigation is only important as being one of the means by which we can arrive at a just conchusion on the state of civilisation at diflerent periods. Mores fabrice loquantur is an expression of Cassiodorus, so true, that to prove it would indeed be lighting the sun with a candle; and we must not trifle with the patience of the reader.
290. The Saxon churches of Figgland, to which and its more modern architecture our succeding chaptor will be entirely devoted, were very inferior in every respect to the Norman churches of France; and these latter differed materially from those in the neighbourhood of l'aris, and further to the south. The Norman churches were larger in some examples; but they were more rude in design and execution. The abbey charch of St. Stephen, raised at Caen by William the Conqueror, and that founded by his Queen Matilda in the same eity in honour of the Holy Trinity, are the ehief exaniples of the peenliar manmer of building introduced by the Norman prelates into England at the end
of the 11 th eemmry; after which, as we shall presently see, a new and extraordinary style made its appearance in Europe, a style whereof fig. 151, will, on inspection, sutficiently give a general notion to the reader.

arter twengil cratchy.
291. Before leaving the subject of this section, we must fall back again upon Italy to notice two or three works intimately connected with this period of the art. We here more particularly allude to the celebrated baptistry and campanile of lisa, a eity which seems to have been a great mursing mother to our art, no less than to those of painting and sculpture. The Campo Santo of that eity, of which, from the number of evamples to be noticed, we regret we shall be unable to give but a short aecount, belongs to the next period, and must be noticed after them.
292. Dioti Salvi, whose birthplace even is unknown, commenced, in 1152 , the baptistery of L 'isa (fig. 152.), and after eight years completed it lt is close to the cathedral of the

Y4. 152 plaee, and though on the wall of the inner gallery there be an inscription, cut in the character of the middle ages, "a. d. 1278, empicata futr de novo," and it may be consistent with truth that the edifice was ormamented by John of Pisa, there is nothing to invalidate the belief that the building stands on the foundations originally sct out, and that for its principal features it is indebted to the architect whose name we have mentioned. It is 100 ft . in diameter within the walls, which are 8 ft .6 in . thick. The eovering is a double brick dome, the inner one conical, the outer hemispherical. The former is a frustum of a pyramid of twelve sides. Its upper extremity forms a horizontal polygon, finished with a small parabolic cupola, showing twelve small marble ribs on the exterior. The outer vault terminates above, at the base of the small cupola, which stands like a lantern over the aperture. From the pavement, the height of the cupola is 102 ft . The entrance is by a deeorated doorway, from the sill of whieh the general pavement is sunk three steps round the building; the space between the steps and the wall having been provided for the accommodation of the persons assembled to view the ceremony of baptism. An aisle or corridor is consinued round its interior eircumference, being formed by eight granite eolumns and four piers, from which ate turned semicircular arehes, which support an upper gallery; and above ehe arches are twelve piers, bearing the semicircular arehes whieh support the pyramidal
dome. On the exterior are two orders of Corinthian columns engaged in the wall, which support semicireular arches. In the upper order the columus are more numerous, inasmuch as each arch below bears two columns above it. Over every two arehes of the upper order is a slarp pediment, separated by a pinnaele from the adjoining ones; and above the pedinents a horizontal cornice encircles the building. Above the second story a division in the compartments oceurs, which embraces three of the lower arehes; the separation being effected by piers triangular on the plan, erowned by pinnacles. lhetween these piers, semicircular headed small windows are introduced, over each of which is a small circular window, and thereover sharp pediments. Above these the convex surface of the dome springs up, and is divided by twelve ribs, truncated below the vertex, and ornamented with crockets. Between these ribs are a species of dormer windows, one between every two ribs, ornamented with columns, and surmounted each by three small pointed pediments. The tatal height is about 179 ft . The cupola is covered with lead and tiles; the rest of the edifice is marble.
993. The extraordinary campanile, or bell tower, near the cathedral at Pisa, was built about 1174. It is celebrated from the circumstance of its overhanging upwards of thirteen feet, a peculiarity observable in many other Italian towers, but in none to so great an extent as in this. 'There ean be no doubt whatever that the defect has arisen from bad foundation. and that the failure exhibited itself long before the building was completed; hecause, on one side, at a certain height, the columns are higher than on the other; thus showing an endeavour on the part of the builders to bring back the upper part of the tower to as vertical a direction as was practicable, and recover the situation of the centre of gravity. The tower is eylindrieal, 50 ft . in diameter, and 180 ft . high. It consists of eight stories of columns, in each of which they bear semicircular arches, forming open galleries round the story. The roof is flat, and the upper story contains some bells. The last of the group of buildings in lisa is the Campo Santo, which, from its style and date (127ε), is only mentioned here out of its place in order to leave this interesting spot without neeessity for further recurrence to it. It is the publie burying place of the eity, and, whether from the remains on its walls of the earliest examples of Giotto, and Cimabue, the beauty of its proportions, or the seulpture that remains about, is unparalleled in interest to the artist. It is a quadrangle, 403 ft . in length, 117 ft . in width, and is surrounded by a corridor 32 ft in hreadth. 'This corridor is roofed, forming a sort of cloister with semicircular-headed windows, which were at first simple apertures extending down to the pavenent, but they have been subseguently divided into smaller apertures by columns, which, from the springing of the arehes, branch out into tracery of elegant design. The interior part of the quadrangle is open to the sky. Some of the arches above mentioned were completed as late as the year 1464.

The style of the transition to pointed art will be natiecd in the section on Porsrey Architectuse at the end of Book I.

Sect. XV.

(a) origin of the pointed alchir.
994. About the end ot the 12 th and the beginning of the 13 the century, a most singular and important change took place in the architecture of Europe. The flat southern root, azys Möller, was superseded by the high pitehed northern covering of the eeelesiastieal edifices, and its introduction hrought with it the use of the pointed arch, which was substluted for the semicircular one : a necessary conscquence, far the roof and vaults being thus raised, the character of the whole could not he preserved without changing the entire arrangement of the combination of forms. But we have great doubts on Moller's hypothesis; it will, indeed, be hereafter seen we have a different beliei on the origin of the pointed arch. Jefore we at all enter upon the edifices of the period, we think it will be hetter to put the reader in possession of the different hypotheses in which various writers have indulged, relative to the introduction or invention of the pointed arch; and though we attaeh very little importanee to the discovery, if it could now be clearly established, we are, as our work would be incomplete without the notice, compelled to submit them for the reader's consideration.
295. 1. Some have derived this style from the holy groves of the early Celts. - But we can see no gromed for this hypothesis, for it was only in the 14 th and 15 th centuries that ribs between the groins (which have heen compared to the small branches of trees) were introduced; hence it is rather difficult to trace the similarity which its supporters eontend for.
296. 2. That the style originuted from huts made with twiys and branches of trces intertuined. - An liypothesis fancifnlly conceived and exhibited to the world by Sir Janes Hall, in some very interesting plates attached to his work. Mölter properly observes upon this theory of twigs, that it is only in the buildings of the 15 th and 16 the centuries that the supposed imitation of twigs appears.
297. 3. From the framed construction of tember buildings. - This is an lyppothesis which it would be loss of time to examine, inasmueh as all the forms and details undoubtedly arise from the vault and areh; and a elose cxamination of the buildings of the 13th century proves that the aneient eeelesiastical style involves the seientific construetion of stone vaulting, all timber construction being limited.to the framing of the roof.
298. 4. From the imitation of the aspiring lines of the pyramids of Egypt. - This hypothesis is the faney of Murphy, the ingenious and useful editor of a work on the convent of Batalha, in Portugal, and also of some of the finest edifices of the Moors in Spain. The following is the reasoning of the author:- The pyramids of the Egyptians are tombs; the flead are buried in churehes, and on their towers pyramidal forms are placed; consequently, the pyranids of the towers indieate that there are graves in the ehurehes; and as the pyramidal form eonstitutes the essence of the pointed arch style, and the pyramids of the towers are imitations of the Egyptian pyramids, the pointed areh is derived from the latter. The reader, we are sure, will not require from us any examination of the series of syllogisms here enumerated.
299. 5. From the intersection of semicircular arches which cecurs in late instances of the Romanesque style. - 'This was the hypothesis of the late Dr. Milner, a Catholic bishop of great learning and most amiable bearing, and a person so intimately aequainted with the subject on whieh he wrote, that we regret his reasons for the conjeeture are not satisfactory to us, albeit the combination (fig. 153.) whereof he speaks is, in the Romanesque style, of

Fis. 1.53. frequent oceurrence. The venerable prelate seems to have lost sight of a prineiple familiar to every artist - that in all art the details of a style are subordinate to and dependent on the masses, and that the converse never oceurs; how, then, could the leading features of a style so universal have had their origin in an aecidental and unessential decoration, like that of the theory in question? None of the above hypotheses are satisfactory; and Möller well observes, that the solution of the question, whether the pointed style belongs to one nation exelusively, is attended with great diffieulties. And it may be said that the problem for solution is not, who invented the pointed arch, but, in what way its prevalence in the 13th eentury is to be aecounted for.
300. We are not of opinion that it is of much importance that this vexata quastio should be settled; and that it will now satisfaetorily be done, we eonsider very mueh out of the limits of probability. But we suppose that the reader will be inelined to ask for our own hias on the subjeet; and, as we are bound to answer sheh a question, the reply is, that we are of the fiith of the Rev. Mr. Whittington, to whose work we have before referred, that the pointed arch was of Eastern extraction, and that it was imported by the first erusaders into the West. "All eastern buildings," says that ingenious writer, " as far baek as they go (and we eannot tell how far), have pointed arehes, and are in the same style; is it not fair to suppose that some of these are older than the 12th eentury, or that the same style existed before that time? Is it at all probable that the dark ages of the West should have given a mode of architecture to the East?" Lord Aberdeen, whose taste and learning in matters of this nature well qualified him for the posthumous introduction to the publie of the author we are using, observes, in his preface to Whittington's work, that, "if we eould diseover in any one country a gradual alteration of this style [the Romanesque], beginning with the form of the areh, and progressively extending to the whole of the ornaments and general design ; - after whieh, if we could trace the new fashion slowly making its way, and by degrees adopted by the other nations of Europe; - the supposition of Mr. Walpole [that it arose from what was conceived to be an improvement in the corrupt specimens of Ronan taste then exmibited, and was afterwards gradually earried to perfeetion] would be greatly confirmed. Nothing, however, of this is the ease. We find the Gothie [pointed] style, notwithstanding the riehness and variety it afterwards assumed, appearing at onee with a!! its distinetive marks and features, not among one people, but, very nearly at the same period of time, received and practised throughout Christendom. How will it be possible to aceount for this general and contemporary adoption of the style, but by a supposition that the taste and knowledge of all on this subjeet were drawn from a common souree? and where ean we look for this source but to the East, whieh, during the erusades, attrated a portion of the population, and, in x great degree, oeeupied the attention, of the different states of Europe?" This was an opinion of Sir Christopher Wren, at least greatly so, his leaning being rather to dedacing the origin of the style from the Moors in Spain. It is the fashion of modern half-edueated crities to place little relianee on sueh authorities as Wren. We have, from experienee, learned to venerate them. The noble author whom we have heen quoting proceeds by stating that "the result reeeives confirmation from the circumstance of there being no specimen of Gothie [pointed] arelitecture ereeted in the West before the period in question." Lxception, however, is to be made for the rare oceurrenee of a very few examples,
vhose construction may perhaps be placed higher than the 12 th ecntury, and the cause of whase xistence may be satisfactorily explained. "lt may be sufficient here to observe, that no cople versed in the seience of architecture could long remain ignorant of the pointed form of the arch, the most simple and easy in construction, as it might be raised without a centre jy the gradual projection of.stones placed in horizontal courses; and, whether produced by ccident or necessity, we may reasonably expect to meet with it occasionally in their works." t is certain that, though neglected in their general practice, the ancients were aefuainted vith this mode of building• and the occurrence of an arch mercly pointed and unaccombanied with any other characteristic of the style, is no better evidence of the prevalence of Gothic (pointed) architecture, than that the appearance of Corinthian capitals in liomanesque uildings must give them the right to be called classical edifices. It is not casy to answer he question, - In what part of the East are we able to point to buildings constructed in he p.inted style, of a date anterior to those erected in the West? A little reffection, lowever, will solve the difficulty; and here we must again trespass on the anthor we have o copiously used, though our limits will not allow us to follow him in his own words. It s manifest that the frequent wars and revolutions of the East entailed the same fate on vorks of art and utility as attended the princes and chiefs of the states subverted. 'Thus he number of architectural examples, and especially those of early date, was great'y dinimished. Again, the people of the East with whom we are best acquainted, in a great neasure sacrificed their less durable mode of building to that which they found established y the Greeks. Thus, the church of Santa Sophia was a model, after the conquest of Contantinople, for all the mosques that were erected, with the addition occasionally of ininarets nore or less lofty, as the piety and magnificenee of the sultans might dictate. Previously o the conguest of the metropolis of the East, such a practice was prevalent, and in the ities of the empirc many christian edifices were adapted to the purposes of Nohammedam vorship. Yet, notwithstanding these causes, which form an impediment to full information n the state of the early architccture of the East, there is an abundance of facts to give robability to our notion, except in the eyes of those who view the subject through the nedium of prejudice and established system; at least so we opine.
301. "If a hine," says our author, "be drawn from the north of the Euxine, through Gonstantinople to Egypt, we shall discover in every country to the eastward of this bounary frequent examples of the pointed arch, accompanied with the slender proportions of sothic [pointed] architecture; in Asia Minor, Syria, Arabia, Persia; from the neighourhood of the Caspian, through the wilds of Tartary; in the various kingdoms, and hroughout the whole extent of India, and even to the furthest limits of China. It is truc hat we are unable, for the most part, to ascertain the precise date of these buildings; but his in reality is not very important, it being sufficient to state the fact of their comparative utiquity, which, joined to the vast diffusion of the style, appears adequate to justify cur onclusion. Secing, then, the universal prevalence of this mode in the least, which is satisactorily accounted for by the extensive revolutions and conquests effected by lastern arriors in that part of the world, it can scarcely appear requisite to discuss the probability f its having been introduced from the West, or, still less, further to refute the notions of hose who refer the origin of the style [as some have very ignorantly done] to the inention of English artists. Had it been adopted from the practice of the West, such a eculiarity of taste and knowledge must have been imparted by some general communiation : this has only occurred at one period, during which no building of the species in uestion existed in Europe. The inhabitants of the West could not convey a knowledge lich they did not possess; but, as it oecame pretty gencral amongst them shortly after epeoch alluded to, it is reasonable to infer that they acpuired it from those nations they re said to have instructed. On the whole, it is probable that the origin of the Gothic yle, notwithstanding the occasional imitation of a corrupt and degraded species of Roman rchitecture, is suificiently indicated by the lofty and slender proportions, by the minute arts, and the fantastic ornaments of Oriental taste."
302. Möller, a writer for whose opinions we entertain the highest respect, is not, owever, of opinion that the pointed arch originated with the Arabs; and he observes that serutiny of their buildings will exhibit nothing that bears upon the Gothic, or pointed, tyle. Ife says that their arehes are in the shape of a horseshoc ; that the columns are w, that they stand single, and are not connected in groups; that the windows are small, ie roofs flat, and that the prevalent general forms are horizontal: that, in the ancient hurches of the 13 th century, the arches are pointed, the pillars high and composed of several olumns, windows large, and roofs and gables high. l3ut at the end of his argument he admits nat the solution of the question, "which of the European nations tirst introduced or imroved the pointed style is not so easy, for we find this style of building almost conemporary in all parts of Europe." Now, though we are not about to use the argument hich is not always valid, post hue ergo propter hor, we must observe, that the introduction of se pointed areh immediately after the first Crusade, and not before, is a most singnar a-urrence; and we are inclined to give it the same foree as that used by old bishop

Latimer on the subject of the Goodwin Sands and Tenterden stecple. One of the points of Moller's reasoning we do not think at all fortunate; it is that on the forms of the Mores gue arches. Now, it must immediately occur to the reader that one of the forms (as

ऽat the side), and that a common one, is to be found in their arches, that of eontrary flexue; a firm in the architecture of this country in the time of the Tudors universally adopted, though, it must be allowed, mueh flattened in the application: Another point seems to have been altogether overlooked by Moller, namely, the practice of diapering the walls, whereof an instance oceurs in Westminster Abbey; and one which las a very strong affinity to the practice of the Moors, who left no space nnornamented. The higher-pitched gables of the northern roofs, we admit, fostered the discovery, by the introduction of forms from necessity, which were admirably calculated to carry out to their extreme limits the prineiples of which the Crusaders had acquired some notion for practiee on their return to their respective counties. As to the ohjection that the Arais had no original architecture, it is admitted. They mnst, however, bave had that of the tent, whose form inverted would give all that is songht. These obs:rvations we do not throw out as partisans; the hypothesis adopted by us is san:tioned, in addition to the learnel anthor upon whom we have drawn so much, by Warburton, and I'. Warton, and Sir Christopher Wren; and though mone of th se had the opportunity of basing the ir opinions upon the labours of the recent travellers whom we have been able to use, we do not think, upon this mooted question, either of them wonld be redued to the neerssity of retiaeting what he has respectively written.
303. In glaneing over the many writers on the subject, it is amusing to see the difference of opinion that exists. For instance, twenty are of opinion that it originated in Germany; fourteen, that it was of Eastern or Saracenic origin; six, that it arose from the hint suggested by the intersection of the Norman arches; four, that it was the invention of the Goths and Lombards; and three, that its origin was in Italy. Spring, however, from whatever place, it appears to have given in every sense an independence to the art not before belonging to it, and to have introduced principles of far greater freedom, in respect of the ratio of points of suppoit to the whole mass, than were previously exhibited or probably known. Those who may feel desirous of eonsulting these views in detail, will find notiees of sixty-six theories in the fifth volume of Britton's Architectural Antiquities. Only tworf these theories attempt to account for the introduction of the pointed arch on the ground of usefuluess; one was put forward ly Dr. Whewell as reganded vaulting; the other by Dr. Young and Mr. Weir, who urged that the use of the pointed arch was originally due to a discovery of its diminishing lateral pressure. Mr. Sharpe has advocated the same view. 'These theories will also be found in Ramée, Manuel de l'Histoire Générale de l'Architecture, 184.3, ii., $238,248$.

303a. Michelet (Histoire de France) observes, "Or, lors de l'apparition de l'ogive en Occident vers 1200 , Innocent III est le dernier rayon de cette puissance universella, le ponvoir de l'Eglise Catholique sallaiblit. La tentative des ordres des mendiants, des pères prêcheurs cut infructnence. Le pouvoir des prêtres tombe dans la main des laïques. La puissance du droit canonique, de ce robuste auxiliaire de l'Eglise, s'efface en France devant ces iois sages faites par le pieux Roi St. Louis, et ses établissements immortels servent de eode nouveau à scs sinjets. En Angleterre le Roi Jean-sans-terie donne, en 1215, la grande Charte. En Allemagne, au commencement du treiziène siècle, paraît le Saclisenspiegel. Au milieu du quatorziène, où le règne de l'ogive est à son apogée, l'Empereur Charles IV dome la Bulle dor. Au treizième siècle se terminent les Croisades qui mirent le Pape au dessus des pouvoirs temporels. Ces guerres saintes avaient tait prévaloir l’autorité de l'Evèpue de Rome. Mais au treizième siècle l'activité des penples chrítens avait prit une autre direction, et ils finirent par seeouer toute espèe de domination." It is impossible, in naming the pontifieate of Imocent III., to refrain from noticing that it was an epoch, in which such men appeared on the scene as St. Thomas Aquinas, St. Dominic, St. Francis of Assisi, John Gerson, author of the "Imitation of Jesus Christ," a composition that has been oftener printed than any other work; and in literature and the arts, about the same period, are to be found the names of Dante, Robert de Lusarches, Etienne de Bomn veil, l'ierre de Montereau, Lapo or Jacopo, besides a host of others.
304. The foregoing remarks comprise a resumé of the carly views on this subject, but we must not omrit to mention those held by the learved writer, Mr. James Fergusson, who observes that Dr. Whewell, in his Notes on German Churches, has very distinctly stated the question of such inquiries:-" These only tend to show how the form itself, as an arch, may have been suggested, not how the use of it must have become universal " (see also 299). Fergusson then (Builder Journal, 1849, p. 290, 303, 317), treating the history of the pointed arch succinetly by certain facts, brings forward four sets of pointed arehes. I., the ancient buildings extending down to the period of the Roman empire; II., the decline of the Lioman influenee, extending to the present day, in the eountries of the East to which these two elasses of arches are confined; III., the arch appearing in the south of France alone, in the age of Charlenagne, extending to the 11th century, when it was superocded by the
round arch style; and IV, the true Gothic pointed areh, prevailing almost miversally over the whole of Europe till the time of the Reformation, in the 16 th century. In the East, "arches still are more frequently constructed by placing the stones horizontally than in a radiating position." The history of the subject will never be correctly understood till we take both kinds into account, for the second almost certainly arose out of the first. The first example put forth by him is from the third pyramid at Gizeh, in the roof of the sepulebral chamber (fig. 154), consisting

YYHAMD AT GLZELL.

Fig. 155. CIMPBELL'S TOMB. only of two stones, showing how early the curvilinear form, with a point in the centre, was nsed, and consequently how familiar it must have been to the architects of all ages. Another early form is here given from the tomb called "Campbell's Tomb," fig. 155. The pyramids at Меӧ̈e, in Ethiopia, dating about 1000 to 805 years s.c., at all events being of a period anterior to the age of the Greek and Roman influence, were discovered by Mr. Hoskins. Here, stonc arehes show both circular and pointed forms (fig. 156) ; and Mr. Layard discoverel, at Nimroud, drains with pointed vaults of the same age as those at Merïe. A tumulus near Smyrna, in Asia Minor, presents an example almost a counterpart of that from the third pyramid; a gateway, near Missolonghi, is formed by the courses of masonry projecting beyond one another till they meet in the centre. Other examples are seen in the tomb of the Atride at Mycenae (figs. 14 and 16, tomb called treasury of Atreus); in a city gateway at Arpino, in Italy; in an aqueduct at Tusculum; and in a gateway at Assos, in Asia Minor (fig 157). This is known from the character of its

Fig. 156.

MRAMID AT MERÖE.

Fig. 157. G.ateway at assos.
nasonry and other circminstances to belong to the lest period of Greek art, in fact to be oeval, or nearly so, with the larthenon. These examples explain all the peculiarities of his mode of construction.
30.5. With the appearance of Rome, this form entirely disappears from the countries to which her influence extended, and is supplanted so completely by the circular radiating rm, that not a single instance is probably known of a pointed arch of any form or mode f construction during the period of the Roman supremacy. The moment, however, that er power declined, the pointed form reappears in Asia, its native seat; and we recur to he very few that remain in Syria and Western Asia for examples. The first of these are - the church of the IIoly Sepulchre at Jerusalem, built by Constantine the Great, nd now known as the Mosque of Omar. Its arches are throughout pointed, hut so midly as to be searcely observable at first sight. Fergusson also states the reasons for is inability to give other specimens; and describes the eathedral of Ani, in Armenia, (sce IO Donaldson, in the Civil Engineer, \&c. Journal, 1843, p. 183) which is built with pointed rehes throughont, and contains an inseription proving that it was finished in the year 1010: equotes M. Texier's assertion (Descr. de l'Armenie, fol. 1842) that "it results that, at at time hen the pointed arch was altogether unknown, and never had been used, in Europe, uildings were being constructed in the pointed arch style in the centre of Armenia." At Piarbekr, Mr. Fergusson continues, "there is an extremely remarkable building, now conerted into a mosque ; the Armenians call it, with much plausibility, the palaee of Tigranes; ef friezes and cornices are executed according to the prineiples of Roman art of the 4 th entury, nevertheless the pointed areh is fomad everywhere mixed with the architecture, as it were currently practised in the country." The palaceat Modain, the ancient Ctesiphon.
a building of the 6th century, is remarkable for the gigantic portal which has not a pointed but an elliptical arch. The pointed arch, however, was employed in Mesopotamia long before it was known in Europe.
306. In the Roman empire, the aqueducts that supplied Constantinople with water, which were commenced under Constantine inmediately ater the founding of the city, but completed under Valens, A.D 364 and 378 , eshibit pointed arehes, generally in the lowest story, and always in the o!dest part, as near Pyrgos-" I wonld have no hesitation," he says, "in asserting the general use of the pointed areh by the Mahomedans from the earliest years of their existence to the present hour. The Arabs, it must be recollected, when they left their desarts to subdue the world, were warriors and not architects; they consequently employed the natives of the conquered countries to erect their mosques ; yet, with scarcely a single exception, all their edifices are built with pointed arches. They are used in the oldest part of the mosque of Amrou, at Old Cairo; this portion was built in the twenty-first year of the Hegira, A.s. 643. Except the two mosques of Amron, in Egypt, I do not know of any erections of the Saracens anterior to the cud of the 7 th eentury. The pointed arch is used throughout the mosque erected by the Calif Walid at Jerusalem, in the year 87, or about a n . 705. The great mosque at Damascus is of the same age; and from that period to the present time there is no difficulty. In Sicily, too, which the Saracens occupicd for two centurics preceding 1037, they ued the pointed areh in all the monuments they hase left there. In Spain, however, although pointed ayches cecur in the baths at Gerona, at Barcelona, and other places in the north, whose date is tolerably well ascertained to be of the 9 th or loth centurics, as a general rule the Moors ussd the round or horseshoe arch (see fig. 85), almost universally in their erections in that c mitry. One other example that should he noted, occurs at the celebrated mosque of Kootub, at Delhi. When the Pathans conguered India. in the beginning of the 18th century, they brought with them their own style of architecture. This building, carried out by the Hindoos, was commenced abont the year 1230, and completed in about ten years. The principal arch, 22 fect span and about 40 feet high, though of the pure equilateral Gothic form, is erected with horiz untal courses to nearly the summit, when courses of stone are placed on their ends, as done in the aqueduct at Tusculum, before mentioned.
307. "With the Western styles, the first selies to be noticed is that found in the south of lirance, ecmprised to the south of the Loire and the north of the Garonne, extending from the Gulf of Nice to the shores of the Bay of Biscay; being, in date, from about the ag: of Charlemagne till the middle or end of the lith century. when it was superseded by the round arch styles. This assetion may startle some readers, but it wonld long ago have buen received as well established facts, had it not been for the preconceived opinion that no pointed ach existed in Europe anterior to the 12 th century. One of the best hnown examples is that of the eathedral at Avignon, where the poreh and general detrils of the chureh are so nearly classical, that they are usually ascribed to the age of Charlemagne,
 and even carlier. At Vaison are two wellknown churches, so classical also, that they are often called Roman t (mples; both are roofed with wagon vaults of a pointed fom, and must certainly date before the middle of the 12 th century, when Vaison was destroyed and deserted; they are probably of the 9 th or loth centuries. The same romak appli: s to the charches at Pernes, Souillae (fig. 158), Moissac, Carcassone, and many other churches of that age, all of which are covered with pointed vaults, but of a form extremely different from the true Gothie vaults of the 13 th and 16 th eenturies." The chapel in the castle of Loches in Lorraine is given by Mr. Fergusson in his Handbook, as cxplaining most of tie peculiarities of the style. The original building was fommed by the Count of Anjou in the yoar 962 , and the western tower certainly b:longs to him. The nave is either a part of the original editice, or was erected by his son, Foulques Nera, between 992 and 1040 . The supposition that it belongs to the latter receives con-
Fig. 158. church at soulleac. firmation fiom its singularly Eastern aspect, and the fact that this Connt three times visited the Holy Land, and died there in the year above quoted. 'The churehes of Moissac, Souillac, and St. Frond at Périgueux, with several others, are still more eastern in their appearance. This latter building, of which
we give a plan (fig. 159), was conmenced in the yenr 984, and was completed in 1047.

Fig. 159.
plas of st. frond, férigueux. on the type of, if not copied from, the eathedral of St. Mark, at Veniee. A seetion is given in.fy. 160, exhibiting the use of the pointed arches in construction only. The ehoir at Loches was erected between the years 1140 and 1180, and is in the late and clegant Norman style universal in that country, just anterior to the introduction of the true pointed style, which was timidly cfleeted in the north of France about the year 1150 , being mixed with round arehes in all the great eathedrals and ellurehes erected between 11.0 and 1900 , at which date the style may be said to have been perfected in all its essential peeuliarities.

307a. "In England it was in every respeet above twenty-five years later The first really authentie example of its use is in Canterbury Cathed:al after the fire in 1175, and was apparently introduced by William of Sens; nearly half a eentury passed before it can be said to have entively superseded the Norman arel. In Germany, the introduction was somewhat later, and we know of no authentie specimen of pure Gothic anterior to the commeneement of the 13 th century, and even then nearly half a century elapsed before it entirely superseded the round arch style. During the whole of the first half of that century, we find round arehes mixed up with the pointed ones whieh were then coming into fashion."
30 I ι. These views were combated ly Mr. E. Sharpe, as noticed in the Builder, p. 317, espeeially as to the first named works being considered as arches at all; and a question arose at the Institute of
 British Arehitects, as tu the age of the Freich buildings named; T : $\mathbf{\alpha}$ /sactions, 1860-61, p. 211, \&e., and 115. Mr. Strect, in his Brick Aichitecture in Italy, states, (p. 2.58) that" The ltalians ignored, as much as possible, the elear exhibition of the pointed arch, and, even when they did use it, not unfrequently introdneed it in such al way as to show their contempt for it as a feature of construction; employing it often only for ornament. and neser hasitating to construct it in so faulty a mamer, that it required to be held together with irom rods from the very lirst day of its erection. This fault they fombl it alsolutely necessiry to eommit, because they scarely ever brought themselves to allow thense of the bittress."

308. In considering the question of the origin of pointed arelitecture, those who have hitherto becn supposed to have devised the pointed areh itself must not be negleeted: and to these persons we are indebted for the gigantic masses of expuisitely deorated composition. to be seen in the structures which they designed and ereeted. These men are imagined to huve ledonged to a eorporation or guild having authority over all comtties, or to a guild in each comery, having anthority only in its own nation. This so-called confraternity hass heen known as the Premasons. In the following accome of them we shall much abridye She two papers read before the looyal lnstitnte of British Architeets, and given in
the Tiancact:ons of that society, 1860 and 1861. Before doing so, however, it will be necessary to introduce a few preliminary remarks on the state of architeeture previous to the period when the so-called body of Freemasons is said to have arisen.
309. The pontificate, towards the end of the loth century, of a Benedietine monk, named Gerbert, afterwards known under the name of Sylvester H., and whose life, if Platina (Lires of the Popes) may be relied on, was not of the most virtuous eharacter, seems to have induced an extraordinary change in the arts. Gerbert was a native of Auvergne, and, under Arabian masters at Cordova and Granada, applied himself to, and became a great proficient in, mathematical learning. He afterwards appears to have settled at Rheims, and to have there planted a school which threw out many ramifieations. The scholars of the period were confined to the clergy, and the sciences, having no tendeney to injure the Church, were zualously cultivated by its members.

309a. In the llth century, architecture, considered as an art, was little more than a barbarous imitation of that of ancient Rome, and in it, all that appears tasteful was, perhaps, more attributable to the symmetry fowing from an acquaintance with geometry, than the result of finc feeling in those that exercised it. It was adapted to religions monuments, with great modifications; but the materials and resources at hand, no less than the taste of those engaged in it, had considerable influence on the developments it was doomed to undergo. The sculptures of the period were borrowed largely from the ancients, and among them are often to be found centiturs and other fabulous animals of antiquity.

309b. In the l2th eentury, the E'lements of Euclid beeame a text book, and though this eountry was then behind the Continent, as respected the art of architeeture, there is good reason for believing it was by no means so in regard to proficiency in mathematics, inasmuch as the Benedictine monk, Adelard of Bath, is known to have been highly distinguished for his acquirements in them.
310. The crusades had made the people of Europe acquainted with the East, and in the 12th century the result of the knowledge thus aequired was manifest in France, England, and Germany ; it could, however, scarcely be expeeted that the art would emerge otherwise than slowly under the hands of the ehurehmen, who were the principal practitioners, as it is generally supposed; but there were undoubtedly professional men, as they may be called, in the 12th century, who undertook the management of work, as we shall notice presently; and it is well authenticated (De Beka, De Episcopis Ultraject.) that, in 1099, a certain Bishop of Utrecht was killed by the father of a young freemason, from whom the prelate had extraeted the mystery (arcanum magisterium) of laying the foundations of a ehurch. The period at which arose the celebrated Confiaternité des ponts, founded by St. Benezer, is known to have been towards the latter end of the 12 th o* the beginning of the 1 sth century. 'The associstion of Freemasons had, however, its types at a period cxtremely remote. Among the Romans, and still earlier, among even the Grecks, existed eorporations (if they may be so called) of artificers and others; such were Numa's Collegia Falrorum and Colleyia Artificum, who made regulations for their own governance. These collegia were much in favour with the later Roman emperors, for in the third and fourth eenturies we find that architects, paimters, and sculptors, and many of the useful artificers, were free from taxation. 'The downfall, however, of the eastern and western empires, involved them in one common ruin, though it did not aetrally extinguish them.
311. The idea of the early establishment of a superintending body of eo-workers sueh as the Freemasons are said to have been, appears to have originated in the assumption, that as the monuments of the 15 th century bear so great a resemblance to each other, no other probable cause could be assigned for their similarity, than the influence of some powerful assoeiation of operators. Allowance, however, must, in many cases, be made for the materials at hand in different locatities, which, it is hardly necessary to observe, inHaence style in architecture most perceptibly. Another point too often forgotten in this inquiry, is the gradual progression of the art, and the long transitional periods between each phase of pointed architecture. Some writers on the Frcemasons have imagined that the concealment of their modes of arranging arch stones was the ehief object of their assoeiation, and there can be no doult that the whole science of construetion was studied and taught in the lodges. Others have t ought that they inelined to Manicheism. of which the sects were numberless: but we think they had enough to engage their attention, without diseussing whether all thangs were effeeted by the combination or reputsion of the good and the bad; or that men had a double soul, good and evil; or that their bodies were formed, the upper half by God, and the lower half by the devil. Some have considered that though the Freemasons, as a body, were not hostile to the Church, they were inveterate enemies of the clergy and more particularly of the monks. This may be abundantly seen in the ridicule and grotesque lampoons bestowed on them in the sculptures of the 13th eentury. As an instance of the extreme length to which the ridicule of the priests was then carricd, there is at Strasburg the representation of an ass saying mass and served by other animals as aeolytes: and this work must have been done under the eyes of the monks themsclves!
312. The remarks by the present editor, On the Superintendents of English Buildings in he Middle Ages contains the first classified account of the official situations of persons ng.ged, with some general idea of their duties. This list includes the terms:-1, Irchitect; 4, Ingeniator; 3, Supervisor; 4, Surveyor ; 5, Overseer ; 6, Master of the Norks; 7, Kesper of the Works; 8, Keeper of the Fabric; 9, Director; 10, Clerk of the Forks; 11, Dcvizor; 12, Master mason; and 13. Freemason and mason, or inferior worknan. It will be impossible here to give more than a brief outline. To commence with lic freemasons:-In 1077, Robertus, cementarius, was employed at St. Albans, and for is skill and labour, in which he is stated to have execlled all the masons of his time, he ad granted to him and his heirs, certain lands and a house in the town. In 1113, Arnold, lay brother of Croyland Abbey, is designated "of thee art of masonry a most scientific aaster." William of Scns, employed at Canterbury, was a layman and was called "magiser"; the history of his work has been preserved to us in the well written account by the ank Gerrase, who details the burning and rebuilding of that cathedral. A number of hosen cementarii were assembled at St. Albans in 1290, of whom the chief, magister Hugo e Guldelif, proved to be a "deceitful but clever workman." Very many other names of nasons are noticed, but these cannot all be here given. In 1217, a writer uses the synoyms maszun for cementarius; artificer is a word also used in the same century; marmor arius, r marbler ; and latomus or lathonus, stone-cutter, also occur. In 1360, a mason de fraunche ere ou de grosse pere is named in the Statutes; while it is not until 1396 that the ternns lathomos vocatos ffremaceons," and "lathomos vocatos ligiers," are used to designate the rasons who were called free(stone)masons, and the masons called layers or setters. In the abric rolls of Exeter cathedral, the term simentarius is used before, and the term fremason fter, the above-named period of 1396 . Thus the derivation of the term frecmason, from a cestone worker, appears more probable than the many fanciful origins of it so often quoted, Vhat becomes then of the "travelling bodies of freemasons" who are said to have erected all te great buildings of Europe? Did they ever exist? The earliest mention of them appears o have been promulgated ly Aubrey, some time before 1686, who cited Sir William Dugale as haring told him " many ycars sinee, that about Henry III's time (1216-72), ie I'ope gave a bull or patents to a eompany of Italian fr-emasons to travel up and down ver all Europe to build churches. From them are derived the fraternity of Adopted lasons." No evidence has been adduced in support of this statement; searclies have been rade in the Vatican library without sueecss. Wren's Parentalia gives an account of these ersonages to the same purport, though somewhat enlarged, (par. 401), and this has been uoted as an authority. From a careful comparison of circumstances, Dugdale's inrmation to Aubrey most probably referred t o the " Letters of Indulgence " of Pope Nichois 111 ., in 1978 , and to others by his snceessors as late as the 14 th century, granted to the dige of masons working at Strasburg cathedral, as also noticed on page 131 herein.
313. Concerning the Fratres I'onitis, or the Confiaternité des ponts, already referred to, rar. 310), mueh has been written during the last one hundred years assertiug that this rotherhood had lieen founded for the express purpose of travelling far and wide to l,nild ridges. Even as regards Prance, only a notiee is found of such a troop baving been rmed by St. Benezet, for building the bridge at Avignon, and that of St. Esprit, ver the 1hone, during the 12th and 14 th centuries, (11781188 and 1965-1509). In England no such companies are found reeorded ; but wherever a bridge was built, a clapel ipars to have been founded, to which a priest was attached to pray for the soul of the under, to recsive passage money, and sometimes to pray with the passenger for the safe rmination of his journcy. Two instances only, of an early date, have heen put forward - so called fraternities of masons : the first is that Godfrey de Lucy, bishop of Winchester, rmed in 120Ω a confraternity for repairing his church during the live ycars ensuing. Such," says Milner, "was probably the origin of the Society of Freemasons." The cond, as asserted ly Anderson, (Const tutions of the Free and Acefpted Masons, 1738), but it since anthenticated, is that the register of William Molart or Molash, prior of Canrbury cathedral, records that a respectable lodge of freemasons was held in that city in 129, under the patronage of 11 eury Chichele, the arehbishop, at which were present bomas Stapyltom, master, the warden, fifteen felloweralts, and three entered apprentices. : dops not then appear to lave been known that each eathedral establishment possessed a -mmanent stall' of ollicers, with ecrtain workpeople, and "took on" additional hands whener the edifiee was to receive additions, or to be rebuilt. The monarch also had an oflice rearrying out the repairs and rebuildings at the palaces and royal houses. 1 ynild of asons was undonbtedly in existence in London, in 137.5, 49th Edward 111, and in 1376 o companies of masons and of fremasons were in existence. 'I'he Masons' Company of ondon was incorp rated in 1411, and Stow says "they were formerly called freemasons." he masons, during the 17 th and 1 isth eenturies, often became designers or arehitects, witness Nicholas Stone, George 1)ance the elder, Sir Robert Taylor, and others.
314. At this date of 1375 , some writers lave phaced the origin of that wonderful society. used, as they urge, ly the masons combining and agrecing on cettain signs and tohensly
which they might know one another; engaging to assist cach other against the then eommon custom of impressment by the monarch; and further, not to work unless free and on their own terms, especially as the monarch would not pay them as highly as did his subjects. Alt this appears prolible, but there is no sufficient authority for it. The workpeople had at times, as at Stratford-on-Avon, in 1353, special protection until the edifice was combleted.
315. But previous to $1: 375$, the date above mentioned, the Stututes at L.arge afford much valuable information, hitherto urquoted, on the subject of the manners and customs of workpeople. In 1349, the Statute 23rd Edward III. relates that "great part of the people and especially of workmen and servants late died of the pestilenee, whereby many demand excessive wages and will not work;" the hours of labour were settled at the same tim", lecause "diverse artificers and labcurers, retained to work and serve, waste much part of the day (the manner of doing so is described) and deserve not their wages." Their wages were settld in the year following; while in 1360-1, a Statute declares that "earpenters and masons and all other labourers shall take from henceforth wages by the day and not lyy the week, nor in any other manner," and continues "that all alliances and covines of masons and earpenters, and congregations, chapters, ordinances and oaths, betwixt them made or to be made, shall he from henceforth woid and wholly annulled,"- with other details. This important Act was enforced hy many others, and by the well-known Statute of 3rd Hemry VI., 1425 , passed at the "special request of the Commons," again putting down all chapters ard eongregations held by masons. In 1436-7, 15 th Henry VI., the "masturs, wardens, and people of the guilds, fraternities, and other eompaniss incorporate, dwelling in divers parts of the realm," were warned not to "make among themselves unlawful and unreasonable ordinances, for their singular protit and common damage to the people"-their letters patent were to be brought to the justices and others for their approval. Many later Statutes were passed; but they were all at lngth superseded by the well known Statute of 5 th Elizabcth, $1562-3$, which continucd in foree until so late as $181: 3$, when such portion was repealed as forbade exercise of trades by persons not having served, and as regulated the mode of binding apprentices \&e., but at the same time the customs and privileges of cities and boroughs were saved. It is certain, from all these obscrations, that there were fellowships or guilds of masons existing before the middle of the 14 th eentury; but whether the one in London liad any communication with those guilds existing in the other corporate towns, or whether there was a supreme guild which led to a systematic working, is still without clucidation. It has been asserted for years, on the faith of certain mamseript "Constitutions," that a eompany of Freemasons, formerly existing at York, lield a charter of incorporation from King Athelstan, dated in 926, under which they claimed authority over the companies throughout Eng and. As noticed hereafter (1 ar. 3:2a), it is distinctly proved that the Grand Ledge of Masons of Germany was not established until so late as 145 ?
316. These guilds or eompanjes had legendary histories, as had probably most of the other building trades. That which belonged to the stonemasons was accepted by the Scecicty of Free and Accepted Masons, when it was established or reestablished in 1722 ; this last has descended as a highly respeeted charitable and friendly socicty to the present day. Of such histories or "constitutions," besides at least six in manuseript, dating about $1646-60$, there are two others in the British Museum. The earliest one is presuned to date about the Iatter part of the 14 th century, and has the form of a poem in about 575 lines, entitled Comst tutions of Geometry; it was first notieed by Mr. Halliwell, and edited by him in 1840. The other manuscript, dating about 1500 , has been printed nearly in facsimile by Mr. M. Cooke. They were all undoubtedly compiled for the use of a body of working masons; they refer to yearly assemblics, to a lodge as a workshop, taking apprentiees, workmanship, moral eonduct, punishment of offenders, and observance of their "articles and points," or bye-laws as they may be tenned. No referenees are made to secret signs or to masonic marks; as regards the latter, a few remarks will be offered subsequently.
317. The masons when about to set to work, had a lodye or workshop provided for them, and sometimes had to make it for themselves; this shed or building also served them occasionally as a residence, or place for eating their meals, as often occurs at the present day. 'lhis lodge is noted in an carly account as being esvered with thatch, while in a much later one it is to be "properly tiled," an expression still in use by the modern society, when the door of their plaee of meeting is closed. This lodge is adverted to in the manuscripts above mentioned, as also in the Fabric Rolls of York Minster, published in Browne's Hi:tory of York Cathedral, 1828-47, and separately by the Surtees Socicty, in 1859. These records ducidate many interesting points connected with works and workpeople; and eauses us to regret that the example set in printing them has not yet led other Dcans and Chapters to do the like, or to allow them to be published. They show that there was a contimous line of master masons from 1347, the date of the eariiest document, who were duly sworn to the othee, had a fixed salary, a residence, and if becoming blind (which appeas to have been, and is still, very often a result of employment in masonry , or compelled by bodily infirmity to give up the direction of the works, he was pensioned, and somctimes he was bound not
to undertake duties elsewhere while engaged at the cathedral. The master mason was olten succeded by his junior or assistant; in one instance a fight took place in eonsequence of a master mason, who was a stranger to the place, having been appointed to the office. Gowns or robes, the latter sometimes lined with fur, were provided for the master, and tunics for his men, as well as gloves (at $1 \frac{1}{2} d$. each) to the masons and carpenters ; also aprons and clogs, and occasional potations and remuneration for extra work. This officer in the king's household had a livery, as prohably had the carpenter and other officers.
318. It is necessaly to mention that the trades, from a very carly period, appear to have kept themselves to their distinct handierafts; thus, while the monasteries had masons and carpenters, and a plumber and his boy, at hand. yet the glazier, bell-founder, painter or decorator, smith, and some others, were residents in the town or some adjoining city. Only in a few of the monasteries were the monks able to pelform some of these duties themselves. In Italy, however, talented youths were received and educated at such establishments, and beeame lity brethren, as much for their own safety as out of gratitude to their masters; the devotion of their time and talents in ornamenting the sacred edifices, has led persons to urge that ecelesiastical buildings were designed, erected, and decorated, by clerical h:ands.
319. We will now procecd to notice very succinctly the other official titles. As far as the design of the building was concerned, that labour appears to have bcen luft to the master mason, whatever interest the monalich, the bishop, the abbot, or the prior, may have displayed in giving instructions, as to their wishes; no doubt clever men then, as now, interfered with their architects and induced them to follow special orders, whether correet in taste or otherwise. 'I he term "Architect" has rarely been found in the middle ages; perlaps to a certain extent the word "ingeniator," so carly as 1199 , may have taken its place. "Supervisor" occurs constantly, soon after the Conquest, and has been translated "surveyor," and sometimes "overseer ; "it is not always clear what is to be understood by the term; whether actually a "d:signer" and professional man, as held ly some persons in the celebrated example of William of Wykelam, at Windsor Castle; or merely as a "director," seeing to the orders of others being carried out : as we hold was the position of Wykeham, acting for the monarch, the design being attributable to the master mason. Numerous examples are given in the japer from which we are quoting; and it likewise coutains a scarching enquiry into Wykelham's professional capacity, with what result we must beg the reader to judge for himself. The "Magister $O_{p e r w n}$ " or "master of the works "was an important officer in many monastic establislmments; at Croyland, for instance, re was the first of the six greater officers, and to his superintendence was submitted the construction, reparation, beatifying, and enlarging, of all the buildings belonging to the nonastery. The saerist often held this office, and many names are known, more especially hat of Atan de Walsingham, at Ely monastery, whose history and labours deserve attenion. In the agreement made at York, in 1367, it was arranged that the plumber ras to work with his own hand wherever he should be required by the " master of the -brie;" if his services were not required, he might obtain leave of absence from the ehapar, or from the "inaster of the work," but to return when required by the said master. At he sume period there appears to have been a "keeper of the fabric" who was to settle the mount of the day's work for the plumber and his servants, and to pay salaries. As the master of the work," the "keeper of the works," and the " master mison," are all mentioned 1 one document of the same period, they camot be considered as one person. The house.. old of the monareh, as before noticed, comprised an office for carrying out works at the yal palaces. The carliest list yet found is of the reign of Edward IV. (1461.83) ; in it ie "clerk of the works," who is placed first, has a fee of two shillings per day, or $36 /$. 10 s. 'r annum, a clerk at sixpence per day. four shillings per day for riding expenses, and venty pence lor boat hirc. The next ollicer in the list is the comptroller, then follow the crk ol the engrossment of the pay-book, the purveyor with an allowance lor his horse, the eper of the store house, the clerk of the check, the clerk of the comptrollements, the carinter, the plumber, the mason (in this list is omitted), the joiner, the glazier, the surveyor the mines, who has also 367 . 10 s . per ammm, and lastly, the devizor of buiding, who hats e smme amount. It would appear from a passage in the omdinances published by the cisty ol Antiquaries, 1790 , that this clerk ol the works was liss instituted by lidward 1., and the livery for that officer is known to have been given as carly as 1391. Similar ts oeenr later; in Elizabeth's reign, the title becomes that of surveyor and paymaster, or recyor and clerk; in one ol 1610 , containing the houschold of prinee Jenry, Inigolones "snrveyor of the works;" Mr. Smith, "paymaster and overseer ; " and Eidward Cartur, lerk of the works." Jones was subsequently "surveyor" of the king's works; and -uhan, Sir C. W'ren (who received the fee of 45l. 12s. 6d.), and others, were styled urvegor-general." "Ihis royal establishment eventually beceme the Board of Works, ihen Ollice of Works, and is now known as the Commission of l'ublic Works. It was this ard of Works that served as the sehool for architects, or to which the best areliterets were acherl, during the 17 th and \mid Sith centuries. The earliest instance of the tern "elerk of
the works" occurs in 1241, 25th Henry IJI., for certain works to be done at Windsor ; in later times it appears in connection with the palaces at Westminster and elsewhere : and such an appointment it will be remembered was held by William of Wykeham, in 13.56, and lsy Geolliey Chaucer, in 1389. The "devizor" already named, although it occurs so carly as about 1470 , is a title to which but one name has been attached, that of John of l'alua, on the faith of a passage in Walpole's Anecdote.
320. 'Ithese careful notices are concluded by the statement that "there is one circumstance respecting nearly all these officers which perhaps needs a passing comment. Very many of them were either ecelesiastics or were rewarded with ecclesiastic preferment. But it mush bs remembered that, during the period to which our attention las been confined, the church was the only field for exertion open to chose of the nobility and gentry who were not inclined to embrace the profession of arms; it also afforded a means by which to obtain a livelihood; therefore the clergy, so called, would thus secure the offices at the disposal of the monareh and of the nebility. Some names, however, appear to have been unconnected with the church." It might be added that in late times in France, eminent architects were appointed abbés, and from their establishments derived the funds for the remumeration of their services. "It is very difficult to understand the duties of these officers. The overseer would be, perhans, the most easily explained, but his Latin designation as used in the Records, is unknown to us unless the Latin word "Supervisor" has been the one the translators have found. The English word supervisor, if that of steward be questionable, is, perhaps, best kept for those who, acting on behalf of others, as Wykeham for the monareh, have yet no grounds to be considered the designers of the building. The master of the works, as he was called in the monastic establishments, and later in Scotland, held the place of the English king's chicf professional man, and was, no doubt, one of the talented advisers of the day. The king's elerk of the works clearly stood in the place of the architect. The master or kecper of the fabric was probally the keeper of the whole structure; and the keeper of the works was, perhaps, only the custodian of the particular works then in progress; the edifice, under those circumstances, being developed by the master of the works or by the master mason. But there is one officer of whom we should desire to know much, but of whom nothing whatever is known; this is the devizor of buildings."
321. We would refer the student to the paper by Mr. Ferrey, read at the same socicty in 1864, Some remarhs upon the works of the early medicral architects, Gundulph, Flambard, William of Sens, and others. The subject will be well conchuded by quoting the result of Mr. Street's enquiry into the designers of the buildings in Spain. IIe states in his Account of Gothic Archit cture in Spain, 1865, p. 464, that "it is often, and generally thoughtlessly, assmmed that most of the churches of the middle ages were desimned by monks or clerical architects. So far as Spain is concemed, the result at which we arrive is quite hostile to this assumption, for in all the names of architects that I have noticed there are but three who were clerics. In our own country it is indeed commonly asserted that the bishops and abhots were themselves the architects of the great chmrehes built under their rule. Gumdulph, Flambard, Walsingham, and Wykeham, have all been so described but I suspect upon insufficient evidence; and those who have devoted the most study and time to the subject seem to be the least disposed to allow the truth of the clainı made for them. The contrary evidence which I am able to adduce from Spain certainly serves to confirm these doubts. In short, the common belief in a race of clerical arohitects and in ubiquitous bodies of freemasons, seems to me to be altogether erroncous." This work treats very minutely on the position of the designer of the buildings in Spain. (See par. 395.)
322. Anong other matters connected with the progress of the art. Stieglitz, in 1834, brought to the notice of the public, the marks on courses of stone in many buildings in Germany, and elsewhere, called "mason's matks," which liy some have been supposed to be the personal marks of the masters of the works, but which are, in fact, nothing more than direetions to the setters, and, indeed, are used by masons up to the present hour. Some of these, however, are curious in form and figure, and were most probably determined by the lodges. Their forms are principally rectangular, of forty-five degrees, of the equilateral triangle, of the intersection of horizontal and perpendicular lines, and circular. Some of them have so great a resmblance to Runic characters, that therefore it has been argued the Anglo-Saxons taught the Germans architecture, and that they eultivated the art, and had masonic lodges among themselves, at a very early period; but this scems rather unreasonable; neither is it likely that the natives of this island were the ehief artists employed on foreign cathedrals, though some may have been. 'That these marks, however, were used from some traditional knowledge has also been urged. Thus the mark $\#$, the cruciform hammer of Thor, is found in the minster at Bâle, and repeated in the sixteenth century in the chureh at Oschatz. This mark abounds in a great variety of phases,_on medals, on ammulets, in the miseum of the Royal Academy of Copenhagen; and on many Runic monuments, as mentioned by Jobhonse in his illustrations of Childe Marold. It is also found on the sacred jar of the Vaishnavas (Asiutic Researches, vol. viii.). At the Châtcau de Coucy (l: th century) is found L_{2}, the Runic letter S. One mark of frequent recurrence
is \downarrow, an inverted Runic T. It may be seen at Fribourg, at the beantiful elmurch of St . Cather ine at Oppenheim, and at Strasburg, connected with the letter N. Without founding any hypothesis upen the singular agreement of these marks with the sixteen letters of the Runic alphalect, it is at least a curious matter for further examination. Hoblouse, as alove mentioned, states, that a character resembling the hammer of Thor is found in some Spanish inscriptions, and he seems to think it lears affinity to fig. 161. which is often drawn by boys in Italy, though no meining is ascribed to it; this figure is fond at New Shorehan church; Archeonoqienl Jomrnal, vii., p. 390.
$32 \triangleq a$. The carliest lod ge of which we have any autbentic knowledge, was that of Strashurg. Erwin von Steinbach seems to lave been at the head of it; he appears also to have been the first secular architect
 or importance that arose, and to have had privileges of grat impoitance conecded to him by the emperor, Rodolph of Hayshatrg. This lodge was equalaly constituted, with power, round a certain extent of territory, to maintain order nd obedience among the workmen unde' its jurisdiction. In 1978, lope Nicholas 111. granted to the bedy a bull of absolution, which was renewed by his ; uccessors up to the ime, in the fourteenth century, when Benedict XII. occupicd the papal clair. To lodojue Dutzinger, master of the works at Straslmorg in 145y, the merit scems attriutable of so forming an alliance between the different lodges of Germany, as to induce - greater unifurmity of practice. Whether from the central lodge of Strashurg, whence ertainly brimched lodges at Cologne, Viema, and Zarich, brancled also the lodges of France, England, and Italy, in whicin last named country one existed at Orvicto, it is now erhatys too diffieult a task to discover.
$322 b$. Much stress has been laid upon the marks, which are found upon the faces and beds f stones in rearly all countries. In fig. 162 . are given several of these fanciful forms, as we

a

1ig. 162. M.ASONS MAMES ON STONLS.

aintain them originally to have leen. a and b, are from the interior and exterior of the ave of Gloucester cathedral. c, Malmesbury abbey chureh. d, l'urness abbey. e, Poiers in France. f, St. Radigonle. g, Colngne cathedral ; and h, Roman altars at Risingam: these are all from Mr. G. Godwin's paper in the Archeologia, vol. xxx. i, from egovia cathedral; l, Tarragona cathedral; and l, Verucla cathedral; are given, with many hers, by Mr. G. E. Street in his Githic Arhitecture of Spain. Numcrous examples are ven in the Freemasons' Monthly Mugazine, \&e. new ssries, 1862, and in the Builder Journal r 1863. I'erlaps the fact of their occurrence, as in the present day, is simply due to their ang the marks or signs by which each mason reognises the particular stone for the orect workminship of which he is answerable. On large works a list is kept of them The foreman, and any new man laving a mark similiar to one already on the list, lass to ake a ditinctive diflerence. An eminent practical mason assured us that from the aracter of the mank he eould tell at onee the kind of stone on which it was made.
A gemeral history of Ponsfid Anchitherune is placed at page 233; the Prachef of nstab Ancontrevere is placed in Book III., together with much rolative information dillustration in Prenempis or l'koromon, in the same Book.

Sver. XVI.
ITHI.AN AHCHITECTURZ.
32?. The commencement of a new era in arelitecture first dawned in liorence, and then misprad its meridian light ever laty and the rest of Burope. Ploe lirenel have well plied the tem remaisane c to its commencement. It is with us denominated that of the iral of the arts. The Forentines lad at an early period, aceording to V'illani, demineed to crecet in their city a momment which slombd surpass all that had bed re peared: in 1294 Arnofo di Lapo (aceording to Vasari), hut Arnolfo di Cambio da He (according to Molini), had so prepared his phans that the first some was haid Sept. 1296, ond the mane of Sta. Maria del Fiore was then given to it. The works were piecel 13:0 on the death of Arnolfo. In 1321 Gioto was cniomarstro, who, dyime K 2

1336, his design for the campanile was earried out by Taddeo Gaddi, who died 1366. In 1355 Francisco Talenti, as capomaestro, was ordered to make a model to show how the chapels in the rear were to be disposed correct without any defect. On June 19, 1357, the foundations of a new and larger church were begun by Talenti. Andrea Oreagna, Bucozzo, Taddeo Gaddi and other architects of talent were consulted in turn, and in 1376 the last of the four arches was completed; the central tribune with its five chapels were compieted 1407; and in 1421 the armatures (centering?) of the last tribune were taken down (The Times, May 12, 1887). This edifice, though eonmenced before the revival of the arte, is one of particular interest and instruction in the history of architceture, and one whereill is found a preparation for changing the style then pievalent int,) one sanctioned by the ancient principles of the art. Fig. 163. shows the plan, and fig. 164

Fig 163.
DLAN OY SANTA MARIA DEf FIORE AR FIORESCL.
the half scetion and half elevation of it. The walls are a'most entirely cased with marble. The whole length of it is 454 feet ; from the pavement to the summit of the eross is nearly 887 feet; the transept is nearly 334 feet long; the height of the mave 153 feet, and that of the side aisles $96 \frac{1}{2}$. In 1407 Brunelleseh was consulted with ohers as to the dome, but was not appointed until 1420; he nearly completed the drum at his death in 1446. The chureh was consecrated Marel 25, 1436, and the works ceased in 1474. The façade, destroyed in 1588 , was rebuilt from a design by E. de Fabris, and unveiled in May 1886. The revival of architecture is so conneted with the life of Bronellesehi, that a few passades in the latter will assist us in giving information on the former. He was born in 1377, and was intended by his father, Lifpo Lippi, a notary of Florence, to succeed him in his own profession; but the inchation of the youth being bent towards the arts, the parent with reluctance placed him with a goldsmuth, an occupation then so connected with sculpture that the greatest artints of the time applied themselves to the chasing and easting ornaments in the precious metals. Brunelleschi became skilful as a sculptor, but determined to devote himself to architecture, in which the field was then unoccupied. In company with Donatello he therefore visited Rome, and applied himself with ardour to the study of the ruins in the Eternal City, where he first beyan to meditate upon the scheme of uniting by a grand cupola the four arms of the Duomo at Florence. During his residence he settled in his mind the proporions of the orders of architecture from the elassic examples which the eity alforded, and studicd the science of construetion as practised by the ancients; from them he learnt that perfeet accordance which always exists between what is useful and what is beautiful, both of which are reeiprocally subordinate to each other. Here he discovered the pronciples of that nice equilibrium, equally requisite for the beaty no less than tor the solidity of an edifice. He returned to Florence in 1407. In this year the eitizens cunvoked an assembly of architeets and engineers to deliberate upon some plan for finishing the Duomo. To this assembly Brunelleschi was invited, and gave his advice for raising the base drum or atic story upon which the eupola should ie placed. It is not inportant here to detail the jealousies of rivals which impeded his project; nor, when the

Fin. 161.
haig hibvation and haty gection of santa mamia del yiore.
mmission was at length confided to him, the disgraceful assignment to him of Lorenzo riberti as a colleague, whose ineapacity for such a task our architect soon made manifest. ffice it to say, that before his death he had the satisfaction to sce the cupola fimistred, th the exception of the exterior of the drum under the cupola; for whose decoration, as 11 as for the lantern with which he proposed to crown the edifiee, he left designs, whieh, wever, were lost. One of the dircetions he left on his death particularly insisted upon necessity of following the model he had prepared for the lantern, and that it was esitial that it should be construeted of large bloeks of marble so as to prevent the cupola in opening; an advice which experience has since proved in other cases to be far from mod. 'lhis cupola is oetagonal on the plan, as will be seen by referenee to the figures, 1 is 138 fiee 6 inches in dianneter, and from the cornice of the drum to the eye of the me of the height of 133 teet 3 inehes. Before it nothing had appeared with which it ild be fairly put in comparison. The domes of St. Mark and that at l'isa are far below "n grandeur and simplicity of construetion. In size it only yields to St. l'eter's at mine, for whieh it is probable it served as a model to Michael Angelo; for in both, the imer : 1 onter cupolas are eonneeted in one arch at their springing. It is moreover well lown that Buonarroti's admiration of it was so great that he used to say that to imitate fas indeed difficult, to surpass it impossible. Vasari's testimony of it shall close our onnt of this magnificent strueture: - " Sc puo dir certo che gli antichi, non andarono - tanto alto con lor fabriche, ne si messono a mo risico tanto grande, che eglino volessino Inbattere eol ciclo, eome par veramente el' ella combatta, veggendosi ella estollere in 1. t^{\prime} alterza ehe i monti intorno a Fiorenza paiono simili a lei. E nel vero pare, che it tion ne abbia invidia poiche di contimno le sactte tutto il giorno la perenotono." It might supposed that such a work was suffieient to ocenpy the whole of Brunellescli's time; so: the Duke lilippo Maria engaged him on the fortifications at Milan, besides which
he was employed on severad other military works; a proof of the great diversity of talent he possessed. It is, thercfore, from the extensive employ he enjoyed, not only in Florense, but in many other parts of 1taly, quite certain that he infused a new taste into its buildings, and that he is justly entitled to the title of the Restorer of Architecture in Europe. He died, and was buried in the clureh he had raised in 1444. He left a number of scholars, among whom Luca Fancelli and Michelozzo were perhaps the ablest. 'These pupits spread throughout Italy the effeets of the vast change that had been thus begun; a taste for architecture was excited; its true principles became known; and in a short space of time, as if the matter had been one of arrangement between them, the illustrious house of Medici, the dukes of Milan, and the princes and nobility of the country contended who should most patronise its professors. The learned began to expound to artists the books of Vitruvius, the only writer among the ancients whose works on that subject have come down to us.
324. Leo Battista Alberti, of the ancient and illustrious family of the Alberti of Florence, sueceeded Brunelleschi in carrying on the great change of which we have been speaking, and was, indeed, a great contributor to the art, not only by his literary labours on architecture, in which he displays profound erudition, knowledge of construction, and an intimate acquaintance with the works of the ancients, but also by the distribution, elcgance, grace, and variety, which his designs exhibit. His book, De Re Edificutoriâ, is the foundation of all that has been since written on the art, and deserves careful perusal by every one who studies for the purpose of practice. We shall here present a short account of it, which, in imitation of Vitruvius, he divided into ten books.

325 . The first book treats on the origin and utility of arelitecture; the choice of the soil and situation for placing buildings; the preparation, measurement, and suitable division according to their nature, of the edifices to be erected; of eolumns and pilasters; of the different kinds of roofs, doors, and windows, their number and size; of the different sorts of staircases and their landings ; of the sewage or drains, and of suitable situations for then respectively. In the second book the subjects are, the choice of materials; the precautions to be taken before begiming a building; the models, of whatever description, that should be made; the choice of workmen; the trees fit for use, and the season in which they should be felled; the methods for preventing rot, and susceptibility of fire; of stone in its varieties; the different sorts of bricks, tiles, lime, sand, and mortar. The third book treats of construction; foundations according to the varieties of soil ; encroachments; the carrying up and bond of masonry; rough and rubble work; on the different sorts of masonry; on the inlaying and facing of walls; on beans, joists, and the method of strengthening them; on foors, arches, and vaults; the covering of roofs, pavements, and the season for beginning and completing certain works. The fourth book is contined to the philosophy of the art, showing the causes which influence mankind in the adoption of modes of building according to the climate, the soil, and the habits or govermment of a people. 1t, however, treats of the proper position of a city; of the size to be given to it; of the form of the walls; of the customs and ceremonies of the ancients as apphied to this point ; of fortifications, bastions or towers, gates and ramparts; bridges, both of timber and stone; sewers, ports, harbours, and squares requisite in a city. The fifth book contains instructions for the erection of palaces for peaceable, and castles for absolute princes; for the houses required by a republic; large and small religious edifices; academies, public sehools, hospitals, and palaces for senators. In it are given some hints on military and naval architecture, on farm buildings, and country houses. In the sixth book Alberti treats on architectural ornament, columns, and the method of adjusting their proportions. After some observations on the principles of beauty, on taste, and on the mode of improving it, he enters shortly on the history of architecture. These are followed by several chapters on the doctrine of mechanies, machines, the method of raising and working columns, polishing them, initations in stueco and incrustation in thin layers, and matters of that nature. The seventh book continues the discussion on ormanents in architecture, but chiefly in respect of columns, showing the edifices in which the use of them is suitable; and, in initation of Vitruvius in his directions relative to temples, our author dilates on buildings for ecelesiastical purposes. He shows what sorts of columns and pilasters are best suited to them, how far the employment of statues is proper, and how they should be sculptured. The eighth book is on roads and their decorations, tombs, pyranids, columns, altars, epitaphs, \&ec. In it he turns to the subjects of streets, cities, ornaments appropriate to gates, ports, arches, bridges, crossways, markets, public squares, walks, porticoes, theatres, amphitheatres, eirci, libraries, colleges, baths, \&c.; and the style in which public buildings should be constructed and decorated. The ninth book is a continuation of the preceding one; but in this he speaks in addition of the appropriate decoration of royal palaces, and of the ornaments respectively suitable to city and country dwellings, and of the paintings and sculpture that should be employed in them. In the tenth and last book the principal subject is the finding a supply of water for buildings both in town and country, and it closes with some useful hints on the aid of arelitecture to domestic econony. This truly great man ebostricted many works in different cities of Italy, some of which still remain to

\footnotetext{^[

]attest his skill. We are not to examine them with the cye of an architect fourishing even half a century later, though under that eategory they do him honour, but with the cye of an artist of his own day, and we shall then find our veneration for his memory camot be too strongly expressed. In Florence he finished the Ruccellai palace, and built the chois of the Annunziata. At Mantua he built a church of singular beauty, consisting of a simple nave, crowned with a vault decorated with caissons, which rivals the works of the ancients. The additions he made to the church of St. Francesco at Rimini, a pointed church, though not in the same style, becanse it then came into disrepute, show an extraordinary aptitude for overcoming the most difficult and repulsive subjects with which an architect has to deal, and that work alone would stamp him as a man of genius. On his other acquirements it is not within our province to dwell; we shall merely sum them up by saying that he was poet, painter, sculptor, philosopher, mathematician, and antiquary. Such was Alberti, in whom was concentrated more refinement and learning than have hardly since appeared in a single individual of our species. The time of his death is not accurately known; some place it at the cnd of the fifteenth, and others at the beginning of the sixteenth century.
326. About the time that Alberti was engaged on the practice and litcrature of the art, a very extraordinary volume, written by a member of the Colonna family, was published by Aldus, at Venice, in 1499, folio. Its title is as follows : - Polyphili Hypmerotomachia, opus italicâ linguâ conscriptum; ubi humana omnia non nisi somnium esse docet. This work deserves to be better known than we fear its rarity will ever permit. With the singularity of the plan, it unites the advantage of placing before the reader many elevated and elegant ideas, and, under the veil of a fable, of inculcating precepts of the greatest utility to artists and those that love the art. The testimony of Felibien in favour of this work runs so f_{1} vourably, that we must transcribe it :-" Sans préjudice," says that author, "du grand profit qu'on peut tirer de la lecture de Vitruve, et de l'étude qu'on doit faire de ses principes et de ses règles, il ne fant pas moins examiner les tableaux curieux de plusieurs superbes édifices, monumens ou jardins, que l'imagination riante et féconde de l'auteur du Songe a mis sous les yeux de ses lecteurs." When it is recollected that the manuscripts of Vitruvius were extremely rare, and that when Colonna wrote (1467) that author had not been translated, when we reflect that in his descriptions he rears edifices as magnificent and regular as those which Vitruvius presents to us, we cannot withhold our surprise at the genius and penetration of the author. With him architecture appears in all her majesty. Pyranids, obelisks, mausolea, colossal statues, circi, hippodromi, amphitheatres, temples, aqueducts, baths, fountains, nohle palaces, delicious gardens, all in the purest taste and of the most perfect proportion, attend in her train, and administer to the pomp with which the author attires her. With him all these ideal productions of the art were not merely the result of an ardent innagination, but were the fruit of an intimate acquaintance with its rules, which he explains to his reader, and inspires him at the same time with a taste for the subject of his pages. Inc often breaks out against the gross ignorance of the architects of his day, and endeavours to inculcate in them the sound principles of the art. He demonstrates that it is not enough that an cdifice possesses stability and solidity, but that it must be incpressed with a character suitable to the purpose for which it is destined; that it is not enough that it be well decorated, but that the ornaments used arise from necessity, or at the least from utility. Architecture thus treated in fiction was much more pleasantly studied than it wonld have been by mere application to the dry rules of Vitruvius. The impression made by the work was increased by the poetic glow with which the precepts were delivered; the allegories it contained warmed the imaginations of a people easily excited, and ltaly soon saw realised what Polyphilus had seen in a dream. This work is decorated with wood engravings of singular beauty, in which the details and accessories are strictly classical; it is written with great spirit and c!egance, and we are not amazed at the magical effect whieh, with the accompaniment of Alberti's book above mentioned, it every where produced.
327. The Italian school, which ultimately appropriated and adapted the ancient Roman orders and their details to comparatively modern habits, was for a long while engrafted on or analganated with what is,called Gothic. We here (fig. 165.) place before the reader an instance of this, in the celebrated Loggia at Florence, designed by Orgagna. The same feeling appears, indecd, in what Brunelleschi did in his Duomo, and in many other buiblings in lolorence, in Pisa, Siema, and other cities. Brunelleschi donbtless made a strong eflort to conancipate himselfaltogether from the mixture of two diseordant styles, and in some measure snecceded. Still there continned, as is evident in the Ricardi, Strozzi, and other palaces in lilorence, a lingering love for the mixture, which the architects had great apparent difliculty in shaking off. It is, however, extraordinary that with all this lingering love for the ancient style, in which there was much littleness, when the architects of this period came to the crowning members of their edifices, they placed on them such massive and finely composed cornices that the other parts are quite lost; and in this member it is evident the y were influeneed by those feelings of unity and breadth that gave so much value to the best works of the ancients.

328. The revival of the arts in Italy was vastly assisted by the commerce and riches of the country; and with the decay of that commeree, nearly 300 years afterwards, their pahmy days were no more: from that time they have never thriven in the country that gave them birth. It is our intention, in this view of Italian arehitucture, to consider it under the three schools which reigned in Italy - I. 'The Flocentine; 2. 'The Roman; 3. The Venetian.
329. 1. Florentine $S c h o o l$ - - Climate and the habits of a people are the principal agents in creating real style in architecture ; but these are in a great measure controlled, or it is perhaps more correct to say modified, by the materials which a country supplies. Often, indeed, these latter restrict the architect, and influence the lightness or massiveness of the style he adopts. The quaries of I'uscany furnish very large blocks of stone, lying so close to the surface that they are without other difficulty than that of carriage obtained, and removed to the spots where they are wanted. 'This is probably a circumstance which will arcount for the solidity, monotony, and solemmity which are such commanding features in the lilorentine school; and which, if we may judge from the colossal ruins still existing, similarly prevailed in the buildings of ancient Etruria. In later times another catuse contributed to the continuation of the practice, and that was the necessity of affording places of defence for the upper ranks of society in a state where insurrection continually occurred. 'Thus the palaces of the Medici, of the I'itti, of the Strozzi, and of other families, served almost equally for for tresses as for palaces. 'Ille style seems to have interdicted the use of colums in the ficcades, and on this account the stupendous cornices that were used seem actually necessary for the purpose of imparting grandeur to the composition. In the best and most celebrated examples of their palaces, such as the Strozzi, D'andoltini, and others in Florence, and the licolomini palace at Sienna, the cornices are proportioned to the whole height of the building considered as an order, notwithstanding the horioontal subdivisions and small interposed cornices that are practised between the base and the crowning member. 'The
courts of these palaces are usually surrounded by columns or areades, and their interior is carrely ever indieated by the external distribution. From anong the extraordinary palaces with whic'. Florence abounds, we place before the reader the exquisite façade of the l'anbolin: palace, the design whereof (fig. 166.) is attributed to the divine Raffaelle d'Urbino.

(1) it aimost all the requisites of street architecture are dispiayed. It is an example -herein the principles of that style are so admirably developed, as to induce us to recomaend it, in conjunction with the façade of the Farnese palace hereafter given, to the laborate study of the young arehitect.
330. Without further allusion to the doubie cupola of the Duomo, already noticed, lef first of its species, and the prototype of that of St. Peter's at Rome afterwards reared y Miclanel Angelo, the principles and eharacter of the Florentine school are not so namifest in its churches as in its palaces. These nevertheless possess great interest; for hey were the bases on which those of the Roman sehool were formed, as well as of those xamples which, with different degrees of purity, were afterwards erected in many of the apitals of Europe. Besides the plan of the Duomo, those of St. Michele, Sta. Maddelina, it. Pancrazio, St. Lorenzo, and St. Spirito, are the key to all excellence in modern art, as espects real church architecture. It is unfortunate that of this school few of the, ehurches sive been finished, so that their façades are generally imperfect. The interior was proerly, with them, a matter to be first considered and brought to perfection.
3:31. Amongst the many extraordinary architects of the Florentine school, whereof a int will hereatter be given, was Bartoloneo Ammanati, whose bridge, "della Santissime Trinitu," sufficiently proves that the greatness of the Florentine school does not alone epend on its palaces and churches. This, one of the most beantiful exampies, as well or design as constructive science, in which was obtained for the waters of the Arno at maximum of waterway, combined with a beauty of form inappreciable through graphic neans, still strides the river of Florence, to attest the consmmmate skill of Ammanati. The bridge in question consists of three arches: the middle one is 96 ft . span, and each of the thers 86 ft ; ; the width of the piers is 26 ft .9 in ., and the breadth of the bridge between he parapets is 33 ft . The arches are very slightly pointed, the cusp being lidden by the ams' heads senlptured on the keystones; their rise above the springing is very little, ence they lave been mistaken by some writers for cyeloidal arches. Alfonso and Giulio 'arigi, who assisted in constructing the work, left an account of the mode in which it was arried on, and the manuseript is still preserved in the Florentine Library. More recently, description of this bridge has been published by Ferroni, under the title of "Della vera "urval degli Arehi del Ponte della Santissima Trinità di Fïrenze." 'Tlıe l'itti palace lad cen begnn in the time of Brunelleschi, in 1435, for Laca I'itti, a wealthy citizen of llorence. Remaining long intinished, it was at last sold to Eleonora, wife of Cosmo I., who purhased the adjoining ground, and planted the Boboli Gardens. About the middle of the (ith century, Nicolo Braceiani, surnamed Tribolo, made designs for finishing the building; nd was succeeded by Bernardo Buontalenti. After him cane onr Annamati, who lelt ther designs for finishing, which was aecomphished by Alfonso and Ginlio Parigi. It is ow the residence of the grand duke, and has served as a model for imitation to many modern rehitects, thongh there is in it mach to condemm. 'The details, however, and proportions f the orders used in it by Ammanati, are very beantifil. I'lis arehitect died in 1586, at he age of seventy-five. Ite was a pupil of Daceio Bandinelli, and during his life composed barge work, entitled Lat Citm, which contained designs for all the fabries: belonging to regular and well-arranged city, begiming with the gates, then proceeding to the palices ${ }^{\circ}$ the prince and magistrates, the churelies, the fomatans, the spmares, the logenia for the
merchates, the bridges, theatres, \&.c. This work appears to have been lost, the last posse.sur of it known having been the prince Ferdinand of Tuscany. Though in the higher refinement of finished details the Florentine schocl did not reach the extreme elegance of the Roman and Venetian schools, yet for bold imposing masses of architecture we think no city presents such a collection of highly picturesque architectural examples as Florence. 'The l'itti palace indeed, just mentioned, is more imposing by its broad parts than almost any other building with which we are aequainted, though it becomes poor when translated into French, as at the Luxembourg.
332. So late as 1454, we find in the Strozzi and other palaces semicircular-headed windows, wherein are half columns at the sides, and a column in the middle, resembling those in the Byzantine or Romanesque edifices. The two apertures thus formed are crowned by scmicircular heads, which are circumseribed by the outer semicircle, and the spandrel formed by the three curves is occupied by a patera.
233. The period of the Florentine school, which must be taken as eommencing with Brunelleschi, includes the names of Michelozzo, Leo lattista Alberti, Pollainolo (who obtained the soubriguet of (lhronaca, from his constant recital of his travels), the architect of the Strozzi palace, Rafaelle Samzio, Benedetto da Majano, Baceio d'Agnolo, Baccio Bandinelli, Buontalenti, Ammanati, and others: it extends from a. d. 1400 to a. b. 1600 , The works of Michael Angelo, though a llorentine, do not belong to this school; neither do those of San Gallo and some others, who have been improperty classed as Florentine architects.
334 . 2. Roman School. - 'Though the city of Rome, during the period of the rise and progress of the Roman school of architecture, was not altogether free from insurrectionary troubles, its palatial style is far less massive than that of Florence. None of its buildings present the fortress-like appearance of those in the last-named city. lndeed, the lioman palaces, from their grace and lightness, indicate, on the part of the people, habits of a much more pacific nature, and an advancing state of the art, arising from a more intimate acInaintance with the models of antiquity which were on every side. The introduction of columns becomes a favourite and pleasing feature, and great care and study appear to have been constantly bestowed on the façades of their buildings; so much so, indeed, in many, that they are but masks to indifferent interiors. In them the entranee becomes a principal object; and though in a great number of cases the abuses which enter into its composition are manifold, yet the general effect is usually successful. The courts in these palaces are most frequently surrounded with arcades, whence a staircase of considerable dimensions leads to the sala or principal roon of the palace. The general character is that of grandeur, but devoid altogether of the severity which so strongly marks the Florentine sthool. The noblest example of a palace in the world is that of the larnese family at Rome, to which we shall afterwards have eccasion to return.
335. Bramante, born in 1444 at some place, but which is still in doubt, in the duchy of Urbino, must be considered the founder of the Roman school. Though cducated as a painter under Fra Bartolomeo, and likely to have ranked in that occupation as a master of 110 ordinary powers, his great love of architecture induced him at an early period to Ifuit painting as a profession. In Lombardy he wandered from city to city for the purpose of obtaining employment as an architect, but there as no evidence that his exertions in that part of laly were rewarded with great success. 'The dry style which afterwards chaacterised his works has been said to have had its origin in his protracted stay at Milan, \cdots hile the works of the Duomo were carrying on there under Bernardino di Trevi, a builder of such skill as to have gained the esteem of Leonardo da Vinci. Be this as it may, it was in this city his determination to follow our art became irrevocable. From Milan he went straightway to liome; where, however, he was obliged to make himself known by some works in his first profession of a painter in the church of St. Giorami Latcrano. Naturally of hospitable and social dispositior, and a lover of expense and luxury, so intense was lis ardour to become great in the art he adopted that he refrained from all society, holding commerce only with the monuraents of antiguity by which he was surrounded, studying with the utmost diligence, and diawing them for his future application of the principles upon which they were fommded. He even extended his researches to Naples, losing no opportunity of noting all the ruins from which instruction in his art could be drawn. Oraffa (Cardinal of Naples), who had remarked his zeal, gave him his lirst commission in Rome, which was the construction of the cloister of the Convent della l'ace; and this, from the intelligence and speed with which he executed the task, brought him at once into repute. At this period Rome could boast but of few architects, and those that were established there were of small account. The Florentine school seems to have sprung in the most decided manner from the habits of the people and the massiveness of their materials, modified by some knowledge of the buildings of the ancients: that of Rome seems to have becn founded upon the principle of making the ancient architectume of Rome suit the more modern labits of a very different people, though living on the same spot. To explain nore imucdiately onr meaning, ve cite the smath circular chapel
of St. lietro in Montorio, wherein we find a jump at once in the adaptation of the circular peripteral temple of the Romans to the purpose of Christian ceremonies. And again, it is impossible to look at the Palazzo della Cancelleria without heing struck by the basement and two orders, which would be suggested by a contemplation of the Colisseum, though afterwards the Roman architects had the good sense to see that the orders of architecture placed against the walls of a building where the use was not required by the interior distribution was a tasteless and useless application of them. The arehitect of the l'alazzo Farnese only uses them for the decorations of his windows. In this respect we hope good sense is once more returning to this country; and that the absurd practice in ahnost every case of calling in the orders to aid the effect of a façade, will be abandoned for the better plan of obtaining an imposing effect from the simplicity and arrangement of the neeessary parts. We must, however, return to Bramante, whose other employment we pass over to come to his great work, -one which, after the continued labour upon it of his successor Michacl Angelo, seens to have exhibited the great canons of art; one which has regulated all the modern cathedrals of Europe, for they are, in faet, but repetitions of it; and one, therefore, which requires a lengthened notice in this place, as intimately comnected with the rapid progress of the Roman sehool. 'The ancient lasilica of St. 'eter had become so ruinous that l'ope Nicholas V., a man who delighted in magnificent undertakings, a lover of architecture, and of more than ordinary genius, had conceived the project of rebuilding it, and under the designs of Bernardo Rosellini had actually seen a portion of the design rise from the ground before his death. The project seemed then to he forgotten and abandoned, until Michael Angelo Buonarroti, seeking a place for the rrection of the mansoleum of Julins Il., upon which he was engaged, thought that the tribune of Rosellini's projected new basilica would be well suited for its reception, and accordingly proposed it to the pontiff. Juhius, pleased with the suggestion, immediately sent for San Gallo and Bramante to examine into it. In these cases, one project generally sugrests another, and the rearing a new St. leter's became a fixed object in the mind of Julius 11. The tribune of Nieholas V. was no longer thought of, except as a space to be included within the new works. He consulted several architects upon the subject; but the fact is, that the only real eompetition lay between Giuliano di San Gallo and Bramante. The last was the successful artist ; and from a great number of projects the pope at last ehose that upon which St. P'eter's was afterwards commenced. The real desisy of Bramante can scarcely be traced in the basilica of the Vatican as executed. The chauges it was doomed to undergo before completion, more than perhaps any other building was ever subjected to, have been drawn into a history by the Jesuit Bonamn. When Bramante died, his designs, if indeed te made any, were dispersed ; and for what we do know of them we are indebted to Raffaelle, who took much pains in collecting the ideas of our architect, us they afterwards appeared in Serlig's 'Treatise on Architecture. The original plan of Bramante was simple, grand, and in its parts harmonious, and would doubtless have been eflective, far beyond the edifice as executed. It has been well observed by Q. de Quinsy, in his Life of Bramante, "Le Saint P'ierre d’aujourd'hui parait noins grand qu'il ne l'est en effect. Le Saint Pierre de Bramante aurait certainement été plus grand encore en apparence gu'en réalité." There would moreover have been an accordance between the interior and exterior. The peristyle was to have three ranks of columns in depti, which would have necessarily had unequal intercolumniations. The cupola was rather that of the Pantheon, ornamented exteriorly with an order of columns. Bramante carried his imitation even to the steps round the springing of that monument. lirom the medals of the design struck about the period, it seems that the façade was to have been decorated at its extremities with two campanili; but the authority of a medal may he dhubtfinl. The idea, thercfore, which is said to have originated with Michael Angelo, of placing the dome of the Pantheon upon the vaulting of the 'Temple of Peace emanated from Branante, though the honour of actually carrying such a project into execution belongs to Michael Angelo da Buonarroti. It is not, however, probable that if Bratmante bad lived he could have strietly executed the desiga he produced; for it has been recll proved that the piers which carry the dome would not have been sutheiently substantal for the weight to be placed upon them, inasmuci: as Bramante's cupola would have leen much heavier than that executed by Miehael Angelo, and that architect considered it necessary to make lis piers three times as thick as the former had proposed fior his cuplal. l'ramante's general design laving been adopted by Julius 11 ., was immediately commenced with a boldness and promptitude of which few hut such mon as Julins and Bramante were capable. One hiolf of the ancient basilica was taken down; and on the 18 th of Λ pril, 1.506 , the first stone of the new fabric was laid by the pope in the pier of the dome, commonly called that of Sta.Veronica. The four piers soon rose ; the centres were prepared for comecting them by vaults, whi:h were actually turned. '1'he weight and thnist of the vanlts, however, bent the piers, and eracks and fissures made their appearance in every dircetion. Thus, without more than their own weight, much less that of the eupola, the works threatened ruin. 'The great haste used in earrying on the
works lad donhtless much contributed to this catastrophe. Bramante in the meantime dying, Raffachle, Giocondo, and Giuliano di San Gallo, and afterwards Batdazare Peruzzi and Antonio San Gallo, were engaged on the edifice, and severally used the proper means for remedying the defects that had arisen, and for fortifying the great piers of the dome. To do this, as well as to push forward its completion, Michael Angelo was employed; and the rest of that great man's life was chiefly devoted to carrying on, under his own designs, the works of the fabric. From the death of Bramante in 1513 to 1546, when Antonio San Gallo died, the architects above named, all of whose names are almost sacred, had been more or less employed upon it. It was during this period that Bramantes original plan of a Latin was chaniged into a Greek cross by Peruzi. The works hat at this time become the source of much jobhing; every body that had any emp'oyment on them seemed bent on providing for himself, when Michael Angelo consented, for he was far from desirous of being cmployed, to superintend the future progress of the fabric. The first use made of his authority by Michael Angelo was that of discharging all the agents and employés of the place; he may be said to have again driven the money-lenders ont of the temple. That he might have more moral power over this worthless race, he set the example of declining to receive the salary of 600 crowns attached to his appointment as architect, and gratuitously superintended the works during the period of sesenteen years,-a disinterestedness that afterwards found a parallel in one of the greatest architects that this or any other country ever saw : we needi scarcely mention the name of Inigo Jones. Miclael Angelo Legan by undoing what his predecessor San Gallo had executed; and after having accomplished that, his whole powers were directed towards carrying on the structure to such a point that no change could possibly be made in his plans; so that after having strengthened the great piers, vaulted the naves, and carried up the exterior pedestal of the cupola, at the death of l'aul 1II. in 1549 the form of these parts of the basilica was unchangeably fixed. Unde: Julius Ill., the successor of P'aul, the intrigues which had always been carried on against Michael Angelo were renewed. He was aceused of having contrived the arrangement without sufficient light, and of having changed every thing his predecessors lad done. Thus procceded this great work; but notwithstanding the sevcre trials he had to undergo from the envy of his contemporaries, - rivals he could not encointer, - Buonarroti steadily pursued his course. He felt that his own destiny and that of the fabric were identical; and, notwithstanding all the disgusting treatment to which he was exposed, determined to stand to his post while life remained. Writing to Vasari, he says, "For me to leave this place would be che cause of ruin to the church of St. Peter, which would be a lamentable occurrence, and a greater sin. As 1 hope to estabiish it beyond the possibility of changing the design, I could first wish to accomplish that end; if I do not already commit a crime, by disappointing the many cormorants who are in daily expectation of getting rid of me." And in another letter to Messer I ionardo Buonarrotti, in reply to the pressing instance of the grand duke to have him at Florence, he says, "1 would prefer death to being in disgrace with the duke. In ail my aftairs 1 have endeavoured to adhere to the truth; and if I have delayed coming to Florence as I promised, the promise should have been construed with this condition, that I would not depart hence until the fabric of St. Peter's was so far advanced as to prevent its being spoiled by others, and my desigls altered ; nor to leave opportunity for those thieves to return and plunder, as has been their custom, and as is still their hope. Thus placed by Divine Providence, I have exerted myself to prevent those evils. As yet, however, 1 have not been able to succeed in advancing the building to that point which I desire, from want of money and men; and being old, without any one about me to whose care I could leave the work, as I serve for the love of (God, in whom is all my hope, I camnot abandon it." At this period, with the letter, to which we have not done sufficient justice in the translation, it is impossible not to sympathise, nor to be unaflected by the simple and umberding honesty of this honour to the race of man, independent of all our admiration of his stupendous power as an artist. At the age of eightyseven, the pedestal being then ready for the reception of the cupola, he made a small model in clay for that important feature of his work, which was afterwards, to a scale, accurately mader his direction, executed in wood; but deficiency in the funds prevented the progress of the building. To the height of upwards of 28 ft . above the exterior attic the cupola is in one solid vautt, whose diameter is ncar 139 ft . at its springing, at which place its thickness is near 10 ft . exclusive of the ribs. As the inner and cater vaults are not concentric, the interval between them increases as they rise. Where they receive the lantern they are 10 ft .7 in . apart. The construction of this dome proves the profundity of the architect's knowledge as a scientific builder to have equalled his superiority as an architect.

336: After the death of Nichael Angelo, this cupola with its lantern was rigorously executed, upon the model he liad left, by Jacopo della Porta and Domenico loontana. His intentions were religiously respected, in the completion of the fabric, until the time of Pirro Ligorio, whom Pius IV. deprived of his situation for attempting to swerve from the model and substitute his own work.
337. Betwecn the foundation of the church by Bramante, and its entire completion by

Carlo Materno, as seen in fygs. i67. and 168., a century had elapsed, but during that centurs

Fig. 168.

architectural as well as graphical and plastic taste had modergone great changes; and thonglt the first was still far from the vicious point to whelt lborromini carried it, the great principles of order and atthonity, as fommed on the models of antignity, were passed away, and no longer occopied the attention of the arehitert. The spixit of immosation, too often mistaken for genims, had made such imonds, that regnlarity of plan, simplicity of form,
and the happy union of taste with common sonse had altogether disappeared. The part molded to the edifice by Maderno appears in the plan in a darker tint, by which it is seen that he added three areades to the bave, in which the sime ordonnance is eontinned,
338. Respecting the alteration in, or rather addition to the plan, it is, and is likely to continme, a moot point, whether this change by Maderno has injured the effect of the church. "There are," says De Quincy, " in the method of judging of works of arehiteeture, so many different points of view from which they may be judged, that it is quite possible to approve of even contrary things." We are not ourselves disposed to censure the application of Maderno, though it cannot be devied that the symmetry of the fabrie was in some measure destroyed by it. It is possible that the constant habit of seeing eathedrals with a prolonged nave, before we first saw St. Peter's, may have disposed us to book leniently at a point which so many better judges than ourselves have condemned. Michael Angelo's plan was, doubtless, one of great simplicity and unity. According to his intention, the cupola was the principal feature, the four arms of its cross being accessaries which would not interfere with or lessen the effect of its grandeur, whose points of view could not be much varied. On the other hand, the edifice, enlarged according to the first project of Bramarte, has acquired an immensity of volume, which, observes the author before quoted, one would be now sorry to see it deprived of. "Ce sont deux araudeurs roisines sans ĉtre rivales." In its exterior, however, it must be almitted that the prolongation of the nave has not improved the effect; and that arose from the necessity of strictly conforming to the forms that axisted. It is manifest that the number of divisions which resulted from the mixtilinear plan of Michael Angelo would not well sort with the extended mass which the nave ereated. It was absolutely necessary that it should be eonformable with what had been eompleted; and the eflect of this was lessening the clevation of the cupola in an almost fatal manner. The façade of entrance cannot in any way be defended; and it is much to be regretted that the fine entrance designed by the great master was lost to the world.

3:39. St. I'aul's is, perhaps, the only great instanee in Europe wherein the design was made and wholly earried into execution by the same architect. Works of this nature usually exceed the span of man's life. St. Peter's was altogether a century and a half in building. The change of architects is not the least inconvenience of such a state of things; for during so long a period such a elange of taste arises that the fashion and style of an art are from accident scareely the same at its commencement and end. Thus the ehureh of the Vatican, which was begun by Bramante in a comparatively pure style, was, in the pind, defaced by the vicious bizarreries of Borromini. It was fortunate Mienael Angelo, so far foreseeing accidents of this nature, had fixed unchangeably the main features of his componition.
340. That the first idea of this stupendous fabric owes its origin to Bramante cannot be disputed; hot its greatness, as conceived by him, is confined to the boast of placing the cupola of the l'anthcon upon the vaulting of the 'Temple of l'eace. The sketel of it given by Serlio is nothing like the cupola which was exceuted. On the other hand, what was evecuted by Michael Angelo was searcely new after what Brunclleschi had accomplished ut Sta. Maria del Fiore. This, however, was a chef d'œuvre of construction; that of St. leter's was a chef d'euvre of construction and architecture combined. What was new m it was, that it was the loftiest and largest of all works, ancient or modern, uniting in its rast volume the greatest beauties of proportion to simplicity and unity of form ; to magnificence and richness of deeoration a symmetry which gives harmony to the whole, conoidered by itself, and not less so when considered in relation to the mass of whieh it is the crown. The great superiority of this eupola over all others is visible in another point of view, which we shall more particularly notice in the account of St. P'aul's in a subseguent page: it is, that the same masonry scrves for the exterior as wall as the interior, whereby an immense additional effect is gained in surveying it from the inside. All is fair ; there is no masking, as in other eupolas that followed it.
34. Whatever opinions may be formed on the other works of Michael Angelo, no difference can exist respecting the cupola of St. Peter's. "Si tout," observes De Quincy, "ce qui avait été fait et pensé, ou projeté avant lui, en ce genre, ne peut lui disputer le prix de l'invention et de l'originalité, et ne peut servir qu'a marquer la hauteur de son génie, il nous semble que les nombreuses coupoles élevées dans tonte l'Europe depuis lui et d'après hii, ne doivent se considérer encore que comme autant d'échelons, propres à faire micux sentir et mesurer sa superiorité." The bungling of Carlo Maderoo at St. Peter's is much to be regretted. The arches he added to the nave are smaller in dimensions than those which had been brought up immediately adjoining the piers of the cupola; and, what is still more unpardonable, the part which he added to the nave is not in a continned line with the other work, but inclines above 3 ft . to the north: in other words, the charch is not straight, and that to such an extent as to strike every educated eye Mis taste, moreover, was exceedingly bad.
942. In the principal churches of Rome there is great similarity of plam; they usually onsist of a nave and side aisles, in which latter, chapels are ranged along the sides. The eparation of the nave and aisles is effected by areades. The transepts are nut much extended, and over the intersection of them with the nave and choir a cupola generally rises. The chapels of the Virgin and of the Holy Sacrament are commonly in the transepts; a.d the great altar is at the cond of the choir, which usually terminates semicircularly on he plan. Unlike those of the Florentine school, the inteniors of the Roman churches ire decorated to excess. Pictures, mosaics, and martles of every variety line the walls. 1 profusion of gilding imparts to them a richness of tone, and the architectural details we often in the highest state of enrichment. They are, indeed, temples worthy of the vorship of the Deity. Yet, with all this magnificence, the façades are often mean ; and when a display of architecture is exhbited in them, it is produced by abuses of the worst lass. They are generally mere masks; for between the arehitecture of these false fronts und that of the interior there is no architectural comection. In very many instances the ides of the churches are actually hidden by adjacent buildings, so that they are altogether mseen ; a circumstance which may have conduced to the repetition of the abuse. Faulty, bowever, as these edifices are, to them is Europe indebted as models, which lave in nodern times been more purified. We have not space to enumerate or criticise the Lhurches with which Rome abounds. St. Carlo on the Corso, by Onorio Langhi, is a fine xample of them, and gives a fair notion of the general distribution we have described. Hose of a later date, especially those by Borromini, may be considered as indices rerum sitandarum in architecture ; and though we arc, perhaps, from the cupidity of upholsterers and house decorators, likely to be doomed to sit in rooms stuffed with the absurdities of he taste prevalent in the time of Louis X V., we can hardly conceive it necessary in these lays to recommend the student's abhorrence of snch freaks of plan and elevation as are to e found in the church of St. Carlo alle quattro Fontane, by that architect.
343. The palaces of Rome arc among the finest architectural works in Earope; and of hose in Rome, as we have before observed, none equals the Furnesc, whose façade is riven in fig.169. "Ce vaste palais Farnese, qui à tout prendre, pour la graudeur

le la masse, la regularité de son ensemble, et l'excellence de son architecture, a tenn usfu'ci, dans l'opinion des artistes, le premier rang entre tous les palais qu'on renomne," s the general description of it by De Quincy, upon whom we have drawn largely, and must ontinue to do so. This edifice, by San Galto, forms a quadrangle of 256 ft . by 185 ft , t is constructed of brick, with the exception of the dressings of the doors and windows, he quoins of the fronts, and the entablature and loggia in the Strada Giulia, which are of ravertine stone. Of the same stone, beautifully wrought, is the interior of the comt. The building consists of three stories, ineluding that on the gromed, which, in the elevations or façades, are separated by impost cormees. The only break in its symmetry and simdicity oceurs in the loggia, placed in the centre of the first story, which connects the vindows on cach side of it by four columns. On the ground story the windows are decorated vith spuare-headed dressings of extremely simple design ; in the next story they are flanked y col:anms, whose entablatures are crowned alternately with triangular and circular vediments; and in the third story are eirculir-headed windows, crowned throughout with rangular pediments. 'The taste in which these last is composed is not so good as the est, though they were probably the work of Michael Angelo, of whose cornice to the edifice ínari olserves, "È stupendissimo il corniccione magratere del medesimo palazzo nella
facciata dinanzi, non si potendo alcma cosa ne pî̀ bella ne piì magniffè deciderare." The façade towards the Strada Giulia is different from the other fronts in the centre only, wherein there are three stories of arcades to the loggia, each of whose piers are decorated with cohmms of the Doric, Ionic, and Corinthian orders in the respective stories as they rise, and these in form and dimensions correspond with the three ranks of arcades towards the court. It appears probable that this central arrangement was not in the original design of San Gallo, but introduced when the third story was completed. Magnificent as from its simplicity and symmetry is the exterior of this palace, which, as De Quincy observes, "est un édifice toujours digne d'être le scjour d'un prince," yet does it not exceed the beanty of the interior. The quadrangle of the court is 88 ft . square between the columns of the areades, and is composed with three stories, in which the central arrangement above mentioned towards the Strata Ginlia is repeated on the two lower storics, over the upper whereof is a solid wall pierced in the wiudows. The piors of the lower arcade are onnmonted with Doric columns, whose entablature is charged with triglyphs in its frieze, abel its motope are sculptured with various symbols. The imposts of the piers are very fincly profited, so as to form the entablatures when continued over the colmmes of the entrimee vestibule. In the lonic arcade, over this, the frieze of the order is decorated with a series of festoons. The distribution of the different apartments and passage is well contrived. All about the building is on a scale of great grandeur. Thongh long mocenpied, and a large portion of its internal ornaments has disappeared, it still commands our admiration in the Carracei Gallery, which has continued to serve as model for all smbsequent works of the kind. The architecture of the Farnese palace, more especially as respects the arcades of its court, is the most perfect adaptation of ancient arrangement to more modnon habits that has ever been designed. We here allude more particularly to the arcates, upon whose piers orders of columns are introduced. This species of composition, heavier, doubtless, less elegant, yet more solid than simple colonnades, is, on the last account, preferal)le to them, where several stories rise above one another. The idea was, certainly, conceived from the practice in the ancient theatres and amphitleatres; and in its application at the Farnese palace rivals in beanty all that antiquity makes us in its remaiss aequainted with. San Gallo, its architect, died in 1.546.
S.44. It would be impossible here to enumerate the palaces with which Rome abounds; but we must mention another, that of St. Giovanni Laterano, by Domenico lontaia, as a very beantiful specimen of the palatial style. Milizia censures the detail of this edifice, and there is some truth in his observations in that respect ; but the composition is so simple and grand, and the cornice crowns it with so much majesty, that the detail is forgoten in the general effect, and its architect well deserves the rank of a great artist.
345. The villas, Ocelli d'tatia, as they have been called, round the suburbs of Rome, are in a style far lighter than the palaces whereof we have just been speaking. They are the original models of the modern country houses of this island, and exhibit great skill in their plans and elegance in their façades. Generally they rose from the riches and taste of a few cardinals, who studded the environs of the Eternal City with some of the fairest gems of the art. MM. Percier and Fontaine published a collection of them at laris, from which we extract the Villa lia (fig. 170.). It was designed by Pirro Ligorio, a Neapolitan

1票 37% 。
architect, who died in 1580 and is thus described by the authors whose view of it we have orrowed. "It was built," say they, "in imitation of the houses of the ancients, which Ligorio had particularly studied. This clever artist, who to his talent as an architect oined the information of a learned antiquary, here threw into a small space every thing that could contribute to render it a delightful dwelling. In the midst of verdant thickets, and in the centre of an amphitheatre of flowers, he constructed an open lodge, decorated with stuccoes and agreeable pictures. The lodge is raised upon a base, bathed by the water of a basin, enclosed with marbles, fountains, statues, and vases. Two flights of steps, which lead to landings sheltered by walls ornamented with niches and seats of marble, offer orotection from the sun's rays by the trees that rise above them. 'Two porticoes, whose nterior walls are covered with stuccoes, lead on each side to a court paved in mosaic work. lhis is enclosed by a wall, round which seats are disposed. Here is a fountain spouting ip from the centre of a vase of precious marble. At the end of the court facing the lodge in open vestibule, supportcd by columns, fronts the ground floor cf the principal pavilion ; ind is decorated with mosaics, stuccoes, and bassi-relievi of beautiful design. The apartments n the first floor are ornamented with fine pictures. Finally, from the summit of a small ower, which rises above the building, the view extends over the gardens of the Vatican, and te plains through which the Tiber takes its course, and the splendid edifices of Rome." For further information on the IRoman villas, we refer the reader to the work we have uoted.
346. The Roman school of architecture, founded by Bramante, includes San Gallo, 3nonarroti, Sansovino, Peruzai, Vignola (whose extraordinary palace at Caprarola deerves the study of every architect), and many others. It ends with Domenico Fontana he period of its duration being from 1470 to 1607 , or little more than 130 years.
347. Before we proceed to the Venetian school, it will, however, be proper to noticc wo architects, whose works tended to change much for the worse the architecture of heir time ; we mean Borromini and Bernini, though the latter was certainly purer in his, aste than the former. Borromini, whose example in his art was followed throughont Europe, and who, even in the present day, has his returning admirers, was the father of all oodern abuses in architecture; and the reader must on no account confound his works with hose of the Roman school, which had ceased nearly half a century before the native of Sissona had begun to practise. He inverted the whole system of Greek and Roman rehitecture, without replacing it by a substitute. He saw that its leading forms, sprung om a primitive type, were, by an imitation more or less rigorous, subjceted to the priniples of the model from which its order and arrangement emanated. He formed the roject of annihilating all idea of a model, all prineiples of innitation, all plea for oroer aud roportion. For the restriction in the art resultant from the happy fiction, or perhaps -ality of a type, one whose tendency was to restrain it within the bounds of reason, he dostituted the anarchy of imagination and fancy, and an unlimited flight into all species of aprice. Undulating. Hexibility supplanted all regularity of form ; contours of the most rotespue description succeeded to right lines; the severe architrave and entablature were ent to keep up the strange delusion; all species of curves were adopted in his operations, ad the angles of his buildings were perplexed with an infinite number of breaks. What rakes this pretended system of novelty more absurd is (and we are glad to have the opporInity here of observing that the remarks we are making are applicable to the present shionable folly of decorating rooms à la l.ouis $X I V$. and $X V$.), that its only novelty was e disorder it introduced, for Borromini did not invent a single form. He was not seruulous in retaining all the parts which were indicated by imitating the type; he decomased some, transposed others, and usually employed each member in a situation directly ie reverse of its proper place, and, indeed, just where it never would be naturally placed. hns, for example, to a part or ornament naturally weak, he wonld assign the oflice of ipporting some great weight ; whilst to one actually capable of receiving a great load, he onld assign no office whatever. With him every thing seems to have gone by contraries; ad to give truth the appearance of fiction, and the converse, seems to have been his greatest slight. Out of all this arose a constant necessity for contrivance, which marked Borromini : a skilful constructor, in which respect he attained to an extraordinary degree of intellience. It scems, bowever, not improbable that one of his great objects in studying conruction was, that he might have greater facility in carrying his curious conceits into secution; for it may be taken almost as an axiom in architecture, so great is the relation fereen then, that simple forms and solid construction are almost inseparable; and it is aly necessary to have recourse to extraordinary expedients in constraction when our proactions result from an unrestrained imagination. Further notice of this architect is not cessary; one of his most celcbrated works is the restoration of the church of St. iovanni Iaterano, - after St. Peter's, the greatest in liome. His purest work is the zurch of St. Agnese; whilst that of St. Carlo alle quattro fontane, which we have heredore noticed, is the most lizarre. Borromini died in 1667.
348. Bernini, the other artist whom we have mentioned, was equally painter, senptor,
and architect; his primeip:al work is the colomate in front of St. Peter's. I Ie was, notwithstanding the abmses to be found in his works, a man of great tatent. In their gencral arrangement his buildings are good and harmonious; his protikes are graceful; his ornaments, though sometimes profuse, are usually elegant. Bernini, however, was no check upon the pernicious character of his cotemporary Borromini ; instead, indeed, of relieving architecture of sone of her abnses, he encumbered her with fresh ones. He was also fond of broken pediments, and of placing them in improper situations. He employed undulations, projections innumerable, and intermixtures of right lines with curves; for beautifnlsimplicity bec substituted elegant fancy; and is to be imitated or admired by the student no farther than he followed nature and reason. He made some designs for the Louvre at Paris, which are exceedingly good. His death occurred in 1680.
349. 3. The Tenetian School is characterised by its lightness and elegance; by the convenient distribution it displays: and by the abundant, perhaps exuberant, use of colmmes, pilasters, and arcades, which enter into its composition. Like its sister school of painting, its address is more to the senses than is the case with those we have just quitted. We have already given an account of the church of St. Mark, in the 12 th century : from which period, as the republic rose into importance by its arms and commerce, its arts were destined to an equally brilliant career. 'The possession in its provinces of some fine monnments of alitignity, as well as its early aequaintance with Greece, would, of course, work beneficially for the advancement of its architecture. 'That species of luxury, the natural result of a desire on the part of individuals to perpetuate their ames through the mediun of their habitations, though not productive of works on a grand or monmmental scale, leads, in a democracy (as were the states of Venice), to a very general display of moderately eplendid and elegant pataces. Hence the extraordinary number of specimens of the buitding art supplied by the Venctian school.
350. San Micheli, who was born in 1484, may, with propriety, be called its founder. Having visited Rome at the early age of sixteen for the purpose of studying its ancient monuments of art, and having in that city found much employment, he, after many years of ahsence, returned to his native country. The mode in which he combined pure and beantufil architecture with the requisites called for in fortifieations may be seen displayed to great advantage at Verona, in which city the Portu dell Pallio is an instance of his wonderful ingennity and taste. But his most admired works are his palaces at Verona; though, perhaps, that of the Grimani family at Venice is his most magnificent production. The general style of composition, very different from that of the palaces of Florence ann Liome, is marked by the use of a basement of rustic work, wherefrom an order rises, oftell with arched windows, in which he greatly delighted, and these were connected with the order after the manmer of an areade, the whole being crowned with the proper entablature. As au example, we give, in fig. 171., the facade of the P'ompei palace at Verona. 'Ihe genius of

Fis. 171.
POMPEI PALACE, VEETHAA
San Micheli was of the very highest order; his works are as conspicuous for excetlent construction as they are for convenience, unity, harmony, and simplicity, which threw into shisde the minor abises oceasionally found in them. If he had no other testimony, it would be sufficient to say, that for his talents he was held in great esteem by Michael Angelo; and our advice to the student would be to study his works with diligence. San Micheli devoted himself with great ardour to the practice of military arehiteeture; and though the invention was not for a long time afterwards assigned to lim, he was the author of the
system used by Vauban and his sehool, who. for a long period, deprived him of the credit of it. Before him all the ramparts of a fortifieation were round or square. He introduced a new method, inventing the triangular and pentangular bastion, with plain fossís, flanks, and square bases, whiclt doubled the support; he moreover not only flanked the curtain, but all the fossé to the next bastion, the covered way, and glacis. The mystery of this att consisted in defending every part of the inclosure by the flank of a bastion; henee, making it round or square, the front of it, that is, the space which remains in the triangle, which was before undefended, was by San Mieheli provided against. We cannot, however, further proceed on this subject, which belongs to military, which at that period was intimately connected with civil architecture. The Porta del Pallio at Verona has been mentioned; thateity, however, contains another gate of great arehitectural merit by this master, the Portu Nrova, a square edifice, supported within by a number of piers of stone, with enclosures or apartments for the guards, artillery, \&c. The proportions, as a whole, are pleasing ; it is of the Doric order, devoid of all extraneous ornament, solid, strong, and suitable to the purposes of the building. Except in the middle gate and the arehitectural parts, the work is rusticated. The exterior façade stands on a wall, with two large pyramidal pilasters of marble rising from the bottom of the fosse; at the top are two round enclosures approaching almost to towers. In the interior, to the two gates near the angles are two corresponding long passages, vaulted, leading to a number of subterraneous galleries and rooms. For beauty, however, we do not think this gate so beautiful as that of del Pallio, which we here give (fig. 172.). But the gem of this great master is the little circular

chapel at San Bernardino, whose beauty, we think, has scareely ever been surpassed, and which exhibits, in a striking degree, the early perfection of the Venetian school. It was not finished under San Micheli, and blemishes are to he found in it; it is nevertheless an expuisite production, and, in a surprisingly small space, exhibits a refinement which elsewhere we eareely know equalled. The works which he designed surpass, we believe, in umber hose of all the masters of Italy, Palladio, perhaps, exeepted. He gave a tone to his art ut the Venctan states, whieh endured for a considerable period. His death oceurred in 1549.
3.51. Contemporary with San Mieheli, was another extraordinary genius of this school, orn at Florence,-Jacopo 'Tatti by name, but more usually called Sansovino, from the ountry of his master, Andrea Contueci di Monte Sansovino. Such was the respect for his artist in Venice, his adopted eity, that at a moment when it beeame necessary to raise 3 means of taxation a large sum on the citizens, the senate made a speeial exemption in dvour of him and Titian. The Roman school might lay claim to him, if the works he vecouted at lRome, and not his style, would justify it ; but that is so marked, so tinetured vith the system of areades with orders, its distinguishing feature, that an inspection of is works will immediately satisfy even a superficial observer. He was a great master of is art; and though he does not in so great a degree appear to have profited by the exinples of antignity as the arehitect last named, he has left behind buildings, which, for ieturesue effect, leave him little inferior in our rating. He was the architect of the brary of St. Mark at Venice, a portion whereof is given in fig. 173.; a building of (uble design, notwithstanding the improprieties with which it is replete. It eonssts of wo oeders; the lower one of highly ornamented Dorie, and the upper one lonic and very raceful in effect. Of both these orders, as will be seen in the fighre, the entablatures are finordinate eomparative height. 'The upper oue was expressly so set ont for the purpose fexhbiting the beautiful seulptures with which it is decorated. 'I'he cornice is crowned ith a balustrade, on whose piers statues were placed by the ablest seholars of Simsovino. - portico orcupies the ground lloor, which is raised three steps from the level of the ineza. This purtico consists of twenty-one arendes, whose piers are decorated with olnmme. In the interior are arches eorresponding th the extermal ones, sixteen whereof, ith their intermal apmements, are appropriated for shaps. Opposite the centre areh is a agnificent stairease lealling to the hall, beyond which is the horary of st. Dark. 'The

Fig. 173.
1, HHIGRA OF 5\%. MARK, lacopo was fertile in invention: his arehitecture was full of grace and elegance ; but was deficient in a thorough knowledge of construction, which, in the library of St. Mark, brought him into disgrace, of which, from all accounts, the builders ought to have suffered the principal share. He continually introduced the orders, and especially the Doric and Composite. The members of his entablatures were much sculptured ; but his ornaments were extremely suitable and correet. In statues and bassi relievi he greatly indulged, thereby adding considerably to the effect and majesty of his buildings. Scamozzi mentions a work by him on the construction of floors, and particularly describes a method adopted by hiin for preventing dust falling through the joints of the boards. The work has been lost. Sansovino died in 1570.
352. After such artists as San Micheli and Sansovino, it would have seemed to an ordinary mind difficult to have invented new forms, or rather so to have modified the old ones as to be original. Andrea l'alladio, however, not only knew how to be original, but to leave his works as models for the countries of Europe, in which the style which bears his name has had no rival ; so true is it, in all the arts, that there is always room to be found for a man on whom nature has bestowed the faculty of seeing, feeling, and thinking for himself. In the case of the architect something more than genius is nccessary: it is requisite that circumstances should exist by which his art may be developed, or, in other words, that what he is capable of producing may at the time be suitable to the wants of society. Such circumstances existed for a long period in Italy, where, up to the time at which we are arrived, the rich and great had been contending with the governments which should be the greatest patrons of the art. Hence sprung the multitude of extraordinary works in the country named, which still point out the greatness in art at which it had arrived, when it was one of the really necessary arts. Neither in the Venetian states, nor at the time when he rose into reputation, which was about the middle of the sixteenth century, had Palladio that opportunity of signalising himself which had occurred to many former masters. Venice had risen into power and wealth by its arms and commerce; was the natural protectrix of the art; and although the works she required were not on scales of the grandest dimensions, yet those which her citizens required kept pace in luxury with the increasing wealth of the families by whom they were required. This was the career open to the genius of Palladio. Architecture in these states was not called upon to furnish churches of colossal dimensions, nor palaces for sovereigns, nor immense public monuments left for posterity to finish. The political state of the country, very luckily for his talents, furnished a numerous class of citizens who contended which should procnre for himself the aid of this great man in rearng a villa or palace, and which might serve the
double purpose of a present dwelling for, and a future nemorial of, his family, - a passion that cosered the banks of the Brenta with edifices which, of their class, form a complete school of civil architectmre.
353. The taste of l'alladio was tempered by the care he bestowed on accommodating exlerior beauty to interior convenience, and by suiting the art to the wants of persons with moderate means, through the medium of greatness without grtat dimensions, and richness of effect without great outlay. In the imitation, or rather appropriation, of the architecture of the ancients, none of his predecessors of any of the schools had so luckily hit on that just medium of exactness without pedantry, of severity without harshness, of liberty without licentiousncss, which have since made the architecture of ancient Greece popular, and so modified it as to be practicable and convenient in all countries. We here speak, of course, of the elements, and not the combinations, of Greek art, and of it changed by a passage through an intermediate state during the existence of the Roman empire. No architect ean consider himself thoroughly educated who has not studied the works of Palladio. "De fait," says De Quincy, in his Life of this architect, "il n'est point d'architecte qui, après avoir formé ou réformé son style sur les grands modèles de l'art des anciens, et des premiers maitres de l'ltalie moderne, ne se croie pas obligé d'aller encore étudier dans la patrie et les ceuvres de Palladio, un gemre d'applications plus usuelles, et plus en rapport avec l'état de nos mours; c'est-a-dire, le seeret d'accommoder tour-à-tour, et nos besoins aux plaisirs d'une belle architecture, et l’agrément de cellc-ci aux sujétions que de nouveaux besoins lini imposent." It was from the peeuliar properties of Palladio's tastc and style, suited a: they are to more moderate fortunes, that they found in England a secona native eountry (if such an expression may be allowed), where Inigo Jones, Wren, Gibbs, Taylor, Chambers, and many others, have naturalised the plans, façades, distribution, and details which were originally planted in the provinces of the Venetian republic. Indeed, the style of l'alladio could not he prevented from spruading through Europe, as a mean between the severe use of aneient forms and the licentious style of those who reject all rules whatever. 'The buildings by him exhibit great good sense, simple means of aceomplishing the end, a satisfactory agreement between the demands of necessity and pleasure, and sueh an harmony between them that it is hard to determine which has submitted to the other. The interior distribution of his palaces and villas in respect of plan would, without considerable modification, be but ill suited to modern habits. We give, in fig. 174. (ste nert page), a plan and elevation of the Villa Capra, one of his most celebrated works of that class. Convenience ehanges as the mode of life varies; indeed, except in a private building of large extent, the large quadrangular court of the houses of ltaly is here unknown. Palladio's plans, however, were convenient to those for whom they were exceuted; and in that way they must be judged. With his eyes constantly turned to the practice and detail of the ancients, he aepuired a bold, simple, and agreeable style; and, his ehurehes excepted, the beauties of the master are to be sought in his façades, and the quadrangles of his palaees. l'edestals, either with panels or raisings, were always avoided by him; his architraves were rarely seulptured; and the upper ornanents of his entablatures were always carefully centred above each other. His doors, windows, and niehes arc composed with great simplicity; and pediments, when used, are unbroken. In the members of his cornices he never lost sight of the character of the order employed, and was extremely partienlar in duly adjusting its profiles. He, however, did not seruple to vary the proportions of an order aecording to the nature of the building to whieh it was applied; and in the proportions of his churehes and apartments he seems to have delighted, as afterwards did Sir Christopher Wren, in arithmetieal, geometrical, and harmonic proportions. Though extremely partial to the use of the lonie order, yet the others were not unfrequently used by him. His Corinthian eapital is not to be praised; it is profiled very clumsily, and ought not to be followed. The domes which he crected are almost invariably hemispherical. It is not to be supposed that his buildings are perfect, though they approach perfection; but it is more than probable that many of the abuses we see in them arose either from want of suffieient superintendenee, the number he designed bemg very great, or that they were introduced after his death. This, we think, may be safely assumed, beeause the instructions in his work on arehitecture are very peremptory on the subject of abuses. So well based upon the practice of the aneients does the style of our master appear to be, that it is, with but few modifications, suited to all nations, and just such as the aneients themselves would have adopited. "Les fermes," observes Le Grand in his parallèle, "que dirigeait l'alladio et qu'il courrait de tuiles on d'un chaume rustique, l'emportent de beancoup sur les palais somptucux de Borromini, ou sur les riches et bizarres productions de Guarino (inarini." Certain, indced, it is that simplicity, unity, and style are more powerful means of producing grandeur, than great volume or large masses maskilfully handled. A fine instance of this is seen in the façale of the 'Thiene palace at Vicenza, fiy. 175. (See next page.)
354. 'The number of palaces and villas with which l'alladio enriched the Venctian and Vicentine territories is almost incredible: the variety of plan and elevation in them seens as inexhamstible as their mumber. 'lo the buidings above referes to may be added the

Fik. 175 .

Carità at Venice, which is a lovely specimen of his style. His grandest chureh is that Del Redentore at Venice. Generally in the façades of his churehes there are abuses, whereof it is scarcely eredible he would have been guilty: such are the two half pediments in the chmeh we have just mentioned. The theatre built upon the ancient model for the Olympic Acadeny at Vicenza gained great reputation for him. l'alladio died in i 580.
355. The last architect of the Venctian school who obtained celcbrity was Vincenzo Scamozzi. The son of an architect, and born in a country which had become the nursery of the art, his powers were exhibited at an early age. Like Palladio and other great masters, he selected for his principal guides the antiquitics of the Eternal City, and the recepts of Vitruvius, whose work at that period was considered of high importance, as in truth it really was. There is no doubt that Scamozzi was much indebted to the works of Palladio, although he affected occasionally to decry them; but, in opposition to De Quincy, we think that his style is more founded on that of San Micheli or Sansovino. 'Ihis is, however, of little importance; for his natural talents werc of a very high order. At a very carly period of his career, so great was his reputation that he was employed by the canons of San Salvadore in opening the lantern to the cupola of their church; a task in which it appears that he acquitted hinnself with great ability. For the upper order of the Procurazie Nuove at Venice he has often been unjustly reproached, because he did not confine himself to two stories, so as to complete the design of Sansovino. The design of Scamozai, had it been continued in the Piazza San Marco, wonld have placed in the back ground every other piazza in Europe. The two lower stories of the l'rocurazie Nuove are similar in design to the Library of S . Marco; and it is greatly to be regretted that Scamozzi was so much otherwise occupied that he had not the opportunity of watehing the whole of its execution, which would have extended to thinty arcades, whose whole length woutd have been 426 feet. Scamozzi only superintended the first thirteeen; the three built by Sansovino excepted, the rest were trusted to the care of builders rather than artists, and, from the little attention bestowed upon preserving the profiles, exhibit a negligence which indicates a decline in the arts at Venice. Scamozzi is placed in the first rank as an architect by his design for the cathedral at Saltzburg, whither he was invited by the archbishop of the see. This church, which was not completed till after his death in 1616, is 454 ft . long, and 329 ft . wide, being in the form of a Latin cross on the plan, over whose centre a cupola riscs. The distribution of the interior is with a nave and two side aisles; the former whereof is 64 ft . wide, and 107 ft . ligh. Scanozzi's employment was very extended, and his country has to lament it ; for fewer commissions would have insured greater perfection in their exeeution, which, in those that exist, is often unworthy of the name of the master. Scamozzi published a work on the art, which will be found in our list of authors at the end of this work. He died in 1616 .
356. Besides Giovanni da Ponte and Alessandro Vittoria, the Venctian school contains the names of few more than those we have named : they appear to have commanded the whole of the employ of the states and neighbourhood of Venice for a period of about 110 years, ending in I6I6. When, however, it no longer continued to grow and flourish in its native inil, its scions, grafted throughout Europe, spreading their branches in every country, rospered wherever they appeared. On the former of the two architeets just vaned, a few isservations are necessary. He died in 1597, at the age of eighty-fise years. Principally occupied in the reparation and re-establishment of the buildings of the city that had fallen into decay, he was nevertheless engaged on some considerible works; among which was he great hall of the arsenal at Venice, 986 feet long, and the more eelebrated work of the lialto Bridge, whence he obtained the sobriquet Da ponte, and for the execution whereot re competed with Palladio and Scamozzi. The span of the single arch of which the work consists is abont 72 ft , and the thickness of the arch stones about 4 ft .4 in . It is segacntal, and the height from the level of the water is about 22 ft .9 in . The width of the ridge is equal to the span of the arch, and this width is divided longitudinally into five livisions, that is, into three streets or passages, and two rows of shops. The midhle street or passage is 21 ft .8 in . wide, and the two side ones near II ft. 'The number of shops on t is twenty-four. The last work of I)a Ponte was the construction of the prisons awiy rom the ducal palace. This edifice is a quadrilateral building, with a portico of seven ureades A story rises ont of it piered by seven great windows decorated with pediments, mad it is joined to the palace by the bridge so well known under the name of Il Ponte dei Sospiri. The work was not carried to completion during Giovami's life, but was thaished by his nephew Contino. In his chureh on the Grand Canal. constructed for the nuns of Santa Croce, therr is little merit except that of solidity; indeed, he does not appear to rave possessed much taste, as may be inferred from the two ranks of colmmus in the hall of the arsenal above mentioned, which eamot be said to betong to my of the species of eomans usually employed. The solid chanacter of the great prison is appropriate, and more an eonsonanee with the rules of the art.

Sect. XVII.

FHENCH ARCHITECTURE.
357. The architecture of Lurope from the midde of the sixteenth century was founded on that of Italy. Of its value, the lrench and the English seem to have a stronger perecption than the rest of the nations. We shall therefore now eonsider the architecture of France: that of England from a much earlier date will be separately considered in the succeeding chapter. lhilibert Delorme was among the first of the architects of France who promoted a taste for good architecture; and though in some respects he may have been surpassed by other artists of his time, in others, whether connected with theory or practice, he has left his rivals a great distanee behind him. Although he might not have had the purity of detail of Jean Bullant, nor the richmess of invention and execution of P. Lescot, he has acquired by his talent in construction a reputation which has survived his buildings. The Queen Catherine of Medicis having resolved upon the eonstruction of a palace at Paris, which should far surpass all that had previously been done in France, resolved upon placing it on a spot then occupied by some tile kilns (Tuileries) in the faubourg St. Honoré, and committed the design and erection to Delorme. It is, however, contended by some that Jean Bullant was joined with him in the commission. If that was really the case, it is proballe that the labours of the latter were confined to details of ornament and execution, rather than to the general design and disposition. What, if it was so, belonged to each is not now to be discovered; but the genius of Delorme has survived all the revolutions the celebrated building in question has undergone. Catherine seems not to have been satisfied with the works; for she appears to have begun another palace on the site of the Hotel Soissons, that of the present Halle au Bleds, and to have entrusted this to the eare of Jean Bullant. That of the Tuileries was in the end continued by Henri IV.; enlarged by Louis XIII. on the same line, after the designs of Du Cerceau, with two main bodies and two composite pavilions; all which were in the time of Louis XIV. afterwards brought together by the designs of Leveau and Dorbay. In the eentre pavilion all that now remains of Delorine's work is the lower order of Ionic columns. This morsel of Delorme exhibits a good lonic profile in the order, and is one of his best works. Generally speaking, the profiles of this master, which Chambrai has admitted into his Parallèle, make one acknowledge the justice of that author's observation, that he had " un peu trop vu les plus belles choses de Rome, arec des yeux encore préoccupés du style Gothique. Le talent de cet architecte consistait principalement dans la conduite d'un bâtiment, et de vrai il était phus consommé en la connaissance et la coupe des pierres que dans la composition des ordres; anssi en a-t-il écrit plus utilement et bien plus au long." Delorme was the author of two works on architecture: one, Un Traité complètede l'Art de Bâtir, on architecture generally; the other, Nouvelles Inventions pour bien bâtir et à petits frais. The last relates more especially to a practice in carpentry, which, on the Continent, has been put into execution with great success, its pribecple being still constantly applied. The method of earpentry invented by Delorme, and which still goes in France by lis name, consists in substituting for the ordinary system of framing and rafters, curved ribs, in two thicknesses, of any sort of timber, three or four feet long, and one foot wide, of an inch in thickness, and which are connected in section and tie according to the form of the curve, whether pointed, semicircular, or segmental. These arches, in order to be strong and solid, should be fixed at their feet on plates of timber framed together, lying very level on the external walls; and the planks whieh are to form the principal curve are to be placed accurately upright on their ends, in which situation they may be kept by braces morticed into them at conrenient distances, and retained in their places by wedges, for it is essential to the strength of this species of carpentry that it shonid be kept in a vertical position. In this country the species of carpentry just mentioned has never been practised to the extent it deserves. Delorme died in 1570 . With him was cotemporary Jean Bullant, whose name has been just mentioned, and who, whilst San Gallo was occnpied on the Palazzo Farnese, was raising the Chateau d'Ecouen, in which the prelude to good taste is manifest, and in whose details are exhibited the work of an arehiteet very far advanced above his time, and capable of raising the art to a mueh higher piteh of exeellenee than it enjoyed, had not the habits of the nation restrained him in his useful course. A considerable portion of the façade of the 'Tuileries towards the Carousel is suspected to have been the work of Bullant ; but the ehiteau of Ecouen, built, or rather begun, about 1540, for the constable Montmorency, was ahmost the first step to the establishment of pure arehitecture in France, and its architect may fairly be named the Inigo Jones of the Freneh
358. By the wars in Italy under Charles VIII., Louis XII., and Francis I., the French had become intinately acquainted with the arehitecture of Italy, and the taste of the monarch last named induced him to bring from that eountry some of their most celebrated artists; so that in France there was almost a colony of them. Among them, fortunately
for the quieker working of good taste, was the eelehrated Vignola, who resided in France many years; a eireumstance which may, with some probability, aeeount for the high esteem in which that great master's profiles have always been held, and indeed in whieh they are still held there, though, generally speaking, the Freneh have invariably been more attached in their practice to the Venetian than to the Roman school. Serlio, another Italian arehitect of note, was employed in the country by Franeis, and actually died at Fontainebleau. At the period whereof we are now treating there appears to have been a number of able artists ; for to Delorme and Bullant must be added Lescot, who, with Jean Gougeon as his sculptor, was many years employed upon the building usually ealled the Fien. Lourre, to distinguish it from the subsequent additions which have quadrupled the original projeet of Lescot. To judge of the works of the Freneh architects of this period, a relative, and not an abstract view, must be taken of them ; relative, we mean, to the general eultivation of the arts when any individual artist appears. In this respect Leseot's works at the Louvre are entitled to the greatest praise; and from the examples he as well as Bullant and Gougeon afforded, it might have been expected that pure arehiteeture would have proceeded without check until it reached a point as high as that to whieh it had been carried in Italy. Such was not, however, to be the case. Mary de Medieis, during her regeney, having determined on building the Luxembourg palace, was anxious to have it designed in the style of the palaces of Florence, her native city. Jacques de Brosse, her arehitect, was therefore compelled to adopt the character required: his prototype seems to have been the Pitti pralace, and his version of it is a failure. The gigantic palaces of Florence well enough bear out against the rustic and embossed work employed upon them ; but when their scale is reduced, the employment of massive parts requires great caution. 'The palaee, however, of the Luxembourg beeame a model for the fashion of the day, and produced an intermediate style, which lasted many years in Franee, and arrested the arrival at perfertion whereof the above work of Bullant and others had opened a fair prospeet. De Brosse was an able artist, and his design for the façade of St. Gervais of three orders is, under the circumstances, entitled to our praise. This arehitect aequired mueh honour by the aqueduct of Arcueil, the completion whereof, in 1624 , it is supposed he did not long survive.
359. Under Louis XIV. the art remained for the most part in the intermediate state just noticed; and yet that monareh and his minister Colbert lost no opportunity of embellishing the kingdom with its productions. He employerl liernini to make designs for the palace of the Louvre; and for that purpose induced the artist to visit France, where he was received with the highest respect. He left a design for a façade of the building in question, which, though in a corrupt style, exhibits nevertheless marks of grandeur and nagnificence whieh would have been worthy of the monareh. Bernini, disgusted, as he alleged, with the workmen of Paris, departed from the eountry without leaving any example of his architeetural powers. That he did so France has no reason to lament, since it gave Perrault the opportunity of ornamenting the eapital with one of the most splendid monuments of the art which Europe can boast. 'Wo Perrault is the credit due of having given an impulse to French architecture it has never lost, and of having changed the heavy style of his time into the light and agreeable forms of the Venetian school. The beauties of the façade of the Louvre (fig. 176.) are so many and great that its defects are forgotten. The

Fй 176.
proportions are so exquisite, that the eye camnot rest on the eoupled columns and the areh of the principal gate rising into the story of the colonnade. The original profession of Perrault was that of medicine, which, however, he only exercised for the benefit of his friends and the poor; hence the design he made with others in competition for the above work having been successful, he was ascociated for its execution with Louis le Veau, the king's principal architect. From the variety of sciences in whieh Perrault excelled, it is not probable that the assistance of a practical architect was actually neeessary; indeed the four volumes which he published under the title Essais de Physique, and the collection of wachines for raising and removing great weights, which he also published, show that he was, without assistance, quite competent to the charge which was committed to him with others. He built the observatory at Paris, possessing an originality of eharacter which Milizia says is very conformable to its purpose. But however suitable it may have been considered at the time of its erection, and it cannot be denied there is a fine masculine character about it, it is for its purpose in the present age altogether ill adapted for the objects of astronomy. Perrault died in 1688 . Cotemporary with hin was Le Mercier, the architect of the church de l'Oratoire, in the Rue St. Honoré. Le Mercier died, however, in 1660 ; cight and twenty years, therefore, before the decease of Perrault. Among the architects whose practiec was exceedingly extended was Jules Hardonin Mansart, the architect of Versailles, and the especial favourite of Louis XIV. He was principally employed between the years 1675 and his death in 1703 . His ability, as Milizia observes, was not equal to the size of his edifices; though it is hardly fair for that author to have made such an observation on the architect of the cupola of the Invalides at l'aris. Of this church and dome De Quiney has most truly stated, that though nothing that ean be called classic is to be noticed about it, yet it contains nothing in dissonanee with the principles of the art. It is a whole in which richness and elegance are eombined; in which lightness and solidity are well balanced; in which unity is not injured by variety; and whose general effect silences the critie, bowever he may be disposed to find fault. In Versailles, the taste which we have above noticed as introduced by De Brosse is prevalent; but the interior of the chapel displays to great advantage the great genius of Mansart, and shows that he was not incapable of the most refined elegance.
360. Jacques Ange Gabriel was the relation and worthy pupil of Mansart. The eulonnades to the Garde Menble in the Place Louis X V. (now the Place de la Concorde) exhibit a style which, with the exception only of Perrault's façade of the Louvre, not all the patronage of Louis X IV, was capable of eliciting. To Gabriel almost, if not perhaps as wuch as to Perrant, the nation is under a deht of gratitude for the contirmation of good taste in France. He has been accused of pirating the Louvre; but retlection and comparison will show that there is no real ground for such an accusation. The difference between the two works is extremely wide. The basement of Perrault is a wall pierced with windows; that of Gabriel is an arcade: in the upper stories the eolumns are not coupled, which is the case at the Lourre. From these circumstances alone the character of the two works is so different, that it is quite unnecessary to enter into other detail. Architecture in lirance at this period, the commencement of the cighteenth century, was in a pabny state, and has never before or since risen to higher excellence; though the lirench are still, from the superior method of cultivating the art there, and the great encouragement it receives, the first architects in Europe. The great extent of the I'laee Louis X V. (744 ft. long, and 522 broal) is injurious to the effect of the Garde Menble, which, as the reader will recollect, is rather two palaces than onc. Its basement is perhaps, speaking without reference to the rast area in front of it, too bigh, and the intercolumniations too wide, for the order (Corinthian) employed; but it is easier to find fault than to do equally well; and we cannot leave the subject without a dectaration that we never pass away from its beauties without a wish to return and contemplate their extreme elegance. They are to us of that class to which Ciccro's expression may be well applied: "pernoctant nobisemn, peregrinantur." Gabriel died in 1742. Antoine, the arehitect of the Mint at Paris, was another of the choice spi.its of the period: he continued the refined style whereof we are speaking; and thongh the age of Louis X V. was not destined to witness the erection of such stupendous ellifices as that of Louis le Grand, it displayed a purer and far better taste. This architect was the first who employed in his country the Grecian Dorie, whieh had then bceome known, though not perfectly, by the work of Le Roy. Antoine used it at L'Hospice de la Charité; and De Quiney cites it as a circumstance which ealled forth the approbation of people of taste, and observes that the attempt wou'd have attracted more followers, if, instead of exciting the emulation of architects in the study of it and its judicious application to monuments, to which the character of the order is suitable, fashion had not applied it to the most vulgar and insignificant purposes. Antoine lived into the present century, having died in 1801, at the age of 68 .
361. Louis XV., during a dangerons ilness at Met\%, is reported to have made a vow which led to the ercetion of the celehrated church of St. Genevicive, or, as it has since beent called, the Pantheon: the largest modern chureh in France, and second to none in simplicity,
egance, and variety. Another cause may, however, with as much probability, be assigned; e inadequacy of aecommodation for the religions wants of the population, and especially that appertaining to the patroness Saint of Paris. Many projects had been presented

P4. 17%

tik. lix.
for the purpose, but that of Soufflot received the preference. This talented artist, who was born in 1713, at lrancy near Auxerre, after passing some time in Italy, had been settled at lyons, and there met with considerable and deserved employment. In that city the great hospital had decerve:lly brought him into notice, for his knowledge in providing against the miseries of mankind, not less than had his beautiful theatre for providing for its pleasures. The plan (fig. 177.) of the Pantheon (so it is now usually called) is a species of Greek cross. The interior is divided transversely into two equal parts on each side, and a central one much larger, by icolated columns, instead of the plans previously in use of arcales decorated with pilasters. It is however, strictly, in its internal as well as external character, to be classecl as belonging to the Venctian school. lts west front and transverse section are given in fig. 178. The light effect, whech is so striking in the interior, produced by the employment of columns instead of the old system of arcades, is extremely pleasing, though, as has often been truly urged, they have no office to perform. Objections, moreover, have been taken to the wide intercolumniations of the portico, and to some other parts, which here it is unnecessary to particularise. It is, notwithstanding all that has been written against it, most certainly entitled to take the fourth place of the modern great churches in Lurope; which are, Santa Maria del Fiore at Florence, St. Peter's at Roine, St. Paul's at London, and then the church in question. Its greatest fault is instability about the piers of the cupola, - the old fanlt, from which not one is altogether free, and one which gave Souffut so much uneasiness that it is said to have hastened his death. This failure was afterwards rectified by his celebrated pupil Rondelet, who, with consummate skill, imparted perfect and lasting security to the edifice.
362. We ought perhaps before to have mentioned the name of Servandoni, as eminently influencing, in his day, the taste of Paris, which, as the world knows, is that of France. A Florentine by birth, and a scholar of the celebrated Pannini. he, in 1731, exhibited a model for the façade of St. Sulpice ; and after a year's probation before the public, it was adopted. On an extended front of 196 ft . he succeeded in imparting to it, as a whole, an air of great majesty, and of giving to the church a porch of vast extent without injury to the general effect. Servandoni was very extensively employed: his style was that of the Venetian school; and his death occurred in 1766.
363. To write an history of the modern architecture of France, and at the same time to do its professors justice, would require a much larger volume than that under our pen: we profess to give no more than a bird's-eye view of it, so as to bring the reader generally acquainted with its progress; and it is not without much regret that we propose closing our account of it in the person of Jacques Gondoum, who died at Paris in 1818, at the age of eighty-one; an architect whose veneration for the works of Palladio was so unbounded, that for the study of them exclusively he performed a second journey into Italy: a strange infatuation in a man of great acquirements, if the opinions of some of onr anonymous critics are of any value. When Gondouin was employed, the heavy style of Louis XIV. had passed away, and the suitable and elegant style of the Venetian school had been adopted. The pupils of Blondel, among whom he was eminent, were stimulated by the patronage of the whole capital; and even in the present day, so far eapable are its inhabitants of appreciating the merits of an architect, regret as we may to record it, that it is from that circun stance alone likely to maintain its superiority over all others in Europe. The most celebrated work of Gondouin is the Eeole de Médecine, whose amphitheatre for leetures, capable of holding 1200 persons, is a model for all buildings of its elass, without at all entering on the great merits of the other parts of the building. He was one of those upon whom the effects of the French Revolution fell with particular force, though, upon the re-establishment of order, he in some measure rccovered his station in society. He was entrusted with the erection of the column in the Place Vendome, but merely as respected its preparation for the sculpture.
364. In Paris is to be found some of the most beautiful street architecture in Europe. That of Rome and Florence is certainly of a very high class, and exhibits some examples which will prohably never be equalled. These, moreover, have associations attached to them which spread a charm over their existence of which it is not eary to divest oue's self: and which, perhaps, contain some of the ingredients which enter into our high admiration of them. But, on a great and general seale, the most beautiful street arehiteeture in Europe is to be found in Paris; and so great in this respect do we consider that city, that we are certain the education of an arehitect is far fiom complete if he be not intimately acquainted with the examples it affords. In that, as in mont of the cities of Europe, the requirements of the shopkeeper interfere with the first principles of the art; but in this the riolation of the rules of sound building, so as to connect them with his accommodation, are less felt by the critical observer than elsewhere. The spirit whieh seems to actuate the livench mation is to produce works which may properly be called monumental; in this country, the government has never applied itself to a single work worthy of that epithet. The principal eare of an English minister seems to be that of keeping his place as long as the nation will endure him, Commerce and politics are the only subjects which such a personage
seems to think worthy his attention, and the scienees have only been patronised by the government in proportion to their bearing on those two absorbing points. But we shatl perhaps revert to this in the following chapter.

Sect. XVIII.

GEMMAN ARCHITECTURE.

365. No country exhibits more early, beautiful, or interesting speeinens of Romanesque and pointed architecture, than Germany. The Rhine, and the southern parts of it which were under the sway of the Romans, are those, as we have already observed, in which these are principally to be found. Their history, however, has, sufficiently for general purposes, been traced under the seetions of Byzantine or Romavesque and I'ointed Arehiteeture. The revival of the arts in Italy, as it did in otber nations, here equally brought in the styles of the ltalian sehools, whieh, as elsewhere throughout Europe, have lasted to the present period; and will eertainly endure until some general change in the habits of its different nations renders necessary or justifies some other style as a worthy suecessor to them. On this to speculate were a waste of time; though there be some, and those men of alent, who contemplate a millemium of arehitecture, by making every thing in style dependent on the new materials (cast-iron for instance) which it is now the practice to employ, and often, it must be conceded, most usefully. Whilst the pointed style lasted in Europe, Italy was oceasionally indebted to the Germans for an architeet. Thus, notwithstanding the denial of Milizia, Lapo, a German arebitect, was employed in the early stages of construction of Santa Maria del Fiore; and it is well authenticated tbat Zamodia a German, Annex of Friburg, and Ulric of Ulim, were employed on the eatbedral at Milan. Franehetti (Storiu Descrizione del Dtomo di Miluno, 4to. Milan, 1821) asserts, tbat the first of these was engaged on it about 1391, the period of the golden age of pointed architecture in Germany; and the reputation of the Germans in this respect was at that time so great, that John and Simon of Cologne were aetually earried into Spain for the purpose of designing and earrying into execution the eatbedral at Burgos. It is at this period difficult to assign the cause of the nation so completely dropping astern, to use a nautical phrase, in the fine rits, and more partieularly architecture. It was most probably the result of their political condition, and the eonsequent relative position they oecupied in the affairs of Europe. But, whatever the eause, it is, in faet, most eertain, that from the revival of the arts in Italy Intil near the end of the 18 th eentury, Germany furnishes the names of few, if any, arehitects who are known begond the limits of the country. Italy during tbe time in question seems :o have repaid the nation for the early assistance received from them. At Fulda and Vienna, Carlo Fontana was extensively engaged; Guarini on the church of Santa Anna at lrague; Scamozzi on the eathedral at Salaburg; Andrew Pozzo, who died at Vienna in 1709, was liere employed on several of the ehurches: Martinelli of Lueea was anotber of the number hat were solicited to decorate the country with their works. Fischers, indeed, was a nafive; but his works, and especially his palace at Sehönbrun, begun in 1696 for the Emperor loseph, though not altogether withont merit, is but a repetition of the extravaganees of the chool of Borromini ; and equally so was the palace built by the same artist for l'rince Lugene at Vienna, in 1711. (Essai ${ }^{\text {LAALChiteture Mistorique, Leipsig, 1725.) Pietro }}$ Cart, who buitt the bridge at Nuremberg, Nemman, Bott, and Eosander of Prussia, are the only native architeets of the period recorded by Milizia.
366. But it was not only from Italy that the Germans drew their arehiteets: France contributed a supply to the country in the persons of Blondel, who was there much employed towards the end of the 17 th century; Robert de Cotte and Boffrand in the first part of that following. It is therefore, from what has been stated, impossible to give any independent account of the architecture of Germany. The Germans bad none. Whoso were their architects, they were the followers of a style which contemporaneously existed in France and Italy even down to the bizarreries of that which prevailed in the time of Louis XV.; and it is a very enrions fact, that whitst Germany was seeking the aid of arehitects from lirance and Italy, England conld boast of professors of the art whose fame will endure white printing remains to spread knowledge amongst mankind. During the last ecutury, Germany appears to have risen in this respect from its slumber, and to have produced some men of considerable architectural abilities. Of these was Carl Gotthard Langh:ms who was born in 1732, and built the celehrated Brandenburg gate at Berlin, which, though formed much on the model of the l'ropylea at Athens, and therelore on the *eore of originality not entitled to that praise which has been so unsparingly exhansted uron it, proves that an vast change hard begin in Germany as respeeted matters of taste in ar-
chitecture. Copies prove sad poverty of imagination on the part of the artist copying ; and all, therefore, that ean be said in favour of such an expedient as that under considerations is, that better forms being submitted in this example to the Germans, it created a dawn of taste to which they had long been strangers. The inaceurate work of Le Roy, whieh had preceded that of Stuart and Revett on the antiquities of Athens, was the means through which Langhans wrought and tried his successful experiment. In lirance, as we have already ohserved, Antoine had tried the employment of the Grecian Dorie at Paris, but withont the impression produced by Langhans. This arehitect died at berlin in 1808 , and is, perbaps, entitled to be eonsidered as the father of good architecture in Germany, where lee met the highest patronage and encouragement. Knoblesdorff, who died in 1753. had, it must be allowed, prepared in sume measure the change which was effected; but weither he nor his suceessor are known in the world of art beyond the contines of their own country. The names of Bonmann, Goutard, Naumann, and others of mueh merit oecur to us; but the examples which they have left are not of the class that justify rpecimens for presentation to the reader in a general work of this nature. None of them rise so high as to be put in eompetition with the examples of the Freneh school; and from the circumstance of the prineipal wonks of Germany at Munich, Berlin, \&e. having been executed by artists still living, we feel preeladed here from allusion to them; because, if we were to enter on an examination of them, we mint detail their defects as well as their beauties. An extraordinary species of bigotry has laid hold on some in relation to them, which time will $t \in m p e r$; and the world, as it always does, will ultimately eome to a right judgment of the rank they are entitled to oeeupy as works of art. In the other branches of the arts the Germans are lising fiast; but there is withal an affectation of the works of the middle ages in their produetions, which, impressed as they are with great beauties, are not sufficiently pure to prognostieate the establishment of schools which will sweep all b'fore them, as did those of Italy.

Sect. XIX.

SPANISH AND PORIUGUESE AllClllectuke.

:167. What has been said in the preceding seetion on the arehitecture of Germany is equally applicable to that of Spain and Portugal, whose architects were educated, if not in the sehools of Italy, yet on the prineiples that guided them. Still, the pre-eminence in arehiteeture on the revival of the arts must be given to these countries over the contemporameons buildings erected in Germany, and more especiatly to those of Spain. Under Ferdinand and Isahella, hoth greatly attached to the fine arts, the pointed style gave way to the architecture then in esteem in Italy; and Juan de Ohotzaga, a mative of Biscay, \dot{i}, we believe, entitled to the merit of having first introdaced it abont 1400 in the design for the cathedral of Huesca in Aragon. Pedro de Gumiel is supposed to have been the arehitect of Sinta Engracia at Zarısossa, 1476-1517, but is known as the artint who designed the eollege of S. Ildefonso at A!eata. a splendid building in a mixed and impure siyle, commenced Mareh 14, 1498. In this the orders were employed. The edifice consists of three courts the firnt Doric. with an arcade and two orders above, in the lower whereof the Doric was repeated, and the upper was Ionie; the second cont has thirti-two Composite columns, with arcades; and the third is designed with thirtysix lonie columos, heyond which is the theatre. The church is of the Ionic order, and contains the monnment of Cardinal Ximenes, the founder, eonsidered one of the finest in Spain. 'The names of Juan, Alonso, and Fra Juan d'Escobedo eontinue in their works the history of the art in Spain, wherein a style between the ponted and Italian prevailed during the gre ter part of the reign of Charles V. Juan Gil de Hontanon, at the end of the 15 th century, appears in Spain as an architeet of much celebrity. He made a design for the cat'iedral it Salamanca, which was submitted to the jusgment of four of the then nost eminent architects of the eountry-Alonso de Covarruhias, the arehitect of the church at loledo; Mae tro Viaippo of that of Seville; with Juan di Badajoz of that of lurgos. This cathedral at Silamanca is 378 ft . long, and has a nave and two serits of aisles on each side. The nave is 130 ft . high, and 50 ft . wide. Rodrigo Gil de Hontanon, con of the above-named architect, had the exeeution of this chureh, which was eommenced in 1513. Juan Gil de Hontanon eommenced 1522-25 the cathedral of Segovia, very similar to that of Salananca, exeept that it is more simple, and in a purer style. It is equal in suze and grandeur to those of Toledo and Seville. Between 1560 and 1577 it was continued by Rodrigo Gil; then carried on by Franciseo Campo Aguero, who died in 1660 ; to whom succeeded F. Biadero, who died in 1678. Re.pecting Hontanon, Don Antonio lonz obeerves, in the loth volume of his Travels in Spuin, that he must have been a clever architect, and wall acquainted with the Greek and

Itoman styles which in his time were beginning to revive; but that, like many other artists. re was obliged in sone measure to humour the taste of those who employed him: he herefore adopted the Gothie style, without the ornaments and details. The efforts of thee ehitects of t is period were not confined altogether to church building; for in 1552 Pedro de Uria constracted a bridge at Almaraz over the Tagus, which may vie with the nost extraordinary works of that class. 'I'wo large pointed arches form the bridge, whith 580 ft . long, 25 ft . wide, and 134 ft . high. The opening of one of the arches is 150 ft ., Int of the other 119 ft . The piers are lofty towers, that in the centre standing on a high ack. An inscription gives the date of erection 1552, and imports that it was constructed the expense of the city of I 'lacentia.
368. Alonso de Covarrubias, the architect of the church of Toledo, seems to have use 1 " it a Gothic sort of style, though when he flourished the Roman orders had become known and used. This Alonso was in considerable employ, as was his assistant, Dieco Siloe, who built the church at Granada, with the inonastery and church of San Girolamo 11 that eity. This cathedral has a mave and two aisles; and in it the Corinthian order, hough defective in height, is used. The cupola is well designed. Botll Siloe and his; naster loaded their buildings with sculptures to excess, from a seeming notion that beanty and richness were the same or inseparable. Alonzo Berruguctte was anather architect of he 16 th century who was deservedly employed. He went to Italy in I.500, there to ursue his studies in the arts of painting and sculpture as well as architecture, and was t Florence when Michael Angelo and Leonardo da Virci exhibited their cartoons. Le was the architect of Charles V.; and it is supposed that he designed the palace at Madrid, begun by Ifenry II., continued hy Henry III., and splendidly rebuilt by Charles V., but no longer in existence. Berruguctte crected the gate of Sin Martina, which is the principal one at 'roledo. It is of the Doric order, with the royal arms on he exterior, and a statue of Santa Leocadia in the interior. There are great simplicity and elegance in the composition of this work. 'The palace of Alcala, the residence of the rchbishop of Coledo, is attributed to hin; a huilding not wanting in magnificence, hough defective in its detail. Λ great portion of the cathedral of Cuença is said to be y lierrugutte; but not the façade, which was crected in 1699 by Josef de Arroyo, ana fterwards continued by Luis Arriag:. There is c:msiderable effect about the chister, which is well and ingenionsly decorated. This arehitect, it is thought, had some part in the Pardo, which was rehuilt in 1547; where are still allowed to remain,--notwithianding the dditions by l'hilip 11. of the miserable eastern and western façades-the porticnen of lonie columns, with their low stone arches. Though the windows are greatly too far apart.and oo sm: ill in the lower story, the stairs d ficult of iscent, yct, upon the whole, the editice s not ill arranged or exceuted. At the period whereof we here speak there was a proligious passion among the Spaniards for large screens and altars in the churches; in thes 2 le taste of Berruguctte was most conspicuous. In the use of the orders, which lie fully inderstood, he was remarkably fond of employing them over one another. The canliedral a Seville was principally rebuilt hy Fernan Ruiz, who was much angiged in the eny, and evperially on enlarging ar raising the well known tower ealled "Lal Giraldi." This ingular rdifes was hegun in the ilth century, the original idea of it heing given hy the relutect Geber, a native of Seville, to whom the invention of algebra is antributed; and dso the oesign of two other similar towers, one in Morocco, and the other at R latat. The tower of which we are now speaking was at first 2.50 ft . high, and 50 It . wide, and was without diminotion as it rose. The walls are 8 ft. thick of squared stones from the evel of the pavement; the rest for 87 ft , is of larick. In the eentie of this tower is a Inaller one, the interval between the two towers being 23 ft ., which serves for the ascent ne so comenient that two persons abreast can monnt it on horselack. The eentral tower loes no: diminish; but as the ediliee rises in height the walls gather aver, so as to allow the passage of only one person. Upan the Mours of Seville negotiating their surventer, one of the conditions of it was, that his tower should not be destroyed; to which Dun Alfonso, the elfest son of the hing, answered, that if a portion of it were tonched, not man in Seville sloould survive. In the earthquake of 1395 it was partially injured, and maned in the state of inisfortane that then ocearred until 1568 , when, hy the authorities, fiernan Ruiz received the commission to raise it 100 ft . higher. 'Ihis height he divided into threce parts, crowning it with a small cupola or lantern: the linst division of his aldition is of equal thickness with the tower on a plinth, whene six pilasters rise on eath tasale, betucen which are fite windows, aver which is an cutablatore surnumbed ly lablnstrades; she eecond division is lower, with the same ornament; and the third is oftagonal with pilabters, over which the cupola rises, erowned with a hronze stathe of Fanti, vilgarly ealled "Lat Giralda." Ruiz by this work angmented his fame ; und not-
 preserved. We lase, howev-r, to apologise to our readers far this, which is ancedote, and thet ynice in order to he placed leere, becanse paitly eonnected with a period we have long since left. Pwormlly speaking, the tower of "La Girmba" is a splendid ohjeet, and the
apology was, perhaps, unnecessary. The age of Charles V. in Spain was Augustan for its arclitecture. By his mandate the palace was raised at Granada, a work of Machuca, another architeet of this period. The principal façade is rustic, with three large gates, and eight Dorie columns on pedestals sculptured with historical bassi-rilievi. The seeond stury is Lonie with eight columns, over which are pilasters. The internal vestihule is on a cireular plan, with a portico and gallery on columns of the same order. Milizia, from whom we have extracted all our notices on the architecture of Spain in this age, regrets that the arches spring from the columns. Though we cannot commend such a practice, we should be sorry, in certain cases, to see a veto put upon it, because the practice is occasionally compatible with fine effect.
309. Towards the end of the sixteenth century appears in Spain an artist, by name Domingo Teotocopuli, by birth a Grecian, and a disciple of Tiziano Veeelli. He became, under his master. a good painter; but is known in Spain rather as a celebrated archilect in his day. At Madrid, and in Toledo, he executed nany warks of merit; but his grand work was the church and monastery of the Beruardine monks of San Dumingo di Silos, in which he employed his talents in architecture, painting. and sculpture, the whole being from his hand.
370. Garzia d'Emere and Bartolomé di Bustaunante, the later cspecially, would require an extended notice in the hastory of the art in Spain, if our limits permitted us to enter on their merits. The latter was the architeet of the hospital of San Juan Bautista, founded by its arehbishop in 1545, near Toledo. We should continue the account if buildings existed from which features different from the contenaporaneous works in the rest of Europe could be extracted; but the fact is, that the progress of the art has already been told in other countries, and its success in Spain would be but a repetition in minor degree of what has already been said. Still we consider some notice must be takell of J uan Bautista of Toledo, who died in 1567, an aretitect and sculptor of surpassing merit; and as he was the architect who gave the designs for the Eseurial, we shall not apologise for transcribing the account of him given by Milizia.
371. Having studied at Rome, he was invited to Naples by Don Pedro di Toledo, then viceroy there, who employed him as architect to the Emperor Charles V. in many important works in that city, whence he was called by Philip II, to becone architect of all the royal works in Spain, and especially of the Escurial, which that monach was anxious to erect in the most magnificent style. For this purpose he left Naples, and in 1563 commenced, upon his own design, the Escurial, which he continued to superintend till his death in 1567. In this great undertaking he was suecceded by Juan de Herrera, his pupil, who finished it. Those, therefore, says the author whom we quote, that attribute this work to Luis de Fox, to Bramante, to Vignola. and wher architects who may bave given designs for it , are unacquainued with the subject. The wonders related of the Escurial, as to the number of its doors and windows, are not tales to be here recounted: and the attempt, indeed, at exaggeration is vastly silly, becaue it is on so grand a scale that the simple truth imparts quite sufficient knowledge for conveying an idea of its splendour. The motives of Philip II. in founding this structure were twofold.-first, the injunction of his predecessor Charles V., who was desirons of constructing a tomb for the royal family of Spain; and secondly, of erecting an edifice of colossal dimensions 10 commemorate the famous victory of S. Quintin, achieved on the festival of San Larenzo, the saint to whose interposition the king attributed his success. The situation chosen to receive it was beautul. It is at the distance of a few miles from Madrid, at the foot of the Carpesitani mountains, by which the two Castiles are divided. The plan of the edifice is said to resemble a gridiron, the instrument of martyrdom of San Lorenzo, of which the handle is the projection in the eastern façade; we confess, however, we have some difficulty in tracing the resemblance. It is divided internally into fifieen courts, varying considerably in size; many of them are decorated with porticoes and galleries, and contain in all upwards of eighy fountains. The materials are granite very well wrought; the roofs partly covered with lead and partly with slate. The cupola of the church is of stone. The four angles of the wain plan are distinguished by towers r.sing four stories, besides those in the roofs, alove the gencral tronts; besides which there are four others flanking the cupola. Parts of the bulding are in much better taste than others; but such an enormous pile of building cannot be otherwise than imposing, more especially, too, it there be anything like symmetry and regularity in the parts. 'Cowards the west the principal façade is $i 40$ feet long and 60 leet in height. The towers at the angles just mentioned rise to the height of 200 feet. This façade, like the others, has five sturies of windows, which necessarily of themselves, from the way in which they are arranged, have the effect of cutting it up iuto minute divisions. The centrd compartment of it is 140 feet in lenghth, and consists of two orders of half eolumns; the lower has eight semi-columns, which are Doric standing ou a plinth, and in the central intercolumniation is the door; the other intercolumniations are filled with niches and windows in three storics. The upper order consists of four Ionic columns on pedestals, and is surnounted by a pediment. This upper
order has two stories of nienes in its intercolumniations. in the tipper central one whereof is placed the statue of San Lorenzo. The two minor doors in this façade are atso made eatures in the design. The façade towards the east has the projecting landle of the gridfron to which we have alluded, in which part is contained the palace; and west ward of it the great chapel or church, with its cupola rising above the mass, to complete the composition. Cowards the south the length is 580 ft ., similar to the length on the north. On entering from the central gate of the western façade the monastery is divided from the college by a large vestibulc, from which three large arched openings lead into the king's court : this is 230 ft . long, and 136 ft . wide, surrounded by buildings of five storics, and ornamented with pilasters. At the castern end of this court is the entrance to the church, over whose vestibule or pronaos are the libraries. To it a flight of seven steps crosses the whole width of the court; and from the landing rises a Doric areaded porch of five openings, three whereof belong to the central compartment and lead to the church, the other two leading (t) the monastery and the college. Behind the porch the façade of the clutrch rises, and is Hanked hy two towers, which respectively belong to the monastery and college, and are nrmmented above the general height of the buildinges of the court with two orders of pilasters, being terminated by small cupolas. The interior of the chureh is Dorie, and is in plan a Greek cross. . The mave is 53 ft . and the aisles are 30 ft . wide. Its whole length is 364 ft ., its width 230, and height 170 . From the intersection of the nave and transepts the cupola rises, 66 ft . in diameter, and 330 ft . in height from the pavement to the cross. Its exterior is composed with a square tambour or drmen, if it may be so called, from whieh the order rises. The choir is only 30 ft . high, and its length but 60 ft . In point of taste and dimensions, the church is inferior to several in other parts of Europe. The presbytery, we should have stated, is raised, so as to form almost another church, and seemingly without relation to the principal one. The staircase which leads to the Pantheon, and which possesses considerable magnificence, is placed between the church and the antefacristy: we are not aware why this name has been given to the sepulchre of the kings of Spain. It is nearly under the high altar. 'The ehamber appropriated to the reception of he kings is 36 ft . diameter, and 38 ft . in height, richly encrusted with various mables and netals, and ornamented with sixteen double Corinthian pilasters on pedestals, arranged octagonally; and between them are recesses, with the sarcoplagi, amounting to twenty-six, lat is, four in each of six sides, and two over the entrance which faces the altar of the leurrection. This is a fair specimen of the style which prevailed in Spain under the reigns if lhilip IV. and Charles II. The college, the seminary, and the royal palace occupy the est of the buitding. In 1773 , many additions were made to the buildings about the Esarial for the Infants Don Antonio and Don Gabriele, ly Villaneuva, an Italian arehitect, ind by them the palace was muchimproved. Juan de IIe-rera, who died in 1597 , besides is employment at the buiding just described, contributed greatly to the advancement of he art by the execution of the many commissions with which he was entrustel. I'lebridge of Serovia, at Madrid. is by him; as is the royal pleasure-house at Aranjuez, begun under Philip II. and finished by Charles III.,-a work which. though far from pure, exhibis reat architectural ability. His successor at the Escurial was Francesco de Mora, by shom, at Madrid, is the Palıce de los Consejos, the most splendid edifiee which that apital can boast Inste:d of a central doorway, it has two at its flanks, of the Doric ader, with appropriate decorations. In the beqiming of the sevententh contury, the ereat square of Madrid was erected after the designs of Juan Gomez de Mora, and is adnirable for is grandeur and srmmetry. This architect built at Aleala the church and ollege of the Jesuits, which, Milizia says, is a magnificent and well-proportiond edifice. t is of two orders, and the material employed in the façade is granite. 'The royal convent f the Angustins, at Madrid. is also attributen to him.

37\%. Early in the cigheenth century Pelipe Ivara, or Juvara, a native of Messina, arl very great employ, we mightamost say thron:hont Europe. He became the pupil f l'ontara, and afterwards, on his visiting Spain, seems to have estahlished a school there. Ie built the façade of the royal palace of S. Itdefinso, looking towards the gandens. vara died in 173.5 , at Madrid, whither he had been invited by Philip V. to relmild the alace, which had been consumed by fire. The work was afterwards entrusted to Sacehetti, pupil of I vara. It is on a very large scale, and was must solidly coustructed.
373. We have thought itnecestary to give the ahove succinet account of the arehitecture f Spain, which did not, however, produce, after the revival of the arts in liturope, any orks, except in respect of dimensions, comparahle with those of Italy. The abuses in erm are almost universally carried to an extent searedy credible; it is, therefore, useless 3 refer the reader or student to them as models, It almost seems as if from Italy pure relitecoce had not had tine to spreat itself before it became tinctured with the corrupons of Burromini ; which, not maly in Spain and l'urtugal, but throughout Germany, and en France, were diffused with incredible rapidity. Idagno and Cean- Burmuder,
 lccount of Gothic Architecture in Sprin, 850., 1865.

Sectr. XX.

RUSSIAN ARCIITECTUKE.

374. We scarcely know whether we are justified in making a sloort section with this beading, inasinuch as there is not known to us, up to the end of the eightecnth century, the name of a single Russian arehitect. English, French, Italian, and German artists lave been cmployed in the decoration of the city of Petersburg, though we believe that the nation is now begimning to produce persons capable of conducting their public works. Russia has received all its improvemenc from abroad, and has used every exertion to communicate it to an uncivilised people.
375. The ecclesiastical architecture of Russia is of course coeval with the introduction of Christianity into the country, which was not earlier than the time of Vladimir the Great, although the I'rincess Olga had been baptized at Constantinople as early as the year 964. Vhatimir, to display his zeal in behalf of Christianity, had a church, supposed to be the first built by lim, erected at Cherson ; a year after which the church of St. Basil, which, as well as the first named, was of timber, was erected under his command. 'This prince also built a church at Kief, where, it is said, there were already at the time 500 churches. After Vladimir, Prince Yaroslaf appears to have bestowed great attention on the erection of ceclesiastical edifices. At Kief he founded a chureh, dedicated to St. Sophia, and at Novogorod another to the same saint : these partly exist in the present day. l3y him also were reared the convents of St. George and St. Irene. The celcbrated convent of I'etchosky, at Kief, was erected in 1075, subsequent to which period the Russian metropolitans continued subject to those of Constantinople till the capture of that city by Mahomet the Second. Between this last capital and Kief the bonds of amity of their rulers were drawn closer by many intermarriages; but in the year 1124 a fire desolated the latter city, which must have risen into great importance, inasmuch as 600 churches and monasteries were destroyed in the conflagration. Afterwards, again, in the civil war under Yisaslaf, Kief was taken and fired; a calamity to which it was again subject at the same period that Constantinople was taken by the Venetians. After this Kief never again recovered its macient magnificence. In 1154, at which period Moseow is first mentioned in listory, it was but an insignificant village. It received great additions under Daniel of Moseow; and in 1304, under John Daniclowitz, it became the capital of the empire. On the 4 th of August, 1326, the first stone was laid of a church in the Kremlin there in honour of the Assumption of the Virgin. The palace of the Kremhin was a timber structure until the reign of Denaetri Donskoi, when it was reconstructed of stone. On the capture of Constantinople by Mahmet the Second, the Rnssian church ceased to be dependent on that of Constantinople. The palace of the Kremin, known by the name of the granite palace, rose in 1487; and, in twelve ycars afterwards, the Belvedere palace was raised. Ivan IV., whose sway was of extended duration, was a great patron of the arts; his decease took place circa 1584 . He rencwed the laws relative to the paintings in the new churches, whence arises their so close rescmblance to each other that it is difficult to judge of the epochs of their execution. The celebrated clock tower Ivan Valiki, at the Kremlin, was erected by the Czar Boris, in 1600, at which time Moscow contained 400 churches, whereof 35 stood in the Kremlin alone. After the time of Peter the Great, a ehange of style was introduced, (1696-1725).
376. The Church of the Assumption above mentioned, as respects the plan, is an oblong square divided; the vaulting whereof is supported by six columns in the interior. Though at the first glance it be not perceived, the arrangement of the cupolas soon points to the form of a Greek cross. In the earlier ehurches the plan was a square, with a porch in front of it ; but, in the Church of the Assumption, the porch is a portion of the chureh, the arches of the cupolas being placed in the same way as if the church were of the ancient form. 'The six columns just mentioned divide the church into four parts, - from edst to west, and then from north to south. At the eastern sides are three apsides, divided by the wilth of a column, the middle one being of larger dimensions than the other two; all arrangement which prevails in most of the Greek churehes. The apsides contain altars, which are frequent, except in the small chapels. The altar in the Greek church is not exposed to public view; it is concealed or covered by the iconostasis (image-bearer), a very large screen, which, from occupying the whole width of the chureh, divides it into two parts. This screen has a central principal and two side smaller doors; behind which latter, on each side, stands a second and smaller iconostasis, of the width only of the smaller apsis, but whose plan with three doors and an altar behind is similar to the great one. This was the distribution in the early churches; but, in the more modern ones, there are, at nearly the extremity of the edifice, three distinct iconostases. The place for the choristers is on each side in front of the iconostasis, between its principal and side doors. The principal cupoie rises in front of the iconostasis; and, in cathedral churches, at the foot of the apsis on the left a canopy is placed for the emperor, epposite whereto is one for the metropolitan.

There is generally one principal and four subordinate cupolas round it, which stand on the four feet of the Greek cross. The iconostasis is a principal object in every clurch. It is ssually in fonr or five horizontal compartments, each containing an unequal number of pictures of saints painted on tablets or long square panels, whose places are fixed with great recision. In the first story, if we may so call it, are the three doors; the centre one, being n two foldings, is decorated with the subject of the Annunciation, accompanied with the neads of the four Evangelists or their cmblems. To the right of the door is a picture of Christ, and of the Madonna on the left. To the right of the Christ is the saint or festival of the church, after which the doors are inserted. Above the doors, on the left hand, is slaced a Grcek cross; on the right hand the cross of Moses, - as symbols of the Old and New Testaments. The paintings are all on a ground of gold. In the middle of the second itory is Christ on a throne; on the right Saint John the Baptist ; on the left the Madonna without Child; then, on each side, two archangels and six apostles. In the third story or corizontal compartment, the Madona is introduced with the Infant on her knees, surounded on each side by the prophets. In the fourth story is painted God the Father on throne, with the Infant Jesus, surrounded on each side by patriarchs of the church. Occasionally a fifth story appears, upon which is painted the history or Passion of our Baviour. Paintings on a gold ground abound in the other parts of the church. The xteriors of these churches are extremely simple; cornices or other horizontal crownings re not to found, but the coverings follow the cylindrical forms of the arches to which they are the extradoses, and are variously paintcd. The Russian churches built in the elevent h_{1} entury, which from the number of their cupolas resemble, and indeed were imitated from hose of the East, give a peculiar effect to the architecture. The forms of these cupolas re varied, but they generally stand on an octagonal tambour; some are hemispherical, thers in curves ot contrary flexure, and a number of other figures.
377. The type of the Russian church, which is on plan a Greck cross, is to be found in janta Sophia at Constantinople. After the disputes between the Iconoclasts and Iconolaters, which, at the close of the seventh century, ended in the separation of the Eastern and V estern churches, sculpture of statues disappeared from the Greek chureh, statues of angels xeepted. Again, at this period, the altars on the side of the principal one were established, ot, as in the Catholic churches, at the extremities of the transepts; their place is always in niche or apsis. This arrangement is found in the churches of the eleventh, twelfth, and inteenth centuries, at Bari, Trani, Malfetta, Otranto, \&c., while the Grcek worship existed; and a similar disposition is even seen at Palermo and other places where the worship has een Catholic. In the Catholic churches a sacristy, for the use of the pricsts in robing, c., is always provided on the side of the church ; in the Greek church, however, the priests be themselves behind the iconostasis on the left of the altar, another altar being placed on e right for the consccration of the elements ; and this arrangement exists in the present day. hee Greek church has no gynxceum, or separate place for the women. - For the above we re indebted to the researches of M. Hallmann, an ingenious architect of Hanover.
378. It is in Saint Petershurg principally that we are to look for edifices which deserve ention. The foundation of the city was laid in 1703, by the Czar Peter, when he conructed a fort on an island in the Neva for defence against the Swedes. Buildings, both ublic and private, were soon erected; and the nobility and merchants being induced to ttle there, the place quickly assumed the appearance of a considerable city. In the reigus of atherine the Second and Alexander it reached a degree of great magnificence, from which has not declined, but has rather advanced. Magnitude, rather than beauty of form, marks te public buildings of the city. The church of our Lady of Kazan is of great dimensions: r which, and its fifty-six granite columns with bronze capitals, it has obtained nore celefity than it will acquire for the beauty of its composition. Some of the palaces in the ty are of colossal dimensions; that of Michailoff, built by Paul, is said to have cost ten illions of rubles. It was under the reign of l'eter the Great that the great change took ace in the national character of Russian chureh architecture by the introduction of the assical orders. The bulbons cupola, though at this period not entirely laid aside, fell into mparative disuse, being replaced by a green painted dome of which the Italian form was ce model. The tasteless eustom of painting the exteriors of buildings with bright and inmgruous colours was retained ; and, thongh well enough snited to the barbaric strnctures the Mnscovite e\%ars, it ill accorded with the purer style of laly. It is unnecessary furer to detain the reader by any obscrvations on the chiurches of the modern capital. In int of style or of history, they possess little or no interest for an English reader. To ose who wish to hecome better aequainted with the architecture of Russia, we recommend -eference to Geissler's Tableanx Pittoresrmes des Man's, \&e. des Rasses, Tartares, Mongolen, ant es Diatious de l'Empire Fusse; to I yall's Chararter of the Rusvians, \&c., 4to, 182?3; d Ricard de Montferrand's L'Eglise de S: Isaac, fol. 184.5. The essay by the late Halhnann above noticed, was printed in the Trunsactions of the lustitute of British chitects, 1812.

CHAP. III.

ARCIITECTURE OF BRITAIN.

Sect. I.

EARLY HOUSES AND AKCHTECTUKE OF THE BHITONS.

379. On the invasion of Britain by Julius Cassar, in the year 55 B . c., the inhabitants dwelt in houses resembling those of Ganl; and in Kent, and other southern parts of the island, their houses were more substantial and convenient than those in the north. Caves or earth houses seem to have been their original shelter; to which had preceded the wicker enclosure, whose sides were incrusted with elay. These were thatehed with straw. The wooden houses of the ancient Gauls and Britons were circular, with high tapering roofs, at whose summit was an aperture for the admission of light and emission of smoke. These, where the edifices were grander than ordinary, were placed upon foundations of stone. There is no instruction to be derived from pursuing this subject further. That the arts at the period in question scarcely existed, is quite certain; and Caractacus may, when carried prisoner to Rome, hive well expressed surprise that the lomans, who had such magnificent palaces of their own, should envy the wretched cahins of the Britons.
380. If the Britons were so uninformed in architecture as to be satisfied with such structures for their dwellings as we have named, it will hardly be contended that they were the builders of so stupendous a fabric as Stonehenge. On this subject we have already stated our opinion in Chap. 11 . From the distant period at which we helieve this and similar edifices to have been erected up to that of which we are speaking many centuries must have elapsed, during which the mechanical knowledge which was employed in their erection might have been lost, and indeed must have been, from the condition of the inhabiturts, of which mention has been made.
381. The homans, atter their invasion of the island, soon formed settlements and planted colonies; and it is not diffecult to imagine the change which took place in its architecture. The first lioman colony was at Camalodunum. 'lhis, when it was afterwards destroyed by the Britons in the great revolt under Boadicea, appears to have been a large and wellbinit town, adorned with statues, temples, theatres, and other public edifices. (Tacit. Anncl. lib. xiv. c. 32.) In the account given of the prodigies said to have happened at this place, and to have announced its approaching fall, it is mentioned that the statue of Victory fell down without any visible violence; in the hall of publie business, the confased murmurs of strangers were perceived, and dismal howlings were heard in the theatre. At Canalodunum the temple of Claudius was large enough to contain the whole garrison, who, after the destruction of the town, took refuge in it; and so strong was it, that they were enabled to hold out therein against the whole british army for a period of two days. London, however, exhibited a more striking example of the rapid progress of lomim architecture in Britain. At the time of the first Roman invasion it was little more than a british town or enclosed forest; and there seems to be ground for supposing that at the time of the second invasion, under Claudius, it was not much improved. But when, abont sixteen years after wards, it came into the possession of the Romans, it became a rich, populous, and beautiful city. Not only did the Romans raise a vast number of solid and magnificent structures for their own accommodation, but they tanght the arts to the britons, and thus civilised them. Agricola, of all the lioman governors, took means for that purpose. That they might become less and less attached to a roaming and unsettled life, and accustomed to a more agreeable mode of living, he took all opportunities of rendering then assistance in erecting houses and temples, and other public buildings. He did all in lis. power to excite an emulation amongst them ; so that at last they were not content without structures for ornament and pleasure, such as baths, porticoes, galleries, banqueting houses, \&c. From this time (A. n. 80) up " to the middle of the fourth century," says Ilemry (Hist. of Eng!and), " architecture, and all the arts immediately connceted with it, greatly flonrished in this island; and the same taste for erecting solid, convenient, and beautifil huildings which had long prevailed in Italy, was introduced into Britain. Every Roman colony and free city (of which there was a great number in this country) was a little Rome, encompassed with strong walls, adorned with temples, palaces, courts, halls, basilice, baths, markets, aqueducts, and many other fine buildings both for use and ornament The country every where abounded with well-built villages, towns, forts, and stations; and the whoie was defended by that high and strong wall, with its many towers and castles, whieh reached from the month of the river Tyue on the east to the Solvay Firth on the west,

This spirit of building, which was introduced and eneouraged by the Romans, so much mproved the tante and increased the number of the lbritish builders, that in the third century this island was fanous for the great number and excellence of its arehitects and artificers. When the Emperor Constantius, father of Constantine the Great, rebnilt the city of Autun in Gaul, A. 12. 296, he was ehiefly furnished with workmen from Britain, which (says Eunenius) very much abounded with the best artificers. It was about the end of the third century that in Britain, as well as all the other provinces of the Western empire, architecture began to deeline. It may have been that the building of Constantinople drew off the best artists; or that the time left for the peaceful eulture of the arts may have been broken in upon by the irruptions of invaders from the north. According to the Venerable Bede (Hist. Eccles., lib. i. c. 19.), the Britons had become so ignorant of the art before the final departure of the Romans that they, from want of masons, repaired the wall between the Forth and Clyde with sods instead of stone. Henry observes, however, on this, that "we eannot lay much stress on this testimony ; because it does not refer to the provincial l3ritons, but to those who lived beyond the Wall of Severus, where the Roman arts never much prevailed; and because the true reason of their repairing that wall with turf, and not with stone, was that it had been originally built in that mamer. ljesides, we are told by the same writer, in the sane place, that the provincial Britons, some time after this, with the assistance of one lioman legion, built a wall of solid stone, 8 ft . thick and 12 ft . high, from sea to sea."

382 . The departure of the Romans, and that of the fine arts whieh they had introdueed, were oceurrences of ahmost the same date. We must, however, reeollect that architecture was begining to decline at Rome itself before the departure in question. 'The inhabitants of the eountry who remained after the lionans were gone had not the skill nor eourage to defend the works with

Fic. 179.
RGMAN WAI.f, f,KICESHRA.
(7 ft. G Inn. to Roman Read, and 3 ft . Gits, more to bottom of picrs.) whieh the Romans had provided them ; and their towns and eities, therefore, were seized by invaders, who plundered and destroyed them, throwing down the noble structures with which the art and industry of the Romans had adorned the country. The vestiges of Roman architecture still remaining in Britain are pretty anmerous; but searcely any of them are of suffieient interest to be eonsidered as studies of Roman architeeture. Even in its lest days, noloody would study the works of art in the colomies in preterence to those in the parent state. We have here (fiy. 179.)
inserted a representation of a small portion of the Rhoman watl at lecicester, as an exampte of the construction. 'Temples, baths, and villas of the time have, moreover, been brought to light not mifrequently.
38,3. The arnival of the Saxons in this comery, A. b, 449, soon extinguished the very little that remained of the arts in the island. 'lhis people were totally ignorant of art; like the other nations of Germany, they had been accustomed to live in wretehed hovels fomed nut of the earth, or built of wood, and covered with reeds, straw, or the branehes of trees. It was not. indeed. mutil 200 years after their arrival that stone was employed by them for their buildings. 'Their cathedrals were built of timber. 'The Venerable Bede silys there was a time when not a stone chmed existed in all the land ; the enstom being to build them of wood. Finan, the seeond bishop of Lindisfarne, or Holy 1slimd, built a church in that inland, A. D. 6.52, for a eathedral, which yet was not of stone, int of wood, and covered with reeds; and so it continned till leadbert, the suceessor of St. ('uthbert, aud serenth bistop of Lindisfarne, took away the reeds, and covered it all over, both roof and wath, with sheets of lead. Of similar materials was the original cathedral at York, a clourch of atone being a very rare production, and nsatally dignified with some special historical record. Bede, for instanee, says of Pantimes, the first bishop of York, thint be built u ehurch of stone in the city of Lincoln, whase walls were standing when he wrote, though the soof had fallen down. Scotland, at the begiming of the eighth eentury, does not seem to luve had a single chureh of stone. Naitan, hing af the l'iets, in his litter to (ceolfred, mbent of Weremonth, A. B. 710 , intreats that some masons may be sent him to build a ehurch of stare in hio kinghom, in imitation of the Romans,
384. We here think it necessary to notice that we have thought proper, under this chapter, to preserve the periods, or rather styles of the periods of architecture, according to their ordinary arrangement in English works, namely, the Anglo-Saxon and Norman, in distinct sections. It is a matter of little importance to the reader how he acquires his knowledge, so that his author do not unnecessarily prolong the acquisition of it. Though, therefore, the Anglo-Saxon and Norman architecture are neither of them anything more than Romanesque or Byzantine, to which we lave appropriated rather a long section, we have here separated them into two distinct periods.
385. About the end of the seventh century masonry, as well as some other arts connected with it, was once more restored to England, by the exertions of IWilfred, bishop of York, and afterwards of Hexham, and of Benedict Biscop, the founder of the abbey of Weremouth. The former, who was an indefatigable builder, and one of the most munificent prelates of the seventh century, erected edifices, which were the admiration of the age, at Rinon, York, and Hexham. 'The cathedral of the latter place obtained great celebrity. Eddius, speaking of it (Vita Wilfridi), says, that Willidd "having ohtained a plot of ground at the place from Queen Etheldreda, he there founded a very magnificent church, and dedicated it to the blessed apostle St. Andrew. The plan of this holy structure appears to have been inspired by the spirit of God; a genius, therefore, superior to mine is wanting to describe it properly. Large and strong were the subterraneous buildings, and constrncted of the finest polished stones. How magnificent is the superstucture, with its lofty roof resting on many pillars, its long and lofty walls, its sublime towers, and winding stairs ! 'To sum all up, there is not on this side of the Alps so great and beautiful a work." Biseop was a zealous cotemporary and companion of Wilfiid, and had also a great love for the arts. He travelled into Italy no less than six times, chiefly for the purpose of collecting books and works of art, and of endeavouring to induce workmen to come over to England. An estate of some extent having been obtained by him from Ecgfrid, king of Northumberland, near the mouth of the river Were, he founded a monastery there in 674. Relative to this monastery of Weremouth, thus writes Bede : - "About a year after laying the foundations, Benedict passed over into France, and there collected a number of masons, whom he brought over with him to build the church of his monastery of stone, after the Roman manner, whereof he was a vast admirer. Such was his love for the apostle Peter, to wh:om the church was to be dedicated, that he stimulated the workmen so as to have mass celebrated in it but a little more than a year from its foundation. When the work was well advanced, he sent agents into France for the purpose of procuring, if possible, glass manufacturers, who at that time were not to be found in England, and of bringing them over to glaze the windows of his monastery and church. His agents were successful, having induced scveral artisans to accompany them. These not only executed the work assigned to them by Benedict, but gave instructions to the English in the art of making glass for windows, lamps, and other uses."
386. The Bishop Wilfrid, as we learn from William of Malmesbury, with the assistance of the artificers that had been hrought over, eflected great reparations in the cathedral at York, which was in a decayed and ruinous state. He restored the roof, and covered it with lead, cleansed and whited the walls, and put glass into the windows; for, before ine had introduced the glass makers, the windows of private dwellings as well as churches were filled with linen cloth, or with wooden lattices. It will be observed that the improvements we here mention were introduced by the bishops. Wilfrid and Biscop towards the end of the seventh century; but, from our ancient historians, it would appear that, in the cighth and ninth centuries, stone buildings were rarely met with, and, when erected, were objects of great admiration. The historian Ilenry observes, that " when Alfred, towards the end of the ninth century, formed the design of rebuilding his ruined cities, churelies, and monasteries, and of adorning his buildings with more magnificent structures, he was ohliged to bring many of his artifices from forcign courtries. Of these (as we are told by his friend Asser) he had an almost imnumerable multitude, collected from different nations; many of them the most excellent in their several arts. Nor is it the least praise of this illustrious prince, that he was the greatest builder and the best architect of the age in which he tlourished." His historian, who was an eyewitness of his works, speaks in the follawing strain of admiration of the number of his buildings, "What shall I say of the towns and cities which he repaired, and of others which he built from the foundation?" Henry contimes, - "Some of his buildings were also magnificent for that age, and of a new and singular construction ; particularly the monastery of Nthelingay. The chureh, however, was built only of wood; and it seems probahle that A lfred's buildings were, in general, more remarkable for their number and utility than for their grandeur; for there is sufficient evidence that, long after his time, almost all the Itouses in England, and the far
 wood and covered with thateh. Edgar the Peaceable, who flourished after the middle of the tenth century, observed (see William Malms. lib. ii. p. 32.), that, at his accession to the throne all the monasteries of England were in a ruinous condition, and consisted only
of rotten boards." The taste, however, of the Anglo-Saxons was not indulged in mag. nificent buildings; and the incursions of the Danes, who destroyed wherever they came, together with the unsettled state of the eountry, may account for their revenues being expended on mean and inconvenient houses.
387. Under the circumstances mentioncd, it may be safely inferred that the art was not in a very flourishing state in the other parts of the island. Indecd, the ancient Britons, after retiring to the mountains of Wales, appear to have lost it altogether; and, as the Honourable Daines Barrington (Acchoologia) has thought, it is very probable that few, if any, stone buildings existed in Wales previous to the time of Edward I. The chief palace, called the White Palace, of the kings of Wales, was constructed with white wands, whose bark was peeled off, whence its name was derived; and the price or penalty, by the laws of the country, for destroying the king's hall or palace, with its adjacent dormitory, kitchen, chapel, granary, bakehouse, storehouse, stable, and doghouse, was five pounds and eighty pence, equal, in quantity of silver, to sixteen pounds of our moncy, or $160 /$. The castles appear also to have been built of timber; for the vassals, upon whom fell the labour of building them, were required to bring with them no other tool than an axe.
388. Neither do the arts of building appear to have been better understood in Scotland at the former part of the period whereof we are speaking. The church built at Lindisfarre by its second bishop, Finan, in 652, was of wood, -more Scotorum; and it has already been mentioned that, for the stone ehurch which Naitan, king of the Picts, built in 710 , he was under the necessity of procuring his masons from Northumberland. In Scotland, there are still to be scen some stone buildings of very high antiquity, which Dr. Henry scems inclined to attribute to this period; we, however, are inclined to place them in an age faranterior, later (but not much so) than Stonchenge. We have never seen them, and therefore form our opinion from the description given in Gordon's Itinerarium Septentrionale, These buildings are all circular, though of two different kinds, so different from each other. that they seem to be the works of different ages and of different nations. The four principal ones are in a valley, called Glenbeg. Of a different period, too, we consider the circular towers which are found as well in Scotland as in Ireland. It is true that in both comntries these are found in the neighbourhood of chirches; but that does not the more convince us that they were connected with them.
389. Ducarel, in his Noman Antiquities, enumerates some of the churches in England which belong to the ages anterior to the Norman conquest.

HAHYHVETON CHUKCH. Among them are those of Stukely in Buckinghamshire, Barfreston(fig.180.) in Kent, and Avington in Berkshire. Other examples may be cited as at Waltham Abbey; the transept arehes at Southwell, Nottinghamshire; the nave of the abbey church at St. Alban's, Herts; tower at Clapham, Beds, \&c. The Anglo-Saxon wra, though it, perhaps, properly comprised the time between A. D. 600 to A. 1. 1066 ; that is. from the conversion of the Saxons to the Norman conquest, is not known with any thing approaching to certainty, from the reign of Edgar in 980 to the lastnamed event ; immediately previous to which Edward the Confessor had, during his lifetime, completed Westminster Abbey in a style then prevalent in Normandy, and with a magnificence far excceding any other then extant. No less than cighteen of the larger monasteries, all of them Benedietine, had been foundea by the Saxon hings in
their successive reigns; and it is evilent that the churches attached to them were the most decorated parts, as respeeted their architecture. 'The six principal of these were, St. Germain's, in Cornwall; Colchester, in Essex ; T'ewkesbury, in Gloucestershire ; St. Frideswide and St. Alban's, already mentioned; and Glas. tonbury, in Somersetshire. King selects the western portion of 'Tewhesbury as the grandest in England for effeet and extent. 'I'he characteristics of Anglo-Saxon Architecture are detailed in the following pardrraph.
390. Arches. - Always semicireular, often plain ; sometimes decorated with a variety of mouldings on the sofite as well as on the face, thic former being often entirely occupied by them. They are found double, triple, or quadruple, each spinging from two columns, and generally cased with a

[ig. 182. AHCH, CONVENTUAI, CHURCH, ELY.
without any buttresses externally. - Almost always open timbering. different moulding, which is frequently double, thus making six or eight eoncentric circles of them; and as each of them projects beyond that under it, a moulding is placed under then, generally the same as that used upon the face. (See fig. 181.) Columns. Single, cylindrical, hexagonal or octagonal, on square phinths; very few diameters in height. Shafts often ornamented with spiral or fluted carving, with lozenge, herring-bone, zigzag, or hatehed work. (Fig. 182.) Capitals.- Indented with fissures of different lengths and forms, and in different directions. 'The divisions thus formed are variously sloped off, or hollowed out towards the top. (See the two cxam. ples, fig. 183., from the conventual church at Ely.) Occasionally the eapitals have rude imitations of some member of a Grecian order, as in the erypt at Lastringham in Yorkshire, where volutes are used. (Frg. 184.) In their ornaments much varicty is displayed, but the opposite ones are mostly alike. Windows. - Semicircular-headed, extremely narrow in proportion to their height, being sometimes not more than six or eight inches wide to a height of more than three feet, and splayed or bevelled off on the inside through the whole thickness of the wall. Walls.- Of very great thickness, and Masonry of solid construction. Ceilings and Ronfs. In erypts, as at York, Winchester, and a few other

Fig. 18t. capital grusi iastiminemam

Fig. 183. two capitals, convenfual. church, bis.
places, vaulting is to be found. Ornaments, except in capitals, in arehes and on shafts of columns are very sparingly employed. (See Norman Ornaments also, in the following section on Norman Arehitecture, par. 397.) Plans. - Rectangular and parallelogrammic; being usually divide.l into a body and chancel, separated by an ornamented arch The chancel sometines of equal, and sometimes of less breadth than
the nave, and teminated towards the east in a semicirele. In larger churehes, there s a mave and two side aisles, the latter being divided from the former by ranks of coumns; but no transepts appear till towards the latter part of the period. "W: eher," obscrves Mr. Millers, in his account of Ely Cathedral, whose system we adopt, "their churches were ever higher than one tier of arches and a range of windows bove (as at Ely), may be questioned. Richard, prior of Hexham, speaks of three stories, which implies another tier of arches; but if he is rightly so understood, this seems an exeption from a general rule, for the church at Hexham is spoken of by all writers who nention it, as the glory of Saxon churches in the seventh century. Afterwards, about 970, ı considerable change took place; transepts came into general use, with a square tower at he intersection, rising but little above the roof, and chiefly used as a lantern to give light o that part of the church. Towers were also erected at the west end: the use of them oincides with the introduction of bells, at least of large and heavy ones." The churches ff this period were of small dimensions, and the comparative sizes of the Saxon and the Nornan churches which followed is almost a criterion of their age.
391. King (Munimenta Autiqua, vol. iv. p. 240.) gives three æras of the Saxon sfy'e, From Egbert, 598, to the Norman conquest. It has been questioned by antiquaries vhether any Saxon remains actually exist in this country; but, admitting their arguments, which are founded on reterences to records-no mean authorities, - it must be recollected hat, on their own showing, some of these trench so close upon the period of the Conquest is to show that the Saxon style might have prevailed in them, for the general change of tyle in any art is not effected in a day. If we look for examples coeval with the Saxons hemselves, and without controversy to be attributed to them, they will, perhaps, be found only in crypts and baptismal fonts; for many churehes were rebuilt by the Normans, who left these parts untouched. The principal characteritics of the style now called Anglo-Saxon, are a debased copy of Roman details, comprising long and short masonry, he ahsence of buttresses, semicircular and triangular arches, rude balustres in the window penings, bammer dressed work and unchiselled sculptures. Also the occasional use of rude round staircase to the west of the tower. A list of portions of about one hundred md forty buildings is given by Godwin, in English Archaoloyist's Handbook, 1867. 'The' astles of Roman or Saxon foundation were, Richborough, in Kent ; Castletown, in Derbyshire ; Porchester, in Hampshire; Pevensey, in Sussex; Castor, in Norfolk; Burgh, ${ }_{11}$ Sull: Ik; Chesterford, in Essex; Corfe, Dorset; Exeter Castle gateway; Dover, in Kent ; and Beeston, in Caeshire. (See also Proportion in Architecture, Book III.)

Sect. II.

NORMAN AHCHMTECTURE.

392. From the landing of William in 1066, architecture received an impulse, indicated various styles, which lasted till the time of the 'rudors; when, as we shall hereafter see, gave way to one altogether different. That called the Noman style, which continued on 1066 to nearly 1200 , comprised the reigns of William l., William II., Hemry I., tephen, Henry II., and Richard I. The twelfth century exhibited a rage for building Britain more violent than has been since seen. The vast and general improvements that ere introduced into fabries and churches in the first years of this century are thus deribed by a contemporary writer (Orderic. Vital. Hist. Eccles., lib. x. p. 788.) : —"The thedrals, and abundance of churches, newly built in all parts of the country, the great umber of splendid cloisters and monasteries, and other residences for monks, that were cere raised, sufficiently prove the happiness of England under the reign of Henry I. cace and piosperity were enjoyed by the religions of all orders, who lent their whole power , inerease the magnificence and spendour of divine worship. 'The ardent zeal of the fathful rompted then to rebuild their houses, and especially their churches, in a more suitable maner. 'Thus the ancient edilices raised in the days of Edgar, Edward, and other Chrisan kings, were taken down, and others of greater magnitude, beanty, and more clegant orkmanship, were reared in their stead to the glory of God." As an example of the fervour ith which these objects were earried into cflect, we cite the following instance, quoting on Dr. IIenry, ipon whom we have drawn, and shall draw, rather largely. "When Jollied, bot of Croyland, resolved to rebuild the chureh of his monastery in a most margificent anner (A.1. 1106), he obtained from the arehbishops of Canterbury and lork a bull diso ensing with the third part of all penances for sin to those who contrihuted any thing wards the building of that church. 'I'his bull was directed not only to the king and -ople of Englind, but to the kings of l'rance and Scothond, and to all ather kings, earls, arons, archbisnops, bishops, abbots, priors, recturs, presbyters, and clerks, and to all true lievers in Christ, rich and poor, in all Christim kingdons. 'lo mate the best use of
this bull, he sent two of his most cloquent monks to proclaim it over all Franee and Filanders; two other monks into Scotland; two into Denmark and Norway ; tiwo iato Wales, Cornwall, and lreland; and others into different parts of England. By this means (says the listorian) the wonderful benefits granted to the eontributors to the building of this shurch were published to the very ends of the earth; and great heaps of treasure, and masses of yellow metal, flowed in from all countries upon the venerable abbot Joffred, and eneouraged him to lay the foundations of his chureh. Having spent about four years in eolleeting mountains of different kinds of marble fron quarries, both at home and abroad, together with great quantities of lime, iron, brass, and other materials for building, he fixed a day for the great eeremony of laying the foundation, whieh he contrived to make a very eflectual mean of raising the superstrueture; for on the long-expected day, the feast of the holy virgins Felicitas and Perpetua, an immense multitude of earls, barons, and knights, with their ladies and families, of abbots, priors, monks, nuns, elerks, and persons of all ranks, arrived at Croyland to assist at this eeremony. The pious abbot Joffred began by saying certain prayers, and shedding a flood of tears on the foundation. Then eaeh of the earls, barons, knights, with their ladies, sons, and daughters, the abloots, elerks, and others, laid a stone, and upon it deposited a sum of money, a grant of lands, tithes, or patronages, or a promise of stone, lime, wood, labour, or earriages for building the ehurch. After this the abbot entertained the whole eompany, amounting to five thousand persons, to dinner. To this entertaimment they were well entitled; for the money and grants of different kinds which they had deposited on the foundation stones were alone suffieient to have raised a very noble fabric." This spirit extended throughout the island; for, in Seotland, David I. raised thirteen abbeys and priories, some of them on a seale of eonsiderable magnifieence, besides several cathedrals and other churehes.
393. The common people of the country, and the burgesses in the towns, were not much better lodged than in the previous age; their eondition, indeed, was not improved. In London, towards the end of the twelfth eentury, the houses were still built of timber, and covered with reeds or straw. The palaces, however; or rather eastles, of the AngloNorman kings, nobility, and prelates, were on a very superior eonstruetion. William of Malinesbury says that the Anglo-Saxon nobility squandered their ample means in low and mean dwe!lings; but that the Freneh and Norman barons lived at less expense, though dwelling in large and magnificent palaces. The faet is, that among these latter the rage for erecting fortified eastles was quite as great as that of erecting ecelesiastical buildings among the prelates. The system beeame neeessary, and was induced as well by the previous habits of the eountry they had left, as by their situation in the island. Surrounded by vassals whom they held in subjection, and whom they depressed and plundered in every way, they were so detested by them that deep fosses and lofty walls were necessary for their secmrity. The Conqueror himself, aware that the want of fortified plaees had no less assisted his eonquest than it might his expulsion, resolved to guard against sueh a eontingency by the strong eastles which he plaeed within the royal demesnes. Matthew Paris ohserves that William excelled all his predecessors in the erection of eastles, in exeeuting which he harassed his subjeets and vassals. So much was the practice a matter of eourse, that the moment one of the nobility had the grant of an estate from the erown, a eastle was built upon it for his defenee and residenee; and this spirit was not likely to be diminished by the disputes relative to the suecession in the following reigns. William Rufus, according to the statement of Henry Knighton, was as mueh addieted to the erection of royal castles and palaces as his father, as the castles of Dover, Windsor, Norwieh, and others onfficiently prove; and it is eertain that no monareh before him ereeted so many and noble edifiees. IIenry I. followed in lis taste; but in the reign of Stephen, 1135 to 1154, says the author of the Saxon Chronicle, every one who had the ability built a castle, and the whole kingdom was eovered with them, no fewer than 1115 having been raised from their foundations in the short space of nineteen years; so that the expression is by mo means stronger tham is justified by the faet.
394. It will be proper here to give the reader some eoneise general deseription of these structures, which served for residence and defence. The situation chosen for a castle was Lsually on an eminence near a river. lts figure on the plan was often of great extent, and irregular in form ; and it was surrounded by a deep and broad diteh, called the fosse, which conld be fille. with water. An outwork, ealled a barbican, wheh was a strong and lofty wall, with turrets upon it, and designed for the defence of the great gate and drawbridge, was placed before the latter. Within the diteh, towards the main building, was placed its wall, about 8 or 10 ft . thiek, and from 20 to 30 ft . high, with a parapet and embrasures, called cremuels, on the top. At proper intervals above the wall square towers were raised, two or three stories in height, wherein were lodged some of the principal offieers of the proprietor of the eastle, besides their service for other purposes; and, on the mside, were apartments for the common servants or retainers, granaries, storehouses, and other nceessary offees. On the top of the wall, and on the flat roofs of the towers, the defenders were placed in the event of a siege; and thenec they discharged arrows, darts,
and stones on their assailants. The great gate was placed in some part of the wall flanked with a tower on each side, with rooms over the entrance, which was closed with massive oak folding doors, frequently plated with iron, and an iron grate, or portcullis, which, by machinery, was lowered from above. Within this exterior wall, or ballium, was, in the mure extensive castles, the outer ballium, which was a large open space or court, wherein a church or clapel was usually placed. Within the outer ballium was another ditch, with wall, gate, and towers, inclosing the inner ballium or court, in which was erected the large tower, or heep. It was a large fabric, some four or five stories high, whose enormousty thick walls were pierced with very small apertures, serving barely as windows to the gloomy apartments upon which they opened. 'lhis great tower was the dwelling of the owner of the castle; and in it was also lodged the constable, or governor. It was provided with muderground dismal apartments for the confinement of prisoners, whence the whole building received the appellation of dungeon. In the keep was also the great hall, in which the friends and retainers of the owner were entertained. At one end of the great halls of castles, palaces, and monasteries, a low platform was raised a little above the rest of the floor, called the dais, on which stood the principal table whereat persons of higher rank were placed. The varieties which occurred in the arrangement and distribution of castles were, of course, many, as eircumstances varied; but the most magnificent werc erected nearly on the plan we have just deseribed, as may be gathered as well from their ruins as from an account by Matthew Paris of the taking of Bedford Castle by Henry III., A.d. 1224. 'Ihis castle, we learn from him, was taken by four assaults. In the first was taken the barbican; in the second, the outer ballium; in the third attack, the miners threw down the wall by the old tower, where, through a chink, at great risk, they possessed themselves of the inner ballium ; on the fourth assault, the miners fired the tower, which thereby became so injured and split that the enemy thereon surrendered. The keeps of which we have spoken are such extraordinary edifices, that we think it right to place before the reader, the following table of some of the prineipal ones of the Norman ara, as given in Ualiawey's Discourses unon Arshitecture.

39\%. Gundnph is said to have introdnced the architectaral ornaments ol the Norman iyle into the interior as well as on the exterior of castles. The nse ol battencents, loope
holes, and open galleries, or maehicolations, was certainly, as our author above quoted re. marks, known to the Romans.

$$
\begin{aligned}
& \text { Perque cavas densi tela intorquere lenestras. }
\end{aligned}
$$

En. 1. ix. 533.
The architects and artificers by whom the Norman works were planned and executed were men of great science and skill, and the names of several have most deservedly obtained a place in history. Gervase of Canterbury reeords that William of Sens, the architeet of Archbishop Lanfranc in building his cathedral, was an artist of great talents; and that he not only made a eomplete model of the cathedral upon whieh he was employed, but of all the details of scnlpture necessary for its execution, besides inventing machines for loading and unloading the vessels, and conveying the heavy materials, many whereof were brought from Normandy. Of Walter of Coventry, another architeet of the age, Matthew Paris speaks in the highest terms, saying that "so excellent an architect had never yet appeared, and probably never would appear in the world." Dr. Henry on this very properly olserves, " 'Ihat this encomimm was undoubtedly too high; but it is impossible to view the remans of many magnificent fabrics, both saered and eivil, that were erected in this period, without admiring the genius of the arehiteets by whom they were planned, and the dexterity of the workmen by whom they werc execute l." (See par. 321 et seg.)
396. Of the twenty-two English eathedrals, fifteen retain parts of Norman erection, whose dates are pretty well ascertained; and by them the Norman manner was progressively brought to perfection in England. We subjoin the following ennmeration of Norm ut bishops, who were either patrons of the art, or are supposed to have practised it themselves.

A. D.	Bishop.	Works.
1059 to 1089	Aldred, Bishop of Worecster.	St. Peter's, Gloucester.
1077 to 1107	Gundujph, of Rochester.	Rochester, Canterbury, and Peterborough.
1086 to 1108	Manrice, of London.	Old St. Paul's Cathedral.
1093 to 1133	William de Carilepho.	Cathedral of Durliam, but completed by Rauulph Flainbard.
1080 to 1100	Janfrane, of Canterbury.	
1117 to 1140	lenger, of Salisbury.	Cathedral at Old Sarum.
1115 to 1125	Ermuli, of lochester.	Completed Gundulf's works at Rochester.
1123101117	Alexander, of Lincoln.	Reboilt his cathedral.
1129 to 1169	Hleury of Blois, Bishop of Wiuchester.	Conventual churches of St. Cross and Rumsey, in Hampshire.
1158 to 1131	Hoger, Archbishop of York.	

Of Noman architecture the principal eatracterstics are subjoined in the following sub. stction. (See also Book III., ehap. iii.)
397. Arches.-Generally semicircular, as in the nave of Gloucester, here given (fig. I8.5.). Of larger opening than the

Fig. ISJ. ARCH FRUM NAYH OY GHOLCLSILR Saxon, and their omaments less minute; often bounded by a single moulding, though sometimes by more thanone; oceasionally without any moulding at all; the soffitt always plain. In the second story, two smaller equal arches under one larger, with a column of moderate size, or even comparatively slender, between them. In the third story (see fig. 186.), generally three together, the eentre one higher and broader than the others, and opened for a window; but the whole three only oecupy a space equal to that of the lower areh. Arches of entrance are profusely decorated ($f y .187$. , from Ely) with mouldings, foliage, wreaths, masks, figures of men and animals in relief, and all the fancies of the wildest imagination, in whieh every thing that is extravagant, grotesque, ludierous, nay, even grossly indecent, is to be found. Before the end of the period - and we may almost say early in it - it exhibits examples of pointed arches. They are, however, sparingly introduced : one or more tiers appear in the upper stories of a building, whilst all the lower ones are eireular. Sometimes they are infro-

Fig. 186. thafr storifs op a NOHMAN CATHKDHAL.
dueed alternately, sometines we find one capricionsly inserted between several round ones these are, for the most part, obtusely pointed, thongh occasionally they are the reverse. They are always wide, stand on heavy columns, or are decorated with mouldings, or both. 'The approaches to the pointed style were not strongly marked, but they were indicated; for the pointed style camnot be pronombed to have commenced until the sharp-pointed arch sprung from a slender column graced with a capital of carved foliage, and this it is not safe to place earlier than the reign of John. 'lhe areh which rises more than a semicirele does not very often oceur ; but it must be mentioned as exhibiting one of the varieties of the period. Columns. - These are of very large diameter relative to their heights and intervals. 'Their shafts are circular, hexisgonal, and sometimes octagonal, on the plan; fluted, lozenged, retieulated, and otherwise sculptured. Sometimes they are square on the plan, and then accompanied by portions of columns or pilasters applied to them. Sometimes four columns are comected together, with or without angular pieces. 'lhey are mueh higher in proportion to their diancters than the Saxon eolumns heretofore deseribed ; and though their capitals are not unfiequently quite plain, they are more commonly decorated with a species of volute,
Fig. 187. prior's entrance at ei.v. r with phants, flowers, leaves, shells, animals, \&e. The bases stand on a strong plinth, lapted on its plan to receive the combined and varicd forms of the columns. Hiudous, are iii narrow, and semicireular-headed ; but they are higher, and often in groups of two or three gether. Ceilings, usually, if not always, of timber, exeept in crypts, in which they are ulted with stone, with groins mostly plain, yet sometines ornamented on the edge, but uniussally without tracery. The White 'Tower of London, however, exhibits an example of a Hintre aisle covered with vaulting. Our belicf is, and in it we are corroborated by the Rev. Ir. Dallaway, whose judgment we hold in no small esteem, that there is no instanee of a ennine Anglo-Norman building which was intended to be covered with a stone roof or siling. 'lhis is not only indicated by the detail, but by the circmanstance of the walls ing insuflicient (thick as they are) in solidity to resist the thrust. P'eterborongh, Ely, t. Peter's, Northampton, Steyning, Romsey, \&e. are caleulated and constructed to recrive ooden roofs only. Watls, are of extraordinary thickness, with but few buttresses, and rose of small projection; flat, lroad, and usually without ornament. Oranneuts.-Among rese must be first named the ranges of arehes and pilasters which had nothing to support, ready incidentally mentioned, and which were intencled to fill up void spaces, internally well as externally, for the purpose of breaking up large masses of surface; they are ry common on the inside of north and sonth walls. sometimes intersecting each other so to produce those compartments that are alleged to have given rise to the pointed arch. he mouldings of the Saxon period continned much in nse, and we ought, perhaps, to ave given some of them, as belonging to the preceling seetion; and, indeed, should have done, if, in the Norman style, they had not increased in mumber and variety, and had it also been employed in profusion alont the ormamental arches just named, especially in mopichons places on the ontside, as in the west front eppecially. The most usual ornaents (fig. 188.) were, 1. The checron, wr zigzag monlding; 2. 'The cublatted frotle;

3. The trianqular frette; 4. The nail head; 5. The billet; 6. The calle; 7. The hatcheri, 8. The lozenge; 9. The wavy; 10. The pellet moulding; 11. The nebule. The torus was used, as was also the cavetto, which were both of Grecian extraetion. The chief of these omaments, perhaps all, were used in the Saxon age, besides others whieh were occasionally employed, and which to designate by name would be difficult; sueh, for instanee, as the corbel-table (12), which consists of small ranges of arches, resting on eonsoles sometimes decorated with earved heads, often introduced along the whole building immediately below the eaves or battlement. Sometimes carved heads are observed in the spandrels of arches, and are aloo used as capitals of the ornamental pilasters, or as corbels, to support what is called the can.spy, or exterior scmieircle of moulding on arches of entrance, or above the keystones of those arches. There are instances of whole figures over doors in mezzo-rilievo, which Millers observes was the nearest approach the Normans seem to have made to a statue. Plans. - The churches of this period are always with transepts, and a tower at the intersection, loftier than heretofore, but without spires over them. 'There are rising from them stories of arehes, one above the other; and the eastern ends are semicircular. Though much of the Saxon style is retained, there is, from the larger dimensions of the edifices of this period, a muel more impressive air of magnificence than had before appeared. Millers very truly says, that the churches were "in all dimensions much ampler, with a general air of cumbrous massive grandeur. The Normans were fond of stateliness and magnificence; and though they retained the wther eharacteristies of the Saxon style, by this amplifieation of dimensions they made such a striking change as might justly be entitled to the denomination which it received at its first introduction among our Saxon ancestors, of a new style of architecture." The eriterion between the Saxon and Norman styles, of enlarged dimensions, is too vague to guide the reader in a determination of the age of buildings of this period; for it is only in large edifices, such as cathedral and conventual churehes, with their transepts, naves, side aisles, and arehes in ticr above tier, that this can be pereeptible. There are many parish churches of this age, whose simplieity of form and small dimensions have been mistaken for Saxon buildings; and which, from not possessing any of the grander Norman features, have been assigned to an earlier age. The distinction ascertainable from heights of columns, - namely, taking the height of the Norman eolumn at from four to six diameters, and that of the Saxon at only two, - will, we fear, be insufficient to decide the question in cases of doubt; but it must be admitted this is one of the means which, in some measure, would lead us to an approximate judgment of the matter, and a careful observation and comparison of specimens would make it more definite. We shall here merely add, that the first Norman architeets, by the lengthened vista of the nave, uninterrupted by any choir sereen, produced a sublime and imposing effect by the simple grandcur and anplitude of dimensions in their churehes.
398. Examples.-Eyamples of Norman architecture in English catheilral churches are to be found at E/y, in the western towers and nave; at Bristol, in the elder Larly Chapel, and Chapter House; at Canterbury in the choir, and the round part called Beeket's Crown; at Norwich.
in the nave and ehoir; at Hereford, in the transept tower and choir; at Wells, in the nave and choir; at Chester, in the Chapter House ; at Chichester, in the presbytery; at Peterborough, in the transept. In the conventual churchis, for examples we may refer the reader to Llantony, near Mommouth; the nave and west front of Fountains, Yorkshire; the nave and chapel of St. Joseph, at Glastonbury ; the west front at Sehy, in Yorkshire ; many parts at St. Aßan's; the choir at Wenloch, in Shropshire ; Cartmell, in Lancashire ; Furness; W'est End, at Byland, with the wheel window, and the south transept ; parts of Bolton, in Yorkshire; part of Brinkbourn, in Northumberland ; part of Edmondsbury, in Suffolk; and Sr. John's Church, at Chester. For examples of parochiaI churches, Melton, Suffolk; Sotterton and Sleuforl, Lineolnshire; Chris'church, Hampshire; Sherhourn Minster, Dorset; Winchelser, Steyning, and New Shoreham, Sussex ; chancel of St. Peter's, Oxford; Earl's Barton Tower, Northamptonshire ; West Wulton Tower, Norfolk ; Iffley, Oxfordshire ; Castle Rising Norfolk; St. Murgaret's Porch, at York; St. Peter's Church, Northampton; besides several round or polygonal bell-towers, both in Suffolk and Norfolk, - may be referred to. Fixamples of military Norman architecture, from 1070 to 1270, were at Launceston, Cornwall; Arundel, Sussex; Windsor, in Berks (rebuilt); Tower of London; the square keens of H:Xingham, Essex ; Caerphilly, Glamorgan ; Carisbrooh, Isle of Wight ; Porchester, lIants (1160) ; Guildford, Surrey; Bantorough, Northumberland; Keuiworth, Warwickshire; Richmond, Yorkshire; Cardiff, Glamorganshire; Canterbury, Kent; Oxford (1071); Newcastle, Northumberland (1120); Gisborough, Yorhshire (1120); Ca:tle Risiny, NorGlk; Middleham, Yorkshire ; Cockermouth, Cumberland; Durham (1153); Lincoln (1086); Berkeley, Gloucestershire (1153); Lancaster: Orford, Suffolk, polygonal (1120) ; Luillow, Salop (1120) ; Kentiworth, enlarged (1220) ; Warkworth, Northmberland, square, with the mgles eut off; Denbigh ; Becston, Cheshire ; Hawarden, Pembrokeshire.

Sect. III.

EARLY ENGLISH ARCHITECTURE.

399. The next period of architecture in Britain which comes under our consideration, ,llowing, as we consider it, the sensible classification of the Rev. Mr. Millers, is that hich he has denominated the eurly linghish style, whose duration was from ahout 1200 to :300; extending, therefore, through the reigns of John, Henry III., and Edward I., during hieh the building of churches and monasteries was still considered one of the most ffectual means of obtaining the pardon of \sin, and eonsequently the favour of Heaven. In re thirteenth and fourteenth centuries, the churches built in Britain were almost mumerable.
400. We have already noticed (chap. ii. sect. $x v$.) the introduction of the pointed arch into chitecture ; a feature which completely changed, from all that previously existed, the chaceter of the edifices to which it was applied. If any service could be rendered to the history the art, or if the solution of the problem, "who were its inventors?" could throw any eful light on the manners and customs of the people that first adopted it, we should he the st to relinquish the investigation. The question has furnished employment to mamy erary idlers, but the lahour they have bestowed on the subject has not thrown any light it; and excepting the late Mr. Whitington and the late Prof. Willis, of Cambridge, whose valuable enquiries we cannot sufficiently enlarge, they might have been more uselly engaged. This statement must necessarily be modified in consequence of the publicaous of the lea"ned labours of Mr. Fersusson, of which we have so largely availed ourves in the ahove-named section; hesides those of Thomas Ilickman, of Mr. Sharpe, and other ardent enquirers on this and kindred subjects.
401. During the reign of Henry III. alone, no less a number than 1.57 abbeys, priories, id other religious houses were founded in England. Several of our cathedrals and conntual ehurehes in a great part belong to this period, in which the laneet or sharp-piointed ch first appeared in the buildings of this conntry, though on the Continent it was used arly a century carlier. The great wealth of the clergy, added to the zeal of the laity, rnished ample finds for the erection of the magnificent structures projected; but it was ith extreme diffieulty that workinen could be procured to exeente them. With the popes was, of course, an objeet that churehes should be erected and convents endowed. On the ! ject of the employment of Fremasons we have already expressed our views (par. 308, sey.), therefore we cannot coincide with Wren, Parentalia, in stating that they ranged in one nation to another, their govermment was regular, and they made a camp of ats; a surveyor governed in ehief; every tenth man was ealled a warden, and over. ked each nine. "Those who have scen the account in records of the charge of the ries of some of onr cathedrals, near 400 years old, eamot bit have a great estecm fur ar ceonomy, and admire how soon they erected such lolty structures." It was in the
course of this period that sculpture was first made extensively available for arehitecturai decoration. The cathedral, conventual, and other churehes built in Britain, began to be ornamented on the outsile with statues of various dimensions in basso and alto rilievo. They were not equal in execution to those of France, which have also had the additional good fortmue to have been better preserved, from their exposure to seasons less inclement and to an atmosphere mimpregnated with the smoke of coal.
402. Great improvements seem to have taken place in the castles of the time ; they still continued to serve for the dwelling and defence of the prelates and barons of the country 'lhe plans of them were generally similar to those already described; but it must still be conceded that the inhabitants and owners of them sacrificed their convenience to their sechaty, which seems to have been the chief concern in the construction of their castles, whose apartments were gloomy, whose bed-chambers were few and small, whose passages were narrow and intricate, and their stairs steep and dark, The plan, however, as

Fig. 189
cafikiantor castle. Mr. Dallaway observes, "which allowed of enlarged dimensions, and greater regularity and beauty in the architecture of the towers, owes its introduction into England to King Edward 1 . We may, indeed consider his reign as the epoch of the grand style of accommodation and magnificence combined in castle architecture. When engaged in the Crusades, ho surveyed with satisfaction the superior form and strength of the castles in the Levant and in the Iloly Limd." Of the five castles erected by him in Wales, Caernarvon (fig. 189.), Conway (ffg. 190, slowing the suspension bridge, and the railway bridge beyond it), Harlech, and Beaumaris still retain traces of their ancient magnilicence; but that of Aberystwith has scarcely a fature left. Caernarvon Castle
 consisted of two distinct parts: one military, and suited to the reception of a garrison; the other palatial. 'the ground plan was oblong. unegually divided intoa lower and an upper ward. Of the towers, which are all polygonal, the largest, from some tradition called the Eagle Tower, has threesmall angular turrets rising from it; the others having but one of the same description. "The enclosing walls," contimues Mr. Dallaway, "are seven feet thick, with alures and parapets pierced frequently with willet lioles. Λ great singulatity is observable in the extreme height both of the great cutrance gate and that which is called the Queen's. Leland observes of the portcullises at l'embroke, that they were composed ex solido ferro. In confirmation of the opinion that the royal founder adopted the form of such gates of entrance from the East, similar ones are ahnost universal in the castles, mosques, and palaces of the Saracens, which he had so frequently seen during the Crusades. The tower of entrance from the town of Caernarvon is still perfect, and is the most handsome structure of that age in the kingdom. It is at least 100 ft . high ; and the gateway, of very remarkable depth, is formed by a succession of ribbed arches, sharply pointed. The grooves for three porteullises may be discovered: and above them are circular perforations, through which missile weapons and molten lead might be discharged upon the assailants. In the lower or palatial division of the castle stand a large polygonal tower of four stories, which was appropriated to Quect Eleanor, and in which her ill-fated son was born, and another which was occupied by the king, of a circular shape externally, but square towards the court. The aparments in the last mentioned are larger, and lighted by windows with spuare heads, and intersected with carved mullions. There is a singular contrivance in the battlements, each of which had an excavation for the archers to stand in, pointing their arrows through the slits; and, a curious stratagem, the carved figures of soldiers with helmets, apparently looking over the parapet. This device is repeated at Chepstow." The ornamental character of the architecture at Caernarvon and Conwav is rather ecclesiastical, or conventual, than military. At Conway, as has been well observed by an anonymous anthor, "what is
:alled the Qucen's Oriel is remarkable for the fancy, luxurianee, and elegance of the worknanship. Nor is the contrivance of the little teraced garden below, considering the

Fig. 191. history of the times, a matter of small curiosity, where, though all the surrounding country were hostile, fresh air might be safely enjoyed; and the commanding view of the singularly beautiful landseape around, from both that little herbary or garden, and the bay window or oriel, is so managed as to leave no doubt of its purpose."
403. The model of Conway Castle has little resemblance to that we have just left. It resembles rather the fortresses of the last Greek emperors, or of the chieftains of the north of Italy. The towers are mostly circular, as are their turrets, with a ingle slender one rising from each; and machicolations, not seen at Catmarvon, are inruduced. The greater part of the eastles of Wales and Scotland for the defence of the

ig. 192. takpoin, and cinquivyoth heads. marches were built in the reign of Edward I. On the subjugation of the former country, and its partition into lordships among Edward's followers, many eastles were reared upon the general plan of oose he had erected, though varying in dimensions ad situation, according to the means of defence proosed to be secured to their founders and possessors. le inay here observe, that in the castle at Conway dward I. erected a hall 129 ft . by 31 , and 22 ft . igh, which is formed to suit the curvature of the rk; and that from that period no residence of msequence, either for the nobility or fendal lords,

P18. 101. was ereeted withthe castles of this period. It was the strong-hold of the De Spencers in the reign of e second Fidward. Its vallations and remains are very extensive. the hall was much rger than that at Conway.
405. The eharacteristies of this style are, that the arehes are sharply (laneet) pointed, and lofty in proportion to their span. In the upper tiers

Pig. 193. coluans of wistminstro ableg. out one, varying, however, of course, in their minuter parts, according to circumstances, and in degree of marnifiecnee.
404. Cacr. Phitly Castle, in Glamorganshile (fig. 191.), was another
or in upper tiers by two at most, finished at the top with some simple ornament, as a lozenge or a trefoil. They have commonly small marble shatts on each side, both internally and esternally; two, three, or more togrether at the cast or west end, and tier above tier. Roujs are high pitched and the ceilings vaulted, exhibiting the first examples of arches with cross springers only, which in a short period diverged into many more, rising from the capitals of the columms, and almost overspreading the whole surface of the vaulting. The longitudinat horizontal line which reigned along the apex of the vanlt was decorated with bosses of flowers, figures, and other fancies. Walls much reduced in thickness from those of the preceding period: they are, however, externally strengthened with buttresses, which, as it were, kenn against them for the purpose of counteracting the thrust exerted by the stone vaults which form the ceilings, and which the walls and piers by their own gravity could not resist. The buttresses are moreover aided in their office by the pinnacles, adomed with crockets at thein angles, and crowned with finial flowers, by which they are surmounted. The ornaments now become numerous, but they are simple and elegant. The mouldings are not so much varied is in the Noman style, and are generally, perhaps universally, formed of some combination of leaves and flowers, used not only in the circumference of arches, especially of windows, but the columns or pilasters are completely laid down with then. Trefoils, quatrefoils, cinquefoils, roses, mullets, bosses, paterx, \&c. in the spandrils, or above the keystones of the arches and elsewhere. The ormamental pinnacles on shrines, tombs, \&c. are extremely high and acute, sometimes with and sometimes without niches under them. In east and west fronts the niches are filled with statues of the size of life and larger, and are crowned with trefoil, \&c. heads, or extremely acute pediments, formed by the meeting of two straight lines instead of ares. All these ornaments are more sparingly introduced into large entire edifices than in smaller buildings or added parts. The phons are generally similar to those of the second period; but that important feature the tower now begins to rise to a great height, and lanterns and lofty spires are frequent accompaniments to the structure. It will naturally occur to the reader, that in the transition from the second to the third style, the architects left one extreme for another, though it has been contended that the latter has its germ in the former. However that may be, the period of which we are now speaking was undoubtedly the parent of the succeeding styles, and that by us very forced or unnatural relationship. (See Book IIl. Chap, 3.)
406. The principal examples of the early Engiish style in the cathedral churches of England are to be seen at Oxford, in the chapter-house. Lincoln, in the nave and arches beyond the transept. Iork, in the north and south transept. At Durham, in the additionat transept. Wells, the tower and the whole western front. Curlisle, the choir. E/y, the presbytery. Horcester, the transept and choir. Salisbury, the whole cathedral ; the only mmmixed example. At Rochestcr, the choir and transept. "It is well worthy of observation," says Mr. Dallaway, "that though the gromnd plans of sacred edifices are, generally speaking, similar and systematic, yet in no single instance which occurs to my memory do we find an exact and nuvaried copy of any building which preceded it in any part of the structure. A striking analogy or resemblance may occur, but that rarely."
407. The examples of conventual architecture of this period, to which we beg to refer the reader, are those of Lanercost, in Cumberland; Rivaul.r, Yorkshire ; Westminster Abhe!. At Fomntains, the choir and east end; Tintcrne Abbey, in Mommouthshire : Netley, Ilampshire; Whitby, in Yorkshire; Valle Crucis, in Denbighshire; Ripon Minster and the sonth transept of Becrerlcy Minster, in Yorksine ; Milton Abbey, Dorsetshire; part of the nave of St. Alban's ; Tynemouth and Briukbourn, Northumberland; Vale Royal, in Cheshire; and the eastern façade of Howlen, in Yorkshire.
408. Among the examples of parochial churches in this stylc are Grantham, in Lincolnshire, whose tower is 180 ft . high; Attelborough, in Norfolk; Higham Ferrars, in Northamptonshire; St. Michuel, Coventry; Truro, in Cornwall; Witney, in Oxfordshire; Stratford upon Avon, in Warwickshire; St. Peter Mancroft, Norwich; Boston, Lincolnshire, remarkable for its lantern tower rising 262 ft . from the ground. and perhaps almost belonging to the succeeding period; St. Mary, Edmund's Bury, Sufiolk; Muidstone, in Kent; and $1 . m / / m w$, in Shropshire.

Sect. IV.

ORNAMENTED ENGLISH AKCHITECTURE.

409. The fourth period in the architecture of Britain is that which Mr. Mitlers calls the Ornamented English Style, which begins about 1300 and lasts till 1460, and comprises, therefore, the latter portion of the reign of Edward I., and the reigns of Edward II.. Edward III., Richard II., Henry IV., Henry V., and Henry VI.
410. 'This wrat has by Dalloway and others been subdivided into two parts, viz. first
from 1300 to $\mathbf{1 4 0 0}$, which they call that of the Transition Style or pure Gothie, and from 1400 to 1460, called the Decorated Gothic; but the change between the latest examples of the first and the earliest of the last is marked by such nice and almost imperceptible distinetions, that it is next to impossible to mark their boundaries with precision; and we have therefore preferred adhering, as we have in the other ages of the art, to the arrangement adopted by Mr. Millers. In the early part of the period the change, or rather progress, was extrenely slow, and marked by little variation, and, indeed, until 1400, the style can scarcely be said to have been perfected; but after that time, it rapidly attained all the improvement whereof it was susceptible, and so proceeded till about 1460; after which, as we shall hereafter sec, it assumed an exuberance of ornament, beyond which as it was impossible to advance, it was in a predicament from which no change could be effected but by its total abandonment.
411. Notwithstanding the wars of the rival houses of York and Laneaster, which oceupied a considerable portion of the interval whereof we are speaking, and delnged, as the reader will recollect, our land with the blood of the bravest of men, the art did not appear to suffer ; a circumstance apparently extraordinary, but satisfactorily accounted for by the zeal of both the contending parties for the religion they in common professed. True it is that the taste for founding and building monasteries and churches was not so universal as in the period last described; the decline, however, of that taste might in some measure have arisen not only from the unhappy state of the country just alluded to, but also from the doubts raised in the minds of many persons of all ranks by Wickliffe and his followers as to the merit attached to those pious and expensive works. "It camnot," says Henry, " be denied that the style of sacred architecture commonly called Gothie continued to be greatly improved, and in the course of this period was brought to the highest perfection." To account in some measure for this, it must be recollected that during the civil wars the superior ecclesiasties were confined to their cloisters, as few of them had taken an active part in the dispute which agitated the realm; and, indeed, some of the finest structures now remaining were reared from the accumulation of wealth amassed by instigating the noble and affluent to contribute to churches built under their own inspection. The choir at Gloucester, a most beautiful example, was completed during these turbulent times by Ablot Sebroke, together with the arcade that supports the magnificent tower of that cathedral.
412. During this period the efforts of painting and sculpture were superadded to those of arehitccture; and to these must be joined the enchanting effects produced by expanded windows glowing with the richest colours that stained glass could hestow on them. To enter into a history of the rise, progress, and perfection of this art, would here be out of place. A separate work would be required to trace it from its introduction in this country is connected with our art in the reign of Henry III., to that point when it reached its enith in the fifteenth century. Dallaway observes, with much truth, that it is a vulgar rror to suppose the art was ever lost, inasmuch as we had eminent professors of it in the eign of Charles I.
413. In military architecture, from the reign of Edward III. to the close of the conention between the houses of York and Lancaster, many improvements were effected. Within that period a great number of the castellated edifices of whieh the country could 1oast were erected or renewed. Their style is marked by turrets and hanging gallerics wer the salient angles and gateways, of great varicty in design. In the fortress at Amcerley, in Sussex, built by Willian Rede, Bishop of Chichester, about 1370. and one of he ablest geonetricians of the age, the ground plan is nearly a parallelogram with four arge towers at the angles, not projecting externally, but inserted into the side walls. Of his ara is also, at Swansea Castle, the lofty perforated parapet or areade, through which he water was conveyed from the roof. Upon this plan Henry Gower, bishop, of jt. David's, in 133.5, improved, in tis magnificent eastellated palace at Llanphey Court.
414. From the eircunstance of the circuit of many of the castles cacompassing several eres of gronnd, the base court was proportionably spacious; hence the halls and other tate apartnents were lighted by windows, snaller, but similar in form to those used in hurehes. The rest of the apartments were unavoidably incommodious, defence being the hief eonsideration. In the ceastles and palaces of the period, the hatls, which forned a rincipal feature in them, require some notice. The earliest whereof mention is made was hat built by Willian Itufus in his palace at Westminster. Ilugh I.upus erected one at Chester, and one was exeented for Robert Consul at Bristol. Others we find erected by leury I. at Woodstock and Beaumont in Oxford ; probahly of rude construction, and ivided into two aisles by piers of arcades or timber poots. In the following eentriry, Then eastles began to be constantly inhabited, and space beeame repuisite for holding the bunerous fendal dependents on varions oecasions, the size of the hall was of course inreased, and internal arehitecture and characteristic ornanents were applied to it. At the plere end, where the high table was plared, the fluor was elevated, forming a hent puts or (iis, a littleabove the general level of the floor. 'The example afforded by Edward lll. at

Wiadsor was followed during his own and the succeeding reign. The halls of Westminstes ard Eltham were rebuilt by Richard II.; Kenilworth by lohm of Gaunt ; Dartington, in Devowshire, by Holland Duke of Exeter. Crosby Hall, in London, was finished by the Duke of Gloucester, afterwards Richard III. We here subjoin the dimensions of some of the principal halls in eastles and palaces before the end of the fifteenth century, ranged in order of their size, as partly revised :-

			Length in feet.	Breadth in feet.	Height in feet.
Westminster (1397)	-	- -	2389	67 to 68	90
Omham Castle	-	- 960 , now	180	50	36
London, Guildhall	-	- -	153	50	60 (Wren's roof)
Conway (roof laid on stone	ribs)	- -	129	31	22
Pristol (divided by upright	beams	of timber	108	50	
Eltham Palace	-	- -	$101 \cdot 3$	36.3	54
Chester	-	- -	99	4.5	-
Raby Castle	-	- -	so	36	-
Kenlworth Castle (1300)	-	- -	88.8	45	$32: 3$ walis
Swansea -	-	- -	88	30	-
Leicester Castle II:ll (oak	pillars)	- -	78	. 51	24
Spofforth	-	- -	76	36	-
Dartington (1476)	-	- -	70	40	44
Caerphilly -	-	- -	\%o	30	17 walls
Crosby Place (1456-70)	-	- -	69	17	$38^{\cdot 6}$
Mayfield Lall (stone ribs)	.	- -	68	38	-
Goodrich Castle	-	- .	65	28	-
Warwick Castle	-	- -	62	35	25
Berkeley Castle	-	- -	61	32	
Second one at Swansca	-	- -	58	33	-

415. Generally, in respect of plan, the internal arrangement of these halls was very similar. The high table, as we have observed, was elevated on a platform above the level of the floor, and was reserved for the lord and his family, with the superior guests. Round the walls separate tables and benches were distributed for the officers of the honsehold and dependents. The centre was occupied by the great open fire-place, directly over which in the roof was placed a turret, denominated a louvre, for conveying away the smoke. At Bolton Castle we find the chimners in the walls; but, perhaps, those at Conway and Kenilworth are earlier proof of the alteration. The roofs with which some of these halls are spanned exhibit mechamical and artistic skill of the first order. The thrust, by the simplest means, is thrown comparatively low down in the best examples, so as to lessen the horizontal effect against the walls, and thus dispense with considerable solidity in the buttresses. Fig. 196. is a section of the celebrated Hall of Westminster, by which our observation will be better understood. These roofs were framed of oak or chesmut. Whether, when of the latter, it was imported from Portugal and Castile, is a question that has been discussed, but not determined, by antiquaries. Large stone corbels and projecting consoles were attached to the side walls, and were disposed in bays called severeys between each window. Upon their ends, demi-angels were generally carved, elasping a large escochion to their breasts. Near to the high table, a projecting or bay window, termed an oriel, was introduced. It was fully glazed, frequently containing stained glass of the arms of the family and its alliances. Here was the standing cupboard which contained the plain and pareel-gilt plate. The rere-dos was a sort of framed canopy hung with tapestry, and fixed behind the sovereign or chieftain. The walls were generally lined to about a third of their height with panelled oak or strained suits of tapestry. It was during this æra that privy chambers, parlours, and bowers found their way into the castle. Adjoining to, or nearly eomected with the hall, a spacious room, generally with a bay window, looking on to the quadrangle, was planned as a reeciving-room for the guests, as well before dimer as after. This was decorated with the richest tapestry and cushions embroidered by the ladies, and was distinguished by the name of the presence or prieychromber. The females of the family had another simitar apartment, in which their time was passed in domestic oceupations and amusements. This last room was called my lady's boucer or perlour, and here she received her cisitors. Bay windows were never used in outer walls, and seldom others, excepting those of the narrowest shape.
416. The dawn of improvement in our domestic architecture opened in the latter part of the period, during which also brick eame very much into use in England as a building material. "Michael de la Pole," as we learn from Leland's Itinerary, " marchant of Hull, came into such high favour with King Richard II. that he got many privileges for the towne. And in lys tyme the toune was wonderfully augmented yn building, and was enclosyd with ditches. and the waul begun; and in continuance endid, and made all of brike, as most part of the honses at that time was. In the waul be four principal gates of brike." After

Fig. 196.
GECTION OY WESTMINSTER HALL
enmmerating twenty-five towers, "M. de la Pole," we find from Leland, "buildid a goodlie house of brike, against the west end of St. Marye's churche, lyke a palace, with goodly oreharde and garden at large, also threc honses besides, every on of which hath a tower of lrik." (Itin. vol. i. p. 57.) This was the first instance of so large an application of brick iin England.
417. One of the most important parts of the castle was the great gateway of entrance, in which were combined, at the same time, the chief elements of architectural beanty and military defence. It usually occupied the central part of the sereen wall, which had the aspect whence the castle could be most conveniently approached. Pwo or more lofty towers flanked cither side, the whole being deeply corbelled; a mode of building brought by the Arabs into Europe, and afterwards adopted by the Lombards and Normans. The corbel is a projecting stone, the back part whereof, which lies in the wall, being balanced by the superinemmbent mass, it is capable of supporting a parapet projecting beyond the face of the wall rising from the horizontal conrse liid immediately on the corbels, between which the said horizontal course was pierced for the purpose of enabling the besieged to drop missiles or molten inetal on the heads of the assailants. 'The corbel is often carved with the head of a giant or monster, which thus seems attached to the walls. la John of Gannts entrance gateway at lameaster, the arch is defended by overhanging corbels with piereed apertures between then, and on either side are two light watel-towers erested with battlemente.
118. Of the military architecture of this time, a perfect idea may be obtaned from the two remakiable towers of Warwick Castle (fig. 197.), which were erected (in 1395) by 'lhomas de Beanchanp Earl of Warwick. 'The tatler one rises 105 ft . above its base, and is 38 ft diameter, having five stones, which are separated fion each other t,y groined ceilings. In the interion, the walls of the state chambers were painted; a patelice introduced into lingland in the beyming of the thintenth century ; and they were

sometimes lined with wainscot of curious carved boisserie on the panels, which afterwards became more adorned, and were liung with tapestry. At Warwick was a memorable suit of arras whereon were represented the achievements of the famous Guy Earl of Warwick.
419. The period of which we are treating was as celebrated for its bridge as for its military architecture, and exhibits as one of its eximples that famed curiosity the triangularly formed bridge of Croyland in Lineolnshire, esected over the confluence of three streams. Bridge architecture was in many instances

Fig. 198. Arch of york mingter. so necessarily eonnected with the construction of a fortress, that it may almost, in this age, be taken as a branch of military architecture.
420. 'This style exhibits Arches, less acute and more open (fig. 198. from York Minster), the forms varging. Columms. - The eentral and detached shafts now worked together into one, from experience of the weakness of those of the previous style, exceedingly varions in their combinations. The H'indows are larger, divided by mullions into several lights spreading and dividing at top into leaves, flowers, fans, wheels, and fanciful forms of endless variety. 'These marks are constant, but in the proportionate breadth there is much variation, for after having expanded in the reigns of Edward I, and II., they grew narrower again in proportion to their height in that of Edward III. and also sharper. 'The head was then formed of lines just perceptibly eurved, sometimes even by two straight lines, sometimes just curved a little above the haunches, and then rectilinear to the apex. Eastern and western windows very lofty and ample, and splendidly decorated with painted glass. Iluof or Ceiling. - The vaulting more deeorated. 'T'1c principal ribs spread from their imposts running over the vault like tracery, or rather with transoms divided into many angular compartments, and ornamented at the angles with heads, orbs, historical or legendary pictures, \&c., elaborately coloured and gilded. Ornaments. - More various and laboured, but not so elegant and graceful in character, as in the preceding style. Niches and tabernacles with statnes in great abundance. Tiers of small ornanental arches are frequent. The pinnacles are neither so lofty nor tapering, but are more richly decorated with leaves, erockets, \&c. Sculpture is introduced in much profusion, and is frequently painted and gilt. Screens, stalls, doors, pannelled ceilings, and other ornaments, in carved and painted wood. (See Eook III, Chap. 9.)
421. 'The principal examples of the ornamented English style in eathedral churches, are at Exeter, the nave and choir. Lichfield, uniformly. At Lincoln, the additions to the central tower. At Horcester, the nave. Jork, nave, choir, and wastern front. At Canterbury, transept. At Gloucester, transept and cloisters begm. Norwich, the spire and tower, Salisbury, spire and additions. Bristol, the nave and choir. Chichester, the spire and choir. E'ly, Our Lady's Chapel and the eentral louvre. Hereford, the chapter-house and eloisters, now destroyed. In the later part of the period, the choir at Gloucester; the nave at Canterbury/ Bishop Meckington's additions at Wells, and from the upper transept to the great east window at Lincoln. In eonventual ehurches, for the earlier part of the period, the western façade of Howden (1320.). Chapel of Merton Colleģe, Oxford. Gisborne Priory, Yorkshire. Chapel at New College, Oxford. St. Stephen's Chupel, Westminster. The additions to the pediments of the ehoir at Kirhstall, Yorkshire. St. Mary's in York. Kirkhum in Yorkshire, and the choir of Selby, in the same county. For the later part of
tle priond, at Teukesbury, the choir. At Ely Cathedral, St. Mary's Chapel. Cimpond viçade in Lincolnshire. Beverley Minster in Yorkshire. Cleapel of Magälen College, Onford, Eton College Chapel, Bucks. Chapel on the bridge at Wakefield in Yorkshire, built by bidward IV. in memory of his father Edward Duke of lork; and the Beauchamp Chapel at Warwick. In parochial churehes, for the early part of the period, examples may be raferred to at Gruntham, Lincolnshive. Attellorowyh, Norfolk. Migham Ferrers. Northamptonslire. St. Michael, Caventry. Truro, Cornwall. Witney, ()nfordshire. Strutford-"pon-Avon, Warwickshire. St. Ieter Mancroft, Norwieh. Boston, Lincolnshire; its re.. markable lantern tower, which is 262 ft . high, was begun in 1309 , and was in progress wf execution during the whole reign ol Edward III. 'I'le expense of it having been chiefly defrayed by the merchants of the IIanse lowns, St. Mory, Edmumds Bury, Suffolk. Houlstone, Kent; and Lullow, Salop. For the later part of the period, St. Mrry Overy, Louthwark. Thaxted and Suffron Walden, Essex. Lowth and Stamford, Lincolnshire. C cumplen, Gloueestershire. St. Mary Redcliff and the touer of St. Stephen, Bristol. Tannton and Churton Mendij, Somersetshire. Letcnham, Suffolk. Manchester College. :t. Mary's, Oxford. Whittlesea, Cambridgreshire. Walcefield, Yorkshire. Doncrster, Vorkshire. Newark-upon- Went. Heclington, Lineolnshire. Mould Gresford and Wrexbum in Fintshire. Melton Moubray, Leicestershire. Octangular touers of St. Murgaret's, Norwicl, and All Suints, York.

Sict. V.

FH.OMA ENGI.ISI OR TUBOK STYIF.

422. "There is," as 1r.- Henry ohserves, "a eertain perfection in art to which thaman genius may aspire with success, but beyond which, it is the aprehension of many, that improvement degenerates into false taste and fantastic refinement. The rude simplicity of saxon architeeture was (ultimately) supplanted by the magnifieence of the ormamental (iothic: bat magnitiecme itself is at last exhausted, and it terminated during the present period in a style, which some, with an allusion to literature, denominate 'the llorid.' It is a style censurable as too ornamental, denarting from the grandenr peenliar ta the Gothic, without aeguiring proportional elegance; yet its intrieate and redandant deeorations are *ell ealculated to rivet the eye, and amaze, perhaps bewilder, the mind." The period of the style is fram 1460, ta the dissolution of the religious homses in 1537, and comprehends, therefore, the reigns of Lidward IV. and V., Richard III., Ilenrys VII. and VIII.
423. The ecelesiastical buildings of this ara are few. Samersetshire, a connty devoted to the ennse of the Honse of Laneaster, from the gratitnde or policy of Henry Vil., buasts perlaps more churches than any other county in the florid style; still they are very few, and the superbs chaped which that monareh erected at Westminster is the best pecimen that can leaddued for giving the reader a proper and correct idea of the Florid or Thdar atyle. 'There is doubtless an abundance of examples in oratories, parches, and small chapels, sepulehral sacella and the like; but beyond them we could eite very few entire anered huildings; and thone will be hercafter appended ta this section as in the preceding mes. In eivil, or rather domestic architecture, the ease was far different: a very great hange took place; and we shall endeavour to place a suecinct aceant of it from the Rev. Mr. Dallaway's work, to which we have already been much indehted. 'Ithe fifteenth eenary exbibits to as a manher of vast mansions of the noble and apulent, wherein the characteristic style of the immediately preceding castles was not entirely abandoned, hut puperseded and mixed up with a new and peculiar one. 'Ihe household books of the mhility which lave came to our knowledge, indicate a multitudinous set of servants and reminers, for the reveption of whom a great area of gromed must have been covered, and in whicl provision, by the mminer of apartments, was made for a noble display of hompitality. I his circumstance, of conse, induced a grorgeous style peenliar to the rarlice 'Thend arm, of mont of whase splendid mansions na memorial now exists hat in the reeards al the times. lont for the purpose of bringing at view of the whole smbject under the eye of the reader, a bridf recapinalation will here be necessany. The first palane of the Nombun kings was the Fiower of Londan, which was a strictly military residenece. At Westminster was a palace of Whilhan Rufis, to whom Westminster 1 lall owes its chiminal Gondation. At Oxfard - palace was built by Henry l., and at that place he kept his Christmas in 1115 , as in $\underline{2} 29$ and 12697 Ilewry 1II. did in the vicinity at Worodstock. It was at this platee that Hemry \$1. Built a lomse of retirement, which has furnished the shajert of some well-known
 onneln enlarged by lidwart 111 . "This, from the tine of Ralles, its fomeder, to the reign of lichard II., to whon it owed its completion in the state apmonents, with its magnifirent

porary palace in Europe. Edward III., besides crecting his suburban palace at Kemington had re-edified and greatly extended Windsor Castle as a halitable fortitication. Henry IV: inherited John of Gaunt's eastle of Kenihworth and the Savoy in London, to both of which he made great additions. His gallant and victorious son was too much oceupied with his military affairs to pay much attention to such matters; but many of his commanders, by the exorbitant ransoms they exacted of their French prisoners, were enabled to construct mansions of vast extent in those counties where their revenues commanded mfluence. Of these, as signat examples, may be cited I Iampton Court in IIerefordshire by Sir Rowland Lenthal ; and Ampthill, Bedfordshire, by Sir John Cornwal Lord Fanhope At Greenwich, a palace of great beauty, in the early part of the reign of Henry VI., was built by the regent Ilumphrey Duke of Ghutester, which, from its superiority over others, was by its founder called Plucentio or Plaisture. This was completed hy Edward IV., and is now remembered as the birthplace of Queen Elizabeth. The Lord Treasurer Cronwell expended a large sum on his residence at Tattershall in Lincolnshire, and at Wingfield Manor in Derbyshire, as did Lord Say and Sele, and Lord Boteler, respectively, at Sudley in Gloucestershire, and Hurstmonceaux in Sussex, all of which are now either destroyed or only in ruins. Additions were made by Edward IV. to Nottingham Castle, and by his brother Richard III. to Warwick Castle and that of Middleburg in Yorkshire.
424. Upon the establishment of the Tudor dynasty, Henry VII., on the ruins of a former palace at Shene in Surrey, which after the repairs he bestowed upon it was destroyed lyy fire, built a palace, whereto he gave the name of Richmond, in allusion to his former titte, a name which was afterwards given to the beautiful town on the Thames, in its vicinity. The dimensions of the state apartments in this splendid buitding, whereof not a vestige now remains, are to be found in the Survey of 1649 , when it was offered for sate by the Commissioners of Parliament. They abounded with bay windows of capricious formation, with rectangular and semicircular projections, protheing a pieturesque effect; and to add to its fantastic appearance, there were many octangular towers, surmounted with cupolas of the same plan, whose mitres as they rose were fringed with rich crockets. They were bulbous in their gencral form, thus bearing a resemblance in contour to the royal crown of the period.
42.5. The Tudor style, in domestic architecture, is thus divided by Mr. Dallaway. "I. That just alluded to ; 2. The variations under Henry VIII.; 3. The Elizahethan style" (which will form a separate section), "as it admitted of Italian ornanent in the designs of Johm of Padua and his followers, until the time of Inigo Jones.
425. The re:gn of Henry VHI. supplies numberless instances of the gorgeous expense to which the nobility and gentry proceeded in the productions of our art. The example set by the monarch hinself' was witnessed in no less than two royal mansions, each large enough to contain his numerous retinue. The following are the palaces that were built or repaired by Ifemry VIII. : -
426. Beaulicu, or Newhath, Essex
427. Hunsdon, llerts, originally built by Sir John Oldhall, temp. Edw. IV
428. Ampthinl, Bedtordsthire.
429. Nonsuch, Surrey.
430. York Place, Whitehall, Westminster.
431. Rifidewell and Blackfriars, London, for the reception of the emperor Charles V.
432. St. James's, Westminster.
433. Kimbolton, Huntingdonshive, the jointure of the divorced Qucen Catharine of Aragon.
434. Sheriff Hutton, Yorkshire, given for the residence of llenry Duke of Richmond, the king's natural son.
435. King's Langley, Ilerts.

It was natural that the courtiers of such a monarch should vie with each other in erectling stmptnous houses in the provinces where they were seated. Wolsey, besides the progress he had made, at the time of his fall, in his colleges at Christehurch, Oxford, and 1pswich, had completed IIampton Court, and rebuilt the episcopal residences of York House (afterwards Whitehall), and Esher in Surrey. Edward Stafford, Duke of Buckingham, in tis palace at Thornbury, Gloucestershire, almost rivalted the cardinal, and perhaps might have done so entirely if he had not been hurried to the seaffold before his mansion was completed. Grimsthorpe, in Lincolnshire, rose under the orders of the Dike of Suffotk (Charles Brandon). The Duke of Norfolk and his accomphished son, the Earl of Surrey, were, as appears from the descriptions of Kenninghall, Norfolk, and Mount Surrey, near Norwich. magnificent in the mansions they required for their occupation. We statl merely add the following list (which might, if it were necessary, be much augmented) of some other mansions of note. They are-1. Haddon Hall, Derbyshire. 2. Cowdray, Sussex, destroyed by fire in 1793. 3. Hewer Castle, Kent. 4. Gosfield Hall, Essex, perfect. 5. Hengreave Hall, Sufiolk, perfect, and whereof a beautiful work has been published by John Gage, Esq. (now Rook wode), a descendant of its ancient possessors. 6. Layer Marney, Essex, now in ruins. 7. Raglan Castle, Monmouthshire, in ruins. 8. Hunsdon Honse, Herts, rebuilt. 9. South Wingfield, Derbyshire, ditapidated. 10. Hill Hall, Essex, built by Sir Thomas Smyth, in 1542. 11. Wolterton (see fiy. 199.)

in East Barsham, Norfolk, in ruins.
12. Harlaxton, Lincolushire, perfeet.
13. Westwood, Worcesters!:ire, perfeet.

427. In a very eurions tract, entitled, "A Dyetorie or Regiment of IIealth," by Andrew Boorde, of Physike Doctor, 8vo., first printed in 1547, the following directions are given how a man should build his house or mansion; from which it appears that there were certain leading points for the guidance of the architect, founded, of course, they were on the habits of the time. "Make," says our friend Andrew, "the hali of such fashion that the parlor be amexed to the head of the hall, and the buttyre and pantrye at the lower ende thereof; the cellar under the pantrye sett somewhat at a base; the kechyn sett somewhat at a base from the buttrye and pantrye; coming with an entrie within, by the wall of the buttrie; the pastrie house and the larder amexed to the kechyn. Then divyde the logginges by the circuit of the quadrivial courte, and let the gatehonse be opposite, or against the hall doore ; not directly, lint the hall doore standyng abase of the gatelouse, in the middle of the front enteringe into the place. Let the preve clamion be amexed to the great chamber of estate, with other chambers necessary for the buildinge; so that many of the chambers may lave a prospecte into the chapell." Some of the principal innovations in the eariy Tudor style, were the introduction of gatehouses, bay windows, and quadrangular areas, matters rather incompatible with buildings constructed for defence. The materials of these palaces and mansions were of freestone and brick, according to the facility with which from the situation they could be procured. Sometimes, inded often, these materials were mixed. Moulded brickwork and terra cotta were introduced for ormanental parts by Trevigi and I Iolbein towards the end of the period, or, perhapss strictly speaking, at the end of it. The brickwork was oceasionally plastered and pointed as at Nonsuch:, At Layer Marney and other patees, bricks of two colones highly glazed were used for variegating the surface, and were formed into lorenges. The ehimney shatis seem to have exhansted invention in the twisted and diapered patterns into which they were wronght, and decorated with heads and capitals and cognizances of the fommers. The gateways were prominent featmes in these edifices, and the most expensive omaments were lavished on them. That at Whitehath, designed by Ilolbein, was constracted with diflerently coloured alaged bricks, over which were appended four large circular medallions of busts, still ureserved at Hatfield Deveril, Iferts. This gateway contaned several apartments, among which not the leat remarkable was the study wherein Hoblein chictly received his sitters. The gitoways al I hampton Court and Woolterton were very smilar to this.
428. We will here digress a little on the bay window which, as generally monderstood. was muply a projecting window between two buttesses (whenee its name, as ocenpying a biny of ine building, , and almost miversally placed at the end of the room. It was invelteal dhont a century inefore tite 'Tador age, ill which it usnally consisted on the plan of right migles intersected by circles, as in the buikhing at Windor by Hemry VIII, and at Bornbury ('atste. When placed at the end of a great hath, it extented in height from the floor "the eeiling, and was very simple and regnkar in its form. la a a 118 at the I leratd's ('otloge elating to an entertaiment given at Richmond by Ilenry V'II., the following pasage ectres, mud may be taken as descriptive of one of the purposes the which it was applied. : Agaynt that his grace had supped: the hall was dressed and goodlie to be seowe, and :

pancls, gencrally of oak, lined the lower part of the halls with greater unity of design and execution than leretofore; and it now found its way into parlours and preence clambers with cvery variety of eyphers, cognizances, chimeras, and mottoes, which in the castles of Prance abont the age of Prancis 1. were called Boisserics. Of these some curious specimens still remain in the hall and chambers of the dilapidated mansion of the Lords de La Warre at Italnacre in Suffolk. The area or court was quadrangular, and besides the great stairease near the hall, there were generally hexangular towers containing others: indeed, they were usually to be fornd in each angle of the great court, rising above the parapets, imparting a pleasant and picturesque effect to the mass of building, and grouping well with the l,ity and ormamented chimneys of which we have above spoken.
429. It is melancholy to reflect upon the disappearance of these mansions which were once the ornaments of the provinces, and now one by onc falling fast away by the joint operation of what is called repair and by decay. Most of their remains have been removed to raise or to be ineorporated with other buildings for which they might have well been spared.
430. The charateristics of the style are arches, miversally flat, and wide in proportion to their licight (fin. 200.). Windows, much more open than in the last period, flatter at the top, and divided in the upper part by transoms, which are almost constantly crowned with embattled work in miniature. 'The ceilings or valtings spread out into such a variety of parts, that the whole surface appears covered with a web of delicate sculpture or embroidery thrown over it; and from different intersections of this ribbed work, clusters of peridant ornaments hang down, as Mr. Millers observes, like "stalactites in caverns." The . $/ \mu^{\prime}$ ing buttresses are equally ornamented, and the external surfaces of the walls are one mass of delicate sculpture. The ornaments, as may be deduced from the above particulars, are lavish and profuse in the highest degree. Fretwork, figures of men and animals, niches and tabernacles, accompanied with canopics, pedestals, and traceries of the most exquisite workmanship, carried this style to the summit of splendour; and all these combined, had, perhaps, no small slare in producing the extinction it was doomed to undergo, (See Book 1II. Chap. 3.)
431. Scotland boasts of many fine specimens of ecclesiastical architecture. ithe aboeys of Melrose and Kelso, founded by David I., as well of those of Dryburgh and Jedbu gh, all in Roxburghshire, prove that the art advanced to as great perfection north of the Tweed, as it did in England. Roslin clapel, erected by Bir William St. Clair, for richness and tariety of ornamental carvings camot be excecded; its plan is withont parallel in any other specimen of the fifteenth century. Holyrood chapel was finished in 1440 by James II.. and is a beautiful example; the flying buttresses are more ornamented than any even in England.
432. Examples of the Florid Gothic or Tudor style are to be seen at the cathedral churches-of Gloucester, in the chapel of Our Lady; at Oxfurd, in the roof of the choir; at Ehy, in Alcock's chapel; at l'et rbbrough, in Our Lady's chapel, and at Hereford, in the north porch. In conventual churches, at Windsor, St. Gcorge's clapel ; at Cambrid,e, King's College chapel; at Westminster, King Henry VII's chapel; at Great Malveru, in Worcestershire, the tower and choir ; at Christ Church, Oxford, the roof of the choir, and at Evesham Abbey, in Worcestershire, the campanile and gateway.
433. For paroehial churches, we are unab.e to refer the reader to a complete specimen. in all its parts, of the Tudor style. The pulpit and serecn at Dartmouth in Devonshire, are worthy of notice, and Edyngdon Chureh, Wilt, for its transitional features.
434. This section will be closed by a tabular view of the promotere, dates of erection, and dimensions, of the different cathedrals of England, arranged from the best modern authorities, such as The Cuthedrals of Eng/end, by John Brition; Woreester und Linculn, by C. Wild; Carlisle, by R. W. Billings; Canterbury, by W. Woolnoth; which are the best arebitectural illustrations of these structures; Piof. Wilis's Architectural Histony of ('anterbury Cathedral, 1845, must be referred to by all students; while Murray's Handbonks to the English und Wctoh Cathedrals, besides the eareful historical information eontained in
them, are profusely illustrated with woodcuts of exterior and interior vicws, tomlis, shrines, and other interesting details. The Journals of the two Archæolorical Sxicties also contain carefully prepared accounts of many of these structures. (All inside dineasions.)

BRistol-Conventual Church, Augustinian (Holy Trinity).

Dates and Fonnders.	Nave.	Choir.	Aisles.	Transepts.	Tower.
Abbots.	L. B. H.	L. B. H.	L. B. H	L. B. H.	L. B. H.
1142-70 Robert Fitzharding	D		-	--	
1306) Edinund Knowle,	Destroyed	$\begin{array}{llll}100 & 73 \\ 31\end{array}$	-	s.118-43	
1341 John Snow and others 1481)	16 cent	100314		s.118-43	$30 \frac{1}{2} 29122$
$1515\}$ John Newland	-	-	-	N. groined	2
1515-26 Robert Elliot	-	-	-	s. Vault.	

See founded 1541. The chapter house and vestibule, $1155-70$, is now 42 fc . by ${ }^{25} \mathrm{ft}$. The Flder Lady clanel dates $1196-1215$, and the roof, $1283-94$. The st alls were put up by R. Elliot. The internal length is 173 ft . the breadth 118 ft . The chapter house rubuitt 1833 by Mr. Pope; 1855 , choir rearranged and sedilia restored by T. S. Pope; tower arches rebuilt about 186 b by J. Foster; nave building 1875 by G. E. Street, K.A.

CANTERBURY—Cathedral Church, Benemetine (Christ Church).

D.tes and Founders.	Nava.	Choir.	Aisles.	Transepıts.	Honers.
1070 Arclib. Lanfranc	L. B. H.	L. B. H. Anderypt.	L. B. H	L. B. H	L. B. 11.
$\left.\left.\begin{array}{c} 1092 \\ \text { to } \\ 1109 \end{array}\right\} \begin{array}{l} \text { Archb. Auselm with } \\ \text { Ernulpli } \\ \text { Conrad } \mid \text { priors - } \end{array}\right\}$	The second church (destroyed by fire, 1174) and crypt 163×836.				
11754 Archb. Richard	$-\quad\left\|\begin{array}{c} 18938 \\ \text { and retro- } \\ \text { choir. } \end{array}\right\| \text { and aisles. } \left\lvert\, \begin{gathered} 148 \frac{1}{2} 31 \frac{1}{2} \\ \text { Upper. } \end{gathered} 0 \frac{1}{2}\right.$				
1304 Menry de Estria, prior	-- Stoneenclosure 14ft.high.				
$\left.\begin{array}{c} 1376 \\ \text { to } \\ 1411 \end{array}\right\} \begin{aligned} & \text { S. Sudbury, } \\ & \text { W. Courtenay and } \\ & \text { T. Arundet, Aıchlos. } \\ & \text { 'T. Chillenden, prior' } \end{aligned}$				Lower $127 \frac{1}{2} 337$	"Chichele" s w. 157
1449-68 T. Goldstone 1. prior					
1472 W. Selling, prior					
1492 'I Goldstone I I , prior			-		Completd
1492 L. Goldstone 1I, prior			-	-	$535933 \frac{1}{2}$
1840	-				N.W. re- built - 1.57

See lounded 6 ' 1 . The original Norman structure of Archbishop I anfranc, 1070-86, was rebuilt alter the canomsation of Thomas à Becket. The architects of the new choir were William of Sens, 1175-78, and Whliam the Englishmall, 1179.84 The chapter honse, dathg 1264 and 1391-1411, is 87 it. long by 35 ft . wide and 52 ft . high The clobsters are 134 it square. This calliedral forms a double cross, and has a lofty crypt. At the eastern end and projecting beyond the general line of the plan is the "corona "ar "Isecket's crown," of the shape of aboul three tomeths of a circle. The internal length is 5I4 ft, and ureidth 144 ft. 6 in. Restorations 1820.48 by G. Austin, and later by II. G. Anstin.

CARLISLE—Cathemhal Chuhch, Augustinian Canons (S. Mary).

[^1]
CIIESTER - Conventuar. Church, Benenjctine (S. Werburgh).

See fuonded 1541. The chapter house was bnilt, cir. 1128, by Earl Ranulf. The refectory, mow the King's School; wher remains of the monastery. The internal lengilı is $34 \times \mathrm{ft} .6 \mathrm{in}$. and breadti 130 ft . Restoration of the choir, 1844, by R. C. Hussey ; 1855, Lady chapel; 1868, by Sir G. G. Scott.

Chichester - Cathedral Church, Seculan Canons (S. Peter).

Dates and Foun	Nave.	Choi	Aisl	Transcpt.	Tow
$\left.\begin{array}{l}1094 \\ 1123\end{array}\right\} \begin{aligned} & \text { Bishops. } \\ & \text { Ralph, 3rd bishop }\end{aligned}$	First church partly buint, 1114, and restored by him. Consecrated 1148.				
$\begin{aligned} & \left.\begin{array}{r} 1180 \\ 1204 \end{array}\right\} \text { Sefirid II. } \\ & \left.\begin{array}{l} 1223-44 \\ 1288 \\ 1305 \end{array}\right\} \text { Ralph de Neville } \end{aligned}$					
1305-26 John de Langton $\left.\begin{array}{l} 1329 \\ 1380 \end{array}\right\}$ \qquad					

1507-36 Robert Sherborne
Upper part of choir, stalls, and decorations of S. transept.

See founded 707. The church founded by bisbop Seffrid II. upon that of bishop Ralph. There are font aisles to the nave. The external length is 411 ft .3 in . ; internal longth $3 \times 0 \mathrm{ft}$. and breadth 129 ft . Restorations 1847-56 by R C. Carpenter; since 1859 by W. Slater. The centrd tower fell March 2I, 1861, and rebuilt by Sir G. G. Scott, and W. Slater.

DURHAM-Cataedral Church, Benedictine (S. Cuthbert).

Dites sind Founders.	Nave.	Choir.	Aisles.	Transept.	Towers.
Bishops. 1093-5 William de Carileph $1099\}$ Raph Flamhard 1128 f $\left.\begin{array}{l}1230 \\ 1237\end{array}\right\}$ Richard le Poore $1456\}$ \qquad $1480\}$		L. B. 11 . Rebnilt and aisles. 1757771	L. B. 11. \qquad Included. \qquad $\{$	L. B. H. East or Nine Attars. 12924 1724312	L. B. 11 . W. - 14:3 C. rebuilt $\begin{array}{lll}31 & 33 & 217\end{array}$

[^2] end of the choir. This cathedral is remarkable from the pllars of its nave, which are curiunsl striated The Galllee or Lady chapel, at the west end, begun by Ilugh de Pudsey ($1153-55$), 48 ft . by 76 ft .6 in ., ant finshed by Bishop Lingley (1406-37). The chapter honse dates $1133-43$. The cloisters erected by Bishol skirlaw, $138 x-1405-37$, are about 146 ft . square; the dormitory is uow the uew libriry. The interoal lengthi 420 ft , and breadth 172 ft . Repairs were made $1778-1800$ by James Wyatt, and smee 1859 by Sir G. G. Scult

ELY-Cathedral Church, Benedictine (S. Etheldreda and S. Peter).

See founded 1108 . The octagon tower and choir stalls were desigued hy Alan de Walsingham, a monk, $1322-42$; and perhap,s the Lady chapel $1321-49$, which is without aisles, and is internally 100 ft . long, 46 fi: wide, and 60 ft , hightn its vaulting. The Galilee, chapel, at the western end, by Bishop Eustace, $1148-1215$, is 40 ft . Inng. 'The chantries, are Bishop Alenck's 1486-1500, and Bishop West's 1515-53. 'The exterior length is 565 ft . from the west frnut to the east face of butresses; the internal length is 517 ft . and breadth 178 ft .6 in . Restorations from 1830 by John Bacon, clerk of the woiks; and 1852 by Sir G. G. Scott.

EXETER - Catherral Church, Benedicine (S. Peter).

Dates and Founders.	Nave.	Choir.	Aislcs. İ Transepts.	Towers.
Bishops.	L. B. H.	L. B. H	1. 13. H. L. B. 1I.	L. B. 11.
$\left.\begin{array}{l}1107 \\ 1136\end{array}\right\}$ William Warelwast	-	-		232414% to transepts.
1258 1280 Walter Bronescomb	$\cdots\{$	Laty chapel and completed.		
$\left.\begin{array}{l}1280 \\ 1291\end{array}\right\}$ Peter Quivil		-	$-\left\{\begin{array}{c} 1392968 \\ \text { formed cut } \\ \text { of the } \\ \text { towere } \end{array}\right.$	-
1308 \} Walter de Stapeldon	ـ	$\begin{aligned} & \text { commenced } \\ & 121 \quad 3 \geqslant 61 \end{aligned}$		
$\left.\begin{array}{l}1327 \\ 1369\end{array}\right\}$ John Grand'son	$140 \begin{aligned} & 79 \\ & 34\end{aligned} 6$	-	$14 * 1435: \square$	

Sce formded 1050 . The general plan of the church is that designed by Bishop Quivil. The west front celetrated for the display of a series nf statnes of kings, warriors, stints, and apostles, puardians as it ere of the entrince, arranged in three rows. The lower part nf the chapter bnuse dites from abnut bishop rewer's time (1221-81) ; the upper part is by Bohnp Lucy ($1420-5.5$) ; the ceiling richly decorated by Bishop ollie ($1465-78$). The ctoisters, which are only peifect on ne side, are by Bishop Brantyngham, 1376-94. he "Fatric liolls" of this Cathedral are interesting records. The internal length is 378 ft .5 ih . and the eadth lisy ft. The Lady chapel was restored, 1822, by John Kendall.

See founded 1541. The chapter house (Norman) is 72 ft . long, 34 ft . wide, and 3 ft .6 in . high. The Lady chapel was commenced by Abhot Hanley, 1457-72, and finished by Abbot W. Farley, 147:-98. The cloisters are the most perfect and heautifil ol any in England, and are unusially placed, being on the north side. They were commenced by Abloot Horton, 1351-77, and completed by Abbot Froucester, 1381-I112; in them is a monk's lavatory, and the "carols." The internal length is 406 ft . and breadth 141 it. Jestorations were commenced 1853 by F.S. Waller, who published a work on the cathedral in 1856.
hereford-Cathenraf. Cherch, Secular Canons (The Virgin and S. Ethelbert)

See founded 680. The Lady chapel is 93 ft . by 31 ft . The octagonal chapter house, 1330, with a central pillar. 49 ft . dam., was taken down by Bishsp Egerton, 1724-46. The great west tower, 130 ft . high, fell 1786, and destroyed a great portion of the nave and aisles, which were then shortened about 15 ft . The length between the external faces of the buttresses is 344 ft ; the internal length 325 ft ., the hreadth 109 ft . at lesier transepts and 147 ft . at larger ones. Restorations 1786 by Janes Wyatt; from 1841 by L. N. Cottingham and his son; from 18.58 hy Sir G. G. Scott.

LIChfield - Cathedral Church, Sechlar Canons (The Virgin and S. Chad).

	Id For	Nave.	Choir.	A isles.	Trausepts	Tower.
Cir.		I. B. H.	L. B. H.	B. H .	L. B. H.	L. 13. 11.
1200	-	--	Lower part 3 W bars.	-		-
1290		-	-	-	S 14928.	W. Spires
1240		-_	-	--	N. - -	- - 195
1250	-	$13964 \frac{1}{2} 60$	-	-	-	C. Spire
1275		W. front $78--$	N. aisle $\mathrm{I}_{2} \frac{1}{2}$;	S aisle 130	\cdots	$=-111 \frac{1}{4}$ and 138 $=894 \frac{1}{1}$
1325			1572867	ncluded		

Sue founded 655. The church is very uniform, having hern, like Salisbury and Exeter, built on one plan. "A dated record would render this cathedral one of the most valuable for the history of the development of styles:" Professor Willis. The polygonal apse is a special feature of this cathedral, and is unigue in England; the trig,le srires is another feature. 'lhe arches in the triforia show the dog-tooth moulding in great perfection. The Lady chapel by Bishop W. Langton, 1296-132l. The chapter house, cir. I240, is an fongated octacon, 40 ft .3 in by 27 ft .5 in., with a central pillar. The internal length is 37 It and breadil 149 ft . Restorations since 1860 by Sir G. G. Scott.
I.ONDON - Ord Cathedral Church (St. Paul).

Dites and Founders.	Nitve.	Choir.	Aisles.	Trausept.	'lower.
Bishops. $\begin{aligned} & 1087 \\ & \text { to Mauritius } \\ & 1128 \int^{1} \text { Richard de Beaumes }\{ \end{aligned}$	$280 \begin{gathered} 93 \\ 39 \end{gathered} 93$	L. 13. H.	1. B II. Incluel d.	L. B. H. $280 \begin{array}{cc} 93 \\ & 99 \end{array}, 93$	L. B. 11.
$1222-40\left\{\begin{array}{c} \text { Eustace de Fauconberge } \\ \text { and } \\ \text { Roger de Bileye } \end{array}\right.$	-	$255_{43}^{93} 101 \frac{1}{3}$	Included.	$-\{$	$\begin{array}{lr} \text { C. }^{47} & 285 \\ \text { Spire } & 1815 \\ & 204 \\ \text { Rurnt } & 1561 \end{array}$
1255-83 -		1.ady Chapel			--

See founded 604. The chapter house was built 1332, and was octangular, 32 ft .6 in . diam., and placed in the cloisters, 91 ft . square, orected by Henry de Wingham, 1260. Iuigo Jones commenced the restora. tions 1633 , and added in 1636 the beautiful Corinthian portico at the western end. The Church was burnt 1666, and was taken down 1675. Dugdale's History of St. Paul's has numerous plates by Hollar. The external length was about 590 ft . and of the transepts 290 ft . ; the breadth across the nave 104 ft . ; these dimensions are ohtaiued from Longman's Three Cathedrals of St. Piul, 8vo., 1873. The lengths in the above table are approximate only, arising chiefly from the error of 690 ft , as given hy Dugdsle for the leagth. The dimensions of the present edifice are given in paragraphs 470-474.

LINCOLN - Cathedral Church (S. Mary).

See founded 634. The plan is a double or Lorraine cross. The architect of S. Hugh's work is said to e Geoffry de Noiers. The chapter house, cir. 13 th century, is a decagon with a central pillar, 60 ft diam. nd 40 ft . high. The central spire was hlown down in 1547 ; the others were removed in 1808 . The alilee porch on W. side of the S.W. transept is later than S. Hugh's work. The facaade is decorated ith statues and sculpture, like Wells and Exeter. The cloisters were huilt by Bishop Suttou and are ery slight. There is a curious " stone beam" over the vaulting and hetween the west towers. Total rernal length 482 ft , and breadth 222 ft , at west transepts. The west frout was restored ahout 1862.
M. INCHESTEIR-Coliefiate Churcif (The Virgin, S. Denis of France, aud S. George of England).

[^3]Norwich - Cathedral Church, Benfdictine (Idely Trinity).

See founded $\mathbf{3 0}$ and again 67\%. Before 1272 the cathedral was so dilapidated as to render it necessary to be rebalt. The cloisters commenced by Bishop Walpole in 1247 , were completad by Bishop Alawack in 1.430 ; they are the most snacious in England, being about 176 ft . square and 14 ft . 9 in . wide. The Likly chapel was devtroycd. I'he exlernal tength is 41.1 ft .6 in . and breadth 191 ft ; the internal length is 4 c 4 it . and breadth 180 ft . Whe length from the west door to apse is 383 ft .7 in .

OXFORD-Priorv Cirunch of Augustinan Canons
 (S. Fridenwide, or Chist Church)

Sue fuunded 1515. It is the smallest cathedral in England. The chapter house (Early English), oblong in form, 54 ft . y 21 ft ., may be compared with those of Lincoln, Salishury, and Chester, belong.ng to far wealthier commmaties. Wolsey destroyed the west front and the greater iart of the nase 'I hree sides of the small cloister (94 ft . wide) romain Internal length 154 ft . (it was 202 fc . when complete) and breadth 102 ft. Interior res:orations, 1856, by R. W. Billing.

PeterborougiI-Conventual Church, Benedictine (SS. Peter, Paul, and Andrew).

[^4]RIPON-Cofifghte Chukch (by James I.); (S. Wilfrid).

Dates ind Founders.	Nare.	Choir.	Aisles.	Transepts.	Towers.
1154-81 $\begin{aligned} & \text { Wilfrid } \\ & \text { Roger, Archb. of York }\end{aligned}$	$\begin{gathered} \text { L. B. H. } \\ \text { Ci ypt. } \\ 169 \frac{1}{2} 8788 \end{gathered}$	L. B. H.	L. B. H.	$\begin{aligned} & \text { L. B. H. } \\ & =\overline{3} \overline{36} \mathrm{~N}- \\ & 33 \mathrm{~s}- \end{aligned}$	L. B. H. - - 110 (Spires now removed were 110 ft . higher.)
1215-55 Walter Gray	w. front?	\square		-	
1288-1300	-	E. part.	-	-	
$\text { 1317-40 }\left\{\begin{array}{c} \text { Willian de MIelton, } \\ \text { Archb. of York } \end{array}\right.$		$\left\|\begin{array}{lll} 101 & 67 & 79 \\ \text { Choirscrecn } \end{array}\right\|$	Incruded.	-	
1454-59 $\quad-$		2 bays ol: S. side.	-	E. side S . transept.	E. and S. sides of C. rehuilt.
1500-20	Removed \& Perpend. work substituted.	-		-	
1660	-	lionf restd.	--	-	

See founded $18: 6$. The chapter house, 34 if. $8 \mathrm{in} ., 29 \mathrm{ft}$. wide, by 1.4 ft .8 in . high, with an apsidal end, y Archb. Roger, but the 1 wo central pillars and vailting are later. The crypt under it is prrhaps the riginal church of Archb. Thomas of Bayeux, $1070-1100$. The Lady chapel, 14×2, is over it, a most nusual pisition; it is now the library. Delion extended the church eastward th twice its former righ. Girrat east window, 25 ft . by 51 feet high, dates at the end of ; 4th century. The crypt under the ontre tnver is 11 fr .5 in . by 7 ft .8 in., and 9 ff .4 in . high: it is dedicated to the Holy Irinity. The trrnal lenuth is 270 ft .5 in . and breadth 132 ft . In 1829 the nave was new roofed and ceifed; and from 152 the choir groined in woud and other reatorations by Sir G. G. Scott.

ROCIIESTEIR-Cathemral Church, Benedictine (S. Andrew).

D.trs and Founder	Nave.	Choir.	Aisles.	Iransepits.	'rower.
Binhops. $\left.\begin{array}{rc} \begin{array}{\|r} 077-80 \end{array} & \text { Crundulf, commenced } \\ 1130 & \text { Jolin } \\ 1200 \end{array}\right)$	I. B. 11. $128 \overbrace{28^{6,5}}^{55}$ w. front New roof $-\{$ \qquad \qquad	L. B. 11 . \qquad . \qquad New roof $110 \frac{1}{2}$75 2×8 - HLatly chipl \qquad \qquad	L. B. H. Inclinderf. Chapel St. Marv.	1.. B. 11. 1.. $92 \begin{gathered}4 \times \\ 29\end{gathered}$ W. 12 " $\frac{1}{4} 29$ -	I. 13. H. Nortit! ! 5 now 40 \qquad \qquad Central $-\quad-156$

 are," 24 fl . squire aut $\mathrm{s}^{\prime} \mathrm{ft}$ ligh, are 6 ft . thick, the eutrance is supposed in hate hern from the top) Bishop Ernulf's wook 1114.21 , the wert front (perhaps), darmitory, refectory, and chapter hnuse alone nalin: the door to the litter is of Decorated work aud remarkable. The chapel of ot. Mary is 45 ft . 30 ft . The futernal lengib is $31: \mathrm{ft}, 6 \mathrm{il}$. and breadth 122 ff . 3 in . Restorations $1825-30$, by L. N. thligham, and of lite years by Sir G. G. Sott.

[^5]

WELLS-Cathedial Chitrch (S. Andrew).

See founded 509 , and with Bath 1050 . Though one of the smallest cathedrals, it is a very extraordinary example. Its western fiçute is decorated with six rows of sculpture in a very perfect state, and somewhat similar to Exeter and Lincoln. The subjects are angels, sut jects from the Ohd and New Testaments, kings, hi-hops, and warrinrs, amounting to nver 300: they have bcen explained by C. R. Cockerell, in his Iconography. 'Ihe original plan scems to have been carried out to its cnmpletion. The chapel or room ander the chapter housc and the curions staircase, were completed about $1 \% 86$, by Bishop Burnell; and the chapter house, octagon, 52 ft . 6 in wide and 42 ft . high, with a central pillar, by Bishop William de la March, 1293-1302; sce figs. 1275-7. The east walk of the cloisters, 163 ft ., and library, date 1407-24; the west Ifi6 ft , and part of the snuth, date $1443-64$, and completed for 130 ft . mnre, soon afrer by Thomas Heury, Treasurer. The support ol the central tower is assisted by an inverted arch as at Salisbury. The internal length is 385 ft , and the breadth 135 ft . The west front is $147 \frac{1}{2} \mathrm{ft}$. long. Restorations, 1842, by $\mathrm{C} . \mathrm{R}$. Cuckerell, and later by B. Ferrey.

WInCHESTER-Cathedral Church, Benedictine (S. Mary).

Dates and Founders.	Nave.	Choir.	Aisles.	Transepts.	Iower.
Bishops.	L. 13. H.	I. I3. H.	L. B. H.		L. B. 11.
1079-98 Walkedin	——	-		$\begin{cases}20 \mathrm{Rig} . & 7266 .) \\ (\mathrm{Fi}\end{cases}$	50
$\left.\begin{array}{l}1189 \\ 1204\end{array}\right\}$ Godfrey de Lucy	E. add	itions.	--	\square	
1320 -	-	$\begin{array}{llll}155 & 86 & 78\end{array}$	lncluded.	-	
1343-66 William de Edingdon	Commenced	Lady chapel	$\}$	-	
	$\left\|\begin{array}{ccc} 210 & \text { to choir } \\ 264 & 32 & 78 \end{array}\right\|$	lncladed -13	\square	-	
1447-86 William Waynflete	Completed 118 ft . long	- -	-	-	
1500-28 Richard Fox	- $\quad\{$	Completed. l'resbytery \& beyond.	--		

[^6]
WORCESTER--Cathedral. Church, Benevictine (S. Mary).

See founded 680. The chapter house is circular (sometimes called a dccigon) 55 fl . diam., 45 ft , high, with a plain central pillar. The cloisters (lerpendicular) about 120 ft . square, were erected in the time of Bishop Lynn. They were restored 186f. The refectory, now the King's School, l20 ft. by $3 \hat{8}$ ft., is still perfect. The external length is 405 ft . ; the internal length 388 f . and the breadth 128 ft . Restorations since 1857 by R. E. Perkins.

YORK-Cathmpal Church, Secular Canons (S. Peter the Apostle).

Dates and Foumders.	Nave.	Choir.	Aisles.	Transepts.	Towers.
Archibishops. 1215-55 Walter Gray 1228-56 John le Romeyn (truas.)	I. B. 11 . \qquad \qquad	L. B. H.	L. B, H.		L. B. 11. C. tower.
1285-06 John le Romain	$205 \quad 10493$	\rightarrow	220944		
1355 John de Thoresby	Completed.			-	
1361-73 John de Thoresby	$-\{$	$\left\lvert\, \begin{gathered}\text { Lady chape } \\ 64 \quad 91102 \frac{1}{2} \\ \text { Presby tery }\end{gathered}\right.$	-	-	
1373 Alex. de Neville $1400\}$ Thomas Arundel		$146 \begin{array}{lll}14 & 99 & 101 \\ & 43\end{array}$	-	-	
1405 --	Completed		-		C. recased. 44 48
$\begin{aligned} & 1420 \text { JohnBermingham(treas.) } \\ & 1432 \end{aligned}$	$\begin{aligned} & \text { W.front. } \\ & \hline \end{aligned}$		\longrightarrow		S.W.
1457	-	-	\ldots	$\longrightarrow\{$	$\left\lvert\, \begin{array}{lll}\text { N. W\% } \\ 32 & \\ 32 & 172\end{array}\right.$

See founded 622 or 626 . The octagonal chapter house, 57 ft . diam. and 67 ft .10 in . high, wis, perbaps, prected at the same tinne as the nave; it has no central pillar. The choir and crypts were rebuilt on a larger scale, 1154-81, by Archb. Roger; some parts are earlier. The aisles surrounding the church in every bart are of similar dimensions and were built at same time. The open central tower is 188 ft . high from the floor. The Rose window in the S. transept is the finest in England, it is 22 ft .6 in . diam. The five lancet lights, dating 1250 , in the N. transept are each 5 ft . 7 in . wide and 54 ft . high. The churchisws consecrated July 3, 1472. The "Fabric Rolls" of this cathedral are valuable records of huilding operations. The citernal length is 518 ft . The internal length is 486 ft . and the breadth 223 ft . The choir renf was burnt 1829, ant restored by Sir 13. Sinirke ; the nave rool burnt 1840 , and restored by S. Smirke. I'be S. triusept was restored 1875 , by G. E. Street.

Westiminster - inbey Church, Benfmetine (S. Peter).

[^7] wanelfilly deoorated In lingland. Tho triforla of tho chareh are lightud from in range of windows

BATH—Abbfy Church, Bfnfdictinf (SS. Peter and Paul).

See founded 970, and with Wells 1050. Considered to te the last building in the Perpendicular perion, of great magnitudc. Edward Leycestre, master of the works, succeeded 1537 by John Multon, freemason. It has 52 large sized windows. Its internal length is 218 ft . and breadth 74 ft . Iuterior remodelled 1835 by G. P. Mamners, and restored $1868-71$ by Sir G. G. Scott, R.A.
S. ALbAN'S-Abbey Church, Benemictine (S. Alban).

Dates and Founders.	Nave.	Choir.	Aisles. Nave.	Transepts.	C. Tower.
1077) Abbot Paul (east part of 1078 $\}$ nave)	L. B. H. $275 \frac{1}{2}$ 773	L. B. H. $70 \begin{gathered}75 \\ 31\end{gathered} 65 \frac{1}{2}$	L. B. H. $275 \frac{1}{2} 15$ -	$\begin{array}{ccc} \text { L. } & \text { B. } & \text { H. } \\ 175 \frac{1}{2} & 32 & 61 \\ \hline \end{array}$	$\left\|\begin{array}{ccc} \text { L. } & \text { B. } & \text { H. } \\ 45 & 47 & - \\ \text { outs. } & 1432 \\ \text { ins. } & 102 \end{array}\right\|$
1195 Abbot John de Cella \int to 1235$\} \&(W$. de Trumpington $\{$ 1260 cir. John de Hertford	3 w. portals and w. end of nave. \qquad	Sanctuary. $\begin{array}{lll}93 \frac{1}{2} & 35 & 67\end{array}$			
1290 cir. Roger de Nortone 1308) John de Marynes 1326 f Hugh de Eversdone		$\left\|\begin{array}{ccc} \text { Lady cha } \\ 56 & 23 & 31 \frac{1}{2} \end{array}\right\|$	apel and aute $44 \begin{array}{cc}77 & 24 \\ 20\end{array}$	chapel.	

Founded 793. See founded 1877. Abbot John de Whethamstede, 1420-40 and 1451-64, altered the ground story windows north side of nave and choir, added the large windows in nave and transepts, and the watching loft. The internal length is $520 \mathrm{ft} .8 \frac{1}{2} \mathrm{in}$. Outside length, 550 ft . from plinth of buttress of east wall of Lady clapel to plinth of west porch. Restoration was commenced 1870 to the tower, \&c., by Sir G. G. Scott (died 1878). The west front and part of south transept were pulled down and rebuilt 1581-7 hy direction of Sir E. Becket Deuison, now Lord Grimthorpe.

Truro-Catuedral Church (S. Mary)

Dates and Founders.	Nave.	Choir.	Aisles.	Transepts.	Tower.
	L. B. H	L. B. H.	L. B. H.	L. B. H.	L. B. H.
$\underset{\text { to }}{\text { May } 20,1879,}\} \begin{gathered}\text { Bishop Benson } \\ \text { and }\end{gathered}$			$\begin{aligned} & \text { Nave. } \\ & 95{ }_{132}^{27} ; 30 \end{aligned}$	1102770	$\left.\begin{array}{lll} 15 & 15 & - \\ 30 & 30 & \text { out } \end{array} \right\rvert\,$
Nov. 1, 1887. ${ }^{\text {to }}$ Bishop Wilkinson	$130{ }_{29}^{56} 70$	$112{ }_{29}^{56} 70$	$\left\|\begin{array}{c} 13 z \frac{30}{30} \\ \text { Choir. } \\ 112{ }_{27}{ }_{27}^{2} \frac{1}{2} 28 \end{array}\right\|$	$\begin{gathered} \text { Choir. } \\ -\quad 2270 \end{gathered}$	C. to be 225 W. 24205 Clock tower

See founded 1884. South of south choir aisle is a second aisle 7 ft . wide, and south of this is the old aisle of the parish church (Early English and Decorated yeriods). This is 76 ft . long, 17 ft . wide, and 29 ft . high. A western tower has been added to this aisle, and forms a feature in connection with the south transept. The external length is 284 ft ., 73 ft . across the nave and nisles, and 117 ft . across transepts. The internal length is 276 ft . by 110 ft . The architect is John L. Pcarson, R.A. At present, Nov. 1887, are erected only the choir, the great transepts and aisles, the east transept, the baptistery, two nave bays up to the triforium, the clock tower at south transept, and the central tower, including the first stage of the lantern with temporary roof.

Soutionell-Collegiate Church, Secular Canons (S. Mary the Virgii).

See foundeã 1886. Repairs carried on steadily since abont 1856 by John Gregory and his labourers. From 1875 the roofing, restoration of the west spires and of the chapter house, were completed under Mr. Ewan Cnristian, who (1886) has commenced the stalls and restoration of the screens : and the flooring of stone and marble. The perfect condition of this structure, erected of magnesian limestone similar to that of Bolsover Moor, attracted the attention of the Commissioners in their Report on Stone for the Houses of Parliament, fol., 1839. Its interial length is 306 ft . It was reopened February 2, 1888.

NEWCASTLE-ON-TYNE-

LIVERPOOL-

Sect. VI.

EHIZABETHAN AHCHITECTUME OK LATE TUHOK STYLE.

436. The revival of the aris in I•aly has furnished the subject of Chap. II. Sect. XVI. It commenced, as we have there sen, with its author Brumelleschi, who died in 1414 ; and it was not till nearly a century afterwards that its influence began to be felt in this country. I'se accession of Quecen Dlizabreth took place in 1558.
437. Whilst the art here, thoughalways, as respected its advancing state, much behind that of the Continent, was patronised by the clergy, it flourished vigoronsly; but when that body was seattered by the dissolution of the religious houses, no one remained to foster it; and though IIenry VIII. delighterl in spectucle, und a gorgeons display of his wealth, he was far too great a senomalive to be capable of being trained to relinemont in the urts. There is in Lingland no general pervadiug love of the arts, as monog dell elasess on the Continent. The likabethan, or as some have, perhaps more properly, called it, the last 'Tudor style, is an imperfecely understood adaptation of Italian forms to the babits of' its day in this country. It is full of redundant and unmenning ornament, cremting a restless feeling in the mind of the spetator, whi l , ju the eingue-cento work, the renaissance of Italy, was in some degree atoned for by excellence of design, by exquisite execotion of the sulyace, and by at refuement in the forms wheh sume of the first antist, the world ever naw gave to its pronlactions. In lasly, the urders abmost instantanconsly rose in tacir
proper proportions, suor leaving nothing to be desired; but in England they were for a long time engrafted on Gothie plans and forms.
438. The work of Andrew Borde has been before mentioned; but the earliest pnblieation in England relative to practieal arehiteeture was, "Tlse first and ehiefe Ground" of A rehireeture used in all the aneient and famous Monyments witio a farther and more ample Diseourse uppon the same than ha, hitherto been set forthe by any other. By John Shute, paynter and archi eete." "Printed by John Marshe, fol., 1563." This John Shute Irad been sent by Dudley, Duke of Northumberland. to Italy, probably with the intemion of afterwards emploring hin upon the works which he was projecting. His work, though republished in 1579 and 1584 , is now so rare that only two copies are known to exist, one of which is in the library of the Royal Institute of British Architests, and the other in the Bodleian Library at Oxford. From this and many other eireumstanees, it is easy to discover that domestic architecture under Elizabeth had assumed a more scientifie charaeter. Inleed, there is ample evidenee that no building was now undertaken without the previous arrangenent of a digented and regulated pan ; for early in the reign of this sovereign the treatises of Lomazzo and many others were translated into English; and in the construction of the palatial houses of the aristoeraey, the arehiteets had begun to act upon a system. The prineipal deviation from the plans of the earlicr Tudor houses was in the bay windows, parapets, and portieoes, whereof the two latter were intensely carved with all the forms that the most fantastic and grotesinue imagination could supply. The exteriors of these porticoes were covered with carved entablatures, figures, and armorial bearings and devices. The galleries were lofty, wide, and generally more than a hundred feet in length; and the staireases were spacious and magnificent, often oeeupying a considerable portion of the mansion. Elizabeth herself does not appear to have set, during the passion of the period for arehiteeture, any example to her subjeets. She might have thought her father had done sufficient in building palaces; but, however, be that as it may, she eneouraged the nobles of her court in great expenditure on their residenees. With the exception of the royal gallery at Windsor, sine herself did actually nothing; whilst on Kenilworth alone, Lord Leieester is supposed to have expended no less a sum than 60,0001, an almost royal sum of money.
439. Before proceeding further, it becomes our duty here to notice a peeuliar construetion which prevailed in the large manor houses of the provinces, and more espeeially in the counties of Salop, Chester, and Stafford, the memory of many whereof, though several are still to be seen, is chiefly preserved in engravings; - we allude to those of timber framework in places where the supply of stone or brick, or both, was seanty. The carved pendants, and the barge-boards of the roofs and gables, which had, however, made their appearance at a rather earlier period, were executed in oak or chesnut with mueh beauty of design, and often with a singularly pleasing effect. The timbered style reaehed its zenith in the reign of Elizabeth, and is thus illustrated in Harrison's deseription of Fingland: - "Of the euriousnesse of these piles I speake not, sith our workmen are grown gencrallie to such an excellenee of devise in the frames now made, that they farre passe the finest of the olde." And, again: "It is a worlde to see how divers men being bent to buildinge, and having a deleetable view in spending of their goodes by that trade, doo dailie magine new devises of their owne to guide their workmen withall, and those more curious and excellent than the former." (p 336.) The fashion was no less prevalent in eities and towns than in the country; for in them we find that timber-framed houses abounded, and that they also were highly ornamented with earvings, and exhibited in their street fronts an exuberance of extremely grotesque figures performing the office of corbels. The fashion was imported from the Continent, which supplies numberless examples, especially in the eities of Ronen, Bruges, Ulm, Louvain, Antwerp, Brussels, Nuremburg, and Strasburg, very far surpassing any that this eountry can boast. We have, however, sulficient r.nains of them in England to prove that the wealthy burgess affected an ornamental display in the exterior of his dwelling, fivalling that of the aristocracy, and wanting neither eleganee nor elaborate finishing, whilst it was productive of a highly pictmesque efieet in the street arehiteeture of the day. "This manner," says Dallaway, "was eertainly mueh better suited to the painter's eye than to comfortable ha'sitation; for the houses were lofty enougl: to admit of many stories and subdivisions, and being gencrally piaeed in narrow streets were full of low and gloomy apartments, overhanging each other, notwithstanding that they had fronts, which with the projecting windows and the interstiees were filled for nearly the whole spaee with glass." Fig. 201 is a representation of Morcton Old Hall, Cheshire, built eirea 1550-59, partly rebuilt 1602.
440. A better ide of the arehitecture of this age cannot be obtained than by a notiee of the principal arehitects who have furnished materials for the foregoing observations; for this purpose we shall refer to Walpole's Anecdotes A folio book of drawing ${ }^{\text {c, }}$ belonging to the Farl of Warwiek in the time of Walpole, enabled him to bring to the knowledge of the world, and propetuate the memory of, an artist of no mean powers, whose name, till that author's time, was almost buried in oblivion, and of
wom little is still known, though his work contains memoranda relating to many of uc principal edifices erected during the reigns of Elizabeth, and James, her successur.

rig. 201.
TIMBER-FRAMED HOU:EF, Moieton Oid Hall, Lheshire.
I lis name was John Thorpe; and at the sale of the library of the Hon. Charles Greville in 1810, the MS. in question came into the possession of the late Sir John poane, I'rofessor of Architeeture to the Royal Academy. It is a folio, eonsisting or 280 pages, wherein the plans, often without a scale, are nevertheless aceurately exeeuted. deveral of the subjects were merely designs for preposed mansions. The elevations are reatly drawn and shadowed. The general form of the plans is that of three sides of a fladrangle, the portico in the centre being an open areade finished by a turrcted cupola. When the quadrangles are perfect, they are. for convenience, surrounded by an open aridor. The windows, especially in the prineipal front, are large and lofty, and mostly itternated with bows or projecting divisions, and always so at the flanks. Great efforts vere made by Thorpe to gromp the chimneys, which were embellishod with Roman Dorie ohnms, and other conceits. Portions of the volume have been engraved by Mr C. J. tichardson in the tirst part of his Architectural Remains of the Reigns of Elizaleth and 'ume; I., fol. 1838-40. Amongst the contents of 'Thorpe's volume (which has been colated for this edition, 1866), are:-Outlines of a "jambe mould," " municll." " rayle mo. far tayre," "eorbell table," paapets, \&c. ; and the live Orders, with rules for drawing them.
Page 19, 20. Plan and elevation, "Buchhurst howse, Sissex." Built, 1565, by Thomas Sackville, Fiall of Dorset, Lord High Treasmer to Queen Elizabeth. The front extunds 230 ft . The courtyard is 100 ft . hy 80 ft , and the hall 80 ft . by 50 ft .
441. "直 a front or a garden syde for a noble man," dated 1600
442. 38,50 . "'lie way how to drawe any grond plot into the order of perspective," with descriptions, the front being parallel with the speetator.
39, 40. Ilan, with a courtyad in front. "Sr Geo. Moores howse."
443. Plan, "Cmons my La: Lakes howse."
444. I'lan. "Copthall, 16 fo. 8 ynch. This cort should be 83 (or 83) fis. square." Built fur Sir thomas lleneage. The gallery was 168 ft . long, 22 ft , bigh, and 22 ft . wide.
445. Blevation, "W'oollerton, Sir Frame. Willoughby," Nottinghamshire, which bas the inseription, "Inchnata, 1.580-158'." Mr. Dallaway notices that the tomb of Robert Smithson, in Wollaton charch, calls him "architector and surveyor unto, the most worthy house of Wollaton, with divers others of great accomm. (Ob, Ifi4,' which woold appear to invalidate Thorpe's claim: Smithson was probably 'Thorpe's

446. Plan, rimgh. "Sr Jo. Bagnall." A gallery 60 ft. long.

57, 54 . Two plims. " Burghley juxta Stamford." Built, 15:8-80, for William Cucil, lard 'Treanurer. (See 105.)
 lonig: and $\because 5$ ft. wide.
69. Plan of Henry VII.'s Chapel. "Capella ista H. 7 mi impensis 14.000 lb . adiecit ipse Ao 1502."
77, 78, I'tan. Chateau de Madrid. Bois de Boulogne, near Paris, now pulled down.
88, 89, Plan and elevation. Old Somerset House.
93. Plan. "Sr Walter Coap at Kensington, pfected p me J. T." Holland House, finished in 1607 , and added to by Inigo Jones and N. Stone.
94. Plan. "Sr George Corpin," Hertfordshire, cir. 1608 (?)
109. Pkan. "A London honse, La Darby, channell row" (?)

105, 106. Plan. "I Duke of Buckingham at Burghl"y," or Burley-on-the-Hill. (See 57.)
113, 114. Plan. "Wymbleton. An towse standing on the edge of an hie hill." Built,
1588, for Sir'Tho. Cecil. Fuller says it was "a daring structure, nearly equal to Nonesuch."
$123,124,127,128$. Plans. "Queene mother's howse, fabor St. Jarmins, alla Paree, altered p Jo. Thorpe."
136. Plan. "London howse of 3 bredthes of ordy tenemts." Supposed design for Sir Fulke Greville's (Lord Brooke) house, near Gray's Inn.
139, 140. Plan. "Kerby whereof I layd ye first stone, Ao 1570," Northamptonshire, for Lord Chancellor Hatton.
150. Plan. "Richmt. Lodge, Sticles" (?). (Robert Stichles")
151. Plan. "Sr Peival Hart," Lullingstone, Ktnt.

155-158. Plan and elevation. "Longford Castle, Wiltshire (fig. 202). A diagran of the Tinity is drawn in the middle of the triangular court. Built for Sir Thomas Gorges and his wife, the Marchioness Dowager of Northampton, in 1591 ; now the Farl of Radnor's. 'Fhe plan differs from that given (1766) in Britton's Arch. Antiq.
153. Plan. "Mounsier Jammet in Paris, his howse, 1600.
164. Plan. "Gyddye Hall. 84 fo. square," Essex. Altertd for Sir Anthony Coke.

167, 168. Plan. "St. Jarmin's howse, V leagues from Paris, Ao 1600."
203, 204. Plan. "Audley end;" and later, "Audley End in Essex, seat of Lord Suffolk." now the property of Lord Braybrooke. Thorpe's part was completed about 1616.
215, 216. Three plans. Greek cross. Lyveden.co. Northam. (?). Built by Sir T. Tresham.
225. 'Two plans. "Mr. Tayler at Potter's barr, 1596."
232. Plan, II shape, with a courtyard, " 94 fo. square," and a gatehouse. "This plot drawne after 8 fo. 8 inche, p Jo. Thorpe," (? his own drawing).
234. Two elevations. "Heddington Jo Chenyes," (? Toddington, co Bedford).

239, 240. Two plans. "Sr Walt. Covert, Sussex," at Slaugham, near Horsham.
267, 272. Two plans. "Ampthill old howse, enlardged p J. Thorpe." "Duke of Bedford" (?). It was the residence of Queen Catherine, first wife of Henry VIll.
265, 266. Plan and elevation. "for Mr. Willm Powell," or Howell ; of timber.
Amongst the general designs, which are chiefly plans, are, page 21, "Sir Jo. Danvers, Chelsey;" 28, "Sr Wm. Ruffden"(?); 31, "Mr. Johnson ye Druggyst;" 43, "Sir Walter Rawley - Sir James;" 45, "Sir Tho. Dorrell, Lincolne shire ; "46, and half elevation, "Godstone ; " 59, tro plans, "Sr George Sct. Poole;" 62, a long-fronted house at "Higate ; " 65 , "Sr James (?) Clifton's howse;" 191, "Mr. Keyes ; " 132, "Mir. Denman;" 147, 148, and elevation, " Sr William Haseridge;" 176, "Mr. Panton;" 18ฯ, " Holdenby banquetg at 16 fo ; " 185 , "Mr. Folte" $(?) ; 187$, "Mr. W. Fintwilliams; " 190 , Sr Ilen. Nevile;" 201, 202, "Jo. Clanricard;" 205, "Sr Tho. Holt, 12 pte;" and 253, " Hatficld lodge." $275-278$, has a gallery 160 ft . long and about 25 ft . wide; 146
is designed within a crecle; and 161, on a triangic with a hexagon interior court ; 1.55 is also a triangular plan, as named. Many of these designs might probably be identified, but it would entail mich labour.
441. Walpole, upon Thorpe's Conpositions, observes, that the taste of this master's mansions was that " bastard style which intervened between Gothic and Grecian architecture, or which, perhaps, was the style that had been invented for the houses of the nobility when they first ventured, on the settlement of the kingdom after the termination of the quarrel between the Roses, to abandon their fortified dungeons, and consult convenience and marnificence." The same author continues, "Thorpe's ornaments on the balustrades, porches, and outsides of windows are barbarous and ungraceful, and some of his vast windows advance outwards in a sharp angle ; but there is judgment in his disposition of apartments and offices, and he allots more ample space for halls, staircases, and chambers of state. He appears, also, to have resided at Paris, and even seems to have becn employed there." Among the designs he made is that of a whimsical editice, clesigned for himself, forming on the plan the initial letters of his name 㞹, which are joined by a corridor, the o being the situation of the offices, and the 5 bcing skilfully distributed into large and small apartments. The epigraph to the design is as follows:-(pages 30 and 50)

> "Thes 2 Letters I and T
> toyned together as youl see
> Is ment a dwellug howse for mee John ThorPE."

Walpole truly observes of this volume, that " it is a very valuable record of the magnifi cence of onr ancestors, and preserves memorials of many sumptuons buildings of whith no other monument remains." We ought, perhaps, to have suffered our accomnt of Thorpe to have been preceded by those of others. but the conspicnous rank he holds in the list of English architects of this period induced ns to place him before another, for a little time his predecessor in the works of the country. We allude to the name of Robert Adams, who translated Ubaldini's account of the defeat of the Spanish Armada from the Italian into Latin; a feat which we fear but few architects of the present day would easily accomplish, such is the fall of cducation for artists, notwithstanding all the boasts of march of intellect. This translation appeared in 4to., 1589. He was surveyor of the queen's buildiugs, and appears to have been a man of considerable ability. His place of sepulture was in an aisle on the north side of the old church at Greenwich, with this inseription, " Eigregio Viro, Roberto Adams, operun regiorum supervisori architecturæ, peritissimo, ol). 1595. Simon Basil, operationum regiarum contrarotulator, hoc posuit monumentum 1601."

442. Bernard Adamsand Lawrence Bradshaw were also cminent anong the architects of the period under our consideration; but we must notice more particularly Gerard Chrismas, who was associated with Bernard Jansen in the erection of Noithampton, afterwards Suffolk, and now Northumberland House, not strictly belonging in time, though in style, to the reign of Elizabeth. Both of these architeets are considered to have been much employed. In the balustrade and on the struct front were the letters H. N. and C. E., which so doubt stood for Henric. Howard. Northampton. Comes Edificavit. Yet C. Ne, has been supposed to denote "Chrismas Adificavit," Such letters were repeated, a practice then much in vogue, for there are many examples of inseriptions of letters enclosed within the balustrade, as if within lines, and pierced so that the sky seen through them renders them distinet from almost every point of view. Bernard Jansen was probably the arehitect first employed at the splendid mansion of Audley Inn in Essex, fir Thomas Howard, Earl of Suffolk ; and, besides the association with Chrismas above mentioned, was joined with Moses Glover in completing Northumberland Housc. and was probably the architect who finished Sion House in Middlesex, for IIenry Earl of Northumberland, who had at the time expended $9000 l$. in the work.
443. Robert and IIuntingdon Smithson, father and son, were engaged on Wollaton Hall (fig. 20\%. at the foot of the preceding page), in Nottinghamshire, as also at Bolsover in Derbyshire. The former died in 1614, at the age of seventy-nine, and the latter in 1648, but very possibly Johm Thorpe was eonsulted in this splendid work, for among his designs, as the reader will recolleet, are some for Wollaton.
414. Thomas Holt, a native of York, was the arehitect of the public schools at Oxford

(ffy 204.), of which the hint might have been taken from the Campmile of Santa Chiara at Naples, and of the quadrangles of Merton and Wadham colleges. He was the first in this country who introduced the classical orders in scries above each other. He evidently borrowed the practice from Philibert Delorme, who had done the same thing at the Chatean d'Anct, near Paris, one of the virtim edifices of the Revolution. We apprehend ally argument to prove the absurdity of such conceits is umecessary.
415. Many of the grandest works of what is termed the Elizabethan, or, in truth, the

Tudor style, were not completed before the middle of the reign of James I. ; so that it be said to have been practised until the days of Inigo Jones, in whose early works it be traced. "This fashion," says Dallaway, " of building enormous houses was ex. led to that period, and even to the civil war. Audley Inn, Hatfield, Charlton, Wiirs, particularly Wollaton, are those in which the best architecture of that age may be
Others of the nobility, deserting their baronial residences, indulgcd themselves in a Iship in point of extent and grandeur of their country-houses, which was, of course, owed by opulent merchants, the founders of new families Sir Baptist Hickes, the g's mercer (afterwards emnobled), built Campden House, Gloucestershire, which was cely inferior to IIatfield, afterwards burnt down. There is scarcely a county in Jland which camot boast of having once eontained similar edifices; a very few are stil abited ; others may be traced by their ruins, or remembered by the oldest villagers, who confirm the tradition; and the sites, at least, of others are pointed out by deseriptions as ing existed within the menory of man."
46. The following is a list of some of the principal palatial houses finished before 1600. hers of the reign of Elizabeth's successors will hereafter be noticed. Of so many of n are the names of the architects undetermined, though many are assigned to those we e already mentioncd, that we shall not attempt to assign a column to the artists in stion, for fear of misleading our readers.

Name.	Date.	County.	Founder.	Present State.
atledge -	1560	Cambridge -	Isord North -	Taken dov
asing house	1560	Hants	Marquis of Winton	In ruins
elston	1587-92	Sumersct	Sir J. Harington	Rebuilt
orlambury	1565-68	Herts	Sir N. Bacon	In ruins
uckliurst	1560-67	Sussex	Lord Buckhurst	Destroyed
nowle	1570	Kent	Lord Buckhurst	Perfect
enshurst -	1570-85	Kent	Sir H. Sydney	Perfect
enilworth	1571-75	Warwick	Earl of Leicestcr	In ruins
unsilon -	1.575	Warwick	Lord Hunsdon	Rebuilt
anstear -	1576	Essex	Earl of Leicester	Destroyed
urkigh -	157.5-80	Lincoln	Lord Burleigh	P'erfect
sterley	1.577	Middlesex	Sir Thomas Gresham	Rebuilt
ongleat -	1567-78.	Wilts	Sir J. Thynne	Perfect
oke P'ogis	-580	Bucks	Earl of Huntingdon	Rebuilt
addingron	1580	Beds	Lord Cheyncy	Destruycd
hicobalds	1570-\% 0	Heris	Lord Burleigh	Destroyed
imbledon	1588	Surrey	Sir T. Cecil	Rebuilt
estwood	1590	Worcester	Sir J. Packiagton -	Perfect
arduick Hall-	1590-97	Derby	Countess of Shrewsbury	In ruins

17. Relative to Osterley, in the above table, a curious anecdote has been preserved by ler, in his Worthies of Middlesex. Queen Ehizabeth, when visiting its magnificent chant, the owner, observed to him that the court ought to have been divided by a wall. immediately collected so many artificers, that before the rueen had risen the next ning, says the historian, a wall had been actually erected.
18. Many of these honses possessed terraces of imposing grandeur, which were conel by broad or double flights of steps, with balustrades, whereof, if we may judge from tanley's print of Wimbledon, the seat of Sir Ldward Cecil, it was a very fine example. following extracts from the parliamentary survey of it in 1649 will convey some m of its extent. "The seite of this manor-house being placed on the side slipp of at g grownde, renders it to stand of that height, that betwixt the basis of the brick wall of lower court, and the hall door of the sayd manor-house, there are five several ascents, isting of three score and ten stepps, which are distingnished in a very graceful mamer. phatorms were composed of Flanders brick, and the stepps of freestone, very well ight. On the gromed floor was a room called the stonc gallery, 108 foot long, piltared arehed with gray marble." The ceiling of the hall "was of fret or parge work, in the He whereof was fixed one well-wronght landskip, and romed the same, in convenient nece, seven other pietures in tranes, as ormaments to the whole roome; the floor was ack and white marble."
19. As we have above olserved, the Elizabecthan style is a misture of Gothic and Italian. claracterised by orders very inarenratedy and rudely profiled; by areades whose openings ften extravagintly wide, their height not unfrequently ruming up into the contabla-

The columns on the piers are almost universally on pedestals, and are often banded nures of circular or stuare blochs ut intervals of their height ; when spuare, they ane tanty decorated with prismatic raisinge, in imitation of precions stomes, al speries of
ornament which is of very frequent recurrence. Nothing like urbroken entablatur appear; all is frittered away into small parts, especially in scrolls for the reception of i erriptions, which, at their extremities, are voluted and curled up, like so many pieces

Fig. 205. scorched leather. All these e centricities are so concentrats in their sepulchral monunent that no better insight into to leading principles of the sty can be afforded than an examp from Westminster Abbey, he given in the monument of Quer Elizabeth herself (fig. 205. In this it will be seen that tl taste is cumbrous and confuse and to add to the anomalies, t! figures were coloured, and t ! different sorts of marbles an: alabasters of numberless hue The general composition consis in a large altar tomb under a open areade, with a rich and con plicated entablature. The " lumns are usually of black, white marble, of the Doric , Corinthian order. Sinall pyre midal figures, whose sides wel richly veneered with variousl coloured pieces, disposed in on namented squares or circles sul porting globes, are of continu: occurrence. Armorial bearing in their various colours were in troduced to excess. When tl monument is placed against wall, which is more usually tl case, the plan was accommodatc to it, and the alcove with i columns universally retaine Among the best examples at those of Thomas Ratcliffe Earl of Sussex at Boreham in Essex, to cost 15001, and of b conntess in Westminster Abbey; of Robert Dudley Earl of Leicester at Warwick; a of Henry Carey Lord Hunsdon in Westminster Abbey.
450. It seems droll in this age, when throughout Europe the principles of good taste architecture are so well understood, that fashion, induced by the cupidity and ignorance upholsterers and decorators, - the curses of the art.-should again sanction an adoption the barbarous forms and ummeaning puerilities which it might be supposed Jones and Wru had, by their example, consigned to a merited oblivion. We fear our warning voice w do little to suppress the rage till its cycle is completed. We lave, in the prolongation the subject, sacrificed onr own feelings to the rage in the present day fur designs of th class, and have assigned to it a far longer description than it deserves. 'The wretch cockney imitations of it perpetrated for retired shopkeepers in the insignificant villas of t suburbs of the metropolis, and occasionally for the amusement of country gentlener little more distant, as well as the use of what is called Gothic, appear to us in no oth light than mockeries of a style which is repudiated by the mamers of the nineteenth centur The style called Elizabethan we consider quite as unworthy of imitation as would be ti adoption in the present day of the model of the ships of war, with their unwieldly and to. heavy poops, which encountered the Armada, in preference to the beautiful and compa form of a well-moulded modern frigate.

Sict. VII.

JAMES 1. TO ANNE.

4.51. The first. of the reigns that heads this section has, in some measure, been anticipal in our notice of Elizabethan arehitecture, which it was impossible to keep altogetier distin
m the following reign. The angular and circular bay windows now disappeared entirely, d were supplanted by large square ones, of very large dimensions in their height, equally divided by transoms, and placed in lengthencd rows, so as to form leading tures in the several stories of the building. Battlements were now entirely omitted. d the general effect of the pile became one of massive solidity, broken by a square turret tier than those at the angles. The houses built in the reign of James I. are deficient in e picturesque beauty found in those of his predecessors. Many of them ware finished by 2 architects named in the last section, and they were on a larger scale than cven those of 2 age of Elizabeth. Audley Inn in 1616, Hatfield in 1611, and Charlton House in iltshire for Sir Heury Knevett, were, perhaps, the best specimens. The house at mpden, Gloucestershire, built by Sir Baptist Hickes, and which was burned down during a civil wars, consisted of four fronts, the principal one being towards the garden, upon the bund terrace; at each angle was a lateral projection of some fect, with spacious bay ndows; in the centre a portico, with a series of the columns of the five orders (as in the tools at Oxford), and an open corridor. The parapet was finished with pediments of a ricious taste, and the chimncys were twisted pillars with Corinthian capitals. A very , bacious dome issued from the roof, which was regularly illuminated for the dircetion travellers during the night. This immense building was enriched with frie\%es and bablatures, most profusely sculptured; it is reported to have been erceted at the expense ,29,000l., and to have occupied, with its offices, a site of eight aeres."
459. The use of the orders became more general. In Glamorganshire, at Beaupré stle (1600), which has a front and porch of the Doric order, we find a composition in, ding that just named, the Ionic and the Corinthian, wherein the capitals and columns accurately designed and executed. The following table exhibits some of the principal lases of the period: -

House.	Date.	County.	Founder.	Present State.	Arehitect.
olland House	1607	Middlesex -	Sir Walter Cope -	Perfect	J. Thorpe (?)
amshill .	1607-12	Hants	Edward Lord Zouche	do.	Uncertain
astle Ashby	1625-35	Northmptn.	Herbeit Lord Compton	do.	do.
mmer Hill	1624	Kent	Earl of Clanricarde -	do.	J. Thorpe (?
parlton	1615 (?)	Wilts	Sir Henry Knevet	Restored	Uncertain
arfield	1607-12	Herts	Robert Earl of Salisbury	Perfect	do.
pingford Castle -	1591-1612	Wilts	Sir T. Gorges -	do.	do
mple Newsham	:612-19	Yorkshi	Sir Arthur lngram	do.	do.
parlson, Great -	1607-12	Kent	Sir Adan Newton	de.	do
lsover	1607-18	D	Sir Charles Cavendish	Dilapidated	$\left\{\begin{array}{c}\text { Huntingdon } \\ \text { Smithson }\end{array}\right.$
adley Inn	1610-16	Essex	P. Earl of Suffol	Perfect	B. Jansen
olliaton	$\left\{\begin{array}{l}1580 \\ 1588\end{array}\right\}$	Notts	Sir Francis Willoughby	do.	$\left\{\begin{array}{c}\text { J. Thorpe (?). } \\ \text { R. and 11. } \\ \text { Smithson }\end{array}\right.$

153. Under James, the pride and magnificence of the aristocracy was as equally disyed in the sumptuous monuments erected to the memory of the departed as in their cly palaces; and we can scarcely point to a comnty in England whose parish churches (not attest the fact by the gorgeous tombs that exist in villages where the mansions of tse thus commemorated have not long since passed from the memory of man. A year's rtal of an estate, and that freguently under testamentary direction, was often squandered i he sepulchral monument of the deceased lord of a manor.
154. In the reign of James I. properly commences the carecr of Inigo Jones, to which hasten with delight, as indicating the dawn of true architecture (for the Gothie had irrevably passed away) in England. It resembles the arrival of a traveller at an oasis in the ert, after a parching and toilsome journey. "Jones, if a table of fame," says Walpole, "ke that in the "Iatler, were to be formed for men of real and indisputable grenius in ory comatry, wonld save England from the disgrace of not having ber representative a ing the arts. She adopted IIollein and Vandyck, she borrowed Rubens, she produced 1 fo J ney V'itruvius drew up his grammar, I'alladio showed him the practice, Rome dhayed a theatre worthy his emulation, and King Charles was ready to encourage, e loy, and reward his talents. "This is the history of Inigo Jones as a genius." (ienesiy apeaking, we are not admirers of Walpole, who often sacrificed trath to fancy, and the e racter of an artist to a prettily-turned period; hence we are disinclined to eoncur in his eficisms withont many qualifications; but in this case he has so well expressed our own
feelings, that we regret we camnot add force to the observations in which we so full! eonenr.
155. Inigo Jones was the son of a clothworker, and was born about 1572. From the most probable accounts he appears to have been apprenticed to a joiner, in which state he was, from some accounts, discovered by the Earl of Arundel, from others by William Lar of Pembroke, and by one or other of these noblemen sent to Italy, rather, however, accord ing to Walpole, to study the art of painting, than that of architecture, for the former of which the author named says, Nature appears not to have fitted him, inasmuch as "he dropped th pencil, and conceived Whitehall." But our own belief is, that though he might have after wards been patronised by both the noblemen above mentioned, he owed this part of hi education to neither of them ; for, eonsidering that at his first visit to Italy, before 1605 Lord Pembroke was but just of age, and that Lord Arundel was somewhat yomgen there is no great probability that either of them thus assisted him in his studies on th Continent.
156. Of his employment as an architect nothing can be traced previous to the visit James I. to the University of Oxford, in 1605, at which time he was thirty-three years old and then, according to Leland (Collectonea, App. vol. vi. p. 647.), "They" the Univer sity) "hired one Mr. Jones, a great traveller, who undertook to further them with rar devices, but performed little to what was expected. 1le had for his pains, I have eom stantly heard, $50 l$.;" from which it is certain that his earliest visit to Italy was befor 1605. At Venice he became acquainted with the works of l'alladio; and there, a Walpole observes, " learned how beautifully taste may be exerted on a less theatre tian the capital of an empire." In this city his reputation was so great, that Christian 11° appointed him his architect, though of the buildings erected by him in Demmark we know nothing. In this country's capital, however, he was found by James, and by his Quee (Anne) was removed from Copenhagen to Scotland, in the quality of her arehitect. l'ince IIemry he was employed in the same capacity, and about this time latd the grant it reversion of surveyor general of the works. On the untimely and lamented death of tha prince, he once more visited Italy, where he perfected his taste and ripened his judgment It appears more than probable that it was previous to his second journey that he designee those of his buildings that partake of a bastard style. These buildings, however, are suct as could, under the circumstances, have been designed only by a great master in a state transition from one style to another; such, for instance, are the north and south sides o the quadrangle at St. John's College, Oxford, in which he seems to have copied all th faults of the worst examples of his great master Palladio; still the composition is pieturesque, that, though reluctantly, we cannot avoid admiring it. In the garden front

Fig 206.
GALLDEN FLONT OF ST. JOHN'S COLLEGE, OXFOND, (1631-6).
the same college (fig. 206.), notwithstanding its impurity, there is a breadth and grande which subdue criticism, and raise our admiration; and we by no means subseribe to Hora Walpole's dictum, that "Inigo's designs of that period have a littleness of parts and weight of ornament." Previous to his second return to England, the surveyor's place h fallen in, and finding the office in debt, he prevailed, as Walpole observes, with an air

Roman disinterestedness, and showing that architecture was not the only thing he had earned in lome, on the comptroller and paymaster of the office, to give up, as he did, all lie profits of the office till the arrears were cleared.
457. By the Federa, vol. xviii. p. 99., we find that there was issucd to him, in conjunction itin the Earl of Arundel and others, a commission to prevent the building on new foundtions within two miles of London and the palace of Westminster ; and in 1620 he was, if ossible, more uselessly cmployed by James I. in guessing, for it was no more, who were he builders of Stonehenge. For this last, the necessary preliminary information had not ven dawned, although Walpole, in his usual off-hand manner, loses not, in alluding to it, the pportunity of displaying his own dreadful ignorance on the subject. (See Chap. II. Sect. It., here this monument has been examined.) In the year last named, Jones was one of the ommissioners for the repair of old St. Paul's, though the repairs were not commenced till 63:3, in which year Laud, then Bishop of London, laid the first stone, and Inigo Jones he fourth. Our arehitect was now too much disinclined to Gothic to bend his genius to

anything in the shape of a restoration; and though the loman portico which he placed before the church was magnifiecnt, the application of Roman to Gothic architecture of course rnined the cathedral. The reader will find a representation of this portico in Dugdale's St. Puai's. Abstractedly considered, it was a fine composition ; and its dimensions, of a length of 200 ft , a depth of 50 ft ., and a height of 40 ft ., werc calculated to give it an imposing effect.
458. The Banqueting House at Whitehall, which we have pride in quoting as one of the most magnificent works in Europe, has generally been supposed to have been erected in the reign of Charles I.; but there is sufficient reason for assigning the period of its execution to the preceding reign. It was begun in 1619 , and finished in two years. The designs for the palace of Whitchall, whereof fig. 207. at the foot of the preceding page, exhibits a block plan, on which the banqueting-house (at Λ), it will be seen, forms a very inconsiderable portion, would, had they been exccuted, have formed, beyond all comparison, the finest in the world. In magnitude it would have exceeded ceven the palace of Diocletian. 'The form, as will be observed, was an oblong square, and eonsisted of seven courts, whercof six were quadrangular. The central one was larger than the other two chief divisions; and these were again subdivided into three courts, the centre one of which, on the north side, had two galleries with arcades, and that on the south a circular Persian court, as it was ealled, whose diameter was 210 ft . Surrounded on the ground floor by an open areade, the piers between the arches were decorated with figures of Persians, with what propriety it is uscless to discuss; and the upper story was ornamented between each window with caryatides, bearing Corinthian capitals on their heads, surmounted by an entablature of that order, and the whole was finished by a balustrade. 'Towards Westminster, the front extended 1152 ft ; and that towards the park, in which the length of the bandueting-house is included, would have been 720 ft . With the cxception of Westminster Hall, the barqueting-house (now used as a chapel) was, until of late ycars, the largest room in England, its length being 115 ft ., breadth 60 ft , and height 55 ft .
459. In 1652, Jones was employed on Somerset House, to the garden front whereof he executed (fig. 208.) a façadc of singular bcauty, lost to the world by its demolition on the

Fig. 208.
water front of odd sumbret housb.
rebuilding of the edifice for its present purposes. On the ascent of Charles 1. to the throne, our architect seems to have been very much employed. As surveyor of the public buildings, his stipend was $8 s .4 d$. a day, besides an allowance of $46 l$. per annum for houserent, a clerk, and incidental expenses.
460. In the passion for masques which prevailed during the reign of Charles I., Jones was a principal contributor to their splendour. They had been introduced into this country by Ame of Denmark; and Walpole gives a list of thirteen to which he furnished the scenes and machinery.
461. They who have seen Wilton can appreciate Inigo's merit for having introduced into England, in the seats of our aristocracy, a style vying with that of the villas of Italy, Some disagreement appears to have arisen between him and Philip Earl of Pembroke, which here it would be irrelevant to dwell on; we will mercly mention that in the llarleian library existed an edition of Jones's Stonehenge, which had formerly belonged to the nobleman in question; and that its margins are filled by the fornter
nusessor with notes, not on the substance of the work itself, but on its author, and anything lse that could be injurions. He calls him "Iniquity Jones," and says he had 16,000 l. year for keeping the king's houses in repair. 'The censures were undeserved; and the ceusations, unwarranted by facts, are extremely discreditable to the memory of Earl hilip.

Fig. 2019.
462. The works of Jones were exceedingly numerous; many, however, are assigned to him which were the productions of his scholars. Such buildings as the Queen's house at Greenwich (much altered, and, indced. spoiled, of late years, for the purpose of turning it into a public naval school); Coleshill, in Berkshire, built in 1650; Shaftesbury House, in Aldersgate Strcet; the square, as planned, and Clurch of St. Paul, Covem Garden ; and many other works, are strong proofs of the advancement of architecture during his career. York Stairs (fig. 209.), another of his examples, exhibits a pureness and propriety of character which appears to have been afterwards mapprectated by his successors, with Wren at their head, whose mention by de side of Jones is only justified by the scientific and constructive skill he possessed.
463. Jones was a follower of the Vcnetian school, which we have described in a previons ection. His respect for Palladio is cvinced by the circumstance of a copy of that great raster's works being his companion on his travels through Italy. It is filled with his utograph notes, and is now deposited in the library of Worcester College, Oxford. Lord ;urlington had a Vitruvius noted by him in a similar mamer. It is curious to sce the mateurs and pseudo-critics of the present day decry these two authors, whom Jones, a enius of the first order, thought his best instructors. The class in question are, however, o longer considered worthy of being listened to on matters of the art; and the public ste is, in this respect, turning once more into the proper chamel. Palladian architucture, us introduced by Jones, would have reached a splendour under Charles I. perhaps equal that which Italy can boast, had not its progress been checked by public calamities, in hich it was the lot of the artist to share the misfortunes of his royal master. In addition heing the favourite of the king, he was a Roman Catholic; and for this (as it was then riously called) delinquency, he had to pay 5451 . in the year 1646 . He died, nged scars, at Somerset House on the 21 st of June, 1652 ; and left 4,200l. in legacies, and (O). for a monument, so that he dirl not die in povelty as mually stated.
464. The plans of houses introduced from Italy by this master were not, perhaps, altother suited to the clinnate or habits of the English. One of his greatest fanlts was that of ming at magnificence under circumstances in which it could not be attained. Thus, his oms were often sacrificed to the show and effect resulting from a hall or a stairease, or th; sometimes, to gain the appearance of a vista of apartments, they were made too small the scale of the house. His distribution of windows is purely Italian, and the piers tween them consequently too large, so that the light is occasionally iusufficient in autity. 'The habits of Italy, which enabled Palladio to raise his principal Hoor, and to ve the farm oflices and those for the vintage in the same range of building as the usion, impart an air of great magnificence to the Italian villa. Joncs saw that this rangement was not required for English convenience, and therefore avoided the I'alladian actice; "but," says Mitford, "the architects who followed him were dazzled, or daraled -ir employers. 'l'o tack the wings to the centre with a colomade became a phrase to press the purpose of plau of the most clegant effect ; and the effect, provided the comation be harmonious, will be elegant; but the arrangement is very adverse to general iveniunce, and especially iu the moderate seale of most general use. Where great - endonr is the object, convenience must yictd to it. Magnificence mast be paid for in nvenience as well as money." Webl) and Carter were the pupils of Jonse. 'The former 11 furnish us presently with a few remarks. During the time of the Commonwealth, the tory of architecture in this conntry is a complete blank. We know of no publie work onserfuence that was designed or exeented in the interregnum. On the restoration of
the monarchy, however, the art began to revive; but it was much tinctured with the contemporary French style, which Lord Burlington, on its reappearance many years afterwards, lad the merit of roforming, and of bringing back the public taste to the purity which Jones had introduced: but this we shall have to notice hereafter.
465. John Welb was nephew as well as scholar of Inigo Jones, whose only daughter he married. He built a large seat for the Bromley family at Horseheath, in Cambridgeshire; and added a portico to the Vine, in Hampshire, for Challoner Chnte, the Speaker to Richard Cromwell's parliament. Ambresbury, in Wiltshire (fig. 210.), was only executed

Fig. 210.
AMbresbuik. (Before its aiterations in 1853.)
by him from the desigus of his master, as also the east side of the court of Greenwich Hospital. Captain William Winde, a native of Bergen-op-Zoom, and pupil to Sir Balthazar Gerbier, was, soon after the Restoration, in considerable employ as an architect. He buit Clicfden House, Bucks, which was destroyed by fire in 1795; the Dnke of Newcastle's, in Lincoln's Imn Fields; Combe Abbey, Warwickshire, for Lord Craven; and for the same peer he finished Hempsted Marshall, which had been begun by his master. But the chief and best work of Winde was Buckingham House, in St. James's Park, on whose site now stands a palace, larger, indeed, but unvorthy to be its successor. It is known from prints, and not a few of our readers will probably recollect the building itself. It was erceted for John Sheffield, Duke of Buckingham; and on its frieze was the inscription "sic silt "atantur lares." The arrears in the payments for this house, according to an anecdote in Walpole, were so distressing, that when it was nearly finished, "Winde had enticed his Grace to mount upon the leads to enjoy the grand prospect. When there, he coolly locked the trap-door, and threw the key to the ground, addressing his astonished patron, 'I am a ruined man, and unless I have your word of honour that the debts shall be paid, I will instantly throw myself over.' 'And what is to become of me,' said the duke? 'You shall come along with me.' The promise was given, and the trap-door opened (upon a sign made) by a workman in the secret, and who was a party to the plot." We do not voucis for the truth of the tale.
466. An architect of the name of Marsh is said, by Vertue, to have designed the additional buildings at Bolsover, as also to have done some considerable works at Nottingham Castle; and Salmon, in his account of Essex, mentions a Doctor Morecroft, who died in 1677, as the architect of the manor-house of Fitzwalters. Of the works of the French taste about the middle of the period under discussion, a better notion cannot be obtained than from Mentague Iouse, late the British Museum (fig. 211.), the work of a Frenchman here whose example had followers; indeed, Wren himself, in some of his works, has canght the vices of the French school of the day, though he was a follower of the Venctian and Roman schools. The fire which destroyed London in 1666, a few years after the death of Jones, broaght into notice the talents of Sir Christopher Wren, whose career was opened under

Fig. 2ll.
BRTTIM MUGBUM.
the reign of Charles II. "The length of his life enriched the reigns of scveral princes and lingraced the last of them." (At the advanced age of 86 he was removed by George I. from he office of Surveyor General.) "A variety of knowledge proclaims the universality, a muliplicity of works the abundance, St. l'aul's the greatncss, of Sir Christopher's genius. The roblest temple, the largest palace, the most stupendous hospital, in such a kingdom as Britain, are all works of the same hand. He restored London and recorded its fall." As he boast of England is the Cathedral Church of St. Paul, it will be necessary to dwell a ittle on a description of it.
467. The larger portion of this cathedral stands on part of the site of the old one, as lown by the annexed diagram (fig. 212.), which also exhibits their comparative sizcs. It is

puicd from a drawing by Sir Christopher in the library of All Souls College at Oxford. lie instructions to the surveyor, aceording to the compiler of the P'arentalia, were - " to mitrive a fabric of moderate bulk, but of good proportion; a convenient quire, with a estibule and porticoes, and a dome conspicuous above the houses:" and in conformity with iem, a desigh was made which, from various causes, does not appear to have given satisection; whereon the compiler observes, that "he endeavoured to gratify the taste of the mnoisseurs and eriticks with something coloss and beautiful, with a design antique and ell studied, conformable to the best style of the Greek and Rominn architecture." The rorlel made from this dexign st ll exists. This however was not approved, and "the surcyor then turned his thouglits to a cathedral furm, so altered as to reconcile as near as ussible the Gothic to a better manner of a chitecture." A design was approved by the 10k, ulon issmed his warrant nuder privy seal 14 th May, If 75 , for the execontion of the orkz. Tlus devign (engravad for the first time in I,ongman's The Three Cuthedrals. 37:1) was wholly depirted from by Wren, in execution.
458. Much tromble was experienced in removing the immense ruins of the dht church, for ne deatraction whereof recourse whshad to many expedients. On the north side, the fimmulaons are placed upon in stratum of hard pot earth about 6 feet in thichners, bit not mors
than 4 ft . thick on the south side; and upon this stratum, from the experience of the old church having firmly rested, the architect wiscly determined to place the new one. The work was commenced on the western side. driving eastward to the extremity of the site; at which, on the northern side, a pit was discovered whence the hard pot earth lad been extracted, and the racuity so made filled up with loose rubbish. The length of this hole in the direction of the foundation was not more than 6 or 7 ft , and from the fear of piles, if driven, beconing rotten, the surveyor determined to excavate through the sand, and to build up from the stratum solid for a depth of 40 ft . The pit sunk here was 18 ft , wide; in this he built up a pier, 10 ft . square, till it rose to within 15 ft . of the present surface. At this level he introduced an arch from the pier to the main foundation, and or this arch the north-eastern quoin of the choir is founded.
469. On the 21 st of June, 1675 , the first stone was laid; and, within ten years, the wais of the choir and its side aisles, and the north and south circular porticoes, were finished; the piers of the dome also were brought up to the same height. The son of the architect laid the last stone in 1710. This was the highest stone on the top of the lantern. Thus the whole edifice was finished in thirty-five years, under the remarkable circunstances of having only one architect, one master mason (Mr. Strong), and the see being occupied the whole time by one bishop, Doctor Henry Compton. 'The master builder's name was Jennings.
470. The plan of St. Paul's is a Latin cross, and bears a general resemblance to that of St. Peter's. A rectangular parallelogram, 480 ft . from east to west (measuring from the top of the steps of the western portico to the exterior of the eastern wall of the choir), is crossed by another parallelogram, whose extremities form the transepts, 250 ft . in length from north to south. At the eastern end of the first parallelogram is a hemicylindrical recess, containiug the altar, and extending 20 ft . further eastward; so that the whole length is 500 ft ., exclusive of the flight of steps. At the north and south ends of the transepts are porticoes, segmental on the plan, and projecting 20 ft . The centre of the intersection of the parallelograms is 280 ft . from the western front. The width of each parallelogram is 125 ft . At the western end of the edifice, on the north and south extremities, are towers whose western faces are in the same plane as the general front, but whose northern and southern faces respectively project about 27 ft . from the walls of the aisles of the nave; sa that the whole width of the western front is about 180 ft . In the re-entering angles on each side, between the towers and the main building, are two chapels, each 50 ft . long and 20 ft . broad, open to the aisles of the nave at their western end Externally two orders reign round the building. The lower one Corinthian, standing on a basement 10 ft . above the level of the ground, on the western side, where a flight of steps extending the whole breadth of the fiont, exclusive of the towers, leads to the level of the church. The height of this order, including the entablature, is 50 ft ; and that of the second order, which is composite, is one firth less, or 40 ft . ; making the total height 100 ft . from the ground to the top of the second entablature. The portico of the western front is formed with the two orders above mentioned, the lower story consisting of twelve coupled columns, and the upper one of eight; which last is surmounted by a pediment, whose tympanum is sculptured with the subject of the Conversion of St. Paul, in pretty high relief. Half of the western elevation, and the half transverse section, is given in fig 213. At the northern and southern ends of the transepts the lower order is continued into porticoes of six fluted columns, standing, in plan, on the segment of a circle, and crowned with a semi-done abutEing against the ends of the transepts.
471. The porch of the western front is 50 ft . long and 20 ft . wide : the great doorway, being in the centre of it, leads to a vestibule 50 ft . square, at whose angles are four piers comected at top by semicirenlar arches, under which are placed detached coupled columns in front of the piers. 'the body of the church is divided into a nave and two side aisles. decorated with pilasters supporting semicircular arches; and on each side of the porch and vestibule is a passage which leads directly to the corresponding aisles. The choir is similarly disposed, with its central division and side aisles.
472. The entrances from the transepts lead into vestibules 25 ft . deep, and the whole breadth of the transept in length, each communicating with the centre by a central passage and its aisles formed between two massive piers and the walls at the intersections of the transepts with the choir and nave. The eight piers are joined by arches springing from one to the other so as to form an octagon at their springing points, and the angles between the arches, instead of rising vertically, sail over as they rise and form pendentives, which lead, at their top, into a circle on the plan. Above this a wall rises in the form of a trunsated cone, which, at the height of 168 ft . from the pavement, terminates in a horizontal cornice, from which the interior dome springs. Its diameter is 100 ft ., and it is 60 ft . in height, in the form of a paraboloid. Its thickness is 18 in ., and it is constructed of brickwork. From the haunches of this dome, 200 ft . above the pavement of the church, another cone of brickwork commences, 85 ft . high, and 94 ft . dianeter at the bottom. This cone is pierced with apertures, as well for the purpose of diminishing its weight as for distributing light between it and the onter dome. At the top it is gathered into a dome, in the

urm of a hyperboloid, pierced near the vertex with an aperture 12 ft . in dianeter. The op of this cone is 28.5 ft . from the pavement, and carries a lantern 55 ft . high, termiating In a done, whereon a ball and cross is raised. The last-named cone is provided with orbels, sufficient in number to receive the hammer beams of the external dome, which is foak, and its base 220 ft . from the pavement, its summit being level with the top of the one. In form, it is nearly hemispherical, and generated by radii 57 ft . in length, whose entres are in a horizontal diameter, passing through its base. The cone and the interior ome are restrained in their lateral thrust on the supports by four tiers of strong iron hains, placed in grooves prepared for their reception, and run with lead. The lowest f these is inserted in the masonry round their common base, and the other three at different eights on the exterior of the cone. Externally the intervals of the eolumns and pilasters re ocenpied by windows and niches, with horizontal and semicircular heads, and crownel ith pediments. In the lower order, excepting modillions under the corona, the entalinure is guite plain, and there are also console modillions in the upper order. The edifice, 1 three directions, is terminated with pediment roofs; and at the extremities, on cach of hose faces, are acroteria, supporting statues 25 ft . above the roof of the edifice. Over the itersection of the nave and transepts for the external work, and for a height of 25 ft . above ie roof of the charch, a cylindrical wall rises, whose dianneter is 146 ft . Between it ind se lower conical sall is a space, but at intervals they are comected by eross walls. This stinder is quite plain, but perforated by two courses of reetangular apertures. On it ands a peristyle of thirty cohuns of the Corinthian order, 40 ft . high, inchuding bases nd eapitals, with a plain entablature crowned by a balustrade. In this peristyle, every purth intereolnmuintion is filted up solid, with a niche, and comection is provided between and the wall of the lower cone. Vertically over the base of that cone, above the eristyle, rises another cylindrical wall, appearing above the bahustrade. It is ornamented inl pilaters, between which are a tier of rectangular windows above, and one of blanks -hw. On this wall the external thome is posited. As will be seen by reference to the ctinn, the lantern which we have before notined receives no support from it. It is mere y rnamemat, differing entirely in that reepect toom the dome of 'st. Peter's.
473. The towers in the western front are 220 ft . high, terminating in open lanterna, bered with domes formed by curves of contrary flexure, and not very purely composed, ongh promps in charneler with the general firgate. 'The total height to the top of the 20. From the pavement ontide is 101 ft ., but nsmilly stated as 365 ft .
474. Tle interior of the nave and choir are each designed with three arches longitudinally springing from piers, strengthened, as well as decorated, on their inner faces, by an entablature, whose cornice reigns throughout the nave and church. Above this entablature, and breaking with it over each pilaster, is a tall attic from projections on which spring semicircular arches which are formed into arcs doubleaux. Between the last, pendentives are fomed, terminated by horizontal cornices. Small cupolas, of less height than their semi-diameter, are formed abore these cornices. In the upright plane space on the walls above the main arches of the nave, choir, and transepts, a clerestory is obtained over the Attic order, whose form is generated by the rising of the pendentives. The inner dome is plastered on the under side, and painted by Sir James Thornhill, with subjects relating to the history of St. Paul.
475. For external elegance, we know no church in Europe which exhibits a cupola comparable with that of St. l'aul's, thongh in its connection with the chmreh by an order higher than that below it there is a violation of the laws of the art. The cost of the church was 736,7521 , exclusive of the stone and iron enclosures round it, which cost 11,2091 . more; in all 747,9.54\%. About nine-tenths of that sum were raised by a tax on coals inported into London. As compared with St. Peter's, we subjoin a few of the principal dimensions of the two churches.

Direction of Measure.	St. Peter's in Engish Feet.	St. Panl's in Enghsh Feet.	Excess of the former in Feet.
Length within	669	500	169
Breadth at entrance -	226	100	126
I'rincipal façade	395	180	215
Breadth at the cross -	442	223	219
Cupola, clear diameter	139	108	31
Cupola, height of, with lantern	432	330	102
Chureh in height - -	146	110	36

476. If we suppose sections to be made through the transepts of the four principal churches of Lurope, we have their relative sizes in the following ratio: -

St. Peter's, Rome -	-	-	-	-	$-1 \cdot 0000$
Santa Maria del Fiore, at Florence	-	-	-	-	-5358
St. Paul's, London	-	-	-	-	-
St. Genevieve (Pantheon), Paris -	-	-	-	-.4166	
-					

477. Notwithstanding its imposing effect as a whole, and the exhibition in its eonstruction of a mechanical skill of the very highest order ; notwithstanding, also, the abstract beauty of the greater number of its parts, it is our duty to observe that many egregious abuses are displayed in the fabric of St. Paul's, the first and greatest whereof is the great waste of interior effect as compared with the total section employed. If we suppose, as before, sections from north to south to be made through the transepts of the four principal churches, the following table will exhibit the proportion of their clear internal to their external areas: -

| St. Pcter's, Rome - | - | - | - | - | $-8,325: 10,000$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Santa Maria del Fiore, Florence | - | - | - | $-8,8,55: 10,000$ | |
| St. Paul's, London | - | - | - | - | $-6,865: 10,000$ |
| St. Genevieve (Pantheon), Pariss | - | - | - | $-6,746: 10,000$ | |

Whence it is seen how highly in this respect the Duomo of Florence ranks above the others. 'The defect of St. Paul's in this respect is mainly induced by the false dome ; and though we may admire the ingenuity that provided for carrying a stone lantern on the top of a truncated cone, deceitfully appearing, as it does, to stand on the dome from which it rises, we cannot help regretting that it afforded the opportunity of giving the building a cupola, liable to the early attack of time, and perhaps that, more to be dreaded, of fire.
478. In the skill required for raising a building on a minimum of foundation, Sir Christopher Wren appears to have surpassed, at least, those who preceded him. In similarly or nearly so formed buildings, some criterion of the comparative skill employed in their construction may be drawn from comparing the ratio between the area of the whole plan, and that of the sum of the areas of the horizontal sections of the whole of the piers, walls, and pillars, which serve to support the superincumbent mass. The similarity of thr. four churches already compared affords, therefore, a criterion of their respective merits in this respect. We hardly need say that one of the first qualifications of an architect is to produce the greatest effect by the smallest means. The subjoined table is placed before the reader as a comparison of the four churches in reference to the point in question.

Church.	Whole Area in Euglish Feet.	Area of Points of support.	Ratio.
St. Jeter's at Rome -	227,069	59,308	1:0.261
Sta. Maria del Fiore, Florence	84,802	17,030	1:0.201
St. Paul's, London - -	84,025	14,311	$1: 0 \cdot 170$
St. Genevieve (Pantheon), Paris	60,287	9,269	1:0.154

'he merit, therefore, shown in the construction of the above edifices will be nearly as 15 $7,20,26$, or inversely proportional to the numbers in the last column.
479. We must here mention one of the most unpardonable defeets, or rather abuses. hich this ehurch exhibits, and which must be learnt from reference to fig. 214. ' 1 herein is

Fig. 214 ET. PAUJ.'s, EECTION WITH BUTTRESEES.
ven a transverse section of the nave and its side aisles. From this it will be seen that the ormous expense of the second or upper order all round the church was incurred for no her purpose than that of concealing the flying buttresses that are used to counteract the rusts of the vaults of the nave, choir, and transepts, - an abuse that admits of no apology. is an arehitectural fraud. We do not think it necessary to descend into minor defeets d abuses, such as vaulting the church from an Attic order, the multiplicity of breaks, d want of repose; the general disappearance of tie and conncetion, the piereing, as actised, the piers of the cupola, and mitering the archivolts of its great arehes, and the ke, beeause we think all these are more than counterbalaneed by the beauties of the edic. We cannot, however, leave the subjeet without observing that not the least of its erits is its freedom from any material settlement tending to bring on premature dilapidaon. Its chicf failures are over the easternmost arch of the nave, and in the north transept, r the remedy whereof (the latter) the arehitect left written instructions. There are also me unimportant failures in the hanches of most of the Bying buttresses, which are areely worth notice.
480. The wretchedly naken appearance of the interior of this eathedral is a disgrace ither to the architect nor to the country, but to the clergy, 'Terrick, bishop of London, in P'otter, archbishop of Canterbury, who sefused to sanetion its decoration with pietures, atuitously proffered by artists of the highest reputation; and this after the eupola itsolf al been decorated. 'The colour of the seulpture is of no use in beightening the eflect of - interior.
181. The Prarmatia contains a deseription of the mamer in which the walls of the old
cathedral were destroyed, and those of the present one raised ; which should be read by all those engaged in the practice of architecture.
48%. Wren, having lived to see the completion of St. Paul's, was, as before stated, displaced from the office of surveyor of Crewn buildings to make room for an incompetent pretender, named Benson. Pope, in the Dunciad, has left a record of the job, in the lines-

> While Wren with sorrow to the grave discends,
> Gay dies unpensioned whth a hundred friends.

Wren died at the age of 91 years, and was buricd under the falric, " with four words," says Walpole, "that comprehended his merit and his fame."

"SI QUARAS MONUMENTUM CIRCUMSPICE."

483. It will be impossible, consistently with our space, to describe the works of Sir Chris. topher Wren. One upon which his fame is as justly founded as upon St. Paul's itself, is St. Stephen's Church in Wallbrook, in which, on a plot of ground $80 \frac{1}{2} \mathrm{ft}$. by $59 \frac{1}{2} \mathrm{ft}$, he has contrived a structure whose elegance is not surpassed by any one we know to have been raised moder similar restrictions. The church in question is divided longitudinally into five aisles by four ranks of Corinthian columns standing on pedestals; the places of four columns near the centre being unoccupied; the surrounding central columns form the angles of an octagon, 45 ft . diameter, on which arches are thrned, and above which, by means of pendentives, the circular base of a dome is formed, which is in the slape of a segment of a sphere, with a lantern thereon. The ceiling of the middle aisle from east to west is vaulted in groins. The rest of the ceiling is horizontal. The interior of St. James's, Westminster, is another beautiful example of the master, though recently underrated by an ignorant critic.
484. One of the peculiarities remarkable about Wren's period is the investnent of the form of the Gothic spire with a clothing of Italian architecture, by which the modern stepple was produced If any example could reconcile ns to such a practice, it mgght be found in that of Bow Church, another of Wren's works, which rises to the height of 197 ft . from the ground, the sides of the samare from which it rises being 32 ft .6 it: There are it the leading proportions of this tower and spire, some extriordinary examples in relative heights as eompared with widihs sesquialterally, which would almost lead one to suppose that, in this respect, our architect was somewhat supertitions.
485. In St. Dunstan in the East, Wren attempted Gothic, and it is the least offensive of his productions in that style. It. is an elegant composition, but wants the clain to originality. St. Nicholas, Neiveastle, and the High Chureh, Edinburgh, are its prototypes.
486. The Monument of London is original, notwithstanding columns of this sort had heen proviously erected. Its total expense was 88561 ., and it was commenced in 1671, completed in 1677. The height is 202 ft . ; hence it is loftier than any of the historical columns of the ancients. The pedestal is about 21 ft . square, standing on a plinth 6 ft . wider. The lower diameter of the column on the upper part of the base is 15 ft , and the shaft incloses a stairease of black marble, consisting of 345 steps. It was fluted after the work was carried up. The quantity of Portland stone whereof it is composed is $\leq 8,196$ cubic feet. The Antonine column at Rome is 163_{2}^{1}, and that of Trajan 132 ft . high. That erected by Areadius at Constantinople, when perfect, was of the same lieight as that last mentioned. The structure of which we are speaking loses much by its situation, which has neither been improved nor detcriorated by the streets consequent on the rebuilding of London Bridge: and though it eamot compete with the Trajan column in point of intrinsic beauty, it is, nevertheless, an exquisite and weil-proportioned work, and seems much better calculated with propriety to record the olject of its erection, than the other is to be the monument of a hero. In these days, it is singular to see that no other mode than the erection of a column could be found to record the glorious actions of a Nelson. Such was the poverty of taste that marked the decision of the committee to whom that object was most improperly entrusted.
487. Among the works of Wren not to be passed without notice is the Library of Trinity College, Cambridge. It is one of his finest productions, and one with which he himself was well satisfied. It consists of two orders; a Doric arcade below, open to a basement supported by columns, which has a flat ceiling, exceedingly convenient as an ambulatory, and itself simple and well proportioned. The principal story is decorated with threequarter columns of the lonic order, well proportioned. From their volutes, festoons are pendent, and the key-stones of the windows are carved into cherubs' heads, \&.c. 'Ihis is the elevation towards Nevill's Conrt ; that towards the garden has three Doric doors below. but above is without columns or pilasters in the upper stories. Withont ornanent, it is not the less graceful and imposing. The interior, as a single room, is designed with great grandeur and propriety.
488. We cannct turther in detail continue an account of the works of this extraordinary architect, but shall now proeeed to submit a list of his principal works, together with a catalogue of those of his principal churches whose estinates exceeded the cost of 5000 K

Churches: -

			lime of erect		Ost.	
Allhallows the Great	-	-	- 1697	.5,641\%.	9 s .	9.4
Allhallows, Lombard Street		-	- 169.4	8,058	1.5	6
St. Andrew Wardrobe	-	-	- 1692	7,060	16	11
St. Andrew, Holborı	-	-	- 1687	9,000	0	0
St. Antholin	-	-	- 1682	5,685	5	10
St. Bride -	-	-	- 1680	11,430	5	11
Christ Church, Newgate Street	-	-	- 1687	11,778	9	6
St. Clement Dane's	-	-	- 1680-82	8,786	17	0
St. Dionis Baekchureh	-	-	- 1674-84	5,737	10	8
St. Edinund the King	-	-	- 1690	5,207	11	0
St. Lawrence Jewry	-	-	- 1677	11,870	1	9
St. James, Garlick IIill	-	-	- 1683	3,357	10	8
St. James, Westminster	-	-	circa 1689	8,500	0)
St. Michael Royal -	-	-	- 1694	7,555	7	9
St. Martin's, Ludgate	-	-	- 1684	5,378	9	7
St. Margaret, Lothbury	-	-	- 1690	5,340	8	1
St. Mary, Somerset	-	-	- 1695	6,579	18	1
St. Mary, Aldermanbury	-	-	- 1677	5,237	3	6
St. Mary le Bow	-	-	- 1673	8,071	18	1
- The steeple		-	- 1680	1,:88	8	7
St. Nieholas, Coleabley	-	-	- 1677	5,042	6	11
St. Olave Jewry -	-	-	- 1673	5,580	4	10
St. P'eter, Cornhill -	-	-	- 1681	5,647	8	9
St. Swithin's, Cammon Strect	-	-	- 1679	4,687	4	6
St. Magmus, Loudon Bridge	-	-	- 1676	9,579	18	10

489. We must here close our account of Wren. Those of our readers who desire further uformation on the life and works of this truly great man will do well to consult the Perentaliu, or Memoirs of the Fumily of the Wrens, eompiled by his son, and published by his randson Stephen Wren. Fol. Lond. 1750.
490. Among the architects of Wren's time, there was a triad of anateurs who would rave done honour to any nation as professors of the art. 'The first of these was Henry Udrieh, I). D., Dean of Christ Church, Oxford, who died in 1710 . He was attached to the venetian school, as we may see in the three sides of Peek water quadrangle, and the girden ront of Corpus Christi College, a façade wbich for correct taste is not surpassed by any difice in Oxford. 'The second of these amateurs was Dr. Clarke, one of the Lords of the Idmiralty in the reign of Queen Annc. 'I'lis distingnished amatenr sat for Oxford in ifteen sessions. 'lhe Library of Worcester College, to which he bequeathed his valuable relitectural eollection of books and MSS., was from his design. He built the library at Christ Chureh. The third was Sir Janes Burrough, Master of Cains College, Cambridge; y whom, in 1703, the chapel of Clare Hall in that Unisersity was beautifully designed ind excented.
491. We bow approach the works of a man who, whatever some have thought of them, as a strouger claim on our motice as an inventor than any of his predecessors. It nust be anticipated that we allude to Sir John Vambrugh. Vpon no other artist has Vinpule delivered criticisins more noworthy of himsclf, nor is there any one of whose cuins he had less capacity to appreciate the powers. The singular mind of Vanbugh The distracted by control : his buidelings are the result of a combination of forms and antiipation of eflects, originating solely from himelf; eflects which none belore had sen wir
contemplated. As a wit, he was inferior to none that levelled its shafts at him, and heneq his novel compositions in architecture becane anong the professed critics of the day so nuch the more an object of derision, as, in their puny notions, his only assailable point. Attacked from party feeling, the public allowed itself to be biassed by epigrams and smart verses from the pens of Pope and Swift ; and when the former, in his fourth epistle, in allusion to Vanbrugh's works, exclaims, -
" I.o! what hnge heaps of tittieness around ,"
he little thought he was leaving to posteritv a record of his consummate ignorance of art, and of his total insensibility to grandeur, in all that relates to composition in architecture.
492. The opinion of Sir Joshua Reynords first enlightened the public upon the thitherto condemned works of this extraordinary architect. "I pretend," says Reynolds, in his fifth discourse, "to no skill in architecture. I judge now of the art merely as a painter. When I speak of Vanbrugh, I speak of him merely on our art. To speak, then, of Vanbrugh in the language of a painter, he had originality of invention, he understood light and shadow, and had great skill in composition. To support his principal object, he prodnced his second and third groups of masses: he perfectly understood in his art what is most difficult in ours, the conduct of the backgrounds by which the design and invention is (are) set off to the greatest advantage. What the background is in painting is the real ground upon which the building is erected; and as no architect took greater care that his work should not appear crude and hard, - that is, that it did not abruptly start out of the ground, without expectation or preparation, - this is the tribute which a painter owes to an architect who composes like a painter." The testimony of Mr. Payne Knight, a person of a taste highly refined and cultivated, in his Principles of Taste, is another eulogium on the works of this master. And again we have the concurrence therein of another able writer on these subjects, who, though frequently at variance in opinion with Mr. Knight, thus expresses himself in his Essay on the Picturesque, vol. ii. p. 211.: "Sir J. Reynolds is, I believe, the first who has done justice to the architecture of Vanbrugh, by showing it was not a mere fantastic style, without any other object than that of singularity, but that he worked on the principles of painting, and that he has produced the most painter-like effects. It is very probable that the ridicule thrown on Vanbrugh's buildings, by some of the wittiest men of the age he lived in, may have in no slight degree prevented his excellencies from being attended to; for what has been the subject of ridicule will seldom become the object of study or imitation. It appears to me, that at Blenheim, Vanbrugh conceived and executed a very bold and difficult design, that of uniting in one building the beauty and magnificence of the Grecian architecture, the picturesqueness of the Gothic, and the massive grandeur of a castle; and that, in spite of many faults, for which he was very justly reproached, he has formed, in a styte truly his own, and a well-combined whole, a mansion worthy of a great prince and warrior. "His first point appears to have been massiveness, as the foundation of grandeur : then, to prevent the mass from being a lump, he has made

trious bold projections of various heights, which seem as foregrounds to the main build; ; and, listly, having been probably struck with a variety of outline against the sky in any Gothic and other ancient buildings, he has raised on the top of that part where the anting roof begins in any house of the Italian style, a number of decorations of various taracters. These, if not new in themselves, have, at least, been applied and combined him in a new and peculiar manner, and the union of them gives a surprising splendour id magnificence, as well as variety, to the summit of that princely edifice. The study, erefore, not the initation, might be extremely scrviceable to artists of genius and disernment."
493. Vaubrugh's principal work was' Blenheim (whereef we give, in figs. 215. and 216.,

he plan and principal elevation), a monument of the victories of Marlborough raised by a rateful nation. Its length on the north front from one wing to the other is 348 ft . The nternal dimensions of the library are 130 by 92 ft . The hatl is perlaps small compared with the apartments to which it leads, being only 53 ft . by 44 . and 60 ft . high.
494. The execution of his design for Castle Howard, in Yorkshire, was commenced in 702, and, with the exception of the west wing, was completed by him. The design possesses nuch greater simplicity than that of Blenheim There is a portico in the centre, and a upola of considerable height and magnitude. The galleries, or wings, are flanked by avilions. The living apartments are small; but for the comfort and convenience of the wouse, as an habitation, many imprevements have been made since the time of Vanbrugh
49.5. At Eastbury, in Dorsetshire, he built a spacious mansion for Mr. Doddington. He front of it, with the offices, extended 370 ft . We regret to say that it was taken down y the first Earl Temple, about the middle of the last century.
495. King's Weston, near Bristol, erected for the Honourable Edward Southwell. A eautiful reature in the house is the grouping of the climneys, in which practice no artist as surpassed, nor perhaps equalled, him. This house is not, however, a favourable speimen of our arclitect's powers.
496. In the front which he exccuted to Grimsthorpe, in Lincolnshire, he indulged himIf in an imitation of Blenheim and Castle Howard. The hall here is of noble dimenions, being 110 ft . in length, and 40 ft in height, surmounted by a cupola.
497. Charles Iloward, the third Earl of Carlisle, Deputy Earl Aharshal in 1703, appointed 'anbrugh, Clarenceux king of arms, over the heads of all the heralds, who remonstrated, ithout effect, against the appointment. The canse of such an extraordinary promotion is upposed to have had its origin in the Earl's satisfaction with the works at Castle Howard, t was, however, altogether uujustifiable, for Vaubrugh was, fiom all accounts, totally igorant of heraldry. He held the situations of surveyor of the works at Greenwich Ilosital, comptroller general of the works, and surveyor of the gardens and waters. Though erlaps out of place in a history of architecture, we cammot resist the opportmity of menoning that our artist was a dramatist of genius. The Relapse, The Provoked Wife, The Onfederacy, and Aisop, according to Walpole, will outlast his edifices. He died at Whitehall, March 26.1726. Vaubrugh can hardly be said to have left a legitimate folnwer; lie formed no school. A reher, indeed, attempted to follow him, and seems the only we of lis time that could appreciate the merit of his master. But he was too far behina im to justify our pansing in the listory of the progress of British architecture to say more man that his best works are Heythrop, and at temple at Wrest. St. Philip's Church at Birminghan is also by him. "A chef downe of lis absurdity," says Dallaway, "was the mreli of St. John's, Westminster, with four belfries," a lonilding which has not inaptly been kened to an clephant on his back, with his four legs sprawling in the air.

Sect. VIII.

Geotge i.
499. Though the example of Wren was highly beneiicial to his art, he does not seem to have been anxious to propagate his doctrines by precepts, for he had but one pupil who deserves a lengthened notice. That pupil was Nicholas Hawksnoor, who, at the age of eighteen, becane the disciple of Sir Christopher, "under whom," says Walpole, "duriug life, and on his own account after bis master's death, he was concerned in erceting many public edifices. Had he erected no other than the church of St. Mary Woohoth, Lombard Street, his name would have deserved with gratitude the remembrance of all lovers of the art. This church has recently (on the opening of King William Street) been unfortmately disfigured ou its sonthern side by some incompetent bungler on whom the patronage of the cburetwarden lucklessly fell. Such is the fate of our public buildings in this comutry. The skill displayed by Hawksmoor in the distribution and design of St. Mary

 Woolnoth is wot more than rivalled by the best productions of his master and instructor. We here give, in figs. 217. and 218., a hali'section, elevation, and plan of it. It was commenced in 1716, and finished in 1719. Not until lately was it seen to advantage. Lombard Street, in which one side still stands, was narrow, and its northern elevatiom, the only one till lately properly seen, required, from its aspect, the boldest form of detail to give it expression, because of its being constantly in shade, and therefore experiencing no play of light exeept such as is reflected. This is composed with three large semicircular rusticated niches, each standing on a lofiy ru-ticated pedestal, relieved with blank recesses, which are repeated in the intervals blow between the niches. The whole rests on a basement, whose openings, of course,

Fig. 218. correspond to those above. The niches in the recesses are decorated with Doric colunns on pedestals, and the top of the entablature of the order is level with the springing of each niche head rumning through on each side, so as to form an inpost. The front is crowned with a block cornice, continued round the bailding, and the central part of the northern front is surmounted by a balustrade. We are not prepared to maintain that the whole of the details are in the purest taste; but the masses are so extrenoly pieturesque, and so adapted to the circumstanees of the aspect and situation, that their faults are forgotten. Not so the interior, which needs no apology. It is a combination of proportions, whose beauty cannot be surpassed in any similar example. The plan is nearly a square, whose north-west and south-west angles are truncated at angles of forty-five degrees, for the introduction of stairs. The leading lines are an inscribed square whose sides are equal to two thirds of the internal width, the remaining sixth on each side being assigned to the intercolumniations between the columns and the pilasters on the internal walls. The columns, twelve in number, are placed within the sides of the inseribed square, and at the angles are coupled at intervals of one diameter. The order is Corintlian ; the columns are fluted, and crowned by an enriched entablature one quarter of their height. The space tbus enclosed by the columnss continues in a clerestory above, pierced on the four sides by semicircular windows, whose diameters are equal to one of the wide intercolumniations below. The height of this, including its entablature, is one half that of the lower order; thus, with its pedestal, making the total height of the central part of the
surch, equal to its extreme width. A sesquialteral proportion is thus obtained in section well as plan. The eastern end is recessed square for an altar piece, and arcloed with a micircular ceiling enriched with caissons. The galleries are admirably contrivel, and in , way interfere with the general effect, nor destroy the elegance and simplicity of the sign. The ceilings throughout are borizontal, and planued in compartments, whose urts are enriched. As regards construction, there is a very umecessary expenditure of aterials, the ratio of the superficies to the points of support being 1:0־63. Hawksmoor as not so happy in the church of St. George's, Blowmbury, in which he ha, really made ing George I. the head of the church by placing him on the top of the steeple, which we ust, with Walpole, term a master-stroke of absurdity. But !nany parts of the building e biglily deserving the attention of the student; and if the commissioners for new churcbes these days bad been content with ferrer ehurches construeted solidly, like this, instead many of the pasteboard monstrosities they have sanctioned, the country, instead of reenting they ever existed, which will at no very remote period be the case, would have ved them a deep delt of gratitude. The only gratification we have on this point is, that century, and even less, will close the existence of a large portion of them. Hawksinoor as deputy surveyor of Chelsca College and clerk of the works at Greenwich, and in that ist was contimued by William, Anne, and George 1., at Kensington, Whitetall, and St. enes's. Under the last named be was first surveyor of all the new churches and of Westinster Abbey, from the death of Sir Clristopher Wren. He was the architect of the urches of Christ Church, Spitalfields, St. George, Middlesex, and St. Anne, Limelıouse; built some part of All Souls, Oxford, particularly the new quadrangle completed in 1734, d was sole architect of the new quadrangle at Queen's. At Blenhein and Castle oward he was associated with Vanbrugh, and at the last-named place was employed on e mansoleun. Among his privatc works was Easton Neston, in Northamptonshire, and e restoration to perpendicularity, by means of some ingenious machinery, of the western ont of Beverley Minster. He gave a design for the Radcliffic Library at Oxford, and of stately front for Brazenose. His deatl oceurred on the 25th of March, 1736, at the e of seventy-five.
500. Those acyuainted with the condition of the comntry will be prepared to expect that e arts were not much patronised by George I. The works executed during his reign re rather the result of the momentme that had been imparted previous to his accession an of his care for them; and it is a consolation that the examples left by Inigo Jones laal elfect that has in this country never been entirely obliterated, though in the time of eorge III., such was the result of fashionable patronage and misguided taste, that the lanses had nearly consmomated a revolution. 'Ihat reign, however, involved this eountry so many disasters that we are not surprised at such an episode.
501. Aiter the death of Hawksmoor, suceeeded to public patronage the favourite architect a period extending from 1720 to his death in 1754, whose name was Janes Gibls, a tive of Alserdeen, where he first drew brcath in 1683. Though he had no claims to the rank exalted genius, he ouglot not to have been the object of the flippant criticism of Walpole, rose qualibications and judgment were not of sueh an order as to make him more than a Fasant gossip. He certininy had not sufficient discernment properly to estimate the talent aplayed in Gibls's works. Every critic knows how easily phrases may be turned and titheses pointed against an artist whom be is determined to set at nought; of which we ve before had an instance in the case of Sir John Vanbrugh; and we shall not here -ther dilate upon the practice. We will mercly olserve, that on the appearance of aly ork of art the majority of the contemporary artints are usually its best julges, and that in rety-nine casse out of a hundred the public afterwards sanetion their deeision ; and we 11 add, in the words of old Hooker, that "the most certaine token of evident gooduesse is, the generall perswation of all wen doe so iecount it;" and again, "altbongh wee know t the eanse, yet this much wee may know, that some necessiarie canse there is, whensoer the julgement of all m n generally or for the most part rume one and the same way." - do but, therefore, think it useful in repeet of an artist of any considerable talens to ent a critieisn more injurions to the wriner than to bim of whom it was written.
\%0g. 'the churel) of St. Martin's in the Pields is the most esteemed work of our archit. It was binished in 1796, as appears from the inseription on the fricoe, at the cost of 0171. 9s. 3h. The length of it, ineluding the portico, is twice its width, one third wherewestward, is occupied by the portico and vestibule. The portico is hexistyle, of the rinthian order, and surnounted by a pediment, in wbose tympanm the royal arms are Iptured. The intercolumuiations are of two diancters and a half, and the projection of portico of two. Its sides are Hanked by ante in their junction with the main building. diameter and a half distant from the receiving pilaster. The north and sonth elevatha are in two stories, separated by a fascia, with rustieated windows in eacl). Between windows the walls are decorated with pilasters of the same nimensions ns the colnums the portico, four diameters apart; but at the const abd west embls thene elevations marked by insulated columas compled with antie. The flanks are connerted with the
prevailing lines in the portico by columns placed on the walls, recessed for the purpose and coupled with ante, whereby a play of light is produced, which inparts great eflect to the other parts. The interior is divided into three unequal portions by a range on each side of four Corinthian columns, and two pilasters placed on pedestals, raised to the height of the pewing. From their insulated cntablatures rises an elliptical ceiling, covering what may be called the nave. This ceiling is formed by ares doubleaux, hetween which the vault is transversely pierced in the spaces above the intercolumniatious by semicircular arches springing from the top of the entablature of each column. Over what may be called the aisles, from the entablatures of the colmmes, semi-circular arches are turned and received northward and southward on consoles attached to the walls, and by their junction with the longitudinal arches from column to column pendentives are evolved, and thereby are generated small hat domes over the galleries. The altar is recessed from the nave in a large niche formed by two quadrants of circles, whose radins is less than one fourth of the whole width of the niche. It is vaulted semi-elliptically. Galleries are introduced on the north, south, and west sides of the church. On the two former sides they extend from the walls to the colmms, against which the continnity of their mouldings is broken. The interior is highly decorated, perhaps a little too theatrically for the sombre habits of this country; but its effect is, on the whole, extremely light! and batutiful. 'The tower and spire are, as in all the English churches of the Italian style, a sad blemish; but the taste of the day compelled their use, and we regret that the clergy still persist in considering them requisites. The length from the front mper step to the east wall (inclusive) is 159 ft .6 im ., and the breadth from north to sonth 79 ft .4 in . The total area of the church is $12,669 \mathrm{ft}$., whereof the points of support occupy 2803 ft . The ratio, therefore, of the former to the latter is a $1: 0.220$, from which we may infer that the edifice exhibits no very extraordinary constructive skill. The span of the roof (fig. 696.), which is of the common king-post form, is 38 ft . Gibbs, unlike Wren, does not appear to have been gnided in his leading proportions of this work by a series of ratios. The only point in which we perceive an approximation to such a system is in the length from the plinths of the columns of the portico, being just double the width of the chmreh measured at the same level. The portico is well designed, and hitherto has not been equalled in London.
503. In the church of St Mary le Strand, Gibbs was not so successful. There is mo portion of its space on which the eye rests with pleasure. It is cut up into littlenesses, which, though not individually offensive, destroy all repose or notion of mass in the fabric. He built the new church at Derby, and executed some works at King's College, (am. hridge, which last were not calculated to raise his reputation; but in the senate house of that university, he was more successful. In the Radelife Library at Oxford, his fame was maintained. It was completed in 1747 , and thereon lie was complimented with the degree of Master of Arts. This library is on the plan circular in general form, and rises in the centre of an oblong square, 370 ft . long, by 110 in widtlo. Its cupola is 100 ft . in diameter, and 140 ft . high. It possesses no features of striking beauty, and yet is a most valuable addition to the distant view of Oxford, from whatever point of view it is seen. The interior is pleasing, and the disposition good. The books are arranged in two circular galleries, round a large central area. A description of this celebrated building was pi:hIished with plans and sections, fol. 1747. Gibles was the architect also of St. Bartholodiew's Hospital. In 1798 , he published a large folio volume of designs, including several of his works.

504. Some works of considerable importance were erected during the reign of George I., y a countryman of the last-named architect, Colin Campbell, who is, however, more steented for three volumes he published of the principal buildings in England, under the same of the Vitruvizs Britanaicus. Of this work Lord Burlington was the original proector and patron. Afterwards, in 1767 and 1771 , it was continued in two volunses, unden the superintendence of Wolfe and Gandon, two architects of considerable reputation. Campbell's talents were not of a very high order, though Mereworth, in Kent, an imitation of the Villa Capra, built for Mildnay Earl of Westmorland, and Wansted House, in Essex, built in 171.5, and pulled down in 1815, the latter especially, entitle him to be conidered an artist of merit. Forcigners, whilst this last was in existence, always preferred t to any other of the great mansions of the country. Gilpin says of it, "Of all great houses, it best answers the united purposes of grandeur and convenience. The plan is imple and magnificent. 'The front extends 260 ft . A hall and saloon occupy the body of hic house, forming the centre of each front. From these run two sets of chambers. Noling can exceed their convenience. They communicate in one grand suite, and yet each, jy the addition of a back stair. becomes a separate apartment. It is difficult to say wheher we are better pleased with the grandeur and elegance without, or with the simplicity and contrivance within. Dimensions: Great hall, 51 ft . by 36 ; ball room, 75 by 27 ; sloon, 80 ft . squarc." As the buikling no longer exists, we give, in figs. 219 . and 220., a

Fig. 220.
Et.RVATION OY WANMTRAD MOUSE.
round plan and clevation of $i t$. The towers at the angles were never executed. Campbell as surveyor of the works of Greenwich Hospital, and died in 1734.
505. The church at Greenwich, and a very large mansion at Blackheath for Sir Gregory age, in the latter whereof much is said to have been borrowed from Iloughton, but which as many years since disappeared, were, about 1718 , erected by John James, of whom wery tte more is known than these works, and, in London, the chnrehes of St. George, Hanover quare, and St. Luke's, Middlesex, the latter whereof has a thited obelisk for a steple. fe ought, besides, to mention that he is generatly stated to have been employed by the buke of Chandos, at Canons, in Middlesex. another building no longer in existence, and nowing the frail temme upon which an architect's repatation and fane is held. At the lter place, however, it may be questioned whether the remark strictly applies, inasmuch as be architect, whoever he may have been, appears to have set taste and expense equally at fiance.

Sect. IX.

GEOLGY: 11.
50f. We do not altogether agree with Walpole in the observation that arehitecture umed all her rights during this reign, though there is no donbt that the splendid (for the ne) Publications of I'alladio, Jones, and examples of the antigue recalled the taste of ists and their patrons the phblic. Men of genins were donbtess fonm to smpport the s by their practice, and some high-minded patrons to encourage them in their labours. Before", observes Walpole, "the glorious close of a reign that eurried our ams and -tories beyond where loman cagles ever flew, ardour for the arta had led our travellers explore whatever heautios of Grecian or l atin skill still subsisted in provinces once bjecterl to lfonce, and the fine additions, in eonsequenee of those researches, have estawhed the throne ol architecture in Britain while itself' languishers in Rone."
in7. Among the earliest of the archatecets of this reign was 'Thomas Ripley, a mative of rkahire. at whon l'one sneers in the liney -

Ripley, it must be confessed, failed at the Admiralty, which was afterwards veiled by Mr. Adam's beautifut skreen since cruelly "cheated of its fair proportions" by the late architect to that loard, in order to make two coach entrances, which might, with the exercise of a little ingenuity, have been managed without defacing the design. It is difficult, now, to decide the exact share that Ripley had in the house for Lord Orford, at Houghton, for which Campbell appears to have furnished the original design. Walpole, whom we may presume to have known something about the matter, says they were much improved by Ripley. Ite published them in two volumes, folio, $1755-60$. It is to be regretted that scarcely a single line of Pope, in matters of taste relative to the artists of his day, is of the smallest worth, so much did party and polities direct the shafts of the poet's malice. 'The plain truth is, that Ripley was the rival of Kent, the favourite of Lord Burlington, whose patronage it was absolutely necessary to enjoy before he could ensure the smiles of Pope. Ripley was comptroller of the Board of Works, and died in 1758 .
508. IIenry Herbert, Earl of Pembroke, an amateur of this reign, cannot pass unnoticed in the History of its Architecture. He much improved Wilton, where he bnilt the I Palladian Britlge; and it is highly honourable to his memory that, owing to his exertions, the qualifications of Labelye for building Westminster Bridge were acknowledged in opposition to Mawksinoor and Batty Langley, the latter of whom was an ignorant pretender. Of this bridge Earl Henry laid the first stone in 1739, and the last in 1747 . His works, besides those at Wilton, were, the new lodge in Richmond Park, the Countess of Suffolk's house at Marble IIill, Twickenham, and the Water House at Lord Orford's Park at Houghton. He died in 1751.
509. Before advancing our history another step, we have to notice another nobleman, whom to enrol among the number of her artists is an honour to England; and in speaking of Richard Boyle, the third Earl of Burlington and fourth Earl of Ossory, we so entirely agrce in Walpole's eulogy of him, that we shall not apologise for transcribing it from that author's pages: - "Never was protection and great wealth more gencrously and judiciously diffused than by this great person, who had every quality of a genius and an artist, except cnvy. Though his own designs were more chaste and classic than Kent's. he entertained him in his house till his death, and was more studious to extend his friend's fame than his own." Again, he continues, "Nor was his munificence confined to himself and his own honses and gardens. He spent great sums in contributing to public works, and was known to chuse that the expense should fall on himself, rather than that his country should be deprived of some beautiful edifices. His enthusiasm for the works of Inigo Jones was so active that he repaired the church of Covent Garden, hecause it was the production of that great master, and purchased a gateway at Beaufort Gardens, in Chelsea, and transported the identical stones to Chiswick with religious attachment. With the same zeal for pure architecture, he assisted Kent in publishing the designs for Whitehall, and gave a beautiful edition of the 'Antique Baths, from the Drawings of lalladio,' whose papers he procured with great cost. Besides his works on his own estate, at Lonsborough, in Yorkshire, he new-fronted his house in Piccadilly, built by his fativer, and added the great colomnade within the court." This liberal-minded nobleman gave the credit of this design to Kent, though, as Kent did not return from Italy before 1729 , it is certain that architect could have had little to do with it. His villa at Chiswick, now that of the Duke of Devonshire, was an original design, and not, as is generally supposed, an imitation of Palladio's Villa Capra at Vicenza. It was, however, too much in the Italian taste to be suitable to an English climate or to English comforts; hence its great external beauty extracted from Lord Chesterfield the well-known verses -
" Possessed of one great house of state,
Without one rooms tor sleep or eat,
How well you build Iet flatt'ry tell,
And all mankind how ill you dwell."
Lord Hervey also sported his little wit upon this little bijon, which its subsequent additions have not much improved, saying "that it was too small to inhabit, and too large to hang one's watch in."
510. The dormitory of Westminster School, ruined by a late dean, and the Assembly Rooms at York, are beantiful eximp!es of the great powers of Lord Burlington; but the house for Lord Harrington at Petersham, the Dnke of Richmond's at Whitehall (pulled down), and General Wade's house in Great Burlington Street were not well planned, the latter especially, on which it was said by Iord Chesterfield, on aeeount of its beautifnl front, that "as the general could not live in it to his ease, he had better take a house ovet against it, and look at it." The Earl of Burlington was born in 1695, and died in 175\%.
511. William Kent, a native of Yorkhire, where he was born in 1685, if he did not advance the art, was at least far from retarding or checking any progress it seemed libcly
o make. Kent was a painter as well as an architect, though as the former very inferior to he later; and to these accomplishmen's must be added those of a gardener, for he was ne father of modern picturesque gardening. Kent's greatest, and, out of many, also his ust work, was Holkham, in Norfolk, for the Earl of Leicester. The designs were pubshed in 1:61, by Matthew Brettingham, who had been engaged on the building, pparenıly as resident architect, as explained in the edition of 177%. The nolle hall of his building, terminated by a vast flight of steps, produces an effect unequalled by anyhing similar to it in England. During, and, indeed, previous to, Kent's coming so much nto employinent, a great passion seems to have existed with the architects for ill shaped, nd, perhaps, almost grotesque, urns and globes, on every part where there was a restingHace fir them. Kent not unfieguently disfigured his works in this way, but more apecially so at the beginning of his eareer. The pile of building in Margaret Street part of which has been removed for additions to the new parliament houses), now conaining the law courts, a house at Esher for Mr. Pelham, the Horse Guards, and other uildings, which it is needless here to partieularise, were crected under the designs of Kent. :pon whom unbounded liberality and patronage were bestowed by Lord Burlingt.n during he iife of this artist, which terminated in 1748.
512. About 17.33 appeared, we believe, the last of the stone churches with steeples, hich the paractice of Wren had made common in this country; this was the church of it. Giles's in the Fields, erected by Henry Fititcroft. 'The interior is decorated with Ionic olumus resting on stone piers. The exterior has a rusticated basement, the windows f the gaileries have semicircular heads, and the whole is surmounted by a modilion ornice. The stecple is 165 fect high, consisting of a square tower, the upper part decoIted with Doric pilasters; above, it is formed into an octagon on the plan, the sides being Fnanented with three quarter Ionic columns supporting a balustrade and vases. Above iis rises an octangular spire. Besides this, Fliteroft erected the church of St. Otave, onthwark, and the almost entire rebuilding of Woburn Abbey was from the designs and 4perintendence of that master, who died in 1769.
513. During the reign under our consideration, the city of Bath may be said to have most arisen from the designs of Wood, who built Prior Park for Mr. Allen, the friend of ope, and Buckland was erected by him for Sir John Throckmorton. Wood died in 1754, o him and to his scholars Bath is indelted for the designs of Queen Square, the Paraden, e Circus, the Crescent, the New Assembly Room, \&e. The buildings of this city possess rious degrecs of merit, but nothing so extraordinary as to call for more than the mere tice of them. We are by no means, for instance, disposed to agree with Mitford, who ckons the erescent of 13ath among "the finest modern buildings at this day existing in c world !"

Sectr. X .

GFOLGE 111

.514. Though the works of the architects about to follow, belong partially to the eveding reign, they are only properly to be noticed under that of George III. Without engthened account of them, we commence with the mention of the name of Carr of York, wo was much enployed in the northern eounties, where he built several noble residences, fricularly that for Mr. Laseelles, afterwards Lord Harewood, and a mausoleum in Yorkre for the late Maryuis of Rockingham. laine was engaged at Worksop Manor, Warar Castle, and Thorndon; and Hiorne, whose eounty sessions-house and prison at arwick exhibit considerable genius, was a promising artist, prematurely cut off. His ent was not confined to the Italian style, as may be learnt from reference to the chureh Tetbury in Gloucestershire, and a triangular tower in the Duke of Norfolk's park at undel.
;15. At anearly part of the reign of George 1II., architecture was cultivated and pracof here with great success by Robert Taylor, afterwards knighted. His best compositions re designed with a breadth and intimate knowledge of the art, that prove him to have in abundantly aceprainted with its principles. That he was not always successful, the Igs of the Bank, now removed, were a prooll. Of his works sutlicient would remain to rolorate our opinion, if ouly what is now the Peliem Office in Lombard Street existed. - believe it was oniginally built for Sir Charles Asgill, and rnined by the directors of the tiean when they took to the plate. 'Ihere are, lowvever, also to attest the ubility of Sir beat 'Taylor, Sir Charles Asgill's villa at Richmond, and his own honse in Spring Gardens. er his visit to tealy he eommencel his practice in sealpture, in which branch of the arts liay left monuments in Wentminster Abbey and elsewhere; but he ufterwurds devoted nelf to arehitecture alone. Among hiv works were a dwelling house for Sir P'. 'Taytor,
near Portsoown IIIl, a honse in l'iceadilly for the Dinke of Grafton, a mansion in Herts for Lord Howe; Stone Buiddings, Lincoln's Inn ; lily House, Dover Street, a very clever composition; Sir John Boyd's at Danson, near Shooter's IIill; the bcautifil bridge at Ilenley on Thames, and Lord Grimstone's at Gorhambury. He had for some time a seat at the lBoard of Works, was surveyor to the Admiralty, the Bank, and other public bodies. His reputation was unbounded, and met with reward from the public. Sir Robert Taylor died in 1788 at the age of seventy-four.
516. Cotemporary with the last-named artist, was one to whom the nation is indebted for first bringing it to an intimate acquaintance with the works of Greece, to which he first led the way. The reader will, of coarse, anticipate us in the name of James Stuart, who began his career as a painter. After some time passed in Greece, he, in conjunction with Nicholas Revett, about the year 1762, published the well-known Antiquities of Athens, from which he acquired the soubriquet of Athenian. The public taste was purified by a corrected knowledge of the buiidings of Greece, especially in respect of the form, composition, and arrangement of ornament; but we doubt whether mischief was not for a time induced by it, from the absurd attempt, afterwards, to adapt, without discrimination, the pure Greek prorticoes of the temples of Greece to , mblic and private buildings in this country, often with buildings with which they have no more natural relation than the interior arrangement of a church has with that of a theatre. 'The architects of our own time seem, however, at last to be aware of the impossibility of applying with success the forms of Grecian temples to English habitations; and a better system has been returned to, that of applying to every object a character suitable to the purposes of its destination. We consider Stuart's best work the honse, in St. James's Scpuare, which he built for Lord Anson. Among other works, he executed Bedvedere, in Kent, for Lord Fardley; a house for Mrs. Montague, in Portman Square: the chapel and infirmary of Greenwich Hospital ; and some parts of the interior of Lord Spencer's house, in St. James's Ilace. Stuart died in 1788, at the age of seventy-five. Llis collaboratewr, Revett, shared with him a portion of the patronage of the public. He smrvived him till 1804 , when he died at the advanced age of eighty-two years. Ile was employed on the eastern and western porticoes of Lord De Spencer's house at West Wyeombe, and on some temples. For Sir Lionel Hyde he built the church of Ayot St. Lawrence, Herts, the front whereto is a Doric portico crowned with a low Grecian pdiment, and on each side an Ionic colonnade connects the centre with an elegant eenotaph. Dle also built a portico to the entotem fiont of Standlinch, in Viltshire, for Mr. Dawkinc.
517. The chasteness and purity which the two last-named architects had, with some sncecss, endeavoured to introduce into the buildings of England, and in which their zeal hal enlinted many artists, had to contend against the opposite and vicious taste of Robert Adam, a fashionable architect, whose eye had been rmined by the corruptions of the worst period of Roman int. It can be scarcely believed, the ornaments of Diocletian's palace at Spalatro should have loaded our dwelings contemporaneously with the use among the more refined few of the exquisite exemplars of Greece, and even of Rome, in its better days. Yet such is the fact; the depraved compositions of Adam were not only tolerated, but had their admirers. It is not to be supposed that the works of a man who was content to draw his supplies from so vitiated a source will here require a lengthened notice. Yet had he his happy moments; and that we may do him strict justice, we not only mention, hut

present to the reader, in figs. 221. and 222., the ground plan and elevation of Kedlestonc, in Derbyshire, which he erected for Lord Scarsdale. The detail of this is, indeed, not exactly what it ought to have been; but the whole is magnificently eonceived, and worthy of any master. Adam died at the age of ninety-four, in 1792 ; and, besides the Adelphin. in the Strand, which he erected on speculation, he was engaged at Luton P'ark, in Bedforlshire, for the Earl of Bute; at Caenwood, near Mampstead, for Lord Mansfield; at Shelburne Honse, in Berkeley Square, now Lord Lanslowne's, well planned, but ill designed. a meagre affair; the disgraceful gateway at Sion, near Brentford; and on part of the Legister Office at Edinburgh. None, however, would now do credit to a mere tyro in the art except the first named.

518. Previous to the accession of George IIl. it had been considered by his tutors uecessary to complete his education by the study requisite to give him some acquaintance with the art. We venerate the memory of that monarch as an honest good man, but are ompelled to say that the experiment of inoculating him with a taste for it was unsuccessill, for during his reign all the bizareries introduced by Adam received no check, and eeing that Adam and Bute were both from the north, we arc rather surprised that his ducation was not in this respect committed to the former instead of Sir William Chambers, hom, as one of the first architects of the day, it is incumbent upon us now to introdace. Ve believe that whatever was done to forward the arts, owes a large portion of its effect , that celebrated man; and it is probable, with the worthy motives that actuated the ronarch, and the direction of his taste by that individual, much more would have been ccomplished, but for the heavy and disastrous wars which occurred during his reign, and se load of debt with which it became burthened. The works of Chambers are found in most every part of England, and even extended to Ireland; but we intend here chiefly to estrict ourselves to a short account of Somerset House, his largest work, in which, though sere be many faults, so well did he understand his art, that it is a matter of no ordinary ifficuity, and indeed requires hypercriticism, to find anything offensive to good taste in the etail.
519. This work was commenced in 1776 , and stands on an area of 500 ft . in deptli, and 0 ft . in width. The general interior distribution consists of a quadrangular court, 13 ft . in length, and 210 ft . in width, with a street or wide way running from north to uth, on its eastern and western sides. The general termination towards the river is a race, 50 ft . wide, whose level is 50 ft . above that of the river, and this occupies the whole ngth of the façade in that direction. The front towards the Strand is only 195 ft . long. is composed with a rustic basement, supporting ten Coriuthian colunns on pedestals, owned by an attic extending over the three central intercolumniations, flanked by a lustrade on each side. 'Ihe order embraces two stories. Nine large arches are assigned the basement, whereof the three central ones are open for the purpose of altording an trance to the great court. On each side of them, these areltes are occupied by winw's of the Doric order, decorated with pilasters, entablatures and pediments. The key ones are carved in alto-relievo, with nine colossal masks, representing the occan, and the she primeipal rivers of Great I3ritain. The three open arches of entrance before menaned learl to a vestibule, which connects the Strand with the large quadrangular court, d serves also as the access to those parts of the bnilding, till lately occupied by the Royal adeniy, (1836) and on the eastern side (lately to the Royal Society and) to the Society Antiquaries, the entrances thereto are within the vestibulc. 'This is decorated with bunus of the [boric order, whose entablature supports a vaulted ceiling. We insert a luced wo sdeut (fi!g. 223) of Malton's view of this "magnificent Doric arcade leading to : great eourt. Which comseys to the spectator a more ample idea than words can possibly mish, of this piece of grand and pietmrespue secnery." 'The front of this pile of
building towards the quadrangle, is 200 ft . in extent, being much more than the length of that towards the Strand; the style, however, of its decoration is correspordent with it, the principal variation being in the use of pilasters instead of columns, and in the doors and windows. Tue front nest the Thames is ormamented in a similar manner to that already described. It was originally intended that the extent of the terrace should have been l,10' ft. This last is supported by a lofty arcade, decorated towards the ends with coupled Tuscan columns, whose cornice is continued along the whole terrace. The edifee was at the time the subject of much severe criticism, and particularly from the pen of a silly en. graver of the name of Williams, under the name of Antony Pasquin; but the censures le passed on it, the author being as innocent of the slightest knowledge of the art as most of the writing arehitectural critics of the present day, were without foundation, and have lorg tince been forgotten. At the time, however, they received a judicious reply from the pen

Fig. 223. of the late Mr. John B. Papworth, which deservedly found a place in our edition of the work by Sir iW. Chambers, yet to be noticed.
520. Malton, in his Londmand Hestminster, fol. 1799-7, gives several carefinlly drawn views of this noble editice, the design of which he describes as being at that time (1796), "far from complete, and little progress has been made in the building since the commencement of tle present war; the exigencies of govermment laving diverted to other uses the sum of $25,0 \mathrm{col}$. which for several years had been annually voted for its continuance." Since that period the river frontage has been eompleted at the east end, by the additions in 1831, under Sir R. Smirke, for King's College : while new offices were skilfully added on the western side, during the year's 1852-56, by James Pennethorne.
521. In the year 1759, Sir W. Chmmers published a Treatise on the Decorative Part of Civil Architecture, in folio; a second edition appeared in 1768 ; and a thitd, with some additional plates, in 1791. Two others have since been published, in 182.5. This work, as far as it goes, still continues to be a sort of text-book for the student; and much of it has been adopted for that portion of this volume entitled "Practice of Architecture" Chambers held the office of surveyor-general in the Board of Works, and to him much is owing for thec assistance he rendered in establishing the Royal Academy of Aits, in 1768, to whieh institution he was treasurer. He died in 1796 . He had many pupils, sevenal of whom we shall name.
522. Robert Mylne, the descendant of a race of master masons and architects in Scotland, designed Blackfriars Bridge, having been the successful competitor, a preference he obtained while yet unknown and abroad. It was built between the years 1760 and 1768 , at an expense of $152,840 l$., a sum which was said to be somewhat less than his estimate. He was voted an annual salary of 300 l. and a percentage on the money laid out; but to obtain his commission of 5 per eent. he had a long struggle with the city authorities. his claims not being allowed until 1776. This bridge was pulled down in 1865. At the time when the designs were under consideration, a long controversy arose on the questions of the taste exhibited, and safety in employing elliptic, in place of semicircular, arehes, which hat been up to that time used in Enerland for bridges. He was surveyor to the dean and chapter of St. I'aul's, London, and is said to have placed in that building, over the entrance to the
rhoir, the memorial tablet with the celehrated inscription ($p u r .482$) to the memory of Wiren, lately removed. He was appointed, in 1762 , engineer to the New River Company; and dying in 1S1I, was buried in the crypt of the catbedral, near to the grave of Sir C. Wren.
523. George D.mee, heing nominated, in 1733. by the corporation of the city of London, w the office of clark of the City Works, and appointed thereto in December 1755, designed 't. Luke's Church, Old-Street; St. Leonard's Church, Shoreditch, a bold example of the Doric order; and the Mamsion Honse, or othcial residence of the Lord Mayor for the time being, during the years $1739-53$, at a cost of about 42,639 . This edifice has received many alterations, including the removal of the lofty attics in front and rear, which has tended much to deprive the strusture of a large share of dignity. Its confined and low sitation gives the huilding an appearance of heaviness, it would be free from this, if placed on an elevated spot, or in an area proportionate to its magnitude. It is substantially built of ['ortland stone, the material used in most of the erections of this period. The finely designed sculpture in the pediment, above the six columns of the Corinthian order, was well executed by Mr., afterwards Sir Robert, Taylor. Many other buildings in and abont the city are attributcd to Dance, who died in 1768 , and was succeeded in othee by his son George Dance, another of the first four architcet members of the Royal Academy. Ilc designed Newgate prison, with the Sessions House, Sc. It was completed in 1778, at a cost of upwards of $130,000 l$; besid:s keiag subsequen ly repaired under his directions,

after the riots of 1780, when it suffered grcatly from fire. This edifice (fig. 224.) has become a chief example of the theory of the observation to "apply to every object a character suitable to the purposes of its destination" (fage 224.). The walls, which are constructed of Portland stone, without apertures, or any other ornaments than rough rustic work and niches, are 50 ft . in height. The principal front is 300 ft . in length. Dance also designed St. Luke's Lospital for Lunatics, Old Street, built in the years $1780-1784$, at a cost of about $40,000 \mathrm{l}$. It is of brick, with a few plain stone dressings, three stories in height; the spaces between the centre and ends are formed intolong galleries-for the females on the western side, for the males on the eastern. The simple grandeor of the design of the façade, the length of which is 493 ft ., produces a very agreable effect of propriety upon the mind. He rearranged the south front of Guildhall in a style of architecture neither Gothie nor Grecian, the capabilities of which his pupil, John, afterwards Sir John, Soane, largely avaited limself in after life. He also designed the elegant council chamber attached; together with many country residences for the wealthy citizens and others; and dying in 1895, was buried in the crypt of St. Paul's. Upon the resignation by him of his city appointment in 1816, he was succeeded therein by his other propil, William Monntague.
524. Henty [Iolland, in 1763, designed Clarenıont Honse, near Esher, for Lord Clive; formed, 1788-90, Calton IIouse into a palace for the Prince of Wates, afterwards George f V. ; designed, in 1791, Drury Lane Theatre; the façade of the East India House, Leadenhall Street; the original 'Pavilion' at Brighton, about 1800; improvements at Woburn Abbey for the Inke of Bedford; and 1785, the vestibule, with its charming p stico in the Grecian style, to Melbourne, now Dover: I Iouse, Whitehall, for the Duke of York. 'The fig. 225 is from Matton's work already mentioned, and is given not only for the intrinsic merit of the design, hut becanse litale else now remains, with Claremont, to demonstrate the talents of this fashionable architect of his day. IIe was the chief introducer of the so-ealled (jreco-Romam style. Hollind died in 1806.
525. With these architects should be mentioned Isale Ware, "of Ilis Majesty's Board of Works," whos published, besides uther works, a Complete Body of Architerture, folio, 1756. This volume, relating to Italian design only, contains much sound information, and is more complete than Sir W. Chambers's publication, but it is not treated so artistically. Ile designed Chesterfidd Ilouse, Hay Fair. Willey Reveley, a pupil of Chambers, followed the steps of Sthart, and visited Λ thens and the Levant. Tle was the editor of the thirel volume of the Antiquities of Athens, and died prematurely in 1799. IIe built the new charch at Southampon, and oflered some beantiful designs for the new baths at Bath, which, honever, werenot adopited. Joseph Bonomi, anative of Rome, an assoeiate of the Royal Aeahomy, amonght many lardre structures composed chiefly in the Grecian style, designed the gallery it Townley 11:1l, Lancashire, for the collection now in the British Musemm: 1790.
a small chmreh at Packington, Warwickshire, solidly vaulted throughout; Eastwell Honse, Kent; the mausoleum in Blickling Park, Norfolk, to the memory of John, second Eall of Buckingham; Longford Hall, Shropshire, exhibiting perhaps the earliest adaptation of a portico projecting sufficiently to adnit carriages; additions

Fig. 225. MRLBOURNE, NOW DOVER HOUSE, WHITEHALL. circular art from one whith then name of Bononi appears in the best novels of his priod as the architect consulted in matters concerning a country residence. He died in 1808.

Fig. 226.
596. Of this period also are the works of James Gandon, a pupil of Sir W. Chambers. His name was first brought before the public, by the publication with John Wolfe of a continuation of ('ampbell's Vitruius Britannicu, 2 vols fol. 1767 and 1771. The design, by him, for the county-hall and prison at Nottingham, is contained therein. He carried if the first gold medal given for architecture by the Royal Academy, at its foundation in 1768. 1a 1769 he obtained the third premium for a design for the R yal Exchange in Dublin; and in 1776 one of the premiums for the new Bethlehem Hospital, London; both in competition. At the instance of Lord Carlow, afterwards Lord Portarlington, he made plans ior
e new docks, stores, and Custom-1 Honse. at Dublin. and proceeded there in 1781 to carry mit e works. This building was not completed until 1791; it has a front of 37.5 ft . in length, tending along the quay of the river liffey. and is 209 ft . in depth. Standing in a fine en place, its admirable desi-n and good execution cause it to rank as equal to other orks of a like nature, and to be esteemed as a noble pile that would do credit to any city the world. He was well assisted in the decorative works by a young sculptor named dward Smith The great difficulties he experienced during its erection, both from the ture of the soil, as well as from the workpeople, is well described in the memoir of him

Flg. 227.

epared by his son, and published by the late 'T. J. Mulvany, in 1846. To the Honses of arlianent in Dublin he added the side or east portico, with an entrance for the Lords, wh, greed to Gandon's desire to have Corinthian columns to this portico, the additional proporon in height of which was to make up for the great fall in the ground from the front, where e Ionic is used. This portico entrance he joined with the front by a circular wall witho it dumns, so that the two orders should not clash; the present three quarter Ionic columns this circular wall o. the one side, and those to the archway on the other side, are the iditions by a later hand when the building was adapted for the Bank of Ireland, whic! is possessed it since 1802. Gandon subsequently added the western portico for the Comons' House. A mnch larger work by him was the edifice for the Four (Law) Courts. he foundation stone was laid March 3, 1786, and was first used at the end of 1796, but e whole was not completed until 1802. The frontage extends along the river quay, and clodes, on the east side, the Offices of Records, designed in 1776 by Thomas Co ley. fom Gandon succeeded. The whole extent of grotud was but $432 \mathrm{ft}, 291 \mathrm{ft}$. of which ing occupied by the offices, left but 140 ft . square for the plan of the Courts, and this d subsequently to be lessened in depth by the portico being set back, to appease the ire a Right IIonourable gentleman whose opinion had been overlooked. This centre ilding consists of a moderate-sized central hall, 64 ft in diameter, with a done which cms exterionly a marked feature of the design, and one of the most conspicnous objects the city. This central hall gives access to the four conts. For the same city, he signed Carlisle Bridge and the lnns of Conrt, but resigned the control over the latter ifice to his pupil, H. A. Baker. Ile retired in 1808 to his comntry house near Lucan, d died there as late as 1823 , in the eighty seco.nd year of his age.
527. Jan:es Wyatt, born about 1743 or 1746 , accompanied, at an early age, Lord Bagot lione, and applied himself to the study of the ancient monuments in that city and at enice. After a.l absence of six years, returning to London, be was employed to design l'antheon Theatre in Oxfod Strect, coosisting of roons for publie assemblies, Se. is was opened in January 1772 , and its completion (fig. 228, which shows the interior as ranged for the Mandel festival, in May 1784), spreading his fame both far and wide, he is cargerly sooght after to superintend numerons public a : d private buildings in Great -itain and Ireland Walpole, writing to Mann, in 1771, says of it: - "The new winter melagh in Oxford Road is alnost finished lt anazed me, myself. Imagine Balbee in its glury! 'The pillars are of artificial giallo antico. The ceilings, even of the passages. - of the most beantifint stncos in the best taste of grotesque. The eeilings of the ball nons and the pancls painted like Raphael's loggias in the Vatican. A dome like the laneon glazed. It is to cost fitty thonsand po:meds." l'art only of the Oxford Street front. th the side entrance in l'olind Street, now exist of this work, for the interior was gutten fire soon afier its crection $F^{* i g} 780$ shows the framing of a dome nearly the same as that this edifice. 'I'he drawings lie brom the home the knowledge be possessed of the arts in teral, and his potished mathers, secured for hine a host of patrons, and he became the
chief architect of the day. Those crities, amateur or otherwise, who do not choose to make allowances for the state of the knowledge of the arts at the period under notice, hold Wyatt 110 to the execration of the present generation, for his alterations and restorations of our

Fig. 228.
NTERGR OF THE CANTHEON, LOXHON.
and Pace, near Langham Church, is a good type. npon the peculianities of Ardbraccan House, n ar Navan, in lreland, designed for the Bishop of Meath, as alfording the moderate accommodation for a small family, or all the requirements of an Irish ordination, where hospitality has to be afforded to all comers.
528. Jatres Wyatt was among the earliest architects to employ every style of architecture in his designs, yiclding all individuality to the passing whims of clients. Among his other buiklings usually noticed are Lee Priory, Kent; and Castle Coote, in Ireland, for Viscount Belinont, which for grandeur of eflect and judicicus arrangement, deserves much commen-

Fig. 229. thin of howden phek. dation. The apartments are upon a moderate scale and well disposed, and the whole designed after a Greek model, in which style he also designed Bowden Park. Wiltshire, for Barnard Dickenson, Esq. ($f_{j} s .229$ and 230). Another of his large works is Ashridge, situate in the counties of Buckingram and Mertford, for the Earl of Bridgewater; it is a very extensive and highly decorated mansion designed

Fig. 230. elevation of bownen palik. in the medi, val castellated style. Fonthill Abbey, Wiltshire, for W. Beck. ford, Escr, was also another of his edifices in the same style. The exterior measuren ents are $2^{-} 0 \mathrm{ft}$. from east to west, and 312 ft. from north to south; the centre tower being 276 ft high from the floor to the top of the pinnacles. Ilis restorations of our medixeval buildings included that of I'enry V I Ith's chavel at Westminster Abbey, Thomas Gayfere bcing the intelligent master mason employed. As so many ot his later works belong to the present century, no more will be said here of this influential architect, except that he succeeded Sir W. Chan bers as surveyor-geneial to the Board of Works; that for one year he filled the presidential chair of the lioyal Academy ; and that, as before stated, he died in 1813, aged sixty-seven, in consequence of the overturning of his chariot near Marlborotigh.
529. This architect must conclude our general view of the history of art in this country to the end of the reign of Gcorge III.

CHAP. IV.

POINTED ARCHITECTURE.

530. The histury of the pointed styles on the continent of Europe is a matter which may be treated in various ways; but the limit within which this portion of our labour is estrieted, in order to render it coneordant with the space allotted to other subjeets. obliges he ehoice of the headings France, Belgimm, Germany, Spain, and Italy, with as near an luproach to a chronological arrangement of the buildings that will serve for examples, as he looseness of annalists and the differences in chronicles will permit. This sequence wial five the reader a general view of the subject, which will enable him to understand the regularity of the progress of pointed art in those countries in comparison with the gradual ramsition and uniform eharacter which are so generally observable in England; and wiil repare him for his own particular study of the characteristies of the schools; these are as aunerous as the prorinces, almost as numerous as the cities, in the conntries to whieh we efer. He may observe in the following notices several examples of difficulties as to dates; the periods assigned to our examples have been determined by authors who, being natives may be supposed to have given as much time and learaing to the chronology, as English crities have dedicated to the style, of the respective eountries.

France.
531. The sehools of pointed architecture were confined to certain portions of the comntry. 1hey arose in the He de-France, Champagne, Pieardy, Burgundy and Bourbon, Maine and Anjou, and Normandy, here named in the order in whieh, before the middle of the 13th eentury, the new style was adopted. This did not develope itself until a late period in Bretagne, where a character, which corresponds (in the opinion of M. Viollet le Duc) as anueh to that of England as to that of Maine and Normandy, was always preserved. The style of the royal domain hardly penetrated into Guienne before 13 io; and even its cffieial appearance after 1247 at Carcassonne did not procure for it an influence in Aurergne and l'ovence; they can hardly be said to have ever adopted Gothic arehitecture. Indeed, the latter district did not belong to France until 1481, and almost fassed at onee from degenerated romanesque traditions to renaissance art, exlibiting seareely any inark of the intuence of northern Gothie.
532. With regard to ecelesiastical arehitecture in the south of France, it may be said that the buildin s having arehes that are positively pointed, date principally in the $14 \mathrm{th}_{1}$ and two subsequent centuries, as the cathedrals at Alby and lkhodez. the bell-tower at Mende, and the fiont of the ehureh of St. Maurice at Vienne. In the south, where the clinate resembles that of ltaly in not requiring high-pitelied roofs, the pointed areh seems a foreig element; it is there in body, but not in spirit. The arehitecture is just as bef re; the pillars are few and thick; the eapitals are square, and have large leaves or serolls; the ornmments are either barbarous or are initated from elassic works; the towers are lew and massive; and the fronts always have a pediment of stecper rake than any antique example can show, under which is a doorway having a round areh, or else one so slightly pointed that the point is only detected by a eareful eye.
533. Until the middle of the 12 th centuy (a few eases carlier may be exceptioral), the semicireular areh appears to tave been almost exclusively employed; but immediately Ifterwards, the style romann-micul or style roman de transition, exhibits the pointed areh, crocket capitals, and groined vaulting with diagonal ribs, on a erowd of eivil and ecelesiastical buildings. 'There are purely romanesque ehorehes, where the small ojenings hase emicircular heads; the four great arehes carrying the pendentives of the certial lantern or dome, as has already been noticed (par. 307.), being pointed. In the centre of Fiance thene are churches that are altogether romanesque in plan, in style of decoration, and in form of pillars, that have none but pointed openings, proving that a thoroughly defined arehitectural system had been slowly constituted, which the architeets of the 13th century nerely rendered m re homogeneous and more perfect; these buildings are romasesue, if style depends upon plan, eapitals, and form of mouldings; they ane p.inted, if it lepends upon the form of the arch
531. Amongst the structures which date in the 12 the eentury may be named St. l'ierre-ez- Bitry, with three circular windows in its apse; St. Martin at Cuise, having a squareended choir like Nôtre Dame at Conchy; and St. Etieme near l'ierrefonds; the eatheIral at Julle; St. Julien at Brionde; St. Nectaire, St. Symphonien, and St Genes at lhiers; St. Nazaire at Careassonne; with the churehes at Mozat, Noirlac, and St. limand, all being situate in Ansergne ; St. Mantin at Iaon; St. Pierre at Lidsamt; St.

which the pointed arch seems perfectly secondary to its rival, are the portal of the cathedral at Bayeux and the churches at Conclyy, Civray, Scnlis, and Vézelay, with those of St. Remi at Reims, and of Nôtre Dame at Chartres, Noyon, and Poitiers.
535. The churches which have domical coverings deserve a short notice They are the cathedral at Cahors, St. Front (figs. 159 and 160), and St. Etienne de la Cité, both at J'ériguenx, the cathedral at l'uy, and the churches at Sonillae (fig. 158.), Angouleme, l.c Roulet, and Loches, with the fourteen-sided church at Rieux-Mérinville.
536. A Fseneh critic of considerable repute thinks that necessity, facility, and solidity ia construction, and a gift of varying the decoration, alone prompted the use of the pointed arch in the south-east of France, where are buildings showing that arch in their lower portions, while the upper parts have semicircular work of the same age. It theref re appears that if the architects in the southern provinces were the first to make the pointed arch, t!ney were also the last to adopt the systematic and absolute use of it; and the usual classifications of the pointed styles cannot serve as perfect indexes to the perid of the employment of the subdivisions that have been made, although it might bave been supposed that the spirit of methodical order which has eminently distinguished the French nation since 1790 would have shown itself in an analysis of the architecture of their eountry. The C'omité llistorique des Arts et Monuments, has issied the following table as in some sort bathoritative:-
f:RST remiod.
Architecture with the round arch.
From the fourth to the eleventh $\{$ Style Latin.
century

Eleventh, and first half of the $\{$ St le Roman.
twelfth, century . . .
second period. Architccture with the
round and pointed arch. Architceture with the
round and pointed arch. Second half of the twelth century
$\{$ Style Romano-ogizal ot THIRD PER1OD,

537. But this list is not universally used, and in reading the works of any French author on medixval architecture, it is necessary to ascertain whether he has followed it, or the table propounded by M. De Caumsnt as here given (with Mr. Poynter's parallel of English periods):-

In France.
Romanesque 950 to 1050
'Tıansition 1050 to 1150
Primary (Guthique) 1150 to 1250
Secondary (rayonnant) -
First Epoch 1250 to 1300
Seeond Epoch 1300 to 1400
Tertiary (flamboyant) -
First Epoch 1400 to 1460
Second Epoch 1460 to . . .
For the cleâtean, M. de Caunont also proposed the subjoined classification:-
\downarrow st class. Fifth to tenth century : Primitive lioman.
and " Tenth and eleveath centuries: First secondary.
3rd ", End of eleventh and twelfth century : First tert ary.
$4 \mathrm{th}_{1}$ " Thirteenth century: Primitive pointed.

In England.

f Anglo-Saxon 970 to 1066
Norman 1066 to 1189
Transition 1189 to 1199
Early English_
First Epoch (lancet) 1199 to 124.5 Second Epoch 1245 to $1: 307$

Decorated E:aglislı 1307 to 1377
1400
150 J

Perpendicular English or Tudur 1377 to

5tli class. Fourteenth and first half of fit: te nth century: Seeondary and tertiary pointed.
6 th " Second half of fifteeath and six. teenth century: Quaternary pointed.
538. Before entering into the consideration of the style ogzal, it will be desirable th explain that ogive, also written augire, designated originally a diagonal band in groined vaulting formed by the intersection either of barrel vaults or of keel vaults, to both of which the terms zoûte en croisée dogives, or voute d'ogices, were applicable. As equiralent
o a pointed arch, ogue is merely the popmlar confirmation of in error committed by the gnorance of some writers in the present century.
539. Heavy roofs, having few ribs with great width of plain intrados, and carried by

ig. 2J1. NOTIE DABLE, EALIS, masses of walling, with small openings, are claracteristic of Romanesque work. Its successor was exactly the reverse: the suldivision of rooting into a collection of light ribs with no marked intrados, the growth of the engaged or disengaged pillars into the lines of the vaulting, and the carriage of the weight of the ribs by buttresses that forn the resisting points of walls which are merely frames to windows, are distinctive features of the Gothic architecture of the 133 h century, with the addition of the pointed arch which had previously been employed in ways that tended to the developement of the $=$ style oyival primaire. As an example of the transitional claricter of the style in this period, the two bays, fig 231. from the cathedral in Paris, and fig. 233 . from the church of the abbey at St. Denis, may be compared as having been executed respectively at the begiming and end of the period. The sculptors do not seem to have studied nature lixyond exhibiting the costume of their period; and if they chose models at all for the r foliage, these were furnished by indigenons plants. The great attention paid in the 11th century to ancient literature is clearly responsible for the contaurs and other fabulous creatures then used for ornament. In like mamer, the devo-

Fig. 23゙2. ST. MKSIS. ion of the 12 th eentury to the sciences is expressed by the zodiacal signs and emblems of the seasons sculptured on the portals and choirs of churches built in that and the surceeding century. The door-

1.6 : 5
 ways at Amiens, Antun, A vallon, Nôtre Dame in Paris, St. Denis, and Vézelay, with the eloir of the chureh at Issoire, supply curious examphs of this new branch of decoration. 'I his conti mation of details, originally belonging to the 12th century, suggests the remark that the edifices constmeted by the Gothic sethool, at the commencement of the 13th eentury, do mut possess features so dislinet as to furnish always a means of distingnishing them from those belonging to the period of tramsition-: remark which may be applied to the two exanples of domestic arechitweture at (andebec, "hich tirm fig. :"33.
540. Olit of the lirge number of masterpieces in architecture in the 13 th century may be sclected the cathedrals at Lisieux, Lyon, and Narbonne, executed in the early part of that period; Bordeaux and Châlons-sur-Sione belong to the year 1250; and Coutances dates in the last half of that eentury. Great part of the cathedrals at Bourges, Dijon, Lston, Nantes, Nevers, Senlis, and Sens; the choir and aisles at Auxerre; the choir and chapels, with the upper part of the nave, at Bayenx; the nave and ehoir at Sécz; the churches at Ourseamp, St. Denis, St. Jean aux-Bois, and St. Maximin; those of St. Pierre at Aralon, and of St. Victor at Manscilles; the Sie. Chapille at Paris; the choir of the churehat St. Nazaire at Carcarsonne; the nave and most of the choir of that of St. Perre at Lisieux; the chapels, aisles, and choir of that of St Julien at Mans; the ehoir of that of St. Nicaise at Rouen; and the Hotel-Dieu at Lourres. were constructed in the course of this priod.
541. The cathedrals when are ustally taken as affording standards of the style are C hartres, Beauvais, Reims, Paris, Amiens, and Rouen, of which Reims is perhaps more consistent than Amiens. They are universally considered to be two of the fincest examples of the style in the world. The former, which wais begun 1212, but not quite finished till 1430, is in the form of a Latia cross on the plan (fig. 234.); its length from cast to west is 492 ft , and its breadth, measured to the extremities of the arms of the transepts, is 190 ft . The wioth of the transepts is 98 ft , and the towers, 270 ft . from the ground, are still imperfect, because their open spires lave neser been erected

542. The cathedral of Amiens, begun 1290 by Robert de Luzarches, but entinued and

FHg. 237.

> PasA OF AMHES CATHEBRAT. completed, 1269, hy Thomas and Regnault de Cormont, except the west front that was not finished until the end of the 14 th century, is 444 ft . long and 84 ft . wide (.fig. 237.), and 141 ft high in the nave. It was cominenced within two years of the cathedral at Salisbury. Of the two, Amicus (fio. 236.) is in a more per'eet and advanced state of art than Salisbury, for the French were hefine us in adding to the simple beato ties of the fomer period many graces not adopted by us until the latter.
543. The :tyle ogical secomlaire is considered by some architects to-be that in which pointed art arrived at perfection; for they deem that an increase of elegance compensates for a loss of severity: bat with the latter the purity of the preceding period seems to be wanting. Nevertheless this style rayomant has no absolute cinaracter; it is rather, as observed by M. Schayes, a system of transition preserving the elements of the style of the i3h century, but moditying them by greater amome of ornament and by more expansion and boldness in the curve of the arch, for the arc en tiers point is the true arch of the time. This decoration, this arch, and the tracery of the windows, chiefly mark the style: and in regard to the Catter point, figs. 231 and 232 show the difference between the works of the two periods. The sculptons of the 14 h century were more shilful than their predecessors; their carving

TK. 258. SI. OLKN, AT ItOUEN. shows more delicacy and finish, while their statues are no longer ideali. ties: an important tendency of the period was an attempt at portrait busts, in sone cases resulting in an approach to natural simplicity, although the attitude might be stiff and constrained, as was the case in almost all medizval sculpture. The statues assume greater length in the body, and are dressed in ample drapery, cast with some affectation, but still having falling folds slighty bent.
544. The comparison which was recommended between figs. 231 and 232, may be paralleled with adrantage by placing before the rcader, fig 238, a fair example of the second period, in the choir of St. Ouen at Rovien, and fig. 239, an equally modest work of the third epoch from the church of St. Maclou, in the sa:re city.
545. Foreign armies and civil wars caused the usual buildings of the 14th century to be fortified houses and city gateways rather than ecclesiastical stıuctures. One church, however, that of St. Ouen, at Rouen, 1318 39, (figs. 238 and 240), exhibits the style in its choir and chapels more perfectly than the cathedrals at Clermont- Ferrand, Metz,

Fig. 259. St. MhClou, AT 16OUKN. and Perpignan. Other good examples are the transepts at Bayeux, the chapels at Narbonne, and the elhapter-house with the cloister at Noyon; besides the churches of the Dominicans nd of St. Didier at Avignon; that of St. Jacques at Compiègne, and of St. Nizier at
 Lyon ; the cloister of Si. Jean-des-Vignes at Soissons; the palace at Avignon; the hotel-de-ville at St. Oner ; the towers of St. Victor at Marseille, and of St. Sernin at Toulouse; and the front of the church of St. Martin at l.aon.
546. The third period, the style ogit al tertiaire, fleuri, or flambeyant, as it was termed by M. Angoste le l'révost, used the equi-

Fig. $210 . \quad$ LLAS OV ST. OUYN, AT IROHEN, (before the front was
remodelled by D. Vholied-le-Duc).

embroidery. Covered with cusped arches, niches, pinacles, and tracery, the buildings of the time would be easily rec gnised even if they were not narked by the wavy or broken lines of the arches; the moulures mir matiques or pear-shaped boltels, projectirg arrises, and deep hollows, which firm the mouldings: and the boldly designed corbelling, pendentives. and vaulting so flat that it resembles a ceiling resting upon extremely thin pillars. In fig. 241 we illustrate one of the compartments of the sacristy of the church at Candebee, which convtys a fair notion of the peculiarity of the style. During this period the sculptors lost much of the simplicity noticed in the preceding entury; they evidently copied the living model for at least the head a d hands, with great truth and sometimes with hapoiness in expressing sentiment, but they clothed it in heary drapery cast with pretension. The grotesque and monstrous figures almost excel the sfatues, and seem to have some analogy with those which appear in the bassi-rilievi of the 11 th century. Such were the last efforts of the pointed style, which owed its princijal character to its tendeney towards verticality, and finished by seeking horizontality.
547. Amongst the most remarkable works of the 15 th century may be mentioned the transepts $1400-39$, and the nave 1464-91, obviously modelled upon the previous choir, of St. Ouen at Rouen; the upper part and spire of the north-west tower at Chartres; the contral tower, transepts, and chapels at Evreux ; Limoges; the northern entrance at Sens; the churches at Notre-Dame de-l'Epine, St. Queutin, St. Riquier, Than, St. Wulfran at Abbeville ; the Celestinians, and St. Pierre at Avignon; St Jcan at Caen ; St. Antoine at Compiègne; Ste Catherine at Honfleur ; St. Germain l'Auxerrois at Paris; St. Vincent at Rouen; and St. Pierre at Senlis; the choir and apse of St. Trophime at Arles: the greater part of St. Martin at Avignon; some pure portions (others, fig. 242, showing the dying truggles of the style) of St. Jacques at Dieppe; the choir and transepts of St. Remi, at Reims; the pretty Bourbon chapel in the eathedral at Lyon; the salledes chevaliers at Mont St. Michel ; and the tower of St. Jean at Elbeuf.
.548. Among the examples of the style, between the years 1420 and 1531, are the Hôtel des Ainbassadeurs at Dijon, about 1420 ; and the Fontaine de la Croix at Rouen, between 1422 and 1461, lately restored with the greatest success in all its delicate details of ornament and tracery; as well as that which, elected about 1512 opposite the cathedial at Clermont, in Auvergne, was much injured by its renewal in 1799. The palace at Dijon dates abont 1467; and in that city are the monuments of the Dukes of Burgundy, Philippe-lc-Hardi and Jean-sans-Peur, which were in the church of the Chartreuse. That of thic

Fig. 24. saciosty of the church,
Cavdelec. last-named was executed by Juan de Huerta, assisted by other artists, about 1475. They are both of the period and are perfect keys to the style that prevailed at the time. At Nancy, the capital of Lorraine, still remains a portion of the ancient palace of its powerfil dukes. A representation of its portail is given in fig. 243. What remains within serves as barracks for the garrison. The date of it is about 1476 . The Porte du Cailhan at Bordeaux, 1494, in memory of the battle of Fornovo, shares the fate of the Hôtel de Ville at St. Quentin, with its known date of 1495-1509, in not attracting so much notice as a very peculiar instance of a castle in miniature built by Gerard de Nollent about the end of the 15 th century at Caen with four fronts, which from the stat:ics of Neptune and Hercules vlaced on the battlements, is commonly called the chattcau de la gendarmerie. At Orleans, the Hotel de Ville, fini hed in 1498, is now used as a museum. The Château de Blois, with four facades of different design, the eastern work dating ahout 1498-1515, is tho well known to need here any further remark. Ten miles from Caen is situate the Chateau de Fontaine le Henri ; the greater portion is of this period. A part of the west front is given, fig. 244, as a characteristic specimen of the residences of the noblesse during
the latter fart of the 1.5 th centay, at which period it evidently was erected. 'l'e well known Hôtel de Chuny at Puris, possessing portions of an ear. lier date, had the works resumed in 1a90 by Jacques d'Amboise, Abbé of Cluny, and alter walds bishop of Clemont. This buildirg now contains the works of art tormerly belonging to M. de Srinmerard. Near St. Amand is the Chit teau de Meillant, much resembling the last named cdifice, but more ornamented
.549. During the last ytars of the 1.5th century, the canpaigns in 1 taly ly the l'renell made
 then aequaint d with the new style. the imitation of the antique. At first, some mouldings and some decorations only were copied. Thus several portions of the cathedral at Oikans exhibit the essential features of decaded pointed architecture; and while Bullant designed in the ltalian style the chatteau at Ecoutn, le maintained in the appendent chapel the Gothic taste, as being cminently ecrlesiastical, as be did in the parish chureh at the same place. In the 16 th centuy new churches were rare: sumptuons palaces and pleasure-houses were the chief works, in which great saloons beca:ne the chief objects; and the middle class also introdneed luxury into their dwellings. As the main object was the expression of weal thy ease, not a character of grave inagnifiecence, the functions of the atchitert were assumed by the sumptor: and at the same inoment sculpture, no longer arehiectura!, alike rommened its deea-
Lence in France, 'The ehief ecelesiastical works of the period were the additions of fronts, or restorations; those done at the -ommencement of the epoch form a sort of transition betwenthe style flemri and The Italian renaissance empl yed towards the end of the reign of Prascis I. In his rategury may be ranged the churches of St. Patrice, St. (iodard, Sit. Andréte la-Cité. St. Nic las. St. Sever, and the prat portal of the cathedial at Roven. the churd at Pron; and the ehurches 10 St. R:tieme-dn- Mont and of St Ens-
athe at l'aris. 'Jhe lutter has the

general forms of a Gothic building with renaissance details, and as its side entrance was constructed at the same time as the fine flamboyant side entrance to the cathedral at Beauvais, it is clear that the arehi-
 tectural revolution was not simultaneously effective in all parts of the country.
550. As specimens of civil architecture of the period, may be named the town halls at St.
Quentin, Compiègne, and Noyon; with two of the finest examples of the art of this period, the Palais de Justice and the Hotel de Bourgtheroulde, at Rouen. The first was begun in 1499 and finished in 1508. The plot on which this beautiful work stands, includin'r the court-yard, is about threefifths of an English acre, and the arrangement of its plan is given, that is, of the ancient part of the building, in fig. 24.5 . lt is thus described by Dawson Turner:--" The palace forms three sides of a quadrangle" (two of them only are ancient). "The fourth is occupied ty an embattled wall and an elaborate gateway. The building was erected about the beginning of the sixteently century; and with all its faults " (we are notaware what they are) "it is a fine adaptation of Gothic architecture to civil purposes." "The windows in the body of the building take flattent d elliptic heads, and they are divided by one mullion and one transom. The mouldings are highly

wrought, and enriched with foliage. The lucarne" (dormer)"windows are of a different design, and form the most characteristic feature of the front; they are pointed, and enriched with
ullions ard tracery, and are placed within triple canopies of nearly the same form, flanked square pillars, terminating in tall crocketed pinnacles, some of them fronted with open ches, crowned with statues. The roof, as is usual in French and Flemish buildings of is date, is of a very ligh pitch, and harmonises well with the proportions of the building. a oriel, or rather tower, of enriched workmanship projects into the court, and varies the evations" (an object the designer never once thought about, inasmuch as in all mediæval iildings, the first consideration was convenience, and then the skill to makc convenience reeable to the eye-an invaluable rule to the architect). "On the left hand side of the urt, a wide flight of steps leads to the Salle des Procureurs" (marked A on the plan), "a ace originally designed as an cxchange for the merchants of the city " (sed quare), "who d previously been in the habit of assembling for that purpose in the Cathedral." Its mensions are 135 ft . long, by 57 ft .3 in . wide. The room B is now the Cour d'Assies; e ceiling is of oak, and is arranged in compartments with a profusion of carving and gilt naments. The original bosses of the ceiling are gone, as are also the doors which were riched with sculpture, and the original chimney-piece. Round the room are gnomic atences, admonishing the judges, jurors, witnesses, and suiters of their duties." The sement story of the salle is, or used to be, occupied as a prison. The southern and eastern ades of this elegant edifice have lately (1856) been restored under the direction of M. régoire, who probably superintended the internal decorations.
5.51. Fig. 246 is a portion of the south front of the building. The ellipse seems almost lave superseded the pointed arch in the leading forms, over which the crocketed labels drips, in curves of contrary flexure, flow with surprising elegance. It is only in the carnes we find the pointed areh; and there it is almost subdued by the surrounding acssories. The connection of the lucarnes with the turrets of the façade by means of flying ttresses is most beautiful, and no less ingenious in the contrivance: their height from

7ig. 216.
elevation of the soutif fiont. halais de sustice, rjuen. the ground to the top of the finials, is 78 ft .6 in . The octangular turrets at the end of the salle next the Rue St. Io, contain a very pretty example of penetration over the heads of the pointed arch. Inthe story above the baseinent, as also in the lucarncs, the soffites of the windows are rounded at the angles,or, asthe lirench call it, have coussinets ar-
r lis, as usual in the style, those in the principal story being, besides, slightly segmentat. In
t) tracery of the parapet it is singular to find the quatrefoils centered throughout with what is Illed the Tudor rose. The arches rising above the parapet, which are crocketed and 0 ontrary flexure, have statues substituted for finials. The richmess of the ormanentation of whole is such that we know no other exanple, except that of the Ilotel de Bourgtherille in the same city that can vie withit. The woodcut, fig. 247 , is a section of the satle. roof presents little for remark. It is bold and simple, and seems scarcely in hirmony the rest of the place. It is impossible to form an adepuate notion of this splendid nment from the figures here givei, owing to the necossary smalhess of the se ale. se who are desirous of thoroughly understanding its details will be gratified by refierto the plates of it in Britton's Normandy.
5\%. 'There is no eity where the style of the period whereof we are treating can be berstudied than Rouen. It possesses, both in segular as well as cecelesiastical arehiticuture,
all that the student cam desire. The Hôtel de Bourgtheroulds, in the Place de la Pucelte, is about the same age as the l'alais de Justice we have just describd, or perhaps three or four years later in the finish-

Fig. 247. SECTION OF MALL, IALAIS DE JUSTICE, ROUEN. ing. In some respects it is more etabsate in the ornaments and the abundance of seulpture. The entire front is divided into bays by slend. r buttresses or pilasters, the spaces between them being filled with bassirilievi, every inch of space, ind ed, in the building las been ornamented. 'I'his building still remains in a most degraded condition.

Belyium.

553. The table of styles given at the commencem, int of the preceding section applies to the progress of art in this portion of the history. The first appearance of the pointed arch is fixed in the first quarter of the 12th century, by Schayes, L ' Architecture en Belgique, 1850-53, who notices that the semicircular arch did not disappear until the middle of the 13 h , and that only ecelesiastical cdifices can be adduced as examples of the style de transition. The choir aisles were continued round the chevet, in the churches of Ste. Gudule at Bruxelles, St. Quentin at Tournai, and Pancle at Audenaerde, while Nôtre Dame de la Chapetle at Bruxelles exhibits ammlated ribs to the vaulting. The division of the doorway by a post is due to this period; as are gargoyles in decoration; and the introduction, in Flanders, of mickwork.
554. The chief structures are the tower of St. P'ierre at Ypres; St. Sauveur at Brages, $1116-27$, the earliest piece of mediæval brickwork in Belgium; St. Nicolas, and St. Jacpues, at Gand or Ghent ; the abbey churelı at Affighem, 1122-44; and the Chapelle du Saint-

Fig. 218. Sang at Bruges, 1150, despite the decorations added since the 15th century, and the facade reconstructed 1824, being one chapel over another (fig. 248.), with a peculiarly slaped tower which is also double, one portion being circular in plan «ron a corbet, the other being square in plan at base and attached to it. Probably St. Quentin at Tommai, and St. Martin at Saint Trond, are later. It is remarkable that the blank areade formed by crossed semicircular arches does not occur in Belgium
555. Amongst the chief structures in the style de transition which were crected during the 13 th century, are Nôtre Dame at lluremonde, 1218-24, which resemibles the church of the Apostles at Cologne, and is the first instance of a true eupola in Belgium; the churct at Lisseweghe, atout 1250; and the Abbey at Villers, which, alhough in ruins, is a perfect type of the style in the chuir and transepts. and moreover retains more of the dependent original buildings than any other establishment in the country; the brewery dates 1197, and the churel, about 1225; the triforium range of windows to the choir are superposed circles, an idea repeated in the end walls of the transepts; the threc-aisled nave has a third triforium and is the most perfect type of the early part of the style ogical primaire existing in Belgium, except that of Ste. Pamele; the Hying buttresses are remarkable works; the cloister belongs to the 14 th and 15 th centurics. The clevet, 1220 , of Ste. Gudule, and

He eontemporaneous choir, with the transepts of Nôtre Dame de la Chapelle at Bruxctles; the Madeleine, about 1250, at Tournai; the choir, 1921 , of St. Martin at Ypres, remarkable or the branches of fohage along the strings; the erypt, 1228, of St. Bavon at Gand, which ras the last (except one horealter notieed) that was constructed in the kingdom; Ste. Bamele, built 1235-9. by A. de Bincho, at Audenaende, which is rid to be "le type le plus eurieux qu'il soit possible de trouver le ce style;" and St. Jacques at 'Tournai, which has one triforium vir another, and exhibits in the tower a pointed trefoiled arch vith cohmms to support the cusps; are also tramsitional.

556 . The chapel of the castle at Vianden, was abont 50 ft . mg and 36 ft. wide; its plan was a decagon with one side openug to the castle and another to a pentagonal choir; divided nto three portions by columns engaged in square piers; the entre was a hexagonal pit over the duagreons so that the prisoners ould hear prayers without leaving their cells; it is now in ruins. 5.5. To the style ogicul prinaire belong the ehoir and lower art of the nave of the cathedral of St. Paul at Liége; the hoir and chief part of the transepts of Ste. Gudule at Bruxclles, 2.50-80; great part of Notre Dame at Tongres; the chureh fig. 249 , width between the piers is 53 ft .) of the Dominicans t Gand, 1240-75, with a single nave covered by wooden ceiliner fiy. 250.), on curves of 60 ft . radius; (both cuts from the Gentlekan's Mayazine for 1862), that of the Dominicans at Louvain, 230-50, or later; the three-aisled naves and the transepts of St. Iartin at Ypres, $1254-66$, with one of the few rose windows, xisting in Belgium, over the porch to the south transept; the
 hoir of St. Leionard at Leau; Nôre Dame at Dinant ; Ste. Walurge at Furnes; the abbey and hospital called La Byloque at pand, "with an oaken roof not eciled where spiders have never come," and with a remarkble brick gable to the refectory; the luick tower of Nôtre Dane at Bruges, 1230-97, aid to have been about 420 ft high, ineluding the spire, till 1818 , when 50 lt. were movid; the elsoir of the eathedral at oumai, 197 ft . long, 121 ft . wide, and 108
(inside) in height, remarkable for its ilted arches and for the means adopted to rengthen the r piltars; as well as the choir St. Bavon at Gand, begun 1275 and not ished in the 13 th century, with its oppoecharstories cennected by iton ties. In c Netherlands there are a great number of ge ehurches which have a singolar identity appearance in the interior, and at the ne time a manifest peculiatity of charac.

This appears to be due to the employut of plain, well-proporioned cylindrecil Ifts firs their piers; the style in other rects being in elegant Gothic. The prinal examples are Nôtre Dane, and the hedral at Matines; St. Pioul at Liége; tre Dane des Vietoires, La Chapelle, 1 Ste Gudule, at Braxelles; St. Jaeques, © the Dominicans, at Antwerp; St. Michel Gand; ald limmes near Bruges.
58. Thestylengieal erondaie was chicfly - heyed by the eeclestinsties in finishing - actures or in commencing others coneeived o so large a seale that their supeistiucture hongs to a later period. The chief edifices - lue syle are the five-aisled chureh of 'st. $J 1$ ut Bois-le-duc, curions for the revolting ifenity of the lange statues to the but-

FLg. KJO. CHUNCH OF THE MOSHNICANQ, OANH. th es of the choir-it was eommeneed 1280, but evidently was finished in the latter half of 115 the emmry ; the fire-aished elowir of St. Sulpice at Diest ; the chareh of the GrandBuinage at lomvain, eommenced $1: 30.5$, notioced for the manure in which the twelve is rs that dheide it into three aisles have been strenghened by iron bars; the eontemporatan shurch of the Brogumaige at Jiest ; the church at Acrschot, built 1331-7 by J. art ; and, finest of at!, Nöre lame at 11 uy, begun 1311 , witha spladid rosewindow.

To these may be added the cathedral at Saint Rombaut, begun about 1345-50; the nave aud southern aisle of Ste. Gudule at Bruxelles; the front of the eathedral at Tournai ; and Ste. Croix at I iége, the only ehmreh in Betgium, since the destruetion of that at Lubes, that has the three aisles of equal height, and fiom which the architect is reported to lave fied rather than superintend the striking of the centering to the vaulting, whieh in the nave is corbelled out from the pillars.
559. Some of the finest structures belonging to the style ogival tertuare are; great part of Nôtre Dame at Hal, 1341-1409; the porch and towers, completed 1439, to St. Martin at Courtrai, 1390-1439; Ste. Walburge at Audenaerde, rehuilt, except the ehoir, 1414-1515, witn a tower 295 ft . high, by J. van den Leeken; Nôtre Dame at Anvers, the only fiveaisled church (except that at Saint-Hubert) in the country, which is really seven-aisled in plan in the nave (the ehoir belongs to the preceding eentury, and the eompletion of the tower, commenced 1422-3, by J. Appelmans, with the cupola and the Lady-chapel, to the Sirst half of the 16 th century); St Gommaire at Lierre, begun 1425, and not less than 250 fect long, with a high tower, finished 1455 , but altered 1702 ; the porch and tower of St. Martin at Ypres, 1434, by M. Utenhove; the chevet of the eathedral at Saint-Rombaut, with 320 ft . of its tower, $1452-1513$, which was to have been ;co ft. high, aecording to the preserved design; Ste. Wandrn at Mons, whieh was building 1450 (with aisles 1525 , and nave $1580-9$, by J. de Thuin and his son), and is snpposed to have been designed by the architcet of St. Pierre at Louvain, which was building 1433 with later nave, the design and stone model for the intended colossal triple-towered façade is preserved in the town-hall; St. Michel at Gand, 1440-1515; Nôtre Dame at Mahines about 1475-1550; the contemporaneous Notre Dame du Sablon at Bruxelles; the npper church at Anderlicht, 1470-82; St. Jacques at Anvers, 1429-1560, with a tower, 1491, by 'I. de Coffermaker ; and the tower, 279 ft . high, of St. Bavon, 1461-1534, by J. Stassins, with that of St. Nicolas, 1406, by 'I'. de Steenhoukebelde, both at Gand.
560. As works of the 15 th century must be named, the great entrance and its two towers, with other portions, to Ste. Gudute at Bruxelles; the tower and eastern part of Nôtre Dame at 'Jongres; the brick tower of St. Jean at Bois-le-duc; and the tower of the church at Aerschot, said to have carried a spire 488 ft . high, that was replaced, 1575, by the present spire, whieh attains about 320 ft . In the same style are the five-aisled abbey ehurch (see Nôtre Dame at Antwerp) at Saint Hubert, about 1.526-64; the brick spire, 1524, of Nôtre Dame at Bruges, which is said to have been 422 ft . high, but lessened, 1818, by 50 ft ; the upper part of the nave, the chapchs, and the vanlting of the cathedral of St. Paul at Liége, 1528-9; the nave of St . Bavon at Gand, 1533-53, with an iron railing as triforium, and having the clearstories tied together by iron bars; St. Jacques at Liége, 1513-18, the best specmen of the style; with its rivals, St. Martin in the same city, finished, 1542 , by P. de Rickel ; the brick church at Hoogstratten, 1534-46; and the church of the Dominicans at Anvers, 1540-71. The cloisters of St. Paul, St. Barthé1 cmi , and St. Jean-en-Isle at Liége are rather later than that of St. Servais at Maestricht.
561. In the 13th century commences that long series of splendid civil edifices whieh Belgium possesses in greater number than any other country of its size-viz., the belfrys, the markets, the town-halls, and the chub-houses. The most remarkable of the beffrois are at Tournai (the oldest), Gand (the original drawing is preserved) 1315-37, Ypres, Bruges, Lierrc (1369-1411), Nicuport (1480), and Alost (1487). The enormous halle, now hôtel de ville, at Ypres, was eommenced 1200, but not completed till 1230 in the right wing, 1285 in the left wing, and 1342 at the back; the wafer halle at Bruges was destroyed 1789, but another, which was attached to it, remains, with a tower, 1284-91, ly the priest Simon de Genève; the halle-aux-draps at Lourain was commenced, 1317, by J. S:evens, A. Hare, and G. Raes (supposed officers), and was given, 1424, to the University that, 1650 , added the second story. The halle, now boucherie, at Diest, dates 1846, and the halle aux draps at Gand, 1424, the last in the pointed style. 'The boucherie at lpres belongs to the 13th century ; that at Anvers 1501-9.
562. The hotel-de ville at Alost has the right flank, built in the year 1200, remaining; that at Bruges, commenced 1377, wi.h its rich cciling, 1398, was the only edifice of its class raised during the 14 th century; that at Bruxelles was begun on the left or east side, 1401-2, by J. van Thienen, the tower was completed, 1448-55, by J. van Ruyshrock, the right side was commenced 1454 ; that at Louvain was erected $1448-59$, by M. de Layens, and is unparalleled in any city; that at Mons was built 1458 ; the old part of that at Gand was begun, 1481, by E. Polleyt; that at Audenaerde was erected, 1527-30, by H. van Pede, and 1528. a painter and a seulptor were sent from that town to copy, for the nse of the arehitect, the two chimney-pieces and the parapet of that at Courtrai, built 1526-7; and even that at Leau deserves attention. We refer our readers to the end of Book III. for some further remarks on these very important buildings.
563. The maison des poissonniers and the maison de; buteliers at Gand date in the first part of the 16 th century. The poorter's logie (now école des bcaux-arts) at Bruges was erected at the end of the 15 th century, or a little later. The maison du roi at Bruxelles,
rebuilt 1514-23, by A. D and R. van Mansdale, D. de Wagemaker, L. van Bendeghem, and IR. van Pede, was much injured, 169.5 ; and the Hotel tu Franc at Briges dites 1521-3. The steen (prison) at Anvers was built 1590 . The episcopal palace at Liége ilates 1508-40.
564. According to a tradition preserved at Ypres, the timber of which the wooden houses of the 15 th and 16 th centuries was built, was procured from Norway; some of these dwellings remain in Anvers and Ypres. Tiwo stone honses of the 13 th century exist at Gand, and a couple more dating 1250-1300 at Ypres. One of the 14th is in the Place du Vendredi at Gand, and many brick dwellings of the 15 th and 16 th may still be seen at Anvers, Ath, Bruges, Gand, Malines, Tournai (fig. 251.), Ypres, \&c. The Porte de Hal at Bruvelles, $1: 381$; the Porte de Diest at Louvain (1526); the Pont du Broel at Courtrai; the Pont des I'rous at Tournai (1290-1300), with the keeps of the chateaux at Sichem and Terheyden close the list of remarkalle works of ancient pointed art in this country, with notice of the Chapelle de lat Vierge attached, 1649, to the sonthern or right side of Ste. Gudule at Brussels to balance the chapel, built 1533-7, on the left side.

Germany.

565. In accordance with the opinion now usually adopted, that Gothic art was received into the north of Europe from France, but that it was altered during the process of natnralisation, the usual division of the styles accords with thit used in France. But the periods do not altogether match, inasmuch as while examples of pure first-pointed work ccur in the cathedrals at Paris and elsewhere, 1163-1219, he German instances are, like those of Belgium, not earlier han 1225. It is hardly possible, however, to refute the

Fig. 251 locumentary evidence for some buildings being very much In advance of contemporancous structures in England and France as to style. 'I his seems o be admitted liy Dr. Whewell, whose valuable Architectural Notes on German churches, 1842, hird edition, condenses into a few lines the account of the chief pecnliarities of detail in the wo classes which he observed in that country. He first suggested the fact that English and German architects, begiming from the same point-the Romanesque, and arriving at the ane result-the comp,le'e Githic, or decorated period, with geometrical tracery, made the ransition each through a separate" style; one of these being decidedly Gothic; the other, vlich he calls early Gurman, rather Romanesque than Gothic. They have in comnon their lender shafts, clustered and banded, their pointed arches, and their mode of vaulting; but e do not commonly find, in the interior of the transition churches of Germany, the circular luster of shalts, the arches moulded into a broad and deep mass of small rolls with decp ollows betwreen, the circular abacus with its rounded npper cdge, the simple lancet-headed indows, tall and narrow, and the peculiar line of open flowers which is used so pro1sedly in all early English work. Nor do we ohserve, on the outside, the dripstone to re window, the moulded or shafted window-sides or jambs, the projecting huttress with $\$$ chamfered edge and triangular head, or the pyramidal pinnacles of our early cathedrals. aulting shafts spring from a corbel, or more usuaily, from an end hooked into the wall; re arch is often a sfluare-cdged opening with no mouldings, though sometimes a rebated lge, sometines a roll, is seen; the triforium is, in a large district, meant for use as a dlery by the bachelors; the fan-shaped window, a foiled horse-shoe arch; and arch ouldings with three bands, or two bands and a roll at the apex. The difference between arly Einglish and early German work is less obvious. The resemhlance obtains not only the general forms of the members and parts, but in the details also-the canopies, hases, fofiles of mouldings, \&c. The litter style, however, has double planes of tratery-i.e, oo frames of tracery, one bchind the other, in the same apening. After this gencral uncidence, the styles scem again to diverge, the later Gothic of Germany being quite Iferent from the contenporaneous or eorresponding styles of England, France, and the etherlands; these again apparently heing independent of each other. Nevertheless, German author would inscribe at the head of this sectien the following table:-

566. The carliest truly pointed build:ngs seem to be, the church of St. Mary at Troves,

1927-44, said to resemble in plan the church at Braine near Suissons; the choir of St, Afra at Meissen, 1235 ; and the nave of St. Elizabeth at Marburg. 1253-83, which pro-

Fig. 2 22.
SECTION OF THE CLUHCII OF SAINT ELIZABETH, MARDURG.
ruenters Nimbury an der Sar and Wetter, with St Mary at
 athat of St. Lizheth at Marburg. In the 14th century, the five-aislcd chure at Kuttenberg was indebted to Prague cathedral ; the choir of the chureh of St. Mary at Bamberg to Cologne cathedral, and (for windows) to the chureh at Oppenheim; and the churches of St. Mary at Rostock and Wismar to Schwerin cathedral. In the 15 th century the church at Steier borrowed from Vienna cathedral; St. Mary at Bemburg from St. Nicholas at Zerbst and St. Maurice at Halle; Frciberg eathedral and St. Mary at Zwickau from St. Nicholas at Zerhst; and the church at Elten from St. A'gund at Emmerich. These cases of imitation may be deserving of attention.
568. The general character of the work of the first period is very much that of the French buildings of the style : but where the German work is plain, it is much phainer than the French; and where decorated, mide richer. Its reminiscences of romanespue art are more obvious in the profiles of monldings, while the carvid work in capitals is almost an exaggeration of the crispness of the Frunch work.
569. Amongst the remarkable buildings erected in the 13 th ecntury may be named the old parish chureh at

$F^{\dagger} \mathrm{g}$. $2 \boldsymbol{s i n}$.

Mlan of cathemhal, italberstadt (20) 1235-1491; its section (fig. 254.) is here given as being an instance of elegant proportions that enforce adnirittion. The beautiful church at Oppenhein, dedicated to St. Catherine, is a Latin crow on its plan. The chancel is five sides of an octagon. As in many of the churches of Germany, it has a sceond chancel for the canons at the western extremity, terminating in three sides of an octagon. The entrances are on the north and sonth sides of the transepts. From a MS. chronicle of the chunch, quoted by Moller, it is ascertained that the
nave and eastern chancel were begon in 1262, and finished in 1317. The western diancel, now a ruin, was consecrated 1439 . The total length of the church, including the two rhancels, is 268 ft ; whereof the western chancel, whose breadth is 46 ft ., ocenpies 92 ft . The nave is 102 ft . in length, and its breadth 86 , that lireadth comprising the two side aisles which are separated from the nave by clustered columns; the aisles have small chapels. The transept is 102 ft . long, a: d 31 ft . broad. In the western front. at the extremity of the nave, are two towers, stimding on square bases, each of four storys, aid crowned by an octagonal spire. Over the intersection of the transepts with the nave stands an octagonal tower. This building was erected for IRichard of Cornwall, cmperor of Germany. and has litcly been restored. The church at Wimpfen-im-Thal, $1262-78$, is recoded as built by a Parisian "opere francigeno;" the choir of Meissen cathedral 1274 ; the simple church of the Dominicans at Katisbon 1274-77; and the choir of the cathedral in the same city, 1275-80.
570. The western portal of Strashurg cathedral was begun 1277 by Erwin von

Fig. 254. section of cathedmal, nalberstadt. Steinbach, an architect before mentioncd (par. 322 2) who died 1318 , leaving unfinishid part of the second story, which was complited hy his son Joliann, who died $1.3: 39$; the third story is an addition. The cathedral was carried on under other architects till 1439 , since which nothing has bern done towards its completion. Among the examples of pointed architecture, this is the most stupendous. There is a similarity of style bctween it and the cathedrals of Paris and Reims, except that the crnaments are more minute. The plan is a Latin cross, whose eastern end terminates interiorly in a semicircle, but on the exterior in a straight line. The lingth of the church is 324 ft ., that of the transept 150 ft . ; the height of the vault of the nave is 98 ft . The nave has one aisle on each side of it. On the north-west angle of the edifice, rises the pire, whose height has leen very varionsly represchted; the correct height is 466 ft ., being greater than that of any church in Europe except that of St. Nicholas at Hamburgh, which is $4: 2 \mathrm{ft}$. To a eertain height the tower s square and colid, being formed by onc of the ertical divisions of the western façade. Above the solid part, the tower rises to a cortain height octangu.1ty, open on all sides, and tlanked ly four sets of pren spiral staircases, which are continued to the ine whence the principal tower rises conically in seven turies or steps, crowned at the summit with a species of lantern. John Hültz, sen., Heckler, and John IIiiltz, jun. continned this fine tower, which was only inished in 1439. In the interior of the church, near ne of the large piers of the transept, is a statue of the achitcet Liswin, in the attitude of leaning over the mlustrades of the upper corridor, and looking at he opposite piers. The minster at Freibury-im3reisgan, is remarkable as being almost the only arge Gothic chmelh in Germany which is finished, ud has escaped destruction. It was begun 1152, as upears in the romanesfue transepts with their exteral currets; the nave, west frent, the tower 380 it. high, hilfully changed from square to octagon, with open pire, and rich porch below it, date 1e36-72; the hoir (sce fig. 25.50 .) belongs to the year 1513. 'Ihe tansiti n, which in France dates 1250, is seen in ne west front, I 387 , of the eathedral at Λ gram, where ce choir dates 1305-19, with a later nave.
571. latie second period degance and ridhess (re monght; the latter was obtained, but the lormer
 aty lost 41 a manmer whiel may casiest be expressed in the statement that everything

crockets and capitals which are only single leaves glued to their places instead of the freely growing foliage of the previous period.
572. In the 14th century occurred the construction of the nave at Meissen eathedral, 1312-42; the tower and choir of St. Elizabeth at Kaschau, 132i; St. Mary at Premzlau,

1895-40; the church at Friedeberg, 1328; St. Lambert at Muenster, 1935-75; the choir in St. Mary at Wismar, 1339-54; the five-aisled choir in Prague cathedral, 1343-85; the

prelate had resolved on the erection of a new church, so that in the year fullownt the destruction of the old edifice, measures had bcen so far taken, that the first stone
of the new fabric was laid with great solemnity on the 14th of Angust, being the eve of the Assumption of the Blessed Virgin. Collections were made tbroughout Europe for carrying on the works, and the wealth of Colorne itself seems to have favoured the hope that its founder had expressed of their continuation. The misfortmes of the times soon, however, hegan to banish the fattering expectation, that the works would be continucd to the completion of the building. The archbishops of Cologne dissipated their treasures in unprofitable wars, and ultimately abandoned the city altogether, for a residence at Bomn. The works do not, however, appear to have been interrupted, though they proceeded but slowly. On the 27 th of September, in the year 1322, seventy-four years after the first stone had been laid, the choir was consecrated. The works were not long continued with activity, for about 1370 the zeal of the faithful was very much damped by finding that great abuses had crept inte the dispcsal of the funds. The nave and southern tower continued rising, though slowly. In 1437, the latter had been raised to the third tory, and the bells were moved to it. In the beginning of the 16 th century, the nave was brought up to the height of the capitals of the aisles, and the vauling of the north aisle was commenced; the northern tower was carried on to the corcesponding height; and everything seemed to indicate a steady prosecution of the work, hough the age was fast approaching in which the style was to te forgotten. The windows in the north aisle were decorated, though not in strict accordance with the style, yet with some of the finest specimens of painted glass that Europe can boast, a work executed under the patronage of the archbishop Hermann von Hesse, of the chapter, of the city, and of many noble families who are, by their armorial bearings, recorded in these windows. But with these works the further progress of the building was entirely stopped, about 1509. Fig. 257 exlibits the sonth elevation of the cathedral, in which the darker parts show the executed work. If the reader reflect on the dimensions of this church, whosc lengtl is upwards of 500 ft ., and width with the aisles 280 ft . ; the length of whose transepts is 290 fi. and more ; that the roofs are more than 200 ft . ligh, and the towers when finished would bave been more than 500 ft . on bases 100 ft . wide; he may easily imagine, that, notwithstanding all the industry and activity of a very large number of workmen, the works of a structure planned on so gigantic a scale, could not proceed otherwise than slowly. especially is the stone is all wrought. The stone of which it is built is from two places on the Rhine, Koenigswinter and Unckel-Bruch, opposite the Seven Mountains, from both of which the ransport was facilitated by the water carriage afforded by the Rhine. The foundations of he southern tower are known to be laid at least 44 ft . below the surface
574. To King Frederick William HII. is due the merit of rescuing it from the state of a ained fragment. During his reign nearly 50,000 l. were laid out upon it, chicfly in repairs; and in that of his sucecssor, Frederick William IV., 225,000l., more than half of which was contributed by the King, the rest by public subscription. In 1842 he laid the foundatior of the transept. The choir is now finished. The late architcet, Zwirner, estimated the cost of completing the whole at $7.50,0002$. In September, 1848, the nave, aisles, and tranrepts were consecrated and thrown open ; the magniificent south portal was finished 1859, at cost of $100,000 l$. The north portal, more simple in detail, is also completed; both are from Awirner's designs. The iron central spire and iron roof of the nave were added 1860-62, and the whole, except the towers, nearly finished 1865. The faulty stone, from the Drathenfels, on the exterior, has been replaced by another of a sounder texture, of volcanic rigin, brought from Andernach and Treves. the height of the towers when fimished will be
 readth, 231 ft ., corresponds with that of the alde at the west end. The choir is 161 ft . high. 575. The cathedral at Ulin (fig. 258.) is nother of the many celebrated cathedrals of iernany: it was commenced in 1377, and oulinued the tower excepted, to 1494. It is bont $4!6 \mathrm{ft}$. long, 166 ft . wide, and, ineluding lie thickness of the vaulting. 141 ft . high. The piety of the citizens of Ulm moved them o the ereetion of this structure, towards which ney would not accept any contribution from oreign princes or cities; neither would they ceept any remission of taxes nor indulgences om the pope. The whole height of the tower * 316 ft . 9 in .; it was stopped 1192 becanse the two pillars under it, on the side next the
 ody of the church, gave way. Ilad it been finished according to the original design (still 1 existence), it would have been 491 't. The exterior length is 455 ft ; interior, 391 ft . lee nave and choir are partly built of brick. 'lise nate is 1.16 ft . high, and loas twelve
austered columns bearing lancet pier-arches, without a triforium, flanked by double aisk's on slender shats. 'The main supprort of the roof is derived from hige external buttresses. This buikling does not preserve the regularity of form for which the cathedral at Cologne is conspicuous, but the composition, as a whote, is exceedingly beautiful.
576. Ratisbon cathedral is another fine work, of about the same period (fig. 259). It was begun by Andreas Egl, 1275, but left unfinished in the beginning of the 16th century: 'lhe west front is in the deeorated style of the 15 th century, with a triangular portal throwing ont a pier in front so as to form a double archway.
 The church is 333 ft long, and 190 ft , high. The transeptal plan is only scen in the clearstory. At Vienna, the cathedral of St. Stephen's exhibits another exquisite example of the style.
577. The history of the collegiate ehurch of St. Victor at Xanten has bcen tolerably clearly written. It is a five-aisled edifice without transepts, with a romanesque tower dated 1213. The ehoir was eommenced 1263 , the sacristy in 1356 , by J. von Mainz, who designed, 1.368-70, the east part of the north aisle. The buttresses and vaulting were added 1417-37: a cessation of the work then occurred till 1487, although we find the names of the master-masons T. Moer, 'arehilapicida,' 1455; H. Blankenbyl, 1470-4; and G. von Lohmar, 1483-7, as busy upon the nave; its windows were completed 1487; the south side 1492 ; its vaulting 1.500 ; its buttresses 1508 ; the great window between the towers 1519 , and the north tower, 1525, were designed by Joham von Langeberg of Cologne, 1492-1522; the sacristy and the chapter-house were designed, 1528, by Gerwin from Wesel ; and the chapter-house with cloisters was completed, 1550, by I. Maess.
578. In the third period there seemed to be a natural and at first healthy revulsion; but it ended in heing spiky, a term which is more justifiable than prismatie. Every thing that eould be eurved was bent or twisted; the most tortuous forms of the flamboyant system are common with truncated ends forming stump tracery ; interpenetration abounds; and as a last resource of invention, dead branches intertwined take the places of mouldings and of

Fig. 260. CHOLR OF MNSTER, foliage. So that in the decline aud fall of German pointed art, there was as markedly national a character as in that of the French or the English eontemporaneons forms.
579. Amongst the structures of the 15 th century (excepting St. Mary at Esslingen, which will be hereafter mentioned) were St. Catherine at Brandenburg, 1401. by 11. Brunsbergh, with nave and aisles of equal height ; the ehoir of St. Mary at Coblentz, 1404-31, by Joharn von Spey; the church of St. John at Werfen, 1412; that at Weissenfels, commenced 1415 by Johann Reinhard; the choir of St. Reinold at Dortmund. 1421-50, by Rozier ; St. Mary at Ingoldstadt, 1425, with nave and aisles of equal lieight, by H. Schnellmeier and C. Glatzel ; St. Laurence at Nuremberg, enlarged 1403, with a choir and aisles of equal height, 1439 or 1459-77, by C. Heinzelmann of Ulm, and Joham Bauer of Ochsenturt, on the plans of C. Roritzer of Ratisbon ; St. Nieolas at Zerbst, 1446-81, with a nave and aisles of equal height, and with a chevet having nine sides externally, by Johann Kuemelke and his son Matthias; the south-west tower of St. Elizabeth at Breslau, 1452-86, with a wooden spirc erected in the latter year, by li. Frobel, 'zimmermann ; 'the ehurch of the hospital at Cues before 1458; the nave and choir of the church at Freiburg an der Unstrut, 1499, by P. von Weissenfels; the nave of the chureh of St. Ulric and St. Atra at Augsburg, 1467-99; the brick cathedralat Munich, with nave and aisles of equal height, 1468-91, by G. Gankoffen; the choir of the minster (fig. 260) at Freiburg in-Breisgan, 1471-1513, by Johamn Niesenberger; and the eathedral at Freiberg, 1484-1500.
580. The ehurch of St, Geore at Nuerdhingen, with its three naves of equal height and
length, and a tower 283 ft . high, is extremely emrions, beeanse so many of its arehiteets were 3,gaged at other places. The names are prue erved of Johamn Feller, 1427-35, of Chin, who rilt the outer chnreh at Waiblingen, eompleted 1488; C. Heinzelmann of Ulm, likewise engaged at Waibli.gen as well as at Laman, and, 1459-77, witl Johann Bauer von Oehsenfurt at the choir of St. Laurenee at Nuremberg, designed by C. Roritzer ; N. liseller and his son of the same name, 1454-59, both of whom were engaged at the charch of Sc . George at Diakelstuehl, 1450, as well as at Augshurg ond Rothenburg ; C. Hocflich ind Joham von Salzdorf, 1457; W. Kreglinger, of Wurtzburg ; and S. Weyrer, who linished. 1495-1.505, the vaulting.
581. This passage from one luilding to another seems to have commenced in Germany luring the 14 th and 15 th centuries. We find B. Engelberger at Heilbrom, 148\%, Lim :494, and Augsburg 1509-12; ; II. Brunsbergh, of Stettin, 1401, at Brandenburg, Danzig, and P'renzlan; Paul von Brandenhurg at Brandenharg, 1484, and Neuruppin, 1488; P'. Arler at ('olin, 1360, and I'rague, 1385; M1. Beeblinger at Esslingen, 1482, Fraukfurt, 1483, and Ulm 1492; Joham, 1430, at Landshut, Hall, Salzburg, Oetting and Straubing. It is remarkahle that in nearly half the eases (and the rest are doubtinl) where the name of in architect is reeorded, he seems to have come from another town to that in which the milding he designed is crected.
582. Fig. 261 is a honse attached to the rath-haus at Miunster, and much resembling it

Fing. 3 h月, Houbk at munsteft. in style; the house dates late in the l5th eentury, or early in that of the 16 th. We give a house in the Alt. markt-platz at Cologne (fig. 269.) for its very late date in appearance, but being entirely free from any trace of transition from 11th century work in detail, it is casily attributed to the early part of the 12 th century.
583. Amongst the structures erceted about the year 1500 may be named St. Anne at Annaberg, 14991525 ; St. Katherine at Esslingen, by M. Boeblinger, who finished the eliureh of St. Mary (left 1482, by lis father Johann); the latter building was stopped 1321, and reeommenced 1406 ; it has the vaulting-ribs of the three equally high naves carried uninterruptedly to the ground ; the tower, commenced 1440 , is considered to be the finest in Germany; the choir of St, Ulrieh and St. A fra at Augsburg begun 1501 ; the tower of St. Kilian at Ileilbrom, 1507-29, by Johann Scheiner; the churelı at I'irna, 1.502-46; the chareh with nave and aisles of equal beight at l,uedinghansen, 1507-58; the alterations and vanling of the romanesque chureh at St. Mathias near 'Ireves. 1513, by J. von Wittlich; the parish churels at schncelerg. $1.51(;-40$; the nave and

orch of the cathedral at Merseburg, $1500-40$; the charch at Anspach with three western wers. 1530-50 : St. Mary at llalle ander Sate, completed 1.530-54. Ly N. Hoffinam, with -ur towers belomging to two earlior churches on the site ; and the vanling of the nase and Pectory at Olisa, $1.582-93$, by l'iper. 'The church at Prondenstadt. 1601-8; and St. congre at Cohlenta 1618 , are specimens of the zapfatil, ats the German Gothicists desjgnate ark of the $17 t h$ century, whatever may be its parentage.

Simin.

 ditical division exists. It will be meressary to remmber that the distriets of dibgon

Asturias, Biscay, and North Galicia were never conquered by the Moors; that the cities of Burgos, Leon, Santiago, Segovia, Tarragm:, 'Coledo, and Zamora, were freed from them in the 11 th century; Lerida and Zaragoza in the 12 th; Seville and Valencia in the middle of the 15th; and Granada on the 2nd January, 1492; that much French influence existed; and that the romanespue buildings of Spain show a large reminiscence of the churches in Northern Italy. Bat the remarkable similarity between Germany and Spain, in the progress of Golhic art, cannot be attributed to the employment of one or two foreigners, As in Germany, the late romanesque style was retained longer than in Fiance; and in b.th countries the phase which is termed lancet or early pointed in England and France did not constitute the transition from their romanesque into their decided and welldeveloped geometrical Gothic.
585. Stone was the usual material employed for ecclesiastical buildings in the really Gothic or even renaissance style. The romanesque and the neo-classic builders employed granite or some of the semi-marbles which the country throughout possesses; where the Moresque traditions of art prevailed, rubble work with brick binding courses and ruoins are seen ; and the distinctive feature of Spanish brickwork consists in the formation of patterns by recesses and projections in total negligence of terra-cotta or monlded bricks. The diapering of some plastering should be noticed. Few examples of domestic architecture of any importance ocenr. The window with two or more arches carried on shafts, und forming the ajimez or aximez of modern builders, is almost universal.
586. Referring to the classification of structures by centuries for examples of the larger works of civil architecture, we regret that little attention has been given to the very interesting elass of military buildings, whether fortified houses, peel towers, or small castles, which have escaped demolition. The destruction caused by the generals of Napoleon I. has been followed by the results of the Carlist war of succession, and of the suppression of the monastic establishments; but Spain still possesses one characteristic in construction in the great width of many of the naves. Thus, the church of the dominicans at Palma is 95 ft . wide clear spran between the walls; the eathedral at Gerona 73 ft . ; that at Coria 70 ft .8 ins. ; that at Toulouse 63 ft ., while the churches of Perpignan and Zamora are $t i 0 \mathrm{ft}$. The width between the ecntres of the columns of the nave at Palma cathedral is 71 ft . Manresa collegiate church and Valladolid cathedral (classie) 60 ft ; while Milan cathedral, one of the largest out of Spain, is but 63 ft .
587. Smme pure examples of romanesque art date after 1175 , such as a chureh at Benevento and the cathedral at Lugo ; but the period of transition to pointed art mast be placed much earlier. Thus the cathedral and St. Vicente at Avila, occupying in erection nearly the whole of the 19 th century ; the old

Fig 263. Cathedral, takhagona. cathedral, cloister, and chapter-house at Salamanca about 1100-1175; the cathedral at Zamora 1195-75; that at Tudela ten years later; and the cistercian abiey at Verucla $1146-51$, lead to such works as the eathedral (except the choir, 1103-23) at Sigucnza; the eistercian nunnery of Sta. Maria cl Real de las Huetgas, ncar Burgos, 1180-7 ; and the eastern portion of the cathedral at Lugu. The cathedral at Tarragona has a positively romanesque apse (perhaps $1130-50$), while the rest of the building is early pointed, and may date 1175-1250. The west front (fig.263) is partly mididle pointed work. The central portion, dating in style late in the 14 th century, although commenced about 1278, stands between the original ends of the aisles, apparently executed as above mentioned. The incomplete false gable might countenance the idea that a foreigner, possibly a German, had been enlployed; but in 137 ; Bernardo de Valliagona was the architect directing native sculptors.
588. The cathedrals, commenced, perhaps, 1220 at Burgos, 1227 at Foledo, and 1235 at Leon, are in the advanced pointed style of the 13 th century, while the cathedral and cloisters at Lerida, 1203-78, might belong, like the carliest parts of the cathedral at Valencia, 1262 , to the previous period. It will not perhaps be ever possible to find documents that will contradict the assertion that the present system of placing the officiating choir in fixed stalls in the nave of the cathedrals was introduced at a late date; but those who hold that it was a very early system may appeal to the plans of the cathedrals, at 'Tudela, 1135 ; Tolcdo, 1227; and barcelona, 1998. The plans of those at Lerida and 'Tarragona are very similar to that at 'Tudela (fig. 264, part of the plan given in Mr Street's Gothic Arch. in S_{i} ain), which aflords a grood example of a building arranged accord-
ng to Spanisn peeuliarities: if the capilla mayor or eliancel ever eontained the ehoir, the ransept must have been blocked up.
589. Amongst the works erected during the 13 th century, there are so many whieh xlibit somanesque work that this period might be said to be mercly transitional, as llustrated in the ehureh of S. Pedro at Olite; the large church of the cistercian monastery fta. Maria de Val de Dios, 218, near Villavieiosa ; and he bridge 1230 , repaired 1449 Orense in two scetions, that earest the city baving three rches, each 36 ft .8 ins. span; lie other, 121 s ft. 6 ins. long, nd 16 ft .6 ins. wide, having even arches, one of them being 2 ft .8 ins. wide, and another 43 ft .6 ins. span, and 124 ft . ins. high. Other works to noticed are the cathedral, ommeneed 1199, but coninued very slowly until 1258 , Leon ; it is dated 1230-40 y Mr. Street, in his work hove mentioned, who notices hat its construetion, in a firstointed style, was continued antil $130: 3$, that it failed, and luat the outside or jamb-lights of the clearstory and triforiom vere filled with masonry, and hat the south transept was lestroyed for reconstruction bout 1860 : the fine cathedral. 248-84, at Badajoz; and

Fig. 26\%. tlan of catiedral, tudela. he parish chureh (not a cathc dral) at Figueras near Gerona.
590. The succeeding great division of Gothie art is mueh more distinetly marked and aure uniform throughout Spain, whilst at the same time it is even less national and eeuliar. There are very considerable remains of 14 th century wonks, thongh, perhaps, no ne grand and entire example. They are all extremely simiar in style, and more allied in eeling and detail to Gcrman middle-pointed than to French. 'I'wo features deserve ccord-first, the reproduction of the octagonal steeple, which was a most favourite type of he romanesque builders; and secondly, the introduction of that grand innosation upon ld precedents, the gicat unbroken naves groined in stone and lighted fiom windows high p in the walls.
591. As an example of the difficulty of elassifying the buildings, it may be observed that hile the date of 1400 is usually given to the ehurch at IIuesca, ascriled to Juan de lotzaga, it is probable that his name might be attached only to the great portal that is ornanesque, and eannot weii be dated later than $1290-1300$. It is pretty elear that it is most all a work of the 14 th century. The unusually good example of middle-pointed ork afforded by the eloisters to the cathedral at Burgos should date 1580-1950 aceordg to Mr. Street, rather than 1379-90, which is the period at which they are said to ave been executed. The same author states that the round arehes on elustered slafts of se porel or cloister on the sonth side of the church of S. Vicente at Avila might be suposed to be not later than the 13 th century, were it not that a careful comparison of the etail with other known detail proves pretty clearly that they camot be earlier than about te middle of the 14 th eentury.
592 . 'lo the tirst half of the 14 th century are due the west front of the cathedral at aragona; the cloisters of the abhey at Vernela; the east end, $1312-46$ (decidedly late idale-pointed details) of the eathedral at Gerona; the hieronymite monastery ol Som artolome, $1: 330$, at Iapiana by Diego Martinez, now private property; and the chureh of an Justo and San Pastor, 1345 , at Bareelona, whith is an mbroken chamber 138 ft . by ? ft . 9 in ., and 69 ft . high. 'Ihe widening, $1298-1399$, of the cathedral, built 10.58 , at a celonn, semis to have been begun in a tirst-pointed style, and to have been conmed thy Jayne l'abre, 1318-88, i.1 a seend-pointed style ; the vanlting was finished 1418. 593. Among the works dating in the middle of the 14th century, earlier or later, is the parclı of Sta, Maiat de los lecyes, commmen entled Sta. Maria del D'ino, at larechona, hich some date 1329-141:3, hut others 1380-1413. 'I'his hatter date is possibly that of its wer hy Guillemo dbiell; the ehureh Mr. Steet considers monst lave been conserrated
in 1353, not 1453 as stated by Parcerisa. We may also notice at Barcelona the church of Sta. Maria del Mar, begun 1328 , and finished $1: 383$ according to Parcerisa, but 1483 according to another authority; the two-storied cloister of the collegiate church of Sta. Anna; and the erypt or pauteon of Sta, Enlalia, 13:39, in the cathedral.
594. During the latter half of the 14 th century mention is made of the chapter house, 1358, and north transept and cimborio, 1350-1400, to the catlsedral, and the gate called the puerla de Serianos, 1349-81, at Valencia; the casa comsi torial, 1369-78, with a new south fiont, 1832, at Barcelona; the collegiate church of Sta Maria de la Seo, 1398-1416, with another church apparently of the same date, but rather later detail, dedicated to Sta. Maria del Carmen, and 47 ft . wide, at Manresa; and the tower, called E1 Micalete, of the cathedral at Valencia. The tow is he:e mentioned as having been designed, 1391, and carried up to some height, by Jum Franc and N. Amoros before 1414, when Pedro Balaguer was sent to Lerida, Narbonne, and other places to find the most suitable termination that had yet been designed; it scems to have been completed 1428 , and perhaps should be considered as belonging to the next century ; as well as the celebrated hieronymite monastery, dated 1389-1413, now a barrack and parish chusch at Guadahope near Logrosan, by Juan Alonso ; the cathedral, 1353-1462, but altered 1521, at Mureia; and the cathedral, commenced 1397 at Pamplona, where geometrical traceries occur between flamboyant ones, all having somewhat of late middle-pointed character, though the date and the detail class them with the third pointed style.
595. To the first half of the 15 l century may be ascribed the cloisters, 1390-1448, of the cathedral at Barcelona: the university, or rather les escuelas, 1415-3.3, at Salamanea, by Al. Rod. Carpintero ; the dominican chureh of San Pablo, 1415-35. at Burgos. by Juan Rodrigucz, now a cavalry barrack; the areaded patio or count-yard, 1436, three stories in height, of the casa de la Diputacion at Baıcelona, modernised 1597-1620; the nave, 1417-58, or later, of the cathedral at Gerona by Guillermo Bofiny (with details of late 14th century character); the hale dels draps, 1-144, afterwards Pulacio de la Reina and the residence of the captains-gencral at Barcelona (the four fronts modernised, 1844) ; and the towers and spires, $1442-56$, by Juan de Colonia, to the cathedral at Burgos. 'Io the ce.tury itself belong great parts of the cathedral at Seville, (fig. 265.), commenced 1401,

Fig. 265.
CATHEDRAL, SEVILLE.
and attributed cither to Alfonso Martinez, architect to the chapter in 1386, or to Pedru Garcia, who held that post 1421 . In 1462, Juan Norman was directing the works; but in 1472, they had progressed so slowly that he was superamnuated, and his plaee was supplied by three other artists. Their disputes were referred to an umpire, Jimon, who became sole architeet till 1502. The cimborio was completed 1507 , and fell 1511 , but was replaced by the present termination, 1519. The works by Diego de Riaño, 1522, will be mentioned at the end of this notice. The capilla real was completed about 1560 , and the chapter-house abont $15 s .0$.
596. To the latter half of thie 15 th century are due the erection of the casa de moneda, 1455, at Segovia; the Castillo de la Mota, 1440-79, at Medina del Campo, by Feruando de Careño; the chureh, 1442-88, attributed to Juan and Simon de Colonia, to the dominicall monastery of San Pablo at Valladolid; the cathedral, begun 1442, at Plasencia, whose capilla mayor, 1498, was designed by Jnan de Alava; the Cartlusian nunnery, 1454-88, at Miratlores, near Burgos, said to have heen designed by Juan de Colonia; the eloisters,

1472 , of the monastery at Lupiana; the hieronymite monastery of Sta. Maria del Parral at Segovia, commenced about 14.59 by Juan Gallego, and finished 1475 , but the tribume of the coro puiled down because too low, and rebuilt 1494 by Juan de Rue $\mathrm{ga}^{\text {g ; the franciscan }}$ monastery of San Juan de los Reyes, finished 1476, and next in architectural importance to the ca hedral at Toledo ; the greater part of the cathedral commenced 1471 at Astorga, in the very latest kind of Gothic, with much of the detail, especially on the extcrior, rewaissance in character; parts of the cathedral at Burgos, about 1487 , such as the range of chapels at the eastern end of the cloisters and of the church, inclusive of the tomb of the cons:able I'edro Fernander de Vclasco, which is quite flamboyant, and probably exeented by Simon de Colonia; and the casa del Ayuntamiento, 1496, at Polencia; with that, 1499, at Vall idolid.
597. Transitional work is observable in the palace, 1461, of Diego Hurtado de Mendozin, duque del Intantads, at Guadalajara; the Doric columns on the ground floor of the twostoried patio seem to have been inserted 1570 ; another transitional bulding is the dominican college of Sin Gregorio, 1488-36, at Valladolid, by Macias Carpintero, which has been furnished with sashed windows to render it suitable for the residence of the governor of t : \mathbf{e} province. Ilie octagonal cimborio, 1505-20, of the cathedral at Zaragoza has detail that is very renaissunce in character ; the cathedral, commenced 1513 at Sa'amanca by the celeprated architect Juan Gil de Hontanon, is a splendid example of florid Gothic with a leaning to renaissance work; the first service was performed 1560: and the same tendency is scen n the colegio mayor de Santiago el Zebedeo or del Arzobispo, 1521, at Salamanca, and its thapel by l'edro de Ibarra, which arc Gothic, with details verging in character upon its loister by tharra, which is entirely ren.issance.
598. For worts of the 16 th century, it will only be necessary to notice the bridge call d he puente del Obispo, and the church of San Andres now the Colegiata, 1500, at Baeza; the ylesia magistral de San Justo y San Pastor, 1497-1509, at Alcala de Henares, by Pedro Gumiel; the torro nucva or beliry in the p/aza de San Felipe, 1504, at Zaragoza, designed 375 ft . light (made 995 in 1749) by Gabriel Gombao and Juan Sariñena, with the Jew Ince de Gali, and the Moors Ezmel Ballabar and Momferriz, erected by Goml ao, who, inentionally, after the first 9 ft . from the ground, g ive it so much inclination for 100 ft . as to nake it incline 8 ft .9 ins. to the south, the rest being npright; the chapel and two of the our cloisters, 1504, to the hospital general at Santiago, by Henrique de Egas; the cloister inished, 1507, of the cathedral at Siguenza; the cloisters, 1.509, of the cathedral at Badajoz; the church of San Benito 1499-15\%4, at Valladolid, by Juan de Arandia; the aulting, completed 1515 , to the cathedral at Huesea; the cathedral commenced at Segovia, 522 , by Jnan Gil de Hontañon (who died 1531), and continned, partly under his son hodrigo, till 1593, which, as may be imagined, is consequently the last really Gothic work it the country; the church (of the latest Gothic), begun 1524, to the dominican monasery of San Esteban at Salamanca, by Juan de Alava, who succeeded Juan Gil at ialamanca, 1531-37; the removal, 1524, of the cloisters of the old cathedral to the site of he new one at Segovia, by Juan de Campero; the viaduct, 322 ft . long, and 138 ft . high, tith Give arches, 1523-38, to the dominican monastery and church of San Pablo, of the ane date, at Cuenca, by Francisco de Luna; and the Gothic parish ehurch, 1515-55, at l'udela de Ducro.
599. 'lle next change to be indieated would be the expiration of the renaissance style uring the perioil in which some of the preceding examples were executed. But the well inthentieated date, 1576 , of the church of Sta. Maria Madalen.s at Valladolid, by Rodrigo iil de Ilontañon, who becane maestro mayor, 1538, of the cathedral at Salamanca, and, 560 , of that at Segovia, and died 1577 , requires the remark that it does not look so late; nd thus becomes a most useful warning to the student, who may gather another from the rerarkable practice, 1530, of Diego de Rianno, architect to the cathedral at Seville, who in hat year designed and exicuted the Gothic staristia de los calices, the plateresque or reaissance sacristia mayor, and the medern Italian chapter house.

Portigul.
600. For the reasons given in describing the pointed architecture of Spain, its history in 'ortugal will rexnire only one introductory sentence. 'To the rage for rebnilding which was revalent in that conntry, and the earthquake of 17.55 , mnst be adilirl the destruction insed by the gencrals of Napolcon 1., as reasons why comparatively few are left of those iothic buildings, which arose in the north of Portugal after Lisbon was taken, 1147, from ie Moors, and in the south after the compuest, 1223-66, of Algarve. Passing over the mains of pointed arches, which indicate that the country was generally possessed by the ?oors, 713-109\%, anll transitional structures such as the eloureh at San l'edro de lates, 09.-111!, with its hipred central tower, the cistercian monastery with many additions. gnin 1122 and consecrated 1169 , at Taronca, the arehitect will find a few buildings longing to the listh century or rather carlier, such as the bridge at Baredlo; the clusters od original parts of the modernised cathedral at Oporto; the chureh of San lirancisen, od part of that of Sta. Mar.a de Marvilla at Santarem; and the earliest cloister of the

Templars, with the church of Nossa Senbora dos Olivaes at Thomar ; the latter has a detrehed romanesque tower and windows, filled with pierced slabs of stone.
601. Works which positively belong to the 13 th century are the church of S.m Pedro at Celorico, about 1230 ; the parallel triapsal church of Sin Francisco, 1258-80, at Oporto, with its choir-gallery occupying the two western bays of the nave; the walls and towers with castle and church at Freixo d'Espada a Cinta, 1279-1825; the castle at Beja, 12791328, which has three (two being vaulted) octagonal storics in a square tower, 120 ft . in height; and the remarkable choir of the church at Thomar, with its altar under an octagonal canopy, and an aisle of sixteen sides, erected before 1279 . But above all these is the well known church of the monastery at Alcobaça, which, after its neighbour at Batalha, is usually regarded as the most interesting building in Portugal.
602. The original church built at Aleobaça, in memory of the capture of Santarem, was erected $1147-51$, and rebuilt $1578-80$; but the celebrated church of the cistercian monastery dates $1148-1222$, and is said to rescmble so much the church of the abbey at Pontigny as to be manifestly the work of a French architect. In this church, which is 960 ft . long, and at least 64 ft . high, there is neither triforimm nor clearstory; the pier-arches are remarkable, therefore, for their height, as also are the aisles, which are as lofty as the nave. The transepts are also aisled; and the presbytery or apsc, the Portugnese charola, is semicircular. with nine chapels, but was modernised about 1770 by W. Elsden, an Englishman. To the east of this is the sacristy, 1495-15\%1, which is about 80 ft . long and 38 ft . wide. The wastern front with two towers was altered in th.e 16 th century; but the original doorway of seven orders remains. The bonfires placed by the French in 1810, round the piers of the church, caused the bases to be reduced to lime for a depth of 6 or 8 ins. The manner in which the restoration of this structure was directed, since 1850 , has been commended. In a chapel attached to the south side of the western transipt are the tombs of Affonso 1I. (ob. 1229), and Affonso III. (ob. 1279), with their queens; but those of Pedro I. (ob. 1367) and Ignez de Castro, with straight sided arches, are among the finest specimens of thit period. The monastery, almost destroyed 1810, and now principally used as a barrack, was 620 ft . in width, by 750 ft . ia depth, and contained five cloisters; the guest-house was at the north-west end; there were seven dormitories. The kitchen was 100 ft . long, by 22 ft . wide, and 63 ft . in height to the vaulting; the fireplace, whiel stood in the centre, was 28 ft . long and 11 ft . wide, with a pyramidal chimney supported by eight cast-iron columns.
603. The list of works executed during the 14 th century is cven shorter. It includes, besides the cloisters of the dominican monastery at Gumar, sens, the f.çade of the modern cathedral at Laincgo, the magnificent ruins of the castle at Ouren, and (for they may be added here) the triangular castle at Obidos, 1279-1325, the castle at Almeida, 1279-1521, the cistercian nunnery at Odivellas, 1305, the castles at Arrayolos and Estremos, 1306-8, the remarkable fortified tower and church of the formerly double benedictine monastery at Leça do Balio, 1336; the restorations to the cathedral at Lisbon. including the capella mor or choir, rubuilt 1344-57, and the western front 1367-83; the ehurch of San Francisco (styled the most beautiful in Portugal) at Abrantes; and the church of Nossa Senbora da Oliveira at Guimaraens, commenced 1387 by João Oare, laving a detached tower with a low spire.

Fig 266.

Fig. 267. SOUTH flowt of the mausolevel of kino join.
604. To these may be added the work that is usually taken as a type of Portuguese pointed arehitecture, the dominican monastery at Batalha, founded in memory of the battle of Aljubarrota, 1583. It was commeneed 1388 , and continued till 1515 . 'T'he original church (.fig. 266.), finished before 1416 by D. Hacket, or Ouguet, must be ascribed to
the talents of A. Domingues, who died before 1402 . It is 266 ft . long, and 90 ft . high, with no triforiun ; the pier arches are 65 ft . bigb, and the aisles rise to the same height; he plan may be ealled eruciform parallel pentapsal. The material is not wbite marble as renerally reported, but the loeal caleareous sandstone, whieh externally has obtained from he weather a picturesque yellow tinge, but when broken displays its original grey eolour. The manner in which tbe restoration since 1840 was directed has been praised.
605. The capelia do fundudor (fig. 267.), or of King Jobn (L on the plan, fig. 268.), ittributed to D. Hacket, or Ouguct, is 66 ft square, with a central richly vaulted lantern 10 ft . in diameter, resting on eight arehes; its spire was destroyed in 1745. The tomb of he founder and of his wife, Pbilippa of Lancaster, which oceupies the centre, is less rieh han the four canopied recessed tombs of their younger ehildren, 1442-60, on the south ide. 'The small cloister (since part of a barrack) and the elegant chapter-bouse are seribed to 1438-81, and may have been designed by M. Vasquez, who died before 1448 ,

- to F. d'Evora, who died after 1479. The chapter-house (o) opens to the great eloister -) that is considered to have no rival in Europe for richness and variety, or extravagance the foliage, tracery, and mullions; these are even exceeded by the three-staged enelosure) for the fonntain. The eloister is 180 ft . square, and dates $1495-1521$; it must be cribed to the elder M. Furnandez, who died 1515 , leaving undinisbed the capella de zigo (י), which would have paralleled perhaps internally, the chapel of Henry VIl. Westminster. in purpoce, locality, position, completeness of style, and luxuriance of coration. The chapel is an octagon, with seven oratories, baving six-sided elosets ($Q Q$) tween them and the entrance (κ) to the vestibule: its completion might perhaps have been sured if the king had not found his architect, the younger M. Fernandez, oceupied in eting the elcarstory over the entrance doorway (k) with balustrade and semicirenlar hes. The works were stopped till another flamboyant architect could be fonnd; they ve not yet been resumed. A small spire, at the west corner of the north transept (c), ich was destroyed by lightning abont 1830 , has been reluilt.

606. "Sueh is the history and arrangement of tbis ensentially Gothie building, but ogether unlike any particular stage of the northern Gothe in fact it eommingles the tures of all its varieties. The pillars are clustered, of the very best carly Gothie section, h) foriaterl eapitals, but with spuare bases and abaci. It is a confusion of Gobbie forms ball ages and eomatries: and yet, if we exept the square abaci, every leature is pure, and 1) th of them good, in their respective styles; and after all there is no such renl inconsisBey between any two styles of Cothic ans to render their mixture offensive to my but a
technical eye. To deny the church of Batalha to be beautiful, because it confuses forms whieh in France or England belong to different centuries, wonld be the merest pedantry; no one but the driest archæologian would quarrel with a building for a skilful application of some ineongruous feature, though it might historically belong to some other age or country. At the same time, this very confusion shows a lack of original genius, and proves Batalha to be, what antiquarians are fond of calling modern churehes, imitation Gothic. It is not the spontaneous effort of native skill, but the mere result of ecleeticism." These remarks, taken verbatim from Mr. Freeman, have an important bearing on those sections of this work which are devoted to Italian and Sicilian pointed architecture.
607. If the tower of Don Duarte at Viseu, and the Villa do Infante at Sagres ean be placed early in the 15 th century, they hardly redeem that age from the charge of exhibiting no structure of importance except Batalha. Even the flamboyant church, 150 ft long with embattled tower, at Caminha, 1448-1516, and the similar clothing of the romanesque cathedral at Braza, may be referred to that style of King Manoel, 1495-1521: to which must be aseribed the sacristy at Alcolaça; the royal chateau at Almeirim; the fort of San Vicente, and the monastic buildings at Belem ; the restoration of the hieronymite monastery of La Peña at Cintia; the ehurch of San Francisco at Evora; the rich façade of the church called the Conceiçao Velha, by J. Jotassi, with the restorations and additions to the church of Santa Maria de Marvilla at Santarem ; the octagonal stone spire (rare in Portagal) to the church of San Joāo Battista at Thomar ; the church, 1506 , with renaissance additions at Alcantara; and the church, chapter-house, and cloister of Santa Cruz (ascribed to a Freneh architect), with part of the university and the bridge at Combra. 'The chapel of Santa Caterina with the palaee, 1521-57, and the additions, 1495-1578, to the church at Coimbra. exhibiting the richest flamboyant style merging into the renaissance work; the magnificent dominican monastery at Amarante, 1540 , and the modest cathedral at Miranda do Douro, 1545, and Montalegre, 1554, might close the list of structures belonging to the imitation, or rather the adaptation of Gothic architecture, which docs not appear to have been more successful in Portugal than in the rest of Southern Europe.

Italy.

608. An attempt has been made to divide the pointed architecture of Italy into welldefined schools: the Venetian is supposed to carry its character in its name, and to influenee the district between St. Mark's and Brescia; the Lombard is styled a pursuit of the exuberant variety of French and German Gothic; the Tuscan is characterised as having two phases, the earlier simple, and the later extremely beautiful; and the Genoese is called a direct imitation of Arabian art. Besides this unsatisfactory view, each great monastie order is said to have professed a particular varicty, of course differently treated according to each district. To these the singular style peculiar to the Rivicra (e.g., the cathedral at Vintimighia) has to be added. We should prefer to this another system which sees only two schools, one being native simplicity, the other extreme decoration brought from Germany, if there appeared any grounds for believing in this division of a style which, in its early period, is, like the early German, not very detinite, and which had no phase resembling the perpendicular or the flamboyant. As a philosophical inquiry into the details of the edifices called Gothie, in Italy, the labours of Professor Willis have not yet been superseded; but we gather, from various pages of Mr. Street's work, Brich and Marble Architecture in Italy in the Middle Ageq, the foliowing list of Italian Gothic details:-
609. This consists of the trefoiled arcade used as an ornament for strings, for flat and raking corbel tables, and under sills; the great projection of the sills; the marble shafts with square eapitals, instead of monlded mullions; the rows of tufts of drooping folinge (somewhat resembling French and German work) in the capitals; the elassical character of the carving ; the traceried transoms; the combination of geometrical tracery as well in of trefoiled ogee arches with the semicircular arch ; the use of the keystone, frequently slightly decorated, to pointed arehes; the square-headed panel by which the arches are surrounded; the use of iron ties instead of the buttress; the rarity of the dripstone in brickwork; 'he peculiar cruckets and finials of canopies; the masses of wall scarcely, if ut all, hroken; the buttresses reduced to pilasters; the single gable to nave and aisles of the churehes; the deep cornices without parapets; the low relief of tracery and carving; the squareness, with flatness, of mouldings; the employment of porches entirely unknown across the Alps; the use of the glass in wooden frames behind the stone work; the simplicity of groining; and the great width of pier arches.
610. It may be said that in Venice, as generally throughont the north of Italy, the pointed areh was first used in construction, and some time later, and very generally, in a modified form for decoration also, yet in that city it is rarely used, constructionaliy, except in churches; and even when employed the ogee arch was, from a very early date, preferred wherever the pure pointed arch was not indispensable. This fact is seen in fig. 269, which shows the palace called the Ca Contarini Fasan, situated on the grand ranal opposite the church of S'a. Maria della Salnte; it is considered to give the only specimen in Venice of a traceried balcony.
611. If there be no discrepancy between their dates and their details, the Lrolutto at Como, 121.5, and the monastic buildings of San Andrea, with the hospital at Vercelli, founded 1219-24, by Cardinal Guala Jacopo Bicchieri, must be considered to commence the Gothic bnildings in Italy. At Como, however, round arches are seen over pointed ones. At Vercelli, the exterior of the church is romanesque brick work with s one dressings, while the interior is decidedly a specinen of early pointed art. Some writers assume that the design was furnished by the first abbot, Tommaso Gallo, and suppose that he was a Frenchman (gallus), taken to Vercelli by the Cardinal, who, having been legate in England, 1216-18, and leaving that country with 12,000 marks, is supposed to have olstained the design tinere before he negotiated at the Gerinan court in the course of his return to Italy ; others say that he sent a nodel from England.
612. The church of San Francesco at Assisi was erected 1228-30, by a German architect named Jacobus; the aisles being added soon afterwards by F. da Campello. This structure has attained the character of being the most perfect specimen of Gothic art in Italy, and therefore far superior to Sta. Chiara, erected 1253 by Campello in the same city. It is one of the most singular churches in Europe, as, in possessing a crypt discovered in 1818, and enlarged, 1820 by Brizi, it forms a sort of three-storied church. The middle church was built $1228-52$; the upper hurch, a magnificent work, built 123:-53, is now mly used on a few capitular and ferial occasions 'Ihe ow-pitched roof was placed 1447-70, and the massive , uttresses were added 1480 by Pintelli, to prevent lie threatened fall of this valuable example of early irt.
613. Much uncertainty exists in the early dates

Fig 269. fiven to the broletto at Monza, 1152-92; the broletto t Brescia, the end of the 12th century; the church to San Francesco, 1225, at Coni or Cimeo); the fair example of pointed art, San Francesco at Terni, begun 1218, but ot completed until 1265; and the yellow brick church of San Antonio at Padua, 231, with its atteinpts at domes by N. Pisano. But in the middle of the 13 th cenury were commenced, by himself or by his school, the brick churches of Santi Giovanni e
'aolo, of the Madomna del Orto, and of Sta. Maria Glolosa de' Frari (the finest of its class) at Venice. The burches of Sta. Caterina, finished 1272, by G. Agnelli; nd of San Francesco at Pisa; the imposing specimen of talian Gothic furnished by the eathedral at Arezzo, conained in the design, 1256, of Jacopo or Lapo, 1275-90, y Margaritone (not Marchione) ; the western front of le cliurch of San Salvatore at P'istoia, 1270; the churches f San Domenico, $1: 50-94$, by Maglione, and of San rancesco (apparently ealled by Pıofessor Willis the (ervi), 1286-94, at Arezzo ; the transepts, 1288-1342, by
Bragerio and G de Camperio to the eathedral at remona, with the upper part, 1284, of its campanile; the ro de Mercanti, 1294, at Bologna; the churches of San omenico, 1284-1380, and of Sin Francesco, 1294, at istoia; the church of San Francesco, 1295, and the çade, 1284-90, as well as portions of the cathedral at ona (which is remarkable for having the baptistery under e choir), date botween 1270 and 1300).
614. The style of donnestic arelitecture of the 18th ntury is sten iumany houses at I3racciano, at Corneto, Fraseati, at Galera, and at I.lleca; also the building lled La Quarquonia at Pistoin, with two houses of rilar date, nemerly opposite; and in the third cloister of
 p monastery of Sta. Scolastiea at Suhiaco. The house in fig 270, known at Viterbo as " "palazzetto," belongs to the 12th century, and is here givell for comparioou with er examples. The sketeln of a house belonging to the 13 th , or perhaps even to the 12 th
century, at Pisa (fig. 271), exhibits the local peculiarity of three stories, composed really, or in appearance, by three piers and two arches. 'This is common. A fourth story sometimes slows its windows mender the arches; but generally is an independent addition

Fig. 272. elevation of tife filazzo euoxsifonom, nera.

Fig. 275.
elevation of tile cathedral, orvieto.

Fig. 271 house at pisa.
to the design. At the level of each floor are put-log holes for the wooden cantilevers of the balconies, perhaps more properly the tettoje or pent-house roofs, which will be noticed in the examples from San Gimignano. The palazzo Buonsignori at the end of the via di San Pictro at Siena belongs to the brickwork of the 13th century; the façade is about 56 ft . long, and consists, on each upper floor, of seven bays, four of which are given in fig. 272. A fountain in the piazza Carlano at Viterbo might serve as a type of several others designed in this century.
615. To the end of the 131n and early part of the 14 th centuries belongs the cathedral at Orvieto, one of the most interesting examples of Italian Gothic, and an instance of the use, internally as well as externally, of alternate courses of colour, which in this case is produced by black basaltic lava and yellowish-grey limestone. Although the first stone was laid 1290 for the execution of a design by I. Maitani, who had just completed the front of the duomo at Siena and built this eathedral (fig. 273.) before his death, 1330 , the works were in hand till the end of the 16 th ecntury. A list of thirtythree architects has been preserved, The building is 278 ft . long by 103 ft . wide, and 115 ft . high to the plain ceiling, made 1828, which rests on piers 62 fr . high. These piers are fronted by statues of the apostles, 9 it. 6 in . high, on pedestals that are 5 ft .6 in . high above the floor of the nave, which is made of Apennine red marble that has inlaid fleurs-de-lis
before the enoir. The windows have coloured glass in the upper parts, but diaphanous alabaster below it.
616. To the same period belong the church of Sta. Maria sopra Minerva, at Rome, the moly pointed edifice which we can name in that metropolis; and the principal examples of ,ointed art in Florence, such asthe church of Sta. Maria Novella, 1278-1357; the church of Sta. Croce, 1294, used 1320, but not consecrated till 1442; the cathedral, 1294, consecrated 1436, with the campanile, designed 1332, by Giotto; the church of San Ercolano, by Bevignate, 1297-1335, at Perugia, with that of Sta. Giuliana, 1292, outside that city; the setagonal baptistery called San Giovanni Rotondo, 1337, and portions of the church of San Francesco, 1294, at Pistoia; and the (then altered) brick and stone church of San lerino Maggiore, at Verona. In the first half of the 14 th century, the Italian atists exhibited heir ideas of Gothic work in the chapel of Sta. Maria dell'Arena, 1303, at Padua; the Hlterations, 1308-20, of the interior of the cathedral at Lucca; the cathedral, 1312, at Prato, which has the effect of a northern late pointed structure; the fine cathedral, 1325-48, and the church of San Secondo, at Asti; and the church of San Martino, 1332, at Pisa, which is a fair specimen of common late Italian Gothic.
617. The large number of tombs and monuments of this and the next period, with pointed urches, renders difficult any choice of single examples among them; those of the Scaligeri, it Verona, especially that of Mastino II., 1351, contain a history in themselves.
618. To the latter half of the 14 th century may be attributed the marble front, in grey and yellow courses, by Matteo da Campione, (a very fine example) before 1396 to the brick athedral with particularly good detail, more than usually Gothic, built 1290-1390, at Honz: the palazzo della comunita, 1294-1385; and the palazzo pretorio, 135i-77, at 'listoia, which have been highly praised as fine specimens of very perfect Italian Gothic; he cathedral, 1315-1415, at Sarzana; and 1340 to 1369-1423, the upper portion or sala del onsiglio of the ducal palace at Venice, although another authority considers that the work if this period was the loggia towards the canal and twelve columns on the piazzetta.
619. The general design of the existing cathedral at Milan is also of this period, although xtreme doubt exists as to the date of the commencement of the work. But the statements re clear that the capitals of the great piers were being prepared, 1394-5, and that the iers themselves were being erected 1401 . The records of the wardens of the church are eficient until 1887; in that year an official paper speaks of the building which " multis etro temporibus iuitiata est et quæ nunc fabricatur." Chronicles and an inscription concur a fixing March 15, 1386, as the date of commencement; but Simone da Orsenigo, probably n eye-witness of the facts to which he is evidence, stated that the work was begun May 23, 88.5, but was destroyed, and that the existing structure was commenced May 7, 1387. He ras employed as one of the architects at least as early as December 6, in that year. So hat the date, 1336-87, usually given, as in the previous editions of this book, is possibly the eriod of attempts to begin the work, and explains the phrase " multis temporibus." The athedral has been much praised as an example of northern art modifying itself to suit the puthern climate under the hands of a German or, at all events, of a foreigner rather than f a native; but facts seem to destroy this imputed credit. The official list of the "inegneri," as the chief artists who laboured at the duomo were called, shows the earliest m_{1} loyment of foreigners in the case of Nicolas Bonaventure, of Paris, from July 6, 1388, II his dismissal, July 31,1591 ; and the sane evidence seems to divide the merit of the arliest direction of the works between Marco and Jacopo, both of Campione, a village etween the lakes of Lugano and Como. The first name in the records of 1387 is that
Mareo, supposed to be the Marco da Frisone who was buried July 8, 1890, with great onours; Jacopo occurs March.20, 1388, having apparently been engaged from 1378 as he of the architects to the church of the Certosa, near Pavia; he died 1398.
620. 'The official notes of the disputes that were constantly arising between the contemrancous "ingegneri-generali" and their subordinates, and the foreign artists, even record re fact that the Italian combatants disagreed on the great question of proportioning the ulding by the forcinn system of squares, or by the native theory of triangles. If there any merit in a work that was so clearly the offipring of many minds, much of it must - due to the wardens, who seem to have ordered the execution of little that was not reminended by the majority of their artists, or, in rase of an equal division, by an immire reputation from some other city. From 1430, the names of Filippo Brunclleseo and x or seven other artists precede the notice, 1483, of Johann von Gratz, who appears to we bean iuvited for the purpose of constructing the central tiburio or laistern. As usial, e foreigner's work was conderned ; and April 13, 1490, Giovanni Antonio Onodeo lcinrich von Gmiinden, employed so early as from Dee. 11, 1391, to May 31, 1392, was nfinsed with Omodeo by M. Millin, whence the repute of Heiurich as "Zamodia"), began * long rule over the other artists, which lasted until Augnst 27, 1522, by execouting e present work. It is needless to give the names of lis colleagnes and suceessors matil "appointment of Carlo Amati, 1806. under whom the eompletion of the works, including e three pointed windows of the front, way resmand, and of his successor I'. I'estagalli, 1813 .
621. The cathedral (fiq .274 ,) is eonstructed of white marble. The plan is a Latin cross, the transepts extending but little beyond the walls of the church. From west to cast

Fig. 274. Cathedikal at mban. its length is 490 ft and its extreme breadth 295 ft . The length of the fiveaisled nave is 279 ft . and its width 197 ft . 'The transepts are three-aisled. The eattern end of the church is terminated by three sides of a nonagon. The architecture of the doors and windows of the western front is of the Italian or Roman style, atid was exeeuted abont 1658. for the first three bays of the nave were an add. tion in front of the original façade, and were not vaulted until 1651-69. About 1790 the wardens determined to make the front Gothic, keeping the doors and windows ly Ricchini, from designs by Pellearini, on account of the richness of their workmanship; its apex is 170 ft . from the pavement. The central buttresses are 195 ft high. The central tower, 1762-72, by F. Croce, rises to the height of 400 ft , being in general form similar to those which appear in the western façade. All the turrets, buttresses, and pinnacles are surmounted with statues. The roof is covered entirely with

Fig. 275. elevation of hoese, san ghagnaju. blocks of marble fitted tugether with great exactness.
622. The only town in Italy which has preserved so many as twelve of the medizval domestic towers of great height, is San Gimignano ; it possesses, also, several honses that were erected in the 13th and 14 th centuries. The casa Buonaccorsi, with a single opening on the ground-floor, is a corner honse and is attributed to the earlier period; the easa Boni is next to it, and belongs to the later time; they are shown in fig. 275, which is too small to express the bandings of red and white brickwork, and the stucco border to the extrados of eaeh arch; the penthouse ronfs, here restored, were suppressed in the 14th century. The village of Coccaglio, between Bergano and Brescia, is said to contain some valuable remains of domestic architecture. The Venetian paldees of this and the following century have been so efficiently illustrated of late years, that it becomes unnecessary to describe their appearance.
623. Many architects have been engaged upon the marble cathedral at Como; from 1396, when L. de' Spazi was employed, down to the last century. The cupola or dome was eompleted about 1732, by Juvara. The three doors are in the richest Lombard style, and lience the rest of the facade ($\tilde{n g} .276$.) has been called early Italian Gothic; but it was designed, 1460, by Luchino da Milano, and completed between 1487 and 1526 by T . Rodario, of Maroggio, whose design for other parts was altered, perhaps not improved, by C. Solaro. The other sides of the exterior are renaissanee work by Rodario, who added the canopies for the statues of the two Plinys, in the west front. The transepts and choir internally are renaissance; but the nave and aisles are Italian Gothie.

624 Amongst the struetures produced in the 15 th century, may be named the church ef Sta. Maria della Grazie, 1399-1406, about six miles from Mantua; the beautiful cathedral, 14.5. at Prato; the equally fine chureh of Sta. Anastasia, at Verona, which has been called the noblest of the distinctively Italian pointed churches in the north of Italy; that of Sun Bernardino, 1452, also at Verona; and the cathedral, 1467, at Vieenza. The church of San Agostino, at Bergamo; the highly interesting, bccause perfectly untouched, castle at laborate work in brick and erra-cotta, and the church of he dominicans, at Monza; all iclong to the last period of Italian Gothic. The nave of the shurch of Sta. Maria delle Grazie, it Milan, is pointed, and datei 1455, while the transepts and hoir are thirty years later, and ire renaissance work. The shurch of Sta. Maria Magriore, at Città del Castello, beongs to the 15 th, but was inished in the 16 th, century. The church of San Agostino, at An:ona, is transitional; like that it Montenegro, 1450; and that of the Madonna di Monte Luce, it Perugia. The last idea of Gothic art absorbed by the new tyle, is seen in the Collcone hapel, 1475 ; and in the church if Sta Maria Maggiore, at Bergamo, where the sacristy, 1430, offers one of the earliest lated examples of the modern tyle. There is scarcely a street ${ }^{11}$ Città della Picve without mimerous cases of pointed doorvays and windows walled up

Fig. 276. elevation of cathedral, como. o suit the return to what are commonly, but incorrectly, called classical notions.
625. Such are the chief structures in the northern half of Italy, of which a critic so ighly esteemed as Prufessor Willis does not hesitate to affirm that, "there is in fact no ;enuine Gothic building." The same author observes that, "it is curious enough that in he Neapolitan territory, in Naples especially, many specimens or rather fragments, of good iothic buildings are to be found which were executed under the Angevine dynasty, 1266435; with this exception I do not believe that a single unmixed Gothic church is to be found " Italy." Others follow his judgment, and accept, as specimens of imitative Gothic art, edices which they themselves describe as impure and heterogeneous, and impressed with the tamp of classical, romanesque, byzantine, and saracenic influences. To this praise of the hurches may be added that of two or three palazzi at Naples; the campanili at Amalfi, and 'el etri; the castles at Andria, Castellamare, and Teano, some houses of the 14 th and 15 th enturies, at Aquila, Popoli, and Solmone, with the aqueduct at the latter place; and the nonastery of Sta. Catherina, at Galatino.
626. 'The eathedral at Trani must be regarded as falling within the ban under which the tructures termed "Gothis," in Sicily, are regarded by the purist in archæology. The ointed byzantine style, which is called Siculo-Norman, lasted until 1282 ; it was transional in the sense of receiving preater enrichment of a Greek character, until the end of re 14th century; and although further change began in the 15 th century, taste did not ike any decided direction until the establishment of renaissance art. M:. Gally Knight, tho investigated the indications presented in the great work published by Messrs. Hittorff ad Zanth, says that "various novelties were attempted; sometimes the forms were circular, metimes square, and sometintes clliptic. Amongst other novelties, the pointed style of 1e north was introduced, with its projecting mouldings and a little of its tracery; but later Sicily than anywhere clse; and though something of its true spirit is caught in the remstructions of Maniaces, in Syracuse, yet in Sicily, it always appears an exotic." These ects seem, to Mr. F'rceman, to prove incontestibly that the pointed style of Sicily, of that ortion of western Christendom in which the systematic use of the pointed arch first ocenrred, not Gothic even in the sense of being the most distant transition. A few churches and laces at Palermo, Syracuse, and Taormina, of the 14th ceutury; and in the same citics, th Girgenti and Messina, of the 15 the eentury, would be nearly all that could be named
important examples before the renaissance was employed. The date, 1592, however, pears to be that of the elliptic arches, groined roof, and flamboyant parapet at the entrance the ehurch of Sta. Maria della Catena, at Palemo.
6,27-873. We here, with regret, leave the subject, because we have already trespassed yond the limits preseribed.

BOOK II.

THEORY OF ARCHITECTURE.

CHAP. I.

MATHEMATICS AND MECHANICS OF CONSTRUCTION.

Sect. I.

GEOMETRY.

874 Geometry is that science which treats of the relations and properties of the boundaries of either body or space. We do not consider it would be useful here to notice the history of the science; neither is it necessary to enter into the reasons which have induced us to adopt the system of Rossignol, from whom we extract this section, otherwise than to state that we hope to conduct the student by a simpler and more intelligible method to those results with which he must be aequainted.

The limits of body or space are surfaces, and the boundaries of surfaces are lines, and the terminations of lines are points. Bounded spaces are usually called solids, whether occupied by body or not ; the subject, therefore, is naturally divided into three parts,-lines, surfaces, and solids; and these have two varieties, dependent on their being straight or curved.
875. Geometrical inquiry is conducted in the form of propositions, problems, and demonstrations, being always the result of compari. g equal parts or measures. Now, the parts compared may be either lines or angles, or both; henee, the nature of eaeh method should be separately considered, and then the united power of both employed to facilitate the demonstration of proposizions. But the reader must first understand these Definitions.

1. A solid is that which has length, breadth, and thickness. A slab of marble, for instance, is a solid, since it is long, broad, and thick.
2. A surface is that which has length and brealdh, without thickness. A leaf of paper, though not in strictness, inasmuch as it has thickness, may convey the idea of a surface.
3. A line is that which has length, but neither breadth nor thickness. As in the case of a surface, it is difficult to convey the strict notion of a line, yet an infinitely thin line, as a hair, may convey the idea of a line: a thread drawn tight, a straight line.
4. A point is that which has neither length, breadth, nor thickness.
5. If a line be carried about a point A, so that its other extremity passes from B to C, from C to D, \&c. (fig. 223.), the point 13, in its revolution, will describe a curve BCDFGLB. This curve line is called the circumference of̃ a circle. The circle is the space enclosed by this circumference. The point A, which, in the formation of the circle is at rest, is called the centre. The right lines AC, AD, AF, \&c. drawn from the centre to the circumference, are called radii. A diameter is a right line which passes through the centre, and is terminated both ways by the circumference. The line DAL, for example, is a diameter. An

Fig. 225. are is a part of a circumference, as FG.
6. The circumference of a circle is divided in to 360 equal parts, called degrees; each degree is divided into 60 parts, called minutes, and eaeh minute into 60 parts, called seconds.
7. Two right lines drawn from the same point, and diverging from each other. form an opening which is called an angle. An angle is commonly expressed by three letters, and it is usual to place in the middle that letter which marks the point whence the lines diverge; thus, we say the angle BAC or DAF ($f i g$. 224.), and not the angle ABC or ACB.
8. The magnitude of an angle does not depend on the lines by which it is formed, but upon their distance from each other. How far soever the lines AB, AC are continued, the angle remains the same. One angle is greater than another when the lines of equal length by which it is

Fig. 221.

Fig. 225. formed are more distant. Thus the angle BAL (fig. 223.) is greater than the angle CAB, because the lines AB, AL are more distant from each other or include a greater are than the lines AC, AB. If the legs of a pair of compasses be a little separated, an angle is formed; if they be opened wider, the angle becones greater; if they be brought nearer, the angle becomes less.
9. If the phint of a pair of compasses be applied to the point G (fig. 225.), and a circumference NRB be described, the are NR contained within the two lines GL, GM will measure the magnitude of the angle LGM. If the arc NR, for example, be an arc of 40 degrees, the angle LGM is an angle of 40 degrees.
10. There are three kinds of angles (fig. 226.) : a right angle (I), which is an angle of 90 degrees; an obtuse angle (II), which contains more than 90 degrees; and an acute angle (III), which contains less than 90 degrecs.
11. One line is perpendicular to another when the two angles it makes with that other line are equal: thus, the line CD (fig.
 227.) is perpendicular to the line AB, if the angles CDA, CDB contain an equal number of degrees.
\&. Two lines are parallel when all perpendiculars drawn from one to the other are equal ; thus, the lines FG, AB (fig. 228.) are parallel, if all the perpendiculars $c d, c d, \& c$. are equal.
3. A triangle is a surface enclosed by three right lines, called sides (fig. 229.). An equilateral triangle (I) is that which has three sides equal; an isosceles triangle has only two of its sides equal (II) ; a scalene triangle (III) has its three sides unequal.

Fig. 227.

Fig. 228.
4. A quadrilateral figure is a surface enclosed by four right lines, which are called its sides.
5. A parallelogram is a quadrilateral figure, which has its apposite sides parallel ; thus.

Fig. 229.

Fig. 230.
if the side BC (fig. 230.) is parallel to the side $A D$, and the side $A B$ to the side $D C$, the quadrilateral figure ABCD is called a parallelogram.
A rectangle is a quadrilateral figure all the angles whereof are right angles, as ABCD (fig. 231.). A square is a quadrilateral figure whose sides are all equal and its angles right angles (fig. 232.). A trapezium is any quadrilateral figure not a

Fig. 231.

Fig. 232. parallelogram.
Those figures are equal which enclose an equal space; thus, a circle and a triangle are equal, if the space included within the circumference of the circle be equal to that contained in the triangle.
Those figures are identical which are equal in all their parts; that is, which have all their angles equal and their sides equal, and enclose equal spaces, as BAC, EDG (fig. 233.). It is manifest that two figures are identical which, being placed one upon the other, perfectly coincide, for in that case they must be equal in all their prarts. It must be observed, that a line merely so expressed always denotes a right

F)g. 233. line.
Ax103. Two right lines cannot enclose a spaee; that category requires at least three les.
highr lings and rectilineal flgures.
175. Proposttion I. The radii of the same circle are all equal. The revolution of the line ΛB about the point Λ (fig. 234.) ! ip necessary (Defin. 5.) to form the eirele BCDFGLi3, when cevolving the point B^{3} ' is upon the point C, the whole line must be upon the line $\Lambda \mathrm{C}$; otherwise two right lines would c ose a space, which is impossible: wherefore the radius $\Lambda \mathrm{C}$ is ef al to the radius $\triangle 13$. In like manner it may be proved that

Fig.234.

Let AB (fig. 23.5.) be the given line upon whic! it is required to describe a triangle whose three sides shall be equal.
lrom the point A, with the radius $A B$, describe the circumference $B C D$, and from the point B, with the radius $B A$, describe the circumference ACF ; and from the point C , where these two circumferences cut each other, draw the two right lines CA, CB. Then ACB is an equilateral triangle.

For the line $A C$ is equal to the line $A B$, because these two lines are radii of the same circle BCD ; and the line BC is
 equal to the line $A B$, beeause these two lines (Prop. 1.) are radii of the same circle $A C F$. Wherefore the lines ΛC and $B C$, being each equal to the line $A B$, are equal to oue another, and all the three sides of the triangle ACB are equal; that is, the triangle is equilateral.
878. Prop. III. Triangles which have two sides and the angle subicnded or contained by them equal are identical.

In the two triangles BAC, FDG (fig. 236.), if the side DF be equal to the side $A B$ and the side DG equal to the side $A C$, and also the angle at 1) equal to the angle at A, the two triangles are identical.

Suppose the triangle Fl)G placed upon the triangle BAC in such manner that the side DF fall exactly upon the side equal co it, $A B$. Since the angle D is equal to the angle A, the side DG must fall upon the side equal to it, $A C$; also the point F will be found upon the point B, and the point G upon the point C: consequently the line FG must fall wholly upon the line BC, otherwise two right lines would enclose a space, which is impossible. Wherefore the three sides of the triangle FDG coincide

Fig. 236 in all points with the three sides of the triangle $B A C$, and the two triangles have their sides and angles equal, and enclose an equal space; that is (Defin. 20.), they are identical.
879. Pror. IV. In an isosceles triangle the angles at the base are equal.

Let the triangle $B A C$ (fig. 237.) have its sides AB, AC equal, the angles B and C at the base are also equal. Conceive the angle A to be bisected by the right line AD.

In the triangles $\mathrm{BAD}, \mathrm{DAC}$ the sides AB, AC are, by supposition, equal; the side AD is common to the two triangles,

Fig. 237. and the angles at A are supposed equal. These two triangles, therefore, have two sides, and the angle contained by them equal. Hence, they are ideutical (Prop. 3), or have all their parts equal: whence the angles B and C must be equal.
880. Prop. V. Triangles which have their three sides equal are identical.

In the two triangles $\mathrm{ACD}, \mathrm{FDG}$ (fig. 238.), let the side AC be equal to the ride $F D$, the side CB equal to the side $D G$, and the side $A B$ to the side $F G$; these two triangles are identical.

Let the two triangles be so joined that the side FG shall coincide with the side AB (fig. 239.), and draw the right line $C D$. Since in the triangle CAD the side $A C$ is equal to the side $A D$,

Fi) 258

Fig. 239. the triangle is isoceles; whence (Defin. 13.) the angles m and n at the base are cqual.

Since in the triangle $C B D$ the side $B C$ is equal to the side $B D$, the triangle is iso sceles; whence (Defin. 13.) the angles r and s at the base are equal.

Because the angle m is equal to the angle n, and the angle r equal to the angle s, the whole angle C is equal to the whole angle D .

Lastly, because in the two triangles $A C B, A D B$ the side $A C$ is equal to the side $A D$ and the side $C B$ equal to the side $D[$, also the angle C cqual to the angle D , these two triangles have two sides, and the contained angle equal, and are therefore (Prop. 3.) identical.
881. Prop. VI. To divide a right line into two equal parts.

Let the right line which it is required to divide into two equal parts be AB (fig. 240.). Upon AB draw (Prop. 2.) the equi-

Fig. \%20. lateral triangle $\triangle \mathrm{DI} 3$, and on the other side of the same line
draw the equilateral triangle $A F B$, draw also the right line $D F ; A C$ is equal to 1 the two larger triangles $D A F, D B F$ the sides $D A, D B$ are equal, because they the sides of an equilateral triangle; the sides AF, BF are equal for the same reason; the side $D F$ is common to the two triangles. These two triargles, then, have their sides al, and consequently (Prop. 5.) are identical, or have all their parts equal ; wherethe two angles at D) are equal.
gair, in the two smaller triangles $\mathrm{ADC}, \mathrm{CDB}$ the side DA is made equal to the DB , and the side DC is common to the two triangles; also the two angles at D are a) Thus these two triangles have two sides and the contained angle equal; they are efore (Prop. 3.) identical, and AC is equal to CB ; that is, AB is bisected.
82. Paop. Vll. From a given point out of a right line to draw a perpendicular to that
et C (fig. 241.) be the point from which it is required to draw a perpendicular to the it line AB. rom the point C describe an are of a circle which shall cut line $A B$ in two points F and G. Then bisect the line $F G$, to D , the point of division, draw the line CD : this line is endicular to the line $A B$. Draw the lines CF, CG. the triangles FCD , DCG the sides Cr, CG arc equal, bee (l'rop. 1.) they are radii of the same circle; the sides FD are equal, because FG is bisected; and the side CD is com-

Fig. 211.

These two triangles, then, having the three sides equal, are identical (Prop. 5.). ence (Defin. 20.) the angle CDA is equal to the angle CDB, and consequently (Defin. the line $C D$ is perpendicular to the line $A B$.
83. Prop. VIII. From a given point in a right line to raise a perpendicular upon that rom the point $\mathbf{C}(f i y .242$.), let it be requircd to raise a f erpendicular upon the right Al3.
AI3 take at pleasure CF equal to CG; upon the line FG rile an equilateral triangle $\mathcal{F D G}$, and draw the line (D) ; this will be perpendicular to Λ B .
, the triangles $\mathrm{FDC}, \mathrm{CDG}$ the sides DF, DG are equal, bee they are the sides of an equilateral triangle; the sides $F C$, are equal by construction; and the side DC is common. se two triangles, then, having the three sides equal, are (Prop

Fif. 912. identical. Therefore (Defin. 20.) the angle DCA is equal to the angle 1)C13, and erguently (Defin. 11.) the line CD is perpendicular to the line $A \mathrm{~B}$. 4. Pnor. 1X. The diameter of a circle divides the circumference into turo equal
et A) $13 \mathrm{~L} A$ (fig 24:3.) be a eircle; the dianneter A CB biscets the circumference, that he are A.B is eqpal to the are ADI3.
onceive the circle to be divided, and the lower segment IBLA to be placed mpon the upper ACBDA; all the points te are ALB will fall exnetly upon the are ADB; and conseatly these two ares will be equal.
or if the point I_{2}, for instance, does not fall upon the are $\Lambda \mathrm{DB}$, ust fall either above this are, as at G, or below it, as at F . fall on (i , the radius Cl . will be greater than the radius ; if it fillson F, the radius $C 1$, will be lees than the radins $C D$, Ch is (Prop. 1.) impossible. The point La, then, must fill upon

15.213. are ADIB. In like maner it may be proved that all the other points of the are A1.B © fall upon the are ADl': those two ares are therefore equal.
45. I'Rop. X. A right line which meets another right line forms with it two angles, which hor, are sopurn/ to turo right mulles.
The line FC (fiy, 244.) mecting the line $\mathrm{D} \Lambda$, and forming with etwo angles, I)CF, ACF, these two angles are together equal wo right angles.
rom the point C as a centre dencribe at pleasure a circumnee N゙GI. IN.
The line Nol. being a diameter, divides the eiremmference (9. 9) into two eymal parts. The are N(i), is therefore

Fig. 244. the eircunfirtuce, which eontains (1)efin。 G.) 180 , or twice 90 degrees. 'Iherefore angles I)CF', A('F, which, taken together, wre measured by the are NGI, are twieto legrees. thint is (1)efin. 10.), are e(prail to two right ungles.
46. I'nar. XI. A line Irau'n jerpendicularly to another right line makea right vinglas

1f the line CI) (fig. 245.) be perpendicular to the line AB , the angle $\mathrm{CD} \boldsymbol{A}$ is a rgh angle, and also the angle CDB.

For the line $C D$, meeting the line $A B$, forms with it two angles, whieh are together (Prop. 10.) equal to two right angles; and these two angles are equal, beeause CD is perpendicular to $A B$. Wherefore each angle is a right angle.
887. Prop. XM. If two lines eut eath other, the veriical or opposite angles are equal.

Let the lines $A \mathrm{D}, \mathrm{BE},\left(f y .246_{\text {. }}\right.$) cut eaeh

Fls. 24.4.

Fig. 216. other at the point \mathbb{C}; the angles $\mathrm{ACB}, \mathrm{FCD}$, whieh are called vertical or opposite angles are cqual.

From the point C, as a centre, describe at pleasure a cireumference NGLMN.
Sinee the line NCL is a diameter, the are NGL is (1'rop.9.) half the circumference therefore the ares NGL, GLM are equal. From these two ares take away the common part GL, there will remain the are NG equal to the are LM. Consequently the angle $\mathrm{ACB}, \mathrm{FCD}$, which are measured by these two ares, are also equal.
888. Prop. XIII. If a line be perpendicular to one of two parallel lines, it is also perpendicular to the other.

Let AB, CD (fig. 247.) be two parallel lines if the line FG makes right angles with C1), it will also make right angles with $A \mathrm{~B}$.

Take at pleasure GC equal to GD) ; at the points C and D raise the perpendiculars CA, DB, and draw the limes GA, GB.

In the two triangles $A C G, B D G$, because the line $A B$ is parallel to the line CD, the perpendiculars CA, DIS are necessarily equal, as appears from the definition of parallel lines (Defin. 12.); the lines CG, DG are equal by construction; and the angles C and D are riglit angles. The two triangles $\mathrm{ACG}, \mathrm{BDG}$ have then two sides and the contained angle equal, they are therefore

Fig 287. (Irop.3.) identical. Whence the side GA is equal to the side GB. and the angle m equal to the angle n.

Again, in the triangles AGF, FGB the side GA is equal to the side GB, as has been proved, and the side GFi is common. Moreover, the angle r is equal to the angle s; for if from the two right angles FGC, FGD be taken away the equal angles m and n, there will remain the equal angles r and s. The triangles $A \mathrm{GF}, \mathrm{FGB}$ have then two sides and the contained angle equal; they are therefore (Prop. 3.) identical. Wherefore the angles GFA, GFB are equal, and consequently are riglit angles.
889. Pror. XIV. If one line be perpendicular to two other lines, these two lines are parallel.

Let the line FG (fig. 248.) make right angles with the lines $A B$ and $C D$; these two lines are parallel.

If the line $A B$ be not parallel to the line $C D$, another line, as $N H$, may be drawn through the point F, parallel to the line

Fig. 218. CD. But this is impossible; for if the line NH were parallel to the line CD, the line FG making right angles with CD would also (Prop. 13.) make right angles with NH; which cannot be, because, by supposition, it makes right angles with $\Lambda \mathrm{B}$.
890. Puor. XV. The opposite sides of a rectangle are parallel.

In the reetangle ABCD (fig. 249.) the side BC is parallel to the side $\Lambda \mathrm{D}$, and the side AB parallel to the side DC. Produce eaeh of the sides both ways.

The line $A B$ is perpendicular to the two lines $B C, \triangle D$; the two lines BC, AD are therefore (Prop. 14.) parallel. In like manner, the line $A D$ is perpendicular to the two lines $A B, D C$; the two lines $\Lambda 1$, DC are therefore (Prop. 14.) parallel.
891. Prop. XVI. The opposite sides of a rectangle are cqual.

Fig. 219.

In the rectangle $A B C D$ (see fig. 249.) the side $A B$ is equal to the side DC, and the side BC equal to the side $A D$. For, since the side $B C$ is parallel to the side $A D$, the perpendiculars $A B, D C$ are (Defin. 12.) equal; and sinee the side $\Lambda \mathrm{B}$ is parallel to the side DC , the perpendiculars $\mathrm{BC}, \triangle \mathrm{D}$ are equal.
892. Prop. XVI. A right line falling upon parallel lines makes the altcrnate angles equal.

Let the line FG (fig. 250.) cut the parallels AB, GD; the angles AFG, FGD, which are called alternate angles, are equal. From the point G draw GL perpendicular to the line $A B$, and from the point F draw $F M$ perpendicular to the line $G D$.

Since the line GL is perpendicular to $\Lambda \mathrm{B}$, it is also (Prop. 13.) perpendicular to the
allel line GD Whence the quadrilateral figure GLFM is a reetangle, its four angles gg right angles.
n the triangles GLFF, FIIG the sides LF, GM are equal, because they are opposite s of the same reetangle; the sides LG, I are equal for the same reason; and the FG is common. The two triangles F, FMG have then the three sides equal, eonsequently (Prop. 5.) are identical. erefore the angle LFG opposite to the LG is equal to the angle F GM oppoto the side F1I.
Remark. In identical triangles the equal

Fig. 250.

Fig. 251. les are always opposite to equal sides, as by this proposition appears.
93. Pror. XVIlI. If one right line filling upon tuo others malies the alternate angles l, these two lines are parallel.
et the alternate angles AFG, FGD (fig. 251.) be equal; the lines AB, GD are allel.
the line $A B$ is not parallel to the line GD, another line, as NH, may be drawn ugh the point F parallel to GD. But this is impossible; for if the line NH were Ilel to the line GD, the angle FGD would be (Prop. 17.) equal to the angle NFG. e these two angles would be alternate angles between two Hel lines; whieh cannot be, because, by supposition, the angle D) is equal to the angle \triangle FG.
94. Puop. XIX. If one right line falls upon two parallel right , it makes the interior angle equal to the exterior.
et the line FG (fig. 252.) meet the parallel lines BA, DC, interior argle r is equal to the exterior angle z. Produce lines $13, \mathrm{D}, \mathrm{C}$.
he angle r (1'rop. 17.) is equal to the angle s, because these alternate angles, male by a right line falling upon two lle lines, and the angles s and z are (Prop. 12.) equal, be-

Fig. 252. ethey are vertical or opposite angles; therefore the angle r is equal to the angle z. 95. 1'иop. XX. If one right line falling upon two other right lines makes the interma! e equal to the exterual, those two lines are parallel.
et the internal angle r (fig. 2.53.) be equal to the external e z, the lines $13.1,1$ C are parallel.
he angle r is eipual to the angle z by supposition, and the e z ('rop. 12.) is equal to the angle s, beeause they are site angles. The alternate augles r, s are therefore equal, consequently (1'rop. 18.) the lines BA, DC are parallel.
6. Phor. XXI. Throngle a given paint to draw al line parallel girea line.

Fig. 233. et G be the paint through which it is required to draw a line Hel to the given line MF.
rom any point ((fiy. 254.) describe, at pleasme, the are FN ; from the point F , in the are FN ents the line MF, with the distance Gl: describe the are GM mecting line MF in M ; then make FI, it to G.M, and drim the line GL, ; line is parallel th the line Ml: raw the line (i)
he ares ($;, 01 \mathrm{Fb}$, are equal iby trietion ; therefore the alternate es r, n, which wre meationed by e ares (Defill. 9.), are erplual ; mad equently (I'rup. 18.) the lines alf are pirollel.

Fig. リ: 1.

148.4.5.\%。
 cs.
the triangle BAC (fig. 255.), the three angles $13, \mathrm{~A}$, C are together equal to two right
romee the side BC both wrys ; through the point A draw a line fic; parallel to BC: from the peint A, as a centre, flescrilie nny cirempfervice $I, M N$.
the nagle 13 (1 'ropi. 17.) is equal tu the nugle x, becanse these are alternute angles marle right line falling upan twa parallel lines, For the smme reason the mingle C is equal re angle $\%$.

But the angle x is equal to the alternate angle B, and the angle y to the alteruate angle C.

Therefore, substituting B for x, and C for y, the three angles $\mathrm{B}, \mathrm{A}, \mathrm{C}$ are together equal to two right angles.

Corollary. Hence, if two angles of any triangle be known, the third is also found; since the third angle is that whieh the other two taken together want of two riglt angles.
898. Prop. XXIII. If two triangles have two angles equal, they have alsn the third angle equal.

In the two triangles PAC, FDG (fig. 256.), if the angle B is equal to the angle F, and the angle A equal to the angle D, the angle C will also be equal to the angle G.

Since the angle C (Corol. to Prop. 22.) is that which the angles B and A together want of two right angles; and since the angle G is that which F and D together want of two right angles; the angles B and A being equal to the angles F and D , the angle C must be equal to the angle G.

899. Prop. XXlV. The exterior angle of any triangle is equal to the two interior and opposite angles taken together.

In the triangle BAC (fig. 257.) produce one of the sides BC; the angle $A C D$, whieh is called exterior, is equal to the two interior and opposite angles B and Λ taken together.

The line AC meeting the line BD forms with it two angles, which are together (Prop. 10.) equal to two right angles; the angle $A C B$ is therefore that which the angle $A C D$ wants of two right angles. But the angle ACB is (Corol. to Prop. 22.) also that which the angles B and A together want of two right angles. Wherefore the angle $\Lambda \mathrm{CD}$ is equal to the two angles B and A taken together.

Fig. 257.
900. Pror. XXV. Triangles which have two angles and the side which lies between them equal are identical.

In the two triangles BAC, FDG ($k g .259$.), if the angle \mathbf{F} is equal to the angle B, the angle G equal to the angle C, and the side $F G$ equal to the side 1 BC , these two triangles are identical.

Conceive the triangle FDG placed upon the triangle BAC in such a manner that the side $F G$ shall fall exactly upon the equal side BC. Since the angle F is $\mathrm{e}_{\mathrm{f}} \mathrm{ua}$ al to the angle B , the side $\mathbf{F D}$ must fall upon the side $B A$; and since the angle G is equal to the angle C , the side GD must fall upon the side CA. Thus the three sides of the triangle FDG will be exactly placed upon the three sides of the triangle BAC; and consequently the two triangles (Prop. 5.) are identical.

Fig. 258.
901. Prop. XXVI. If two angles of a triangle are equal, the sules opposite to those angles are also equal.

Conceive the angle A (.fig. 259.) to be bisected by the line A D.

In the triangles $\mathrm{BAD}, \mathrm{DAC}$ the angle B is equal to the angle C by supposition, and the angles at A are also equal. These two triangles have their two angles equal ; the third angle will therefore (Prop. 23.) be equal; whence the angles at D are equal. Moreover, the side $A D$ is eominon to the two triangles. These two triangles, therefore, having two angles and the side

Fig. $2: 59$. which iies between them equal, are (Prop. 25.) identical. Wherefore the side AB is equal to the side AC.
902. Prop. XXVII. The opposite sides of a parallelogram are equal.

In the parallelogram $\triangle B C D$ (fig. 260.), the side $A B$ is equal to the side $D C$, and the side $B C$ equal to the side $A D$.

Draw the line BD, which is called the diagonal.
Because BC is parallel to AD , the alternate angles m and n are equal. In like manner, because $\Lambda \mathrm{B}$ is parallel to DC , the alternate angles r and s are equal. Also, the side BD is common to the two triangles BAD, BCD. These two triangles have then two angles and the side which lies between them equal, and are therefore (Prop. 3.) identical. Wherefore the side $A B$ op-

Fig. 200. posite to the angle n is (Prop. 26.) equal to the side DC opposite to the angle m; and the side BC opposite to the angle s is equal to the side $A D$ opposite to the equal angle r

Corollary. Hence, the diagonal biseets the parallelogram; for the triangles BAD, BCD , having the three sides equal, are identieal.
903. Prop. XXVIII. Parallelograms which are between the same parallels, and have the same base, are equal.

Let the two parallelograms ABCD, AFGD (fig. 261.), be between the same parallels BG, AM, and upon the same base AD; the space enclosed within the parallelogram $A B C D$ is equal to the space enelosed within the parallelogram AFGD .

In the two triangles BAF, CDG the side BA of the former triangle is equal to the side CD of the latter, beeause they are opposite sides of the same parallelogram. For the same reason, the side FA is equal to the side GD. Moreover, BC is equal to AD , beeause they are opposite sides of the same parallelogram. For the same reason, AD is equal to $\mathrm{FG} . \mathrm{BC}$ is therefore

Fig. 261. equal to FG. If to both these CF be added, BF will be equal to CG. Whence the two triangles BAF, CDG, having the three sides equal, are (Prop. 5.) identical, and consequently have equal surfaces.

If from these two equal surfaces be taken the small triangle CLF, which is common, there will remain the trapezium ABCL, equal to the trapezium LFGD. To these two trapezia add the triangle ALD, and the parallelogram $A B C D$ will be equal to the parallelograin AFGD.
904. Pkop. XXIX. If a triangle and a parallelogram are upon the same base, and between the same parallels, the triangle is equal to half the parallelogram.

Let the parallelogram ABCD (fig. 262.) and the triangle $\triangle F D$ be upon the same base $A D$, and between the same parallels BG, AL; the triangle AFD is half the parallelogram ABCD. Draw DG parallel to AF.

Because the parallelogram AF GD is biseeted by the diagonal FD (Prop. 27. Corol.), the triangle AFD is half the paral. lelogram AFGD. But the parallelogram AFGD is equal to
 the parallelogram ABCD, hecause these two parallelograms are upon the same base, and between the same parallels; therefore the triangle AFD is equal to half the parallelogram ABCD.
905. Prop. XXX. Parallelograms which are between the same parallets, and have equal bases, are equal.

Let the two parallelograms ABCD, LFGM (fig. 263.) be between the same pazallels BG, AM, and have the equal bases AD, LM; these two parallelograms are equal.

Draw the lines AF, DG.
Because AD is equal to LM, and LM to FG, AD is equal to FG; and they are parallel by construction. Also AF and DG are parallel; for if DG be not paratlel to AF, another line may be drawn parallel to it; whence FG will become

Fig. 263. greater or less than AD, AF and DG are therefore parallel, and AFGD a paralletogram.

Now the parallelogram ABCD is (Prop. 28.) equal to the parallelogram AFGD, beeause these two parallelograms are between the same parallels, and have the same base A1). And the parallelogran AFGD is equal to the parallelogram LFGM, because these two parallelograns are between the same parallels, and have the same base FG. The parallelogram ABCD) is therefore equal to the parallelogram LFGM.
$906 . P^{\prime}$ rop. XXXI. Triangles which are between the same parallels, and have equal bases, are equal.

Let the two triangles A B1), LFM (see fig, to preceding Proposition) be between the same parallels $\mathrm{BG}, \mathrm{A} .11$, and upon the equal bases AD, I.MI ; these two triangles are equal.
Draw 1)C parallel to AB, and MG parallel to L1".
The two parallelograms A BC1), LFGM are equal (Prop. 30.), because they are between he sume parallels, and have equal bases. But the triangle ABI) is (I'rop. 29.) one half of he parallelogram ABCD, and the triangle LFM is one half of the parallelogram LIFGM; hese two triangles are therefore equal.
907. I'mop. XXXII. In a right-anylred triangle, the square of the hypmotcouse, or side ahtending the right anyle, is equal to the squares of the sides which contain the right anyle.
In the triangle 13 AC (fig. 26.), let the angle A be a right angle. Upon the hypo*nuse BC deseribe the square BDFC; , !om the side AB deacribe the sfuare ALABB, nd upon the side $\triangle C$ the square $\mathrm{A} R \mathrm{NC}$; the square BDF C is "qual to the two squares W.M13. A ISNC taken together.

Draw the right lines MC, AD, and draw AG parallel to BD.

Because the square or parallelogram MLAB and the triangle MCB are between the same parallels LC, MB, and have the same base MB , the triangle MCB is (Prop. 29.) equal to hati the square ALMB.

Again, because the rectangle or parallelogram DGPB and the triangle DAB are between the same parallels GA and DB, and have the same base DB, the triangle DAB is (Prop. 29.) equal to half the rectangle DGBP.

Further, since the side MB of the triangle MBC and the side $A B$ of the triangle $A B D$ are sides of the same square, they are (Defin. 17.) equal. Also, since the side BC of the

Fig. 264. first triangle and the side $B D$ of the second triangle are sides of the same square, they are equal. And because the angle MBC of the first triangle is composed of a right angle and the angle x, and the angle ABD of the scoond triangle is composed of a right angle and the same angle x, therefore these two angles, contained between the equal sides MB, BC and AB, BD, are equal. Wherefore the two triangles MBC, ABD, having two sides ard the contained angle equal, are (Prop. 3.) identical, and consequently equal.

But the triangle M13C is half the square MLAB, and the triangle ABD is half the rectangle $B D G P$; the square and the rectangle are therefore equal.

In the same manner it may be demonstrated that the square ARNC and the rectangle CFGP are equal. Wherefore it follows that the whole square BDFC is equal to the two squares MLAB, ARNC taken together.

CIRCLES.
908. Defintions. - 1. A right line (fig. Prop. 33. AB) terminated both ways by the circumference of a circle is called a chord.
2. A line (fig. Prop. 39. AB) which meets the circumference in one point only is called a tangent; and the point T is called the point of contact.
3. An angle (fig. Prop. 33. ABD) which has its vertex in the circumference of a circle is called an angle in the circle.
4. A part of a circle confined between two radii (fig. Prop. 34. ACBFA) is called a sector.
5. A part of a circle (fig. Prop. 35. AGBDA) terminated by a chord is called a segment of a circle.
909. Pror. XXXIII. To draw the circumference of a circle through three given points.

Let there be three given points, A, B, D (fig. 265.), through which it is required to draw the circumference of a circle. Draw the right lines AB, BD, and bisect them: from the points of the division F, G, raise the perpendiculars BC, GC; and at the point C with the radius CA describe the c:rcumference of a circle; this circumference will pass through the points B and D. Draw the lines CA, CB, CD.

In the triangles CFA, CFB the side FA is equal to the side FB by construction, the side FC is common, and the two angles at \mathbf{F} are right angles. These two triangles, then, have two sides and the angle
 contained by them equal ; they are therefore (Prop. 3.) identical. Consequently the side CB is equal to the side CA.

For the same reason, the triangles CGB, CGD are also identical. Wherefore the side CD is equal to the side CB , and consequently equal to CA .

And since the right lines CB, CD are equal to the right line CA, it is manifest (Prop. 1.) that the circumference which passes through the point A must also pass through the point D .
910. Prop. XXXIV. If a radius bisect a ehord, it is perpendicular to that chord.

If the radius CH (fig. 266.) bisect the chord AB, the angles $\therefore \mathrm{DA}, \mathrm{CDB}$ are right angles. Draw the radii CA, CB.
In the triangles CDA, CDB the sides CA, CB, being radii, are equal (Prop. 1.), the sides AD, DB are equal by supposition, and the side CD is common. These two triangles, having the three sides cqual, are therefore (Prop. 5.) identical. Wherefore the angles CDA, CDB are equal, and consequently (Prop. 10.) are right angles.

Corollary. The two angles at C are also (Prop. 5.) equal.
Ilence it appears, that any angle ACB may be bisected by describing from its vertex C as the centre with any radius $A C$ an are $A F B$; bisect-

Fig. 266. ing the chord of that are AB; and then drawing from the point of division D the right line CD ; for it may then be shown, as in the proposition, that the triangles $\mathrm{ACD}, \mathrm{DCB}$ are i.ilentical, and consequently the angles at Γ equal.
911. Pror. XXXV. To find the centre of a circle.

Let the circle of which it is required to find the centre be AG1BF. Draw any chora AB fig. 267.) ; bisect it, and from the point of diviion D raise a perpendicular FG: this line will sass through the centre, and consequently, if it ic bisected, the point of division will be the entre.
If the centre of the circle be not in the line EG, it must be somewhere out of it; for intance, at the point L. But this is impossible, or if the point L were the centre, the right line II would be a radius; and since this line hisects

Fig. 26i7.

Fig. 268. he chord AB , it is (Prop. 34.) perpendicular to AB ; which cannot be, since CD) is perendicular to AB.
912. Pbop. XXXVI. To find the centre of an arc of a circle.

Let $\triangle B D F$ be the arc of which it is required to find the centre. Draw any two chords 1B, DF (fig. 268); bisect them, and from the points of division raise the perpendieulars IIC, LC; the point C , in which these two perpendiculars cut each other, is the centre f the are.
For (Prop. 35.) the perpendicular MC and the perpendicular LC both pass throurh he centre of the same circle; this centre must therefore be the point C , which is the only boint common to the two perpendiculars.
913. Pıop. XXXVII. If three equal hucs met in the same point within a circle, and are erminated, they are radii of that circle.
The lines CA, CB, CD (fig. 269.), drawn from the same point ? within a circle, and terminated by it, bcing equal, the point C s the eentre of the circle. Draw the lines AB, BD; bisect them, nd let the points of division be \mathbf{F}, \mathbf{G}; and draw the lines $\mathbf{C F}$, -G.
In the triangles $C F A, C F B$, the sides $C A, C B$ are equal by upposition, the sides FA, FB are equal by construction, and he side CF is common. These two triangles, then, have the
 ree sides equal ; they are thercfore (Prop. 5.) identical. Wherefore the two angles at are equal, and the line FC (Defin. 11.) is perpendicular to the chord AB. And since is perpendicular bisects the chord AB, it must (Prop. 35.) pass through the centre of the scle. In like manner, it may be demonstrated that the line GC also passes through the intre. Wherefore the point C is the centre of the circle, and $\mathrm{CA}, \mathrm{CB}, \mathrm{CD}$ are radii.
914. Pror. XXXVIII. If the radius of a circle be perpendicular to a chord, the radius sects bnth the chord and the arc of the chord.
Let the radius CF be perpendicular to the chord $A B$ (fig. 270.) ; the right line $A D$ is pual to the right line 1) B, and the are AF equal to the are F 13. Jraw the right lines CA, CB.
In the large triangle ACB , the side CA (Prop. 1.) is equal to eside CB, because they are radii of the same circle. The angle is (Prop. 4.) therefore equal to the angle B . The angles at D are ght angles, and therefore equal ; and the angles at C are conserently (I'rop. 23.) equal. Also the side CA is equal to the side B, and the side CD is common. These two triangles, then, having 10 sides and the angle contained by them equal, are (1'rop. 3.)
 entical, whence the side $A D$ is equal to the side DB. Again, since the angies Λ ('l', CF are equal, the ares $A 13,13 \mathrm{~F}$, which measure these angles, are also equal. 'The chord 13 and the are AFB are therefore bisected by the radius CF.
315. l'uor. XXXIX. A right linc perpendicular to the extremity of a radius is a tragent the circle.
Let the line AB (fig. 271.) pass through the extremity of the dius CT in such a manner that the angles CTA, CTI shall be oht angles; this line AIB touches the circumference in only one int ' I . If ΛB touch the circumference in any other point, let be I), and draw the line C1).
In the right-angled triangle C'ID the square of the hypothese CD is equal to the two squares of C'T and TD taken together. te square of CD) is therefore greater than the square of C'I', and

Fig. 271. nsequently the line CI) is greater than the line CT, which is a dins. 'Therefore the point D is out of the ciremnference. And in like manner it may be own that every point in the line $A 1$ ' is out of the circumference, except ' T; AB is theree a tangent to the circle.
(iunobany. It follows, therefore, that a perpendicular is the shortest line that can be
drawn from any point to a given line; snce the perpendicular C'I is shorter than any other lne which ean be drawn from the point C to the line $\triangle \mathrm{B}$.
916. Pror. XI.. If "r right line be drawn touching a circumference, a radius drary tor the point of contact will be perpendicular to the tangent.

Let the line AB (fig. 279.) touch the circumference of a circle in a point T, the radius C'T is perpendicular to the tangent $A B$. For all other lines drawn from the point C to the line AB must pass out of the circle to arrive at this line. The line C'T is therefore the shortest which can be drawn from the point C to the line AB, and consequently (Corol. to Prop. 39.) is perpendicular to the line AB.
917. Pror. XLI. The angle formed by a tangent and chord is
 measured by half the are of that chord.

Let 13'A (fig. 273.) be a tangent and TD a chord drawn from the point of contact T ; the angle $A^{\prime} T^{\prime} D$ is measured by half the are TFD, and the angle BTD is measured by hall' the are ' CGD . Draw the radius C' C to the point of contact, and the radius CF perpendicular to the chord 1 DD.

The radius CF being perpendicular to the chord 'TD (Prop. 38.) bisects the arc 'TFD. 'IV' is therefore half the are 'IFD.

In the triangle CML the angle M being a right angle, the two remaining angles are (Irop. 22.) equal to a right angle. Wherefore the angle \mathbf{C} is that which the angle L wants of a right angle. On the other side, since the radius C'I is perpendicular to the tangent $B A$, the angle $A{ }^{\prime} D D$ is also that which the angle L wants
 of a right angle. The angle A' CD is therefore equal to the angle C. But tine angle C is measured by the are ' TF , consequently the angle ATD is also measured by the are $\mathrm{T}^{\prime} \mathrm{F}^{\prime}$, which is half of 'IFD. The angle B'TD must therefore be measured by half the are TGD since these two halves of arcs make up half the circumference.
918. Prop. XLII. An angle at the circumference of a circle is measured by half the arc by which it is subtemded.

Let C'ID (fig. 274.) be the angle at the circumference; it has for its measure half the are CFD by which it is subtended.

Suppose a tangent passing through the point T.
The three angles at ' T are measured by half the circumference (Prop. 22.), but the angle A'ID is measured (Prop. 41.) by half
 the are TD, and the angle BГC by half the are ' CC ; consequently the angle CTD must be measured by half the are CFD, since these three halves o ares make up half the circumference.
919. Pror. XLII1. The angle at the centre of a circle is double of the angle at the cir cumference.

Let the angle at the circumference ADi) (fig. 275.) and the angle at the centre $A C B$ be both subtended by the same arc $A B$, the angle $A C B$ is double of the angle $A D B$.

For the angle $A C B$ is measured by the are $A B$, and the angle ADB is (Prop. 42.) measured by half the same arc AB; the angle ACB is therefore double of the angle ADIS.
920. Prop. XLIV. Upon a given line, to describe a segment of a circle containing a given angle.

Fig. 2\%

Let AB (fig. 276.) be the given line and G the given angle, it is required to draw suc a circumference of a circle through the points A and B that the angle 1 shall be equad the angle G

For this purpose draw the lines $A L, B L$ in such manner that the angles A and B shall be equal to the angle G : at the extremities of LA, LB raise the perpendiculars $A C, B C$; and from the point C in which these two perpendiculars cut each other, with the radius CA or CB describe the circumference ADB; the angle D) will be equal to the angle (r .

The angle LAB, formed by the tangent $A L$ and the chord AB, is (Prop. 41.) measured by half the are AFB; and the angle D at the circumference is also measured (Prop. 42.) by half the are AFl ; the angle D is therefore equal to the angle

Fig. 276.
I. A I , But the angle. $L A B$ is made equal to the angle G; the angle D is therefore equ: to the angle G.
921. Prop. XLV. In every triangle the greater side is opposite to the greater anyle, wh the greater angle to the greater side.

In the triangle ABC (fig. 277.), if the side AB be greater than the side AC, tle ang,
C. opposite to the side $A B$ will be greater than the angle B opposite to the side $A C$. Draw the ci-cumference of a circle through the three points A, C, 1 .

Sinee the chord $A B$ is greater than the chord $A C$, it is manifest that the are ADB is greater than the are $\Lambda \mathrm{FC}$; and consequently the angle at the circumference C, which is measured (Prop. 49.) by half the are ADB , is greater than the angle at the circumference B , which is measured by half the are AFC .

Again, if the angle C is greater than the angle B, the side $A B$ opposite to the angle C will be greater than the side AC opposite to the angle B .

The angle C is measured (Prop. 42.) by half the are ADI , and the angle IB by half th: arc $A F C$. But the angle C is greater than the angle B; the are $A D B$ is thercfore greater than the are AFC, and eonsequently the chord $A B$ is greater than the chord $A C$.

922 . Prof. XLVI. Two parallel chords intercept equal arcs.
If the two chords AB, CD (fig. 278.) are parallel, the arcs AC, BD are equal. Draw thr right line 13 C .

Because the lines $A B, C D$ are parallel, the alternate angles ABC, BCD are (Prop. 17.) equal. But the angle at the circumference IBCD is measured (Prop. 42.) by half the are AC ; and the angle at the circumference $B C D$ is measured by half the are BD) ; the ares AC, ED are therefore equal.
923. Pror. XLVII. If a tungent and chord be parallel to eachother, they interer pt equal wes.

Let the tangent FG (fig. 279.) be parallel

Fis. 279. to the chord AB ; the are TA will be equal to the are TB. Draw the right line $\mathrm{T} \lambda$.

Because the lines FG, AB are parallel, the alternate angles FTA, TAB are (Irop. 17.) equal. But the angle FTA, formed by a tangent and a chord, is measured (Prop. 41.) by half the arc ΓA, and the angle at the circumfurence ' FAB is measured (Prop. 42.) by half the are TB. The halves of the ares TA, TB, and consequently the ares themselves, are therefore equal.
924. Puop. XLVIII. The angle formed 'y the intersection of two chords is measured by half the two arcs intercepted by the two chords.

Let the two chords AB, DF (fig. 280.) eut each other at the point C, the angle FCB or ACD is measured by half the two ares FB, AD. Draw $A G$ oarallel to DF.

Because the lines $A G, D F$ are parallel, the interior and exterior ngles G.1B, FCB are (I'rop. 19.) equal. But the angle at the ircumference GAB is measured (Prop. 4थ.) by half the are IFll. The angle FCB is thercfore also measured by half the are jlib.
Because the ehords A G, DF are par llel, the ares GF, AD are I'rop. 46.) equal: AD may therefore be substituted in the room

Fig. 280 .
$\mathrm{f}^{\circ} \mathrm{G} F$; wherefore the angle FCB is measured by half the ares AD, FB.
925. Pror. X LIX. The angle formed by two secants is measured by half the difference of he two intercepted arcs.
Let the angle CAB (fig. 281.) be formed by the two seeants AC, AB, this angle is acasured by half the difference of the two ares GD, CB, interepted by the two secants. Draw DF parallel to AC.
Ibecause the lines AC, DF are parallel, the interior and exterior ngles CAIS, IDD are (Prop. 19.) equal. But the angle FDIB is reasured (l'rop. 42.) by half the are FB ; the angle GAB is lerefore also measured hy half the are FIB.
IBecause the chords GC, DF are parallel, the ares GD, CF are I'rop. 46.) equal; the are FI3 is therefore the difference of the c GI) and the are CFIS. Where the angle A has for its meaare half the difference of the ares GI), CFB.

92G. Puor. L. The angle formed ly two tungents is measured by hulf the difference of th, on intercepted arcs.
Let the angle CAI3 (fig. 282.) be formed by the two tangents $A \mathrm{C}, \mathrm{AB}$; this angle is easured by half the difference of the two ares (GID), (iFI). Draw I) Fivallel to $A C$. Heomse the lines AC, DF are parallel, the interior and exterior angles CAB, FD B are 'ropo. 19.) equal. But the angle IFIDI, formed by the tangent DIB and the chord I)l', is parured (I'rop. 41.) by half the are II). Therefore the angle CAIS is also measured by 1.f the ure I'D.

Becense the tangent $A C$ and the chord DF are parallel, the intercepted ares GF G1) are (Prop. 47.) equal. The are $\mathrm{F} D$ is therefore the difference between the are GLD and the are GFD. Therefore the angle CAB, which is measured by half the are FD , is also measured by half the differenee of the ares GLD, GFD.

Conomary. In the same rey it may be demonstrated that the angle formed by a tangen ATC (fig. 283.) and a secant ADB is measured by half the difference of the two niter cepted ares.
927. Prop. LI. To raise a perpendicular at the extremity of a given line.

At the extremity A (fig. 284.) of the given line AB let it be required to raise a fler pendicular.

From any point C taken above the line $A B$ deseribe a circumferenee passing through the point A and cutting the line $A B$ in any other point, as G. Draw the diameter DG and the right line $A D$; this line AD will be perpendicular to the line AB .

The angle DAG at the eircmmference is measured (Prop. 42.) by half the are DFG, which is half the circumference, because DCG is a dianster. The angle DAG is therefore measured by one fourth

Fig. 284. part of the circumference, and consequently (Defin. 10.) is a right angle, whence the lint AD is (Prop. 11.) perpendicular to the line AB.

Conollary. Hence it follows that the angle at the circumference which is subtendec by a diameter must be a right angle.
928. Prop. LII. From any point without a circle to draw a tangent to that circle.

From the point A (fig. 285.) let it be required to draw a tangent to the circle DTB.

Draw from the centre C any right line CA; bisect this right line, and from the point of division B, as a centre, describe the are CTA. Lastly, from the point A, and through the point T, in which the two ares eut each other, draw the right line $A T$; this right line $A T$ will be a tangent to the circle DTB. Draw the radius C'I.

The angle C'TA at the circumference, being subtended by

Fig. 285. the diameter CA, is (Corol. to Prop. 51.) a right angle; therefore the line TA is perpendi cular to the extremity of the radius C'T, and consequently (Prop. 40.) is a tangent to th circle DTB.

surfaces.

929. Definitions.-1. A mathematical point has neither length, breadtli, nor thicniens The physical point, now for consideration, has a supposed length and breadth exceed ingly small.
930. A physical line is a series of physical points, and consequently its breadth is equal ti that of the physieal points whereof it is composed.
931. Since physical lines are composed of points, as numbers are composed of units, point may be called the units of lines.
932. As to multiply one number by another is to take or xcpeat the first number as man: times as there are units in the second; so to multiply oue line by another is to take o repeat the first line as many times as there are units, that is, physical points, in t's second.
933. Prop. LIII. The surface of a rectangle is cqual to the product of its two sides.

Let the rectangle be ABCD (fig. 286.). If the plysical line $A B$ be multiplied by the phystal line ΛD, the product will be the surface ABC.D.

If as many physical lines cqual to $\mathbf{A B}$ as there are physieal points in the line $A D$ be raised perpendicularly upon AD, these lines $A B, a b$, \&c. will fill up the whole surface of the rectangle $A B C D$. Wherefore the surface
 $A B C D$ is equal to the line $A B$ taken as many times as there are physical points in the lir AD; that is, (Defin. 4.) equal to the line AB multiplied by the line $A D$.
991. Prop. LIV. The surface of a triangle is equal to half the product of its altitude and brse

If from the vertex of any angle A (fiy. 287.) of the triangle $B A C$ be drawn $A D$, per
pendienlar to the opposite side $B C$, this perpendicular is ealled the height, and the side $B C$ the buse of the triangle. Now the surface of the triangle is equal to half t?:e product of the leight $A D$ and the base $B C$.

Produce BC both ways; through the point A draw FG parallel to BC , and raise the two perpendiculars BF, CG.

Because the reetangle BFGC and the triangle BAC are between the same parallels, and have the same bases, the triangle is (Prop. 29.) half the reetangle. But the surfaee of the rectangle is equal (Prop. 53.) to the produet of BF and BC. Wherefore the surface of the triangle is equal to half the

Fig. 287. product of BF and BC, that is, of DA and GC.
932. Pror. LV. To measure the surface of any rectilineal figure.

Let ABCDFA (fig.288.) be the rectilineal figure, whereof it is required to find the surface.

Divide the whole figure into triangles by drawing the lines CA, CF. Then, drawing a perpendicular from the point B to the side CA, multiply these two lines; the half of their product will (Prop. 54.) give the surface of the triangle ABC. In the same manner let the surfaces of the remaining triangles ACF, FCD be found. These three surfaces added together will give the whole surface of the figure ABCDFA.
933. Pıop. LVI. The area of a circle is equal to half the produst of its radius and circumference.

If the radius of the cirele \mathbf{C} (f fg. 289.) be multiplicd by

Fig. 888. its eireumference, the half of the product will give the surfaee of the eircle.

Tiws physical points being manilestly not sufficient to make a eurve line, this must require at least three. If, therefore, all the physical points of a circumference be taken two by two, these will compose a great number of small right lines. From the extremities L, M of one of these small right lines if two radii $L C$ MC be drawn, a small triangle LCM will be formed, the surface of vhich will be equal to half the product of its height ; that is, the radius and its base.

To find the surface of all the small triangles whercof the cirele is composed, multiply the height, that is, the radius, by all the bases, that is, by the circumfurence, and take the half of the produet; whenee the arca or

$\mathrm{Fi}_{\mathrm{i}} \mathrm{g} .289$. surface of the circle will be equal to half the product of the radius and circuinference.
934. Prop. LVIJ. To draw a triangle equal to a given sircle.

Let it he required to form a triangle the surface of which shall be equal to that of the circle AGFDA (fig. 290.).

At the extromity of any radius CA of the circle, raise a perpendicular AB equal to the circumference A GFD, and draw the right line CB. The surfase of the triangle BCA will be cqual to that of the circle AGFDA.

The surface of the eirele is equal (Prop. 56.) to half the product of the radius CA and the cercumference, or the line Λ B. The surface of the triangle is also equal (Prop. .54.) to half the product of its height CA , or radius, and its base BA , or circumference. Therefore the surface of the triangle is equal to that of the circle.

PROPORTION

935. Dprinitions. - 1. The ratio of one quantity to another is the number of times which the first contains the second; thus the ratio of 12 to 3 is four, beeanse 12 contains 3 four times; or, more universally, ratio is the comparative magnitude of one quantity with respect to another.
936. Four quantities are proportinnal, or in geometrical proportion, ar two quantities are said to have the same ratio with two others, when the first contains or is contained in the second, exactly the smme number of times which the third eontans or is contaned in the fouth; thus, the four numbers $6,3,8,4$ are proportionals, because 6 contains 3 as many times as 8 contains 4 , and 3 is contaned in 6 as many tines as 4 is contaned in 8 , that is, twice; which is thus expressed: 6 is to 3 as 8 to 4 ; or 3 is to 6 as 4 tu 8 .
937. I'mor. I. VLII Puralldoyrams which are betuecn the same parallels are to one antother as their besses.

Let the two parallelograms ABCD, FGLM (fig. 291.) be between the same parallels BL, AM, the surface of the parallelogram ABCD contans the surf..ce of the parallelogram FGLM as many times exaetly as the base AD contains the bese FM. Suppose, for example, that the base AD is triple of the base 1:31; in this ease the surface ABCD will also be triple of the surface FGLM.

Divide the base AD into three parts, each of which is equal to the base FM, and draw from the points of divi-
 sion the lines NP, Ris parallel to the side AB.

The parallelograms ABPN, FGLM being between the same parallels and having equal bases, the parallelogram ABPN is (Prop. 30.) equal to the parallelogram FGLA1. For the same reason, the parallelograms NPSR, RSCD are also equal to the parallelogram FGLM. The parallelogram ABCD is therefore eompose of three parallelograms, each of which is equal to the parallelogram FGLM. Consequently the parallelogram ABCD is triple of the parallelogram FGLM.
937. Prop. LIX. Triangles which are between the same parallels are to one another as their b :ses.

Let the two triangles ABC, DFG (fiy. 292.) be between the same parallels LF, AG, the surface of the triangle ABC contains the surface of the triangle DFG as many times as the base AC contains the base DG. Suppose, for example, that the base AC is triple of the base DG, in this ease the surface ABC will be triple of the surfice DFG.

Divide the base AC into three equal parts, AN, NR, RC , each of which is erfual to the base DG, and draw the right lines BN, BR.

Fig. 292.

The triangles ABN, DFG being between the same parallels and having equal bases, the triangle ABN is (Prop.31.) equal to the triangle DFG. For the same reason, the triangles NBR, RBC are each equal to the triangle DFG. The triangle ABC is therefore eomposed of three triangles, eath of which is equal to the triangle DFG. Wherefore the triangle ABC is triple of the triangle DFG.
938. Ркор. LX. If a line be draun in a triangle paraliel to one of its sides, it will cut the other two sides proportionally.

In the triangle BAC (fig. 293.), if the line DF be parallel to the side BC, it will eut the other two sides in such manner that the segment AD will be to the segment DB as the segment AF is to the segment FC. Suppose, for instance, the segment AD to be triple of the segment DB, the segment AF will be triple of the segment FC. Draw the diagonals DC, FB.
The triangles AFD, DFB are between the same parallels, as will be easily conceived by supposing a line drawn through the point \mathbf{F} parallel to the side AB. These two triangles are therefore to one another (Prop. 59.) as their bases; and sinee the base AD is triple of the base DB , the triangle AFD will be triple of the triangle 1) FB.

Fin 295.

Again, the triangles BFD, FDC are between the same parallels DF, BC, and upon the same base DF. These two triangles are therefore (Prop.31.) equal; and sinee the triangle AFD is triple of the triangle DFD, it will also be triple of the triangle FDC.

Las:ly, the triangles ADF, FDC are between the same parallels, as will be easily conceived by supposing a line drawn through the point D parallel to the side AC. These two triangles are therefore to one another (Prop. 59.) as their bases; and since the triangle ADF is triple of the triangle FDC, the base AF will be triple of the base FC.
939. Prop. LXI. Equiangular triangles have their homologous sides proportional.

In the two triangles ABC, CDF (fig. 294.), if the angle A be equal to the angle C, the angle 1 equal to the angle 1 , and the angle C equal to the angle F ; the side AC , for example, opposite to the angle B is to the side CF opposite to the angle \mathbf{D} as the side AB opposite to the angle C is to the side CD opposite to the angle F . Place the two triangles so that the sides AC, CF shall form one right line, and produce the sides AIB, FD till they meet in G.

The interior and exterior angles GAF, DCF being equal, the A lines GA, DC are (Prop. 20.) parallel. In like manner, the alter-

Fig. 291. nate angies GFA, BCA on the same sides being equal, the lines GF, BC are (Prop. 20.) paraliel. Wherefore the quadrilateral figure BGDC is a parallelogram, and eonsequently its opposite sides are equal. In the triangle GAF the line BC, being parallel to the side

G, cuts (Prop.60.) the other two sides proportionally; that is, $A C$ is to CF as AB is - BG, or its equal CD.
940. Pror. LX II. Triangles the sides of uhich are proportional are (quiangular.

In the two triangles BAC, FDG (fig. 295.), if the ide AB is to the side DF as the side BC is to the side : G and as the side AC to the side DG, these two tringles have their angles equal.
Let the side AB be supposed triple of the side DF; he side AC must be triple of the side DG, and the side 3C triple of the side FG.
If the triangle FDG be not equiangular with the triangle BAC , another triangle may be forned equiangular

Fig. 29.5. rith it; for example, Fl.G. But this is impossible; or if the two triangles BAC, FLG were equiangular, their sides would be (Prop. 61.) roportional; and BC being triple of FG, AB would be triple of LF. But A B is triple of DF; whence LF would be equal to DF. For the same reason, LG would be equal

- DG. Thus, the two triangles FLG, FDG, having their three sides equal, would be Prop.5.) identical; which is absurd, since their angles are unequal.

941. Prop. LXIII. Triangles whieh have an angle in one cqual to an angle in the other, and the sides about these angles proportional, are equiangular.
If in the two triangles BAC, NMP (fig. 296.) the angle A be equal to the angle M, ind the side AI be to the side MN as the side AC is o the side MP, the two triangles are equiangular.
If AB be triple of MIN, $\AA \mathrm{C}$ must be triple of MP. Now, if the angle MNP, for example, is not equal to lie angle ABC, another angle may be made, as MNR, which slall be equal to it. But this is impossible ; for the two triangles BAC, NMR, having two angles equal, would be equiangular, and consequently (Prop. 61.) would lave their sides proportional; wherefore, AB oeing triple of MN, AC would be triple of MR, which

Fig. 296. cannot be, since AC is triple of MP.
942. Prop. LXIV. A right line which bisects any angle of a triangle divides the side apposite to the bisectcd angle into two segments, which are proportiona.? to the turo olher sides.
In the triangle BAC, let the angle BAC be bisected by the right line AD, making the angle r equal to the angle s. The segment BD is to the seginent I) C as the sille 13A to the side AC .
l'roduce the side BA, and draw CF parallel to DA.
The lines DA, CF being parallel, the interior and exterior angles , Fo are (I'rop. 19.) equal, and the alternate angles s, C are (I'rop. 17.) also equal. And since the angle r is equal to the angle s, the angle F will also be equal to the angle \mathbf{C}; and consequently the side AF is equal to the side AC.

In the triangle ISFC, the line AD being parallel to the side FC; 131) (Prop. 60.) will be to I)C as IBA is to AI', or its equal AC.
943. Prop. L.XV. To find a fourth proportiomal to three given lines.

Fif. 297. L.et the three lines be $\Lambda, \mathrm{J}, \mathrm{C}(f i g .298$.), it is required to find a fourti line D , sueh that the line Λ shall be to the line I) as the line C is to .ic line 1).
Form any angle RFG, make FAI equal to the line $A, M G$ equal to the line 13 , and F N equal to the line (; draw the right line MN, and through the point G Hraw (il parallel to MN ; NL will be the fourth proportional required.

In the triangle FLG the line NM, being parallel to the side I.G, cuts the other two sides (I'rop. 60.) propor-
 tionally. Wherefore $\mathrm{F}^{\prime} \mathrm{M}$ is to MIG as FN is to NL ; that is, Λ is to B as C is to D . 94. Prop. LXV1. To, find a third propartiomal to tho given lines.
1.et the two lines be Λ, is (fig. 299.), it is required to find a third line C, such that the line A shall be to the Fine 1 ' as the line 1 ' is to the line C .
l'orm any angle LIFG, make liM equal to the line Λ, Mge equal to the line 1 3, and F'N equal to the line B ; draw the right line $M N$, and through the point G draw (il, parallel to MN ; NL will be the third proportional

St6. 293. replifed
In the triangle lil.G the line NM, being parallel to the side L.G, cuts the nthe twe
sides (Prop. 60.) proportionally. Wherefore FM is to MG as FN is to NL; that is, A is to 1 B as I ' is to C .
945. Pror. LXVII. If four lines be proportional, the rectungle or product of the extremes is equal to the rectangle or prodact of the means.

Let the line A be to the line B as the line C is to the line D ($f g .300$.) ; the reetangle formed by the lines Λ and D is equal to the rectangles formed by the lines B and C.

Let the four lines meet in a common point. forming at that point four right angles; and draw the lines parallel to them to eomplete the rectangles x, y, z.

If the line A be triple of the line B, the line C will be triple of the line D .

The rectangles or parallelograms x, z being between the same

Fir. 500. parallels, are to one another as their bases. Sinee the base Λ is triple of the base B , the rectangle x is triple of the reetangle z. In like manner, the rectangles or parallelograms y, z, being between the same parallels, are to one another as their bases: since the base C is triple of the base \mathbf{D}, the rectangle y is therefore triple of the reetangle z. Wherefore, the rectangle x being triple of the reetangle z, and the reetangle y being triple of the same rectangle z, these two rectangles x and y are equal to one another.
946. Pror. LXVIII. Four lines which have the rectangle or product of the extremes equal to the rectanglc or product of the means are proportional.

Let the four lines $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}(f g .301$.) be such that the reetangle of A and D is equal to the rectangle of B and C, the line A will be to the line B as the line C to the line D.

Let the four lines meet in a common point, forming at that point four right angles, and complete the reetangles x, y, z.

If the line A be triple of the line B, the line C will be triple of the line D .

The reetangles x and z, being between the same parallels,

Fig. 30 . are to one another as their bases: since the base A is triple of the base B , the rectangle x will be therefore triple of the reetangle z. And the reetangle y is, by supposition, equal to the rectangle x; the reetangle y is therefore also triple of the reetangle z.

But the reetangles y, z, being between the same parallels, are to one another as their bases. Henee, since the rectangle y is triple of the reetangle z, the base C is also triple of the base D.
947. Pror. LXIX. If four lines be proportional, they are also proportional alternately.

If the line A is to the line B as the line C to the line D (fig. so2.), they will be in proportion alternately; that is, the line A will be to the line C as the line B to the line D.

Beeause the line Λ is to the line D as the line C is to the line D, the reetangle of the extremes A and D is equal to the reetangle of the means B and C ; whence it follows (Prop. 68.) that the line A is to the

\qquad

FIg. 302 line C as the line B is to the line D.

Otherwise, - Suppose the line A to be triple of the line B, the line C will be triple of the line \mathbf{D}. Hence, instead of saying A is to \mathbf{B} as C to D , we may say three times B is to 13 as three times D is to D. Now it is manifest that three times B is to three times D as 1 ') is to D. Therefore the line A (whieh is equal to three times B) is to the line C (which is equal to three times D) as the line B is to the line D .
948. Prop. LXX. If four lines be proportional, they will be proportional by composition.

Let the line Λ be to the line B as the line C is to the line D (fy. 303.), they will be rroportional by composition ; that is, the line A joined to the line B will be to the line \boldsymbol{B} as the line C joined to the line D is to the line D .

If the line A contain the line B, for example, three times, and the line C eontain the line \mathbf{D} three times; the line \mathbf{A} joined to the line \mathbf{B} will contain the line B four times, and the line C joined to the line D will eontain the line D four times. Therefore the line Λ joined to the line

Fig. 303.
the line 13 as the line C jonned to the line 1 is to the line D.
949. Prop. LXXI. If four lines be proportional, they will be also mroportiond by division.

If the line Λ is to the line B as the line C is to the line D (fig. 304.), they will be proportional by division; that is, the line Λ wanting the line B is to the line B as the line C wanting the line D is to the line D.

If the line A contain the line B, for example, three times, and the line C contain the line D three times, the line A wanting the line B will eon-
 tain the line B only twice; and the line C wanting the line D will also contain the ine l^{\prime}
wice. Therefore the line A wanting the line B is to the line B es the line C wantiag the ine D is to the line D .
950. Prop. LXX II. If three lines be proportional, the first is to the third as the square of he first is to the square of the second.
If the line CD is to the line $c d$ as the line $c d$ is to a third line x (fig. 305.), the line CD \& to the line x as the square of the line CD is to the square of the
ine $c d$. Take CF equal to the line x, and draw the perpendicular iB.
Since the line CD is to the line $c d$ as the line $c d$ is to the line CF , he rectangle of the extremes CF, CD, or CL is equal (Prop. 67.) 0 the rectangle of the means, that is, to the square of $c d$.
Again, the square of CD and the rectangle of the lines CF, CL, eing between the same parallels, are to one another (Prop. 58.) as heir bases. Therefore CD is tc CF , or x, as the square of CD is
 - the rectangle of CF and CL, or to its equal the square of $c d$.
951. Pror. LXXIII. If two chords in a circle cut cauch other, the rectangle of the segunts of one is equal to the rectangle of the segments of the other
Let the two chords AB, CD (fig. 306.) in the circle cut each other in the print F, the ectangle of AF, FB is equal to the rectangle of CF, FD. Draw he two right lines AC, DB. Because in the triangles CAF, BDF he angles at the eircumference A and D are both measured (I'rop. 2.) by half the are CD, they are equal. Because the angles C and 3 are both measured (Prop. 42.) by half the are AD , these angles re also equal. And the angles at F are equal, because they are ertical. These two triangles are therefore equiangnlar, and consenently (Prop. 61.) their sides are proportional. Wherefore the de AF opposite to the angle C is to the side FD opposite to the
 ngle B as the side CF opposite to the angle A is to the side FB opposite to the ngle D. Therefore (Prop. 69.) the rectangle of the extremes AF, FB is equal to the ctangle of the means CF, FD.
952. P'sor. LXXIV. To find a mean proportional betucen turo given lines.

Let there be two lines A, C (fig. 307.), it is required to find a third line 1 , such that se line A shall be to the line B as the line B is to the ne C.
Place the lines A and C in such manner that they shall rm one right line DGL, and bisect this right line in the aint F. From the point F, as a centre, describe the cirunferenee of a circle DMLN; then, at the point G, where de two lines are joined, raise the perpendicular GM ; GM is re mean proportional sought between the lines A and C. roduce MG to N .

Because the chords DL, MN cut each other at the point G, the rectangle of the segents DG, GL is (Prop. 73.) equal to the rectangle of the segments MG, GN.
Because the radius FL is perpendicular to the chord MN, FL (I'rop. 38.) bisects MN ; erefore GN is equal to GM.
Lastly, because the rectangle of the extremes $D G, G L$ is equal to the rectangle of the eans GM, GN, or its equal GM, DG is to GM as GMI is to GL. Therefore GM is a ean proportional between DG and GI., that is, between the lines A and C.
9:3. Phor. LXXV. The bases and altitudes of equal triangles are in reciprocal or inverse iiv.
I.et the two triangles ABC, DFG ($f i g .308$.) be equal; the base AC will be to the base

G, as the perpendicular FMI to the perpendicular BL; that the 1 ases and altitudes are in reciproctl or inverse ratio.
The triangle A ISC (Prop. 54.) is half the product or rectrle of the base A C and the altitude 13L. Again, the trifrle DVG is (1'rop. 54.) half the product or rectangle of the se I)G and the altitude FM. The two triangles being ual, the two reetangles, which are double of the triangles, 11 therefore also be equal.
Again, because the rectangle of the extremes $\Lambda \mathrm{C}, \mathrm{BI}$, is nal to the rectangle of the means DG, FMI $A C$ (l'rop.
 .) is to DG as RM is to Wh.
4.54. Imor. LXXVI. Triangles the bases and altitudes wherrof are in reciprocal or inverse ios are e pual.
In the two triangles ABC, DFG (fig. 309.), if the lase $\triangle C$ he to the base DG as the remencular I'M to the peracodicular BL, the surfiees of the two triangles are equal.

Because AC is to DG as FMI is to BL, the product or rectangle of the extremes AC, BI, is (Prop. 67.) equal to the product or rectangle of the means DG, FM. The halver (forol. to Prop. 27.) of these two rectangles, namely, triangles ABC, DFG, are therefore equat.
9.55. Prop. LXXVII. Two sccants drawn from the same point to a circle are in the inverse ratio of tie parts ulhich lie out of the circle.
let the two secants be CA, CB (fig, 310.) ; CA is to CB as CD is to CF. Draw the right lines FD, DA.

In the triangles $\mathrm{CDA}, \mathrm{CFB}$ the angles at the circumference Λ and B, being both

Fig. 30%.
 measured (Prop. 42.) by half the are F1), are equal, and the angle \dot{C} is common to the two triangles. These two triangles are therefre (Prop. 23.) equiangular and (Prop. 61.) have their sides proportional. Wherefore the side CA of the first triangle is to the side Ci3 of the second triangle as the side CD) of the first triangle is t, the side CF of the sccond triangle.
956. Prop. I.XXVIII. The tangent to a circle is a mean proportional between the seant and the part of the sccant which lies out of the circle.

In the circle $\mathrm{A} B \mathrm{D}, \mathrm{CB}$ (fig. 311.) being secant, and CA tangent, CB is to CA as CA is t., (I). Draw the right lines Al, AD).

The triangles $\mathrm{CAB}, \mathrm{CD} A$ have the angle C common to both. Also the angle B is measured (Prop. 42.) by half the are AFD; and the angle CAD formed by the tangent $A C$ and the chord AD) is measured (Prop. 41.) by half the same are AFD. The two triangles $\mathrm{CAB}, \mathrm{CDA}$, having their two angles equal, are (I'rop. 23.), equiangular, and consequently (Prop.61.) have their sides proportional. Hence the side CB of the greater triangle opposite to the angle $C A B$ is to the side C. A of the smaller triangle opposite to the angle D) as the side CA of the greater triangle opposite to the angle B is to the side CD of the s:matler triangle opposite to the angle A.

Comoldar. From this proposition is suggested a new method of

Fig. 511. finding a mean proportional between two given lines.

Take CIS cqual to one of the given lines, and CD equal to the other ; bisect D) ; from the psint of division, as a centre, describe the circumference 1 AB ; and draw the tangent CA. This tangent is a mean proportional between $C B$ and $C D$, as appears from the proposition.
957. Prop. IXX1X. To cist a givea line in extrene and mean ratio.

Let it be required to divide the line CA (fiy. 312.) in cxtreme and
 s^{\prime} all be t, the greater part as the greater part is to the less.

At the cxtrenity A of the line CA raise a perpendicular $A G$ equal to half the line CA; from the point G, as a centre, with the radius GA, describe the circamerence $A D B$; draw the line ClB through the centre, and take CF equal to CD; the line CA will be dividud at the point F in extreme and mean ratio.

Because (Prop. 78.) CB is to CA as CA is to CD, by division, (Prop. 71) CB wanting CA or its equal DB is to CA, as (A wanting (1) or its equal CF is to CD) that is, CD or CF is to CA as FA is

Fig 312.
 to Ci) or CF ; or, inversely, CA is to CF as CF is to FA , or the line AC is cut in extreue and mean ratio.

SIMILAR FIGURES.

958. Definitions. - 1. Figures are similar which are composed of an equal number of physical points disposed in the same manner. 'llus, the figures $A \mathrm{BCDI}$, abcdf (fig. 313.) are similar, if every point of the first figure has its corresponding point placed in the same manner in the second.
Hence it follows, that if the first figure is, for cxample, three times greater than the sccond, the points of which it is composed are three times greater than those of the second figure.

Fig. 313
2. In similar figures, those lines are said to be homologous which are cromposed of an equal number of corresponding points.
959. Puop. LXXX. In similar figures the homologous sides are proportional.

Let the similar figures be ABCDF , abcdf (fig. 314.), and the homologous lines CA, \boldsymbol{C}, $\mathrm{F}, c f$; CA is to C F as $c a$ to $c f$.
Sinee the lines CA, ca are homologous, they are eomposed an equal number of corresponding points; as are also the onologous lines CF, $c f$. If, for instance, the line CA is mposed of 40 equal points, and the line CF of 30 , the ne ca will necessarily be composed of 40 points, and the line of 30 ; and it is manifest that 40 is to 30 as 40 to 30 . hercfore CA is to CF as $c a$ to $c f$.

Fig. 314.
960. Pror. LXXXI. The circumferences of circles are as their radii.

The circumference DCB (fig. 815 .) is to the radius ΛB as the circumference $d c b$ is in le radius $a b$.
All circles are similar figures, that is, are composed of an ual number of points disposed in the same manner. They we therefore (Prop. 80.) their homologous lines proporonal. Therefore the cireumference DCB is to the radius B as the circumference $d c b$ is to the radius $a b$.
961. 'rop. LXXXII. Similar figures are to each other as squares of their homologous sides.
Let the two similar figures be A, a (fig. 316.) Upon the

Fig. 315 mologous sides CD, $c d$ form the squares B, b. The surface A is to the surface a as the mare B is to the square b.
Since the figures A, a are similar, they are composed of an equal number of eorsponding points; and since the homologous sides CD, cd are comused of an equal number of points, the squares drawn upon these lines b are aiso composed of an equal number of points.
If it be supposed that the surface A is composed of 1000 points d the square B of 400 points, the surface A will be also composed of 00 points and the square b of 400 . Now it is manifest that 1000 to 400 as 1000 to 400 . Wherefore the surfaee A is to the square B the surface a is to the square b; and, alternately (Prop. 69.), the sure \mathbf{A} is to the surface a as the square B to the square b.
 Conol.aky. It follows that if any three similar figures be formed upon the threc sides a right angled triangle, the figure upon the hypothenuse will be equal to the other two en together; for these three figures will be as the squares of their sides; therefore, since : square of the hypothenuse is equal to the two squares of the other sides, the figure med upon the hypothenuse will also be equal to the two other similar figures formed on the other sides.
962. l'кор. LXXXIII. Circles are to each other as the squares of their radii.

Let two eircles DC'B, dcb (fig. 317.) be drawn.
The surface contained within the circumference $D C B$ is to surface contained within the circumference $d c b$ as the stare formed upon the radius AB to the square formed upon 1. radius $a b$.

Ihe two eireles, being similar figures, are composed of an (1al number of corresponding points, and the radii $\Lambda \mathrm{B}$, ab Ing eomposed of an equal number of points, the squares of t se radii will also be composed of an equal number of points.

Fig. 317. 'pose, for example, that the greater circle DCB is composed of 800 points, and the 8 are of the greater radius $\overline{13}$ of 300 points, the smaller circle del will also be cumpused 1, 300 points, and the square of the smaller radius of 300 . Now it is manifest that 800 is \$ 300 as 800 to 300 . 'Therefore the greater circle DCD is to the square of its radins A IS a he sinaller eircle dcb is to the square of its radius $a b$; and, alternately, the greater circle is the lesser cirele as the greater square is to the lesser square.
63. 1'кор. LXXXIV. Similar triamples are equianyular.
f the two triangles A IBC, abc ($f i g .318$.) be composed of an equal number of points donsed in the same manner, they are equiangular.
or since the triangles $A B C$, ahc are similar figares, they h_{3} e their sides ('rop, 80.) proportional ; they are therefore (1 . 62.) equiangnlar.
;4. I'mor. $1 . \mathcal{X} \mathbf{X} \mathrm{V}$, Equitmgular triangles are similar the triangles $A B C$, abce are equiangular, they are also si lar. see fiy. 318.
the triangle $A B C$ were not similar to the triangle abe,

an lier triangle might be formed npon the line $\triangle($; for example, $\Lambda \mathrm{DC}$, whieh should be al lar to the triangle $u b c$. Now, the triangle $A D C$, being similar to the triangle ubre
will also (Prop. 84.) be equiangular to abc ; which is impossible, since the triangle ABC is supposed equiangular to abc.
965. Pnor. LXXXVI. If four lincs are proportionol, their squares are also proportional.

If the line $A B$ be to the line $A C$ as the line $A D$ is to the line $A F(f i g .319$,), the square of the line $A B$ will be to the square of the line $A C$ as the square of the line $A D$ is to the square of the line $A F$.

With the lines $A B$ and $A D$ form an angle $B A D$; with the lines $A C$ and $A F$ form another angle $C A F$ equal to the angle $B A D$, and draw the right lines BD, CF.

Because $A B$ is to $A C$ as $A D$ to $A F$, and the eontained argles are equal, the two triangles BAD, CAF

Fig. 319. have their sides about equal angles proportional ; they are therefore (Prop. 63.) equinngular and eonsequently (Prop. 85.) similar : whence they are to one another (Prop. 82.) ds the squares of their homologous sides. If, then, the triangle BAD be a third part of the triangle $C A F$, the square of the side $A B$ will be a third part of the square of the side $A C$, and the square of the side $A D$ will be a third part of the square of the side $A F$. Wherefore these four squares will be proportional.
966. Prop. L.XXXVII. Similar rectilineal figwes may be divided into an equal number of similar triangles.

Let the similar figures be $\mathrm{ABCDF}, a b c d f$, and draw the homologons lines $\mathrm{CA}, c a, \mathrm{Cl}, \mathrm{rf}$; these two figures will be divided into an equal number of similar triangles.

The triangles BCA, bca (fig. S20.), being eomposed of an equal number of eorresponding points, are similar. The triangles ACF, acf and the triangles FCD^{2}, $f d$ are also, for the same reason, similar. Wherefore the similar figures $\mathrm{ABCDF} \mathrm{F}^{2}$, abcolf are divided into an equal number of similar triangles.

Fis. 320.
967. Prop. LXXXVIII. Similar figures are equiangular.

The similar figures ABCDF, abedf (see fig. preeed. Prop.) have their angles equal. Draw the homologous lines CA, $c a, \mathrm{CF}, c f$. The triangles BCA, bea are similar, and comsequently equiangular. Therefore the angle B is equal to the angle l, the angle BAC to the angle bac, and the angle BCA to the angle bca. The triangles ACF, acf, FCD, fed are also equiangular, beeause they are similar. Therefore all the angles of the similar figures ABCDF , abcdf are equal.
968. Pıop. LXXXIX. Equiangular figures the sides of which are proportional are similar.

If the figures ABCDF , abcrf (fig. 321.) have their angles equal and their sides propor. tional, they are similar. Draw the right lines CA, ca, CF, $c f$.
'The triangles CBA, cba, have two sides proportional and the contained angle equal ; they are therefore (Prop. 63.) equiangular, and eonsequently (Prop. 85.) similar. The lines CA, ca are therefore (Prop. 80.) proportional.

The triangles CAI', caf have two sides proportional and the contained angle equal; for if from the equal angles

Fig. 321 .
$\mathrm{BAF}, \operatorname{baf}$ be taken the equal angles $\mathrm{BAC}, \mathrm{bac}$, there will remain the equal angles CAl , caf. These two triangles are therefore equiangular, and eonsequently similar. In the same manner it may be proved that the triangles CFD, cfd are similar.

The two figures ABCDF, abcdf are then eomposed of an equal number of similar triangles, that is, they are composed of an equal number of points disposed in the sance manner, vi are similar.
969. Definitions. - 1. A plane is a surface, sueh that if a right line applied to it touch it in two points it will touch it in every other point. The surface of a fluid at rest, or of a well-polished table, may be considered as a plane.
2. A right line is perpendicular to a plane if it make rignt angles with all lines which ean be drawn from any point in that plane. Thus BA (fig. 322.) is perpendieular to the plane MLG I'l'N, beeause it makes right angles with the lines $A \mathrm{M}$, AL, A G, \&e. drawn from the point A.
3 Let AB (fig. 323.) be the common intursection of two planes.

Fis. 3 新

If two right lines LAI, FG be drawn, in these two planes, perpendieular to the line $\mathrm{A} B$, these will form four angles at the point C , which are called the inclinations of tl.e two planes, or the angles formed by the two planes.
4 If the line AB (fig. 324.) revolve about itself, without ehanging its place, the line AC , whieh makes an acute angle with AB, will

Fig. 545.

Fig. 3 \%4. deseribe in the revolution a coneave surfaee LAC ; and the line AD , whicl makes an obtuse angle with AB, will describe in the revolution a convex surface MA1).
5. But the line AF (fig. Defin. 2.), which makes a right angle with AB, will deseribe in the revolution a surface which will be neither coneave nor convex, but plane : and the line AB will be perpendieular to the plane MLGFPN. because it will make right angles with the lines AM, AL, AG, \&e. drawn from the point A in that plane.
6. Two planes are parallel when all perpendiculars drawn from one to the other are equal. Sce fig. 325., whercin Al3, CD are equal between the surfaces LM, FG.
970. Pror. XC. A perpendiculur is the shortest line uthich can be aun from any point to a plane.

From the point B (fig. 326.), let the right line BA be drawn rpendieular to the plane DF; any other line, as BC, will be longer than the line BA. pon the plane draw the right line $\Lambda \mathrm{C}$.
Beeause the line BA is perpendicular to the plane DF, the angle BAC is a right angle. he square of BC is therefore (Prop. 32.) equal to the squares BA and AC taken together. Consequently the square of BC greater than the square of BA , and the line BC longer than line BA .
971. P'ıor. XCI. A perpendicular measures the distance of amy int from a plane.
The distanee of one point from another is measured by a right e, because it is the shortest line which can be drawn from one
 int to ansther. So the distance from a point to a line is measured a perpendicular, because this line is the shortest which ean be drawn from the point the line. In like manner, the distance from a point to a plane must be measured by gerpendicular drawn from that point to the plane, beause this is the shortest line which he drawn from the point to the plane.
972. 1'ror. X CHI. The common intersection of tuo planes is a right line.

Let the two planes ALBMAA, AFBGA (fig. 327.) intersect each other; the line which common to both is a right line. Draw a riglit line from the point to the point 13 .
Becanse the right line AB touches the two planes in the points and 13 , it will touch them (Defin. 1.) in all other points; this line refore, is common to the two planes. Whercfore the eommon ersection of the two planes is a right line.
373. P'sor. XCLII. If three peints, not in a right line, are comin to turo phanes, these turo phanes are ome and the same plane.
Leet two planes be supposed to be placed upon one another, in such 3 mace that the three points A, B, , (shall be common to the two

Fig. 327. Ines; all their other points will also be common, and the two plimes will be one and ${ }^{1}$ same plane. The point D, for esample, is common to both planes. Draw the right 1-5 A 13, C ($)$
Becauce the right line A13 (fiy. 328.) to ouches the two planes in the points A and B , it 1. whelh them (D).fin. 1.) in every other point; it will therefore t ch them in the point F . The point F is thacrfore common to 1. Wo planes.

Lain, beamse the right line CD tonches the two planss in the 1, it, Cand 1%, it will touch them in the point 1 ; theretore the 1ht D is conilion th the two plines. The same may lee shown crerning every oller point. Wherefore the two planes coincide
 it 11 poines, or are meat athe same plane.
71. 1'sor. XCIV. If a right line be propoulicular to two right line., whoth cut cach other, ill be perpendicellur to the plare of these right lines.

Let the line $\mathbb{A} B$ (fig. S29.) make right angles woth the lines $A C, A D$, it will be perpers dicular to the plane which passes through these jines.

If the line $A 13$ were not perpendicular to the FDCG , another plane might be made to pass through the point A, to which the $A B$ would be perpendicular. But this is impossible; for, since the angles BAC, BAD are right angles, this other plane (Defin. 2.) must pass throngh the points (', D) it would therefore (I'rop. 93.) be the same with the plane FDCG, since these two planes would lave three common points A, C, D.
975. Pror. XCV. From a gixen point in a plane to raise a perpen-

Fifs. 32\%. dicular to that p/ane.

Let it be required to raise a perpendicular from the point $A(f i y, 330$.) in the plane L.M.
Form a rectangle CDFG, divide it into two rectangles, hating a eummon section $A B$, and place these rectangles upon the plane LaI in such a manner that the bases of the two rectangles AC, AG shall be in the plane LA, and form any angle with each other; the line $A B$ shall be perpendicular to the plane LM. The line AB makes riglit angles with the two lines $A C, A G$, which, by supposition, are in the phane LM; it is therefore (Prp.91.) perpendicular to the plane L.I

Fig. 5.50 .
976. Ркор. XCVI. If two p'anes eut cuch other ut right angles, and a right line be drawn in one of the planes perpendicu'ar to their common intersection, it will be perpendicular to the other plane.

Let the two planes AFBG, ALBM (fig. 331.), eut each other at right angles; if the line LC be perpendicular to their common intersection, it is also perpendicular to the plane AFBG. Draw CG perpendicular to AB.

Because the lines CL, CG are perpendicular to the common in. tersection $\Lambda 13$, the angle LCG (Defin. 3.) is the angle of inclination of the two planes. Since the wo planes cut each other perpendicularly, the angle of inclination LCG is thercfore a right angle.

And because the line LC is perpendicular to the two lines C.A, CG in the plane ABFG, it is (Prop. 94.) perpendicular to the plane AFBG.
977. Prop. XCVII. If one plane meet another plane, it makes

Fig. 3:1. angles with that oller plane, which are together equal to two right angles.

Let the plane ALIBM (fig. 332.) meet the plane AFBG; these planes will make with each other two angles, which will together be equal to two right angles. Through any point C draw the lines FG, LM perpendicular to the line $A B$. The line CL makes with the line FG two angles together equal to two right angles. But these two angles are (Defin. 3.) the angles of inclination of the two planes. Therefore the two planes make angles with each other, which are together equal to two right angles.

Corolarr. It may be demonstrated in the same manner that planes which intersect each other have their vertical angles equal, that parallel planes have their alternate angles equal, \&e.
978. Prop. XCVIII. If two plares be parallel to each other, a right line, which is perpendicular to one of the planes, will be aiso perpendicalar to the other.

Let the two planes LM, FG (fig. 333.) be parallel. If the line B.A be perpendicular to the plane $F G$, it will also be perpendicular to the plane L.M. From any point \mathbb{C} in the plane LAI draw $C D$ perpendicular to the plane FG, and draw BC, AD.

Because the limes $B A, C D$ are perpendicular to the plane FG, the angles A, D are right angles.

Because the planes LA, FG are parallel, the perpendiculars AB, DC (Defin. 6.) are equal; whence it follows that the lines BC, AD are parallel.
'The line BA, being at right angles to the line AD, will also (Prop. 13.) be at right angles to the parallel line BC. The line $13 A$ is therefore perpendicular to the line BC.

In the same manner it may be demonstrated that the line $B A$ is at right angles to all other lises which ean be drawn from the point \mathbf{B} in the plane LM. Wherefore (Defin. 2.) the line BA is perpendicular to the plane LM.

SOLIDS.
979. Definitions. - 1. A solid, as we have before obsurved, is that which has length, breadth, and thickness.
2. A polyhedron is a solid terminated by plane surfaces.
3. A prisin is a solid terminated by two identicia plane bases parallel to each other, and by surfaces which are parallelugrams. (Fig. 334.)
4. A parallelopiped is a prism the bases of which are parallelograms. (Fig. 333.)
5. A cube is a solid terminated by six square surfaces: a dic, for example, is a cube. (Fig. 336.)
6. If right lines be raised from every point in the perimeter of

Fig. 33.

Fis. 3 3 $\%$ any rectilineal figure, and meet in one common point, these lines together with the rectilineal figure inclose a solid which is called a pyrantid. (Fig. 337.)
7. A cylinder is a solid termmated by two plates, which are equal and paral el circles, and by a convex surface; or it is a solid formed by the revolution of a parallelogram about one of its sides. (Fi\%. 3.38.)

Fig. 350.

Fig. 3.37.

Fig. 3J\%.
S. If right lines be raised from every point in the circumference of a circle, and meet in one common point, these lines t gether with the circle inclose a solid, which is called a cone. (Fig. 339.)
9. A semicircle rovolving about its diameter forms a solid, which is called a sphere. (Fig. 340.)
10. If from the vertex of a solid a perpendicular be let fall upon the opposite plane, this perpendicular is called the aliitule of the solid. In the pyramids $\mathrm{ACD}, \mathrm{Acd}$ (fiy. 341.), AB, ab are their respective altitudes.

Fig. 533.

Fing 3 to.

Fig. 311.
11. Solids are said to be equal, if they inclose an equal space: thus a cone and a pyramid are equal solids if the space inclosed within the cone be equal to the space inclosed within the pyranid.
12. Similar solids are such as consist of an equal number of physical points disposed in the sanse manner.
Thns (in the fig. Defin. 10.) the larger pyramid ACD and the smaller pyranid Acd ane nilar solids if every point in the larger pyramid has a point corresponding to it in the raller pyramid. A hundred musket balls, and the same number of cannon balls, disposed the same manner, form two similar solids
980. 1'uop. X C1X. The solid content of a cube is "qual to the product of one of its sides ice multiplied by itsclf.
Let the lines $A 13, \Lambda 1$) (fig. 342.) be equal. Let the line $A \mathrm{D}$, drawn perpendicular to 13 , be supposed to move through the whole length of $A B$; when it ives at BC, and coincides with it, it will have formed the square DABC, if will lave been multiplied by the line $A B$.
Next let the line AF be drawn ecpral to $A D$, and perpendicular to the fue DABC ; suppose the plane DABC to move perpendicularly through 1. whole length of the line $\Lambda \mathrm{J}$, when it arrives at the plane MFG1, 11 coincides with it, it will have formed the enbe AFLC, and will have I 11 multiplied by the line $A \mathrm{~F}$.

Hence it appears, that to form the cube $\Lambda \mathcal{F} L C$, it is necessary, first, to multiply the side -) by the side $A B$ equal to $A D$; and then to multiply the product, that is, the square ($A C$, by the side $A F^{\prime}$ equal to $A I$); that is, it is 1 exsary to multiply AD) by AD, and to multiply the pro-(-t again by AI)
21. l'nor. C. Similuer solids huve their homologous lines pron 1 rimal.
et the two solids A, a (fiy. 34:3.) be similar; and let their
 a ob by.
iecanse the solids A, a are similitr, every point in the solid

fat a point corresponding to it, and disposed in the same
manner, in the solid n. Thus, if the line AB is composed of 20 physical points, and the line BG of 10 , the line $a b$ will be composed of 20 eorresponding points, and the line lig of 10 . Now it is evident that 20 is to 10 as 20 is to 10 : therefore AB is to BG as $a b$ to bg , 982. Phop. CI. Similar solids are equiangulur.

Let the solids (see fig. to preeed. Prop.) A, a be similar ; their corresponding angles are equal.

Beeause the solids A, a are similar, the surfaces BAF, baf are eomposed of an equal number of points disposed in the same manner. These surfaces are therefore similar figures, and consequently (Prop. 88.) equiangular. The angles B, A, F are therefore equal to the angles b, a, f. In the same manner it may be demonstrated that the other correspondent angles are equal.
983. Prop. CII. Solids which have their angles equal and their sides proportional are similar.

If the solids A, a (fig. 344.) have their angles equal and their sides proportional, th.ey are similar.

For if the solids A, a were not similar, another solid might be formed upon the line BF similar to the solid a. But this is impossible; for, in order to form this other solid, some angle or some side of the solid A must be increased or diminished; and then this new solid would not have all its angles egual and all its sides proportional to those of the solid a, that is (Prop. 100,101 .), would not be similar.
984. Pror. CIII. Similar solids are to one another as the cubes
 of their homologous sides.

Let A, a (see fig. to preeed. Prop.) be two similar solids, the solid A contains the solid a as many times as the cube formed upon the side BF contains the cube formed upon the side bf.

Beeause the solid A is similar to the solid a, every point in the solid A has its corresponding point in the solid a. From whence it follows, that if the side BF is composed, for example, of 50 points, the sile bf will also be eomposed of 50 points: and consequently the eubes formed upon the sides BF , bf will be composed of an equal number of points.

Let it then be supposed that the solid A is eomposed of 4000 points, and the eube of the side BF of 5000 points; the solid 4 must be composed of 4000 points, and the cube of the side lof of 5000 points. Now it is evident that $4 C 00$ is to 5000 as 4000 to 5000 . Wherefore the solid A is to the cube of BF as the solid a to the eube of $b f$; and, alternately, the solid A is to the solid α as the eube of 13 F to the enbe of $b f$.

Corollak. It may be demonstrated in the same manner that the spheres A, a (fig. 345.), whieh are similar solids, are to one another as the cubes of their radii AB , $4 b$.
985. Pisor. CIV. The solid content of a perpendicular prism is equal to the product of its base and height.

The solid eontent of the perpendicular prism ABCD ($f i g .346$.) is equal to the product of its base AD, and height AB.

Fig. 315

Fig. 346.

If the lower base $A D$ be supposed to move perpendicularly along the height $A B$ till it coincides with the upper base BC, it will have formed the prism ABCD. Now the base AD will have been repeated as many times as there are physieal points in the height AB. Therefore the solid content of the prism $A B C D$ is equal to the product of the base multiplied by the height.

Corollary. In the same mamer it may be demonstrated that the soiid content of the perpendientar eylinder ABCD is equal to the produet of its base AD and height AB .
986. Puor. CV. The solid content of an inclined prism is equal to the product of its base and height.

Let the inelined prism be CP (fig. 347.), it is equal to the produet of its base RU and its height CD.

Conceive the base NB of the perpendicular prism NA, and the base RP of the inelined prism PC, to move on in the same time parallel to themselves; when they have reached the points A and C, eaeh of them will have been taken over again the same number of times. But the base NB will have been taken over again (Prop. 104.) as many times as there are physieal points in the height CD. The base RP will therefore have been taken over again as many times as there are physieal points in CD.

Fig. 347. ('onsequently the solid content of the inelined 1 rism CP is equal to the product of itr base RP and the height CD. the base. Draw AB perpendicular to the base CD; draw also $z c, \mathrm{BE}, b c$
Because the planes $c d$ CD are parallel ; AB, being perpendicular to plane CD, will also (Prop. 93.) be perpendicular to the plane $c d$: cuce the triangles $\mathrm{A} b c, \mathrm{~A} \mathrm{BC}$, having the angles $b, \mathrm{~B}$ right angles, 1 the angle A common, are equiangular. Therefore (Prop. 61.) A b $o \mathrm{AB}$ as $b c$ to BC , and as Ac to AC .
In like manner it may be proved that $A b$ is to $A B$ as be to \therefore, and as $A e$ to $A E$. Consequently if $A b$ be one third part of $A B$, will be one third part of $B C$, be the same of $B E$, $A c$ of ΛC, and $A e$
 AE.

F:; \quad. $: 8$. A
Again, in the two triangles $\boldsymbol{c A e}, \mathrm{CA}$, there are about the angle A, eommon to both, , sides proportional; they are therefore (Prop. 63.) equiangnlar, and consequently mp. 61.) have their other sides proportional. Therefore ce will be proportional to
(The two triangles cbe, CBE, having their sides proportional, are thercfore (Prop. 89.) ilar. The same may be demonstrated concerning all the other triangles which form the tes $c d, \mathrm{CD}$. Therefore the section $c d$ is similar to the base CD.
Remark. If the perpendicular AB fall out of the base; by drawing lines from the ats $b, \mathrm{~B}$, it may be demonstrated in the same manner that the section is similar to the

8s. Prop. CVII. In a pyramid, sections parallel to the base are to one another as the tres of thcir heights.
Let CD cll (fig. 349.) be parallel sections. From the vertex A draw a perpendicular to the plane CD ; the plane $c d$ is to the plane $C D$ as the square of height $A b$ is to the square of the height $A B$. Draw BC, b. The line AB , being perpendicular to the plane CD, will also (Prop. be perpendicular to the parallel plane $c d$: whence the angle Abc right angle, and also the angle ABC . Moreover, the angle at A mmon to the two triangles Abc, ABC; these two triangles, there, are equiangulir. Therefore (Prop. 61.) the side $c b$ is to the side as the side $A b$ is to the side $A B$; and consequently the squarc of to the square of $C B$ as the square of $A b$ to the square of $A B$. he planes $c d, C D$, being (Prov. 106.) similar figures, are to one her (Prop. 82.) as the squares of the homologous lines $c b, \mathrm{CB}$;

Fig, 319. are therefore also as the squares of the heights $A b, A B$.
orollary. In the same manner it may be demonstrated that in a cone the sections Ilel to the base are to one another as the squares of the heights or perpendicular disas from the vertex.
19. Puor. CV1II. Pyramids of the same height are to onc another as their bascs.
et $A, F(f i g .350$.) be two pyramids. If the perpendicular $A B$ ve equal to the perpenilar PG , the pyramid A is to the pyramid F he base CD to the base L.M. Supposing, , xample, the base ('1) to be triple of the base the pyramid A will be triple of the pyd I:
wo seetions crl, lnt, being taken at eqpald chts $\Delta b, l y$, the section $c d$ is (Prop. 107.) e base (I) as the square of the height Ab e square of the height $A B$; and the section to the base L.M as the square of the

Fig. 3iso. it Fg to the square of the height F g.) lecause the terghts are eq.al, AI to FG , and $A b$ to $F g$, the section $c d$ is to the base as the section $l m$ to the base L. 11 ; and, alternately, the section al is to the section $/ m$ is ase CD is to the bise L.M. Bhat the base CD) is triple of the base I.M, therefore ection col is also triple of the section lin.
cause the leights $\Lambda \mathrm{F}^{\prime}, \mathrm{F}$ (; are equal, it is manifest that the two pyramids are com1 of an equal mmber of physical smfaers placed one upon mother. Now it may be pastrated in the same manner that every surfine or section of the pyranid A is triple e eorreaponding surface or section of the pyranid F . Therefore the whole pyranid triple of the whole pyramid F.
ummany. l'yramids of the same leight and equal bases are efual, since they are to nother as their bases.
1'nop, ('IX. A pyramid whase lusse is that of a culer and whose vertix is at the cenarw

Let the enbe AM and the pyramid C (fig.351.) have the same base A1), and let the vertex of the pyramid be at the centre of the cube C; this pyramid is equal to a third part of the product of its height and base.

Conecive right lines drawn from the centre of the cube to its pight angles $\Lambda, B, D, F, N, G, L, M$, the cube will be divided into six equal pyramids, each of which has one surface of the eube for its base, and half the height of the cube for its height; for example, the pyramid CABDF.

Three of these pyramids will thercfore be equal to half the cube. Now the solid eontent of half the cube is (Prop. 99.)

Fig. 3.11. equal to the product of the base and half the height. Each pyramid, therefore, will be equal to one third part of the product of the base, and half the height of the eube; that is, the whole height of the pyramid.
991. Pror. CX. The solid content of a pyramid is equal to a third part of the product of its height and base.

Let RPS (fig. 359.) be a pyramid, its solid eontent is equal to a third part of the product of its height and its base RS.

Form a cube the height of which BL is double of the height of the pyramid RPS. A pyramid the base of whieh is that of this cube and the vertex of which is C, the eentre of the cube, will be equal to a third part of the product of its base and heiglt.

The pyramids C and P have the same height; they arc therefore (Corol. to Prop. 108.) to one another as their bases. If the base AFDB is double of the base RS, the pyramid C will there-

Fig. 752. fore be double of the pyramid P.

But the pyramid C is equal to a third part of the produet of its height and base. The pyramid P will therefore be equal to a third part of the product of the same height, and half the base AFDB, or, which is the same thing, the whole base RS.
992. 1'nor. CXI. The solid comient of a cone is equal to the third part of the product of its height and base.

For the base of a eone may be considered as a polygon composed of exccedingly small sides, and consequently the cone may be considered as a pyramid having a great number of exceedingly small surfaces; whence its solid contents will be equal (Prop. 110.) to one third part of the product of its height and base.
993. Pror. CXII. The solid content of a cone is a third part of the solid content of a rylinder described ubout it.

Let the cone BAC and the cylinder BDFC (fig. 353.) have the same height and base, the cone is a third part of the cylinder.

For the cylinder is cqual to the product of its height and base, and the cone is equal to a third part of this product. Therefore the cone is a third part of the cylinder.
994. Puor. CXIII. The solid content of a spherc is cqual to a third part of the prorluct of its radius and surface.
'I'wo points not being sufficient to make a curve line, three points will not be sufficient to make a curve surface. If, therefore, all the physical

Fig. 353. points which compose the surface of the sphere C (fig. 354.) be taken three by three, the whole surface will be divided into exceedingly small plane surfaees; and radii being drawn to each of these points, the sphere will be divided into small pyramids, which liave their vertex at the centre, and have plane bases.

The solid contents of all these small pyramids will be equal (1'rop. 110.) to a third part of the product of the leight and bases. Therefore the solid content of the whole sphere will be equal to a third part of the product of the height and all the bases, that is, of its radius and surface.
995. Prop. CXIV. The surface of a sphere is cqual to four of its great rircles.

Fig. 354.

If a plane bisect a sphere, the seetion will pass through the centre, and it is ealled a great circle of the sphere.

Let ABCD (fig. 355.) be a square; deseribe the fourth part of the circumference of a cirele BLD; diaw the diagonal $A C$, through G, the right line FM, parallel to $A \mathrm{D}$, and the right line AL .

In the triangle $A B C$, on account of the equal sides $A B, B C$, the angles A and C are (Prop. 4.) equal ; therefore, sinee the angle B is a right angle, the angles A and C are cach half a right angle. Again, in the triangle AFG, because the angle F is a right angle, and the angle A half a right angle, the angle G is also half a tight angle ; therefore (Jrop. 26.) AF is equal to FG.

$1 \mathrm{H}_{4} .303 \mathrm{~S}$

The radius $A L$ is equal to the radius $A D$: but $A D$ is cqual to $F M$; therefore $A L$ is lual to FM.
In the rectangular triangle $A F L$ the square of the hypothenuse $A L$ is equal (Prop. 32.) the two squares of AF and FL taken together. Instead of AL put its equal FM, and stead of AF put its equal FG; and the square of FM will be equal to the two squares FG and FL taken together.
Conceive the square ABCD to revolve about the line AB. In the revolution the square ill describe a cylinder, the quadrant a hemisphere, and the triangle ABC an inverted one the vertex whereof will be in A. Also the line FM will form a circular section of a linder, the line FL will form a cireular section of a hemisphere, and the line FG a ciralar section of a cone.
These circular sections, or eircles, are to each other (Prop. 83.) as the squares of their dii ; therefore, since the square of the radius FM is equal to the squares of the radii FI , id FG, the circular section of the eylinder will be equal to the circular sections of the misphere and cone.
In the same manner it may be demonstrated that all the other sections or circular surces whercof the cylinder is composed are equal to the corresponding sections or surfaces the hemisphere and cone. Therefore the cylinder is equal to the misphere and cone taken together: but the cone (Prop. 112.) is ual to a third part of the cylinder; the hemisphere is therufore ual to the remaining two thirds of the cylinder; and consequently e hemisphere is double of the cone. The cone BSC (fig. 356.) is 'rop. 111.) equal to a third part of the product of the radius and se BC, which is a great eircle of the sphere: the hemisphere AL, D therefore equal to a third part of the product of the radius and o of its great circles; and consequently the whole sphere is equal a third part of the product of the radius and four of its great circles. Lastly, since the sphere is equal (Prop. 113.) to a third part of

Fig. 356. e product of the radius and surface of the sphere, and also to a third part of the proict of the radius and four of its great eircles, the surface of the sphere is equal to four its great cireles.

Sect. II.

Pllactical. geometry.

996. Practical Geometry is the art of accurately delineating on a plane surface any bne figure. It is the most simple species of geometrical drawing, and the most generally -ful; for the surfaces of buildings and other objects are more frequently plane than red, and they nust be drawn with truth, and of the required proportions, before they can properly exceuted, unless in cases where the extreme simplicity of the form renders improvable that mistakes should arise. It has been defined as the art which directs : mechanical processes for finding the position of points, lines, surfaces, and planes, the the description of such figures on diagrams as can be intelligibly understood by deition, according to given dimensions and positions of lines, points, \&e.
No part of a building or drawing ean be laid down or understood without the assistance practical geometry, nor can any mechanical employment in the building department be nducted without some assistance from this branch of the science. Cases frequently oecur uiring a knowledge of very complex probtems, as in masonry, carpentry, and joinery; la these will be given in other parts of this work.
ITre denonstration of most of the following problems will be found in the preeeding tion; we therefore refer the reader back to it for definitions, and for the proof of "re enunciations which will follow.

HROBtEMS.

 Pron the two eentres A and 13 (fiy. 3.57.) with any ecpual radii dencribe ancs of circtes iersecting each other in (and 1), and draw the line Cl). Ilhis will bisect the given 1 : in the point l:.

```
!!s. I'mos. II. To bised an ungle I3A(.
```

Firom the centre A (fig. $3: 3 \%$.) with any radins describe an are cutting off the equal
 peeting in \mathfrak{V}°, then deaw $A F^{*}$, and it will bisect the nugle A, as recpuined.

From the given point C (fig. 359.) with any radius cut off any erna parts CD, CE of the given line; and from the 2 wo centres D and E with any one radius describe ares intersecting in F . Then join CF, and it will be the perpendicular required.

Otherwise - When the given point \mathbf{C} is ncar the end of the line.

From any point 1 (fig. 360.) assumed above the line as a centre, through the given point C describe a circle catting the given line at \mathbf{E}, and through \mathbf{E} and the centre D draw the diameter EDF;
 then join CF, and it will be the perpendicular required.
1000. Prob. IV. From a given point A to let fall a perpendicular on a line BC.

From the given point A (fig. 361.) as a centre with any convenient tadius describe an are cutting the given line at two points I) and E; and from the two centres D and E with any radius describe two ares intersecting at F: then draw AF, and it will be the perpendicular to BC required.

Otherwise - When the given point is ncarly opposite the end of the line.

From any point D in the given line BC (fig. 362.) as a centre, describe the are of a circle through the given point A cutting BC in E ; and from the centre E with the

Fis. 360 .

Fis sisl. radius EA describe another arc cutting the former in F; then draw AGF, which will be the perpendicular to BC required.
1001. Prob. V. At a given point A, in a line AB, to make an angle equal to a given angle C.

From the centres A and C (fig.363.) with any radius describe the ares DE, FG; then with F as a centre, and radius DE, describe an are cutting $F G$ in G; through G draw the line $A G$, which will form the angle required.
1002. Prob. VI. Through a given point C to draw a line parallyl to a given line AB .

Fig. 352.

Fig. 363.

Case I.
Take any point d in AB (fig. 364.) ; upon d and C , with the distance $\mathrm{C} d$, describe two ares, $e \mathrm{C}$ and $d f$, cutting AB in e and d. Make $d f$ equal to $e \mathrm{C}$; and through f draw $\mathrm{C} f$, and it will be the line required.

Fig. 364.

Case II.

When the parallel is to be drawn at a given distance from AB
From any two points c and d in the line AB , with a radius equal to the given distanc describe the ares e and f; draw the line CB to touch those ares without cutting them, an it will be parallel to AB , as required.
i003. Prob. VII. To divide a line AB into any proposed number of equal parts.

Draw any other line AC (fig. 365.), forming any angle with the given line AB ; on the latter set off as many of any cqual parts AD, DE, EF, FC as those into which the line AB is to be divided; join BC, and parallel thercto draw the other lines FG, EH, DI; then these will divide AB , as required.
1004. Prob. VIII. To find a third proportional to two other lizes AB, AC.

Let the two given lines be placed to form any angle at A ($f g$. 366 .) , and in $A B$ tah AD equal to AC ; join BC, and daw DE parallel to it ; then AE will he the thit proportional singht.

005. Рrob. IX. Tu find a fourth proportional to three linis A1B, AC, AD.

 Let two of the lines $A B$, (fig. 367.), be so placed to form any angle at A, I set out AD on AB; join and parallel to it draw B; then AE will be the rth proportional required.
006 . Рrob. X. To find a in proportional between tuo 's AB, BC.
Place AB, BC (fig. 368.)

Fig. 566.

Fig. 567.
ed together in one straight line $A C$, which bisect in the point O; then with the tre O and radius cr OC describe semicircle ADC, meet which erect perpendicular BD, ich will be the on proportional beten AB and BC s ght.
007. Рнов. XI. To $f l$ the centre of a cle.

Draw any chord AB

Fig. 368.

Fig. 569.

Fig. 3:0.
(1.369.), and bisect perpendieularly with the line CD, whieh bisected in O will be the c tre required.
008 . Proe. XII. To describe the circumference of a circle through three points A, B, C. from the middle point B (fig. 370.) draw the chords BA, BC to the two other points, a bisect these chords perpendicularly by lines meeting in O, which will be the eentre; fin the centre O, with the distance of any one of the points, as $O A$, describe a circle, a it will pass through the two other points B IC, as required.
009. Prob. XIII. To draw a tangent to a le through a given point A .
When the given point A (fig.371.) is in the c umference of the circle, join A and the ctre O, and perpendicular thereto draw I C, which will be the tangent required.
f the given point A (fig. 372.) be out of circle, draw AO to the centre O , on

Fig. 371.

Fig. 372.
ch, as a diameter, describe a semicircle eutting the given circumference in \mathbf{D}, through ch draw $B A D C$, which will be the tangent required.
010. Рнов. XIV. To draw ant equilateral tingle on a given line A B.
rom the centres A and B (fig. 373.) th the distance $A B$ deseribe ares inter. suling in C ; draw AC, BC, and ABC will b) he equilateral triangle.
011. Риов. X.V. To make a triangle with He given lines $\mathrm{AB}, \mathrm{AC}, \mathrm{BC}$.

Vith the centre A and distance $A C$ (fig.

Fig. 373.

Fig. 3 It.
-) describe an are; with the centre B and distance BC describe another are cutting former in C ; draw AC, BC, and ABC will be the triangle required.
012. Pron. XVI. To make a square on a n line AB.
Raise AD, BC (fig. 375.) each perpendic ir and equal to AB, and join DC ; then f ('D) will be the square songht.
013. 'rom XVII. To inscribe a circle in a ren triangle $\triangle \mathrm{BC}$.

Bisect the angles at Λ and I with the two

10in. 37%

l'ig. 3iti, lis AD, 131) (fig. 376.); from the intersection I), which will be the centre of the c le, diaw the perpendiculars I IV, I) $F, I) G$, and they will be the radii of the circte re 1] ried.

011 Jrob. XVIII. To aleacribe a circle alont a given wiongie ABC:

Bisect any two siles with two of the perpendiculars DE, DF, DG (fig. 377.), and J, will be the centre of the circle.
1015. Prob. X1X. To inscribe an cquiluteral triangle in a given circle.

Through the centre C draw any diameter AB (fig. 378.); from the point B as a centre, with the radius BC of the given circle, describe an are DCE; join AD, AE, DE, and ADE is the equilateral triangle sought.
1016. Рrob. XX. To inscribe a square in a given sircle. (Hulf A B, BC, \&c. firms un or tugon.)

Fig. 378.

Draw two diameters AC, BD (fig. 379.) crossing at right angles in the centre E; then join the four extremities $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ with, right lines, and these will form the inseribed square ABCD.
1017. P'rob. XXI. To describe a square about a giren circle.
Draw two diameters AC, BD crossing at right angles in the centre E (fig. 380.) ; then through the four extremities of these draw FG, IH parallel to AC, and Fi, GH parallel to BD, and they will form the square FGHI.

Fig. 379.

Fig. 380
1018. Prob. XX11. To inscribe a circle in a given square.

Bisect the two sides FG, Fl in the points B and A (se fig. 380.) ; then through these two points draw AC paallel to FG or 1H, and BD parallel to F1 or GH. Then the point of intersection E will be the centre, and the four lines EA, E B, EC, ED radii of the inseribed circle.
1019. Proe. XXIII. To cut a given line in extreme and mean rutio.

Let AB be the given line to be divided in extreme and mean ratio (fig.381.); that is, so that the whole line may be to the greater part as the greater part is to the less part.

Draw BC perpendicular to AB, and equal to half $A B$; join $A C$, and with the centre C and distance CB descrite the circle BDF ; then with A as a centre and distance AD desc ibe the are DE. Then AB will be divided in E in extreme and mean ratio, or so that AB is to AE as AE is to EB.
1020. Рrob. XXIV. To inseribe an isosceles triangle in a given circle tlat shall lave cach of the

Fig. $\overline{3} 82$. angles at the base double the angle at the verter.

Draw any diameter AB of the given circle (fig. 382 .), and divide the radius Cl in the point D in extreme and mean ratio (by the last problem); from the point B apply the chords BE, BF , each equal to the greater part CD ; then join AE, AF, EF; and AEF will be triangle required.
1021. Prob. XXV. To inscribe a regular pentrgon in a given circle. (Half A D, ge. is a decagon.)
luscribe the isosceles triangle AB (fig. 383.) having each of the angles $\mathrm{ABC}, \mathrm{ACB}$ double the angle DAC (Prob. थ4.) ; then bisect the two ares ADP, AEC, in the points D, E; and draw the chords AD, DI, $A E, E C$; then ADBCE will

Fig. 383.

Fig. 384. be the inscribed regular pentagon required.
1022. P'rob. XXVI. To inscribe a regular heragon in a circle. (Hulf AB, fir. forms a dodecazon.)

Apply the radius of the given circle $A O$ as a chord (f fi.384.) quite round the circtmference, and it will form the points thereon of the regular hexagon ABCDEF.
1029. Prob. XXVII. To describe a regular pentagon or hexafon about a circle.

In the given eirele inscribe a regular polygon of the same name or number of sides as ABCDE (fg .385 .) by one of the foregoing problems; then to all its angular points draw (Prob. 13.) tangents, and these will by their intersections form the circumscribing polygon required.

Fig. 585.

Fis. $2 k 0$.
1024. Prob. X XVIII. To inscribe a circle in a regular polygon.

Bisect any two sides of the polygon by the perpendieulars GO, FO (fig. $3^{\circ} 6$.), and lueir intersection O will be the centre of the inscribed circle, and $O G$ or $O F$ will be the adius.
1025. Prgk. XXIX. To describe a circle about a regular polygon.

Bisect any two of the angles C and D with the lines CO. DO (fig. 387.), then their intersection O will be the centre of the ciru:nseribing circle; and OC or OD will be he radius.
1026. Pros. XXX. To make a triangle qual to a given quadrilateral ABCD.
Draw the diagonal AC (fig. 388.), and rarallel to it DE, meeting BA produced at E, and join CE; then will the triangle CEB e equal to the given quadrilateral ABCD.

Fig. 587.

Fig. 58 os.
1027. Prob. XXXI. To make a trianyle egnal to a given pentagon ABCDE.

Draw DA and DB, and also EF, CG parallel to them (fiy. 389.), meeting AB proluced at F and G ; then draw DF and DG, so shall the triangle DFG be equal to he given pentagon ABCDE .
1028. Рrob. XXXII. To make a rectngle equal to a given triangle ABC.
Bisect the base AB in D (fiy 390.), then aise DE and BF perpendicular to AB , and neeting CF parallel to AB at E and F . then DF will be the rectangle equal to

Fing 389.

Fig. 350. the given triangle ABC.

1029. Pıob. XXXIII. To make a square equal to a given rectangle ABCD.

Produce one side AB till BE be equal to the other side BC (fig. 391.). On AE as a iameter describe a circle meeting BC prouced at FF, then will BF be the side of he square BFGH equal to the given rectugle BD, as required.
1030. Рков. XXXIV. To draw a cateary, c C d (fig. 392.)
A catenary is a curve formed by a flexible

Fig. 391.

Fis. 392. ord or chain suspended by its two extremiies. Let c, d, in the line A \mathbf{B} ($f i g$. 399.) be the two points of suspension, and from them et the cord or chain be hung so as to touch the point C the given depth. From this the urve may be traced on the paper.
1031. Prob. XXXV. To draw a cycluid.

Any points b (fig. 399.) in the circumference of a circle olled along a riglit line AB till such point is again in contact Vith the said line, generate a cycloid. Let BC be the circle. Then AB is equal to the semi-circumference of such circle, nd any chords at whose extremities b, lines $a b$, $a b$, equal to he lengths of arcs they cut off, drawn parallel to AB, will urnish the necessary points for forming the curve.
1032. P'вos XXXVI. To draw a diayonal scale.

Fig 591.

Let it be of feet, tenths and hundredth parts of a foot. Set off on $\mathbf{A 1 3}$ (fig. 394.) as tany times as necessary, the number of feet by equal istances. Divide $\Delta \mathrm{G}$ into ten equal parts. On \triangle B ise the perpendiculars BD, G G, and AC , and set off a. AC ten cqual divisions of any convenient length, rough which draw horizontal lines. The, , from the oint G in 1 C to the first tenth part from G to A in B. 1 draw a diagonal, and parallel thereto the other ingonals required. The intersections of these diagoals with the horizontal lines give hundedth paits of foot, inasmuch as each tenth is divided by the diago-
 als into ten equal parts in descending.

Sejt. III.

PLANE TRIGONOMETRY.

1033. Plane Trigonometry is that branch of mathematies whose oljeet is the investigation and ealeulation of the sides and angles of plane triangles. It is of the greatest mportance to the architeet in almost cvery part of his praetiee; but the elements will be suffieient for his use, without pursuing it into those more abstruse subdivisions whieh are essential in the more abstraet relations whieh eonnect it with geodisic operations.
1034. We have already observed that every eircle is supposed to be divided into 860 equal parts, ealled degrees, and that eaeh degree is subdivided into 60 minutes, these minutes each into 60 seconds, and so on. Henee a semieircle eontains 180 degrees, and a quadrant 90 degrees.
1035. The measure of an angle is that are of a eirele contained between those two lines which form the angle, the angular point being the eentre, and sueh angle is estimated by the number of degrees eontained in the are. Thus, a right angle whose measure is a quadrant or quarter of the eircle is one of 90 degrees (Prop. 22. Geometry) ; and the sum of the three angles of every triangle, or two right angles, is equal to 180 degrees. Hence in a right-angled triangle, one of the acute angles being taken from 90 degrees, the other aeute angle is known; and the sum of two angles in a triangle taken from 180 degrees leaves the third angle; or either angle taken from 180 degrecs leaves the sum of the other two angles.
1036. It is usuai to mark the figure which denotes degrees with a small ${ }^{\circ}$: thus, 60° means 60 degrees; minutes are marked thus ': hence, 45 ' means 45 minutes; seeonds are marked thus ", $49^{\prime \prime}$ meaning 49 seeonds; and an additional comma is superadded for thirds, and so on. Thus, $58^{\circ} 14^{\prime} 25^{\prime \prime}$ is read 58 degrees, 14 minutes, 25 seconds.
1037. The complement of an are is the quantity it wants of 90 degrees. Thus, AD (fig. 395.) being a quadrant, BD is the eomplement of the are $A B$, and, reciproeally, $A B$ is the eomplement of $B D$. Henee, if an arc $A B$ eontain 50 degrees, its complement BD will be 40 .
1038. The supplement of an are is that which it wants of 180 degrees. Thus, $A D E$ being a semicircle, $B D E$ is the supplement of the are $A B$, which arc, reeiproeally, is the supplement of BDE. Thus, if AB be an are of 50 degrees, then its supplement BDE will be 130 degrees.
1039. The line drawn from one extremity of an are perpendicular to a diameter passing through its other extremity is called a sine or right sinc. Thus, BF is the sine of the are $A B$, or of the

Fis. 395. arc $B D E$. Hence the sine (BF) is half the ehord (BG) of the double are (BAG).
1040. That part of the diameter intereepted between the are and its sine is called the versed sine of an are. Thus, AF is the versed sine of the are AB, and EF the versed sine of the are EDB.
1041. The tangent of an are is a line whieh touehes one end of the are, eontinucd from thenec to meet a line drawn from the centre, through the other extremity, which last line is called the secant of the are. Thus, All is the tangent and CH the seeant of the arc AB. So EI is the tangent and CI the seeant of the supplemental are BDE, The latter tangent and seeant are equal to the former ; but, from being drawn in a direetion opposite or contrary to the former, they are denominated negative.
1042. The cosine of an arc is the right sine of the eomplement of that arc. Thus BE, the sine of $A \mathrm{~B}$, is the eosine of BD .
1043. The cotangent of an are is the tangent of that are's eomplement. Thus AH, which is the tangent of $A \mathrm{~B}$, is the eotangent of 13 D .
1044. The cosecant of an arc is the seeant of its eomplement. Thus CH, whieh is the seeant of $A B$, is the eoseeant of $B D$.
1045. From the above definitions follow some remarkable properties.

1. That an are and its supplement have the same sine, tangent, and secant; but the two latter, that is, the tangent and the secant, are aceounted negative when the are exeeeds a quadrant, or 90 degrees. 1 I . When the are is 0 , or nothing, the secant then becomes the radius CA , which is the least it ean be. As the arc increases from 0 , the sines, tangents, and sccants all increase, till the arc becomes a whole quadrant AD; and then the sine is the greatest it ean be, being equal to the radius of the circle; under which cireumstance the tangent and seeant are infinite. III. In every arc $A B$, the versed sine $A F$, and the cosinc $B K$ or CF, are together equal to the radius of the circle. The radius $C A$, the tangent AII, and the secant CH, form a right-ang'ed triangle CAH. Again, the radius, sine, and cosine form another rigist-angled triangle CBF or CBK . So also the radius,
otangent，and coseeant form a right－angled triangle CDL．All these right－angled triangles re similar to each other．
1046．The sine，tangent，or seeant of an angle is the ne，tangent，or secant of the are by which the angle is reasured，or of the degrees．\＆c．in the same are or angle． he method of constructing the scales of chords，sines， angents，and secants engraved on mathematical instru－ rents is shown in the amnexed figure．
1047．A trigonometrical canon（fig．396．）is a table herein is given the length of the sine，tangent，and cant to every degree and minute of the quadrant， mpared with the radius，which is expressed by unity I with any number of ciphers．The logarithns，more－ ver，of these sines，tangents，and secants，are tabulated，so at trigonometrial calculations are performed by only ddition and subtraction．Tables of this sort are pub－ shed separately，and we suppose the reader to be pro－ dad with them．
1048．Problem I．To compute the natural sine and cosine a given arc．
The semiperiphery of a circle whose radius is 1 is hown to be $3 \cdot 141592653589793$ ， $\mathcal{\&}$ ．：we have then the Howing proportion：一
As the number of degrees or minutes in the semicircle Is to the degrees or minutes in the proposed are， So is $3.14159265, \& \mathrm{c}$ ．to the length of the said are．

ow the length of the arc being denoted by the letter a ，and its sine and eosiue by s and c ， cse two will be expressed by the two following series，viz．－

$$
\begin{aligned}
s & =a-\frac{a^{3}}{2 \cdot 3}+\frac{a^{5}}{2.3 .4 .5}-\frac{a^{7}}{2.3 .4 .5 \cdot 6.7}+\& c . \\
& =a-\frac{a^{3}}{6}+\frac{a^{5}}{120}-\frac{a^{z}}{5040}+8 c . \\
c & =1-\frac{a^{2}}{2}+\frac{a^{4}}{2.3 .4}-\frac{a^{6}}{2.34 .5 .6}+\& c . \\
& =1-\frac{a^{2}}{2}+\frac{a^{4}}{24}-\frac{a^{6}}{720}+\text { \&c. }
\end{aligned}
$$

Fxample 1．Let it be required to find the sine and cosine of one minute．The number minutes in 180 degrees being 10800，it will be，first，as $10800: 1:: 3 \cdot 14159265$ ．$火$ c．：以290888208665＝the length of an arc of one minute．Hence，in this case，－

$$
\begin{aligned}
a & =0009908882 \\
\text { and } \frac{1}{!} a^{3} & =\cdot 000000000004
\end{aligned}
$$

The difference is $s={ }^{\circ} 0002908882$ ，the sine of one minute．
Also from 1.
take $\frac{1}{2} a^{2}=0 \cdot 0000000423079$ ，\＆c．
leaves $c=9999999577$ ，the cosine of one minute．
Example 2．For the sine and cosine of 5 degrees ：－
Here $180^{\circ}: 5^{\circ}: .3 \cdot 14159265, \& c$ ．： $08726646=a$ ，the length of 5 degrees．

$$
\begin{aligned}
\text { Hence } a & =08726646 \\
-\frac{1}{6} a^{3} & =00011076 \\
+\frac{1}{120} a^{5} & =00000004
\end{aligned}
$$

These collected give $s=08715574$ ，the sine of 5 dergrees．
And for the cosine $\mathrm{l}=1$ ．

$$
\begin{aligned}
&-\frac{1}{2} \alpha^{2}=00380771 \\
&+\frac{1}{2} 1^{4} a^{4}=00000241 \\
& \hline
\end{aligned}
$$

These collected give $\boldsymbol{c}=\cdot 99619470$ ，the cosine of 5 degrees．
in the same way we find the sines and cosines of other ares may be computed．The f：ater the arc the slower the series will converge；so that more terms must be taken to 1 Re the calculation exact．Having，however，the sine，the cosine may be found from it 1）the property of the right－angled triangle CBF ，viz．the cosine $\mathrm{CF}=\sqrt{\mathrm{CB}^{2}-\mathrm{BF}}$ ， $=\sqrt{ } 1-5 \bar{?}$ ．There are other methods of constructing tables，but we think it munenssary I mention them；our sole objeet being here merely to give a notion of the mode by pich such tables are formed．
1049. Prob. II. To compute the tangents and secants.

Having, by the foregoing problem, found the sines and cosines, the tangents and seeants are easily found from the prineiples of similar triangles. In the are AB (fig. 395 .), where 13 F is the sine, CF or 13 K the cosine, AII the tangent, CII the seant, DI, the eotangent, and CL the eoseeant, the radius being CA or CB or CD ; the three similar triangles $\mathrm{CF} B$, CAII, CDL, give the following propertions:-
I. CF: FB::CA: AH, by which we find that the tangent is a fourth proportional to the eosine, sine, and radius.
II. CF : C13:: CA : CH, by which we find that the secant is a third proportional to the eosine and radius.
III. BF: FC::CD: DL, by whieh we find that the cotangent is a fourth proportional to the sine, eosine, and radius.
IV. BF: BC::CD: CL, by which we find that the eosecant is a third proportional to the sine and radius.
Observation 1. There are therefore three methods of resolving triangles, or the eases of trigonometry; viz. geometrical construetion, arithmetieal eomputation, and instrumental operation. The method of earrying out the first and the last does not need explanation: the method is obvious. The second method, from its superior aeeuraey in praetiee, is that whereof we propose to treat in this plaee.

Observation 2. Every triangle has six parts, viz. three sides and three angles. And in all cases of trigonometry, three parts must be given to find the other three. And of the three parts so given, one at least must be a side; because, with the same angles, the sides may be greater or less in any proportion.

Observation 3. All the eases in trigonometry are eomprised in three varieties only; viz.

1st. When a side and its opposite angle are given. 2d. When two sides and the con. tained angle are given. 3 d . When the three sides are given.
More than these three varieties there eannot possibly be; and for each of them we shall give a separate theorem.
1050. 'Heonen I. When a side and its opposite angle are two of the given parts.

Then - the sides of the triangle have the same proportion to eaeh other as the sines of their opposite angles have. 'That is,

> As any one side
> Is to the sine of its opposite angle,
> So is any other side
> 'Io the sine of its opposite angle.

For let ABC (fig. 397.) be the proposed triangle, having AB the greatest side, and BC the least. Take $A D$ as a radius equal to $B C$, and let fall the perpendieulars DE, CF, which will evidently be the sines of the angles A and B, to the radius $A D$ or BC. Now the triangles ADE, ACF are equiangular ; they therefore have their like sides proportional, namely, $A C: C F:: A D$ or $B C: D E$, that is, the sine $A C$ is to the sine of its opposite angle B as the side BC is to the

Fig. 597. sine of its opposite angle A.

Note 1. In practice, when an angle is sought, the proportion is to be begun with a side opposite a given angle; and to find a side, we must begin with the angle opposite the given side.

Note 2. By the above rule, an angle, when found, is ambiguous; that is, it is not eertann whether it be aeute or obtuse, unless it eome out a right angle, or its magnitude be such as to remove the ambiguity; inasmuch as the sine answers to two angles, which are supplements to each other ; and hence the geometrieal construetion forms two triangles with the same parts, as in an example which will follow: and if there be no restriction or limitation inchaded in the question, either result may be adopted. 'Tlle degrees in a table answerins t, the sine is the acute angle; but if the angle be obtuse, the degrees must be sulbtracted from 180 degrees, and the remainder will be the obtuse angle. When a given angle is obtuse, or is one of 90 degrees, no ambiguity can oceur, because neither of the other angles can then be obtuse, and the gcometrical construction will only form one triangle.

Example 1. In the plane triangle $A B C$,

> | Let AB be 345 feet, |
| :--- |
| BC 232 feet, |
| $\angle A$ |

Reqnired the other parts.
First, to the angles at C and 15 (fiy. 398.)

Fig. i9x

As the side	$B C=232$	*			$2 \cdot 365488$
To sine opp.	$\angle A=37^{\circ}$	20^{\prime}			9.782796
So side AlB	$=345$	-			$2 \cdot 537819$
To sine opp.	$\angle \mathrm{C}=115^{\circ}$	36^{\prime} or 64°	24^{\prime}	$=$	9-535127
Add	$\angle A=37$	$20 \quad 37$	20		
The sum	$=152$	56101			
Taken from	180	00180	00		
Leaves LB	27	$04 \quad 78$			

It is to be observed here that the second and third logarithms are added (that is, the numbers are multiplied), and from the sum the first logarithm is subtracted (that is, division by the first number), which leaves the remainder $9 \cdot 955127$, whieh, by the table of ines, is found to be that of the angle $115^{\circ} 36^{\prime}$, or $64^{\circ} 24^{\prime}$.

To find the side AC.

As sine $\angle \mathrm{A}$	37°	20^{\prime}	-		Log. $9 \cdot 782796$
To opp. side BC	$=232$		-		2.365488
So sine $\angle B$	¢ 27	04	-	-	$9 \cdot 658037$
	178	16	-	-	$9 \cdot 990829$
To opp. side AC	$=174 \cdot 04$		-	-	$2 \cdot 240729$
Or	374.56		-	-	2.573521

Example 2. In the plane triangle ABC ,

Let AB	$=365$ yards,
$\angle \mathrm{A}$	$=57^{\circ} 12^{\prime}$
$\angle \mathrm{B}$	$=34$

Herein two argles are given, whose sum is $81^{\circ} 57^{\prime}$. Therefore $180^{\circ}-81^{\circ} 57^{\prime}=\angle \mathrm{C}$.

As sine $\angle \mathrm{C}$	$=$	98°	3^{\prime}	-	-	9.9956993
Is to $A B$	$=$	365		-	-	2.5622929
So sine $\angle B$	=	24°	45^{\prime}	-	-	9.6218612
To side AC	=	$154: 33$			-	$2 \cdot 1884548$

To tind the side BC.

1051. Theorem II. When two sides and their contained angle are given.

'The given angle is first to be subtraeted from 180° or two right angles, and the remainder ill be the sum of the other two angles. Divide this remainder by 2 , which will give the alf sum of the said unknown angles; and using the following ratio, we have -

As the sum of the two given sides
Is to their differenee,
So is the tangent of half the sum of their opposite angles
To the tangent of half the differenee of the same angles.
Now the half sum of any two quantities inereased by their half differenee gives the reater, and diminished by it gives the less. If, therefore, the half difference of the angles oove found be added to their half sum, it will give the greater angle, and subtracting it will ave the lesser angle. All the angles thus become known, and the unknown side is then und by the former theurem.
For let ABC (fig. 399.) be the proposed triangle, having the two given sides AC, BC, cluding the given angle C. With the eentre C and radius E
A, the less of these two sides, deseribe a semieirele, meeting (e other side of $13 C$ produeed in E , and the maknown side $A 1 B$ (\%. Jom $\Lambda \mathrm{E}, \mathrm{C} G$, and draw 1) F parillel to AE . Now \mathscr{F}, is the sum of the given sides $\Lambda \mathrm{C}, \mathrm{CB}$, or of EC, CB; and $1)$ is the difference of these given sides. The external angle (1 ') is equal to the sum of the two internal or given angles $\therefore 13, C B A$; but the angle $\triangle \mathrm{DE}$ at the circumferenee is equal

Fig. 319. half the angle $A C E$ at the eentre; wherefore the same angle $A D E$ is equal to half e sum of the given angles CAB, CBA. Also the extermal angle $A G C$ of the triangle ($;$ C is equal to the sum of the two internal angles GCB, GlBC, or the angle GCIS is wal to the difference of the two angles $\Lambda G C, G B C$; lont the angle $C A B$ is equal to e sairl angle $\Lambda G C$, these being opposite to the equal sides ΛC, $C G$; and the angre $D \triangle B$ the ciremoference is equal to half the angle DCG at the centre. Therefore the angle $A 13$ is equal to half the diflerence of the two given angles $\mathrm{CA} I \mathrm{C}, \mathrm{CBA}$, of which it haw

Now the angle DAE in a semieircle, is a right angle, or AE is perpendicular to AD; and DF, parallel to AE , is also perpendieular to AD : therefore AE is the tangent of CDA the half sum; and DF, the tangent of DAB, the half differenee of the angles to the same radius AD, by the definition of a tangent. But the tangents AE, DF being parallel, it will be as BE: BD:: AE : DF ; that is, as the sum of the sides is to the difference of the sides, so is the tangent of half the sum of the opposite angles to the tangent of haif their differenee.

It is to be observed, that in the third term of the proportion the eotangent of half the given angle may be used instead of the tangent of the half sum of the unknown angles.

Example. In the plane triangle ADC (fig. 400.),

$$
\text { Let } \begin{aligned}
A B & =345 \mathrm{ft} . \\
A \mathrm{C} & =174.07 \mathrm{ft} . \\
\angle A & =37^{\circ} 20^{\prime} .
\end{aligned}
$$

Now, the side AB being 345

$$
\begin{array}{ll}
\text { The side AC } & 174.07 \\
\text { Their sum is } & 519.07 \\
\text { Their differenee } & 170.93
\end{array}
$$

From	180°	00^{\prime}
Take $\angle \mathrm{A}$	37	20
Sum of C and B	142	40
Half sum of do.	71	20

As the sum of the sides $\mathrm{AB}, \mathrm{AC}=519.07$			Log.	$2 \cdot 715226$
To differenee of sides AB, AC=170.93				$2 \cdot 232818$
So tong. half $\operatorname{sum} \angle s$ C and $\mathrm{B}=71^{\circ} 20^{\prime}$	-	-		$10 \cdot 471298$
To tang, half diff. $\angle s$ C and $\mathrm{B}=4416^{\prime}$	-	-		$9 \cdot 988890$
These added, give $\angle C=11536^{\prime}$ And subtraeted give $\angle B=27 \quad 4^{\prime}$				

> By the former theorem: -

As sine $\angle \mathrm{C} 115^{\circ} 36^{\prime}$, or $64^{\circ} 24^{\prime}$	-	-	Log. $9 \cdot 95.5126$
To its opposite side AB 345	-	-	29537819
So sine \angle A $37^{\circ} 20^{\prime}$	-	-	-
To its opposite side BC 232	-	-	9.784796

1052. Theonfa 1II. When the three sides of a triangle are given.

Let fall a perpendieular from the greatest angle on the opposite side, or base, dividing it into two seginents, and the whole triangle into two right-angled triangles, the proportion will be-

> As the base or sum of the segments
> Is to the sum of the other two sides,
> So is the differenee of those sides
> To the difference of the segments of the base.

Then take half the differenee of these segments, and add it to the half sum, or the halí base, for the greater segment ; and for the lesser segment subtraet it.

Thus, in each of the two right-angled triangles there will be known two sides and the angle opposite to one of them, whenee, by the first theorem, the other angles will be found.

For the rectangle under the sum and differenee of the two sides is equal to the reetangle ender the sum and differenee of the two serments. Therefore, forming the sides of these rectangles into a proportion, their sums and differenees will be found proportional.

Example. In the plane triangle ABC (fig. 401.),

$$
\begin{aligned}
\text { Let } \mathrm{AB} & =345 \mathrm{ft} \\
\mathrm{AC} & =232 \mathrm{ft} . \\
\mathrm{BC} & =174 \cdot 07 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Letting fall the perpendieular } \mathrm{Cl}^{2} \text {, } \\
& \text { Base } \mathrm{AB}: \mathrm{AC}+\mathrm{BC}:: \mathrm{AC}-\mathrm{BC}: \mathrm{AP}-\mathrm{BP} \text {; } \\
& \text { That is, } 345 \text { : } \quad 406 \cdot 07:: \quad 57 \cdot 93: 68 \cdot 18=\mathrm{AP}-\mathrm{BP} \text {; } \\
& \text { Its half is } \\
& \$ 4.09 \\
& \text { The half base is } \quad 172.50 \\
& \text { The sum of these is } 206.59=\mathrm{AP} \\
& \text { And their difference } 138 \cdot 41=B P
\end{aligned}
$$

Tl cn , in the triangle APC right-angled at P ,

As the side $A C$	$=232$	Log. $2 \cdot 365488$	
To sine opp. $\angle P$	$=90^{\circ}$	-	10.00000
So is side $A P$	$=206.59$	-	$2 \cdot 315!09$
To sine opp. $\angle A C P$	$=62^{\circ} 56^{\prime}$	9.949621	
Whieh subtraeted from	$=90$	0	
Leaves $\angle A$			

Again, in the triangle BPC, right-angle:l at P,

As the side BC	$=174.07$		Log. 2.440724
'To sine opp. $/ \mathrm{I}^{\prime}$	$=90^{\circ} 00^{\prime}$		10.000000
So is side BP	$=138.41$	-	$2 \cdot 141136$
Co sine opp $\angle B C P$	$=52^{\circ} 40^{\prime}$		$9 \cdot 900412$
Which taken from	$90 \quad 00$		
Leaves the $\angle \mathrm{B}$	37 20)		
Also the angle ACP	$=6256$		
Added to the angle BCP	$=5240$		
Gives the whole angle ACB	$=115 \quad 36$		

So that the three angles are as follow, viz. $\angle \mathrm{A} 274^{\prime} ; \angle \mathrm{B} 37^{\circ} 20^{\circ} ; \angle \mathrm{C} 115^{\circ} 36$.
1053. Theoreal IV. If the triangle be right-angled, uny unhnown purt may be found by tha ollowing proportion: -

> As radius
> Is to either leg of the triangle,
> So is tangent of its adjacent angle
> To the other leg;
> And so is secant of the same angle
> To the hypothenuse.

For AB being the given leg in the right-angled triangle ABC, from the eritre A with any assumed radius AD describe an are DE, and draw UF perpendicular to $A B$, or parallel to BC. Now, from the definitions, OF is the tangent and AF the secant of the are DE, or of the angle A, which is measured by that are to the radius AD. Then, because of the arallets BC, DF, we have AD : AB::DF: BC, and ::AF:AC, which s the same as the theorem expresses in words.
Note. Radius is equal to the sine of 90°, or the tangent of 45°, and is xpressed by 1 in a table of natural sines, or by 10 in Iogarithmic sines.

Fig. 40%.

Example 1. In the right angled triangle ABC,
Let the leg $\mathrm{AB}=162$

Note. There is another mode for right-angled triangles, which is as follows: -
A BC being such a triangle, make a leg AB radius; or, in other words, from the centre withditance $A B$ describe an are Bl . It is evident that the other g 1BC will represent the tangent and the hypotienuse $A C$ the seant of the are BF or of the angle A .
In like manner, if BC be taken for radius, the other leg AB repreints the tangent, and the hypothenuse AC the secant of the are BG angle C.
If the hypothenuse be made radius, then each leg will represent e sine of its opposite angle; namely, the leg AB the sine of the C AL or angle C, and the ley BC the sine of the are $C D$ or

Fig. 405. gle A.
Then the general rule for all such cases is, that the sides of the triangle bear to each her the same proportion as the parts which they represent. This method is called aking every side radius.
105\%. If two sides of a right-angled triangle are given to find the third side, that may be und 'iy the property of the squares of the sides (Geom. Prop. 32 . ; viz. That the square the bypothenuse or longest side is equal to both the squares of the two other sides gether). Thus, if the longest side be sought, it is equal to the square root of the sum of esplares of the two shorter sides; and to find one of the shorter sides, subtract une uare from the other, and extract the square root of the remainder.
105.2. The applieation of the foregoing theorems in the cases of measuring heights and tanees will be obvious. It is, however, to be observed, that where we have to find the nuth of inaceessible lines, we must employ a line or base which can be measured, and, by cans of angles, which will be furnished by the use of instruments, catculate the length, of ot':cs lines.

Secr. IV.

CONIC SECTIONS.
1056. The conic sections, in geometry, are those lines formed by the intersections of a plans with the surface of a cone, and which assume different forms and acguire different properties aceording to the several directions of such plane in respeet of the axis of the conc. Their speetes are five in number.
1057. Deminitions.-1. A plane passing through the vertex of a cone mecting the plane of the base or of the base produced is called the directing plane. The plame VRX (fig. 404.) is the directing plame,
2. The tine in which the directing plane meets the plane of the hase or the plane of the base produced is called the directix. The line $R X$ is the directix.
3. If a cone be cut by a plane parallel to the directing plane, the section is called a conic section, as AMB or AllI (fig . 405.)
4. If the plane of a conic section be cut by another plane at right angles passing along the axis of the cone, the common section of the two planes is called the line of the axis.

Fit. 401.

FiE. 11\%\%
5. The point or points in which the line of the axis is cut by the conic surface is or are called the vertex or vertices of the conic section. Thus the points A and L (fiys. 40\%. and 405.) are both vertices, as is the point A or vertex (fig. 406.).
o. If the line of the axis be cut in two points by the conic surface, or by the surfaces of the two opposite cones, the portion of the line thus intercepted is called the primary axis. The line Als (figs. 404. and 405.) and A11 (fig. 406.) is called the primary axis.
7. If a straight line be drawn in a conie section perpendicular to the line of the axis so as to meet the curve, such straight line is called an ordinate, as PM in the above figures.
8. The abscisse of an ordinate is that portion of the line of axis
 contained between the vertex and an ordinate to that line of axis. Thus in figs. 404, 405, and 406. the parts $A P, 13 P$ of the line of axis are the abscissats AP BP.
9. If the primary axis be bisected, the bisecting point is called the centre of the ernic section.
10. If the directrix fall without the base of the cone, the section made by the cutting plane is called an ellipse. Thus, in fig. 404., the scetion AMB is an ellipse. It is evident that, since the plane of section will cut every straight line drawn from the vertex of the cone to any point in the circumfercnce of the base, every straight live drawn within the figure will be lmited by the conie surface. Hence the axis, the ordinates, and abscissas will be terminated by the curve.
11. If the directrix fall within the base of the cone, the section made by the cutting plane is called an hypertola. Hence it is evident, that since the direeting plane passes alike through both cones, the plane of section will cut each of them, and there fore two sections will be formed. And as every straight line on the surface of the cone and on the same side of the directing plane cannot meet the cutting plane, neither figure can be enclused.
12. If the directrix touch the curve forming the base of the cone, the section made by the entting plane is a parabola

OF THE ELLIDSIS.

1058. The primary axis of an cllipsis is called the major axis, as AB (fiy. 407.); and a straight line DE draw: through its centre perpendicular to it, and terminated at each extremity by the curve, is called the minor axis.
1059. A straight line VQ drawn through the centre and terminated at each extremity by the curve is called a diameter. llence the two axes are also diameters.

1060. The extremities of a diancter whieh terminate in the eurve are ealled the vertices that diameter. Thus the points V and Q are the vertices of the diancter VQ.
1061. A straight line drawn from any point of a diameter parallel to a tangent at either xtremity of the diameter to meet the eurses is ealled an ordinate to the two abscissas. Shus I'II, being parallel to a tangent at V, is an ordinate to the two abscissas V' $P, I^{\prime} Q$.
1062. If a diameter be drawn through the eentre parallel to a tangent at the extremity f another dianeter, these two diameters are ealled eonjugate diameters. Thus VQ and is are conjugate diameters.
106:3. A third proportional to any diameter and its eonjugate is ealled the parameter or thus rectum.
$106 \cdot \%$. The points in the axis where the ordinate is equal to the semi-parameter are alled the foei.
10G.5. Theoresr I. In the ellipsis the squares of the ordinates of an axis are to each other the rectangles of their abscissas.
Let AVIS (fig. 408.) be a plane passing through the axis of the eone, and AEIS mother scetion of the eone perpendicular to the plane of the former ; If the axis of the elliptie seetion, and PM, IHI ordinates perpeneular to it; then it will be

$$
P M Q: I I I:: A P \times P B: A I I \times I I B .
$$

or through the ordinates PM, III draw the eireular seetions MI, MIN parallel to the base of the cone, having KL, MN for eir dimmeters, to whieh I'MI, HI are ordinates as well as to the sis of the ellipse. Now, in the similar triangles APL, AHN,

$$
A P: I L:: A H: H N,
$$

nd in Bl'K, HHII,

$$
B P: P K:: B H I: H A 1 .
$$

aking the reetangles of the corresponding terms,

$$
A I^{\prime} \times H I^{\prime}: I^{\prime} L \times P K:: A I L \times B I F: H N \times I I M
$$

the property of the circle,

$$
\begin{aligned}
& \mathrm{l}^{\prime} \mathrm{L} \times \mathrm{P}^{\prime} \mathrm{K}=\mathrm{PM}{ }^{2} \text { and } \mathrm{HN} \times \mathrm{HM}=\mathrm{HL} \text {. Therefore, } \\
& \text { A }{ }^{\prime} \times 13 \mathrm{P}: \mathrm{P}^{2}:: \Lambda H \times \mathrm{HI} ;: \mathrm{HI} \mathrm{I}^{2} \text {, or }
\end{aligned}
$$

Coroll. 1. If C be the eentre of the figure, $\mathrm{AP} \times \mathrm{PB}^{\mathrm{P}}=\mathrm{CA}^{2}-\mathrm{Cl}^{2}$, and $\mathrm{AII} \times \mathrm{II} \mathrm{B}=$ 1:- (11).
 $1+\left(I^{\prime}:\right.$ eonserpently $A I^{\prime} \times P^{\prime} B=\left(C A-C I^{\prime}\right)\left(C A+C P^{\prime}\right)=\left(C^{2}-C P^{\prime 2}\right.$; and in the ne mamer it is evident that $A I I \times I I==(C A+C I I)\left(C A-C I I=C A^{2}-C H:\right.$
('oroll. 9. If the point I'coineide with the middle point \mathbb{C} of the semi-major axis, If will beeone equal to CE; and CP will vanish; we shall therefore have

$$
\begin{gathered}
\mathrm{I}^{2} \mathrm{I}^{2}: 11 \mathrm{I}^{2}: \mathrm{CA}^{2}-\mathrm{CP}^{2}: \mathrm{C} A^{2}-\mathrm{CH} I^{2} \\
\text { Now } \mathrm{CL}^{2}: \mathrm{II}^{2}:: \mathrm{CA}^{2}: \mathrm{CA}^{2}-\mathrm{CI} I^{2} \text {, or } \mathrm{C} A^{2} \times \mathrm{II}^{2}=\mathrm{CE}^{2}\left(\mathrm{C}^{2}-\mathrm{CH} I^{2}\right) .
\end{gathered}
$$

10, Th. Theowem 11. In every allipsis the square of the major atis is to the stuare of the fur axin as the rectanyle of the abseissas is to the square of their ordimate.
lat AIS (fig, fog.) be the major axis, bLi the minor axis, C the centre, PM and III fatates to the axis 1 IB; then will
 [xime If tse in the centre, then AII and IIH become each equat if A, and III becomes equal to (E ; therefore

$$
\left.I^{\prime}\right]^{2}:\left(P^{2}:: A I^{\prime} \times I^{\prime} 13: A^{2} ;\right.
$$

Coroll. I. Hebee, if we divide the two first terms of the analugy by ac, it will be

 |eas call 1': then

A1;: 1'::AI' $\times \mathrm{I}^{\prime} 13: \mathrm{I}^{\prime} \mathrm{M}$:
 $1+\left(^{\prime \prime} I^{\prime}\right)=\left(A I^{\prime}, I^{\prime} 13\right)$.

1067. Theonem III. In every ellipsis, the square of the minor nxis is to the square of the major axis as the difference of the squares of half the minor anis and the distance of an ordinate from the centre on the minor axis to the square of that ordinate.

Draw MQ (fig. 410.) parallel to A13, meeting CE in Q ; then will

$$
\mathrm{CE}^{2}: \mathrm{CA}^{2}:: \mathrm{CE}^{2}-\mathrm{CQ}^{2}: \mathrm{QM}^{2} ;
$$

For by Cor. 2. Theor. II., CA ${ }^{2}: \mathrm{CA}^{2}-\mathrm{CP}^{2}:: \mathrm{CE}^{2}: \mathrm{PM}^{2}$; Therefore, by division, $\quad \mathrm{CA}^{2}: \mathrm{CP}^{2}: \mathrm{CE}^{2}: \mathrm{CE}^{2}-\mathrm{PM}^{2}$.
Therefore, since $C Q=P M$ and $C i^{3}=Q M ; A^{2}: \mathrm{QM}^{2}:: \mathrm{CE}^{2}: \mathrm{CE}^{2}-\mathrm{CQ}^{2}$.
Coroll. 1. If a circle be described on each axis as a diameter, one being inscribed within the ellipse, and the other ciremmscribed about it, then an ordinate in the circle will be to the eorresponding ordinate in the ellipsis as the axis belonging to this ordinate is to the axis belonging to the other ; that is,

$$
\begin{aligned}
& \text { CA:CE::PG:PM, } \\
& \text { and } \mathrm{CE}: \mathrm{CA}: p g: p \mathrm{M} ; \\
& \text { and since } \mathrm{CA} A^{2}: C E^{2}:: A \mathrm{P} \times \mathrm{PB}: \mathrm{PM}, \\
& \text { and because } A P \times P B=\mathrm{PG} ; \mathrm{CA}^{2}: \mathrm{CE}^{2}:: \mathrm{PG}^{2}: \mathrm{PM}^{2}, \\
& \text { or } \mathrm{CA}: \mathrm{CE}:: P \mathrm{PG}: P M .
\end{aligned}
$$

In the same manner it may be shown that $\mathrm{CE}: \mathrm{CA}:: p g: p M$, or, alternately, CA : CE::pM:pg; therefore, by equality, $\mathrm{PG}: \mathrm{PM}:: p \mathrm{M}: p g$, or $\mathrm{PG}: \mathrm{C} p:: \mathrm{CP}: p g:$ therefore Cg G is a continued straight line.

Coroll. 2. Hence, also, as the ellipsis and circle are made up of the same number of eorresponding ordinates, which are all in the same proportion as the two axes. it follows that the area of the whole cirele and of the ellipsis, as a! so of any like parts of them, are in the same ratio, or as the square of the diameter to the rectangle of the two axes; that is the area of the two eircles and of the ellipsis are as the square of each axis and the rectangle of the two; and therefore the ellipsis is a mean proportional between the twe circles.

Coroll. 3. Draw MQ parallel to $G C$, meeting $E D$ in Q; then will $Q M=C G=C A$ and let R be the point where $Q M$ euts $A B$; then, because $Q M G C$ is a parallelogram. QM is equal to $C G=C E$; and therefore, sinee $Q M$ is equal to $C A$, half the major axi and $R M=C E$, half the minor axis QR is the difference of the two semi-axes, and henc we have a method of describing the ellipsis. This is the prineiple of the trammel, so wel kuown among wortimen.

If we eoneeive it to move in the line $D E$, and the point R in the line $A B$, while the point M is carried from A, towards E, B, D, until it return to A, the point M will in it progress describe the curve of an ellipsis.
1068. Theorem IV. The square of the distance of the foci from the centre of an ellipsis equal to the difference of the square of the semi-axes.

Let AB (fig. 412.) be the major axis, C the eentre, F the focus, and FG the semi-para meter; then will $\mathrm{CE}^{2}=\mathrm{CA}^{2}-\mathrm{CF}^{2}$. For draw CE perpendicular to $A \mathrm{~B}$, and join FE. By Cor. 2. Th. II., CA ${ }^{2}: \mathrm{CE}^{2}:: \mathrm{CA}^{2}-$ CF^{2} : FG^{2}, and the parameter FG is a third pioportional to CA , $C E$; therefore $\mathrm{CA}^{2}: \mathrm{CE}^{2}:: \mathrm{CE}^{2}: \mathrm{FG}^{2}$, and as in the two analogies the first, second, and fourth terms are identical, the third cerms are equal ; consequently

$$
\mathrm{CE}^{2}=\mathrm{CA}^{2}-\mathrm{CF}^{2}
$$

Fig. 412.

$$
\text { Coroll. 1. Hence } \mathrm{CF}^{\circ}=\mathrm{CA}^{\circ}-\mathrm{CE}^{2} \text {. }
$$

Coroll. 2. The two semi-axes and the distance of the focus from the eentre are the sicic of a righ -angled triangle CFE, and the distance FE from the focus to the extremity o the minor axis is equal to CA or CB , or to half the major axis.

Coroil, 3. The minor axis CE is a mean proportionsl between the two segments of th axis on each side of the f.cns. For $\mathrm{CE}^{2}=\mathrm{CA}^{2}-\mathrm{CF}^{2}=\left(\mathrm{C} \Lambda+\mathrm{CF}^{2}\right) \times\left(\mathrm{CA}-\mathrm{CF}^{2}\right)$.
1069. 'Тнforsm V. I" an ellipsis, the sum of the lines draun from the foci to any puint 1 the curve is equal to the major axis.

Let the points $\mathrm{F}, f(f i g .413$.) be the two foei, and M a point in the curve; join FM and $f \mathrm{M}$, then will $\mathrm{AB}=2 \mathrm{CA}=\mathrm{FM}+f \mathrm{M}$.

By Cor. 2. Th. II., $\mathrm{CA}^{2}: \mathrm{CE}^{2}: \mathrm{CA}^{2}-\mathrm{CP}^{2}: \mathrm{P}^{2} \mathrm{I}^{2}$,
But by Th. IV., $\quad \mathrm{CE}^{2}=\mathrm{CA}^{2}-\mathrm{CF}^{2}$;
Therefore $\quad \mathrm{CA}^{2}: \mathrm{CA}^{2}-\mathrm{CF}^{2}:: \mathrm{CA}^{2}-\mathrm{CP}^{2}: \mathrm{PM}^{2}$;

And by taking the rectangle of the extremes and means, and dividing the equationt CA2, the result is-

$$
\begin{aligned}
& \mathrm{PM}^{2}=\mathrm{CA}^{2}-\mathrm{CP}^{2}-\mathrm{CF}^{2}+\frac{\mathrm{CF}^{2} \cdot \mathrm{CP}^{2}}{\mathrm{CA}^{2}} . \\
& \text { And because } \mathrm{FP}^{2}=(\mathrm{CF}-\mathrm{CP})^{2}=\mathrm{CF}^{2}-2 \mathrm{CF} . \mathrm{CP}+\mathrm{CP}^{2} \text {, } \\
& \text { And since } \quad \mathrm{FM}^{2}=\mathrm{PM}^{2}+\mathrm{FP}^{2} \text {. } \\
& \text { Therefore } \quad \mathrm{F} \mathrm{I}^{2}=\mathrm{CA}{ }^{2}-2 \mathrm{CF} \cdot \mathrm{CP}+\frac{\mathrm{CF}^{2} \cdot \mathrm{CP}^{2}}{\mathrm{CA}^{2}} \text {. }
\end{aligned}
$$

xtracting the root from cach number, $\mathrm{FM}=\mathrm{CA}-\frac{\mathrm{CF} . \mathrm{CP}}{\mathrm{CA}}$.
In the same manner it may be shown that $F M=C A+\frac{C F C P}{C A^{2}}$; therefore the sam of cse is $\mathrm{FMI}+f^{+} \mathrm{M}=2 \mathrm{CA}$.
Coroll. 1. A line drawn from a focus to a point in the eurve is called a radius vector, and e difference between cither radius vector and half the major axis is equal to half the fference between the radius vectors. For, since

$$
\begin{aligned}
& f \mathrm{I}=\mathrm{CA}-\frac{\mathrm{CF} \cdot \mathrm{CP}}{\mathrm{CA}} ; \text { therefore, by transposition, } \\
& \frac{\mathrm{CF} \cdot \mathrm{CP}}{\mathrm{CA}}=\mathrm{CA}-f \mathrm{M} .
\end{aligned}
$$

Coroll. 2. Because $\frac{\mathrm{CF}, \mathrm{CP}}{\mathrm{CA}}$ is a fourth proportional to $\mathrm{CA}, \mathrm{CF}, \mathrm{CP}$; therefore CA : $\mathrm{F}:: \mathrm{CP}: \mathrm{CA}-f \mathrm{M}$.
Coroll. 3. IIence the difference between the major axis and one of the radius vectors gives other radius vector. For, since $\mathrm{FM}+\mathrm{Mf}=2 \mathrm{CA}$;

Therefore $\mathrm{FMI}=2 \mathrm{CA}-\mathrm{M} f$.
Coroll. 4. Hence is derived the common method of describing an ellipsis mechanically, a thread or by points, thus:- Find the foci Ff ($f i g .414$.), and in the axis AB assume y point G; then with the radius $A G$ from the point F as a itre describe two arcs H, H, one on each side of the axis; and th the same radius from the point f describe two other arcs h, one on each side of the major axis Again, with the distance 13 from the point f describe two ares, one on each side of the axis, ersecting the ares HH in the points HH ; and with the same fius from the point f describe two other ares, one on cach side of

Fig. 414. axis, intersecting the ares described at h, h in the point h, h. In this manner we may d as many points as we please; and a sufficient number being found, the curve will be ned by tracing it through all the points so determined.
1070. Thforea VI. The square of half the major axis is to the square of half the minor sas the difference of the squares of the distances of any two ordinates Jon the centre to the difference of the squares of the ordinates themes.
let PM and III (fig.415.) be ordinates to the major axis AB; fo MN parallel to AB, meeting HI in the point N; then will $I=I N$, and $M N=P H$, and the property to be demonstrated is s expressed -

Fig. 115.

C $A^{2}: \mathrm{CE}^{2}: \mathrm{CP}^{2}-\mathrm{CHI}^{2}: \mathrm{HJ}^{2}-\mathrm{HN}^{2}$ 。
by froducing III to meet the curve in the point K, and making $C Q=C P$, the pro. ty to be proved will be

13y Cor. 2. Theor. II. $\left\{\begin{array}{l}\mathrm{C} \Lambda^{2}: \mathrm{CE}^{2}: \mathrm{CA}^{2}-\mathrm{CP}^{2}: \mathrm{P}^{2}, \\ \mathrm{CA} A^{2}: \mathrm{CE}^{2}: \mathrm{CA}^{2}-\mathrm{CH}^{2}: 11 \mathrm{I}^{2} .\end{array}\right.$

Therefore	C $\Lambda^{2}-\mathrm{CII}{ }^{2}: \mathrm{CA}^{2}-\mathrm{CP}^{2}:: \mathrm{HI}^{2}: \mathrm{P}^{2} \mathrm{H}^{2}$ or $11 \mathrm{~N}^{2}$			
[3ut, by division,				
Alternately,	$\mathrm{CA}^{2}-\mathrm{CH}^{2}: \mathrm{II}^{2}:: \mathrm{CP}^{2}-\mathrm{CH} \mathrm{I}^{2}: \mathrm{II}^{2}-\mathrm{HN}$;			
And, since we hav	ove, C $\mathrm{A}^{2}-\mathrm{CH}{ }^{2}: \mathrm{HI}^{2}:: \mathrm{CA}^{2}: \mathrm{CE}^{2}$,			
Therefore, by edt	lity, $\mathrm{CA}^{2}: \mathrm{CH}^{2}:: \mathrm{CH}^{2}-\mathrm{CH}^{2}: 11 I^{2}-\mathrm{IIN}{ }^{2}$			
13nt since	$\left(\mathrm{P}^{2}-\mathrm{CH}^{2}=(\mathrm{Cl}-\mathrm{CH})^{\prime} \mathrm{Cl}+\mathrm{CH}\right)=\mathrm{I}^{\prime} \mathrm{H} \times$ QII,			
And since	$\left\\|I^{2}-I\right\\| N^{2}=(I I I-\\| N)(I I+I I N)=N I \times K N$,			
Therufore				

uroll. 1. Ilence hall the majar axis is to latl the minor axis, or the major axis is to the or axi\%, ay the difference of the squares of any two ordinates from the centre is to the mgle of the two parts of the douhte ordinate, which is the greatest made of the sum dillerence of the two semiordinates. For $K N=I K+1 I N \backsim!!+I I N$, which is tho - of the swo ordinites, and $\mathrm{NI}=11 \mathrm{I}-\mathrm{I} \mathrm{N}$, which is the diflerence of the twa ardinates. mroll. 2. Ihence, because $\mathrm{CI}^{2}-\mathrm{CII}^{2}=\left(\mathrm{Cl}^{2}-\mathrm{CII}\right)(\mathrm{CI}+\mathrm{CII})$, and sinee $\mathrm{HI}^{2}-\mathrm{HN}^{2}=$
$-I I N)(I I+I I N)$, and because $C I-C I I=I I$ and $I I-I I N=N I$; thetotore

1071. Theorem VII. In the ellipsis, half the major axis is a mean proportional beticen the distance of the centre and an ordinate, and the distance between the centre and the intersection of a tangent to the vertex of that ordinate.

To the major axis draw the ordinates PM (fig. 416.) and III, and the minor axis CE. Draw MN perpendicular to HI. Through the two points I, M. draw M'T, I'T, meeting the major axis produced in T; then will CT:CA::CA:CP. For,

By Cor. 1. Theor. YI., CE ${ }^{2}$: CA²: $:(\mathrm{H} \mathrm{H}+\mathrm{HN}) \mathrm{IN}:(\mathrm{PC}+\mathrm{CIf}) \mathrm{HP}$;
By Cor. 2. Th. II., CE2: CA $2: \mathrm{PM}^{2}: \mathrm{CA}^{2}-\mathrm{CP}^{2}$;
'Therefore, by equality, $\mathrm{PM}^{2}: \mathrm{CA}^{2}-\mathrm{CP}^{2}::(\mathrm{HH}+\mathrm{HN}) \mathrm{IN}:(\mathrm{PC}+\mathrm{CH}) \mathrm{HP}$.
By similar triangles, INM, MPT; IN: NM or PH::PM: PT or CT-CP.
Therefore, taking the rectangles of the extremes and means of the two last equations, an throwing out the common factors, they will be converted to the equation

$$
\mathrm{PM}(\mathrm{CT}-\mathrm{CP})\left(\mathrm{CP}^{\mathrm{P}}+\mathrm{CH}\right)=\left(\mathrm{CA}^{2}-\mathrm{CP}^{2}\right)(\mathrm{HH}+\mathrm{HN}) .
$$

But when HI and PM coincide, HI and HN will become equal to PM, and CII wil become equal to CP ; therefore, substituting in the equation 2 CP for $\mathrm{CP}+\mathrm{PH}$, and 2 P . for $\mathrm{IH}+\mathrm{HN}$, and throwing out the common factors and the common terms, we have

$$
\begin{gathered}
\mathrm{CT}: \mathrm{CP}=\mathrm{CA}^{2} \\
\text { or } \mathrm{CT}: \mathrm{CA}:: \mathrm{CA}: \mathrm{CP} .
\end{gathered}
$$

Coroll. 1. Since CT is always a third proportional to CP and CA , if the points $\mathrm{P}, \mathrm{A}, \mathrm{I}$ remain fixed, the point T will be the same; and therefore the tangents which are draws from the point M, which is the intersection of $P Q$ and the curve, will meet in the point ' 1 in every ellipsis described on the same axis Als.

Coroll. 2. When the outer ellipsis AQB, by enlarging, becomes a circle, draw QT per pendicular to CQ, and joining TM, then TM will be a tangent to the ellipsis at M.

Coroll. 3. Hence, if it were required to draw a tangent from a given point T in the pro longation of the major axis to the ellipsis AEB, it will be found thus: - On AB descrit the semicircle AQB. Draw a tangent TQ to the circle, and draw the ordinate $P Q$ inter secting the curve AEB of the ellipsis in the point M ; join TM; then TM is the tange required. This method of drawing a tangent is extremely useful in practice.
1072. Theorem VIII. Four perpendiculars to the major axis intercepted by it and a tar gent will be proportionals when the first and last have one of their extremities in the vertices, the sceond in the point of contact, and the third in the centre.

Let the four perpendiculars be AD, PM, CE, BF, of which AD and BF have their extremities in the vertices A and B , the second in the point of contact M, and the third in the centre C ; then will

$$
A D: P M:: C E: B F .
$$

For, by Theor. VII.,
TC: AC::AC: CP;
 By division, That is, $\mathrm{TC}-\mathrm{AC}: \mathrm{CA}-\mathrm{CP}:: \mathrm{TC}: \mathrm{AC}$ or CB; By composition, Therefore

TA: AP::TC:CB.
TA: TA + AP: TC: TC +CB :
TA: TP::TC:TB.
But by the similar triangles TAD, TPM, TCE, and TBF, the sides TA, TP, TC, al TB are proportionals to the four perpendiculars AD, PM, CE, and BF; therefore
AD : PM::CE : BF.

Coroll. 1. If AM and CF be joined, the triangles TAM and TCF will be similar. For by similar triangles, the sides TD, TM, TE, TF are in the same proportion as t sides TA, TP, TC, TB.

$$
\begin{aligned}
& \text { Therefore TD: TM::TE: TF; } \\
& \text { Alternately, TD:TE::TM: TF: but TAD is sinilar to TCE; } \\
& \text { Mence TD:TE:TA:TC; } \\
& \text { Therefore, by equality, TA: TM::TC:TF. }
\end{aligned}
$$

Coroll. 2. The triangles APM and CBF aze similar ;

Coroll. 3. If AF be drawn cutting PM in I, then will PI be equal to the half of l^{\prime} ?

For, since $A P: P M:: C B: B F$, and, by the similar triangles $A P I, A B F$. $A I^{\prime}: P I:: A B: B F ;$
Therefore $\mathrm{P} M: \mathrm{PI}:: \mathrm{CB}: A B$.
Sut $C B$ is the half of $A B$; therefore, also, PI is the half of PM.
107 s . 'Theores IX. If two lines be drau'n from the foci of an ellipse to any point in the trve, these two lines uill make equal angles with a tangent passing through that point.
Let TM (fig. 418.) be a tangent touching the curve the point M, and let F, f be the two foci ; join M, f M, then will the angle FMT be equal to the igle f IR. For draw the ordinate PM, and draw IR parallel to FM, then will the triangles TFM and if li be similar ; and by Cor. Theor. VII.,

$$
\begin{aligned}
& \text { CA: CP::CT:CA; } \\
& \text { CA: CP::CF:CA-FM } \\
& \text { C } \Gamma: \text { CF::CA:CA-FM. }
\end{aligned}
$$

By Cor. 2. Theor. V., CA: CP::CF: CA-FM ; Therefore, by equality,
$B y$ division and composition, $\mathrm{C} T-\mathrm{CF}: \mathrm{C} T+\mathrm{CF}:: \mathrm{FM}: 2 \mathrm{CA}-\mathrm{FM}$; That is,

$$
\mathrm{TF}: \mathrm{T} f:: \mathrm{FM}: f \mathrm{M}
$$

By the similar triangles TFM, TfR; TF : 'T $f:: \mathrm{FM}: f \mathrm{R}$.
therefore appears that $f M$ is equal to $f \mathrm{R}$, therefore the angle $f M \mathrm{R}$ is equal to the ugle $f R M$: but because FM and $f R$ are parallel lines, the angle FMT is equal to the igle f RAI ; therefore che angle FMT is equal to the angle f M R.
Coroll. 1. Hence a line drawn perpendicular to a tangent through the point of contact ill hisect the angle FM f, or the opposite angle DMG. For let MN be perpendicular the tangent TR. Then, because the angle NMT and NMR are right angles, they are ual to one another; and since the angles FMT and $f M R$ are also equal to one another, e remaining angles NMF and NM f are cqual to one another. Again, because the oppoe angles FMN and IMG are equal to one another, and the opposite angle $f M N$ and MD are equal to one another ; thercfore the straight line MI, which is the line MN pro. iced, will also bisect the angle DMG.
Coroll. 2. The tangent will bisect the angle formed by one of the radius vectors, and the olongation of the other. For prolong FM to G. Then, because the angles RMN and MI are right angles, they are equal to one another; and because the angles NM f and ID are equal to one another, the remaining angles RMG and RMf are equal to one other.
Scholium. Hence we have an easy method of drawing a tangent to any given point M in ? curve, or of drawing a perpendicular through a given point in the curve, which is the wal mode of drawing the joints for masonic arches. Thus, in order to draw the line IM rpendicular to the curve : produce FMI to G, and $f M$ to D, and draw MI bisecting the Gle IMG; then IMI will be perpendicular to the tangent TR, and cons quently to the we.
As in opties the angle of incidence is always found equal to the angle of reflection. it pears that the foundation of that law follows from this theorem; for rays of light issuing m one focus, and mecting the curve in any point, will be reflected into lines drawn from se points to the other focus: thus the ray $f M$ is reflected into MF: and this is the , son why the points $\mathrm{F} f$ are called foci, or burning points. In like manner, a sound in ie focus is reflected in the other focus.
1074. 'T'neones X. Every parallelogram which has its sides parallel to two conjugate meters and circumscribes an ellijsis is equal to the rectangle of the tuo axes.
Let CM and CI (fig. 419.) be two scmi conjugate diame-
(omplete the parallelogran CIDM. Produce CA III) to mect in 'T', and let A'T meet DI in t. Draw and PM ordinates to the axis, and draw half the minor s (H. Produce DMI to K , and draw CK perpendicutar tI) K. then will the parallelogram CIDM be equal to the rtangle, whowe sides are CA and CE ; or four times the

Fig. 419. rtangle CDIN will be equal to the rectangle made of the two ayes $A \mathrm{~B}$ and GE .

By Cor. 'Theor, Vil.,	$\left\{\begin{array}{l} \text { CA: СТ:: СГ : СА, } \\ \mathrm{C} t: \mathrm{CA}:: \mathrm{CA}: \text { СH; } \end{array}\right.$
Therefore	
liy the similar triangles CtI, 'TCM,	Ct : C'I: CI : 'TM ;
13y equality, therefore,	CI : 'IM : CP : ©H.
By the similar triangles CIII, 'IMP,	CI: 'M : CII : P'T
'Thurefore, by equality,	
('onsequently	$\mathrm{Cl}^{\prime} \times \mathrm{P} \mathrm{P}^{\prime} \mathrm{I}=\mathrm{CHI}$.
But by Theor, V'll.,	$\left(\mathrm{P} \times \mathrm{Cl}^{\prime} \mathrm{l}=\mathrm{CA} \mathrm{A}^{2}\right.$;
	(P^{\prime}, ($\mathrm{I}^{\prime} \mathrm{P}^{\prime} \mathrm{T}=\mathrm{C}^{\text {A }}$,

And, by transpositıon,	CP. ${ }^{\prime}{ }^{\prime}=\mathrm{CA}^{2}-\mathrm{CP}^{2}$;
Hence, by equality,	$\mathrm{CH}^{\circ}=\mathrm{CA}^{2}-\mathrm{CP}^{2}$,
Or, by transposition,	$\mathrm{Cl}^{2}=\mathrm{CA}^{2}-\mathrm{CII}^{\circ}$.
But by Cor. 2. Theor. I.,	$\mathrm{CA}^{2} \times \mathrm{HI}^{2}=\mathrm{CE}^{2}\left(\mathrm{CA}^{2}-\mathrm{CH}^{2}\right)$,
$\left.\begin{array}{l}\text { And substituting } C P^{2} \text { for its equal } \\ C A^{2}-C H^{2} \text {, we have }\end{array}\right\}$	$\mathrm{CA}^{2} \times \mathrm{HI}^{2}=\mathrm{CE}^{2} \times \mathrm{CP}^{2} ;$
Therefore	CA : CP: CE: HI.
But again, by Theor. VII.,	CA: СР: С'丁:CA:
By equality, therefore,	CE: HI: C'T : CA.
But by the similar triangles IIIC, K CT,	II : CI: CK : CT;
'Therefore	CE: CI::CK : CA :
Consequently	$\mathrm{CE} \times \mathrm{CA}=\mathrm{Cl} \times \mathrm{CK}$.

And, by transposition, Hence, by equality, Or, by transposition,
But by Cor. 2. Theor. I., $\mathrm{CA}^{2}-\mathrm{CH}$, we have
Therefore
But again, by Theor. VII., By equality, therefore, But by the similar triangles IIIC, K CT, 'Therefore Consequently

CP. ${ }^{\prime} \mathrm{P}^{2}=\mathrm{CA}^{2}-\mathrm{CP}^{2}$;
$\mathrm{CH}^{2}=\mathrm{CA}^{2}-\mathrm{CI}^{2}$,
$\mathrm{Cl}^{2}=\mathrm{CA}^{2}-\mathrm{ClI}$.
$\mathrm{CA}^{2} \times \mathrm{HI}^{2}=\mathrm{CE}^{2}\left(\mathrm{CA}^{2}-\mathrm{CH}^{2}\right)$,
$\mathrm{CA}^{2} \times \mathrm{HI}^{2}=\mathrm{CE}^{2} \times \mathrm{CP}^{2}$;
CA: CP::CE: MI.
, CP::CT:CA
UE: MI:CK: CA.
CE:
$\mathrm{CE} \times \mathrm{CA}=\mathrm{Cl} \times \mathrm{CK}$.

The ellipsis is of so frequent occurrence in architcctural works, that an acquaintance with all the properties of the curve, and the modes of describing it, is of great importance to the architcet. Excepting the eircle, which may be called an ellipsis in which the two foci coincide, it is the most generally employed curve in architecture.
1075. Phoblen I. To describe an ellipsis.

Let two pins at E and F (fig. 420.) be fixed in a plane within a string whose ends are made fast at C. If the point C be drawn equally tight while it is moved forward in the plane till it returns to the place from which it commenced, it will describe an ellipsis.
1076. Prob. II. The tuo diameters AB and ED of an ellipse being given in position and magnitule, to describe the curce through points.

Let the two dianneters cut each other at

Fig. 120.

Fig. 42 i. C (fig. 421.). Draw $A F$ and $B G$ parallel to ED. Divide AC and $A F$ each into the same number of equal parts, and draw lines, as in the figure, through the points of division; viz. those from the line $A F$ to the point D, and the lines through ΛC to the point L ; then through the points of intersection of the corresponding lines draw the curve AD , and in the same manner find the curve IBD; then $A D B$ will be the semi-ellipsis.

It is evident that the same method also extends to a circle by making CD equal to CA: (fig. 429.) ; and it appears that the two lines forming any point of the curve to be drawn will make a right angle with each other. For these lines terminate at the extremities of the diamcter ED, and the point of concourse being in the curre, the angle made by them must be a right angle; that is, the angle EAD, or E $h \mathrm{D}$, or $\mathrm{E} i \mathrm{D}$. or $\mathrm{E} k \mathrm{D}$, is a right angle: and from this property we have the following method of drawing the segment of a circle throngh points found in the curve.

Fig. 122.

Thus, let $A B$ be the chord, and CD be the versed sine of an are of a circle, to describe the are. Through D draw HI (fig. 423.) parallel to AB ; join AD and DB ; draw AH per. pendicular to AD , and BI perpendicular to BD ; divide AC and 11 D cach into the same number of equal parts, and join the corresponding points; divide AF into the same number of equal parts, and through the points of division draw lines to D , and through the corresponding points where these lines meet the former draw a curve
 AD. In the same manner the other half BD may be drawn.
1077. Pıes. III. A diameter KH of an ellipsis leing given, and an ordinatc DL, 6 find the limits of the other conjugate diameter.

Bisect KH in I (fig. 424.), through I draw EA parallel to DI., and draw DC and K13 perpendicular to EA ; from the point L with the distance K deseribe an are cutting EA at F; join LF , and produce LF to C ; make IE and IA cach equal to $\mathrm{L} C$; then will EA be a diameter conjugate to KH .

1078, Prob. IV. A diameter KH and an m:linate DL of an ellipsis being given, to describe the curce. (fig. 424.)

Find the limits E and A of the other conjugate diameter by the

Fig. 421. preceding construction. Produce K 13 to q, and make K_{q} equal to IA or $I E$, and through the centre I of the curve and the point q, draw the straight line MN. Then, suppose the straight line $\mathrm{K} \mathrm{B} q$ to be an inflexible rod, having the point B marked upon it. Move the rod round, so that the point q on the rod may be in the line MN, while the point B is in the line $E A$; then, at any instant of the motion, the plate
the puint \mathbf{K} un the planc whereon the figure is to be drawn may be marked; the points rus found will be in the curve. Instead of a rod. a slip of paper may be used, and in some ises a rod with adjustible points to slide in a cross groove, and a sliding head for a pencil convenic,nt; and such an instrument is called a trammel.
When the diameters KH and EA (fig. 425.) are at right angles to each other, the raight line $\mathrm{K}_{\boldsymbol{\eta}}$ coincides with the diameter KH, and consequently e line MN, on which the point q of the inflexible line $K q$ moves, ill also fall upon the diameter KH. Therefore in this case noing more is required to find the limits of the other diameter, an to take the half diameters IK, KH of the given diameters, ad from the extremity L with that distance describe an arc tting the unlinited diameter in the point F; then drawing

Fig. 425. F, and producing it to q, and making IE and IA each equal to $q \mathrm{~L}, \mathrm{EA}$ will be the her diameter; and since the two diameters are at right angles to each other, they are e two axes given in position and magnitude, and thus the curve may be described as fore.
A method of describing the curve from any two conjugate diameters is occasionally of nsiderable use, and particularly so in perspective. For, in every representation of a rele in perspective, a diameter and a double ordinate may be determined by making one the diameters of the original circle perpendicular to the plane of the picture and the her parallel to it; and then the representation of the diameter of the original circle, hich is perpendicular to the intersceting line, will be a diameter of the ellipsis, which is e representation of that circle; and the representation of the diameter of the circle hich is parallel to the intersecting line will become a double ordinate to the diameter of e ellipsis which is the perspective representation of the circle.
1079. Рrob. V. Through two given points A and B to describe an chlipsis, the ccntre C ing yiven in position and the greater axis being given in magnitude only.
About the centre C (fig. 426.) with a radius cqual to half the cater axis describe a circle HEDG; join $A C$ and $B C$; draw D perpendicular to AC , and BE perpendicular to BC , tting the circumference in the points D and E ; draw also F^{*} parallel to AC , and find 13 F , which is a fourth propornal to AD, AC, and BE ; through the point F and the centre draw FG to cut the circle in II and G, and GII is the major is of the cllipsis. By drawing an ordinate $B q$, the curve may described by the preceding problem, having the axis GH and

Fig. 426. e ordinate I I q .
1080. Puob. VI. Through a given pint in the major anis of a given ellipsis to describe other similar ellipsis which shall leave the same centre and its major aris on the same straight e as that of the given ellipisis.
Let ACBD (fig. 427.) be the given ellipsis, having AB for its major axis and CD for minor axis, which are both given in position and magnitude. is repuired to draw a similar ellipsis through the point G in the jor axis AG. Draw BK perpendicular and CK parallel to 13, and join KE. Again, draw GL perpendicular to AI3 cutg. EK at L , and draw LIH parallel to $A B$ cutting CD in H . b the axis CD make EI cqual to EH, and on the axis AB the FF equal to FG. Then, having the major axis AB, and
 minor axis FG, the ellipsis FIGH may be described, and when drawn, it will be nilar to the griven ellipsis ADBC.
1081. I'nob. VII. Through any given print p, within the curve of a given ellipsis to cribe another allipsis which shall be similar und conceutric to the given one.
l.et C (fiy. 428 .) be its centre. Draw the straight line $\mathrm{C} p \dot{\mathrm{P}}$, cutting the curve of the en ellipsis in I'. In such curve take any other number of nts $\Omega, 1 R, S, \& c$, and join $Q C, 1 \cap C, S C, \& e$; join $P Q$ and w $p q$ parallel thereto cutting $q \mathrm{C}$ at η : join $\mathrm{I}^{\prime} \mathrm{l}$ and draw $p r$ allel to l'lk, cutting laC at r; join P'S and draw ps parallel to cutting SC: in 8 . The whole being completed, and the eurve e, f, u drawn through the points $p, q, r, s, \& e c$, the figure will similar and concentric to the given ellipse I', S, 'T, U; or when

Fig. 428 points at the extromities for one half of the curve have been wh, the other half may be fonnd by producing the diancter to the opposite side, and king the part produeed equal to the other part.
1082. Гиов. V111. Alunt a given reetanyle ABCD to describe an eilipsis which shall
 pointa of intorarction of the turn diat!gmals.

through L draw GII parallel to AB cutting the opporite side BC of the rectangle in M , and through the point O draw KI parallel to AD or BC cutting the opposite side DC in N. In NK or $N \mathrm{NK}$ produced, make NQ equal to $N C$, and join $C Q$; draw QR parallel to GH cutting CB or CB produced in R; make EH and EG cach equal to QC, as also El and EK each equal to PC ; then will GH be the major axis and KI the minor axis of the ellipsis required.

The demonstration of this method, in which the line QK has

Fig. 429. nothing to do with the construction, is as follows:-

By the similar triangles CPM and CQR, we have CP : CAI:: CQ: CR.
But because MP is equal to $M C=E N$, and since $C R$ is equal to $R Q=E M$,
And, by construction, since $P C$ is equal to $E I$ or $E K$, and $Q C$ is equal to $E G$ or Ell, EI: EN::EH:EM, or, alternately, EI: EH::EN:EM. But EN is equal to MC , and EM equal to NC ;
Whence EI: EH::MC: CN.
But since the wholes are as the halves, we shall have $\mathrm{K}[: G H:: B C: C D$.
This problem is useful in its application to architecture about domes aud pendentives, as well as in the construetion of spheroidal ceilings and other details.

OF THE HYPERBOLA.
1083. The direction of a plane cutting a cone, which produces the form called the hyperbola, has been already deseribed; its most useful properties will form the subjeet of the following theorems, which we shall preface with a few definitions: -

1. The primary axis of an hyperbola is called the transverse axis.
2. A straight line drawn through the centre of an hyperbola and terminated at each extremity by the opposite curves is called a diameter.
3. The extremities of a diameter terminated by the two opposite curves are called the vertices of that diameter.
4. A straight line drawn from any point of a diameter to meet the curve parallel to a tangent at the extremity of that diameter is called an ordinate to the two abscissas.
5. A straight line which is bisected at right angles by the transverse axis in its centre, and which is a fourth proportional to the mean of the two abscissas, their ordinate, and the transverse axis, is called the conjugate axis.
6. A straight line which is a third proportional to the transverse and conjugate axis is called the latus rectum or parameter.
7. The two points in the transverse axis cut by ordinates which are equal to the semi-parameter are cal ed the foci.
8. 'Theorem I. In the hyperbola the squares of the ordinates of the transverse axis are to each other as the rectungles of their abscissas.

Let QVN (fy.430.) be a section of the cone passing along the axis VD, the line of section of the directing plane, $H 13$ the line of axis of the cutting plane, the directing and cutting plane being perpendicular to the plane QVN. Let the cone be cut by two planes perpendicular to the axis passing through the two points P, H, meeting the plane of section in the lines PM, HI, which are ordinates to the cireles and to the figure of the section, of the same time.
By the similar triangles APL and AHN, AP: PL::AII: HN;

And by the similar triangles BPK and $\mathrm{BHQ}, \mathrm{BP}: \mathrm{PK}:: \mathrm{BH}: \mathrm{HQ}$. Therefore, taking the reetangles of the corresponding terms, $A P \times B P: P L \times P K:: A l l \times$ BII: HN $\times I \mathrm{Q}$.
But in tlie circle, $\mathrm{PL} \times \mathrm{PK}=\mathrm{P}^{2}$, and $\mathrm{HN} \times \mathrm{HQ}=\mathrm{HI}^{2}$;
Therefore $\mathrm{AP} \times \mathrm{BP}: \mathrm{PM}^{2}:: \mathrm{AH} \times \mathrm{BH}: \mathrm{H}^{2}$,
Or, alternately, $\mathrm{PM}^{2}: \mathrm{HI}^{2}:$: AP : PB:AH:BH.
1085. Tueonem II. In the hyperbola, as the square of the transverse axis is to the square of the conjugate axis, so is the rectangle of the abscissas to the square of their ardinate.

Let AB (fig. 431.) be the transverse axis, GE the eonjugate axis, C being the centre of the opposite curves; also let HI and PM be ordinates as before; ther, will

Curoll. Hence $\mathrm{AB}^{2}: \mathrm{GE}^{2}:: \mathrm{CP}^{2}-\mathrm{CA}^{2}: \mathrm{PM}^{2}$ (fig.432.). For lat the cutting plane the opposite liyperbola intersect two circles parallel to the base in 11 and PM, and let the cone be cut by another plane parallel to the ise, passing through the centre C of the transverse axis, and let $m n$ a the diameter of the circle made by such plane.

Then ACm, APK are similar, and $\underset{\mathrm{BC}}{\mathrm{AC}}: \mathrm{C} m:: \mathrm{C} n \mathrm{BP}: \mathrm{PK}$. And as BCn, BPL are similar, $\quad \mathrm{BC}: \mathrm{C} n:: \mathrm{BP}: \mathrm{PL}$. It refore, taking the rectangles of the corresponding terms,

$$
\mathrm{BC} \times \mathrm{AC}: \mathrm{C} n \times \mathrm{C} m:: \mathrm{BP} \times \mathrm{AP}: \mathrm{PL} \times \mathrm{PK} .
$$

But $\quad \mathrm{BC}=\mathrm{AC} ; \mathrm{C} m \times \mathrm{C} n=\mathrm{C} t^{2}$; and $\mathrm{PL} \times \mathrm{PK}=\mathrm{PM} \mathrm{I}^{2}$.
Thercfore $\mathrm{AC}^{2}: \mathrm{Ct}^{2}:: \mathrm{AP} \times \mathrm{BP}: \mathrm{PM}^{2}$.
Though $\mathrm{C} t$ is not in the same plane, it is what is usually called the wi-coujugate axis, and it agrees with what has been demonstrated the first part of this proposition.
1086. Theorem 111. In the hyperbula, the square of the semi-

Fig. 432 ujugate axis is to the square of the semi-transverse axis as the sum the squares of the semi-conjugate axis and of the ordinate parallel to it is to the square of the scissas.
Let AB (fig. 433.) be the transverse axis, GE the conjugate, C the cenof the figure, and PM an ordiuate, then will

$$
\begin{aligned}
& \mathrm{GE}^{2}: \mathrm{AB}^{2}:: \mathrm{CE}^{2}+\mathrm{PM}^{2}: \mathrm{CP}^{2} . \\
& \text { For, by Thcor. II., } \mathrm{CE}^{2}: \mathrm{CA}^{2}: \mathrm{PM}^{2}: \mathrm{CP}^{2}-\mathrm{CA}^{2}, \\
& \text { And, by composition, } \mathrm{CE}^{2}: \mathrm{CA}^{2}:: \mathrm{CE}^{2}+\mathrm{PM}^{2}: \mathrm{CP}^{2} .
\end{aligned}
$$

This denoonstration may be also applied to what are called conjugate perbolas.
1087. Theorem IV. In the hyperbola, the square of the distance of the us from the centre is equal to the sum of the squares of the semi-axes. Let AB (fg. 434.) be the transverse axis, CE the semi-conjugate. In B , produced within the curve each way, let F be one focus; and f the ler, and let FG be tlie semi-parameter then $\mathrm{CF}^{2}=\mathrm{CA}^{2}+\mathrm{CE}^{2}$.
For, by Thcor. I.,
$\mathrm{CA}^{2}: \mathrm{CE}^{2}:: \mathrm{FA} \times \mathrm{FB}: \mathrm{FG}^{2}$;
But, by property of parametcr, $\mathrm{CA}^{2}: \mathrm{CE}^{2}:: \mathrm{CE}^{2}: \mathrm{FG}^{2}$.
Thercfore
$\mathrm{CE}^{2}=\mathrm{AF} \times \mathrm{FB}=\mathrm{CF}-\mathrm{CA}$;

Aud, by transposition,
$\mathrm{CF}^{2}=\mathrm{CA}^{2}+\mathrm{CE}^{2}$.

Fig. 435.

Coroll. 1. The two semi-axes, and the distance of the focus from the centre, are the sides a right-angled triangle CEA, of which the distance AE the distance of the focus from the centre.
Coroll. 2. The conjugate axis CE is a mean proportional tween FA and FB , or between $f \mathrm{~B}$ and $f \mathrm{~A}$, for $\mathrm{CE}^{2}=$ $\therefore-\mathrm{CA}=(\mathrm{CF}+\mathrm{CA}) \times(\mathrm{CF}-\mathrm{CA})=\mathrm{BF} \times \mathrm{AF}$.
1088. Theonem V. The difference of the radius vectors equal to the transverse axis. (fig. 435.)
$\begin{array}{ll}\text { That is, } & f \mathrm{M}-\mathrm{FM}=\mathrm{AB}=2 \mathrm{CA}=2 \mathrm{CB}, \\ \text { For } & \mathrm{CA}^{2}: \mathrm{CE}^{2}: \mathrm{CP}^{2}-\mathrm{CA}^{2}: \mathrm{PM}^{2} ; \\ \text { And } & \mathrm{CE}^{2}=\mathrm{CF}^{2}-\mathrm{CA}^{2} .\end{array}$
Therefore $\mathrm{CA}^{2}: \mathrm{CF}^{2}-\mathrm{CA}^{2}:: \mathrm{CP}^{2}-\mathrm{CA}^{2}: \mathrm{PM}^{2}$.
nd by taking the rectangle of the extremes and means, and iding by CA2,

$$
\mathrm{P}^{2} \mathrm{II}^{2}=\frac{\mathrm{CF}^{2} \times \mathrm{Cl}^{P_{2}}}{\mathrm{CA}^{2}}-\mathrm{CI}^{2}-\mathrm{Cl}^{2}+\mathrm{CA}^{2}
$$

lint $\quad \mathrm{FI}^{\prime 2}=\left(\mathrm{Cl}^{\prime}-\mathrm{CF}\right)^{2}=\mathrm{CP}^{2}=2 \mathrm{CP}^{3} \times \mathrm{CF}^{2}+\mathrm{Cl}^{2}$,
Anl $H^{2}\left\|^{z}=\Gamma^{3}\right\|^{2}+W P^{2}$ 。

Fig. 431.

Fik. 8 2is

Herefore $\mathrm{F}^{2} \mathrm{HI}^{2}=\frac{\mathrm{CF}^{2} \times \mathrm{CH}^{2}}{\mathrm{CA}^{2}}-2 \mathrm{CP} \times \mathrm{CH}^{2}+\mathrm{CA}^{2}$.
pe cach side of this equation is a complete square.
Therefore, extracting the root of each number,
In the same manner we find

$$
\begin{aligned}
& \mathrm{FM}=\frac{\mathrm{CF} \times \mathrm{CP}}{\mathrm{CA}}-\mathrm{CA} . \\
& \mathrm{fM}=\frac{\mathrm{CF} \times \mathrm{CP}}{\mathrm{CA}}+\mathrm{CA} ;
\end{aligned}
$$

And, subtracting the upper equation from the lower, $f \mathrm{M}-\mathrm{FM}=2 \mathrm{C} \Lambda$.
Coroll. 1. Hence is derived the common method of deseribing the hyperbolic curve chanically. 'Thus: - In the transverse axis AB produced (fig. 43.5.), take the loci F ', f; I any point I in the stranght hine Al' so prodnced. 'Tlan, with the radii A1, B1, and the
centre F, f, describe arcs intersecting each other ; call the points of intersection E , then E , will be a point in the curve; with the same distances another point on the other side of the axis may be found. In like manner, by taking any vther points 1 , we may find two more points, one on each side of the axis, and thus continue till a sufficient number of points be found to lescribe the curve by hand. By the same process, we may also describe the opposite hyperbolas.

Coroll. 2. Because $\frac{\mathrm{CF} \times \mathrm{CP}}{\mathrm{CA}}$ is a fourth proportional to $\mathrm{CA}, \mathrm{CF} \mathrm{CP}$, CA: CF::CP: CA + FM.
2680. Theoreni VI. As the square of the semi-transverse axis is to the square of the scmi-comjugute, so is the difference of the squares of any two obscissas to the difference of the squares of their ordinates.

By Theor. II., $\left\{\begin{array}{l}\mathrm{CA}^{2}: \mathrm{CE}^{2}:: \mathrm{CP}^{2}-\mathrm{CA}^{2}: \mathrm{PI}^{2} \text { (fig. 436.), } \\ \mathrm{CA}: \mathrm{CE}^{2}: \mathrm{CH}^{2}-\mathrm{C}\end{array}\right.$
Therefore, by CII $-\mathrm{CA}^{2}: \mathrm{CP}^{2}-\mathrm{CA}^{2}:: \mathrm{II}: \mathrm{P}^{2}$ or equality,

HN2, •CP-CA2... • PNO or $\mathrm{CH}^{2}-\mathrm{CA}^{2}: \mathrm{CH}^{2}-\mathrm{CI}^{2}: \mathrm{HI}^{2}: \mathrm{HI}^{2}-\mathrm{IN}^{2}$;

Fig. 4 ixi.

And, by division,
Alternately,
Bat
'Iherefore
 $\mathrm{CH}^{2}-\mathrm{CA}^{2}: \mathrm{HI}^{2}: \mathrm{CA}^{2}: \mathrm{CE}^{2}$
$C A^{2}: \mathrm{CE}^{2}: \mathrm{CH}^{2}-\mathrm{CP}^{2}: \mathrm{H}^{2}-\mathrm{HN}^{2}$.

Coroll. 1. If III be produced to K , and CQ be made equal to CI , then will $\mathrm{CH}=$ $\left(P^{2}=(C I I+C P)(C I I-C P)=\left(C P^{3}+C H\right) P I ; \quad\right.$ and $H^{2}-H^{2}=(H I+H N)(H I-$ $I I N)=(I I I+H N) N I$. Therefore the analogy resulting becomes

$$
\mathrm{CA}^{2}: \mathrm{CE}^{2}::(\mathrm{CI}+\mathrm{CH}) \mathrm{PH}:(\mathrm{III}+\mathrm{HN}) \mathrm{NI} .
$$

So that the square of the transverse axis is to the square of the conjugate, or the square of the semi-transverse is to the square of the semi-conjugate, as the rectangle of the sum and difference of the two ordinates from the centre is to the rectangle of the sum and difference of these ordinates.
1090. Theonen VII. If a tangent and an ordinate be drawn from any point in an hyperbola to mert the transverse axis, the semi-transverse axis will be a mean proportional between the distances of the two intersections from the centre.

> For (fig. 437.) CE2: CA?::(IH+HN)IN::(1'C+CII)II, And by Theor. I., CE2 : CA2:: $\mathrm{PM}^{2}: \mathrm{CP}^{2}-\mathrm{CA}^{2}$;
> I3y equality, $\mathrm{I}^{\prime} \mathrm{H}^{2}: \mathrm{CP}^{2}-\mathrm{CA}^{\circ}::(\mathrm{IH}+\mathrm{HN}) \mathrm{IN}:(\mathrm{P} \mathrm{C}+$ CII)HP;
> And by similar triangles INM, MPT, IN: NM or PII:: PMI: P'T or $\mathrm{CP}-\mathrm{C} \mathrm{I}$.

Therefore, taking the rectangles of the extremes and means of the two last equations, and neglecting the common factors, it will be PM(CP $\left.-\mathrm{CT}^{7}\right)\left(\mathrm{Cl}^{1}+\mathrm{CH}\right)=\left(\mathrm{CP}^{2}-\mathrm{CA}^{2}\right)(I \mathrm{I}+\mathrm{IIN})$; but when III and PM coineide, HI and IHN each become equal to PM, and CH equal to CP: therefore in the equation substitute 2 CP for $\mathrm{CP}^{2}+\mathrm{CH}$, and 2 PM for III + IIN, and neglecting the common factors and cominon terms, the result is $\mathrm{C} \Gamma . \mathrm{CP}=\mathrm{CA}^{2}$, or $\mathrm{C}^{\prime} \Gamma: \mathrm{CA}:: \mathrm{CA}: \mathrm{CP}$.

Ceroll. Since C'I is always a third proportional to CP, CA; suppose

Fic. 437. the points P and A to remain constant, the point T will also remain constant ; therefort all the tangents will meet in the point ' I ' which are drawn from the extremity of the ordinate λ of every hyperbola described on the same axis A I.
1091. Theorem VIII. Four perpendiculars to the transverse aris intereepted by it and a tangent, will be proportionals when the first and last l.ave one of their extremities in each vertex, the seeond in the point of conluct, and the third in the centre.

Let the four perpendiculars be AD, PM, CE, BF (fy. 438.), whereof $A \mathrm{D}$ and BF have their extremities in the vertices A and B , and the second in the point of contact \mathbf{M} of the tangent and the curve, and the third in the centre C.

Then will	AD: PM: CE: 3 F .
For, by Theor.	CT: СА: CA : СР,
And, by division	СА-СГ: СР-СА:: С'Г: СА or CB ;
That is,	AT: AP:: СT: CB;
By composition,	AT: AT + AP: C'I : C'T + CB.
Therefore	

Y'is. 1.38.

3ut by the similar triangles TAD, TPM, TCE, and TBF, the sides AT, PT, C' and 13 T are proportional to the tour perpendiculars $A D, P M, C E, B F$.

Therefore AI): PM:: CE : BF.

1092. Theorfal IX. The two rulius vectors meeting the curve in the same point will muke nasl angles with a tangent passing through that point. (Fig. 439.)
Forr, by Theor. VII., By Cor. 2. Theor. V., . ISy equality, CT: CF::CA:CA+FM; 13y division and composition, $\mathrm{CF}-\mathrm{CT}: \mathrm{CF}+\mathrm{CF}:: \mathrm{FM}: 2 \mathrm{CA}$ +FM ;
That is, FT: fl:: FMI: fle;
And by the similar triangles TFM, TfR, FT $: f^{\prime} \mathrm{\Gamma}:: \mathrm{FMI}: f \mathrm{R}$. hercfore $f R$ is equal to $f M$; eonsequently the angle $f R M$ is equal the angle $f \mathrm{MR}$: and because $f^{\prime R}$ is parallel to $f \mathrm{M}$, the angle M'I' is equal to the angle fRM; therefore the angle FM'I' is flial to the angle f RII.
1093. 1'momban 1. To describe an hypertola by means of the end - a ruler moreable on a pin F (fig 440.) fixed in a plane', with oue I lf" a string fixed to a point E in the same plane, and the other exmity of the string fastencl to the other end C of the ruler, the point of the ruler being moved towards G in that plane.
While the ruler is moving, a point D being made to slide

Fis. 439. ing the edgre of the ruler, kept elose to the string so as to keep each of the parts C D, Li of the string stretched, the point D will deseribe - curve of all hyperbola.

If the end of the ruler at F ($f(t y .441$.$) be made$ oveable abont the point E , and the sting be fixed F° and to the end C of the ruter, as before, another rwe may be deseribed in the same namer, which is lled the opposite hyperbola: the points E and F , out which the ruler is made to revolve, are the foei. I'lore are ma.y oceasions in which the use of this nic seetinn ocears in architeetural details. For bance, the profites of many of the Grecian mould. Is are loyperbolie; and in conical roofs the forms - by intersections such that the student should be - 11 aepmained with the methods of deseribing it. 10y. I'mop. II. Given the diameter AIB, the allwas BC, and the donble ordinate DPE in position and gruilusle, to aless rilie the hiyperbota. (Fig. 442.)

"Ihrought 13 draw 1 G parallel to DE , and drav D F and EG paratlel to A B.
Divide I) 5° and I) C cach into the same number of equal parts. 1 from the points of division in $\mathrm{I} F \mathrm{~F}$ draw lines to B , also from - points of division in DC draw straight lines to A; then ough the points of intersection fonnd hy the lines drawn (whgh the eorresponding points draw the curve D)l3. In tike mer the ellorve lill may be drawn so that DlBE will form : enrve oll esth side of the dianeter $A \mathrm{~B}$. If the point A be witered as the vertex, the opposite hyperbola 11 AI may be eribed in the same manor, and thus the two corves formed by fang the opposite eones by the same plane will be found. lsy theorines, the hyperbola has been considered a proper figure agnihbrimer for ans areh whose oflice is to support a load which grentent at the mindtle of the areh, and diminishes eowards the

Filn 11\%。 whente 'Ibis, however, is matler of eomsiteration for another part of this work.

```
OF TII: FAKAl:OI,S.
```

95. Dramiriona, - 1. "The parnmeter of the avis of n parabola is a third proportional to the abmeiawn nut ita ordinate.
The foeng is that point in the avis where the ordinate is equal to the s:minepratneter. 'The drameter is a line within the entrve terminated thereby, nad is paralled to tha axis.
 le: Wh enogent at the extremity of the dinancter.
96. Theoreal. In the parabold, the auscissas are proportional to the squares of their oruinates.

Let QVN (fig. 443.) be a section of the eone passing along the axis, and let the direc. trix RX pass through the point Q perpendicular to $Q N$, and let the parabolic section be ADI meeting the base QIND of the eone in the line DI, and the diameter QN in the point H; also let KML, be asection of the cone parallel to the base QIN intersecting the plane VQN in the line KL, and the seetion ADI in PM. Let P be the point of coneourse of the three planes QVN, KML, AHI, and let Fi be the point of eoneourse of the three planes QVN, KML, ABI: then, because the planes VRX and ADI are parallel, and the plane VQN is perpendieular to the plane VIRX, the plane ADI is also perpendicular to the plane VQN. Again, because the plane QIN is perpendicular to the plane QVN, and the plane KML is paralled to the plane QIN, the plane KMI is perpendicular to the plane QVN ; therefore the cominon sections PM and HI are perpendicular to the plane VQN ; and because the plane KML is pa-
 rallel to the plane QIN; and these two planes are interseeted by the plane QVN, their common sections $K L$ and $Q N$ are parallel. Also, since PMI and Ill are each perpendieular to the plane QVN, and since KL is the common seetion of the planes $Q V N, K M L$, and $Q N$ in the common section of the planes QVN, QIN ; therefor* PM and HI are perpendicular respectively to KL and QN.
Consequently
AP:AH:: PM2: HI
For, by the similar triangles APL, AHN, AP: AH::PL: HN,
Or AP:AH::KP $\times \mathrm{PL}: \mathrm{KP} \times \mathrm{HN}$.
ISut, by the circle
And, by the circle
therefore
Therefore, by substitution.
Coroll. By the definition of the parameter, which we shall all P,

$$
\mathrm{AP}: P M:: \mathrm{PM}: P=\frac{\mathrm{PM}^{2}}{\mathrm{PA}}
$$

And $P \times A P=P M^{2}$, or $P \times A H=H I^{2}$.

$$
\text { Therefore } P: P M:: P M: A P \text {, or } P: \text { III :: HI : AII. }
$$

109\%. 'Theorem II. As the parameter of the axis is to the sum of any two ordinates, so ${ }^{\text {i }}$ the difference of these ordinates to the difference of their abscissas.

$$
\begin{aligned}
& \text { That is, P:II + PM:: III-PM : AH-AP. } \\
& \text { For since by Cor. Theor. } I .\left\{\begin{array}{l}
P=\frac{P M^{2}}{A P}, \\
P=\frac{M H^{2}}{A I I} ;
\end{array}\right.
\end{aligned}
$$

Multiplying the first of these equations by $A P$ and the seeond by $A H$,

$$
\text { they become }\left\{\begin{array}{l}
P \times A P=P M \\
P \times A H=H I^{2}
\end{array}\right.
$$

Subtract the corresponding numbers of the first equation, and $P(A H-A P)=H I^{2}-P^{P} H^{2}$.
Bint the difference of two squares is equal to a rectangle under the sum and difference of their sides.

$$
\begin{aligned}
& \text { And } \mathrm{HI}^{2}-\mathrm{PM}^{2}=(\mathrm{HI}+\mathrm{PM})(\mathrm{HI}-\mathrm{PM}) . \\
& \text { Therefore } \mathrm{P}(\mathrm{AH}-\mathrm{AP})=(\mathrm{HI}+\mathrm{PM})(\mathrm{HI}-\mathrm{PM}) \text {. } \\
& \text { Consequently P:HI + PM::HI-PM:AH-AP; }
\end{aligned}
$$

O_{i}, by drawing $K M$ parallel to $A \dot{I}$, we have $\ddot{G} K=P M+H I$, and $K I=I I I-P M$; and since $\mathrm{PH}=\mathrm{AH}-\mathrm{AP} ; \mathrm{P}: \mathrm{GK}:: \mathrm{KI}: \mathrm{PH}$, or KM .
Coroll. Hence, because And since

$$
\mathrm{P} \times \mathrm{KM}=\mathrm{GK} \times \mathrm{KI} ;
$$

And since
Therefore, by multiplieation, $\mathrm{KMI} \times \mathrm{H} \mathrm{H}^{2}=\mathrm{GK} \times \mathrm{KI} \times \mathrm{AH}$, or AH:KM:: HI ${ }^{2}: G K \times K I$.
So that any diameter $M K$ is as the rectangle of the segments $G K$, KI of the double ordinate GI. From this a simple method has been used of finding points in the curve, so as to describe it.
1098. Theurem 11 I. The distance between the vertex of the curve aud

Fig. 145. the focus is equal to one fourth of the parameter.

Let LG (fig. 445.) be a double ordinate passing through the foens, then $1 . G$ is the parameter. For by the definition of parameter $\Lambda F: F G:: F G: I=2 F C$

Therefore $2 A F=F G=\frac{1}{2} L G ;$
Consequently $A F^{\prime}=\frac{1}{4} \mathrm{LG}$.
099. Theoren IV. The radius vector is equal to the sum of the distaices beturen the focus the vertex, and between the ordinate and the vertex. (Fig. 446.)
That is,

$$
F M=A P+A F .
$$

For
$\mathrm{FP}=\mathrm{AP}-\mathrm{AF}$;
Therefore
But, by Cor. Theor. Il., Therefore, by addition,

$$
\begin{aligned}
& \mathrm{P}^{2}=A \mathrm{P}^{2}-2 \mathrm{AP} \times \mathrm{AF}+\mathrm{AF}^{2} . \\
& \mathrm{PM}^{2}=\mathrm{P} \times \mathrm{AP}=4 \mathrm{AF} \times \mathrm{AP} . \\
& \mathrm{FP}^{2}+\mathrm{PM}^{2}=\mathrm{AP}+2 \mathrm{AF} \times \mathrm{AP}^{3}
\end{aligned}
$$

But by the right-angled tringles, $\mathrm{FP}^{2}+\mathrm{PMI}^{2}=\mathrm{FMI}^{2}$;

And therefore
Hence, extracting the roots,
Or by making
$\mathrm{FM}^{2}=\mathrm{AP}^{2}+2 \mathrm{AF} \times \mathrm{AP}+\mathrm{AF}^{2}$.
$\mathrm{FM}=\mathrm{AP}+\mathrm{AF}=2 \mathrm{AF}+\mathrm{FP} ;$
$A G=A F, F M=G P$.

Fin. 410

Coroll. 1. If through the point G (fig. 447.) the line $G Q$ be drawn perpendicular to axis, it is called the directrix of the parabola.
By the property shown in this theorem, it appears that if any line Qal be drawn parallel the axis, and if FMI be joined, the straight line FMI is equal to QMI ; for QMI is equal GP.
Coroll. 2. Hence, also, the curve is easily described by points. Take $A G$ equal to AF, 7. 447.), and draw a number of lines M, M perpendicular to the axis $A P$; then with the tances G1, GP, \&e. as radii, and from F a centre, deseribe ares on each side of Al', ting the lines MM, MM, \&c. at MM, \&e.; n through all the points $\mathrm{M}, \mathrm{M}, \mathrm{M}, \& \mathrm{\&}$. w a curve, which will be a parabola.
100. Theorem V. If a tangent be drawn n the vertex of an ordinate to meet the axis duced, the subtangent PT (fig. 448.) will equal to twice the distance of the ordinate

Fig. 417.
 at the vertex.
If $M T$ be a tangent at M, the extremity of the ordinate PM; then the sub-tangent P'I gual to twice AP. For draw MK parallel to AII,

$$
\begin{array}{ll}
\text { Then, by Theor. III, } & \text { KM: KI::GK:P' } \\
\text { And as MKI, TPM are similar, } & \text { KM:KI::PT: } \\
\text { Therefore, by equality, } & \text { P:PM::GK: } \\
\text { And by Cor. Theor I., } & \text { P:PM::PM:AP', } \\
\text { Therefore, by equality, } & \text { APP:PT:PM:GK. }
\end{array}
$$

t when the ordinates HI and PM eoincide, MT will become a tangent, and $G K$ will ome ergual to twice PM.

$$
\begin{aligned}
& \text { Therefore AP : PT: : PM : } 2 \mathrm{PM} \text {, or } \\
& \mathrm{PT}=2 \mathrm{AP} .
\end{aligned}
$$

irom this property is obtained an easy and aceurate method of drawing a tangent to any at of the curve of a parabola. Thus, let it le rered to draw a tangent to any point M in the eurve. duce I'A to T (fig. 449.), and draw MP perpendiir to $I^{\prime} \mathrm{T}$, mecting AP in the point P. Make AT al to AP', and join MT, which will be the tangent fired.
101. Theorem VI. The radius vector is equal to distonce between the focns and the intersection of a Hent at the vertex of an ordinate and the axis pro$\%$

Fig. 119.

Fig. $1: 60$. Produce I'A to T (fig. 450.) and let MT be a tangent at M ; then will $\mathrm{F} \mathrm{T}=\mathrm{F}=\mathrm{M}$.

For	$\mathrm{F}^{\prime} \mathrm{T}=$ AF+
But, by last theorem,	$\mathrm{Al}^{\prime}=\mathrm{A}^{\prime} \mathrm{T}$;
Therefore	$\mathrm{F}^{\prime \prime} \mathrm{C}=$ AF+
But	H
There	

(oroll. 1. If MN be drawn perpendieular to M'T to meet the axis in N , then will
 $=\mathrm{l}^{\prime \prime} \mathrm{T}^{\prime}$; and sinece IIF and MN are parallel, aud MT is bisected in 11 , the line TN will be bisected in F . It therefore follows that $\mathrm{FN}=\mathrm{FM}=\mathrm{F} \mathrm{T}$.
(uroll. 2. The sulmarmel P'N is a constant quantity, and it is erqual to half the paraF, or to $2 A F$. For since TMN is a right angle,

Therefire	2 Nr or TP :
lini, by the d	1M: РM: 1 ;
Theecfore	$1 \times=11$

Coroll. 3. The tangent of the vertex $A H$ is a mean proportional between $A F$ and $A P$. For sinee FHTT is a right angle, therefore AII is a mean proportional between AF and A'l'; and sinee $A^{\prime} T=A P, A H$ is a mean proportional between $A F$ and $A P$. Also AH is a mean proportional between FA and $\mathrm{F}^{\circ} \mathrm{T}$, or between FA and FM.

Coroh. 4. The tangent makes equal angles with FM and the axis AP, as well as with FC and CI .
1102. Theorea V11. A line parallel to the axis, intereepted by a double ordinate and a tangent at the vertex of that ordinate, will be divided by the eurve in the same ratio as the lina itself divides the double ordinute.

Let QMI (fig. 451.) be the double ordinate, MI $\begin{aligned} & \text { the tangent, AP }\end{aligned}$ the axis, GK the intereepted line divided by the eurve in the point I; then will GI: IK:: MK: KQ

For by similar triangles MKG, MPT; MK: KG:: PM : PT, or 2AP;
By the definition of parameter,
Therefore, by equality,
And again, by equality,
And by division,
P: PM::PM:2AP;
1’: MK: : PM: KG;
PM: MK::2AP:KG;

Fig. 451.
1103. Problem I. To describe a parabola.

If a thread, equal in length to the leg BC (fig. 452.) of a right angle or square, be fixed to the end C , and the other end of the thread be fixed to a point F in a plane, then if the square be moved in that plane so that the leg $A B$ may slide along the straight line GH , and the point D be always kept close to the edge BC of the square, and the two parts FD and DC of the string kept stretched, the point D will deseribe a curve on the plane, which will be a parabola.
1104. Рков. II. Given the duable ordinate DE and the abseissa BC in position and rutguitude, to deseribe a parabolt.

Through B (figs. 453,454 .) draw FG parallel to DE, and DF and EG parallel to CD
 Divide DC and DF eaeh into the same number of equal parts. From the points of

Fig. 154.

Fig. 452. division in DF draw lines to B. Through the points of division in DC draw lines parallel to BC , and through the points of intersection of the corresponding lines draw a eurve, and complete the other half in the same manner; then will DBE be the complete curve of the parabola. The less BC' is in proportion to CD, the nearer the curve will approach to the arc of a circle, as in fig. 422.; and henee we may describe the eurve for diminishing the shaft of a column, or draw a flat segment of a eircle.
1105. Рков. III. The same parts being given, to describe the parabola by the iutersection of straight lines.

Produce CI to F (fig. 455.), and make BF equal to BC. Join FD and FE. Divide DF and FE in the same proportion, or nto the same number of equal parts. Let the divisions be numbered from D to F , and from F to E, and join every two corresponding points by a straight line; then the interseetion of all the straight lines will form the parabola required.

Fig. 455.
liog. Pкob. IV. To draw a straight line from a given point in the curve of a purabola, which shall be a tongent to the curve at that point.

Let DC (fig. 456.) be the double ordinate, $c B$ the abseissa to the parabolic curve DBC , and let it be required to draw a tangent from the point e in the curve. Draw of parallel to DC , cutting

Fig. 456. BC in f : produee $c \mathrm{~B}$ to g, and make $\mathrm{B} g$ equal to $\mathrm{B} f$, and join $g e$, then will ge be the tangent required. In the same manner DH will be found to be a tangent at D . If $e \mathrm{k}$ be drawn perpendicular to the tangent $g e$, then will $e \mathrm{~K}$ be also perpendicular to the curve, and in the proper direction for a joint in the masonry of a parabolie arch.
1107. The uses of the parabolic curve in arehitecture are many. Tbe theorists say that is the curve of equilibrium for an arch which has to sustain a load uniformly diffused over s length, and that therefore it should be included in the deptlo of lintels and flat arches; and hat it is nearly the best form for suspension and other bridges, and for roofs. It is also conidered the best form for beams of equal strength. It may be here also remarked, that it the curve described by a projectile, and that it is the form in which a jet of water is elivered from an orifice made in the side of a reservoir. So is it the best curve for the eflection of light to be thrown to a distance. In construction it occurs in the intersection f eonic surfaces by planes parallel to the side of the cone, and is a form of great beauty or the profiles of mouldng,, in which manner it was much used in Grecian buildings.
general method. of derermining and describing the species of conic sfetions.
1103. In a conic section, let there be given the abeeissa AB (ffc. 457.), an ordinate BC, nd a tangent $(\mathrm{D}$) to the curve at the exremity of the ordinate to determine the pecies of the conic section, and to decribe the figure.
Draw AD parallel to BC, and join AC Nos. 1. and 2.). Bisect AC in E, and roluce 1 E and AB , so as to meet in F hen DE is not parallel to $A B$; then in te case where DE will meet AB or AB roduced in F, the point F will be the entre of an ellipsis or hyperbola. In this ase produce AF to G, and make FG qual to FA ; then if the ordinate BC nd the centre be upon the same side of he apex A, the curre to which the given arts belong is an ellipsis; but if they e on different sides of it, the curve is a hyperbola. When the line DE (No.

$\mathrm{V}_{\mathrm{ig}} \mathrm{t} 5 \mathrm{~J}$. -) is parallel to AB , the figure is a parabola.
1109. In a conic section, the alscissa AB (fig. 458.), an ordinate BC, and a point D in be curve being given, to determine the species of the curve, and thence to describe it.
Draw CG parallel to AB (Nos. 1. and 2.), and AG parallel to BC. Join AD, and oduce it to meet CG in e. Divide the ordinate CB in f in the same proportion as G is divided, then will $\mathrm{Cf}: f \mathrm{~B}:: \mathrm{Ce}: e \mathrm{G}$. Join $\mathrm{D} f$, and produce it or $f \mathrm{D}$ to meet Al
BA in h; then if the points D and h fall upon opposite sides of the erdinate BC, the arve is an ellipsis; but if D and h fall upon the same side of the ordinate BC, the curve ill be an hyperbola. If $\mathrm{D} f(\mathrm{No} .3$.) be parallel to AB , the curve will be a parabola. - the ease of the ellipsis and hyperbola, $\Lambda / 2$ is a diameter; and therefore we bave a diaeter and ordinate to describe the curve.

Skct V.

DESCKIHTLYE Gloonftur.

1110. The term Descriptive Geonetry, first used by Monge and other French geometers express that part of the science of geometry which consists in the application of geometrical les to the representation of the figures and the various relations of the forms of bodies, orrling to certain conventional methods, differs from common perspective by the design representation heing so made that the exact distance between the diflerent points of the ly represented ean always be fomen; and thus the mathematical relations arising from form and position may be deduced fron the representation. Among the English writers practical architecture, it has usually received the name of projection, from the ciremmHee of the different points and lines of the body being projected on the plane of reaentation ; for, in descriptive geometry, points in space are represented by their orthophical projection on two planes at right angles to each other, called the planes of projer. t, one of which planes is usually supposed to be horizontal, in which ease the other is verin, the projections being called horizontal or vertical, according as they are on one or f er of these planes.
1111. In this system, a point in space is represented by drawing a perpendicular from it toael of the planes of projection; the pont whereon the perpendienlar fills is the
projection of the proposed point. Thes, as points in space are the boundaries of lines, so their projections similarly form lines, by whose means their projection is obtained ; and by the projections of points lying in curves of any description, the projections of those curves are obtained.
1112. For obvious reasons, surfaces cannot be similarly represented; but if we suppose the surface to be represented, covered by a system of lines, according to some determinate law, then these lines projectel on each of the two planes will, by their boundaries, enable as to project the surface in a rigorous and satisfaetory manner.
1113. There are, however, some surfaces which may be more simply represented ; for a plane is sompletely defined by the straight lines in which it intersects the two plames of projection, which lines are called the traces of the plane. So a sphere is completely detinet iy the two projections of its centre and the great circle which limits the projections of its points. So also a cylinder is defined by its intersection (or trace) with one of the planes of projection and by the two projections of one of its cnds; and a cone by its intersection with one of the planes of projection and the two projections of its summit.

111 \%. Monge, before mentioned, Hachette, Vallée, and Leroi, are the most systematic writers on this subject, whose immediate application to arehitecture, and to the mechamical arts, and inost especially to engineering, is very extensive ; in conseqnence, indeed, of which it is considered of so much importance in France, as to form one of the principal departments of study in the Polytechnic School of Paris. A sufficient gencral idea of it for the architectural student may be obtained in a ssall work of Le Croix, entitled, Complément des Elemens de Geometrie. In the following pages, and occasionally in other parts of this work, we shall detail all those poiats of it which are connected more immediately with our subject. inasmuch as we do not think it necessary to involve the reader in a mass of seientific matter connected therewith, which we are eertain he would never find necessary in the practice of the art whereon we are engaged.
1115. In order to compreinend the method of traeing geometrically the projections of all sorts of objects, we must observe, - I. That the visible faces only of solids are to be expressed. 1I. That the surfaces which enclose solids are of two sorts, rectilinear and curved. 'These, however, may be divided into three classes, - 1 st. Those included by plane surfaces, as prisms, pyramids, and, generally, similar sorts of figures used in building. 2d. Thous included by surfaces whereof some are plane and others with a simple eurvature, as cylinders, cones, or parts of them, and the voussoirs of arches. 3d. Solids enclosed by one or several surfaces of double flexure, as the sphere, spheroids, and the voussoirs of arches on circular planes.
1116. First eluss, or solids with plane surfuees. - The plane surfaces by which these solids are bounded form at their junction edges or arrisses, which may be represented hy right lines.
1117. And it is useful to obscrve in respect of solids that there are three sorts of angles formed by them. First, those arising from the meeting of the lines which bound the faces of a solid. Second, those which result from the concurrence of several faces whose edges mite and form the summit of an angle: thus a solid angle is composed of as many plane angles as there are planes uniting at the point, recollecting however that their number must be at least three. Third, the angles of the planes, which is that formed by two of the faces of a solid. A cubcenclosed by six square equal planes comprises twelve rectilincal edges or arrisses and eight solid angles.
1118. Pyramids are solids standing on any polygonal bases, their planes or faces being triangular and mecting in a point at the top, where they form a solid angle.
1119. Prisms, like pyramids, may be placed on all sorts of polygonal bases, but they rise on every side of the base in parallclograms instead of triangles, thus having throughont similar form and thickness.
1120. Though, strictly speaking, pyramids and prisms are polyhedrons, the latter tern is only applied to those solids whose faces forming polygons may each be considered as the base of a separate pyramid.
1121. In all solids with planc surfaces the arrisses terminate in solid angles formed by several of these surfaces, which unite with one another; whence, in order to find the projection of the right lines which represent thosc arrisses, all that we require to know is the position of the solid angles where they meet; and as a solid angle is generally composed of several plane angles, a single solid angle will determine the extremity of all the arrisses by which it is formed.
1122. Second class: solids terminated by plane and curved surfaces. - Some of these, as cones for instance, exhibit merely a point and two surfaces, one curved and the other fiat. The meeting of these surfaces forms a circulal or elliptical arris common to both. The projection of an entire eone requires several points for the eurvature which forms its bace. but a single point only is necessary to determine its summit. This solid may be considerceil as a pyramid with an elliptic or circular base; and to facilitate its projection a polygon is inseribed in the ellipsis or circle, which serves as its base.
23. If the cone is trinncated or eut off, polygons may in like manner be inseribed in urves which produce the sections.
24. Cylinders may be considered as prisms whose bases are formed by circles, es, or other curves, and their projections may be obtained in a similar manner: that inseribing polygons in the curves which form their bases.
25. Third class: solids whose surfaces have a double curvature.-A solid of this sorit be enclosed in a single surface, as a sphere or spheroid.
26. As these bodies present neither angles nor lines, they can only be represented by pparent curve which seems to bound their superficies. This curve may be detemined ngents parallel to a line drawn from the centre of the solid perpendicularly to the of projection.
27. If these solids are truncated or cut by planes, we must, after having traced the s which represent them entire, inscribe polygons in each curve produced by the seein order to proceed as directed for cones and cylinders.
28. 'Io obtain a clear notion of the combination of several pieces, as, for instance, of n we must imagine the bodies themselves annihilated, and that nothing remains but rrisses or edges which form the extremes of the surfaces of the voussoirs. The whole blage of material lines which would result from this consideration being considered parent would project upon a plane perpendicular to the rays of light, traces defining ese edges that we have supposed material, some foreshortened, and others of the same These will form the outhes of the vault, whence follow the subjoined remarks.
That in order, on a plane, to obtain the projection of a right line representing the arris of any solid body, we must on such plane let fall verticals from each of its extremities.
'Hhat if the arris be parallel to the plane of the drawing, the line which represents its prujection is the same size as the original.
That if it be oblique, its representation will be shorter than the original line.
"Ilat perpendiculars by means of which the projection is made being parallel to each other, the line projected cannot be longer than the line it represents.
'lhat in order to represent an arris or edge perpendicular to the plane of projection, a mere point marks it because it coincides in the length with the perpendiculars of projection.
That the measure of the obliquity of an arris or edge will be found by verticals let fall from its extremities.
29. In conducting all the operations relative to projections, they are referable to two e, whereof one is horizontal and the other vertical.

PIONF.CTION OF RIGIIT IINES.
w. The projection of a line AIB (fig. 459.) perpendicular to a horizontal plane is ex-

ed on such plane ly a point K, and by the litues ab, "b', eqnibl to the original on berplanes, whatever their direction.
31. In iuclined line ($\$$) (fiy. afo.) is represented on an horizontal or a wertical plame bo eab, ohorter than the line ithelli, execpt on a vertical plane, parallel to its projection,

 ame ioclinatoon ion requet of the plan on which it lien, have its projection suressolvely Whe paln of the eirele lif. determined by the perpendientar let fall fron the peint l^{i}.

plame perpendicular to $m n$, the projection of the line GH will be a point g; and that of the inclined line 1 K , the vertical $i k$, which measures the inclination of that line. Lastly, on a vertical plane parallel to $m n$, the projection $i^{\prime} k^{\prime}$ and $g^{\prime} h^{\prime}$ will be parallel and equal to the original lines.

PLOSECTICN OF SURFACES.

1134. What has been said in respect of right lines projected on vertical and horizontal planes may be applied to plane surfaces; thus, from the surface ABCD (fig. 463.), parallel to an horizontal plane, results the projection abcd of the same size and form. An inclined surface EFGH may have, though longer, the same projection as the level one $A B C D$, if the lines of projection $A \mathrm{E}, \mathrm{BF}$, DHI, CG are in the same direction.
1135. The level surface ABCD would have for projection on vertical planes the right lines $a b, b, c^{\prime}$, because that surface is in the same plane as the lines of projection.
1136. The inclined surface EFGH will give on vertical planes the foreshortened figure hgef of that surface; and upon the other the simple line $f q$, which shows the profile of its inclination, because this plane is parallel to the side of the inclined sur-

1'ig. 463. face.

PROJECTION OF CURVED LINES.
1137. Curved lines not laving their points in the same direction occupy a space which brings them under the laws of those of surfaces. The projection of a curve on a plane parallel to the surface in which it lies (fig. 464.) is similar to the curve.

1138. If the plane of projection be not parallel, a foreshortened curve is the result, on account of its obliquity to the surface (fig. 465.).
1139. If the curve te perpendicular to the plane of projection, we shall have a line representing the profile of the surface on which it is comprised; that is to say, a right line if the surface lie in the same plane ($f i g .466$.), and a curved line if the surface be curved (fig. 467.).
1140. In order to describe the projection of the curved line ABC (fig. 467.), if the surface in which it lies is curved, and it is not perpendicular to the plane of projection, a polygon must be inscribed in the curve, and from each of the angles of such polygon a perpendicular must be let fall, and parallels made to the chords which subtend the ares. But it is to be observed, that this line having a double flexure, we must further inscribe a polygon in the curvature which forms the plane abc of the surface wherein the curved line lies.
1141. The combination and developement of all the parts which compose the curved surfaces of vaults being susceptible of representation upon vertical and horizontal planes by right or curve lines terminating their surfaces, if what has been above stated be thoroughly understood, it will not be difficult to trace their projections for practical purposes. whatever their situation and direction in vaults or other surtaces.

PROIECTION OF SOLIDS.

149. The projections of a eube ABCDEFGII plaeed parallel to two planes, one zontal and the other vertical, are squares whose sides represent faces perpendicular to \approx ptanes (fig. 468.), whielı are represented by corresponding small letters.

Fig. 468.
43. If we suppose the eube to move on an ax's, so that two of its opposite faces ain perpendicular to the planes (fig. 469.), its projection on each will be a reetangle, se length will vary in proportion to the difference between the side and the diagonal he square. The motion of the opposite arrisses will, on the contrary, produce a angle whose width will be eoustant in all the dimensions contained of the image of perfeet square to the exact period when the two arrisses unite in a single right line.
44. A eylinder (f fi. 470.) stands perpendicularly on an horizontal plane, and on such

Fig. 170.
Fig. 471.
e its projcetion $A D B C$ is shown, being thereon represented by a circle, and upon a cal plame by the rectangle gedh.

rin. 1i\%.

1145. The projection of an inclined cylinder (fig. 471.) is shown on a vertical ant horizontal plane.
1146. In fig. 472. we have the representation of a cube doubly inclined, so that the diagonal from the angle B to the angle G is upright. The projection produced by thi position upon an horizontal plane is a regular hexagon acbefg, and upon a vertical plane the rectangle Begc whose diagonal $B g$ is upright ; but as the effect of perspective changes th effect of the cube and its projections, it is represented geometrically in fig. 473.
1147. In figures 474. and 475 . a pyramid and cone are represented with their pro jeetions on horizontal and vertical planes.
1148. Fig. 476. represents a ball or sphere with its projections upon two planes, nat

Fig. 471.

Fig. 476.
vertical and the other horizontal, wherein is to be remarked the perfection of this solit seeiner that its projection on a plane is always a circle whenever the plane is parallel to th circular base formed by the eontact of the tangents.

DEVELOPEMENT OF SOHMS WHOSE SUURACES ARE PIANE.
1149. We have already observed that solids are only distinguished by their apparen faces, and that in those which have plane surfaces, their faces unite so as to form solidangle We have also observed that at least three plane angles are necessary to form a solid angk whence it is manifest that the most simple of all the solids is a pyramid with a triangul: base, which is formed by four triangles, whereof three are united in the angles at its ape (Fig. 477.)
1150. The developement of this solid is obtained by placing on the sides of the bas

the three triangles whose faces are inclined (fig. 478.) ; by which we obtain a fign composed of four triangles. To cut this out in paper, for instance, or any other flexil: material, after bending it on the lines $a b, b c, a c$, which form the triangle at the base, t three triangles are turned up so as to unite in the summit.

DEVEIOPEMENT OF REGULAR POLYHEDRONS.

1151. The solid just described formed of four equal equilateral triangles, as we ha seen, is the simplest of the five regular polyhedrons, and is called a tetrahedron, from being composed of four similar faces. 'The others are -

The herahedron, or cube whose faces are six in number; The octalucdron, whose faces are eight equilateral triangles; The lodecahedrou, whose faces are twetve regular pentagois;
The icosahedron, consisting of twenty equitateral triangles. hese five regolar polyhedrons are represented by the figures 477. 479, 48 J, 4S1, and 482; id their developement by the figures $478.483,484,485$. and 486 .

1152. The surfaces of these developements are so arranged as to be capable of being nited by moving them on the lines by which they are joined.
1153. It is here proper to remark, that the equilateral triangle, the square, and the entagon, are the only figures whieh will form regutar polyhedrons whose angles and sides e equal; but by cutting in a regular method the solid angles of these polyhedrons, hers regularly syinmetrical may be formed whose sides will be formed of two similar gures. Thus, by eutting in a regular way the angles of a tetrahedron, we obtain a polydron of eight faces, composed of four hexagons and four equilateral triangles. Similarly perating on the cube, we shall have six octagons, connected by eight equilateral triangles, rming a polyhedron of fourteen faces.
1154. The same operation being performed on the octahedron also gives a figure of rrteen faces, whereof eiglit are octagons and six are squarcs.
115.5. The dodecahedron so eut produces twelve pentagons united by twenty hexagons, d having thirty-two sides. This last, from some points of view, so approacbes the ure of the sphere, that, at a little distanee, it looks almost spherical.

DEVELOPEMENT OF PYRAMINS AND PRISMS.

1156. The other solids whose surfaces are plane, whereof mention has already been 1 de, are pyramids and prisms, partaking of the tetrahedron and cube; of the former, ismuch as their sides above the base are formed by triangles which approach each other sas together to form the solid angle which is the summit of the pyramid; of the latter, I anse their faces, which rise above the base, are formed by rectangles or parallelograms wich preserve the same distance from each other, but differ, from their rising on a polyfal base and being undetermined as to height.
1157. 'This species may be regular or irregular, they may have their axes perpendicular a nelined, they may be truncated or cut in a direction either parallel or inclined to their bes.
1.58 The developement of a pyramid or right prisin, whose base and height are given, ot attended with diflieulty. The operation is by raising on each side of the base a triangle al in height to the inclined face, as in the pyramidal figures 487. atd 488., ard a argle equal to the perpendicular height if it be a prisn.

1158. If the pyramid be oblique, as in fig. 489., wherein the lengtlt of the sides of each ghe ean only be represented by foreshortening them in a vertical or horizontal pron on, a third operation is neeessary, and that is founded on a principle common to all ctions; viz. that the length of an iuclined line progected or foreshortened on a phane, whe "pon the rliffercuce of the prrpurnlierdar rimgnation of its extromities from the phate,
whence in all cases a rectangular trianglc, whose vertical and horizontal projections give two sides, the third, which is the hypothenuse, joining them, will express the length of the foreshontened line.

1159. In the application of this rule to the oblique pyramid of fig. 489., the position of the point P (fig. 490.) must be shown on the plan or horizontal projection answering to the apex of the pyramid, and from this point perpendicular to the face $C D$ on the same side the perpendieular PG must be drawn. Then from the point \mathbf{P} as a centre describe the ares $\mathrm{B} b, \mathrm{C}$, which will transfer upon PG the horizontal projections of the inclined arrisses AP, EPP, and DP; and raising the perpendicular PS equal to the height of the apex P of the pyramid above the plane of projection, draw the lines $\mathrm{S} a, \mathrm{~S} b, \mathrm{Sc}$, which will give the real lengths of all the edges or arrisses of the pyramid.
1160. We may then obtain the triangles which form the developement of this pyramid, by deseribing from C as a centre with the radius Sc , the are $i g$, and from the point D another are intersecting the other in F. Drawing the lines CF, DF, the triangles CFD will be the developement of the side DC. To obtain that answering to BC, from the points F and C with $S b$ and $B c$ as radii, describe ares interseeting in B^{\prime} and draw $B^{\prime} F$ and CB^{\prime} : the triangle FCB^{\prime} will be the developement of the face answering to the side Bc .
1161. We shall find the triangle FA'B, by using the lengths SA and BA to find the points B^{\prime} and F , whieh will determine the triangle corresponding to the face AB , and lastly the triangles FDE' and FE' A" corresponding to the faces DE, AE by using the lengtlis $\$ b, \mathrm{DE}$ and SA, AE. The whole developement $\mathrm{AEDE}^{\prime} \mathrm{A}^{\prime \prime} \mathrm{F}, \mathrm{A}^{\prime} \mathrm{B}, \mathrm{CBA}$ being bent on the lines B FcF, CD, DF, and EF will form the inclined figure represented in $f i g$. 489.
1162. If this pyramid be truncated by the plane ma, parallel to the base, the contour resulting from the section may be traced on the developement by producing $\mathrm{P} m$ from F to a, and drawing the lines $a b, b c, c d$, de and $e a^{\prime \prime}$ parallel to $\mathrm{A}^{\prime} \mathrm{B}^{\prime}, \mathrm{B} \mathrm{C}, \mathrm{CD}, \mathrm{DE}^{\prime}$ and $\mathrm{E}^{\prime} \mathrm{A}^{\prime \prime}$.
1163. But if the plane of the section be perpendicular to the axis, as $m o$, from the point F with a radius equal to Podescribe an are of a circle, in which inscribe the polygon $a b^{\prime \prime} c^{\prime} d e^{\prime \prime} a^{\prime \prime}$. Then the polygon oqmq'o' is the plane of the section induced by the line m.

DEVELOPEMENT OF RIGHT AND OBLIQUE PRISMS.

1165. In a right prism, the faces being all perpendicular to the bases which terninate the solid, the developements are rectangles, consisting of all these faces joined together and enclosed by two parallel right lines equal to the contours of the bases.
1166. When a prism is inelined, the faces form different angles with the lines of the contours of the bases, whence results a developenent whose extremities are terminated by lines forming portions of polygons.
1167. We must first begin by tracing the profile of the prism parallel to its degree of inclination (fig. 491.). Having drawn the line Cc , which represents the inclined axis of the prism in the direction of its length, and the lines $\mathrm{AD}, b d$, to show the surfaces by which it is terminated, describe on such axis the polygon which forms the plane of the prism h, i, k, l, m perpendieular to the axis. Producing the sides $h l, h n$ parallel to the axis to mect the ines AD , $b d$, they will give the four arrisses of the prism, answering to the angles h, n, k, l; and the line $\mathrm{C} c$ which loses itself in the axis will give the arrisses im .
1168. It must be observed, that in this profile the sides of the polygon h, i, k, h, n give the width of the faees round the prism, and the lines $\mathrm{A} b, \mathrm{C} c, \mathrm{D} d$ their length. From this protile follows the horizontal projection (fig. 492.) wherein the lengthened polygons repro-
ent the bascs of the prisin. In order to obtain the developennent of this inclined prism, o that being bent up it may form the figure, from the middle of Cc, fig. 491. a perpendicular , p, q must be raised, produced to l, l, fig. 493. ; on this line must be transferred the ridths of the faces shown by the polygon h, i, k, l, m, n, of fig. 491. in $l, h, i, h, n, m, l^{\prime}$, ig. 493. : through these points parallel to the axis, lines are to be drawn, upon which $q \mathrm{D}$ 'fig. 491. must be laid from l to E , from k to D , and from l^{\prime} to E^{\prime}, fig. 493. ; $p \mathrm{C}$, fig. 491., nust be laid from i to C , and from m to F in fig. 493.
oA, fig. 491., is to be laid from h to B and from n to A, fig. 493., which will give the contour of the developement of the upper part by drawing the lines ED, $\mathrm{DCB}, \mathrm{BA}, \mathrm{AFE}$, fig. 492.
To obtain the contour of the base, $q d$ of $f i g .491$. must be transferred from l to q, from k , d and from l^{\prime} to e^{\prime}, fig. 493.
$p e$ from fig. 491. from i to c and from m to f (fig. 493.) ; lastly, ob of fig. 491. muct be transferred from h to b and from n to a (fig. 493.) and drawing the liner, $c d$, $b c d, b a$, and afé, the contour will be oltained.
1169. The developement wi l be completed by drawing on the faces $B A$ and $b a$, elongated lygons similar to ABCDEF and $u b c d e f^{\prime}$ of $f(g .491$. and of the same size.
1170. Cylinders may be considered as prisms whose bases are formed by polygons of an finite number of sides. 'I'hus, graphically, the developement of a right cylinder is obined, by a rectangle of the same height, having in its other direction the circumference of e circle which serves as its base measured by a greater or less number of equal parts.
1171. But if the cylinder is oblique (fig. 494.), we must take the same measures as for

turrism, and consider the inclination of it. Having deseribed centrally on its axis the cirs or ellipsis which forms its perpendicular thickness in respect of the axis, the circume should be divided into an even number of equal parts, as, for instance, twelve, ning from the diancter and drawing irom the points of division the parallels to the $1 \mathrm{~A}, \mathrm{bi}, \mathrm{ck}, \mathrm{dl}, \mathrm{em}, \mathrm{fm}, \mathrm{GO}$, which will give the projection of the bases and the general ypenent.
1172. For the projection of the bases on an horizontal plane, it is necessary that from the wints where the parallels meet the line of the base $I O$, indefinite perpendieulars aho loe let fall, and after having drawn the line $I^{\prime} O^{\prime}$, parallel to IIO, upon these per-pen-ulars above and below the parallel must be transferred the size of the ordinates of
the circle or ellipsis traeed on the axis of the cylinder, that is, $p l$ and $p l 0$ to $i^{\prime} 1$, and $i^{\prime} 10: q^{2}$ and q^{9} in $k^{\prime 2}$ and $k^{\prime} q$, \&e. In order to avoid unnecessary repetition, the figs. 404, 495, 496. are similarly figured, and will by inspection indicate the corresponding lines.
1173. In the last figure the line $\mathrm{E}^{\prime} \mathrm{E}^{\prime}$ is the approximate developement of the cireumference of the circles which follow the section DE perpendicular to the axis of the eylinder, divided into 12 equal parts, fig. 494 . For which purpose there have been transferred upon this line on each side of the point D, six of the divisions of the circle, and through these points have been drawn an equal number of indefinite parallels to the lines traced upon the cylinder in fig. 494. : then taking the point D^{\prime} as correspondent to D, the length of these lines is determined by transferring to each of them their refative dimensions, measured from DE in AG for the superior surface of the cylinder, and from DE to HO for the base.
1174. In respeet of the two elliptical surfaces which terminate this solid, what has been above stated, on the manner of describing a curve by means of ordinates, will render further explanation on that point needlcss.

DEVELOPEMENT OF RIGHT AND OBLIQUE CONES.

1175. The reasoning which has been used in respect of cylinders and prisins, is applicable to cones and pyramids.
1176. In right pyramids, with regular and symmetrical bases, the edges or arrisses from the base to the apex are equal, and the sides of the polygon on which they stand being equal, their developement must be composed of similar isosceles triangles, which in therr union will form throughout, part of a regular polygon, inseribed in a circle whose inclined sides will be the radii. Thus, in eonsidering the base of the eene AB (fig. 497.) as a

81545

regulur polygon of an infinite number of sides, its developement becomes a sector of a circle $\mathrm{A}^{\prime \prime} \mathrm{B}^{\prime \prime} \mathrm{B}^{\prime \prime \prime} \mathrm{C}^{\prime \prime}$ (fig. 498.) whose radius is equal to the side AC of the cone, and the are equal to the eircumference of the circle which is its base.
1177. Upon this may be traced the developement of the curves which would result from the cone cut according to the lines DI, EF, and GH, which are the ellipsis, the parabuta and the hyperbola. For this purpose the circunference of the base of the eone must be divided into equal parts; from each point lines must be drawn to the centre \mathbf{C}, representiug in this case the apex of the cone. Having transferred, by means of parallels, to FF, the divisions of the semi-circumference AFB of the plan, upon the line $A^{\prime} B^{\prime}$, forming the base of the vertical projection of the cone (fig. 497.) to the points $1^{\prime} 2^{\prime}, \mathrm{F} 3^{\prime}$, and 4^{\prime}, which, be cause of the uniformity of the curvature of the circle will also represent the divisions on the plan marked $8,7 \mathrm{~F}^{\prime}, 6$, and 5 ; from the summit C^{\prime} in the elevation of the cone, the line $\mathrm{C}^{\prime} 1^{\prime}, \mathrm{C}^{\prime} 2^{\prime}, \mathrm{C}^{\prime} \mathrm{F}, \mathrm{C}^{\prime} 3^{\prime}, \mathrm{C}^{\prime} 4^{\prime}$ are to be drawn, cutting the plans DI, E F , and G H of the ellipse of the parabola, and of the hyperbola; then by the assistance of these intersections thei figures may be drawn on the plan, the first in $\dot{D}^{\prime} p^{\prime} I^{\prime} p^{\prime \prime}$; the second in $\mathrm{FE}^{\prime} \mathrm{F}^{\prime}$; the third is $\mathrm{H}^{\prime} \mathrm{GH}{ }^{\prime \prime}$.
1178. To obtain the points of the circumference of the ellipse upon the developemen (fyg. 498.), from the points n, o, p, q, r of the line DI ($f i g .497$.), draw parallels to the basi for the purpose of transferring their heights upon $\mathbf{C}^{\prime} \mathbf{B}^{\prime}$ at the points $1,2,3,4,5$. The transfer $\mathrm{C}^{\prime} \mathrm{D}$ upon the developement, in $\mathrm{C}^{\prime \prime} n^{\prime \prime \prime}, \mathrm{C}^{\prime \prime} \dot{o}^{\prime \prime \prime}, \mathrm{C}^{\prime \prime} p^{\prime \prime \prime}, \mathrm{C}^{\prime \prime} q^{\prime \prime \prime}, \mathrm{C}^{\prime \prime} r^{\prime \prime \prime}$; and in the sam order below, $\mathrm{C}^{\prime \prime \prime} n^{\prime \prime \prime \prime}, \mathrm{C}^{\prime \prime} o^{\prime \prime \prime \prime}, \mathrm{C}^{\prime \prime} \boldsymbol{r}^{\prime \prime \prime \prime}, \mathrm{C}^{\prime} q^{\prime \prime \prime \prime}, \mathrm{C}^{\prime \prime} r^{\prime \prime \prime \prime}$; and CI from $\mathrm{C}^{\prime \prime}$ in $\mathrm{I}^{\prime \prime}$ and $\mathrm{I}^{\prime \prime \prime}$. Th
curve passing through these points will be the developement cf the eirc mference of the ellipse indicated in fiy. 497. by the right line DI, which is its great axis.
1179. For the parabola ($/ i g .499$.) on the side $\mathbf{C}^{\prime} A^{\prime}(f i g .497$.$) , draw b g$ and $a h$; then ransfer $\mathrm{C} E$ on the developement in $\mathrm{C}^{\prime \prime} \mathrm{E}^{\prime \prime} ; \mathrm{C} g$ from $\mathrm{C}^{\prime \prime}$ to $b^{\prime \prime \prime}$ and $b^{\prime \prime \prime \prime} ; \mathrm{C}^{\prime} h$, from $\mathrm{C}^{\prime \prime}$ to $i^{\prime \prime \prime}$ and $a^{\prime \prime \prime \prime}$; and through the points $\mathrm{F}^{\prime \prime}, a^{\prime \prime \prime}, b^{\prime \prime \prime}, \mathrm{E}^{\prime \prime}, b^{\prime \prime \prime}, a^{\prime \prime \prime \prime}, \mathrm{F}^{\prime \prime \prime}$, trace a curve, which will be the developement of the parabola shown in fig. 497. by the line EF.
11s0. For the hyperbola, having drawn through the points m and i, the parallels me, if, ransfer $\mathrm{C}^{\prime} \mathrm{G}$ from $\mathrm{C}^{\prime \prime \prime}$ to $\mathrm{G}^{\prime \prime}$, and from $\mathrm{C}^{\prime \prime}$ to $\mathrm{G}^{\prime \prime \prime}$ of the developement, $\mathrm{C}^{\prime} e$ from $\mathrm{C}^{\prime \prime}$ to m^{\prime} ind $m^{\prime \prime \prime \prime}, \mathrm{C}^{\prime} f^{\prime}$ from $\mathrm{C}^{\prime \prime}$ to $i^{\prime \prime \prime}$ and $i^{\prime \prime \prime \prime}$; and after having transferred $3 \mathrm{H}^{\prime}$ and $6 \mathrm{H}^{\prime \prime}$ of the plan o the circumference of the developement, from 3 to $\mathrm{H}^{\prime \prime \prime}$, and from 6 to $\mathrm{H}^{\prime \prime \prime \prime}$, by the aid of he points $\mathrm{H}^{\prime \prime \prime}, i^{\prime \prime}, m^{\prime \prime \prime}, \mathrm{G}^{\prime \prime}$ and $\mathrm{H}^{\prime \prime \prime \prime}, i^{\prime \prime \prime \prime}, m^{\prime \prime \prime}, \mathrm{G}^{\prime \prime \prime}$, draw two curves, of which each will be he developement of one half of the hyperbola represented by the right lines GH and $\mathbf{H}^{\prime} \mathrm{H}^{\prime \prime}$, igs. 497. and 500., and by fig. 501.
1181. The mode of finding the developement of an oblique conc, shown in figs. 502, 503,

Fig. 501.
Fig. 50.3.
04, 505. differs, as follows, from the preceding. 1. From the position of the apex C upun ${ }^{2}$ p plan 50:3., determined by a vertical let fall from such apex in fig. 502. 2. Because the ne DI of this figure, being parallel to the base, gives for the plan a circle instead of an lipsis. 3. Because in finding the lengthened extent of the right lines drawn from the jex of the cone to the circumference of the base, divided into equal parts, fig. 504. is introuced to bring them together in order to avoid confusion, these lines being all of a different at on account of the obliquity of the cone. In this figure the line CC^{\prime} shows the perpencular height of the apex of the cone above the plan; so that by transfeiring from cach side ceprojections of these lines taken on the plan from the point C to the eircumference, we all have $\mathrm{CA}^{\prime \prime}, \mathrm{C} 1, \mathrm{C} 2, \mathrm{CF}^{\prime \prime}, \mathrm{C} 3, \mathrm{C} 4, \mathrm{CB}^{\prime}$, on one side, and $\mathrm{CA}^{\prime}, \mathrm{C} 8, \mathrm{C} 7, \mathrm{CF}, \mathrm{C} 6, \mathrm{C} 5$, and $13^{\prime \prime}$ on the other ; lastly, from the point C drawing lines to all these points, they will give the lges or arrisses of the inscribed pyramid, by which the developement in fig. 505. is obtained. aving obtained the point $\mathrm{C}^{\prime \prime}$ representing the apex, a line is to be drawn through it equal CA" (fig. 504.); then with one of the divisions of the base taken on the plan, such as 1 , it must be laid from the point Λ of the developement of the section; then taking $\mathrm{C}^{\prime} 1$ fig. 504., describe from the point $\mathrm{C}^{\prime \prime}$ another are which will cross the former, and will termine the point 1 of the developement. Continuing the operations with the constant igth Al and the different lengths Ce, CF", C3, \&e., taken from fig. 504. and transferred $\mathrm{C}^{\prime \prime} 2, \mathrm{C}^{\prime \prime} \mathrm{F}, \mathrm{C}^{\prime \prime \prime} 3, \& \mathrm{c}$. of the developement, the necessary points will be obtained for tracing e curve $1^{\prime \prime}$ A $13^{\prime \prime \prime}$, representing the contour of the oblique base of the cone.
1182. We obtain, the developement of the circle shown by the line DI of fig. 502. parallel that of the base AB , hy drawing another line $\mathrm{I}^{\prime} \mathrm{D} \mathrm{D}^{\prime} \mathrm{I}^{\prime \prime}$ (f fig. 504.) at the same distance min the summit C , cutting all the oblique lines that have served for the preceding delopement ; and on one side, $\mathrm{Cl}^{\prime \prime}{ }^{\prime}, \mathrm{C}_{2}, \mathrm{Co}, \mathrm{C}^{\prime} p, \mathrm{C}^{\prime} q, \mathrm{C}^{2}$, $\mathrm{CI}^{\prime \prime}$, must be carried to fiy. 50.5., in ("'" to $\mathrm{D}^{\prime \prime}, n, o, p, q, r$, and on the other from $\mathrm{C}^{\prime \prime}$ to n, o, p, q, r, and $\mathrm{I}^{\prime \prime \prime \prime}$, on fig. 505. ie curve line passing through these points will be the developencut of this circle.
1183. To trace upon the developement the parabola and hyperbola shown by the lines fi, G3 of fig. 502 ., from the points ELba, Gmi draw parallels to the base AIS, which, nsferred to fig. 50. ., will indicate upon corresponding lines the real distance of thene ints from the nuex C , whichare to be laid in fig. 50 . fiom $\mathrm{C}^{\prime \prime}$ to J , b, a, b and a tor
the parabola; and from $\mathrm{C}^{\prime \prime}$ to G, m, i on one side, and on the otl.ar to G, m, i, for the hyperbola. Eaeh of these is represented in figs. 506. and 507.

DEVELOPEMENT OF BODIES OR SOLIDS WHOSE SURFACES MAVE A DOUBLE CURVATURE

1184. The developement of the sphere and other bodies whose surface has a donble flexure would be impossible, unless we considered them as consisting of a great number of plane faces or of simple curvatures, as the cylinder and the cone. Thus a sphere or spheroid may be considered, - I. As a polyhedron of a great number of plane faces formed by truncated pyramids whose base is a polygon, as fig. 508. II. By truncated eones, forming zones, as in fig. 509. III. By prarts of eylinders cut in gores, forming flat sides that diminish in width, shown by fig. 510 .
1185. In reducing the sphere or spheroid to a polyhedron with flat faces, the developement may be accomplished in two ways, which differ only by the manner in which the faces are developed.
1186. The most simple method of dividing the sphere ro reduce it to a polyhedron is that of parallel eircles crossed by others perpendicular to them, and intersecting in two opposite points, as in the common geographical globes. If, instead of the circle, the polygons are supposed of the same number of sides, a polyhedron will be the result, similar to that represented by fig. 508., whose half A DI shows the geometrical elevation, and AEB the plan of it.

Fig. 509. Fig. 510.
1187. For the developement, produce $\mathrm{A} 1,12,23$, so as to meet the produced axis CP in order to obtain the summits $\mathrm{P}, r, r, \mathrm{D}$ of the truncated pyramids which form the semi-polyhedron ADB ; then from the points l^{3}, q, r, with the radii $\mathrm{PA}, \mathrm{P} 1, q 1, q 2, r 2, r 3$ and 133 , describe the indefinite ares $\mathrm{A} \mathrm{B}^{\prime}, 1 b^{\prime}, 1 b^{\prime \prime}, 2 f^{\prime}, 2 f^{\prime \prime}, 3 g^{\prime}$; and $3 g$, upon which, after having transferred the divisions of the demi-polygons $A \mathrm{ED}, 1 e 6^{\prime \prime \prime}, 2 e^{\prime} 5^{\prime \prime \prime}, 3 e^{\prime \prime}, 4^{\prime \prime}$, from all the transferred points, as $\mathrm{A}, 4^{\prime}, 5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}, 9^{\prime}, \mathrm{B}$, for each truncated pyramid draw lines to the summits Pqr D , and other lines which will form inscribed polygons in each of the ares $\Lambda 13^{\prime}$, $1 b^{\prime}, 1 b^{\prime \prime}$, \&c. These lines will represent for each band or zone the faces of the truncated pyramids whereof they are part.
1188. We may arrive at the same developement by raising upon the middle of each side of the polygon AEB indefinite perpendiculars, upon which must be laid the height of the faces of the elevation in $1,2,3,4$; through which points draw parallels to the base, upon which transfer the widths of each of the faces taken on the plan, whereby trapezia will be formed, and triangles similar to those found in the first developement, but ranged in another manner. This last developement, which is called in gores, is more suitable for geographical globes; the other method, for the formation of the eentres, moulds, and the like, of spherical vaults.
1189. The developement of the sphere by eonie zones (fig. 509.) is obtained by the same process as that by truncated pyramids, the only difference being, that the developement of the arrisses $A B^{\prime}, 1 b^{\prime}, 2 f^{\prime}, 3 g$, are ares of circles deseribed from the summits of concs, instead of being polygons.
1190. 'The developement of the sphere reduced to portions of eylinders eut in gores (fig. 510.) is conducted in the second manner, but instead of joining with lines the points h, i, h, d, (fig. 508.) they must be united by a curve. This last method is useful in drawing the caissons or pannels in spherical or spheroidal vaults.
of the angles of planes or surfaces by which solids are bounded.
1191. In considering the formation of solids, we have already notieed three sorts of angles, viz. plane angles, solid angles, and the angles of planes. The two first have been
atcd of in the preceding sections, and we have now to speak of the third, which must t be confounded with plane angles. Of these last, we have explained that they are -med by the lines or arrisses which bound the faces of a solid; but the angles of planes, tercof we ale about to speak, are those formed by the mecting of two surlaces joining in cdge.
1192. The inclination of one plane ALDE to another ALCB (fig. 511.) is measured two perpendiculars FG, FH raised upon each of these planes in the same point F of the line or arris $A L$ formed by their ion.
1193. It is to be observed, that this angle is the greatest of all se formed by lines drawn from the point F upon these two anes; for the lines FG, FH being perpendicular to AL, common both the planes, they will be the shortest that can be drawn from e point F to the sides ED, BC, which we suppose parallel to L; thus their distance GH will be throughout the same, whilst lines FI, FK will be so much the longer as they extend beyond

Fig. 511. perpendiculars FG, FH, and we shall always have KI equd to GH , and conseently the angle IFK so much smaller than GFH as it is more distant.
1194. Thus, let a rectangular surface be folded perpendicularly to one of its sides so that e contours of the parts separated by the fold may fall exactly on each other. If we raise e of them, so as to move it on the fold as on a hinge, and so as to make it form all degrees angles, we shall see that each of the central extremities of the moveable part is always in lane perpendicular to the part that is fixed.
1195. This property of lines moving in a perpendicular plane, furnishes a simple method finding the angles of planes of all sorts of solids whose vertical and horizontal projecns or whose developements are known.
1196. Thus, in order to find the angles formed by the tetrahedron or pyramid on a trigular base (fig. 47\%.), we must for the angles of the base with the sides, let fall from angles $A B C$ perpendiculars to the sides $a c, c b$, and $a b$, which meet at the contre of the se in D. It is manifest from what has just been said on this subject, that if the three ar.gles are made to move, their angles at the summit A, B, C will not be the vertical anes shown by the lines $\mathrm{AD}, \mathrm{DB}, \mathrm{DC}$, and that they will meet at the extremity of the tical, passing through the intersection of these planes at the point D. Thus we obtain each side a rectangular triangle, wherein two sides are known, namely, for the side cb, hypothenuse $c d$, and the side $e \mathrm{D}$. Thus raising from the point D an indefinite perndicular, if from the point e with $e B$ for a radius an are is described cutting the peradicular in d, and the line $d e$ be drawn, the angle de D will be that sought, and will be smo for the three sides if the polyhedron be regular; otherwise, if it is not, the ration must be repeated for each.
197. These angles may be olitained with great aceuracy by taking de, or its equal $\epsilon 13$, the whole sine; then de:eD::sine : sine $19^{\circ} 28^{\prime}$, whose complement $70^{\circ} 39^{\prime}$ will, if po! yhedron be regular, be the angle sought. In this case, all the sides being cyual, 1 each being capable of serving as base, the angles throughout are equal. In respect the cube (figs. 479. and 483.) whose faces are composed of equal squares, and whose les are all right angles, it is evident that no other angles can enter into their comation with each other.
198. To obtain the angle formed by the faces of the octaliedron (fig. 480.) from the nes C and 1): with a distance equal to a vertical dropped upon the base of one of the nghes of its developement (fig. 484.), describe ares crossing each other in l^{*}; and the le CII) will be equal to that formed by the faces of the polyhedron, and will be found trigonometry to be $70^{\circ} 32$. In the dodecahedron (fig. 481.), the angle formed by the owill be found by drawing upon its projection the lines 10 , and producing the side o F, determined by an are made from the point D with a radius equal to 1 A . The le sought will be found to be 108 degrees.
199. For the icosahedron (fig. 482.), draw the parallels $\Lambda a, I 34$, C c, and after laving le be paralicl and equal to 13 C , with a radius equal thereto, describe an are cutting in e parallel drawn from the point A; the angle abe will be equal to that formed by the a of the polygon, which by trigonometry is lound to be 108 degrees, as in the dodeca ron.
Ero. Iour the pyrnmid with a quadrangular base ($f g .487$.) the angle of each fuce with hase is equal to $\mathbf{I}^{\prime} A B$ or $\mathbf{P} 13 A$, because this figure, which represents its vertical profon, is in a plane parallel to that within which will be lound the perpendiculars droped 1 the summit on the lateral faces of the base.
201. In orter to obtain the angles which the inclined sides form with one another, upon the developement (fiy. 488.) the line EI), which, because the triangles I'EC, 1) are afnal and isoceles, will be perpendicular to the line I'C, representing one of the "ars which are formed. Then from the pesint (1) with a radins equal to Dlf, and
from the point C with a radins equal to the diagonal $A D$ (of the square representing the square of the base) describe ares intersecting each other. The angle FDG will be the angle sought. We may suppose it taken along the line BC traced in fig. 487.
1202. In order to obtain the angles formed by the faces of an oblipue pyramid (fig. 489.), through some point q of the axis draw the perpendicular ${ }^{\prime} m o$, showing the base oqna $q^{\prime} u^{\prime}$ of the right pyramid mpo, whose developement is shown in fig. 490., by the portion of the polygon $a, b^{\prime}, c^{\prime \prime}, e^{\prime \prime}, d^{\prime \prime}, a^{\prime} \mathrm{F}$.
1203. By means of this base and the part developed, proeeeding as we have already explained for the right pyramid, we shall find the angles formed by the meeting of the faces, and they will difler but little from those of the little polygon oqnig'.
1204. In respect to the angles fornied by the faces inchined to the base, that of the face answering to the side $D e$ of the base is expressed by the angle $A D P$ of the vertical projection, fig. 489.
1205. As to the other faces, for instance, that which corresponds to the side AF of the base (fig. 490.), through any point g draw of perpendicular to it, meeting the line $A \mathrm{~F}$, show. ing the projection of one of the sides of the inclined face; upon the developement of this face, expressed by $A^{\prime \prime} E^{\prime} F$, raise at the same distanee from the point E^{\prime} another perperidicular $g^{\prime} n^{\prime}$, which will give the prolongation of the line shown on the base by Af. If we transfer $A^{\prime \prime} m$ of the developement upon $A m$, which expresses the inclination of the arris represented by this line, we shall have the perpendicular height $m f$ of the point m ahove the base, which, being transferred from $f m^{\prime \prime}$ upon a perpendicular to $g f$, we shall have the two sides of a triangle whose hypothenuse $g m^{\prime \prime}$ will give $m^{\prime \prime} g f$, the angle sought.
1906. In the oblique prism (fig. 491.), the angles of the faces are indieated by the plame of the section perpendicular to the axis, represented by the polygon hiklmn.
1207. Those of the sides perpendicular to the plan of the inclination of the axis are expressed by the angles $\mathrm{D} d b, \mathrm{~A} b d$ of the profile in the figure last named.
1208. In order to obtain the angles formed with the other sides, for instance Cc 1$) d$ and CcAb, draw the perpendiculars $c s b t$, whose projection in plan are indicated by $s^{\prime \prime} c^{\prime}$ and $b t_{\text {, }}$ then upon $f c$, drawn aside, raise a perpendicular $c^{\prime \prime} c^{\prime \prime \prime}$ equal to $c s$ of the profile, fig. 4!l. 'Through the point $c^{\prime \prime \prime}$ draw a line parallel to $f c$, upon which, having transferred $c^{\prime} s^{\prime}$ of the projection in plan (fig. 492.), draw the hypothenuse $s^{\prime \prime} e^{\prime \prime}$, and it will give the angle $s^{\prime \prime} e^{\prime} f$ formed by the face $\mathrm{C} c \mathrm{D} d$ with the inferior base.
1209. To obtain the angles of the face CcA A , raise upon $\mathrm{F} b^{\prime \prime}$, drawn on one side, a perpendicular $b^{\prime \prime} t^{\prime \prime \prime}$, equal to $b t$ ($f i g .492$.), and drawing as before a parallel to $b^{\prime \prime}$ through the point $t^{\prime \prime \prime}$, transfer $b t^{\prime}$ of fig. 492. to $t^{\prime \prime \prime} t^{\prime \prime}$; and drawing $t^{\prime \prime} b^{\prime \prime}$, the angle $t^{\prime} b^{\prime \prime} \mathrm{F}$ is that required.
1210. As the bases of this prism are parallel, these faees neeessarily form the sameangles with the superior base.
1211. An acquaintance with the angles of planes is of the greatest utility in the preparation of stone, as will be seen in chap. iii., and a thorough acquaintance with it will well repay the architectural student for the labour he may bestow on the subject.

Sect. VI.

MENSUlRATION.

1212 . The area of a plane figure is the measure of its surface or of the space eontained within its extremities or boundaries, without regard to thickness. This area, or the content of the plane figure, is estimated by the number of small squares it contains, the sides of cach whereof may be an inch, a foot, a yard, or any other fixed quantity. Hence the arca is said to consist of so many square inches, feet, yards, \&c., as the case may be.
1213. 'Thus if the rectangle to be measured be ABCD (fig. 512.), and the small square E, whose side we will suppose to be one inch, be the measuring unit proposed ; then, as often as such small square is contained in the rectangle, so many square inches are said to be eontained in the rectangle. Here it will be seen by inspection that the number is 12 ; that the side DC or AB, which is 4 times the length of the measuring unit, multiplied by the number of times 3 , which the length of the measuring unit is contained in $A D$ or $B C$, will give 12 for the product.
1214. Phoblem I. To find the area of a parallelogram, whether it be a squure, a rectangle, a rhombus, or a rhomboid.

Multiply the length by the perpendicular breadth or height, and the pronuct will be the area

Fik. 512

Esamsle I. Required the area of a parallelogram whose length is 12.25 feet, and height 8.5 feet.
$12.25 \times 8.5=104.125$ feet, or 104 feet $1 \frac{1}{2}$ inches.
Esample 2. Required the content of a picce of land in tie form of a rhombus whose length is $6 \cdot 20$ chains, and perpendicular height $5 \cdot 45$.

Recollceting that 10 square ehains are equal to a square aere, we have,
$6 \cdot 20 \times 5 \cdot 45=33.79$ and $\frac{33.79}{10}=3.379$ acres, which are equal to 3 acres, 1 rood, $20 \frac{64}{6400}$ perches.
Example 3. Required the number of square yards in a rhomboid whose length is 97 fect, and breadth 5 fect 3 inches ($=5.25$ feet).

Recollecting that 9 square feet are cqual to 1 square yard, then we have

$$
37 \times 5 \cdot 25=194 \cdot 25, \text { and } \frac{194 \cdot 25}{9}=21 \cdot 584 \text { yards. }
$$

21 5. Probiem II. To find the area of a triangle.
nle 1. Multiply the base by the perpendicular height, and take half the produet for the area. Or multiply either of these dimensions by half the other. The truth of this rule is evident, because all triangles are cqual to one half of a parallelogram of equal base and altitude. (Sec Geometry, 90t.)
Example 1. To find the area of a triangle whose base is 625 feet, and its perpendicular height 520 fect. Here,

$625 \times 260=162500$ fcet, the area of the triangle.

ule 2. When two sides and their contained angle are given : multiply the two given sides together, and take half their produet; then say, as radius is to the sine of the given angle, so is half that product to the area of the triangle. Or multiply that lalf product by the natural sine of the said angle for the area. This rule is founded on proofs which will be found in Eect. III., on which it is unneecssary here to say more.
Example. Required the area of a triangle whose sides are 30 and 40 feet respectively, and their contained angles $28^{\circ} 57^{\prime}$.

By natural numbers: -

$$
\begin{aligned}
& \text { First, } \frac{1}{2} \times 40 \times 30=600 \\
& \text { Then, } 1: 600:: \cdot 484046\left(\mathrm{sin} .28^{\circ} 57^{\prime}\right): 290 \cdot 4276 .
\end{aligned}
$$

By logarithms : -

$$
\begin{aligned}
\text { Sin. } 28^{\circ} 57^{\prime} & =9 \cdot 684887 \\
\text { Log. of } 600 & =\frac{2 \cdot 778151}{2 \cdot 463038}=290 \cdot 4276, \text { as above. }
\end{aligned}
$$

ule 3. When the three sides are given, take half the sum of the three sides added together. Then subtract each side severally from such half sum, by which three remanders will be obtained. Multiply such half sum and the three remainders tongether, and extract the square root of the last product, which is the area of the triangle. This rule is founded on one of the theorems in Trigonometry to be found in the section relating to that subject.
Fiample. Required the area of a triangle whose three sides are 20,50 , and 40 .
$20+30+40=90$, whose half sum is 45 .
$45-20=25$, first remainder ; $45-50=15$, second renainder ; $45-40=5$, third remainder.
Then, $45 \times 25 \times 15 \times 5=84375$, whose root is 290.4737 , area required.
li. L'hoblesr Il1. To find the area of a trapeznid.

Id bugether the parallet sides, anultiply their sum by the perpendieular breadth or distance between them, and half the product is the area. (See Geonetry, 93\%.)
E:xample I lequired the area of a tramezoid whose parallel sides are 750 and 122.5 and therr vertical distance from each other 1540 .
$1225+750 \times 770=1520750$, the area.
lixample 2. Required the area of any quadrangular figure (fig. 513.) wherein Ab is 110 fort, A(2 7.1 .5 fiect. Als 1110 feed
(1) 350 firet
1)Q fios lect.

Thrrefuse, $Q 13=\wedge B-\wedge Q-1110-7.1 .0=36.5$,
And

$$
l^{\prime}\left(2=A B-A 1^{\prime}-(2 B=1110-110-365=635\right.
$$

For PCDQ, $595+952 \times 635 \div 2=300672.5$
For the triangle ACP, $176 \times 110=19360$
For the triangle $D Q B, \frac{365 \times 595}{2}=108587.5$

$$
\text { Area }=\overline{428620 \cdot 0} \text { feet }
$$

1217. Probrem IV. To find the area of any trapezium.

Bivide the trapezium into two triangles by a diagonal; then find the areas of the two triangles, and their sum is the area.
Observation. If two perpendiculars be let fall on the diagonal from the other two opposite angles, then add these two perpendiculars together, and multiply that sum by the diagonal. Ifalf the product is the area of the trapezium.

Example. Required the area o a trapezium whose diagonal is 42 , and the two per. pendiculars or it 16 and 18 .

Here, $16+18=34$, whose half $=17$; Then, $42 \times 17=714$, the area.
1218. Phoblem V. To find the area of an irregular polygon.

Draw diagonals dividing the proposed polygon into trapezia and triangles. Then having found the areas of all these separately, their sum will be the eontent required of the whole polygon.
Example. Required the content of the irregular figure ABCDEFGA (fig. 514.), wherein the following diagonals and perpendiculars are given.

$$
\begin{aligned}
& \mathrm{AC}=55, \mathrm{GC}=44, \mathrm{E} n=18, \mathrm{E} p=8 \\
& \mathrm{FD}=52, \mathrm{G} m=13, \mathrm{GO}=-.12, \mathrm{D} q=23 . \\
& \text { And } 55 \times 9=495 \\
& 55 \times 6 \cdot 5=357 \cdot 5 \\
& 44 \times 11 \cdot 5=506 \\
& 52 \times 6=312 \\
& 52 \times 4=208
\end{aligned}
$$

$1878 \cdot 5$, area required.

Fig. 514.
1219. Probieas VI. To find the area of a regular polygon.

Rule 1. Multiply the perimeter of the polygon, or sum of its sides, by the perpendin lar drawn from its centre on one of its sides, and take half the product of the area; which is in fact resolving the polygon into so many triangles.
Example. Required the area of the regular pentagon ABCDE ($f i g .515$.), whose side AB or BC , \&e. is 25 ft. , and perpendicular OP 17.2 ft .
Here $\frac{25 \times 5}{2}=62.5=$ half the perimeter, and $62.5 \times 17.2=1075$ square feet area required.
Rule 2. Square the side of the polygon, and multiply the spuare by the tabutar area or multiplier set against its name in the

Fig. 515. following table, and the product will be the area. This rule is founded on the property, that like polygons, being similar figures, are to one another as the squares of their like sides. Now the multipliers of the table are the respective areas of the respective polygons to a side $=1$; whence thee rule is evident. In the table, tine apothem of a regular polygon is the line $\mathbf{U P}$,

$\begin{gathered} \text { No. } \\ \text { of } \\ \text { sides } \end{gathered}$	Näme of Polygon.	Angle 0 OBP . degrs.	$\underset{\substack{\text { Angle } \\ \text { of }}}{\substack{\text { and }}}$ centre.		$\begin{gathered} \text { Length of } \\ \text { Side. } \\ \text { Rad }=1 \end{gathered}$		Length of Radius. side $=1$	Multipliers.
3	Trigon or Equ. 'Tri.	30	120	- 5000	$1 \cdot 732051$	$2 \cdot 0090$	-5773503	0.4330127
4	Tetragon	45	90	7071	$1 \cdot 414214$	$1 \cdot 4142$	$\cdot 7071068$	1-000000:)
5	Pentagon	54	72	-8090	$1 \cdot 175570$	$1 \because 2360$	$\cdot 8506508$	$1 \cdot 7204774$
6	Hexagon	60	60	-8660	$1 \cdot 000000$	$1 \cdot 1547$	$1 \cdot 0000000$	$2 \cdot 5980762$
7	Heptagon	$64 \frac{2}{7}$	$51 \cdot 25 \frac{5}{7}$	-9010	-867767	$1 \cdot 1095$	$1 \cdot 1523824$	$3 \cdot 63391 \div 4$
8	Octagon	$67 \frac{1}{2}$	45^{7}	. 9239	$\cdot 765367$	1.0823	$1 \cdot 3065628$	$4 \cdot 8284 \cdot 71$
9	Nonagon	70°	40	-9397	-684040	$1 \cdot 0642$	$1 \cdot 4619022$	$6 \cdot 1818942$
10	Deeagon	72	36	-9511	-618034	1.0515	$1 \cdot 6180340$	$7 \cdot 6942088$
11	Undecagon	$73 . \frac{7}{11}$	$32 \cdot 43 \frac{7}{11}$	$\cdot 9595$	- 563465	$1 \cdot 0422$	1.7747324	9:3656339
12	Dodecagon -	75	30	$\cdot 9659$	$\cdot 517638$	1.0352	1.9318 .517	$11 \cdot 1951521$

Example. Required the area of an octagon whose side is 20 feet.
Here $20^{2}=400$, and the tabular area 4.8284271 ;
Therefore $4.8284271 \times 400=1931 \cdot 37084$ feet, area required.

20. Problem VII. To find the diameter and circumference of any circle, either from the

ale 1. As 7 is to 22 , or as 1 is to $3 \cdot 1416$, so is the diametes to the circumfercnce. Or as 22 is to 7 , so is the circumference to the diameter.
Example. Required the circumference of a circle whose diameter is 9 .
Here 7:22::9:28 $\frac{2}{7}$; or, $\frac{22 \times 9}{7}=28 \frac{2}{7}$, the circumference required. Required the diameter of a circle whose circumference is 36 .

Here $22: 7:: 36: 11 \frac{10}{22}$; or, $\frac{36 \times 7}{22}=11 \frac{10}{22}$, the diameter required.
21. Problem VIII. To find the lcagth of any arc of a circle.
ule 1. Multiply the decimal 01745 by the number of degrees in the given are, and that by the radius of the circle; then the last product will be the length of the arc. This rule is founded on the circumference of a circle being 6.2831854 when the diamcter is 2 , or 3.1415927 when the diameter is 1 . The length of the whole circumference then being divided into 360 degrees, we have $360^{\circ}: 6.2831854$ $:: 1^{\circ}: 01745$.
Example. Required the length of an arc of 30 degrees, the radius being 9 feet.

$$
\text { Here } 01745 \times 30 \times 9=4 \cdot 7115 \text {, the length of the arc. }
$$

ule 2. From 8 times the chord of half the are subtract the chord of the whole arc, and one third of the remainder will be the length of the are nearly.
Example. Kequired the length of an are DCE (fig. 516.) whose chord DE is 48 , and versed sine 18.
IIcre, to find DC, we have $24^{2}+18^{2}=576+324=900$, and $\sqrt{ } 900=30=\mathrm{DC}$.
Whence $\frac{50 \times 8-48}{3}=\frac{240-48}{3}=\frac{192}{3}=64$, the length of the are required.
29. 1'robrem IX. To find the area of a circlc.
ule 1. Multiply half the circumference by half the diameter. Or multiply the whole circumference by the whole

Fif. 516. diamcter, and take $\frac{1}{2}$ of the product.
ule 2. Square the diameter, and multiply such square by 7854 .
le 3. Square the circumference, and multiply that square by the decinal 07958.
Example. Required the area of a circle whose diameter is 10 , and its circumference $31 \cdot 416$.

$$
\begin{aligned}
& \text { By rule } 1 ., \frac{31 \cdot 416 \times 10}{4}=78 \cdot 54 \\
& \text { By rule } 2,10^{2} \times \cdot 7854=100 \times 7854=78 \cdot 54 . \\
& \text { By rule } 3 ., 31 \cdot 416 \times 31 \cdot 416 \times \cdot 07958=78 \cdot 54 .
\end{aligned}
$$

that by the three rules the area is 78.54 .

23. I'nobless X. T'o find the arca of a circular ring, or of the space included betucen reumferences of two circles, the one being contained within the other.
1e. The difference between the areas of the two circles will be the area of the ring. Or, mnitiply the sum of the diameters by their difference, and this product again by 7854 , and it will give the area required.
Example. The diancters of two concentric circles being 10 and 6 , required the area of the ring contained between their circumferences.

Here $10+6=16$, the sum, and $10-6=4$, the differenec.
Therefore $7854 \times 16 \times 4=\cdot 7851 \times 64=50 \cdot 2656$, the area required.

1. Proniry XI. To find the area of the sector of a circle.

1e 1. Multiply the radins, or half the diameter, by half the are of the sector for the area. Or multiply the whole diameter by the whole are of the sector, and take I of the product. This rule is founded on the same basis as that to Droblem IX. le 2. As 360 is to the degrees in the are of the sector, so is the area or the whole circle to the area of the sector. This is manifest, because it is proportional to the length of the arc.

- rample. Heqnired the area of a circular sector whose are contains 18 degrees, the diameter being ? feet.
By the first rule, $3 \cdot 1416 \times 3=9 \cdot 42 \cdot 18$, the circumfirence.
$950: 18:: 9 \cdot 4248:-17124$, the length of the are.
$4724 \times 3+4=1 \cdot 11372+1=353 \cdot 1: 3$, the are of the seetor.

By the sozond rule, $\cdot 7854 \times 3^{2}=7 \cdot 0686$, area of the whole circle.
s60:18::7.0686: 35343, the area of the sector.
1225. Problem XII. To find the area of a segment of a circle.

Rule 1. Find the area of the seetor having the same are with the segment by the last problem. Then find the area of the triangle formed by the chord of the segment and the two radii of the sector. Take the sum of these two for the answer when the segment is greater than a semicirele, and their differenee when less than a semieircle.
Example. Required the area of the segment ACBDA (fig. 517.), its ehord AB being 12, and the radius AE or CE 10.
As AE $: \sin . \angle \mathrm{D} 90^{\circ}:: \operatorname{AD}: \sin .36^{\circ}: 52 \frac{1}{5}=36.87$ degrees in the are AC .
Their double $73 \cdot 74$ degrees in are ACB.
Now, $\cdot 7854 \times 400=314 \cdot 16$, the area of the whole cirele.
'Therefore, $360^{\prime}: 73 \cdot 74:: 314 \cdot 16: 64 \cdot 3504$, area of the sector ACBE.
Again, $\sqrt{ } \mathrm{AE}^{2}-\mathrm{A} \mathrm{D}^{2}=\sqrt{100-36}=\sqrt{ } 64=8=\mathrm{DE}$.
Therefore, $\mathrm{AD} \times \mathrm{DE}=6 \times 8=48$, the area of the triangle AEB.
Hence the scetor ACBE (64.350), less triangle AEB (48)

Fig. 517. $=16.3504$, area of segment ACBDA .
Rule 2. Divide the height of the segment by the diameter, and find the quotient in the column of heights in the following table. Take out the corresponding area in the next column on the right hand, and multiply it by the square of the eircle's diameter for the area of the segment. This rule is founded on the principle of similar plane figures being to one another as the squares of their like lineal dimensions. The segments in the table are those of a circle whose diameter is 1 . In the first columm is contained the versed sines divided by the diameter. Hence the area of the similar segment taken from the table and multiplied by the square of the diameter gives the area of the segment to such diameter. When the quotient is not found exaetly in the table, a proportion is used between the next less and greater area.
Example. As before, let the chord AB be 12, and the radius 10 or diameter 20.
Having found as above $\mathrm{DE}=8$: then $\mathrm{CE}-\mathrm{DE}=\mathrm{CD}=10-8=2$. Hence by the rule $\mathrm{CD} \div \mathrm{CF}=2 \div 20=\cdot 1$, the tabular height; this being found in the first column of the table, the corresponding tabular area is 040875 ; then $040875 \times 20^{2}=040875 \times 400=16 \cdot 340$, the area nearly the same as before.
Aueas of the Segments of A Circle whose Diameter, Unity, is ejprosed to be divided into 1000 equal Paits.

					Area Seg.		Ar				
	'0002		- 00		-1		-022154	087		8	
	'00033		-005	.046	-O1	.067	-022652	-	-033	$\cdot 109$	O463
	- 000		-005		- 01	. 068		-		-110	
	'OOO6	-027	5	-048	$\cdot \mathrm{Ol}$	00	- 0	'090	-0	111	$\cdot 0$
	- 000	- 02	06		- 014	-070	-0241	O91	-035	115	
	'0009	-02	66		-O14681	- 0		-092	-036162	-113	04889
-009	.00113	-03	06	- 0	O15	${ }^{\circ} 079$	- 02	O9	, 36	$\cdot 114$	
	-00132	'0.	-0072	- 052	- 0155		-0257	-094	$\cdot 037323$	115	
	'00	-032	-007558	-053	- 016	-074	- 0	O9	$\cdot 037909$	$\cdot 1$	-05080
	-001 7	- 03	-0079	-	-01645	. 075	-026	-09	03	$\cdot 117$	
			-008		- 016911		-027989	- 0	- 039087		
	-0021		-008		\bigcirc		-027	-	-039680	119	
	. 002	- 0	-0090	- 0	-O17		- 2	-99	-04027	120	
	-002		93	-	-O1829		028894	-100	4087		
	-002		-O097	-	${ }^{\circ} \mathrm{O} 8$	-080	-02943	10		122	-054689
	320	- 039	010148	. 060	O19239	. 081	-02997	-102	-04¢080	123	
	-003471	-040	- 010537	.	-01971	O8	03052	-10	042687	124	O560
-020	-0037	$\cdot 041$. 010931	-062				10		-125	056663
O2,	-(0)4	$\cdot 042$									

	,		Area	gh	Area Seg						
										439	
128	-	-1		-254		6		$\cdot 3$	-27	440	
129	7	-192	-10	-255	$\cdot 15$	317	21	$\cdot 379$	-272890	-44I	
130	-	-1		-2	$\cdot 1$:318		$\cdot 380$		42	
	-	-194	-10	-257	$\cdot 1$	19	21	-381	$\cdot 274832$	4	335822
	- 0	$\cdot 19$	$\cdot 10$	-2	-1	-320		. 33	-2	444	
	-	-196	-10	-259	-161 3	21	21	$\cdot 3$	-2707	.	337810
	-	-1		$\cdot 26$		-322	. 2	$\cdot 3$		- 446	
	. 0	-198	-110226	-261	-163140	-323	219468	-385	-27872	47	339798
		$\cdot 199$	$\cdot 1$	-2				6	$\cdot 27$	448	
	-06	- 200	$\cdot]$	-263	$\cdot 1$	-325	-221340	\cdots	-28	49	341787
	-06	- 2		-26			- 2	8	'281642	450	
	-	202	$\cdot 1$	-	-166663	- 327	-223215	$\cdot 3$	-2826	-451	343777
	-066833	$\underline{203}$		-26				$\cdot 3$	-283592	2	
	-067528	-204	$\cdot 11$	-2	$\cdot 1$	-329	-2	:391	-28	3	345768
	-068	20			16					454	
	-06892	-206	-1166	-26	$\cdot 1$	-331	-2	-393	'286521	$\cdot 455$	-347759
	-069	. 20	$\cdot 1$	$\cdot 27$	-1			-		456	
	-070328	. 208	$\cdot 1$	-271		-333	-298858	3	-28	7	3497.32
	.07103	-209	-1	-272	-1728		2	-396	'289453	4.88	
	.071741	-210	-11	-273	$\cdot 1$	-335	-230745	- 3	$\cdot 290432$	-459	-351745
	-072	211	-150712	$\cdot 2$	$\cdot 17464$		-231	-398	29	460	-352749
	-073	212	$\cdot 1$	-27	$\cdot 1755$	-337	-232634	-399	-29	-46	-353739
	07387	-213	$\cdot 1223$	-276	$\cdot 17643$		-23	-4	-29	4	
	-0745	-214	$\cdot 1231$		$\cdot 17733$		-2345	-40	-294349	- 4	
	- 075	-215	-123988	$\cdot 278$	-178225		- 23	-40	-295330	464	
	\bigcirc	216	-1	.			-23642I	-403	-2	$\cdot 4$:357727
	-076	-217	-1	-280	-1		-237369	-4	-297292	-466	- 358725
	.07	-218		281			-238318	$\cdot 4$	2	-467	35
	-078	-219	-1	-2	-1818		-239268	-40	-299	468	'36
	- 07	220	$\cdot 1$	-2	-1		-24021	$\cdot 4$	-3002:8	-46	19
	. 079	-221	$\cdot 1$	-	-18361		-24116	-408	-301220	-470	362717
	-08	-222	-129	. 28	-18		-2	-409		471	$\cdot 363715$
	-081	-223	-1	$\cdot 2$	-18542		-24307	-41	-3031	472	
	-	-224	-1	-2	-186			-411	- 30	473	-365712
	-082	-225	-1	-2		$\cdot 350$	-24498	412	-30	474	
		-226	-139	-28			-24593		*3061	475	:36770.
	-084	227	-1	-2	-189	-352	-24688	-1	307125	$\cdot 476$	
	-08	-228	-13	-291	-189	'35:	-24784		-30	477	369707
	-085	-229	$\cdot 1$	-292	-1 100		-24880	- 416	- 3	478	
		-230	$\cdot 13$	$\cdot 2$	-19177		-24975	- 4	-3100	-479	37170
	-08	-231	-13		-1020		-		- 31	480	
	-087	232	-1	-	1		2		$\cdot 3120$	-4	373703
	088	-233			19450		-25	-420	-	-482	
		-234	-13	-29	-19549	'359	-2.5359	-421	3140	4	
	1990	-235	-140	-29	-196:38		-254550	422	15		
	-090	-23	-141	-299	1		-25551		$\cdot 316$	-485	
	-091	-237	-142387	-300	-19816		-2		16		
	. 09	-2	-14		-199		25		-31	-487	
	. 09	-299	$\cdot 141$		-20000:		.258395		18970		
	-093	. 2	- 144		\because		-25935		319	-489	
	-091	\cdots	$\cdot 1$	-3	201		-260.20		-320948	- 490	
	- 05.5	-2			-202		-		3	-491	
	- 035	243							-	49	
	- 0	-	-148	- 3	-20160		-0,		-	-49:3	38.0.9
	. 097	- 24	-149	-3	-20.5.5	$\cdots 70$,		-324909	$\cdot 191$	
18.3	(0)8	24	-150091	S	2064	-371	2651		3 590	495	
A-	-09922	247	-15095:	-310	-207:37	:372	-266111	$\cdot 1$	-326892	- 4	
18	-099597	-	-151816	11	[2083?]		26707		:2788	\square	
	-1007	${ }^{2} 1$	-152r980	-312	-209207	-374	-26801.	4	-3288	- 4198	
	10155	2.5	-1.53516	'313	210154	3	2030	$\cdot 137$	-329866i	-199	
	-1023	251		. 214	211082	$\because 376$	-26998:	$\cdot 138$	-3504.58	500	
	$10: 3$		-1.5528()								

1226. Probiem X III. To.fund the area of an ellipsis.

Rule. Multiply the longest and shortest diameter together, and their product by 78.54 , which will give the area required. This rule is founded on Theorem 3. Cor. 2. in Conic Sections. (1098, 1100.)
Example. Required the area of an ellipse whose two axes are 70 and 50.
Here $70 \times 50 \times \cdot 7854=2748 \cdot 9$.

1227. Problem XIV. To find the area of any elliptic segment.

Rule. Find the area of a circular scgment having the same height and the same vertical axis or diameter; then, as the said vertical axis is to the other axis (paratlel to the base of the segment), so is the area of the circular segment first found to the area of the elliptie segment sought. This rute is founded on the theorem alluded to in the previous problem. Or, divide the height of the segment by the verteal axis of the ellipse; and find in the table of circular segments appended to l'rob. 12. (1224.) the circular segment which has the above quotient for its versed sine ; then multiply together this segment and the two axes of the ellipse for the area.
Example. Required the area of an elliptie segment whose height is 20 , the vertical axis being 70 , and the parallel axis 50 .

ILere $20 \div 70=2857142$, the quotient or versed sine to which in the table answers the segment $\cdot 285714$.
Then $\cdot 285714 \times 70 \times 50=648 \cdot 342$, the area required.
1228. Problem XV. To find the area of a parabola or its segment.

Rule. Multiply the base by the perpendicular height, and take two thirds of the product for the area. This rule is founded on the propertics of the curve already described in eonie sections, by which it is known that every parabola is $\frac{2}{3}$ of its circumseribing parallelogram. (Sce 1097.)
Example. Required the area of a parabola whose height is 2 and its base 12.
Here $2 \times 12=24$, and $\frac{2}{3}$ of $24=16$ is the area required.

MENSURATION OF SOLIDS.

1229. The measure of every solid body is the capaeity or content of that body, considered under the threefold dimensions of length, breadth, and thickness, and the measure of a solid is called its solidity, capacity, or content. Solids are measured by units which are eubes, whose sides are inches, feet, yards, \&c. Whence the solidity of a body is said to be of so many cubic inehes, feet, yards, \&e. as will oceupy its capacity or space, or another of equal magnitude.
1230. The smallest solid measure in use with the architect is the eubie inch, from whieh other eubes are taken by cubing the linear proportions, thus, -

$$
1728 \text { cubic inches }=1 \text { cubie foot }
$$

27 eubic feet $=1$ eubie yard.
1231. Problem I. To find the superficies of a prism.

Multiply the perimeter of onc cud of the prism by its height, and the product will be the surface of its sides. To this, if wanted, add the area of the two ends of the prism. Or, compute the areas of the sides and ends scparately, and add them together.
Example 1. Required the surface of a cube whose sides are 20 fcet.
Here we have six sides; therefore $20 \times 20 \times 6=2400$ fcet, the area required.
Example 2. Required the surface of a triangular prism whose length is 20 feet and each side of its end or base 18 inches.

Here we have, for the area of the base,
$1 \cdot 5^{2}-\cdot 75^{2}=(2 \cdot 25-\cdot 5625=) 1 \cdot 6875^{2}$ for the perpendicular of triangle of base;
and $\sqrt{1 \cdot 6875}=1 \cdot 299$, which multiplicd by $1 \cdot 5=1 \cdot 948$ gives the area of the two bases;
then, $3 \times 20 \times 1 \cdot 5+1 \cdot 948=91 \cdot 948$ is the area required.
Example 3. Required the convex surface of a round prism or eylinder whose length is 20 fect and the diameter of whose base is 2 fect.

Here, $2 \times 3 \cdot 1416=6 \cdot 2832$,
and $3 \cdot 1416 \times 20=125 \cdot 664$, the convex surface required.
1232. Proslem II. To find the surfaee of a pyramid or cone.

Rule. Multiply the perimeter of the base by the length of the slant side, and half the product will be the surface of the sides or the sum of the areas of all the sides, or of the arcas of the triangles whereof it eonsists. To this sum add the area of the end or hase.
Example 1. Required the surface of the slant sides of a triangular pyramid whose slant height is 20 feet and each side of the base 3 feet.

Here, 20×3 (the perimeter) $\times 3 \div 2=90$ fect, the surfaee required.

Exampie 2. Required the convex surface of a cone or eircular pyramid whose slant height is 50 feet and the diamcter of its base $8 \frac{1}{2}$ feet.

Here, $8.5 \times 3 \cdot 1416 \times 50 \div 2=667 \cdot 5$, the convex surface required.
233. Probiem III. To find the surface of the frustum of a pyramid or cone, being the lourer t where the top is cut off by a plane parallel to the base.
Rule. Add together the perimeters of the two ends and multiply their sum by the slant height. One half of the product is the surface sought. This is manifest, because the sides of the solid are trapezoids, having the opposite sides parallet.
Example 1. Required the surface of the frustum of a square pyramid whose slant height is 10 feet, each side of the base being 3 feet 4 inches and each side of the top 2 feet 2 inches.
Here, 3 feet 4 inches $\times 4=13$ feet 4 inches, and 2 feet 2 inches $\times 4=8$ feet 8 inches; and 13 feet 4 inches +8 feet 8 inches $=22$. Then $22 \div 2 \times 10=110$ feet, the surface required.
Example 2. Required the convex surface of the frustum of a cone whose slant height is $12 \frac{1}{2}$ feet and the circumference of the two ends 6 and 8.4 feet.
Here, $6+8.4=14.4$; and $14.4 \times 12.5 \div 2=180 \div 2=90$, the convex surface required.
234. Problem IV. To find the solid content of any prism or cylinder.

Rule. Find the area of the base according to its figure, and multiply it by the length of the prism or cylinder for the solid content. This rule is founded on l'rop. 99. (G cometry, 980 .). Let the reetangular parallelopipedon be the solid to be measured, the small cube P^{\prime} (fig. 518 .) being the measuring unit, its side being 1 inch, 1 foot, $\& \mathrm{c}$. Let also the length and breadth of the base ABCD, and also let the height $A H$, be divided into spaces equal to the side of the base of the cube P ; for instance, here, in the length 3 and in the breadth 2, making 3 times 2 or 6 squares in the base AC each equal to the base of the cube P. It is manifest that the parallelopipedon will contain the cube P as many times as the lase $A C$ contains the base of the cube, repeated as often as the height AII contains the height of the cube. Or, in other words, the contents of a parallelopipedon is found by multiplying the area of the base by the altitude of the solid. And because all prisms and cylin-

Fig. 518. ders are cqual to parallelopipedons of equal bases and altitudes, the rule is general for all such solids whatever the figure of their base.
Example 1. Required the solid content of a cube whose side is 24 inches.
Here, $24 \times 24 \times 24=1.3824$ cubic inches.
Example 2. Required the solidity of a triangular prism whose length is 10 feet and the three sides of its triangular end are 3,4 , and 5 feet.
Here, because (I'rop. 32. Geometry, 907.) $3^{2}+4^{2}=5^{2}$, it follows that the angle contained ly the sides 3 and 4 is a right angle. Theretore $\frac{3 \times 4}{2} \times 10=60$ cubic feet, the content required.
Example 3. Required the content of a cylinder whose length is 20 feet and its diameter 5 feet 6 inclies.

Here, $5.5 \times 5.5 \times 7854=23.7583 .5$, area of base ;
and $23 \cdot 75835 \times 20=47 \cdot 5167$, content of cylinder required.
235. Problem V. T's find the content of any pyramid or cone.
fule. Find the area of the base and multiply that area hy the perpendicular height.
One third of the product is the content. This rule is founded on Prop. 110
(Geometry, 991.)
Exaruple 1. Required the solidity of the symare pyramid, the sides of whose base are 30 , and its perpendicular lueight 25.

$$
\text { Ilere, }, \frac{30 \times 30}{3} \times 25=7500 \text {, content required. }
$$

Example 2. Requirel the content of a triangular pyramid whose perpendicalar leight is 30 and esch side of the base 3 .

Ifere, $\frac{3+3+3}{2}=\frac{?}{2}=4 \cdot 5$, half sum of the sides:
and $4 \cdot 5-3=1 \cdot 5$, one of the three equal remainders. (See Trigonometry, 10.52.) but $\sqrt{ } 4.5 \times 1.5 \times 1.5 \times 1.5 \times 30 \div 3=3.897117 \times 10$, or 38.97117 , the solidity required.
Ex:mple 3. Required the content of a pentagomal pramid whose height is 12 beet and each side of it, hate 2 feet.

Here, $1 \cdot 7204774$ (tatular area, Prob.6. 1218.) $\times 4($ (世) areal of base; and $6.8819095 \times 12=82: 5829152$.
Then $\frac{82 \text { 2s.929 } 22}{3}=27.5276381$, content required.

Example \&. IRequired the eontent of a cone whose height is $10 \frac{1}{2}$ feet and the circmo ferenee of its base 9 fect.
Here, 07958 (Prob. 9. 1222.) $\times 81=6.44598$ area of base,
And 3.5 being $\frac{1}{3}$ of $10 \frac{1}{3}$ feet, $6.44598 \times 3.5=22.56093$ is the content required.
1236. Problem VI. To find the solidity of the frustum of a cone or pyramid.

Add together the areas of the ends and the mean proportional between them. Then
taking one third of that sum for a mean area and multiplying it by the per-
pendicular height or length of the frustum, we shall have its content. This rule depends upon Prop. 110. (Geometry, 991.).
It may be otherwise expressed when the ends of the frustum are circles or regulas polygons. In respect of the last, square one side of each polygon, and also multiply one side by the other; add the three products together, and multiply their sum by the tabular area for the polygon. Take one third of the product for the mean area, which multiply by the length, and we have the product required. When the case of the frustum of a cone is to be treated, the ends being circles, square the diameter or the circumference at eath end, and multiply the same two dimensions together. Take the sum of the three products, and multiply it by the proper tabular number, that is, by 7854 , when the dianeters are used, and 07958 when the circumferences are used, and, taking one third of the profuet, multiply it by the length for the content required.

Example I. Required the content of the frustum of a pyramid the sides of whose greater ends are 15 inehes, and those of the lesser ends 6 inches, and its altitude 24 feet.

Here, $\cdot 5 \times \cdot 5=\cdot 25$, area of the lesser end,
and $1.25 \times 1 \cdot 25=1 \cdot 5625$, area of the greater end:
The mean proportional therefore $\sqrt{ } \cdot 25 \times 1 \cdot 5625=625$.
Again, $\frac{-25+625+15625}{3}=\frac{2 \cdot 4375}{3}=8125$, mean area,
and 8125×24 (altitude) $=19.5$ feet, content required.
Example 2. Required the content of a conic frustum whose altitude is 18 feet, its greatest diameter 8 , and its least diameter 4.

IIere, 64 (area gr. diam.) +16 (less. diam. $)+(8 \times 4)=112$, sum of the products; and $\frac{7854 \times 112 \times 18}{3}=527.7888$, content required.
Example 3. Required the content of a pentagonal frustum whose height is 5 feet. each side of the base 18 inches, and each side of the upper end 6 inches.

Here, $1 \cdot 5^{2}+1 \cdot 5^{2}+(1 \cdot 5 \times \cdot 5)=2 \cdot 5625$, sum of the products;
but, $\frac{1 \cdot 7204774 \text { (tab, areat) } \times 25625 \text { (sum of products) } \times 5}{3}=9 \cdot 31925$, content regured
1237. Problem VII. To find the surface of a sphere or any segment of one.

Rule 1. Multiply the eircumference of the sphere by its diameter, and the product wil be the surface thereot. This and the rules in the following problems depend or Props. 113. and 114. (Geometry, 994, 995.), to which the reader is referred.
Rule 2. Square the diameter, and multiply that square by $3 \cdot 1416$ for the surtace.
Rule 3. Square the eircumference, then either multiply that square by the cecinit -3183, or divide it by $3 \cdot 1416$ for the surface.
Remark. For the surface of a segment or frustum, multiply the whole circumferem of the sphere by the height of the part required.
Example 1. Required the convex superficies of a sphere whose diameter is 7 anc circumference 22.

Here, $22 \times 7=154$, the superficies required.
Example 2. Required the superficies of a sphere whose diameter is 24 inches.
Here, $24 \times 24 \times 3 \cdot 1416=1809 \cdot 5616$ is the superfieies required.
Example 3. Required the convex superficies of a segment of a sphere whose axis 42 inches and the height of the segment 9 inches.

Here, $1: 3 \cdot 1416:: 42: 131 \cdot 9472$, the circumference of the sphere; but $131 \cdot 9472 \times 9=1187.5248$, the superficies required.
Example 4. Required the convex surface of a spherical zone whose breadth or hwigh is 2 fcet and which forms part of a sphere whose diameter is $12 \frac{1}{2}$ feet.

Mere, $1: 3 \cdot 1416:: 12 \cdot 5: 39 \cdot 27$, the circumference of the sphere wheret the zone is a part; and $39 \cdot 27 \times 2=78 \cdot 54$, the area required.
12938. Problem VIII. To find the solidity of a sphere or globe.

Rule I. Multiply the surface by the diameter, and take one sixth of the product for th coutent.
Rule 2. Take the eube of the diameter and multiply it by the decinal 5236 for the content.
Example. Required the content of a sphere whose axis is 12 .
Here $12 \times 12 \times 12 \times 5236=904 \cdot 7808$, content required.
1239. Рвонlem I X. To find the solidity of a spherical segment.

Rule 1. From thriee the diameter of the sphere subtraet double the height of the segment, and multiply the remainder by the square of the height. This product multiplied by $\cdot 5236$ will give the content.
Rule 2. To thriee the square of the radius add the square of its height, multiply the sum thus found by the hcight, and the produet thereof by $\cdot 5236$ for the content.
Example 1. Required the solidity of a segment of a sphere whose height is 9 , the diameter of its base being 20 .
Here, 3 times the square of the radius of the base $=300$;
and the square of its height $=81$, and $300+81=381$;
but $381 \times 9=3429$, whieh multiplied by $\cdot 5236=1795 \cdot 4244$, the solidity required.
Example 2. Required the solidity of a spherical segment whose height is 2 feet and the diameter of the sphere 8 feet.

Here, $8 \times 3-4=20$, which multiplied by $4=80$;
and $80 \times \cdot 5236=41 \cdot 888$, the solidity required.
t is manifest that the difference between two segments in whieh the zone of a sphere is luded will give the solidity of the zone. That is, where for instance the zone is inded in a segment lying above the diameter, first consider the whole as the segment of a ere terminated by the vertex and find its solidity; from which subtraet the upper part segment between the upper surface of the zone and the vertex of the sphere, and the erence is the solidity of the zone.
l'he general rule to find the solidity of a frustum or zone of a sphere is : to the sum of squares of the radii of the two ends add one third of the square of their distanee, or the adth of the zone, and this sum multiplied by the said breadth, and that produet again by 708 , is the solidity.

Sect. VII.

MECILANICS ANi STATICS.
240. It is our intention in this section to address ourselves to the consideration of chanies and staties as applicable more immediately to architecture. The former is the nce of forees, and the effects they produce when applied to maehines in the motion of ies. The latter is the seience of weight, espeeially when considered in a state of ilibrium.
241. The eentre of motion is a fixed point about whieh a body moves, the axis being fixed line about which it moves.
2.12. The centre of gravity is a certain point, upon which a body being freely suspended, h borly will rest in any pos tion.
245. So that weight and power, when opposed to oach other, signify the body to be verl, and the body that moves it, or the patient and agent. The power is the agent which ves or endeavours to move the paticut or weight, whilst by the word equilibrium is wit an equality of aetion or force between two or more powers or weights acting against 1 other, and which by destroying each othes's effects cause it to remain at rest.

PARALIELOGHAM OF FOHCES.
244. If a body D suspended by a thread is drawn out of its vertieal direetion by horizontal thread I) E. (fi!. 519.), such power nether inereases nor diminishes the eflort

of the weight of the body; but it may be easily imagined that the first thread, by being in the direction AD, will, besides the weight itself, have to sustain the effort of the power that draws it out of the vertieal AB.
1245. If the direction of the horizontal force be prolonged till it meets the vertical, whieh would be in the first thread if it were not drawn away by the second, we shall have triangle ADB, whose sides will express the proportion of the weight to the forces of the two threads in the ease of equilibrium being established; that is, supposing AB to express the weight, AD will express the effort of the thread attached to the point A , and BD that of the horizontal power which pulls the body away from the vertical AB.
1246. 'These different forces may also be found by transferring to the vertical D11 (fig.519.) any length of line DF to represent the weight of the body. If from the point F the parallels F1, FG be drawn in the direction of the threads, their forces will be indicated by the lines ID, DG, so that the three sides of the triangle DGF, similar to the triangle ADB , will express the proportion of the weight to the two forces applied to the threads.
1247. Suppose the weight to be 30 lbs . : if from a scale of equal parts we set up 30 of those parts from D to F (fig. 519.), we shall find DG equal to 21 , or the pounds of force of the horizontal line DL: and 35 for the oblique power 1D.
1248. If the weight, instead of 30 lbs , were 100 , we should find the value of the forces DG and ID by the proportions of $30: 2 \mathrm{I}:: 100: x$, where x expresses the force DG . The value resulting from this proportion is $x=\frac{21 \times 110}{30}=70$. The second proportion $30: 35:: 100: y$,where y represents the effort 1D, whose value will be $y=\frac{35 \times 100}{30}=116.666$.
1249. If the angle ADH formed by AD and DII be known, the same results may be obtained by taking DF for the radius, in which case $I F=$ DG becomes the tangent, in this instanee, of 35 degrees, and ID the secant; whence

$$
\text { DF : DI : IF :: radius : tang. } 35: \text { sec. } 35 .
$$

If ID be taken for the radius, we have
ID : IF : FD:: radius : tang. $35: \sin .35$.
1250. We have here to observe, that in conducting the operation above mentioned a figure DIFG has been formed, which is called the parallelogram of the forces, because the diagonal DF always expresses a compounded force, which will place in equilibrio the two others FI, FG, represented by the two contiguous sides IF, FG.
1251. Instead of two forces which draw, we may suppose two others which act by pusllmg from E to D (fig. 522.) and from A to D . If we take the vertical DF to express the weight, and we draw as before the parallels FG and FI in the direction of the forces, the sides GD and DI of the parallelogram DGFI (fig. 519.) will express the forces with which the powers act relatively to DF to support the body: thus $\mathrm{FI}=\mathrm{GD}$ the weight and two powers which support it will, in case of equilibrium, be represented by the three sides of a rectangular triangle DFI; so that if the weight be designated by H, the power which pushes from G to D by E, and that whieh acts from I to D by P , we shall have the proportion $\mathrm{H}: \mathrm{E}: \mathrm{P}:$: DF : FI: ID, wherein, if we take DF for radius, it will be as radius is to the tangent of the angle FDI and to its secant.

Fig. 522. As a body in suspension is drawn away from the vertieal line in which it hangs by a power higher than the body (fig. 520.), it follows that the oblique forces AB and BC each support, independent of any lateral efforts, a part of the weight of the body. In order to find the proportion of these parts to the total weight, take any distance BD on a vertical raised from the eentre of the body B to exp:ess the weight, and eomplete the parallelogran DEBF, whose sides E13, BF will express the oblique forecs of the powers A and C. These lines, being considered as the diagonals of the rectangular parallelograms LLill3, BHFM, may each be resolved into two forces, whereof one of them, vertical, sustains the body, and the other, horizontal, draws it away from the verticals AO, CO. Hence 13 will express the vertical force, or that part of the weight sustained by the power E13, and 1113 that sustained by the other power BF: as these two forces act in the same direction, when added together their sum will represent the weight DB. In short, IB being equal to HD , it tollows that $\mathrm{BH}+\mathrm{BI}=\mathrm{BI}+\mathrm{ID}$.
1252. As to the horizontal forces indicated by the lines LB and BM, as they are equal and opposite they destroy onc another.
1253. It follows, from what has been said, that all ollique forces may be resolved intu two others, one of which shall be vertical and the other horizontal, by taking their direction for the diagonal of a rectangular parallelogram.

1254 . In respent of their ratio and value, those may be easily found by neans of a seale if the diagram be drawn with accuracy; or by trigonometry, it we now the angles
$B D, D B C$, which $A B$ and $B C$ form with the vertical $B D$, by taking successively for lins the diagonals BD, BE, and BF .
1255. In the accompanying diagram, the weight, instead of being suspended by strings ing by tension, is sustained by forces which are supposed to by pushing. But as this arrangement makes no alteration the system of forecs, we may apply to this figure all that has in said with respect to the preceding onc. The only differse is, that the parallelogram of the forces is below the ight instead of being above it. Thus $I D+I B=B D$ ex:sses the sum of the vertical forces which support the weight, 1 MB and BL the horizontal forces which counteract each ter.
1256. In the two preceding figures the direction of the forces ich act by tension or compression in supporting the weight m an acute angle. In those represented in fig. 521. and the ure at the side (524.), these directions make an obtusc angle ; ence it follows that in fig. 521. the force C which draws the weight out of the vertical , instead of tending to support the weight B, increases its ect by its tendency to act in the same direction. In order to ertain the amount of this effect upon BD in figs. 521 . and 1., which represents the vertical action of the weight, describe parallelogram BADF , for the purpose of determining the ique forces BA, BF, and then take these sides for the diagos of the two reetangles LAIB, BHFM, whose sides BI, BH 1 express the vertical forces, and LB, BM the horizontal l:S.
257. It must be obscrved that in fig. 521. the force AB ing upwards renders its vertical effect greater than the weight a quantity ID, which serves as a compensation to the part I, that the other force BF adds to the weight by drawing vuwards. Similarly, the vertical effect of the force BE (fig.

Fig. 523. \therefore.) exceeds the expression BD of the weight by a quantity DI,

Fig. 521. 2:ounterpoise the effect BH of the other power BF, which acts downwards; so that in 1 h eases we have BD only for the vertical effect of the weight. As to the horizontal cts LB and BMI, they being equal and in oppodirections in both figures, of course counteract other.
258. For the same reason that a force can be reed into two others, those two others may be reed into one, by making that one the diagonal of a allclogram whose forces are represented by two tignous sides. It is clear, then, that whatever number of forces which afleet any point, they be reduced into a single one. It is only necesto discover the results of the forces two by two to combine these results similarly two by two, we come to the piincipal ones, which may be ulitely reduced to onc, as we have seen above. 13y a process we shall find that $\mathrm{PY}($ fig. 525. $)$ is result of the forces ${ }^{\prime} A, P^{\prime} B, P^{\prime} C, I^{\prime} D$, which at the point P ?

Fig. 525.
259. This method of resolving fozces is often of great utility in the seience of building, le purpose of providing a force to resist several others acting in different directions but ting in one point.

OF THE DROPEHTHES OF THE: L.EVMH.
2ro. The lever is an inflexible rod, bar, or beam serving to raise weights, whilst it is nuorted at a point by a fulcrum, or prop, which is the eentre of motion. To render the dhonstrations relative to it easier and simpter, it is supposed to be void of gravity or Che. The diflerent positions in which the power ipplied to it, and the weight to be a Eted, may be applied in respect of the fulernm, have given rise to the distinction of the surts of tevers.

That represented in fiy. 526 , in which the fulernm O is between the poser applied Ind the weight (?.
I. That represented inf fig 507 ., in which the weight Q is placed between the fulermm

O and the power P, wherein it is to be remarked that the weight and the power act in contrary directions.

1II. That represented in fig. 528., wherein the power P is placed between the weigh and the fulcrum, in which case the power and the weight act in contrary directions.

126il. In eonsidering the fulcrum of t ese three sorts of levers, we must notice, as third species of power introduced for creating an equilibrium between the others, is That in which the directions of the weight and of the powers concur in the point R (fig. 529.). 2 d , That in which they are parallel.
1262. In the first ease, if from the point R (fys. 529. and 530.) we draw parallel to these directions Om $\mathrm{R} n$, the ratio of these three forces, that is, the power, the weight, and the fulcrum, will be as the three sides of the triangle OmR , or its equal $O n R$; thus we shall have P $: \mathrm{Q}: \mathrm{R}:: m \mathrm{R}: \mathrm{R} n: \mathrm{OR}$; and as the sides of a triangle are as the sines of their opposite angles, by
 taking $O R$ as the radius we shall have

$$
\mathrm{P}: \mathrm{Q}:: \sin . \mathrm{OR} n: \sin . \mathrm{OR} m .
$$

And if from the point O two perpendiculars be let fall, $O d O f$, on the directions $R Q, R P$
Sin. OR $n: \sin$. OR $m:: O d:$ Of;
from which two proportions we obtain

$$
\mathrm{P}: \mathrm{Q}:: \mathrm{O} d: \mathrm{O} f ; \text { whence } \mathrm{P} \times \mathrm{O} f=\mathrm{Q} \times \mathrm{O} d .
$$

This last expression gives equal products, which are called the momenta, moments, or quat tities of motion of the force in respect of the fulcrum O. This property is the same for th straight as for the angular levers (figs. 529. and 530.). As this proportion exists, howeve large the angles $m \mathrm{RO}$ and $\mathrm{OR} n$ of the directions RQ, RP in respect to RO , it follows thi when it becomes nothing, these directions become parallel without the proportion bein changed; whenee is derived the following general theorem, found in all works on mechanics - If two forces applied to a straight or angular lever are in equilibrio, they are in an inver ratio to the perpendiculars let fall from the fulcrum on their lines of direction: or in other word In order that two forces applied to a straight or angular lever may be in equilibrio, their monent in respect of the fulcrum must be equal.
1263. Since, in order to place the lever in equilibrio, it is sufficient to obtain equal m menta, it follows that if we could go on increasing or diminishing the force, we might pla it at any distance we please from the fulcrum, or load it without destroying the equilibriun This results from the formula $\mathrm{P} \times \mathrm{O} f=\mathrm{Q} \times \mathrm{O} d$, whence we have $\mathrm{Of}=\frac{\mathrm{Q} \times \mathrm{O} d}{\mathrm{P}}$. Hence the distance Of is easily found, to which by applying the known force P, it may eounterpoise the weight Q applied at the distance $O d$. In respect of the other points, we have only to know the perpendieulars $\mathrm{O} f$ and $\mathrm{O} d$, for $\mathrm{O} ~ a$ and $O h$, which are the arms of the real levers, are deduced from the triangles $\mathrm{Ofb}, \mathrm{O} d a$, to which they belong.
1264. Suppose two levers ($\mathrm{figs} .531,532$.), whereof

Mig. 3.1.

Fig. 338.
ne is straight and the other angular, and that the weight Q is 100 pounds, the arm DE of he lever 6 feet; its momentum will be 600 . Then if we wish to ascertain at what distance)f a weight of 60 pounds must be placed so that it may be in equilibrio with the first, we all have

$$
\mathrm{O} f=\frac{Q \times \mathrm{Od}}{\mathrm{P}}=\frac{600}{600}=10 \text { feet, the distance sought. }
$$

1265. Reciprocally, to find the effect of a force P placed at the point C of the other arns f the lever at a known distance from the fulcrum, and marked $O f$, in order to counteroise Q placed at the distance $O f$, we have the formula $\mathrm{P}=\frac{Q \times O d}{O f}$; and if we apply this ormula to the numbers taken in the preceding example, the question will be, to find a ree which placed at the di:tance of 10 feet from the fulerum may be in equilibrio with a eight of 100 pounds at the end of the arm of a lever of 6 feet. We must in using the rmula divide 600 by 10 , and the quotient 60 will indicate the effect with which the force ught to act. If, instead of placing it in C, it is at $B, 12$ feet from the fulcrum, the force ould be $\frac{600}{12}$, which gives 50 ; and lastly, if we have to place it at a point 15 feet from the alcrum, the force would be $\frac{600}{55}=40$. Thus, in changing the situation of the force to a oint more or less distant from the fulcrum, we must divide the momentum of the weight hich is to be supported by the distance from the fulcrum taken perpendicularly to its irection.
of the centre of grayity.
1266. The centre of gravity of a body is a certain point within it on which the body, if cely suspended, will rest in any position; whilst in other positions it will descend to the west place to which it can get. Not only do whole bodies tend by their weight to assume a ertical direetion, but also all the parts whereof they consist ; so that if we suspend any body, hatever be its form, by means of a string, it will assume such a position that the thread foduced to the internal part of the body will form an axis round which all the parts will main in equilibrium. Every time that the point of suspension of a body is changed, the rection of the thread produced exhibits a new axis of equilibrium. But it is to be rearked, that all these axes intersect each other in the same point situate in the centre of the ass of the body, supposing it composed of homogeneous parts but sometimes out of the ass of the body, as in the case of bodies much curved, this point is the centre of gravity. 1267. It is therefore easy to perceive that for a body to be in a state of rest its centre of avity must be supported by a vertical force equal to the resultant of all the forces that Fect it, but acting in a contrary direction. So in figs. 520 . and 523 ., the weight supported the forces AB and BC which draw or push, will be equally supported by a vertical ree represented by the diagonal DB of the parallelogram which expresses the resultant of e forees.
1267. An acquaintance with the method of finding centres of gravity is indispensable in timating the resistances, strains, and degrec of stability of any part of an edifice. There ise cases in which we may cast aside all consideration of the form of a body, especially o when it acts by weight, and suppose the whole figure collected in the centre of gravity. e may also, for the sake of simplifying operations, substitute a force for a weight.

OF THE CENTLE OF GKAVITY OF I.1NES.
1269. A straight line may be eonceived to be composed of an infinite number of poms, ually heavy, ranged in the same direction. After this definition, it is evident that if it suqpended by the middle, the two parts, being composed of the same number of cqual ints placed at equal distances from the point of suspension, will be necessarily in equiriuns; whence it follows that the centre of gravity of a right line is in the middle of its igth.
1270. The points in a curve line not being in the same direction, the centre of its volume fonot be the same as its centre of gravity; that is to say, that a curve suspended by the ddle eaunot be supported in equilibrio but in two opposite situations; one when the anches of the curve are downwards, and the other when fy are upwards, so that the curve may be in a vertical one.
1271. If the curve is the are of a circle $\Lambda 1$)ll (fig. 533.), is easy to see that from the miformity of its curvature, its atre of gravity will be found in the right line DC drawn on the centre C to the middle 1); morcover, if we draw echord $A 13$, the centre of gravity will be fonnd between points II and E.

Fis. 3.33.
lines at its extremitics bears corresponding points of the curve; then the line DE will he loaicd with all these weights; and as the portions of the curve which answer to cach parallel AB go on increasing as they approach D, the centre of gravity G will be nearer the point D than to the point E .
1273. To determine the position of this point upon the radius CD which divides the are into two equal parts, we must use the following proportion: the length of the arc ABD is to the chord $A B$, as the radius $C D$ is to the fourth term x, whose value is $\frac{A B \times C D}{A B D}$. That is, in order to obtain upon the radius DC the distance CG of the eentre of gravity from the centre of the are of the circle, the chord AB must be multiplied by the radius CD and divided by the length of the are ABD.
1274. When the eireumference of the circle is entire, the axes of equilibrium being diameters, it is manifest that their intersection gives the centre of the curve as the centre of gravity. It is the same with all entire and symmetrical curves which have a centre, and with all combinations of right lines which form regular and symmetrical polyrons.

OF THE CENTRE OF GRAVITY OF SURFACES.

1275. In order that a eentre of gravity may be assigned to a surface, we must, as in the ease of lines, imagine them to be material, that is, consisting of solid, homogeneous, and heavy particles.
1276. In all plane smooth surfaees, the centre of gra-

Fig. 534. ${ }_{D}$ vity is the same as that of the volume of space ; thus the eentre of gravity G (figs. 534, 535, 536.), of a square of a rectangle, or of a parallelogram, is determined by the intersections of its diagonals AD, BC.

The centre of gravity of a regular polygon, composed of an equal or unequal number of sides, is the same as that of a circle within which it may be inscribed.
1277. In ordcr to find the centre of gravity of any triangle, biseet eaeh of the sides, and from the points of bisection draw lines to the opposite angles; the point of interseetion with each other of these lines will be the centre of gravity sought; for in the supposi-

Fig. 535. tion that the surface of the triangle is eomposed of lines parallel to its sides, the lines $A E_{\text {, }}$ BF , and CD (fg. 537.) will be the axes of equilibrium, whose intersection at G gives the eentre of gravity. We shall moreover find that this point is at one third of the distance from the base of eaeh of the axes; so that, in faet, it is only necessary to draw a line from the point of biseetion of one of the sides to the opposite angle, and to divide it into three equal parts, whereof that nearest the base determines the centre of gravity of

Fig. 537.

Fig. 538. the triangle.
1278. To find the centre of gravity of any irregular rectilinear surface, such as the pentagon, fig. 538., let it be divided into the three triangles, AED, A BC, ADC 'fig: 535.), and by the preeeding rule determine their centres of gravity $\mathrm{F}, \mathrm{G}, \mathrm{H}$. Then draw the two lines NO, OP, which form a right angle surrounding the polygon. Multiply the area of eaeh triangle by the distance of its centre of gravity on the line ON, indicated by $\mathrm{F} f, \mathrm{G} y, \mathrm{H} /$, and divide the sum of these products by the entire area of the pentagon, and this will give a mean distance through which an indefinite line IK parallel to ON is to be drawn. Condueting a similar operation in respect of the line OP, we obtain a new mean distanee for drawing another line LQ parallel to OP, which will intersect the first in the point M , the centre of gravity of the pentagon.

The centre of gravity of a sector of a circle Λ EBC (fig. 539.) must be upon the radius CE which divides the are into two equal parts. To determine from the eentre C, at

What distance the point G is to be placed, we must multiply twice the radius CE by the chord $A B$, and divide the product by thrice the length of the arc AEB. The quotient s the distance $C G$ from the centre C of the circle of the centre of gravity of the sector.
1279. 'To find the centre of gravity of the crown portion of in arch DAEBF (fig. 540.) :omprised between two concenric axes, we must -

1. Find the centre of gravity of the greater sector $A E B C$, and that of the smaller one D FGG.
2. Multiply the area of each

Fig. 539.

Fig. 510. of these sectors by the distance of their respective centres of gravity from the common centre \mathbf{C}.
3. Subtract the smaller product from the greater, and divide the remainder by the area f DAEBF; the quotient will give the distance of the centre of gravity G from the entre C.
1280. To determine the centre of gravity of the segment AEB; subtract the product of he arca of the triangle ABC (fig. 541.) multiplied by the distance of its centre of gravity from the centre C, from the product of the area of the sector, py the distance of its centre of gravity from the same point C, nd divide the remainder by the area AEB; the quotient expresses the distance of the centre of gravity G of the segment rom the centre C , which is to be set out on the radius, and Which divides the segment into two equal parts.
It would, from want of space, be inconvenient to give the strict lemonstrations of the above rules; nor, indeed, is it absolutely

Fig. 541. uessary for the architectural student. 'Those who wish to ursue the subject $a u$ fond, will, of course, consult more abstruse works on the matter. Ne will merely observe, that whatever the figure whose centre of gravity is sought, it s only necessary to divide it into triangles, sectors, or segments, and proceed as above escribed for the pentagon, fig. 538.

of the centle of ghavity of solids.

1281. It is supposed in the following considerations, that solids are composed of homoencous particles whose weight in every part is uniform. They are here arranged under wo heads, regular and irregular.
1282. Regular solids are considered as composed of elements of the same figure as their ase, placed one upon the other, so that all their centres of gravity are in a vertical line, hich we shall call the right axis. 'I'hus parallelopipeds, prisms, cylinders, pyramids, ones, conoids, spheres, and spheroids have a right axis, whereon their centre of gravity is ound.
1283. In parallelopipeds, prisms, cylinders, spheres, spheroids, the centre of gravity is a the middle of the right axis, because of the similarity and symmetry of their parts qually distant from that point.
128.J. In pyramids and cones (figs. 542, 543.), which diminish gradually from the base , the apex, the centre of gravity is at be distimee of one fourth of the axis om the base.
1284. In paraboloids, which diminish iss on account of their curvature, the entre of gravity is at the height of one hird the axis above the base.
Ito find the centre of a pyramid or of trancated cone (figs. 54\%, 543.), we unst tirst multiply the cube of the entire one or pyranid by the distance of its chere of gravity from the vertex. 2. fubtract from this prodnet that of the art MSR which is cut off; by the disaree of its centre of gravity from the pere. i3. Divide this remainder by the Whe of the truncated pyramid or come :

17R. S12.

Fig. 313
 anc or pyranill froms its upex.
1286. The centre of gravity of a hemisphere is at the distance of three eighths of the radius from the centre.
1287. The centre of gravity of the segment of a sphere (fig. 544.) is found by the following proportion: as thrice the radius less the thickness of the segment is to the diameter less three quarters the thickness of the segment, so is that thickness to a fourth term which expresses the distance from the vertex to the eentre of gravity, set off on the radius whieh serves as the axis.
1288. Thus, making $r=$ the radius, $e=$ the thickness of the segment, and $x=$ the distanee sought, we have, according to La

Fig. ul4. Calle, -

$$
3 r-e: 2 r-\frac{3 e}{4}:: e: x, \text { whence } x=\frac{8 r e-3 e^{2}}{12 r-4 e}
$$

Suppose the radius to be 7 feet, the thickness of the segment 3 feet, we shall have $x=\frac{8 \times 7 \times 3-3 \times 9}{12 \times 7-3 \times 4}$, whieh gives $x=1+\frac{69}{72}=1+\frac{23}{24}$, equal the distance of the centre of gravity from its vertex on the radius.
1289. To find the eentre of gravity of the zone of a sphere (fig. 545.), the same sort of operation is gone through as for truncated cones and pyramids; that is, after having found the centre of gravity of the segment cut off, and that in which the zone is comprised, multiply the cube of each by the distance of its eentre of gravity from the apex A, and subtracting the smaller from the larger product, divide the remainder by the cube of the zone. Thus, supposing, as before, the radius $\mathrm{AC}=7$, the thickness of the zone $=2$, and that of the segment cut off $=1 \frac{1}{2}$, we shall find the distanee from the vertex of the centre of gravity of this last by the formula $x=\frac{8 r-3 c e}{4(3 r-c)}$, which in this case gives $x=$

Fit. 515. $\frac{4 \times 2 \times 7 \times 1 \frac{1}{2}-3 \times 2 \frac{1}{4}}{4\left(21-1 \frac{1}{5}\right)}$; and pursuing the investigation, we have $x=\frac{103}{104}$, which will be the distance of the centre of gravity from the vertex A. 'Ilat of the centre of gravity of the segment in which the zone is comprised will, according to the same formula, be $x=\frac{8 \times 7 \times 3 \frac{3}{2}-3 \times 12 \frac{2}{4}}{4(3 \times 7-3}$, which gives $x=2+\frac{11}{40}$ for the distance of the centre of gravity from the same point A.
1290. The methods of finding the solidities of the bodies involved in the above inves tigation are to be found in the preeeding scetion, on Mensuration.

OF THE CENTRE OF GRAVITY OF IKREGULAR SOLIOS.

1291. As all species of solids, whatever their form, are susceptible of division inte pyramids, as we have seen in the preceding observations, it follows that their centres of gravity may be found by following out the instruetions already given. Instead of two lines at right angles to each other, let us suppose two vertical planes N'AC, CEF (fig. 546.), between which the solid G is placed. Carrying to each of those planes the momenta of their pyramids, that is, the products of their solidity, and the distances of their centres of gravity, divide the sum of these products for each plane by the whole solidity of the body, the quotient will express the distance of two other planes BKL, DHM, parallel to those first named. Their intersection will give a line IP, or an axis of equilibrium, upon whieh the centre of gravity of the solid will

Fis. 516. be found. To determine the point G, imagine a third plane NOF perpendicular to the preceding ones, that is, horizontal ; upon which let the solid be supposed to stand. In respect of this plane let the momenta of the pyramids be found by also multiplying their solidity by the disEance of their eentres of gravity. Lastly, dividing the sum of these products by the solidity of the entire body, the quotient gives on the axis the distance PG of this third plane from the eentre of gravity of the irregular solid.

Mcchanically, where two of the surfaces of a body are parallel, the mode of finding the centre of gravity is simple. Thus, if the body be lung up by any point A (figs. 547,548 .), and a plumb line AB be suspended from the same point, it will pass through

Fig. 547.

Fig. 58M.
he centre of gravity, because that centre is not in the lowest point till it fall in the plumb ne. Mark the line AB upon it; then hang the body up by any other point D, with a lumb line DE, which will also pass through the centre of gravity, for the same reason as eforc. Therefore the centre of gravity will be at C, where the lines cross each other.
1292. We have, perhaps, pursued this subjeet a little further than its praetieal utility in rchitecture renders necessary; but cases may occur in which the student will find our exanded observations of service.

of the inclined plane.

1293. That a solid may remain in a perfect state of rest, the plane on whieh it stands hust be perpendicular to the dircetion of its gravity ; that is, level or horizontal, and the vereal let fall from its centre of gravity must not fall out of its base.
1294. When the plane is not horizontal, solids plaeed on it tend to slide down or to verturn.
1295. As the surfaces of bodics are more or less rough, when the direction of the centre f gravity does not fall without their base, they slide down a plane in proportion to their oughness and the plane's inclination.
1296. Thus a cube of hard freestone, whose surfaces are nicely wrought, does not slide own a plane whose inclination is less than thirty degrees; and with polished marbles the aclination is not more than fifteen degrees.
1297. When a solid is placed on an inelined plane, if the direetion of the centre of ravity falls without its base, it overturns if its surfaces are right surfaees, and if its surface convex it rolls down the plane.
1298. A body with plane surfaces may remain at rest after having once overturned if the irface upon which it falls is sufficiently extended to prevent its centre of gravity falling ithin the base, and the inclination be not so great as to allow of its sliding on.
1299. Solids whose surfaces are curved can only stand upon a perfcctly horizontal plane, ecause one of the species, as the sphere, rests only on a point, and the other, as eylinders ad cones, upon a line: so that for their continuing at rest, it is necessary that the vertical t fall from their centre of gravity should pass through the point of contact with and be erpendieular to the planc. Henec, the moment the plane ceases to be horizontal the irection of the centre of gravity falls out of the point or line of contact which serves as the ase of the solid, and the body will begin to roll; and when the plane on which they thus $01 l$ is of any extent they roll with an aeeclerated velocity, equal to that which they would equire in falling directly from the vertical height of the inched plane from the point hence they first began to roll.
1:300. To find the force which is necessary to support a convex body upon an inclined lane, we must consider the point of contact F (figs. 549,550 .) as the fulerum of an an-

Fir. 343.

Fig. 550.

Har lever, whose arms are expressed by the perpendieulars drawn from the fulerum to the rection of the foree CI' and the weight CD, which in the case of fig. 549. , where the foree hich draws the body is parallel to the plane,

$$
\mathrm{P}: \mathrm{N}:: \mathrm{F} C: \mathrm{I} \mathrm{D} .
$$

ow as the rectangular triangle CFD is always similar to the triangle OSH, which forms eplane inclined by the vertical SO and the horizontal line OII, the proportion will stand fullows: -

$$
\mathrm{P}: \mathrm{N}::(\mathrm{OS}: \mathrm{SII} .
$$

tne first case, to obtain an equilibrium, the force must be to the weight of the borly us the ight (OS "f the iuslined phene torts Ienghth Sll.
1301. In the case where the force is horizontal (fiy, 550.) we hate, similarly, -

1': N: : 1×1 : 1),
and 1': N::()S: OlI.
this last ease, then, the force muat be to the uright of the solid in proportion to the height

OS of the inclined plane to its base OII. In the first case the preseure of the solid on the plane is expressed by OH , and in the second by SH: hence we haぃセ-

$$
\begin{array}{r}
\mathrm{P}: \mathrm{N}: \mathrm{F}:: \mathrm{OS}: \mathrm{SH}: \mathrm{OH}, \\
\text { and } \mathrm{P}: \mathrm{N}: \mathrm{F}:: \mathrm{OS}: \mathrm{SH}: \mathrm{OH} .
\end{array}
$$

In the first ease it must be observed, that the effect of the force being parallel to the inclined plane, it neither increases nor diminishes the pressure upon that plane; and this is the most favourable case for keeping a body in equilibrio on an inclined plane. In the second case, the direction forming an acute angle with the plane uselessly augments the load or weight. Whilst the direction of the force forms an obtuse angle with the incianation of the plane, by sustaining a portion of the weight, it diminishes the load on the plane, but requires a greater force.
1302. The force necessary to sustain upon an inclined plane a body whose base is formed by a plane surface depends, as we have already observed, on the roughess of the surfaces, as well of the inclined plane as of the base of the body; and it is only to be discovered by experiment.
1303. Of all the means that have been employed to estımate the value of the resistance, khown under the name of friction, the simplest, and that which seems to give the truest results, is to consider the inclination of the plane upon which a body, the direction of whose centre of gravity does not fall out of the base, remains in equilibrio, as a horizontal plane; after which the degrees of inclination may begin to be reckoned, by which we find that a boty which does not begin to slide till the plane's inclination exceeds 30 degrees, being placed on an inclined plane of 45 , will not require a greater force to sustain it than a convex body of the same weight on an inclined plane of 15 degrees.
1304. All that has been said on the force necessary to retain a body upon an inclined plane, is applicable to solids supported by two planes, considering that the second acts as a force to counterpoise the first, in a direction perpendicular to the second plane.
1305. When the directions of three forces, $l^{\prime} G, Q G, G R$, meet in the same point G (fig. 551.), it follows, from the preceding observations on the parallelegram of forces, that to be in equilibrium their proportion will be expressed by the three sides of a triangle formed by perpendiculars to their directions; whence it follows, that if through the centre of gravity G of a solid, supported by two planes or by some other point of its vertical direction, lines be drawn perpendicular to the chrections of the forces, if equilibrium exist, so will the following proportion, viz. $\mathrm{P}: \mathrm{Q}: \mathrm{R}:: \mathrm{BA}: \mathrm{BC}$: AC.

1:306. Lastly, considering that in all sorts of triangles the sides will between each other be as the sines of their opposite angles, we shall have $P: Q: R::$ sin. BCA: $\sin . \mathrm{BAC}: \sin . \mathrm{ABC}$; and as the angle BCA is
 equal to the angle $C A D$, and $C B A$ to $B A E$, we shall have $P: Q: R:: \sin . C A D$: $\sin . \mathrm{BAC}: \sin . \mathrm{BAE}$; that is, that the weight is represented by the sine of the angle forned by the two inclined planes, and that the pressures upon each of these planes are reciprocally proportional to the sines of the angles which they form with the horizon.

THE WHEEL AND AXLE.
1307. The wheel and axle, sometimes called the axis in peritrochio, is a machine consisting of a cylinder C and a wheel B (fig. 552.) having the same axis, at the two extremities of which are pivots on which the wheel turns. The power is applied at the circumference of the wheel, generally in the direction of a tangent by means of a cord wrapped about the cylinder in order to overcome the resistance or elevate the weight. Here the cord by which the power P acts is applicd at the circumference of the wheel, while that of the weight W is applied round the axle or another small wheel attached to the larger, and having the same axis or centre C. Thus BA is a lever moveable about the point C, the power P always acting at the distance BC , and the weight W at the distance CA. Therefore P:W::CA: CB. That is, the weight and power will be in equilibrio when the power P is to the weight W reciprocally as the radii of the circles where they act, or as the radius of the axle $C \Lambda$, where the weight langs, to the radius of the wheel $C B$, where the power

Fig. 552. acts; or, as before, P:W::CA: CB.
1308. If the wheel be put in motion, the spaces moved through being as the circum
erences, or as the radii, the velocity of W will be to the velocity of P as $C A$ to $C B$; that s, the weight is moved as much slower as it is heavier than the power. Hence, what is ;ained in power is lost in time; a property common to machines and engines of every class.
1309. If the power do not act at right angles to the radius CB, but obliquely, draw -D perpendicular to the direction of the power, then, from the nature of the lever, ?:W::CA:CD.
1310. It is to the mechanical power of the wheel and axle that belong all turning or Theel machines of different radii; thus, in the roller turning on the axis or spindle CE (fig. 553 .) by the handle CBD, the power pplied at B is to the weight W on the roller, as he radius of the roller is to the radius CB of the bandle. The same rule applies to all cranes, apstans, windlasses, \&c. ; the power always being o the weight as is the radius or lever at which he weight acts to that at which the power acts; o that they are always in the reciprocal ratio f their velocities. 'To the same principle are eferable the gimlet and auger for boring holes.
1311. The above observations imply that the ords sustaining the weights are of no sensible hickness. If they are of considerable thickness,

Fig. 553. r if there be several folds of them over one anther on the roller or barrel, we must measure to the middle of the outermost rope for ie radius of the roller, or to the radius of the roller must be added half the thickness of the ord where there is but one fold.
1312 'The power of the wheel and axle possesses considerable advantages in point ot onvenience over the simple lever. A weight can be raised but a little way by a simple ver, whereas by the continued turning of the wheel and axte a weight may be raisud to y height and from any depth.
1313. By increasing the number of wheels, moreover, the power may be increased to any stent, making the less always arn greater wheels, by means ' what is called tooth rend pinion ork, wherein the teeth of one reumference work in the punds or pinions of another to irn the wheel. In ease, here, an equilihrium, the power is the weight as the continual roduct of the radii of all the kles to that of all the wheels. 0 if the power I' (fig. 554.) arn the wheel Q, and this turn re sinall wheel or axle R , and fis turn the wheel S , and this on the axle ' Γ, and this turn e wheel V, and this turn the le X, which raises the weight \because; then $\mathrm{P}: \mathrm{W}:: \mathrm{Cl}, \mathrm{DE}$. G:AC. 13 D . EF. And in

(e same proportion is the velocity of W slower than thint of I '. 'Thus, if each wherel e to its axle as 10 to 1 , then $I^{\prime}: W^{\prime}: 1^{3}: 100^{3}$, or as 1 to 1000 . Hence a power of ont hund will balance a weight of 1000 ponnds; but when pent in motion, the power will pove 1000 times fister than the weigrit.
1314. We do not think it necessary to give examples of the diflerent machines for raicing eights nserl in the construction of imildings: they are not bany, and will be hereather imed and described.

OF T11E IUULIEY゙。
131.5. A pulley is a small whecl, usually made of wood or brass, turning about a metal ris, and enclosed in a frame, or case, callied its hork, which admits of a rope to pass freely ver the eirenmference of the pulter, wherein there is unally a concave groove to prevent re rope dipping ont of its place. 'The pulley is said to be fixed or moveable as its blowk fixed or rises sudd falls with the weight. An assemblage of several pulleys is colled :a stem of pulleys, of which some are in a lixed block mot the rest in a movenble one.
${ }^{13}$ B6. If at power anstain a weight by means of a tived palley. the power and weight are
equat. For if through the eentre $\mathbf{C}(f i g .555$.) of the pulley we draw the horizontal diameter AB ; then will AB represent a lever of the first kind, its prop being the fixed centre C, from which the points A and B, where the power and weight aet, being equally distant, the power P is eonsequently equal to the weight W.
1317. Henee, if the pulley be put in motion, the power P will deseend as fast as the weight W aseends: so that the power is not inereased by the use of the fixed pulley, even though the rope go over several of them. It is, nevertheless, of great serviee in the raising of weights, both by ehanging the direetion of the force, for the eonvenienee of aeting, and by enabling a person to raise a weight to any height without moving from his plaee, and also by permitting a great number of persons to exert, at the same time, their foree on the rope at P, whieh they eould not do to the weight itself, as is evident in raising the weight, or monkey, as it is ealled, of a pile-driver, also on many other oceasions.
1318. When a pulley is moveable the power neeessary to sustain a

Fig. 555. weight is equal to the half of sueh weight. For in this ease AB (fig. 556.) may be eon-

sidered as a lever of the second kind, the weight being at C, the power acting at A, and the prop or fixed point at B. Then, because $P: W:: C B: A B$ and $C B=A B$, we have $\mathrm{P}=\frac{1}{2} \mathrm{~W}$ or $\mathrm{W}=2 \mathrm{P}$.
1319. From whieh it is manifest that when the pulley is put in motion the veloeity of the power is double that of the weight, inasmueh as the point P descends twice as fast as the point C and the weight W rises. It is, moreover, evident that the fixed pulley F makes no differenee in the point P, but merely ehanges the motion of it in an opposite direction.
1320. We may henee aseertain the effect of a combination or system of any number of fixed and noveable pulleys, and we shall thereby find that every cord going over a moveable pulley doubles the powers, for each end of the rope bears an equal share of the weight, whilst each rope fixed to a pulley only inereases the power by unity. In fig. 557. $\mathrm{P}=\frac{1}{6} \mathrm{~W}$, and in fig. 558., $\mathrm{P}=\frac{1}{2} w=\frac{w+2 v+1 v}{6}$.

OF THE WEDGE。
1321. The wedge is a body in the form of a half reetangular prism, in practice usually of wood or metal. AF or BG (fig. 559.) is the breadth of its back, CE its height, CG, CB its sides, and its end, G13C, is the terminating surface of two equally inclined planes GCE, 1;CE.
1392. When a wedge is in equilibrio, the power aeting on the baek is to the foree aeting at right angles to either side as the breadth of the back AB (fig. 560 .) is to the length of the side AC or 13C. For three forees whieh sustain eaeh other in equilibrio are as the eorresponding sides of a triangle drawn perpendieular to the directions in whieh they act. But $A B$ is perpendicular to the force

acting on the back to drive the wedge forward, and the sides AC, BC are perpendicular to the forees acting on them, the three forces are therefore as $\mathrm{AB}, \mathrm{AC}, \mathrm{BC}$. Thus, the force on the back, its effect perpendicularly to AC, and its effect parallel to AB, are as the three lines AB, AC, and DC, which are perpendicular to them. Hence the thinner the wedge the greater its effect to split any body or to overcome a resistance against the sides of the wedge.
1323. We are, however, to recollect that the resistance or the forces in question are relative to one side only of the wedge; for if those against both sides are to be reckoned, we can take only half the back AD, or else we must take double the line AC or DC. In the wedge the friction is very great, and at least equal to the force to be overcome, inasmuch as it retains any position to which it is driven, whence the resistance is doubied by the friction. But on the other hand, the wedge has considerable advantage over all the other powers, because of the force of the how with which the back is struck, a force vastly greater than the dead weight or pressure employed in other machines. On this account it is capable of producing effects vastly superior to those of any other power, such as splitting rocks, raising the largest and heaviest bodies by the simple blow of a mallet ; objects which could never be accomplished by any simple pressure whereof in practice application could be made.

of the sckew.

132). The screw is a cord wound in a spiral direction round the periphery of a cylinder, and is therefore a species of inclined plane, whose length is to its height as the circumference of the cylinder is to the distance between two consecutive threads of the screw. It is one of the six mechanical powers used in pressing or squeezing bodies elose, and is oscasionally used in raising weights.

1:32.5. The screw, then, being an inclined plane or half wedge, the force of a power applied in turning it round is to the force with which it presses upwards or downwards, without estimating friction, as the distance between two threads is to the circumference where the power is applied. For considering it as an inclined plane whose height is the distanee between two threads, and its base the circumference of the screw; the force in the horizontal direction being to that in the vertical one as the lines perpendicular to them, namely, as the height of the plane or distance between two threads, is to the base of the plane or circumference of the screw; the power, therefore, is to the pressure as the distance of two threads is to the circumference. But in the application of the serew a handle or lever is used, by means whereof the gain in power is increased in the proportion of the radius of the screw to the radius of the power, that is, the length of the handle, or as their circuinferences. Consequently the power is to the pressure as the distance of the threads is to the eircumferenee described by the power. The screw being put in motion, the power is then to the weight which would keep it in equilibrio as the velocity of the latter is to that of the former; and hence their momenta are equal, and produced by multiplying each weight or power by its own velocity.
1396. Thus it is a general property of all the mechanical powers, that the momentum of a power is equal to that of the weight which would keep it in equilibrio, or that each of them is proportional to its velocity.
1327. From the foregoing observations, we may be easily led to compute the force exerted by any machine whose action is exerted through the means of the screw. In fig. 561., representing a press driven by a screw whose threads are each one quarter of an inch apart, let it be turned by a handle or lever 4 feet long from A to I3. Then supposing the natural force of a man, by which he can lift, pull, or draw, to be 1.50 pounds, and that it be required to aseertain with what foree the serew will press on the board at D when the man turns with his whole force the landle at A and 13 ; we have $A 13$, the diameter of the power, 4 feet or 48 inches; its circmuference, thercfore 48×3.1416, or $1.50 \frac{1}{3}$ nearly; and the distance of atie threads being one quarter of an incth, the power is to the pressure as 1 to $60: 3!$. Sut the power is equal to 150 pounds: therefore, as $1: 60315: 150: 90480$, and the pres-

Fig. 661. mure therefore at 1) is eyual to a weight of 90480 ponnds, independent of friction.
1.328. In the endless screw AB (fit, 56.2.), turned by a handle AC of 20 inches radins, the threarly of the serew are at a distance of half an inch; and the serew turns a toothed wheel 1 E whose pinion I , acts in turning upon another wheel \vec{r}, and the pinion MI of this lant wheclactunpen a third wheet d, to the pinion or barrel whereof is hung the weight W. If we wonld know what weight can be raised through the means of this combination by a Homberhing the hanalle C, supposing the dianeters of the whecls to be 18 inches, and Lhase of the pinions and barrel efinches, the teeth and pinions being all similar in size; we
have $20 \times 3 \cdot 1416 \times 2=125 \cdot 664$, the circumference of the power ; and $125 \cdot 664$ to $\frac{1}{2}$, or $251 \cdot 328$ to 1 , is the foree of the screw alone. Again, $18: 2$ or $9: 1$, being the proportion of the wheels to the pimions, and there being three of them, $9^{3}: 1$ or $729: 1$ is the power gained by the wheels.
1329. Consequently $251: 328 \times 729$ to 1 , or $183218 \frac{1}{9}$ to 1 nearly, is the ratio of the power to the weight arising from the joint advantage of the serew and the wheels. The power, however, is 150 pounds; therefore $150 \times 183218 \frac{1}{9}$ or 27482716 pounds is the weight the man can sustain, equal to 12269 tons.
1330. It must be ohserved, that the power has to overcome not only the weight, but at the same time the frietion undergone by the screw, which in some eases is so great as to be equal to the weight itself; for it is sometimes sufficient to sustain the weight when the power is taken off.

OF FRICTION

1331. Though in a preceding page we have slightly touched on the effect of friction, it is to be kept in mind that the foregoing observations and rules have assumed the mechanical powers to be without weight and friction. This is far from the fact; and, however theoretically true all that has hitherto been advanced, very great allowances must be made in

Fig. 562. practice when power is applied to meehanical purposes, in whieh a great portion of their effeet is lost by frietion, inertia, \&c. The word frietion, properly meaning the act of one body rubbing on another, is in mechanies used to denote the degree of retardation or obstruetion to motion which arises from one surface rubbing against another. A heary body placed upon another is not in a state of equilibrium between all the forees which aet upon it, otherwise it could be moved by the application of the smallest force in a direction parallel to the plane. This want of equilibrium results from unbalanced force occasioned by the friction on a level surface. Now if a new force of equal magnitude be applied to counterpoise such enbalanced foree, the body will obey the smallest impulse in sueh direetion, and the force thus employed will exactly measure the retarding force of frietion. It has been well observed, that friction destroys, but never generates motion; being therein unlike gravity or the other forces, which, though they may retard motion in one direetion, always aecelerate it in the opposite. Thus the law of frietion violates the law of eontinuity, and cannot be accurately expressed by any gcometrieal line, nor by any algebraic formula. The author (Playfair, Outlines of Natural Philosophy) just quoted, continues: "Though friction destroys motion and generates none, it is of essential use in mechanics. It is the cause of stability in the structure of machines, and it is necessary to the exertion of the force of animals. A nail or serew or a bolt could give no firmness to the parts of a maehine, or of any other structure, without friction. Animals could not walk, or exert their force anyhow, without the support which it affords. Nothing could have any stability, but in the lowest possible situation; and an arch, which could sustain the greatest load when properly distributed, might be thrown down by the weight of a single ounce, if not placed with mathematical exactness at the very point which it ought to occupy."
1332. Many anthors have applied themselves to the subject of friction, but the most satisfactory results have attended the investigations of the celebrated Coulomb in its application to practical mrehanics; and it is to that author we are indebted for the few following succinct observations.
I. In the friction of wood upon wood in the direction of the fibres after remaining is sontact for one or two minutes, the following mean results were obtained: -

$$
\begin{aligned}
& \text { Oak against oak }-\frac{1}{2 \cdot 3 \overline{4}}=\text { friction in parts of the weight. } \\
& \text { Oak against fir }-\quad-\frac{1}{150}=\text { ditto. } \\
& \text { Fir against fir }-\frac{1}{1 \cdot 78}=\text { ditto. } \\
& \text { Elm against elm }-\frac{1}{21 \overline{8}}=\text { ditto. }
\end{aligned}
$$

When oak rubbed upon oak, and the surfaces in contact were reduced to the smallest pos sible dimensions, the friction was $\frac{1}{1} \frac{1}{2 \cdot 36}$.
1383. When the friction was across the grain, or at right angles to the direction of the ibres, oak against oak was $\frac{1}{3}$. The ratoos above given are constant quantities, and not lependent upon the velocities, excepting in the case of eim, when the prcssures are very mall, for then the friction is sensibly increased by the velocity.
1334. (II.) Friction is found to increase with the time of contact. It was ascertained that vhen wood moved upon wood in the direction of the fibres, the friction gradually increased, ni reached its maximum in 8 or 10 seconds. When across the grain of the wood, it took longer time to reach its maximum.
1395. (III.) For illustration of the friction of metals upon metals after a certain time of est, the subjoined experiments werc made with two flat 1 ulers of iron, 4 feet long and 2 nches wide, attached to the fixed plank of the apparatus used for the investigation. Four ther rulers, two of iron and two of brass, 15 inches long and 18 lines wide, were also used. Che angles of each of the rulers were rounded off, and the rubbing suifaces of the rulers ere 45 square inches.
With iron upon iron and a pressure of 53 lbs ., the friction in parts of the pressure was $\frac{1}{3.5}$

- - 453 lbs , - - With iron upon brass and a pressure of 52 lbs, , the friction in parts of the pressure was $\frac{1}{4.2}$
-

$\frac{1}{4.1}$
1336. In these experiments each set gives nearly the same result, though the second ressures are nearly nine times the first; from which we learn that, in metals, friction is inependent of the extent of the rubbing surfaces. Coulomb, moreover, found that the friction independent of the velocities. The ratio of 4 to 1 between the pressure of friction, in ie case of iron moving upon brass, is only to be considered accurate when the surfaces are ew and very large. When they are very small the ratio varies from 4 to 1 to 6 to 1 ; but is last ratio is not reached unless the friction has been continued more than an hour, when ie iron and brass have taken the highest polish whereof they are susceptible, free of all ratches.
1337. IV. In the friction of oak upon oak, when greased with tallow, which was renewed every experiment, some days were required for obtaining, when the surfaces were consirable, the maximum of friction or adhesion. It was nearly similar to that without grease, metimes rather greater. For iron or copper with tallow, during rest, the increase is not considerable as with oak. At first the friction was $\frac{1}{7 Y}$ of the weight, besides a small force a pound for every 30 square inches independent of the weight. The frietion after some ne changes to $\frac{1}{10}$ or $\frac{1}{9}$. Olive oil alters the condition of the friction to $\frac{1}{6}$, and old soft grease about $\stackrel{1}{5}$.
1338. V. In the case of friction of bodies, oak upon oak for instance, in motion in the rection of its fibres, the frietion was nearly constant in all degrees of velocity, thongh with ge surfaces it appeared to increase with the velocities; but when the touching surfaces re very small compared with the pressures, the friction diminished or the velocities ineased. For a pressure of 100 to 4000 pounds on a square foot, the friction is about $\frac{1}{96}$, sides for each square foot a resistance of 1_{3}^{2} pounds, cxclusive of pressure insreasing a the with the velocity, occasioned perhaps by a down on the surface. If the surface be y small the friction is lessened. When the narrow surface was eross-grained, the friction s invariably $\frac{1}{\sqrt{6}}$. In the ease of oak on fir, the friction was $\frac{1}{6.3}$; of fir on fir, $\frac{1}{6}$; of elm on n, fo, but varying according to the extent of surface; for iron or copper on wood, $\frac{1}{13}$, which s at first doubled by increasing the velocity to a foot in a seeond, but on a continuance the operation for some hours it again diminished. For iron on iron, $\frac{1}{3 \cdot 55}$; on copper, $\frac{1}{415}$; or long attrition, $\frac{1}{6}$ in all velocitics. Upon the whole, in the ease of resst machines, $\frac{1}{8}$ of : pressure may be eonsidered a fair cstimate of the friction.
1339. In the experinents to ascertinin the friction of axles, Coulomb used a simple pulley, ere the friction of the axis and that of the rigidity of the rope produce a joint resistaner. th guaiaeum moving upon iron, the friction was $\frac{1}{54}$ or $\frac{1}{64}$ of the weight in all velocities Alusive of the rigidity of the rope; the mean was $\frac{1}{G \cdot 1}$, or, with a small weight, a littie ater. In the eases of axtes of iron on copper, hit or $\frac{1}{11 \cdot 5}$ the velocity is snall ; the frietion Ing always somewhat less than for plane surfazes. With grease, the friction was about

With an axis of green oak or eln, and a pulley of guaiacum, the friction with tallow $\frac{1}{1} \frac{1}{26}$; without, $\frac{1}{17}$; with a pulley of clm, the quantities in question became $\frac{1}{33}$ and $\frac{1}{40}$. An is of box with a pulley of guaiacum gave $\frac{1}{23}$ and $\frac{1}{4}$; with an clin pulley, and and An * 4 of iron and a pulley of guaiacum gave, with tallow, $\frac{1}{20}$. The velocity had hut snall
effeet on the rigidity of ropes, except in slightly increasing the resistance when the pressure was sinatl.
1340. 'The friction and rigidity of ropes was supposed by Amontons and Desaguliers to vary as the diameter as the curvature and as the tension. By Coulomb the power of the diameter expressing the rigidity was found generally to be 1.7 or $1 \cdot 8$, never less than 1%, and that a constant quantity must be supposed as added to the weight. Wet ropes, if small, are more flexible than such as are dry, and tarred ones stiffer by about one sixth, and in cold weather somewhat more. After rest, the stiffiness of ropes increases. A rope of three strands, each having two yarns $12 \frac{1}{2}$ lines in circumference, whose weight was 125 grains, being bent upon an axis 4 inches in diameter, required a constant forcc of one pound (French) and $\frac{1}{543}$ of the weight to overeome its rigidity. The same rope tarred, required one fifth of a pound and one fiftieth of the weight. When the strands were of fine yarns, the circumference 20 lines, and the weight 347 grains, the rigidity was equal to half a pound and $\frac{1}{23}$ of the weight to move it. With strands of 10 yarns, and a circumference of 28 lines, and a weight of 680 grains to 6 inches, the rigidity of the untarred rope was 2 lbs . and $\frac{1}{13.33}$ of the wright, and the tarred rope of 3.3 lbs and $\frac{1}{10.34}$ of the weight. Experi. ments which confirmed the above were made on a roller moving on a horizontal planc, while a rope was coiled completely round it, whenec an allowance must be made for the friction of the roller on the plane, which varies as its weight and invcrsely as its diancter. With a roller of guaiacum or lignum vite, 3.6 inches in diameter, moving on oak, it was fod of the weight ; for a roller of elm, $\frac{2}{5}$ more.
1341. This subject has, we conceive, been pursued as far as is necessary for the arehitect; seeing that his further investigation of it, should necessity arise, may be accomplished by reference to the works of Amontons, Bulfinger, Parent, Euler, Bossut, and Coulomb, upon whom we have drawn for the information here given. We shall therefore conclude these remarks by subjoining some of the practical results which experiments on animal power afford, extracted from the celebrated Dr. 'Thomas Young's Natural Philosu= $p h y$, vol. ii.
1342. In comparing the values of the force of moving powers, it is usual to assume an unit, which is eonsidered as the mean effect of the labour of an active man working to the greatest advantage; this on a moderate calculation will be found sufficient to raise 10 lbs to the height of 10 feet in one second for 10 hours in a day; or 100 lbs .1 foot in a second, that is 36,000 feet in a day, or $3,600,000 \mathrm{lbs}$. 1 foot in a dily. The following exhibits a tabular view of the immediate force of men, without deduction for friction. Such a day's work is the measuring unit in the third column of the table.

Operative.	Force.	Cominuance.	Day's Wrok.
A man weighing 133 lbs . French ascended 62 feet French by steps in 34 seconds, but was completely exhausted. Amontons. - A sawyer made 200 strokes of 18 French inehes each in 145 seconds, with a force of 25 lbs. French. He could not have continued more than 3 mi nutes. Amoutoms. A man can raise 60 French lbs. 1 French foot in 1 second for 8 hours a day. Bernouilli. A man of ordinary strength can turn a winch with a force of 30 lbs ., and with a velocity of $3 \frac{1}{2}$ feet in 1 second for 10 hours a day. Desagutiers. Two men working at a windlass, with handles at right angles, can raise 70 lbs . more casily than 1 can raise 30 lbs. Desaguliers. A man can exert a force of 40 lbs . for a whole day with the assistance of a fly, when the motion is pretty quick, at about 4 or 5 feet in a second. Desaguliers. But it appears doubtful whether the force is 40 or 20 lbs . For a short time, a man may exert a force of 80 lbs . with a fly when the motion is pretty quick. Desoguliers. A man going up stairs aseends 14 inetres ($35 \cdot 43$ feet) in 1 ninute. Coulomb.	2.8 6.0 0.69 1.05 1.22 2.00 3.00 1.182	34 sec. 145 sec. 8 hours 10 hours - -1 sec. 1 min.	0.552 1.05 1.42 2.00

Oferativa.	Force.	Continuar ce	Day's Work.
A man going up stairs for a day raises 205 kilogrammes ($451 \cdot 64 \mathrm{lbs}$. averd.) to the height of a kilometre ($3280 \cdot 9!$ feet). Coulomb.	-	-	$0 \cdot 412$
With a spade a man does $\frac{19}{25}$ as much as in ascending stairs. Coulomb.	-	-	$0 \cdot 391$
With a winch a man does $\frac{5}{8}$ as much as in ascending stairs. C'ualomb.	-	-	0.258
A man earrying wood up stairs raises, together with his own weight, 109 kilogrammes ($240 \cdot 14 \mathrm{lbs}$. averd.) to 1 kilometre ($3280 \cdot 91$ feet). Coulomb.	-	-	$0 \cdot 219$
A man weighing 150 Freneh lbs. can ascend by stairs 3 French feet in a second for 15 or 90 seconds. Coulumb.	$5 \cdot 22$	$\underline{0}$ sec.	
F'or half' an hour 100 French pomeds may be raised 1 foot French per second. Coulomb.	$1 \cdot 159$	90 min .	
By Mr. Buchanan's comparison, the force exerted in turning a winch being assumed equal to the unit, the foree in punping will be	$0 \cdot 61$		
In ringing -	1:36		
In rowing - - - - - -	$1 \cdot 43$		

1843. Coulonb's maximum of effect is, when a man weighing 70 kilof ramanes 154.21 lbs , avoirdupois), carries a weight of 53 (116.76 lbs avoirdupois,) up sairs. Eut his appears too great a load.
1844. Porters carry from 200 to 300 lbs , at the rate of 3 miles an hour. Chairmen alk 4 miles an hour with a load of 150 lbs . each ; and in Turkey there are found porters ho, it is said, by stooping forwards, carry from 700 to 900 lbs. very low on their backs.
1845. The most advantageous weight for a man of common strength to carry horizonaly, is 111 pounds; or, if he return unladen, 135. With wheelbarrowe, men will do half mucl more work, as with hods. Coulomb.
The following table exhibits the performance of men by maehines.

Operative.	Force.	Contimuance.	Day's Wok.
A man raised by means of a rope and pulley 2.5 lbs .			
French, 220 French fect in 145 seconds. Amontimes.	$0 \cdot 436$	145 sec.	
I man can raise by a prood eommon pump I hogshead of water 10 feet bigh in a monute for a whole day.			
Desaguliers. - - - - -	$0 \cdot 875$	-	$0 \cdot 875$
3y the mereurial punp, or another good pump, a man			
for 1 or 2 minutes	$1 \% 1$	2 min.	
" pile driving, $5.5 \frac{1}{3}$ lirench lbs. were raised 1 Freneh			
foot in 1 second, for 5 hours a day, by a rope drawn horizontally. Coulomb. -	$0 \cdot 64$	5 hours	$0 \cdot 82$
Lobison says that a feeble old man raised 7 cubie feet of water $11 \frac{1}{2}$ fict in 1 minute for 8 or 10 hours a day, by walking backwards and forwards			
on a lever	0:837	9 hours	0.7.33
$1.3 \div \mathrm{lbs}$, and carrying 30 lbs ., raised $9 \frac{1}{4}$ cubic feet $11 \frac{1}{3}$ feet high for 10 hours a day, without fatıguc	$1 \cdot 106$	10 hours	$1 \cdot 106$

346. In respect of the foree of horses, we do not think it neeessary to do more than cerve that the best way of applying their foree is in an horizontal direction, that in which anan acts least to advantage. For instance, a man weighing 140 lbs , and drawing a boat nig by means of a rope over his shoulders, cannot draw above 27 lbs, ; whereas a horse -)loyed for the same purpose ean exert seven times that force.
347. Gencrally, a horse can draw no more up a step hill than three men can carry,
that is, from 450 to 750 pounds; but a horse can drav 2000 pounds up a steep hill which is but short. The most aisadvantageous mode of applying a horse's force is to make him carry or draw up hill; for if it be steep, he is not more than equal to three men, cach of whon would climb up faste: with a burden of 100 pounds weight than a horse that is loaded with :300 pounds. And this arises from the different construction of what may be called the two living machines.
348. Desaguliers observes, that the best and most effectual action of a man is that exerted in rowing, in which he not only acts with more muscles at once for overcoming resistance than in any other application of his strength, but that, as he pulls backwards, his body assists by way of lever.
349. There are cases in which the architect has to avail himself of the use of horse power ; as, for instance, in pugmills for tempering mortar, and occasionally when the stones employed in a building may be more conveniently raised by such means. For effectually using the strength of the animal, the thack or diameter of a walk for a horse should not be less than 25 to 30 feet. A stean horse-power is reckoned as iqual to three actual horses' power, and a living horse is equal to seven men.
350. We close this section by observing that some horses have carricd 650 or 700 lbs ., and that for seven or eight mile, without resting, as their ordinay work; and, according to Desaguliers (Experiment. Philos. vol i), a horse at Stourbridge cirried 11 cwt. of iron, or 1232 lbs., for eirht miles.

Sect. Vill.
PIERS AND VAUlTS.

Authors on equilitrium of arches.

1351. The construction of arches may be considered in a threefold respect. I. As respects their form. II. As respects the mode in which their parts are constructed. 11I. As respects the thrust they exert.
1352. In the first category is involved the mode of tracing the right lines and curves whereof their surfaces are composed, which has been partially treated in Section V. on Descriptive Geometry, and will be further discussed in future pages of this work. The other two points will form the subject of the present section.
1353. The investigation of the equilibriuin of arches by the laws of statics does not appear to lave at all entered into the thoughts of the ancient arehitects. Fixperience, imitation, and a sort of mechanical intuition seem to have been their guides. They appear to have preferred positive solidity to nice balance, and the examples they have left are rather the result of art than of science. Vitruvius, who speaks of all the ingredients necessary to form a perfect arehiteet, does not allude to the assistance which may be afforded in the construction of edifices by a knowledge of the resolution of forces, nor of the aid that may be derived from the study of such a science as Deseriptive Geometry, though of the latter it scems scarcely possible the ancients could have been ignorant, seeing how mueh it must lave been (practically, at least) employed in the construction of such vast buildings as the Coliseum, and other similarly curved structures, as respects their plan.
1354. The Gothic architects seem, and indeed must have been, guided by some rules which enabled them to counterpoise the thrusts of the main arches of their cathedrals with such extraordinary dexterity as to excite our amazenent at their boldness. But they have left us no precepts nor elue to ascertain by what means they reached such heights of skill as their works exhibit. We shall hereafter offer our conjectures on the leading principle which seems as well to have guided them in their works as the ancients in their earl:est, and perhaps latest, specimens of columnar architecture.

1355 . 1'arent and De la Hire seem to have been, at the latter end of the seventeenth century, the first mathematicians who considered an arch as an assemblage of wedge-formed stones, capable of sliding down each other's surfaces, which they considered in a state of the Bighent polish. In this hypothesis M. de la Hire has proved, in his Treatise on Mechamies, printed in 1695 , that in order that a semiciscular areh, whose joints tend to the centre, may be able to stand, the weights of the voussoirs or areh stones whereof it is composed must be to each other as the differences of the tangents of the angles which form each voussoir; but as these tangents increase in a very great ratio, it follows that those which form the springings must be infinitely heavy, in order to resist the effects of the superior vonssoirs. Now, according to this hypothesis, not only would the construction of a semicircular arch be an impossibility, but also all those which are greater or less than a semicircle, whose centre is level with or in a line parallel with the tops of the piers; so that those only would be practicable whose centres were formed by curves forming angles with the piers, such as the parabola, the hyperbola, and the catenary. And we may here remark, that in parabolic and hyperbolic arehes, the voussoir forming the keystones should be heavier or
greater in height, and that from it the weight or size of the voussoirs should diminish from the keystone to the springing; the catenary being the only curve to which an hoizontal extrados, or upper side, can be properly horizontal. In the Memoirs of the Academy of Sciences, 1729, M. Couplet published a memoir on the thrusts of arches, wherein he adopts the hypothesis of polished voussoirs; but, finding the theory would not be applicable to the materials whereof arches are usually composed, he printed a second memoir in 1730, wherein the materials are so grained that they cannot slide. But in this last he was as far from the truth as in his first.
1856. M. Danisy, a member of the Academy of Montpellier, liking neither of these hypotheses, endeavoured from experiments to deduce a theory. He made several mociels whose extradosses were cqual i.1 thickness, and divided into equal voussoirs, with picrs sufficiently thick to resist the thusts. To asecrtain the places at which the failure would take place where the piers were too weak, he loaded them with different weights From many experiments, in 1732, he found a practical rule for the walls or piers of a cylindrical arch so as to resist the thrust.
1357. Derand had found one which appears in his L'Architecture des Voutes, 1643, but it seens to have been empirical. It was nevertheless adopted by Blondel and Deschalles, and afterwards by M. de la Rue. Gautier, in his Dissertation sur lépaissenr des Culées des Ponts, \&c. 1727, adopts one which seems to have had no better foundation in science than Derand's.
1358. At the end of a theoretical and practical treatise on stereotomy by M. Frezier, that author subjoined an appendix on the thrust of arches, which was an extract of what had theretofore been published by MM. de la Hire, Couplet, Bernouilli, and Danisy, wit'a the applications of the rules to all sorts of arches. He scems to have been the first who considerably extended the view of the subject.
1359. Coulomb and Bossut occupied themselves on the subject. The first, in 1i73, presented to the French Academy of Sciences a memoir on several architectural problems, anongst which is one on the equilibrium of arches. The last-mentioned author printed, in the Memoirs (1774 and 1776) of the same academy, two memoirs on the theory of cylindrical archics and of domed vaulting, wherein are some matters relating to the cupola of the Pantheon at Paris, whose stability was then a matter of doubt.
1360. In Italy, Lorgna of Verona considers the subject in his Saqgi di Stutica Mecanica applicati alle Arti; and in 1785, Mascheroni of Bergamo published, in relation to this braneh of architeeture, a work entitled Nuove Ricerche delle Volte, whercin he treats of cupolas on circular, polygonal, and elliptical bases.
1361. We ought, perhaps, not to onit a memoir by Bouguer in the Transactions of the French Academy of 1754, Sur les Lignes Courbes propres a firmer les Voutes en Done, wherein he adduces an analogy between ev!indrical and dome vaulting; the one being supposed to be formed by the movement of a catenarian curve parallel to itself, and the other by the revolution of the same curve about its axis.
1362. In this country, the equilibration of the arch, as given by Belidor and others on the Continent, seems to have prevailed, though little was done or known on the subject. Emerson seens to have been the earliest attracted to the subject, and in his Treatise on Mechanics, 1743, appears to have been the first who thought, alter the Doctors Hooke and Gregory, of investigating the form of the extrados from the nature of the eurve, in which he was followed by llutton, who added nothing to the stock of knowledge; an aceusation which the writer of this has no hesitation of laying at hisown door, as having been the author of a I'reatise on the Equilibrium of Arches, which has passed through two editions; but who, after much reflection, is now convinced, that, for the practical architect, no theory wherein the extrados is merely made to depend on the form of the intrados can ever be satisfactory or uscful. It is on this account that in the following pages he has been induced to follow the doctrines of Rondelet, as much more satistactory than any others with which he is acepuainted.
1363. The formula of leondelet were all veritied by models, and the whole reasoning is eonducted upon knowledge which is to be obtained by acpuaintance with the mathenatical and mechanical portions of the preceding pages. It moreover repnires no deep acpuaintance with the more abstruse learning requisite for following the subject as treated by later authors.
obshivations on friction.
1364. I. In order that the stone parallelopiped $\triangle \mathrm{BCl}$) ($f i 4,56 \%$) Hay be mate to slide upon the horizontal phane liG, the power which draws or pishes it parallel to this plame, must not be higher than the length of its base AB ; lor if it acts from a higher print, such atis C , the parallelopiped will be overturned instead of sliding along it.

1:s6.5. As the ellects of the powers P and M are in the invere ratio of the nergiges at which they act, it follows that a parallelopiped will - lide whenever the fonee which is neecsaiary to orertmen it is greater than

Finc: bj,
that necessary to make it slide, and, reciprocally, it will be overtr acd when less force is necessary to produce that effect than to make it slide.
1366. II. When the parallelopiped is placed on an inclmed plane, it will slide so long as the vertical QS drawn from its centre of gravity does not fall without the base AB. Hence, to ascertain whether a parallelopiped ABCD with a rectangular base (fig. 564.) will slide down or overturn ; from the point B we must raise the perpendicular BE : if it pass out of the centre of gravity, it will slide; if, on the coutrary, the li:ze BE passes within, it will overturn.
1.367. If the surfaces of stones were infinitely smooth, as they are supposed to be in the application of the principles of

${ }^{-7 i g}$ 564. mechanics, they would begin to slide the moment the plane upon which they are placed ceases to be perfectly horizontal; but as their surfaces are full of little inequalities which catch one another in their positions, Rondelet found, hy repeated experiments, that cven those whose surfaces are wrought in the best mamer do not begin to slide upon the best worked planes of similar stone to the solids until such planes are inclined at angles varying from 28 to 36 degrees. This difficulty of moving one stone 1:pon another increases as the roughness of their surfaces, and, till a certain point, as their weight: for it is manifest, 1st, That the rougher their surfaces, the greater are the inequalities which catch one another. 2d. That the greater their weight, the greater is the eflart necessary to disengage them; but as these inequalities are susceptible of being broken up or bruised, the maximum of force wanting to overcome the friction must he equal to that which produces this effect, whatever the weight of the stone. 3d. That this proportion is rather as the hardness than the weight of the stone.
1368. In experiments on the sliding of hard stones of different sizes which weighed from 2 to 60 lbs ., our author found that the friction which was more than half the weight for the smaller was reduced to a third for the larger. He remarked that after each experiment made with the larger stones a sort of dust was disengaged by the friction. In soft stones this dust facilitated the sliding.
1369. These circumstances, which would have considerable influence on stones of a great weight, were of little importance in the experinents which will be cited, the object being to verify upon hard stones, whose mass was small, the result of operations which the theory was expected to confirm. By many experiments very carefuliy made upon hard freestone well wrought and squared, it was found, 1 st, That they did not begin to slide upon a plane of the same material equally well wrought until it was inclinea a little more than 30 degrees. 2d. That to drag upon such stone a parallelopiped of the same material, a little more than half its weight was required. Thus, to drag upon a level plane a parallelopiped 6 in. long, 4 in . wide, and 2 in . thick, weighing 4 lbs . 11 oz ., (the measures and weigits are French, as throughout*), it was necessary to employ a weight equal to 2 lbs . 7 oz. and 4 drs. $\mathbf{s d}$. That the size of the rubbing surface is of no consequence, since exactly the same force is necessary to move this parallelopiped upon a face of two in. wide as upon one of 4.
1370. Taking then into consideration that by the principles of mechanies it is proved, that to raise a perfectly smooth body, or one which is round upon an homogencous plane inclined at an angle of 30 degrees, a power must be employed parallel to the plane which acts with a force rather greater than half its weight, we may conclude that it requires as much foree to drag a parallelopiped of freestone upon an horizontal plane of the same material as to cause the motion up an inclined plane of 30 degrees of a round or infinitely polished body.
1971. From these considerations in applying the principles of mechanics to arches composed of freestona well wrought, a plane inclined at 30 degrees might be considered as one upon which the voussoirs would be sustained, or, in other words, equivalent to an horizontal plane.
1372. We shall here sulmit another experiment, which tends to establish such an hypothesis. If a parallelopiped C ($f i g .565$.) of this stonc be placed between two others, BD, RS, whose masses are eacli double, upon a plane of the same stone, the parallelopiped C is susfained by the fiiction alone of the vertical surfaces that touch it. This effect is a consequence of our hypothesis; for, the inequalities of the surfaces of bodies being stopped by one another, the parallelopiped C, before it can fall, must push aside the two others, BD, RS, by making them slide along the horizontal

Fig. 365. plane of the same material, and for that purpose a force must be employed equal to douli, the weight sustained.

$$
\begin{aligned}
\text { * The Paris pound } & =7561 \text { Troy grains. } \\
\text { Ounce } & =472.5625 . \\
\text { Dram or gros } & =590703 . \\
\text { Gratir } & =08204 .
\end{aligned}
$$

Afud as the Fuglish avoirdupois pound $=7$ ron Troy grains, it contains 8538 Paris gralng
The l'ars foot of 12 inches $=12.7977$ English inches.
The Paris lme - one-1zalth of the foot.
1373. If to this experiment the principles of mechasies be applied, eonsidering the plane of 30 degrees melination as a horizontill plane, the verticai faces ED FR may be considered as inelined planes of 60 degrees. On this hypothesis it may he demonstrated by meehanics, that to sustain a body between two planes forming an angle of 60 degrees (fig. 566.), the resistance of each of these planes must be to half the weight sustained as 11 D is to DG , as the radius is to the sine of 30 degrees, or
 as 1 is to 2.

EQUILIBRIUM OF ARCHFS.

1374. The resistance of each parallelopiped represented by the prism ABDE (.fig. 565.) being equal to half their weight, it follows that the weight to be suatained by the two prisms should equal one quarter of the two parallelopipeds taken together, or the half of one, which is confirmed by the experiment." This agreenent between theory and practiee det.rmined Rondelet to apply the hypothesis to models of vaults composed of voussoirs and wedges lisunited, made of freestone, with the utmost exactness, the joints and surfaces nieely wrought, as the parallelopipeds in the preceding example. 1375. The first model was of a semicireular arch 9 inches diameter, comprised between two eoneentric semi-cireumferences of cireles 21 lines tuart. It was divided into 9 equal voussoirs. This areh was 17 lines leep, and was earried on piers 2 inehes and 7 lines thiek. It was found, by gradually diminishing the piers, which were at first 2 inches and 10 ines thick, that the thickness first named was the least which could be assigned to resist the thrust of the voussoirs.
1375. The model in question is represented in fig. 567., whereon ve have to observe, - 1st. 'That the first voussoir, I, being placed on a level joint, not only sustains itself, but is aole to resist by riction an effort equal to one half of its weight. 2d. That the second oussoir, M, being upon a joint inelined 20 degrees, will also, through riction, sustain itself; and that, moreover, these two voussoirs would esist, previons to giving way on the joint AB, an horizontal effort equal 10 one lalf of their weight. 3d. That the third voussoir, N. standing in a joint inelined at 40 degrees, would slide if it were not retained y a power PN acting in an opposite direction. 4th. That taking, acording to our hypothesis, an inclined plane of 30 degrees, whereon he stones would remain in equilibrium as an horizontal one, the inlined point of 40 degrees may be eonsidered as an inelined plane of

Fig. 567. 0 degrees, supposing the surfaces infinitely smooth. 5th. That the effort of the hor:ontal power which holds this voussoir in equilibrium upon its joints will be to its weight s the sine of 10 degrees is to its cosine, as we have, in the section on Mechanies, preiously shown. (1255 et seq.)
1377. The model of the vault whereon we are speaking being but 9 inehes, or 108 ines in diameter, by 21 lines for the depth of the voussoirs, that is, the width between the wo concentric circumferences, its entire superficies will be 42.57 square lines, which, divided y 9 , gives for each voussoir 473 sfluare lines. Then, letting the weight of each voussoir e expressed by its superficies, and calling I' the horizontal power, we have

$$
\begin{aligned}
& \mathrm{P}^{\prime}: 470:: \sin .10^{\prime}: \operatorname{cosin} .10^{\prime} ; \\
& \text { Or, } \mathrm{P}^{\prime}: 473:: 17365: 98481 ; \text { whieh gives } \mathrm{P}=83_{10}^{4} .
\end{aligned}
$$

The fourth voussoir, being placed upon a bed inclined at 60 degrees, will be considered as tanding on a plane inclined only at 30 degrees, which gives, calling Q the horizontal ower which keeps it on its joint, -

$$
\begin{array}{rl}
Q & 473:: \sin .30^{\circ}: \operatorname{cosin} .30^{3} \\
\text { Or, } & 1.473:: 50000: 86603=473 \frac{3}{7}
\end{array}
$$

1378. The half-keystones, being plaeed on a joint inclined 80 degrees, are to be considered s standing on an inclined plane of 50 , the area of the half key which represents its eight being $2: 3 f_{2}^{1}$. Il' we call 12 the horizontal power which sustains it on its joint, we hall have the proportion

$$
\begin{array}{rl}
\text { R }: 2: 66_{1}:: \sin .50: \text { cosin. } 50 ; \\
\text { or, } R & 2: 36 \frac{1}{2}: 76604: 64279 ; \text { whieh gives } R=2819
\end{array}
$$

1379. Wishing to ascertain if the sun of these horizontal effiorts, whieh were neeessary , keep on thi ir joints the two voussoirs N, O, and the hall-keystone, was caprable of rrusting away the hirst vonsoir upon its horizontal joint $A B$, the half arch was laid down pon a level plate of the same stone without piers, and it was proved that to make it give aj an horizutal eflont of more than 16 ounces was repuired, whilst only 10 were neees.
sary to sustain the lualf-keystone and the two voussoirs N, O. The two halves of the arches united bore a weight of 5 lbs .2 oz . before the first voussoirs gave way.
1380. To find the effect of each of these voussoirs when the arch is raised upon its piers, let fall from the eentres of gravity $\mathrm{N}, \mathrm{O}, \mathrm{S}$ of these voussoirs the perpendiculars $\mathrm{N} n, \mathrm{O}, \mathrm{Ss}$, in order to obtain the arms of the levers of the powers $\mathrm{P}, \mathrm{Q}, \mathrm{R}$, which keep them in their places, tending at the same time to overturn upon the fulcrum 'I' the pier which carries the half areh, and we have their effort-

$$
\mathrm{P} \times \mathrm{N} n+\mathrm{Q} \times \mathrm{O} o+\mathbf{R} \times \mathrm{S} s
$$

The height of the pier being 195 lines, we have

$$
\begin{aligned}
& \mathrm{N} n=244 \cdot 94 \\
& \mathrm{O} o=256 \cdot 26
\end{aligned}
$$

and $\mathrm{S} s=260 \cdot 50$, whence we have
The effort $\mathrm{P} \times \mathrm{N} n=83.4 \times 244 \cdot 94$, which gives 20427.996
$\mathrm{Q} \times \mathrm{O} o=273 \cdot 3 \times 256 \cdot 26$. $70055 \cdot 858$
$\mathrm{R} \times \mathrm{S} s=281 \cdot 9 \times 260 \cdot 50 \ldots$. $73434 \cdot 950$
Total effort in respeet of the fulcrum, $\overline{163898.804}$
1381. The pier resists this effort, 1 st, by its weight or area multiplied by the arm of the lever determined by the distance ' $T u$ from the fulcrum ' T to the perpendicular let fall from the eentre of gravity G upon the base of the pier. 2 d . By the weight of the half arch multiplied by the arm of its lever VY deterinined by the vertical LY let fall from the centre of gravity L, and whish becomes in respect of the common fulcrum $T=T$ or VB-BY, in order to distinguish BY, which indicates the distanee of the eentre of gravity of the half anch (and which is supposed known because it may be found by the rules given in 1275. et seq.) from the width VB that the pier ought to have to resist the effort of the half arch sought. In order to find it, let l, the effort of the areh above found, be $163898 \cdot 804$.

Let the height of the pier	$=a$
The width sought	$=x$
The weight of the half arch	$=b$
The part BY of its arm of lever	$=c$

1382. The area of the pier which represents its weight multiplied by the arm of the lever will be $a x \times \frac{x}{2}=\frac{a x^{2}}{2}$. That of the half areh multiplied by its arm of lever will be shown by $\mathrm{VB}+\mathrm{BY}$, where $x+c$ will be $b x+b c$, whence the equation $\mathrm{P}=\frac{a x^{2}}{2}+b x+b c$, which we have to solve.

Now first we have $\quad \frac{a x^{2}}{2}+b x=\mathrm{P}-b c$.
$\left.\begin{array}{l}\text { Multiplying all the terms by } \frac{2}{a} \\ \text { to eliminate } x^{2} \text {, we have }\end{array}\right\} x^{2}+\frac{2 b x}{a}+\frac{2 p-2 b c}{a}$, an expression in which x is raised to the seeond power; but as $x^{2}+\frac{2 b x}{a}$ is not a perfect square, that is to say, it wants the square of half the known quantity $\frac{2 b}{a}$ which multiplies the second term; by adding this square, whieh is $\frac{b^{2}}{a^{2}}$, to eaeh side of the equation, we have $x^{2}+\frac{2 b, x}{a}+\frac{b^{2}}{a^{2}}=\frac{2 p-2 b c}{a}+\frac{b^{2}}{a^{2}}$. The first member by this means having become a perfect square whose root is $a+\frac{b}{a}$, we shall have $x+\frac{b}{a}+\sqrt{\frac{2 p-2 b c}{a}+\frac{b^{2}}{a^{2}}}$, whieh becomes, by transferring $\frac{b}{a}$ to the other side of the equation, $x=\sqrt{\frac{2 p-2 b c}{a}+\frac{b^{2}}{a^{2}}}-\frac{b}{a}$, in whieh x being only in the first member of the equation, its value is determined from the known quantities on the other side. Substituting, then, the values of the known quantities, we have

$$
x=\sqrt{\frac{163898.804 \times 2-2128 \times 2 \times 12 \frac{2}{2}}{195}+\frac{2128}{195} \times \frac{2128}{195}}-\frac{2128}{195},
$$

which gives $x=28 \frac{1}{4}$ lines instead of 2 inches and 5 lines, whieh was assigned to the piers that they might a little exceed equilibrium in their stability.

Proof of the above Method by another Method of estimating Friction.

1383. A proof of the truth of the hypothesis in the preeeding section is to be found in the method proposed by Bossut in his Treatise on Mechanics.

Let the vonssoir N (fig. 568.) standing on an inclined plane be sustained by a power Q acting horizontally. From the

Fig. S68.
centre of gravity let fall the vertical $N n$, which may be taken to cxpress the weight of the voussoir. This weight may be resolved into two forces, whereof one, $\mathrm{N} c$, is parallel to the joint, and the other $\mathrm{N} a$ is perpendicular to it . In the same mamer the power Q expressed by $Q N$ in its direction may be resolved into two forces, whereof $\mathrm{N} f$ will be parallel to the joint and the other $\mathrm{N} d$ perpendicular to it. Producing the line from the joint HG, drawing the horizontal line GI and letting fall the vertical HI, consider the line HG as an inclined plane whose height is HI and basc IG. Then the force $\mathrm{N} c$ with which the voussoir will descend will be to the weight as the height HI of the inclined plane is to its length HG. Calling p the weight of the voussoir, we then have $\mathrm{N} c=p \times \frac{11 \mathrm{G}}{111}$, and the force $\mathrm{N} a$ which presses against the plane as the base of the plane IG is to its length, which gives the force $\mathrm{N} t=p \times \frac{\mathrm{IG}}{1!\mathrm{G}}$.
1384. Considering, in the same way, the two forces of the power Q which retain the voussoir on the inclined plane, we shall find the parallel force $\mathbf{N} f=\mathbf{Q} \times \frac{\mathbf{1 G}}{\text { Gill }}$, and the perpendicular force $\mathrm{N} d=\mathrm{Q} \times \frac{\mathrm{HI}}{11 \mathrm{G}}$. The force resulting from the two forces $\mathrm{N} a, \mathrm{~N} d$, which press against the joint, will be expressed by $p \times \frac{1 \mathrm{HG}}{11 \mathrm{G}}+\mathrm{Q} \times \frac{11}{\text { GII }}$; and as the voussoir only begins to slide upon a plane whose inclination is greater than 30 degrees, the friction will be to the pressure as the sine of 30 degrees is to its cosine, or nearly as 500 is to 866 , or ${ }^{1000}$ of its expression. Calling this ratio n, we shall, to express the friction, have

$$
\left(p \times \frac{\mathrm{IG}}{\mathrm{GH}}+\mathrm{Q} \times \frac{\mathrm{IG}}{\mathrm{GH}}\right) \times n .
$$

As the friction prevents the voussoir sliding on its joint, in a state of equilibrium, we shall lave the force $\mathrm{N} f$ equal to the force $\mathrm{N} c$, less the friction; from which results the equation:-

$$
\mathrm{Q} \times \frac{\mathrm{IG}}{\overline{11 G}}=p \times \frac{\mathrm{HI}}{\overline{1} \mathrm{G}}-\left(p \times \frac{\mathrm{IG}}{\mathrm{G} / \mathrm{H}}-\mathrm{Q} \times \frac{111}{\mathrm{H} \mathrm{G}}\right) \times n .
$$

All the terms of which equation having the eommon divisor IIG, it becomes -

$$
\mathrm{Q} \times \mathrm{IG}=p \times \mathrm{III}-(p \times \mathrm{IG}-\mathrm{Q} \times \mathrm{IH}) \times n ;
$$

and, bringing the quantities multiplied by Q to the same side of the equation, we have
$\mathrm{Q} \times \mathrm{IG}+(\mathrm{Q} \times \mathrm{III}) \times n=p \times \mathrm{HI}-(p \times \mathrm{IG}) \times n ;$ which becomes
$\mathrm{Q} \times(\mathrm{IG}+n \times \mathrm{IH}=p \times(\mathrm{H}-n \times \mathrm{I} G) ;$ whence results
$\mathrm{Q}=p \times{ }_{1 \mathrm{G}+n \times \mathrm{IH}}^{\mathrm{IL}-n \times 1 \mathrm{G}}$, which is the formula for each voussoir, substituting the values for the expression.
1385. Thus for the third vonssoir N (fig. 567.) placed on an inclined plane of 40 degrees, III which represents the sine of the inclination will be 643 , and its cosine reprefented by $1 G, 766$, the expression of the friction n will be $\frac{500}{660}$, or $\frac{15}{26}$ nearly. The weight of he voussoir expressed by its area will be 473, which several values being substituted nt the formula, we have

$$
\mathbf{Q}=473 \times \frac{643-\frac{13}{20} \times 766}{766+\frac{15}{26} \times 643} ;
$$

which gives $Q=83 \cdot 6$, the expression of the horizontal foree P, which will keep the voussor N in equilibrian on its joint instead of $83 \cdot 4$, which was the result of the operation in the reeeding subsection.
1386. The same formula $Q=p \times{ }_{1 \mathrm{H}+\boldsymbol{n}+\mathrm{n} \times \mathrm{III}}^{\mathrm{HI}}$ gives for the voussoir M on an inclined joint ,f 60 degrees, whose sine $I I I$ is 866 and cosine $I G 500, Q=473 \times \frac{886-15}{500}+\frac{15}{25} \times 800=2769 \cdot 4$; nstead of $273: 3$, whicle was the result of the operation in the preceding section.
1387. For the hatf-keystone, the sine HI, being of 80 ategrees, will be expressed by 185, and its cosine I (by 174 ; the lalf-keystone by 2361 , and the friction by 8.
The formula now will be $Q=236 \frac{1}{2} \times \frac{985-18 \times 174}{174+\frac{18}{18} \times 985}$, which gives $Q=282 \cdot 2$, instead of 2819 found by the other method. These slight differences may arise from suporessing the two last figures of the sines, and some remamers of fractions which have been aghlected. Multiplying these values of the powers which keep the voussoirs in equilibrium pon their beds by the several arms of the levers, as in the precening calculations, their acrgy will be as follows: -

$$
\begin{array}{cc}
\text { For the voussoir } N, 83.6 \times 244 \cdot 94=20.476 .98 \\
- & O, 273 \cdot 4 \times 256 \cdot 26=704 ; 1 \cdot \cdot 18 \\
- & S, 282.2 \times 260.50=73: 315 \cdot 10
\end{array}
$$

For the total foree in respect of the fulcrum $\mathrm{T}=16 ; 3851 \cdot 56$.
Which is the value of μ, and being substituten for it in the fommala $x=\sqrt{2 p-2 b c} \cdot$
as well as the values of the other letters, which are the same as in the preceding example, we have

$$
x=\sqrt{\frac{163 \times 5136 \times 2-2128 \times 2 \times 125}{19.5}+\frac{2118}{195} \times{ }_{105}^{2128}-\frac{2128}{195}=28 \cdot 16 \text { lines }}
$$

for the thickncss of the piers, instead of $28 \frac{1}{3}$ lines found by the preceding operation.

Application of the Principles in the Model of a straight Arch.

1388. The second model to which the application of the preceding methods was made. was a straight arch of the same sort (.fy. 569.), whose opening between the piers was 9 inches. The arch was 21 lines high and 18 lines thick. It was divided into 9 wedges, whose joints were concentric. To determine the section of the joints, the diagonal FG was drawn on the face of the half arch, and from its extremity F touching the pier, the perpendicular $F O$ meeting O in the vertical, passing through the middle of the opening of the piers, all the sections meeting in this point O. Each of the sections of the piers which support the arch forms an angle of $21^{\circ} 1.5^{\prime}$ with the vertical, and of 68° 45^{\prime} with the horizon.
1389. In considering each of the wedges of the half arch as in the preceding method, it will be found that in order to retain the voussoir A on the joint 1 F (of the pier) which forms with the horizontal line NF an angle of $68^{\circ} 45^{\prime}$, we have

Fig 569.

For the horizontal furce

second B	-	-	-	9.54 .33
third C	-	-	-	298.75
fourth D	-	-	-	35466
half-keystone	-	-	-	212.83
		Total	-	1338.07

The height of the piers being 195 lines to the underside of the arch, and 216 to the top of the extrados, it follows that the arm of the lever, which is the same for all the wedges, is $206 \frac{1}{3}$, from which we derive for the thrust p of the formula,

$$
\begin{aligned}
x & =\sqrt{\frac{2 p-2}{a}} b \bar{c}+\frac{b^{2}}{a^{2}}-\frac{a}{b} \\
& =1338 \cdot 07 \times 206 \cdot 33=276094 ;
\end{aligned}
$$

b which expresses the area of the half arch $=1 \Omega 19 \frac{1}{2} ; c$ which expresses the distance of its centre of gravity from the vertical $\mathrm{F} n=24$, and the height of the pier $a=216$. Now, sub. stituting these values in the formula, we shall have

$$
a=\sqrt{\frac{276084 \times 2-2439 \times 24}{216}+\frac{12191}{216 \times 2191}-\frac{12191}{216}}=42 \frac{1}{2} \text { lines. }
$$

Experiment gives 44 lines for the least width of the piers upon which the model will stand. But it is right to ohserve that from the impossibility of the joints being perpendicular to the intrados, the forces of the wedges press in a false direction on each other, as will be seen by the lines $\mathrm{F} a, 1 c, 2 e, 3 g$, perpendicular to the joints against which the forces are directed, so that such an arch will only stand when the perpendicular FG does not fall within the thickness of the areh; and, indeed, this sort of areh is only secure when it comprises an are whose thekness is equal to the section upon the piers 1 F, as shown in fig. 570 .

Observations on the Way in which Stones forming an Arch act to support one another.

1390. Let the semicircular arch AHCDNB (fig. 571.) consist of an infinite number of voussoirs acting without friction, and only kept in their places by their mutual forces acting on each other. lt will follow -
1391. That the first voussoir. represented hy the line $A B$, having its joints sensibly parallel and horizontal, will act with its whole waght in the vertical direction LE to strengthen the pier.

Fig. 57:
2. That the vertica: vonssoir CD, whieh represents the keystone, having also its joints sensibly parallel, will aet with its whole weight horizontally to overturn the semi-arches and piers which earry them.
3. That all the other voussoirs between these two extremes will act with the compound forees $\mathrm{G} n, n m, m l, \mathrm{~K} l, \mathrm{~K} h, h y, q f, f \mathrm{~T}$, which may each be resolved into two others, whereof one is vertical and the other horizontal : thus the compound force K / h is but the result of the vertical force $4 h$, and the horizontal force 4 K .
4. That the vertical force of each voussoir dinninishes from T to G, where, for the keystone CD, it beeomes nothing, whilst the horizontal forees continally increase in an inverse ratio; so that the voussoir HN, which is in the middle, has its vertical and horizontal forees equal.
5. That in semi-circular arches whose extradosses are of equal height from their intradosses, the eireumference passing through the eentre of gravity of the voussoirs may epresent the sum of all the compound forees with which the voussoirs att upon one mother in sustaining themselves, acting only by their gravity.
6. That if from the points T and G the vertieal $T F$ and horizontal $G F$ be drawn inectng in the point F , the line 'TF will represent the sum of the vertical forees which assist the tability of the pier, and FG the sum of the horizontal forecs which tend to overthow it.
7. That if through the point K the horizontal line IKI, be drawn between the parallels $1 \times \mathrm{I}$ and CO , the part IK will represent the sum of the horizontal forees of the lower part AIINI3 of the vault, and KL those of the upper part IICDN.
8. The lower voussoirs between T and K being counterpoised by their vertical forees, he part of the arel AINNB will have a tendeney to fall inwards, turning on the point B, whilst the voussoirs between K and G being counterpoised by their horizontal forces, the part 1 CDN of the areh will re-act upon the lower part ly its tendeney to turn upon the point A. 9. The horizontal forees of the upper part of the arch shown by KL acting from L , owards K , and those of the lower part shown by IK opposite in direction to the former, hat is, from I to K, being direetly opposed, would counterpoise each other if they were quial, and the areh would have no thrust; but as they are always mequal, it is the difcrence of the forces whieh oceasions the thrust, and which aets in the direction of the trongest power.
10. If we imagine the width BO of a semi-arch constantly to diminish, its height enaining the same, the sum of the horioontal forces will diminish in the same ratio, so that then the points B and O are common, the horizontal foree being amnihilated, nothing emains but the vertieal force, which would aet only on the pier, and tend to its stability, hrust vanishing, because, instead of an areh, it would, in faet, be nothing more than a conmined pier.
11. If, on the contrary, the height OD diminishes, the width BO remaining the same, te curve B and D would, at last, vanish into the right line BO, and the arch would ecome a straglit one. In this case, the vertical forces which give stability to the pier eing destroyed, all that remains for sustaining the arch are the horizontal forces which will et with the whole weight of the arch; whenee this species of arches must be such as xert most thrust, and circular arches hold a middle place between those which have no rrust, and flat arches, whose thrust is infinite, if the stones whereof they are formed could ide freely on one another, and their joints were perpendicular to their lower surfaces, as in ther arehes.
12. The ineonveniences which result from making the joints of flat arehes concentrie ave been before noticed. If the stones conld slide freely on one another, as they only aet a a false direction, their forees could never either balance or destroy one another.
13. A vast number of experinents made by Rondelet, upon fifty-four models of arches of iferent forms and extradosses, divided into an equal and unepual number of vonssoirs, mowed that the voussoirs aeted rather as levers than as wedges, or as bodies tending to ide upon one another.
14. As long as the piers are too weak to resist the thrnst of the voussoirs, many of then hite as one mass, tending to overturn them on a point opposite to the parts where the joints en.
15. Arehes whose voussoirs are of even momber exert more thrust than those which are unequal number, that is, which have a keystone.
15. In those divided into uneven numbers and of mequal size, the larger the keystone e less is their thrist, so that the case of the greatest thrust is when a joint is made at the rtex, as in the case of arches whose voussoirs are divided into erpuil numbers.
17. A semieireular arch divided into four equal parts has more thrust thum one divided to nine equal voussoirs.
18. Areles ineluding more than a semieircle have less thrust than those of a similar an, the intralosses and extrulosses being of similar forms.
19. 'Thrust does not inerease as the thackness of an arch increases ; so that, ceteris purilus. arch of tlomble the thichness has not double the thrust.
20. A semicireular areh whose extrados is equally distant throughout from, or, in other words, concentric with, the intrados, when divided into four equal parts, will only stand when its depth is less than the eighteenth part of its diameter, even supposing the abutments immoveable.
21. Whenever, in an areh of voussoirs of equal depth, a right line can be drawn from its outer fulcrum to the centre of the extrados of the keystone (fig. 572.), fracture does not occur in the middle of the haunches if the piers are of the same thickness as the lower part of the arch.
22. Arches whose thickness or depth diminishes as they rise to the vertex have less thrust than those whose thickness is equal throughont.
23. Semicircular and segmental arches whose extrados is an horizontal line have less thrust than others.
2t. As long as the piers in the models were too weak to resist the thrust, it was possible to keep them in their places by a weight equal to double the difference between the thrust and resistance of one pier, acting by a string suspended passing through the joints in the middle of the haunches, or by a weight equal to that difference placed above each middle joint of the arches, as in fig. 572.

From these experiments and many others, a formula has been deduced to determine the thickness of piers of cylindrical arches of all species whose vonssoirs are of equal depth, whatever their forms;

F2g. 572. and to this we shall now introduce the reader.

Method.

1391. Having described the mean circumference G . T (figs. 573,574.), fiom the points G and T draw the tangents to the eurve meeting in the point F. From this point draw the secan. FO cutting it in the point K . This point is the place of the greatest effort, and of the consequent failure, if the thickness of the piers is too weak to resist the thrust.
1392. Through the point K , between the parallels TF and GO, draw the horizontal line IKL, which will represent the sum of the horizontal forces as will the vertical TF express the vertical forees; the mean circumference GK'T will express the eompound forces.
1393. The arehes having an equal thickness throughout, the part IK of the horizontal line multiplied by the thiekness of the arch will express the horizontal effect of the lower part of either arch, and KL multiplied by the same thickness will express that of the upper part. These two forces
 aeting in opposite direetions will partly destroy each other; thus transferring 1 K from K to m, the difference $m \mathrm{~L}$ multiplied by the thickne:s of the vault will be the expression of the thrust. This foree acting at the point K in the horizontal direction KH, the arm of the lever is determined by the perpendicular P'H raised from the fulcrum P of the lever to the direction of the thrust, so that its effort will be expressed by $m \mathrm{~L} \times \mathrm{AB} \times \mathrm{PH}$.

This will be resisted -

1. By its weight represented by the surfaee EP $\times P R$ multiplied by the arm of the lever PS, determined by a vertical let fall from the eentre of gravity Q , which gives for the resistanee of the pier the expression $\mathrm{EP} \times \mathrm{PR} \times \mathrm{PS}$.
2. By the sum of the vertieal efforts of the upper part of each areh, represented by MK $\times A B$ acting at the point K, the arm of their lever in respect of the fulcrum ${ }^{\prime}$ ' of the pier being $K 11$.
3. By the sum of the vertical efforts of the lower part represented by IT multiplied by AB acting on the point T has for the arm of its lever TE. Henee, if equilibrimen exist,

But as in this equation neither PR ($=\mathrm{BE}$) nor PS nor KH not TE is known, we must resurt to an algebraic equation for greater eonvenience, in whieh

$$
\begin{aligned}
& \text { The effect of the thrust in the expression } m \mathrm{~L} \times \mathrm{AB}=p \\
& \text { The height of the pier PE } \\
& \mathbf{E H}=\mathrm{I}^{\prime} \mathrm{I}=\mathrm{KL} \mathrm{~L}=\mathrm{KV} \quad-\quad-\quad-\quad-\quad=\begin{array}{l}
\text { V }
\end{array} \\
& \text { 11 - - - - } \quad \text { - } \quad=\begin{array}{l}
\text { - } d ~
\end{array} \\
& E B=1 R \quad \text { - } \quad \text { - } \quad-\quad-\quad=\boldsymbol{c}
\end{aligned}
$$

Thus the first equation becomes $p t t+p d=\frac{a x^{2}}{2}+m(c \times x)+n(x-e)$,
Or $p \mu \times p d=\frac{a x^{2}}{2}+m x+m c+n x-n e$.
Transf.ring the unknown quantities to the second side of the equation, we shall have $\frac{a x^{2}}{2}+m x+n x+=p u+p d+n e-m c$.
Multiply all the terms by 2 , and divide by a, in order to get rid of a^{2}, and we have $x^{2}+\frac{2(m+n) x}{a}=9 p+\frac{(p d+2 n c-2 m c}{a}$;
Making $m+n=b$, and adding to cach member $\frac{b^{2}}{a^{2}}$ for the purpose of extracting -the root of the first member,
We have $x^{2}+\frac{2 h x}{a}+\frac{b^{2}}{a^{2}}=2 p+\frac{2 p d+2 n e-2 m c}{a}+\frac{b^{2}}{a^{2}}$.
Extracting the root, $x+\frac{b}{a}=\sqrt{2 p+\frac{2 p d+2 n e-2 m c}{a}+\frac{1 p^{2}}{a^{2}}}$;
Acd lastly, $x=\sqrt{2 p+\frac{2 n d+2 n e-2 m c}{a}+\frac{b^{2}}{n^{2}}-\frac{b}{a}}$.
1394. 'This last equation is a formula for finding the thickness of all sorts of arches whose voussoirs are of equal depth, which we will now apply to fig. 573 . The model was 36 inches and 3 lines in span. The arch consisted of two eoncentric circles, and it was divided into four equal parts, a vertical joint being in the middle, the two others being inclined at angles of 45 degrecs. The piers whereon it was placed were 40 inches and 4 lines bigh, and on a very cact measurement the values were as follow: -

Substituting these values in the formula $x=\sqrt{2 l^{\prime}+\frac{2 p d+2 m e}{a}-2 m c}+\frac{b^{2}}{a^{2}}-\frac{b}{a}$, we lave $x=\sqrt{48 \cdot 762+\frac{6621+19424-73.282}{-2 \cdot 128}-1 \cdot 459 ; ~}$
With gives $x=5 \cdot 8$, or 5 inches $9 \frac{1}{2}$ lines for the thickness of the piers to resist the thrust of lee arele, supposing it to be perfectly executed. But, from the imperfection of the execution af the model, it was found that the piers rerguined for resisting the thrust a thickness of incles and 3 lines.
1395. When the piers of the model were made $7!$ inches thick the areh on its central oint was found capahle of supparting a weight of three pounds, being equal to an adlition of 8 superficial inclaes beyond that of the upper parts of the arche which are the ause of the thrust, and this makes the value of $2 p$ in the formula 56.762 instead of $48 \cdot 762$,
 which we should obtain $x=7 \cdot 366$ inches, or 7 inches 31 lines, exhihiting a singular agreement between theory and practice. Rondelet gives another method of insestigating the preceling problem, of which we do not think it necessary to say more than that it grees with that just exhibited so singularly that the result is the same. It is dependent pin the places of the eentres of gravity, and therctore not so readily applicable in practice as hat which has been just given.

Second Expleriment.

1396. Fig. 567., in a preceding page, is the model of an areln in freestone, which has heen efore considereal. It is divided into nine equal voussoirs, whose depth to the extrodon is it lanes and whose interior diancter is 9 inches.
1397. Having datwn the lines heretofore deseribed, we shail find $m \mathrm{~L} \times \mathrm{AB}$ expresed in the formula by

$p=26.7 \times 21$, whioh gives	-	-	50070
And for $2 p$	-	-	1151.40
$\mathrm{EH}=\mathrm{JI}=\mathrm{KL}=\mathrm{KV}$, expressed by d, will he	-	45.60	
Henee $2 p l$	-	-	5113.584

2ne, which is twice the vertical effort of the lower part of the arch, multiplied by $\frac{1}{2} \mathrm{Al}$, will be $456 \times 21 \times 21$, which gives

$20109 \cdot 60$

ame, which indicated twiee the vertieal effort of the upper part, multiplied by $i \mathrm{~K}$, will be $18.9 \times 21 \times 2 \times 84$, which gives
$6667 \cdot 92$
a, which represents the height of the piers, being 195 , and $b=m+n=64 \cdot 5 \times 21=1354 \cdot 5$,

$$
\frac{b}{a} \text { will beeome } \frac{13545}{195} \quad-\quad-\quad 6 \cdot y 4
$$

And all these values being substituted in the formula, will give

$$
x=\sqrt{1121 \cdot 40+\frac{5113584+201096-666792}{195}+48 \cdot 163}-694=28 \cdot 62 \text { lines, }
$$

instead of $28 \frac{1}{9}$, before found.

Geometrical Application of the foregoing.

1398. Let the mean eurve TKG of the arch (whatever its form) be traeed as in fogs. 573,574 ., the secant FO perpendicularly to the eurve of the areh, and through the point K , where the secant cuts the mean curve, haviag drawn the horizontal line IKL, and raised from the point 13 a vertical line meeting the horizontal IKL in the point i, make $K m$ equal to $i K$, and set the part $m L$ from B to h. and then the double tlackness of the areh from B to u. Let len be divided into two equal parts at the point d, from which as a centre with a radus equal to half $h \prime \prime$, describe the semi-cireumferenee of a circle which will eut in E the horizontal line BA prolonged. The part BE will indieate the thickiness to be given to the piers of the arches to enable them to resist the thrust.
1399. The truth of the method above given depends upon the graphio solution of tit following problem: To find the side $13 E$ of a square whieh shall be equal to a given surfaee $m \mathrm{~L} \times 2 e$; an expression which is equivalent to $2 p$, and we have already seen that $x=\imath^{\prime} 2 p$ was a limit near enough; henee we may eonelude that the thiekness BE obtained by the geometrieal method will be sufficientiy near in all cases.

Experiments on surmounted Arches.

1400. The interior eurve of fig. 574 . is that of a semi-ellipsis 81 lines high; it is divided into four parts by an upright joint in the erown and two others towards the middle of the hannches determined by the secant FO , perpendicular to the interior part of the curve. Llaving traed the mean circminference GKT, the horizontal IKL, and the vertical Bi , we shall tind

Substittiting these values in the formula, $x=\sqrt{2 p+\frac{2 p d-2 m c}{a}+\frac{b^{2}}{a^{2}}}-\frac{b}{a}$,
We have the ecuation $x=\sqrt{351+\frac{23341 \cdot 5-5899.5}{120}+41 \cdot 11}-6 \cdot 41=16.77$
lines. or a little more than 163 lines. The model of this arch would not however stand on piers less than 17 lines thiek.

In taking the root of double the thrust the result is $18 \frac{3}{7}$ lines, as it is also by the greonetrical method.

Application to the Pointed Arch.

1401. The model which fig. 575. represents was of the same height and width as the last, and the voussoirs were all of equal thickness. Having laid down all the lines on the figure as before, we shall tind $i \mathrm{~K}$ of the formula to be

Fin. $3 ; 5$.

The height of the pier, represented by a, being 120 , we have $\frac{2 p d-2 m c}{a}=\frac{15876-8220}{120}=6 \quad 8$; b, or $\mathrm{FT} \times \mathrm{AB}$, will be $86 \times 9=774$; whenee $\frac{b}{a}=\frac{774}{120}=6 \cdot 45$, and $\frac{b^{2}}{a^{2}}=41 \cdot 60$. Substituting these values in the formula

$$
x=\sqrt{252+63 \cdot 8}+41 \cdot 6-6.45=12 \cdot 46 \text { lines for the thickness of the pier. }
$$

In taking the square root of double the thrust the thickness eomes out $1.5 \cdot 88$ lines, as it does by the geometrieal method. lixperiments showed that the least thickness of piers upon which the model would stand was 14 lines.

Application to a surmounted Catenarean Arch.

1402. The lines are all as in the preceding examples ($f i y .576$.). The whole arch aets on the pier in the direction lFI, which is resolved fisto the two forses $\mathrm{T} f$ and $\mathrm{T} m$, and the formula, as before, is

$$
x=\sqrt{2 p+\frac{b^{2}}{a^{2}}}-\frac{b}{a} ;
$$

hus having found $\mathrm{B} m=22 \frac{1}{3}$, we have the value of $p=221 \times 9=201$; and $2 y=402$.

140:3. 'l'his model was of the same dimensions as the preceding : , which represents 'If $\times \mathrm{AB}$, will be $769 \cdot 5$; $\frac{0^{2}}{a^{2}}$ will be $6 \cdot 41$, and $b_{3}=\frac{8965}{1: 50}=41 \cdot 11 \quad$ These values substituted in the formula give

$$
x=\sqrt{402+41 \cdot 11}-6 \cdot 41=14 \cdot 64 \text { lines. }
$$

1404. Experiment determined that the pier ought not to be less han 16 lines, and the geometrical method made it $20^{\circ} 0.5$.

The foilowing table shows the experiments on six diflerent models.

V1か. 576

Form oi Arch.	Thickuess of the liers.		
	By the formula.	By experminent.	Gcometrically.
The pointed	$\begin{aligned} & \text { Lines. } \\ & 12 \cdot 46 \end{aligned}$	$\begin{aligned} & \text { LIncs. } \\ & 14.00 \end{aligned}$	$\begin{aligned} & \text { Linps. } \\ & 15.88 \end{aligned}$
The eatenary	14.64	15.00	20.05
The eycloid	14.66	15.00	17.24
The paraholie	$15 \cdot 85$	16.50	21-50
The elliptic	16.77	17.00	$18 \cdot 7.5$
The eassinoir	19.62	21.00	$20 \cdot 79$

This table shows that, in practiee, for surmounted arches, the limit $x=\sqrt{2 p}$, or the thickucss obtained for the construction by graphical means is more than sufficient, since it gives results greater than those that the experiments require, excepting only in the cassinoid; but even in the case of that curve the graphical construction comes nearer to experiment than the result of the first formula.
1405. It is moreover to be observed, that the pointed is the most advantageous form for surmounted arches eomposed of ares of circles. We have had occasion to speak, in our Fïrst Book, of the bolducss and elvgance exhibited in this species of arches by the arehitects of the twelfth and thirteenth centuries; we shall merely add in this place that where roofs are required to be fire-proof, there is no ferm so advantageously capable of adoption as the pointed arch, nor one in which solidity and economy are so much united.
1406. Next to the pointed areh for such purpose comes the catenary (the graphical method of deseribing which will be found under its head, in the Glossary at the end of the work), and this is more especially useful when we consider that the voussoirs may all be of equal thiekness.

Application of the Method to surbased Arches, or those whose Rise is less than the Helf Span.

1407. For the purpose of arriving at just conclusions relative to surbased arches, thrce models were made of the same thieknesses and diameters, with a rise of 35 lines, and in form elliptieal, cassinoidal, and cyeloidal. We however do not think it necessary, from the similarity of applieation of the rules, to give more than one example, whiel is that of a semi-ellipse (fig. 577.), in which, as before, the formula is

$$
x=\sqrt{2 p+\frac{2 p d-2 m e}{a}+\frac{b^{2}}{a^{2}}}-\frac{b}{a} .
$$

The lines deseribed in the foregoing examples being drawn, we have

$$
\begin{gathered}
\mathrm{KL}=45 \cdot 5 \\
i \mathrm{~K}=8 \cdot 5 .
\end{gathered}
$$

IT, represented by d in the formula, $\quad-=24.84$ $m \mathrm{~L} \times \mathrm{AB}$ representing the thrust (37×9) gives the value of p
$2 p$ therefore
$335 \cdot 00$

Fig. 5i7. $666 \cdot 00$ Tl, represented by d, being $24 \cdot 84$, we have opd m, which is $K M \times A B$, will be 14.66×9, which gives c, representing $i \mathrm{~K}$, being $8 \cdot 5$, 2mc l, which expresses the sum of the vertical efforts $\bar{m}+n(39.5 \times 9)$ a, being always $120, \frac{b}{4}=\frac{3555}{120}$ is $\quad-\quad$ - $\quad-\quad 2.96$ Lastly, $\frac{b^{2}}{a^{2}}-\quad-\quad-=\quad 8.76$
Substituting these values in the formula, we have

$$
x=\sqrt{666+\frac{16543 \cdot 4-224 \cdot 9 t}{120}+8 \cdot 76}-2 \cdot 96=25 \cdot 22 \text { lines, or a little less than } 25 \frac{1}{4} \text { lines. }
$$

1408. In the model it was found that a thickness of 26 lines was neeessary for the pier, and the lower voussoirs were connected with it by a eementing medium. Without which precaution the thickness of a pier required was little more than one tenth of the opening. Taking the square root of double the thrust, that is, of 666 , we have 95.81 , about the same dimension that the graphieal construetion gives. The experiments, as well as the application of the rules, require the following remarks for the use of the praetieal arehitect.
1409. I. The eassinuid, of the three eurves just mentioned, is that whieh ineludes the greatest area, but it eauses the greatest thrust. When the distance between the intrados and the extrados is equal in all parts, it will only stand, supposing the piers imnoveable, as long as its thickness is less than one ninth part of the opening
1410. 1I. The eycloid, whieh includes the smallest area, exerts the least thrust, but it ean be usefully employed only when the proportion of the width to the height is as 22 to 7 in surbased arehes, and in surmounted arehes as 14 to 11 . The smallest thickness with which these arehes can be executed, so as to be capable of standing of themselves, is a little more than one eighteenth of the opening, as in the case of semicircular arehcs.
1411. III. The ellipsis, whose eurvature is a mean between the first and seeond, serves equally well for all conditions of height, though it exerts more thrust than the last-mentioned and less than the cassinoid.
1412. It is here neeessary to remark, that too thin an arch, whose voussoirs are equal in depth, may fall, even supposing the abutnents inmoveable, and especially when surbased;
ecause, when once the parts are displaced, the force of the superior parts may lift up the wer parts without disturbing the abutments.

Raking Arches.

1413. Let ACA^{\prime} (fig. 578.) be the model of a raking arch of the same diameter and ickness as the preceding example, the voussoirs of equal lickness, and the piers of different heights, the lowest being) inches or 120 lines in height, and the other $14 \frac{1}{2}$ inches or 74 lines. The tangent at the summit is supposed parallel the raking lines that connect the springing.
1414. This arch being composed of two different ones, e inean circumference on each must be traced, and each $1 s$ its separate set of lines, as in the preceding examples; e horizontal line KL of the smaller arch is produced to cet the mean circumference of the other in S, and the inrior line of its pier in g.
1415. The part KLS represents the horizontal force of e part of the arch KGS, common to the two semi-arches; that if a joint be supposed at S, the part LK represents e effort acting against the lower part of the smaller arch, Id LS that against the lower part of the larger arch. hese parts resist the respective efforts as follows: the tall arch with the force represented by $i \mathrm{~K}$, and the eater one with the force represented by $g \mathrm{~S}$. But as $g \mathrm{~S}$

Fig. 578. greater than LS, transfer LS from g to f to obtain the difference f S, which will show w much LS must be increased to resist the effort of the larger lall areh; that is, the ort of the smaller one should be equal to $\mathrm{L} f$; but as this last requires for sustaining elf that the larger one should act against it with an effort cqual to KL , this will be c difference of the opposite effort, which causes the thrust against the lower part of e smaller arch and the pier from whence it springs. Hence, transferring $f \mathrm{~L}$ from L η, taking the half of iq and transferring it from L to h, the part $h \mathrm{~K}$ multiplied by the ckness $A B$ will be the expression for the thrust represented by p in the formula

$$
x=\sqrt{2 p+\frac{2 p d-a m c}{a}+a^{2}} \frac{b^{2}}{a} .
$$

uving found $h \mathrm{~K}=30 \frac{1}{2}$ and $\mathrm{AB}=9$, we have for the value of $p 30 \frac{1}{2} \times 9=274 \frac{1}{2}$, and for it of $2 p-549, d$ which represents I'I, being $29 \frac{1}{2}, 2 p d=16195 \frac{1}{2}$. In $2 m e$; m, which repre 1ts. $\mathrm{MK} \times \mathrm{Al}$, will be $12 \frac{1}{3} \times 9=111$, and $2 m=222$.
c, which represents $i \mathrm{~K}$, being 8 , we have $2 m c=222 \times 8=1776$.
The height of the pier represented by a being 174 , we have

$$
2 p d-\frac{2 m c}{n}=\frac{16195 \frac{3}{2}-1716}{1.4}
$$

$$
-=82 \cdot 81
$$

The vertical effort represented by ℓ, or 'I' 1 ' $\times \mathrm{AB}$, will be $41 \frac{1}{3} \times 9=375$, and ${ }_{a}^{b}=\frac{375}{}{ }_{17}$ becomes

-	-	-	$=2 \cdot 15$
and ${ }_{a \overline{2}}^{1,2}$	-	-	-

Irstituting these values in the formula, we have
$y=\sqrt{549+82 \cdot 81}+4 \cdot 64-2 \cdot 16=23 \cdot 08$ for the thickness of the greater pier from which the smaller semi-arch springs.
l'or the half of the greater arch, having produced the horizontal line $\mathbf{I K} \mathrm{K}^{\prime} \mathrm{h}^{\prime}$, make $\mathrm{K}^{\prime} r$ equal to $V L^{\prime}$, and bisect $r \mathrm{~L}^{\prime}$ in t; the line $\mathrm{K}^{\prime} t$ represents the eflort of the smaller against the greater arch, which resists it with a foree shown by $i^{\prime} \mathrm{K}^{\prime}$; thus making $K^{\prime} \eta^{\prime}$ equal to $i^{\prime} K$, the effort of the thrust will be indicated by i' $t \times A 13$, whose value p in the formula will be

wituting these valurs in the formala, we hase

Taking the square root of double the thrust, we shoukl have for the larger pier 23.44 lines, and for the smaller one 19 lines. In the geometrical operation, for the larger pier make Bu equal to $h \mathrm{~K}$ and $\mathrm{B} n$ equal to 2 AB ; then upon $u n$ as a diameter describe a semicircle cutting the horizontal line BA produced in E. 1SE will be the thickness of the pier, and will be found to be $23 \frac{1}{2}$ lines. For the smaller pier make $\mathrm{B}^{\prime} \boldsymbol{u}^{\prime}$ equal to $q^{\prime} t$ and $\mathrm{B}^{\prime} n^{\prime}$ equal to $2 A^{\prime} B$. Then the semicircumference described upon $u n$ as a diameter will give 19 lines for the thickness.
1416. By the experiments on the model 22 lines was found to be the thickness necessary for the larger pier, and 18 lines for the smaller one.

Arch with a level Extrados.

1417. The model of arch fiy. 579. is of the same opening as the last, but with a level extrados, serving as the floor of an upper story. 'The thickness of the keystone is 9 lines. To find the place of fracture or of the greatest effort; having raised from the point B the vertical BF till it meets the line of the extrados, draw the secant FO cutting the interior circumference at the point K , and through this point draw the horizontal IKL and the vertical HKM

The part CDKF will be that which causes the thrust, and its effort is represented by

Fig. 579.

The area of the upper voussoir FKCD $=667 \cdot 44$; but as the load of the haunches is borne by the inferior voussoir, we must subtract the triangle $\mathrm{FKH}=\frac{18 \cdot 26 \times 29}{2}=207 \cdot 46$. The remainder 459.98 multiplied by KL and divided by the are K D, that is, $\frac{459 \cdot 98 \times 35.14}{38.28}=$ $422 \cdot 24$, represents the effort of the upper part.
1418. That of the lower part, represented by $\frac{\mathrm{FBKH} \times \mathrm{IK}}{\mathrm{KB}}$, is $\frac{65107 \times 18 \cdot 86}{46.57}$, which becomes $263 \cdot 67$. The difference of the two efforts $=158.57$ will express the thrust or p of the formula, and we have $2 p=317 \cdot 14$.
1419. The piers being supposed to be continued up to the line EC of the extrados will be greater than the arm of the lever of the thrust which acts at the point K . Thus the expression of the arm of the lever, instead of being $a+d$, as in the preceding examples, will be $a-d$, and the sign of $\frac{2 p d}{c}$ must be changed. In numbers, $\frac{317 \cdot 14 \times 22}{183}=38 \cdot 12$; therefore, in the formula, $+\frac{2 p d}{a}$ becomes $-38 \cdot 12$.
1420. In the preceding examples, $2 m \mathrm{~m}$, which represented double the vertical effort of the superior voussoir multiplied by the arm of its lever, becomes nothing, because it is compriserd in the addition made to the lower voussoir; so that the formula now is

$$
x=\sqrt{2 p-\frac{q^{2}}{a} d}+\frac{b^{2}}{a^{2}}-\frac{b}{a} .
$$

b, then, which always expresses the vertical effort of the half arch, is therefore

$$
\underset{-111 \cdot 05 \times 63}{84.85}=824 \cdot 94 ; \text { and for } \frac{b}{a} \text { we have } \frac{824.94}{183^{-}}=4 \cdot 5, \text { and } \frac{b^{2}}{a^{2}}=20 \cdot 25
$$

Substituting these values in the last formula, we shall have

$$
x=\sqrt{319 \cdot 14-38 \cdot 12}+20 \cdot 25-4 \cdot 5=12 \cdot 88 \text { lines. }
$$

Experiment gives 14 lincs as the least thickness that can be relied on.
To find the thickness by the geometrical method, make $\mathrm{K} n$ equal to IK and B h equal to $m \mathrm{~L}, \mathrm{~B} n$ to double CD , and upon $n h$ as a diameter describe the semicireumference cutting the horizontal line OB produced in $\mathrm{A}:$ then $\mathrm{BA}=17 \frac{1}{4}$ lines is the thickness sought.
1421. Rondelet proves the preceding results by using the centres of gravity, and makes the result of the operation $12 \cdot 74$ instcad of $12 \cdot 80$, as first found. But the diffienlty of finding the centres of gravity of the different parts is troublesome; and with such a concurrence of results we do not think it necessary to enter into the detail of the operation.

A different Application of the preceding Example.

1422. The model (fig. 580.) is an areh similar to that of the preseding example, having a story above it formed by two walls, whose height is 100 , and the whole covered by a timber roof. The object of the investigation is to ascertain what ehange may be made in the thickness of the piers which are strengthened in their resistance by the additional weight upon them.
1423. The simplest method of proceeding is to consider the upper walls as prolongations of the piers.
1424. In the model the walls were made of plaster, and their weight was thus reduced to ${ }_{3}^{3}$ of what they would have been if of the stone used for the models hitherto described. The roof weighed 12 ounces. We shall therefore have that 100 , which in stone would i.ave represented the weight of the walls, from the difference in weight of the plaster, reduced to 75 . In respect of the roof, which weiglied 12 ounces, having found by experiment that it was equal to an arca of 576 lines of the stone, both being reduced to ergual thicknesses, we have 12 ounces, equal to an area of 1.3 .82 whose half (if 91 must be added to that of the vertical efforts represented by b in ${ }_{a}^{b}$ and $\frac{b^{2}}{a^{2}}$. Changing these terms into ${ }_{a}^{h}$ and $\frac{i_{2}^{2}}{a^{2}}$, the formula becomes

$$
x=\sqrt{2 p-\frac{2 p}{a}+\frac{h^{2}}{a^{2}}}-\frac{n}{a}
$$

'lhe beight of the piers or a in the formula $=183+75=25$. r does not ehange its value, thercfore $2 p$ (as in the preceding example) $=26.5 \cdot 86$.

Fig. 580 d, the difference between the height of the pier and the arm of the lever, will $=35$.

$$
\text { Hence, } \frac{9 p d}{a}=\frac{5 \pi 5 \cdot 65 \times 75}{258}=77 \cdot 28 .
$$

h, beeomes $750 \cdot 69+691=1441 \cdot 69$.

$$
\begin{aligned}
& \text {. } \text { ginin, }_{111_{13}^{2}}^{1^{2}}=31.22 \text {. }
\end{aligned}
$$

Substinting thene valnes in the formula, we shall have

$$
x=\sqrt{\prime} 265 \cdot 86-77 \cdot 28+31 \cdot 22-5 \cdot 58=9 \cdot 15
$$

In the model a thickness of 11 lines was found sufficient to resist the thrust, and taking the root of double the thrust the result is 13 lines.
1425. By the geometrical method, given in the last, taking from the result $17 \frac{1}{4}$ lines, here found, the value of ${ }^{\prime \prime}$. that is, $5 \cdot 58$, the remainder 11_{3}^{2} ines is the thickness sought.
1426. It may be here olserved, that in carrying up the walls above, if they are set back from the vertical [; n hf, the model reguired their thickness to be only 6 ines, beeause this species of false bearing, if indeed it an be so called, increases the resistanee of the piers.
"This was a practire constantly resorted to in Gothic arehitecture, as well as that of springing pointed arches :om corleck, for the purpose of avoiding extra thickness n the watils or piers.

> Ano!!er I"plicution of the Primriples to " differently constructed Arell.
1127. The model (fig. 581.) represents an ureh of 11 masuirs whereof 10 are with crossctles or elbows, which ive thein a bearing on the adjoning horizontal coursis ; is cleventh being the k eystonce. The opening is 9 inches or 108 linem, as in the preserling examples.
1198. H:aving drawn the lines 1:1゙, Jo (, the kecant. FO, wh the horizontal line $1 \mathrm{KI}_{\mathrm{n}}$ inderombent of tha live

11):

$$
\begin{aligned}
\mathrm{KL} & =30 \cdot 73 \\
\mathrm{IK} & =93 \cdot 67 \\
\mathrm{OC}=\mathrm{BF} & -78 \cdot 00 \\
\text { The are } \mathrm{KD} & =32 \cdot 70 \\
\text { The are } \mathrm{KB} & =52 \cdot 15 \\
\mathrm{KG} & =33 \cdot 59 \\
a \text {, the height of the pier, } & =198 \cdot 00 .
\end{aligned}
$$

The area KFCL of the upper part of the arch will be $1223 \cdot 10$, from which subtracting that of the triangle FKG , which is $590 \cdot 82$, the remainder 832.28 being multiplied by $30 \cdot 73$ and divided by $32 \cdot 7$ makes the effort of this part $782 \cdot 44$.
1429. The area of the lower part is $697 \cdot 95$, to which adding the triangle $\mathrm{FKG}=390 \cdot 82$, we have 1039.77, which multiplied by 23.27 and divided by $52 \cdot 15$, gives $485 \cdot 82$ for its effort. The expression of the thrust, represented by p in the formula,

$$
\begin{aligned}
& x=\sqrt{2 p-\frac{2 p d}{a}+\frac{b^{2}}{a^{2}}}-{ }_{a}^{b} \text {, being equal to the difference of thesc two efforts, } \\
& \text { will be } 296 \cdot 62 \text {, and twice } p \\
& \text { - }=593 \cdot 24 \\
& u \text {, representing KG, being - } \quad=33.59 \\
& \cdots 2 \text { have } 2 p d=19926 \cdot 93 \text {, and } \begin{array}{c}
2 p d \\
a
\end{array} \quad=100 \cdot 64
\end{aligned}
$$

b, representing the sum of the efforts of the semi arch, will be $\frac{1921 \times 78}{85}=1762.03$ $\frac{b}{a}={ }_{19 \overline{8}}^{1762 \cdot 8}=8 \cdot 9$ and $\frac{b^{2}}{a^{2}}$

$$
=79 \cdot 21
$$

Substituting these values in the formula, we have the equation

$$
x=\sqrt{593 \cdot 24-100 \cdot 64}+79 \cdot 21-8 \cdot 9=15 \cdot 01
$$

By taking double the square root of the thrust the result is 23.91 , a thickness evidently too great, because the sum of the vertical efforts, which are therein neglected, is considerable.
1430. The geometrical method gives 19 lines. The least thickness of the piers from actual experiment was 16 lines.
1431. Rondelet gives a proof of the method by means of the centres of gravity, as in some of the preceding examples, from which he obtains a result of only 13.26 for the thick. uess of the piers.

Consideration of an Arch whose Voussoirs increase towards the Springing.

1432. The model (fig. 582.) has an extrados of segmental form not concentric with its intrados, so that its thickness increases from the crown to the springing. The opening is the same as before, namely, 9 inches or 108 lines. The thickness at the vertex is 4 lines, towards the middle of the haunches $7 \frac{1}{2}$ lines, and at the springing $14 \frac{1}{2}$ lines. The centre of the line of the extrados is one sixth part of the chord AO below the centre of the intrados; so that

$$
\begin{array}{r}
\text { The radius } \begin{array}{r}
\mathrm{DN}=68 \cdot 05 \\
\mathrm{KI}=38 \cdot 18 \\
\mathrm{IK}=15 \cdot 82 \\
\text { The are } \mathrm{BK}=\mathrm{KC}=42 \cdot 43
\end{array}
\end{array}
$$

(See 1390, obs. 22, and 1441).
1433. The area KHDC of the upper part of the arch is 258.75 , that of the lower part BAHK 486.5 ; hence the effort of the upper part is represented by the expression $\frac{258 \cdot 75 \times 38 \cdot 18}{42.43}=232 \cdot 47$.
1434. The half segment $A B e$ being supposed to be united to the fier; BeHK, whose area is 178 , is the only part that can balance the upper effort; its expression will be $\frac{178 \times 15 \cdot 82}{42^{\circ} \cdot 3}=66.24$. The difference

Fig. 582. of the two cfforts 166.23 will be the expression of the thrust represented by p in the formula

$$
x=\sqrt{2 p+\frac{2 p d-2 m c}{a}+\frac{b^{2}}{a^{2}}-\frac{b}{a}}
$$

$$
\text { Thus } 2 p-
$$

$\mathrm{I} 3=\mathrm{KL}$, indicated by $d, \quad-\quad-\quad=38.18$ Which makes the value of 2 pd - $\quad-\quad=12693.92$
The vertical effort of the upper part indicated by $m={ }_{42.43}^{258.75 \times 1582}=96.30$
and for $2_{1} \mathrm{~m}-=192 \cdot 60$
The value of c being $15 \cdot 82$, we have 2 me $\quad-\quad=3040.54$

The height of the piers being still 120, we have

$$
\frac{2 p d-2 m e}{a}=\frac{1269392-30465}{120} \quad-\quad=80 \cdot 39
$$

b, which indieates the vertical effort of the half arch repre-

These values being substituted in the formula, will give

$$
x=\sqrt{332 \cdot 46+80 \cdot 39+15 \cdot 56}-3 \cdot 95=16 \cdot 74 \text { lines. }
$$

1435. The smallest thickness of pier that would support the arch in the model was $17 \frac{1}{2}$ lines.
1436. With the geometrical method, instead of the double of CD, make $13 h$ double the mean thiekness HK, and Bu equal to $m \mathrm{~L}$, and on $n h$ as a diameter deseribe the semicircumference eutting O 13 produced in E ; then $\mathrm{EB}=18 \frac{1}{3}$ lines will be the thickness sought.
1437. If the pier is continued up to the point e where the thiekness of the areh is disengaged from the pier, the height of the pier represented in the formula by a will be $151 \cdot 5$ instead of 120 , and the difference b, instead of being $\frac{74526 \times 54}{85}$, will be only $\frac{436.75 \times 54}{85}$ $=277 \cdot 46$.
1438. d, expressed by $I e$, will be $6 \cdot 5$, all the other values remaining the same as in the preeeding artiele, the equation is

$$
x=\sqrt{332 \cdot 46-5 \cdot 71+4}-2=16 \cdot 21
$$

1439. Using the method by means of the eentres of gravity, Rondelet found the result for the thickness of the piers to be 15.84 . So that there is no great variation in the different results.
1440. In the preceding examples arehes have been eonsidered rather as areades standing on piers than as vaults supported by walls of a eertain length. We are now about to consider them in this last respeet, and as serving to eover the space enclosed by the walls.

In respeet of eylindrical arehes supported by parallel walls, it is manifest that the resistanee they present has no relation to their length; for if we suppose the length of the vanlt divided into an infinite number of pieces, as C, D, E, \&e. (fig. 584 . No. 2.), we shatl find for each of these picces the same thiekness of pier, so that all the piers together would form a wall of the same thickness. For this reason the surfaces only of the arches and piers have been hitherto eonsidered, that is, as profiles or sections of an arch of any given length. Consequently it may be said that the thickness of wall found for the protile in the section of an arch would serve for the areln continned in length infinitely, supposing sueh walls isslated and not terminated or rather tilled by other walls at their ends. When cylindrieal walls are terminated by walls at their extremities, after the manner of gable curls, it is not difficult to inagine that the less distant these waths are the more they add stalitity to those of the arch. In this ease may be applied a rule which we shall herealter mention more at length under the following section on Walls.
1441. If in any of the examples (fig. 582. for instanee) l'R be produced indefintely to the right, and from $I f$ on the line so produeed the length of the wall supporting the areh he set out, and if from the extremity of such line another be drawn, is 'IB produced through 13, inclefinitely towards a, and 13,0 be made equal to the thickness of the pier first found, a vertical line let fall from a will determine the thiekness sought. When arehes are connceted with these eross walls, the effeet of the thrust may be much diminished if they are not very distant. If there be any openings in the walls, double the length of them must be arded to that of the wall as well as of any that may be introiluced in the gable wall.
1442. Fïg. 583. represents the mode in which an arch fails when the piers are not of sufficient strength to resist the thrust: they open on the lower part of the summit at DW and on the upper part of the hatuches at $\lfloor 1 \mathrm{~N}$; from which we insy infer that the thrust of an arch may be destroyed by eramping the mader side of the voussoirs near the summit and the npper side of those towards the middle of the hanncher ; and this methorl is greatly preferable to chains or iron bars on the extrados, becanse these have no etlied in present.ng a failnre on the maderside. (hains at the grimeing will mot provent failure in arches whose womsoirs are of efpat dhphth but that foos smalt, intiblunch an there is un connteraction from them ngimat the bulging

Fin. 3×3
that takes place at the haunches, like a hoop loaded when its ends are fixed. The most advantageous position for a chain to oppose the effort of an arch is to let it pass through the point K where the efforts meet. PC is the tangent before failure, and O the centre; 1 l being the inner point of the pier.

OF COMPOUND VAULTING.

1443. M. Fresier, in speaking of the thrust of this sort of arehes, proposes, in order to find the thickness of the piers which will support them, to find by the ordinary manner the thickness suitable to each part of the cylindrical arch BN, BK (No. 3. fig. 584.) by which the groin is formed, making BE the thickness suitable to the arch BN, and BF that which the arch 13 K requires; the pier BEHF woald thus be able to resist the thrust of the quarter arch OKBN. According to this method we should find the bay of a groined arch 9 inches opening would not require piers more than 21 lines square and 120 lines high; but experience proves that a similar arch will scarcely stand with piers 44 lines square, the area of whose bases are four times greater than that proposed by M. Frezier.

Method fur groined Vablting.

1444. The model in this case isee the last fignre) is 9 inches in the opening, voussoirs equally thick, being 9 lines, standing upon four piers 10 inches or 120 lines high.
1445. The groin is formed by two cy-

Fig. 584.

lindrical arches of the same diameter crossing at right angles, as represented in No. 3. of the figure. The four portions of the vant being similar, the calculation for one pier will be sufficient.
1446. On the profile No. 1. of the figure describe the mean circumference TKG, draw the tangents FT and FG, and the secant FO and the horizontal line IKL. Draw the vertical Bi , and NG and KI on the plan (No. 3.) equal to KL .
1447. In the foregoing examples for arches and cylindrical vaulting there has been no necessity to consider more than the surface of the profiles, which are constantly the same throughout their length; but the species of vault of which we are now treating being composed of triangular gores whose profile changes at every point, we shall be obliged to use the cubes instead of the areas of squares, and to substitute surfaces for lines. Thus in viewing the triangular part KBO , the sum of the horizontal efforts of the upper part of this portion of the vault, represented in the profile by KL , will be represented in plan by the trapeziun KILO.
1448. The sum of those of the lower part $i \mathbf{K}$ in the profile is represented in plan by B1L. The thrust is expressed by the difference of the area of the trapezium and of the triangle multiplied by the thickness of the vault ; thus, KB and KO of the plan being 54 , the superficies of the triangle $\mathrm{EK} O$ will be $54 \times 27=1458$; the part $B K$ of the plan bcing equal to $1 L$, and $B t$ to $2 K$ of the profile $=12 \frac{9}{1}$, the area of the triangle $B I L$, indicating the sum of the horizontal efforts of the upper part, will be $129 \times 6 \frac{9}{9}=79 \frac{13}{14}$.
1449. We obtain the area of the trapezium KlLO by subtracting that of the small triangle BlL from the greater triangle BKO , that is, 7913 from 1458 ; the remainder $1378 \frac{1}{14}$ gives the horizontal effort of the upper part ; lastly, subtracting $79 \frac{13}{14}$ from $1378 \frac{1}{11}$ the remainder $129 \frac{2}{12}$ will be the expression of the thrust whose value is found by multiplying $1298 \frac{2}{11}$ by $9=11683 \frac{2}{7}$, which is the p of the formula.

$$
x=\sqrt{2 p+\frac{2 p d-2 m c}{a}+\frac{b^{2}}{a^{2}}-\frac{b}{a}}
$$

Letting a always stand for the height, and d for TI of the profile, she arm of the lever of the thrust will, as before, be $a+d$, and its algebraic expression $\mathrm{b}=p a+p d$.
1450. The pier resists this effort by its cube multip! ied by tre arm of its lever. If the lines K 13 and OB of the triangle BKO, (which represents the projection of that part of the vanlt for which we are calculating) be produced, it will be seen t^{1}. at the base of the pier to resist the thrust will be represented by the opposite triangle BIl C , which is rectangular and isosceles; therefore, letting x represent its side BF, the area of the triangle will be expressed by $\frac{x^{2}}{2}$, the
heigbt of the pier being a, its cube will be $\frac{a x^{2}}{2}$. The arm of the lever of this pier will be determined by the distance of the vertical let fall from its centre of grivity on the line $\mathrm{HF}=\frac{\pi}{3}$, which gives for the pier's resistance $\frac{a x^{3}}{6}$.
1451. This resistance will be increased by the vertical effort of each part of the vault sultiplied by the arm of its lever.

That of the upper part will be expressed by its cube multiplied by the vertical KM, and the product divided by the mean are KG .

The cube of this part will be equal to the mean area; that is, the are KG multiplied by the thickness of the vault.
1452. To obtain the mean area, multiply KG less KM by the length GO taken on the plan. The length of the are KG being 46 and $\mathrm{KM} 17 \frac{1}{7}$, we shall have $\mathrm{KG}-\mathrm{KM}=28 \frac{9}{7}$: GO being 54 , the mean area will be $28 \frac{6}{7} \times 54=1558$. This area multiplied by 9 , the thickness of the vault, makes the cube of the upper part $14024 \frac{4}{7}$, which multiplied by $K . M=17 \frac{1}{7}$ and divided by the arc $K G=46$, makes $5226 \frac{1}{4}$ the value of the vertical effort of the part of the $\operatorname{arch} m$ in the formula; and the arm of its lever is $I \mathrm{~K}+i \mathrm{H}$.
1453. 1 K being $=c$ and $i \mathrm{H}=x$, its expression will be $m x+m c$.

The vertical effort of the lower part will be represented by its cube multiplied by TI, and the product divided by the lengtl of the are 'TK.

This cube will be found by multiplying the mean area by the thickness of the vault. The arca being equal to the arc ' $\mathrm{TK}-\mathrm{Tl} \times \mathrm{GO}$, that is, $46-41 \frac{5}{11} \times 54=2505$ for the mean area and $2.50 \frac{5}{7} \times 9=2256 \frac{3}{7}$ for the cube of the lower part of the vault. This cube multiplied by TI and divided by the arc TK gives $\frac{29563}{6} \times 41 \frac{5}{17}=2028 \frac{2}{3}$ for the value of the vertical effort of the part n of the formula. And it is to be observed, that this effort acting against the point \mathbf{B}, the arm BF of the lever will be \boldsymbol{x} and its expression $n \boldsymbol{x}$.
1454. Bringing together all these algebraic values we obtain the equation $p a+p d=\frac{a x^{3}}{6}$ $+m x+m c+u x$; and making $m+n$, which multiplies $x=b$, we have $p a+p d=\frac{a x^{3}}{6}+b x+$ $m c$. Transferring $m c$ to the other side of the cquation, we have $p a+p d-m c=\frac{a x^{3}}{6}+b x$. lastly, multiplying all the terms of the equation by ${ }_{a}^{6}$ for the purpose of eliminating x^{3}, we shall have instead of the preceding formula $6 p+\frac{6 p d-6 m c}{a}=x^{3}+\frac{6 h x}{a}$, which is an equation of the third degree, whose second term is wanting. For more easily resolving this equation, let us find the value of $6 p+\frac{6 p d-\frac{6 m e}{a}}{a}$ and that of $\frac{6,}{a}$, by which x is multiplied in the s.cond part of the equation.

p being $11683_{7}^{2}, 6 p$ will be	-	-	-	-	$=700699_{7}^{5}$
d being $415,6 p d$ will be	-	-	-	-	$=28991243$
m being $5226 \frac{3}{3}, 6 m e$	-	-	-	-	-

I'hus $\frac{6 p d-6 m c}{a}=\frac{2361537 \frac{2}{7}}{120}=19679{ }_{T}^{5}$, and $6 p+\frac{6 p d-6 m c}{a}=89779!$, which we will call 9 for the purpose of simplifying the remainder of the calculation.
b, which represents $m+u$, will be $5226 \frac{3}{3}+2038_{3}^{2}=7255_{3}^{2}$, and $\frac{6 b}{a}=\underset{1200}{43 ; 3 \cdot 4}=3623$; this we will :all f; so that instead of the equation $6 p+{ }^{6 p t-6 m e} a=x^{3}+\frac{6 b, r}{a}$, we have $g=x^{3}+f x$, which is thus to be resolved (Bossut, Élémens d'Algélree): -

$$
x=\sqrt[3]{F}+\sqrt[2]{b_{4}^{2}+\frac{f 3}{27}}+\sqrt[3]{g} \underset{2}{\frac{V^{\prime} g^{2}}{4}+\frac{f 3}{2}}
$$

Sinbatituting in this formula the values of g and of we have
$r=\sqrt[3]{148897}+\sqrt[2]{2015073623+1767902}+\sqrt[3]{448897-2} 2015073623+1767902$
$=\sqrt[3]{4} 14894+449097+\sqrt[3]{44889}-41909 \frac{2}{7}$, from which extracting the cube roots, we have $5-113-23=1$! for the length BF of one of the sides of the triangular pier BAF; the other $1^{*} A$ may be determined by the production of the diagomal or line of groin Olb.
"The part ol the pior answering to the part of the vanit $33 N 0$) is determined by drawing from the points ${ }^{3}$ and A the parallels $B M$ and $M A$ to $1: A$ and $1 \cdot 1$. Ihese two trangleas will form aspare base, each of whose sides will be 42 lines, answering to one puarter of the vanlt K 1 BNO ; thons, to resist the thonst of the vanlt, four piers, cach 12 lines thick, are neeessary.
14.5.5. The above result corresponds in a singular manner with the experiments which were monk ly lomalelet, from which he derlaceri a thickness of 433 lines. lu his investi2ation of the example by incans of the centres of gravity 40.53 limes wis the recult. (bir

the method above given seems to be a safe guide to the arehitect. In the ease of ublong arches, the results must be obtained for each side.
1456. In the case of groinings composed of many bays, the chicf care necessary is in the extemal piers, which will require especially to be of sufficient thickness. Those in the middle, being counterbalanced all round, have only to bear the weights of their respective arches, for which purpose they must have a proportional area and be of such stone as the weight will not crusb. But it ought to be recolleeted that in good eonstruetion the area of the points of support should be so distributed as to establish for each a suffieient strength, because a single weak point will often endanger the whole fabric.
1457. In practice, a readier method will be wanting than that whieh has been just discussed; we therefore subjoin one which agrees well enough with theory and experiment. and it is as follows. Let ABCD (fg. 585. No. 1.) be the space to be eovered by a

Fig. 585.
groined vanlt supported in the centre by the pier E. Dividing each side into two equal parts, draw the lines HI, FG crossing each other in the eentre E, and the diagonals AF, $\mathrm{LB}, \mathrm{EC}, \mathrm{ED}$ and $\mathrm{HF}, \mathrm{HG}, \mathrm{IF}, \mathrm{I} \mathrm{G}$ erossing eath other in the points $\mathrm{K}, \mathrm{K}^{\prime}, \mathrm{K}^{\prime \prime}, \mathrm{K}^{\prime \prime \prime}$. in No. 2. draw the pier its half height to the level of the springing, which half height transfer from K to L , and divide EL intc twelve parts. One of these parts will be a half diagonal of the pier. For the intermediate piers II, F, I, G, after finding the diagonals of the half piers, produce them outwards to double their projeetion within, so that altogether their thickness may be once and a half their width. For the angular piers this methor will give an area of base $1 \frac{1}{2}$ times greater, whieh will enable them to resist the thrust they have to sustain.
1458. When the width of the space to be vatilted is to be divided into three bays, and that of the middle is required to be raised above those of the other two, as in the ease of churches with side aisles, the bases of the points of support may be determined in two ways. That most used, which is borrowed from the Gothie examples, is to give to the areas of the bases of the points of support merely the extent neeessary to bear the load they
are to receive, by throwing the strain of the thrust upon the external piers by means of flying buttresses, and giving to their points of support a position and surface of base capable of effectual resistance.
1459. The most simple method derived from the principles of the theory for the first case is as follows:-

Having laid down the plan of the two bays which fall upon the same pier (fig. 586 . No. 1.), take one half of the sum of the two semi-diagonals $A D, A E$, to which add one

Fin. 5ssi.
lalf of the height of the proint of support and taking a twelfth part of the whole as a racius, deserabe a circte as A, No. 1 , it will show the surface of the base of the point of \$n, pport. If it be not eirenlar it most be ciremoseribed with the form that may be required, mo as ruther to increase than diminish its solidity. For the exterior point of support B, let a rectangle be furmed, laving for its width the side of a square inseribed in the preceding circle, and in length double.
1460. Abse the roofs of the sides a flymg buttress may be carried \quad p, whose pier may be raised on that below, set back one sisth from the exterior face and sloped as imelh on the interior. The line of smmmit or taturent of this tlyimg buttress, which should be of the sugle are of a circle, will be determined by the chord of the are of the upper part of the sand prodaced indefinitely. Fo find the eentre, draw the chord Git (No. \%.), on the midalle of wheh raise as perpendicular, which will ent the horiantal line Gif in the phat l, which will be the eentre of the are. 'lhese ratheng arches maty be connected by
other return arches, which may bear a floor above with a support, upon which a passage round the building may be made, and this may be concealed by an attic order outside
1461. In the second case, the base of a pier must be found capable of resisting the effort of the great middle vault of the nave, by taking as the height of its pier the distance from its springing from the upper side of the side vaults No. 2., and laying the half of this height from B to H on the plan No. 3. Then having divided IH into twelve equal parts, make 1 A equal to one of them and AF equal to two. The rectangle made upon the diagonal FI shows the area of the interior pier, to which are to be added, to the right and left, projections to receive the atches of the sides. The length FD is to be divided into six equal parts, whereof two are for the projection of the pilaster or interior balf column, upon which the entablature is pronled, three for the thickness of the wall, and one for the pilaster on the side aisles, whose prolongation will form a counterfort above the lower sides.
1462. For the external pier B, as before, one half the height to the springing must be transferred from $E G$, and $\frac{1}{12}$ of $B G$ from B to L; lastly, $\frac{2}{12}$ from B to K : the rectangle formed upon the diagonal KL is equal to the arca of the pier. We must add, as for that in front, the projections to receive the arches or windows, as shown in No. 2.
1463. As long as the intervals between the piers are filled in with a wall, if that be placed flush with the outside, the piers will form pilasters inwards (sce fig. 585.), as ihef, whose projection $e f$ is equal to one half of the face $h e$; this wall ought to have a thickness equal to he; but if it is brought to the inner line of the face of the piers they need be only two thirds of the thickness; so that the piers will form counterforts on the exterior. In conclusion, knowing the effort of the thrust, the calculations will not be attended with difficulty in providing against it by adequate means of resistance.

ON THE MODEL OF A COVED VAULT.

1464. The model (fig. 587. Nos. 1. and 2.) is square on the plan, each of its sides is 9 inches in. ternal measure, enelosed by a wall 10 inches high io the springing of the vault. The vault is semicireular in form, the voussoirs throughout 9 lines thick, and it is composed of seventeen parts above the line of greatest effort (see 1391.), as shown in Nos. 1. and 2. in the plan and section. On one of the sides of the first is supposed to be traced the mean circumference 'TKG, the tangents FT, FG, the secant FO, the horizontal line IK1, and the verticals Bi and MK. We may now therefore consider this vault as four triangular picees of cylindrical arches, each resting throughout the length of their base on one of the walls which forms the sides of the square. As the fortions of arches or vaults are equal, it is only necessary to take one of them for an example.
1465. In the last example, cubes are taken instead of the surfaces, and surfaces instead of lines. Thus expressing the length of the wall by f, its height by α, and its thickness by x; the arm of the lever being always $\frac{x}{2}$, its resistance is expressed by af $x \frac{x}{2}$.

Fig. 587

The equation is $p a+p d=\frac{f x^{2}}{2}+(m+n) x-n e+m e$; and making $m+n=b$,

$$
\frac{a f x^{2}}{2}+b x=p u+p t+n e-m
$$

$$
\text { Whenee } x=\sqrt{\frac{2 p}{f}+\frac{2 p t+2 n e-2 m c}{a}+\frac{b^{2}}{a^{2} f^{2}}}-b
$$

1466. If, however, we suppose the effort to take place at the point B, a supposition sitherto made in the fomula, we have $e=\sigma$, and the value of \boldsymbol{x} becomes

$$
x=\sqrt{2 p+\frac{2 p d-2 m c}{a f}+\frac{b^{2}}{a^{2} f^{2}}}-\frac{b}{a f}
$$

146\%. The horizontal effort of the upper part, represented by the line KL, will be expressed loy the triangle $e \mathrm{E} d$ of the plan; that of the lower part $i \mathrm{~K}$ in the section will be expressed by the trapezium $e \mathrm{BC} d$ on the plan.
1468. The plan of the vault being square, the base $e d$ will be double $\mathrm{E} g=\mathrm{KL}$ of the section; and the area of the triangle $e \mathrm{E} d$ equal to the square of $\mathrm{KL}=41_{14}^{5} \times 41 \frac{5}{1}=1710^{2}$.
1469. E a of the plan being equal to the square of 54 less the square of $41 \frac{\mathrm{~s}}{\mathbf{5}}$, that is, $1206 \frac{2}{2}$, the supcrior effort being $1710 \frac{2}{7}$ their difference is 504 , which being multiplied ber the thickness of the vault, or 9 , is 4536 for the expression of the thrust represented by \quad) in the formula, and for that of

$$
2 p=9072 \text { and } \frac{2 p}{f}=84
$$

d. which represents TI, being $41 \frac{5}{7}, 2 p d=375192$.
1470. 'lo obtain the vertical effort of the upper part of the arch represented by m, its cube must be multiplied by KM, and the product divided by the are KG.
1471. The eube of this part is equal to the curved surfice passing through the middle of its thickness multiplied by the thickness. The mean area is equal to the product of the length $n q$ taken on the plan multiplied by KM.
$n q$ being 117, and KM 171, the product expressing such mean area is $2005 \frac{5}{7}$, which multiplied by 9 makes the cube $18051 \frac{1}{7}$. This cube again multiplied by $K M=17 \frac{1}{7}$, and divided by the length of arc $\mathrm{KG}=46$, gives 6727 for the valuc of m, and for $2 m 13454$; c being $129,2 m c=1701 \mathrm{CO}_{\frac{1}{5}}^{5}$.

$$
\begin{gathered}
2 p d-2 m c \\
a f \quad=\frac{375192-170100^{5}}{120 \times 108}=15 \cdot 82 .
\end{gathered}
$$

3. representing the vertical effort of the half vault, will be expressed by the cube multiplied by $\mathrm{B} f=58 \frac{1}{2}$, and divided by the mean circumference $\mathrm{TKG}=92$.
4. To obtain the cube, the mean superficies, that is, $n q \times \mathrm{Bf}$ or $117 \times 58 \frac{1}{2}$, is to be multiplied by the thickness $\mathrm{AB}=9$, which gives $6844 \frac{1}{2} \times 9=61600_{2}^{1}$.

Shis cube multiplied by $\mathrm{B} f=58 \frac{1}{2}$ and divided by the mean circumference TKG $=92$, that is, $61600 \frac{1}{2} \times \frac{58 \frac{1}{2}}{92}=39169.88$, for the value of b, and for that of $\frac{b}{a}, \frac{34169}{120 \times 108}=3.02$ and $a_{a^{2}}^{L^{2}}=9 \cdot 12$. Substituting these values in the formula,

$$
\begin{gathered}
x=\sqrt{\left(\begin{array}{c}
2 p \\
f
\end{array}+\frac{2 p d-2}{a f}+\frac{b b}{a^{2} f^{2}}\right)}-\frac{b}{a f} . \\
\text { Hence } x=\sqrt{ } 84+15 \cdot 82+9 \cdot 12-3 \cdot 02=7 \cdot 41 ;
\end{gathered}
$$

that is, a little less than $7 \frac{1}{2}$ lines for the thickness of the walls, which is less than that of the vault; and shows that by giving the walls the same thickness as the vault, all the requisite solidity will be obtained. This is proved ly cxperiments, for in the model the vault was borne equally well on walls of 9 lines in thickness divided into 8 parts, as upon 12 Doric cohnmus whose diameter was 9 lines, four being placed at the angles and cight others under the lower part of the van!t.
1473. To find the thichmess of these walls by the gcometrical method: Take the lifference between the area of the triangle BEC and that of the triangle Eed, which livide by tho: length BC.

Thus, the area of the greater triangle being $\frac{108 \times 54}{2}=2916$; that of the smaller one, $-29 \times 411_{2}^{3}=1710 \%$; their difference, $1205 \cdot 6$ divided by $108=11 \cdot 16$, which transfer to the rrofile from 13 to h, and make $B n$ equal to the thickness of the vault. Upon $u h$, as a liancter, describe a semicircle, which at its intersection with the horizontal line BE will intermine the thickness of the vanlt, and be found to be 10 lines.
1474. The sinall thrust of this species of vaulting occurs on aecount of the upper part, - hich causes it, diminishing in volume in proportion as the horizontal effort becomes more onsiderable, and becanse the triangular form of its parts and their position give it the divantage of having the larger sides for bases; whilst, in gromed vanlting, the triangular arts resting omly on an angle, the weight increases as the horizontal efforts.
1475. Moreover, as the retarn sides monally sustain each other, a half vailt, or even a marter vante, on a squate base, would stand if the walls were 10 lines thick, proving that
the opposite parts, aeting little more than against eaeh other, the thrust becomes almost sothing.
1476. By the method of the eentres of gravity, Rondelet found a result less than that above given; but that arose from negleeting some points in the caleulation which it was difficult to introduce for general pratice.
1477. It is obvious that in the above applieation great allowance must be made when the apartment to be vaulted is not square; that is, its advantages diminish as the two opposite sides beeome longer than the width, and when the length is twiee the width, or ever much less, the thrusts must be ealculated on the prineiple of eylindrical vaulting; and as in this speeies of vaulting the greatest effort oecurs in or towards the middle of the sides, opening for doors and windows should there be avoided.

> Application of the Method to Sphericul (or dmical) 「culting.

147 s . The models (fig. 588. Nos. 1. and 2. and fig. 589. Nos. 1. and 2.) were of the

fame opening as the last mentioned. They are eut into eight equal parts by vertical planes erossing each other in the axis; each of these parts is subdivided by a joint at 45 degrees, altogether forming sixteen pieees. The vault stands on a cireular wall of the same thickness divided into eight parts eorresponding to those of the vault. All the part: are so arranged as to form continued joints without any bond, in order to give the experiment the most disadvantageous result. Yet it stood firmly, and was even eapable or bearing a weight on the top.
1479. If for these eight pieees of eireular wall we substitute eight columns of equal height, as in No. 1. fig. 589., so that the vertieal joints fall over the middle of each column the vault will still stand, although the eube of these columns, as well as their weight oecupies ouly one minth part of the cireular wall for which they are substituted.

From this it is evident that spherical vaults, i.e., domes, have less thrusts than coved vaults
1480. Applying the method of the preeeding examples, describe the mean eireumferene (fig. 588. Nos. 1. and 2.), draw the tangents TF, GF, the seeant FO, the horizontal lime $1 K L$, and the vertieals $K M$ and $B i$; lastly, ealeulating for one eighth of the vault, take the sector O / m to express the horizontal effort indieated by KL , and the part $\mathbf{1} h \mathrm{M} m$ to expres: the horizontal effort of the lower part.
1481. The differenee of these areas multiplied by the thiekness of the vault will be the expression of the thrust p of the formula.
1482. The radius 0 m of the seetor being $41 \frac{5}{5}$ and its length $32 \frac{1}{2}$, its area will be $672 \frac{3}{\circ}$.
1483. The area of $h \mathrm{HMm}$ will be equal to the difference of the two seetors Olla and Ohm , whereof the first is equal to the product of half $\mathrm{OH}=27$ by the arc $\mathrm{HM}=423^{3}$ or $1145 \frac{4}{7}$, the seeond $=672 \frac{3}{56}$; whenee the difference $=473 \frac{39}{\overline{2}}$.

1 184. The thrust, being equal to the difference between 6723_{00}^{30} and 493_{86}^{29}, will be $198{ }_{26}^{56} \times 9$ therefore $p=786_{28}^{23}$.
1485. f, representing the developenent of one eighth part of the circular wall, will be 421 , whence $\frac{p}{f}=42$. d, the difference between the arm of the lever and the height of the pier, being 41 $\frac{5}{14}$, we shall have $p d=73897 \frac{4}{7}$.
1486. To obtain the value of $m c$ we must first find that of m, which represents the vertical effort of the upper part of the vault, and is equal to the cube of this part multiplied by KM and divided by the are K G. This cube is equal to the difference of the cabe of the sector of a sphere in which it is comprised with that which formsits interior capacity. We will merely recall here to the reader's recollection from a previous page, that the cute of the sector of a sphere is equal to the product of the superficies of the sphere whereof it forms a part by one third of the radius, and that this superficies is equal to the product of the circumference of a great circle by the line which measures its depth. Thus the area of the great sector ORCr (fig. 588. No. 1.) is equal to the product of the great circle, whereof $A a$ is the diameter $=126$, by $C S=18 \frac{5}{11}$, which is 7308 , and its eube 7308 $\times 21=153468$.
1487. The area of the small sector $\mathrm{OND} n$ will be equal to the product of the great circle, whereof $\mathrm{B} b$ is the diameter $=108$ by $\mathrm{VD}=15_{7} \frac{9}{T}$, which gives $53699_{77}^{\circ 7}$, and its cube by $5369 \frac{27}{77} \times 18=96648^{\frac{27}{77}}$. Deducting this last cube from that of the great sector already found $=153468$, the remainder 56819 will be the cube of the upper part of the vault forming the cap, whose eighth part $7102 \frac{3}{8}$ will be the cube sought, which multiplied by $K M=17 \frac{1}{2}$ and divided by the are $\mathrm{KG}=46$, gives $2646 \frac{2}{3}$ for the valne of m in the formula; c, which represents $i \mathrm{~K}$, bcing $12 \frac{9}{14}$, we have

$$
\begin{aligned}
& m c=33461 \frac{3}{7} ; p d-m c \text { will be } 73897 \frac{4}{7}-33461 \frac{3}{7}=40436 \frac{1}{7} ; \\
& \text { and for } \frac{p d-m c}{a f}, \frac{40436 \frac{1}{7}}{120 \times 42 \frac{1}{2}}=7 \cdot 92 .
\end{aligned}
$$

1488. In the preceding application to the model of the coved rault, the walls being straight, the distance of their centre of gravity from the point of support was equal to half their thickness; in this, the wall being circular, its centre of gravity is so much more distant from the point of support as it takes in more or less a greater part of the cireumference of the circle. By taking it only the eighth part, the centre of gravity falls without the thickness of the walls, by a quantity which we shall call e, so that the arm of the lever, instead of being ${ }_{2}$, will be $e+x$, which changes the preceding formula to

$$
a f x(e+x)+b x=p a+p d-m c ;
$$

arranging with reference to x, this becomes

$$
a f x^{2}+(e a f+b) x=p a+p d-m c ;
$$

whence we obtain $x^{2}+\left(e+\frac{b}{a f}\right) x=\frac{p a+p d-m c}{a f}$, and making $e+\frac{a f}{b}=2 h$, we shall have

$$
x=\sqrt{-\frac{p}{f}+\frac{p d-m}{a} f+h^{2}-h} .
$$

, expresses the vertical effort of an eighth part of the vault equal to its eube, multiplied by the vertical $13 f$, and divided by the mean circumference TKG. This cube is equal to an eighth of the sphere, whereof $A a$ is the diameter, less that of the eighth part of a sphere whose diameter is $13 b$.
143.3. The diameter Aa being 126, the eighth of the circumference of a great circle will ee 49 !, which, multiphied by the vertical axis, which in this case is equal to the radius or 23, gives for the area of one eighth part of the sphere $3118 \frac{1}{2}$, and for its cube $3118 \frac{1}{2} \times 21$ $=65688 \frac{1}{2}$.
1490. The rliameter $3 b$ being 108 , an cighth part of the circumference of the great circle vill be $42 \frac{3}{3}$, which, multiplied by the radius 54 , gives for the area $2291 \frac{1}{7}$, and for its cube $5291 \frac{1}{1} \times 18=412404$; taking the smaller of these cubes from the greater, the difference ? 4447$\}_{3}^{3}$ will be that of this eighth part of the vault, which must be multiplied by $13 f=$ (8!, and the product 14:30203323, divided by the mean are TKG $=916$; the quotient 15558 xpresses the vertical effort of the eighth part of the vatilt, represented by b in the formula.

being $2 \cdot 51$, we shall have for the value of $h 2 \cdot 78$ and $h^{2}=7 \cdot 72$.
inbstituting the values thins found in the formula

$$
\begin{gathered}
x=\sqrt{p}+\frac{p d-m c}{a f}+h^{2}-h \\
\text { we have } x=\sqrt{ } 42+7 \cdot 92+7 \cdot 79-2 \cdot 78=\sqrt{57 \cdot 64}-2 \cdot 78=4 \cdot 72
\end{gathered}
$$

By nsing the method of the eentres of gravity, lRondelet fonnd the result rather less than itt just foume.
$14!1$. I'he result of all these calenations indaces the following facts: - I. 'lat for a
semicircular eylindrical vault, whose length is equal to its diametcr, the area of the two parallel walls is 4698 . 11. That that of the four square piers supporting a groined arch is 7056. IlI. 'I'hat of the four walls of the coved vault, the area should be $3425 \frac{2}{3}$. IV. That that of the spherical vault is 12386°
1492. In respect of the opening of these vaults, which is the same for all the examples, t. .king the area of the circular wall for the spherical vault at 1 ,

> That of the walls of the coved vault will be a little less than 3 .
> That of the cylindrical vault
> That of the groined arch

But if we look to the space that each of these vaults occupies in respect of walls and points of support, we shall find that in equal areas the walls of the cylindrical vault will be $\frac{2}{7}$ of such spact.

Those of the coved vaulting less than
The piers of the groined arch a little more than

- $\frac{1}{4}$ of such space.

The circular wall for spherical vault a little more than
So that, if we suppose the space occupied by each of these vaults to be 400 ,

The walls of the cylindrical vaulting will be 115
Chose for the coved vault -
The piers for the groined arch
The circular wall for the spherical vault -
Th

Which figures therefore show the relative proportions of the points of support necessary in each case.
1493. It is a remarkable circumstance that by the formula the coved and spherical vaults give to the walls a less thickness than that of the arch. But although experiment has verified the formula, we cannot be supposed to recommend that they should be made of less thickness in practice ; but we see that, if of the same thickness, considerable openings may be used in them. Irregular as well as regular compound vaults being only an assemblage of the parts of more simple ones, if what has already been said be well understood, and the examples given have been worked out by the student, he will not be much at a loss in determining the efforts of all sorts of vaults.

On tie anhesive Power of Mortar and Piaster upon Stones and Bricks.

1494. The power of mortar and plaster will of course be in proportion to the surface of the joints, compared with the masses of stone, brick, or rubble. Thus a voussoir of wrought stone, one foot cube, may be conncted with the adjoining voussoirs by four joints, each of 1 foot area, in all 4 feet. But if instead of this voussoir three pieces of rough stone or rubble be substituted instead of 4 feet area of joints, we shall have 8. Lastly, if bricks be employed instead of rubble, we shall want 27 to form the same mass, which gives for the developement of the joints 13 feet. Thus, representing the force which connects the voussoirs in wrought stone by 4, that representing the joints of the rough stones will be 8, and that for bricks 13: whence we may infer that arches built with rough stones will have less thrust than those in wrought stone, and those in bricks more than three times less. From experiments male by Rondelet, he found that at the end of six months some species of mortar showed a capability of uniting bricks with sufficient force to overcome the efforts of thrust in a vault segmental to ${ }_{3}^{2}$ of a semicircle, 15 feet diameter and 4 inches thick, the extrados being 4 inches concentrically above the intrados. Plaster united a vaulted arch of 18 feet opening, of the same form and thickness. This force is, moreover, greater in arches whose voussoirs increase from the keystone to the springing, and that in proportion to the thickness at the haunches, where fracture takes place; so that whatever the diameter and form of the arch, the strength of good mortar at the end of six months, if the arches are well constructed, is capable of suppressing the thrust as long as the thickness, taken at the middle of the haunches, is stronger than the tenth part of those laid in mortar, and one twelfth of those laid in plaster. Here we have to observe, that arches laid in plaster, as long as they are kept dry and sheltered from the changes of the season, preserve their strength, but, on the contrary, they lose all their stability in seven or eight years, whilst those cemented in mortar endure for ages.
1495. 'The small quantity of mortar or of plaster used in vaults constructed of wrought stone, in which the joints are often little more than run, ought to make an architect cautious of depending merely on the cementing medium for uniting the voussoirs. There are other means which he may employ in cases of doubt, such as dowels and cramps, means which were much employed by the Romans in their construction; and these are far better than the chains and ties of iron introduced by the moderns.

1495a. Rondelet has stated that hard stones laid dry, commenced slipping at an angle of 30°; and with mortar fresh laid, at angles of 34° and 36°; with soft stancs, on mortar fresh laid, at 45°, when the centre of giavity did not fall without the base. lin

Barlow's edition of Tredgold's work. fron. 34° to 36°, is repeated. G. Rennic, in some zareful experiments at London Bridge, found that dressed voussoirs commenced sliding, without mortar, at an angle of $33^{\circ} 30^{\prime}$; and, with mor ar tresh laid, at $25^{\circ} 30^{\prime}$.
1496. Well may it be said that the thrust of an arch is the constant dread of an architect ; but it depends entirely on the method employed in the construction. It is only dangerous where the precautions indicated in the foregoing examples have had no attention paid to them. It bas been seen that the least fracture in too thin an arch of equally deep voussoirs may cause its ruin; and we shall here add, that this defect is more dangerous in arches wherein the number of joints is many, such as those constructed in brick; for when they are laid in mortar they are too often rather heaped together than well fitted to tach other.
1497. Whatever materials are used in the construction of vaults, the great objest is to prevent separation, which, if it occur, must be immediately met by measures for making the resistance of the lower parts capable of counterbalancing the effort of the upper parts. Those fractures which oceur in cylindrical arches are the most dangerous, because they take place in straight lines which run along parallel to the walls bearing them. To avoid the consequences of such failures, it is well to fill up the baunches to the height where the fracture is usually to be found, as in $\mathrm{K}, \mathrm{K}^{\prime}, \mathrm{K}^{\prime \prime}, \mathrm{K}^{\prime \prime \prime}$ ($f i g .590$.) and diminish the thickness towards the key.
1498. Rondelet found, and so indeed did Couplet before him, that the least thickness which an arch of equal voussoirs ought to have, to be capable of standing, was one fiftieth part of the radius. But as the bricks and stone employed in the construction of arches are never so perfectly formed as the theory supposes, the least thickness which can be used for cylindrical arches from 9 to 15 feet radius is $4 \frac{1}{2}$ inches at the vertex if the lower course be laid with a course of briek on edge or two courses flatwise, and 5 inches when the material used is not a very hard stone, increasing the thickness from the keystone to the point where the extrados leaves the walls or piers. But if the haunches are filled up to the point N (fig. 590.), it will be found that for the pointed arch in the figure the thickness need not be more than the $\frac{1}{1 / 3}$ of the radius, and for the semicircular arch, $\frac{1}{65}$. For arches whose height is less than their opening or that are segmental the thickness should be $\frac{1}{3}$ part of the versed sine; l praetice also applicable to Gothic vaults and scmiircular cylindrical arches, to which for vaults cemented with plaster one line should be added for each foot in ength, or $\frac{1}{1}$ part of the chord subtended by the ex-
 rados. With vaults executed in mortar $\frac{1}{95}$ may be rdded, the thickness of the arch increasing till it reachas the point N , where the arch becomes letached from the haunches, and where it should be ence and a half the thickness of the key. t was in this way the arches throughout the Pantheon at Paris were regulated, and a ve:g inilar sort of expedient is practised in the done of the Pantheon at Rome. A like iminution at the keystone may be used in groined, coved, and spherical vaults.
1499. For vaultings of large openings, Rondelet (and we fully concur with him) thinks rought stone preferable to brick or rubble stone, because it has the advantage of being iable to less settlement and stands more independent of any cementitious medium emboyed. It is indeed true that this cannot comect wrought stone so powerfully as it does ulthe ; bint in the former we can employ crampsand dowells at the joints, which are nseful a doubtul eases to prevent derangement of the parts. In many Roman ruins the surfaces f the vonssoirs were embossed and hollowed at the joints, for the purpose of preventing ueir sliding apon each other ; and expedients of the same mature are frequently fonn in iothic ruins.
1499a. The figure 590. is one that has been fomed to perplex students, as it is rerein fiven withont much explanation of it. la Rondelet's work it is engraved for the purpose clucidating certain tables of thicknesses of the keystones, the parts KN , and the piers, r ready reference in desiguing areled constuctions. As a proper understanding of the me system is of immense importance to the effective carrying out of buildings, we prend an explanatim from Rumdelet, but in a much abridged fonm.

1499b. Having laid down the balf of the curve required, draw [3 4, forming an angle of 45° with the vertical B6; place on this line from 3 to 4 the thickness shown in the table (in lis work) for a cylindrical vault Y, of the diameter and tnickness required, and describe the quarter circie $1,4,6$; draw the chord $C^{\prime \prime} B$, prolonged to meet the circleat 4 ; then throngh the point in which it (the chord) will I e cut, as 4 ; draw a line parallel to $B 6$; then $4 c$ will represent the thickness required for the wall of the vault. For instance, if in the segmentai vanlt X, its chord $\mathrm{C}^{\prime} \mathrm{B}$, be prolonged, it will cat the circle at 3 ; through 3 draw the vertical $s b$, and it will be the thickness to be given to the wall for such a vault. When the thickness at the key, and towards the middle of the extrados, is required either stronger or weaker than those indicated in the tables, then, if the portion of the extradossed line be of an equal thichness, take the square root of the double thickness of this portion, multiplied by $m \mathrm{~L}$; place it from B to 4 , and describe the quarter of the circle 1, 4, 6. which will determine, by the length of the chord prolonged beyond the point B , the thickness of the wall pier.

1499c. Take a vanlt of 30 ft . span; the extrados being half on a level and balf of an equal thickness, which it is intended to make only 6 in . thick at the key. instead of 10 in ., as indicated in the tables. The radius being 15 ft ., we have $\mathrm{KL}=\frac{15 \times 70}{99}=10 \cdot 6$, and $i \mathrm{~K}=$ $15-10 \cdot 6=4 \cdot 4$, which gives $m \mathrm{~L}=6 \cdot 2$, which multiplied by 1 foot, or double the thickness of the kcystone, will give 6.2 , the square foot of which is $2 \cdot 49$, or a trifle under 2 ft .6 in , instem of 2 ft .8 in . and 9 lines, marked in the tables. This measure of $2 \frac{49}{100} \mathrm{ft}$.,

Elg. 500ム. or 2 ft . 6 in ., is to be placed from B to 4 , and the quarter circle and chord line drawn aucording to the rise of the arch.

1499 d . The geometrical method of drawing it will be to place the double of the thickness of the vault from B to n, and $m \mathrm{I}$, from B to h, and describing on $n h$, as a diameter, a semicircle which shall cut the horizontal BO, giving the thickness to be placed from B to 4 on the chord line; the remainder of the operation will be as above described.

1499e. If the thickness CD and KN of an extrados portion of a vault, be not the same as indicated in the tables, the sum of the thicknesses intended to be given is to be placed from \mathcal{B} to n, and $m \mathrm{~L}$ from B to h, and then the process goes on as above described. The letters also refer to the preceding diagrans.

1499f. These observations, however, do not apply to fig. 590 ., for it will be observed that the arches therein shown are not of cqual thickness. On drawing out these arches, according to the directions given (1436, and fig. 582.), for an extrados which increases towards the springing (fig. $590 a$), we find that the chord lines are not properly drawn; that the thicknesses of the walls vary; and that the two arches W and X, which are less in height than the semicircular arch Y, are treated in the same manner as Y, instead of the line BF being drawn as a tangent to the curve as directed (1398, and fig. 573 .) ; this would have caused the walls to be of a less thickness the more the arch was dcpressed, and therefore would evidently have been wrong in principle.

Construction of Domes.

1499g. From the Remarks on Theutres, 1809 , by Sammel Ware, we extract the portion relating to the now little studied subject of construction of domes. "It may with propriety be askicd," he writes, " and it is a question of much importance, what are the properties in the construction of a dome, by which its vaulting may have that extreme tenuity, by which its lateral thust becomes so extremely small in comparison with cylindrical vaulting, while the stone furthest from the supports may be of extraordinary gravity, compared with any other part of the vaulting, or it and any part below it contiguous may be wholly onsitted, and yet the equilibrium of the dome be not affected."

1499h. "In analysing a dome, it will be found that it is nothing more than rib-vaulting carried to its maximum, that it consists of as many ribs as there are vertical sections to be made in the dome, or is composed wholly of ribs abutting against each other, in direct opposition, by which the force of each is destroyed. In the ceilings of King's College Clapel, Cainbridge, and Henry VII.'s Chapel, London, this most admirable invention is exemplified. The author ventures an hypothesis, that, in an equilibrated dome, the thickness of the vaulting will decrease from the vertex to the springing, and assigns the following reason theoretically, and the Gothic vaulting practically, in confirmation.

1499i. "The parts of a circular wall compose a borizontal arch; but the whole gravity of each part is resisted by the bed on which it rests, therefore the parts cannot be in mutual opposition; and, although the paits are posited like those of an arch, a circular wall has not the properties of one. In a semi-spherical dome the first course answers this description, no part gravitating in the direction of its radius. When the beds are oblique on which the parts of the wall rest, each course may then be called an oblique arch, as it then assumes the property of an arcin, by having a double action, the one at right angles to, or on the bed, and the other in the direction of the radius; and if this arch be of equal thickness throughout, and has an equal inclination to the horizon, it will be an arch of equilibration. All the courses in a dome are oblique arches of equilibration, of various inclinations, between the horizontal line at the springing, and the perpendicular at its vertex.

1499j. "A dome is comprised of as many vertical arches as there are diameters, and as many oblique arches as there are chords. The actions of the parts of a vertical arch are eccentric, an oblique arch concentric; consequently they will be in opposition, and the greater force will lose power equal to that of the liss. An oblique arch hears the same relation to a dome as a vonssoir does to an arch; when the vertical arches are not in equilibration, the action is upon the whole oblique arch, not upon the voussoirs separately; although a whole course or oblique arch (which must be the case, or no part of it, admitting that each course in itself is similar and equal throughout) be tirust outwards by the inequilibration of the vertical arches; the incumbent oblique arches will descend perpendicularly, keeping the same congruity of their own parts.
1499k. "As the voussoirs of each oblique arch are in equilibration, no one can approach nearer to the centre of the dome than another, unless the other voussoirs squeeze or crush, which, in investigations of subjects of this nature, are always assumed perfectly rigid; herefure, in their poition in the dome, they have obtained their concentration. Hence ve obtain the essential distinction between an arch and a dome, that no part of the latter an fall inwardly. Since no part of a dome can fall inwards, it resembles an arch resting on the centre on which it has been constructed, and the resistance which the vertical arch neets with from that centre is similar to the opposition of the oblique arches to the vertical urches. If this deduction be just, the mechanician will be able to describe the extradus of quilibration to a dume and its abutment wall, with the same facility as he may to an areh and its abutment piers."
14992. Pasley has likewise stated that "as soon as any course is completed all round, He stones or bricks composing it form a circular arch like that of a cone, which cannot y any means fall inwards. Hence there is an important difference between the dome and he common arch, which latter cannot stand at all withont its centering, unless the whole urve be completed, and when finished, the crown or upper segment tends to overset the manches or lower segments. The dome, on the contrary, is perfectly strong, and is a combete arch without its npper segment; and thus, as the pressure acts differcntly, there is less train upon the liaunches and abuturents of a dome, than on those of a common arch of the a ne curve. Hence a sufficient donue may be constructed with much thimer moterials than vould be proper for a common arch of the same section. The dome of St. Paul's Cathelral offers a fine specimen of this kind of work." It has been described m par. 472.
1499 m . The Pautheon, at l'aris, has a dome formed of three portions. The first, or incrior one, is a regular hemisphere of about $66 \mathrm{ft} .9 \frac{1}{2} \mathrm{in}$. span, with a circular opening at $0_{1} 1$ of about $31 \mathrm{ft} .4 \frac{1}{4} \mathrm{in}$. in diameter. It is built of cut stones, varying from $18 \frac{1}{2} \mathrm{in}$. thick t bottom, to $10 \frac{1}{2}$ in. at top. Thus the thickness is only about $\frac{1}{3}$ rd yart of the span. The Intermediate dome is a catenarian curve having a span of about 70 ft . with a rise of 50 ft .; .nd it has to support considerable weight at top. It has four large openings in its sides to ive light, about 37 ft . liigh by 31 ft . wide, arelied at top in a somewhat parabolic form. 'he outer dome has an external diameter of 78 ft . Its height is not stated, but it appears , be a modenately pointed Gothic areb hat it been continned, without forming an opening t top for the sides of a lantern, which it was intended to support. The thickness of the tone at bottom is about $28 \mathrm{in}$. and 1.4 in . at top. Λ great part of the surface is only half le alowe thickness, as the dome is laid out internally in piers, supporting three tiers of rethed recesses, or nielhes, of less substance, and showing like the panels in joiners' work. Sce figs. 177 and 178.)
1.199n. Partington, in the Brilish Cyclopadia, 1835, expresses the opinion that "the eight of the dome may force out its lower parts, if it rises in a direction too nearly ver-
tical ; and supposing its form to be spherical, and its thickness equal, it will require to be eonfined by a hoop or ehain as soon as the span becomes eleven fourteenths of the whole diameter. But if the thickness of the dome be diminished as it rises, it will not require to be bound so high. Thus. if the increase of thickness in descending begins at about 30° from the summit, and be continued mutil at abont 60°, the dome becomes little more than twice as thick as at first, the equilibrium will be so far secure. At this distancu it would be proper to employ either a chain or some external pressure to prove the stability, since the weight itself would require to he increased without limit, if it were the only sonrce of pressure on the lower parts. The dome of the Pantheon, at Rome, is nearly circular, and its lower parts are so much thicker than its upper parts, as to afford a suff. cient resistanee to their pressure; they are supported by walls of great thickness, atd furnished witl many projections, which answer the purpose of abutments and buturesses."
14990. Kecping to the theory of the dome, we must avoid noticing its history, beyond pointing out the papers which have of late ycars treated on the subject. These are pub. lished in the Transactions of the Royal Institute of British Architects. The first was by J. Fergusson, On the Architectural Splendour of the City of Beejapore, November 1854; the discussion in December following, when J. W. Papworth detail d his interesting and novel theory, to be presently noticed; and two papers by T. H. Lewis, Sime Remarks om Domes, June 18.57; and On the Construction of Domes, May 1859, in which, however, great care must be taken by the reader to scparate the arch from the dome constructions, as in our opinion they are treated therein as of one principle. The quention of at Gothic dome was mach discussed without a solution in the journals of the period named. Domes and pendentives are illustrated in Fergusson's Hawdhook of Architecture. The very interesting paper O" the Muthemutical Thenry of Domes. by E. B. Denison, Q C., read at the Institute on 6th February, 1871, should be consulted by all students on this difficult subject: as well as the papers by E. W. Jarn, M.A., printed in the Civil Engineer and Arehitect's Jomruml of March 1868 and February 1870.
$1499 p$. On the occasion referred to, Mr. Papworth asserted t!at a dome was not an arch, and that domes were not governed by the same laws as vaults. He then entered into calculations on the causes of the stability of domes, showing that in domes of great thicknes s the upper half of each gore was only about one-third in weight of the lower half, and anduced the possibility of loading the crown to a certain extent. Ho prodinced a series of drawings of domes, constructed upon principles which ought theoretically, if they were arehes, to lead to their failure, but which had nevertheless proved perfectly sound; his views being fortified by Mr. Fergusson's concurrence as to the absence of examples of fililure where the bases were stable. He then alluded to the following arguments of others, and explained his reasons for not agreeing with them. Such as, that the dome of the Pamtheon, at Rome, had been built on the priseciple of a bridge, i.e. of an arch; that it was impossible to plan a large dome without great thickness of walls, i.e. greater than sufficient to bear the weight and its consequences; that it was necessary for the exterior of a dome to stand Hush with the wall of the building to which it belonged; that it was dusirable to append heavy corbelling to the inside of the wall to counteract the thrust of the dome, with special reference to some circular tambours, of which he exhibit d sketches; to the supposed unnecessarily great weight on the top of some examples: and to the supposed beauty of princible exhibited in the dome of Sta. Maria, at Florence, which he characterised as a piece of octagonal vaulting and not a dome. He also explained that domes which had failed had not been supported on a stable foundation; that he saw great beanty in the idea of forming an rye in solarge a dome as that of the Gol Goomuz, at Beejapore, where the eentre of the curve on cacliside of the section was in the edge of the eye; that the outer face of the springing of the dome might lie within the inside of the square enelosing wall of the building; that if the principles of vaulting were applied, the wagon-headed section of the Gol Goomuz dome would not be expected, theoretically, to stand; and coneluded by some observations in expl:ination of his illustrations, as to the requisite thickness of domes. All writers, so far as he had seen, considered the dome as a case of vaulting on principles deduced from their experiments on arches, which was a mode repudiated by him.

1499q. The causes of the stability of domes, as thus put forward for the first time, by Mr. Papworth, are the following :-Let the plan (fig. 590b.). of a semicirculir dome be divided, say, into tivetve or more equal parts, and the stetion (fig. $590 c$.), say, into nine or more. Give a thickuess
y an inner li:e for stone or brickwork. Then it will be at once perceived that the lower lock K has to support a mass 1 , of less dimensions as to horizontal length; that the lock L supports a still less mass M; that M supports a much less mass N; and that N pports a mass of but a small length in conparison with K, whilst in breadth it dimiishes from a few feet to nothing at the apex. If the dimensions of a dome were worked ut, say of 50 fr . internal diameter, and of 4 ft . in thickness, it would be found that the lock K would be about $418 \frac{1}{2} \mathrm{ff}$. cubc; L $368 \frac{1}{2} \mathrm{ft}$. cube; M $274 \frac{1}{2} \mathrm{ft}$. cube; $\mathrm{N} 146 \frac{1}{2} \mathrm{ft}$. ube; and the half block $\mathrm{O} 22 \frac{1}{2} \mathrm{ft}$. cube. The fact las to be remembered, that all domes re built in courses of stones which are bonded one into the other, forning circular rings; nd that eren if a dome be cut down into four quarters, each quarter will stand of itself.
1499r. Rankine, Appled Mechanics, 1858, points out that the tendency of a done spread at its base is resisted by the stability of a cylindrical wall, or of a scries of uttresses surrounding the base of the domes, or by the tenaeity of a metal hoop encircling te base of the dome. The conditions of stability of a dome are ascertained by him in the Hlowing manner. Let fig. $59 \div d$. represent a vercal section of a dome springing fiom a cylindrial wall BB. The shell of the dome is supposed , be thin as compared with its external and inrnal dimensions. Let the centre of the crown f the dome, O. be taken as origin of coordinates; it x be the depth of any circular joint in the wll, such as CC ; and y the radius of that jo nt at i be the angle of inclination of the shell at \mathbf{C} , the lorizon, and $d s$ the length of an elementary c of the vertical section of the dome, such as

Fig. 5!Od. 1), whose vertical height is $d x$, and the difference of its lower and upper radii $d y$; so wat ${ }_{d x}^{d y}=\operatorname{cotan} i ;{ }_{d s}^{d s}=\operatorname{cosec} i$. Lat P_{x} be the weight of the part of the dome alove the icular joint CC. Then the total thrust in the direction of a set of tangents to the dome, diating obliquely downwards all round the joint CC , is $\mathrm{P}_{x} \cdot \frac{d s}{d x}=\mathrm{P}_{x} \cdot \operatorname{cosec} i$; and the total srizontal component of that radiating thrust is $\mathrm{P}^{c} \cdot \frac{d y}{d x}=\mathrm{P}_{x} \cdot \operatorname{cotan} i$. Let p_{y} denote the tensity of that horizontal radiating thrust, per unit of peripbery of the joint CC ; thien cause the periphery of that joint is $2 \pi y(=6.2832 y)$, we lave $p_{y}=\frac{1^{\prime} x \operatorname{cotan} i}{2 \pi y}$.
1499s. If there be an inward radiating pressure unon a ring. of a given intens'ty per nt of are, there is a thrust exerted all romed that ring, whose amont is the product of at intensity into the radius of the ring. The same proposition is true, substituting an itward for an inward r.diating pressure, and a tension all round the ring for a thrust. If, erefore, the horizontal radiating pressure of the dome at the joint CC be resisted by the nacity of a hoop, the tension at eacls point of that hoop, being denoted by $\mathrm{P} y$, is given the equation $\mathrm{P}_{y}=y p_{y}=\frac{\mathrm{P}_{x} \operatorname{cotan} i}{2 \pi}$. Now conceive the hoop to be removed to the cular joint DD, distant by the are d s from CC , and let its tension in this new position $\mathrm{P}_{y}-d \mathrm{P}_{y}$. The difference, $d \mathrm{P}_{y}$, when the tension of the hoop at CC is the greater, presents a thrust which must be excrted all ronnd the ring of brickwork CC DD, and ose intensity per unit of length of the are CD is $p_{x}=\frac{d \mathrm{P}_{y}}{d s}=\frac{1}{2 \pi} \cdot \frac{d}{d s}\left(\mathrm{P}_{x} \operatorname{cotan} i\right.$.)
1499t. Esery ring of brickwork for which n_{z} is either nothing or positive, is stahle, hpundently of the tenacity of cement ; for in eacb such ring there is no tension in any ection. When ηx becomes negative, that is, when P_{y} has passed its maximum and gins to diminish, there is tension horizontally romed each ing of brick work, which, in Ler to secure the stability of the dome, must be resisted by the tenacity of cement, or of eernal hoops, or by the assistance of abutments. Such is the condition of the stability of lome. The inelination the the horizon of the surface of the dome at the joint where $=0$ and helow which that quantity becomes negative, is the angle of rupture of the me; and the borizontal component of its thrust at that joint, is its total horizontal ust against the abutment, hoop or hoops, by which it is prevented from spreading. A ne may have a sircular of ening in its crown. Oval-arehed openings may also be made tower points, provided at such points there is no tension; and the ratio of the horizontal Ithe indined axis of any such opening shontal be fixed by the equation

1 ik ine concludes with examples of "spherical," and " truncated comical," domes.
199u. Cones.-'lhese are used in tile-kilus, glass-houses, and such like. A building in 1 shape of a bollow eone forms everywhere a spectes of circular arelb, which may be con* ced withont centering or support, provided the joints be made to radiate towards the are. The eomeses should be laid perpendicular to the sides of the proposed cone. A
rod of variable length, turning on a pivot, must be stretched all round from time to thme, upon a moveable centre, rising as the work proceeds, in order to regulate the internal ontline. Such is the strength of this fom that the highest kilns are seldom built more than one brick thick, althongh this dimension would be altogether insufficient for a conmon wall of the same height. lt is, probably, this principle which has conduced to the existence of the Round Towers of Ireland. That of Kilkenny, for example, 100 ft . in height. wats built on, or very near. the surface, for at 2 ft . below it, wood coffins with sheletons were found partly under the walls, thus affording an unstahle foundation.

Pointen Arch Vaulting.

14990. We now proceed to enter into a iew of the general forms of groining in pointed architecture, observing. by the way, that the groins at the arrises, up to the twelfth century, were seldom moulded with more than a simple torns or some fillets. In the twelfth cantury, however, the torus is doubled, and the

Tig. 590e. doubling parted by a fillet. Towards the end of the twelfth century, three tori often occur; and at the beginning of the thirteenth, the moulded arrises become similar to the moulded archivolts of the arches, both in their form and arrangement. In France, until the middle of the fifteenth century, the arrises of the groins only were moulded; but in this c untry the practice took place much earlier, for, instead of simple groining, the introduction of a number of subdivisions in the soffits of arches had become common. In fig. 590e is given a plan of the soffit of a vault of this kind, in which A is an arc doubleau (by which is understood an are supposited below another at certain intervals, and concentric with the latter); 3 is an upper arch, called ly the French antiqua. ries formeret; C , the wall arch, or formeret d_{16} mur; D is a diagonal rib, or croisée d'ogire; E , intermediate rib or tierceron; FF, summit ribs or liernes; G, the key or boss, clef de voute. Mr. Willis has used the French terms here given, and as we have no simple terms to express them in English, it may be convenient to adopt the practice.

1499w. Thesibs formed by the intersections of the groins perform the office of supporting the vaulting which lies upon them, they in their turn

Fig. 590 f. being borne ly the pillars. Thus, in the simple groin (fig. $590 f$.), the arches AA, and diagonai rib C, carry the vaulting $B B$, a rebate heing formed at the lower part of the ribs on which the vaulting lies. This figure exhibits the simplest form of groining in any species of vaulting, the intersecting arches being of equal height. The contrivance in its earliest state was ingenious, and the study attractive, and we cannot be surprised at Dr. Robison observing, in respect of the artists of the thirteenth and two following centuries, that " an art so multifarions, and so much out of the road of ordinary thought, could not but lecome an object of fond study to the architects most eminent for ingenuity and invention: becoming thus the dupes of their own ingenuity, they were fond of displaying it where not necessary." This observation would be fully verified had we room for showing the reader the infinite number of devices that ingenuity has created: he will, however, from the few elementary ones that we do give, be enabled to see the germs of countless others.
1499.r. Ware, in his Tracts on Vaults and Bridges, 1822-a work which, notwithstanding the quaint method in which the subject is treated, contains extremely valuable matter, - has made some remarks which we must introduce at length, or justice would not be done to them. "In the vaulting," he says, " of the aisles of Durham and Canterbury cathedrals ate to be observed the ares doublean x and groined rils in round-headed vaults. In the naves of the same buildings is the same character of vaulting, except that the arch of the vault is pointed. Some vaults of this hind are to be distinguished from others by the
isiting of the stones of the vault between the ribs, which, instead of being parallel to each le of the plan, as in Ruman groined vaults, take a mcan direction hetween the groined It and the ribs of the arches over the sides; whence they meet at the vertex at an acute igle, and are received by stones running along the vertex, cut in the form of a ratchet. lie advantage of this method consists in requiring less centering, and originates in the sition of the ribs at the springing." "From these beginnings vaulting began to assume :nse practical advantages which the joint adaptation of the pointed arch and ribs was cal. il ted to produce." "The second step differed from the first, inasmuch as at the vertex the vault a continued keystone or ridge projects below the surface of the vault, and forms feature similar to the ribs. But here it was necessary that the r:dge shonld be a stone ot reat length, or baving artificially that property, because its suspension by a thinner vault an itself would be unsafe, unless assisted by the rib arches over the diagonals and side, a stance equal to half the width of the vault. To obviate this objection, other ribs were troduced at intervals, which may be conceived to be groined ribs over various oblongs, ie side continually decreasing. This practice had a further advantage, as the pancls or ults hetween the ribs might become proportionally thinner as the principal supports ineased, It is now that the apparent magic hardiness of pointed vaulting and the high nbowered roof began to display itself; from slender columns to stret. h shades as broad as ose of the oak's thick branches, and, in the levity of the panel to the rib, to imitate that thee leaf to the branch." "On comparing rib-pointed vaulting with Roman vaulting, it ill he invariably found that the rib itself is thinner than the uniform thickness of the oman vault under similar circumstances; and that the pancl, which is the principal part - the vault in superficial quantity, sometimes does not exceed one ninth part of the rib in ickness. The Gothic architects, it has been expressively said. have given to stone an parent flexibility equal to the most ductile metals, and have made it forget its nature, caning it from its fondness to descend to the centre."

Fig. 590%.

Fig. 590h.

1499y. In the second example (f fg. $590 g$.), another rib, $a b$, is introduced, which on plan oduces the form of a star of four puints. The forms of these thus inserted ribs result in curves of the lines on the plan in the space to be vaulted. As many radii are drawn

118.390 m

17g. scik.
from the angles of the plan as there are ribs intended, until they mutually intersect each other. The curvatures of the ribs will be elongated as they recede from the primitive arch, till they reach the centre on the place where the groins cross, and where of course the clongat curve is a maximum 'The rits thus form, when they are of the same curvature, portions of an inverted conoid.

1499z. In the next example (fiy. 590h.), the primitive arches are unequal in hoight, the arch A being higher than B The plan remains the same as in that immediately preceding; hut from the inequality of height, $a d, c b$, must be joincd by curved lines, determined on one side by the point a where e a intersects the lunger arch. A curved summit rib, as well longitudinally as transversely, may occur with equal or unequal heights of primitive vrches (as in fig $59: 1 \%$.) ; but the stellar form on the plan still remains, though differently modified, with the stme, or a less or greater, number of ribs on the plan (fig. 590k.). 13_{y} runcating, as it were, the summit ribs, level or otlerwise, with the tops of the primitive arches, and introducing en the plan a polygon or a circle touching quadrants inscribed in

F:g. 590. the square, we obtain, by means of the rising conoidal quadrants, figures which pexform the office of a key. stone. In this, as we have aloove oliserved. the corrstruction of the work is totally different from rib vaulting, inasmuch as each course, in rising, supports the next, after the mammer of a dome, and is not dependent on ribs for carrying the filling-in pieces. Hence the distinction between fanwork and radiating rib work so judicionsly made by Mr. Willis.

1499aa. The sixth example (fig. $5 y 0 \ell$.) has primitive arches of different heights, forming an irregralar star on plan, that is to say, the points are of different angles. 'Ihe figure will scarcely need explanation after what has been already said in relation t_{0} the subject ${ }^{\prime}$

1499bb. A polygonal space may be vaulted in three different ways. First, by a rentral column serving for the reception of the ribs of the vault, the solumn or pillar performing in such case the office of a wall, as in the chapter-housts of Worcester, Salisbury, Wells, and Lincoln. This mode evidently admits of the largest space being covered, on account of the subdivision of the whole area by means of the central pillar. 'The second mode is by a pendent for the reception of the arches, as in the Lady Chapel at Caudebec, (given in the section Masonry). This mode is necessarily restricted in practice to small spans, on account of the limits attached to the power of materials; albeit in theory its range is as extensive as the former. The last method is by at

Fig. 590 m .

Fig. 590 n .
once voulting the space from wall to wall, as in fig. 590 m ., like the vaulting to the kitchen of the monastery of Durham Cathidral, or. fig. $590 n$., similar to the chapter-house at York, of which, the upper part being of wood, Ware quaintly observes, "The people of Yorkshire fondly admire and justly boast of their eathedral and chapter-house. The principle of vaulting at the chapter-house may be admired and imagined in slone; not so the vault of the nave; it is manifestly one of those sham productions which cheat where there is 110 merit in deceiving." The principle, as W'are justly observes, is perfectly in isonic, and might be casily carried out with stone ribs and panel stones, it being nothing more than an extension of that exhibited in the third example of simple groining (fig. 590f.) above griven; and the same remark applies to the Durlam kitehen.

1499cc We propose to off explanations of the nature of the valting at King's College Chapel at Cambridge, and the silly story related by Walpole of Sir Christopher Wrel. saying, "that if any man would show hin wnere to place the first stome he would
gage to build another" (vault like it). The vault of the chapel in question is rided into oblong severies, whose shorter sides are placed longitudinally (fig. 5900.) must be evident that the curves of the verted quadrants must intersect each otherevious to the whole quadrant of the circle ing completed. Hence these intersections my a curved summit line lowest against e windows or smaller sides of the oblong. is summit line of the vaulting of the ilding in the direction of its length ms a series of curves, though from the gle monder which it is seen it is scarcely perptible. Mr. Ware says, "It is chservable, the construction of this vault, that the prin, le of using freestone for the ribs, and tufa r the panels, has not been followed; but e whole vault has been got out of the sume

Fig. 5900. scription of stone, and with an uniform face, and the panels worked afterwards, and rewed to a tenuity hardly credible except from measurement. The artists of this building ight be trusted in the decoration of a vanlt with what is now called tracery; they knew ow to render it the chief support, and what was the superfluous stone to be taken away : ery part has a place, not only proper, but necessary ; and in the ribs which adorn the ult we may in vain look for false positions. This is the ocular music which affords iversal pleasure."
1499dd. We now return to the consideration of two more modes of simple vaulting. In ngland, the summit ribs of the vault are almost always found rumning longitudinally and insversely in the various examples. In Germany the summit rils are more frequently nitted than introdnced. Thus in the example fig. $590 l$, the scheme is merely a square agonally placed within the severy, subdivided into four parts and connected with the baseiints of the groins by ribs not parallel to the alternate sides of the inserted square. This, wever, sometimes occurs in English buildings, as in the monu:nent of Archbishop Stratford, Canterbury Catl edral ; though in that the central portion is not domical. It is to he marked that the intersecting arches are not of equml height, otherwise the arrangement uld not occur.
1499ee. In the example fig. $590 p$, the arrangement mpletely assumes what Mr. Willis calls the stellai form. ere in the soffit a star of six points is the fignre on nich the projection depend, the points radiating from e angles of an hexagon, and thus forming a cluster of eng. .s whose middle longitudinal sides produce another gigitudinal lozenge to connect the centres of the pattern. te longitudinal arches are, as in the preceding figure. wir than the transverse arches. Mr. Willis says, "the incipal distinction between thase and our own fannlting is the substitution of lozenge-headed compartmits in the fans, for the English horizontal transom ,. We have also lozenge-headed compartments in our rly vaulting, but they are never so symmetically ranged in stars throughout."
1499ff. From the simple lines or principles above

Fig. Scop. ven, it is easy to pereeive through what numberless ramifications of form they may be rried. Another form is that called hexpartite vaulting, where the ribs spring from the nles, and two others from a slaft placed in the middle of cach long side, thus making divisions. This is a step beyond the quadripartite groining shown in fig. 590f. Expples of herpartite vaulting are scarce in England, but it may be seen in the chapel of Bhaise in Westminster Abbey, the chor of Canterbury Cathedral, and in many parts of urcoln Minster.
1499yg. It weuld be difficult to find a system of vaulting more unlike any English mple than that in Anjou generally, of which the Hospital at Angers is a fair specimen. is always excessively donical in its sections, both longitudinat and transverse; and has fhe ribs, the cells being filled in with stones exactly paraltel with the centre or ridge of chl cell : the ribs are edge-roll mouldings.
1493ht. Bewites the books named above, Prof. Willis On Viruting, and by T. Eagles, 74, both read at the Royal Institute of British Architects, the Dictommaire by VialletDue, the L.ectures by Sir G. G. Scott, R.A., and the paper by W. II. Wood, in Builder - 1883 , x lir, 5.5 , should be refiered to. A very complete outline of the subject has FIt pintad hy l'rof. Babeock, of the Comell Lhiversity, lthaca, New York, for his urses wh lectures.

Sect. 1 X .

WALIS AND PIERS.

1500. The mickness which is to be assigned to walls and points of support, that theit stability may be insured, depends on the weight they have to sustain, and on their formation with proper materials; still more on the proportion which their bases bear to their heights. The crushing of stone and brick, by mere superimposed weight, is of extremely rare occurrense in practice, even with soft stone and with bad bricks. The result of some few experiments that have been made as to the resistance of some of our bricks and stones to a crushing force, hy George Rennie, in 1818, are here subjoined. Some later experiments made by the Commissioners mentioned in Book II. chap. ii., and appended to their Report on Stone, \&c., in 1839; with a few others; as well as some important trials made in 1864 by a committee of the Institute of British Architects, given in Transactions, 1863-64, are likewise added.

Table of Crushing Force of Materials, by George Rennie (Phil. Trans. 1818).

1501. The above experiments lose much of their practical value from our knowledge that the interior particles in gramulated substances are protected from yielding by the lateral resistance of the exterior ones; but to what extent it is impossible to estimate, because so much depends on the internal structure of the borly. We are, however, tius far informed, that, taking into account the weight with which a point of support is londed, its thickness onght to be regulated in an inverse ratio to the crushing weight of the material employed. In Gothic structures we often see, for instance, in chapter houses
with a central column, a prodicious weight superimposed. It is needless to say that, in such instances, the strongest material was necessary, and we always find it so employed. So in the columns, or rather pillars, of the naves in such edifices, the greatest care was usually taken to select the hardest stone. Generally speaking, the thickness of walls and piers should be proportioned rather to their height than to the weight they are to bear; hence often the employment of a better material, thotigh more costly, is in truth the most economical.
1502. Table of the Weight hqquibed to Crush Cubes of Stone.

1502a. In the above list B stands for Bramal!, and C for the Commissioners' Report, c. It is of very great importance to notice that the size of the cubes experimented upon y the latier, was only two inches; those by Rennie were only one and a half inch thes. A set of experiments on Portland stone, of the weight sustained up to the point fracture, i.c. the crushing weight, by aceurately cut cubes of two inch faces plated
between perfectly smooth head smfaces, were carried ont with the well known American mechanical testing machine, by Mr. Abel (Builder, 1869, p. 860) :--

INe also observes that "no definite conclusion can be drawn from the comparative pro. perties of the specimens of stone from one and the same locality, quarried at different periods of time, regarding the influence exerted by exposure, alter quarrying, upon the quality of the stone. On the whole, the evidence may be considered as a little in favour of the opinion that an improvement in the strength of the stone is effected, to some ex. tent, ly seasoning."

1502b. A very instructive set of experiments on the strength of Portland stone (brown bed b, a material now so greatly employed in building, was made by a committee of the listitute, above-mentioned.

Table of the Sirengeli of Cubes of Portland Stone.

Height.	Base.	Cracked.	Crushed.	On square inch.	Remarks.
Inches. 2	Inches.	Tons.	Tuns.	Tons.	
	2×2	- -	$3 \cdot 2$	$0 \cdot 8$	At once.
	2×2	40	6.0	1.5	
	4×2	- -	$20 \cdot 2$	$2 \cdot 5$	At once.
	26	$21^{\circ} 0$	23.5	$1 \cdot 7$	
	4×4	8.0	41.0		Across the bed.
	6×6	64.0	86.0	$24,1$	
4	2×2	-	$3 \cdot 0$	$0 \cdot 75$	
	4×2	-	17.0	212	
	4×4	2575	$29 \cdot 25$	189	
	4×4	$24 \% 3$	28.75	$1 \cdot 85$	
	4×6	31.0	45.0	1.87	${ }^{n}$ Vcry slight. external.
	6×6	$48.0{ }^{\text {a }}$	$82.0^{\text {b }}$	$2 \cdot 27$	${ }^{b}$ Not crushed.
6	2×2	$2 \cdot 8$	$3 \cdot 4$	$0 \cdot 85$	
	6×2	- -	$10 \cdot 0$	0.83	
	4×4	18.0	$20 \cdot 45$	$1 \times 27\}$	At right angles to the bed.
	6×4	. $28 \cdot 0$	$32 \cdot 0$	$1 \cdot 33$)	
	6×6	$64.0{ }^{\text {c }}$	$70 \cdot 0$	$1 \cdot 94$	c Very slightly.
	6×6	55.0	6875	$1 \cdot 90$	

1502c. C. II. Smith has bserved (Transactions of the In titute of British Architects, 1860, page 174.), that "the stone which possesses the least cohesive strength, or that which will crush with less pressure than any other, is nevertheless strong enough, when well fixed in a building, for almost all practical purposes. No arehitectural members have to sustain greater pressure. in proportion to their size, than mullions of large Gothic windows. The tracery in the great north window of Westminster Hall is now executed in Bath stone, which is remarkable for having the least cohesive strength of all the specimens described as experimented upon in the Report on Stone, \&c. Some of the mullions of that window are less than nine inches wide and more than forty feet high. sustaining nut only their own weight, but also that of the whole of the tracery beneath the arch. The castern window of Carlisle Cathedral, built with a fiiable red sandstone, is fifty feet high, the mullions are smaller, and the tracery much heavier than in that at Westminster, yet in neither of these examples are there any symptoms of crushing. 'The cohesive streninth of stones is never more severely tested than during their conversion by workmen from the rough state to being fixed in their final situation in a building. During these operations, iron levers, jacks, lewises, and various other implements are applied. frequently with but little regard for the mechanical violence which a stome will safely bear ; and it may, there-
fore, be considered a useful pract cail rule, that, however solt a stone nay be, if it resist the hability of damage until out of the masons' hands, there can be little doult of its possessing sufheient cohesive strength for any kind of architectural work. If the foundation be msufficient, or any part of the edifice give way, so as to cause an unfair or unequal presoure, a soft stone will, of conrse, yield sooner than a hard one."

1502 d . "Unfortunately," writes Warr, Dynamice, 1851, "those experimental results which we possess were obtained without attention to the fact that the specimens shonld be of a certain height to show a proper compressive strength. The bulk of the examples are with cubes, a fault excusable with those experimenters who made their work publie before those peculiarities were well known, but the same cannot be said of the investigations conducted by the Commissioners; these experiments, executed with singular minuteness on some points, would have been useful, from their variety and specification of the localitis, but they were made on (2 .inch) cubes, at a period when the laws of fracture were as publ c as at present, and are therefore of himited value."

1502e. Hodgkinson (Phil. Trans., 1840, p. 38.5), found that in small colımms of one inch to one and three-quarters inch square, and from one to forty inches long, a great falling off occurred when the height was greater than twelve times the side of the base. Thus, when the length was-

12	times the size of the base, the strength was	-	-	138		
15	$"$	$"$	$"$	$"$	-	- a little less
24	$"$	$"$	$"$	$"$	-	-
30	$"$	$"$	$"$	$"$	-	-
40	$"$	$"$	$"$	$"$	-	-

He also found that with pillars shorier than thirty times the thickness, fracture occurred by one of the ends failing, and as the longer columns deflected more than the shorter, they presented less of the base to resist the pressure, and therefore more readily gave way. Thus the practical view from these experiments points out an increase of area at the ends as heing most economical, and that in proportion to the middle as 13,766 to 9,595 nearly. From the experiments it would appear that the Grecian columns, which seldom had their length more than about ten times the diameter, werc nearly of the form capable of bearing the greatest weight when their shafts were uniform; and that columns, tapering from the bottom to the top, were only capable of bearing weights due to the smallest part of their scetion, though the larger end might serve to prevent lateral thrust. This last remark applies, too, to the Egyptian columns, the strength of the column being only that of the mallest part of the section. (British Association for the Advancement of Science, $15 h$ Report, 1845, p. 27.)

1502f. It might be asked, how does this apply to those small shafts or colonettes so reely used with piers in pointed architecture, and which are generally in height upwards of thirty times their diameter. We would reler the student to the paragraph $1502 c$., especting the mullions in windows, and to the circumstance that the snall shafts are not simed-in to the work, but are left free, so that they only apparently carry the weight mposed on their capitals. Where no attention has b en paid to this necessary precaution, n modern work, the shalt has fractured when of soft, or shaky, stone.

1502g. Table of the Strength of Shafts 12 inches long, 3 inches diameter,
(Leing experiments made by a committee of the Institute, as above-mentioned.)

Materials.	Cracked.	Crushed.	On square inch.	Remarks.
Portlaud stone :	Tous.	Tons.	Tons.	All yielded vertically.
Worked -	$7 \cdot 3$	10.25	$1 \cdot 48$	Bedded in leather.
lRongh tuoled -		8.57	$1 \cdot 00$	Bedded in plaster.
Devonshire marbles :				
Ipplepen, mottled red	92	$10 \cdot 7$	1:37	[with vein.
loltesco, grey green	$4 \cdot 3$	4:3	$0 \cdot 60$	Went across and not
Ditto - -	- -	60	$0 \cdot 84$	Went at onee.
Signal Stuff red anduack $\{$	$0 \cdot 0$	33.5	4.73	Went into fraginents.
Signal Staff. red and hack	20.0	22.5	$3 \cdot 18$	Ditto.
Culdewith,	12.75	16.25	$2 \cdot 29$	
Cadgewith, green and black	16.92	$17 \cdot 62$	$2 \cdot 49$	

1.502h. Vairbaim, in a paper read at the Manchester Philosophical Society, and given in 1. siv. of the I'roccedings; and also in his Useful Information, \&e , 2nd Series, has detailed - Gellowing results of his researches:-

1502 . He further shows that the resistance of strong sandstone to crushing in a directoon parallel to the layers, is only six-sevenths of the resistance to crusling in a direction perpendicular to the layers. The hardest stones alone give way to crushing at once, without previous warning. All others begin to erack or split under a load less than that which finally crushes them, in a proportion which ranges from a fraction little less than unity in the harder stones, down to about one half in the softest. The mode in which stone gives way to a crushing load is in general by shearing. The factor of safety in structures of stone should not he less than eight, in order to provide for variations in the strength of the material, as well as for other contiugencies. In some structures which have stood it is bess; but there can be no doubt that these err on the side of boldness, as urged by Rankine, Civil Engineering, page 361.
$15 \cup 9 k$.
Table of the Weights required to Crush Bhicks.

Experiments by T. Cubitt.			Yielded to.		Crushed ly.		Remarks.
Good plaee bricks	-	-		tons		tons	Bedded on plaster.
Ditto - -	-	-	16	,	$20 \frac{1}{2}$		Ditto.
Two common stocks	-	-	10	"	$\left\{\begin{array}{l}16 \\ 16\end{array}\right.$	"	No plaster.
Good stock -	-	-	30	"	$3{ }_{3}$		
Superior washed stuck	-	-	36	"		"	
Ordmary place brick	-	-				"	
Ditto -	-	-		"	6		
Common ditto	-	-	-		5 to $2 \frac{1}{2}$		

A brick made by Beale's machine being plaeed on bearers seven inches apart, was broken in the middle by the weight of $2,625 \mathrm{lbs}$. A eommon hand-made brick was broken by 645 lbs . The hollow or frog formed in the underside of a brick necessarily lessens its resisting power. Young (Nat. Phil.) states that the cohesive strength of a square inch of brick is 300 lbs ., but the quality is not stated. Other experiments give the following strength of bricks:-

-					$\begin{aligned} & \text { rwt. } \\ & 31 \end{aligned}$	Tons. Cut.	
Brick	Huntingdonshire el	, perforated,		ch -		58	18
,.	Suffolk clay, solid:	(broke across)	"	, -	8.75	16	12
,	Made by Prosser's	nacline, bore	,,	"		90	0
,	Arsley, and not crus	hed	,	" -		83	0
,	Ordinary stock,					140	0
"	Common fire clay,	per square foot				157	0
	Good ditto,					396	0
"	L'sed at Eilinburg per square fuot	Gas Works,		and		400	0

1502l. Brickwork.-Briek piers 9 inches square, O feet 3 inches high, made of grod sound Cowley stucks, set in eement, and proved two days afterwards:-

		Cracked at	Broke at
Brick flat, compressed quarter of an inch -	-	-25 tons	30 tous
Brick on edge, did not compress -	-	-	-37

1502m. Mr. L. Clarke's experiments for the works at the Britannia and Conway tubular bridges, on brickwork in cubes, showed that-
9 inches, cemented, No. 1 or best quality. set between deal boards, weighing 54 lbs., erushed with 19 tons 18 cwt . 2 qrs. 22 lbs.
9 inches, No. I, set in cement, weighing 53 lbs , crushed with
22 tons 3 cwt .0 qrs .17 lbs.
$=612.7 \mathrm{lbs}$.

9 inches, No. 3, set in cement, weighing 52 Ibs, erushed with
16 tons 8 cwt 2 grs. 8 lbs. $\quad=4543 \mathrm{lbs}$. per square ineh.
$9 \frac{1}{4}$ inches, No. 4, set in cement, weighing $55 \frac{1}{2} \mathrm{hbs}$, erushed with
21 tons 14 ewt. I qr. 17 lbs. $\quad-\quad-\quad=568.5 \mathrm{lbs}$.
9 inehcs, No. 4, set between boards, weighing $54 \frac{1}{4} \mathrm{Ibs}$. erushed with 15 tons 2 ewt. 0 qrs. $12 \mathrm{lbs}-\quad-\quad=417.0 \mathrm{lbs}$.
Nean

The three last cubes eontinued to support the weigit, although cracked in all directions; they fell to pieces when the loid was removed. All began to show irregular erachs a considerable time before it gave way. The average weight supported by these bricks was 33.5 tons per square foot. 'qual to a column 583.69 feet high of such brickwork. (Fairbirn, Application, \&e., page 192)

1502n. To crush a mass of solid brickwork 1 foot square, requires $300,000 \mathrm{lbs}$ avoirdupois, or 134 tons $7 \frac{1}{2} \mathrm{cwt}$.
1.502o. Besides compression, stone is subjeet to detrusion and a transverse strain, as when used in a lintel. Of these strengths in stone little is offieially known, but we are perfectly aware of the danger of using any kind of stone for beams where there is mueh ehanee of serious or of irregular pressures. Its weakness in respect to this strain is manifest from all experimental evidence coneerning it. Ganthey states the value of a constant S, for hard limestone $=78 \mathrm{lbs}$; for soft limestone $=69 \mathrm{lbs}$. Hodgkinson, taking the power of resisting a crushing force as $=1000$, notices-

Black marble -	-	-	-	-	-	-	$\begin{aligned} & \text { lensil } \\ & \text { sirain } \\ & 1 \neq 3 \end{aligned}$		ransvers strian. $10 \cdot 1$
Italian inarble	-	-	-	-	-	-	85	"	$10 \cdot 6$
Rochdale flagstone	-	-	-	-	-		104	",	99
Yorkshire flag	-	-	-	-	-	-	0	"	9.5
Mean	-	-	-	-	-		104	"	10.0

$1509 p$. The danger above noticed is so great, that it becomes essentially necessary in all rough rubble work to insert over an opening either an iron or timber lintel, or a brick or stone arch, to carry the superincumbent weight, and thus prevent any pressure upon the stone. This must be done nore especially when beams or lintels of soft stone are used; the harder stones, as Portland, may in ashlar work support themselves without much danger. In rubble masonry, the stone arch may be shown without hesitation in the face of the work; and also in domestic architecture, the briek arch may exhibit itself in the facework if thought desirable. Portland stone has been constantly used to extend over a comparatively wide opening. All blocks set upon it should have a clear bed along the middle of its lengtl. Thus cills to windows should always be set with clear beds, or, as the new work settles, they are certain to be broken. Lintels over even small openings worked in Bath or some of the softer stones, are very likely to crack aeross by very slight settlements, especially when supported in their length by a mullion or small pier, as is often introduced. We need hardly add that where impact or collision is likely to occur, no lintel of stone should be nsed.

1502q. Narble mantles may sometimes be seen to have become bent by their own weight. Beans of marble have been employed in Grecian temples as much as 18 feet in the elear in the pro'ylea at Athens; and marble beams 2 feet wide and $1: 3$ inehes deep were hollowed out, leaving $4 \frac{3}{8}$ inches thickness at the sides and $3 \frac{1}{2}$ inehes at the bott m ; these beams were about 1 is fiet in the elear in the north portieo of the temple at Basse near Ihigraleia.
$1502 r$. The cohesive power of stone is seldom tested. The subject of crushing weights, or the compression of timber and metals, will be treated in a subsequent seetion (1631e. et seq.) ; and the sirength of some other materials will be given in the chapter Materiais.

Of the Stability of Walls.

1.503. In the construction of edifices there are three degrees of stability assignable to walls. I. One of undoubted stability; II. A mean bitween the last; and the III. The cast thickness which they ought to possess.
1.504. The first case is that in whieh from many examples we find the thickness equal to ne eighth part of the height: a mean stability is obtained when the thickness is one tenth part of the height; and the minimum of stability when one twelfih of its height. We are, however, to reeollect that in most buildings one wall becomes eonnected with another, so hat stahility may be obtained hy considering them otherwise than as independent walls.
1500°. That some id: a may be formed of the difference between a wall entirely isolated nind one connected with one or two others at right angles, we here give figs. 59 I , 592 , bnd 59%. It is obvions that in the first ease (fig. 591 .) a wall acted upon by the horizontal orce MN, will have no resistance but from the breadth of its base ; that in the second

Fig. 591
Fig. 692.
ase (fiy. 592.) the wall GF is opposed to the force MN. so that only the triangle of it HIf: can be detached; lastly, in fig. 593. the force MN would only be effective against

Fig. 595
the triangle CGH, which would, of course, be greater in proportion to the increased distance of the walls CD, HI.
1506. In the first case, the unequal settlement of the soil or of the construction may produce the effect of the force MN. The wall will fall on the occurrence of an horizontal disunion between the parts.
1507. In the second case the disumion must take place obliquely, which will require a greater effort of the power MN.
1508. In the third case, in order to overturn the wall, there must be three fractures threugh the effort of $M \mathrm{~N}$, requiring a much more considerable force than in the second case,
1509. We may easily conceive that the resistance of a wall standing between two others will be greater or less as the walls CD, HI are more or less distant; so that, in an extreme approximation to one another, the fracture would be impossible, and, in the opposite case, the int. rmediate wall approaches the case of an isolated wall.

1510 Walls enclosing a space are in the preceding predicament, because they mutually tend to sustain one another at their extremities; hence their thickness should increase as their length increases.
1.511. The result of a vast number of experiments by Rondelet, whose work we are still using. will be detailed in the following observations and calculations.
1512. Let ABCD (fig. 594.) be the face of one of the walls for enclosing a rectangular

space, EFGII (fig. 595.). Draw the diagomal BD. and abott IB make Bd equal to one pighth part of the height, if great stability be required; fir a mean stability, the ninth or tenth part ; and, for a ligit stavility, the eleventh or twelfth part. If through the point d a parallel to AB be drawn, the interval will give the thickness to be assigned to the great walls EF, GH, whose length is equal to AD.
1513. The thickness of the walls EG, FH is obtained by making AD' equal to their length, and, having drawn the diagonal as before, pursuing the same operation.
1514. When the walls are of the same height but of diflerent lengths, as in fig. 596. ,

Fig. 596.

Fig 597.
he operation may be abridged by describing on the point B (fig. 597.) as a centre with a adius equal to one eighth, one tenth, or one twelfth, or such other part of the height as nay be considered nccessary for a solid, mean, or lighter construction, then transferring heir lengths, EF, FG, GH, and HE from A to $\mathrm{D}, \mathrm{D}^{\prime}, \mathrm{D}^{\prime \prime}$, and $\mathrm{D}^{\prime \prime \prime}$; and having made he rectangles $\mathrm{AC}, \mathrm{AC}^{\prime}, \mathrm{AC}^{\prime \prime}$, and $\mathrm{AC}^{\prime \prime \prime}$, draw from the common point B the diagonals 3D, $\mathrm{BD}^{\prime}, \mathrm{BD}^{\prime \prime}$, and $\mathrm{BD}^{\prime \prime \prime}$, eutting the small circle described on the point B in different oints, through which parallels to AB are to be drawn, and they will give the thickness of ach in proportion to its length.
1515. In figs. 598. to 602 . are given the operations for finding the thicknesses of wails

Fig. 599.

Fir. finn.

Fig. 6C1.

$\mathrm{F}_{\mathrm{s}}, 602$.
losing polygenal areas supposel to be of the same height; thans AD represents the e of tle hexagon (fig. 602.) ; AD^{\prime} that of the pentagon (fig. 601.); $\mathrm{AD}^{\prime \prime}$ the side of square (fig. 599.) ; and $\mathrm{AD}^{\prime \prime \prime}$ that of the equilateral triangle (fig. 600.).
1516. It is manifest that, by this method, we increase the thicknesses of the walls in mortion to their heights and lengths; for one or the other, or both, camot increase or finish without the same happening to the diagonal.
517. It is obvions that it is casy to ealculate mumbers the results thas geometrically anned by the simple rule of three; for, knowing the three sides of the triag e ABD.
similar to the smaller triangle $\mathrm{B} d e$, we have $\mathrm{BD}: \mathrm{B} d:: \mathrm{AD}: e d$. Thus, suppose the length of wall represented by $A D=28$ feet, and its height $A B=12$ feet, we shall have the length of the diagonal $=30$ feet $5 \frac{1}{2}$ inches; and, taking the ninth part of $A B$, or 16 inelies, as the thickness to be transferred on the diagonal from B to d, we have 30 ft .6 in . : $16 \mathrm{in} .:: 28 \mathrm{ft} .: 14 \mathrm{in} .: 8$ lines $(e d)$. The ealculation may also be made trigonometrically; into which there is no necessity to enter, inasmuch as the rules for obtaining the result mav be referred to in the section "Trigonometry," and from thence here applied.

Method of enclosing a given Area in any regular Polygon.

1518. It is manifest that a polygon may be divided by lines from the centre to ats angles into as many triangles as it has sides. In fig. 601., on one of these triangles let fall from C (which is the vertex of each triangle) a perpendicular CD on the base or side $A B$ which is supposed horizontal. The area of this triangle is equal to the product of DB (half AB) by CD , or to the rectangle DCFB . Making $\mathrm{DB}=x, \mathrm{CD}=y$, and the area giveli $=p$, wo blall hive,

For the equilateral triangle, $x \times y \times 3=p$, or $x y=\frac{p}{3}$;
For the square, $x y \times 4=p$, or $x y=\frac{p}{4}$;
For the peritagon, $x y \times 5=p$, or $x y=\frac{p}{5}$;
For the hexagon, $x y \times 6=p$, or $x y=\frac{p}{6}$.
Each of these equations containing two unknown quantities, it becomes necessary to ascertain the proprortion of x to y, which is as the sines of the angles opposite to the sides DB and CD).
1519. In the equilateral triangle this proportion is as the sine of 60 degrees to the sine of 30 degrees; that is, using a table of sines, as $86603: 50000$, or $8 \frac{2}{3}: 5$, or $26: 15$, whence

$$
x: y:: 26: 15, \text { and } 15 x=26 y ; \text { whence } y=\frac{15 x}{26} \text {. }
$$

Substituting this value in the equation $x y=\frac{p}{3}$, we have

$$
\frac{15 x^{2}}{26}={ }_{3}^{p}, \text { which becomes } x^{2}=\frac{26 p}{45}, \text { and } x=\sqrt{26 p} \frac{25}{45}
$$

Supposing the area given to be 3600 , we shall therefore have

$$
x=\sqrt{\frac{3500 \times 26}{45}}=45 \cdot 6, \text { and the side } A B=91 \cdot 2 .
$$

For the pentagon, $x: y:: \sin .36^{\circ}: \sin .54^{\circ}$, or as $58759: 80902$, whence

$$
y=\frac{80902 x}{58799}
$$

Substituting this value in the equation $x y=\frac{p}{5}$, we have

$$
\frac{80002 z^{2}}{58799}=\frac{3600}{5}, \text { and } x=\sqrt{\frac{58779 \times 720}{80902} ;}
$$

which makes $x=22 \cdot 87$, and the side $A B=45.74$.
For the hexagon, $x: y:: \sin .30^{\circ}: \sin .60^{\circ}$, or as $50000: 86603:: 5: 8 \frac{2}{3}$, whence the value of $y=\frac{21}{15}$. This value, substituted in the equation $x y=\frac{p}{6}$, will give $\frac{26 x^{2}}{15}=600$; whence $v^{2}=\frac{600 \times 15}{26}$; lastly, therefore, $x=\vee 346 \cdot 15=18 \cdot 61$, and the side $A B=37 \cdot 22$.

Geometrically.

1520. Suppose the ease that of a pentagon (fig. 601.) one of whose equal triangles is AC13. Let fall the perpendicular C1), which divides it into two equal parts; whence its area is equal to the rectangle CDBF .
1521. Upon the side $A \mathrm{~B}$, prolonged, if necessary, make DE equal to $C D$, and from the middle of BE as a centre describe the semi-circumference eutting (D) in G , and GI) will be the side of a square of the same area as the rectangle CDI3F. The sides of similar figures (Gcometry, 961.) being as the square roots of their areas; find the square root of the given area and make D_{g} equal to it. From the point g draw farallels to GE and GB, which will determine on $A B$ the points e and b, and give on one side $1 b$ equal to one half of the side of the polygon sought ; and. on the other, the radius De of the ciremmference in which it is inseribed. This is manifest because of the similar triangles EGB

1522. From the truth that the sides of similar figures are to each other as the square roots of their areas we arrive at a simple method of redueing any figure to a given area Form an angle of reduction (fig. 603.) one of whose sides is equal to the square ront of the greater area, and the chord of the are, which determines the size of the angle equal

The square root of the smaller area. Let, for instance, the rger area $=1156$, and that of the smaller, to which the figure to be reduced, $=529$. Draw an indefinite line, on which rake $\mathrm{AB}=34$, the square root of 1156 . Lastly, from the oint A, as a centre, having deseribed an indefinite are, with a ength equal to the square root 23 of 529 , set out Bg ; through draw $A g$, which will be the angle of reduction $g A B$, by means f which the figure may be reduced, transferring all the meares of the larger area to the line $A D$, with which ares are

Fig. 503. , be described whose chords will be the sides sought.
1523. If it be not required to reduce but to describe a figure whose area and form ars iven, we must make a large diagram of any area larger than that sought, and then duce it.
1524. The eircle, as we have already observed in a previous subsection (933.), being but polygon of an infinite number of sides, it would follow that a circuiar enclosure would be ble with an intinitely small thickness of wall. This property nay be easily demonstrated a very simple experiment. Take, for instance, a sheet of paper, which would not easily made to stand while extended to its fill length, but the moment it is bent into the form a cylinder it acquires a stability, though its thickness be not a thousandth part of its eight.
1525. But as walls must lave a certain thickness to acquire stability, inasmuch as ney are composed of particles susceptible of separation, we may consider a circular enosure as a regular polygon of twelve sides, and determine its thickness by the preceding -ocess. Or, to render the operation more simple, find the thickness of a straight wall hose length is equal to one half the radius.
1526. Suppose, for example, a circular space of 56 ft . diameter and 18 ft . high, and e thickness of the wall be required. Describe the rectangle ABCD (fig. 594.), whose ise is equal to half the radius, that is, 14 ft ., and whose height $A B$ is 18 ft . ; then, awing the diagonal $B \mathrm{D}$, make $\mathrm{B} d$ equal to the ninth part of the height, that is, 2 ft . hrough d draw ad parallel to the base, and its length will represent the thickness sought, hich is $14 \frac{3}{1}$ inches.
1527. By calculation. Add the square of the height to that of half the radins, that is, $18=324$, and of $14=196(=520)$. Then extract the square root of 520 , which will be ind $=22 \cdot 8$, and this will he the value of the diagonal B.D. Then we have the follow5 proportion : $22 \cdot 8: 14:: 2 \mathrm{ft}$. (19 the height) $: 14.74$.
1528. The exterior wall of the church of St. Stefuno Rotondo at Rome (Temple of tudius) incloses a site 198 feet dianeter. The wall, which is contructed of rubble sonry faced with bricks, is $2 \mathrm{ft} .4 \mathrm{in}$. (French) thick, and $22 \frac{1}{2} \mathrm{ft}$. high. In aping to it the preceding rule, we shall find the diagonal of the rectangle, whose base uld be the side of a polygon, equal to half the radius and $22 \frac{1}{2} \mathrm{ft}$. high, would be $19 \frac{1}{2} \times 49 \frac{1}{2}+22 \frac{1}{2} \times 22 \frac{1}{2}=54 \frac{37}{1000}$. Then, using the proportion $54.37: 49.5:: \frac{22 \frac{1}{2}}{9}: 2 \mathrm{ft}$. 11. and 4 lines, the thickness sought, instead of 2 ft .4 in , the actual thickness. We y as well mention in this place that a circle encloses the greatest quantity of area h the least quantity of walling ; and of polygons, those with a greater number of sides 1re than those with a lesser: the proportion of the wall in the circle being 31416 to an ; a of 78540000 ; whilst in a square, for the sante area, a length of wall equal to 35448 "uld be required. As the square falls away to a flat parallelogram, say one whose sides half as great, and the others double the length of those of the square, or 17724 by 4431 , ishich the area will be about 78540000 , as before; we have in such a case a length of , $\mathrm{lling}=44310$.

On the Thickness of Walls in Duildings not vaulted.

529. The walls of a building are usually connected and stiffened by the timbers of the 1 f, supposing that to be well constructed. Some of the larger edifices, such as the a ient basilic:e at Rome, have no other covering but the roof; others have only a simple r ing under the roof; whereas, in palaces and other habitations, there are sometimes two enore floors introduced in the roof.
530. We will begin with those edifices covered with merely a roof of carpent:y, which after mere walls of enclosure, the most simple.
531. Among edifices of this species, there are some with continued points of support, sh as those wherein the walls are connected and mutnally support each other ; others in whe the points of support are not connected with each other, such as piers, columns, and Fsters, united only by arcades which spring from them.
532. When the earpentry forming the roof of an edifice is of great extent, insteat of 1. hg injurious to the stability of the walls or points of smpport, it is useful in keeping thetu t ather.
533. Many cdifices exist whercin the walls and points of support would not stand without the aid of the carpentry of the roofs that cover them.
534. The old basilical of St. Puolo fuori le murà at Rome was divided into five naves formed by four ranks of columns connected by arcades, which carried the walls wherenn thi roof rested; the centre nave $73 \frac{1}{\mathrm{ft}}$. (French) wide, and $93 \mathrm{ft}$.10 in . high. The walls of it are crected on columns 31 ft .9 in . high, and their thickness is a little less than 3 ft ., that is, only $\frac{1}{32}$ part of their height.
535. At lladrian's Villa the most lofty walls, still standing, were but sixteen times their thickness in height, and 51 ft .9 in . long. The walls were the enclosures of large halls with only a single story, but assisted at their ends by cross walls. And we may therefore conclude that if the walls of the basilica above mentioned were not kept in their places by the carpentry of the great roof they would not be safe. It is curious that this supposition, under the theory, was proved by the fire winch destroyed the church of St. Paolo in 1823. The walls which form the nave of the ehurch of Santa Sabina are raised on columns altogether 52 ft . high ; they are 145 ft . long, and somewhat less than 2 ft ., that is, $\frac{1}{26}$ part of their height, in thickness. They are, therefore, not in a condition of stability without the aid of the roof. In comparing, however, the thickness of these walls with the height only of the side aisles, in the basilica of St. Paolo the thickness is $\frac{1}{17}$, and at Santa Sabina $\frac{1}{13}$. In the ether basilice or churches with colums, the least thickness of wall is $\frac{1}{12}$ of greater proportion uncomected with the nave, as at Santa Maria Maggiore, Santa Maria in Trasteverc, St. Chrysogono, St. 1'ietro in Vincolo, in Rome; St. Lorenzo and St. Spirito, in Florence; St. Filippo Neri, at Naples; St. Giuseppe and St. Dominico, at Palermo.
536. We must take into account, moreover, that the thickness of walls depends as mucl on the manner in which they are constructed, as on their height and the weight with which they are loaded. A wall of rough or squared stone 12 inches thick, wherein all the stones run right through the walls in one piece, is sometimes stronger than one of 18 or 20 inches in thickness, in which the depth of the stones is not more than half or a third of the thick ness, and the imer part filled in with rubble in a bad careless way. We are also to recollec that stability more than strength is ofttimes the safeguard of a building; for it is certai that a wall of hard stone 4 inches thick would be stronger than wonld be necessary ti bear a load equal to four or five stories, where a thickness of 18 inches is used; and yet i is manifest that such a wall would be very unstable, because of the narrowness of the base
537. From an examination which Rondelet made of 280 buildings in France and ltaly ancient as well as modern, he found that in those covered with roofs of two inclined side and constructed in framed carpentry, with and without ceilings, and so trussed as not t. act at all horizontally upon the walls, the least thickness in brick or rough stones wa ${ }_{27}^{1}$ of the width in the clear.
538. In private houses, divided into several stories by floors, it was observed, generally that the exterior walls ran from 15 to 24 inches, party walls 16 to 20 inches, and par tition walls 12 to 18 inches.
539. In buildings on a larger scale, exterior walls 2 to 3 feet thick, party wal 20 to 24 inches, partition walls 15 to 20 inches.
540. In palaces and buildings of great importance, whose ground floors are vaulte the exterior walls varied from 4 to 9 feet, and the partition walls from 2 to 6 feet. J many of the examples which underwent examination, the thicknesses of the walls an points of support were not always well proportioned to their position, to the space the enclosed, nor to the loads they bore. In some, great voids occur, and considerable loads we supplied with but slender walls and points of support ; and in others, very thick walls e closed very small spaces, and strong points of support had but little to earry.
541. For the purpose of establishing some method which in a sure and simple mann would determine the thickness of walls in buildings which are not arched, we have con sidered, says Rondelet, that the tie-beams of the trusses of cappentry whereof the rou are composed, being always placed in the direction of the width, as well as the girders at leading timbers of floors, serve rather to steady and comect the opposite walls; but, en. sidering the elasticity and flexibility of timber, it is foumd that they strain the walls whic support them in proportion to the widths of the spaces enclosed, whence it becomes oft the better plan to deternine the thickness of the walls from the width and height of t apartments requisite. Hence the following rules.

First Rule.

1542. In buildings eovered with a simple roof, if the walls are insulated througlon their leight up to the under side of the tie-beams of the trusses, being as shown in fig. 6i Having drawn the diagonal BD and thereon made $\mathrm{B} b$ and $\mathrm{D} d$, equal to the twelfth p of the heighit AB, then through the points b and d, draw lines parallel to BA and 1 . which will bound the thickness of the walls required.
1543. If the height AB and widtil AD be known, the thickaess Ac may be calculat
sceing that $B D=\sqrt{\bar{A} B^{2}+\bar{A} D^{\prime}}$; knowing the value of $B D$, we have that of $c A$ by the proportion $\mathrm{BD}: \mathrm{AD}:: \mathrm{B} b: c A=\frac{A \mathrm{D} \times \mathrm{B} b}{\mathrm{BD}}$.

First Example.

1.544. Supposing the width $\mathrm{AD}=24 \mathrm{ft}$. and the height $\mathrm{AB}=32$, we shall have
$\sqrt{A B=+A D}=\sqrt{24 \times 24+32 \times 32}$; whenee $\mathrm{ED}=\sqrt{576+1024}=\sqrt{1600}=40 \mathrm{ft}$. $B b$, which is the twelfth part of $A B$, or of $32 \mathrm{ft} .=2 \mathrm{ft} .8 \mathrm{in}$. ; the thickness of the wall cxpressed by $\frac{A D \times 13 b}{(11)}$, will be $\frac{21 \times \frac{22}{3}}{40}=1 \frac{3}{5} \mathrm{ft}$., or 1 ft .7 in .2 lines, for the thickness sought.
1545. If the walls supporting the rouf were stiffened by extra means, sueh as lower roofs at an intermediate height, as in churches with a nave anid side aisles, we may make Be in the diagonal Bl) (fig. 605.) equal to onc twelfth of the height above the springing of the side roofs, and ef a twenty fourth part of that height below it, and draw through the point f a line

Fig. 604. parallel to AB, which will detcrmine the thickness Aft sought; or, which amounts to the same thing, add together the total height AB of the interior, and that of E B above the point of support, E , whercof take the twenty-fourth part, which will be equal to $\mathrm{Be}+e f$.

Second Example.

1546. Fig. 605. is a section of St Paolo fuorì le murà, near Rome, as it was in 1816.

We interior height to the under side of the tie-beams is 93 ft .10 in . (French), whereof f ft . 2 in . is the exterior height above the roofs of the side aisles. These two dimenswons ghther make 120 ft ., whose twenty-fourth part is 5 ft ., to which, on the diagonal 131) ill determine the from the point f letting fall a vertical line, the horizontal line lie figures, as follows: -
$\mathrm{BD}=\sqrt{93 \mathrm{ft} .10 \mathrm{in} . \times 93 \mathrm{ft} .10 \mathrm{in} .+73 \mathrm{ft} .6} \mathrm{in}. \mathrm{\times 73ft.6in}=.\sqrt{14207}=119 \mathrm{ft} .2 \mathrm{in}$. 1547. For the thickness, $e \mathrm{~B}$, as before, $\mathrm{BD}: \Lambda \mathrm{D}:: \mathrm{Bf}: \Lambda f^{\prime}$; whence, $\Delta f^{\prime}=\frac{\mathrm{AD}}{\mathrm{BD}} \times \mathrm{Bl}$, $\int 31 \times 5 \mathrm{fl} 2 \mathrm{in} .=3 \mathrm{ft} .1 \mathrm{in}$., instead of 2 ft .11 in .9 lines, the actual thickness of the walls. 1.549. The same ealculation being applied to the walls of the nave of Santa Sabina
(Rome), whose height of nave is 51 ft . 2 in , and width 42 ft .2 in ., with a height of 16 ft . of wall above the side aisles, gives 21 in .4 lines, and they are actually a little less than 24 in .
1549. In the chureh of Santa Maria Maggiore, the width is $52 \mathrm{ft} .7 \frac{1}{2} \mathrm{in}$.. and 56 ft .6 in . and 4 lines high, to the ceiling under the roof. The height of the wall above the side aisles is 19 ft .8 in ., and the calculation requires the thekness of the walls to be $26 \frac{1}{4} \mathrm{in}$, instead of $28 \frac{1}{1} \mathrm{in}$., their actual thickness.
1550. In the church of St. Lorenzo, at Florence, the internal width of the nave is 37 ft .9 in ., and the height 69 ft . to the wooden ceiling; from the side aisles the wall is 18 ft . high. The result of the calculation is 21 in ., and the actual execution 21 in . and 6 lines.
1551. The church of Santo Spirito, in the same city, which has a wooden ceiling sus. pended to the trusses of the roof, is 76 ft . high and 37 ft .4 in . wide in the nave the walls rise 19 ft . above the side aisles. From an application of the rule the thickness should be 21 in .3 lines, and their thickness is $22 \frac{1}{2} \mathrm{in}$.
1552. In the church of St. Philippo Neri, at Naples, the calculation requires a thickness of 21 in ., their actual thickness being $22 \frac{1}{2} \mathrm{in}$.
1553. In the churches here cited, the external walls are much thicker; which was ne cessary, from the lower roofs being applied as leantoes, and hence having a tendency, in case of defective framing of them, to thrust out the external walls. Thus, in the church of St. Paolo, the walls are 7 ft . thick, their height 40 ft . ; 3 ft .4 in . only being the thickness required by the rule. A resistance is thus given capable of assisting the walls of the aisles, which are raised on isolated columns, and one which they require.
1.554. In the church of Santa Sabina, the exterior wall, which is 26 ft . high, is, as the rule indicates, 26 in . thick; but the nave is flanked with a single aisle only on each side, and the walls of the nave are thicker in proportion to the height, and are not so high. For at St. Paolo the thickness of the walls is only $\frac{1}{2}$ of the interior width, whilst at Santa Sabina it is $\frac{1}{2}$. At San Lorenzo and San Spirito the introduction of the side chapels affords great assistance to the external walls.

Second Rule.

For the Thickness of Wulls of Houses of more than one Story.
1555. As in the preeeding ease, the rules which Rondelet gives are the result of obsservations on a vast number of buildings that have been executed, so that the method proposed is founded on practice as well as on theory.
1556. Jn ordinary houses, wherein the height of the floors rarely exceeds 12 to 15 ft ., in ordcr to apportion the proper thickness to the interior or partition walls, we must be guided by the widths of the spaces they separate, and the number of floors they have to cary: With respeet to the external walls, their thickness will depend on the depth and height of the buiding. Thus a single house, as the phrace is, that is, only one set of apartments in depth, requires thicker external walls than a double honse, that is, more than one apartnent in depth, of the same sort and height ; because the stability is in the inverse ratio of the width.
1557. Let us take the first of the two cases ($f 0.606$.), whose depth is 24 ft . and height

12 . .
to the under side of the roof 36 ft . Add to 24 ft . the half of the height, 18 , and take $\frac{1}{2 y}$ part of the sum 42 , that is, 21 in., for the least thiekness of eaeh of the external walls above the set-off on the ground floor. For a mean stability add an ineh, and for one still more solid add two inches.
1558. In the case of a double house (fig. 607.) with a depth of 42 ft ., and of the same height as the preceding example, add half the height to the width of the building; that is, 21 to 18 , and $\frac{1}{24}$ of the sum $=19 \frac{1}{2}$ is the thickness of the walls. To determine the thickness of the partition walls, add to their distance from each other the height of the story, and take ${ }_{36}^{1}$ of the sum. Thus, to find the thickness of the wall IK, which divides the space I, M into two parts and is 32 ft ., add the height of the story, which we will take at 10 ft , making in all 42 ft , and take $\frac{1}{36}$ or 14 in . Ilalf an inch may be added for each story above the ground floor. Thus, where three stories occur above the ground floor, the thickness in

1e lower one would be $15 \frac{1}{2}$ in., a thickess which is well calculated for bricks id stone, whose hardness is of a mean escription.
1559. For the wall AB , which divides he space between the external walls, pual to 35 ft ., add to it the height, bich is 10 ft ., and $\frac{1}{36}$ of 45 , the sium of re two; that is, 15 in . is the thickness equired for the wall, if only to be cared up a single story; but if through 1ore, then add half an ineh, as before, ir each story above the ground floor. or the spaces NO, PQ, RS, in this id the preeeding figure, the repetition ithe operation will give their thickesses.
1560. To illustra'e what has been said, g. 603, is introduced to the reader, being

Fig. 607. ue plan of a house in the Rue d Enfer, near the Luxembourg, known as the Hotel Vendore,

Fig. 608.
nlt hy Le Blond. It is given by D'Aviler in his Cours d'Architecture. The building is ff . deep on the right side and 47 ft . in the middle, and is 33 ft . high from the pusement the entablature. Henee, to obtain the thickness of the walls on the line FF, take the m of the height and width $=\frac{47+33}{2}=40 \mathrm{ft}$, whose twenty-fourth pari is 20 in . The ilding being one of solidity, let 2 in . be alded, and we obtain 22 in . instead of 2 ft ., which their actual thickness. For the thickness of the interior wall, which crosses the building the directinn of its length, the space between the exterior walls being 42 ft . and the ight of each story 14 ft , the thickness of this watl should be ${ }_{36}^{42+14}=18 \mathrm{in} .8$ lines, instead 18 in ., which the architeet assigned to it.
1561. By the same mode of operation, we shall find that the thickness of the wall R, parating the salon, which is 22 ft . wide, from the diuing-room, which is 18 ft . wide and ft . high, should be 18 in . and 6 lines instead of 18 inches; but as the exterior walls, which - of wrought stone, are 2 ft . thick, and their stability greater than the rule requires, the terior will be found to have the requisite stability without any addition to their thickness. 1562. We shall conclude the observations under this head, by reference to a honse built by Whadio for the brothers Mocenigo, of Venice, to be fonnd in his works, and here given (fig\%. 9.). Most of the buildings of this master are vaulted below; but the ouc in question is not that predieament. The width and height of the principal rooms is 16 ft , and they are parated by others only 8 ft . wide, so that the width which each wall separates is $2 . \frac{1}{2} \frac{\mathrm{ft}}{\mathrm{f}}$., It their thickness consequently slould be ${ }_{3 i j}^{251}+16 i 3 \mathrm{in}$. 10 lines. The walls, as executed,

Fig. 609.
are 14 in . in thickness. The exterior wolls heing 24 ft . high, and the depth of the huitding 46 ft . Their thickness by the rule shouhd be $15 \frac{1}{2} \mathrm{in}$. : they are 18 in .

On passing the Metropolitan Building Act in 1855 , previous to which the thicknesses of walts depended on buildings falting within certain classes or ratec, we lad the satisfaction of advising the Govermment to adopt the thicknesses of walls now direeted to be uscd. These are based upon rules deduced from sections 1512 et seq. Inasmuch, however, as it was thought that buiklers might le liahle to mistakes in extracting the square root of the sum of the squares of the heights and lengths of wails, tables were inserted in the Act to meet all cases.
Generally the formula $t=\frac{h l}{m l}$ will be a useful guide in adjusting the thickness of walls, in which $t=$ thickness, h and $/$ respectively the height and length, d the diaronal formed by the height and length, and n a constant determined by the nature of the building. In the tables for dwelling-honses, the constant multiplier (\boldsymbol{n}) used was 22 ; for warehouses, \boldsymbol{a}^{2}. And but for the interference in committee of the present Right Hoo. Member for Oxfordshire (Mr. Henley), for what scientific reasons it is difficult to say, the constant multiplier for public buildings would have been 18 .

When h is less than $\frac{l}{2}$, the constants are 27,23 , and 20 iespectively.

Of the Stability of Diers or Points of Support.

1.563. Let ABCD ($f i g .610$.) be a pier with a square base whose resistanee is requirer in respect of a power at M acting to overturn it horizontally in the direction MA, or obliquely in that of NA upon the point D. Considering the solid reduced to a plane passing through G, the centre of gravity of the pier, and the point 1 , that upon which the power is supposed to eause it to turn, let fall from G the vertical cutting the base in I, to which we will suppose the weight of the pier suspended, and then supposing the pier removed, we only have to consider the angular lever BDI or HDI, whose arms are determined by perpendiculars drawn from the fulcrum D, in one direction vertical with the weight, and in the other perpendicular to the direction of the power acting lupon the pier, according to the

Fig. 610. theory of the lever explained in a previous scetion.
1564. The direetion of the weight R being always represented by a vertical let fall fro the centre of gravity, the arm of its lever ID never changes, whatever the direction of t power and the height at which it is applied, whilst the arm of the lever of the power vari as its position and direction. That there may be equilibrium betwcen the effort of t power and the resistanee of the pier, in the first ease, when the power Macts in an ho zontal dircetion, we have $M: R:: I D: D B$, whence $M \times D B=R \times I D$ and $M=\frac{R \times 11}{D B}$ If the direction of the power be oblique, as NA in the case of an equilibrium, $\mathbf{N}: \mathrm{I}:: 1$: DII; hence $\mathrm{N} \times \mathrm{DH}=\mathrm{R} \times I \mathrm{D}$ and $\mathrm{N}=\frac{\mathrm{R} \times 1 \mathrm{D}}{1 \mathrm{DH}}$.
1565. Applying this in an example, let the height of the pier be 12 ft ., its width 4 ft , a its thickness 1 ft . The weight K of the pier may be represented by its eube, and is the fore $12 \times 4 \times 1=48$. The arm of its lever ID will be 2 , and we will take the horizon power M represented by DB at 12 ; with these values we shall have $\mathrm{M}: 48:: 2: 12$; hel $\mathrm{M} \times 12=48 \times 2$ and $\mathrm{M}=\frac{48 \times 2}{12}=8$.

That is, the effort of the horizontal power M should be equal to the weight of 8 cl feet of the materials whereof the pier is eomposed, to be in equilibriun.
1566. In respeet of the oblique power which acts in the direction $\mathrm{N} A$, supposing I $=75$, we have $\mathrm{N}: 48:: 2: 7 \frac{1}{5}$, whence $\mathrm{N} \times 7 \frac{1}{2}=18 \times 2$, therefore $\mathrm{N}=\frac{48 \times 2}{7 \frac{1}{3}}=13 \frac{1}{3}$, whilst
ession of the horizontal power II was only 8 ft . ; but it must be observed, that the arm he lever is 12 , whilst that of the power N is but $7 \frac{1}{3} \mathrm{ft}$; but $13 \frac{1}{3} \times 7 \frac{1}{3}=8 \times 12=96$, ch is also equal to the resistance of the pier expressed by $12 \times 4 \times 2=96$ It is moreessential to observe, that, considering the power NA as the result of two others, MA I*A, the first acting horizontally from M against A, tends to overthrow the pier; whilst second, acting vertically in the direction FA, partly modifies this cffect by increasing the tance of the pier.
567. Suppose the power NA to make an angle of 53 degrees with the vertical AF, of 37 degrees with the horizontal line $\Lambda \mathrm{M}$; then

$$
\text { NA : FA : MA::rad. : sin. } 37 \text { deg. }: \sin .53 \text { deg. }:: 6: 10: 8
$$

lence, NA being found $=13 \frac{1}{3}$, we have $6: 10: 8:: 13 \frac{1}{3}: 8: 10_{3}^{2}$.
hence it is evident that, from this resolution of the power NA, the resistance of pier is increased by the effort of the power $F A=8$, which, acting on the point A in the ction FA, will make the arm of its lever $\mathrm{CD}=4$, whence its effort $=8 \times 4=32$.
568. 'The resistance of the pier, being thus found $=96$, becomes by the effort of the er $\mathrm{FA}=96+32=128$.
569. The effort of the horizontal power M being $10 \frac{2}{3}$, and the arm of its lever being ys 12 , its effort 128 will be equal to the resistance of the picr, which proves that in resolution we have, as before, the effort and the resistance equal. The application of proposition is extremely useful in valuing exactly the effects of parts of buildings ch become stable by means of oblique and lateral thrusts.
50. If it be reguired to know what should be the increased width of the pier to counvise the vertical effort FA, its expression must be divided by ID, that is, 8×2, which 44 for this increased length, and for the expression of its resistance $(12+4) \times 4 \times 2$ 24 , as above.
571. If the effort of the power be known, and the thickness of a pier or wall wh se lat is known be sought so as to resist it, let the power and parts of the pier be repred by different letters, as follows. Calling the power p, the height of the pier α, the kness sought x; if the power p act in an horizontal direction at the extremity of the or pier, its expression will be $p \times d$. The resistance of the pier will be expressed by its multiplied by its ar:n of lever, that is, $d \times x \times \frac{x}{2}$; and supposing equilibrium, as the tance must be equal to the thrust, we shall have the equation $p \times d=d \times x \times \frac{x}{2}$. Both of this equation being divisible by d, we have $p=x \times \frac{x}{2}$; and as the second term is led by 2, we obtain $2_{p}=x \times x$ or x^{2}; that is, a square whose arca $=9_{2}$, and of which x e side or root, or $x=\sqrt{2 p}$, a formula which in all cases expresses the thickness to be n to the pier CD to resist a power M acting on its upper extremity in the horizontal ction MA.
572. In this formula, the height of the pier need not be known to find the value of x, use this height, being common to the pier and the arm of the lever of the power, does alter the result; for the cube of the pier, which represents its weight, increases or dishes in the same ratio as the lever. Thas, if the height of the pier be 12,15 , or 24 ft ., lickiness will nevertheless be the same.
xample. - If the horizontal power expressed by p in the formula $x=\sqrt{2 p}$ be 8 , we $x=\sqrt{16}=4$ for the thickness of the pier. Whilst the power acting at the extremity he pier remains the same, the thickness is sufficient, whatever the height of the pier. s for a leight of 12 ft . the eflort of the power will be $8 \times 12=96$, and the resistance $4 \times 2=96$. If the pier be 15 ft . high, its resistance will be $15 \times 4 \times 2=120$, and the t of the power $8 \times 15=120$. Lastly. if the leight be 24 ft ., the resistance will be $4 \times 2=192$, and the effort of the power $8 \times 24=192$.
373. If the point on which the horizontal force acts is lower thath the wall or pier, the renee may be represented by f; and then $p \times(d-f)=d \times x \times{ }_{2}^{x}$;

Which becomes $2 p d-2 p f=d x^{2}$ and $2 p-{ }_{d}^{2 n f}=x^{2}$;
Lastly $x=\sqrt{9 p}-\frac{2 p f}{d}$.
Suppose $p=9 . f=6$ and $d=12$,
iormula becomes $x=\sqrt{18-\frac{18 \times 6}{12}}=\sqrt{9}=3$, which is the thickness sought.

574. When the power NA is obtique, the thiekness may be equally well fond by the of lever DII, by resolving it into two forces, as before. Thus, in the case of the obligne er $p=13\}$, ealling f its arm of lever $7 \frac{1}{6}$, we shall have $p \times f=$| |
| :---: |x^{2}, which will become 2 , f , whenee $x=\sqrt{2 p}$; in wheh, substituting the known values, we have $x=V \underset{1 \%}{2 \times 135} \times$ if nee $x=\sqrt{\prime} \overrightarrow{j_{j}}=1$, the thichness sonylt of the pier.

1575 In resolving the oblique effort NA into two forces, wherenf one MA tends to overturn the pier by acting in an horizoatal direction, and the other $f \mathrm{~d}$ to strengthen it by acting vertically, as before observed; let us represent the horizontal effort MA by p; its arm of lever, cqual to the height of the pier. by d; the vertical effort f A by n; the arm of lever of the last-named effort, being the thichness songht, will be x; from whieh we have the equation

$$
p d=\frac{d x^{2}}{2}+n x, \text { or } 9 p=x^{2}+\frac{2 n x}{d} .
$$

1576. As the second member of this equation is not a perfeet square, let there be added to each side the term wanting, that is, the square $\frac{n^{2}}{d^{2}}$, the half of the quantity $\frac{2 n}{6}$, which multiplied x in the second term, whence

$$
\underline{q} p+\frac{n^{2}}{d^{2}}=x^{2}+\frac{2 \mu x}{d}+\frac{n}{d}
$$

1577. The second member, by this addition, having become a square whose rout is $x+\frac{n}{d}$, we shall liave $x+\frac{n}{d}-\sqrt{2 p+\frac{n^{2}}{d^{2}}}$ and lastly $x=\sqrt{2 p+\frac{n^{2}}{d^{2}}-\frac{n}{d}}$ will be the general formula for finding the thickness x.

Application of the Formula.

1578. Let $p=10_{3}^{2}, n=8, d=12$. Substituting these values in the formula, it will become

$$
x=\sqrt{10 \frac{2}{3} \times 2+\frac{64}{17}}-\frac{8}{12}=\sqrt{ } 21 \frac{1}{3}+\frac{4}{9}-\frac{2}{3}=\sqrt{ } 21+\frac{7}{9}-2.3 .
$$

1579. If, for proof, we wish to calculate the expression of the resistance, by placing in the crfuation of equilibrium $2 p d=d x_{2}^{x} \times n x$, the values of the quantities p, d, and x, above found, we shall have

$$
10 \frac{2}{3} \times 12=12 \times 4 \times 2+8=128 \text {, as was previously found for FA. }
$$

1580. From the preceding rules, it appears that all the effects whose tendency is to destroy an edifice, arise from weight acting in an inverse ratio to the obstacles with which it meets. When heavy bodies are merely laid on one another, the result of their efforts is a simple pressure, capable of producing settlement or fracture of the parts acted upon.
1581. Foundations whose bases are spread over a much greater extent than the walls imposed upon them, are more susceptible of settlement than of crushing or fracture. But isolated points of support in the upper parts, which sometimes carry great weights on a small superficies, are susceptible both of settlement and crushing, whilst the weight they have to sustain is greater than the force of the materials whereof they are formed; which renders the knowledge of the strength of materials an object of consequence in eonstruction. Till of late years it was not thought necessary to pay much attention to this branch of construction, because most species of stone are more than sufficiently hard for the greatest number of cases. Thus, the abundant thickness whieh the aneicnts generally gave to all the parts of their buildings, proves that with them this was not a subject of consideration; and the more remotely we go into antiquity, the more massive is the construction found to be. At last, experience taught the arehitect to make his buildings less heavy. Columns, which among the Egyptians were only 5 or 6 diameters high, were carried to 9 diameters by the Greeks in the lonic and Corinthian orders. The Romans made their columns still hisher, and imparted greater general lightness to their buildings. It was under the reign of Constantine, towards the end of the empire, that builders without taste carried their boldness in light construction to an cxtraordinary degree, as in the ancient basilice of St. Peter's at Rome and St. Paolo fuorì le murà. Later, however, churches of a different character, and of still greater lightness, were introduced by the Gothic architects.
1582. The invention and general use of domes created a very great load upon the supporting piers; and the earlier architects, fearful of the mass to be carried, gave their piers an area of base much greater than was required by the load supported, and the nature of the stone used to support it. They, moreover, in this respect, did little more than imitate one another. The piers were constructed in form and dimensions suited rather to the arrangement and decoration of the building that was designed, than to a due apportionment of the size and weight to the load to be borne; so that their difference from one another is in every respect very considerable.
The piers bearing the dome of St. Peter's at Rome are loaded with a weight of 14.964 tons for every superficial foot of their horizontal section.
The piers bearing the dome of St. Paul's at London are loaded with a weight of $17 \% 05$ tons for every superficial foot of their horizontal section.
The piers bearing the dome of the Hospital of Invalids at Paris are loaded with a weiglt of 13.598 tons for every superficial foot of their horizontal section.
The piers bearing the dome of the Pantheon (St. Geneviive) at l'aris are loaded with a weight of 26.934 tons for every superfieial foot of their horizontal section.
The columns of St. Paolo fuori ke mura, near Rome, are loaded with a weight of 18.123 tons for every superficial foot of their horizontal section.
the church of St. Méry, the piers of the tower are loaded with upwards of 27 tons to : supericial foot. With such a diserepancy, it is difficult to say, wihhout a most pert knowledge of the stone employsd, what should be the exact weight per foit. The the of the Hocpital of the Invalids seems to extibit a maximum of pier in relation to a weight, and that of the Pantieon at Paris a minimum. The weakest sandutcnes sed in building) will bear a conpression of 120 tons per foot, while ordinary bulding mes sange from 140 to 500 toms per square foot; granites and traps 700 or 800 tons r square foot (Building Construction, 18i9, part 3, p. 8). Stones in some form of arches, aining wills, \&c., are more liable to be crushed by reason of the pressure be ng conutrated upon certain points; and walls wherein differnt qualities of stone are used 3 suljected to strains ly reason of inferior stones decaying, leaving their duty to be enn ly others of better quality. Settlements in a wall bring on strains not expected.

Ratio of the Points of Support in a Building to its total Superfoces.

1583. In the pages immediately preceding, we have, with Rondelct for our guioc, blained the principles whereon depend the stabilities of walls and points of support, with ir application to different sorts of buildings. Not any point relating to construction is more importance to the architect. Without a knowledge of it, and the mode of en generating new styles from it, he is nothing more than a pleasing draughtsman the best, whose elevations and sections may be very captivating, but who must be conit to take rank in about the same degrec as the portrait painter does in comparison with, Hi who paints history. We stibjoin a table of great instruction, showing the ratio of the ints of support to the total superficies covered in sone of the principal baildings of urope. It exhibits also the comparative sizes of the different buildings named in it.
ble showing the ratio of the Walle ann Ponits of Suppoit of the principal Edifices of Europe to the total Area winch they occupy.

| | | |
| :--- | :--- | :--- | :---: | :---: |
| Names of Edifices. | | |

$583 a$. It will be manifest, that as these points of support are diminished in area, in "er of the mase, so is a grester degree of skill exhbited in the work. From the foling table, it will be seen that, in seventeen celcobated medieval edifices, the ratio of or ponits of support to their whole areas varies from 116 to -2 238 , nenrly double. It is 'ius to observe the hight rank borne in this table by Ilany Vlla's clapel; geatally, sectus to late incerased witl gieater experience :-

TABIE OF POINTS OF SUPPORI.

Buildang.		Century.	Part of Century.	Ratio of Points of Support to their whole areis,
Itenry VlI.'s Chapel	- -	16	First	$0 \cdot 116$
Freburg Dom -	- -	13	Seeond	$0 \cdot 133$
Notre Dane, Paris	-	1.3	Second	$0 \cdot 140$
King's College Chayel,	Cambridge	15	Second	0.1.52
Milan Duomo .		14	Second	0.169
York Cathedral -	- -	13	Second	$0 \cdot 174$
Westminster Abbey	- -	13	Second	$0 \cdot 178$
Temule Church -	- -	13	Seeond	018.5
Ely Cathedral -	- -	12	Seeond	$0 \cdot 188$
Gloucester Cathedial	- -	11	Seeond	0.188
Salisbury Cathedral	- -	13	Fïrst	O. 190
Florenee Duomo	- -	1.5	First	$0 \cdot 201$
Lineoln Cathedral	- -	19	Seeond	$0 \cdot 202$
Woreester Cathedral	- -	19	First	0208
Marburg Dom -	- - -	14	Second	0218
Canterbury ('athedral	- -	12	Seeond	$0 \cdot 295$
Norwieh Cathedral	- -	19	First	$0 \cdot 238$

1589. Led by Le Brun (Théorie de l'Architecture, \&e. fol. Paris, 1807.), we were many years ago indueed to inguire into the doetrine of voids and solids in the Greek and loman temples, and though we soon discovered that that author had eommitted manifest errors in his mode of applying his theory, there could be no donht that if its prineiples were propelly carried out, they would eoineide with the best examples both aneient and modern. The study we have

Fig. 610a. subsequently bestowed upon it has not, we regret, from various pressing occilpations, reeeived from us all the attention necessary to reduee the examples within sueh bounds as to make the matter subjeet to eertain laws, thongin we think an approximation has bien effeeted towards it.

1583 c . It is to be lamented that, among the many and able writers on Gothie arehiteeture, details, more thirll prineiples, seem to have oeeupi d their minds. The origin of the pointed arch seems to have entirely absorbed the attention of a large proportion of them, whilst others have been mainly eontent with diseussions on the peeuliarities of style at the different periods, and watching with anxicty the periods of transition from one to another Foliage, mouldings, and the like, have had eharms for others; all, however, have negleeted to bestor a thought upon the grand system of equilibrium by whieh such stupendens edifiees were poised, and out of which system a key is to be extraeted to the detail that enters into them. It is, however, to be hoped that abler hands than ours will heneeforth be stimulated to the work, sueh being abundant in the profession whereof we place ourselves as the humblest of its members.
158% d. As on the horizontal projection or pian of a building, the ratio of the points of support have been above eonsidered, so in the vertical projeetion or section of a building may the ratio of the solids to the voids be eompared, as well as the ratio of the solids to the whole area. In fig. 610a. the shaded
-s represent the solids, which therefore give boundaries of the voids. Woreester Catheis the example shown. In this mode of viewing a structure, as also in that of the its of support, there is a minimum to which art is confined, and in both eases for ous reasons there are some dependent on the nature of the materials, and others on laws of statics. 'lhough there may be found some exceptions to the enuneiation as a aral rule, it may be safely ascumed that in those buildings, as in the case of the points ;upport, wherein the ratios of the solids to the voids in section are the least, the ant only as respects construetion. but also in point of magnificence in effect, is most adtageously displased. In every edifice like a cathedral, the greater the space over which eye can range, whether horizontally or vertically, the more imposing is its effect on the tator, provided the solids be not so lessened as to induce a sensation of danger.
$583 e$. The subjoined table contains, with the exception of Notre Dame de Paris, the e buildings as those already cited. It will be seen that the ratios of the solids to the Is varies from $\cdot 472$ to $1 \cdot 118$, a little less than half to a little more than a whole. But their sections we compare the ratios of the solids to the whole area, there results a set umbers varying from 321 to $\cdot 528$, and that nearly following the order of the ratios of 1 points of support.
table of velrtical solius and voids.

Building.		Century.	Part of Century.	Ratio of Solids to Area.	Ratio of Solids to Voils.
lisbury Cathedral	-	13	First	$0 \cdot 321$	$0 \cdot 172$
arburg Dom -	-	14	Seeond	0.395	$0 \cdot 503$
orwich Cathedral	-	12	First	$0 \cdot 376$	$0 \cdot 603$
orcester Cathedral	-	13	First	$0 \cdot 388$	$063: 3$
fian Duomo -	-	14	Second	0.393	$0 \cdot 648$
mple Church -	-	13	Second	$0 \cdot 395$	0648
oucester Cathedral	-	14	Sceond	$0 \cdot 403$	0.674
ng's College Chapel	-	15	Second	$0 \cdot 419$	0.799
rk Cathedral -	-	13	Second	$0 \cdot 421$	0.729
estminster Abbey	-	13	Second	0.440	0.980
-nry VII.'s Chapel	-	16	First	$0 \cdot 457$	$0 \cdot 648$
eiburg Dom -	-	13	Second	$0 \cdot 478$	$0 \cdot 916$
nterbury Cathedral	-	12	Second	0.496	$0 \cdot 904$
y Cathedral -	-	12	Second	$0 \cdot 498$	1.000
heoln Cathedral	-	12	Secord	$0 \cdot 499$	1.000
prence Diomo -	-	15	First	$0 \cdot 528$	1-118

I Ingh the coineidence between the ratios of increase, in the points of support, does not -1 quite concurrently with the ratios of the solids and the areas in comparing the eathelis of the different centuries, yet sufficient appears to show an intimate connection hew.n them. Where the discrepancy occuis, the points of support seem inversely set out. S 1 , for instance, will be seen in Ely Cathedral, wherein, though the ratio of the solids to 1: roids in section is as high as 1 (or ratio of equality), that of the points of support is as 0 as 0.182 , so that the space, or airiness, which is lost in the former, is compensated by liatter. Generally speaking, however, the points of support diminish as the ormaint of the style increases. Thus, in Norwich Cathedral (the nave), of the early part of welfth century, the ratio of the points of support is 0.238 , that of the solicis to the being 0.603 ; while at Salisbury (latter part of the thirteenth century) the ratio of points of support is only $0 \cdot 190$, and that of the solids to the voids, $0 \cdot 47$.
ron the foregoing examination, there can scarcely exist a doubt that the first and leado lines of these fabrics were based upon a geometrieal ealculation of extremely simple re, but most rigidly adhered to. Thus, taking a single bay in the nave, say, from e to centre, and ascertaining the area, that has only to be multiplied by the ratio, to the superficies neeessary for the points of support, which, as the tables indicate, were nished as experience taught they might be. These matters then being adjusted, and ligh as they might, the system of ornamentation was applied altogether subsidiary to the $\mathrm{Krl}_{\mathrm{t}}$ and paramount consideration of stability.

83f. A very ingenions writer and skilfnl arehitect (Mr. Sam. Ware), some years ago, great trouble to dednce the stability of the buildings in question, from the general of the walls and vanlting containing within them some hidden catenarian curve. If were the ease, which ean bardly be admitted, in as much as a chain for such purpose it be made to hang in all of them, it is quite certain this property was unknown to who erected then. I)r. Hooke was the first who gave the hint that the figure of a , le cord, or cham, suspended foon two points, was a proper form for an arch.

Pressure of Eaktif aganst Walls.

1584. It is not our intention to pursue this branch of the practice of walling to any extent, the determination of the thickness of walls sin this pre:'icament being more usful, perhaps, to the engineer than to the architect. We shal! therefore be contented with but a concise mention of it, Rondelet has (with, as we consider, great judgment) arlopted the theory of Belidor, in his Science des Ingenieurs, and we shall follow him. Withont the slightest disrespect to later authors, we know from our own practiee that walls of recétement may be built, with security, of much less thickness than either the theories of Belidior or, latterly, of modern writers require. We entirely lave out of the question the ruls of Dr. Hutton in his Mathematies, as absurd and incomprehensible. (Dobson, Art of Building, 1849, preface, writes, "from ncglecting to take into consideration the friction of the earth against the back of the wall, the rules given by many writers are inapplicable to practice ; " and to Gwilt's observation on Dr. Mutton be vays, "Dr. Hutton's formulie are strictly eorrect, and only require the correction for friction to make the m agree with modern practice.") The fact is that, in carrying up walls to su-tain a bank of earth, the earth must be carefully rammed down, layer bi layer, as the wall is carried up, so as to prevent the weight of the earth, in a triangular section pressing upon the wall, which is the foundation of all the theory on the subject If this precaution be taken, the thickness resulting from the tollowing investigations will be more than sufficient.
1585. Earth left to itself takes a slope proportionate to its consistence; but for our purpose it will sufficiently exhibit the nature of the investigation, to consider the substance pressing against the wall as dry sand or pounded freestone, which will arrange itself in a slope of about $55 \frac{1}{2}^{\circ}$ with the vertical plane, and therefore of 34_{2}° with an horizontal plane, as Rondelet found to be the case when experimenting on the above materials in a box, one of whose sides was removable. Ordinarily, 45° is taken as the mean slope into which earths recently thrown up will arrange themselves.
1586. Belidor, in order to form an estimate for the thrust or pressure into which we are inquiring, divides the triangle EDF (fig.61i.) representing the mass of earth which creates the thrust, by parallels to its base ED, forming slices or sections of equal thickness and similar form; whence it follows, that, taking the first triangle $a \mathrm{Fb}$ as unity, the second slice will be 3 , the third 5 , the fourth 7 , and so on in a progression whose difference is 2 .
1587. Each of these sections being supposed to slide upon an inclined plane prrallel to ED, so as to act upon the face FD, if we multiply them by the mean height at which they collectively act, the sum of the products will give the total

Fig. 611. effiort tending to overturn the wall; but as this sum is equal to the prodget of the whule triangle by the height determined by a line drawn from its centre of gravity parallel to the base, this last will be the method followed, as much less complicated than that whirh Belidor adopts, independent of some of that author's suppositions not being rigorously correct.
1588. The box in which the experiment was tried by Rondelet was $16 \frac{1}{2} \mathrm{in}$. (Frenci) long, 12 in . wide, and $17 \frac{1}{2} \mathrm{in}$. high in the clear. Λ s the slope which the pounded freestone took when unsupported in front formed an angle with the horizon of $34 \frac{1}{2}^{\circ}$, the height AE is $11 \frac{1}{\frac{3}{3}}$, so that the part acting against the front, or that side of the box where would be the wall, is represented by the triangle EDF.
1589. To find by calculation the valuc of the force, and the thickness which should be given to the opposed side, we must first find the area of the tiangle EDF $=\frac{16 \frac{1}{2} \times \frac{115}{2}}{2}=93 \frac{3}{2}$; ivut as the specific gravity (or equal mass) of the pounded stone is only $\frac{13}{13}$ of that of the stone or other species of wall which is to resist the eflert, it will be reduced to $7.3 \frac{1}{2} \times \frac{13}{13}=81$. This mass being supposed to slide upon the plane ED, its effort to its weight will be as AE is to ED $:: 11 \frac{1}{3}: 20$, or $81 \times \frac{112}{20}=45 \cdot 9$, which must be considered as the oblipue power q p passing through the centre of gravity of the mass, and acting at the extremity of the lever ik. 'To ascertain the length of the lever, upon whose length depends the thickness of the side which is unknown, we have the similar triangles q sr, qho, and hin, whose s.des are proportional : whence $q s: s r:: q^{h}: h o$; and as $k o=h h-h$, we have $q r: q s:: h h-$ $h o: i \hbar$.

$$
\text { Whence, } i k=\frac{(h k-h o) \times q^{y}}{7} \text { : }
$$

The three sides of the triangle $q s r$ are known from the position of the angle q at the centre of gavity of the great triangle EFD, whence each of the sides of the small triangle is equal to ome thind of those of the larger one, to which it is correspondent.

Thus, making the side $q r=a$,

$$
\begin{aligned}
& q s=b \\
& r s=c
\end{aligned}
$$

The unknown side $\quad s h=x$,

$$
h k=f,
$$

The pressure $45 \cdot 9$ found $=p$,
The heisht DF $=d$,
We have $b: c:: b+x: \frac{b c+c x}{b}=h o$, and $h h-h o$ wili, be $f-\frac{b c+c x}{b}$.
o obtain $i k$, we have the proportion $a: b:: f-\frac{b c-c x}{b}: i k$.
hence $i k=\frac{b f-b c-c r}{a}$; so that the pressure $p \times i h$ is represented by $p\left(\frac{b f-b c-c x}{a}\right)$, to which resistance expressed by $\frac{d x^{2}}{2}$ must equilibrate.

Thus the equation becomes $\frac{d x^{2}}{\sqrt{2}}=p\left(\frac{b f-b c-c x}{a}\right)$, or $x^{2}+\frac{2 p c x}{a d}=\frac{2 p(b f-b c)}{a d}$. or easicr solution, make $\frac{2 p l f-2 p b c}{a d}=2 m$, and $\frac{2 p c}{a d}=2 n$, and we have $x^{2}+2 n x=2 m$, an ation of the second degree, which makes $x=\sqrt{2 m+n^{2}-n}$, which is a general formula roblens of this sort.
eturning to the values of the known quantities, in which

$$
\begin{gathered}
\begin{array}{cc}
a=6 \frac{2}{3} \\
b=5 \frac{1}{2} & f=7_{9}^{5} \\
c=9^{3} & p=459 \\
d=11 \frac{1}{3}
\end{array} \\
m=p b \times \frac{f-c}{a d} \text { becomes } m-4.5 \cdot 9 \times 5 \frac{1}{2} \times \frac{7 \frac{1}{9}-3_{7}^{3}}{6 \frac{2}{3}+11 \frac{1}{3}}=12 \cdot 70 \text { and } 9 m=25 \cdot 4 ; \\
n=\frac{p c}{a d} \text { becomes } n=\frac{45 \cdot 9 \times 3 \cdot 75}{75 \cdot 55}=2 \cdot 28 \text { and } n^{2}=5 \cdot 20 .
\end{gathered}
$$

rom the above, then, the formula $x=\sqrt{2 m+n^{2}}-n$ becomes $x=\sqrt{25 \cdot 4+5 \cdot 20}-2 \cdot 28=$, a result which was confirmed by the experiment, inasmuch as a facing of the thickof $3 \frac{1}{3}$ inches was found necessary to resist the pressure of pounded freestone. By dor's method, the thickness comes out $4 \frac{8}{10}$ inches; but it has been observed that its ication is not strictly correct. In the foregoing experiment, the triangular part only e material in the box was filled with the pounded stone, the lower part being supposed aterial which could not communicate pressure. But if the whole of the box had been I with the same material, the requisite thickness would have been found to be $5 \frac{1}{4}$ inehes ear the pressure.
990. In applying the preceding formula to this case, we must first find the area of the ezium 13E1)F (fig.612.), h will be found $19 . \frac{1}{4}$; iplying this lyy $\frac{13}{6}$, to rethe retaining wall and naterial to the same spegravity, we have $169 \frac{1}{5}$. mass being supposed to upon the inclined plane its effort parallel to that will be $19.5!, \times \frac{113}{10}=$ $5=p$. IIaving found in ast formula that q^{s} is reented by $b=6 \cdot 9: 3$, $s r$ by 76 , or by $t=8 \cdot 40, f=$, $d s=17.5$; the thickness 1c retaining wall becomes $-x ; m=p b \times \frac{f-c}{a d}$ will be-

Fig. 612. \therefore substituting the values
$5 \times 5 \cdot 93 \times \frac{11: 3-476}{240 \times 17.50}=29 \cdot 52$ and $2 m=59 \cdot 04 . \quad n=\frac{n c}{a d}$ becomes $\frac{5.76 \times: 76}{8 \cdot 41 \times 17.50}=3 \cdot 1$, and $n^{2}=0$
Substitnting these values in the formula $x=\sqrt{ } 2 m+n^{2}-n$, we have $x=\sqrt{50 \cdot 04+9 \cdot 6 i}$ $1=5 \cdot 2$, a result very confirmatory of the theory.
91. In an experiment made on common dry earth, rediseed to a powder, which took a of $4 f, 50$, its specific gravity being only of that of the retaining side, it was found the thickness necessary was 3 inches $\frac{6}{10}$.
92. It is common, in practice, to strengtlen walls for the retention of earth with piers rtain intervals, which are called counterforis, by which the wall acounines additional
strength; but after what we have said in the beginning of this article, on the dependenc that is to be placed rather on well ramming down each layer of earth at the back of th wat, supposing it to be of ordinary thickness, we do not think it necessary to entur upo any ealculation relative to their employment. It is clear thicir use tends to diminish th reguisite thickness of the wall, and we would rather rcommend the student to apply him self to the knowledge of what has been done, than to trust to ealculation for stability though we think the theory ouglit to be known by him.

Pressure or Force of Wind against Walifs, \&c.

1592a. Air rushes into a void with the velocity a heavy body would acquire by fallm in a homogeneous atmosphere. Air is 840 tinies lighter than water. The atmorpher supports water at 33 ft . ; homogeneous atmosphere, therefore, is $33 \times 840=27,720 \mathrm{ft}$. heavy hody falling one foot acquires a velocity of eight fcet per second. Vclocities are a the square roots of their heights. 'Therefore to find the velocity eorresponding to any give height, expressed in feet per second, multiply the square root of the height in feet by For air we have $V=\sqrt{27,720}=166,493 \times 8=1332$ feet per second: this, therefore, i the velocity with which common air would rush into a void : or 79920 feet per minate some suy 80,880 feet. (I'tlford's Memoraudum Book). Some authors say that the weigh or pressure of the atmosphere is equal to the weig't of a volume of water 34 ft . in height or 14.7 lls . per square inel at a mean temperature; for air and all (?) kinds of gases ar rendered lighter by the application of heat, because the particles of the mass are repeller from each other, or rarefied, and occupy a greater spaee.

1592b. The force with which air strikes against a moving surface, or with which th wind strikes against a quiescent surfaee, is nearly as the square of the velocity. If β beth angle of incidence; δ the surtace struck in square feet; and v the velocity of the wind it feet per second; then if f equals the force in pounds avoirdupois, either of the two follow ing approximations may be used, viz., $f=\frac{v^{2} \delta \sin ^{2} \beta}{440}$; or, $f=002288 v^{2} \delta \sin ^{2} \beta$. The firs is the easiest in operation, requiring only two lines of short division, viz., by 40 and b : 11. If the incidence be perpendicular, $\sin ^{2} \beta=1$, and these become $f=\frac{r^{\prime \prime} \delta}{440}=\cdot 002288 u^{\circ} \delta$ (Gregory). The force or pressure per square foot in lbs., is as the square of the velocit. multiplied by o g2288.

1592c.
Impulse of the Wind on a Square Fout.

Velocity in Feet ler Second.	Impulse in lbs.	Velocity in Fept Per Scend.	Impuise in lbs.	Velocity in Fert Per Seco d.	Impulse in lbs.
10	0.229	60	8.234	110	$27 \cdot 675$
$14 \cdot 67$	$0 \cdot 492$	6601	9.963	117.36	31.493
20	$0 \cdot 915$	70	$11 \cdot 207$	120	32-026
30	$2 \cdot 0.59$	73:35	$12 \cdot 300$	130	$38 \cdot 654$
\$6.67	3075	80	14.638	140	$44 \cdot 8.30$
40	3660	90	18.526	146.70	$49 \cdot 60$
44.01	4429	100	29.879	1.50	$51 \cdot 462$
50	$5 \cdot 718$				

$159 . \%$. The resistance of a sphere is stated not to exceed one-fourth of that of it greatest circle Tredgold, Carpentry, and Irom, has minutely examined the effect of th. ahove forces, and the principls of forming the necessaly resistance to them in the eonstrue tion of walls and roofs. See Hurbicanes. Where the roofs of buildings, as in the country are exposed to rude gusts and storms, it is neeessary to inerease the weight of the ridge: hips and Aashings.

1592e. The utmost power of the wind in England is said to he 90 miles per hour, 0 40 lbs. per square foot. Tredgold takes the force at $57 \frac{3}{4}$ lbs. per square foot. Dr. Nichol of the Glasgow Observatory, records 5.5 lbs. per square foot, or .382 lbs per square inch as the greatest pressure of wind ever observed in Britain (Rankine, Civil Eng. 538) During the extremely heavy gale of January 16,1866 , the pressure in London was recordec as 33 lus. per square foot; at Liverpool it was $30 \cdot 4 \mathrm{lbs}$. The velocity of the wind on thr soutli coast of England, during January 11, when it uprooted old elm trees, averaged 6 . miles an hour; later in the day it was 90 miles; the latter impetus is equal to the 40 lbs per square foot, above mentioned.
$1592 f$: Wind cxercises a tendency to overthrow a building upon the external edge op posite to the line of its advance, equivalent to the surfaee of the faee receiving the impul. sion multiplied by the force of the wind, and by a lever which on the average may be taker to be equal to lialf the height of the building. To secure the stability of the latter, it
veight multiplied by a lever equal to half the base must exceed the sum of the elements of lie wind's action.
1.592g. To determine the pressure of wind in pounds per square foot, equal to the sta,ility of a square stalk, inultiply the weight of the stalk in pounds. ly twice its width in eet at the bave, and divide the product by the square of its height in feet, and by the sum if its top and bott om treadtis in feet.
Let $w=$ weight of stalk in pounds $=90,000$
$p=$ pressure of wind in pounds per square foot equal to stability of stalk
$h=$ height of stalk in feet $=50$ feet
$b=$ breadth of stalk at base in feet $=4$ feet
$c=$ breadtl) of stalk at top in feet $=2$ feet
Then $\frac{90,001 \times 4 \times 2}{2,510(4 \times 2)}=p=48$ pounds per square fuot. If the stalk be circular, then, to letermine the pressure of wind, proceed as before, but replace the breadths by the dianeter, and multiply the result by 2. Campin, Engineers' Pocket Remembrancer, 186.3.

Sect. X.

beams and pllears.

159:3. The woods used for the purposes of carpentry merit our attention from their importance for the purpose of constructing solid and durable edifices. They are often mployed to carry great weights, and to resist great strains. Under these circumstances, their strength and dimensions stiould be propotioned to the strains they lave to resist. For building purposes, oak and fir are the two sorts of timber in most common use. Stone lias, doubtless, the advantage over wood: it resists the changes of moisture and lryness, and is less susceptible of alteration in the mass; hence it ensures a stibility which ,elongs not to timber. The fragility of timber is, however, less than that of stone, and its acility of transport is far greater. The greatest inconvenience attending the use of imber, is its great susceptibility of ignition. This has led to expedients for anohor naterial, and it has become greatly superseded by iron.
1594. Oak is one of the best woods that can be employed in carpentry. It has all the equisite properies; such as size, strengith, and stiffiness. Oaks are to be found cal able of iurnisling pieces 60 to 80 ft . long, and 2 ft . square. In common practice, beams rarely xceed 36 to 40 ft . in length, by 2 ft . square.
159.5. In regard to its durability, oak is preferable to all other trees that furnish equal engths and scmetlings: it is heavier, better resists the action of the air upon it, as well as hat of moisture and immersion in the earth. It is a saying relating to the oak, that it frows for a century, lasss perfect for a century, and takes a century to perish. Wben cut t a proper season, used dry, and protected from the weather, it lasts from 500 to 600 tars. Oak, like other trees, varies in weight, durability, strength, and density, according o the soil in which it grows. The last is always in an inverse proportion to the slowness f its growth ; trees which grow slowest being invariably the hardest ald the heaviest.
1596. From the experiments made upon oak and other sorts of wood, it is found that heir strength is proportional to their density and weight; that of two picees of the same pecies of wood, of the same dimensions, the leavier is generally the stronger.
1597. The weight of wood will vary in the same tree; usually the heaviest portions are he lower ones, from which upwards a dininution of weight is foond to occur. In fullrown trees, however, this difference does not occur. The oak of France is heavier than hat of England; the specific gravity of the former varying from 1000 to 1054, whilst the itter, in the experiments of Barlow, varies from 770 to 920 . The weight, therefore, of ${ }^{13}$ Englisth cube foot of French oak is about 58 English pounds. Timber way be said a be well seasened when it has lost about a sixth part of its we:ght.
1598. In carpentry, timber acts with an alsolute and with a relative strength. For istance, that called the absolute strength is measured by the effort that must be exerted , break a piece of wood by pulling it in the direction of the fibres. The relative strength f a piece of wood depends upon its position. Thus a piece of wood placed horizontally a two points of support at its extrenities, is casier broken, and with a less effort, than if was inclined er upright. It is found that a smaller eflont is necessiry to break the piece it increases in length, and that this effint does not decrease strictly in the inverse ratio the length, when the thicknesses are equal. For instance, a piece \& ft long, and 6 in. faire, placed horizontally, bears a little more than double of another, of the same depth id thickness, 16 ft . long. placed in the same way. In respect of the absulute force, the iffrenese does not vary in the same way with respect to the length. The following are pperiments by Rondelet, to aseertain the absolnte force, the specimen of oak being of if specific gravity, and a cube foot, therefore, weighing $49 \frac{1}{10}$ Ibs.

> Cohesive Force of Picces arau'n in the Direction of their Lemgth. First experiment.

A small rod of oak 0.0888 in . ($=1$ French line) square, and 2.14 in. in length, broke with a weight of

115 lbs. aroirdupois
Another specimen of the same wood, and of similar dimensions, broke with - - \quad - 10.5_{10}^{8} Another specimen - - - \quad - $\quad 110 \frac{1}{10}$

The mean weight, therefore, was, in round numbers, 110 lbs .
A rod of the same wood as the former, 0.177 inch ($=2$ French lines)
square, and $2 \cdot 14$ inches long, broke with a weight of - $459 \frac{1}{2} \mathrm{lbs}$ avcird pr is
Another specimen

- 418

Another specimen - - - \quad - $451 \frac{1}{3}$
The mean weight, therefore, was 436 lbs . for an area $\frac{35}{105} \mathrm{in}$. ($=4$ square lines

$$
\text { French, or } 110 \mathrm{lbs} \text {. for each, French line }=0.0888 \text { in. English). }
$$

1599. Without a recital of all the experiments, we will only add, that after increasing the thickness and length of the rods in the several trials, the absolute strength of oak was found to be 110 lbs . for every $\frac{888}{10000}$ of an inch area ($=1$ French line superifial).

The Strength of Wood in an upright Position.

1600. If timber were not flexible, a piece of wood placed upright as a post, should bear the weights last found, whatever its height; but experience shows that when a post is higher than six or seven times the width of its base, it bends under a similar weight before crushing or compressing, and that a piece of the height of 100 diameters of its base is incapable of bearing the smallest weight. The proportion in which the strength decreases as the height increases, is difficult to determine, on account of the different results of the experiments. Rondelet, however, found, after a great number, that when a piece of oak was too short to bend, the force necessary to crush or compress it was about 49.72 lbs . for every $\frac{888}{10000}$ of a square inch of its base, and that for fir the weight was about 56.16 lbs . Cubes of each of these woods, on trial, lost height by compression, without disunion o the fibres; those of oak more than a third, and those of fir one half.
1601. A piece of fir or oak diminishes in strength the moment it begins to bend, so tha the mean strength of oak, which is 47.52 lbs. for a cube $\frac{888}{80000}$ of an inch, is reduced tr $2 \cdot 10$ lbs. for a piece of the same wood, whose height is 72 times the width of its base From many experiments, Rondelet deduced the following progression: -

Thus, for a cube of oak, whose base is 1.066 in . area ($=1$ square in. French) placed upright, that is, with its tibres in a vertical direction, its mean strength is expressed by $144^{*} \times 47 \cdot 52=6842 \mathrm{lbs}$. From a mean of these experiments, the result was (by experiment) in lbs. avoirdupois

- 6853

For a rod of the same oak, whose section was of the same area by 12.792 in . high ($=1 ン$ French in.), the weight borne or mean strength is $144 \times \frac{47 \cdot 52 \times 5}{6}=5702 \mathrm{lbs}$. From a mean of three experiments, the result was
For a $\operatorname{rod} 25.584$ ($=24$ French) in. high, the strength is $144 \times \frac{47.59}{2}=3421$ lus. -3144
For a $\operatorname{rod} 38.376(=36$ French $)$ in. high, the strength is $144 \times \frac{47.52}{3}=2281 \mathrm{lhs} . \quad 2336$
For a $\operatorname{rod} 51 \cdot 160(=48$ French $)$ in: high, the strength is $144 \times \frac{47 \cdot 52}{6}=1140 \mathrm{lbs}$.
For a $\operatorname{rod} 63.960$ ($=60$ French) in. high, the strength is $144 \times \frac{47 \cdot 52}{12}=570 \mathrm{lbs}$.
For a rod 76.752 ($=72$ French) in. high, the strength is $144 \times \frac{4752}{24}=285 \mathrm{lbs}$. F or a cube of fir, whose sides are 1.066 in . area ($=1$ square in. French). placed as before, with the fibres in a vertical direction, we have $144 \times 56 \cdot 16=8087 \mathrm{lbs}$. - 8089

[^8]a square rod, whose base was 1.066 in . area $(=1$ square in. French), 12.092 in.$$
high, we have $144 \times \frac{5616 \times 5}{1}=6739 \mathrm{lbs}$.

- 6863
a $\operatorname{rod} 25.584$ ($=24$ Frenclı) in. high, $144 \times \frac{56.16}{2}=4043$ lbs.
- 3703
a $\operatorname{rod} 38.376(=36$ French $)$ in. high, $144 \times \frac{56.16}{3}=2696 \mathrm{lbs}$.
- 2881
a rud $51 \cdot 160(=43$ French $)$ in. high, $144 \times \frac{56 \cdot 16}{6}=1348 \mathrm{lbs}$.
a rid $63.960(=60$ French $)$ in. high, $144 \times \frac{5616}{12}=674 \mathrm{lbs}$
a rad $76 \cdot 752(=72$ French $)$ in. high, $144+\frac{56 \cdot 16}{24}=337$ lbs.
lie rule by Iondelet above given was that also adopted by MM. Perronet, Lam. die, and Girord. In the analytical treatise of the last-named, some experiments are vn, winch lead us to think it not very far from the truth. From the experiments, more, we learn, that the moment a post begins to bend, it loses strength, and that it is not lent, in practice, to reduce its diameter or side to less than one tenth of its height.

602. In calculating the resistance of a post after the rate of only 10.80 for every 1.066 orficial line English ($=1$ line super. French), which is much less than one quarter of werght under which it would be crushed, we shall find that a square post whose sides $1.066 \mathrm{ft} .(=1 \mathrm{ft}$. French $)$ containing 22104.576 English lines ($=20736$ French), would ain a weight of 238729 lbs. or 106 tons. Fet as there may be a great many circumces, in practice, which may double or triple the load, it is never safe to trust to a post width of whose base is less than a tenth part of its height, to the extent of 5 lbs. per 6 line; in one whose height is fifteen times the width of the base, 4 lbs. for the same ortion; and when twersty times, not more than 3 lbs.

Morizontal Pieces of Timber.

603. In all the experiments on timber lying horizontally, as respects its leugth, and supced at the ends, it is found that, in pieces of equal depth, their strength diminishes in ortion to the bearing between the points of support. In pieces of equal length between supports, the strength is as their width and the squares of their depths. We here conM. IRondelet's experiments.
604. A rod of oak $2 \cdot 132 \mathrm{in}$. (2 in. French) square, and $25 \cdot 584 \mathrm{in}$. (24in. French) long, se under a weight of $2488 \cdot 32$ lbs., whilst another of the same dimensions, but $19 \cdot 188 \mathrm{in}$. in. French) bore 3353.40 ; whence it appears that the relative strengtl of these two was in the inverse ratio of their length. 'The proportion is $19 \cdot 188: 25 \cdot 584:: 2488 \cdot 32:$ $7 \cdot 76$, instead of 3353.40 lbs., the actual weight in the experiment.
f.05. In another rod of the same wood, $2 \cdot 132 \mathrm{in}$. wide and $3 \cdot 198$ deep, and $25 \cdot 584 \mathrm{in}$. ing, it broke with a weight of 5532 lbs . In the preceding first-mentioned experiment as found that a rod of $2 \cdot 132 \mathrm{in}$. square, with a bearing 25.584 in . bore $2488 \cdot 32$ lls. posing the strength of the rods to be exactly as the sfuares of their heights, we should e $4.54(2 \cdot 1312): 10-23\left(3 \cdot 198^{1}\right):: 9488 \cdot 32: 5598 \cdot 7$ lbs. ; which the second rod shonld e horne, instead of 5.532 lhs. There are numberless considerations wheh account for the repancy, but it is one too small to make us dissatistied with the theory.
605. In a thirl experiment on the same sort of wood, the dimension of $3 \cdot 198$ in. being flatwise, and the $2 \cdot 132 \mathrm{in}$. depthwise, the bearing or distance between the supports ig the sane as before, it broke with a weight of 3575 lbs : whence it follows that the ngth of pieces of wood of the same depth is proportional to their width. Thus, couHig the piece $2 \cdot 132$ in. square, which bore 2488 lbs., we ought to have $2 \cdot 132: 3 \cdot 198$ $188 \cdot 39: 3624 \cdot 48$, instead of 3.573 lbs .
606. From a great number of experiments and calculations made for the purpose of ing the propurtion of the ahsolute strength of oak, to that which it has when lying zontally between two points of support, the most simple method is to multiply the of the piece in section by half the alsalnte strength, and to divide the product loy the Ber of times its depth is contained in the length between the points of support.
607. 'Ihms, in the experinonts made by liehidor on rods of oak 3 Vrench ($=3 \cdot 198$ liwh) ft. long, and 1 F'rench ($=1$ ofof in. I'nglish) in. square, the mean weight r velich they broke was $200-96$ lbs asoirdnpois. Ninw, as the absolute streneth of
 and 52 lbw for its lalf. and tho rule will heowe (141 lines, heing $=1$ French in.) $\times 82=20 \% \cdot 30 \| \mathrm{h} .$, instead of $200 \cdot 9011 \mathrm{~s}$.
,on. "17ree other rods, 2 lrench in. sprare ($2 \cdot 132$ Fhg.), and of the same length be-
 .is 59 lhs. averirlupis. Ẅilnont further mention of the cxperiments of Delidur, we
may observe, that those of Parent and others give results which confirm the rule. The experiments, however, of Buffon, having been made on a larger scale, show that the strenyth of pieces of timber of the same size, lying horizontally, does not diminish exaetly in the proportion of their length, as the theory whereon the rule is founded would indicate. It beeomes, therefore, proper to modify it in some respects.
608. Buffon's experiments show that a beam as long again as another of the same dimensions will not bear half the weight that the shorter one does. Thas -
A beam, 7.462 ft . long, and 5.330 in . square, broke with a weight of
Another, 14.924 ft . long, of the same dimensions, broke with a weight of $12495^{\circ} 06 \mathrm{lbs}$ avoirdupois

$$
5819.04
$$

Λ third, 29.848 ft . long, of the same dimensions, bore before breaking
By the rule, the results should have been, for the $7 \cdot 462 \mathrm{ft}$. beam $12495 \cdot 60$

for that of 14.924	-	6247.80
for that of 29.848	-	3123.90

Whenee it appears, that owing to the elasticity of the timber, the strength of the pieces, instead of forming a decreasing geometrieal progression, whose exponent is the same, forms one in whieh it is variable. The forces in question may be represented by the ordinates of a species of catenarian curve.
1611. In respeet, then, of the diminution of the strength of wood, it is not only proportioned to the length and size, but is, moreover, modified in proportion to its absolute or primitive foree and its flexibility; so that timber exactly of the same quality would give results fellowing the same law, so as to form ordinates of a eurve, exhibiting neither infleetion nor undulation in its outline: thus in pieces whose seantlings and lengths form a regular progression, the defects ean only be caused by a difference in their primitive strength; and as this strengtl varies in pieees taken from the same tree, it beeomes impossible to establish a rule whose results shall always agree with experiment; but by taking a mean primitive strength, we may obtain results sufficiently aeeurate for practice, For this purpose, the rule that nearest agrees with experiment is -

1st. To subtract from the primitive strength one third of the quantity which expresses the number of times that the depth is contained in the length of the piece of timber.
2 d . To multiply the remainder thus obtained by the square of the length.
3d. To divide the produet by the number expressing the relation of the depth to the length.
Hence ealling the primitive strength $-\quad-\quad-\quad=a$
the number of times that the depth is contained in the length $=b$
the depth of the pieee $\quad-\quad-\quad=\quad l$

- the length

The general formula will be, $\frac{a-\frac{b}{3} \times d^{2}}{b}=\frac{a d^{2}}{b}-\frac{d^{2}}{3}$.
1612. Suppose the primitive strength $a=64 \cdot 36$ for each $1 \cdot 136$ square line ($=1$ the French), we shall find for a beam $5 \cdot 330 \mathrm{in}$. square, by $19 \cdot 188 \mathrm{ft}$. long, or $230 \cdot 256$ inches, that the proportion of the depth to the length $=\frac{2319256}{5.330}=43 \cdot 2=b$.
1613. The vertical depth beirg $5 \cdot 330$ or 63.960 lines. d^{2} will be $4089 \cdot 88$; substituting there values in the formula $\frac{a \times d^{2}}{b}-\frac{d^{2}}{3}$, we have $\frac{6436 \times 408988}{43^{2} 2}-\frac{4089 \cdot 88}{3}=4067 \% 99$, instead of 4120%, the mean result of tao beams of the same seantlings in the experiments of Baflun.
1614. Mr. Gwilt has stated that the world generally, the arehiteet and engineet especially, are indebted to buffon, from whom certain tables have emanated, which were the result of laborious experinents and deserved mueh consideration. These several tables have been omitted in this edition of the Encyelopardia, is having been supereded by the more recent and seientific investigations in England of Robison, Young, Bevan, Jicmine, Tredgold, Barlow, Holgkinson, Fairbairn, Laslett, with others, from some of whose treatises passages lave been adopted herein. The results of their more modern investigations have been to benefit both the architect and engineer, by bringing the aid of nathematical investigations, to found upon their experiments safe and general rules for praetice.

Of the Strength of Timbers in an Inclinel Position.

1622. If we suppose the vertical piece $A B$ (fig. 61.3a.) to bec me inclined to the base. BD, the action of a vertieal force at D will tend to cause the picce to bend, and thereby , luse much of its power of resistance to a force acting in the ircetion of its length. Suppose the radins AB or BD to epresent the vertical foree acting at D on the piese BD then, y the "resolution of forces," it can be resulied into two inces, one aeting in the dircction of its Iength, and the other eting at rightangres to its le.gth. The forner will be reprented by the line $\mathrm{D} f$, or the vert eal force multiplied by the ine of the angle DBC ; whle the latter, at right ang'es to BD , ill act at D, tending to bend the piece $B D$ about its base B, nd will be represented by the line $\mathrm{B} f$, or the vertical force ultiplied by the cosine of the angle DBC. The piece is upposed to be fixed firmly at B, and may be considered as a eam fixed at one end and strained at the other by the force

$1 \mathrm{i}_{\mathrm{g}}, \sigma^{\prime} \mathrm{Ja}$. epresented by $\mathrm{B} f$ tending to brak it about the end B . Whin the piece comes into the crizontal position, as BC, the vertical fonce acting at C will cease to produee any strain , the direction of its length, and the transverse strain will be represented by the line BC I AB acting at C, and straining the piece about its fixed end B.
1623. Example. Let AB be a piece of Riga fir 20 feet long, the scantling being 0 inches by 6 inches. First take it in the upright position AB, then (frem far. 1631 b) le brcaking weight W in tons of an oak pillar when the load acts vertically down $A B$ is

$$
W=\frac{1 \cdot \xi b d^{3}}{4 d^{2}+5 l^{2}}=\frac{18 \times 6^{3}}{146+200}=11.24 \text { tons. }
$$

nd the strength of a pillar of Riga fir being (pur. 163Ic.) five-sixths that of oak, we hre $W=9 \cdot 37$ tons for Riga fir.
1624. If we now place the piece in the horizontal position, as $B C$, the strain upon it om the load W_{1} at C will be entirely transverse, and the breaking weight can be fonnd oin the formula ($1629 g$.) for a beam supported at both ends and loaded at the middle. ut as the load is at one end in the present case and the beam fixed at the other, we take re fourth of the weight given in the above named formula, so that we have

$$
W_{1}=\frac{3 \cdot 21}{4} \times \frac{b d^{3}}{l}=24 \cdot 08 \mathrm{cwts}=1 \cdot 204 \text { tons. }
$$

1625. Now let the piece be placed in the inclined position, BD , making 60° with the rizontal. A load F, aeting vertically at D, witl be resolved into two others at right gles to each other, one aeting longitudinally and equal to $F \times \sin 60^{\circ}$, and the other insversely at D and equal to $F \times \cos C 0^{\circ}$, or $\frac{1}{2} F$, which equals W_{1} in the formula above a beam fixed at one end and loaded at the other. Therefore the breaking weight. plied vertieally at D will be $\mathrm{F}=2 \mathrm{~W}_{1}=2408$ tons.
1626. The breaking weight acting longitudinally is $\mathrm{F} \times \sin 60^{\circ}=\mathrm{W}=9.37$ tons, as and above. Therefore we have

$$
F=\frac{W}{\sin 60^{\circ}}=\frac{0.37}{806}=10.82 \text { tons. }
$$

1627. This value of F is, however, more than four times the value obtained for it when king into eonsideration the transverse strain as found above, and we must take the aller amount as the actual strength of the piece, which is therefore reduced in the pportion of 2.408 to 9.37 , in conser ${ }_{1}$ uence of its inclination from the vertical.
1628. In Practical or Constructive Calipfntry, Chap. III. Sect. IV., Tables of scant1/2s lor timbersare given more immediately useful to the practical arenitect. But in con5 wence of the sery large amount of information obtained since the first edition of this isk, resulting from the investigations of scientific and practiral experimentalists, the fol1 ing condensed summary of the now ideas on the strength of BFADMS, GIRIERS, and J1.LARS, both in limber and iron, are subinitted for the consideration of the student. $6 \% 8 u$. "The term beam is applied herein to large rectangular sections; that of girder to 1. pe irregular shapes: and thone of bur and ions to small rectangular and irregular forms.
1629. lieans and girders are calculated for the folloning classer of buidengs:-
light wookshops and factories, public halls, churches, and other buildings in which people only accamatate, with wathouses for light goods. For all these an allowance of $1 \frac{1}{2} \mathrm{ewt}$., or 168 llis ., per square foot of flour suriace will include the weight of the joisting, the flooring, and the load upon it.
Storeloouses for heavy goods, or factoriey in which heavy machincry and goods are placed, Fur these an allowance of $2!$ ewt., or 280 lbs , per square foot of tloor surface will include the same weiphts.
Ordinary dwelling houses. For these an allowance of $1 \frac{1}{1}$ ewt., or 140 lbs ., per square foot will include the sanse weights.

1V. The weight of a floor of timber has been caleulated at 35 to 40 lbs . per square foot; 20 lbs. is usually allowed. A single joisted floor without counter floor, from 1260 to 2000 lbs . per square. A framed floor with counter flooring, from 2500 to 4000 lbs . per square. Barrttt's sistem at 78 lbs . A half briek arch floor, 70 lbs, A one briek arch floor, 120 lbs . Though Tredgeld allows 40 lbs per square foot for the weight of a eeiling, eounter floor, and iron girders, with 120 lbs . per square foot more supposing the floor to be eovered with people at any time $=$ to $160 \mathrm{l} \mathrm{t} s$, , as the least stress. yet a warehouse floor, as required at the docks, is there calculated at about 17 lbs . ineluding girders, whieh, with about 9 lbs . for plastering, allows 26 tbs. per sup. foot.
V. Partitions, or any other additional weights brought upon the floor, must also be taken into eonsideration. This is ealcnlated at frem 1480 to 2000 lbs. per square.
VI. The weight of the load to be carried must ahways inelude that of the girder itself.

STRAINS ON BEAMS AND GIRDERS.

1628c. These we shall consider under the heads I. TRANSVERSE STRAIN (1628 g .), whieh consists partly of the aetion of Tension as well as of Compression, each of them being dependent upon the Cohesion of the material. Under II. TENSION (1630c.), will be considered the neutral axis (1630c.), deflertion of beams (1630e.), with the modulus of elasticity (1630i.). impact or collision (1630o.), and the tensile stre gth (1630 p.). Under 111. COMPRESS1ON ($1630 w$.) is eonsidened Deflction of pillars, and Detrusion (1631ヶ.). The subject IV. TURSION (1631x.) close's this section.
$169^{2} d$. Timber is permanently injured if more than even $\frac{1}{4}$ of the breaking weight is placed on it. Buffon allowed $\frac{1}{10}$, which is now the eustom, for the safe load. Fairbairn s*ates that for bridges and warehouses, cast iron girders should not be loaded with more than $\frac{1}{5}$ or $\frac{1}{6}$ of the breaking weight in the middle. For ordinary purposes, $\frac{1}{3}$ for east iron is allowed for the permanest load (Barlow). A little more than $\frac{1}{3}$ can be allowed for wrought iron beams, as that material, from its extensile capability, does not suddenly give way (Warr) ; but they should never be loaded with more than $\frac{1}{6}$ th (Fairbairn). Girders, especially those of eant iron, which are liable to be less strong than intended from iriegularity in casting and eooling, should be proved before use to a little more than the extent of the safe load; this proof, however, should never exceed the balf of the breaking welght, as the metal would be thoroughly weakenta. 'liedgold observes that a load of $\frac{1}{5}$ of the breaking weight causes deflection to increase with time, and finally to produce a permanent set. I he Board of Trade limits the working strain to 5 tons, or 11,200 lbs. per square inch, on any part of a wrought iron strueture.

1628e. Of all the cireumstances tending to invalidate theoretical caleulations, the sun is about the worst. Mr. Clark writes, about the Britannia tubular bridge: "Although the tubes offer so effectual a resistance to defleetion by heavy weights and gales of wind, they are nevertheless extremely sensitive to ehanges of temperature, so much so that half an hour's sunshine has a much greater effect than is produced by the heaviest trains or the most violent storm. They are, in faet, in a state of perpetual motion, and after three months' elose observation, during which their motions were reeorded by a self-registering instrument, they were obsersed never to the at rest for an hour. The same may almost he sald of the large bridges over the dock passages. Tiee sun heats the top flange, whilst the wind, alter sweeping along the water, impinges on the bottom Hange, keeping it cool and eausing it to eontract, whilst the top flange is being expandel by the sun, so puting a eamber on the bridge much exceeding the defleetion eaused by the heaviest working luad. At the Mersey Docks the top flanges of the briuges are painted white, to assist in mecting the difficulty."

Transverse Smain,

1628 g . The strength of beams in general is dircctly as the breadth, directly as the square of the depth, and inversely as the length; thus $\frac{\text { breadth } \times d^{2} e^{2} t^{2}}{\text { length }}$. But a certain supposed quantity must, however, be added to express the specific strength of any material, a quantity only obtained by experimerts on that inaterial. This supposed quantity is represented by S. We then obtain $\frac{r_{r e a d t h} \times d^{2} t^{2} h^{2} \times S}{\text { length }}=$ breaking weight. Therefore, in experiments, a simple transposition of the quantities evolves the value of S; this $\frac{\text { length } \times \text { breaking weight }}{\text { brsadth } \times \text { depth }}=S$, which S then beeomes a constant. As regards the usual form of a cust-iron girder, using C as a constant for a signification in a girder, similar to that of S in a beam, the formula $\frac{\text { area of section } \times \text { depth } 2 \times C}{\text { length }}=$ breaking weight. The values of S and C are only applicable to a beam or girder of a similar sectional form to that from
which the value was derived, since this constant expresses tise specifie strength of that form of seetion.
$1628 h$. A nother formula for estimating the strength of beams rests on the knowledge of the resistance (or r) offered by any material to fracture by a tensile or crushing force, and the depth of the neutral axis (or n) of this area in the beam; the latter, of course, cannot be calculated. except from experiment. The rule is $\frac{r \times b r e a d t h ~}{n \times \text { dength }}=$ breaking wei ght. Sea Resistance, in Glossary.

1628i. Table of the Transverse Strength of Timber: 1 Ineh Square, 1 Foot Long.

1628k. The results of Barlow. Nelson, Moore, Denison, and some others, are collected in the above table, which gives a mean of the whole (Warr); Barlow's values are al-o noted separately, being those usually supplied in the Handbooks; and obtained by Barlow's formula, $\frac{l \times \mathrm{BW}}{4 a d^{2}}=\mathrm{S}$, from experiments on a projecting beam or arm; or from the formula $\frac{l \times \mathrm{BW}}{a d^{2}}=\mathrm{S}$, when a beam supported at the ends is under trial. A measurable set is produced by a straining force very much less than that to which the material will be likely tu be exposed in practice. Without having this principle in mind, the differences between the actual breaking weight and the permanent set weight of some writers will be misunderstood. 'The practical man, however, will use one third or some other proportion of these values, as noticed in par. 1628d. (See another Table, par. 1630s).
16281. Table of the Transverse Sirength of Metals: 1 Inch Square, 1 Foot Long.

1628m. Fairbairn's experiments on cast irons obtained from the principal iron-works, and made into bars 1 inch square and 5 feet long, proved that the longer beams are weaker than the shorter in a greater proportion than their respective lengths; that the strength does not increase quite so rapidly as the square of the depth; that the deflection of a beam is proportional to the force or load; and that a set oceurs with a small portion of the breaking weight.

In 59 experiments, the strongest; Ponkey No. 3, cold blast	$\begin{aligned} & \text { Spec. Grav. } \\ & 7 \cdot 122 \end{aligned}$	Break. Wt. 578 1bs.	Ult. deflect. 1.74, hard.
In 59, experiments, the weakest; Plask ynaston, No. 2, hot lilast	6.916	357 lbs.	1-36

Mean value 440 lbs., affording for the specific strength, $S=1980 \mathrm{lbs}$., or $=884$ tons. For the rule including n, a comparison of two specimens gave $n=2 \cdot 63$.
1628n. Morries Stirling has considerably strengthened cast iron by adding a portion of malleable cast iron. Four experiments, by Hodgkinson, gave the following results :-

His irons are also stronger under compression and tension.
Tensile power, No. 2-11.50 tons. \mid Compressive power, No. 2-54.62 tons. " "No. 3 - 10.47 " No. 3 - 64.41 "
16280. Hodgkinson also found the average breaking weight in pounds of a bar of cast iron, 1 inch square and 4 feet 6 inches long between the supports, to be as follows:Average of 21 samples of hot llast iron - - - 445.5714 pounds Average of 21 samples of coll blast iron - - - 456.9090 pounds The superior transverse strength of cold llast iron equals nearly $2 \frac{1}{2}$ per cent. R. Steyhenson experimented, in 1846 and 1847, on bars of different kinds of east iron, 1 inch square and 3 feet bearing. The results are given in the Civil Engineer, 1850, pp. 194-9.

Shates of Beams and Girners.

1628p. "Calculation affords the following shapes for iron beams, as being enabled to do the most work with the least expenditure of substance. Beams supported at one end: I.

If the load be terminal and the depth constant, the form of the beam in breadth should be wedge-shaped, the breadth increasing as the length of the beam (the latter measured from the loaded end). II. If the breadth be eonstant, the square of the depth must vary as the length, or the vertical section will be a parabola. II 1 . When both breadth and depth vary, the section shonld present a cubieal parabola. IV. When the beam supports only its own weight, it should be a double parabola, that is, the upper as well as the lower surface should be of a parabolic form, the depth being as the square of the length. V. When a beam is loaded evenly along its surface, the upper surface being horizontal, the lower one should be a straig!!t liue meeting the upper surface at the outer end, and forming a triangular vertical section; the depth at the point of support being determined by the length of the beam and the load to be sustained. VI. If an additional terminal load be added to stuch a beam, the under surface should be of a lyyperbolic curvature. VII. And in a flanged beam, the lower flange should describe a parabolic eurve (as in example IV.).

1628q. "Berms supported at both ends. I. A beam loaded at any one point, as scale beams and the like, should have a parabolic vertical section each way from the loaded point,

Fig. G13b. the lower one being straight. This form applies to girders for bridges and other purposes where the load may be spread. IV. With thin flanges, a beam so eircumstanced shonld be of a parabolic figure. V. If a flanged beam have its upper and lower sides level, and be loaded uniformly from end to end, the sides of the lower flange should have a parabolic curvature." (Gregory.) VI. In the case of example III., Fairbairn observes that the greatest strength will be attained, while the breadth and depth is allowed to be diminished

towards the ends. This diminution should take place in curved lines which are strictly parabolic. The most convenient way of doing this is by preserving a horizontal level in the bottom flange, diminishing its width, as well as the height of the girder, as fig. 613c. Thus the spaces $b b$ should be square on plan for the bearings on the wall, \&e., and equal to the width of the botom flange at the centre ; the intermediate length l t, be curved to the form prescribed. The width of the bottom flange is to be reduced near the ends to one half of its size in the middle, and the total depth of the girder reduced at the ends in the same proportion. At the middle of the bearing, a flange may be cast on to connect the upper and lower flanges, and this will give additional stiffiness to the girder.

1628r. Gregory further remarks on this subject : when the depth of the beam is uniform, and (VII.) the whole load is collected in one point (as A, fig. G13d.) the sides of the beam
 should be straight lines, the breadth at the ends, B, being half that where the load is applied.
VIII. When the load is miformly distributed (fig. 613e.) the sides should be portions of a circle, the rallius of which should equal the square of the length of the beam divided by twice its lireadth. When the breadth of the beam is uniform and (IX.) the load is collected in one point, the extended (under) side shonld be straight, the depth at the point where the load is applied twice that at the ends, and the lines connecting them straight (fiy. G13h.) See example I. When the load is miformly distributed, X. the extended (under) side shonld be straight, and the compressed (upper) side a portion of a circle whose radins equals the square of half the length of the beam divided by its deptl). Sec examples III, and VI. When the transverse section of a beam is a similar fignre throughout its whole length; XI. if the load be collected at one point, the depth at this point should be to the depth at its extremities as $3: 2$: the sides of the beam being all straight lines. XII. When the load is miformly distributed, the depth in the centre should be to the deptly at the end as $3: 1$, the sides of the beam being all straight lines.

Vahous Laws affecting Jeams and Grbers.

1628s. Tie piinciples on which the rules subjoined are founded may be seen in Gregory, Mechanics, s.c. and Bailow, Stengith of Materia's, but divested, certainly, of the refinc-
ment of Dr. T. Young's Modulus of Elasticity, and some other matters, which we cannnt help thinking unnecessary in a subject where, after exhausting all the niceties of the ques. tion, a large proportion of weight is considered too much for the constant load.
$1628 t$. 'The transverse strength is that power, in the case of a beam, exerted in opposing a force acting in a direction perpendicular to its length. The following formula and rules apply to the various positions in whieh a bean or girder is plaed.

1. If a beam be loose (or supported) at both ends, and the weight be applied in the middle
2. If a beam be loose at both ends, and the weight be applied unicormly along the same length, it will hear twiee the load placed in the middle -
III. If a beam be loose at both ends, and the weight be ap. plied at an intermediate point; the spaces m with $n=l$ -
IV. If a beam be fixed at both ends, and the weight be apphed in the middle, it will bear one half more than if both ends be loose (I.) -
V. If a beam be fixed at both ends, and the weight be applied uniformly along the same length, it will bear three times more than the load in the middle of No. 1, than if both ends be loose
VI. If a heam be fixed at both ends, and the weight be applicd at an intermediate point -
VII. If a beam be fixed at one end, and the weight be applied at the other end, it will bear only one fourth of the weight carried by beam No. 1, of the same length

Girder. $\frac{\mathrm{C} a d^{2}}{l}=\mathrm{W}$	Beam. $\frac{\mathrm{S} b d^{2}}{i}=\mathrm{W}$
$\frac{2 \mathrm{C} a d^{2}}{l}=\mathrm{W}$	$\frac{2 \mathrm{~S} u d^{2}}{l}=\mathrm{W}$
- -	$\frac{\mathrm{S} b d^{2} l}{4 m n}=\mathrm{W}$
or	$\left\{\begin{array}{l} \frac{1 \cdot 5 \mathrm{~s} b d^{2}}{l}=\mathrm{W} \\ \frac{3 \mathrm{~S} b d^{2}}{2 l}=\mathrm{W} \end{array}\right.$
- -	$\frac{3 S b d^{2}}{l}=W$
- -	$\frac{3 S b d^{2} l}{8 m n}=\mathrm{W}$
- -	$\frac{\mathrm{S} l d^{2}}{4 l}=W$

VlII. If a beam be fixed at one end only, and the weight be applied in the middle, it will bear half as much again as at the end.
IK. If a beam be fixed at one end, and the weight be applicd uniformly along its length, it will bear double the load at the end.
X . If a beam be fixed at one end only, it is as strong as one of equal breadth and depth, and twice the length which is fixed at both ends.
XI. If a beam be supported in the middle and loaded at each end, it will bear the same weight as when loose at both ends and loaded in the middle (as I.)
XII. If a beam be continued over three or four points and the load be uniformly distributed, it will suffice to take the part between any two points of support as a beam fixed at both ends.
XIII. If some of the parts have a greater load than the others, it will be near enough in practice to take the parts so loaded as supported at the ends only.
XIV. If a heam be inclined and supported at both ends, it has its breaking weight cyral to that of the same beam when horizontal, multiplied by the length of the inclined beam and divided by the horizontal distance.
Note.-In calculating for the strength of a beam or of a girder, it is usual to recion on the ends being loose, from the difficulty of fixing the ends in a sufficient manner to warrant the rule in that case being followed: and when the ends are solidly embedded, they should penetrate the wall for a distance equal to at least three times the depth of the beam or girder (par. 1630 m .) ; but this precaution is seldom carried out in practice.
$1628 u$. For the effect of running loads over bars, we must refer to Professor Willis's experiments at Cambridge, given at the end of Barlow's Strength of Materials, S.c., 1851.
$1628 v$. Two geometrical methods of finding the best proportion of a beam to be cut out of a given cylinder have been propounded. The stiffest leam, says Tredgold, that can be cut out of a round tree, is that of which the depth is to the breadth as $\sqrt{3}$ to 1 , or nearly as 1.7320508 to 1 ; this is in general a good proportion for bcams that have to sustain a considerable load. The required proportions are obtained by dividing a diameter as $a b$ in $f q .613 f$., into two equal parts, ae and $c b$, then drawing with a and b as ce.rtres two arcs through c to ent the circle in e and f; the points rebf being joined, the figure is that of the st:ffest heam that ean he cut out of a cylinder, to resist a perpendicular strain. It is also observed by Tredgold
 that the strongest beam which can be cut out of a round tree is that of which the depth
s to the breadth as $\sqrt{2}$ is to 1 , or nearly as 14142136 to 1 ; or as 7 to 5 . Its two sides nust be to the diameter of the tree as the $\sqrt{\frac{1}{3}}$ and $\sqrt{\frac{2}{3}}$ to 1 . Tl.e required proportions are , btained by dividing a diameter $a b$, fig. 613 h ., into three equal parts $a f, c d, d b$, and lrawing the lines $c e$ and $d f$ at right-angles to $a b$; the points $a e b f$ being joined, the figure s that of the strongest beam that ean be cut out of a cylinder. The strength of a square jeam, fig. $613 g$., cut from the same cylinder, is to the strength of the strongest beam learly as 101 to 110 , although the square beam would contain more timber nearly in the atio of 5 to 4.714 . The stiffest beam is to the strongest as 097877 to 1 , as regards ower of bearing a load; but as 1.04382 to 1 as regards amount of deffection, in equal engths between the supports.
1628w. Buffon, during his extensive ser:es of experiments on oak timber, from 20 to 28 eet in length, and from 4 inches to 8 inches square in section, found that the heart-wood which was densest was also strongest, and the side on which the beam was laid also affected he strength; for when the annual layers were horizontal, and the strength 7, the layers aid vertically gave a strength of 8. He also found that beams which had each supported, without breaking. a load of 9,000 lbs. during one day, broke at the end of five or six nonths with a weight of $6,000 \mathrm{lbs}$., that is to say, they were unable to carry for six montlis wo-thirds of the weight they bore for one day.

Transverse Sections.

1628x. The transverse section of a cast iron girder previous to Hodgkinson's experiments
 was that of Tredgold, consisting of equal flanges at top and bottom, as A, fig. 613i; and that of Lillie and Fairbairn, in 1825, with a single flange, as B; Hodgkinson deduced a section of greatest strength having areas of flanges as 6 to 1 , as C. Taking this form as unity, the ratios will stand :-

$$
\begin{array}{llll}
\text { For Hodgkinson and Fairbairn, as } & - & - & -1: \\
\text { For Hodgkinson and Tredgold, as } & - & - & - \\
\text { For Fairbairn and 'redgold, as } & - & - & - \\
\text { For } & -619 \\
\text { F } & -820
\end{array}
$$

(Fairlairn, Application, \&c. p. 25; Tredgold, Cast Iron, 1824, p. 55, describes the advantages of his own form of section.)

1628y. Hodgkinson's complete section for a cast iron girder is slown in fig. 613j. Its chief principle is, that the bottom flange must contain six times the area of the top flange. The several dimensions are taken thus:-I. For the depth, the total dimension D. II. For the bottom flange, the width B, and for the two thicknesses, one is taken at the centre $b b$; the other b at the end.
III. For the top flange, the width T, and for the two thicknesses, one is taken t the centre t, the other t at the end. In this manner the dimensions of the flatiges are

Tig. 61.j. quite independent of the thickness of the rib. IV. For the rib the two dimensions r and r are measured as continued to the extreme top and bottom surfaces of the girder, with the same view of making these dimensions independent of those of the flanges, and promoting exactness in defining the entire section. Hodgkinson's complex rule for obtaining the weight a girder will carry, is $\left.\left.\frac{2}{3 d t}\right\}\right\}^{b} d^{3}-\left(b-b_{1}{ }^{3}\right) d_{1}{ }^{3}=\mathrm{W}$. Here $\mathrm{W}=$ tous, or b eaking weight; l feet, or length between s!pports; d whole depth ; d_{1} depth to bottom flange, b breadth of bottom flange, and b_{1} thackness of vertical rib. The simpler rule usually cm ployed, as $\frac{a \times d \times C}{l} \frac{\mathrm{C}}{\mathrm{f} \text { tert }}=\mathrm{W}$ tons, or the breaking weight whicit should not be less than four times the permanent load distributed; and it gives a result less by 7 per cent. than the complex rule above described, therefore an excess of strength is oltained.

1628z. The proportions of the rib are undetermined, but it is evident that they should bear some ratio to those of the flanges. It must be sufficiently rigid to prevent literal weakness. Moreover the very theory which maintains the principle the nentral axis (par. 1630 c) also reeggises the increase of the forces of compression and :ension upward and downward from the neutral α, i s, and would therefore lead to the loption of a rib tapered in both directions. In practice it is found desirable to taper the , so as to mect each of the flanges with a thickness corresponding to that of the flage, for any very great disproportion exists, the operation of casting the beam eannot be so - feet'y perfiorned, from mequal shminkage of the metal, and an infiperfeet easting or one Inig tliws in it, renders futile all calculations of strengtl.
1529 Hodgkinson gradually varied the form of section of girder in his experiments until e widhan and depths of the flanges were as follows:-T'on fange $2 \cdot 33$ inehes wide, o. 31
inch decp; bottom flange 6.67 inches wide, 0.66 inch deep; the areas being 720 and $4 \cdot 4$ inches. The rib was 266 inch thick, and the total deptli $5 \frac{1}{8}$ inches. The constant on C was found to be 514 for cwts., or 26 for tons. (Warr.)
$1629 a$. It will scarcely be within our province to describe all the forms of sections, and the results of the experiments made by Fairbairn in obtaining his box beam or plate girder in wrought iron, but it is to be noted that all the cylindrical tubes broke by extension at the rivets before the tube could fail by compression. Fairbairn in his Application of Casi and Wrought Iron to Building Purposes, edit. 1857-8, p. 80, notices that although the plate girder be inferior in strength to the box beam, it has nevertheless other valuable properties to recommend it. On comparing the strength of these separate beams, weight for weight it will be found that the box bean is as $100: 93$. The plate beam is in some respect superior to the box beam; it is of more simple construction, less expensise, and more durable, from the circumstance that the vertical plate is thicker than the side plates of the box beam. It is also easier of access to all its parts for the purposes of cleaning. \&c.

1699b. Fairbairn has formed a comparison between a wrought ion and a cast iron girder fo: a span of 30 feet. The plate girder, fig. $613 k$, would be 31 fect 6 inches in length, and wouls be composed of plates 22 inches deep and $\frac{5}{16}$ ths thick; with angle iron $\frac{3}{8}$ ths thick, riveted on both sides at the bottom of the plate, and angle iron $\frac{1}{2}$ inch thick at the top, the width over the top being $7 \frac{1}{4}$ inches, and the bottom $5 \frac{1}{2}$ inches. The breaking weight of this Beam, taking the constant at 75 , would be $\frac{a d \mathrm{C}}{l}=\mathrm{W}$; or $\frac{6 \times 22 \times-5}{360}$ $=27.5$ tons in the middle, or 55 tons distributcd equally over the surface. In the edition of 1857-8, the angle irons are described as 3 inches by 3 inches, $\frac{1}{2}$ inch thick for the bottom, and 4 inches by 4 inches, $\frac{1}{2}$ inch thick at the top; it would, therefore, be $8 \frac{1}{2}$ inches over at the top, and about $6 \frac{1}{2}$ inches at the bottom. Now a rast iron girder of the best form and strongest section and calculated
 to support the same load, would weigh abont 2 tons, the plate beam about $18 \mathrm{cwts}, o$ less than one half. To secure uniformity of strength in a rectangular box beam, the tol is required to be about twice the sectional arca of the bottom ; hence resulted the use 0 cells in that portion.

1629c. Fig. 613l. is a plate beam having a single plate for the vertical web, while eacl of the flanges consists of a flat bar and a pair of angle irons riveted to each other and ti the vertical web. Fig. 613m. is a box berm, in which there are two vertical webs. Fig. 613n. is a plite girder of greater dimensions than fig. 6131. ; the flanges contain more than one layer of flat bars, and the web, which consists of plates with their largest dimensions vertical, is stifiened by vertical T iron ribs at the joints of those plates, as shown in the plan or horizontal section littered A. The pieces should abut closely and truly against each other, having end surfaces made exactly perpendicular to the axis of the

Fig. 615%. beam. The thickness of the web is seldom made less than $\frac{3}{8}$ ths inch, and except for th largest beams, this is in general more than suflicient to resist the shearing stress. Above eac of the points of support, the vertical ribs must be placed cither closer or made larger, s that they may be jointly capable of safely bearing as pillars the entire share of the loa which rests on that point of support. A pair of vertical T' iron ribs riveted back to bac through the web plates (as A, fig. 613n.) may be held to act as a pillar of cross-slaped section

1629 d . The rib or web of a plate beam, as fig. $613 l$, having little or nothing to do wit the pressure directly, has been replaced in some cases by simple upright struts or diagon: braces between the llanges, which in cast iron girders are in one casting, but experience hi proved this not altogether politic, particularly in cast iron. Hodgkinson remarked tha such beams were weaker than those with a solid rib. Rankine observes that transver: ribs or feathers on cast iron beams are to be avoided, as forming lodgments for air bublle and as tending to cause cracks in cooling. Open work in the vertical web is also to b avoided, partly for the same reasons, and partly because it too much diminishes the resist ance to distortion ly the shearing action of the load.
$1629 e$. "Where the span renders it impracticable to roll a beam in one picce," Fairbairl page 91, notices that "convenient weights might be rolled into sections of the proper fier -and being united by properly proportioned covering plates at top and bottom, and :
e joints (par. $1630 y$.), and all the riveting be well executed, the beam will be equal in rength to one " of an entire length. "This construction may be carried to a span of 40 to) feet. In practiee it is found necessary to confine the usc of cells to spans excceding 150 or 150 feet: within these limits the same objects are nost economically oftained by e use of thicker plates" (page 215). "The more narly the bottom approximates to a lid homogeneous mass, the better it is calculated to resist a tensile strain" (see pages 248 256 for full instruetions as to riveting plates; and Kirkaldy, Experiments, \&c., page 16, for comparison of strength). As the bending moment of the load on a girder diminislies on the moddle towards the ends, and the shearing foree from the ends towans the iddle, it follows that the transverse sections of the botton plates may be diminished om the middle towards the ends, and that of the vertical web from the ends towards the iddle, so as to make the resistance to bending and shearing respectively vary aecording the same law. Consequently, towards the eentre of a girder for a large span, the Itonı plate is usually increased by additional plates to secure the requisite strength in e sectional area, giving the undcrside of the plate a bellied form. C. Graham Simith, ronght Iron Girder Work, deserves attentive perusal by the student. It is printed in the ritish Architect, for June 1877, pages 382 to 385.
162唃: The results of various testings of a new manufacture of girder patented about 366 by Messrs. Phillips are here recorded. A double weight in a cast iron girder is refired to give equal strength with one of wrought iron. A riveted plate girder is not always laptable for general purposes. The new system consists in riveting plates to the top and

bottom flanges of rolled iron beams, and so strengthening them as to obtain results apparently disparaging to ordinary plate girders. The experiments noticed here in an abridged form were on a patent girder of 22 lbs perfoot run, with a web plate, as A, fig. 6130 ., and 20 feet bearing. as compared with a rivetcd plate girder of 9 in depth; it gave a breaking weight of 7 tons and a safe load of 4 tons; the formula for the breaking weight of an ordinary plate girder would give $3 \frac{1}{2}$ tons. When two of the 8 -inch rolled girders were riveted together with a plate on the top, as B , the metal being about 40 lbs . per foot run, the girder was found to resist 20 tons, even then not breaking, but becoming twisted. An ordinary riveted plate girder of 40 lbs , per foot run, with a web of 12 inehec, with double angle irons of 3 inches ly 3 inehes and $\frac{1}{2}$ inch thick, would break with a strain of 9 tons. A simple web plate girder, with angle irons top and botton (fig. 613k.), gives $\mathbf{C}=60$; a plate on top and botom in addition (fig 6131.) es $\mathbf{C}=75$; and a box beam (fig. 613 m .) gives $\mathbf{C}=80$. The rolled girders made by the Herley Company give $\mathrm{C}=57$ to 88 . The example A gives $\mathrm{C}=210$; and the example 300. Other experiments are required fully to prove the superiority of the new systens r the beams and girders of the old sections. The details of the above testings are given the Builder, p. 148; Mechanics' Magazine, p. :29; Engineering, p. 139; \&c., ail for the ir 1866.

Condition of Breaking Weight in the Middle.

Fig. 61.5. VARIOUS FORMS in USE FOR beims, GRDERS, AND iRONS,
Ipplication to the manufacturer selected must be made for any special lengths and ngths of rolled iron joists and girders, riveted and compound, \&.e. The former can ohtained from 3 inches deep by $1 \frac{3}{4}$ inches up to 22 inches deep by 8 inches, being from et to 36 feet in length, with tor and bottom flanges of usual proportions. The latter be obtained of the same lengths. One manufacturer advertises the following makes.led girders up to $19 \frac{3}{4}$ inches deep and to 38 feet long. Zore's patent girders up to tehes deep and to 34 feet long. Channel iron to 12 inehes wide and to 32 fect long. gle iron to $12 \frac{1}{2}$ urited incles and to 30 feet long. Tee iron to 12 united inches and tio fect long. Filitel and sandwich plates to 14 inches wide and to 36 feet long. Riveted liers made up from stock to all sections. Bulb tees nip to 10 inehes deep. Rounds $\frac{1}{2}$ inches. Squares to 5 inches. Flits to 14 inches. Chequered plates up to 8 feet by 1 et.
We opinion is gaining ground that most of the constants in nase for calculating the bgth of beans ate too high. A comparison of Tredgold, Barlow, and Clark, will show
a diffurence of something approaching 100 per cent. : Tredgold the highest, Clark th lowest, and Barlow about midway. New sets of experiments are desirable, especially fo large scantlings. From 1866 D. Kirkaldy has made a number of experiments on full size timbers, and of late years Mr. Lanza has made some at the Massachusetts Institute His results show that the ordinary formu!æ require revision. For instance, a spruce bean 12 inches by 2 inches and 15 feet lons broke with a central load of 5894 lbs . Accortins to Tredgold's formula, it ought to have carried a load of 8928 Ibs, before breaking. 'lini result was corroborated by other tests, and the general conclusion arrived at is that, wherea: we have been accustomed to use as a constant in the familiar formula $W=\frac{c b d^{2}}{l} 4 \mathrm{cwt}$. fo: fir or pine beams (in fact, in one of his examples 530 lbs . is used), we ought really to use : constant of not more than $2 \frac{1}{2} \mathrm{cwt}$. The more thoroughly large size specimens, whether n wood or iron, are tested, the more will our knowledge of their strength be increased, ans we shall be less dependent upon theories. (J. Slater, 1887). As an instance, put forwar so long since as $1871-72$ by Captain (now Colonel) Seddon from experiments by D. Kir kaldy on (1) white Rigatir, and $(\stackrel{9}{9})$ red Dantzic fir, where each piece was 20 feet long-

> White Riga fir was 13 inches square $=169$ square inches area.
> Ultimate stress $331,260 \mathrm{lbs} .=1960 \mathrm{lbs}$. per squ re inch.
> or $147 \cdot 88$ tons $=126^{\circ} 04$ tons per square foot.
> Gave way at knots 2 fect 9 inches from centre. Deffection 642 . Red Dantzic fir was $13 \cdot 5$ by $13 \cdot 2=178$ square inches area. Ultimate stress $809,120 \mathrm{lbs} .=1742 \mathrm{lbs}$. per square inch. or 13400 tons $=112.02$ tons rer square foot.
> Gave way at knot 0.9 off centre. Deflection 548 only.
> Iransactions, Royal Institute of British Architects, 1871-72, pp. 156-164.

Strictly speaking, the law that the breaking weight depended on the variations of stress was known before 1849, when it was shown that cast iron bars broke with balf tie statica breaking weight when subjected to continued repetitions of load, Subsequently Sir W lairbairn carried out an experiment on a riveted girder subjected to continual loading and unloading lor a period of two or three years. It broks with two-fifths of the statical breaking load, and after repairing, with one-third the statical brtaking weight, afier ovel one milion changes of load in each case. The statical breaking stress was not, as com monly assumed, the exact measure of the structural value of a materid. (Prof. Unwin in Builder, 1887, p. 741).

1629 g . Problem I.-To find the brcaking weight of a beam, the load being in the middle and all the dimensions known. The ends loose or supported.

For A, Timber beams:-
$\frac{b d^{2} \mathrm{~S} \mathrm{lbs} .}{l \text { fect }}=\mathrm{W}$ lbs. $\left\lvert\, \frac{b d^{2} \mathrm{~S} \mathrm{cwt} .}{l \text { fcet }}=\mathrm{W} \mathrm{cwt} . \quad \frac{b d^{2} \mathrm{~S} \text { tons }}{l \text { feet }}=\mathrm{W}\right.$ tons. $\quad \left\lvert\, \frac{a 4 d \mathrm{~S}}{l \text { ins. }}=\mathrm{W} \mathrm{bs}\right.$.
Here S , in the first formula, represents the value of the breaking weight in pounds in the middle, taken from the preceding table : in the other two it would be deduced from it thus, taking Riga fir $\frac{359 \mathrm{lbs}}{112 \mathrm{lbs}}=3.21$ for $\mathrm{c} w \mathrm{t}$., and $\frac{3.21}{20 \mathrm{cwt}}=\cdot 160$ for tons: b breadth it inches; $l d$ depth in inches ; l distance between the points of support, in feet; a area of section. These letters will be continued in these problems, until other values are attached to them. W will always represent the breaking weight,

1629h. For B, Wrought or cast iron rectangular beams:-

$$
\frac{b d^{2} \mathrm{~S} \text { lbs. }}{l}=\mathrm{W} \text { lbs. } \quad \left\lvert\, \quad \frac{b d^{2} \mathrm{~S} \text { ewt. }}{l}=\mathrm{W}\right. \text { cwts. } \quad \left\lvert\, \quad \frac{b d^{2} \mathrm{~F}}{6 l}=\mathrm{W} \mathrm{lbs} .\right.
$$

Here F represents the weight in pounds borne by a rod 1 inch squarc, when the strain is as great as the rod will bear without destroying part of its elastic force, $=1.5,300$ for cast iron. From a mean of 265 experiments by Hodgkinson and Fairbairn, it appears (by Gregory) that a weight of 454.4 pounds in the middle of a bar of cast-iron, l inch spluart and 4.5 feet bearing, produced fracturc. Therefore, for a bar of any other dimensions, we have:-

$$
\frac{b d^{2} \mathrm{C}=2045}{l}=\mathrm{W} \text { lbs. } \quad \left\lvert\, \quad \frac{b d^{2} \mathrm{C}=18 \cdot 25}{l}=\mathrm{W}\right. \text { cwts } \quad \quad \quad \frac{b d^{2} \mathrm{O}=\cdot 912}{l}=\mathrm{W} \text { tons. }
$$

1629i. For C, Cast iron girder (Tredgold's section). $\frac{b d^{2} F}{6 l} \times\left(1-q \times p^{3}\right)=\mathrm{W}$ lbs. Here q, difference between the breadth in the middle and the extreme breadth $=625$ as found to answer in practice; and p, depth of the narrow part ir. the middle $=-7$ as found to answer. When the middle part of the beam is omitted, expept sufficient uprights to connect the top and bottom bars, then $\frac{b d^{3} \mathrm{~F}}{6 l} \times\left(1-p^{3}\right)=\mathrm{W}$ lbs, Here
shole depth; and p depth of part omitted. If the thiekness of the web be about $\frac{1}{12}$ th $\frac{1}{15}$ th of the depth of the beam, then--

$$
\frac{a d \mathrm{C}=514}{l \text { inehes }}=\mathrm{W} \text { ewts. } \quad \left\lvert\, \frac{a d \mathrm{C}=26}{l \text { inehts }}=\mathrm{W}\right. \text { tons. } \quad \left\lvert\, \frac{a d \mathrm{C}=2 \cdot 166}{l \text { feet }}=\mathrm{W}\right. \text { tons. }
$$

ere 514 ewts. may be used for side eastings, or 536 ewts. for ereet eastings. The other antities are obtained thus : $\frac{514 \text { ewts. }}{20 \text { for tons }}=25 \cdot 7$, called 26 tons; $\frac{536}{20}=26 \cdot 8$, ealled 27 tons. hen l is used in feet, $\frac{26}{12}=2 \cdot 166: a$ represents area of bottom flange in inches.

1629k. For D, Cust iron girder (Hodgkinson's pattern) : -

ere a and d as before; P permanent load distributed, or about one-fourth of the eaking weight distributed; and multiplied by 2 when the ends are fixed $=$ one-half W. From the experiments above quoted from Gregory, we obtain-

$$
\frac{a d 4852}{l}=\mathrm{W} \text { lls. } \quad \left\lvert\, \quad \frac{a d 43 \cdot 33}{l}=\mathrm{W}\right. \text { ewts. } \quad \left\lvert\, \quad \frac{a d 2 \cdot 166}{l}=\mathrm{W}\right. \text { tons. }
$$

1629l. Gregory's work also states an arbitrary formula given by Mr. Dines, which he und to be tolerably eorrect in ali eases where the length of the girder did not exceed 95 ; ; its depth in the eentre not greater than 20 inehes; the breadth of the bottom flange t les, than one-third, or more than half, the depth; the thickness of the metal not less all $\frac{1}{16}$ th of the depth. Then-

$$
\begin{gathered}
\frac{1792}{l}\left[b d^{2}-\left(b-b_{2}\right) d_{2}{ }^{2}\right]=\mathrm{W} \text { lbs. } \left\lvert\, \quad \frac{16}{l}\left[b d^{2}-\left(b-b_{2}\right) d_{2}{ }^{2}\right]=\mathrm{W}\right. \text { ewts. } \\
\frac{0.8}{l}\left[b d^{2}-\left(b-b_{2}\right) d_{2}{ }^{2}\right]=\mathrm{W} \text { tons. }
\end{gathered}
$$

ere \dot{b} entire breadth of bottom flange; b_{2} thiekness of the vertieal part; d depth of role girder ; d_{2} depth without the lower flange, all in inehes ; l length in feet.

1629m. Hurst, Handbook, notiees that the area of the top flange should be $\frac{1}{3}$ of that of e Cotom flange when the load is on the top; and $\frac{1}{6}$ when the load is on the botton flange; olesworth, Formula, has $\frac{1}{2}$ for the latter; he notes that if the depth of the girder be $\frac{1}{12}$ of espar, then $a 417=W$ tons, the weight being distributed. When the depth is $\frac{1}{10}$, $=W$ tons, the weight being distributed. The depth at the ends may equal $\frac{2 d}{3}$. Apoximate rules for these girders have been given in the Pockiet-boolf for 1865 , as $l \times \mathrm{P}^{\prime}=d \times n$, $\ddot{d}=\mathrm{I}^{\prime}, \frac{l \times \mathrm{P}}{d}=a$. Here l feet; P tons distributed; d depth of girder; a area of bottom nge, both in inehes.

1699n. For \mathbf{x}, Wrought iron tube or beam, or bur-beam:-

$$
\begin{array}{l|l}
\frac{a d C}{} / \mathrm{C}=80 \\
l \text { inclues }
\end{array}=\mathrm{W} \text { tons. } \quad \left\lvert\, \frac{a d \mathrm{C}=6 \cdot f 6}{l \mathrm{fect}}=\mathrm{W}\right. \text { tons, when } d \text { is more than } \frac{l}{14}
$$

se \boldsymbol{a} area of the botom flange; \mathbf{C} eoeffieient determined for this particuls form of tube. the table given by lairbairn (pp. 116-17), a area of the whole eross section, the comnt $\mathrm{C}=578$ tons, for a tube having the top flange $=\cdot 142$ thick, twice the area of the tom one; the tube being 9.6 inehes square, and 17.5 feet long between the supports. ch a beam deflected $1 \cdot 76$ inehes with a breaking weight of $7,148 \mathrm{lbs}$.
16290. Hurst states it is usual to camber a riveted girder, so that on receiving the per1.ent load is may beeome nearly horizontal. If the required rise or carber equals e in middle in inches, d being in inehes and l in feet, we have $\frac{l^{2}}{i} \mathrm{~K}=e$. For girders unimly loaded and of uniform seetion thronghout the length, $\mathrm{K}=0.018$. When the section Also made to vary so that the girder will be of cqual strength throughout, $\mathrm{K}=\cdot 021$. deaworth notes the area of top flange as $a 1 \cdot 18$; H1uret says $a 1 \cdot 75$. If the depth of girder be $\frac{1}{12} 0^{0}$ the spam, then $W=1: 33$ a tons; if $\frac{1}{10}$, then $W=16$, tons. The ravets to ${ }^{3}$ inchand meh in dian ter, placed 3 inches apart in the top and 4 inches apart in bottom flange.

1629p. For $\boldsymbol{\Sigma}$, Wrought-iron p'ate girder:-

$\frac{a d \mathrm{C}=1500}{l \text { inches }}=\mathrm{W}$ cwts. : area of the top flange being $\frac{1}{3}$ greater than the bottom flange, and the thickness of the web about $\frac{1}{24}$ or $\frac{1}{30}$ of the depth of the beam. $\frac{a d \mathrm{C}}{l \text { iaches }}=\mathrm{W}$ tons, in which case $\mathrm{C}=75$ for deep plates, as 22 inches; cr $=60$ for less depth, as 7 inches. $\frac{a d \mathrm{C}=6 \cdot 25}{l \text { feet }}=\mathrm{W}$ tons, when d is more than $\frac{l}{14}$, and the area of the top flange is 1.75 of the bottom flange. Here a area of bottom flange in inches; some calculators deduct the rivet holes from its total width. For depths minder 12 inches, the width of the top flange should be half the depth; and when over 12 inches, one-third. With the latter proportion, feathers or stifleming pieces should be used to supply the deficiency in tateral stiffiness occasioned by the reduced width of flange (par. 16:90.). The usual thickness of web for all deptlis uncer 3 feet is $\frac{3}{8}$ inch. Fairbairn (Tubulur Bridges, p. 247) discovered that the top flange should have an area double that of the lower one to give the strongest form of urought iron beam, a contrary principle to that obtained in cast iron.

1629q. To find the area of either of the flanges at the centre of a girder supported at both ends, the formula is $\frac{W l}{8 s d}=a$. Here W represents live and dead loads uniformly distributed in tons; l span in feet; d depth in inches; and s sale strain per square inch of metal on the flange, in tons. Therefore, say $\frac{W=150 \times l=100}{8 \times s=5 \times 8 \cdot 33 \text { sect. area }}=45$ square inches, excluding rivet holes in the bottom flange. This formula is tise equivalent of $\frac{W=\text { weight per foot } r \operatorname{ran} \times l^{2}}{\wp s d}=a$. When the sectional area of the top flange is to be greater than that of the bottom flange, multiply the latter area by 1.2 . The average sectional area of a theoretically proportioned flanged girder may be taken at $\frac{2}{3}$ rds of the central sectional area. To find the sectional areas of either Alange at any point along the whole length of the girder, the formula is $\frac{W x}{2 s l}(l-x)=a$, excluding rivet holes in bottom Hange. Here W weight per foot run in tons; x lesser segment into which the span is divided; $l-x$ greater segment; s and d as before. To find the sectional area at any length of the web, the formula is $\frac{W}{s}=a$ square inches. Here x is the distance from the centre; W and s as before. Tlie vertical strain, at the centre of the beam, when one-half of the girder is fully loaded, is equal to $\frac{1}{8}$ of the fully loaded bean, that is $\frac{1}{8} \mathrm{~W} \times l$. At the ends or pillars, the vertical stiain is greatest, and is equal to $\frac{1}{2} \mathrm{~W} \times l$. The strain at the centre, when the load is uniformly distributed, is obtained from the formula $\frac{W l}{8 d}=s$. Here W distributed load in tons; l length in feet; d depth in feet ; s strain in tons of compression in the top flange and tension in the bottom flange. Half the load collected at the centre of a girder being equal to the load distributed, the above formula becomes $\frac{W l}{4 d}=s$. At any other point, ratios of strain will be as the square of half the span to the square of the segments into which a given point divides the span. The approximate strain at the centre, per square inch, on any beam, may be obtained from the formula $\frac{\mathrm{W} l}{8 a}=s$. Here W distributed load in tons; l length in terms of the depth; a sectional area in square inches; and s strain in tons per square inch. To find the sectional area of a flange for a plate girder lixed at one end and fiee at the other the formula is $\frac{W}{d s}=a$, exclusive of rivet holes in the top flange; W weight in tons at the end of the girder; x length in feet from loaded end to the point where the sectional areas are required; d depth in feet ; s safe strain per square inch in tons. When the load is uniformly distributed, using the same notations as before, except that W in tons is the load per foot run, the formula is $\frac{\mathrm{W} x^{2}}{2 s d}=a$. (Engineer's, Architect's, fac., Pucket book, 1865.)

1629r. For G. Rolled irons or bars :-

1629s. For I, Tee irons, or Rollel T irons: $-\frac{a d \mathrm{C}=4}{l \text { feet }}=\mathrm{W}$ tons.

1629t. For \mathbf{I}, Reversed Tee irons: -

hen x is one-fourth of the table or flange $b c$, and the form as $5: 12$ of a rectangle, then $\frac{2 \mathrm{~F}}{2 \cdot l l}=$ SW. It was stated in the Oldham Mill Report that this for in of beam, whieh ght be considered to support a weight of say 1000 lbs., may be broken if reversed, that the flange placed uppermost, as T, with a weight of say 340 lbs . Hodgkincon experiented on two bars 4 feet 3 inehes long, the flange 4 inches wide, rib $1 \frac{1}{10}$ inch deep, with hickness of metal of about $\frac{1}{4}$ ineh. One bar was tried with the flange uppermost, the er bar with the Hange downwards. The former broke with $2 \frac{1}{2}$ ewt., the latter with ewt. Experiments on thre girders of this shape, the web being 2 inehes high and nch thick, the flange ϱ inehes wide by $\frac{1}{4}$ ineh thick, and 24 inehe;s long, were made by oper of Drury Lane. He stated that the gain in strength over a flitch D 2 iuches by nch was 25 per eent. ; the loss in stiffuess being 30 per eent. The strength arising from e accumulation of the quantity submitted to tensile action ars out an adequate result, or $=80$ times its own weight, instead 40), as 02 inches by $\frac{1}{2}$ ineh, and 002 inehes by $\frac{1}{4}$ inch each, aed $\frac{1}{2}$ inch apart, showing over them an increase of strength nearly 50 per eer.t. In using this form of seetion, it makes difference whether the load be placed wholly on the top of evertieal web, or on the lower flange; the result obtained in her ease was the same.-Builder, 1845, vol. iii. p. 593. The sults of some other experiments on this useful form of iten

Fig. 613 r . egiven in the Enginecr's Pocket.book for 1861, p. 205. The formula $\frac{a d \mathrm{C}=6}{l \text { feet }}=\mathrm{W}$ tons is o applicable to the trough-shaped section, as N (fig. 613r.), as to the inverted Tee or shape M, taking the two verical ribs to be equivalent to one rib of the same depth and uble the thickness. The thiekness of the horizontal and vertical parts of these gi.d. rs ould be equal, or nearly equal, so as to obtain as near an equality in cooling as possil le. 1629 for K. Mixed beans ; Flitch be ims and double flich beams :- Theve beams are mposed of an iron plate (east or wrought) placed betwen two pieees of fir timber, 613s., or of a plate placed on cach side of the solid timber am, fig. 613t. Theee plates again may have a t.ble or nge, as in the case of the single plate; or of a half flange, as the case of the plates on each side of the beam. All these ould be bolted, or otherwise seeured together, to render in as homogeneous as nossible. Hurst gives the furmula $\frac{-}{c t}(\mathrm{C} b+30 t)=\mathrm{W}$ in ewts. Here t breadth of the one, or

Fig. 615s.

Fig. 615t.
o, urought iron flitehes; blreadth of wood, both in inches ; C, eoefficient = 4 teak, 3 oak, ; fir, and 2.0 elm . Fairbairn eonsidersthat "the addition of the timber oa eaeh side of the ite gives inereased stiffness, and renders it less liable to warp under strain. It is ealled a idwich beam." He states this beam "to be weak, eomparing the results with those of - simple plate girder; and its elastieity, althouglı eonsiderable, is nevertheless so impert as to render it inadmissible for the support of great louds, whether proceeding from a ad weight, or one in motion over its surface. With riveted angles or flanges, the timbers each side might have been useful in preventing lateral flexure, but they would not have atributed, in any great degree, to the vertical bearing powers of the beam." (Application, , p. 284-5.) Rolled flat irous ean now be obtained about 13 to $\$ 4$ inches deep, from neht to an inelt in width, up to 30 feet in lengilt, and for special cases somewhat longer. 1629v. The muthod of trussing a beam is explained in Carpentry (par. 2021, et srq.).
$1699 w$. The formulix for finding the strength for examples I V. and V., fig. 675. , are $\frac{\mathrm{W} l}{8 d}=h$; $l^{\prime} / 2+\frac{W^{2}}{16}=s$. Here l length in feet; d depth in feet-both measured from the points intersection of the stay, tension rod, and top beam; W load in tons uniformly disuted; h horizontal thrust on beam in tons; and s strain on inelined patt of tension rod ons, Wher the truss has more than one stay, h, l, and d will represent the same; and ensile strain on the horizontal portion of the rod. The strain on the inclined tie rod be $\frac{\mathrm{W}}{8 d d} \sqrt{l^{2}+n^{2} d^{2}=s ; n \text { the number of times that the horizontal distance between the }}$ and the nearest stay is contained in l. If any load be plaeed on the middle, the s'rain ill be donbled. If any load be plaeed on each of the stays, then l will represent the ance of each loaded stay from the nearest pier; d depth as before; h lorizontal Ist on the part next the pier; s tension on each of the inclined ties. 'Then $\frac{\mathrm{W} l}{d}=h$, and
 innal area in the tie rod for every 5 tons of strain. The stay, being in compression, and le calculated as a colnmen eapable of supporting the load if in the middle, or one ' if distributed. 'The beam, though in eompression, should be capable of supporting the

Load betwe n the stays, as a beam exposed to transverse strain, according to the rules before given. 'lie rods, when exposed to great strains, are not generally of mueh value, because the iron ser tches.

1629x. Mr. Cubitt experimented on an equal flanged cast iron girder, 27 feet long, 10 inches det p, and 4 inches broad across the flanges; the rods were 1 inch diameter. When the ends of the rods were placed above the bcam, it was found to be weaker than having no rod at all. When the fastening was made at the upper end of the girder, and giving u distance to the rod of $6 \frac{i}{4}$ inches below the girder instead of an inch, an increased stilliness was obtained of above a ton (Warr, p. 259). Some experiments are recorded in the Builder, 1857, on two beams of Dantzic timber, each 28 feet long, 14 inches square, with and without a tie rod. Barlow records an experiment (p.158) on four beams, two beilg trussed similarly to the figure on plate xxxix. of Nicholson's Carpenters' New Guide. Mr. Cooper's experiments on trussed beams are given in the Builder, 1845, p. 619. Fo Trellis girders, another mode of trussing a beam, Fuirbairn, p. 129, uses the same formula as for the plate girder F , but with the constant 60 . For this, the student is referred to the Application \&ce. of Iron, enlarged edition, 1864.

Other conditions than that of the Weight in the Middle.

1629y. To find the ultimate strength of a ream (section \boldsymbol{A} or \boldsymbol{B}), when a weight

1ig. 613 u. is placed somewhere between the middle and the end. liuleMultiply twiee the length of the longer end, A, fig. 613u, by twice the length of the shorter end B, and divide the product by the whole length C, which will give the effertive length to be used as the divisor for the calculation of strength under the conditions of the beam:- Thus say a beam is-
$\frac{2 \times 10) \times(: \times 5)}{1010 \mathrm{lng}}=13.33$ effective length; and $\frac{(\mathrm{S}=2548 \mathrm{cast} \mathrm{irmn}) \times 2 \times 6^{2}}{13.33}=13,762.64 \mathrm{lus}$. weight Hurst puts it as, $\frac{\left(\frac{1}{2} l\right)^{2} \times \mathrm{W}}{\text { prodnct of two lengths irom each end. }}$.
1629z. Barlow ($p: 39-10$) has stated a case where a beam has to support tion equal weights between the points of support, $\mathrm{I}^{\prime} \mathrm{F}^{\prime}$, as at D and E , Example 1. fig. 613 m , then since $\mathrm{IC}=i \mathrm{C}=\frac{1}{2} \mathrm{I} i$, and $W=W^{1}$, the general expression becomes $\frac{(\mathrm{ID}+i \mathrm{E}, i \mathrm{C}, \mathrm{W}}{\mathrm{I} i}=$ $\frac{I D+i k}{2} \times W=f$. And if we suppose further $\mathrm{ID}=i \mathrm{E}$, then it becomes simply $\mathrm{ID} . \mathrm{W}=f$.

Now, if both weights act at the centre, it appears from the preceding investigation, that $\frac{1}{4} \mathrm{l} i$. (2W) $=\frac{1}{2} \mathrm{I} i . \mathrm{W}=\mathrm{IC} \cdot \mathrm{W}=f$. Whence the strain in the two cases will be to each other as ID to IC ;
 and hence the following practical deduction:-

Fig. 610 v. When a beam is loaded with a weight, and that weight is appended to an inflexible bar, or bearing, as DE, in Ex. 2, the strain upon the beam will vary as the distance ID, or as the difference between the length of the beam and the length of the bearing; for the bearing DE being inflexible, the strains will be exerted in the points D and E, exactly in the same manner as if the bearing was removed, and lalf the weight hung on at each of these p.ints. This remark may be worth the consideration of practical men in various architectural constructions. He, also puts the case of a beam, which, instead of being fixed at each end, merely rests on two props, and extends heyond them on each side equal to hatf thir distance, as Ex. 3: if the weights W W' were suspended from these latter points, each equal to one-fourth of the weight W, then this would be double of that which would be necessary to produce the fracture in the common case; for, dividing the weight W ints four equal parts, we may eoneeive two of these parts employed in producing the strain or fracture at E, and one of each of the other parts as actinr in opposition to W and W ind by these means tending to produce the fractures at F and F^{\prime}.' 'This is the case which has been erroneously confounded with a former one (fixed at each end), but the dis'inction between them is sufficiently obrious; because here the tension of the fibres, i.: the places where the strains are excited, are all equal; whereas in the former the middle one was double of each of the other two.
1630. Experiments are recorded in the Civil Engine\&r Journal, 1849, xi, page 44, on para'lel bars of cast iron, 4 feet $8 \frac{1}{2}$ inches long and 4 inches square, plued on two
ts CC (fig 613w.). Weights were placed at eaeh end at equal distanees from pports, and the weights being gradually ed, the bar broke simultaneonsly through :. On another trial, a bar broke only point F, being a little nearer to the

This was considered a suffieient proof portion of the metal might be removed he middle of the bar without diminishlateral strength, and that by adding this about the points E E, the lateral strength

Fig. 615w.

Various Problems.

a. I. When a beam (as sections \mathbf{A} and $\mathbf{8}$), with the ends supported, is to be ealto support a permanent weight in the middle, the formulæ for obtaining the 1 and depth are $\frac{l \text { feet } \mathrm{W} \text { lbs }}{S \div 3 d^{2}}=b$, and $\frac{l \mathrm{~W}}{\mathrm{~S} \div 3 b}=d^{2}$. W weight to be supported, S safe , or $\frac{1}{3}$ of the ultimate strength of an inch bar; b and d in inches.
When a similar beam for obtaining the breadth and depth had the ends fixed, the formula for the breadtli is $\frac{l \mathrm{~W}}{\mathrm{~S} 3 d^{2} \mathrm{I} \cdot 5}=b$.
When a similar beam projects from a wall, and is loaded at the ends, the formula depth is $\frac{1 \mathrm{~W}}{\mathrm{~S} \div 3 b \cdot 2.3}=d^{2}$.
When a similar beam lias to support a load placed at some distance from the ig. $613 u$), the effeetive length must first be obiained by the rule, par. $1629 y$. Then inula for the deןth is $\frac{\text { Effect. } l \mathrm{~W}}{5 \div 3 b}=d^{2}$.
find the dingonal of a uniform square cast iron beam, to support a given strain in cetion of that diagonal, when the strain does not exceed the elastic force of the al (Tredgold):-
When the bean is supported at the ends, and loaded in the middle, the formula is 6 W
212 fir cast froft $=\sqrt[3]{\text { diagonal in inches. }}$
When a similar beam has not the strain in the middle of the length $\frac{\mathrm{W} \times \mathrm{B} \times \mathrm{A}}{\mathrm{l} 53}$
$=\$$ diagonal in inehes. Here a and e refer to fig. $613 u$.
\%. To olitain dimensions, 8-c. of beams and girders :-
To lind the depth of a bean, the length, breadth, and weight being given. For \mathbf{A} and $\mathbf{B}, \sqrt[2]{\frac{\text { lfet } W \text { ths. }}{s b}}=d$ inches. If no lireadth or depth be given, let $n=$ any number, then $\sqrt[3]{\frac{n}{n} \text { feet W Ibs. }}=d$, and $b=u$ th part of d.
 To find the breadth of a beaw, the depth, length, and weight being given. For \boldsymbol{A} and $\mathbf{E}, \frac{l \text { fept } \mathrm{W} \text { lbs. }}{s d^{2}}=b$ inches. For $\mathbf{D}, \frac{\mathrm{W}}{\mathrm{C} d^{2}}=b$.
The proportion hetween the breadth and depth which will afford the best result is $6: 10$ depth, in timber. The formula for the least breadth a beam for a given bearing should lave, is $\frac{l \text { fert }}{\sqrt{d} \text { fiche, } \times 06}=$ hreadtli.
To find t!e lrnoth, the weight, depth, and hreadth heing given: -
Fior \boldsymbol{A} and $\mathbf{B}, \stackrel{\$ b d^{2}}{W}=l$.
To find the constent S, the length, depth, breadth and breaking weight per foot , 1 length, inchs square, being given, For \boldsymbol{A} and $\mathbf{m}, \frac{W \text { bes lfett }}{b d^{2}}=\mathrm{S}$.
"Ho find the area of the hottom flange, the lengih, load, and depth being givell. For D, ${ }^{\text {b foret permanent Inatl in cone distibuted }}=a$ inches. For \mathbf{E}, tension $=2$ luad + heam, or tension not more than 5 tons per square inch.
T'o fint the mulliple of acpeth and ares of the bottom flange, the length and load being given. For D girder, $l \mathrm{P}=\boldsymbol{l} \times \boldsymbol{a}$.
Tis find the ares of the top flange. For \mathbf{E} girder, bottom $+\frac{1}{i}$.
Th find the arece of the side plates. For \mathbf{E} girder, $\frac{1}{2}$ aren of hottom.

Tirnsion, etc.

Nr. Than neufral axis. A timber heam sapported at the ends and pressed down in dillo by a weighe, will have its lawer filires evended, while the upper fibere ara
pushed together. Since there are these two strains, there will be some line or point the depth which is labouring under neither the one nor the other; this is the neutral ax The further the fibres are from the neutral line, the more they will resist deflection fru the load. It might he inferred that the material should be placed so far above and bill the neutral line as other eircumstances will allow. in order that they may be in a positi to exercise the greatest power. The most simple application of these views is shown L.aves's girder (described in Cabfentry). "As cast iron resists fracture abont six tim more powerfinlly under compression than under tension, it is uscless to give as much ar of material in the upper or eompressed, as in the lower or extended, flange of a cast ir beam." Hodgkinson (Experimental Researches, 1846, p. 484-94) states that the positi of the neutral axis in cast iron rectangular beams, at the time of fraeture, is situated about $\frac{1}{7}$ of the whole depth of the bean below its upper surface. The sectional area of t top flange of a cast iron girder must be rather more than $\frac{1}{6}$ of the bottom flange, to ke the position of the neutral axis at $\frac{1}{7}$ of the depth. In sudden f actures it was from $\frac{1}{5}$ th of the depth.

1630/. Tredgold, Iron, 1st edit. 1822, p. 53, ronsidered the line of neutral axis in tl section to be in the middle of the depth. He notices the eurious fact put forth 1) u Itamel, who ent beams one-third, one-half, and two-thirds throngh, and found w ights to be borne-by the uncut beam 45 lbs ; and hy those cut 51 lbs , 48 lbs . a 42 lbs . respectively which would indicate that less than half the fibres were engaged in 1 sisting extension, althongh it does not prove that two-thirds of the thickness contrilat nothing to the strength, as Robison imagines. Barlow found that in a reetangular be: of fir, the neutral axis was about five-eighths of the depth. as shown by the section of tr : ture. Warr gives for cast iron, the value of n or neutral axis $2.63 ; n=6$ when the 1 may come in the middle. Attention should be given to the highly valabie paper by Astronomer Royal (Prof. Airy), On the Strains in the Interior of Beams and Tubu Brilges, read in 1862 before the British Association at Cambridge. It is given in Atheneum for October 11; and its further elucidation in the last edition (1864) Fairbairn's Application of Cast lron, s.c.

1630e. Deflection. The deflection of a beam supported at the ends and loaded in middle, is directly as the eube of the length, inversely as the eube of the depth, and rersely as the breadth ; therefore, $\frac{\text { load } \times \operatorname{leng}\left(h^{3}\right.}{\text { breadth } \times d e p t h^{3}}=$ deflection. Beams have been said hear considerable deflection without any injury to the elastieity of the material. Buf and Tredgold ennsidered the elasticity to remain perfect until one-third of the breal. weight is laid on. Hodgkinson was perhaps the first who praetically showed that i cast iron beam, a $\frac{1}{52}$ nd part of the breaking weight eansed a visible set after that wei was removed; while another beam took a visible set with $\frac{1}{80}$ th part of its breaking weig He found the permonent set in east iron beams to be as the square of the load applied. also found that cast inon beans bore two thirds, and even more, of their bieakins wei for long periods, without any indication of failing. Gregory (Mechanics for Practicul A 4 th edit. 1862) considers that, thongh the above rule may be correct for heams about 5 in length, it does not apply when they are much longer. Thomas Cubitt found by experiments that, when the length became about 20 feet, the set was only as the weig and that with larger beams the set was still less. Fairbairn found the improprict! adopting any rule founded on elastic limits, since it was evident that, while the elasticit i bar is injured as soon as a weight was applied, the particles or fibres take up fif positions until the antagonistis: forces in the beam are bronght nearly to equality, w one-third or two-thirls of the breaking weight will affect the subsequent deflection of beam.

1630f. For a rectangular beam of east iron supported at both ends and loaded in the mic to the extent of its elastic foree, $\frac{l^{2} \text { feet } 02}{d i n c h e s}=$ defleetion. For similar beams, loaded formly, multiply by 025 in place of 02 . (Tredgold). It has been stated that ultimate strength of a girder of the usu:l proportions may be approximately ascertal from its deflection under proof, on the assumption that a load equal to half the break weight will cause a deflection of ${ }_{9}^{\frac{1}{80}}$. of its length (Dobson). The propurtion of greatest depth of a beam to the span is so regulated, that the proportion of the grea deflection to the span shall not exceed a limit which experienee has shown to be consis with convenienee. That proportion, from various examples, appears to be for the wort load, $\frac{\text { refl. }}{l}=$ from $\frac{1}{\frac{1}{50}}$ to $\frac{1}{1507}$; for the procf load, $\frac{d+f l}{l}=$ from $\frac{1}{200}$ to $\frac{1}{6 \% 0}$ (Rankine).
$1630 g$. Mr. Dines, when superintending upwards of two hundred experiments for Culitt, on cast-iron girders (as section \mathbf{D}) whose dimensions are limited, found that π the load in the eentre is taken as $\frac{3}{3}$ this of the breaking weight, the following formula be used. (l depth in eentre; l length in feet) : -I . When the top and bottom fiangus
, and the girder parallel, or equal depth throughout, $\frac{\varepsilon}{40 \mathrm{~d}}=$ deflection. 11. When the es are not cqual, and the girder is not parallel, $\frac{e^{2}}{s^{2} d}=$ deflection. III. When the bcam. o top flange, and the depth varies, $\frac{t^{2}}{30 d d}=$ deflection (Gregory).
3Ch. The formule given by Hurst, Handbow, \&s. for finding deflection, which occur r Stiff"ess of be mis, are, I. When supported at the ends and loaded in the middle,
 If the beam be fixed at one end and loaded at the other, the deflection $=16$ times tha act. IV. If fixed at one end and uniformly loaded, 6 times. V. If supported at both and uniformly load d, ${ }_{8}^{5}$ h.s. VI. If fixed at both ends and loaded in the middle, $\frac{1}{3}$ th. If fixed at buth ends and uniformly loaded, $\frac{3}{30}$ ths. He gives the following :-

Table of the Relative Strength of Bodies to Resist Deflection = C.

rought iron	$\cdot 067$	Baltic oak	- 1.120	$\Lambda \mathrm{sh}$	- 1.176
ast iron -	$\cdot 112$	Yellow fir	- 1-1 0	Beech	- 1-434
eak	-8.51	Menel fir	- 1.008	Elm	- 1.904
ngrlish oak	- 1.344	Red pine -	- 1.232	Mahogany	- 1-300
anadian oak	- 1.008	Yellow pine	- $1 \cdot 254$		

I. The deffection of a rectangular beam is to a cylindrical one, as 1 to 17 . IX. When leflection is taken as $\frac{1}{30}$ th of an inch per foot in length (which is considerd to be safe ra proof of $\frac{1}{3}$ of the breaking weight) then for a beam supported at both ends and ed in the middle, $\frac{l^{2} \mathrm{WC}}{d^{3}}=b ; \sqrt[3]{\frac{l^{2} \mathrm{~W}}{}-\frac{\mathrm{C}}{b}}=d ; \frac{b d^{3} \mathrm{C}}{l^{2}}=\mathrm{W} ; \sqrt[2]{\frac{b d^{3} \mathrm{C}}{\mathrm{C}}}=l ; l^{l^{2} \mathrm{~W}}=\mathrm{W}$; but $\frac{\mathrm{C}}{2}$, or 2 C for $\frac{1}{8 \cdot}$. XI. For cylinders, $\sqrt[4]{ } 17 \pi^{2} \mathrm{WC}=$ diameter. XI. For an uniform load ${ }_{5}^{6}$ ths, as bcfore.
30i. The moinulus of elasticity, or resistance of materials to stretching, is the term to the ratio of the force of restitution to the force of compression. It is the measure elastic force of any substance. By incans of it, the comparative stiffness of bodies be ascertained. Thus from the following tahe it will be percecived that a piece of cast is 10.7 times as stiff as a piece of oak of equal dimensions and bearing. Resilience, ugheness of bodies, is strength and flexibility combined; bence any material or body h lears the greatest load, and bends the mort at the time of fracture, is the tonglest. modulus is estinated by supposing the material to present a square unit of surface, by any weight or furce to be extended to double. or compressed into one-half the nal length; such a weight will represent the modulus.

E of the Monulus of Elasticity ; with the portion of it (limiting the Cohesion or the Matekal, or) which wouli Teak them Asunder Lengthwise.

Tabie of the Monulus of Elasticity, 各s.-mentivied.

Tredgold and others.	Thegotd and otheps.
lbs. avoir. ner sq. inch.	ib*, avoir per sq. inch.
Beech - . $-\{1,350,000 \mathrm{R}$	Oak, Adriatic - 974,400
Beech - ${ }^{-1,345.000}$	" Canadian - - 2,148,800
Elin - - - 700.000 R	African - . $\{1,728,000$
to L 1,540,000	Arrican - - $2,282.300$
Larch . - - $1,363,500$, Riga . - . 1,610,500
Larch - - - $1,740,000$	" Dintzic - - 1,998,000
" - - - $900,000 \mathrm{R}$	Anerican lied O:k \quad - $2,150,000 \mathrm{R}$
to [1,360,000	(1.958,700
Fir, Red or Yellow - 2,016,000	Saul - - - $2,420,000 \mathrm{R}$
, White - - - 1,830,000	Teak, Indian - . ${ }^{\text {a }} 167,074$
, Yellow American - 1,600,000	Teak, Indian - - $2,414.400 \mathrm{R}$
, Mar Forest - - 845,066	Poon - - - 1,689,800
\% Scotch - - 93n1,750	Cowrie - - - 1,982,400
,, Riga - - $1,687,500$	Metals.
" Riga - - ${ }^{\text {a }}$ 1,328,800	Cast steel - - - 13,680,000
"Memel - - 1,957,750	Bestsheu, steel, not hard- ? 29,000,000
," " - - 1,536,200	ened - - - j
Sirch - - $1,6+5,000 \mathrm{R}$	Cast brass - - - 8,930,000
Chesnut - - - 1,140,000 R	- 9,170,000 R
Walnut - - $1,432,000$	Cast iron - - - $\int 18,400,000$
Cedar - - - 486,000	average $\quad 17,000,000 \mathrm{R}$
Red Pine - - - $1,450,000 \mathrm{R}$	Cast lead - - - 790,00)
to $11,900,000 \mathrm{R}$	Cast tin - - - 4,608,000
Spruce Fir - - - $1,400,000 \mathrm{R}$	Zine - - - - 13,68:,000
to $11,800,000 \mathrm{R}$	Gun metal - - 9,873,000
Christiania White Dcal $\{1,672,000$	Brass wire - - $\quad 14,230.000 \mathrm{R}$
Coristiania White Dcal $1,801,000$	Copper wire, (2) - 17,000.000 lk
American White Spruce 1,244,000	Iron wire - - $25,300,000 \mathrm{l}$
Weymouth or Yellow Pine 1,633,500	Stones, 8r.
Pitch Pine - - - $1,252,200$	Portland stone - - 1,530,000
Piteh Pine - - ${ }^{-} 1,225,600$	Slate, Welsh, average - 15,800,000
Mahogany - $\quad-\int 1,255,000 \mathrm{R}$	Window glass - - 8,580,000
to $\quad 1,596,300$	- 8,000,000 R
Good English Oak - 1,700,000	White marble - - 2,520,000
Oak - - - $\int 1,200,000 \mathrm{R}$	
to $\quad 1,714,500$	R, from Rankine, Civil Engineering.

163 Ck . Hence, the modulus of elasticity being known for any substance, the weight may be determined which a given bar, nearly straight, is capable of supporting. For instance, in fir, supposing its height $10,000,000$, a bar one inch square and 10 feet long may begin to bend with the weight of a bar of the same thickness, equal in length to $\cdot 8225 \times \frac{1}{120 \times 120} \times 10,000.000$ fiet $=571$ fest, that is, with a weight of about 190 lbs ; neg. lecting the effect of the weight of the bar itself. If we know the force required to crust: a bar or column, we may calculate what must be the proportion of its length to its deptil, in order that it may besin to bend rather than be crushed. (Gregory, p. 382.)

1630l. For a rectangular beam supported at both ends and the weight applied in the middle, Gregory, p. 388, gives the formula $\frac{4 l^{3} W}{M b d^{3}}=$ deflection in inches in the middle. Here M modulus of elasticity in pounds; l length in feet ; W weight in pounds; bbrcadth and d depth both in inches. Fenwick, Mrehanics of Construction, gives the formula $\frac{4 W b^{3}}{M b d^{3}}$ or $\frac{W l^{3}}{4 \times M}=$ deflection. Hi re l length is in inches; and I moment of inertia of the sectior, which for a rectangle, $=\frac{1}{\frac{1}{2}} b d^{3}$.

1630 m . As it may often be necessary to calculate the deflection for an arm trom that of θ heam, or vice versâ, we notice the statement made by Barlow, edit. 1837, that "the deflection of a beam fixed at one end in a wall and loaded at the other, is double that of a beam of twice the length, supported at both ends, and loaded in the middle with a double weight.' But by his editor in 18.51, the word duuble was altered to equal Certain experiments made by us on both the beam and the arm, tended t prove that the former was correct (Builder. 1866, p. 124); but scientific investigations show that mathematically the latter is correct;

It as they mainly depend upon the perfect manner in which the tail of the arm is sccured, e former, or douible deflection, is recommended to be ant:cipated in practice.
1630 \quad. There is no such thing as permanent elasticity in any rigid material, and the only ssible way of constructing a beam which will return to its original form after the load removed, is a compond or trussed beam, put together in such a way that the permanent teration of one material counterbalances that of the other. All beams, without excepon, will settle in the course of time, even with the lightest load. Not only the load, lut e changes of temperature afford a permanent cause of this sett ing. Facts on this point e difincult to obtain, as the experiments require to be extended over years. and on the me piece of material. Irom rods, one inch syuare, which may carry $60,000 \mathrm{lbs}$. before ey are torn, stretch permanently by a load of less than $20,000 \mathrm{lbs}$. The best wrought on cannot bear more than one-sixth of its load, without being permanently altered. hese data apply only where the material is permanently at rest ; if motion or accidental crease of burden happens, the above rules and numbers are considerably modified. As asticity in material varies as much as iss strength, and does not follow the same rules as hesion, it is advisable to make experintents in each particular case where important uctures are to depend upon the smaliest quantity of material. (Overman).
16300. Impact or Collision. A second force, after direct pressure, is that of impact, says airbain, involving a proposition on which mathematicians are not agreed. For practical rposes, we may suppose a heayy case equal to $2,240 \mathrm{lbs}$. or one ton, falling from a hright 6 feet upon the floor. According to the laws of gravity, a body faling from a state of rest tains an increase of velocity in a second of time equal to $3 \cdot \frac{1}{3}$ fiet and during that period ls through a space of $16 \frac{1}{10}$ feet. This accelerated velocity is as the square roots of the disnes; and a falling body baving acquired a velocity of 8.05 feet in the tirst foot of its scent, and 6 feet being the height from which a weight of one ton is supposed to fall, we ve $\sqrt{6 \times} 8.05=2.449 \times 8.05=19.714$ for the velocity in a descent of 6 feet. Then $714 \times 8240=44.159 \mathrm{llss}$. or nearly 20 tons, as the momentum with which the body impinges the floor. In the present state of our knowledge, this momentum may probably be taken the neasure of the force of impact.-"On the effects of impact, the deflections produced the striking body on wrought iron are nearly as the velocity of impact, and those on cast on greater in proportion to the velocity. The experiments and investigations made for the ummissioners on Railway Structures are extremely valuable. Their results showed that "the wer of resisting impact increases with the permanent load upon the bean; the greater e weight at rest upon the heam, the greater must be the monentum of a striking body order to break it. This is satisfactory, as it diminishes the risk from falling weights in arehonses : the more nearly the weight upon the floors approaches the point at which nger legins, the greater is their power of resisting sudden impacts. Comparing the ean results of the experiments on bars not londed, "we find that the transverse is to the paetive strength as $2685: 3744$, or as $1: 1: 39$. Similarly, when the bar is loaded with 3 llos . in the centre, the transverse is to the impactive strengtl as $2685: 4546$, or as : 1.69 ; and when 391 lbs , is spread uniformly over the bar, the transverse is to the imctive strength as $2685: 5699$, or as $1: 2 \cdot 12$."-(Fairbainn, p. 228).

1630p. Tensile strength is that power of resistance which bodies oppose to a s' paration of eir parts when foree is applied to tear asmoder, in the direction of their lengilas, the ves or particles of which they are composed. 'lredgold's asserions of the principles have en combated by Gregory, to whose wonk we must refer the student for the reasons be wes. If a piece of No. 10 iron wire bears a tension of 2.000 lls . Defore it breaks ten ires will bear ten times $2,000 \mathrm{lbs}$. If the sections of 50 wires of this mumber, form the ontents of one spuare indh, then it will bean a stress of 50×2000 lbs. before it is torn under, provided the wires are so arranged that each will earry its fill weight. But it ees not follow that a har of wrought iron of one square inch will earry an equal weight. it even if the irom br of the same quality. If a solid iron rod of one sprare inch will ary 50.00) llis., it dees not follow that a rod of 10 squane inches inserion will canry ten mes as moll. When welded tofether, the eapatity for resistance appears to be weakened. the obervation applies to almost every kind of material, and varies only in degree. 'The bles of enhesion are generally computed to the tearing of the materiai. Int our caleula ons alomifl never go beyond the excess of elassieity, for fear of injuring the material. Berman)
Ifi3\%y. If the stran 1 pron a roil or strut be greatest on any one side, that side most arain the whole fore or break. "Ihis consideration is of great practical monent in thating the viluse of all kinds of tier, as king and quern posts, ke, ('Tredgold).
 - ctime in inchesa W tons-a quarer to be mhén for sufe wright-or (" Hes. x uren in

If the weight to be sustained be given, and the sectional dimensisn of the bar be required, divide the weight given by one third or one-guarter of the cohesive strength, and the square root of the quotient will be the side of the square. If the section be rectangular, the quotiont must be divided by the breadth.

Table I., of the Absolete Cohesive Power (ob Brfaking Weighi) of Metais: Sectional area, l inch square, l foot in lenglh.

METALS. Rennie, 181\%, and others.	Cohesive Power.	Cohesive l'ower.	METALS. Rensie, 1817, and others.	Cohesive Power.	Cohesile Puner.
Bar Iron, Swedish - -	${ }^{6.38}, 00$	$\begin{gathered} \text { Tons. } \\ 25 \cdot 20 \end{gathered}$	Bars, Cast, Blistersd, Rolled,	lbs.	Tons.
", ",	-72064		and Forged - $\}$	104,298	
" ", \quad "	$\left\{\begin{array}{l}41.51 \\ 48.53\end{array}\right.$		" ., Shear, liolled,	118,468	
" " Russiat - -	59.470	20.70			
$\text { " } \quad \text {,, } \quad-\quad \mathbf{R}$	$\left\{\begin{array}{l}49,564 \\ 59.046\end{array}\right.$		\cdots " leal and Forged	111,460	
" ,, English	59.036 55.87%	$24^{1 / 3}$	" "Bessemer's, Cast $\begin{gathered}\text { lugots. } \\ \text { lat }\end{gathered}$	63,024	
", ", Mean strengtll,- R		2700	,. ", Bessemer's, Ham-		
", ", Charcual, R - -	636211		" "Mered or Rolled $\}$	152,912	
" ," Lancashire, - R	$\left\{\begin{array}{l}53,775 \\ 60.110\end{array}\right.$		" "Spuring, Ham	72,529	
	64,200		Homogeneous Metal:-		
" ", Low Moor, - R	$52.4{ }^{4} 0$		Bars, Rulled - - -	9n,647	
crosswise	$\left\{\begin{array}{l}60,075 \\ 6560\end{array}\right.$		" Corged -	93,100	
", "Welsh - - -	- 16.25 .5		Puddled Steel:-	89,724	
", "Staffurdshire, - R	$\{56,215$			\{ 6, 768	
" " Staffurdshire, -	¢ $6: 231$		Bars, Rolled and Forged -	(71, 484	
" ", Lanarkshire, - R	$\left\{\begin{array}{l}51.327 \\ 64.795\end{array}\right.$		" " ${ }^{\text {" }}$	90, 00	
Bidge Iıon, Yorkslire, - R	44.930		" " "	4	
", ", crosswise	433940			i 96, 280	
, " Statiordshire, lR -	47, 5104		uise	\{ 64,082	
Rivet ̈ren low meroswise	44.385		nse	1 97,150	
$\left.\begin{array}{l}\text { Rivet } \\ \text { and staffirifsire, }\end{array}\right\} \quad \mathrm{L}$	59,740		", ", liard soft \quad -	112,90 $85,40)$	
Bushe ld Iron from Turnings	55. $87 \times$		Hamogeneous Metal, F.rst		
Serap, Hamulered - - -	53420		Quality - - -	96.280	
Angle Iron, various Districts -	$\left\{\begin{array}{l}50.056 \\ 61.260\end{array}\right.$, crosswise	97,150	
	$\left\{\begin{array}{l}1,3,6 \\ 41,36\end{array}\right.$		" Second Quality	72,402	
Strap " " -	\{ 55,937		" " Crosswi	\{ 71,532	
Plates:- (Rauk'pe			Puddled Steel - -	\} 102,903	
" Yorkshire - -	52.000 58.487		, ", crosswise -	$\left\{\begin{array}{l}67,4 \times 6 \\ 8,365\end{array}\right.$	
" Bessemer, rollnd, M	70.600		", " - - .	$2 \begin{aligned} & 8,365 \\ & 43,00\end{aligned}$	
", ", - -	72.613		Iron, Cast" - -	17,62ヶ	7.87
,, \quad, boiler - R	68.319		', " -	19,488	
", Stafordshire -	$\left\{\begin{array}{l}46,464 \\ 56,646\end{array}\right.$		", ", -	1:3,0196	
"	56,546		" ", horizontal - G	1863	
,, ", crossuise	44,764		C" vertical - G	19,488	
" " BB.charco	51		, Carron, No. 2 , cold Blist	16,543	Tate
", ", crosswise			Bessemer, - ${ }^{-}$	41, 00	
" ', cros			" (sef ${ }^{\text {als }}$ (so intext) ${ }^{\text {logot }}$ (41,242	
" " BB -	- 54,820		Gun Metal, hard . -	3n,369	$16 \cdot 23$
	\{ 51×20		", Mushets - R	103,400	
" " , " crosswise	(46,470		Copper, Wionght - - -	33,8.12	15.08
" ", Best -	61.200		" Cast - -	19,96	
" ", Conctosswise	53,400		" Shect - - \mathbf{R}	$: 0,000$	
, Commors	50,829		,, Bolts - - R	36,101	
-* " "crosswise	5.) 25		, Wire - - R	611.000	
, Lancashire - -	$\left\{\begin{array}{l}43,423 \\ 53819\end{array}\right.$		Brass, Yellow Cast - - - $\mathrm{T}^{\text {- }}$	17998 49,000	
	\{ 3 3,514		Zinc - - - \quad -	7 to 8,000	
" "M crosswise -	$\{48,48$		l'in, Cast - - -	4,736	$2 \cdot 11$
" Durham *	51,247		"̈nü - - \quad -	4,6011	
crosswise "Steel "̈nd Steely Iron:-	46,712	59.9	Birmuth. Cast Lead, Cast	3,50	$\begin{aligned} & 1.45 \\ & 0: 1 \end{aligned}$
Iars, cast - -	131,256	$5!9 \cdot 43$	" Sheet, - -R	3,300	
, Blistered - - -	133,152	56.97	Iron Wire, English, 1-10thin.		6. 0
$\begin{gathered} \text { Shear }=-\quad-\quad R \\ \text { Pliues, inerage } \end{gathered}$	127,532 811.010		, diameter - ', Telford -		34.4
Bars, Cast, Rolled, and Forged	$\left\{\begin{array}{r}92,015 \\ 1322009\end{array}\right.$				60.0
" " ${ }^{\text {, }}$	130,000				

Tables I. and II. are derived chiefly from the summary in Rankine's Civil Engineering, p. 511, obtained from the experiments of Clay, Fairbairn, Hodgkinson, Matlet, Morin, Napier, Napier and Sons, Rennie, Telford, and Wilmot. Most of the remainder are from Remie and other authorities.

1630s. English boiler-plates are stated to be of two classes: Yorkshire, and the mannfacture of other districts, classed as Saffordshire.

BEAMS AND PILLARS.

ablf II., of the Absolute Cohesive Power (or Breaking Wright) of the Tiubery

 usuilig empioyed. Seelional area, 1 inch square, 1 foot in length. (See 1628i.)| TiMIFER.
 Recenle, 1817, and others | Cohesive Power. | Cohenive
 Power. | TIMBER.
 Rennie, 1817, and others. | Cohcsive Power, | Cohesive Puwer. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Turtosa, or African Teak L | $\stackrel{1 \mathrm{bs} .}{17,200}$ | $\begin{aligned} & \text { T'ons. } \\ & 7.58 \end{aligned}$ | Deal, Christiania - - I, | $\begin{gathered} \text { lbs } \\ 12,36 \end{gathered}$ | Tous. |
| larak, or lisdiall Oak | 14.500 | 6. 47 | ", mitdle - - 1 | 12,400 | |
| ", " | 15.0¢.0 | | OAk - - - - | 11,592 | |
| $\because \sim$ - - - L | 12,915 | | " - - - - B | 111000 | |
| Asb - | 15780 | $7 \cdot 04$ | " - - - L | 11, N30 | |
| I. | 14130 | | , Dantzic - - 1. | 12,7*0 | |
| 'I and I3 | 17.207 | | , liga . - - I | 12,488 | |
| Beech | 12,000 | 5:35 | " \quad - - - | 12,557 | 517 |
| " - - - ! | 17.8.50 | | , lnglish - - - T | | |
| " - - - 13 | 11,00 | | \because American Red - 1k | 10,250 | |
| , - - - 1 . | 12,25 | | Cedar - - - 1 , | 7.4 .0 | |
| Poony or Pron - - 1. | 12.350 | 5.51 | \cdots | 11,4010 | |
| Cowrie - - - I | 10.960 | | 1:1m | 11,500 | 5-13 |
| Sul - - - $\mathrm{S}^{\text {- }}$ | 10,070 | | (') - - - 1. | 9,7-0 | |
| Fir or Pine, American | 11,800 | $5 \cdot 26$ | Chesnut, Spanish - | 10, 00 i | $4 \cdot 82$ |
| " New Euglabd - - 'I' | $1: 3,4 \times 9$ 1040 | | Lurch - ${ }_{\text {® }}$ | 13,00 9.50 | |
| " " ${ }^{\text {" }}$ - - B | $\left\{\begin{array}{l}1040 \\ 12,000\end{array}\right.$ | | Lirch - - - - - - | 9.540 12,240 | $4 \cdot \underline{1}$ |
| .. Suruce - - R | 12,400 | | Mahngany, H onduras -. I. | 11,475 | 512 |
| " Amerjcan, white - L | 10,2! 16 | | " ¢ ¢anisb - L | 7,560 | 337 |
| Red Jine - - la | $\{12,000$ | | Winut \quad, - | 8.000 | |
| Werniouth r Vulw | (14,040 | | Walnut - - - - | 7,740 | $3 \cdot 45$ |
| * Weymouth or Yellow L | 11, $\times 3.35$ | | | 8.810 | |
| " Pitcly - - - ${ }^{\text {Mar }}$, | 9.7917 7.323 | | Hempen Rope, 1 sq. ir., sec- | | |
| "MarForest - - - I, | 7,323 7,110 | | | 6,400 | |
| " Mernel - - L | 9,540 | | Ditto, Cables - - \quad - | 5,600 | |

1630t. The tersile strength of cast iron was long very mu ${ }^{\prime h}$ overrated when Tredgold rimated it at 20 tons. Capain Brown, however, put it at $7 \div 26$ tons; G. Kennie (1 hif. rens. 1818) ohtained 8.52 and 8.66 tons; Barlow eonjectured at least 10 tons from eoretieal prineiples; Hodgkinson made the following experiments more recently;

Naine and Quaity of Irou.	Hot Blast Iron.	Cold Blast Iron.
	Weight, llis. Mean. Tons cwt. 13,892	Weight, lbs. Meam. Tons cwt.
Carron, No. 2	$\left.\begin{array}{l} 13,892 \\ 12.993 \end{array}\right\}$	16,772
Carron, .No. 2	$13,529\} 13,50.5=6 \quad 0 \frac{1}{2}$	$16,594\} 16,683=7 \quad 9$
	16,840	13,984 $\}$
, No. 3	18,671) $17,755=718 \frac{1}{2}$	$14,417\} 14,200=6 \quad 7$
Devon (Scot.). No. 3	$21,907 \quad 915 \frac{1}{2}$	
liulfery, No. 1 - -	13,434 60^{-}	$17.469 \quad 716$
('ocll'l'alon (N.Wales) No. 2	16,279)	19,610
(rock alon(N.Waks) No. 2	$17,074 / 16,676=7 \quad 9$	$18,100 \int 18,355=84$
	Mein 7 4 ${ }^{3}$	Mean 714

Low Moor, (Yorkshire,) No. 3, bare $6 \frac{1}{2}$ tons.
A mixture of irons, a mean of four experiments, gave 7 tons $7 \frac{3}{4}$ cwt.
1630\% The mean of several experiments on the ultimate eohesive strength of a wrumbt ur bur, 1 ineh square section, wals:-
No 11 exproments by Captain Brown, gave - - $56.000 \mathrm{Hbs}=25.00$ tons

$$
\text { Mean } 61.768 \mathrm{lbs}=27.575 \text { tone. }
$$

No 3 experiments by bruncl, a:1 hammered iron, gave $30 \cdot 4$, $39 \cdot 3$, and $30 \cdot 8$ toms respectivily.
Siven experiment, loy Cuhitt, gave - - - 58,952 lbs. $=26$ tons 6.3 cwt.

$1630 v$. The detailed experiments by Messrs. Clarke and Fairbairn, on the strength of sron plates, are given in the work by the latter, and in the Engineers' Pocket Book for 1861 and 1865. Clarke assumes the ultimate tensile strength of wrought iron plates at 20 tons per square inch, and of bars at 24 tons, and that within this former limit, its extension may be taken at $\frac{{ }_{500}^{8}, \overline{00} 0}{}$ of the length, per ton, per inch square of section.

The ultimate strength of plates drawn in direction of $\}$ experiment $1,19.66$ tons. the fibre
"fibre "
The ultimate extension was twice as great when the plate was broken in the direction of the fibre. The best scrap rivet iron, made by Messrs. Mare at their London works, broke on an average with 24 tons per square inch ; the urean ultimate cxtension, which was uniform, was $\frac{1}{8}$ of the length. (Sec $163 \downarrow$ r.)

Complession, \&c.

1630w. Compression is the second of the forces under which Transverse strain is comprised. The following facts appear to be well established as to materials under a crushing force. I. The strength is as the transverse area or section. II. The plane of rupture in a crushed body is inclined at a constant angle to the base of the body. 1II. The measure of compression-strength is constant only within eertain proportions of the height and diameter in any specimen. Hodgkinson found that twelve cylinders of teak wood furnished the following results:-

Crushing weight		-	$\begin{aligned} & \frac{1}{2} \text { cinch diaun. } \\ & 2 \not 2+39 \text { lbs. } \end{aligned}$	inch diam. $10,171 \mathrm{lbs}$	2 inch diam. $40,304 \mathrm{lbs}$
Proportion of weights		-	1 "	$4 \cdot 17$	16:5

The areas being as the squares of the diameters an exact proportion would have been 1,4 , and 16 ; but some materials may possibly be found to have an increased apparent strength.

Table I, of Experiments on Timber Pillars, made by the Committee of the Institute of British Architects, 1863-64.

Wood.	$\underset{\text { at }}{\text { Crushed }}$	$\begin{aligned} & \text { Per } \\ & \text { equare } \\ & \text { inch. } \end{aligned}$	Remaks.
4 inch cube. Monlmein Teak -	tons. $50 \cdot 8$	tons. 3.17	Crushed endways ;
Archangel Deal -	28. 8	$1 \cdot 11$	apart.
Shafts, 12 ins. long, 3 ins. diam. Moulmein Teak -	$18 \cdot 25$	258	¢ Lost $\frac{1}{8}$ of its length. Point of
„, same piece with 6 ins. sawn on	18.7	$2 \cdot 64$	ding $\frac{5}{12}$ of its leng
Moulmein Teak - - -	16.0	$2 \cdot 26$	Ditto.
," same piece, ditto	17.75	$2 \cdot 50$	
Deal, Archangel * -	19.1	970	\{ Lost $\frac{3}{16}$ of its length. Point of
,, same piecc, ditto	$19 \cdot 3$	$2 \cdot 73$	$\left\{\right.$ yielding ${ }_{12}^{5}$ of itslength in both.
, Archangel - -	$16 \cdot 3$	$2 \cdot 30$	
" same piece, ditto	$19 \cdot 4$	$2 \cdot 74$	

Table II., of Compression of Timber.

Wood.	Crushing Strength.	Wood.	Crushing Strength.	Wood.	Crushing Strength
$\underset{\text { white Deal }}{\text { Chistiania }}-\}$	$\underset{6,000}{\text { libs. }}$	American white Spruce	$\frac{\text { lins. }}{6,844}$	Cedar -	$\begin{aligned} & 165_{0} \\ & 5,768 \end{aligned}$
English Oak	9,509	Walnut - -	6,645	Blue Gum -	
Quebec Oak	5,982	Red Dcal	6,167		
	6,000	Yellow l'ine Elm -	5,375 10,331	Indian Teak or	12,100
American Fir	5,430	Larch	5,568		

Rondelet gives the powcr of Oak as $6,853 \mathrm{lbs}$., and of Fir as $8,089 \mathrm{lbs}$. (Sec par. 1601 .;
Rernie (inch cube, crushed) English oak, 3,860 lbs. ; a piece 4 inches high, $5,147 \mathrm{lbs}$,
Film, 1,284 lbs. ; White Deal, 1,928 lbs.; Ancrican Pine, 1,606 lbs.

Table Ill. of Comprfssion of Timber. (Ilodgkinson and others).

Wood.	$\begin{aligned} & \text { Damp, } \\ & 2 \text { ins. high } \\ & \text { and } \\ & \text { inch diam. } \end{aligned}$	Dry, Inch high generally.	Wood.	$\begin{aligned} & \text { Damp, } \\ & 2 \text { ins. high } \\ & \text { ind } \\ & \text { inch diam. } \end{aligned}$	Dry. Inch biuth generally.
Alder	$\begin{aligned} & \text { lbs. } \\ & 6,831 \end{aligned}$	$\begin{aligned} & \mathrm{lbs} \\ & 6,960 \end{aligned}$	Oak, Dantzic	${ }^{\text {Hos. }}$	$\begin{aligned} & \text { lbs. } \\ & 7,731 \end{aligned}$
Buech	7,733	9,36:3	, English	6,484	10,058
American Birch	- -	11,663	, Quebec	4,231	5.942
English Birch	3,297	6,402	Pine, Pitch -	6,790	6,750
Cedar -	5,674	5,863	" Yellow, full $\}$	5,373	5,145
Red Deal	5,748	6,586	of turpentine $\}$	5,375	5,145
White Deal	6,781	7,293	, Red	5,39.)	7,518
E.lm	- -	10,331	Teak	- -	12,101
Spruce Fir	6,499	6,819	Larch	3,201	5,568
Mahogany	8,198	8,198	Walnut	6063	7,227

$1630 x$. It is now a well ascertained circumstance that the crushing strength of a body ries according to its relative height and breadth. Hodgkinson remarks, "When bodies crushed they give way by a wedge sliding off in an angle dependent on the nature of material; and in cust iron the height of this wedge is abont $1 \frac{1}{2}$ of the diameter or thicks of the base of the wedge." Gregory puts the angle of this wedge at 34°. If the budy be crushed is shorter than would be sufficient to admit a wedre of the full leng to to le off, then it would require more than its natural degree of foree to crush it ; because wedge itself must either be crushed, or slide off in a direction of greater difficulty. on the other hand, the height of the body to be crushed be much greater than the gth of the wedge, then the body will sustain some degree of Hexure, and fracture will facilitated in consequence. Phl. Tran., 1840, exxx. page 419. Warr says, "lt is Hly probable that none of Hodgkinson's values would agree with the most careful trial any similar woods." See $1.502 d$, et seq.
$630 y$. The power of resistance to compression of cast-irom was heretofore very much rated. It bas now been well ascertained by experiment that a force of 93,00 o 1 hs . (n an inch square will crush it ; and that it will bear 15,300 lbs. upon an inch square ${ }^{1}$ Itont permanent alteration.

'Table of the Compression of a Cast Iron Bar (as a philar), to feet long and 1 inch square.

	Compression per Ton.	Total Compression.	Total Permanent Set.		Compression per Ton.	Total Compression.	Total Permanent Set.
1	Inch.	1 ch.	Inch.	Tons.	Inch.	Inch.	Inch.
2	-020330	020338	-000.510	9	-022374	-201373	-024254
2	-0210:38	-042077	-0024.52	11	-022567	-248237	-032023
3	-021618	-064855	-00 1340	13	-023014	-99187	-0433318
;	. 021594	-107872	-009188	15	-023.539	353092	-0609)5
7	-021950	-153654	-015243	17	-021805	-421695	-086298

6.30z. H dgkinson's experiments in 1851 on the ultimate strength of cast inon, the picecs b. If placed in an iron box or frame, qave a mean in 81 trials of $107,750 \mathrm{lbs}$. per square ir), or 48 tons 2 cwt.; and the crushing force to the tensile, as $6 \cdot \overline{5} 7$ to 1 . Rennie's elulations gave only 40 tons per square inch for the lowest estimate.

Tabie of the Cuusilina of Cubes of Iron.

1631. Hodgkinson, "considering the pillar as having two functions, one to support and the other to resist flexure, it follows that when the material is incompressible (supposing such to exist), or when the pressure necessary to break the pillar is very small on account of the greatness of its length compared wi.h its lateral dimensions, then the strength of the whole aransverse section of the pillar will be employed in resisting flexure; when the breaking pressure is one hall of what would be required to crush the material, one-half only of the strength may be considered as available for resistance to flexure, whilst the other half is employed to resist crushing; and when, throngh the shortness of the pillar, the breaking prissure is so great as to be nearly equal to the cushing force, we may consider that no part of the strength of the pillar is applied to resist flexure." Thus he assumed that the real breaking weight would be equal to the breaking weight as obtained for the long columns, multiplied by the foree requisite to crush it without flexure; and divided by the same two quantities added together, minus the pressure whieh it would support as flexible, without being weakened by erushing. The formula thus found for calculating the strength was $W+{ }^{W} c_{0}$

Here W hreaking weight of long pillars, and c crnshing foree of the iron. (Warr and Gregory.)

163ia. Eulcr, treating on the strength of pillars purely on theoretical grounds, howed that the strength variel as the fourth power of the diancter, and inversely as the square of the length of the pillar. The strength of similar pullars increases as the square of the ir diameter; and as the area is as the square of the damiter, the strength ibicreases as the area of the pillar (Warr.)

1631b. The strength of a pillar or a column. or the power of resistance to eompressive force. is obtained by the law that the resistance to crushing is as the cube of the thiekness muliplied by the width, and this divided by the square of the length. Therefore in columns of equal length and thickness, the resistance is as their width; and in equal lengths and widths, it is as the cube of the thickness. If the width and thickness be equal, or if the pillar be square, the resistanee is inversely as the square of its length.

Here l length in feet; b breadth in inehes; d diameter in inches; R resistance to compressive force; W breaking weight of the pillar or cylinder. (Iredgold, Cast Iron.)

1631c. 'Ihe relative strengths of long eolumns of different materials, but of the same dimensions, are as follows:-

Cast iron. 1,000	Cast steel. 2,518	Wrought iron. 1,745
100	180	79

Dantzic oak. \quad Red deal.
$108 \cdot 8 \quad 78 \cdot 5 \quad$ (Gregory)
English oak. Red Pine.
English oak. Red Pine. Clak. Larch. E'm. $\begin{array}{lllll}18 & 15 & 19 & 12 & 10 \\ \text { (Hurst. }\end{array}$

1631d. Hodgkinson, Cat Iron, 1846 , states that there are general properties common : wrought iron, steel and wood. It appeared from experiments that long (solid) pillar break first at, or near to, the middle ; this occurred in all cases. Pillars were, therefore tried, having a middle dianeter of from $1 \frac{1}{4}$ to 2 inches, the ends being 1 inch. The strengtl was not increased aceording to the increase of the middle diameter, but appeared to to from $\frac{I}{f \cdot 62}$ to $\frac{1}{80}$, or from one-seventh to one-eighth; they did not, however, fracture ir the middle, as did those of uniform diameter. He found that-

> The sirength, as dependent on the diameter, was on the mean
> - 3.756
> length,
> ,
> - $1 \cdot 7$

1. The formula given by him for long solid eylindical pillars (when l exceeds $30 d$) will flat ends and fixed, is $\frac{4 \cdot 16 \text { tons } d^{1.35}}{1.7}=\mathrm{W}$ tons, or $(33.379 \mathrm{lbs}=14.901$ tons). The formula for ditto with rounded ends (or when l is less than $30 d$ and exceeding $15 d$, is $\frac{14 \cdot 9 \text { tons } d^{3} 76}{1^{17}}=\mathrm{W}$ tons, or $(98,922$ lbs. $=44 \cdot 15$ tons $)$. Here d external diamete" inches; l length feet ; $\frac{1}{10}$ of W to be taken for safe weight.

For shart pillars, below 30 times their diameter in beight with flat ends, or 15 tines their dameter in pillars with rounded ends, the above formuix do not apply.
For solif columns, when the length is less than $3 \mathrm{C} d$. the formula is $\frac{49 \mathrm{Wa} a}{\mathrm{~W}+37 a}=\mathrm{W}$. Herw W^{1} crushing weight of Nort column in tons; a cec ional area of solid part of relumns in inches. In hollow columns the thickness of metal should not be less than $\frac{d}{12} \cdot \underset{W+1}{W}+W^{1}$ tons. Here W as found above for long columns; C crushing force of matertal \times sectional arta of column; and W^{1} crushing weight of thort columis.

63ie. The formula for a rectangular pillar of oak, fixed at both ends -

$$
\frac{7.900 a}{1+} \frac{t^{2}}{250 h-}=W .11 \mathrm{~s}
$$

, " cylindrical pillar of cast iron, fixed at both ends

$$
\frac{80.000 \pi}{1+} \frac{l^{2}}{400 h^{2}}=W 1 \mathrm{bc} .
$$

" " rectangular strut of wrouglit iron, fized at both ends

$$
\frac{36,600 \pi}{1+} \frac{r^{2}}{3,00 \cdot / t^{2}}=\mathrm{W} \mathrm{II}: \mathrm{s}
$$

pillar rounded or joined at both ends $\frac{80,000 a}{1+4 \times 400 h^{2}}=\mathrm{W}$ lis.; or 36,00), or 7,200 , as case may be. (Rankine, from Gordon, and Hodgkinson.)
(B^{\prime} 'ly. In order to give lateral stiffress to a flat-ended pillar, its ends should be spread is to form a capital and base, whose abutii.g surfaces should be "faced" in the lathe, planed to make them exactly plane and perpendicular to the axis of the pillar. For same rea-on, when a cast iron pillar consists of two or more lengths, the ends of those fthe should le made truly plane and perpendicular to the axis of the pillar by the same ces, so that they may abut firmly and equally against cach, other; and they should be ened together by at liast four bolts passing through projecting flanges. (Rankine.)
F.31h. Ilollue Colmms.-With an equal quantity of metal, a round column cast low is far stronger than one cast solid. The best form for cast iron columns is to make inner diancter live-cightlis of the size of the exterior diameser. The ring thus formed the section of the culumn increases in strength according to the thinness, but the size of nust be kejt w thin practical limits. If, in easting a hollow column, the core is driven pee side, the culuma of course camot be loaded to its full resistance; it will not carry ine than the thimest part of it is stong enongh to bear. Hollow colnmns, therefore, pire prrticular care in casting them. Hodgkinson noticed in hollow pillars above 30 en as long as their diameter, that althongh the pillars were generally thicker on one thas. the other, yet in bending, the compressed was always the thinner side; and as irnn resists compress:on with above six times the foree with which it sustains tension, lunger resulled from this almost unavoidable difference of thickness.
The formula given thy liin for a hollow cyli,uler not less 1 an 15 times its diameter in leight, with round dends, is ${ }^{13}+\mathbf{W}$ tons.
For the same when not less than 30 times its height, with flat ends and fixed by dises,

When the length is equal to 20 daneters, the value of W is $=77,817$ los. or $34 \cdot 7$ tums.
regery has adopted an anerage of $d^{16} \mathrm{in}$ both of these formu'x.
For short pultars, below thase lengths, the formule do not apply, as the stiength of the entunn becones moditied in conserquence of its being then patially crushed as well as bent.

S'rtucheons and Struts.

:31i. Gordoa's formula for the uhinate strength of urought iron struts of a solis whular section hxed at the ends, as deduced from Hodghinson's experiments, is
 linve been given. But it why be, in many cases more satistactory to take into tant the least "radius of gyration" of the crass section: and for thint purpore the tionia may be put in the following shape: ${ }^{3}+5$
squares of the distances of the particles of the cross section from a neutral axis traversing its centre of gravity in that direction which makes r^{2} least. For hinged ends, take $\frac{1}{2}$, on 9,000 is to be substituted for 36,000 . The value of r^{2} for a solid rectangle, least dinension $=b$, then $\frac{b 2}{\frac{b 2}{2}}$. For a thin square cell, side $=b$, then $\frac{b^{2}}{6}$. For a thin rectangular cell, breadth $=b$, depth $=h$, the $\frac{12}{\frac{12}{h} \because h+b} \frac{h+3 b}{6}$. For a solid cylinder, diameter $=t$, then $\frac{b^{2}}{16 \text {. For a thin }}$ $c y$ lindrical cell, diameter $=b$, then $\frac{b^{2}}{8} . \quad$ For an angle iron of equal ribs, breadth of each $=b$, then $\frac{b, 2}{24}$. For an angle iron of unequal ribs, greater $=b$, lesser $=h$, then $\frac{b^{2} h:}{12\left(b^{2}+h^{2}\right)}$. For a cross of cqual arms $\frac{b_{2}^{2}}{2-}$. For H iron, breadtl of flanges $=b$, their joint area $=B$, area of

1691\%. Staurliems of east iron are recommended to be used in lieu of cast iron columns.
 The form shown in fig. 613x. is generally considered as the best for use: the flanges which divide the length into three equal parts, are found to add considerably to the strength of the casting in resisting the tende"cy of its load to produce dellection from the vertical position. Hodgkinson's experiments show that while cast ir,m is the better material for a pillar whose length does not exceed 26 times the diamet.r, wromght iron is the better material when the length exceeds that limit. For pillars with hinged ends, about 13 times is the limit. but these results are roughly approximate only. In order to stiffen urought irom struts, they are made of various forms in cross section, such as angle iron, T iron, double T iron, clamel iron, \&.c. The cross is a very conse.icnt form as in cast iron; it is generally huilt by riveting bars of simple forms together. Thus it may be made up of T irons riveted back to back, or four angle irons riveted back to back; or by one tlat bar, two narrower flat bars, and four angle irons, all riveted together, as fig. $61: 3 y$, and as used for the strut diagotals of the War-

Fig $613 x$

Fig. $613 y$.

Fig. $614 a$.

Fig. 6140.
fig. 614a., which may be cylindrical, rectangular, or triangular, as fig. $614 b$. When a wrought iron strut is considered as hinged at the end, that is generally effected by it abutting at each end against a cylindrical pin, by which it is eonnected with some othen piece of the frame-work, in the manmer alieady described for tie-bars. To fix its ends in direction, as it seldom has large abutting faces, it is in general necessary to fasten it to the adjoining pieces of the structure by several bolts or rivets.

1631l. Cast iron, from its great resistance to crushing, is peculiarly well suited for struts, especially those of moderate length. The best form containing a given quantity of metal is that of a hollow cylinder (fig. 614c.) ; the thickness of metal is seld m less than $\frac{1}{12}$ of the diameter. I. The formula for the cylinder has already been given; II. for a cast iron strut of a cross shape (fig. 614d.) the whole width being d, then $\frac{80,000}{1+\frac{3 l^{2}}{40 d^{2}} d^{2}}=$ W lbs. per square inch: of sectional area. II I. For a hollow square (fig. 614e.) $d=$ diagonal, $\frac{80,000}{1+\frac{3 l}{800 d^{2}}}=\mathrm{W}$, asbefore.
 formule refer to struts fixed at both ends. V. When they are hinged at the ends, the second term of each division is to be made four times as great.

1631 m . With the ends fixed; I. the formulx for a hollow tube (fig. 614c.) $a=3000$, then $16 s$ (or sectional area incles)

$$
\frac{1+\frac{l^{2} \text { incties }}{a \mathrm{D}^{2} \text { or (diam inches) }}}{\text { and }} \mathrm{W} \text { tons. }
$$

Fig. 614c.

Fig. 614ℓ.

Fig. $614 e$.

Fig. 614 .
II. The formulæ for a cross with equal arms (fig. 614d) $a=1000$.
III. The formule for an angle with equal sides (fig. 614e) $a=1000$.
IV. When hiaged at the ends, take $\frac{c}{4}$.

1631n. Detrusion, or shearing, denominates that kind of fracture, which would occur in the usc of shears if their cdeces were blont; or when the punch of a punching machine
makes a hole in a plate. Fairbairn has deduced the following laws from his experiments 1. That the ultimate resistance to shearing in any bolt or rivet, is proportional to the sectional area of the bar torn asunder. 11. That the ultimate resistance of any bar to a shearing strain is nearly the sance as the ultimate resistance of the same bar to a direct longitudinal tensile strain.

Table of the Resistance of Materials to Shearing and Distortion.

Materials.		Resistance to Shearing, per square inch.	Transverse Elasticity, or Resistance to Distortion, per square inch.
Brass wire, drawn	-	I's.s. avoirdupo's.	lbs. avoi dupois. $5,330,000$
Copper -	-	- -	6,200, 000
Castiron -	-	27,700 to 32,500	2,850,000
Wrought iron	-	50,000	$8,=00,0) 0$ to $9,500,000$
Fine, red - -	-	500 to 800	69,000 to 116.000
Fir, Spruce -	-	600	-
Larch - -	-	970 to 1,700	-
Oak, English	-	2,300	82,000
Poplar	-	1,800	-
Ash and Elm	-	I,400	76,000
Deal	-		
Cast iron	-	73,000 ${ }^{\text {\% }}$ Warr.	IRankine.
W゙rought iron	-	45,000 to 53,000	

16.310. To find the length between the end of a beam and the foot of a strut or of a ralter, necessary to resist the thrust of the latter, so as to prevent the detrusion of the beam, the formula to be used is $\frac{4 h}{b \mathrm{~s}}=$ the length in inches. Here b the breadth of the beam in inches; h horizontal thrust in pounds; and S, the cohesive strength in pounds of a square inch of the material. Tredgold states that 4 is a cufficient value for a factor of safety in this case; $S=600 \mathrm{lbs}$. per squate inch for fir, and 2300 lbs . for oak. The strap or bolt usually employed to bind the rafter and beam tugether, should be at as acute an argle as poss.ble, and holds the rafter in its place should the end of the beam give way.
$1631 p$. Iron fastenings to juints. In forming eves by welding, at the end of iron bars for cla n links and other purposes, the bar is found to be weaker than in its plain form In iron plate work, the joints are made by riveting on which the whole efficacy of the built-up plate work depends. laking the strength of the plain plate as 100 , a double-

riveterl plate w II be 70 ; and a single-riveted, 56 . Again, with single phte jointincs laving a top and bottom covering plate over the joint, and with half inch rivets, as A, fig. 613x, the plates were torn asunder through the rivet-holes, with 24.41 tons in the aquare inch. With a double plate, having a single covering plate on the side of the joint, ns 13 , the plates broke asunder by shearing off the rivets ctose to the plate, with 18.73 tons per sptare inch; but the rivets having been made larger, a similar strength to the previous experiment was realised. A plain plate broke with 22.78 tons man value.
16.31 g . Fairhairn recommends the flanges or double plates to be used an long as possible, and the joints to be carefilly united by covering plates, chain-riveted, as C, with three or more rows of risets according to the widths of the plates. Eight risefs are required in each of the lines, four on each side of the joints, to give sufficient strength, and the are. of the rivers collectively should be equal to the area of the jointed plates taken transversely throngh one line of the rivets, the area of the parts punched out in that line being dednetea Ilhear proportions give the repuired security to the joint, and afford nearly the same strength to a tensile strain as the solid plate; that is, il the coveling plates be as mold thicher as will give the same area of section timongh the rivet-holes as the unperforatee dintible plate. (par. 15ic'e.)

1631 r . livetu are made of the most tongh and ductile iron. It is ressentially necessmy that the rivet shonld tighely fit its hole: and the longitudinat compression to wheld rivets are antijected during the formation of its head, whether by hand or mathinery, tends to produce that reanlt "lowe diameter of "tivet for phemen less than haff mimh thick, is
about double the thickness of the plate. For plates of half an inck thick and upwands about once and a half the thickness of the plate. The length of the rivet before clenching (w hich is effeeted whilst the rivet is red-hot). measuring from the head, equals the sun of the thickness of the plates to be connected, added to $2 \frac{1}{2}$ inches multiplied by the diameter of the rivet. A good rivet may be bent double whilst cold without showing an! signs of fracture: and the head when hot should stand being hammertd down to less that $\frac{1}{8} \mathrm{in}$. in thickuess without cracking at the edge. Chey should also stand having a punc! if nearly their own diameter driven right through the shank of the rivet when hut withont cracking the iron round the hole. (C. G. Smith.)

1631s. Steel rivets, fully larger in diameter than those used in riveting iron piates of the same thickness, being found to be greatly too small for riveting steel plates, the probability is suggested that the proper proportion for iron rivets is not, as generally assumed, a diameter equal to the thickness of the two plates to be joined. The shearing strain of steel rivets is found to be about a fourth less than the tensile strain. (Kirkaldy).
$1631 t$ fll the bridge over the Thames for the Charing Cross Railway, the holes were drilled and not punched. 'This is a point upon which engineers differ considerably ; but rost firms punch the holes. At Fairbain's works at Manchester, drilling holes was considered to be more expensive withont adding to the strength. Mr. Parkes thinks that the punching injured the iron considerably, and thought Fairbairn's experiments went to show it. (So iety of Engineers, Transactions, 1865).
$1631 u$. Pins, keys, and wedyes are exposed, like rivets, to a shearing stres. The formula for finding their proper sectional area is the same. They must he held tightly in their seats; and in order that a wedge or key may not slip out of its seat, its angle of obliquity onght not to excced the angle of repose of iron upon iron, which, to provide for the contingency of the surfaces being greasy, may be taken at about 4°. (Rankine).
$1631 r$. If a bolt or screw has to withstand a shearing stress, its diameter is to be deter. mined like that of a cylindrical pin. If it has to withstand tension, its diameter is to be determined by having regard to its tenacity. In either case the effective diancter of the bolt is its least diameter; that is, if it has a screw upon it, the diameter of the spindle inside the thread. The projection of the thread is usually one-half of the pitch ; and the pitch shonld not in general be greater than one-fifth of the effective diameter, and may be considerably less. In order that the resistance of a screw or serew-bolt to rupture, by stripping the thread, may be at least equal to its resistance to direct tearing asunder, the length of the nut should be at least one half of the effective diameter of the screw : and it is ofien in practice considerably greater ; for example, once and a half that diameter. The head of a bolt is usually about twice the diameter of the spindle and of a thickness whict is usually greater than sths of that diameter. (Rankine).

1631w. Washers are flat plates of iron, placed at the sides of timbers to secure them against the crushing action of the head and nut of a bolt whilst being screwed up. Fon fir. the diameter of the washer is made about $3 \frac{1}{2}$ times that of the bolt; and for oak about $2 \frac{1}{2}$ times. When a bolt is placed oblique to the direction of the beam which it traverses, a noteh should be cut in the timber perpendicular to the bolt, to receive the pressure of the washer equally, or notched to receive a bevelled washer of cast iron, ons side of which fits the wood, and the other fits the axis of the bolt.

Torsion.

1631x. Torszon, or the resistance of bodies to being twisted, is found: I. When a body is fastened at one end and a force is applied at the other. 11 . When the force at one erc is greater than at the other end. III. When the forces at the ends are in opposite directions and ate so applied as to twist the body. As this fact chiefly. if not entirely, concerns n achinery in motion, we refer the student fer more suecific details to Warr, Dynamics, p. 269, who give a table of "modulus of torsion" of various timbers and metals, derived from experiment made by Bevan, in Plul. Tians. 1429. p. 128. Approximate formulæ are given by Hurst:I. When the shaft is circular, $\sqrt[3]{\overline{W l}}=d$. And $\frac{\mathbb{C} d^{3}}{l}=W$. II. When the shaft is square $\sqrt[3]{\overline{4 W} \boldsymbol{W} l}=\boldsymbol{s}$. Here d diameter inches; W weight pounds permanently sustained by the shaft l length of lever in feet, at the end of which W acts; s side in inches; and C, cast steel 590 wrought iron 335; cast iron 330; gun metal 170; brass 150 ; copper 135 ; lead 34 .

1631y. In the Artizan for 1857 and 1858 is an instructive Enquiry into the Strength o, Beams and Girders, by S. Hughes, deserving attention. The chief authorities for the dats eontained in that article, and also in this section, are quoted berein.
1632.

Working Strength of Materlals,
Sufe loads in lbs. per square inch.

a, Stress parallel to the fibres; b, ditto perpendicular to the fibres.
The above ralaes of the safe load may be taken for structures subject to travelling loads. When sulject to dead loads, these values may, in the case of iron and steel, be muitiplied by $\frac{3}{2}$. G. S. Clarke, Graphic Strains, 4to, 1880, p. 138.
$1632 a$.

Table of Strength of various Timbers.

The primitive horizontal or transverse strength of oak is taken at 1000 ; its supporting or primitive vertical strength at 807 ; and its cohesive cr absolute strength at 1821; beiug deduced from pieces $19 \cdot 188$ lines English square. The relative strengths of other woods are given :-

Species of Wood.	Primitive hor zontal Strength.	Primitive vertical Strength.	Absolute cohesive Strength.	Spreies of Wood.	Primitive horizontal Strength.	Primitive vertical Strength.	Absolute cohesive Strength.
Acacia (ycllow)	780	1228	1560	Fir	918	851	1250
Ash	1072	1112	1800	Oak	1000	807	1821
Beech	1032	986	2480	Pine-tree -	882	804	1141
Birch	853	861	1980	Poplar -	586	680	940
Cedar	627	720	1740	Service-tree	965	981	1642
Cherry-tree	961	986	1912	Sycamore-	900	968	1564
Chestnut	257	950	1944	Yew-tree-	1037	1375	2287
Elm	1077	1075	1980	Walnut	900	753	1120

STEEL

1633. Steel is now largely superseding wrought iron in all uses to which tho latter naterial was usually applied. Nearly every section of L, T, and C. as well as rolled ,ists I. are now made in steel to sperification. Railway metals or rails have been made f steel for mome years. Plates, sheets, and bars for every purpose of bridge girder, onf, and toiker making, are now rommonly in use, as also for cyliudrical and octan ular chumns which have to carry great weiglits; Miso for slrip armour and gon mounts. tent is most useful when bulk and weight is a consideration; the constructional cost, 4 a rule, can be brought down almost to that of iron ; the price per ton is more, but less eight is required. The kind mostly used is called mild steel, containing alont $0 \cdot 18$ per "nt. of carbon, bearing a tensile stress 30 to 3 . tons per square inch with the fibre, and 9 to 30 across the fibro. Much higher results can be obtained for special purposis, but (tu manufacture for ordinary structural prrposes cannot be fully relied upon beyond ") uns tensile. The Commiter of the British Asochetion advisel a maxinum of

9 tons per square inch as working tensile stress, but Mr. Stoney considers 8 tons per inch ample. Many engineers are content with $7 \frac{1}{2}$ tons.

1633a. But Mr. Arch. D. Dawnay has found, from a large series of experiments upon the actual beams, \&c., that ordinary mild steel scarcely exceeds 7 tons per square inch, while many inferior makes have not exceeded 6 tons. For important works, the architect or engineer may specify certain results as being required, and they can always get it, though, of course, at a special price. In many ways cast mild steel is superseding cast iron, especially in machinery, spur and other wheels, shaft, gearing, \&s. A suving of 40 per cent. is shown over the use of cast iron. Some makers anneal their castings, thus raising the modulus of rupture from 7 to 12 tons, and at the same time increasing the ductility. Steel castings are more liable to defects than cast iron. (See 1769.)
1634. In the paper read April, 1880, by A. B. W. Kennedy, M.I.C.E., at tho Royal Institute of British Architects, On Mild Steel and its Application to Building Purposes, he mentions that out of the great number of qualities of mild steel which are made, there are two classes of special importance for constructive purposes. 1. The very mild steel accepted by three companies for sbipbuilding purposes: the Admiralty limits for tenacity are 26 and 30 tons per square inch; Lloyd's limits are a ton higher; and the Liserpool Underwriters' a ton higher still, or 28 to 32 tons per square inch. The first two also require the ultimate extension of the piece before fracture to be not less than 20 per cent, in an 8 -inch length. Such steel requires practically no annealing, and is not more injured by punching than wrought iron, and in many cases less. 2 . The steel which has a tenacity of about 10 tons per square inch more than the former, or about 40 tons per square inch. It is much harder and considerably less ductile, and much less suitable for places where mueh work has to be done on it. But it can be obtained just as uniform in quality as the milder material, and its superior tenacity gives it greatel adrantages where it can be used substantially in the form in which it leaves the rollingmill. It will extend 10 to 12 per cent. in 10 inches before fracture.

1634a. The tests commonly enforced are of three kinds. 1. The tenacity of the stee must lie between certain definite limits. 2. The samples tested must have a minimun percentage of extension, in a specified length, before fracture. 3. For "temper" test sample strips heated to a low chorry-red, and cooled in water at 82° Fahrenheit, mus stand doubling round a curve whose radius is not more than one and a half times th thickness of the strip. All the tests are made upon sample strips of from 0.5 te 1. square inches in sectional area, cut from the plate, bar, or angle iron, the strips bein: genorally of the same thickness throughout, parallel for a length of 8 or 10 inches in tb centre, and being wide at the ends where held in the machine.
1635. Table of Safe Distribeted Loads on Rolled Iron Joists I, and on Steel Juists I, at about a Quarter Breaking Welght.

	S	趸	Bearing in Feet.												
ค	3	${ }^{3}$	6	8	10	12	14	16	18	20	22	24	26	28	30
ins	ins.	lbs.	tons.	tons											
3	$1 \frac{3}{4}$	5	0.8	$0 \cdot 6$	05	$0 \cdot 4$									
3	3	10	$1 \cdot 9$	1.4	$1 \cdot 1$	1.0	08								
4	3	12	$3 \cdot 1$	25	1.9	$1 \cdot 5$	1.3	1.2	$1 \cdot 1$						
5	$4 \frac{1}{2}$	23	$7 \cdot 6$	6.0	4.4	$4 \cdot 0$	$3 \cdot 5$	$3 \cdot 0$	$2 \cdot 6$						
6	5	29	11.5	$8 \cdot 8$	6.8	$5 \cdot 9$	$4 \cdot 9$	$4 \cdot 3$	$3 \cdot 8$						
10	5	36	$24 \cdot 0$	$18 \cdot 0$	$14 \cdot 8$	12.0	106	$9 \cdot 0$	$8 \cdot 2$	$7 \cdot 3$	6.7	6.2	5.7	$5 \cdot 3$	
16	6	62	618	450	35.0	$30 \cdot 0$	$26 \cdot 0$	$23 \cdot 1$	$20 \cdot 6$	$18 \cdot 3$	168	154	$1 \cdot+2$	13.2	12 *

Sieel Jolsts. (Moreland.)

3	3	10	$2 \cdot 7$	$1 \cdot 9$	1.5										
4	3	12	$4 \cdot 5$	$3 \cdot 3$	$2 \cdot 7$	$2 \cdot 2$	19	$1 \cdot 7$							
5	$\frac{1}{1} \frac{1}{2}$	23	11.0	8-2	63	$5 \cdot 5$	$4 \cdot 6$	$4 \cdot 1$	36						
6	5	28	16.3	123	$9 \cdot 8$	$8 \cdot 1$	$7 \cdot 1$	$6 \cdot 1$	55	$4 \cdot 9$	$4 \cdot 3$				
10	5	37	-	26 \%	21.4	180	153	13.4	11.8	10.7	97	$9 \cdot 0$	$8 \cdot 2$	$7 \cdot 6$	
16	6	63	-	-	\cdots	446	$38 \cdot 2$? ${ }^{\circ} \cdot 1$	$29 \cdot 8$	26.5	$21 \cdot 3$	$22 \cdot 3$	206	$19 \cdot 1$	17%

This table affords an approximate riew of the relative strength of joists of the th materials.-1887.

CHAP. II.

MATERIALS USED IN BUILDING.

Sect. I.

STONE.
1636. It is almost superfuous to say that the choice of stone for a building intended to je durable is of the very highest importance. "In modern Europe," it has been observed, "and particularly in Great Britain, there is scarcely a public building, of recent date, which will be in existence a thousand years hence. Many of the most splendid works of modern architecture are hastening to decay in what may be justly called the infancy of their existence, if compared with the dates of public buildings that remain in Italy, in Greece, in Egypt, and the East."
1637. The various sorts of stone take their names either from the places where they are quarried or from the substances which principally enter into their composition. The term "Freestone," which is used in a very arbitrary way, is, as its name implies, that sort which can be wrought with the mallet and chisel, or cut with the saw, an operation which cannot be performed upon granite, whose hardness requires it to be dressed with pointed tools of different weights and sizes. It includes the two great general divisions of Limestone and Sandstone. The limestone of Portland is that which has for many years past been chiefly seed in the metropolis. Latterly, other sorts have found their way in from the provinces; and though, from many circumstances, we do not think it likely that Portland stone, from ts facility of transport and other causes, will be altogether superseded, there is no doubt hat its use is on the wane from the introduction of provincial sorts.
1638. We shall proceed, after some preliminary observations, to give, from the Report ddressed in 18.39 to the Commissioners of Woods and Forests on the occasion of selectng the stone for building the new Houses of Parliament, a view of the principal sorts of tone found and used in the island. A new edition was printed in 1845.
1639. The qualities requisite for a building stone are hardness, tenacity, and conactness. It is not the hardest stone which has always the greatest tenacity or toughness, or limestone, though much softer, is not so easily broken as glass.
1640. The decay and destruction of stone are accelerated by nearly the same causes as hose which destroy rocks themselves on the surfice of the globe. Such causes are of two inds : those of decomposition and those of disintegration. The former affects a chemical hange in the stone iteelf, the latter a mechanical division and separation of the parts. The effects of the chemical and mechanical causes of the decomposition of stone in uildings are much modified, according to their situation, as in the town or countre: ${ }^{0}$ pupulous and smoky towns the state of the atmosphere accelerates decomposition more ian in those placed in the open country. (par. 1667.)
16.41. "As regards the sandstones that are usually employed for building purposes, and lich arc gencrally composed of either quartz or siliccous grains, cemented by siliccous, gillaccous, calcarcous or other matter, their decomposition is effected according to the iture of the cementing substance, the grains being comparatively indestructible. With ppect to limestone, composed of carbonate of line, or the carbonates of lime and magsia, cither nearly pure or mixed with variable proportions of foreign matter, their composition depends, under similar circumstances, upon the mode in which their comment parts are aggregated, thosc which are most crystalline being found to be the most srable, while those which partake least of that character suffer most from exposure to mnapherie influences.
16.12. "The varieties of limestones termed Oolites (or Rocstones) being composed of iform bodies cemented by calcarcous matter of a varied character, will of necessity Fer unequal decomposition, unless such oviform hodies and the cement be equally herent and of the same chernical composition. The limestones which are usually termeil herly,' fiom being chiefly formed of either broken or perfeet fossil shells cemented by 1careous matter, suffer decomposition in all unequal manner, in consequence of the shell, Heh, being for the most part crystalline, offer the greatest amount of resistance to the composing effects of the ntmosphere.
1613. "Sacdstones, from the monle of their formations, are very frequently laminated,
more "spectally when micaceous, the plates of mica being generally deposited in phanes parallel to their beds. Henee, if such stone be phaced in buildings with the planes of lamiuation in a vertical position, it will decompose in flakes, according to the thickness of the laminæ; whereas, if it be placed so that the plares of lamination be horizontal, that is, most commonly upon its natural bed, the amount of decomposition will be comparatively immaterial.

16 14. " Limestones, such at least as are usually employed for building purposes, are not liable to the kind of lamination observable in sandstones; nevertheless, varieties exist, especially those commonly termed shelly, which have a coarse laminated structure, generally parallel to the planes of their beds, and therefore the same precaution in placing such stone in buildings so that the planes of lamination be horizontal, is as necessary as with the sardstones above noticed.
1645. "The chemical action of the atmosphere produces a change in the entire matter of the limestones, and in the cementing substance of the sandstones accoording to the amount of surface exposed to it. The mechanical action due to atmospheric causes oceasions either a removal or a disruption of the exposed particles, the former by means of powerful winds and driving rains, and the latter by the congelation of water forced into or alsorbed by the external portions of the stone. These effiects are reciprocal, chemical action rendering the stone liable to be more easily affected by mechanical action, which latter, by constantly presenting new surfaces, accelerates the disintegrating effects of the former.
1646. "Buildings in this climate are generally found to suffer the greatest amount of decomposition on their southern, south-western, and western fronts, arising doubtless from the prevalence of winds and rains from those quarters; hence it is desirable that stones of great durability should at least be employed in fronts with such aspects.
1647. "Buildings situated in the country appear to possess a great advantage over those in populous and smoky towns, owing to lichens, with which they almost invariably become eovered in such situations, and which, when firmly established over their entire surface, seem to exercise a protective influence against the ordinary eauses of the decomposition of the stone upon which they grow.
1648. "As an instance of the difference in degree of durability in the same material subjected to the effects of the atmosphere in town and country, we may notice the several frusta of columns and other blocks of stone that were quarried at the time of the erection of St. Paul's Cathedral in London, and whieh are now lying in the island of Portland, near the quarries from whence they were obtained. These blocks are invariably found to be covered with lichens, and although they have been exposed to all the vicissitudes of a mariue atmosphere for more than 150 years, they still exhibit, beneath the lichens, their original forms, even to the marks of the chisel employed upon them, whilst the stone which was taken from the same quarries (selected, no doubt, with equal, if not greater, care than the blocks alluded to) and placed in the eathedral itself, is, in those parts which are exposed to the south and south-west winds, found in some instances to be fast mouldering away. Colour is of more importance in the selection of a stone for a building to be situated in a populous and smoky town, than for one to be placed in an open country, where all edifices usually become covered, as before stated, with lichens; for although in such towns those fronts whieh are not exposed to the prevailing winds and rains will soon become blackened : the remainder of the building will constantly exhibit a tint depending upon the natural colotir of the material employed.
1649. "Before we proceed to adduce a few examples of the present condition of the various buildings we have examined, we would wish to observe that those which are highly decorated, such as the churches of the Norman and pointed styles of architecture, afford a more severe test of the durability of any given stone, all other circumstances being cqual, than the more simple and less decorated buildings, such as the castles of the fourteenth and fifteenth centuries, inasmuch as the material employed in the former class of buildings is worked into more disadvantageous forms than in the latter, as regards exposure to the effects of the weather; and we would further observe, that buildings in a state of ruin, from being deprived of their ordinary protection of roofing, glazing of windows, $\mathbb{E c}$., collstitute an equally severe test of the durability of the stone employed in them.
1650. "As examples of the degree of durability of various building stones in particular localities, the following may be enumerated. Of the sandstone buildings which we examined, we may notiee the remains of Ecclestone Abbey, of the thirteenth century, near larnard Castle, constructed of a stone closely resembling that of the Stenton quarry in the viénity, as exhibiting the mouldings and other decorations, even to the dog's-tooth ornament, in excellent condition. The circolar keep of Barnard, apparently also built of the same material, is in fine preservation. Tintern Abbey may also be noticed as a sandstone

[^9]edifice that has to a considerable extent resisted deeomposition; for although it is decayed in some parts, it is nearly perfect in others. Some portions of Whitby Abbey are likewise in a pertect state, whilst others are fast yielding to the effects of the atmosphere. The older portions of Ripon Cathedral, constructed of sandstone, are in a fair state of preservation. Rivaulx Abbey is another good example of an ancient sandstone building in a fair condition. The Norman keep of Richmond Castle in Yorkshire affords an instance of a moderately hard sandstone which has well resisted decomposition.
1651. "As examples of sandstone buildings of more recent date in a good state of preservation, we may mention Hardwicke Hall, Haddon Hall, and all the buildings of Craigleitl' Stone in Edinburgh and its vicinity. Of sandstone edifices in an advanced state of decomposition we may enumerate Durham Cathedral, the churches at Neweastle upon Tyne, Carlisle Cathedral, Kirkstall Abbey, and Fountains Abbey. The sandstone churches of Derby are also extremely decomposed; and the church of St. Peter at Shaftesbury is in such a state of decay that some portions of the building are only prevented from falling by means of iron ties.
1652. "As an example of an edifice constructed of a calciferous variety of sandstone, we may notice Tisbury Church, which is in unequal condition, the mouldings and other enrichinents being in a perfect state, whilst the ashler, apparently selected with less care, is fast mouldering away.
1653. "The choir of Southwell Church, of the twelfth century, may be mentioned as affording an instance of the durability of a magnesio-calciferous sandstone, resembling that of Mansfield, after long exposure to the influences of the atmosphere.
1654. "Of buildings construeted of magnesian limestone we may mention the Norman portions of Southwell Church, built of stone similar to that of Bolsover Moor, and which are hroughout in a perfect state, the mouldings and carved enrichments being as sharp as कhen first executed. The keep of Koningsburgh Castle, built of a magnesian limestone ron the vicinity, is also in a perfeet state, although the joints of the masonry are open in onsequence of the deeomposition and disappearance of the mortar formerly within them. The church at Hemmingborough, of the fifteenth century, constructed of a material rembling the stone from Huddlestone, does not exhibit any appearance of decay. Tichhill hurch, of the fifteenth century, built of a similar material, is in a fair state of preservation. luddlestone Hall, of the sixteenth century, constructed of the stone of the immediate cinity, is also in good condition. Roche Abbcy, of the thirteenth century, in which one from the immediate neighbourhood has been employed, exhibits generally a fair state preservation, althongh some portions have yielded to the effects of the atmosphere.
1655. "As examples of magnesian limestone buildings in a more advanced state of cay, we may notice the churches at York, and a large portion of the Minster, Howden hurch, Doneaster Old Church, and others in that part of the country, many of which are muel deconposed that the mouldings, earvings, and other architectural decorations are en entirely effaced.
1656. "Wc may here remark, that, as far as our observations extend, in proportion as the ne employed in magnesian limestone buildings is erystalline, so does it appear to have .isted the decompesing effects of the atmosphere; a conclusion in accordance with the inion of Professor Daniell, who has stated to us that from the results of experiments, is of opinion 'the nearer the magnesian limestones approach to equivalent proportions carbonate of lime and earbonate of magnesia, the more crystalline and better they are in ry respect.'
16.57. "Of buildings constructed of oolitic and other limestones, we may notice the church Byland Abbey, of the twelfth century, especially the west front, bnilt of stone from the inediate vicinity, as being in an almost perfect state of preservation. Sandysfiot Casthe, ${ }_{1}$ I Weymonth, constructed of Portland oolite in the time of Henry VIII., is an example That matei iat in excellent condition; a few decomposed stones used in the interior (and yela are exceptions to this fact) being from another oolite in the immediate vicinity of Canste. Low and Arrow Castle, and the neighbouring ruins of a church of the fonrtith century, in the Island of I'ortand, also afford instanes of the Portand oolite in feet condition. 'The new church in the island, built in 1766, of the varicty of the Pont11 shone terned rouch, is in an excellent state throughout, even to the preservation of the n hes of the elisect.
58. "Many buildings eonstrncted of a material similar to the oolite of Ancaster, ${ }^{5}$ I we Nark and Granthan Churches, and other celifices in various parts of Lincolnife, lave seareely yielded to the eflects of atmospheric influences. Windrush Chunch, if t of an collite from the neighbouring quarry, is in excellent condition, whilst the Abbey 1. relo of Bath, constructed of the oolite in the vicinity of that city, has suffered muth If decomposition ; as is also the care with the cathedral, and the churches of St. Nicholas St. Michacl in Cloncester, erected of a stone from the oolitic rocks of the neighbour-

[^10]in that part of the country, attest the durability of the Shelley oolite, termed Barnack Raf, with the exception of those portions of some of them for which the stone has been illselected. The exceflent condition of thoce parts which remain of Glastonbury Abbey show the value of a shelly limestone similar to that of Doulting, whilst the stone employed in Wells Cathedral, apparently of the same kind and not selected with equal care, is in parts decomposed. The mansion, the church, and the remains of the abbey at Montacute, as also many other buildings in that vicinity, constructed of the limestone of Ham Hill, are in excellent condition. In Salisbury Cathedral, built of stone from Chilmark, we have evidence of the general durability of a siliciferous limestone; for, although the west front has somewhat yielded to the effects of the atmosphere, the excellent condition of the build. ing generally is most striking.
1660. "In the public buildings of Oxford, we have a marked instance both of decomposition and durability in the materials employed; for whilst a shelly oolite, similar to that of Taynton, which is employed in the more ancient parts of the cathedral, in Merton College Chapel, \&c., and commonly for the plinths, string-courses, and exposed portions or the other cdifices in that city, is generally in a good state of preservation, a calcareous stone from Heddington, employed in nearly the whole of the colleges, churches, and other public buildings, is in such a deplorable state of decay, as in some instances to have caused all traces of architectural decoration to disappear, and the ashler itself to be in many places deeply disintegrated.
1661. "In Spofforth Castle we have a striking example of the unequal decomposition of two materials, a magnesian limestone and a sandstone; the former employed in the decorated parts, and the latter for the ashler or plain facing of the walls. Although the magnesian limestone has been equally exposed with the sandstone to the decomposing effects of the atmosphere, it has remained as perfect in form as when first employed, while the sandstone has suffered considerably from the effects of decomposition.
1662. "In Chepstow Castle, a magnesian limestone in fine preservation, and a red sandstone in an advanced state of decomposition may be observed, both having been exposed to the same conditions as parts of the same archways; and in Bristol Cathedral there is a curious instance of the effects arising from the intermixture of very different materials, a yellow limestone and a red sandstone, which lave been indiscrininately employod both for the plain and decorated parts of the building; not only is the appearance in this case unsightly, but the architectural effect of the edifice is also much impaired by the unequal decomposition of the two materials, the limestone having suffered much less from decay than the sandstone.
1663. "Judging, therefore from the evidence afforded by buildings of various dates there would appear to be many varieties of sandstone and limestone employed for building purposes which successfully resist the destructive effects of atmospheric influences amongst these the sandstones of Stenton, Whitby, Tintern, Rivaulx, and Cragleith, the magnesio-calciferous sandstones of Mansfield, the calciferous sandstone of Tisbury, the crystalline magnesian limestones, or Dolomites of Bolsover, Huddlestone and Roche Abbey the oolites of Byland, Portland, and Ancaster, the Shelly oolites and limestones of Barnacl and IHam Hill, and the siliciferous limestone of Chilmark appear to be amongst the mes durable. To these, which may all be considered as desirable building materiats, we are incline to add the sandstones of Darley Dale, Humbie, Longannet, and Crowbank, the magnesial limestones of Robin Hood's Well, and the oolite of Ketton, although some of them may not have the evidence of ancient buildings in their favour." The Report upon which w have drawn so largely, and from which we shall extract still larger drafts, then proceeds t close by a prefcrence to limestones on account "of their more general uniformity of tim their comparatively homogeneous structure, and the facility and economy of their con version to building purposes," of which it prefers the crystalline; on which account, and it combination with a close approach to the equivalent proportions of carbonate of lime ant carbonate of magnesia, for uniformity in structure, facility and economy in conversion, an for advantage of colour, the partics to the Report prefer the magnesian limestone o delomite of Bolsover Moor and its neighbourhood. The Report deserves every commend ation; upon he whole it has been well done, and is the first scientific step the government this country has ever taken in respect of practical architecture. It, moreover, only cont t l moderate sum of $£ 1,400$, including the many collections of specimens deposited in vario institutions for reference.
1664. The following table presents a synoptical, and, to the architect, important vier the relative value, in every respect, of the principal species of stone which the various pr vinces of England afford for building purposes. It is taken from the IReport s; mu quoted, the list of stones being cons derably abridged. We should direct attention the fact that facilities of convey ance have greatly modified the cost of each stone in Lurdo It will be well also to notice the valuable "Quarry Returns" of building and other ston the produce of the United Kingdom of Great Britain and Ir land, published in ! Memoi,s of the Geoligical Survey of Grat Britain, \&c., and edited by Rob.rt Hunt, bei Part 11. for 1858, but published in 1860.

SANDSTONES.

$\left\lvert\, \begin{gathered}\text { Name of } \\ \text { Quarry, und } \\ \text {-here situated. }\end{gathered}\right.$	Preprietor of Quarty.	Component Tarts of Stone.	Colour.					Where used.
Abercarne	Slr B. Hal	Quartz and si-		lb. uz. 167 15	to 10	41 d., or	$\begin{array}{lr}\text { s. } & d \\ 1 & 5\end{array}$	
Abercarne and New- Bridge, near Newport, Moninooth- shire	Sir B. Hall	liceous grains, moderately fine, with ar-gillo-siliccous cement ; micaceous, and with remains of fossil plants	bloish grey.	16710	tons, in thick. nesses of 5 leet.		15	and modern buildings in vicinity ; new Docks at Newport and Cardiff.
Ball Cross	- -	Siliceous grains with argillosiliceous cement; occasionally micaceous, ferruginuus.	Ferrugihoos brown striped, and zoncd in deeper tints.	- -			- -	At Chatsworth and Bakewell.
Bareajoes, Tintern, Monmouthblire.	Duke of Beaufort.	Fine and coarse qrartz, and other siliceous grainx, with argillo-siliceuos cement, ferruginous spots, and plates of mica.	Light greyish brown.	$46 \quad 12$	$\begin{aligned} & \text { to } 10 \\ & \text { tons, } \\ & \text { thickest } \\ & \text { bed } 10 \text { to } \\ & 12 \mathrm{it} . \end{aligned}$	$\begin{gathered} 10 d . \\ 1 \mathrm{~s} . \end{gathered}$		Tintern Abbeg.
Binnie, Uphiall, and in Linlitigonshire.	Earl of Buchanan.	Fine quartz grains, with argillo-siliceous cement, micaceous, chiefly in planes of beds.	Brownish grey.		Bands 14 to 18 ft . thlek (3 in homfer).	Is. $1 d$. to $2 s$. for largest blocks	$\begin{aligned} & 2{ }^{2}{ }^{\text {to }} \\ & 38 \end{aligned}$	New club house in Prince's Street, Edinborgh, and numerous private houses there and in Glasgow.
Bultun's QCARHY, Aislaby, Yorkahire.	Messrs. Elgie and Lawson, as executors oi the late Mr. Noble, of York.	Moderatcly fine siliceous grains, with argillo-siliceoos cement, plates of mica, and spots of carbon disseminated.	Warm light brewn.	12611	a ft. cobe ; top beds for house build- ing, bottom beds for docks. Beds to to thick.	ls. ${ }_{\text {a }}$	$\begin{aligned} & 1 \\ & \text { to } \\ & 2 \quad \end{aligned}$	Whitby Abbey, New University Library at Cambridgc, Scarborough and Bridling. ton Piers, Sheerness and St. Katlıarine's Docks, \&c.
Baimley Fial. (OId Quarry). near lueels. Yorksilire.	Varl of Cardigan.	Quartz grains (often coarse), and decomposed felspar with argillobliceous cement. Mica rare. Smali forruginous spots disseml. nated.	Light ferroginous brown.	$\begin{array}{ll} 142 & 2 \end{array}$	$p \text { to } 13$ tons.	-	-	In numerons bridges, waterworks, \&.
Calverley, Tunliridge Wells,Kent.	John Ward, Fisq. Ilol. word Park, Bromley, Kent.	Fine siliceous gralns, with a sllyhtly calcareous cement.	Varlegated browis.	1181	80 f., and upwards to 500. Beds to 3 ft .	$\left.\right\|_{6 d .} ^{4 d .} \text { to }$	$\operatorname{lo}^{1} 2$	Upper part of new ehurch at T'unbridge Wells : Catholle Chined. the Calvertey 1lete: Market -2w Honse, and Victorla Nia- tlonal School. and abont 160 houses. \&̌. ., it Tumbidgo Wills and ita Ifinuty.

SANDSTONES - continucd.

SANDSTONES - contintecd.

SANDSTONES - continued.

SANDSTONES - continued.

LIMESTONES.

Name of 2uarrinnd Lese siuatul.	Proprietor of	Component rarts of stone.	Colour.					Where used.
$\begin{aligned} & \text { FR, near } \\ & \text { ixmluster } \\ & \text { Devooshlre. } \end{aligned}$	Lord Rolle.	Chicfly carbonate of lime, frlable, and with partial Indurations.	Light tint of brown.	lb. oz. 13112	6 to 7 f. long, 3 lt. wlde, and 2 ft. thick.	$\text { s. } d \text {. }$	s. d.	In the churches of the vicinity; St. 1'eter's Church, lixeter, in exposed parts ; Colyton Chareh. Charmonth, \&c.\&ंe.
tILMARK. nesar Halls- His. Wilt. hlre.	Earl Pemtroke.	Carbonate of lline, wlth a moderate proportion of sillca, and occashonal gritins of sillcate of Jron.	Light green- ish brown.	1537	$\left\{\begin{array}{l}10 \text { cwt. to } \\ 3 \text { tons. } \\ \text { Several } \\ \text { Leds } ; \\ \text { thickest } \\ \text { bed } \\ \text { about } 3 \\ \text { ft. }\end{array}\right.$	$\begin{array}{ll} 1 & 6 \\ 2^{\text {to }} & 0 \end{array}$	$\begin{aligned} & 410 \\ & 5 \quad 4 \end{aligned}$	Salisbury Cathedral, W'iltou Abbey, zand many other ancient and modern build. lags In the of cinlty:
aton Fiono, ncar Wirke. vorth, Jer. 	Phillp Gall, Jinq., lapton llall, near Wirksworth.	Compact carhonate of 1 lm , whtil encrinal fragments abundant.	Warm light grcy.	1587	100 feet cube; beds vary $1 n$ thlek- ness fromi 3 to 10 ft.	$4^{3} 0$	$\begin{aligned} & 110 \\ & 510 \\ & 310 \end{aligned}$	At Chatsworth, Belvoir ('istle, Trentlam llall, Drayton Manor, lifminghan (irsumatar Sthorl, Ac.

- Viroin my own cap riments.

LIMESTONES - continucd.

MAGNESIAN LIMESTONES.

($\begin{gathered}\text { Name of } \\ \text { Quarry, and } \\ \text { where situated. }\end{gathered}$	Proprietor of Cuarry.	Ccmporent Parts	Colour.					Where used,
Bolsover, near Chesterfield, Derbyshire.	Earl Bath. urst.	Chicfly carbonate of lime and carbonate of magnesia; semi-crystalline.	Light yellowish brown.	1b. oz.	56 ft . cube, in beds from 8 in. to 9 ft.thick.	$\begin{array}{cc} s . & d . \\ 0 & 10 \end{array}$	$\begin{array}{lc}\text { s. } & \text { d. } \\ 2 & 0\end{array}$	Sonthwell Church, and numerous buildings in the vicinity.
Brodsworth, near Doncaster, Yorkshire.	Lord Rendlesham.	Chiefly carbo. nate of lime and carbonatc of magncsia, with sub-oolitic grains ; friable.	Light brown tint.	13310	$\begin{aligned} & \text { Thickest } \\ & \text { bed } 3 \mathrm{ft} . \\ & 6 \mathrm{in} . \end{aligned}$	- -		Doncastcr Old Church and Mansionhouse, Brocklesby Ilall, \&c.
Cadeby, near Doncaster, Yorkshire.	Slr Joseph Copley, Bart.	Chiefly carbonate of lime and carbonate of inagnesia, with sub-oolitic and irregularly formed oolitic grains; friable.	Cream.	1269	Central beds (the best) ft.thick. ft	-	110	Day and Mar. tin's, in lligh Holborlı; almshouscs at Edgware, sc.

MAGNESIAN LIMESTONES \rightarrow con/inncd.

Same of arry, and re atuated.	Progrietor of Quarry.	Component Parts of Stone.	Colour.			砣它		Where
DI.e. oNe, near herburne, orkshire.	Oliver Gascoigne, Esq., near Abberford.	Chiefly carbonate of lime and carbonate of magnesi.., semi - crystalline.	Whitish crean.	lb. oz. 13713	(50 to 250	$\begin{array}{lc}s . & d . \\ 2 & 0\end{array}$	$\begin{array}{ll} \text { s. } & 1 . \\ 3 & 0 \end{array}$	York Minster, Selby Cathedral, Iluddlestone Hall, Sherburne Church, Westminster Ilall, Galeforth Hall, \&c.
KDATV IG, near caster. kshire.	Sir Edward Vavasour, Bart.	Chielly carbonate of lime and carbonate of magresia.	Dark cream.		Beds irre- gular, from a few in- ches to 3 feet.	- -	- -	York Minster, and probably most of the churches in York; also for the late restorations of York Minster.
he Abbey, ar Bawtry, orkshire.	Earl of Scarborough.	Chiefly carbonate of lime and carbonate of magnesia, with occasionaldendritic spots of iron or manganese, semicrystalline.	Whitish creanl.	1392		$\begin{aligned} & 08 \\ & 1{ }_{10}^{8} 6 \end{aligned}$	$\begin{array}{ll} 2 & 1 \frac{1}{4} \\ 2 & 11 \end{array}$	Roche Abbey Church, Tickhill Castle, and Church ind Bridge, Sandbeek llall, SelbyHall, two churches at letford, Bawtry Church, and numerous churches in Yorkshire and Jincolnshire.
whe, near draster, rkshire. r.inliam Dleser).	Thomaslerrutt, E.sq.	Chienly carbonate of lime anl carlumite of maghesia, slightly crystalline.	Light yellowish brown.	1278	$\begin{gathered} \text { Largest } \\ \text { othained } \\ 80 \times 30 \\ \times 30 . \end{gathered}$	07	214	HullOhlChurch, liponMinster, St. Mary's Church ind the minster at Beverley, the minster ind several churchess at York, and a new chureh at Appleby, in Lincolnshire.

OOLITIC STONES

OOLITIC STONES - continued.

OOLIIIC STONES - continuct.

Of the Portland stones. It is to be observed generally, that the dirt hed is full of fnssil roots, trunk a, and brnochers of treps, In the postion of their former growth. The top cap is a white, hard, nud rlosely compacterl llmestone. The skill cap is Iregular in texturc, and is a wellocompactod Ilmistnies The roach beds are alwnys lacneporated with the frecestome luods, that livarlably lie thelow them, and nre full of cavities formed ly the moulds of shrils and the: like. 'I'lie topl bed In the best stone, the bottom one 111 cemented, nod will ant stoud the weal lier. A midelle or curf bed occurs ouly in the sumthormoost quarrles on the cast cliff: it is soft to the morth, aud burd to

 anut'r of the Inlan 1. The stonle, even lo the same guarries, varles conslderably. I'hnt which coutalos flinta will not atand the weather. The bottom bed nn the west cllf is uot a durahb: afone, though sold as a gnod stune In the liondon market. The lust stome is In the nothenateric part of the lsland; the worst luthe month-western pirt. The sumal consumption of

 quarrles In the loland, nod riont 24 gurerymen cimployed, of while nomber Acesrs. Stewarde enapluy uiusliy abuut 13s. (See Subiectlon 16'ffic ef \$i8.)

OGLITIC STONES - continued.

$\begin{gathered} \text { Name of } \\ \text { Quarry, and } \\ \text { where situated. } \end{gathered}$	Proprietor of Quaxry.	Component Parts of stone.	Colour.					Whicre used
Taynt jn, or Teinton, near Bur furd, Oxon.	Lord Dyne-vor.			lb. oz. 13515			s. $\begin{array}{lc}\text { a } \\ 2 & 4\end{array}$	
			Streaky brown.	13515	Any practicable size. Thickest bed, atout 7 ft .	$\begin{aligned} & 0{ }^{10} \\ & 1_{10} \end{aligned}$	2 4 	Blenheim, bury Yarn drk
								Barrington
								Park, the in
								terior of St
								Paul's many athe othe
								${ }_{\text {many }}^{\text {charches }}$ othe
								London and
								Oxford, and is
								in Oxford.
$\begin{aligned} & \text { Wass, near } \\ & \text { Thirsk, } \\ & \text { Yorkshire. } \end{aligned}$	$\begin{gathered} \text { Martin Sta- } \\ \text { pleton, } \\ \text { Esq. } \end{gathered}$	$\|$Compact car- bonate of lime, with oolitie grains and aut argilto - calca- reous cement; carbon disse- minated.	Brown.	14111soft.1628hard.	$\left\lvert\, \begin{gathered} \text { Beds va- } \\ \text { riable, } \\ \text { about } \\ 16 \text { iu. } \end{gathered}\right.$	- -		West front and a large propor tion of By land Abbey.
							- -	
Windrusli,near, Bur-ford, Glou-cestershire.	Lord Shelburne.	Fine ooliticgrains, withcalcareous ce-ment, and afew fragmetuiof shells.	Ercam.	$118 \quad 2$solt.135hard.	$\begin{aligned} & 5 \text { to } 40 \mathrm{ft} \\ & \text { Thickest } \\ & \text { bed, } 2 \mathrm{ft} . \\ & 6 \mathrm{in.} . \end{aligned}$	08	27	Windrush Church, Barrington House, and all the old buildings within many miles of the quarry.

1665. The following very useful enumeration of the stones used in buildings of the island, arranged under that head, and divided into the sorts of stone employed in them, we add, verlutim, from the Report which we have so much used. The heads are under Sandstone buildings, Limestone buildings, amd Magneslan Limestone buildings.

SANDSTONE BUlLDINGS.

Bakewell, Derbyshire. The houses generally are of sandstone, and in fair condition. A new bank now erecting of sandstone from Bakewell Edge.
Bakewell Church (14th century), of a sandstone of the vicinity, very much decomposed.
Barnard Castle, Durham (14th century). Circular keep, apparently of Stenton stonc, in excellent condition. In modern works, the Joint Stock Dank and Market-house of Stenton stone, in good condition.
Belper New Church, Derbyshire. Built 10 years since, of sandstone from Hungerhill, in an incipient state (in parts) of decomposition.
Blandeord Parish Church, Dorsetshire (1769). Of a green siliceous fine-grained sandstone, the dressings being of a stone similar to the Portland oolite; the former muct decomposed; the latter in very good condition. 'Town Hall, about 80 years old, of stone cimilar to the Portland oolite, in good condition.
Draneepeth Castle, Durham. Of ancient date, of sandstone of the vicinity; recently restored extensively; older parts in various states of decomposition.
Briavel's, St., Castle, Glocestershire. In ruins (13th or 14th century). Entrance gateway (the chief remains of the castle) built of red sandstone, decomposed.
Bristol Catnedral (13th and 14th centuries). Built of red sandstone and a yellow limestone (magnesian?) strangely intermixed; the red sandstone in all cases deconposed, the limestone more rarely decayed; the tracery, \&c. of the windows, which are of the limestone, are in good condition; but the pinnacles and other dressings, which are of the same material, are much decomposed. The east end of the eathedral is a remarkable instance of the decay and preservation of the two stones employed. Norman gateway, west of the cathedral (the upper part of the 15 th century) ; the Norman archway and its enrichments, which are of a very florid character, built of yellow limestone (magnesian?), in excellent condition.
Byland Abbey (12th century). In part of a siliceous grit (principally in the interior), and in part (chicfly on the exterior) of a compact oolite, from the Wass quarrics in the
vicinity. The west front, which is of the oolite, is in perfect eondition, even in the dog's-tecth and other florid deeorations of the doorways, \&e. This building is covered generally with lichens.
rilisLe. Ancient buildings: Cathedral (13th century), of red sandstone, in various states of decomposition. Modern buildings: Many of red sandstone, more or less in a state of decomposition.
istle Howard, Yorkshire. Built gencrally of a siliceous fine-grained sandstone from the park; generally in good eondition, but in some parts, such as the parapets, eupolas, and chimney shafts, mueh decomposed. The pilasters of the north front from a quarry at Appleton; in good condition, except where subjected to alternations of wet and dry, as in the plinths, where there are signs of deeomposition. The stables are of Appleton stone, and in good condition.
atsworth House, Derbyshire. Original house built of Bell Crop sandstone from Bakewell Edge, not in very good condition, particularly in the lower parts of the building. In the recent additions the same stone is employed, together with that of Bailey Moor and Lindrop Hill.
iepspow Castle, Monmouthshire (11th and 12 th centuries, with additions of the 14 th century). Of mountain limestone and old red sandstone; the former in good condition; the latter decomposed. Dressings of doors, windows, arehways, and quoins are for the most part of magnesian limestone, in perfect eondition; the remainder is of red sandstone, and is generally much decomposed. Chapel (of the 12th century); mouldings and carvings of the windows, \&e., whieh are of magnesian limestone, are in perfect eondition.
xwold Сhureh, Yorkshire (15th eentury).
Generally of fine siliceous grit of the vicinity, and in part of a calcareous nature.

Tower in good condition; porch decomposed; lichens abundant on the north side.
1 hry. St. Peter's Church (13 th eentury), of the variegated coarse sandstone of the vicinity, similar to that of Little Eaton. The whole in bad eondition; but the red stones less so than the grey or white. St. Almund's Clurch (of the 14th century), of a eoarse sandstone of the vicinity, in a very decomposed state, to the obliteration of the mouldings and other details; it has lately bcen scraped and painted, to preserve it from further destruction. All Saints Church (tower of the 15 th century), of sandstone, similar to that of Duffield Bank, partly in fair eondition, and partly much decomposed, particularly the great western entrance. The body of the clurch, built 110 years smec, of sandstone, in part decomposing. Modern buildings: Town IIall, of sandstone from Morley Moor, vuilt a few years since, in very good condition.
Ham Caturdral (11 th and 12th centurics). Of a sandstonc of the vicinity, elected indiscriminately, and in all stages of decomposition; few stones are quite perfect. Castle (of the 11 th century). Of similar stone, and in a similar state.
ey Aeber, Yorkshire (13th and 14th centuries). Of sandstonc of the vicinity ; mouldings and earvings decomposed and in part obliterated. Walls built very rudely, and in various states of decomposition; some parts, however, maintain their original surfice.
L. 1. .rston Abafy, Yorkshire (13th eentury). Of stone similar to that of the Stenton quarry. The mouldings and other decorations, sueh even as the dog's-teeth enrichments, are in perfect condition.
:bukcil: Ancient buildings: IIolyrood Clapel (12th eentury), of sandstone from the vicinity, in part mucl decomposed; in other parts, such as the west door, almost perfect. The palace (built in the 16 th and 17 the centurics) of similar stone, generally ill good condition, the older parts being slightly decomposed. The oldest part of the I'ron Church ($16+1$), of sandstone, much decomposed. A house on the Castle Itill (1.591), of sandsone, ouly slightly decouposed.
odern buildings, wholly crected of sandstones from the Cragleith, Red Hall, Mumbie. and Bimnie quarries, for the most from the first-mentioned quarry. None of then exhib, any appearance of decomposition, with the exception of ferraginous veinns, whicla are produced upon some stones. Among the oldest is the Registiy Oifice, whicl is of Cragleith stone, and built above sixty years since; it is in a per feet state.
10. rass's Abuey, Yorkslire ($11 \mathrm{th}_{1}$ and 12 th centuries, with additions of the 16 th cuntury). Of coarse sandstone of the vicinity, generally in bad condition, particularly hie west front, which is much decomposed. The nave and transept, which are the Farliest pertions of the building, are the best preserved.
otran's Hall, Yorkshire (1677). Of sandstone of the vieinity, and magnesian limetonce in the dressings. The whole in fiar condition.
o ir or 1) was, (iloueestershire. l'ark Eind new chureh, built fifteen years since, ef andstunte, similar to that of Collord. No appearance of decomposition.

Glasgnw. Ancient buildings: High Church (12th eentury), sandstone of the vicinity generally very much decomposed, particularly on the south side Old quadrangle of the College (James I I.), of sandstone, decomposed.
Modern buildings: IIunterian Museum (1804); superstructure said to be of stone from the President quarry; slight traces of decomposition on the south-west front. The basement of another sandstone, in a more advanced state of decomposition; othel parts of the building are in an almost perfect state. The other buildings are gencrally erected of stone from the Giffneuch and other quarries in the immediate neigh bourhood, exeept the new Exehange buildings, whieh are of stone from the Humbit quarry, thirty miles from Glasgow, recently erected, in-which there are not any ap. parent symptoms of decomposition.
Gloucester Catinedral (Norman for the greater part, altered and cased in the $15 \mathrm{t}_{\mathrm{k}}$ century), built of a fine grained and ill-cemented oolite, a shelly oolite, and a res sandstone (north side) intermixed, of which the former constitutes the greater por tion. The tower (15 th century), of shelly oolite, in perfect condition. The early turrets of the south transepts are also in good condition. The body of the building is much decomposed. The great cloister is built of the same materials as the cathe dral. The moulded and decorated work is in good condition, the other parts ar more or less decomposed. The small cloister is built of a fine oolite with a eompac eement, and is in good eondition. The New Bridge, of Whitchurch sandstone parapets of Ruordean fine-grained sandstone, in good condition.
IIadnon Hall, Derbyshire (15 th and 16 th centuries). Of a fine-grained sandstone similar to that of Lindrop Hill. The dressings, parapets, chimney shafts, quoins, \&c. are wrought and rubbed; the remainder of the walls is of rough walhng. The whol in fair condition.
Harrowgate. Cheltenham Pump Room, of sandstone from Woodhouse, near Leeds Built recently. In good condition. Swan Hotel and other modern buildings, of coarse sandstone of the vicinity; generally in good condition.
IIardwicke Hall, Derbyshire. (1597). Of a tine-grained sandstone, chiefly from quarry in the hill on which the house is built, intermixed with a ealciferous grit similar to that of Mansfield; generally in good condition. The ashler is in part decomposed, especially where it is set on edge.
Howden Church, Yorkshire (15 th century); partly of magnesian limestone, of a dee yellow eolour, and partly of a coarse siliceous grit, of a ferruginous eolour. Dress ings and enrichments and the central tower are of the former stone; generally de composed, particularly at the top of the tower. The other parts of the building which are of the grit, are very much decomposed.
Kirkstall Abbey, Yorkshire (lith eentury). Of coarse sandstone of the vicinity, i various stages of decomposition according to the aspect. The east side is in fair con dition; some of the zig-zag enrichments and early capitals and other enrichments i mouldings are in perfect eondition. The windows of the chancel and tower (inserte in the 16 th eentury) of a yellow sandstone, are for the most part gone, and what if mains is mueh decomposed.
Mansfifld TownHall, Nottinghamshire. Built three years sinee, of magnesio-ealciferol sandstone from Mansfield: no appearance of decomposition.
Newcastle-upon-'Tyne. Ancient buildings: St. Nicholas' Church (14th eentury), sandstone of the vicinity, similar to that of the Heddon Quarry, very much decom posed. Parts restored within the last eentury, with the same stone, now decomposing The upper part of the tower and spire restored within the last five years, and paintt to preserve the stone from decay. Other ancient buildings, of the same stone, more less in a state of deeomposition, aceording to the date of their erection.
Modern buildings, built within the last 25 years, of sandstone from the Felling an Church quarries at Gateshcad and the Kenton quarry : parts already show sympton of decomposition.
Pontefract Castle, Yorkshire (14th eentury). Built generally of a coarse grit, of a dar brown colour, occasionally mixed with an inferior magnesian limestone. The who in a very decomposed state, more particularly the sandstone, in which all traces of t original surface are effaced. Fraginents of magnesian limestone are embedded several parts of the walls, with mouldings of the 12 th century, in perfect col dition.
$\mathrm{R}_{\mathrm{Aby}}$ Castle, Durham (14th eentury). Of sandstone of the vicinity : parts in a purfe state, others slightly decomposed.
Richmond Castle, Yorkshire (11th century). The keep, of sandstone, similar to that Gatherly Moor, generally in good condition; mouldings and earvings in eolumns window in a perfect state.
Liron, Yorkshire. An obelisk in the market-place (1781), of eoarse sandstone, much d composed in laminations parall 1 to the exposed faces.

HoN Cathennat. Lower part, east end, and south-east angle (Norman), of coarse sandstone of the vicinity, in good condition. The west front, the transepts, and tower (of the 12 th and 13 th centuries), of the coarse sandstone of the vicinity, in fair condition. The mouldings, although generally deeomposed, are not effaeed. The dog's-teetin ornaments in most parts nearly perfeet. The aisles of the naves, the clerestory, and the choir (of the 14 th and 15 th eenturies), of eoarse sandstone and magnesian limestone intermixed, not in good condition; the latter stone, on the south side, often in tair condition. The lower parts of the building generally, but partieularly the west fronts, which are of eoarse sandstone, are very much deeomposed.
Waulx Abeev, Yorkshire (1 eth century). Of a sandstone at Ho:lands, one mile from the ruins; generally in excellent condition. West front slightity decomposed; south front remarkably perfect, even to the preservation of the original toolmarks.
istressury, Dorsetshire. St. Peter's Chureh (15 th century). Of a green silieeous saudstone, from quarries half a mile south of the church. The whole tuilding much decomposed. The tower is bound together by iron, and is unsafe, owing to the inferior quality of the stone.
errokth Castie, lorkshire (14th eentury). Of eoarse red sandstone; more or less, but generally much, decomposed. The dressings of the windows and doos, of a semierystalline magnesian limestone, are in perfect state, the mouldings and enrichments being exquisitcly sharp and beautiful.
itern Abbey (13 th century). Considerable remains of red and grey sandstones of the vieinity, in part laminated. In uncqual condition, but for the most part in perfect condition; covered with grey and green lichens.
shem Conuch (13th and 14 th centuries; the lower part of the tower of the 12 th ecntury). ()f' ealeiferous limestone from 'Tisbury. 'The dressings are composed of stone throughout, in perfeet condition. The ashlar variable; in part much decomposed; the undecomposed portions are covered with lichens. Tombstones in the churchyard generally in good condition, some being more than a century old. The houses of the village built generally of the Tisbury stone, and are in very good condition. The whole covered with liehens.
inefielid lahish Church, Yorkshire (tower and spire of the 16 th eentury). Of sand. stone, much decomposed. 'The body of the church, of rceent date, of sandstone strongly laminated, and generally deeomposed between the laminx.
ntby Abbey (13 th century). Of stone similar to that of Aisiaby brow, in the vieinity ; gencrally in good eondition, with the exception of the west front, whieh is very much decomposed. The stone used is of two colours, brown and white; the former, in all cases, more decomponed than the latter. 'The dog's-teeth and other errichments in the cast front are in good condition.

I. MESTONE BUll.mN(is.

Irn. Abley church (1576), huilt of an oolite in the vicinity. The tower is in fair condition. I'he body of the church, in the upper part of the south and west sides, mueh decomposed. The lower parts, formerly in contact with buildings, are in a more perfect state ; the reliefts in the west front of Jacob's ladder are in parts nearly eflaced. (Queen's Square, north side, and the obelisk in the centre, built above 100 years since, of an oolite with shells, in fair condition. Cireus (bnilt about 1750), of an oolite in the vicinity, generally in fair condition, except those portions which have a west and southern aspect, where the most exposed parts are decomposed. Crescent (built above 50 years since), of an oolite of the vicinity, generally in fair condition, exeept in a few places, where the stone appears to be of inferior quality.
stol. Cathenes., (of the 13 th and 14 th centuries). Built of red saudstone and apparently a yellow limestone (magnesian?) strangely intermixed. The red samdstone in all eases decomposed ; the limestone more rarely decayed. 'The tracery, \&e. of the windows, which are of the limestone, are in grod condition, but the pimateles and dressinge of the same material much decomposed. The east end of the cathedral is a remarhable instance of the decay and preservation of the two stomes employed. Norman gateway, west of the cathedral (the npper part of the 1.5 th eentury), the Nomm archway and its enrichments, which are of a very florid character, built of yellow linnestone (magnesian?), in exeellent condition.
-, Sr. Mary Rrmonfre (tower of the 12th century; body of the chnelt of the 15 th centuiy). Of oditie limestone, from 1)undry; very mueh deconposerd.
 tion througlusut. The late additions are of Ketton stone.
13n: nn Abury, Yorkshire (12 the century). In part of a siliceous grit (prineipally in the interior), and in part (chiefly on the exterior) of a compact oolite, from the Wias quarries in the vicinity. The west front, which is of the oolite, is in: perlect condition,
even in the dog's-teetb and otlser florid deeorations of the doorways, \&c. This build ing is generally covered with lichens.
Colley Weston Church, Northamptonshire (14th eentury). Of a shelly oolite (Barmae rag), in perfect condition throughout
Dorchester. St. Peter's Church (15th century). Of laminated oolite, somewhet simila to that of Portland, and of a shelly limestone, somewhat resembling that of Hamhil: The latter used in pinnacles, parapets, and dressings. The whole in a decompose state.
Glastonbury - Abbey. Joseph of Arimathea's Chapel. Considerable ruins; Normal of shelly limestone, similar to that of Doulting; generally in good condition; th rig-zag and other enrichments perfect ; the capitals of the columns, corbels, \&c. are blue lias, much decomposed, and in some cases have disappeared. The Church. Con siderable remains of the choir, and a small portion of the nave (11th century), shelly limestone, similar to that of Doulting, in good condition. St. Benedict's Pari Church (14th century). Of limestone, similar to that of Doulting, in good condition St. John the Baptist's Parish Church (15th century). Of stone similar to that Doulting, generally in fair condition.
Glocester - Cathedral, (Norman for the greater part, altered and cased in the 154 century). Built of a fine-grained and ill-cemented colite, a shelly oolite, and a r sandstone (north side) intermixed, the former constituting the greatest portion of tl edifice. The tower (15th century), of shelly oolite, in perfect condition. The ear turrets of the south transept are also in good condition. The body of the building much decomposed. The great cloister is built of the same materials as the cathedra The moulded and decorated work is in good condition; the other parts are more less decomposed. The great cloister is built of a fine colite, with a eompact cemel and is in good condition. St. Nicholus's Church (body Norman; tower and spir 15 th century), of a shelly and inferior kind of oolite intermixed, and in unequal con dition. St. Michael's Church (15th century), built of same stone as that of S Nicholas, and in the same condition.
Grantham Cherch (13th century). Lofty tower and spire at the west end. Built of: oolite, similar to that of Ancaster, in good condition, more especially the tower, exce as to some portions of the base mouldings.
Ketton Church, Rutlandshire. (West entrance door, Norman; tower of the 12th or 13 century ; nave, aisles, and chancel of the 14th century). Of a shelly oolite (Barna rag), in good condition. Dog's-teeth, caryed corbels, and other enrichments in perfect state.
Kettering Churra (14th and 15 th centuries). Of a shelly oolite, fine-grained, the graal portion resembling Barnack rag. The tower and spire in perfect condition. T body of the church in parts slightly decomposed.
Kirkham Priory, Yorkshire (13th century). Inconsiderable remains. The weste front and great entrance slightly decomposed throughout; the portions which rema of the borly of the church very perfect, but many of the stones are much decomposi The stone is very similar to that of the Hildenly quarry. The whole is covered w lichens.
Iancoln Cathedral (the minster generally of the 12 th and 13th centuries). Of ooli and calcareous stone of the vicinity; gencrally in fair condition, more especially 1 early portions of the west front. The ashler and plain dressings of the south fr are, however, much decomposed. The mouldings and carvings of the east front in a perfect state. Roman Gate, of a ferruginous oolite, in fair condition. The Cut Gateway (13th century), of an oolitic limestone ; ashler much decomposed, dressil perfect.
Melton Old Church, Yorkshire (12th century). Light semi-compact limestone, simi to that of the Hildenly quarry; generally in good condition, particularly the gr west door (of the 11 th century), where the zig-zag and other cnrichments are purfi Some stones are much decomposed.
Montacute, Somersetshire - Parish Church (15th century). Of Hamhill stone, in perf condition, covered with lichens. The Abbey (15th century). Supposed abbr house and gateway, of Hamhill stone, in good condition. Montacute Honse (1 eentury), of Hamhill stone, in excellent condition.
Martock Сhurch, Somersetshire (15 th century). Of a shelly ferruginous brown lin stone from Hamhill, in good condition, except the plinth and base mouldings, wh are much decomposed. Covered with lichens.
Newark Church (15th century; the tower, in part, of the 12 th eentury). Of an ool sinilar to that of Ancaster; generally in fair condition, with the exception of part the base mouldugs. The building is covered with a grey lichen. The Castle (N man, with additions in the 15 th century). Chiefly of sandstone of the vicinity: unequal condition. A large portion of the dressings of the windows, \& \& are of mol
probably from Ancaster. Town Hall (50 or 60 years old). Ihilt of the Ancaster oolite; in grood condition; in some blocks, however, there is an appearance of lamination, where decomposition has to a slight extent taken place.
forn Cathenral., Normin (1 vth century). Chietly of a shelly oolite, similar to that of Tayinton; Norman work in good condition, the latter work inuch decomposec Merton College Chapel (13th century). Of a shelly oolite, resembling Taynton stone; in good condition generally. New College Cloisters (14th century). Of a shelly oolite (Taynton), in good condition. The whole of the colleges, churches, and other public buildings of Oxford, erected within the last three centuries, are of oolitic limestone from Heddington, about one mile and a half from the university, and are all, more or less, in a deplorable state of decomposition. The plinth, string-courses, and such portions of the buildings as are much exposed to the action of the atmosphere, are mostly of a shelly oolite from Taynton, fifteen miles from the university, and are universally in grood condition.
u's, गt., Cathembai, London (finished about 1700). Built of l'ortland oolite, from the Grove quarries on the cast cliff. ...The building generally in good condition, especially the north and east fronts. The carvings of flowers, fruit, and other ornanents ane throughout nearly as perfect as when first executed, although much blackened; on the south and west fronts, larger portions of the stone may be observed of their matural colour than on the north and east fronts, occasioned by a very slight decomposition of the surface. 'The stone in the drum of the dome, and in the cupola above it, appears not to have been so well selected as the rest; nevertheless scarcely any appreciable decay has taken place in those parts.
hering Chonch, Yorkshire (13th and 14th centuries). Oolite rock of the neighbourhood; very much decomposed; the windows, mullions, and buttress angles obliterated.
Ifering Casties (14th century). 'the walls of the oolite of the neighbourhood, and the quoins of a siliceous grit. The whole in fair condition.
1] thand, Dorsetshire - New Church (built 1766), of Portland oulite, fine roach ; in a perfect state, still exhibiting the original tool marks. Wakeham Village, 'ludor House, of Portland oolite, in excellent condition. Old Church, in ruins, near bow and Arrow Castle (15 th century), of Portland oolite, resembling top bed ; in very good condition; original chisel marks still appear on the north front. Bow and Arrow Cinstle. Considerable remains of the keep, many centuries old, of Portland oolite; the ashlar resembles the top bed, and is in perfect condition; the quoins and corbels of the machicolated parapet appear to be of the cap bed of Portland oulite, and are in good condition.
sblisy Cathedral (13th century). Of siliciferous limestone from Chilmark yuarry. The entire building is in excellent ecendition, except the west front, which in parts is slightly decomposed. The building gencrally covered with lichens.
, ivsfout Castife, ncar Weymouth (temp. Hen. Vill.). Considerable remains of keep, chietly of Portland oolite, partly of the top bed and partly of the fine roach; generally an excellent condition, with the exception of a few and apparently inferior stones. 'The inside ashlar of the walls is of large-granned oolite, apparently from the immediate vicinity of the castle, much decomposed.
итол Church, Somersetshire (14 th ecntury). Built chiefly of blue lias; the quoins, ,uttresses, parapets, and other dressings of a coarse ferruginous shelly limestone, in various stages of decay. The parapet of the clerestory of a lighter-coloured stone, in good condition.
IORD - St. Mary's Church (13th century). Of a shelly oolite (Barnack rag), in air condition. St. John's Church (14th century). Of similar stone, ill selected, and onserpuently decomposed in parts and in laminations, according to the direction of he beds of shells. St. Vartin's Church (14th century). Of similar stone, in grood condition. All Saints (lower part of the body of the church 1 sth century; the renainder 15 the century). Tower and spire in the condition; body of the church demaposed. Standwells Hotel, built twenty-Four years since of an oolite similar to hat of Ketton; in perfect condition. St. Michael's New Church. Built four years inece ; no appearance of decomposition.
TIne Cathemal. West front ($1: 3$ th century), upper part of tower (14 th century), i vhelly limestone, similar to that of Doulting, gencrally decomposed, but not to any reat evtent. North tlank (porch and transept 1 :3th century, the remainder of the ith century), of simbar stonc, in good condition, exeept lower part of hank and west ower. l'he central tower (of the 14th ecntury) in very good condition. Sonth side the: cathestral gencrally in good comdition. (Hapher Ifoase (13th century, with alitions of the 15 the eentury). The whole in good eondition excepting the west tont of the gatewis, which is decomponed. Close gates (15th centary) winch dee
eomposed, but especially on the sonth and south-west. The cloisters (15 th century generally decomposed, particulariy the minlions and tracery.
Wesminster Abbey (13th century). Built of several varieties of stone, similar to that o Gatton or Ryegate, which is much dccomposed, and also of Caen stonc, which i generally in bad condition; a considerable portion of the exterior, espeeially on th north side, has been restored at varions periods, neverthcless abundint symptom of decay are apparent. The cloisters, built of several kinds of stone, are in a ver mouldcring condition, except where they have been recently restored with bat and Portland stones. The west towers, erected in the beginning of the 18 th centur with a shelly variety of Portland oolite, exhibit scarcely any appearance of decay Henry the Seventh's Chapel, restored about twenty years since with Combe Dow Bathstone, is already in a statc of decomposition.
Winnmesh Churer (15 th century). Of an oolite from the immediate vicinity; in ex eellent conditon. A Norman door on the north side, enriched with the bind's-beal and other characteristic ornaments, is in perfect condition. Tombstones in the chirchyard, very highly enriehed and bearing the dates of 1681,1690 , apparently Windrush stonc, are in perfect condition.
Wyke Church, Dorsetshire (15 th century). Of oolite, similar to Portland, the whole i good condition, except the mullions, traeery, and dressings of doors and window which are constrneted of a soft material, and are all decomposed. On the south side the ashler is in part covered with rough-cast. The entite building is thickly covere with lichens.

magnesian hmestone bulloings.

Beveriey, Yorkshire. The minster (12th, 13 th, and 14 th centuries), of magnesian linx stone from Bramham Moor, and an oolite from Ncwbold; the former, which is use in the west tower, central tower, and more aneient parts of the minster, generally i good condition; but in other parts of the building the same material is decompose The Newbold stone, chiefly employed on the east side, is altogether in a bad condition Some of the pinnacles are of Oulton sandstonc, and are in bad condition. The buils ing is partly covered with lichens. St. Mary's Church (14th century), now in cour: of restoration, of magnesian limestone and oolite, supposed to be from Bramham Mor and Newbold, respectively. The ancient parts are in a very crumbling state, even I the oblitcration of many of the mouldings and enriehments.
Bolsover Castle, Derbyshire (1629). Mostly in ruins; of magnesian limestone several varieties, and of a calcareous fine-grained sandstone. The dressings, whis are generally of sandstone, are much decomposed, in some instances to the entire 0 literation of the mouldings and other deeorations, and to the destruction of the form the eolumns, rustications, \&c. Most of the string courses, a portion of the windo dressings, and the ashler, which are of magnesian limestone, are generally in excelle condition.
Bolsover Church, Derbyshire (15 tl eentury). Ofa magnesio-calciferous sandstone, mo or less in a deeomposed state throughout.
Chepstow Castle, Monmouthshire (11th and 12 th centuries, with additions of the 14 century). Of mountain limestone and old red sandstone; the former in good co dition, the latter decomposed. Dressings of door, window, archway, and quoins are f the most part of magnesian limestone, and in perfect condition. The remainder is red sandstone, and is generally mueh deeomposed. Chapel (of the 12 th century mouldings and carvings of windows, \&e., which are of magnesian limestone, in perfe condition
Doncasten ($O_{\text {lid }}$) Chuken (15 th century). Of an inferior magnesian limestone, general much decomposed, more espeeially in the tower, and on the south and west sides; n ander general and extensive repair.
Ufinngborovgh Church, Yorkshire (15th century). Of a white erystalline magnesi limestone. The entire building is in a perfect state, cven the spire, where no traces deeay are apparent.
Hownen Church, Yorkshire (15th century). Partly of magnesian limestone of a de ycllow colour, and partly of a eoarse siliceous grit of a ferruginous eolour. Dressin and enriehments, and the central tower, are of the former stone, generally decompo particularly at the top of the tower. The other parts of the edifice, built of the g^{g} are very mueh deeomposed.
Hundestone Hali, Yorkshire (15 th century). Of semi-erystalline magnesian limesto from the neighbouring quarry. In excellent condition, even to the entire preservati of the mouldings of the chapel window in the south-west front. The outer gate pit in the fence wall, also of magnesian limestone, very much decomposed.
Kvanesbonovg Castlf, Yorkshire (12 th centmry). Magnesian limestone, carious in pa
generally in very good condition, except on the south and south-west portions of the eircular turrets, where the surfice is much decomposed. The mouldings generally are in a perfect state. The joints of the masonry, which is exeeuted with the greatest eare, are remarkably close. The stone of the keep, which is of a deep brown colour, and much resembles sandstone, is in good condition, especially on the south-west *de.
annesmonoch Catle, Yorkshire (Norman), Coarse-grained and semi-erystalline mag. nesian limestone, fiom the hill castward of the castle; in perfect condition. The rasonry is exceuted with gicat eare, the joints very close, but the mortar within them has dis:ippeared.
ipos Cathebral. Lower part, east end, south-east angle (Norman), of coarse sandstone from the vicinity, in good condition. 'The west front, the transepts, and tower (of the 12 th and 13 th centuries), of coarse sandstone of the vicinity, in fair condition. The mouldings, although generally decomposed, are not effaced. The dog's-teeth ornament in most parts nearly perfect. 'Hhe aisles of the nave, the clerestory, and the ehoir (of the 14 th and 15 th centuries), of eoarse sandstone and magnesian limestone intermixed, not in good eondition. The latter stone, on the south side, often in fair condition. The lower parts of the building generally, partieularly the west fronts, which are of coarse sandstone, are much decomposed. An olelisk, in the marketplate (1781), of course sandstone, is much decomposed, and in laminations parallel to the exposed fäces.
obis Hogn's Wrat, Yorkshire (1740). A rustieated building, of magnesian limestone, in perfect condition.
осне Аввг: Yorkshire (12 th century). Inconsiderable remains, of semi-erystalline magnesian limentone from the neighbouring quarry, generally in fair condition. The monldings and decorated portions are perfect. Gate-lionse (12th eentury) generally decomposed, with the exception of the dressings and mouldings, which are perfect.
bey Culemen, Yorkshige (nave and lower part of the tower of the 11 th century ; the west from and aisles of the 1 th century; and the choir with its aisles of the 14 th century). The Norman portion of the building, which is of grey anagnesian limestone, is in excellent condition, particularly the lower part. The early Enghsh portions of the building are also of magnesian limestone, and in a partially decomposed state. The I.ter portions of the building, which also are of magnes:an limestone, are much deconnpared and blachened.
limwel. Cueren, Nots (of the loth eentury). Of magnesian limestone, similar to that of Bolsover Moor, in perfect condition. The mouldings and enrichnents of the noon way appear as perfect as if just completed. The choir, which is of the 12 th century, and built of a stome similar to that of Mansfictd, is generally in good condition.
Fontu Castaf, Yorkshire (14 th century). Of coarse red sandstone, generally much decomponed. The dressings of the windows and doors, of a semi-crystalline magnesian limestone, are in a perfect state, the mouldings and enrichuents being eminently sharp and beantifin.
char Prack, Yonkshire. Banquetting house, about 100 years old, of yellowish mag. nesian limestone, in perfect condition.
tokpr Abbry Vinage. The houses generally of this village are buitt of magnevian limestone from the vicinity; they are in excellent combition, and of a wery pleasing colsur.
Wempe Sinvv, near Worksop. Manor-homse (15th century), in ruins. Of a siliciferous magnesian limestone and a sandstone, in unequal condition; the fuoins and dressings are fenerally in a perfect state. Purish Church (1.5th century), also of a siliciferous varicty of magnesian limestone and a sandstone, in unequal but gencrally fair condition. A Norman doorway under the poreh is well preserved.
xhal ('uusch, Yorkshire, (15th eentury). Of magnesian limestone, in execllent condition. The lower part of the tower (of the 12th century) also in fair condition.
 century). Of magnesian limestone, from Jackdaw Craig. West end and towers teatored thirty years since; they are generally in fair condition, but some of the curicled gables mond other decorations are obliterated. The tamsepts are in many
 thwer in generally in geod eondition, but several of the enriched parts are decompmeed. M. Mary's Ahery (12th century), of magne,ian limestone. West front of the church generally much deemponed; the north lank in luther condition, but in party much decompored. The gateway, which is of Norman origin, is in liir comblition.

limestone; south side highly enriched with zig-zag and other ornamente; the coluhno are gone; the parts which remain are in good condition. St. Margaret's Church (15t) century), of magnesian limestone; east front much exposed, and in good condition The porch is of Norman date, and has been rceonstructed; four bands of enrielmen in the head, in tolerably fair condition, but many stones, particularly those of a dec yellow brown colour, are much decomposed. The other churches of York (which as of the 14 th and 15 th centuries) are built of magnesian limestone, and are generally is an extremely decomposed state; in many instances all architectural detail is obliterated
Modern Buildings: 'The Museun, of Hackness sandstone, built rine years since much decomposed wherever it is subject to the alternation of wet and dry, as at th bottom of the columns of the portico, phanth, \&c. The Castie (recently erected) the plinth of the boundary wall (which is of Branleyfall sandstone) already exhibit traces of decomposition. Firk Savings Bank. IIuddersfield stone (?), in goo condition.
Wunksor Church (prineipally of the 13 th century), of a siliciterons variety of magnecint limestone and of a sandstone; in very unequal condition. Some parts are very mued decomposed, whilst cthers are in a perfect state.

Table of the Chemical Analysis of Sixteen Specimeng of Stone.

1666. In the above table the names of the quarries are inserted under the general div sions of the different species of stone, and the specimens were considered as fair avern: samples of the workable stone in such quaries. The experiments were conducted I Messrs. Daniel and Wheatstone. As a conclusion to the report, it may be satisfactory name the actual stones nsed in the constrinction of the first portions (1840) of the Hon, of Parliament. The foundation was laid with Penryn granite, rising to the level of th ground, cherefore but little seen. Ab sve it is Fog-tor granite from Dartmoor, A smat portion only of the superstructure, to the top of the basement windows, was built wit Bolsover Moor stone from near Chesterfield; after which Anston stone was used fur th remainder of the outside works. In the interior, Painswick and ('aen stones have bee employed; St. Stephen's crypt is of Beer stone. It has been asserted that had Govern. ment employed a supervision at the quaries to preveat imperfect blocks leeing seat a to London, the present unsightly appearance of many parts of the building would in have resulted.

1666a In par. 1500-1:02 is' supplied tables of the crushing ueights of many of th stones herein mentioned. Hereto is added a further table of the weights of a large numbe of building stones, taken trom the one prepared by the late C. H. Sinith for R. Hunt' Mineral Statistics of the United Kingdom, \&c. Part II for 1858, published 1860 ; it was alss given in the Tramactions of the lnstitute of British Arehitecis, 18,59-60.

Taplr of the Wedeats of Buiting Stones, (an Cuatinuation)

Castle's Purtland
Muakery

II unger Hill
Park Nook
Duke of Hamilton's
Hildenley
H:twksworth Wood

Duke of Hamilton's

Ikedgate
Meanwood

Sculicap, Portland

Stauley
Cateraig - -

Ham Hil]

Ilookstone
(iilfneuk
Anston, Norfall Quariy
Stone-Ends Quarry

Kenton

Wioodhouse
(iun Barrel
Mansficld (white)
Corby
Nuw Ieeds
Warwick
Mansticld (red)
Ams gdaloid
Talacre
(llihnark (Trough bed)
(Penney bed)
1 loyle 1 Ionse (clough)
Lonnewood Eilge
(romsland litl
Kiltoal (liag bed)
Yiney Itill
(Chilmark (hard white beel)
1, chee
Aucliray
I, iuch
Kuockley
Dylais.
ke..tish Rag
Trelinanws
thed Jackit

	Tishury, Wilts	- -	$\frac{\text { lb. }}{111} \stackrel{\text { iz. }}{2}$
	Bath, Somerset -		12210
	Clippenham, Wilts	- -	123
	Tixill, Stafford -	- -	124
	Corly, Lincoln		12511
	Bristol, Somerset	- -	126
	Worksop, Not's	- -	128
	Shepton Mallet, Somerset		130
	Derby -	-	130
	Worksop, Notts		130
	Falkirk, Stirling -		152
	Weymouth, Dorset	- -	132
			133
	Corby, Lincoln	- -	$\begin{array}{rrr}133 & 8 \\ 135 & 15\end{array}$
	Doncaster, York		137
	Linlithgow		137
	Malton, York		13710
	L.eeds, York		13714
	Sinlithgow -		158
	Wolsiugham, Durham		139
	Leeds, York	- -	$1: 3914$
	Weymouth -		140
	Bewdley, Shropshine		141
	Borrowstoness, Linlithgow		14111
	Edinhurgh -	- -	14112
	Yeovil, Somerset -	- -	14112
	Harrowgate, York		14210
	Le ds, York	- -	143
	Glasgow, Lanark		14.3
	South Anston, York	- -	144
			144
	Newcastle-on-Tyne		145
	1. eeds, York	- -	14.5
	Mansfield, Notts -	- -	14.512
	Buwdley, Shropshire		146
	Nanstield, Notts -		146
	Corty Lincoln		14611
	Leeds, York		147
	Hidderstield. York	- -	14810
	Mansfield, Notts -	- -	14810
	Credito., Devon	- -	149
	Holywell, Pinit	- -	1.50
	Salisbury, Wilts	- -	151
	", " -		151
	Huddersficld, York		151
	"	-	153
	Kctton, Rutland -		1554
	Ketton, Rutland -	- -	15510
	Colford, Gl neester	- -	15.511
	Salistury. Wilts -		157
	1)undee, Fortar	- -	15811
	" " - -	- -	15814
			159
	Colford, Gloucester		159
	Swansea, Glanorgan		166
	Maidstone, Kent -		169
	Swansea		168
	" - -		11.8
	,. - -	-	170
	" - -	- -	170

1666c. In the year 1858, the present elitor contributed to the Builder Jmrnal (pp. 632-3) a li-t of the Building Stones nsed externally in and near the Dretropolis, with the nam's and dates of ervetion of the buildings in which they had been usei. This lint cannot be here inserted, but the following are anong the stones named:-Anston, Aubigny, Bath, Bramley Falt, Broomhill, Cadeby, Caen, Craigleith, Godstone, Great Barrington, Harehill, Kentish rag, York shire stone, Ketton. D'ortlind Prudholme or Prudham, Reigate, Roche Abbey. Swamare or Purbeck, and Whitby (Egton Quarries) stone:, hesides Granite, and Flint. The paper by Li. J. Tarver, on The Architecture of Lonaon Strets, read May 10, 1887, at the Society of Arts, is also applicable.

1666 d The North Anston stone of Yorkhiire, not mentioned in the preceding Report, belongs to the magnesian limestone formation, and is of a yellowish brown eolour. Asixamples of its use we point to the Museme of Practical Geology in Jermyn Street, I'all Mall, 111 the feçiades of which the e is sarcely a bad stone to be seen. 'I his well conceived strictare was erected from the design of James Pennethorne during the years 1837 to 1848. At the New Llall and Library, Lincoln's Lan, designed $1843-45$ by P. Hardwick, R.A, this stone is in a lamentable state of deeay, occasioned (as is reported in the discussion o. 1 G. R. Burnell's paper, Un Building Stones, Sr., read at the Society of Arts in 1860), by the use of two partieular beds, the blocks of whiel were in a state of decay be ore they le.t the quarry, and supposed to have been selected by the builder as yielding him the best profit. The laboar upon Anston stone is intermediate between Forkshire and Portland stones; it ean be obtained of any reguired dimensions. 'The office of the Amicable Life Assuranee Company, in Fleet Street, was erected 1843, with the Mansfield Woodhouse or Bolsover stone, in the façade of which there is scareely any trace of decay.

1666e. From the Maasfield quarries are now sent up the red Mansficid stone, the white Mansfield stone, and the yellow magnesian or Bolsover limestone 'The former is much introdueed for colonnettes, short shafts, and bands in csloured coursed ashlar work. Fior similar decorative work, the following stones have leen used (1865) at the new offices of the Crown Assurance Company in Fleet Strect; namely, I'ortland stone in the piers and caps; Forest of Dean, red Maasfitld, and Blue Waswick, in other portions of the front; and Sicilian marble over the arehes.

1666 f . In consequenee of the reintroduction of I'ortland st one of late years, we would refer, in addition to what has been stat on on 467 , as to the quarries of Portland stone, to the article Litholugy, written hy the late C. II. Smith, and published in the Tranactioms of the Institute of British Architeets, 1842. Also to a report, published in the Builder of 1863 , p. 859, by F. A. Abel, being the result of his examination into the comparative qualities and finess for building purposes, of samples of stone from different quarries, and made under the direction of the Inspector General of Fortifications.

1066 g . These results "show that all the superior descriptions of 'whit bed' stone combine strength and compactness in a eonsiderably higher degree than the varieties of - hase-bed' stone. Some kinds of the 'whit-bed 'stone, however (i.e. those from the New Maggot and Inmosthay quarries), thongh ranking with the best as regards strength, exlibit a greater degree of porosty. Again, othir • whit-bed' stones (from Old Maggot, Wayeroft, and lndependent quarries) exhibit but little superiority, in point either of strength or compactness, over the generality of the 'base-bed' stones, and are, indeed, inferior to the best "base-bed' variet!."

1666h. "The 'base-hed' stones are, undoulitedly, more generally uniform in structure than those of the 'whit-bed; this leing mainly due to the comparative freedon of the former from distinct petrifactions. Thongh such petrifaetions were shown, by the results: of experiments, to impart, in many instances, great additional strength to the stone, they ficquently give rise by their existence to cavities sometimes of eonsiderable size, which not only serve to weaken those particular portions of the stone, but may also, if they exist in proximity to exposed surfaces of a block of stone, promo'e its partial disintegration by the action of frost. Greater care is, therefore, unquestionably required in the selection of "whit-Led' stone than need be employed in the ease of all the better varicties of "bastbed 'stone." 'the results of my experiments lead me to the following conclusions regar ding the comparative merits of the various deseriptions of Portland stone in question, for building purposes:-
"For External work, in the order of their merit:-I. Stone from War Deparinent quarry, Vern Hill; and whit bed'stone, Aduiralty quarry.
11. 'Whit.bed' stone, New Maggot quarry; 'base bed' stone, Admiralty quarry (this may be eonsidered quite equal in quality to 'whit-bed' stone); a.id 'whit-bed' stone, Inmosthay quarry (particularly adapted from its texture and uniformity for ornamental work), 111. 'Whit-bed'stone, Old Maggot quarry : a marked L1; and b marked IT and IE. 'The 'reach' stone, from War Department quarry, is an invalinable stone for exteral work in localities where any eonsiderable strength and power of resisting mechanical wear urr
equired, as in connection with those portions of work which may hecome exposed to the witiaual abrasive action of water. 'The rough 'whit-bed' stone from Admiralty quary, is lso a highly raluable stone for woik of a simitar kind, where great strength is requred, and articularly where the numerous irregularities in the 'roach' stone may be oljectionalilu.
For Internal work. the following rank highest, on account of uniformity and comparatire trength :-'lase-bed' stone, Old Miaggot quarry, IT; 'whit-led' stone, Iudependent Harry; 'bise-lued' stone, Waycruft quary; and 'lase-bed' stme, New Maggot 'urry. The fullowing are inferior to those just named, both in texture and uniformity:-Whit-ied' stone, Waycroft quarry; 'base-bed' stone, Olil Maggot quariy, IE ; and basp-led'stone, Innozthay quarry. The 'base-bed' stone, from Old Maggot quarry, narked LI, and that from independent quarry, are of low quality, as compared with the emainder ; and no reliance can be placed on the durabilty of the 'roach' stone from "dependent quarl y, judging from the specimens reeeired."
166fi. Hopton Wood slone is obtainel from quari ies situat ed near Middleton and Wirkscorth, in Derlyshire, in the mountain limestone districts of that part of the country. An maly sis of it gives:-lime $5 \dot{5} \cdot 09$, magnesia $\cdot 17$, carbonie arad $4 \cdot 30$, water $\cdot 16$, organie atter $\cdot 0 \overline{0}$, siliceous matter insoluble in acids $\cdot 15$, oxide of iron $\cdot 10$. alumina a trace, and ilca soluble in acids a minute trace $=10002$. It is well adapted for paring purposex, wing to the eloseness and evenupss of the grain; these properties give this stoue its rimeipal recummendation; its durability does not depend, apparently, upen any necessity ir placing it on its quarry bed. The late Mr. C. H. Smih has stated in the Builder, 864, p. 912 , that " these txtensive quarries have been worked from time inmemoritl ; the saterial is decidedly marble, for it is fine gramed, cumpact in texture, and quits hard nough to take a brilliant polish. The colour is a pale brownish white, cettanly as white ; Sicilian marble, which approaches to a buish grey. It is much heav er than Fortland oue, but lighter than Carrara marble. Blocks of very large dimensions may be obtained ee from serious defects; and as it is an aqueons formation, hard, and well ervstallised, lere is no doubt of it standing weather extremely well. Both material and workmanship - less than those of Sicilian marble. A quantity of it was laid down abont the year 3ist, for foot-pavements, elose to the Parliament Houses in Old Palace-yard, and part Abingdun Street; and, though in constant use, no symptoms of decay, or of the surce wearing sway, are perceptible."
1066j. Buth stone (noticed p. 460) is an oolite, obtained from several quarries in the :ighbourhood of the city of Bath, in Someretshire. Its colour, a light cream, is more reeable than the cold tone of Purtland stone; its texture is sinilar, but als it is softer d more abvorbent, precautions nust be olserved in the manner of using it, and to rent its rapd decay. It may be sawn dry. Much drpends on the bedding of the one in the works. The Consham Down stone is usually free from the bans and vents dirlt are found in the Combe Down stone; it is a sound stone, blocks being obtained of y movalle dimensions; the leeds vary from 1 foot to 4 feet in thickncss. It is finer in canre and more regular in quality thati any orher description of Bath stone, and is welt apted lnoth fir external and internal purposss, exeept plinths. Below the beds of good ne are two bels of a harder quality. called Corn Grit, which cannot well be used fur y purpxise on whieh labour is required. It does well for steps and landings. One of se beds runs 2 fett 9 inches deep; the other alonit 4 feet 6 incles. The blueks erigs 24 fret cube. Combe Down slone, when well selected, is considered to te an excelIt weather sonve, fer une in plimhs, copings, and other work; but the hlocks hase bars 1 velus, which are defects 'The leds vary from 10 inches to 4 feet 6 inches in thick\& 8 , un! are ncensionally found up to 6 feet; in length from 5 to 6 feet; wi han rage size of block ot about 1 ij fect cule. Box Gramed stone is enarse in texture, hut boul in quatily, and "got weallor stene: harder than Combe Down stone, and with s vents. Thie leels vary from 1 te 4 feet in thickness, with blocks of :averare size of ruhbic fept. Farleigh Down rome is at stme distance. 't he uppor or white leds vary Whickiese Irom 10 incher to 2 fee i inches. The lower or reddish bects are coarser in 1 ture, but are suppemed to stand he weather better than the upper beds, which are more *able for internal parposes. The average size of hork is if feer.
6666k: Tho Monk's Park quarry stone is stated to beduralle and reliable, with uniformity 'colour nod eremusss of texture. Bath stone, on the whole, is ono of the most fragile resstones, for when first quaried it is as solt as cheese, mal although it hariens in oppon ar to mome extent, yat it soon disintegrates, as it consists onlv of minute
 "p provion of bruken shells. It ins licen mid that for ontside wonk the stone irom alrhill Jown cimery mad the weather bed of the Combe Down gnarry ars the only monoe that will really stum the weather. This material has been weil describend hy (urn in the Builder for the yrure 184.5 and 1880, and the detailed mote of working it

in 1864, a 3 -inch cule of Box Bath stone crushed with 8 tons 7 cwts 0 qr .16 lks , while the same of Corsham Bath stone crushed with 11 tons 11 cwts 1 qr .20 lbs . A $1 \frac{1}{2}$.inch cube Box Ground crushed with 1 ton 3 cwts. 3 qrs. 12 lbs., and anot her of Corsham with 1 ton 10 cwts .2 qrs, 4 lls . In some other experiments Box Ground stone wals first fractured at an averdge of 46 tons 5 cwts .2 qrs. 22 lbs . and crushed at 54 tans; while Corsham was fractured at 73 tons 14 cwts. 1 qr. 4 lbs., and crushed at 83 tons 2 cwts. 3 qrs. 12 lbs .

1666l. The Bath Baynton quarries supplied the stone for Queen Square, at Bath; it is tho cuarsest, hardert, and most expensive and most durable variety. The Combe Doun stone from the Bath Lodge Hill quarries is softer and finer grained, is said to have been used between 1808 and 1822 in the restoration of King Henry VII.'s chapel at Westminster; while Farleigh Down stone from the Monckton Farleigh quarries is said to hare been used from 1821 to 1840 on the north side of Westminster Abbey, since renewed.

1666m. Messrs. Pictor and Nons, Messrs. Randell, Saunders \& Co., Mr. Isaac Sumsion, the Corsham Batli Stone Co., Messrs. R. J. Mar-h \& Co., Mr. S. R. Noble, and Messrs, Stones Brothers, have amalgamated the several Bath stone businesses into one, under the style of "The Bath S'one Firms, Limited," with the office at Bath. A rast quantity of Bath stone of the best quality is thrown away at the quarries because the pieces are not of sufficient size to make useful blocks. These would yield a large and reliable supply for ashlar, quoins, \&c., to serve as inside linings to walls with advantage, as noncracking and non-peeling, absence of water trickling down the wall, uniform and mellow tiut, and far better appearance than cement or plaster.

1666m. Ancaster stone from quarries near Grantham has been used locally for upwards of fire hundred years. It is an oolite (p.459), a good-looking stone, easily worked, and, though soft when first quarried, becomes hard with exposure, and is very durable. Wollaton Hali in Nottinghamshire, and most of the ancient churches in Lincolnshire, are built of this stone.

1666o. Hollington stone, a sandstone from near A shbourne, in Staffurdshire (p. 455), or Rocester, near Üttoseter. The three qualities are-fine, medium, and very coarse.

1666p. Little Casterton stone, an oolite, from quarries near Stanford, Lincolnshire, is now used in lieu of the Barnack stone formerly obtained from quarries in Northamptonshire. long since abandoned. It is said to be of a compact character, to stand all weather, and ts have been used in waterworks. It works freely with the s $\boldsymbol{\lambda} \boldsymbol{w}$. It is about 4 feet thicł in the bed, and can be raised in blocks of large size; in ashlar work it is not essential that it should be placed on its quarry bed. The colour is of a lightish brown, resembling Ketton and Bath stones.

1666q. Tisbury, in Wiltshire. The quarry gives a calciferous sandstone, close and fin grained, of a light greenish-brown colour; a good weather stone when placed on its bed easily worked with the saw, or with sand and water, when in block, and carries a fin arris. The Chilmark and the Wardour quarries also give stones of the same qualities Their chemical composition, specific gravity, and resistance to strains, are the sime : those of Portland stone, in which they are placed geologically, but they have more grit The Chilmart stone, a siliciferous linestone of the same colour, was used for Salisbur, Cathedral, 1220-58 (p. 467). It is very non-absorbent, and weighs 153 lbs .7 oz. Thes. stones have been used from 1864 in the restorations at Westminster Abbey. The hous at Tisbury, built generally of Tisbury stone, are in very good condition, the whole corere with lichens. The Chilmark stone does not absorb one thirty-sixth of its bulk, while specimen of Cadeby stone absorbed one quarter. The latter absorbed 519.8 gruins the former only 57.5 grains. This table shews its chemical analysis:

Name of Stone	Mineral designation	Siiica	$\left\|\begin{array}{c} \text { Carbonate } \\ \text { of } \\ \text { Lime } \end{array}\right\|$	$\begin{gathered} \text { Carbonate } \\ \text { of } \\ \text { Magnesia } \end{gathered}$	$\begin{aligned} & \text { Iron } \\ & \text { Alumina } \end{aligned}$	$\begin{aligned} & \text { Water } \\ & \text { and } \\ & \text { Loss } \end{aligned}$
Chilmark :-	Limestone Siliciferous	$10 \cdot 4$	79.0	$3 \cdot 7$	$2 \cdot 0$	4.2
Purtland -	Oolite - -	$1 \cdot 20$	$95 \cdot 16$	120	$0 \cdot 50$	1.94
Bath Box	Oolite - -	-	9452	$2 \cdot 50$	$1 \cdot 20$	1.78
Mansfield	Sandstone -	$49 \cdot 4$	26.5	16.1	$3 \cdot 2$	48
Park Nook	Maguesian Limestone	-	$55 \cdot 7$	$41 \cdot 6$	$0 \cdot 4$	$2 \cdot 3$

1666 . The "trough" or "hard" bed is of a close, even texture, of yellowish-brow colour, weighing 143 lbs , to the foot cube in its ordinary state. It will bear a tensi strain of 500 lbs . per square inch, and a crushing weight of 196 tons per foot supe Tho a verage bed is 3 fect, and it can be obtained of any reasonable length and breadth; tl random rulble blocks average 16 cubic feet. The "Scott" or " Brown" bed is of a warmi colour, weighs 135 lbs . per foot cube, bears a tensile strain of 206 lhs . per square incl and a crushing weight of 104 tons per foot super, The average thickness of the be is 3 feet 6 inches to 4 feet. The random rubble blocks average 16 cubic feet. This be is principally used for ashlar, mouldings, carving, balustrades, plinths, cornices, copiuf
₹c. The "General bed " of the Garden quarry supplies a stone of a rich yellow tint and ine texture, applicable to the most elaborito designs, equal to Caen, and superinr to it n colour and durability. It will bear a tensile strain of 355 lhs . to the square inch, and 1 crushing weight of 100 tons per foot super. Thickness of bed from 4 to 5 feet.
1666s. Ketton stone is an oolite, from quarries in Rutlandshire (p. 460). It is very -imilar to Barnack stone in colour, being a warm cream tint, but is harder and more lifficult to work; from some canse at the quarry it is more expensive. It bears a much rreater crushing weight.
1666t. Robin Hood, Park Spring, Potter Newton, Bretton, and Hare Hill are among tho Yorkshire stones now much used in sawn landings and slabs, and steps. Potter Newton and Hare Hill in blecks, wirh Portland and Bramley Fall.

1666u. Endon stone, from near Macclesfield, is put forward as the best of its class, Ind as haring been quarried for nearly one hundred years. It is of a hard and fine :exture, almost non-absorbent, bright in colour, and of great durability; it is sawn out of the solid rock, not being a laminated flag rock. It is used for bases, steps, hearths, landings, chresholds, \&c., wall courses, tombs, kerbs, setts and channel stone, and other purposes.
16660. Corncockle quarry, one of the oldest of the new red sandstone quarries in the south-west of Scotland, is situated about three miles from Nethercleugh station, on the Caledonian railway. It is obtained in any sized blecks up to 10 tons. The colour is a ight red, and very uniform; slight black streaks occur here and there, which are a form It mica, but they disappear entirely after twelre to fourteen months' exposure. The beds ure from 1 to 3 feet thick, with an occas onal one up to 4 feet 6 inches. The stone is onsidered lncally to be the most durable of all the Dumfries red sandstones, and to keep is colour best. It contains a rery high percentage of silica, and stands frost well, as also he sea air, and is a free-working although a strong stone. Its crushing strain is : 38 tons per square inch. applied in a block of $1 \frac{1}{2}$ inch cube.
1666w. Prudham quarry is situated near the Fourstones station, on the Newcastle and hirlisle railway. The stone is of a light creamy-brown colour, very strong and durable, nd the crushing strain is 2.834 tons per square inch. It is well knswn in the north of ingland and south of scotland. It was used in the central station, post-office, and ther Luildings at Neweastle; the town-hall and corn-market at Hexham, and in other wns : also in London, at the Army and Navy Hotel ; St. James's Residential Cbambers, Puke Street, Piccadilly; and at Winchester House, Old Broad Street (1886).
1666x. Scotgate Ash'stone, al o called Pateley Bridge stone, near Leeds, is a sandstone f the millstone grit series. The quarries afford every class of Yorkshire stone, so that is stated a building of any size can be supplied entire, without going to several quarries , r the stones required. Landings up to 130 ieet superficia', suitable for hard wear; one "1876), being 17 feet 6 inches long by 7 feet wide, was supplied for a floor and ceiling in London bank. The crushing weight is over 700 tons per super. foot. It resists the rongestacids. The stone is similar to Elland Edge, Idle Moor, Park Spring, and hers. It was used at Fountains Abbey.
1666y. The Spinkwell and Cliff Wood quarries are situatod at Bradford, and are ow considercd to le among the best of the Yorkshire quarries. These stones have been rgoly used in London and throughout the kingdom, as at the town-halls at Manchester 1868, at Bradfurd in 1870, at Wakffield, 1877 , \&c. The crushing weight is $7,6+7 \mathrm{Hs}$. r cubic inch, as tested by Sir W. Faillairn; Aberdeen granite being $7,770 \mathrm{lbs}$; prlind stone being on bed $2,600 \mathrm{lbs}$. It contains 88.5 per cent. of pure silcx.
1666z There are several red-coloured stoncs now in use in London and elsewisere. ie lied Corsthill stone is obtained from quarries near Annan. Dumfriesshire. It is a te grained micaccous sandstone from the lower new red sandstone. It is of a rich rid Lonr, even texture, and of grat durability : some beds are a bright pink. Its crnshing ight is 509 tons; that of Bramley Fall 265 tons. It was used for tho Hand-in-Hand surance Offce in 1873. The red Inemfries stone differs from it. The edifices in that wn are built of shme from Craig, which is of moderate hardness and duralility; duhoo from Locharbriggs. Shauk stone is from quarties in Cumberland. It is red in (sur and a fairly good sone, very similur in quality ard texture to red Corsolill, but nss in wery much maller sized bloeks, aud in much thinuer lifts. All up the valley, ro is a viry largo quantity of stone covered with a groad depth of debris, which is the of a coarswr texture. It is loaded at Cwithwaito station, on tho Maryport and rlimle line. It las becre used at the stores in the Haymarket. It is supposed to dry (int) not whitin on tho surface an do some red stones. The red Mansfich stone (prir. ibr.) has blecks which vary in beds from 1 to 7 feet thick, und lins landings of very co chmonsion:s. The rlup bed, selected quality, is cestecmed for duratility, fineness of in, and aplendidl cooour.
geffra. Tho Mincru stone, from Berwig quarries, Ninora, nenr Weoxhan. They situred at mome distance from the onterop of the Wrexham coal field, closo adjoining enrbeniferoms limestono. The htone diflers in rharacter very materially from tho

durable. It nearly resembles the Darley Dale stonc in colour and appearanse, and is considered by many judges superior in every respect.

Analysis of this freestone, by H. K. Bamber, F.C.S. :

Silica -	-	-	8505	Magncsia	-	-	075
Alumina	-	-	-	8.5			
Oxide of iron	-	-	2.30	Alkali	Water and organic matter	Trace	
Lime -	22						

The beds run fron 1 to 5 feet in thickness, and blocks of any size can bo supplied. I he stone costs considerably less to work than the best of the Yorkshire stones, It is nuch less absorbent than any other stone, and is not affected by atmospheric changes, by damp, smoke, or chemical gases. It is very strong, and capable of sustaining a greater crushing strain than most other stones. It was used largely at the Municipal Offices at Liverpool, by Mr. T. Il. Wyatt, as well as at Owens College at Manchester, hy Mr. Alfred Waterhouse, R.A.; also the Nati nal Safe Deposit Cumpany's premises in Lundon, by Mr. James Whichcord, who in 1876 wrote: "After seeing and testing various samp!es of sandstones, I decided upon adopting the Minera stone for its fire-resisting qualities; a block of it about 6 ins. culse was put into the middle of a furnace, where it remained for about an hour and a half. It was then taken out quite perfect, and on being plunged into cold water it neither cracked nor calcined in the least degree. Its cost in London was about the same as Portland stone, and it was quite as hard to work. The coarseness of the grain rendered it unsuited fur small mouldings or delicate carring, but as solidity and boldness were required in this particular derign, no difficulty was fornd in adapting the detal to this condition," The welght is about 138 to 143 lbs . per cubic foot. The Moss and Cefn quarries afford a softer rariety of the same stone

1666bb. The Mountain lemestone is highly absorbent, but, according to Mr. E. Clark's experiments for the Britannia Bridge, it is of the extreme density of $13 \frac{1}{2}$ cubic feet to the ton, as great as the average density of granite. It resisted a crushing wright of $7,576 \mathrm{lbs}$. per super. inch, whilst gramite resists about $8,000 \mathrm{lbs}$. As linceis, it has been used in stoncs 24 feet long, 10 feet wide, and 4 feet thick, which must have been jerfectly homogeneous in character or they would not have borne the shocks they were expused to in the workhops, or havo carried the weight that was brought upon them. This stone yields with great ease to the plate saw, as it is composid of a pure carbonate of lime, is sub-crystalline, and without planes of bedding ; granite cannot be sawn by the ordinary methods. There are several loealities where the mountain limestune occurs in great abundance, and where the experience of centuries as to its powers of resistance to the atmosphere, or to tidal action, can be brought forward. It is met with in great masses in the hills that constitute the lower counties of England and Scotland; it forms the range of the Dcrby hills, the Mendip, the hills round Plymouth, those of the Grent Orme's Head, the mainland of Anglesea, the outcrop of the carbon'ferous ser:es uf Ruabon, and many oth-r places in England. In Ircland this formation is largely worked, as at the Sheephouse quarries, Drogheda, by A. and N. Hammond. In Belgiun it is universally used in all cases where it is desired to unite strength with durability, as in docks, river and canal works. The price of latour upon this material must be at least half as much as that on granite. The late Mr. Burnell, in Practical Mcchanies' Joumal, 1865, nctices that it was excluded from the Thames Embankment works, becuuse it was considered objectionable on account of its being worked by the saw with sand; because it was feared that the planes of ledding would be distinctly marked, and would easily yield under the influence of the weather; and on account of the action of the acids present in Thames water.
$1666 c c$. We do not purpose to enter into a description of quarrying stone; but would refer to the useful tre tise by Burgoync, published among Weate's Elementary Treatises.
$16+6 d d$. The Kentish rigstoue is a limestone witly a very small proportion of eartly matters, frequently suberystall ne, but ordmarily of a eonfused texture. When well chisen it is very hard and dense, and the labour upoo it so expensive that it is very rarely used for anything but rubble masonry in districts remote from the quarries. The custom has been, therefore, to execute all the moulded or carved portions of the buildings in Caen or Jath stones, and even to carry up the quoins and jambs in thoso materials, whilst the lutervening spaces, or the wall, are filled in with the rag. The colour varies from a lightish green to a deep blue, and although the culour of tbe two materials is at first very different, a few years' exposure causes them to harmonise in tint.

1666ee. The district in which ringstone is quarried extends about thirty miles east and west through the central part of Kent, and averages from four to ten miles in breadth, comprising the towns of Sevenoaks. Maidstono, Leüam, \&c. Reigate or firestone, and Tunbridge sandstone, are alsc afforded by the same formation, greensand. The ragstone is found in beds varying from six inches to three feet in thickness, alternated with fine sund known as Hassock, which in some beds becomes so consolidated as to form an necasiona! useful auxiliary to tho ragstome, in buldings. The quality of the rag differs rey yratly,
uccording to the place in which it is quarried ; some quarries only yielding stone of a lard linty nature, almost unfit for building, white the stone obtained from others is almost as ree working as Portland stone. The finest qualities are at present obtained from quarries ituated at Boughton, near Maidstnne, where they have been worked for several centuries. 1 section of them is given by J. Whicheord, in his pamphlet on the sulject, published n 1816; wherein also are given the local names of the various beds.
1666ff. Flint work. This material, as used for a deseription of rubble work, was formerly nuch employed in the counties of Cambridge, N rfolk, Suffolk, Sussex, and Kenr, where the chalk formation abounds, and is stll used for the parpose in such localities. Flint is he name accorded to the nearly pure siliceous earth, which ly the action of fire becomes pa jue and white, and is harder than quartz, which it scratehes. The colour is usially yrey, of various shades, but is sometimes black, brown, red, and even yellow. Flint is ragile, with a perfect and large conchoidal fracture, and, being rarely laminated, it is roken with equal facility in almost every direction; the fragments are sharp. In the halk formation it occurs in regular beds, consisting either of nodules or of flat tabular nasses. At Brandon, in Suffolk, one of the places where flint forms an article of cumnerce, it is obtained from pits sunk in the chalk, which is within 6 feet of the surface. The first stratum is found in the clay overlying the chalk; when this has been remored, a haft is sunk 6 feet in depth; if no thist is there found, a tunnel is driven for three feot 1orizontally, and another shaft is sunk; and so on alteruately with tunnel and shaft till a lepth of 40 feet is reached. The flint is found in floors about 8 feet below each other, Ind is obtained by tunnels being driven, sometimes a furlong in length, undre each floor, ond the flint broken down by crowbars. The small tumnels in the shaft form tables, upon which men stand and hand up the fiint to each other from below to the surface; no mabinery or tackling is used.
1666gg. Flint is split upon the workman's knee, by sharp blows from a hammer with an blate face, and squared upon a steel stake let into a wood block, with a blunt axe formed y passing a handle through an old flat file about a foot long, the cutting edge being $\frac{3}{4}$ inches wide by $\frac{1}{12}$ of an inch thick. (See Specification).

French Building Stones.

1666 hk . Of these stones imported into the London market, a fcw only will be menmed. Aubigay stone is stated to be obtained from quarries situated at St. Pierro anivet, a short distance from Falaise, in Normandy. It is probably of the same uature s Caten stune, namely, oolitic, but much more crystallins in its structure, with semanspartnt erystals, showing no appearance of ova; very fine grained; as hard or harder 2an Anston stone; nearly as heary as granite; and able to support a greater crushng eight than Caen stone; when worked ic requires to be sawn wet with sand. There are 40 workable beds, one areraging 24 inches, the other 15 inches, in thickness. (4. R. arnell (in his renarks on the works at Bayoux Cathedral, read at the Institute of Britisli rehitects, 1861, p 257) stated that be " was convinced the use of Aubigny stone in London ould be attended with danger. M. Flachat chose this stone because it yielded more tisfactory results under the trials to which he exposed the various local stones, so far ; their resistances to crushing weights were concerned; but his assistants expressly state, their published accounts of the works at Bayeux, that the Aubigny stone yiclded easily oder the action of frost, if used exteriorly, as may be seen in the medireval buildings in slaise." Perlaps the only building crected with this stone in London is that part of - old Schomberg flouse, Nos. 81 and 82 Pall Mall, which was rebuilt in 180.1.

1666ii. Cllen stone is obtained from the great oolntic formation in Normandy, and has en importel into Eingland trum a very carly period; but it first appoars to be named in cumenis after the year 1300. There was a cessation of its use affer 1448, when Norandy was lost to this country; and it is not until the commencement of the present noury thet its employment licro was resumed. This stone is now generally obtained om fuarries situated at Allemane, a small vilige on the right bank of the Orne at the les of Caten, or from those of St. Germain de Blancherle, commonly catled La Maladfie, the commune inmediatcly arjoining that city, on the teft bank.
1666kk. The Chen stone of commerce is of a tale ycllow colour and of a loose open in which when freshly quarried soils the fingers like elailk, and is very friable. In wy phaces it appears to have lost its oolitic chara-ter ; and in others it is larder and more 7pact, leing entirely formed of a species of lamellous spath, without any traco of oolites; olnter apparance is, however, principally to bo observed in the beds which aro workel
 These tavi latter quarries nupar to have been opened for any great length of time, the ne nand in the old coly faving been chiefly got on ita site; and it is remarkable that the tions of the public haildings which required stones of larger dimensions than could be nined from the upper bela of the oolitic formation immediately nound tho town were ruted in the Cremilly, Ramville, or Limame Himri stomes, never in the stone obtuined on the leels mow workel exdlusively for buth the l'renelt and the English markets, and
which beds have leen rendered arailable with the advance of mechanical science. The upper beds, called the bancs de bittes, which yielded the stone in olden times, is generally speaking of a harder character, of a finer grain, and presenting a more crystalline appearance than that obtained from the lower beds; but ev n in these upper beds care is required in the selection, for the texture is far from uniform; while the small size of the stones is too oten considered an objection to it, as the eight layers, between each of which occurs a bed of flint 2 inches in thickness, are of variable depth (between 11 inches and 26 inches), being about 18 inches on the arerage.

1666ll. The lower beds comprise the banc de chambranle, 16 inches thick; the bane de deux pieds un quart, about 30 inches English thick, yielding a gcod stone, disfigured unfortunately by the fossils it contains; the banc rouge, 22 inches thick, of very bad quality and stained by ochreous iron ore, besides being traversed by numerus vertical rents; then the gros bane, 40 inches thick, a very good stone, but likewise disfigured by fossils; the banc de fond, usually from 18 inches to 30 inches thick, of a closer and finer grain than the last named; and then the banc de 81 centimetres, of very inferior quality, worked only for the immediate neighbourhood.

1666 mm . Experience prores that Caen stone will not resist the dissolving power of water charged with carbonic acid gas; and as the rain water of our large towns contains a considerable quantity of that gas, it is not expedient to employ this stone in any situation where water is likely to lodge, or even to be taken up by c pillary action, unless, indeed, the projecting parts be protected by metal. In upright walling above the plinths, and in the sheltered portions of coruices, it can be employed when judiciously selected ; and in interual work, with safety and economy. The bedding of the stone should be observed. Fron the state of some buildings at Hâvre, it is considered that sea air is particularly destructive to this stone; and it is generally believed that the stone from La Maladrerie is inferior to that from Allemagne. In Caen itself, the plinths or basements of houses are executed in granite, or in Rancille, Cherence, or Creuilly stones, which are practically non-absorbent; and, moreover, the Creuilly stone is used in the best buildings for the exposed portions of the elevation. although, of course, "Caen stone" is fuund at the very gates of the torn.

1666ma. More lengthened notices will be found in the accounts given in the Builder, vols. ri. and vri., entering into the qualities of the stone, from personal surveys of the quarrics. When freshly quarried, this stone can be cut with the toothed saw, and carved with ordinary chisels, even more easily than Bath stone.

1666oo. The new façade of Buckingham Palace, erected in 1846-7, is perhaps the most remarkable failure of Caen stone. Mr. H. 'T. Hope's house, in Piccadilly, built 1849-000, has been considered one of the best specimens of its employment in London, as it has stood well. The projections were protected by lead or by slates. The crushing weight of Caen stone is about 2000 lbs . per inch superficial.
$1666 p p$. The Charente stonc is a magnesian limestono of good quality, has been nsed in France from time immemorial almost exclusively, not only in the departments which produce it, but also on the sea coast, for Gorernment works, as lighthouses, harbums, fortifications, bridges, docks, \&c.; for churches, and other public and private edifices; the château of the Emperor Napoleon III. at Biarritz, and other villas. Blocks of about 8 or 9 cubic feet to about 33 cubic feet are always in stock. The quarries are Crazannes, Montarnenf, St. Sarinien, and Ste. Merue, and the arerage resistance for the square centimètre (about - 155 square inch English measure) gave about 157 lbs ., 152 lbs , 148 lbs ., aud 130 lbs . avoirdupois respectively.
$1666 q q$. Table of the Weights per Cubic Foot Avoirdupois or some French Stones. Caen, Franc lane bed - $116 \mathrm{lbs} 2 \mathrm{oz} . \mid$ Caen, Piere de trente pouces 128 lbs 5 oz . " Banc de quatre pieds " Gros Banc - - 122 " $0 \frac{1}{2}$ "
$"$ Pios Bache -123 " $0_{2}^{2} "$
" Pierre franche- - 123,3 ,

DECAY OF STONE.

1667. In the paragraphs 1640 to 1648 have already been quoted some of the causes of decay and decomposition in stones, as stated in the Report of the Commissioners, and after the lapse of nearly thirty years since its publication but few additional facts have been obtained on the subject. One of the most commendable essays relating to it is that by G. R. Burnell, read at the Society of Arts, in March, 1860, which is likewise useful for the discussion thereon by some of the members learned in chemistry. We quote a few of the paragraphs for further elucidating some important points.

1667a. Atmospheric moisture, when absorbedinto building stones, acts upon them quite as much through the changes in its own rolume. When the stone is placed in such a manner as that water can accumulate in any perceptible quantities between its various layers, and the position of those layers be such that the expansion of the water in freezing
mot take place freely, the respective layers containing the water will be violently dewhed from one another. This is a more important consideration in the case of the beddrng f stones, and it is unfortunate that the system of competition throws so great a temptation 1 the way of the practical boilder as to render it a mere matter of chance whether this onstructive law be observed or not, unless a costly system of supervision be organised, and ius the precautions often taken by the stone merchant to indicate the upper bed of the raterial he delivers, are defeated.
1667b. The chemical reactions which take place in building stones are mainly those rising from the oxygenation, or the hydration of the various ingredients of which those ones are composed. These reactions are independent of those resulting, in the interior of ie country, from the agents directly presented by atmospheric moisture in the form of rrbonic acid gas, sulphur, and anmonia; or upon the sea-shore, in the form of hydrobloric acid, or of comunon salt itself; in minute particles. Thus, if the oxide of iron be reent in any notable proportions, it is likely to underga changes of a nature to disturh oe stability of the compoond, and even the crystalline sulphates of lime are exposed to hemical decomposition, in consequence of the liberation of the sulphuric acid gas they ontain. The other mineral salts, such as the silicates and the sulphates of iron, so oftein ret with in building stones, are at times susceptible of very injurious decomposition; and ie soda, potassa, or the organic matters the stones may contain, frequently give rise to be formation of new salts; mainly under the action of atmospheric moisture, it is true, ut also under the influence of the partial decompositions which take place around them. t is to be observed, however, tbat the danger to building stones from this peculiar class of Huences, is very small and very slow in its action, compared with the dangers arising om the mechanical disinte ration produced hy atmospheric causes: and that, with the xceptions of the actions of free carbonic acid upon the felspar of gianites, the changes of ate produced in limestones by the same agent. and the modifacations of the abundant lts of iron in some peculiar stones, there is little practical neeessity for dwelling upon is interesting but obscure branch of applied chemistry.
1667c. The actions capable of affecting the stability of the composition of ordinary iilding stones, by reason of the new forms of matter they supurinduce, may principally considered to be those resulting from the absorption of the gases of the atmospbere, and pecially the process known by the name of saltpetring, or mone correctly, of nitrification. his process displays itself in the formation of minute crystals, efflorescing from the terior to the exterior of the stone, and it leads to the destruction of the exposed surfaces the latter, through the gradual removal of the minute particles, in consequence of the sintegration produced by the expansive action of the crystals in process of formation.
$1667 d$. It is supposed that the organic matter diffused throngh nearly all stratificd posits gives rise to the formation of certain nitrates, such as the nitrate of lime and trate of soda, under the influences of damp, of air, and of light of certain descriptions for nitrification certainly takes place most abundantly near damp ground, rising in a ill pari passu with the range of the capillary attractions of its materials, and npon the rthern or shaded faces of the said walls. Not only does this nitrification throw off the nute and less adberent particles of the building materials themselves, whether they be of "e or brick, but it is also able to detach any protecting coat which may be put npon em, if the adhesion of that coat to the subjacent material should not be of a very encrtic nature. Let the adhesion, however, be ever so encrgetic, if once the action of nitritifion should have been established, it must run its course, and the amount of evil it is rable of producing will simply depend upon the quantity of organic matter originally thained in the materials. or susceptible of being absorbed by them from the atmosphere. 1 fi67e. Tlie secondary timestones which have not been affected by plutonic action, the my clays, some kinds of pit sand, sea sand, and some descriptions of natural cements, particnlarly exposed to the danger of nitrification in damp situations, rendering it in (!) to expect to be able to preserve any mural paintings, or ceen any sculpture of a icate claracter.
1 lifi7f. Practically, then, the great agent of destruction of building stones, in any of its 1 des of exhibition, is the damp, or the water supplied liy the atmosphere, directly or i irectly; the efforts of those who seek to prevent this destruction must be directed to cabating this primary sourec of evil. Fortunately the precantions to be observed for ts purpose are very simple, and they only require a little common sense on the part of t builders elarged with their application, to the materials at least, which have been lonst t ree the publie. The first and foremost rale is never to emplay a porous absorbent see in the ground. or in elevation; unless, in the former case, it be maintained constantly ; or, in the secoud case, the absorption of maisture from the gronnd he prevented by interpusition of some impermealile material. Porons stones should not be used for copings, puripets, window-sills, weather-beds af cornices, plinths, strings or other P 2s of a luildiug where water may lodge. Care must also be taken to bed sueh stomeg - 1 mortars which are not exposid to divelape in themselves, or are not likely to exate
in the stones, the efflorescence of any of the niteates of soda, potassa, or of lime. If porous stones be used, it will be found that decay will conmence, and be most apparent in the zone of alternate dryuess and humidity, or, as the workmen say, " between wind and water." The stonework about that part should therefore be executed in such a manner as to allow of its being easily replaced, if necessary; and in case the deeay exhibits towards the interior (as it will do when the exterior surface is covered with a coating impervious to the airy), care must be taken to isolate the deeorative plastering or wall linings from the surfaces which are likely to be covered by efforeseence.

Tho effects of wind on stone. Wind is both a destruying and a preserving agont. Its action as a destroyer of building stone consists in thowing dust and dirty particles against the truilding ; also into the cuttings, holes, and lines in exposed mouldings, filling them up, adding much to the disfiguration of ornamented work. A strong wind accompanied by rain, by blowing the rain hard against a building causes it to penetrate into the stono farther than it wuld otherwise do, and thus the chemieal action of the water and the tffects of frost on the stone are increased. The principal preservalive action of wind is in its drying out moisture from stone; and the acids, \&c., contained in the moisture lave, therefore, less time to act on it. The action of the sun has much to do with the preserration of stone by drying it. Stone exposed to very different degrees of heat on its diffirent faces is liable to crack from unequal expansion and contraction (Wray, on Stone). In the paper on The Stones of Egypt, read at the Royal Institute of British Architects, Nor. 24 1887, Mr. Mrindley referred to their decay. Mr W. Topley stated that, under ordinary temperatures, water got into the pores of the rock, carrying in earbonic acid, which attacked felspar, or whaterer the soluble constituents of the rock might be. Tho rock then brok down. In northern climates the water froze and the rocks' broke off. In a dry climate :. . the groat alterations of temperature acted so strongly in expanding and enntracting rocks that they broke off as rapidly through heat as with intense cold. During the night a cracking sound was often heard by travellers owing to the contraction of rock: which had been expandrd by the heat during the day. 'The effect of a fire on some exceedingly durable building stones is rery disastrous, and especially on those which were formed by heat.

1667g. Λ committee appointed by the First Commissioner of Public Works and Buildings, on the 23rd March. 1861, "to, inquire into the decay of the stone of the New Palace of Westminster and into tho best means of preserving the stono from further injury," reported on-I. The extent and position of the decay. II. The eauses to which it is attril)utable, taking inta consideration the composition of the stone, and the influence exerted upon it by moisture, and by the acids diffu*ed in the London atmosphere. III. The lest menns of preserving the stone from further injury. IV. The qualities of the stonest le reemmended for future use in public buildings to be erecied in London." This repor" was ordered to be printed 1st August, 1861. It is also given in Adcoek's Enginecro' Focket book fur 1862, p. 205-211.

PRESERVATION OF STONE.

1667 h. Even when all the best precautions, as above detailed, have been taken, it i . occasionally found necessary to protect the exposed suraces of the suft and absorbent, or hygromerrie, stones, with some eating whieh shall prevent their absorbing the injuriou atmosphere. This is done in various ways.

1667i. I. By Painting:-The objection to this process consists in the fact that, as thr oil eraporates, the stone becomes again exposed, and even the alsorbent powers of tiw stone itself contribure to this action; thus this costly palliative has to be often repeated to the destruction of any delicato moulded work.

1667\%. II. by the injection of olcaginous, fatty, or waxy matters:-These, it must in evident, can only act mechanically by closing the pores of the stone, and therefore, unles. the surfaets be protected from the extremes of heat and eold, the heterogeneous materiil: thus affeeted musr be acted upon in rery different manners. Experience bas confirme this theoretical inference, and it has been found in practico that the protecting conts 0° any of the materials alhoded to are gradually derached from the stone, and that the! require to be renewed quite as frequently as does oil painting itself.

1667 k . III. By washing the face with a solution able to convert the material into an in soluble non-absorbent sul,stance:-This is the prucess introdueed by M. Kühlmann, in whick the carbonates of lime are washed with a solution of an alkaline silicate, as silieate of sodat or potassa, or "water glass" as he ealled it, with a view to eonverting them into silicate" of lime through the elective affinities of the lime and the siliea. In some cases this systelm has succeeded, and very great hardness, very great resisting powers, have been commu-
ed to the stones operated upcn. But, unfortunately, the action of the silicic acid is a slow one, and when the surfaces washed in the manner deseribed are exposed to it is by no means rare to find the solution carried away. Another objection is, that 1 the alkaline silicate acts upon the stone, the soda and potassa generally used are ree, and in efflorescing they are likely to carry away the finer details of the sculpture; ie same time, as they form to some extent deliquescent salts upon the face of the stone, attract to it a dangerous amount of humidity. This process is only applicable to the crration of the stones in which the carbonates of lime predominate.
67l. IV. By filling in the pores of the stone with an insoluble material which should ually exclude water:-This may be said to have been effected by the process patented Ir. Ransome. The stone is first cleaned carefully from dust or other extraneous ers; then it is made to absorb as large a quantity as possible of the silicate of soda tassa. When this solution has dried into the stone, a second wash is applied, conIg of the chloride of calcium or of baryta. The silicate of soda and the chloride of am are most frequently employed ; and the effect of the respective applications is, a double decomposition takes place in the washes, giving rise to tho precipitation of ly crystallised silicate of lime or of baryta in the pores of the stone, and an efflonce of extremely soluble salts of the chlorides of soda or of potassa. The former in in the pores, the latter are speedily washed away by rain. As the rate of conion and exiansion of the silicate of lime is, as nearly as may be, the same as that of tone it is intended to protect, there is no danger of the precipitate being detached is cause. This process, in contradistinction to that of Kühlmann, is applicable to tones, sandstones, bricks, plasters, and cements. It has even been suggested that y be advantageously applied to chalk.
67 m . It must not be forgotten, however, that it is as important to prevent a from decaying as it is to afford a protection to it when that effect has commenced. y internal decay or any organic decomposition, so to speak, be once allowed to lish itself in a building stone, it will be impossible effectually to arrest its progress. escence, for instance, will continue, howerer effectually the exposed surface of the may he closed by a mechanical or a chemical deposit, and thus even some of the s of Mr. Ransome's process appear equirocal. The student should make himself or of the attempts lately made to discorer a universal remedy for protecting the es of rarious materials. The following inventions were deseribed by the late Sir te, at the Royal Institute of British Architects, Janury 1861 :-I. Bethell's patent, parhaps never applied to stone. II. Hutchinson's, 1847, which has been chiefly do the Calverley stone of Tunbridge. III. Daine's, 1854. IV. Szerelmey's, V. Newton's, 1841. And VI. Ransome's, 1856. We consider it needless to hera the inventions in detail. It is difficult to pronounce on their respective , but R-nnsome's perhaps promised the best results.
7n. Sylrester, in 1846, suggested the following very uscful and simple recipe for ting stone or brickwork from the absorption of water; it has been repeatedly and answers well in exposed situations, but requires a fresh application about every or four years. Mix $\frac{3}{4} \mathrm{lb}$. of mottled coap in a gallon of nearly boiling water, and it in a boiling state over the surface of the work, steadily and carefully, with a large ush, making no lather, and filling up the crusty surface of the work, either of brick 10. This is to remain for twenty-four hours to become dry and hard. Then $\frac{1}{2} \mathrm{lb}$. of s to be mixed with four gallons of water and left standing for about twenty four so thit the alum may be completcly disolved ; this solution is to be applied in the manner. Sir G. G. Scott has used for the internal work of Westminster Abbey a In of shell-lac in spirits of wine, which, squirted into the stone work, appears to perfectly in socuring the face from further decay arising from damp only. He und it of sone effect in the open air where defended from rain, but it failed when I to its action.
rcleaning down Path stone of the best quality, it generally may with advantage hod orer with two coats of lime-water prepared as follows:- Fill a tub witl water, o it put some lime; stir it up well when slaked and let it sette. If any impurities riso to the surface remove them, and when clear apply it with a clean brush to nework. This is an excellent proservative. and reinstates the skin or crust rewith the drug, without altering the colour of the stone. (Sumsion, of Bath).

- y's motalic cement has born in use in liance during the last twenty-six years, ho Firencli government and the municipality of Paris, for restoring monuments. It Ito be permanent and to resist all atlacks of acids in the atmosphere. The wholo penyed stone need not be removed. It is carved and worked in situ. It costs in sone. Rentosations are more rapidly done than in ordinary stone. The colour riginal monn can lo matched, and it can be used in all weathers. "This metallic is composed of a stone of Trachyticorigin, reduced to powder, and the molecules
are reunited by an aeid and softened without being decomposed. The cement is mix with the aeid, and the stone reconstrueted to its original eondition." The process in been used, 1887, at the Church for the Deaf and Dumb, in Oxford Street; the Church S. Paol, London Doeks; and the Iniant Orphan Asylum, Wanstead, besides other plact

ARTIFICIAL STONE.

16670. The term is sometimes made to eomprise not only Terra-Cotta, which is notic in this work in the section Breek, Lut also the many Concretes, whieh are described in secton Lime, \&.e. Those mixtures or concreted masses having more affinity to original they profess to imitate are here describea.

1667p. Austin's artificial stone was invented about fifty years since, during which peri it has been well tested. It is used cliefly in the manufacture of statues, garden ornamel ehimney shafts, and the like. This material is generally eonsidered to be little eflse th ordinary cement, but it is plain there is muel more ingenuity in the matter; at all ceve it is evidently a eonerete of sand and so on. cemented by lime; it is not burnt as is of: suonosed. and mueh of its valoe is no doobt due to the manipulation of the materials.

1667q. Ransome's slicemes stone was patented in 1844. Calcined flints ground to a \mid powder were mixed with eommon soda (sub-carbonate of soda) rendered eaustic, and wat the mixture being boiled under steam pressure; be thus obtained the silieate of soda i liquid form. To onc part of this water glass he added ten parts of sand, a little ponn flint, and a little clay; mixed the whole to a putty; made castings of the desired to under eompression; dried these, burnt the n in a kiln to a bright red heat, and so mi: them into blocks of stone. The chemical question was this:- the alkali of the soluble silic of soda eombined with a portion of the natural siliea or sand, and thus formed an insolu silieate or glass, as a cement, wherewith the remainder of the sand became concreted gether. A sandstone was produced, and technically one of a silicious type; but its e necting medium was not crystalline as in nature, but as an equivalent, professedly vitre This vitreous element, however, was always seen to be its biemish, and the manufactur now discontinoed for the following more recent invention by the same patentce.

1667r. During the experiments made for obtaining a liquid or liquids wherewit wash the surface of stone after it has been worked, Ransome selected and applied silieate of soda, and upon the saturated surfaee a solution of chloride of calcium. A dor decomposition then follows, not slowly but instantly, and the silicate of soda and chlo of ealcium, the one, an insoluble substance filling the pores of the stone, and the of eommon sa't to be washed out by the weather. D'ieces of the putty out of which the viously deseribed si icious stone was daily made, i.e. sand mixed up with silieate of solda, 1 dipped in ehloride of calcium, out of whieh it eame ehang do a hard and solid st This rather unexpected result led to the formation of an entirely new species of fieial stone, in a manner which was related by Professor Kerr at a meeting of the Inst of Britisly Arehitects in 1863, from whose account we have been quoting.

1667s. Ransome's Concrete stome is the name given to this new material, invented in ! The process of manufaeture now followed is first to dissolve flints in caustic alkali temperature of 350° Fahr., leaving them in a boiler for twenty-four hoors. 'The ii then produced, eonsisting of silicate of soda, is drawn off, and is allowed to crap. until it beeomes a thick matter like treaele. It is next mixed with clean pit sand it porated with tive to ten per eent. of chalk in a pug mill, and in four to five minutec mixture is formed into a stiff putty. It is then pressed into a monld and afterwardse saturated with, or inmersed in, a solution of ehloride of calcium, whieh being ran imbibed, the formation of an insoluble silicate of lime and a soluble ehloride of sodiu eommon salt results. This latter (about three per eent.) has to be removed by washin effect which it is placed in a hot-water bath for many hours. The employment of this material as stone in building is gaining groond; for cast ornaments and moulded wo has been longer used, and probably it may yet be brongit to serve for the chisel of the co

1667t. The eommittee of the Institute experimented on this material in 1s64. F inch eubes were made of equal paits of sand and eoarse ballast, with a quarter jart of c on the third day a eube crushed with a weight of 935 tons; on the tenth day 15.25 tons. With six parts of sand to one of chalk, on the third day a cube erusted 6 tons; at ten days old, 940 and 13.25 tons. Other samples, lowever, proved \dagger weaker, as at eight and thirty-six weeks old, they crushed with 8.4 and 8.4 tons respeet। yet one of twenty eight weeks erushed with 14 tons, apparently depending on the i of the induration which in the weaker ssmples was only from 1 to 3 inches. A1 formed of five parts of sand to one of fine silex bore 30 tons when three wecks old, out showing the least. effeet; it had been previously tested up to 20 tons, It will be
ontrast another sample formed of "all road scrapings from the neighbourhood of wich " which at only thee diys old crushed with 28 tons; this was probably due to silex cuntained in it. As another proof that its strength is entirely due to the comtc induration of the material, a nine-inch brick made of four parts of sand, four of fine d, and one of chalk, cracked when thirteen weeks old with 14 tons and crushed with tons; this specimen was gradually filled with chloride of calcium being poured over it, took fifteen minutes 10 saturate. Another at eight weeks with 4.2 and 30.0 tons; ther with 20.15 and 38.8 tons; while a fourth cracked at 6 tons and crushed with 6.65 ; these were staked in the chloride of calcium, The tensile strength at twenty-eight th old varied as 47, 74 and 67 lbs . per square inch ; while two specimens made of road apings, only three days old, broke with 101 and 97 lbs . per square inch, a strength also, doubt, due to the silex contained in it.
$667 u$. A gallon of each solution is sufficient to produce a cubic foot of stone of the r quality; but the cost of a block of coarser quality would be less than about half what other would be. To render this concrete stone perfectly non-absorbent, the surface of stone, after it is formed into blocks, is treated a second time with a wash of the silicate oda, and a sccond application of the solution of chloride of calcium. These solutions also applied for the preservation of other stones, or of brickwork; the silicate beins ated with water in proportions according to the absorbent character of the material, ich must be clean and thoroughly dry before being operated upon. Tinting solutions also supplied for harinonising with the natural colour of the stones. About four ons of eacls solution will be, under ordinary circumstances, sufficient for cach 100 yards erticial of surface.
667v. Experiments conducted by G. R. Burnell, and reported upon by Profcssor Ansted baper read at the British Association at Cambridge, 1862, showed that the transverse ngth of a beam 4 inches square resting one inch at each end, with 16 inches clear span, ainvd a weight of 2,122 lbs. or 132 lbs. per inch superficial ; whilst a similar bar of tland stone broke with $759 \frac{1}{2} \mathrm{lbs}$., or nearly 42 lbs . per inch. The adhesive or tensile ngth was proved by picees of stone notched for the purpose, the sectional area at the kist part being $5 \frac{1}{2}$ inches.
The patent concrete stone sustained - $\quad 1980 \mathrm{lhs}=\mathbf{3 6 0} \mathrm{lbs} . \quad$ per inch.

inclo cube of the patent stone sustained a weight of 30 tons, nearly 2 tons per inch, e it was crushed.
F67uc. The following result of chemical tests of this artificial stone, as compared with ral ones, will be found instructive. They were made by Mr. E. Frankland at St. Wholomew's Ilospital in December 1861. "The experiments were made in the follownanner. The santples were cut as ncarly as possible of the same size and slape, and acell brushed with a lard brush. Each sample was then thoronghly dried at 212°, (hed, partially immorsed in water until saturated, and again weighed; the porosity or Prtive power of the stone was thus determined. It was then suspended for forty-eight in a very large volume of each of the following acid solutions, the alteration in It after each immersion being scparately estimated. The sample was then boiled water until all acid was removed, and again weiyhed. Finally, it was dried at 212°, ed with a hard brush, and the total degradation or loss since the first brushing was c ained. The following numbers were obtained."

Nime of Stone.		Atteration in weight by innmession in dliule acjul.							$\begin{aligned} & \text { Furtiner } \\ & \text { fors lyy } \\ & \text { brushing. } \end{aligned}$	$\left\|\begin{array}{c} \text { Total } \\ \text { ungrath- } \\ \text { thou. from } \\ \text { all caukes. } \end{array}\right\|$
		uf 1 per cent.		or 2 per cent		of sper cent.				
		1.08s	Gail	Lass	Gain	Loss	Gan			
${ }^{1}$	11.57	$1 \cdots 28$	-	$2 \cdot 82$	-	20	-	$5 \cdot 91$	$\cdots 6$	6.17
1.	9.8\%	$2 \cdot 1 / 3$	-	480	-	$6:$	-	11.73	1%	13\%33
,igny	4.1.:	1.18	-	100	-	-	101	$8 \cdot 56$	$\cdots 9$	$3 \cdot 8.5$
1 tland	8.8 F	$1 \cdot 60$	-	$1 \cdot 10$	-	1-3.5	-	$3 \cdot 94$	$\cdots 1$	$4 \cdot 18$
(tur	6,0\%	:35	-	3.34	-	3.11	-	$11 \cdot 11$	$\cdot 27$	11:38
biluy	$8 \cdot 11$	1.07	-	-	-3,3	none	none	1\%25	-18	$1 \cdot 43$
011 ll	431	\bigcirc	-	-		nome	none	$\cdot 98$	$\cdot 15$	1-1:3
1/ Stiring	$4 \cdot 15$	$\cdot 71$	-	-			-	$\cdot 81$	none	81
If rame's.	6.53	-						$\cdot 63$	$\cdot 31$. 9.1

"Whilst Portland, Whitby, Hare Hill, and Park Spring stones (from the quarries, Farnle Wood, near Leeds) are thus pointed out as the natural stones best adapted to withstan the inflnences of town atmospheres, it is also indicated that Ransome's patent concreto ston will be found equal to the best of these, and there is nothing in the composition winc would lead one to anticipate that it would suffer from exposure to the saline influences the atmosphere upon the sea coast."
$1667 x$. Bousfield's patent, 1856 , consists of 80 or 85 parts of chalk and 15 or 20 slaked lime, mixed together, moulded under pressure, and dried in the open air, when th blocks, says the patentee, " will be found to possess a degree of compactness and firmne resembling stone, which increases indefinitely with age, and if the ingredients are pure, wi rival marble in whit ness and beauty." Barff's patent for an artificial stone was obtain in 1861. He takes 1 part of an aqueous aluminate of potash, with 3 parts of an alkali silicate, or water glass (silicate of potash, however, not of soda), which will in a few hor set into a sort of dull glass, au artificial felspar in fact, perfectly brittle and of very great tenacity, but altogether insolublo in water. With this silicate of alumi while in a liquid state, he makes up sand or any dust (as pounded stone) into a pas moulding it into blocks, and drying them in the open air, until they have set hard. Silica of soxa and potash are extremely viscid, and anything mixed up or coated by then is r dered thereby impermeable ; to get another solution into such silicates, much less behind to cffect their decomposition, is considered impossible, the only alternative, therefore, is put on the two solutions as one. Decompo.ition then setting in, mere dryness is all that necessary to produce the material; but if the silicate of potash and the aluminate of poti le mixed up in a liquid, they remain liquid for any period within reason, and they m be mixed up with any materials selected, or washed over their surface. When put it stone it hardens and produces an artificial stone, without heat or fnrther process. A previc patent, dated 1860, describes that silicate of soda or silicate of potash may be comlin with, or decomposed by, carbonate of lead, carbonate of zinc, or other suitable material soluble in water, which will decompose or chemically unite with the said silicates ; prop tionate quantities of chalk, sand, or other similar substance may also be incorrorated w the compound, and thus enable it to be obtained at less cost, in accordance with the nat or descruption of the work to which it is intended to be applied. A piece of stone ma factured with carbonate of lead, powdered pumice stone, and silicate of soda, in proporti stated in the specification, produces a very hard stone, without the application of any h

1667y. Fluo-silicic acid and silicate of potash are also applied to the surfaces of stor
1667z. The patent Victoria stone has stood the test of twenty ycars as paving. floor of the entrance-hall at the "Colinderies" in 1886 sustained the traffic also of years 1884 and 1885, haring had some five million people passing over it. In the con of 1886 it was laid on London Bridge, where the foot traffic is stated to exceed 80 , passengers per day-the heariest traffic in the world. It bears a crushing weigh 8321 lbs. per cubic inch; a tensile strain of from 794 lls . to 1125 lbs . per square in its porusity is 7.6 per cent. in twenty-four hours, as against 17.0 for Bath, 13.5 for ε Portland, or 8.0 for Park Spring stones. See also Paving.

The Leopold Foreign Rock Asphalte in one of the main corridors was also sere tested by traffic. It is manufactured of Groby granite crushed until sufficiently sma pass through a certain sieve: it is then washed thoroughly to remove all earthy parti This is mixed with Portland cement and well-burnt clinker, ground fine, and a metal-] mould is filled with it. In a few days the slab has "set" into a hard concrete, al then immersed for about ten days in silica fluid.

Hodges, Butler, and Dale manufacture an "Imperial stone" for copings, window steps, coal-plate stones, silicated stoue sewers, and water pipes, \&c.

Sect. II.

GRANITE.

1668. Among the primitive rocks of the glove, whose period of creation is consic by geologists as antecedent to that of organic beings, is that of granite, whose use in a tecture seems to bid defiance to time itself. The term granite appears to be a corry of the Latin word geranites, used by Pliny to denote a particular species of stone. IT nefort, the naturalist, in the Account of his Voyage to the Levant in 1699, is the fil modern writers who uses the name. The word seems to have beeu applied by antiqu to every granular stone susceptible of use in architecture or sculpture, in which 1 sense it was used Ly mineralugists until about fifty jears since, when true granite classed as a particular mountain rock. Its constituent parts are concretions of fel quartz, and mica, intimatoly joined together, but without any basis or ground. I
s are variable in quantity, so that sometines one, sometimes the other, and frequently of 1 hem, predoninate over the third. The felspar is, however, gencrally in excess, nica is the least cons derable ingredient of the rock. In some varieties the quartz is tting, in others the mica; but where these peculiarities occur, the granites must be conred as varieties, not as distinct species.
66%. The constituent parts differ in their magnitude, alternating fiom large to small very fine granular. The colour, moreover, is very variable, depending principally on predominating ingredient-the felspar, the quartz, and the mica having usually a grey ur. The felspar is mostly white, inclining to grey and yellow, sometimes red, and even y, seldom milk-white, and always translncent. The mica is usually grey, and somees ncarly black. The felspar in granite has usually a vitreous lustre, and of perfectly ated fracture; yet in some varieties it becomes quite earthy, with the loss of its hardness lustre; in other words, it has passed into porcelain earth. The appearance in stion is sometimes produced by the weathering of the felspar, and sometimes it ears to be in its original state. When pyrites are found in the veins which traverse hite, the vicinous felspar and mica are converted into a species of steatitical matter the action of the sulphuric acid formed during the decomposition of the pyrites. Cornwall, there is a considerable portion of its granite in which eat thy felspar is 1d. When felspar occurs in abnormal quantities, the granite becomes porphyritic, as Devonshire granite, and that of St. Honorine (Calvados): the name being derived the colour, which is purple. Schorl takes the place of the mica in some parts of onshire; and even the quartz is sometimes wanting, as is often the case in the elvans vurses laden with mineral matters in that district. When hornblende occurs instead of a, the granite becomes syenite, as at Malvern, and at Syene, in Egypt; and when ent with mica in about equal quantities, the material is called Syenitic granite. When a is present in such quantities as to cause the rock to assume a slaty cleavage, it is d gneiss.
1669. Granite is not decomposed by acids, and is only imperfectly and slowly calcinable great heat. Those species which contain much white felspar, and only a small portion uartz, like the greater part of the granites of Cornwall and Devonshire, are liable to mposition much sooner than many of the Scotch granites, in which the quartz is more hdant, and equally disseminated. In the selection of the Cornish and Devon granites, e are to be preferred which are raised in the largest blocks and are easiest worked, h, for cominon purposes, answer well enough, such as for paving-stones and the like; harder granite must be sought for than Devonshire or Cornwall produces, where the truction is of importance; for the masses in thesc counties are mostly in a condition of 1 disintegration and decay, which seems chiefly attributable to their containing a large on of potassa. The Naval Hospital at Plymouth is built of a granite whose parts ar to have been well selected. It was erected between the years 1755 and 1764 , and, th in the columns of the colonnades, does not cxhibit symptoms of decay. In these, seir more exposed sides, the disintegration of the felspar has commenced, and lichens already attached their roots to some parts of the surfaces.
70a. The cause of the decomposition of granite is a point yct unsolved by chemists. 3 state that the felspar, being acted upon by the carbonic acid in rain water, becomes moosed, and is then easily removed, leaving the mica and the quartz in relief without ementing material; and that the decay of the felspar does not take place by any in rules, for the more crystalline it may be, more perfectly does it resist the decomIf action of atmosplieric agents. Other scientific men are of opinion that the felspars ining soda generally decompose, whereas those which contain potash do not deeay. s alsi) been considered that the kaolin or China clay was produced by the decompo, of the felspar with the granite; but it has been stated that so far as hmman observacould go, China clay never was true granite, and that atmospheric decomposition ; upon lilspar, had never gone to the depth of 300 feet, at which depth finer Chinat vas found than nearer the surface: miles of conntry eould be shown strewed with r; the quartz was gone, but the felspar remained. We must leave the decision in ore able hands.
1670. Iled granite, sometimes yellowish, and generally interspersed with black mica, is in 1)evonshire ; at Monnt Lidgeombe there are tables of it equal to the finest oriental e. and it is found also in other parts of England. For hardness, and in works where ility is indispousable, the granites from Mount Sorrel, in Lejcestershire; Λ berdeen and flee, in Scutland; and the Checsewring of Cornwall, are to be preferred by the architect. tike an admirable polish, and are superior to all others which this island produces. nereasing demand of late years for this material, has eansed many new quarries to be d up in varions localatics. 'The red is generally harder than the grey sorts, and difficult to work. The l'eterhead, fom the vicinity of Aberdeen, is perhaps the best, is, morcoser, in appearance the nost beantiful which Scotland aflonds; indeed, in of lementy, it is only surpassed by the oriental granites.
1a. Durtmoor granite is, in general, coarse graiued, valying much in colour. "lile grey
sort is chiefly quarried and worked at Hay Tor on the east side, shipped at Teignmout and at King Tor and Rigmoor Down, on the west side, slipped at Plymouth. The Bron Willy district, worked at the Cheesewing quaries. near Liskeard; the granite is of a lig grey colour, and was u ed in the piers of the new Westminster bridge. The granite of 1 eastern portion of the Hensharrow district, near St. Austell, worked above Par, is of g, quality; it is shipped from that port, and known as Lostwithiel granite; the weste portion is remarkable for its liability to decomposition, and is worked for kaolin dis The Carn Menelez district supplies the granite generally known as Cornish, shipped fri Penryn and Purt Navis: blocks of several hundred tons are often raised, varying from to 70 fect in length, and of proportionate breadth and thickness. The finest grain obtained in the Carnseu quarries, near Penryn, fiom whence were got the stones for 1 lodges and piers at the British Museum, the plinths to the Royal Exchange, the peter for the statue of Lord Clive at Shrewsbury, and that for the statuc of Carlo Alhemo Turin. It was used, 1887, for the monolithic columns to Messr. Lloyd's new barhi premises in Lombard Street. The colunns at the entrance of the royal mausoleum Frogmore are from Lamorna, south of Penzance; which, with Boswarvalt and New N to the west, have, with those at Penryn, supplied granite to most public works. Fremal granite, largely used at the steam dock-yard at Keyhain, is white in colour, and being io close grained, it can be brought to a highly finished surface, and is said to be very dural
1671. Hay Tor granite company supphes a granite of a very fine grain, hard, of questionable durability, and generally of a beautiful blue or grey colour; it can obtained in blocks of any size that is capable of being removed with existing machine The quarries have supplicd the Nelson column and its pedestals; the granite plinth an steps of the Royal Exchange; the statue and pedestal of King William IV.; part of it river wall of the Houses of Parliament ; the plinth of the Sun Fire Office, \&c.; the lar landings and steps of the terraces at the Crystal Palace; the graving docks at all 112 Dock yads, as well as the ashlar steps and landings for the royal mausoleum at Frogmol Grey granite fiom Lundy island, off the coast of Devonshire, is supplied for the fin section of the 'Thumes embankment.
$1671 c$. The Port Nant granite, in Carnarvon bay, near Port Dinllaen, has been us at Liverpool for paving, for some years; for the tramway on Westminster bridge; for t Metrop slitan drainage outfalls, and for the foundation works and pavement of the That embankment.

1671d. Granite is supplied from a comparatively limited extent in the north-eastern $p_{\text {: }}$ of Aterdecnshire. The first or central portion is somewhat circular in form, hasing diameter of alout six miles, within which the rocks are of red granite of different varieti typificd by the fine warm coloured Stirling Hill stones; and secondiy, of an annular sp: surrounding this nucleus, in which the grey and blue granites abound. Of these, t Cairingall is close grained, hard and dense, and is obdurate as any of the red granites.
Pitsligo is obtained a light coloured bluish-white stone, which when fresh from the quar is wrought with greater facility than even some of the Scuttish sandstones. It stands I weather well.

167le. Rubislaw quarry was the tirst known quarry in Aberdeenshire, about t lundred and tifty years since, and furnished stones for paving London, and later for wo at Portsmonth Docks and the Bell Rock Lighthonse. Since its introduction about 18 various quarries have supplied granite for works at Waterloo Bridge (the balustradin Sheerness Docks, upper side of London Bridge, \&c. About 1822 Mr . A. Macdonald, Aberdeen, reduced to practice the difficult problem of giving any required form to sttibborn a matcrial, and communicating to its surface an enduring polish, which it said, is retaincd under all atmospheric changes; nor does the material contract aliy st with vegetation. The red granite quarries of Stirling Hill, near Peterlead, about thi miles from Aberdeen, supplied the shaft of the Duke of York's column; the pillars Fishmongers' Hall; the columns in the king's iibrary in the British Museum abont 18 the pedestals for the statues in the same building ; the columns at St. George's Il: Liverpool, 25 feet in length in one block; and is now used in numerous buildings in nea all the cities in Great Britain.

1671f. Grey or blue granite is supplied from the quarry of Rubislaw, hut prineipa from Cairngall, which is more of a syenite than a granite, a clear blue finely-grained n terial, used for the finest work. This has been employed for portrait statues, as Aberdecn, at Portsmouth, \&e. ; for the sarcophagus for the Duchess of Kent, and for ti of the Prince Consort, both at Frogmore.

1671 g . Argylestire has only within the last twenty years been opened up for grani Furnace quarry, near Inverary, is more of a Syenitic or porphyritic claracter than that true granite, and is remarkably hard, in fact harder than that of Aberdeen. It is u : chiefly for paving the strcets of Glasgow. Bonaw Island quarry, near Oban, gives excellent large-grained grey granite; it has been used in the harbour works, the fight steps at the West End Park, \&c., all at Glasgow, beng obtainable in large blocks. Bon

1seway quarry, near the above, though fine grained, does not supply large blocks; it ised for pariug stones. Ardslieal quarry, north-east of Oban, has a good grey granite general purposes. It is easily quarried in layers of any required length or brealth, baries in thiekness from 6 inches up to $\dot{3}$ feet. It is said to be less noisy and re sale as a paving stone than the generality of granites employed for that purpose. 671 h . The Ross of Mull aurries, in the island of the same name, supply granite wo sorts, red and pink, the felspar being in the former of a brilliant red, and in the er of a delicate pink, tint. In its physieal character it resembles the Aberdeen gravi:e s now sent in large quantities to the polishing works at Alverdeen, and, moreover, these irries ean supply larger bloeks than can those of Petert eat. Both the red and pink ieties, after baving been polished at Mr. Sim's works at Glasgow, were nsed in the I'rince nsort's mausoleum at Frogmore; at the Skerryvore lighthouse ; the Liverpool Dueks; Londonderry Docks; the Glasgow Water Woiks, \&e.; and the pink granite in tie ndations of the early work at the new Westminster Bridge : the Tormore or red grame ng used for the emb to the footways.
671i. The only quarries in the south-west of Scot'and are Kirkmabreck quarry, near eztom, Wigtown Bay, which firmishes a silver grey granite, used for the obelisk sent by - Sin to the Exhibition of 1862; and uscd for many years in the Liverpool Docks. eks of any size are readily attainable. Dalbeattie quarry, near Dumfries, has a re.grained grey granite, taking a high polish; there is a difficulty in getting large cks free from black marks, but it is largely worked for general purposes, kerbing, \&c., for ornaniental purposes.
6ilj. The granites o ${ }^{4}$ Ireland are in general a specklel grey, inclining to white, as se of Wicklow, Du'din, \&e. ; also greenish from hornblende, as Mourne, Newry, \&e.; dislo, as Galway. The granite of the Wicklow range is used more extensively than that my other district in the island. It varies considerably even within a limited distance. ar Kingstown it is very hard, the guartz predominating; t^{\prime} is is only used for plain sy work. For more ornam:ntal purposes granite is brought from Ballyknoeken, or Iden IIIl, aloout twenty miles distant. It eontiins a larger proportion of felspar and quartz than that of Kingstown, and is therefore more easily worked, and is of a ligbter more uniform and handsome colour, though less durable. Granite of the Carlow tion of the same range is similar. Granite of Down is generally of a darker eolour, more finely crystallized ; it is quarried at several paces, especially at Newry, from ence it is conveyed by water to several parts of the north of lreland; it can be workud line mouldings, and is of a dark speckled edlour. Galway granite is commonly of a lish colour, containing large crystals of flesh-red felspar; oecasionally it has a bluish

T'o the west of Cliden blocks of a moderate thickness, but of great length and th, ean be ob,tained. Granite to the west of Mayo is similar, but the greater part of it hat county is of a dark bluish-grey colour, diffieult to work and seldom used. In regal and lyrone it is gneissose, and of the same eharacter, and reddish. Cavan granite imilar to that of Down, and but little employed. In the counties of Kilkenny and xfurd it generally resembles that of the great Carlow range before noticed.
671k. The B.agalstown quarries. in Carlow, supply fur different qualities of granite; or plain work, portions being soft, others hard; some fine-grained, and others coarse; red, blue, grey, and hrown in eolour; all are obtained from the surface of the
11. A fine grit, employed for ornament.l work even in the Gothic style, is very ible, and of a very white colour. III. Nut quite so fine, but muel used for buildings ornamental work, being very white in colour. It lies in horizontal beds of about 1 foot 5 feet in thiekness, and from 15 to 20 feet in length; some beds run 40 feet long. In hall of the Oxford University Muscum is a slab of it, about 10 fect long, 5 feet wide, 7 incles thick. IV. A very hard granite used for street clossings in and near Cork, slippery. All these granites ane :ipproved for terrace steps, from 6 to 15 feet in 111; for floors in stores, poreles and halls, as in damp weather it absorbs the moisture a the atmoypliere.
772. Granite used for paving purposes is imported for curls and trams, from Guernsey, ey, Alserdeen, and Devonshire. For pithing and mucutam, from Aberdeen; Mont I, Markfield, and Grooly, all in Leevestershire ; Guerusey ; and a small quantuy from

Mount Sored granite is red in eolour, and was employed for the altar steps in Paul's Calledral. Granite from the 1"urnare quarries, at luverary, as before noticed, is Th used in the streets at Glasgow. Markfield and Grooly granites are dark green. The ite frumt the inlaud of Herm, near Gnernsey, was nsed for the steps to the Duhe of K's columu, but the enst of working and difliculty of shipping it at the quarry, lave led ruch diacoutinuaner of its use.
172a. Aberdeen granite is most extensively employed for curls, trams, and pitching; litter in thin cumem abont 9 inches in depth, 3 inches in thiekness, and not exceeding neles in lengeth, fair dressed throughont, it bempgensidered the hest granite adapted lie tralfie of L.ondon, as it is very durable and less slippery than most other gramites,
such as that of Guernsey, for instance, which is therefore now seldom adopted. Tl Welsh granite has the same fault, for, with a large amount of traffic in dry weather, becontes necessary to throw gravel over it. Guernsey maeadam, broken to pass through $2 \frac{1}{2}$ inch mesh at the largest, is found to he by far the best material for the purpose, on coat properly applied outlasting two of any other granite. The Devon granite being coar: in grain, is used only in curbs for second-rate strects, while for pitehing it is not to 1 compared in price or quality with that of Aberden. Blue Bombay, and blue Port Phili granites, are hard and tough, and make good sccond-class roads; while grey China graní is soft and friable, and only good for the foundation of a new road.

1672b. We are indebted for scveral of the details here given on this subject, to t article in the Dictionay of Architecture of the Architectural Publication Soeiety. Ti Builder for 1866 has also entered on the merits of Seottish granites.

1679 c.
Table of the Weights of Granites.

Secr. III.

MARBLE.

1673. With the arehitect and sculptor the name of marble is applied to all stones, hari than gypsum, that are found in large masses, and are susceptible of a good polish. (this principle, under the head of malble, are included many varieties of limestone, porphy: and even granite and fine-graincd basalts. But with mineralogits the word is used in much more restricted sense, and is confined to such varieties of dolomite, swinestune, a compact and granularly foliated limestone as are capable of recciving a good polish.
1674. The extcrual characters are as follows: colours white, grey, red, yellow, and gret Has geucrally but one colour, though it is often spotted, dotted, striped, and veim Occurs nassive, and in angulo-granular distinct eonerctions. Internally it alternates fre shining to glistening and glimmering; lustre intermediate between pearly and vitreo Fracture foliated, but ofientimes inclining to splintery. Fragments indcterninate, angul: and rather blunt-edged. More or less translueent. Brittle, and easily frangible. chemical characters are, that it gencrally phosphoresces when pounded, or when thrown. glowing coals. It is infusible before the blow-pipe. Dissol es with effervescenee in aci

Constituent parts,	Lime -	-	-	-
Carbonic acid	-	-	-	46.50
Water -	-	-	-	0.50
				-00.00

1675. All the varietics may be burnt into quichlime; but it is found that in many them the eoncretions exfoliate and separate during the volatilization of their carbonic ac so that by the time that they become perfcetly caustie, their cohesion is destroyed, a they fail into a kind of sand, whieh renders a common kiln inapplicable.
1676. The varietics of marble are almost infinite. Those employed by the anciet as well as porphyry, are noticed in the Glossary. Besides the paper On Marbles read 1887 by Mr. Brindlcy, and quoted hereafter, the book by G. H. Blagrove On Mur Decoration, $\$_{v} .1888$, and that by A. Lee, Murble and Marble Workers, 810 . 1888, are val able contributions to the subject.
1677. 'The principal part of the supply to England of whitish marble is from Carra a small town or village of Tuscany, in Italy. The quarries at this plaee werc celebrat from an carly period, and spots are still shown about then whence they dug the marl for the Panthcon. Masses of marble are sometimes procured there nine fect in lengtha from four to six in breadth. The quarries are the property of the principal inhabitants
ie town, who carry on an extensive trade in the article; but the difficulty of ehoosing 10 marblo has induced artists to sett'e there for the execution of their works, and the rusequence is, that sculpture abounds and flourishes in the town. The white or tatuary, Italian-veined, Dore-coloured, Pavenazzo or purple veined, and Ravaccione alled Sicilian, supposed to haveobteined its name from early shiploads of it having been -shipped or sent on from some port in Sicily, at which the vessel touched in its royage), "arbles, are but very slight rariations of the same substance; the Dove and "Sicilian" wre a little more carbonaceous matter in their composition; but they are all proeured om quarries in the immediate neizhbourhood of Carrara. Serravezza, in Lueca, produces atnary, Ravaccione, veined or Bianco chiaro, Misehio di Serravezza, Bardiglio, and ardiglio fiorito.
1677a. All varieties of Carrara marble have perishatle qualities, whieh ought to preclude em from being ever applied to external purposes in this country. After exposure to the eather for thirty or forty years, disintegration through its entire mass, but mostly on or ar the surface, evidently takes place; after the lapse of about a century, more or less, cording to the quality of the marble, the entire substanee fails into a kind of sparkling 111. The group of Queen Anne, \&c., in front of St. Paul's Cathedral, sculptured by ancis Bird in the beginning of the last century, had been painted leng since, and was 1887 entirely renewed. A mural monument by J. Nollekens, erected about 1780 over e centre door within the portico of Bloomsbury Church, fell on to the pavement during - winter of 1837-8, so thoroughly pulverised as to resemble a fall of snow rather than is of marble. Milan Cathedral is built of the white marble of Monte Candoglio or ndido, on the Toce, a tributary of the Lago Maggiore, selected as better fitted to stand p atmosphere than Carrara marble, of which it is usually said to be built : the " 7,000 atucs" (1863) are most probably all of the latter material.
1677h. The Raraccione, or so called "Sicilian" marble, is expected to resist the action an English atmosphere longer than Italian veined, or white Carrara marble. On examition, however, it wili be found that its chemical and mineralogical character seareely differs m them, except in weight, hardness, and as containing a little more earbonaceous matter. c Marble Arch, erected 1825 -7 in front of Buckingham Palaee, was removed to its 1 sent site 1850-1, when it was found necessary to rub the exposed surfaces with sand 11 stone, as they were in a state of disintegration. Perhaps the tomb by Sir F. lintrey, executed about 1820, in the burial-ground of St. John's Wood Chapel, is tho lest spccimen in London, if not in Evgland. The surface may now be abraded with 1) tingers. like sand. This material has of late years been extensively used in the cemeties round London. But on a careril inspection of stones of three years' date, it will 1) found that the polish is nearly gone; and even the paint of the lettering has entirely 1appeared. Frequent changes of temperature also tend to destroy Carrara marble more idily than atmospherie influer.ces; thus the mantel of a chimneypieee is invariably (ntegrated long before any other part. The late C. H. Smith, in the Builder of 1864, tongly urged the employment of Hopton Wood stone (par. 1666i.) in lieu of it for all o deor works.

677c. Massa Carrara quarries. The special produce now is-I. The ordinary marble ed "Sicilian." having a white ground variously marked with grey veins, spots, \&c.: it if ood for interiors as it is easily worked. II. A very hard ordinary "Silician," of a 1. Hh whitg with dark veins, adipted for steps and out-door work. When well polished if as great rasisting power. It has been used for the prineipal stairease of the Merchant 1 turers' schoul at Bristol, where the final polish was omitted; and in some "flats" in Etland Plaec. III. A dark grey marble with blaek veins, called Bardiglio, which has been ba ely insed as a buildiug stone in Naples, and as altar steps in Sweden. IV. A marblo, ad Planc P^{\prime}, a Lluish white without veins, but not so lustrous nor so pure a white as alluary marlle. It is muci used in Pelgium, France, and Ireland, tor statues, tombs, m floral carvings; and is little known in London. The quarry which supplied the l, wic I^{\prime}. is stated to have been worked out long sinee; but another marble so called is m.ly a superior class of "veined white ;" a large quantity is used in London. Tyrolsse mble posssseses all the beanties of that obtained from the Carrara quarrics, and is, in orer, from its intenso hardness, almost indestruetible, and betrer adapted for exro to the climito of this eountry.
i8. There is a beatiful epeceies of yellow marblo obtained from the quarries near 1, in Italy, and known in England as Siena marble ; but the quantity now imported th very great, and what is introduced is very poor in colour. A good quality, both in pr nud vein, can, however, be procured at the quarries by speeial orders
isc. The marbles of sicily, little, if at all, employed in this country, are enumerated , Hlows :- Marmo di Trapani, of a groy colour; M. di Castelnuovo, of a yellow
M. di segenta, of a yollow colour ; M. di Taormica, of a red colour; M. di of a yellow colonr ; M. d' Ogliatro, of a red colour ; and M. di Castalacerio, of a
long. Specimens of some, if not all of thece, are included in the fine collection of polished marbles made by the learned Corsi of Rome, an account of which he published : the collection was subsequently brought to England, and is believed to exist at Liverponl. Each specimen it contained is no less than 8 inches Itatian long, 4 inches wide, and 2 inches thick, and highly polished on all sides.
1679. Many of the marbles of France and Belgium are extremely beautiful. They are chielly used in this country for chimney picces. The following is a list (ineluding others) of those so worked, supplied fiom one of the Belgian workshops:-Rouge royal; Blen Belge; Ronge Griotte; French red; Saint Anna; Noir Belge; Noir Belge, seeond quality; Breceia (Bıêche); Breccia and black; Breecia Romana; Breecia rose; Saint Gerard; Sicilian; Sieilian, white veined; Pavonazzo; Statuary; Statuary, second quality; Malachite; Var de Mer; Black and green; Porphyry; Broeatello; Siena; Siena, seeond quality; Italian Griotte; Black and gold; Black and gold, second quality; Bardila; and Sarracolin. Another marble, named Saint Mont Clarie, is a pure black.
1680. The marbles of Spain are likewise very fine, but are not exported. A speeimen of the " Emperor's Red," of unnsually fine quality, was presented to the Queen by the late Don Pedro, King of Portugal, for the royal mausoleum at Frogmore.
1681. The marbles of the British Islands deserve more notiee from the English arehifect than they have hitherto reccived. In England there are hut few as yet quarried of granular foriated limestone, the greater number of varieties of them belonging to the Hoetz or secondary limestone. The most remarkable, and perhaps most beautifil, of the English marbles, is that of Anglesea, called Mona marble, and mueh resembling Verd antique. Its eolours are greenish black, leek green, and sometimes purple, irregnlarly blended with white, but they are not always seen together in the same piece. The white part is limestone, the green shades are said to be owing to serpentine and asbestus. The Isle of Man marbles are-I. Black flagstone (Posidonia sehist) from Poolvash, the quarries of which have been worked for upwards of two hundred years; and firmished the steps in St. Paul's Cathedral, presented by Bishop Thomas Wilson. Il. Grey marble (encrinital and shelly limestone) from Poolvash, used for tables and chimucy ornaments. IlI. Black marble (lower carhoniferous) limestone, from Port St. Mary, extremely hard and durable, taking a good polish; raised in bloeks and flags of greit size, and used for piers, floorings, and tombstones. IV. Pale marble (earboniferous limestone (from Scarle:t. Castle Rushen, nine hundred years old, and other places, are built with this most durable material. V. Spanish Mead flagstone (clay schist), Yort St. Mary; is a durable material, and used for lintel and gate posts; it is slightly elastic when in thin fags, and can be raised in square slabs of 16 feet. VI. Peel freestonc (old red sandstone), from Craig Millin; of this stone a large portion of Peel Cathedral was built in 1226. (Cumming, Isle of Man, \&c.)

1681a. The ornamental marbles of Derbyshire are mostly confined to the 1 st, 2 nd , and 3 rd classes of limestones, which are separated from each other by the toadstone, an amysdaloidal trap rock. These marbles are usually distinguished by their colour, as white grey, dove, bluc, black, and russet ; or by physical peculiarities, depending mostly on their fossil contents, as bird's-eye, dog-tooth or innscle, entrochal, shelly, and breccia marbl s. Quariies of blich marble are situated near Ashford, where machinery for cutting and polishing these marbles was first used in 1748. The beds of black marble seldom exceed 7 or 8 inches; it is difficult to be obtained of any considerable surface free from "shakes," or small veins of white spar. It is also procured at Matlock and Monsaldah. A brown marble, in thin bands of various depths of colour, is called "rosewood," as it presents the appearance of it when polished. It is one of the hardest and most durable of the Derbyshire marbles. A red marble, resembling Rosso antico, is found eniefly near Newhaven, in Jumps of no great size. These and other Derbyshire marbles are prineipally used for inlaying work, as vases, tables, \&c., but chimney pieces, columns, \&c., are now made at Ashford, Bakewell, Buckland Holiow, and at Derby. This Florentine work, as it is ealled, is remarkable for fineness of execution and beauty of design, and is almost confined to the county.

1681b. A beautiful greyish-black coralloid marble is also found in Derbyshire and in Wales. The corals it contains are of the porous kind, of the most elegant species, lodged at all angles and in all directions, and are in general about one inch and a half long ano three quarters of an ineh broad. The other species of coralloid marble is equally beautiful and compact, fine, even texture, very hard, of a deep jet blaek, and capable of a viry high polish. It is variegated with species similar to the above, but smaller, and of a less elegant texture; among these it has usually a great number of sea shells, both turbinated and bivalve, the coral and shells being of a pure snow white.

1681c. The North Devonshire marbles are abundant and diversified. There are varieties of black and white, from Bridestow, South Tawton, and Drewsteignton. Sume of the Chudley, Staverton, and Berry Pomeroy, marbles, have a black ground with large veins of calcareous spar traversing it in all directions. The variegats marbles are gene
rally reddish, brownish, and greyish, variously veined with white and yellow, and the colours are often intimately blended. The South Devonshire marbles, now chicfly worked at St. Mury Church, Torquay, from the Babbacombe limestone, are called after the name of the estate or quarry fiom whence they are taken, such as the Petiton, Ogwell, Ashbort.m, Babbacombe, \&\&c. The colours are red, grey, and varigated, of almost every tint. The sizes of the blocks vary from 1 to 10 tons; the ordinary length runs from 4 th 5 feet; 7 to 8 feet is considered as a good length. At Ipplepen are reddish varietits that are extremely handsome. They are of different qualities, as compact, porcellanic, granular, erystalline, shelly, magnesian, pozolanic or water, stinking or swine. The Bartons quarry at I 1 plepen, belonging to Mr. Field, of Parliament Street, is worked at 80 to 100 feet in depph; the lowest beds are about 8 feet thick, and of a mottled character, being dark red and white in colour; the deposit over it is streaky and lighter in coloor. Blocks of is feet square are now conveyed to London. This quarry has lately supplied the monolithic polished slafts for the forty columns (18 out of one block), each 12 feet 3 inches in 1.ngth, and $18 \frac{1}{2}$ inches diameter on the fillet, with many others, for the new boilding of the National Provincial Bank of England, in Bishopsgate Street. The bases are of Irish Hack marble, and the caps of the crcam-coloured Huddlestone stone. In the corridor of the new Freemasons' Hall are foor colnmns, two being from the Bartons quarries, and two of Languedoc marble : eight others are placed in the coffe-room of the Charing Cross Hotel. The limestones of Plymouth are not so fine. They are of two sorts; one, an ash colour shaded with black veins; the other blackish grey and white, shaded in concentric -pots interspersed with irregular red spots; or black with white veins about a quarter to an inch in widtl.

1681d. Serpentine, " beyond all question, the most bcautifol of the ornamental stones of this country" (Hont), is eliefly found in the sea-bound peninsula called the Lizard, he most sootherly land in Great Britain. This rock, with another cailed dallage, confitute nearly halfof the Lizard peninsola. Serpentine has evidently been under the inflaence of heat. At one spot it seems to shade off into the homblende slate in which it is embedded; tanother, it has every appearance of having been thrust up among the hornblende slate. fir Ilenry de la Beche wrote, many years since, that serpentine ought to be employed or decorative purposes. He named Landewednack, Cadgwith, Kennack, Cove, and Enosehilly Downs, as foor sites whence beautifil specimens might be obtained, varyng in colonr, as, an olive green base striped with grecnish-blue steatite veins; another precimen, very hard, with a reddish base stodded with crystals of the mineral called diullage, thich when ent through and polished, gives forth a beatiful metallic green ghtter, cightened still forther by the reldish tint of the mass in which it is embedded. To the $\therefore x$ xhibition of 1851 , Penzance sent fine specimens in all kinds of ornaments. The blocks re small. but sometimes they lave been obtained 7 feet in length and 4 or 5 tons in cight; the largest was 8 feet long, 3 feet wide, and $2 \frac{1}{2}$ feet theck; from 2 to 3 feet ny: is the usoal size. The best blocks are worth from 5 to 10 guineas per ton, according , their weight, the larger the size the higher is the value in an increasing proportion. hemically; stcatite and serpentine differ little from cach oher, and as they are quarried in ixtaposition, speceimens of both kinds are selected for nse; but serpentine being much arder and more rielly coloored, is appropriated to the larger articles.
1641e. In the Builder of 186.5, p. 877, it is stated that serpentine is not a marhle, but a hle containing a tulerable quantity of chromate of iron. It is sometimes good for external namentation, but never when it has the white streaks so commonly seen in it. Hum's (tandluok to the 1851 Exhibition, gives the following analysis of serpentine obrained at the zard:-Magnesia, $38 \cdot 68$; silica, $42 \cdot 50$; lime and alumina, $2 \cdot 10$; oxide of iron, 150 , ide of manganese, 10 ; oxide of ehrominm, $0: 30$; the colouring matter is probably a mbination of chromium, iron, and manganese. In his IFandbook to the 1862 Exhibition, it called a hydrated silicitate of magnesia, composed of silica, $43 \cdot 64$; magnesia, $43 \cdot 35$; and ater, $13 \cdot 0 \mathrm{l}=10 \%$. liesides the sopply from the Lizard, it is obtained in Anglesea, rthoy in laarflilire, Unst and Fetlar in Scotland. The "green mable," or serpentine, Connemara, is noticed amneg the Irish marbles. 'Tlus material is sawn by stean power ${ }^{14}$ sind and water ; and when brought into the form required, it is ground, thrued, lobed, and polished until it presents a beatiful glossy surface, said to be eapable of resist: grease and acids. which is not the case with marble in general.
i 681 f . It is said that two brackets of old monoments in Westminster Abbey; the panclrdering of the tnonument erected to the memory of Addison; the brackets of in chimneyce at Hanpton Court, ure all carved in serpentine, und the present condition of these cimens shows the duability of it. "Equal to granite in durability," is the statement de in advertisements, but probably some further time must elape before such a statement beadorsed, thongh it may be allowed that it appears to sand ntmospheric intloences wirhably well. lixperiments on the strengh of serpentine have been noticed in 150%. Therein is mentioned a slaft of Poltesco grey-green Devonshire serpentine, of the weaknst exampies, which went uetoss and not with the vein: the hatter ruaning

In the line of the diameter. The green scrpentinc has becn used lately on the outside of some offices in Cornhill; and the red quality in 1853 in Leicester Square.

1681g. Purbeck, Pctworth, or Sussex marble, is the name of a material common to Derbyshire, Dorsetshire, the Isle of Wight, Kent, Surrey, and Susscx. It is found at Dinton, neir Aylesbury, and it occurs at Boulogne and at Beauvais, in France. In some places, as in the most westerly quarries near Corfe Castle, and at the top of the Isle of Portland, the Purbeck stone is so highly coloured and fine-grained, that it is chiefly identificd as helonging to the frest water deposits by the fossils it contains. In general, the stone may be said to be fine grained in the quarries north and west; while in those approaching the east the pattern is larger, the shclls well defined, and seareely any of them broken; the marble from this district is therefore handsomer, and more in request for ornamental purposes. Purbeck was well known for its quarries during the middle ages, when the marble was in great request for decorating the clustered shafts and sepulebral tombs, and for parements, in churches. At the present time, there is scarcely sufficient demand to keep more than a few men at work, and this at Woody-hyde, near Corfc Castle, where the genuine material or Purbeck marble can be obtained, and that quarry is a lole more than a quarry. It has been stated that, during the middle ages, this material was also obtained from quarries at Parham Park, six miles north-east of Arundel, but there are now no traces of it left on the surface.

1681h. All varieties of Purbeck marble contain a large proportion of clay in their composition, which is one chief cause of their perishable nature. In the interior of buildings the moisture in the air will be condensed, and absorbed into the argilliceous portion of the marble. While this process is going on, the lustre of the polish is gradualiy diminished, the colour is altcred, its hardness and cohesion destroyed, until the surface is completely changed to a dull carthy appearance. and decay results, which will be facilitated in proportion to the amount of clay contained in a given mass. When, as in small columns, this material is placed with the planes of lamination in a vertical position, there resultsanother and a greater teadency to decay. The clustered columns in the Temple chureh, thougla rencwed in 1840-42, had already lost much of their polish in 1853, a preliminary stage towards decay. The large ancient columns supporting the clere-story at Westminstrs Abbey, have now scarcely a trace left of their original surface. (C. H. Smith, Transuctions, Institute of British Architects, 1853). As already stated, this sort of marble is obtained in Kent, where it is also known as Bethersden marble, and likewise as Lovelace narble, obtained near Ashford. In the east and west sides of the new quadrangle of St. John's Collcge, Oxford, are sixtecn entire colimms of "Bletchingden marble," which were put up in 1631-35. It may be seen in Hythe Church and in some of the nelghbouring churches, where it is often varnished inlieu of being polished. The Purbeek marble columns used in Lincoln Minster, in 1186-1200 are asserted to have been worked up by vinegar.
1682. Of the Seotch marbles the principal are the Tirce, of which there are two varietics, red and whic. The Iona, whose colours arc a greyish white and snow white, sometmes intennixed with steatite, giving it a green or yellow colour in spots and known under the name of Iona or Ieolmkill pebbles. It does not take a high poli-h. The Shye marble, of greyish hue, with occasionally various veins. The Assynt varicties of white, of grey, and dove colour. Glen Tilt marble, white and grey, with occasionally yellow and green spots. Marble of Balliculish, of a grey or white colour, and capabic of being produced in considerable blocks. Boyne marble, grey or white, and taking a good poolish. Blairgowri, in Perthshire, of a pure white colour, fit, it is said, to be employed in statuary and for architectural purposes; and Glenavon, a white marble, said by Williams (Natural History of the Mineral Kingdom) to be a valuabte marble, is not used, from the remoteness of its situation and the difficulty of access to it.
1683. Ireland is rich in marbles, The dark colours vary from jet black to dark dove colour, purple, bluc, and grey; the light colours, from the purc snow white to the celined, cream coloured, pink, and light grey. The variegated consist of the serpentine, blaek and white vcincd, mottled, and those marked with fossil organic remains. The black marbles, which are those of most value in Ircland, are extensively met with, and belong to the lower linestonc. The merchantable beds of the best quality, which have been extensively worked, are met with in the countics of Galway, Limcrick, Carlow, and Kilkenny. It is also found in the counties of Mayo and Waterford. The best quarries are considered to be those close to the town of Galway, near the bank of Lough Corrib. It occurs in three beds, varying from about 9 to 12 inches in thickness. One is called the "London bed," as it supplies most of the black marble exported to London. Bloeks are raised of an average size of about 5 to 10 feet in length, and 4 to 5 feet in width; others 20 feet in length can be obtained. Some blocks 16 feet in length were sent over for a staircase for the Duke of Hamilton's seat in Scotland, who was also furnished with landings and solid balustrades worked to a fine polish. Angliham and Merlin Park quarries supply black marble of the very finest description, receiving a high polish. Steps of it were supplitd for the porticos at St. Paul's, the staireases at Marlborough House, Hampton Court, and Kensington Palaze, under Sir C. Wren, cir. 1700. At Oughterard, the beds contain murr
or less silica, rendering them not so valuable. At Kilkenny, it abounds with shells, which xecome more conspicuous as the marble drics Kilkenny marble was once extonsively employed in Ircland, but the black is now preferred. 'The polish of black matble, while it is considerably affected by dampness, is much improved and preserved by being kept dry.

1683 a. Dark grey and dark mottled grey marbles are met with chiefly in King's county and in several parts of the county of Cork. Near Tullamore, marble is obtained in large blocks capable of rcceiring a fine polish, and is much used for chimney-pieces and ornamental works. The limestone around Cork produces easy working marble of a light grey or dove colour, and more or less mottled, receiving a good polisin. In the primary districts of Donegal, a light grey and bluish grey coloured marble of close grain is found Ho a great extent ; most of it, however, is hard to work from the quantity of silex it contains. Tlie same kind of a bluish tint is very frequent in Connemara. It is compact in texture, but does not always produce a satisfactory polish. White marlle occurs in the western vortion of county Donegal, differing much from that of Connemara, It is of comparatively asy conversion, and can be obtained in cubical blocks in great quantities; its very coarsely granular texture, howerer, is prejudicial to it for many purposes; for boldly executed worhs in sculpture, where the expense of carriage would be avoided, it might be advanageously employed for many purposes; but it will not vie with the marble of Carrara. Il:e Connemara white marble is hard and fine, an. i the strongest yet found; it cannot, lowever, be procured in large blocks free from streaks, which pass through the blocks parallel with the beds. At Chevy, near Dungannon, county 'Tyrone, a very delicate cream coloured marble is obtained, very compact in texture, receiving a high degree of polish, and slochs of great length can be procured. The coarsely crystalline and fossiliferous lincstone at Ardbracean produces light coloured marble of easy conversion.
16836. Of the variegated marbles, the Siena of the best quality is perhaps the most reauriful. It is obtained in several places in King's county; but the best, the veined or nottled Siena, is found near the Seven Churches. It is susceptible of a high polish, and xhibits many bright and distinct colours. Marble of the same character also prevails, raving a dove coloured ground, varied or mottled with Siena colour. In the county of Irmagh, a Siena, or rather a brownish red marble, is found, containing a great number of ossil shells; several varieties of colour, from a very light reddish brown to a rather dark ad, are also met with, more or less marked with shells. At Pallaskenry in the county of Limerick, a dark red and mottlcd marble is abundant, and has been much used. Λ red coloured inarhle, of a compact but slaty texture, occurs in the county of Cork, extending rom the eity in a narrow seam, for a distance of several miles. It is hard to work and dull n colour : at one time it was extensively used.
1683c. The serpentine, or green marble, as it is usually called, of Connemara, in county ¿3lway, is of a dull green colour. Blocks are raised of considerable size, fiom which stabs an be obtained, at Barnanoraun quarry, near that at Recess; and at Letternaphy quarry, ear Cliden; the latter being rather coarse in quality; while at Tievebaun quarry, near decess, the mable is dark green, very sound, and free from shakes of any kind. Black nd white marble, and that of a mottled character, occur near Cork, in the counties fi Waterford, Longford, and Kerry; some of the varieties are very fine; that obtained fear Mitchelstown is well marked and receives a high polish. The limestone obtained car the jeven Churches in King's county, when polished, produces a good marble f an even grey colour. It is strongly mottled with very numerous fossil organic enuains. It is casily worked, and raised fiom the quarries in thin beds. This marble, in a olished s:ate, has been used in the construction of one of the principal ruins at the Seven Chusches; some of the stones retain their polish to this time, while others exhibit decay. Wilkinsou, Combuy, \& ${ }^{\circ}$ c. of Ireland, 1845). A fine purple marble is found at Loughjugher in county Tipperary, which is said to be beantifnl when polished. Some of a nrple colour, and purple and white intermixed with yollow spots, were to be procured in ie islands near Dunkerron in the river Kemmare.

1683\%.
'Table of rime Werints of Mambers.

Name.		County or Comntry.			Wiotht prembe fuot, avesilupin.	
J3lack	-	Kilkenny	-	-	${ }_{171} 12$	oz. dr.
Tiser	-	II (brides, Scotland	-	.	179	50
Carrara, Statuary	-	'luscally	-	-	168	105
" Ravaccionc			-	-	169	28
Ipplepen, Saitons fuarry	-	1)-vonshire	-	-	153	60

on tenneity is stated nt fr,000 lis per sphare inch, and its crushing weight is also put at

Sectr. IV.

TAMBER.

1684. The information we propose here to lay before the reader relative to the different sfecies of timber is extracted from Miller's Gardener's Dictionary, Rondelet's Art de Bàtir. Rees's Cyclopadia, and Hunter's edition of Evelyn's Sylva. To give any thing like the information that would satisfy the botanist would be out of place in an a chitectural work; and we therefore confine our ohservations to those which will be useful to the student,
1685. OAK. Of this most valuable timber for building purposes Vitruvius (lib), ii eap. ix.) enumerates five species, which it would now be ditficult to identify. 'Ihat some species ot the Quercus of the botanists are more valuable for building purposes than others no doubts exist. Evelyn seems to commend especially the Irish oak, because of its with standing the efforts of the worm; but it is not easy to ascertain the particular species to which he alhudes In the present day the Sussex oak is esteemed the most valuable; a value, according to some authors, derived from the nature of the soil and from good management in the culture, which is an object of no small importance.
1686. Generally, it has been usual to consider England as producing, without difference in quality, but one species of oak; but two sorts are well known to the English botanist, the Quercus Robur and the Quercus Sessiliflora. The former is found thronglout the temperate parts of Europe, and is that most common in the southern parts of England. Its leaves are formed with iuregular sinuositiss, and their footstalks are short, occasionally almost without any at all. It attains a very large size, and the wood is tolerably straightgrained and pretty free from knots, in many instances resembling the German species called wainscot. It is easily split for making laths for plasterers and slaters, and is begorid doubt the best sot for joist, rafters, and other purposes where stiff and straight-grained timber is a des deratum. In the Quercus Sessilifiora, which, though fuand about Dulwich and Norwood, according to Miller, appears to be the common oak of Durham, and perhaps of the north of England, the leaves have long footstalks, frequently an inch in length, and their sinuosities are not so deep, but are more regular than those of the Robur just described. The acorns are so close to the branches as to have scarcely any stalks. The wood is of a darker hue, and the grain is so smooth that it resembles chesnut. Than the Robur it possesses more elasticity, hardness, and weight, but in seasoning it is subject to warp and split; hence unfit for laths, which in the north of England are rarely of oak. 'There is no reason for supposing, as has been conjectured, that the oak of the Gothic roofs of the ceuntry is of this species, though we are aware of the great durability of the oak in the buildings in the northern part of the island.

1687 . The specific gravity of the species first named, that is, the Quercus Robur, may be taken at about 800 , and the weight of a cube foot 50.45 lbs . That of the last-naned at 875 , and the weight of a cube foot at about 55.00 lbs . Their cohesive force and toughness are proportionable.
1688. The American species scarcely claim a notice here, because their use in England is, from every circumstance, out of the question. Of the red oak of Canada (Quercus rubra), the only one of which the use could be contemplated, we merely observe, that it is a light, spongy, and far from durable wood, though, in the country, in many instances useful. Its growth is rapid, and it rises to the height of 90 or 100 feet.
1689. There is a species of oak imported from Norway, which has reccived the name of clapboard, and another imported from Holland, known under the name of Dutch wainscot, though grown in Germany, whence it is floated down the Rhine fur exportation. The latter is destitute of the white streaks which cross the former, and is thereby distinguished from it. 'The use of these woods has latterly much diminished in England. They are both softer than common oak, and the clapboard far inferior to wainscot. They are more commonly used for fittings and fixtures, whereto they are well adipted. In damp situations, oak decays gradually from its external surface to the centre of the tree; the ring on the outside, which it acquired in the last year of the growth of the tree, decaying first; but if the tree be not felled till past its prime, its decay is reversed by its commencement at the centre. An oak rarely reaches its prime under the age of au hundred years; after that period, which is that of its greatest strength, it cannot be considered as fit for building purposes; and, indeed, it may be taken as a rule, that oak before arriving at its maturity is stronger than that which has passed it.
1690. If the architect has the opportunity of selecting the timber whilst in a state of growth, he will, of course, choose healthy, vigorous, and flourishing trees. 'lituse in which the trunks are most even are to be preferred. A mark of decay is detected in any swelling above the gencral surface of the wood. Dead branches, especially at the tup of the tree, render it suspicious, though the root is the best index to its soundness. 'Ilue notion of Alverti (De Re EAdificatoria), of asing all the timber in the same building fiom
he same forest, is a little too fanciful for these days. though we confess we have some misyivings in impugning an authority which, in most other respects, we are inclined to receive with the highest veneration.
1691. In felling not only the oak, but all other large trees, the great branches should be irst cut off, so that the tree may not be injured or strained in its fall; and the trunk, noreover, must be sawed as close to the ground as possible. When felled, but not before, t is to be barked, trimmed of its branches, and left to season. Before, however, leaving it for this purpose, it is considered by workmen better to square it, which, it is thought, revents its tendency to split. If to be employed for posts or bearing pieces, boring it sus been employed with success; but it is necdiess to observe, that in pieces subject to ransverse strains such a practice is not to be recommended.
1692 The pieces selected for building must be chosen with the straightest grain; but lere are pieces which are occasionally employed, as for knces and braces, wherein a -urvilinear direction of the fibres of the timber is cxtremely desirable. It may, however, ,e generally stated, that, in the case of two equal-sized and seasoned pieces, the heavier is he piece to be preferred.
1693. In oak, as in all other woods, the boughs and branches are never so good as the pouly of the tree; the great are stronger than the small limbs, and the wood of the heart tronger than all. When green, wood is not so strong as when thoroughly dry, which it arely is till two or tlirce years after it is felled. It is scarcely necessary to say, that, conaining much sap, it is not only weaker, but decays sooner. It is weakencd by knots, at vhich, in practice, it is found that fractures most frequently occur; and it is important o the architcct to recollect that he should always rejcet cross-grained pieces.
1694. The great use of oak in this country is more for ship-building purposes than for rehitectural, its use, except in the provinces, being principally confined to picces which re mucli liable to compression, or where great stiffness is required, or in pieces like sills , windows and door-cases, where there is much alternation of dryness and damp. So arly as 1788 , the consumption of oak for ship-building purposes was, in that year. pwards of 50,000 loads.
1695. When of good quality, it is more durable than any other wood which is procurble of a like size. In a dry state, it is ascertained to have lasted nearly a thousand years. 'he open-fibred porous oak of Lincolnshire, and some other places, is a bad sort. 'The est is that with the closest grain and the smallest pores. The colour, as is well known, a fine brown; that which partakes of a reddish hue is not so good as the other. 'The nell of it is peculiar ; it contains gallic acid, and it assumes a black purple colour when unp, by contact with iron. It warps and twists much in seasoningr, and shrinks in width sout one thirty-seventli part.
1696. Cinestavi. One of the finest of the Luropean timber trecs, the Fagus castanea botanists, was heretofore so common in this country, that Fitzsteplen, in his deseription
I.ondon about the tinc of Ilenry II., mentions a fine forest of chesnuts as growing on e northern side of the city. It is stated to lave been used in the bnildings of our cestors, but it is very doubtful if it was so emplosed. 'The yomig true vies with the k in durability, from the small proportion of sapwood it contains. of its durability, e roofs of Westminster Hall, that of King's College, Cambridge, and that of Notre ane, at l'aris, are cited as examples, thongh the fact of the latter being of chesnut is ubterl by Rondelet, who says that Buffon and I' A ubenion thouglit it a species of oak, ich is now well kiown to be the case in the roof first named.
1647. ('liestmut, however, is not to be trusted like oak. As Fivelyn observed, it is often -llooking ontsidn, when deayed and rotten within. Belidor sisy it soon rots when e ends of timbers of it are colosed ronnel in a wall.
1699. It is, perlaps, from the circumstance of its colour so nearly rescmbling that of k, that one timber lias so often been mistaken for the other. Ihe difference, lowever, that the pores of the sapwood of the oak ire larger and more thickly set and easily ringuished, whilst those in the ehesnnt require magnifying powers to be distingerished. it a more decided dillerence is, that the chesnut has no latge transverse septa. It is far ier to work than oak, and is not very susocptible of swelting and shrinkage. I'rom ath las been mentioned above, it may be inferred that the wood, thongrlitomgh and eonn. t is, when young, hardest and mosi tlexible, the old wood being oftern slatky and brittle. di99. Water pipes of this tree endure mueh longer than those of com ; ind for tubs I vessels se hold water, it is superior to oak; for when once thoronghly seasoned, it will ther alriak nor swell, on which acconnt it is used by the ltalinus for wine tuns mud ke. It will thrive on most soils, but rather delights in a rich loany land, suceecling 11, also, on that wheln is gravelly, claycy, or sandy. Mixed soils mre suitable to it, and - finmel in the warner monntainons sithations of most parts of liurope.

If(x). From the experimente, the eohesise foree of a square inch of chesmit, when dry ius fron 9570 to $12,9: 0 \mathrm{llm}$., and the weight of a cubic foot, when dry, is frotht (t) \& 5 lus.
1701. Bexch (Fagus Sylvatica). A beautiful tree, growing to a considerable height, and carrying a proportionable trunk. It Hourishes most in a dry warm soil, and grums moderately quick. The wood is hard, close, has a dry even grain, and, like the chn, brars the drift of spikes. The sorts of beech are the brown or black, and the white beech. It is common thronghout Europe. In the southern parts of Buckinghamshire, where the soil is ehalky, it is particularly abundant ; and such is the ease near Warbleton, in Sussex, on the southern range of ehalk hills, where the beeches are very fine.
1702. Constantly immersed in water, the beech is very durable; sueh also is the case with it when constantly dry ; but mere damp is injurious to it, and it is very liable to injury by worms, though to these Duhamel considers it much less liable when water-seasoned, than when seasoned in the common way. To render it less liable to the worm, it has been recommended to fell it about a fortnight after Midsummer, to cut it immediately into planks, which are to be placed in water alout ten days and then dried. Beech is little used in building, exeept for piles, in which situation, if constantly wet, they are very durable. From its uniform texture and hardness, it is a good material for tools and furniture, and of it, in boards and planks, large quantities are brought to London. It is without sensible taste and smell, easy to work, and susceptible of a very smooth surfaee. The white sort is the hardest, though the blaek is tougher, and, according to Evelyn, more durable. 'The weight of a cube foot varies from 43 to 53 pounds.
1703. Walnut (Juglans, quasi Jovis glans) is of several sorts. The Juglans Regia, or common walnut, was formerly much cultivated in this island, as well for the sake of its timber as of its fruit. On the former account the importation of mahogany has long sinee rendered its cultivation less common. It flourishes better in a thin limestone soil, than in one that is rich and deep, and, if raised for timber, should not be transplanted, but remain in the place where it is sown. For furniture, from its rich brown colour, it is by many persons preferred to mahogany. Its searcity renders its employment rare for building purposes, though by the aneients it was so employed. One of its propertics is, that it is less liable to be affected by worms than any other timber, cedar only excepted; but from its brittle and eross-grained texture, it is not generaily useful for the main timbers of a building.
1704. The heart-wood is of a greyish brown with dark brown pores, often veined with darker shades of the same colour, which are much heightened by oiling. The texture is not so uniform as that of mahogany, nor does it work so easily, but it may be brought to a smoother surface. The weight of a cubic foot is about 45 pounds.
1705. Cedaz (linus Cedrus) is an evergreen eone-bearing tree, of which thoug! several have been grown in this country, it is too scarce to be employed in building. It: durability is very great; such, indeed, that Pliny states cedar to have been found in the Temple of A pollo at Utica, which must have been 1200 years old. Its colour is a light rict yellow brown, with the ammal rings distinct. It is resinous, and has a powerfin. smell. The taste is slightly bitter, and it is not sulject to worms. It is very straight it the grain, works easily and splits readily. Weight of a cabic foot from 30° to 38 pounds,
1706. Fin (Pinus Sylvestris). The red or yellow fir is produced on the hills of Seot land; but the forests of Russia, Denmark, Norway, Lapland, and Sweden produce the finest timber of this species. It is imported, under the name of red wood, in logs and decels From Norway the trees are never more than 18 inches diameter, whence there is mueh sap wood in them; but the heart is a stronger and more durable wood than is had from large trees of other countries. From Riga a great deal of timber is received under the namt of masts and spars: the former are usually 70 or 80 feet in length, and from 18 to 95 inclue diameter; when of less diameter they take the latter name. Yellow deals and planks ar imported from Stockhoim, Frederickshall, Christiana, and various other parts of Sweden Russia, Norway, and Prussia. Of the pine species the red or yellow fir is the most durabl? and it was said by the celebrated Brindley, that red Riga deal, or pine wood, would endur as long as oak in all situations. In Pontey's Forest Pruncr, on the authority of Dr. Suithi an instance is given of the duralility of natural-grown Scoteh fir. It is therein staice that some was known to have been 300 years in the roof of an old castle, and that it wa as fresh and full of sap as timber nevily imported from Memel, and that part of it wa actually wrought up into new furniture. It is to be observed, that foreign timber ha. an advantage too seldom allowed to that which is grown at home, the former being alway in some degree seasoned before it arrives in this country, and therefore never used in s unseasoned a state as is usually the latter timber.
1707. From its great lightness and stiffinsss it is superior to any other material for beam girders, joists, ralters, and framing in general. In naval architecture it is used for mas and varions other parts of vessels. In joinery, both internal and exteri:al, it stands bette is nearly as durable as oak, and is much cheaper.
1708. There is great variety in the eolours of the different sorts of this fir: it is generall of a red or honcy yellow of dillerent degrees of brightuess, and consists in section of han and soft circles alternately, one part of each annual ring being soft and light coleured, th
rer harder and dark coloured, and possessing a strong resinous taste and smelt. When c abounding in resin it works easily. That from abroad shrinks in the log, from seasonabout one thirtieth part of its width.
1709. The annual rings of the best sort of this timber do not exceed one tenth of an h in thickness, their dark parts are of a bright red colour. That from Norway is the est of the sort, to which the best Riga and Memel ase mueh inferior. The infurior timber this kind, which is not so durable nor so eapable of bearing strains, has thick annual ghs, and abounds with a soft resinous matter, which is elammy and chokes the saw. Much he timber of this sort is from Sweden, but it is inferior in strength and stiffiness. That ich is produced in the colder climates is superior to that which is the product of warmer intries, the Norway timber being much harder than that of Iiga. The weight of a , vie foot of this fir, when seasoned, varies from 29 to 40 pounds. That of English growth, ssoned, from 28 to 33.
:710. Write Fir (Pinus abies), commonly called the spruce of Norway, whose 1 ests produce it in abundance. This is the sort which in deals and planks is imported In Christiana, in which condition it is more esteemed than any other sort. 'I he trees fin which these are generally obtained are of 70 or 80 years' growth, and are usually cut , three lengths of about 12 feet each, which are sawn into deals and planks, each length ding three deals or planks. Their most usual thickness is 3 inches, and they are erally 9 inches wide. In this country they are sold by the hundred, which in the ease -hite as well as yellow deals, contains 120 deals, be their thickness what it may, reduced standard one of an inch and a half, a width of 11 inches, and a length of 12 feet. at is called whole deal is an inclı and a quarter thick, and slit deal is one half of that kness. It unites better by means of glue than the yellow sort, is used mich for interior k in joinery, and is very durable when in a dry state.
711. The colour of the spruee fir is a yellow or rather brown white, the annual ring isting of two parts, one hard, the other softer. The knots are tough, but it is not difficult ;ork. Besides the importation above named, there is a considerable quantity received 1 Imerica. Of the Christiana fir a cubic foot weighs from 28 to 32 pounds when oned. That from America about 29 pounds; and the Norway spruce grown in ain about 34 pounds. In seasoning it shrinks about a seventieth part, and after being hased as dry deals at the timber yards, about one ninetieth.
712. American Pines. The Pinus Strobus, or what is called the Weymouth or white , is a native of North America, imported in logs often more than 2 feet square and ards of 30 feet in lengtlı. It is an useful timber, light and soft, stands the weather 'ably well, and is much used for masts. For joiners' work it is useful from its eleall ght grain. But it should not be used for large timbers, inasmuch as it is not durable, is moreover very susceptible of the dry rot. Its colour is a brown yellow, and it has culiar odour. The texture is very uniform, more so, indeed, than any other of the pine ies, and the annual rings are not very distinct. It stands well enough when well oned. A cubic foot of it weighs about 29 pounds.
13. The Jellow pine, or limus variabilis, is imported into England, but it is not in
14. The pitch pine (resinosa), remarkable for the quantity and fragrance of the resin oduees, is a native of Canada. It is brittle when dry, and, though licary, not durable. of a much redder hue than the Scotel pine, and from its glutinous property difheult anc. The weight of a cubie foot is 41 pounds.
15. The silver pine (piceut) is common in the British plantations. This species of er is produced in abundance, and is much used on the Continent both for carpentry ship-buitding. It is light and stiff, and according to Wielsekin, lasts longer in aip in water A cubic foot weighs ahont : 6 poninds.
lf. The ("hoster pine (finaster) is oceavionally cultivated in the British plantations. better sultel to water than exposure to the air, and has a finer grain, bout contanins less than the pine or silver tir. A cubic foot weighs about 26 pounds,
17. Laкси (Pinus Larix). A timber tree only lately to any considerable extent ted in the plantations of Great Britain, anong whose cultivators the Duke of Athol een one of the most ardent and successful. It grows straight and rapidly, is saill to, arable in all sitnations, and appears to have been known and appreciated by litruvins, -gretted the diffienlty of its transport to Jome, where, however, it was occasionally

Wiebeh in prefers it to the pinc, pinaster, and fis, for the arches of timber bridges. poring honads and stairs, where there is moch worr, it is weil suited and when allal one a beautifil colour, sueh, indeed, that when uscd for internal joincry, it ront of h give it a moru beantiful appearanco than it could receive from any paining. Ihe ican larches rlo not produce turpentine ; but the 1 imber has been convidered ejual to uropean morts. It is of a honey yellow (olsom, and more dillicult to wonk thun the or 3 unel timber, though, when ubtainud, the surface is better. It beors the driviug
to nails and bolts, and stands well if properly seasoned. A eubic foot weighs from of 40 pounds.
1718. Poplar. The Populus of botanists, whereof five species are grown in Englane the common white poplar, the black, the aspen or trembling poplar, the abele or gre white poplar, and that of Lombardy. The wood of this tree is only fit for the flooring inferior rooms where there is not much wear. Evelyn attributes to this wood the proper of burning " untowardly," rather mouldering than maintaining any solid heat. Its colour a jellow or brown white. The annual rings, whereof one side is a little darker than 1 other, making each ycar's growth visible, are of an unifom texture. The best sorts are t Lombardy, the black, and the common white poplar. Of the Lombardy poplar, the weig of a cubic foot is about 24 pounds; of the aspen and blaek poplar, 26 pounds; and of white poplar, about 33 pounds.
1719. Alner (Betula alnus). A tree delighting in wet plaees by the banks of rive and which furnished the material, says Vitruvius, for the piles whereon the whole of t buildings of Ravemna stand. In a dry situation it is unfit for employment, on acconnt its early rot when exposed to the weather or to mere damp, and its susceptibility angendering worms. Evelyn says that it was used for the piles upon which the celebrat bridge of the Rialto at Venice was founded in 1591 ; but we have no certain data by whi such assertion can be maintained. There is, however, no doubt that it may be adv tageously employed in situations where it is constantly under water.
its colour is of a red yellow, of different shades, but nearly uniform; whieh latter qual is exhibited in its texture.

From its softness it is easily worked, and seems adapted, therefore, for earving. In at state the weight of a cubic foot varies from 36 to 50 pounds.
1720. Lism (Ulmus). In Great Britain five species of this tree abound, wher the Ulmus campestris, eommon in the woods and hedges of the southern parts of Engla is a hard and durable wood, but is rarely used except for coffins. The Ulrius subier or cork-barked elm, is an inferior sort, and is very eommon in Sussex.
1721. The Ulmus Montana is the most common species in Europe, and particularly the northern eounties of England. It is more gencrally known by the name of the bro leaved elm or wych hazel. Without enumerating the other varieties, whereof the Du elm (Ulmus major) is good for nothing, we shall merely observe, that the Ulmus glai common in Herefordshire, Essex, and the north and north-eastern counties of Engla grows to the largest size and is most esteemed, whilst the Dutch elm is the worst. The is a durable timber when constantly wet, as a proof whereof we have only to mention it was used for the piles on which the old London Bridge stood. Indeed, its durabi under water is well known; but for the general purposes of building it is of little va and it rarely falls to the lot of the architect to be obliged to use it.
1722. The colour of the heart-wood is darker than that of oak, and of a redder bro The sapwood is of yellow or brown-white colour. It is porous, cross and coarse grail has a peculiar smell, twists and warps very much in drying, and shrinks considerabl: breadth and length. Though difficult to work, it bears the driving of bolts and i better than most other sorts of timber. The weight of a cubic foot, when dry, varies f 36 to 48 , scasoned from 37 to 50 pounds. From experiment it seems that in seasol it shrinks onc forty-fourth part of its width.
1729. Asn (Fraxinus excelsior). This, the most valuable of the genus, is eom throughout Europe and the northern parts of A sia. It grows rapidly, and of it the yo is more valuable than the old wood. It is much affected by the difference of the soil: which it grows. It will not endure when subject to alternations of damp and mois though sufficiently durable when constantly in a dry situation. Its pores, if eut in spring, are of a reddish colour, and it is improved by water-seasoning. Evelyn says, when felled in full sap, the worm soon takes to it; and therefore recommends its b felled in the months from November to February. The texture is compact and por the compact side of the annual ring being dark in colour, whence the anmal rings distinct. The general colour is brown, resembling that of oak; but it is more vei and the veins darker than those of oak. The timber of the young tree is a white, proaching brown, with a greenish hue. It has no peculiar taste or smell, is difficul work, and is too flexible for use in building, beside the important want of the eharact, durability. The weight of a cubic toot varies from 35 to 52 pounds; and it is t ubserved, when the weight is mueh less than 45 pounds the timber is that of an old tric
1724. Sycamone (Acer pseudo-platanus), usually called the plane tree in the nort part of the istand, is common in Britain: and on the mountains of Germany. It is 1 in growth, and the wood is durable when it escapes the worm, to which it is quite as as beech. The use of it in buildings is not common, but for furniture it is valuable. rolour is a brown white, yellowish, and sometimes inclining to white. Texture unif annual rings indistinct. It is not so hard as beech, brittle, and generally easy to w A cubie foot, when seasoned, weighs from 34 to 42 pounds. Ware says that there ant
uses in this co:mtry floored with sycamore and wainscoted with poplar. It seems well ough ealculated for floors.
1725. Bach. Betule alba, or common bireh, is a species of alder, to which artiele the ader is referred (1719). The American birch, from Canada, is but little superier to the uropean birch. The Russian birch, on account of its elean light eolour and solvery .in, has been for many years extensively employed for bedroom furniture.
1726. A description of fir (Wellingtınia gigantea) has been lately introduced from our ?ony of Victoria, in Vaneouver's Island, on the western side of North America. It is nt in logs, dtals, and planks. Insteud, however, of being only 14 to 16 inches square, id 60 feet long at the maximum, as in the case of Baltic timber, one stick of this timber sheen sent not less than 127 fect long, and about 42 inches square at one third of the ight measuring from the butt end, which end was about 50 ineles square. It cortaned 07 cubic feet of timber; this is not an exceptional size. A ree is reported to lave been t down lately, the circumference of which was 90 feet, and its height 325 feet; the bark as in some places 4 feet thick. The tree, sound and solid, contained 250,000 fiet of nber. It was supposed to be 3,100 years old. G. R. Burnell states the tenacity of this uher to be greater than, and its resistance to a crushing weight apparently superior 10 , hltic timber. When loaded in ti e cettre to the oint of instantaneous rupture, the Vanuver's island wood bore weights which were to those borne by English cak as 13 to 12 , d to shose borne by the Baltie fir as 13 to 8 . Three-inch eubes of the three woods were l.jected to weights of 45 tons each, or 5 tons ($11,240 \mathrm{lbs}$.) on the ineh superficial, when e permanent clasticity of oak was not affected, that of the fir only slighty so, whilst the iltic timber was permanently and perceptihly compressed.
IT96a. For joiner's woik, the strilightness, freedom from knots, deep warm colour, and anty of the graio, places this timber above any other of the fir or pine woods; whilst its at.r hardness would in staircases, flcors, \&e., compensate for any slight increase in the ee of labour for working it. It has heen employed by Mr. Burnell in the joiner's work an offece in Lincoln's Inn Fields. It seems to affect iron somewhat as does oak.
1727. Manogany (Swietenia Mahogoni) is a native of the West Indics and the country ind the IBay of Ionduras. The tree is said to be of rapid growth; its trunk oft n ecds 40 feet in length and 6 feet in diameter. Its Spanish name is caoba. Spanish hogany is imported from Cuba, Jamaica, Hispantola, St. Domingo, and some other of West India Islands and the Spanish Main. 'The best quality is considered to come in the sea-board on the south part of the is?and of San Domingo or LLayti. 'lite logs from 20 to 26 inehes square, and about 10 feet in length. It is close grained, lard, netimes strongly fignred, and generally of a rich brown eolour, darker than IIonduras; its pores frequently appear as if chalk had been rubbed into them. It takes a very high ish with hand labour; and French polishing brings out its flower with great lussre.
1727a. Hondures malogany is imported in logs of larger size than the above, that is, In 2 to 4 fece square, and from $1 y$ to 18 feet in length; logs 40 feet in length have hecon anned; planks 6 to 7 feet wide are occasionally imported; but 5 feet square and 15 feet Ig are the more ordinary dimensions. It is so distinctly inferior to the Spanish quality, it $n 0$ ordinary judge can possibly be mistaken in the normal amples. In weight it is 1 iter ; and it is of a straightor and more opell or spongy grain, wthout much flower, therefore little songht after hy calinet makers. The worst kiads are those most tilled 'h erey pecks, from which Spanish mahogany, exeept the Cuba, is comparatively free.
7276. Spanish malogany is in this country far too valuable to be used in common ding. It sometimes sells for as much as Gi. per fiot cuhe, when good fir, of nearly al value for soch purposes, would only cost $2 s$ s. at the maximm. In Jamaica, wahogny boen frepuently emploged for floors, joists, aiters, shingles, \&e.; and ships have been , t of it ; for which last purpose, the circumstance of its allowing shot to be huried in it ant eplintering, makes it peculiarly suitable. Soon after its introduction into this itry in 1724, when a specinen was sent to Dr. Gihbons by hin brother, a West ludia ain, it was emplayd for doors, as at the Treasuy, by W. Kint, in I 733. The hetter Itices are res reed for small articles of cahinet-work and firniture, the best being en.ed in the form of vencers, of which twenty-me cuts are now got out of an inch thick-

Solid work for more gencral purposes, such as handrails of stairs, sabhes, sishlıdoars, ordirary coutting-house and oftice fittings, \&e, is worked out of Ilonduras mahogany, ho is also employed as the groundwork for veneers of the finer quality.
idic. It is generally st lil at per f.ont superficisl, one inch thick; the common qualities at of 5 s fod per cubic foot. It holds with ghe better than any ather wood. Of 11 duras malingany, the quality called 'common southern' weighs ubout e6f ths. :
 t 36 has., per eubic foot. All these qualities are used in shipbuilding ; the lightent, for tate. Subnish mahognny weighs 48 liss. 6 oz., the hest from 50 lbs to 51 lth . per frot. . Il kiads of this timbet are suid to be very durnble, and frce from the ntheck rims when heyt eonstmitly ily. They do not warn or crack under the influence of
the sun, but they do not resist alternations of great wetuess and dryness. They shrink bur little in drying, and twist and warp less than any other wood.

1727d. African mahogany (Suietenia or Khaya Senegalensis), from Gambia, is a more recent importation ; it twists much more than either of the above, and is decidedly inferior to them in all respects exeept hardness. Small quantities of mahogany are also received from Jamaica and the other. West lndia islands, but they are of a quality so inferior even to the Honduras variety, that they are practically unknown to timber merehants. Horida cedar and other varieties are frequently made to pass as mahogany in cheap works.
1728. Teak (Tectona grandis), has of late years formed a valuable timber for shipbuilding; and to a small extent in house, and even carriage, joinery. The best varietics are obtained from the ports of Rangoon or Moulmein (called Moulmein teak), and from the coast of Malabar (ealled East lndian teak). It is by no means rare to meet with sticks of perfeetly straight teak 60 or 70 feet long, and about 24 to 30 inches square. The wood is of a light brown colour, porous, very hard, tough, and when sound, of great strength and tenacity. It derives much of its value from the aromatic oily substance with which it is mure or less saturated in the fresh state; but this does not prevent its attack by inserts whilst in the forest, consequently the trees turn out to be very defective. The wood woiks well; takes a good polish, and though porous, it is very durable in exposed situations: it is considered that its oily properties render it less injurious to iron than oak. The tenacity of Moulmein teak is $15,000 \mathrm{lbs}$. per superficial inch. Some fine planks from Rangoon were nearly $3 \frac{1}{2}$ feet wide.

1728a. Morung savi. (Shorea rolusta), of Nepaul, in the East Indies, is in great repute for shipbullding. It is a heavy, close-grained, light brown wood. This timber is considerel to be the most valualle and extensively used of all the trees of India, but the val. of it is much diminished from the injudicious mode in which it is squared. The saul or sâl timber bronght to Calcutta is seldom more than 30 feet in length. In strength and tenacity it is considerably superior to the best teak, compared with which, Captain Baker's experiments prove that its strength is about as 1121 to 869 . Fiom Major H. Canphell's experiments, unseasoned saul broke with a weight of $1,308 \mathrm{Jlss}$; seasoned saul with $1: 319 \mathrm{lbs}$; and teak wood with 1091 llhs . Considered as a building wood, it is somewhat apt to shrink unless very well seasoned, (Jurar's Reports, 1851).

1728b. Morra (Mora excelaa), sonetimes called Demerara loeust, is sent from Demerara in South Amenica. It is a valuable timber for slipbuilding.

1728c. Gbeemheart (Luurus chloroxylon, or Nectundra rodiai), imported from the Enslish colony of British Guiana, and Brazil, possesses the reputation of immunity from the attacks of marine boring worms; and for this reason it is now largely used in hydraulic works. Mr. Burnell has stated his conviction from what he saw, especially of two logs, in the West India Docks in 1860, that this timber does suffer from the attacks of land insects; and he was at that time in possession of a piece of the timber from Vietor Bay, Panama, which was completely riddled by the Terelo navulis. A writer, commenting on this stattment, says that " his experience proves that gre mheart is exempt from the therosion by the teredo, but that a molluse is found alive in it when ariving here from the West Indies, The worm is found in sizes from the lymexylon to the tere t, but it is of a different species, and seems not to live when this wood is used in such constructions as dock gates, in this country." The timber squares from 18 to 24 inches, bit usually arrives about 16 incles sifuare and 70 feet in length. It is a hard, heavy, fine, but not even-grained wood; if proves strong and durable in positions that are alternately wet and dry.

1728d. Among the other nseful hard woods are:-I. The Peon, or Poon wool, all ludian wood of Travancore, East Indies, formerly imported to some extent. from 2 to + feet in circumference and 80 feet in lengh ; but latterly it has been regard. d with sucl disfavour that it is now hardly ever imported. 11. Thie Kowne, a New Zealand woul. 111. The Australian Red Cedar. IV. The Sabicuf, from Cuba, which was used for the steps of the stairs in the Great Exhibition building of 1851 , and are now in the (rystal Palace at Sydenham. It makes excelient beams and planks. A heavy specimen obtaincd of this wood was "a portion of a large beam, which broke merely in falling from a truck!" V. The Iron Bark, of Vaa Diemen's Land, Australia, is a very hard and compact wood, with a specific gravity heavier than water. VI. Borneo woon, imported from Sarawak. was used in 1865 for the fioors and stairease in a warehouse in Gresham Street West. II is of so peculiar a character that it broke nearly all the saws used to reduce it to batens: it is light brown in colour, with a texture very similar to teak. It may probably be the Biliun, or iron wood of that country, said to le impervious to the attacks of the white ant. it has not been known to decay when immersed either in fresh or salt water. An engineer who had resided in Borneo for five years, states he had never seen a rotten piece of Bilian wood.

1728e. Besides the weights of various woods given in the text (as marked *) the subjoined list of the weight per foot cube in jounds avoirdupjis, may be useful.

Table of the Weights of Timbers.

1728f. The chief woods employcd in shipbuilding and acknowledged as " first-rate" by the authorities at Lloyds, are eight in number. Jhese are, I. Englishoak; I I. American live oak; 11I. African oak; lV. Norung Saul; V. East Indian 'leak; VI. Gieenheart; VII. Morra; and VIll. Iron Bark.
1729. In timber yards, deals are sold by the long hundred or six score; thus the "standard" of deals is reckoned as $120-12 \mathrm{ft} . \times 1 \frac{1}{2} \mathrm{in} . \times 11 \mathrm{ins}$, but varying lengths and thicknesses are imported (Sce par. 2362 and 2S63).

Names.		No.	Ft. long.	lus. thk.	Wide.	Sup. ins.	Cubeft.
Petersburg deais -	-	120	12	$1 \frac{1}{2}$	11	1980 of $1^{\prime \prime}$	165
" battens	-	120	19	$2 \frac{1}{2}$	7	- -	17.5
Dantzig deals	-	120	12	$1 \frac{1}{2}$	12	- -	180
Norway ",	-	120	12	3	9	3240	470
Sweden "	-	120	14	3	9	- -	315
Baltic deck deals -	-	-	40	3			
Christiania standard	-	120	11	$1 \frac{1}{4}$	9	$1237 \frac{1}{2}$ of $1^{\prime \prime}$	10, $\frac{1}{8}$
Drammen -	-	120	9	$2 \frac{1}{2}$	$6 \frac{1}{2}$		
Ditto - -	-	120	13	$1 \frac{1}{4}$	9	1462 of $1^{\prime \prime}$	$121 \frac{5}{6}$
Quebee, long	-	103	12	$1 \frac{1}{2}$	11		
Ditto, short	-	120	10	3	11	2750 of $1^{\prime \prime}$	2296
London and Dublin	-	120	12	3	9	3240 of $1^{\prime \prime}$	270°

The measurements have been reduced to one standard of 19 ft . long, 3 in. thick, and 9 in . wide. Two of the latest works for calculating deals according to this, the Petersburg standard hundred, are, J. Smith, Companion to Hoppus; IIandbook of Tables fir the use of 'Timber Merchauts, \&c., London, 1860; and Grandy, Timber Importers', \&c. Standar, Guide, 8vo., London, 1865, to which latter work we are glad to refer the student, anic from which we select the following extracts:-

1729،. "American Ports.-At Quebee, there are three qualities of spruce deals, 1st, 2nd and 3rd. Irregular size scantlings are scarcely ever shipped from this port, the genera run being battens, 7×3; deals, 9×3; and planks, $11 \times 3,7 \times 2,9 \times 2$, and 11×2; genera lengths from 8 to 14 feet. All under 8 feet are elassed as "ends." Ye.low pine battens deals, and planks are shipped as 1 st, 2nd, and 3rd qualities. Battens are not so valuabl as duals and planks, some of the latter running 11 to 30 inches; the finer qualities bear : high rate.

1729b. St. John's deals'rank after those of Quebec in quality. Battens, deals, ant planks run from 8 to 26 fcet; all lengths under 8 feet being elassed as ends. All d.al are scarcely ever classed into Ist, 2nd, and 3 ord, but taken by the run; the sizes $7 \times$: 9×3, and 11×3, being the highest in price. Irregular scantlings, such as $3 \times 3,4 \times 5$ $6 \times 3,5 \times 2 \frac{1}{2}, \& c$, are less per thousand.

1729c. Pugwash, Mirumichi, and other Lower Ports. Battens, deals, and planks ari obtained as at St. John's. The deal is a closer grain, but coarser, and hence not so valuable The lengths run from 8 to 14 feet, all under 8 feet being 'ends.' Scareely any irregula scantlings are slipped from these ports. The square timber at the American ports i generally purchased by the cubic foot.
$1729 d$. Baltie Ports. - Memel. Battens and deals are searee; planks form the bulk the timber imported. They all run from 8 to 20 feet. They are geneially sold by 92 feet run of $11 \times 3,=1$ Petersburg standard. Battens and deals run 7×3 and 9×3 Christiania. Battens and deals, and Drammen deals run $9 \times 3,7 \times 3$, or $7 \times 2 \frac{1}{2}$. Crouk Memel. Square timber is generally sold by the 50 running feet, as 1 st middins and 2nd middling. But "undersized" timber, that is, under 12 inehes square, is sol. by 50 eubic feet, or by 50 running feet. 'There are also " short lengths of undersized timber.

1:99e. Home Trade. - At London, pine deals are sold by the l'etersbung, and spruc deals by the London, standard. Square timber is sold by the load, or 50 cube feet, or b the cube foot, calliper measurement. At Liverpoul und B.istol, deals are sold by th Petersburg standard; square timber by the load or foot, string measurement. At Glasgou deals are sold by the eube foot; square tinber by the cube foot, string measurement. A Dublin, deals are sold by the London or Dublin standard of $120,12 \times 9 \times 3$; square timbe by the ton of 40 feet, string measurement."
$1729 f$. These timbers are used in building for the undermentioned purposes :Joists and main timbers: The largest, of Dantzic, Memel or Riga, fir ; those of 10 or ! unches square, from Sweden; those of 8 inches square, trom Norway.

Partitions and minor timlers: American red wood or red pine, whieh not being so strong as that from the Baltic, must he cut to a little larger size.
Sleepers, window sills, and some parts of the rouf: Ouk.
Franing : Norway and Christiania white deals; Christiania yellow deals are sappy; Swedish deals are bad, as they warp mucl.
Panelling: Christiania white pine; or Ameriean yellow pine.
Best ordinary floors: Drammen and Christiania white deals; American pitch pine; American deals are bad for floors, as they are a softer wood.
Ground Hoors: Stockholm and Gefle yellow deals.
Warehouse floors, and Staireases: Arehangel and Onega p!anks, and American pitch pine. Best floors: Petersburgh, Onega, and Christiania battens.
Interior finishings generally : Baitie red and white wood, and American red and yellow pine. 1729 g . Memel timber is generally considered the most eonvenient for size, and is superior in strength to the Swedish, or Norwegian ; Iiga, the best in quality; Dantzie, when free from large knots, the strongest; and the Swedish, the toughest, but weakest. Riga can always be depended upon, and although the dearest in price, is the chrapest in the end.
1730. We shall now place before the reader, observations on timber made by the celebrated Evelyn though perhaps at the risk of repetition in what follows after them.
1731. "Lay up your timbers very dry, in an arry place, yet out of the wind or sun, and not standing very upright, but lying along, one piece upon another, interposing some short bloeks between them, to preserve them from a certain mouldiness whieh they usually eontract while they sweat, and which frequentiy produees a kind of fungus, especially if there be any sappy parts remaining.
1732. "Some there are yet who keep their timber as moist as they can by submerging it in water, wherc they let it imbibe, to hinder the cleaving; and this is good in fir, both for the better stripping and seasoning ; yea, not only in fir, but other timber. Lay, therefare, your boards a fortnight in the water (if running the better, as at some mill-pond head); and there, setting them upright in the sum and wind, so as it may freely pass through them (especially during the heats of summer, which is the time of tinishing buildings), turn them daily; and thus treated, even newly sawn boards will floor far better than many years' dry seasumng, as they call it. But, to prevent all possible accidents, when you lay your Hoors, let the joints be shot, fitted, and tacked down only for the first year, nailing them for good and all the next ; and by this means they will lie staunch, close, and withont slrinking iu the least, as if they were all one piece. And upon this oceasion I am to add an observation, whieh may prove of no small use to builders, that if one take up deal boards that may have lain in the floor a hundred years, and shoot them [plane their edges] again, they will certainly shrink (toties quoties) without the former method. Amongst wheelwrights the watcr seasoning is of especial regard, and in such esteem amongst some, that I am assured the Venetians, for their provision in the arsenal, lay their oak some years in water before they employ it. Indecd, the Turks not only fell at all times of the year, without any regard to the season, but employ their timber green and unseasoned; so that though they have excellent oak, it decays in a short time, by this only negleet.
1733. "Elin felled ever so green, for sudden use, if plunged four or five days in water (especially salt water), obtains an admirable seasoning, and may immediately be used. I the oftener insist on this water seasoning, not only as a remedy against the worm, but for its efficacy against warping and distortions of timber, whether used within or exposed to the air. Some, again, commend burying in the earth; others in wheat; and there be seasonings of the fire, as for the scorching and hardening of piles, which are to stand sither in the water or in the earth.
1734. "When wood is charred it becomes incorruptible; for which reason, when we wish to preserve piles fron decay, they should be charred on their outside. Oak posts used in enclosures always decay about two inches above and below the surfaee. Charring that part would probably add several years to the duration of the wood, for that to most timher it contributes its duration. Thus do all the elements contribute to the art of weasoning.
1735. "Timber which is cleft is nothing so obnoxious to reft and cleave as what is hewn; nor that which is squared as what is round: and therefore, where use is to be made of huge and massy columns, let them be bored through from end to end. It is am exeellent preservative from splitting, and not unphilosophical; though to cure the aecident painter's putty is recommended; also the rubbing them over with a wax eloth is good; or lefore it be converted the smearing the timber over with cow-dung, which prevents the effeets both of sun and air upon it, if of neeessity it must lie exposed. But, besides the former remedies, I find this for the closing of the chops and clefts of green timber, to anoint and supple it with the fat of powdered beef broth [we do not quite agree with our inthor here], with which it must be well soaked, and the chasins filled with sponges lipped intn it. This to be twice done over.
1736. "We spake before of squaring; and I would now reeommend the quartering, such trees as will allow useful and competent scantlings to be of much more durablenes and effeet for strength, than where (as eustom is and for want of observation) whole bean and timbers are applied in ships or houses, with slab and all albout them, upon false suppo sitions of strength beyond these quarters.
1737. "Timber that you have occasion to lay in mortar, or which is in any part con tiguous to lime, as doors, window cases, groundsils, and the extremities of beams, \&e have sometimes been capped with molten pitch, as a marvellous preserver of it from th burning and destructive effects of the lime; but it has since been found rather to heat andecay them, by hindering the transudation which those parts require; better supplied wit loan, or strewings of briek-dust or pieces of boards; some leave a small hole for the ail But though lime be so destructive, whilst timber thas lies dry, it seems they mingle with hair to keep the worm out of ships, which they sheathe for southern voyages, thoug it is held much to retard their course.
1738. "For all uses, that timber is esteemed the best which is the most ponderous, an which, lying long, makes the deepest impression in the earth, or in the water being floated also what is without knots, yet firm and free from sap, whici is that fatty, whiter, an softer part called by the ancients albumen, which you are diligently to hew away. M Lord Bacon (Exper. 658.) recommends for trial of a sound or knotty piece of timber, t cause one to speak at one of the extromes to his companion listening at the other; fur if i be knotty, the sound, says he, will zome abrupt."

PRESERVATION OF TIMBER.

17:9. The preservation of timber, when employed in a building, is the first and most im portant consideration. Wherever it is exposed to the alternations of dryncss and moisturc the protection of its surface from either of those actions is the prineipal objeet, or, in othe words, the application of some substance or medium to it which is imperviable to moisture but all timber should be perfectly dry before the use of the medium. In Holland the ap plieation of a mixture of pitch and tar, whereon are strewn pounded shells, with a mixtur of sea sand, is general ; and with this, or small and sifted beaten scales from a blacksmithi forge, to their drawbridges, sluices, and gates, and other works, they are admirably pro tected from the effects of the seasons. Semple, in his work on aquatie building, recom mends, that "after your work is tried up, or cven put together, lay it on the ground, wit stones or bricks under it to about a foot high, and burn wood (which is the best firing fo the purpose) under it, till you thoroughly heat, and even scorch it all over ; then, whilst th wood is hot, rub it over plentifully with linsced oil and tar, in equal parts, and well boiler tugether, and let it be kept boiling while you are using it; and this will immediatel? strike and sink (if the wood be tolcrably seasoned) one inch or more into the wood, clus all the pores, and make it becone exceeding hard and durable, either under or over water, Semple evidently supposes the wood to have been previously well seasoned.
1740. Chapman (on the preservation of timiver) recommends a mixture of sub sulphat of iron, which is ootained in the refuse of copperas pans, ground up with some chtap oil and made sufficiently fluid with coal-tar oil, wherein pitch has been infused and mixea.
1741. For common purposes, what is called sanding, that is, the strewing upon the painting of timber, before the paint dries, particles of fine sand, is very useful in the pre servation of timber.
1742. Against worms we believe nothing to be more efficacious than the saturation on timber with any of the oils; a process which destroys the inscet if already in the wood, with that of terpentine especially, and prevents the liability to attack from it. Evelyn recommends nitric aeid, that is, sulphur immersed in aquafortis and distilled, as an effectual ap. plication. Corrosive sublimate, lately introduced under Kyan's patent, has long been known as an effectual remedy against the worm. Its poisonous qualities of course destroy all animal life with which it cones in contact; and we believe that our readers who are interested in preserving the timbers of their dwellings may use a solution of it without infringing the rights of the patentee. But the best remedy against rot and worms is a thorough introduction of air to the timbers of a building, and their lying as dry and as free from moisture as practicable. Air holes from the outside should be applied as much as possible, and the ends of timbers should not, if it can be avoided, be bedded up close all round them. This practice is, moreover, advisable in another respect, that of being able, without injury to a building, to splice the ends of the timbers should they becone decayed, without involving the rebuilding of the fabric; a facility of no mean consideration.
1743. The worm is so destructive to timber, both in and out of water, that we shall not apologise for elosing this part of our observations with Smeaton's remarks upon a species of worm whieh he found in Bridlington piers. "This worm appears as a small white soft substance, much like a maggot; so small as not to be scen distinctly without a magnifying glass, and even then a distinction of its parts is not easily made out. It does not attempt
to make its way through the wood longitudinally, or along the grain, as is the case with the common ship worm, but directly, or obliquely, inward. Neither does it appear to make its way by means of any hard toois or instruments, but rather by some species of dissolvent liquor furnished by the juices of the animal itself. The rate of progression is, that a three inch oak plank will be destroyed in eight years by aetion from the outside only." For resisting the effects of these worms, Smeaton recommends the piles to be squared, to be fitted as closcly as possible together, and to fill all openings with tar and oakum, to make the lace smooth, and cover it with sheathing.
1744. The destructive effects of the white ant are so little known here, that it is unnecessary to make further mention of them, than that in India they are the most inveterate enemies with which timber has to contend. From Young's Annals we extract the following curious statement of experiments made upon inch and a half planks, from trecs of thirty to 'orty-five years' growth, after an exposure of ten years to the weather.

Cedar was perfectly sound.
Larch, sap quite decayed, but the heart, sound
Spruce fir, sound.
Silver fir, in decay.
Scotch fir, much decayed.
linaster, in a perfectly rotten state.
Whence we may be led to some infcrence of the value of different sorts of timber in esisting weathor ; though we must not be altogether guided by the above table, inasmuch s it is well known that the soil on which timber is grown much increases or deteriorates es value, and that split timber is more durable and stronger than that which is sawn, from he circumstance of the fibres, on account of their continuity, resisting by means of 1eir longitudinal strength; whereas when severed by the saw, the resistance depends more In the lateral cohesion of the fibres. Hence whole trees are invariably stronger than spemens, unless these be particularly well selected, and of a straight and even grain; but in racticc the results of experiments are on this account the more uscful.

DECAY OF TMMER.

1745. If timber, whatever its species, be well seasoned, and be not exposed to alternate yness and moisture, its durability is great, though from time it is known to lose its stie and cohesive powers, and to become brittle if constantly dry. On this account it Inifit, after a eertain period, to be subjected to variable strains: however, in a quiescent te it might endure for centuries. Dryness will, if carricd to excess, produce this catery. The mere moisture it absorbs from the air in dry weather is not sufticient to impair durability. So, also, timber continually exposed to moisture is found to retain for a ry long period its pristine strength. Heat with moisture is extremely injurious to it, d is in most eases productive of rot, whereof two kinds are the curse of the builder, the t and the dry rot, though perhaps there be but little difference between the two. They pear to be produced ly the same eauses, excepting that the frecdom of evaporation demines the former, and an imperfect evaporation the latter. In both cases the timber is fected by a fungus-like parasite, beginning with a species of mildew; but how this fungns generated is still a vexate quastio ; all we know is, that its vegetation is so rapid, that en before it has arrived at its height, a building is ruincd. From our inquiries on the atinent, we believe the disease does not oceur to the extent that it does in this country; a I which we are inclined, perhaps erroneously, to attribute to the use of the timber of the mutry, instead of imported timber. Our opinion may be fanciful, but there are many , minds on which we think that is not altogether the ease. Our notion is, that our innfted timber is iufected with the seeds of decay long before its arrival here (we speak of I more espeeially), and that the comparative warmth and moisture of the climate bring 1 re elfectually the causes of decay into action, especially where the situation is close and lined. Warnth is, dombtess, known to be a great agent in the dry rot, and most espely when moisture co-operates with it, for in warm cellars and other close and contined Nutions, where the vapour which feeds the disease is not altered by a constant change "ir, the timbers are suon destroyed, and berome perfectly decomposed.
7.16. The lime, and more especially the dimp brick work, which neceive the timbers of -w halding, are great canses of decey to the ends of them; but we do not think that regulations of the 19 Car. 11. cap. 3., whieh directed the builders atter the lire of fidm, to bed the cads of their giders and joists in loam instad of mortar, wonld. if fi) "ed oat in the present day, be at all effective in preventing the decay insident to the Fo of tinber4. Tinder, in a perfectly dry state, does not appear to be injured by dry lif and inded, lime is known to be effectival in the protection of wood againt worms. 7 ber in conlact with masonry in constantly fond to deeny, when the other pats of tho
beam have been sound. This will be entirgly obviated by inserting the wood in an iron shoe, or by piacing a thin piece of iron betwixt the wood and the stone. Cases arc known in which the iron shoe appeared to have proved a complete proteetion against dry rot and deeay; a hard crust being formed on the timber in contact with the metal. The system af grouting must eontribute to the early decay of wod bond; but at Manchester, where it was used very generally, it appeared to answer well, for the high temperature kept up in the buildings may eause the walls to dry very soon. Sea-sand, used for outside and inside purposes, in a spirit of economy, soon shows the result by inducing the appearance of rot in timber. Wood laid in sandy soil is well preserved, as was found to be the case ir the specimens lately dug up at Birkenhead from depths varying from 8 feet to 32 feet they were considered to have been buried for eenturies.
1746. Nothing is more injurious to the floors of a building than covering them witl painted floorcloth, which entirely prevents the aceess of atmospheric air, whence the damp. ness of the boards never evaporates; and it is well known that oak and fir posts have beel brought into premature decay by painting them before their moisture had evaporated whilst in the timber and pewing of old eluurches, which have never been painted, we st: them sound alter the lapse of centuries. Semple, in inis Treatise on Building in Water notices an instance of some field gates made of the fir of the place, part whereof, near thmansion, were painted, and had become rotten, while those more distant from the mansion which had never been painted, were quite sound.

1747a. According to Baron Liebig, the decay of wood takes place in the thro following modes:-I. The oxygen in the atmosphere eombines with the hydrogen , the fibre, and the oxygen unites with the portion of earbon of the fibre, and evape rates as earbonic acid; this process is called decomposition. II. The actual dera of the wood which takes place when it is brought in contact with rotting substances. An III. 'The inner decomposition of the wood in itself, by losing its carbon forming carbon: acid gac, and the fibre under the influence of the latter is changed into white dust ; this called putrefaction.

prevention of decay.

1748. After timber is felled, the best method of preventing decay is the immediater moval of it to a dry situation, where it should be stacked in such a manner as to secu a free eireulation of air round it, but without exposure to the sun and wind, and it shou be rough squared as soon as possible. When thoroughly seasoned before eutting it in scantlings it is less liable to warp and twist in drying. The ground about its place of d posit should be dry and perfectly drained, so that no vegetation may rise on it. Hen a timber yard should be strewed with ashes, or the scales from a foundry or forge, whi supply an admirable antidote to all vegetation. It is thought that the more gradual timber is seasoned the greater its durabitity; and as a general rule, it may be stated, t it should not be used till a period of at least two years from its being felled, and for joine work at least four years. Much, however, is dependent on the size of the pieces. By son water scasoning has been recommended; by others the steaming and boiling it; sinot drying, charring. and seorching have alss been recommended. The latter is, perbaps, best for piles and other pieces that are to stand in the water or in the ground. It was pri tised by the ancients, and is still in use generally for the posts of park paling and the lit
1749. In Norway the deal planks are seasoned by laying them in salt water for three four days, when newly sowed, and then doying them in the sun, a proeess which is \mathbf{c} sidered to be attended with advantage; but it does not prevent their shrinking. Mr. Eve recommends the water seasoning for fir.

1749 . The effectual seasoning obtained by Davison and Syiniagton's patent proces forcing heated air in a continued current through timber under pressure, effectually dt it, and coagulates the albumen. The timbers for the flooring of the Coal Exchange London have been so treated, and show no signs of shrinkage. The wood was taken in natural state, and in less than ten days it was thoroughly seasoned; in some cases from to 48 per cent of moisture was taken out of it. The air when heated to about 110° or 1 is sent through the timber at a rate of about 48 miles per hour ; the heat being regula according to the quality of the timber. Honduras mahogany exposed to a heat of 3 would have the whole of the moisture taken from it in 48 hours. This process, howe sometimes splits the timber. Out of a hundred specimens of wood experimented u_{i} varying from one inch to twelve inches square, not one of them split : even some openi which were visible before the process was applied, were found to be closer after it. Perl 9 inehes square is the limit to which the operation ean be successfully applied.
1750. Notwithstanding, however, all eare in seasoning, when timber is employed i damp situation it soon decays; and one of the principal remedies against that is ε drainage, without which no preeautions will avail. It is most important to take care earth should not lie in eontact with the walls of a building. for the danp is quickly c municated, in that ease, by their means to the ends of timbers, and rot soon follows. expedient to guard against this eontingency is so good as what are cailed air drains,
1751. When the carcass of a building is complete, it should be left as long as possible 0 dry, and to allow to the timbers what may be called a second seasoning. The modern ractice of finishing buildings in the quickest possible period, bas contributed more to dry ot than perhaps any other cause; and for this the architect has been blaned instead of his inployer, whose object is generally to realize letting or to cnjoy occupation of them as arly as possible. After the walls and timbers of a building are once thoroughly dry, all neans should be employed to exclude an accession of moisture, and delay is then prejudicial.
1752 Among the many inventions to preserve wood from decey, those of England have roved the most successful. In 1797 a patent was granted to Mr. Emerson to prepare inber with hot oil. This was followed by various recominendations early in the present entury ; those of later date consist of : - I. Kyan's process, 1832, who steeped the timber n a solution of bichloride of mercury, known as corrosive sublimate (par. 1742.) It appears o penetrate îr less than some other woods (Faraday). The wood thus treated becomes of ess specific gravity, less flexibility, and more brittle. Il. Sir William Burnett's patent of 836, was for using the ehloride of zinc. III. M. Bréant in 1837 suggested sulphate of ron, which was found not to alter the qualities of the timber as did the corrosive sublimate. V. Margary's patent, 1837, is for steeping timber in a solution made of one pound of ulphate of copper with eight gallons of water. Wood impregnated with sulphate of opper (blue vitriol) will not last longer in sea water than any other wood. But wood so reated will last longer in the soil than if either tarred or charred. Its applicetion for the revention of rot is beneficial, and it inight be used where not exposed to the action of water, on account of the solubility of the salts. The proportion of the sulphate should co one pound to four gallons of water; we have also met with the proportion of one pound o two gallons; perhaps the strongest is the best (par. 1752b.) V. Payne, 1841, patented system for using two solutions; first, sulphate of iron, which would form an oxide of fon in the eells; and secondly, carbonate of soda: some very good results were obtained, ut the process must be done under pressure and with the greatest care.
1752a. VI. Bethell's patent, 1838, consistz in the injection of oil of tar, containing creaote and a crude solution of acetate of iron, cuanonly called pyrolignite of iron, after the ir in the wood has been extracted. This process is effective to a great extent, and full articulars are given by G. R. Burnell in his paper read before the Socitty of Arts 1860, on which we have been quoting. It , however, can only be recommended for ralways nd other large works; the offensive smell and increased danger by fire should deter s use in houst building. In the best creasoting works, the oil is injected at a trmperature f 120° und under a pressire of 150 lbs . on the square inch, so that ordinary fir timber bsorbs 10 llss . weight of the creasote per cubic foot; the wood should be weighed to stertain that it did absorb that quantity. For all engineering purposes, fir timber thus feated is far more durable than the best oak, teak, or other hard woods, and the cost of 1e operation is very small. Timber which has just been taken out of water contains so rge a quantity that it resists the entrance of the oil; unless time, therefore, be given for to be first dried, it would necessarily be badty prepared.
17526. V1I. Dorsett and Blsthe, 1863, patented the injection of heated solutions of ilphate of eopuer (par. 1752, I V.), a process said to have been adopted by French, Spanish, malian, and other railway companies. Amongst its adrantages, they state that wood so repired is rendered to a great extent incombustible; and that for out-door perposes it has clean yellowish surface, without odour, requires no painting, remaining unchanged any lelyth of time.
1752c. Lxperlence of the English processes shows that creasoting is the inost generally successful ; the Mleation of the sulphate of copper is satisfactory in many cases; while the other processes, although doubt of ocenvional value, have beeu praetically abandonel. They all depend for their suceess upon - akilful and conscientious mumner in which the are applied; for as they involve ehemical actions on arge geale, therir efflecmey must depend upou the observation of tho minute practical precautions Ilfros to exclude any disturbing cuuses.
1750d. Curbolineunn A venarius is salf (i887) to be an efficient preservative of wood against all external 1 Internal injurlous influeners, driving the monisture out of it by making it impervious to daup, aud tated ton a a preservitive ugainst the at tack of white nuts in hot climatis. Being thiu and liquid it k 7 into the wool realily. One gallou will cover from 30 to 50 square yards.
175.3. It is no casy matter to eure the dry rot where it has once taken root. If it be ind neessary to sulstitute new timbers for old ons s, every particle of the fungne, known the Meruliux lucrymans, must be removed from the neightourhood of such new timbers. ter acraping it from the adjoining walls and timbers, perhaps no better application than - of the wastes nbove inculioned can be employed. About 300° of heat would effect sune purpore, but this is diflicult in application. Coal tar hass been found aselun, but oduur, ariving at a moderate degree of heat, is an oljection to its use. A weak solution witiolic aeid with water will generally stop the rot if it have not gone too far. l'yropeous acid is recommended for preventing the spreading of the disease. The precautions icaned ahove for the prevention of decay, although not always successful, muse be decmed if frable to the application of after remedies.

Sect. V.

IRON.

1754. Iron is a metal found in almost all parts of the worla, and though not mentioned by llomer, and hence, we may suppose, in his time extremely scarce, it is now more abon. dant than any of the other metals, and is, at the same time, the most useful. Althougl, witl the exception of tin, it is the lightest of all metals; yet it is, when pure, very malleable and extremely hard. Its malleability is increased by heat, whereas most other metals, as the? are heated, beeome more brittle. It is the only known substanee whereon the loadston acts, and its specifie gravity to water is as 7632 to 1000 .
1755. The iron manufactured in Great Britain is obtained from three speeies of the ore The Lancashire, which is very heavy, fibrous in texture, and of a dark purple colour in clining to black, and lodged in veins. The Bog ore, which has the appearance of a dec yellow clay, and is found in strata of from twelve to twenty inehes in thickness. An lastly, Iron stones, of an irregular shape, frequently in beds of large extent, similar to othe stony masses, and often intersected with seams of pit eoal. It is prineipally from the argil laceous ore or clay iron-stone that iron is extracted in this country.
1756. After raising, the ores are selceted and separated as much as possible from hetero. geneous substances. They are then roasted in large heaps in the open air, for the purposis as well of freeing them from the arsenie and sulphur they eontain as to render them friabl or easy of reduction to a powder. The roasting is performed by means of bituminom coal, and the result is a substance full of fissures, friable, and a deprivation of all vitreou lustre. After this it is transferred to the erushing mill for eomplete pulverization whence it is earried to the smelting furnaee for eonversion into iron. Herein it undergoe two scparate processes: first, the reduction of the oxide to a metallie state; second, th separation of the earthy particles in the form of scoria. These operations are eonducted by submitting the ore, ordinarily mixed with eertain fluxes, to the action of earbon at a ver: ligh temperature, in what are ealled blast furnaces, whieh vary in height from twelve ti sixty feet, and are of the form of truncated cones, sometumes however of pyramids terminating usually in cylindrical chimneys, whose internal diameter is from four to si: feet. The interior of these furnaces is usually of a cylindrieal form, whose internal dia meter is from four to six feet. Their cavity is usually of a circular form, except at th crucible or hearth, where it becomes a right rectangular prism, oblong in a direction perpendicular to the blast orifices or tuyeres of the beliows. The sides of the crucible ar most commonly formed of gritctone. The loshes, which are in the form of an inverted quad rangular pyramid approsching a prismatic shape, are placed above the erucible, and abov them rises the conical boay of the furnace, which is lined with fire-bricks, and, in ascending is contracted sinilarly to the narrow end of an egg, until it terminates in the ehimney. Th furnace is of course constructed in the most solid manner, and strengthened by iron lyand and bars. The bellows employed are mostly of a cylindrical form, and their pistons worke etther by water or steam. The blast boles, which are in the npper part of the crucible, ane frequently placed on oppasite sides, but so that the two opposite currents may not inping upon one another, are two in number. Openings are provided at the lower part of th crucible for the discharge of the metal and scoria, and are kept stopped by elay and sant upon the exterior when the furnace is in operation. The reduction is commeneed by gradualk heating up the furnace until capable of being entirely filted with fuel, and then, as it c.ntents begin to sink, alternate changes of ore, mingled with $f u x$, and of chareoal and cokr are added. The blast is now let on, and the metal in the ore, parting with its oxygen flows by degrees, subsiding to the bottom of the crucible, covered with a melted slag, whici is oceasionally let off by removing the clay from one or more, if necessary, apertures in th crucible; and on the bottom of the furnace becoming filled with the metal, which genc rally occurs after nine to twelve hours, the iron itself is discharged by one of these opening into a fosse of sand mixed with clay. When the iron has flowed out the aperture is agai cloced, and by this method the furnace is kept in constant action.
1757. Limestone of the best quality is employed as a flux to assist the fusion of t ore, which it accomplishes by vitrefying the earths wherewith it is mixed up with the oxit of iron. The iron when run out from the blast furnace in the state of east iron is f from being in a pure state, having a coarse grain, and being brittle. In its conversion bar iron, it undergocs one of the two following processes, as charcoal or coke may be e: ployed. In the former case a furnace much resembling a smith's hearth is used, having sloping cavity sunk from ten to twelve inches below the blast pipe. After the cavity h: been filled with charcoal and scoria, a pig of east iron, well covered with hot fucl, is phact opposite the blast pipe. The blast being introduced, the pig of iron lying in the val hottest part soon begins to melt, and runs down into the cavity below, where, being out the influenee of the blast, it becomes solid, and is replaced in its former position, and ts
avity is again filled with clarcoal. It is there again fused, and so on a third time. all there processes being accomplished in three or four hours. 'The iron, thus again solid, is aken out. and very slightly hammered, to free it from the attached seoria; after this it s returned to the firmace, is a corner whereof it is stacked, out of the action of the blast, and well covered with chareoal, where it remains gradually to cool until sufficiently com. bact to bear the tilt or trip hammer (to be shingled, to force out thee cinders). which is moved y machinery, and whose weight is from 600 to 1200 lhs . Thus it is beaten till the coriz are forced out. and the particles of iron welled together, when it is divided into everal portions, which by repeated heating and hammering are drawn into bars, in which tate it is ready for sale.
1758. There are various ine:hods of procuring the blast; the first, and most ancient, is y means of Lellows; the latest, which has been found in the mining districts to be a confivance of great importance, is the placing a series of vanes attached to an axis, whieh, y machinery, are made to revolve in a box with greit rapidity. A pipe passing from the utside of the box to the furnace conveys the air to it as the vanes revolve, a new portion ontinually entering by a hole at the axis. The air thus driven through at its natural mperature constitutes a cold blast in eontradistinction to air heated by artificial means or ot lla t. This latter system was discovered by J. B. Neilson, of Glasgow, about the ear 1826 ; his patent expired in $18+2$. At the present day air is furced into the furnaces a temperature of 600°, and even of 806° Fahr., althongh at the commeneement it was rely used ahove 300°. The irons obtained from the former process are considered to be agher and stronger than those obtained from the latter process, and present a closer xture and a smaller crystallization than the latter irons. The Bhaenavon, Coed Talon, owmoor, and Muirkirk irons arc amongst the most esteemed varieties. Perhaps it may laid down as a general principle that where pig-iron is remelte 1 with coke in the cupola rnace, for the purposes of the irmfounder, or refined with coke in the conversion of rge pig into bar iron, it is of little consequence whether the reduction of the ore has en effected with the hot or the cold blast; but where large castings have to be run reetly from the smelting furnace, the quality of the metal will, no doubt, suffer from the e of the hot blast.
1759. The proportion of pig or east iron from a given quantity of ore varies as the dif. ence in the metallic contents of different pareels of ore and other circumstances, but the antity of bar obtained from pig iron is not valued at more than 20 per cent.
1760. The other process for manufacturing bar iron, which is that cbiefly employed in s country, is conducted in reverberatory furnaces, usually called puddling furnaces. The pration legins with the fusion of the east iron in refinery furnaces, like the one above weribed. When the iron is fully melted, a rap-hole is opened in the crucible, and the 1) tal and slag flow out together into a fosse covered with clay well mixed with water, by ich a coating is formed that prevents the metal from sticking to the ground. The finer ! tal forms a slab about ten feet long, three feet broad, and from two to two and a half inches i blickness. For the purpose of slightly oxidizing it, and to make it brittle, it is much sinkled over with cold water. In this part of the process it loses in weight from 12 \& 7 per cent. After this, it is broken up into pieces, and placed on the hearth of a revperatory furnace, in portions heaped up to its sides in piles which rise nearly to the r), leaving a space open in the middle to give room for puddling the metal as it flows ${ }^{1}$ in in streams. When the beat of the furnace has brought it to a pasty state, the temprture is reduced, a little water being sometimes thrown on the melted mass. The semih. id metal is stirred up by the workman with his puddle, during which it swells, and p s with a large quantity of oxide of iron, which burns with a blue flame, so that the 1s appears ignited. As it refnes, the metal becomes less fusible, or, as the workmen say, it. gins to dry. The puddling goes on until the whole charge assumes the form of an in(4) rent sand, when the temperature is gradually imereased to give it a red white heat, at w- In period the particles begin to agglutinate, and the clarge, in teclmical lauguage, anary. The refining is now considered finished, and the metal has only to be formed in) halls, and condensed under the rolling eylinder. From this state it is brought into m. Mar iron. After this last operation, several pieces are welded together, from whicls it " ires duetility, uniformity, and colesion. Λ lateral welding of four pieces together if follows, and the mass passes through a series of cylinders as in the first case, and thenes Einglishl bar-iron.
1761. The lanination of iron into sheets is by a refinery furuace, with a elareoal instead roke lire.
1762. Malleable iron is often oltnined from the ores directly, by one fusion, if the mewide be not tuo much ninixed with foreign substances. It is a mode of working , mure comomienl than that above deseribed, and from the circmustance of its haring long known aud used in Cintalomia, it is huown by the mane of the methond of the Cuth-- firge. 'The furnace employed is similar th the refiner's finge nlready dencribed. -rneible in a kinl of semicirentar or oblong basing erghtecta inches in diancter, and
eight or ten in depth, excavated in an area, or small elevation of masony, eight or ten fect long, by five or six broad, and covered in with a chimney. The tuycre is placed five or $\$ 1 x$ inches above the basin, inclining a little downwards, and the blast is received from a water blowing machine. The first step consists in expelling the water combined with the oxide, as well as the sulphur and arsenic when these are present. This, as usual, is done by roasting in the open air, after which it is reduced to a tolerably fine powder, and thrown at intervals by shovels-full upon the charcoal fire of the forge hearth, the sides and bottom of the basin being previously lined with brasques (coats of pounded charcoal). It gradually softens and unites into lumps more or less coherent, which finally melt and accumulate in the bottom of the crucible or basin. A thin slag is occasionally let off from the uplew surface of the melted metal in the basin through holes which can be closed and opened a -he discretion of the workman. The melted iron preserves a pasty eondition owing to the heat communicated from above. When a mass sufficiently great has accumulated, it is re aoved, put under the hammer, and forged at once. A lump, or bloom, of malleable irou is thus produced in the space of thrce or four hours. Four workmen are emploved at m forge, and by being relieved every six hours, they are enabled to make 86 cwt . of iron pe week. In the Catalonian forge, 100 lbs . of iron are obtained from 300 lbs of ore (a mis ture of sparry iron, or carbonate and liematite), and 310 lbs . of charcoal, being a produc: of 35 per cent.
1763. A visit to some of the iron distriets is necessary fully to understand the processe we have above shortly described; but the founding of iron may be well enongh observie in the metropolis, though not on so large a scale as in some of the provinces. A succinc description, however, is given under the heading Founday, Chap. III. Sec. xi.
1764. We here subjoin a summary of the modern observations on iron (collected fion various authorilies) as given in Rankine's Civil Enginerring. The metallic products of the iron manufacture are of three kinds: I. Matleable or wrought iron; II. Cast mon and III. Sreel: boths the latter being certain compounds of iron with carbon. Som investigators affirm that nitrogen is one of the essential constituents of steel, but thi requires contirmation. The strength and other sood qualities of these products depen mainly on the absence of impurities, and especially of certain substances which are know to cause bittleness and weakness, of which the most important are sulphur, phosphorn silicon, calcium, and magnesium. Sulphur, and (according to Mushet) calcium, an probably alse magnesium, make iron what is termed red short, that is, brittle at ligh ten peratures. Phosphorus and (according to Mushet) silicon make it cold short, that i brittle at low temperatures. These are both serious imperfections, but the latter is t worst defect.

1764a. Whought or matefabee iron in its perfect condition is pure, or nearly pur iron; its strength is in general greater or less according to the greater or less purity of t o:e and fuel employed in its mannfacture. Malleable iron is distinguished by the propel of welling. Two pieces, if raised nearly to a white heat and pressed or hammered tirm togelher, adhering so as to corm one piece. It is essential that the surfaces to be weld should be perfectly clean and free from ox'de of iron, cinder, and all forcign matt Where several bars are to be faggoted or rolled into one, they require careful piling, as to ensure the pressure exerted by the lammer or the rollers being transmitt through the whole mass; otherwise the finished bar or piece may show flaws marking t divisions between the bars of the pile. Wrought iron, although it is at first ma more coupact and strong by reheating and hammering, or otherwise working it, so reaches a maximum strength, after which all reheating and working rapidy makes weaker. Good har iron has in general attained its maximum strength, and therefore all operations of forging it, the desired size and figure ought to be given to it with t lcast possible amount of reheating and working. In large forgings, the tenacity is ol about thrce fourths of that of the bars from which the forgings were made, and somein even less.

1764b. It is still a matter of dispute to what extent and under what circumstane wrought iron loses its fibrous strncture and touglness, and becomes crystalline a brittle. By some authorities it is asserted that all shocks and vibrations tend to prodt that change; others maintain that only sharp shocks and vibrations do so; and othr that no such change takes place; but that the same piece of iron which shows a fibr fracture, if gradually broken by a steady load, will show a crystalline tracture, if sudde brolien by a havp blow. It is certain, at all events, that iron, whether cast or wroug onght to be as little as possible exposed to sharp blows and rattling vibrations. Kirkali Wroucht Iron and Steel, 1863, p. 52, and in his concluding observations (p. 92), sta further, that " the appearance of iron may be changed from fibrous to crystalline by mer altering the shape of the specimen so as to render it more liable to snap," and that "irut less liable to snap the more it is worked and rolled. In the fibrous fractures the thre: are drawn ont, and are viewed externally, whilst in the erystalline fractures the threads: wapped across in clusters, and are viewed externally or sectionally, In the latter ca.
te fracture of the specimen is always at right angles to the lengtl ; in the former it is tore or less irregular."
1764c. The continuity of the fibres near the surface should be as little interrupted as ossible. For example, projections formed out of a block by turning, rolling, and hanering, were l, roken off by blows with a 6 lb . hammer. with the first, fifth, and cighth lows respectively (Rankine, Proceedings of Inst. of Civil Enginerrs, 1943). In iron ork which is to sustain shocks and vibrations abrupt variations of dimensions and angular zures must be avoided as much as possible, especially those with reentering angles; for those points fractures are apt to commence. If two parts of a beam are to be of .ferent thicknesses, they should be connected ly means of curved surfaces.
$1764 d$. The fibies of wrought iron are always an indication of its strength, but in the pplication of such iron we are to be cautious. If the iron be impure in its elements, or is been badly worked, it may be very fibrons and also strong. but in exposing it to a elding lueat it loses all its fibre, and is conserted into brittle granulated iron. This upens frequently with puddled iron and sometimes with charcoal iron. It follows, erefore. that iron which does not retain its fibre after receiving a welding heat is not to - trusted. Only good charcoal iron should be used where strength is required, in case py smithing is to be done to the iron before it is put to use. Where iron is exposed to at, the very purest and best kinds only should be used: with constant heat, even of low mperature, wrouglit iron, if not very pure, becomes granulated. Very fibrous puddled on may carry 80,000 lbs. per inch square, when newly made. but it may in a short time c.nnverted into granular iron, and reduced to $20,000 \mathrm{lbs}$., and be inferior in strength to st iron. Where this change in the iron wonld be detrimental to the work steel should substituted, as its strength is not impaired by any degree of lieat beyond a red heat.
1764 e. The quality of iron for boiler plates must be attended to from the first stagus its manufacture from the ore, which should be of good quality: even then it may be pilcd in the furnaces. Abjve all things, states Overman, (whom we are now queting), t blast ought to be excluded in these cases; it ought to be a criminal offence to phloy lot blast iron for boiler plates. Iron may be ibrous, and when cold very tena. us; but the test consists in leating it red hot and cooling it in cold water. If it conues teacious it may be considered good; if not it is bad, and unfit for hoiler plate.
1764f. Strength and toughness in bar iron are indicated by a fine, close, and uniforis, rous structure, free from all appearance of crystallization, with a clear bluish grey onir, and a silky lustre on a torn surface where the fibres are shown. Il te iron of the thind consists of alternate layers of filıres erossing each other, and ought to be nearly the same tenacity in all directions. The breaking strain and contraction of area of INled steel p/atss as in iron plates, are greater in the dircetion in which they are rolled; ereas in cast steel they are liss. (Kirkaldy)
765. Cast mon is the product of the process of smelting iron ores. The total quantity carbon in piey iron ranges from 2 to 5 per cent. of its weight. Different kinds of pig i 1 are produced from the same ore in the same furnace, under diflerent circumstances as t emperature and quantity of fucl. A ligh temperature and a large quastity of fued 1 drice grey cast iron, which is further distinguished into Nos. 1, 2, and 3, and so on ; 1 being that produced at the highest temperature. A low temperature and a de6. ney of fuel produce white cast iron. Grey cast iron is of different shades of H hish $g y$ in colour, granular in texture, softer and more easily fusible than white cast iron, ${ }^{4}$ ch latter is silvery white, eibler granular or crystalline, conparatively difficult to melt, tle, and exeessively hard. It appears that the differences between these kinds of irons dend on the proportions of carbon in them. Thus grey cast iron contains l per cent., sumctimes less, of carbon in chemical combination with the iron, and from 1 to 3 or r cent, of carbon in the state of plumbaro in mechanical mixture; while white cast is a homngeneons chenical compound of iron with from 2 to 4 per cent. of carbon, he different kinds of grey cast iron, No 1 contains the greatest proportion of plumbago eh renders iron comparatively weak and pliable), No. 2 the next, and so on. -65u. There are two kinds of u hite cast iron, the gramular and the erystalline. The gran4 sort can lue eonverted intogrey cast iron by fusion and slow cooling. Grey cast iron ean onverted into granular whte cast iron by fusion and sudden cooling. 'I his takes phace 'readily in the best iron. C'rystalline white cast 1 ron is harder and more bittle than war, and is not capahle of conversion into grey cast iron hy fusion and slow cooling. amid to eontain more carbon than grambar ufite cast iron, but the exact difterence meir chemical eomposition is not yet known. Grey cast iron No. 1 is the most easily hnple, and produces the finest and most aecurate castings; but it is deficient in hardness sitrenglb.
15ib. The order of strength of east iron anong different kinds from the same ore and ${ }^{18}$ us follows:-Gramar while cant iron, trey cast iron No. 3, No. en and No. 1. fallime whife cast iron is wot intronned into this clissification, becanse its extreme osness nakes it unfit for use in enginering structures. Gramular white cast irom also,
althongh stronger and harder than grey cast iron, is too brittle to be a safe material fur the emire mass of any girder, or other large piece of a structure. It is nsed to form a had and impenetrable shin to a piece of grey cast iron by the process called chillny. This consists in lining the portion of the mould where a hardened surface is required with suit:ably shaped pieces of iron. The melted metal, on being run in, is coolt d and solidified suldenly where it touches the cold iron; and for a certain depth from the chilled surtace, varying from about $\frac{1}{8}$ to $\frac{1}{2}$ inch in different kinds of iron, it takes the white granular condition, while the remainder of the casting takes the grey condition. Even in eastins which are not chilled by an irou lining to the mould, the outermost layer, being cooled more rapidly than the interior, approaches more nearly to the white condition, and forms a skin harder and stronger than the rest of the casting. The best kinds of cast iron for large structures are No. 2 and No. 3 ; because being stronger than No. 1, and softer and more flexible than white cast iron, they combine strength and pliability in the mannor which is best suited for safely bearing loads that are in motion. A strong kind of cast won called toughened cast iron, is produced by the process, invented by Morries Stirling, of adding to the cast iron, and melting amongst it, from one-fourth to one-seventh of its weight of wrought iron serap.
1766. Solt grey cast iron is the best sort; it yields easily to the file when the exterial crust is removed, and is slightly mallcable in a cold state. It is, however, more subject to rust than the white cast iron, which sort is also less soluble in acids. Grev cist iroil ha:s a granulated fracture with some metall'c lustre. White cast iron in a recent fracture has a white and radiated appearance, indicating a crystalline structure.
1767. Cast iron, when at a certain degree of heat, may be cut like a piece of wood with a common saw. This discovery was announeed in a letter from M. Dunford, director o the iron works at Montalaire, to M. d'Arcet, and published in the Annales de Chimie The experiment was tried in 1813 by a gertleman of the P'nilosophical Society at Glasrow who with the greatest ease cut a bar of cast iron, previously heated to a cherry-red, widh ; common carpenter's saw, in the course of less than two minutes. The saw was not in th least injured by the operation.
1768. The security afforded by iron for supporting weight, and against fire, has, of lat jears, very much increased the use of it, and may in many cases entirely supersede th employment of timber. Again, it is valuable from its being not liable to sudden decay, no soon destroyed by wear and tear, and, above all, from its plasticity.

STEEL.

1769. Stech, the hardest of the metals and the strongest of known substancas, is compound of iron with from 0.5 to 15 per cent. of its wight of carton. Thes according to most authoritics, as noticed by Rankne, are the only essential constituents stecl. Impurities of different kinds affict steel injuriously in the same way as wi iron. A very small part of its weight, $\frac{1}{26} \pi^{\text {the }}$. of silicon cauces steel to cool and solidi without bubbling or agitation; a larger proportion would make the steel brittle. Ma ganese improves the steel by increasing its toughness, and making it casicr to weld al forge.

1769a. The term steely iron, or semi steel, may be applicd to compounds of iron wit less than 0.5 per cent. of carbon. They are intemediate in hardness and other properif between steel and malleable iron. In general, such compounds are the harder and " stronger, and also the more easily fusible, the more carbon they cont.in; those soits whic eontain less carbon, though weaker, are more easily welded and forged, and from the greater pliability are the fitter for structures that are exposed to shocks.

1760b. Steel is distinguished by the property of tcmpering, that is to say, it can I hardened by sudden couling from a high temperature, and softened by gradual cooting and its degree of hardness or softness can be regulated with precision by suitably fixis that temperature. The elevation of temperature previous to the annealing or gradu cooling is produced by plunging steel into a bath of a fusible metallic alloy, ranging fro 480° to 560° Fahr.

17\%0. Steel is made by various processes which have of late become very numeror They may all be classed under two heads, viz, adding carbon to malleable iron, used making steel for cutting tools and other fine purposes ; the othe r, abstracting carbon fro cast iron, used for making great masses of steel and steely iron rapidly and at a modira expense. Among the processes are the following:-
1771. J. Blister steel is made by cementation, by embedding bars of the purest wroug iron in a layer of charcoal and subjecting them for several days to a high temperature. Es bar absorbs carbon, and its surface becomes converted into steel. Cementation may also performed by exposing the surface of the iron to a eurrent of earburetted hydrogen gas at

Ih tompcrature. Cementation is also applied to the surfaces of articles of malleable iron i rder to give them a skin or coating of steel, and is called caehardening.
772. 11. Shear steel is made by breaking bars of blister stecl into lengths, faggoting 1 m , and rolling them out at a welding heat ; repcatiag the process until a ncar apıroach tuniformity of composition and texture has been obtained. It is used for tools and , ting implements.
1773. III. Cast steel is made by melting bars of blister steel with a small additional antity of carbon (in the form of coal tar), and some manganese. It is the purest. most iform, and strongest, stecl, and is used for the finest cutting implements. Another prois requiring a higher temperature, is to melt bars of the purest malleable iron with manfese and with the whole quantity of carbon required in order to form steel. The cality as to hardness is regulated by the proportion of carbon. A sort of semi steel or lly iron, made by this process and containing a small proportion of carbon only, is known homogeneous metal.
1774. IV. Steel made by the air blast is produced from molten pig iron by Bessemer's cess, wherein the molten pig iron, having been run into a suitable vessel or converter, has S of air blown into it through tubes as the liquid is poured in. The oxygen of the air inbines with the silicon and the carbon of the pig iron, and in so doing produces enough , heat to keep the iron in a melted state till it is brought to the malleable condition; it is In run into large ingots, which are hammered and rolled in the usual way. About two I Irs suffice to convert cold iron into pure steel.
1775. V. Puddled steel is made by puddling pig iron, and stopping the process at the itant when the proper quantity of carbon remains. The bloom is shingled and rolled ic bar iron. VI. Granulated steel, the invention of Capt. Uchatius, is made by rumning 1 Ited pigiron into a cistern of water over a wheel, which dashes it about so that it is thed at the bottom of the eistern in the form of grains or lumps of about the size of a hazel
1t. These are imbedded in pulverized hematite on sparry iron ore, and exposed to a heat. fhicicnt to cause part of the oxygen of the ore to combine with, and extract, the carbon 1 In the superficial layer of each of the lumps of iron, each of which is reduced to the con, ion of malleable iron at the surface, while its heart continues in a state of cast iron. A fall additional quantity of malleable iron is produced by the reduction of the ore. These ibredients being melted together produce stecl.
1776. Kirkaldy observes that "Steel invariably presents, when fractured slowly, a silky rous appearance. When fratured suddenly, the appearance is invariably granular; in ich case also the fracture is always at right angles to the length. When the fracture is rous, the angle diverges always more or less fiom $9 \%^{\circ}$. The grazular appearance pretted by stecl suddenly fractured is nearly free of lustre, and unlike the brilliant crystale appearance of iron suddenly fractured: the two combined in the same specimen are :wwn in iron bolts partly converted into steel. Steel which previously broke with a silky rous appearance is changed into gramular by being hardened. Stecl is reduced in fugth by being hardened in water, while the sticngth is vastly increased by being dened in oil. "The increase of strength is greater the higher steel is heated (not being rned) and so trated."
1777. "In a highly converted or hard steel the increase in strength and in hardness is ater than in a less converted or solt steel. Steel plates hardened in oil and joined toher with rivets are fully equal in strength to an unjointed solt plate; or the loss of wagth by riveting is more than counterbalaneed ly the increase in strength by hardening ioil. The most highly converted sted does not, as some may suppose, possess the greatest psity. In cast steel, the density is much greater than in pudded steel, which is evenless "11 in some of the smperior deseriptions of wrought iron."
1778. This mbject may, perhaps, be considered of greater importance to the architect il enginecr, if those experienced scientific men be right, who predict that the time is fur hence when there will be no such metals als either wrought or cast iron; steel taking place of hoth for all practical purposes. As one instance anomig many, it has been fed that the absolnte strength of any cast irongiruer may be dombled by tie judicious use能 very few pounds of steel, costing but a trifle. (See IG32.)

Corrosion and Preservation of Iron.

179. Cast iron will uften last for a long time withont rusting. if the skin he not injured, ich is conated with a film of the silicate of the protoxide of iron, prodnced by the action flie sand of the monld on the iron. Chilled surfaces of castings are wiblont this prove thion, and therefore rust more rapidly. The corrosion of iron is more rapid when partly and partly dry, than when wholly immersed in water or wholly exposed to the air. It ifecelerated by impurities in water, and especinlly by the presence of decomposing organie pitter, or of free acids. It is also accelerated liy the contact of the iron with any metal yich is electro-negatise relatively to the iron, or in other words, has less affinity fior :gen, or with the rust of iron itself. If hwe portions of a mass of iron are in different
conditions, so that one has less affinity for oxygen than the other, the contaet of the furm makes the latter oxidate more rapidly. In general, hard and erystalline iron is less ox dable than ductile and fibrous iron. Cast iron and steel decompose rapidly in warm impure sea water. The purest and the most malleable irons are the most easily attacki by sea water, when used alone; for it is to be observed that the fine grained, erystallisis white and brittle metal, which usually resists the action of air and water most successfull. is also the most easily attaeked by the dilute aeids present in the woods so often used eonneetion with iron in ship building, or in timber struetures in sca water. The mo extreme care, and the greatest practical skill, are therefore required in the s:leetion of t irons to he used in eertain positions. To R. Mallet we are indebted for a valuable con munication to the Institute of Civil Enginers in May 1840, On the Corrosion of Cust at Wrought Iron in Water, under proteeted and mnprotected states : an abstract is given i the Civil Engineer Journal, iii. p. 424, from the Proceedings of the Institute.

1779a. In the Reports of the British Association, 1843 and 1849, Mallet, On Corrovi of Iron, further states that iron kept constantly in a state of vibration oxidates less rapid than that which is at rest. Thus the rails of a railway on whieh a constant traffic run do not rust so quiekly as those on whieh there may be no traffic.

1779b. Speneer, Iron, its actice and inactice states, read before the Liverpool Polytechm Soeiety, stated that 'It required a mixture of air and water, or what is usually terme dampness, to produce rust on iron-one without the other would not do it. Stecl filins became rusty in water, beeause they absorbed the oxygen in the water; if a sceond guar tity of filings be put in, they would not rust, as there was no more oxygen. A eoating carbon effectually prevents iron from oxidation, and it can protect it from a body so stron as even aqua-fortis itself. If the aqua-fortis be diluted with water, the protective pow no longer exists. The slightest scrateh or abrasion on the surface of the metal also prot vented the aetion of the protecting influence. A pieee of solid carbon also imparts a pro tective property to iron, little short of that given to it by platinum."

1779c. Sugar exereises a material influence on iron and other metals : Athencum, Sep 1853 and May 1854.

1779d. The iron wire suspension bridges of France, whieh have fallen within the la few years, appear to have done so principally through the oxidation of the wires in th portion passing into the anchoring wells: this was notorionsly the case with the bridge: Angers. The eonstant state of humidity prevailing in these wells must so mer or lath hase rusted the wires, and although the precaution, reeommended by Vieat, of surroundin the cables with rich time had been adopted, the vibration of the bridge had detached !! cables from their supposed protecting case and the spaees between the wires allowed moi ture from the exterior to permeate the interior of the eable; at Angers the eables wer thus almost entirely rusted through. In such places it is better to employ bar ehams.

1779 e. Before painting iron work it is usual to give it a eoat of boi'ed linseed oil, a plied hot; it forms a kind of varnish, and is an execllent preparation, and should be dow after the blue shales are removed. Lead paints, when of good quality and mixed wit good oil without spirits, are recommended. As it is difficult to test Loth oils and colomr others pefer iron oxide paints, especially as they are cheaper. Tar paints are used chicf for iron work out of sight; it is cheap, and is said not to foul so readily as lead or othe finer paints. A good rough paint is to be made by heating coal tar and mixing with finely sifted slaked lime, say thre-quarters of a pound of lime to a gallon of tar, and addin. naphtia to render it of a eonvenient consisicne; for laying on; it must not be allows to get too hot, and is to be used hot. Where sanding is possible, it adds to its durabilit?
1780. The following reeommendations have been made for preserving iron. I. lboiln: the iron in eoal tar, especially if the pieces have first been heated to the tomperature melting lead. II. Heating the pieces to the temperature of meling lead and smearis th ir surfaces whilst hot with cold linseed oil, which dries and forms a varnish. This recommended by Smcatun, and is a good preparation for painting upon.

1780a. III. Painting wish white lead in oil, which must be rencwed from time to time Mr. John Braithwaite has stated that his father had used red lead for fifty years with goo result; white lad was of no use, as the acid used in the prepration of it produced swellin effects. LIe had placed rods in a well 200 feet deep forty-five years since, having paiute them with pure red lead, and on taking them up in $1 \cdot 69$ he found that their weight wn preeisely the same. Red lead and one-third litharge made into paint with nut oil wi last longer than when moxed with linseed oil. I ron heated and covered with miners bitumen or asphaltum in the solid state had resisted a moist atin.sphere for fifteen years the natural asphaltom wats the best, the liquid asphalte not answering so well; with a other materials the rust had penetrated bemath. C. H. Sinith, in a communication t the Builder, 1864, p.318, brought forward the advantages of lime whiting as a preserva tive of iron from rust. In support of the use of lime, lie notices that polished steel good may be preserved by beating a little powdered lime upon them; and that bricklayer diways smear the r bright trowels even with danp mortar when leaving work,

1780b. IV. Coating with a metal, commonly called galranizing. Zinc is efficient, proed it is not exposed to the acids capalle of dissolving it; but it is dessroyed by sulphuric in the air of places where much coal is burnt; and by muriatic acid in the neighbeurid of the sea. All attempts to use galvanized iron for roofs in large towns or smoky tricts have failed. The use of this material will be noticed in the section on Zisc. aned iron does not now answer so well even as good zinc. It is known that during the dixval period, iron nail-heads, anchors, dogs, and such like articles were tinned orer, no aht to prevent oxidation; and timed iron is greatly used for the covering of bonses America. In St. Petersburg and in Moscow iron is mostly used, but it requires nting. The coppering of iron has failed unless it was done in so expensive a manner as to be practicable in any extended employment of it. A coating of lead, or of lead antimuny, is wanted to iron, so as to combine the stiffiess and cheapness of irou II the durability of lead. Messrs. Moreword have recently intooduced metal plates ered with a uniform coating of lead. These plates are upposed to posstss all the antiges of shcet lead, and they can be rendered serviceable at a considerably reduced (Hunt, Hundlook, 1862). Enamelled iron is a late invention, and one tending to be y serviceahle. (See also par. 2264.)
78Cc. Professor Barff's recently (1877) discovered method of coating iron with magic or black oxide is ettected by subjecting it to steam at a high temperature of about Do degrees of Fabr. for six or seven hours. It is said that iron so treated will resist a , and bear any amount of exposure to the weather without showing any signs of osion. Difficulties which have hitherto stood in the way of the adequate working of prrcess lave since (1882), we are infurmed, been remored, and this preservative protwill no doubt be largely adopted, as adequate apparatus has been provided.

Sect. VI.

LEAD.

81. Lead, the heaviest of the metals except gold and quicksilver, is found in most ; of the world. It is of a hluish white when first broken, is less ductile, elastic, and rous than any of the other metals: its specific gravity is from 11,300 to 11,479 , and a "1: foot, theretore, weighs aboat 710 lbs . It is soluble in all acids and alkaline solufusible before ignition, and easily calcined. The ore, which is casily reduced to the ure of silver and antimony, in diaphanons primatical crystals, generally hexagonal, , yellowish, or greenish, in Somersethire, albout the Mendip Hills. About Bristol, "II Cumberland, it takes the form of a white, grey, or yellowish spar, withont the least alic appearance : in some places it is in a state of white powder or native ceruse; and omnouthslire it has been fomd native, or in a metallic state.
82. Expmosure to air and water does not produce muel alteration in lead, though it Iy turnisles und acepuites a white rust, by which the internal pata atre defended from ion. P'ure water, however, does not alter it ; hance the white crust on the inside of jipes throngla which water flows must probably be owing to some saline particles in ater. Leal will form an mion with most other metals. one exception, howeser. is Xext to tin. it is the most fusible af metals. It is run from the lirrate into moulds; uin furm is called a sow, the smallerones pigs: from these it is run into sheets, pipes, $\hat{8} \mathrm{e}$. 3. Sheet lead is of two sots, cavt and milled. The thicker sort of the formin, or the on cast sheet lead, is mambactured by casting it on a long talhe formerly made of but now of cast iron, (with a rising edge all round it) from 16 ta 20 feet in length, feet in widh, which is covered with tine pressed sand beaten and smoothed down strike and smonther's plane. The pigy lead is melted in a largh vessel, near this and in Indled into a pan of the slape of a concnve triangular mism, whose tength is (1) the width of a sheet, foom which pan it is paured on to the table or momid. en the sunface of the sand and the strike, which rides unon the indges of the tuble, a Qseft wheld detemines the thickuess of the sheet. The strike hears awny the (woms lignuid lead before it hinstime to coos, as it moves liy hand atong the edges of the - Fore mennioned. When tead is repnired to he eate thin, at timen choth is streted d Pppropriate table over a woollen ane; in which rase the heat of the hend hetine ong it on the cloth, must be lems than will fire prupec, of the choth would be hatio, fite anse fors the purpose lee passed over it with considerable rapility.

In manufacturing milled leal, it is ussath lirst to ense it into shects from 81010 fase r-ling to cire musmera, but the width is regulated ly the length of the rollew
through which it is to be passed in milling; the thickness varies from 2 to 5 inches. By a mechamcal action it is made to pass through rollers whose distance from each otlier is gradually lessened until the sheet is reduced to the required thickness. For a long time a great prejndice prevailed against milled sheet lead; but it is now generally considered that, for the prevention of leakage, milled is far superior to cast lead, wherein pin lules. which have naturally formed themselves in the casting, often induce the most serious comsequences. The sheets rolled out are about 30 feet long and 6 feet 6 inches in width. 'fir lead from the mines of Walter Beaumont, M.P., in Northumberland, when manufactured for the market is known as "W.B. lead," and is considered the best in quality. Lead meit: at a temperature of about 612° to 630° Fahr. The tenacity of sheet lead is $3,300 \mathrm{lbs}$ and the modulus of elasticity $720,000 \mathrm{lbs}$.
1785. In distilled water which has been freed and kept from the contact of the air, leat undergoes no change; but if the lead be exposed to air and water, it is oxidized and con verted into a carbonate with considerable rapidity. This carbonate has the appearance o shining brilliant scales. The presence of saline matter in the water very much retard the oxidation of the lead. So small a quantity as a $30,000 \mathrm{~h}$ part of the phosphate of sod or iodide of potassium in distilled water, prevents lead from being much corroded, thi small deposit which is formed preventing the further corrosion of the metal.

1785a. The danger of using water from leaden pipes or cisterns was known event the Romans. The rarity of any fatal results shows that the risk has been much overiatel This is sufficiently explained by the protecting power of the insoluble salts of lead, forme by the action of the ingredients of the water on the lead, hindering the subsequent supplies, wat er from coming in contact with the metal. Distilled waters and waters which are remark ably pure dissolve lead, and become impregnated with it. The more impure the water sur as Thames water, the more it will form a protecting incrustation. A new cistern should 1 allowed to form this coating, by the water standing in it for some time without being r newed. To expedite the action a little phosphate of soda, or iodide of potassium, or a fc drops of sulphuic acid may be added. The lid or cover of cisterns should not be of le: as the vapour condensing in it possesses all the solvent power of distilled water. Wat which has flowed over leaden roofs, more particularly in towns, carrics with it from ti surface some soluble salt. The holes with which lead is often riddled are caused by t larva of an insect, the Cullidium bajulus, in the stomach of which lead is often fout (Kirby and Spence, Entomology, i. p. 235). A pipe conveying water impreguated wi sulphur salts, has after a time been coated with a sulphate or sulphide, and this sulpli: being porfectly insoluble in pure water, and equally so in water not too excessively clarg with foreign matters to be potable, renders the leaden vehicle perfectly harmless. I Schwarz, a chemist of Breslau, has stated that by passing a hot solution of sulphide potassium through leaden pipes, the face is transmuted from the metallic state to that a su!phide in a few minutes, at a cost too insignificant to mention. It is said that wa in the mines of galena, the sulphide of lead, can be drank with impunity.
1786. Wetterstedt's patent marine metul for roofing and other purposes is the invent. of a native of Germany, introduced into England in 1897 by Messrs. Young, Dows and Co., and manufactured by Messrs. Johnson, both of Limehouse. It is composed lead and antimony, and is adapted to all purposes to which lead is usually puit. advantages are its malleability, its great tenacity, elasticity and durability, and resi ance to acids, oxidation, and the action of the sun and atmosphere. It does not luse weight. It is manufactured in sheets:-I. 9 feet by 3 feet, at 3 lbs , and 2 Ibs . per square fi_{i} II. 8 feet by 2 feet 9 inches at $1 \frac{1}{2}$ lbs. and 1 lb . per square foot; and III. 8 feet ly 2 fet inches, at 8 ommees per square foot. No. I. sizes are employed for flats, large roofs, cover: to stairs, and small sloping and curb roofs. No. II. sizes for verandahs. No. 111. for hin damp walls; it should be fixed with wrought copper nails. The roof of the ho Polytechnic Institution was covered with this patent metal in 1838; it is still in a fect condition. In price it is somewhat under tiat of lead per ewt., but a much less wei per foot superficial than of that material is used. The patent metallic canras, is a combirat of Wetterstedt's patent metal No. III., with canvas of various sabstances and strengsth calico, japanned cloth, wooll n, \&c., varying according to the purposes to which it is to applied. By this combination, sufficient strength is given to a metal weighing only ei ounces per foot to emable it to be used as a perfectly waterproof and secure coverimg. W used to d:mp walls, the calico is placed outside, forming a good suiface for paperi painting, \&c. 'The cement with which the combination is effected is stated to be ela and impervious to damp, and a thorough disinfectant.

Sect VII.

COPPER.

787. Copper, among the first of the metals employed by the early nations of the world, iseither scarce nor difficult to work and extract from its ore. When pure it is of a pale colour ; a cubic foot of east copper will wtigh 537 lbs., in sheet 549 lbs ., and when mered 556 lbs . ; the weight of a bar 1 font long and 1 ineh square varies from 3.63 lbs . 81 lbs .; all the weights depending upon the copper being more or less hammered. lasticity and hariness are very considerable, and it is so malleable that it may bo mered into fine leares. It is also very tenacious, a wire of a tenth of an inch in heter being capable of sustaining 360 lbs . The tenacity of cast copper is $19,00 \%$; in t, 30,000 ; in boits, 36,000 ; and in wire, 60000 . The modulus of elasticity or tance to stretching being $17,000.000$. The transverse elasticity or resistance to ortion is $6,200,000 \mathrm{lbs}$. Copper is diminished to about two-thrds by a temperature
i88. The sisteen copper smelivg works at Swansea and Neath are supplied with ore Cornwall, Devonshire, Ireland, and from some foreign and colonial sourees. Thero -ix smelting establishments at Liverpool and St. Helens, whieh obtain their ore from
$88 a$. In the procoss of copper smelting the specimens produced are-I. Calcined oro, pper ore after the extraction of the sulphur. II. Coarso metal, obtained by tho orf process of smelting, producing about 40 per cent. of copper. JII. Calcinod coarso l, for extracting tho sulphur from II. IV. Motal "bryeh," producing about 65 per of eopper. V. Closo rogulo, producing about 70 per cent. VI. Spongy regule, neing nbout 80 per cent. VII. Blistor coppor, produeing about 95 per cent. V11I. t ingot, tho fino motal as propared for market. IX. Tough ingot, ready for market. ongh cake, hanmered out by hand. XI. Tough bar coppor, as prepared for tho ifacturo of wiro.
788. Short copper was formorly much used for its lightness to cover roofs and flats; a t is almost supersorlod now by the use of zine, which is much cheaper, and at times y an durable; and, moreover, it is not so liable to bo corrugated by tho action onnn. The low prico of copper (1887) has again brought it into tho nurket as a vation with other motnls for roofing purposes. It is only aldont one-fifth tho weight ad, and not so readily acted upon ly fire. Kine, howover, is only about one-third
the usual price of copper ; the cost of labour is nearly the same. The durability of cop may be taken to be three or four times that of zinc. It requires to be laid by skil workmen.

1789a. Copper is reduced to shect by being passed through large rollers, by whicl ean be rendered very thin. The thiekness generally used is from 12 to 18 oz . te foot superfieial. Exposed to the air its lustre is soon gone; it assumes a tarnish of a d brown colour, gradually deapening by time into one of bronze; and, lastly, it takes a gr rust or calx, called patina by the autiquaries, which, unlike the rust of iron, does net jure and corrode the internal parts, confining itself to the surface, and rather preser than destroying the metal. Hence one of the most important applications of copper i eramps for stone work, especially when they are exposed to the air, when its cost, wh is about six or eight tinues that of iron fastenings, can be affirded. Copper nails fastening slates in reofing are recommended in licu of eren zine nails.

1789b. It may be here well to observe, that if water is collected from roofe for culin purposes, copper must not be used about them, neither should any reservirs for colleci and holding it be made of that metal, as on the serface is formed a film of verdig which is poisonous.

Brass.

1790. Alloyed with zinc, it forms brass for the handles of doors, shutters, lo drawers, and the furniture generally of joinery. The usual proportion is ono I of zine to three of copper; it is then more fusible, and is of a fine yellow cols less liable to tarnish from the action of the air, and so malleable and duetile it can be beaten into very thin leaves and drawn into very fine wire. The extre of the proportions of zine used in it are from 12 to 25 per cent. of the wh Even with the last, if well manufactured, it is quite malleable, although zine by it searcely yields to the hammer. The appearance of brass is frequently given to of metals by washing them over with a yellow lacquer or varnish. Cast brass we 525 lbs. per cubic foot.

1790a. Delta metal is an alloy, an improved brass, hard, durable, and strong as 1 steel, possessing a beautiful fine evlour. Whea melted it products sound cascings of grain ; it can be forged and rolled het and cold, and takes a very high polish. It is be used for all linds of machinery, house, door, and harness fittings, stiir plates, \&c. test the action of acids on wreught iron, steel, and delta metal, rolled bars of each y immersed for six and a half months in acid water; the weights when put in were $1{ }^{\circ} 1$ 1 is., 1.2125 lbs , and 1.2787 lbs . respecively. After that period they were found to 06393 lbs ., 0.6614 lbs ., and $1 \cdot 2633 \mathrm{lbs}$. respectively; showing a loss of $46 \cdot 3,45 \cdot 45$, $1 \cdot 2$ per cent. respectively. This Delta metal is said to be now extensively used underground machinery in mines.

Bronze or Bell-metal.

1791. Copper with tin (which last melts at 426° Fahr. and resists oxida better than any of the more eommon metals) in the proportion of one-tenth to fifth of the whole furms a composition called bronze or bell-nctal, used in the founc of statues, bells, cannons, \&e. When tin forms nearly one-third of the allej beautiful white close-grained brittle metal is formed, susceptible of a very 1 polish, which is used for the specula of reflecting telescopes. Bionze weighs 513 per culic foot.

Sect. VIII.

ZINC.

1792. Zine is found in all quarters of the globe. In Great Britain it is abunich though therein never found in a native state. It usually contains an admixture of d and sulpur. When purified frem these, it is of a light blue colour, between lead and 3 ,
inclining to blue. The orc, afier being hand-dressed to free it from foreign matter, is first ealcincd, by whieh the smlphor of the calamine and the aeid of the blende are expelled The produet is then washed to spparate the lighter matter, and the heavy part which ricm.ins, being ground in a mill, is mixed with one e ghth of its weight of chareoal, or with one third of its bulk of powdered coal. This mixture is placed in pots, resembling oil jars, to be smelted. A tube passes through the botton of each, the upper end being terminated by an open mouth near the top of the pot, and the lower end going through the floor of the furnace into water. By the intense heat of a filmaee the ore is redueed, the zinc is volatilized, eseaping through the tube into the water, wherein it falls in globules, which are afterwards melted and cast into monlds. Thus procured, however, it is not purc, as it ahnost invarially contains iron, manganese, arsenie, and copper. In order to free it from these, it is again melted and stirred up with suiphur and fat, the former whereof eombines with the heterogeneons metals, leaving the zinc nearly pure, and the latter preventing the metal from being oxidated. At the Vieille Montagne Zinc Company's Works, the pots are placed in the furnaces at six o'clock every morning; at six ocloek in the evening the smelting is complete; the metal is then drawn out and rnu into metal moulds. after whieh it plasses into the rolling house, and is again melted and reeast in a mctal mould to produee ingots of the proper size and weight for the required gauge of the sheets to be rolled; this second melting is also desirable to obtain proper purity.
1793. Under rollers at a ligh temperature, zine may be extended into plates of great tennity and clasticity, or drawn into wirc. These rollers are from 2 feet 8 inches to 6 feet in length, and the original thickness of the plate subjected to them is about 1 ineh. A wire, one tenth of an inch diameter, will support 26 pounds. If zinc be hammered at a temperature of $30 j^{\circ}$, its malleability is muel inct eased, and it beeomes capablc of much berding. Is fracture is thin, fibrous, and of a grain similar to stcel. It can be drawn into wire $\frac{1}{\text { and }}$ th of an inch in diameter, which is nearly as tenacious as that of silver. The specific gravity is somewhat below $7 \circ$, but hamnering increases it to 7%. When heated, it enters intu filsion at a heat of about 680° or $70 \%^{\circ}$: at a higher temperature it evaporates; and if reess of air be not permitted, it may be distilled over, by whieh process it is rendered surer than before, although then not perfeetly pure. When heated red hot, with aceess of II it takes fire, burns with an execedingly beautiful greenish or bluish flame, and is at he same time converted iato the only oxide of zine with which we are aequainted, con, isting of 43.53 parts of oxygen combined with 100 of metal.

1:91. Zine, though sulbjeet to oxidize, las this peculiarity, that the oxide docs not seale If as that of iron, but forms a permanent coating on the metal, impervious to the action if the atinospliere, and rendering the nse of paint wholly noneeessary. Dr. von l'etensoffer, however, has stated that zine is oxidized to the extent of 130 grains per square foot n twenty-seven years, about two-ifths of the oxide being removed by the moisture of the itmosphere. It expansion and contraction are greater than those of any other metal : thins, upposing 1.0030 to represent the expansion, 10019 is that of eopper, and 1.0028 lat of lead; hot the thicker the zine, the less its contraction and expansion. The tenaeity if aine is from 7,000 to 8,000 . The weight of a cubic foot varies from 424 lbs to 449 lbs . l'lue tenacity of zinc to lead is as 16.616 to $3 \cdot 328$, and to eopper as 16.616 to $22 \cdot 570$; hence given substance of zinc is equal to five times the same substance in lad, and about threemothe of cop.h r.
1795. On the first introduction of zine into this country as a material, the trades with finich it was likely to interfere used every exertion to prevent its employment; and, indeed, ie workmen who were engaged in laying it, being ehiefly timmen, were incolitpetent to It tatk of so covering roofs us to secure them from the effects of the weather. Henee, for cons derable period after its first employment, great reluctance was manifested by archiees in its in:troduction. A demand for it has, however, gradnally increased of late, and ice comparatively high prices of lead and copper will not entirely aceomet for the disparity fe:nsmption. The Vielle Montagne Zine Mining Company, abont the year 186i, wok ateps to improve the quality of the zine for use in this commery, the mode of laying ine rorfs, and for the prevention of the us of thingauges of shects which are nutit hir ex prome. 'Their zine possesses a reputation for its purity and excellence. The resnlt f this eare, and the better moderstanding of the merits of the material, has cansed it to be ow estensisely used for p:orposes whieh are notieced in the following ehapter.
179.5a. A sliect of pmre zinc. as stated hy J. Edmestom in his Report on Zine, will be of ne erme eolour, withont black spoots or hotehes; it will be very ductike, bending readily ackwards and fin warde in the hand: and it will not casily brenk. If impure, it will he the plomate of all this. If there be any iron in it , it will be worthless; if it contanin any lead, will atill, though to a less extent, contain the germs of destruction within itself.
1795\%. Commonzine is destroyed by the sulphurie neid in the atmosphere where mueh on in buried; and by muriatic acied in the ncighbourhood of the sea. Cement does unt
 Pes are destriey ed ly them.
1796. Galvanized Iron is a designation misapplied to that iron which may have reeeived a coating of zine ; it should te called zinked iron. The metal is first cleaned perfectly by the joint action of dilute acid and friction, and then plunged into a lath of melted zine, coveled with sal ammoniac, and stirred until the iron is sufficiently coated with zinc. No galvanic action whatever occurs between the metals; it is simply a coating. This process, it is stated, was invented in France by Maloin, in 1742, but not patented antil 1836 by Sorel. The efficacy of the process depends upon the skill employed in removing every trace of the scales of the hydrous oxide of iron, and in its further treatment. The coating must not become loosencd, or any hole be made through it, as mois, ture obtaining access to the iron will rapidiy extend, and the scales of the oxide of iron will force u p the slight zine covering, when the iron will be gradually destroyed, unless it be at once painted. When well executed it may ferlaps be durable for a lengthened period, but when badly prepared it is not so valuable as iron well painted (par. 1779b.). At the Houses of Parliament, where the iron roofing plates were galvanized, it was found necessary from 1860 to commenee coating them with paint or some other material.
$1796 a$ The other process, which might be properly called zinked tinned iron, is thus per-formed:-The sheets of iron are pickled, scoured, and cleaned, as for ordinary timning. A wooden bath is half filled with a solution-the proportion of 2 quarts of muriate of tin with 100 quarts of water. Oser the bottom of the bath is spread a thin layer of finely granulated zinc, then a cleaned plate, and so on al'ernately; the zine and iron and the Hluid constitute a weak galvanic battery, a d the tin is deposited from the solution so as to coat the iron, in about two hours, with a dull uniform layer of metal. The iron in this state is then passed through a bath containing fluid zine covered with sal ammoniac mixed with an earthy matter, to lessen the volatilization of the sal ammoniac, which becomes as fluid as treacle. Two iron rollers are driven by machinery to carry the plates throngh the fluid at any velocity previonsly determined ; the plates thus take up a very regular and smooth layer of zinc, which owing to the presence of the tin beneath, assumes its natural crystalline character. This is said to be the process adopted by Messrs. Morewnod and Rogers, whose patents date in 1846 and 1850 . It is asserted that iron thus prepared does not warp or buckle; that the plate is not affected by the heat of the zinc, whercas thin sheet iron, kept in molten zine for a few minutes, becomes so brittle that it will not bear folding or grooving; that the plate is equally covered with zinc, whereas by the dipping process the lower half receives more than the upper: and that zine is not contaminated by iron as when dipped, the contamination inercasing with each dipping until the zinc in the bath becomes so injured as to be worthless, it being well known that the alloy of zine and iron is more oxidizable than zinc alone, or than zine and tin. Professor Brande has stated that in common tinned plate, the combination is such that the oxidization of the iron is accelcrated by the tin, so that the iron is the protecting, and the tin the protected, metal, but in this case the reverse effect ensues, the iron is the protected inctal, and the zinc the protector.

1796b. Time has proved that galvanized iron has eorroded after seren years in a roofgutter; and the state of most of the roofs to railway sheds and stations and such like places, proves that at least some sorts of galvanized iron will decay ; the difficulty always is to ascertain what description of coating the iron has undergone. Galvanized irou bolts do not act upon oak cither in sea or in fresh water, when care has been taken not to remove the zinc in driving them.

1796c. Galvanized iron is said to be nearly the same cost as zinc, and to be less than one quarter as liable to expansion or contraction : to be equally as durable as lead: less in first cost, and not to require boarding; to be not quite one-third the price of copper, and to be equally as dnrable; and as compared with plain iron, the cost is inereased about two-thirds, but that it increases the strength and durability of the iron.
1797. The soldering used is composed of spirits of salts killed by putting about three ounces of zine to a pint of spirit ; eare must be taken that this solder soaks well betwrell the laps.

Sect. IX.

SLATE.
1798. Slate is a species of argillaceous stone, and 15 an abuncant and most uscful mineral. This material is so soft, that the human nail will slightly scrateh it, and is of a bright lamellated texture. Its constituent parts are argill, carth, silex, magnesia, line, and iron ; of the two first and the last in eonsiderable proportion. The building slate is the schiutus tegularis
1799. Mica slate is a species of gneiss, distinguishable by containing little or no felspar, so that it consists chiefly of quartz and inica. It has a laminated or slaty structure. with the silky lustre of mica; it is a tough material in directions parallel to its layers, but is more perishable than gneiss. In thin layers it may be used for roofing purposes. Chlorite sla'e is also laminated. soft, and easily eut, but more opaque than talc, and is sometimes used for roofing purposes. It has a green or greenish grey colour and silky lustie. Hornblende slate is hard, tough, durable, and impervious to water, and is used for flagstones. Grauwacke slate is a laminated claystonc, containing sand and sometimes fragments of mica and other minerals. It is used for roofing and flag stones. All these descriptions of slate are inferior to the ordinary clay sla'e.
1800. Slate quarries usually lie near the surface ; and, independent of the splitting grain, along which they can be cleft exceedingly thin, they are mostly divided into stacks, by breahings, cracks, and fissures. Slate is separated from its bed, like other stones, by means of gunpowder, and the mass is then divided into scantlings by wedges, and, if necessary, sawn to its respective sizes by machinery. The blue, green, purple, and darker kinds are most susceptible of thin cleavage, the lighter-colured slates being coarser. The instruments used in quarrying and splitting slates, are slate knives, axes, bars, and wedges.
1801. The tenacity of slate is from 9,600 to 12,800 . The modulus of elasticity varies from $13,000,000$ to $16,000,000$. The resistance to rupture is 5000 . The weight of a cubic foot is from 175 lbs . to 181 lbs . The transverse strength of Welsh slate is greater than any other mineral product of the stone kind. For such qualitics as strength, space, and cleanliness, no other material is so cheap as slate.
1802. The slates used ahout London arc brought chiefly from Bangor in Carnarvonshire, The slate guarries of North Wales are the most important in this country. The chief works are situated as follows, and belong respectively to the geological formations named : -
$\left.\begin{array}{l}\text { Penrhyn, Bangor } \\ \text { Llanberis, Dinorwic }\end{array}\right\}$ Cambrian.
Ffestiniog, Port Madoc: Lower Silurian.

Llangollen, Llangollen : Upper Silurian. Machynlleth, Aberdovey, Lower Silurian. Royal Slate, Bangor: Cambrian.

The large quarries at Penrhyn near Bangor, belonging to Colonel Pennant, and from which the best Bangor slates are obtained, are worked in successive terraces; the slate s obtained in immense masses by blasting, therefore the waste is enormous, but being got id of without difficulty, the price is kept moderate. These quarries have been varionsly stimated as yielding from $30,000 l$. to $40,000 l$. worth of slates per annum. Many smaller pes have lately been opened near Bangor, all supplying "best Bangor" slates, without ffecting the produce of the well-established works at that place. 'The Llangollen quarries re remarkable for the size of the slates they can obtain.
1803. The Delabole quarries in Cornwall bave been worked for a considerable period; hese slates are shipped from Tintagel and Boscastle. This grey-blue slate, confined till wely to the western counties, is now obtained in London; the Wellington College at pandhurst, Berkshire, is roofed with them. The Tavistock slates from Devonshire were t one period in considerable demand. One of the most esteemed slates is of a pale bluereen, brought from Kendal in Westmoreland, and called Westmoreland slate. Thereare narries in the neighbourbood of Ulserstone, in Lancashire; and the Cumberland seareen slate works are at Maryport.
1804. The extended use of this material for paving, shelving, cisterns, \&e., has caused amerous companies to be formed for the worhing of old, and of many new, guarries, riefly in North and South Wales. Amongst the companies putting forth peculiarities of ate, are the Dorothea West, Green, Blae, and Red, Slate Company, situate in Carmarmshire, which supplied the pale green slates for the Charing Cross Railway Ilotet, the ondon Bridge Ilotel, and the Star and Garter Hotel at Richmond. The Llanfair Green id Blue Slate Company is also to be noticed.
1805. The slates of Scotland are not in much reputc. The Balahnlish quarries in e north of Scotland are very extensive, as between five and seven milhons of rooting ates are quarried annually. I'se weight of this number would be about 10,000 tons, rl the quantity of rubbish being generally five or six times as mach as the shates, some p, (000 or 60,000 tons of refuse have to be disposed of, which in this case are thrown directly (r) the tea, securing an immense saving of expense.

180K․ 'The more inportant slate quarries in lreland are in the southern division of the untry, viz., Killaloc, connty Tipperary; Valentia, county Kerry; Bendulf, near Glanre Harlour, connty Cork; and near Ashford Bridge, county Wicklow. 'Ihe chef c- is at Curraghbally, situate about six miles from Killaloe. The colour of the slates is lull blaish grey, preferred by many to the deeided blae of the Bangor quarries; they gereatly umed in the west of Ireland, where they have superseded the Welsh slates. 'The pour of the Valentia slaten is rather greener than those above mentioned. They are nerally thicker and more uneren on the surlace, and so are better suited for the exposed
aspects of buildings in the western counties. This quarry has more capabilities for sawn Gags and slabs, of which a large amount is now exported to England for cisterns, baths, urinals \&e. The Banduff quarry is nearly given up. The slates hom Ashford Brdge both ia colour and quality closely resemble the Bangor slates. (Wikinson, Geology, \&c. of Iieland, 184.5.)
1807. A fine sound texture is the most desirable among the properties of a slate; for the expense of slating being greatly increased by the boarding whereon it is placed, if the slate absorbs and retains much moisture, the boarding will soon become rotten. But a good slate is very durable. Its goodness may readily be judged ly striking it as a piece of pottery is struck; a sonorous. elear bell-like sound is a sign of excellence; but many pieces of the slate should be tried before a conclusion can be arrived at. It is thought to be a good sign, if, in hewing, it shatters before the edge of the zar. The colour, also, is some guide, the light blue sort imbiting and retaining moisture in a far less degree than the deep black-blue sort. The feel of a slate is some indication of its goodness: a good one has a hard and rough feel, whilst an open absorbent slate feels smooth and greasy. The best method however, of testing the quality of slates is by the use of water, in two ways. The first is, to set the pieces to be tried edgewise in a tul of water, the water reaching above half way up the height of the pieces: if they draw water, and become wet to the top in six or eight hours' time, they are spongy and bad; and as the water reaches less up them, so are the pieces better. The other method is, to weigh the pieces of slate, and note their weights. Let them then remain for twelve hours in water, and take them ont, wiping them dry. Those that on re-weighing are much heavier than they were previous to their immersion should be rejected. Where the character of a slate quarry is not previonsly known, experiments of these sorts should never be omitted.
1808. The following comparison of the adrantages of slates over tiles is given by R. Watson, former Bishop of Llandaff. That sort of slate, other circumstances being the same, is esteemed the best which imbibes the leist water; for water not only increases the weight of the covering, but in frosty weather, being converted into ice, swells and shivers the slate. This effect of frost is very sensible in tiled houses, but is scarcely felt in thost which are slated, for good slates imbibe but little water; though tiles, when well glazed are rendered in some measure similar to slate in this respect. The bishop took a piece o Westmoreland slate and a piece of common tile and weighed each of them carefully. The surface of each was ahout thirty square inches. Both the pieces were immersed in watel about ten minutes, then taken out and weighed as soon as they had ceased to drip. Th tile had imbibed about a seventh part of its weight of water, and the slate had not imbibee a two-hundredth part of its weight; indeed. the weting of the slate was merely superficial He placed both the wet pieces before the fire; in a quarter of an hour the slate was per fectly dry, and of the same weight as before it was put into the water; but the tile hai lost only about twelve grains it had imbibed, which was, as near as could be expected, thvery same quantity that had been spread over its surface; for it was the quantity whic had been imbibed by the slate, the surface of which was equal to that of the tile. Thu tile was left to dry in a room heated to sixty degrees, and it did not lose all the water had imbibed in less thian six days.
1809. Professor Ansted states that the best slates are those which are most crystalline and which, when breathed upon, give out a faint argillaceous odour; when this was givel out strongly, then the slates won!d readily decompose.
1810. The largest slab of s!ate, perhaps, ever as yet obtained, was the one sent by th Ilangollen Slate Company to the International Exhibition of 1862. It was 20 feet long 10 feet wide, and weighed $4 \frac{1}{2}$ tons; the thickness, however, was not named. The Weiss Slate Company, whose quarries are at Festiniog, in Merionethshire, sent several slabs aver aging 14 feet by 7 or 8 feet. All the slate from this neighbourhood possesses the remark able quality of splitting with great facility, and with wonderful accuracy of strface, int thin lamine or sheets. Some of these thinly divided sheets are obtained 5 to 10 feet lowfrom 6 to 12 inches wide, and not more than the sixteenth of an inch in thickness. The are so clastic as to bend like a vencer of wood. (Hunt, Hundbvok, 1869.)

Sect. X.

BRICK AND TILE.

1811. A brick is a factitious sort of stone, manufactured from argillaeeous or clayc earth, well tempered and squeczed into a mould. When so formed, brieks are stacked dry in the sun, and finally burnt to a proper degrce of hardness in a clamp or kiln. Il use of bricks is of the lighest antiquity. They are frequeutly mentioned in the historic
boks of the Old Testament ; but whether they were merely sun-dried or burnt in a kiln serins uncertain. We are inclined to doubt the burning of them at a very remote period. It will immediately occur to the reader that the making of bricks was one of the tasks iruposed upon the Israclites during their servitude in Egypt. Though the oldest remains in Egypt are of stone, Pocoeke describes a pyramid of unburnt bricks, which are composed of a black sandy carth, intermixed with pebbles and shells, the sediment deposited by the overflowing of the Nite. This species of bricks is still common in Egypt and many other parts of the East. By the ancient Greeks and Romans, both burnt and unburnt bricks were used; the method of making the latter whereof is thus described by Vitruvius, in the third chapter of his seeond book: "I shall first," says that author, "treat of bricks, and the earth of which they ought to be made. . Gravelly, pebbly, and sandy elay are unfit for that purpose; for if made of either of these sorts of earth, they are not only too ponderous, but walls built of them, when exposed to the rain, moulder away, and are soon decomposed; and the straw, also, with which they are mixed, will not sufficiently bind the carth together, because of its rough quality. They should be made of earth, of a red or white ehalky, or a strong sandy nature. These sorts of carth are ductile and eohesive, and not being heavy, bricks made of them are more easily handled in carrying up the work. The proper seasons for brick-making are the spring and autumn, because they then dry more equably. Those made in the summer solstice are defective, because the heat of the sun soon imparts to their external surfaces an appearance of sufficient dryness, whilst the internal parts of them are in a very different state; hence, when thoroughly dry, they shrink and break those parts whieh first dried ; and thus broken, their strength is gone. Those are best which have been made at least two years; for in a period less than that, they will not dry thorotghly. When plastering is laid and set hard on bricks which are not perfectly dry, the bricks, which will naturally shrink, and consequently occupy a less space than the plastering, will thus leave the latter to stand of itself. From its being extrencly thin, and not capable of supporting itself, it soon breaks to picces; and in its failure, involves sometimes even that of the wall. It is not, therefore, without reason that the inhabitants of Utica allow no bricks to be used in their buildings which are not at least five years old, and also approved by a magistrate.
1812. "There are three sorts of bricks: the first is that which the Grecks call Didoron ($\delta .5 \bar{\omega} \rho o \nu$), being the sort we use; that is one foot long and half a foot wide. The other two sorts are used in Grecian buildings; one is called Pentadoron, the other Tetrudoron. By the word doron, the Greeks mean a palm, beeause the word $\delta \dot{\omega} \rho o \nu$ signifies a gift which can be torne in the palm of the hand. That sort, therefore, which is five palms each way, is called Pentadoron; that of four palms, Tetradoron. The former of these two sorts is used in public buildings, the latter in private ones. Each sort has half bricks made to suit it, so that when a wall is executed, the course on one of the faces of the wall shows sides of whole bricks, the other face of half brichs; and being worked to the line on each face, the bricks on caeh bed bond alternately over the course below." Vitruvius concludes the chapter with the mention of the bricks made at Calentum in Spain, at Marseilles in France, and Pitane in Asia, which are specifically lighter than water.
1813. It is to be regretted that plastering with cement, a practice which is more to the interest of the briekmaker and bricklayer than to the consmmer, has become so prevalent in this country. These tradesmen thus get rid of their worst bricks, which are hidden by a coat of plaster; the building soon decaying when the heart of the wall is bad. Colour icems to be the objectionable quality about this material, the commonplace architect orgetting that form is much more essential to beauty than colour. In the times of Jonies und Wren, red brick was beautifully wrought into architeetural forms, of which a few xamples still remain in the metropolis: and by Palladio, bricks were oceasionally used for olums without smearing them over with plaster.
1814. In England, the best earth for making bricks is a clayey loam, ncither abounding -ith too much sand, which renlers them brittle, nor with too large a portion of argillaceous patter, which causes them to shrink and crack in drying. It should be dug at the beast a car before it is wrought, that by exposure to the atmosphere it may part with all xtrameous matter which it possessed when first dug. The general practice is, however, to ig it in the autum, and allow it to remain through the winter to mellow and pulverize, y which the operation of tempering is greatly facilitated. Upon this operation the mality of the brick mainly depends, and great attention shonld be bestowed upon performog this part of the process in a proper mamer. This branch of the manufacture was ,rmerly executed by throwing the elay into shallow pits, and subjecting it to be trodden y men and oxen; a method which has been advantageously superseded by a clay or purfill, with a horse track.
181.5. As soon as the clay has been thoroughly tempered by one of the methods above uned, it is taken to the moulder's bench, where it is cut by the moulder's assistant, onerally a woman or a lad, into picces rather larger than the nould, which are passed on the mulder, who thows it with sume forec into the mould, which has been previously
dipped in sand. He presses it down, so that it may fill the whole of the cavity, striking off the superfluous clay with a flat wooden rule. The newly-formed brick is then turned out of the mould on to a thin board, somewhat larger than a brick, and it is removed by a boy to a latticed wheelbarrow, and conveyed, covered with fine dry sand, to the hack. A handy moulder, working fifteen hours, will mould 5000 bricks. In the hacks, which are eight eourses in height, the bricks are arranged diago..ally above cack other, with a passage betwcen each for the circulation of air round them. The time required for drying in the hacks will of course depend on the fineness of the weather ; it is but a few days if the season be propitious; and they are tien turned and reset wider apart, after which, in about six or eight days, they are ready for the clamp or kiln. If the weather be rainy, the bricks in the hack must be covered with wheat or rye straw; and as they ought to be thoroughly dry before removing to the clamp or kiln, a few are generaly selected from different parts, and broken, to ascertain if the operation of drying has been well performed. The moisture arising from bricks when burning is very injurious to their soundness.
1815. The quantity of clay necessary to make 1000 bricks will be somewhere about 54 cube feet, which allows about 5 feet for shrinkage in drying and burning; for $1000 \times 8 \frac{1}{2}$ in. $\times 2 \frac{1}{2} \mathrm{in} . \times 4 \mathrm{in} .=4923^{\prime \prime} 4^{\prime \prime \prime}$. The eost of making 1000 bricks, in the neighlourhood of London, is nearly as follows:-

Digging, wheeling, carting, \&e.	-	-	-	\checkmark	-	$\bigcirc 1$	6
Moulding, stacking, \&c.	-	-	-	-	-	011	6
Sand, one-sixth of $2 s$. -	-	-	-	-	-	00	4
Straw for hacks -	-	-	-	-	-	00	9
Barrows, moulds, planks, \&c.	-	-	-	-	-	00	6
Fuel 9 ewt. per 1000	-	-	-	-	-	010	6

1817. In the brickfields about London, bricks are mostly burnt in what are called clamps. These are generally oblong in form, and their founditions are made with the driest of the bricks from the hacks, or with common worthless bricks, called place bricks. The bricks for burning are then arranged, tier over tier, to the height assigned to the elamp, according to the quantity to be burnt, and a layer of breeze or cinders, two or three inches deep, is placed between each course of bricks, and the whole, when built up, covered with a thick stratum of breeze. On the western face of the clamp a vertical fireplace is formed, about 3 feet in height, from which flues are driven out by arehing the bricks over, so as to leave a space about one brick wide. The flues run in a straight direction through the clamp, and are filled with a mixture of coals, breeze, and wood, closely pressed together. If the bricks are required to be burnt quickly, the flues should not be more than 6 feet apart ; but if time do not press, the flues need not be nearer than 9 feet to each othir, and the clamp is allowed to burn slowly. It is possible, if required, to burn a clamp in a period of from 20 to 30 days, according to the dryness of the weather. The practice of steeping bricks in water after they have been burnt, and then again burning them, has been found to have the effect of considerably improving their quality.
1818. A new mode of burning bricks in clamps has been patented by Robert White at Erith, wherein the advantages are stated to be that, 1st, nearly all the bricks are burnt into stocks, and the yield of inferior bricks is reduced from 35 to about 10 per eent. of the total make ; and, 2ndly, the Lricks are so much improved in colour and soundness as to give then a considerable additional valuc in the market over common stocks.
1819. The kilns which are used for burning bricks are usually 13 feet long, by 10 feet 6 inches in width, and 12 feet in height. The walls are one brick and a half thick, and incline in wards as they rise. A kiln is generally built to contain 20,000 bricks at each burning. The fireplace consists of three arches, which have holes at top for distributing heat to the bricks. Tb ese are placed on a lattice-like floor, and first undergo a gentle action of the fire for two or three days, in order to dry them thoroughly. As soon as they thus become ready for burning, the mouth of the fireplace is dammed up with what is called a shinlog (which consists of pieces of brick piled against each other, and closed with wet brick earth), leaving about it sufficient room to introduce a faggot. The kiln is then supplied with brushwood, furze, heath, faggots, \&c., and the fire is kindled and kept up until the arches assume a white appearance, and flames appear through the top of the kiln. The fire is then slaekened, and the kiln gradually cooled. This process of alternately raising and slacking the heat of the kiln is repeated till the bricks are thoroughly burnt, which is usually accomplished in about eight and forty hours.
1820. The malm or marl stock, which is of a bright yellowish uniform colour and textuee, is not always to be had, especially in the London districts; in eonsequence of which, several years ago, it was discovered that chalk mixcd in certain portions with loam, and treated in the usual manner, proved an excellent substitute for it. It not only was found to improve the colour, but to impart soundness to the brick; and the practice is now gencrally adopted about London. At Emsworth in Hampshire, and also at Southampton,
oze, or sludge, from the sea-shore, containing much saline matter, is used for a similar urpose: these bricks, however, have not the rich brimstone colour of the London malm tock, nor the regular stone-coloured hue of the Ipswich or Suffolk bricks.
1821. The finest marl stocks, which are technically called firsts, or cuttcrs, are princially used for arches of doorways and windows, quoins, \&c., for which purposes they are ubied and cut to their proper dimensions and form. There is also a red cutting brick, shose texture is similar to the malm cutter, which must not be confounded with the red tock. The nest best, which are chiefly used for principal fronts, are called seconds; hey are not quite so uniform in colour, nor so bright as the last, but are, nevertheless, a iandsome and durable brick.
1822. Stocks are red and grey, both sorts being equal in texture. The red sort are jurnt in kilns. The grey stocks are less uniform in their colour than seconds, and are of ather an inferior quality. They are used for common fronts, and walls.
1823. Place bricks, or peckings, sometimes also ealled sandel, or samel bricks, are those vhich, having been outermost or furthest from the fire in the clamp, or kiln, have not eceived sufficient heat to burn them thoroughly. They are consequently soft, uneven in exture, and of a red colour. These should never be used in a building where durability s required. The name was formerly applied to the second quality of bricks, and these re still so called in Ireland, being used for inside walls: the Irish harder burnt brick, having a semi-glazed surface, is called firebrick, and is used for exterior work where xpense is not an object; of course it lasts much longer than the other sorts.
1824. Burrs and clinkers are such bricks as have been violently burnt, or masses of everal bricks run together in the clamp or kiln.
1825. Compass bricks are circular on the plan, and are chiefly employed for steyning, r walling round wells.
1826. Concuve or hollow bricks are made like common bricks, but hollewed on one side a the direction of their length, and are adapted to the construction of drains and wateroures. Other hollow and pierced bricks of sereral shapes and sizes are supplied by arious manufacturers. A beaded brick, drilled with holes, for garden walls, to avoid the ecessity of nailing in training trees, are made at Stony Stratford, in Northamptonshire.
1827. Firebricks, so called from their capability of resisting the most violent action of he fire, are of a dark red colour, and of a very elose texture; they are made about inches long, $4 \frac{1}{2}$ inches broad, and $1 \frac{1}{2}$ inches thick. The loam of which they are made 3 yellow, harsh to the touch, and contains a considerable portion of sand. Their quality enders them highly serviceable in furnaces and ovens. The greater part of those used bout London was formerly brought from Hedgerly, a village near Windsor, whence they btained the name of Windsor bricks. This sort of brick is also made in varius parts f Wales, whence they are called Welsh lumps; also at Newcastle; at Poole in Dorsethire; at the Hurlford works, near Glasgow; and at Stourbridge; the latter supplies hiefly the London market, but the material is one of the dearest. Fire clay, and flue nings for furnaces, are extensively used. The Dinas brick, manufactured by the misymudu Company, near Swansea, stands a heat that will melt the Stourbridge brick.
1828. Paving bricks are for the purpose which their name implies, and their dimensions ce the same as those of the foregoing sort.
1829. Dutch clinkers and Flemish bricks vary little in quality; they are exceeding'y ard, and are used for the paving of stables, yards, \&c., though they are by some objected , as being too hot for the horses' feet. The former are 6 inches long, 3 inches broad, nd 1 inch thick, and are often laid on edge in various fanciful forms, as the herringme, \&u. The adamantine clinker is noticed in the next chapter. Tcbbutt's patent safety" brick is used for stables, yards, lavatories, and such places, as it gives a good outhold and a dry walking surface.
1830. South Stuffordshirc supplies a blue vitrified sewerage and paring brick (as used 1 Charing-cross suspension bridge, 1856 , and on Chelsea now bridge), and a channeled able brick. It is stated that the Tipton blue brick, when used for facings, lets in the wet ost thoroughly, either through the brick or through the mortar joilits, so that walls of this aterid should be built hollow. The construction of the work was questioned, as 9 and inch walls bave been erected with these bricks with sucecss. As they are scarcely albbent, mortar does not thorouglily adhere to them; this want of adhesion miplit be medied ly well soaking the bricks before using them. Blue bricks of various forms aro so used for paving, copings, channels, gutters, border tiles, plinths, \&e.
1831. A mongst the many qualities and varie ies of lricks now in use in the metropolis, - following nay be cenumerated in addition to those already mentioned. The Coweley, sex, and Kent bricks. Fronı Cowley are sent stocks, best yellow and white cutters, How and whito seconde, paviours, pickings, \&e. The Aylesford and Burham works, ar Maidstone, on the river Medway, formerly the properly of the late Thomas Cubitt, oduce geult Lricks of grood quallity. Picliwell's patent white brick is sound, has is
uniformity of colour, resists frest and the action of acids much longer than others. They are manufictured at Hull.
1831 a. The Suffolk bricks, called white Suffolks, are of two or more qualities, expressly made for facings, and are expensive; the best are rarely to be obtained in London, being suld in the locility of their manufacture. They have a disagreeable cold hue, rendered still more dull after a few years' wear in the smoky atmosphere even of a provincial town. They are not so well burnt as those which are somewhat of a light pink or salmon tint. These latter are to be bought at the kiln at about 17 s . per thonsaud, and by some persons are thought to make better brickwork than those which fatch 60 s. or more per thousand in London. The works supply superior white and red (kilnburnt) Suffolk facings, splays, door-jambs, coping lricks, stable clinkers, \&c.; dark red facings, rubbers, splays, paving bricks, \&c.; bright yellow malm facings, and cutters of best quality. Mean quality, and pale malm seconds, pickings. paviours, \&c. A dark-coloured brick from Huntingdor is of a finer colour, uaiform, much smoother than ordinary, and equal to those made in Kemt.

1831b. Beart's patent bricks are made at Arsley, near Hitchin, on the Great Northern Railway, of the following qualities, ranged according to price:-White rubbers; hand made moulded solid brick, equal to the best Suffolks; No. 1 best selected white facing brick (piereed) ; and ordinary; these two are of uniform colour, hard and well burnt, and used extensively for facings; No. 2 mingled, red and pink, vary from the above only in colour, and are equal in every respect to the best made stock bricks. These bricks are made from the Gault clay, one of the subcretaceous formations interposed between the chalk and the wealden deposits, or between the cbalk and the upper oolite. The composition varies, for although it is of a tolerably uniform dark blue evlour, it sometimes contains large quantities (comparatively) of the hydrous oxide of iron; and in others it contains much of the bicarbonate of lime, in combination. The former burn in the kiln into a deep red brick or tile of wather inferior quality; the latter are used for the pierced hard white bricks above described. It is stated that these bricks are required to be burnt with great eare, for if the calcination of the lime should take place under sueh conditions as to leavo the lime in a caustic state, it will slack on exposure to the weather, or when moisture is applied to it. Thero is some difference of opinion as to whether mortar can be mado to adhere to the smooth bard face of theso bricks to make sound and strong work.

1831 c. The red bricks derive their colour from the nature of the soil whereof they are composed, which is generally very purc. The best of them are used for cut ing-bricks, and are called red rubbers. In old buildings they are frequently found set in lime putty, and often carved into ornaments over arches, windows, doorways, \&c. The Fareham reds are noted bricks. The Rowlands Castle (Hampshire) brick, tile and terra-cotta wurks supply reds in colour and appearance similar to Fareham. They are very hard and strong. At a mean pressure of 76,867 lbs., or 686 ewts., they eracked slightly, and with 140,617 lbs., or 1255 ewts., they cracked generally; giving 141.9 and 259.5 tons per square foot. The Thurstonland brick, from near Huddersfield. is made from a deep bed of shale, producing when burnt a rich red colour ; each brick undergoes a pressure of 14 tons, is well burnt, and being of a vitreous vature is impervious to atmospherie and other destructive influences. Mouided bricks can be made. They have been used at some of the Loudon Board Schools, aud largely at Blackburn and Sheffield. The crushing straiu is over 399 tons per square foot, and the brick contains 65 per cent. of silica.

1831d. Black bricks are obtained from Con bridge, in Sout'l Wales; these were used at All Sainis' Church, Margaret Street, and cost £t per thousand. The Ballingdon or Ewell deep black rubbing and building bricks, probably so rendered by manganese, are soft in make and dead-looking in colour. The same factory, and Chaltont, supply dark, and bright, red rubbers; with black headers. glazed and unglazed. Red and black bricks are sent from Purgess Hill, Sussex; and from Maidenhead, in Berlshire.

1831e. Bricks are now made glazed white and also many other plain colvurs; others with patterns on the face as borders and for decorative purposes. The white glazed bricks are used in lieu of tiles for the reflection of light; others for securing perfect clranliness of wall surface; and for obtaining quiet and neutral tones of colour for the walls of wards of hospitals, and uther similar purposes.
1832. By the 17 th Geo. III. cap. 42 , all bricks made fur sale were directed, when burnt, to be not less than $8 \frac{1}{2}$ inches long, $2 \frac{1}{2}$ inches thick, and 4 irches wide. This statute, which was cnacted for the purpose of levying a duty. is now no linger in force, and the nanufacturce is at liberty to make bricks and tiles of whatever size and form may be best suited to the work for which they are ustd. This Act having been rescinded, has led to thb introduction of moulded and ornamental bricks to a vast extent, which will probably be still further extended as brickmıking machines becone more u-eful and certain in their operations. The paten s for them are now very numerous: some of them are stated to make ul to 20,000 per day, as may be required. The size of the brick, however, has betu retained, and habit will, no doubt, continue it iu farour, especially for repairs.

1832a. Bricks laid in the summer season should be well saturated with water prerious to laying; and if the work be left for a day only, the walls should be as carefully covered up as in the winter, for in hot weather the mortar sets too rapidly, and henee the necessary cohesion is destroyed; an evil much aggravated by the dust constautly hanging about the bricks, more especially at that season of the year. (See 1900d.)
1833. A valuable paper, On the Transuerse Strength of Bricks, was delivered by Mr. W. Hawkes at the Institute of British Architects, January, 1861. He stated that he had always tested bricks by their transverse power in preference to the crushing weight, which wals but seldom called in question, as it tells nothing if the bricks will resist from 30 to 100 tons dead weight. It would often be useful to know if in a 9 inel wall we could disribute a weight, say of 13 tons, over an opening 90 inches wide, having only 40 inches lepth, supposing that the lricks be of moderite strength and the mortar be as strong as he bricks. The prossure and weights were applied in each case in the centre of the brick.
1833a. He experimented on Dutch clinkicrs (made at Moor, near Goula, in South Iolland, from the slime deposited on the banks of the river Yssel; and formerly from hat of Haarlem Meer ; the clay or slime is washed to get rid of the earthy matter before eing moulded; the colour is lightish yellow brown); Tipton blue bricks; Birmingham, and and machine made; Leeds, ditto; Bidgewater ; Colehester; Oxford; and London, ic.; with tiles of various kinds. As, however, these experiments were made to a calcuated standard size of 7 inches long, $4 \cdot 5$ inches wide, aud 3 inches thick, the results are not encrally useful for a work of this description. But we give the fow act ual woights borne y certain bricks. Thus the 9 Leicester bricks carried at the ordinary size, $1,462 \mathrm{lbs}$, 392 ibs ., $1,252 \mathrm{lbs}$., $1,132 \mathrm{lbs} ., 1,052 \mathrm{lbs} ., 1,002 \mathrm{lbs}$., 902 lbs ., and 892 lbs . The 9 from mogy carried 1,222 lbs., 1,022 lbs., 1,012 lbs., 862 lbs., 822 lbs., 552 lbs., 422 lbs., and 32 lbs . The 7 London bricks carried 1,142 llbs., 1,042 lbs., 952 lbs., 662 lbs., 652 lbs., 22 lbs., all being stocks; the last, a place briek, carried 270 lbs . The 7 London icks (second set) carried $970 \mathrm{lbs} ., 690 \mathrm{lbs} ., 580 \mathrm{lbs} ., 400 \mathrm{lbs} .$, all stackis; and $650 \mathrm{lbs} .$, $30 \mathrm{lbs}, 340 \mathrm{lls} .$, all place; the frog was not allowed for in the calculation.
18336. Tho following are the ascertained weights of bricks of the sizes stated:-

$833 c$. Brickwork expands with great. hoat. Mr. Hawkes's experiments, already iced, on a furnace chimncy, 54 feet 7 inches in height, showod that the result of six 1 1s was an elongation of $1 \cdot 42.5$ inches. The great heat of the furnace chimney for 4 ting iron is never reached in house tlues, but since the introduction of hot air cockles if Hot water furnaces, particularly the high-pressure, the heat of theso flues is increased ti fold compared with thues from open fireplaces. An iron bar might perhaps be heatod velness in some of the furnace flues. In another chimney, at Thannes Bank, in a Lift of 80 feet, tho brickwork showed an expansion at times of $\frac{5}{8}$ of an inch.

333d. Burnt Clay Pallast. Thisis now eatensively used for forming the foundations to new fornuch roads round the metropolis, and for footpaths in the saburban gardens. elay olfained in making the oxcavations for the now houses is run to a convenient ity adjneont ; a log of old timber is fixed upright in the ground; a horizontal the 8 feot long is furmed with lricks on orge, with an opening on the top near the log. ings are laid round the post and in tho flue, oulside of which pieees of timber aro in at conical formobsut 8 fert wide and b fiet high; and then coat ed with abont half of coal, which is coverel with the newly excavatol elay to a conveni nt thickness. wher ugs are then lighted, it the wind sat ; and in a short time the top of the heap in, lumps of coal are then thrown ia, and on them more lumpo flay. The oljecer to taneed is the have a manes of red hot fire in the midhle of the hap. For a licap of (luo selid yurds of clay, ahont 11 loads of breeze or ashes and a tons of slack or fin:o will be needed. Tho hesp, once finirly atight, is covered with clay. Tho tendency of ro being to barn upwards, the firoman, with a long rake, drags the outer surface Wurde wery time tho burning hoap is fed; this is done by seattering tho shack over
 Iayer of elly is mbsequently put on all wer the beap. When this elay is rearly through, tive ofreration is repented. Whan there is a gentlo smoke all ower tho the flle is going on properly ; if too little un iron rod is pushed in to stir it up;
if too much, shields must be put up to break the wind. The general form of the heap, which is cone-shaped at starting, becomes of a flattened circular $t \cdot p$ in course of leing worked. It should not be made too high, as that increases the labour of wheeling the cliy. When all the clay is used, such portions as are not sufficiently burnt are raked off aud thrown up to the top to the greater heat: the heap is then trimmed off and left to cool. When well bumt, the ballist may be worth the tronble; when badly done, as is usually the case, it is not much better than rubbish, in fact not nearly so good as the usnal dry brick rubbish of which roads should be made. When well burnt, ground fine, and mixed with an equal portion of sand, and a less than the ordinary proportion of good lime, it. makes a mortar which will set as hard as cement. The ballast may also be siffed through a 65 or 70 wire sieve, and the fine stuff, hard and clean, used for mortar or for the plasterer ; the coarse and the rough for concrete, in addition to gravel. When usci as core for a road, it should be at once covered with the Cowley or other gravel, or the clay beneath it rises up with traffic, and mucle rain will soon render the road as bad a though the soil had not been covered; in fact ic turns into mud, and the scamping builde finds it pays to mix his bad lime in the roadway dirt, and to use the mixture for mertar

1833e. Coke brepse or lreeze is akin to the above in the use now made of it. It is extensively used for mortar ; ground in a mill, in lieu of sand or burnt ballast, it is sair to set harder, being cleaner and sharper than sand, and requires less lime or cement. It i employed in artificial stonework, in concrete, and in paring. In ballast burning it burn the clay harder, and is cheaper than small coal. For ronds and pathways it is clean, n r picking up in wet weather, and is good for surface drainage. In some places it may b cheaper than sand or ballast.

tiles.

1834. Tiles, which in their constituent parts partake much of the nature of brick: are plates of clay baked in a kiln, and used instend of slates, or other corcring of the reat of huuses. The clay whereof tiles are formed will always make good bricks, though th converse does not hold, from the tonghness required on account of their being so mur thinner than bricks. The common kints are made of a blue clay, found in many par about London, and mostly deeper seated than brick earth. The best season for diggit it is in Septeniber and October, and itshould then lie exposed during the winter. It ma howerer, be turned up in January, and worked in February; and, as in brick, so in til making, the more care bestowed on beating and tempering the clay, the better will het tiles. In 1477, 17th Edward IV., c. 4, it was enacted that clay should be dug befo Norember, and be stirred and turned betore March. Tiles are burnt in a kiln construct on the same principles as the brick-kiln, but with the addition of a cone, having opening at top round the chamber of the kiln. They require much care in burning. the fire be too slack, they will not burn sufficiently hard; and if too viclent, they gla and suffer in form.
1835. Plain or crown tiles are such as have a rectangular form and plane surface. Th were made $10 \frac{1}{2}$ incles long, $6 \frac{1}{\frac{1}{4}}$ inches broad, and $\frac{5}{8}$ of an inch thick, by the statute. Thi are manufactured with two holes in them, through which, by means of oak pins, they ha upon the laths. In using all coverings of this species, oue tile laps over another, or placed over the upper part of the one immediately below; that part of the tile which th appears uncorered is called the gange of the tiling. Terro-melallic tiles for roofs, w two projections at the back to catch on the laths in lieu of pags, are now in use. Ter metallic Staffordshire goods in red, blue, and buff colours; also blue and red, pl. capped and rolled ridge tiles in 18 inch lengths. Broseley roofing tiles in varir colours and patterns. The best pressed roofing tiles are of superior manufacture a quality, of very hard metal, impervious to moisture, and will not allow of vegeta! growing on them. The Kenzington and Naccolt tile yards, Ashford, Kent, suppl! dark brown tile, about $9 \frac{1}{2}$ inches by 6 inches, of which 1,400 go to a ton ; the timber of a roof is not more than for slates. It was there that the abbots of Battel ma factured tiles for their own use and for sale. On stripping old roofs these tiles h been found sound and were used again; the heart of oak laths had perished f age. Italian tiles, which were made about 1840, by Brown, of Surbiton, differ somew from their first prototype, as, instead of being flat, they are slightly curved, fil easily into the other, with a horizontal indentation across the upper part, to prevent the n drifting the rain over the tile head; they have either wide or narrow vertical rc Such tile: are nsefully employed in picturesque buildings in the country. Taylor's roofing tiles have a plane surface and a slight turned up edge at the sides, a lump on surface near the upper edge prevents the upper tile slipping; a cover tile is of a sim size and form; these tiles wore used about 1872 at the new railway station in Li pool Street. They are 1 tcommended as being half the weight of ordinary plaint it eatch tile weighing under 4 ll s., and as light as slating; they may be laid to as $i l$ pitch as slaters ; and that 180 will cover a square of roofing.
1836. Liduly ruof aud hip tiles are formad cyliadrically, to cover the ridges of hot.
hey should be 13 in . long, and girt about 16 inches on the outside. Weight about 5 lbs , 'llge tiles, plain, and with eresting, are now introduced in red, blue, black, and green are. Plain, flanged, ro!led top, and ornamentai gruoved ridging tiles, are commonly seen. 1837. Giutler tiles are about the same weight and dim-nsions as ridge tiles, though iffering in form, and are for the valleys of a roof. They are now rarely used, the.r lace having been supplied by lead, and lately by zinc in common work.
1837. Puil or Flemi,h tiles have a rectangular outline, with a surface both convex and ncave, thus d. They have no holes for pins, as plain tiles hare, but are hung it the laths by a knot of their own earth on their underside, nearest the ridge, formed hen making. They are often glazed, and should be $1 \not \frac{1}{2}$ inches long and $10 \frac{1}{2}$ inches broad.
he Bridgewater double roll tiles are slown in fig. $61 \pm a$. Three ubs are furmed on the back to catch the lath: They lap orer two ches, and aff.rd good ventilation for farm buildings, with good otection frum rain and snow. Phillips' patent lock jaw roofing
 les, with single grip and double grip, are ornamental, and stated to be wind, rain, and rew pruof. The grip consists of each tile locking on to its neighbour by one or two unded grooves or beads.
1838. The fullowing are the weights of the undermentioned sizes of tiles used for arious purposes:--

Paving tiles at per 100.
ents. qre.

$9 \times 9 \times 2 \frac{1}{4}$	13
$9 \times 9 \times 1 \frac{3}{4}$	=
$9 \times 9 \times 1 \frac{1}{1}$	$=$
$9 \times 9 \times 1 \frac{1}{3}$	$=9$
$12 \times 12 \times 1 \frac{1}{2}$	$=16$
$12 \times 12 \times 2$	$=22$
$14 \times 14 \times 2 \frac{3}{8}$	$=35 \frac{1}{2}$
$16 \times 16 \times 2 \frac{3}{8}$	$=44$
$18 \times 18 \times 2 \frac{1}{3}$	$=64 \frac{1}{2}$
$20 \times 2.1 \times 25$	$=84$
$22 \times 22 \times 2 \frac{7}{8}$	$=104$
$24 \times 24 \times 3$	

Rilge tiles 18 iil., $\left.\begin{array}{rl}\text { alocut }\end{array}\right\} 15$ " 10 to 14 cwts . per 100.
3) rolled, 18 to $2 t \mathrm{in}$.

23 to 29 lbs . each. 12 to 18 cwts. per 100.

$$
\begin{aligned}
& \text { Malt kiln ti'es } \\
& 12 \times 12 \times 2=16 \mathrm{lbs} \text {. each. } \\
& \text { Hothouse flue tiles } \\
& 12 \times 12 \times=13 \\
& \text { Plain tiles } \quad \text { ibs, "wts. } \\
& \begin{array}{l}
11 \frac{1}{1} \times 6 \frac{1}{2} \times \frac{1}{2}=2.51=22 \frac{1}{4} \\
10 \frac{1}{2} \times 6 \frac{1}{2} \times \frac{3}{8}=2.51=22 \frac{1}{2}
\end{array} \\
& 11^{2} \times 7^{2} \times \frac{5}{8}=2 \cdot 90=26 \frac{1}{4} \\
& \text { Pan tiles } \\
& 13 \frac{1}{2} \times 9 \frac{1}{2} \times \frac{1}{2}=5 \cdot 25=47 \\
& \text { Bridgewater donble roll tiles } \\
& 16 \frac{1}{2} \times 14 \times \frac{1}{2} 10 \frac{5}{8}=8.80 \\
& \text { Paving tiles, squates } \\
& 6 \times 6 \times 1=2 \cdot 16=19 \mathrm{Z} \\
& 9 \frac{3}{4} \times 9 \frac{3}{4} \times 1=570=50 \\
& 11 \times 11 \frac{3}{4} \times 1 \frac{1}{2}=12 \cdot 42=111 \\
& \text { Ditıo. hexagons }
\end{aligned}
$$

1839a. White glazed tiles of Dutch and English manufacture aro used for lining the .lls of baths, larders, dairies, butchers' and other shops, kitchen ranges, areas for reeted light, and other sueh like purposes. For walls of entranco lobbies and similar ces, glazed tiles are stamped with a pattern, giving a deeoratire appearance. Mathttical tiles are empleyed for covering the vertical surfices on the outside of walls, in itation of brickwork, and to prevent wet being absorbed.
1839h. Ornamiental Puvements. The use of hardened clay for pavement is of the highest ifuity. Our own country furnishes numerous examplus of the varieties employed by Ruminns. 'I he tiles are usually made of the clay found in the immediate neighbourad in which they have lecen used; and ornamented, sometimes with colour, but noro buently with merely an impressed or raised design. During the Medineval age, encaustic 1 other tiles were langely employed. Many varicties of plain and ornamenal tiles are is made in the Potterics, as at Broseley; also at Poole, in Dorsethhire. The couss ${ }^{\text {P }}$ hy, fur strecta and doorways, have a red or a baff celour, and are prepared from tho Hiorlahire clay, whicls is found associated with coal. By mixing metallic oxides with thas relaya, blue mad other colours are produred. The manufucture consists in bringing clay into a state of fine powder, containinga certain amome of moistare ; the mass is a Ianed in is monld of iron which it completely fills, when the ram of an hydranlic 1 as, oxnctly fittiug, tho mould, givesa pressure of from 150 to 200 toms, eonpressing the
 Fmonthend off on the sinface, und then it is realy for loming lanked in the kiln. 'Thes ganalio or varimgated tile in composed, in the lonly, of ordinary red or laff clay; it is oxed in a momli, muder a commen serew preph, tha noonld not only producing the outer fo of the tile, but ulso certain impressions on the face of the clay, about a quarter of an Th in drpith. It is then taken ont of tho monld, and ultowed to aequire a certnin spute Irynesn. Dusonshito or Corniwh chay, culumerel, is then poured over the whole surfice, 1 "ge tho improwions, in thomate of a yery thick slip; when this has been dried to at rer-

pressed spaces only being filled with the coloured matter. A layer of clay is alsn applied to the back, and is sometimes pierced with holes to present the bending of the tiles in the process of baking.

1839c. The Tesscrea are manufactured by a similar process. In Lambeth, clay being properly prepared and stained of the desired colour, as black, red, blue, \&c., is made into long narrow ribbons, by means of a squeezing machine. These ribbons are cut into squares, which are placed one on another, $1 \bar{\delta}$ or 20 high, previously oiled to prevent adhesion. These piles are then placed upon a frame sliding in two perpendicular grooves, nith fine steel wires stretched tightly across, so that by pressing the frame downwards the wires subdivide the slices into the square, oblong, triangular, or other shaped tessere required; these are then dried and baked in the ordinary way. Messrs. Minton manufacture their tesseree by pressure as for making tiles.

1839d. The mode of forming tesseræ into mosaic paving slabs is as follows:-The tesserf are laid face downwards on a perfe tly flat slate, in the pattern or design required. The size and shape of the slab is given by strips of wood or slate fastened round the tessore. Purtland cement is poured on the backs of the tessere, and two layers of common red tiles are added in coment; thus forming a that and strong slab, which is fitted for laying down as pavement. (Hunt, Hardbook, 185t.) The better tiles, and the larger tessere for pavements, are laid seprately on a carefully prepared foundation of fine concrete, and then set in fine sand. The durability of a tesselatel parement consists greally in the solidity of the fuanda rion given to it. With a floor subjected to vibrations such a work will go to pieces. The encaustic tiles with raised patterns should only be used as wall liniıgs, as at Gramada, aui never for parements, as is sometimes dunc.

1839c. Stonetrare is a dense and highly vitrified material, impervious to the action o acids, and of peculiar strength. Uutil ab ut 1836, when the duty was taken off, this material was chiefly used for common spirit bottles, oil jars, \&e. The clay used is funn near the coast in Deronshire and Dorsetshire. It is dug in square lumps of about 40 lbs each, ard transported in ships to London. After being perfectly dried it is ground to: 1owder, mixed with water, and, after being allowed to become of uniform consistency, th luass is passed through pug mills, and taken to the workmen. For making large artick: portions of the burnt material, finely ground, are mixed with the new clay; also some whit sand found in the neighbeurhood of Woolwich and Reigate.

1839f. Almost all round articles are formed by the potter, on wheels turning with th required rapidity. The potters wheel was known in Egypt some 2,500 years 3.c., and remains practically the same. It was worked by hand; then by the feet, keeping a steadit constant motion; larger articles caused the dise to be attached to a large fly wheel, worke by au assistant, who was directed by the potter; lastly came the addition of steam an the conical drum, enabling the potter to regulate the speed required. For articles other shapes, the composition in a soft and plastic state is laid in plaster of Par monlds; the perous plaster gradually absorbs the moisture from the clay, and whe sufficiently firm it is removed. Srme thousand articles are frequently made from or mould before it is destroyed. When thoroughly dry, the ware is placed in orens. kilus, and exposed to a gradaally increasing heat, so intense as to become, before finisling quite white; salt is then throwa in, and, being decomposed, the fumes act chemically s the surface of the ware, and fuse the particles together, giving the glaze so well know Stoneware differs from all other kinds of glazed earthenware in this important respe that the glazing is the actual material itself. fused togerher; in cther kinds of ware it at composition in whicn the article is dipped while in what tho petters call the biscuit, half-burnt, state. (Hunt, Handbook, 1851.)

TERRA-COTTA.

1839g. Terra-cotta, that is, burnt earth, embraces every kind of pottery, but the ter has now come to be applied exclusively to that class of ware used in linilding, and more or less ornamental and of a higher class than the ordinary, or even the better mi of bricks, demanding more care in the choice and manipulation of the clay, and mu larder fring, hence it is more durable. The best terra-cotta is a species of stonewa which doe not after years of use show signs of decay from contact with acids and alkalit

1839h. Terra-cotta, like stone, may be good, bad, or indiffcrent in quality, hut go terra-cotta will hold its own against good stone as a sound building material. Bad terr cotta is that which is imperfectly burnt, and when it is " slack burnt," as it is termed, t material will go back to clay again. Flower-pots are common terra-cotta, and often thr off a scale of red earth each time the plant is watered. A well burnt sto.k brick is al terra-cotta; and where is the ordinary stone which is equally durable with it? Gor terra-cotta is easily tisted; when struck with steel it should emit sparks and mere show a black line, and ring like a bell. It should be free from fire cracks, have true line
ts surfaces be not chipped or rubbed after burning, and each piece should be properly hambered with cross-pieces.
1839i. The clays best suited for terra-cotta are found in the tertiary beds, or those neurring alove the chalk, and corresponding with the lower Bagshot sands of the ondon district. Also those in the oolite and lias tormations. It is procurable at Tamvorth in Staffordshire; Watcombe in Dorsetshire; Poole in Dorsetshire ; Everton in burrey; Ruabon in North Wales; in Cornwall, and in Northamptonshire. The clay lould be as free from iron and limestone as possible, and should be cleansed from all mpurities. Natural terra-cotta c'ay contains 60 to 65 parts of silica to about 28 parts f alumina. The Roman material consisted usually of the following ingredients: i.ici, 7145 ; alumina, $2 \cdot 25$; protoxide of iron, 12 ; protoxide of manganese, 0.17 ; ime, $8 \cdot 14$; soda, $16 \cdot 62$; magnesia, a trace. Sand is an essential ingredient, and should θ free from iron. The chief materials constituting the paste are clay, sand, Hint, glass, nd phospbate of lime.
$1839 k$. All clays require careful preparation before use, and their after characteristics re often as mucli determined by this as by anything ; the same clay being different under ifferent treatment. 1st. Kneading, or pugging, which consists of well mixing the clay nd reducing it to a perfest consistency throughout; this is now done by a pug-mill. Iost clays are too fat, and require an alloy to make them more workable; their shrinkgis too great, and they are liable to twist and warp in drying and burning, so that fugb stuff or burned clay grould fine is added in proper quantities to prevent this, and gires the potter more certain command over the clay. When mised it is raised in a ey state into the misers, water is added, and it is then passed through the pug-mills, hen it is ready for use. Sometimes the clay is rendered more homogeneous by being ruck continuously with an iron bar, to assimilate the parts and to expel any air, which a being expanded by the heat of the kiln wuuld shatter the work. 2nd. A ball of this ay is supplied to the potcer, who proceeds to form the article by hand; or it is pressed to a mould, whicb is of plaster, when repetitions are required. Care is necessary to we an equal thickness throughout, to prevent unequal shrinkage. This thickness is not ach more than one inch. When required of a greater thickness, the blocks are formed llow with cross welos to strengthen them. When necessary these cavities may be filled th concrete; this filling also prevents the accumulation of moisture, to which the blocks puld be liable were they left open. 3rd. The article so formed in the rough is mored to be dried. Drying is evaporating the water, which must be done very adually and evenly or there would be a liability to crack aud twist. When nearly as rd as a piece of soap it is placed on a lathe and smoothed or polinhed with an iron pl. If any part is required to be attached to it the part is moulded, and the clay pistened at the point of junction, and the two luted with a vers little soft clay. The rk is now ready to be burnt. 4th. Burning is a process of the utmost importance, as it depends the lasting qualities of the material. A chemical action goes on in the firing ich changes the whole nature of the clay; it never admits of being worked up again, in its original state. To accomplish burning successfuliy requires much experience, 11, and patience. It is now removed to a kiln or reverberatory furnace, and carefully eked in fire-clay troughs called siggars, or placed one over the other. When the kiln ull the doorwny is bricked up, and the fires are lighted in the furnace holes around the 1) a. Largo auticles have to be fired very slowly for four or five days, then for about 1 y y-eight hours fired sharply until a heat is attained sufficiont to bake the ware, and to ${ }^{1}$ k the ingredients of which the body is formed into a vitrcous mass without melting whole. Tho intensity ustally necessary is stated to be that at which soft iron 3 ild melt. The articles have to be protected from the coal flame by the seggars, or by 1 ig cuated with paper and clay, or by a muffle throughout the kiln, as the flame is apt 1 rack many clays openly exposed to it, and the rapour of coal is sure to discolour the v e, genorally turning it a foxy red. A kiln of large goods takes about a week to cool. $83 \Omega \mathrm{l}$. Of late jears terra-cotta has been used extensively for the facings and d ssings of a building in the place of stone. It is gencrally made of hollow blocks, ff ned with wobs inside so as to give strength to the sides and koep the work true while d) ing, whereas when required to bond with brickwork it must be at least $4 \frac{1}{2}$ inchos thick. 830 m . The following result of experinents made liy Mr. Blasheeld for Mr. Charles ${ }^{1}$ ry, wero given in a paper ly him on Duluich Cillege, read at the Royal Institute of 1. Fish Architects, session June, 1868.

A block of P'ortiand stone about 6 inches cube, Jore a crushing weight

1839n. The shrinkage of terra-cotta clay in burning is very uncertaia; it is one-eighth to one-twelfth. To obriate the risk of wurping, large pieces should only be used whero absolutely neccssary. Blocks may average from 1 to 3 feet cube; never more than 4 feet; the biock is usually from 12 ins. to 16 ins. long, by 6 ins. to 15 ins. high; $4 \frac{1}{2}$ ins. to 9 ins. on the bed; if hollow, from 1 to 2 ins. thick. Larger blocks should have a division or web of terra-cotta across them. Joints should be joggled, stopped ends made solid, beds even, and samples should show extreme limit of coiour and evenness. In the old Continental and English examples, brick dimensions are as much as possible adhered to. Large blocks require corresponding extension of time to be allowed in their manufacture.
18390. As regards economy it compares favourably with good stone, while it is nuch more durable, stronger, and cheaper; for the use of the mould allows, where there is great repetition of parts, of most elaborate work, produced at a cost less than that of stone ; as much as one-third is saved. The cost of the raw material of terra-cotta is only lalf tho cost of Portland cement, and not one-fourth the cost of good stone. Mouldings having a girth of two feet can be bought at two shillings and sixpence per lineal foot; tracery for parapets, 4 inches thick, at three shillings per foot superticial.

1839 p . Its lightness is a source of economy in comparison with stone, by which a saring is effected in carriage and lifting; the filling of the blocks can be done on the site with the broken bricks lying about. In a district where stone abounds, the saving in cost would not be so adrantageous. In London it would be on an arcrage, say 20 per etnt. less than Bath stone, and 40 per cent. less than Portland stone. Tho subject will be further treated in the next book.

Sect. XI.

lime, sand, water, mortar, concrete, and cement.
1840. lime has not been found in a native state; it is always united to an acid, as to the carbonic in chalk. By subjecting chalk or limestone to a red heat it is freed from the acid, and the lime is left in a state of purity, and is then called caustic or quicklime, which dissolves in 680 times its weight of water. It is not our intention here to enter into any account of either of the theories relative to the formation of lime, facts being of more importance to the architect in its employment than the refined fancies of the scientific chemist. The calcareous minerals are mostly distinguished by their effervescing with, and dissolving in, an acid, as also by their being easily scratched or cut with a knife. In respect of the lime obtained from chalk, Dr. Higgins (in his work on ealcareous cements, Lond. 1780) says, "It should ke obserred, that the difference between chalk lime and the lime obtained from the various limestones, chie " y consists in the greater retention or expulsion of the carbonic acid gas contained iu them."
1841. An account of the stone from which lime may be obtained in the different counties of England would unnecessarily extend this article ; we shall, therefore, after observing thal the use of marble for burning to lime would be too expensive, state the rarieties of lime stone as, 1 , the compact ; 2, the foliated ; 3, the fibrous; and 4, the peastone. The compuc limestones are of rarious colours, in hues inclining to grey, yellow, blue, red, and green and to a smoky sort of colour besides. It is usually found massive, often compounded wil extraneous fossils, particularly shells. Its internal appearance is dull, the texture is com pact, the fracture small, fine, and splintery; fragments indeterminately angular, more o less sharp-edged; semi-hard, sometimes soft, brittle, and easily frangible. Specific gravii varies from 2.500 to 2.700 , and it is composed of lime, carbonic acid, and water, mustl with a portion of argyl and oxide of iron, and sometimes of inflammable matter.
1842. The foliated limestones are such as calcareous spar, statuary marble, \&cc.; th fibrous limestones, such as satin spar; and the peastone, another species of spar. It man be remarked, that the rarious sorts of marble, chalk, and limestone may be divided int those which are nearly pure carbonate of lime, and those containing in addition from oni twentieth to one-twelith of clay and oxide of iron. "Though the best limestones are nt such as contain the greatest quantity of clay, yet," cbserves Mr. Smeaton, "none har proved good for water building, but what, on examination of the stone, contained clay; an though," he continues, "I am very far from laying down this ar an absolute criterion, yet have never found any limestone containing clay in any considerable quantity, but what w: good for water works, the propurtion of elaycy matter, being burnt, acting strongly as cement; and limes of this kind all agree in ono more property, that of leing of a dea frosted surface on breaking, without much appearance of shining particles."
1843. Among the strongest limes, such as will set under water, those most in use in th metropolis are called grey stone limes, and are procured from Dorking, Merstham, and th vicinity of Guildford in Surrey. The Durking and other limes of that part are burnt from
chalk formation s. extremely hard that it is quaried even for the purposes of masonry. lose of Nerstham particularly are obtained from an indurated chalk marl (clay and talk) which is so hard that it partakes of the nature of stone.
1843 a. The known property of the blue lias formation for setting under water renders it 1 invaluable material in the liands of the arclitect. In the neighbourhood of Bath it is Hled Bath brown lime, and when prepared for cementing with metallic cement, is ssid to e wind slaked; that is, after buraing, it is placed in roofed streds open at the sides, and re atinosphere is thas introduced to act upon it. The colour of the lias, previous to urning, is blue; after it has passed the kiln, it is of a rich brown colour.
18436. It is extr.mely difficult to give any quantitative analysis of the blue lias. Every yer in a quarry will be fuund to differ more or less decidedly from those above or below

The beds extraeted for burning into lune may he said to consist principal'y of caronate of lime (perhaps as much as 9.3 per cent.) in combination with silicate of alnmina, me oxide of iron, potash. and a small quantity of sand, in mechanical mixture; but the gredients insoluble in nitrous acid; such as silicate of alumina and sand, ary in every naginable proportion between 5 and 18, or at times 20 , per cent. The iest blue lias lime obtained from the beds of caleareous marl which eontain about 16 per eent. of lieate of alumina; such as is brought from Abertiaw in Sonth Wales, Wateliet in omersethiire, and Barrow, in Leicestershire : the limes fron Whithy, in Yorkshire, and om Lyme Regis, in Dorsetshire, are nearly equal to them. The principal objection to is lime as used in London is founded upon the large proportion of underburnt or unburnt one or core left in it. The weight of an inperial bushel of Aberthaw lime of a superior uality is 8.5 lbs .
1843 c . The magnesian limestone of Sunderland lies north-west of the red sandstone. In e vicinity of South Shields, in tlie comity of Durham, the formation becomes extensive, id is to be triced to the Tees below Winston Bridge. The Whitby quarry near Callerrats has been described in the 4 th volume of the Genlogical Transactons. The Sundernd limestone is of a bronze coloor, and from containing inflamnable matter, does not quire so mueh fuel to convert it into lime. The naturally hydraulic limestone of Arden, ind near Glasgow, in Scotland, has been largely used in the local dock works, in the iportion, for concrcte, of one part of ground lime, one part of iron mine dust, one part of nit. and four and a half parts of gravel and quarry chips. Pure hydraulic lime, as it is Hed, manufactured (in Fintshire) from the hest Halkin Mountain limestone, is much used the dock wooks at Liverpool and Birkenhead.
181.3d Hyd, aulic limes have been thus classed:-If they harden under water in periods rying fron fifteen to twenty days after inmersio., they are siightly hydraulic; if from ${ }^{\circ}$ to elght days, simply hydratic; if from one to four days, eminently hydraulic. ydraulic works frequently barst from the slaki,g of the lime which has not been properly -pared for its office. It should be all hydrated before placing, and this requires more ne than the slaking of ordinary lime; the heat developed is much less than in any other ne.
1844. Defore limestone is burnt it seems to possess no external elaracter by which a stinction can be made between the simple and the argillo-ferruginous linestones; whater the colour of the former, they become white when burnt, whilst the latter patake ore or less of a slight ochrey tint. Brown lime is the most esteemed for all sorts of ments, whilst f.r common purposes the white sorts, which are more abundant, are sufhunty usefui. In Eagland, the limestones in colour generally incline to a red or blue, d those which are found firm, weighty, and uniform in texture are to be preferred. asses broken from large rocks and beds on the sides of hill:s, and those when newest taken d deepest dur, are most to be valurd.
18.15. The process of analysing limestones is so eminently usefil to all coneerned in ilding, that we camot aefrain from transeribing the method used by Sncaton in his own rols. "I took about the quantity of five pennyweights (or a guinea's weight) of the nestone to he tried, bruised to a coarse powder, nipon which I poured eommon aquafortis, t not g, minch at a time as to oceasion the effervesenee to overtop the glass vessel in iech the limestme was pur, and added fresla aquafortis after the effervescence of the former antity lad ceased, till no further chullition appeared by any addition of the acid. 'This "te, and the whole being left to settle, the liquor will generally acquire a tinge of sone Hnparent colunr; and if from the solution little or no sediment drops, it may be ombed a pure limestone (which is generally the case with white chalk and several wrs), as contaning no uncaleareons matter in its emposition. When this is well thed, ponr off the water, and repeatedly add water in the same way, stirring it, and theg it sette till it becones tusteless. Aifer this, let the mud te well stirred into the lur, and withont giving it time to sette, poner ofr the muddy water into another vessel. 1 if there be any sand or gritty inatter left behind (as will fiequently be the ease), this lected by itydf will aseerain the quantity and species of salulous matter that entered at the textme of the limestone. Lecteing, now, the inuldy liquor sette, and pouring ofl
the water till no more can be got without an a lmixture of mud, leave the rest to dry, which, when of the consistence of clay, or paste, is to be made into a ball, and dried for further examination."

184G. There are many sorts of kilns for burning limestone, varying in form with the furl cmployed, and the combination of the process itself with some other, such, for instance, as making coke, and sometimes bricks. The limestone, however, is generally burnt in kilns whose plans are circular and section resembling an inverted truncated cone; of late mure frequently made spheroidal. The heat is in cither case obtained from a fireplace under the limestone, which rests on bars, that can. when the kiln is a perpetual one, egg-formed, or a draw hiln, be removed to let out the lime as it is burat, whose deficiency, on extraction, is supplied by fresh stone at the top of the kiln. Sod hilns are sometimes used for lime buruing. These are formed by excavating the earth in a conical form, and then building up the sides as the earth may require. In using these the limestone is laid in with alternate layers of fuel to the top of the kiln, and the top being covered with sods, so as to prepent the heat from escaping, the fire is lighted and the process effected The lime is not renoved till it is thoroughly cool. 'This mode is a tedious opeatioa, and, because of the quantity of fucl consumed, far from cconomical. In the conmon lime-kiln, the fire is rever suffered to go down, but as the well-burnt lime is removed, fresh lime is supplied. There is a specie; of kiln called a flame-kiln, in which the calcination is effected with peat. In this kiln the process of burning brieks is carried on at the same time. The luss of limestone by burning is about four-nintlis of its weight, slırinking, however, but little. When completely burnt, it falls freely, in s'aking, into powder, and then oceupies about double its previous bulk.
1847. Lime burners have made the important observation, that the quantity of stone calcined and the quantity of fuel expended depend on the quality of the fuel. Hence the kiln is constructed with reference to the fuel, rather than to the nature of the stone to be calcined. Limestone, taking an average time, requires burning about sixty hours to reduce it to lime, when the heat is strong and well regulated: but of course no general rule can be laid down, as diff rent species will require different peri ds of time. The principal object to be accomplished is the expulsion of the carbonic acid gas which ente:s into its composition.
1848. The lime generally most estecmed is that which heats most in slaking, and slakes the quickest, falling into a fine powder. If there be among it coarse unslakable lumps called core, that will not pass through the screen, either the stone has not been sufficiently burnt, or it originally contained extraneous matter; this not only indicates defect in quality, but that it will be, as they more or less abound, more costly in use. Lime in slaking absorbs a mean of 2.5 times its volume; and 225 its weight of water. The bydraulic limes absorb less water than the pure limes, and only increase in bulk from 1.75 to 25 times their original volume. Slaked lime is a hydrate of lime.
1849. From the experiments of Mr. Smeaton and of Dr. Higgins, it is sufficiently proved that, when chalk or stone lime is equally fresh when used, the cementitious properties of both are nearly, if not quitc, equal ; but from the circumstance of quicklime absorling carbonic acid more or less in proportion as its texture is solid or spongy, so it gradually parts with its cementing nature, becoming at length altogether unfit for the purposes of mortar. Thus, though each of the sorts may be equally good, if properly burnt and quite fresh from the kiln, yet from the chalk lime so much more easily and rapidly taking in the carbonic acid than stone lime does, it is not so fit for general use; and, indeed, now the metropolis is so well supplied with the harder chalk and stone limes, there is no excuse for its use, and it should in sound building be altogether banished.
1850. The following table, from Smeaton, contains a list of the limestones he examined on the occasion of building the Eddystone Lighthouse:-

Species of Stone.	$\left\lvert\, \begin{gathered} \text { Propor. } \\ \text { tion of } \\ \text { Clay. } \end{gathered}\right.$	Colonr of the Clay.	Reduction of Weight by Lurning.	Colour of Brick made ef such Clay.
$\left.\begin{array}{l}\text { Aberthaw, on the eoast of Gla- } \\ \text { morganshire }\end{array}\right\}$	23	Lead colutur	4 to 3	Grey stock brick.
$\left.\begin{array}{lrr}\text { Watchet, small sea-port in So- } \\ \text { mersetshire - } & - & -\end{array}\right\}$	$\frac{3}{23}$	No.	4 to 3	$\left\{\begin{array}{c} \text { Light colour, red } \\ \text { dish lue. } \end{array}\right.$
Barrow, Leicestershire --	11	Do.	3 to 2	Grey stock brick.
$\left.\begin{array}{c}\text { Long Bennington, a village in } \\ \text { Lincolnshire }\end{array}\right\}$	23	Do.	- -	Dirty bluc.
Sussex Church, near Lewes in Sussex	$3{ }^{3}$	Ash colour	3 to 2	Ash colour.
Dorking, Surrey - -	1	Do.		
$\begin{aligned} & \text { Berryton grey lime, near Peters- } \\ & \text { field, Hants } \end{aligned}$	12	Do.		
Guilford, Surrey - -	$\frac{2}{19}$	Do.		
Sutton, Lancashire -	-	Brown		

851. Sann should by all means, if possible, be procured from a running alear stream, in ference to that obtained from pits It is cleaner and not so connceted with clayey er ddy partic'es. About the metropolis it is the practice to use (and an admiable ma. ial it is) the sand of the Thames procured from above London Bridge. This sand has uired a deserved reputation among the architects and buitders of the capital. It conns, however, a vast portion of heteroweneot matter, such as calcarenus fussil, quatzone, 1 flint sands, particles of coal alluvium, and much iron. The sharp drift sand of the ames, therefore, before mixing with the lime, shonld be wall scriened and waslecl.
852. If pit sund only can be procured, it should be repcatedly washed to frce it from earthy and clayey particles it contains, until it thecomes bright in colour, and feels ity under the fingers. Smeaton has stated that clay, even in very small quantities, materially interis with the hardening of mortar, and disposes it to p^{\prime} risb in a few years. When the arch.t ct isobliged ise sen sand, it must ke we 1 washed in fresh water until the salt is entirely removed; otherwise the lent for which it is uscd will never dry. So small a qu ntity as 3 per cent, of salt causes great inconiences. Whenever the weather is dry, the walls show an efforescence on the inside or ourside, is, when there is damp in the atmosphere, will collect no: os ure, causing the wall to look wet, and will ow off any paper placed on i r. In one case, nhere a bulder in $\mathbf{i c}$ ciminately employed sea sand $f_{i} r$ side and inside purposes, the saline property soon in rocuced the rot to all adjoining timber. There still (1887) mnch diversity of opinion as to the advi-ability of nsing sea sand. The washing is of mars impurtance; it is to re best effectch hy using an iron p pa of about three-quarters of an inch meter and two feet long, joiued on to an india-rubber pijc attached to the water main. This pipe o stand in the cintre of the tub; fill the tub with the saud, then turn on the water, which passirg to bottom of the tub, rises through the sand causing any salt to rise with it ; if allowed to run, the ubb lflows, and the salt is soon all carried off. The :and should be wa:hed as soon as it is taken from the ch. (E. C. Morgan.)
1852 . It will be well to notice here that Professor Wilson, of the Edinburgl Laborary, inade in 1848 a report on the use of sea sand in mortar in a bouse, No. 10 Randolp.'s escent, which was said to be damp from the use of it. On analysis lie found that the ortar contained only $1-10,000$ h part of its weight of the chloride of magnesium, a highly liquescent attrasting substance. But he considered that the setting of the mortar chanically enveloped and locked up within its miss the substance in question; and ther, that it might chemically combine with the lime of the mortar to form a compenind t readily to be dissolved in water. It was also thought that in consequence of a mical action taking place between the lime in the mutrar and the chlorine derived from e sea water contain d in the sand, chloride of calcium (muriate of line) would be proced. and this being a deliquescent substance, would attract moisture and render the Alls danp. The anount, however, of chlorine in specimens of sea sands, was found to ry from a 2,174 th to a 549 th part of their weights; the mean amount was a 1,204 th pait. ie quantity in the mortar was so minute that it could not sensibly produce the efficts of mp . 'lhe mechanical envelopment of the chloride of calcium in the mortar would also ut up this deliauescent substance from moisture, and conduce to diyness. A further subance in sea sand, is chloride of sodium (common salt), and if the chlorine of this be usferred to the lime to form chloride of calcium, the sodium will become converted into rhonate of suda. These substances may $c s$ exist in the mortar, but as soon as they are barited from it, and diffised through the stonc, or brought to it; surface, the carbonate soda will convert the chloride of calcium into carbonate of lime (chalk) and become clf elloride of sodium (common salt). A co:sideration of these facts led the analyst to irm that the apprehension that chloride of calcium, as derived from sea sand, would ider the house dimp, was altogether chimerical. On an analysis of some of the pit sands the neighbourhood, le found that one of them contained almost the same quantity of lirine as in the sca sand, although no charge was made against it. It docs not admit doubt, he reported, that, other things being equal, sea-sand mortar will dry more quiekly 1 keep more thoroughly dry than will pit-sand mortar; this sand, it mist be noticed, atained about 13 fer cent. of earthy matter, and was therefore not so pure as the sea Id.
1852b. Although all the professional publications of late yeurs have descrited the bad ects likely to result from the use of unwashed pit sand, buiders in the outskirts of ? metrupolis lave taken to use road swecpings in licu of sand, and this even without ving wasled it to free it from those impurities not only detıinuental to its making good rrtar, but also to the building itself, as it may be the cause of introducing the dry rot. tely we liave noticed a case in the professional journals where the lime, such as it was, y^{4} mixed with a large proportion of garden mould and mud, the bricks being of an infior qu:lity and insufficient strength." We have already noticed the use of road dirt (par.
9i.) In another case "the composition with which the portions of bricks were theld perlier consisted of soap lees with a few small limestones and dirt." The interests of the 1) irer classes should be better protected.

1852c. Mitallic sand for cement was introduced about 1843. It was sold in evarse or of powder as reqnired, to be nixed up with blue lias lime for joining bricks and stone, 1 concretes, for face work, or for monllled work. 1 measure of the sand, 1 of lime, and 6 'gravel were the proportions used in the foundations of the new Houses of Parliament, and - Le great tunncls of the Birmingham railway. It has also been used for malt house
steeping troughs, and floors; for the latter purpose it can be polished. For exterior facings, as stucco, it was used at 57 Coleman Street; and at the Alfred Insurance Office, Lothbury: the latter building lias lately (1866) been pulled down. The marine turret at Herne Bay was also coated with it.
1853. Water. Dr. Higgins recommends the use of lime-water for the composition of mortar. This, in practice, would be impossib'e The water used, however, for the incorproration of the lime with the sand should be soft and purc. Mortar and concrete bave both been recommended to be made up with hot water; with the later especially, when it is desirable that it should s t immediately: concretc this made has been found exceedingly hard. Its employment with mortar dates from before 1520. It is probable that water charged with iron, as at Tunbridge Wells; a solution of chalk, as in Hertfordshire; sulphuetted hydrogen, as at Harrowgate ; and salts. as at Epsom and elsewhere; nay all affect lime when combined with it. Sincaton stated that he could not discover any difference in the strength of mortar, whether it were made with se:, or with fresh, water.
1854. In forming Mortar from lime, it must, when slaked, be passed througla a sieve leaving only a fine powder, an operation usually performed with a quarter inch wire sereen set at a considerable inclination to the horizon, against which the lime is throwa with ? shovel after slaking. That which passes through is fit for use ; the core falling on that side of the screen against which the lime is thrown, being entirely rejected for the purpose in question, though it is an excellent material for filling in the sides of foundations under wool floors where they would otherwise be next the carth, and the like. The sifted or screreed lime is next to be added to the sand, whose quantity will vary as the quality of the lime, of which we stall presently speak. In inaking mortar, there is no point so important, as respects the manufacture itself, as the well tempering and beating up the lime with the sa d after the water is added to thim. In proportion, too, as this is effectually done, will a small proportion of lime suffice to make a good mortar. The best mode of tempering mortar is by means of a pug-mill with a horse-track similar to the clay mills used f.n making bricks. But if such camnot be had, the mortar should be turned over repeatedly and beaten with wooden beaters, until it be thoroughly mixed. That this process shruli be carefully performed, will appear of the more importance when it is considered that i thereby adinits a greater proportion of sand, which is not only a cheaper material, but the presence of it renders a less quantity of water necessary, and the mortar will consequent! set sooner: the work, too, will setctle less; for as lime will shrink in drying, while the sand mixed with it continues to occupy the same bulk, it follows that the thickness of th mortar beds will be less variable.
1855. Vitruvins recommends that mortar should be beaten with wooden staves by number of men before being used. Smeaton reckoned it a fair day's work for a laboure to mix and beat up two or three hods of mortar for use. The pug-mill does this now i two or three minutes. Pliny expressly states that "in ancient speeifications for building it was provided that no slaked lime less than three years old should be used by the col tractor." Covent Garden Theatre was built in 1808-9 with lime while still hot fion the hilin: when the walls were demolished a few years since, the mortar was found t be hard and solid. It was so used at Tothill Fields prison. At the new Royal Exchange the lime was to be thoroughly and frestly burnt. to be kept in an enclosed shed, and 1 more mortar to be made than was sufficient for cach day's consumption.
1856. In most of the public works executed in Great Britain of late years, the propor tion of lime to sand is as 1 to 3 ; and when the former is made from good limestone, th sand is by no means too much in proportion. Dr. Higgins, in his experiments, has gun so far as to recommend 7 parts of sand to 1 of lime, which, for mortar, is perhaps carryin the point to the extreme. It may be taken as an axiom, that no more lime is necessar than will surround the farticles of sand. C. H. Smith has stated, (Builder, 1865, p. 4! that if each particle of sand be covered with lime about the thickness of an ordinary cor of paint, he should be disposed to consider such an amount as very near the perfection quantity. A superabundance of lime or sand, no matter how good it may be, is, und any circumstances, objectionable.
18.57. Various opinions have long been entertained by chemists and others respectin the effect of sand and lime upon each other in the formation of mortar. The general in pression is, that the slaked lime and sand in contact have a chemical attinity fur esc other ; that the lime decomposes the surface of the sand, and the atoms or molecules inte. penetrate each other, forming a sort of silicate of lime. This is an extremely ingenion theory, says C. H. Smith, but it has never been proved. It has been stated, he al adds, that the hardening of mortar arises from the presince of carbon and oxygen form into carbonic acid, which is absorbed by the lime; but the source from whence t carbon is obtained is at present a mystery. Oxygen is abundant in the compusitit of water and atmosphere, and that quicklime has an astonishing affinity for it, is evinced l the practice of dusting steel goods with it when not in use, to prevent their rusting; or il of placing a small lump of it in any box or casc containing such goods. Bricklayc
near their trowels with the mortar before leaving off work; and in the Purentulia, it is oticed that "in taking out cramps from stonework at least 400 years old, which were so edded in mortar that all air was perfectly excluded, the iron appeated as fresh as from ie lorge."
18.58. Various additions are made to mortar, in order to inerease its hardness and nacity; such as coal and wood ashes, forge scales, roasted iron ore, puzzuolana, and the he. The property of hardering under water or when excluded from the air, confurred pon a paste of lime, is effected by the presence of certain foreiga substances, as siticon, lumira, iron, \&c., when their aggregate presence amounts to one tenth of the whole. Articial hydranlic limes do not attain, even under favourable circumstances, the same degree f harduess and power of resistance to compression as the natural limes of the same class.
1858a. As Burnell, in Limes, Cements, \&c., 1857, p. 71, says-" It is often a matter of nportance to know the power of resistance of mortars; but as they differ within a very rge range, it is not easy to state it very precisely. The best experiments, however, show 'at we may safely calculate upon a resistance of 14 lbs . per inch superficial for its colicve furce; of 42 lbs . to a crushing force; and of $5 \frac{1}{4} \mathrm{lbs}$. to a foree tending to make the articles slide upon one another. It would not be safe to expose new works to greater forts than those which could be included within the above limits." In the construction f a wall, whether of brick or rough stone, it should be clearly understood that there is an nportant distinction between mere drying and the ultimate process of induration. The portar may become sufficiently set, dry, and solid, in a few days or weeks, to enable the all to biar a very eonsiderable weight and pressure; but it does not acquire the maximum sqree of hardness till after the lapse of many years and even of centuries. All cements id times tend to reassume a state of carbonization similar to that in which they existed in e stones from whence they were extracted; they only do so to a very imperfect degree. he saying that lime at a hundred years is but a ehild, is perfectly true. Cements on the utrary harden very rapidly, but we have no instances of their acquiring the strength of e original stone.
1859. The cendre de Tournay is used in the Low Countries. This is an article procured m the lime-kilns hordering the Scheldt. The lime of this district contains a considerable btion of elay mixed with iron ; and the pit-coal with which it is burnt contains a large antity of an argillaceous schist, impregnated with iron. A fter the lime is taken out of e kilus, there remains the cendre, about one fourth of which consists of burnt line-dust, d three fourths of coal-ashes. This material is sprinkled with water to slake the lime, d well mixed together, and put into a proper vessel and covered over with wet earth. this state it is kept for a considerable time; and when taken out, and strongly beaten for half an hour with an iron pestle in a wooden mortar or trougl, it is rednced to a it pasty eonsistence; it is then spread out for several days in a shady place, and the operan of bealing repeated: the oftener this is done the better, except it should become in:nageable from being too much dried. In a few minutes, this cement, when applied brick or stone, adheres so firmly that water may be immediately poured over it ; and if pt dry twenty-four hours, it afterwards receives no injury ever from the most violent ion of a flowing stream.
18.59a. In London, a mortar made of lime with sca-coal ashes from a smith's forge xed with the iron scales, and called blue mortar, is used for covering parts of buildings 1 ech exposed to the weather; and if prepared with similar labour and attention, it 1 yht, in a great degree, possess the valuable properties of the mortar of the Selieldr, just 1 ntioned.
8596. Common aslies mortar is made by mixing two bushels of newly slaked lime and tee bnshels of wood ashes, which, when cold, must be well heaten, in which state it is pally kept for a eonsiderable time, and indeed it improves by keeping if beaten two or tee times previous to using it. This mixture is superior to terras mortar in resisting alternate effeets of drymss and moisture, but not comparable with it under water.
859c. Brick and tile and burut clay ballast, cach well burnt and ground to a powder, esbined with rich lime, possesses hydranlie energy. Pulverised silica burned with rich 1 e produces hydraulic lime of excellent quality. ln some experiments made by MM. fannoy and livot, this lime hardmed under water in from three to four days, ind fired in twenty-two months a hardness superior t, l'ortland eement. The weight of powdered line never exeecded four times, and wasnever less than one half that of the d red siliea. Brick-dust mortar used to be considered in some cases better than tar made of terras, for miness the terras was always wet it was not thonght better than mon mortir made of lime and sand; 2 bushels of hot lime, i.e., fresh slahed lime, added bishel of brick-dnst n.ade from red stock brieks, was to be well beatenand worked up re using, with but little water: the longer it was beaten the better it beeame. 'the
d brick rubbish of eid walling broken down and sifted, was eonsidered better than sand. ss sand is repuircd, and it mighit be safely used in frosty weather. A tract on Ohd :ing Cross, mentions that it was "so ceminted with mortar made of purest lime,
callis sand, white of eggs, and the strongest wort, that it defied ail hammers and hatelets whatsoever." The mortar ased in bishop Gundulph's works at Malling and Rochester is described by B. Ferrey as consisting of a sort of tufa found only in the cliffs at Dover, which appears to have been exclusively used in his worke.

1859d. Slug is applied to the vitrified earths left in furnaces, either for glass or irm. Scoria are the lighter, more porous, and less vitrified earths arising from the pudding and retining of iron. The cinders used are the earthy residues derived from the eombustion of coal. When ground into powder, the two former, which contain a large proportion of the mineral oxides, make very good mortars if mixed with middling or peafeetly liydraulic limes. Cinders appear to render the rich limes moderately hydraulie when properly mixed. They require a large quantity of water to render perfect the erystallization of the hydrate of lime. All these mortars may be usefully employed for works out of waer.

1859e. The stones whereof the Dutch terras is made are found in the neighbourhood of Liege, and also, we believe, at Andernach on the Rhine, from the size of a pea to that of a middle-sized turnip. From their being brought down the rivers to Holland the cenent has been called Dutch; the only operation they undergo in that country is the reduction of them to a coarse powder by means of mills. 'Hey are beaten by irou-headed stanpers on an iron bed till they will pass through a sieve whose wires are about one eighth of an inch apart. 'This cement is sent from Holland in casks. Trass, t_{1} rras, or tarras, is a blucblack trap. It is obtained from pits of extinct volcanoes, and has nearly all the distin. guishing elements of puzznolane, resembling it in eomposition, and in the requirements of its manipulation, having to be pulverised and added to rich lime to develope its hydraulic properties.

1859f. The Puzzuolona, or terra Puteolana of the Italians, which, as well as the last-named eement, has been almost if not quite superseded by the introduction of the Roman cement, is brought from Civita Vecchia. Its name is however derived from Puzzuoli, where it is principally fornd, though produced in other parts of Italy, in the neighbourbood of extinct rolcanoes. It suddenly hardens when mixed with one third of its weight of lime and water, forming a eement more durable under water than any other. Bergman found low parts of it to contain 55 to 60 parts of silieeous earth, 20 of argillaceous, 5 or 6 of calcareous, and from 15 to 20 of iron ; this last constituent is considered to be the cause of it property of hardening under water. 'The iron decomposes the water of the mortar, and thus in a very short time a new eompound is formed. Aceording to Vitrusius, when used for buildings in the water, 2 parts of puzzuolana were mixed witl 1 of mortar. Artibicial puzzuolana may be made by slightly calcining clay, and driving off the water of combina. tion at a temperature of $1,200^{\circ}$.

1859 g . Subsequently to the use of this material from Puzzuoli, a similar material ha been found near Edinburgh; and in the Vivarais, a site of extinct volcanie action in the eentre of France. Its aspect and colour, however, vary very ruch even in the sam loeality. Berthier gives the following analysis of two of these materials:-

						Puzzuolana from Civita Vecchia.					Terras from Andernach.	
Silica	-	-	-	-	-	-	-	$\cdot 445$	-	-	-	. 570
Alumina		-	-	-	-	-	-	$\cdot 150$	-	-	-	-120
Lime	-	-	-	-	-	-		-088	-	-	-	-026
Magnesia		\cdots	-	-	-	-	-	$\cdot 047$	-	-	-	010
$\left.\begin{array}{l} \text { Oxide of Iron (in a slight } \\ \text { state of magnetism) } \end{array}\right\}$					-	-	-	$\cdot 120$	-	-		$\cdot 050$
Potash		-		-	-	-	-	$\cdot 014$	-	-		$\cdot 070$
Soda	-	-	-	-	-	-		-040	-	-	-	- 010
Water	-	-	-	-	-	-		. 092	-	-	-	-096
								$0 \cdot 996$				$\cdot 952$

1859h. In the use of blue lias lime for mortar, workmen ignorant of its qualities inve riably spoil it. In important works the lime should be supplied in an unground state, prevent the core being mingled with the good lime. In slaking, the lumps should 1 broken into pieees of about the size of a nutmeg; then immersed upon a sieve in watc and kept therein until air bubbles freely rise to the surfaee: the lime so wetted is to ! left in a heap, and covered with damp sand, for twenty-four hours. At the expiration that time it should be screened and mixed with sand and the least possible quantity water. When slaked, it does not sensibly inerease in bulk, unlike the ordinary clalk stone lime of the neighbourhood of London. The best deseriptions of blue lias lime w: not bear more than $1 \frac{1}{2}$ parts of sand to 1 of lime. Wood, of Bath, in his work on Cittay 1788, has stated that "blue lias lime mixed with coal ashes in the manner prescribed l M. Loriot, will make the hardest eement I ever saw, as I have found by various exper ments; it will hold water, resist frost, harden in a few hours in water, and will bear a rel
d polish. Coach or carriage ways are laid or pitched with blus lias, which wears very 1 , though it will not bear the frost."
859i. A very useful hydraulic mortar for executing sea-walling, consists of 1 part of Ik lime, or of Halkin lime, with one part of puzzuolana from Civita Vecehia, and $1 \frac{1}{2}$ ts of sand; but the value of this mixture depends upon the influence exereised by the zuolana on the setting of the lime. A mixture of the natural calcareous cements, or of tland cement with sand, is another good mortar. The presence of sulphate of lime in composition intended to resist the action of sea water would be fatal, as it crystallises different rate of rapidity, and it is more casily soluble than the carbonate of lime. uch authorities lay particular stress on the following qualities fur the formation of good raulie mortar: I. It is essential that the materials should be perfectly pulverised before ing, so that the combination may be as perfect as possible. Il. Sufficient frce lime t be present to allow the carbonic acid in the water to combine with it, and form a tective coating of carbonate. III. Long soaking of the m terials is advisable, in order the chemical combinations necessary fur the ultimate stability of the mortar may take ee before it is actually used.
859k. Mr. Smeaton discovered. by a course of experiments, that the scalcs (grey oxide ron) that fly off under the forge hammer from rid hot iron, pulverised, sifted, and mixed l lime, form an admiralle cement, equal to puzzuolana. He found, in pursuing his eriments, that roasted iron ore produced an effective water cement, by using a greater ortion of it than either terras or puzzuolana. Lqual quantities of iron scales and Haccous lime, with half the quantity of each of these of sand, produced a cement in y respect equal to terras mortar. If pure carbonate of time be used, equal parts of of the ingredients ought to be incorporated. We do not think it necessary here to ay aceount either of Loriot's cement, or that proposed by Semple: neither are tobe ended on : indced the first, as a water cement, is of inferior utility, and very little better common mortar dried before the admission of water upon it.
360. Grout, or liquid mortar, is nothing more than emmon mortar mixed with a suffiquantity of water to make it fluid enough to penctrate the interstices and irregulariof the interior of brick walls, which common mortar will not reach. The mortar wof it is made will bear 4 of sand to 1 of lime, but it should be thoroughly beaten. It be kept a little longer, whereby its quick setting will be facilitated.
61. Concrete is a compound of ballast, or stone chippings, and lime mixed together. so called from the speedy concretion that takes place between these particles. If, ever, gullets or sinall stone chippings are used, sand in a large proportion to the lime be used. The use of concrete was well known at an carly period; it is mentioned le Lorme in his work published in 1568; and it is by no means, therefore, a discovery oderu days. Wherever the soil is soft, and unequal for the reception of the foundaof a building, the introduction of concrete under them is an almost infallible remedy ist settlement. The Thames ballast, eommonly used for concrete, is a mixture of sand mall stones. With this, and lime in the proportion of never less than 4 to 1 , and properly eseceding 9 to 1 , of stone lime, or such as is known to set hard in water, a ure is made. The lime is generally used in powder, and the whole being shovelled lier, it is wheeled in barrows to a stage over the spot where it is to be used, and let ato the treneh dug out for the reception of the foundation. The greater the height onerete is made to fall, the sounder and stronger it becomes. It must always be reted that no more lime is necessary than with the thinnest coat to surround the partif the ballast, and that therefore the size of the pebbles or stones should influence the ity of the lime. As the ground is more or less to be trusted. the thickness of the cte inust be regulated; when used on the best ground, a foot in thickness will be ient; while on the worst, as many as four fect or more may be reqnired. The upper - being levelled, it is usual to lay on it a tier of Yorkshire stone landings, for the re'n of the brick-work or mason's work : in some cases, after earrying the wall a certain t, a second ticr of landings has been introduced. When the soil is watery, no water d be put to the concrete, but the ballast and lime merely mixed and tumbled in. The practice of making concrete as al:ove stated, is objected to by many practitioners, ecommend that the French inchod of making héton shonld be followed in lieu of it.
2. In forming eoncrete, the stones or pebbles used should never exceed the size of a egh, of which 2 parts may be combined with 1 part of the smaller substances this makes it about equal to 'lomanes ballast. It has been calculated, that as the borba the water, and with the sand fills up the interstices of the larger material, if the rtion of the lime be abont one cighth of the ballast, then 3^{3} cubie fect of ground lime,) eubie feet of ballast, with a sufficient quantity of water to , llect the admixture (and generally rather less than a gallon to a cubic foot of ballast, or than equal measures of and lime). will he required to make 27 cubie fect of concrete; that is, there is a loss k equal to all the lime, and of about 10 per eent. of the ballast. But some experimade in 155:-8, in which the present cditor assisted, showed that the same measure
which gave a cubic yard of ballast, held precisely the same ballast with the addition one-sixth in bulk of ground stone lime made with it into concrete, besides about fourte pails of water ; and likewise tended to disprove the assertion that eoncrete swells setting. This cubic yard of concrete weighed 27 cwt . In estimating, allowance must made for the loss of material.

1862a. Expansion taking place in concrete made of unground lime, during its slakin has been taken adrantage of by G. L. Taylor in the underpinning of some walls Chatham, as detailed in the Transactions of the Institute of British Architects, 183 Tlis expansion has been found to arerage about $\frac{3}{B}$ of an inch for each foot in height, a the size thus gained the e nerete never loses. Care must be taken when using it for floo and for the spandrel of arches, to allow sufficient space, and to lay it in such a way th this increase may take place without thrusting out the walls, as has oceasionally happene In ol.] malthouses in the West of England, with concrete floors 5 to 6 inches this stone walls 2 feet 6 inches to 3 feet thick have bulged out 3 or 4 inches on each side the expansi n of the coucrete, as also noticed in the Transactions of the abore nam society, 1854, p. 7t. When ground lime is used the assertion that concrete swells is ve questionable, as s'ated in the previous paragraph. The Metropolitan Board of Worl under the Liet. Man. and Building Acts Amend. Act, 1878, sec. 16, requires the ceme "to be Portland cement, or other cement of equal quility, mixed with clean sharp sa or grit in the proportions of one of cement to four of sand or grit." Concrete for wat to be " of Portlaud cement and of clean Thames or pit ballast, or gravel, or brok brick or stone, or furnace clinkers, with clean sand in the fullowing proportions: ri 1 of Portland cement, 2 of clean sand, and 3 of the coarse material, which is to broken up suffieiently small to pass through a 2 -inch ring. The proportions of 11 materials to be strictly observed, and to be ascertained by careful admeasurement; a the mixing, either by machine or land, to be most carefully done with clean water, al if 'mixed by hand, the material to be turned over dry before the water is added."

1862b. For water works rcquired to set rapidiy, an excellent concrete may be made a mixture, the proportions of whicle were found by Treussart as follows:-30 parts hydraulic lime, very energetic, measured in bulk, and before being slaked; 30 parts terras of Andernach; 30 parts of sand; 20 parts of gravel ; and 40 parts of brok stone, a hard limestone. These proportions diminish one-fifth in volume after manipul tion; the mortar is made first. When the Italian puzzuolana is used, the proportin should be 33 parts of lime as before; 45 parts of puzzuolana; 22 parts of sand; a 60 parts of broken stone and gravel. The first of these concretes should be employ immediately it is made; the second requires to be exposed about twelve hours before it is put in place. When burnt clay or pounded bricks are used, 30 parts will suffice, 1 this murtar must not be used in sea water. If only rich, instead of hydraulie, linirs used, the quantity of the natural or artificial puzzuolanas must be increased, and that the stones and gravel be decreased. (Burnell, Limes, fe.) See par. $1864 c$.

1862c. Afier many experiments, M. Kuhlmann recommends a cement composed of parts of rich lime, 50 of sand, 15 of uncaleined elay, and 5 of powdered silicate of poti.: as having ali the requisite hydraulic properties, especially for cisterns intended for spri water. In marine constuuctions care should be taken to add an excess of silieate tothc pritions of eement which are exposed to the immediate contact of the sea.

1862d. The object to be aimed at in making hydraulic concrete, is to give such a su ciency of mertir as will produce the aggregation of the whole mass of rough rub materials. In Fortland cement concrete, for instance, the proportions for the mortar m be 1 of cement to 3 of sand, and this mertar may then bo mixed with 6 parts of ball or shingle. In blue lias lime coucrete, the proportions may be 1 of unground lime 2 or $2 \frac{1}{2}$ of sand, and this mortar may be mixed with 3 or 4 parts of ballast; and it m k.e understood in all cases that tho mortar must be made first, and that it then shoull thoroughly incorporated with the lallast or shingle. This concrete as used at the ree exteusion of the London Docks ly Mr. Iend +1 , consisted of 1 part of blue lias lime w. 6 parts of gravel and sand. The proportions for the blocks of the mole at Marseil were 3 parts of Theil lime to 5 parts of sand mixed up into mortar, and then added 2 parts of leoken stonc. At the Metropolitan Main Drainage works, the proportion 1 of Purtland cement to $5 \frac{1}{2}$ of ballast for sewers, and 1 of cement to 8 of ballast, sand for baeking walls and other works except sewers. The usual proportions are 11 A report was delivered to the Aberdeen Harbour Board on the damage caus d by chemical action of the sea-water on the (Portland ?) conerete entrance works of graring dock. The surface had softened from the foundation up to the bottom of ashlar lining, three feet above low water. The concrete behind four eourses of ashlar, between high and low water, was also softened, lozsening the bond. The soffe eoncrete under the water had been remored, and the face of the wall rebuilt up to ${ }^{l}$ water level with Roman cement concrete in bags plastered with Roman eement. 3 pressure on the foundations amounts at low water to 5 Ibs . on the square inch of surfi and at high water to 11 lbs.; this causel a current of sea-water through the gor
cture of concrete of theorctical relucity from 1500 to 2250 feet per winute, which inually washed the decomposed cement into the dock, and lrought new particles of rete and sea-water into contact. (British Architect, July 29, 1887 ; and Architect, ch 9,1888, p. 16 of Supplement.)
352e. Déton, or concrete, as made in France, is invariably composed as follows:The mixture of lime and sand, either by hand or by a pug-mill, as for ordinary mortar. at importance is attached to the choice of the lime and to the modo of slaking it; and sufficiently good one cannot be obtained, artificial puzzuolanas are introduced. The e of slaking is proseribed in the specificition according to the nature of the lime, ead of being left to the choice of the workmen. II The mortar so prepared is then mixed by rakes with broken stones or ballast in such proportions as shall insure its og up the intervals between them; tho volume having been ascertained by immersing stones in a known quantity of water. These spaces are equal to abou: 0.38 to 0.46 the cubical contents of the ressel; but in practice, about one fourth more mortar is ed than necessary to cnsure solidification of the mass, especially when the beton is nded to resist water pressurc. III. The material is then wheeled to its situation, and med down carefully until the mortar begins to work up to the surface.
862f. In an English patent, 1859, No. 2757, MI. Coignct, of Paris, argues that tha acity of mortar is not produced, as hitherto supposed, by the formation of silicate of and alumina, but ly the crystallisation of lime. His concrete, called Beton loméré, consists of about 180 parts of sand, 44 of lime produced by slaking, 33 of tland cement, and 20 of water, combined ly a process of two main operations: I. A plete consolidation of the materials with little water ; and II., the steady but not ent compression of the consolidation in moulds. The cement is mixed with the sand lime, and sprinkled whilst mixing with a little water. This mixture is thrown into a hine, formed like an endless screw enclosed in a cylinder, at the rate of two shorelfuls owed by about a quart of water, until the cylinder is full. The screw, turned ly two , delisers the mixture through a series of holes in the bottom of the cylinder; but on rge scale, a machine is used of 10 to 15 horse-power. This mixture, after its delivery the machine, is put by degrees into monlds, and each layer is rammed in by work-

He found by experience that the purer the lime the quicker was the crystallisation; that, although pure lyydrate of lime will take carbonic acid, silicate of lime and nina will not take it, lecause silicic ncid took the place which carbonic acid did with pare lime; and frankly admitted that his first experiments in 18.55, in marine works, not entirely sncceedtd, but claimed perfect success for those at Marseilles since 1859, for those executing (1864) in Paris and clsewhere.
362g. The revistance of beton and concrete should never be regarded as being superior bose given for limes, if the superstructure be commenced upon them immediately. In cases the resistances are found to increase with comparative rapidity during the first or seren months.

CEMENT,

363. Among those cements used in Englind, Parker's, also called Roman and Sheppey ont, was discorered in 1796 by Mr. Jiames l'arker, of Northiflect. It was manufac1 principally from stone found in the Isla of Sheppey, nod at Harwich, bring aria from the London clay, mond properly classed among the limestones indigenons to conntry. It consists of ovate or flatimh masses of argillaccous limestone, arranged early horizontal layers, chiefly imbedded in the clay of the clffe. It was found at on the beach, but as it becane scarecr it was songht for by dredging out at sea. nulstance, being coated with a calcareous spar or sulphate of birytes, forme tho basis lio coment. About 1810-15 it was fund possible to use this material in the depth inter, but with inforior manufacture this is impossible. In 1810 it was stated that e genuino Sherpey cement is now almest only n mane," arising from the nodnles first Id having nearly dimppenred in consergene of the great consunption of the eement. his erment bo of extremely gued quality, 2 furts of sand to 1 of the cement maty he

The cement itself is a finm impulphble powder ; yet whon weted it hecomes comuse, unless mixol with great enve, it will wot tako a gooxl sumface. Whan mixd with nond und water, it seta vory rapidly ; it. is nees ssury. therefore, to uroill mixing mueh time, or a portion will bo lost. The cotome of this cement. when finishert, is an me "ant dark l, rown, hence it has reccived the wille of "blatk cement." Thu surfare ires frequent colouring for arpearane. It is impurvionstio water nhmost the moment aned ; lier co it heomens highly serviceable on the baeks of urehes under strents, tor luing of cistrens, and for currying up in it, or comtiug with it, damp walls wh bane t atories. It will not resist firs so well ; and it rhand therefore werer be cimponcel eetting grater, or:nm, eopparm, or furnater. Thin, with many other hydrmbic comsuts, limen oclymarl liy li.rellould comrint.
434. Atkimann's cement in agisel material, preferable in colour to the last nomod, thent, - think, inferior in quatity. It tukes a much tongor timo to set than l'arkor's cement,
thin which it absorbs more moisture. It answers well enough in dry situations. Vica formed a factitious Roman cement ; but its cffeacy was doubtful, though it had, for wan of a letter substitute, been much employed at Paris.

1864a. Portland cement, the latest (about 1843) of all these cements, is made fron limestone and clay. The mud of the riser Medway, corresponding to the argillo calcareous stone of Roman cempnt, is mixed with chalk and ashes from former makings and calcined at a heat amounting almost to that of vitrification. A larger quantity 0 sand may be nixed with it than with Roman cement, to which it is superior in colon and hardness of setting. The heariest, considered the best in quality, weighs 110 lbs to 112 lbs . per striked bushel.

1864b. The distinguishing peculiarities which should render Portland cement a perma ment substitute for Roman cement have been explained by a London manufacturer of bot] materials (Builder, 1863, p. 761). It may be condensed into the statement:-That the ston from which Roman cement is made, though composed of lime and the silicate of alumina yet the proportion of the latter preponderates to such an extent as to prevent a perfec amalgamation of the ingredients in buruing. The result is a cement loose in its texture because containing inert foreign matter, which is retentive of moisture, and consequentl attackable by frost and vegetable growth. In Portland cement the case is otherwise. Th dose of lime to clay is in the ascertained correct proportoo of two to one, and with thi conditiou there is the power thoroughly to combine the ingredients by burning, and tha to gire a density and compactness to the product which, in enabling it to resist water, frost and other decomposing agencies, are the elcments of its durability and of its superiorit to the natural cements. Carelessness, or want of proper knowledge in its manufacture; a improper mixture of the ingredients; an imperfect calcination; its bad manipulation; anc unfair handling when used as a cement, are all likely to result in disastrous effect on beim used. When employed as a mortar or as a concrete, it has seldom been known to fail.

1864c. It is usual for the manufacturer to grind the cement after burning it. It i then placed in well-closed casks, which should not exceed 6 cwt . each, when the cernen may be preserved for some time; but by contact with the atmosphere it is said to absur humidity and carbonic acid, and thus becomes deteriorated. It should be ground ver fine. For the sicve in sifting it, the French engineers required 185 meshes to the squar of 4 inches on a side. 'One-third of the volume of the cement for the quantity of wate is the best proportion, and the more that the cement is beaten up, the harder it becomes The best cement will harden in about five or six minutes, and under water in about a hour; when mixed with sand it takes ablittle longer. When mixed with sed-water, an used in ser-water with a large quantity of sand, it may take even twenty-four hour before setting. (See pars. 1862b, c, and d.)
$186+d$. The resistance to rupture of pure cement after 20 days' exposure to the air about 54 lbs. per inch square; if sand be added in the proporion of $\frac{1}{2}$ to 1 of cemeut, falls to 37 lbs.; and if it be in equal proportions, it falls to 27 lbs . The permanent load i any large works should never be more than one-sixth of that required to produce rupturt and if small materials be employed, only one-fifteenth should be calculated npon.

1864e. In testing Poriland cement, the Admiralty, at the Cbatham Dockyard extensio works, specified that samples would be taken from about one sack in ten, and gauged i moulds, which, when set, would be placed in water and tested at the end of seven clea days. Ench must bear without breaking a weight of 650 lhs . upon the test-hlock of $1 \frac{1}{2}$ inche square in section. In 1878 the Mietropolitan Board of Works required the cement to b of the best quality, ground so fine that it will pass through a sieve of fifty meshes to th lineal inch. It must have a specific gravity of not less than $3 \cdot{ }^{\circ}$, and weigh as delirere 114 lbs. ur more to the imperial striked bushel. When brought upon the works it is t be put into dry sheds or buildings, which the contractor is to proride for the purpos having wooden floors and all necessary subdivisions. The cement is to be emptiel ov upon this floor, every fifty bu-hel= being kept separate, and is not to be used until it ha been tested by samples taken out of every tenth sack. The samples to be gauged nea in moulds, put into water 24 hours after the briquettes have been made, and remaiu ti tested, to bear without breaking a weight of 400 lbs . per square inch 7 d yss, and 600 ll . 28 days after they have been made. The first to be considered as preliminary, and th second as decisire. Mr. John Grant's, C.E., specification is of a more extended characte and includes the quality of sand. The briqueltes with three of sand to bear a weight 1 150 lbs . per square inch after 28 days.
$1864 f$. With cement at 112 lbs . per bushel, \& cubic foot weighs 87.13 lbs ., a cubic yar $2,352 \cdot 6 \mathrm{lbs}$, and a ton occupies a space of 25.7 cubic feet.

1864 g . With this cement, the ordinary proportions for walls may be 1 to 12 of gravel fc common, and 1 to 6 of slag and saud for facing, concrete. A cubic yard of concrete take about $1 \frac{1}{6}$ yard, or $31 \frac{1}{\frac{1}{2}}$ cubic fret, of lonse gravel, exclusive of the cement, as made in gange or measuring-box. One-twelfth of $31 \frac{1}{2}$ cubic feet, or a little more than $2 \frac{1}{3}$ feet cubc goes to each gauge, and is easily calculated and prepared; or 218 lbs . by weight, if th cement weighs 112 lbs per lushel. For making good solid concrete, there should b
fficient sand to fill up the interstices between the stones; one-third of the entire bulk, one-half of the shingle, is required for the sand-a point not so oftenattended to as should be. Plenty of water is adrocated for the mixing; and for making a good face ainst a wood shutter it is essential that the concrete should be wet.
1864h. Concrete constructions are describod inder Bricklaying.
$1864 i$. Strength of lintels of various compositions, each 6 inches deep, $4 \frac{1}{2}$ inches de, and 3 feet 6 inches long, 23 days after manufacture; 3 fect clear space, and loaded adually in the middle (see par. 1903x):-

Brown Portland stone	-	-	-	-	-	-	broke with 1905 lbs.		
White ditto									
Burnt clay ballast concrete	-	-	-	-	-	$"$	140		
Coke breeze	-	-	-	-	-	$"$	1413	$"$	
Pit grarel ballast	-	-	-	-	-	-	$"$	119	$"$

sese three were composed of 1 of cement, 4 of core, 1 piece of hoop iron $1 \frac{1}{2}$ inches by thick in middle.
Box ground Bath stone - - - - - - broke with 476 lbs.
Corsham Down ditto - - - - - - ", 357 ,,
1864j. A natural cement deposit, of very large extent, has been worked at Barrington, ambridgeshire, where it is found from 13 feet to 21 feet in thickness, immediately under e surface. It is considered as giving the material for the best quality of cement aud ne, and it can be manufactured at about half the cost of the ustal system (1887).
1865. Hanclin's mastic cement, though patented of late years, is an invention of P. priot, a century old ; the medium for mixing the pounded brick-dust, limestone, and saod, oil instead of water. It is much more difficult to use than the other cements, and reires great experience and care. A coat of it should never exceed one puarter of aninch thickness; lenco it is totally unfit for working mouldings in the solid. In the metrolis it is generally used in a very thin coat over a rough coat of Roman cement, in which se it is rarely more than an eighth of an inch thick. Thus used, it presents a atiful surface, is durable, but it requires to be painted as otten as do the other ments.
1866. Keenc's cement is oltained by soaking plaster in alum water after a first calcition; it is then kiln-burnt a sccond time and ground. It is in reality only a plaster, d is capable of being worked to a very hard and beautiful surface. Martin's patent eproof and ornamental cement is a plaster of somewhat similar make, and equally goodpking. It is manufactured in three qualities, coarse, fine, and superfine. It is said to used with greater facility by workmen than any other cement yet produced, requiring ly abont an hour to set, which is less by one-half the time of uther e.ements. It appears be chiefly prepared at Derby. Parian cement (Keating's patent) is also composed of psum, but mixed with borax (borate of soda) in powder, and the misture calcined and puad. A fine quality produces a hard scagliola imitation of marble. When applied old brick or plastered work, as in repairs, these cements may be papered or paiuted on in about 18 or 24 hours after execution. But on new work time must be given for y efllorescelce, or dimp, to disengage itself
1866a. John's patent permanent stucco wash, stucco cement, and stucco paint, were roduced about 1843. As a paint it is cheap, durable, agreeable in colour, and finis es hout a gloss. It gives out no deleterious oxhalations or odour in drying, and it is ted that as the oil cannot evaporate (?), but is hald in intimate and indissoluble union In tho nther matorials, there can be no decay, an oljection to which oil mastic is so de. It requires no driers or turpentise, and is applicable both for outsido and inside rk. 'Tho cement, which is stated not to deteriorate wih age, is packed in casks, and nires to be mix+d with 3 parts of gond, sharf, clean sand to make a stucco, its appliion for which is the same as for any other stuczo. It adheres well to glass, irom, slate t tiles in roofing, wool, old plaster, or Roman cement. When st it is hard, and imvisus to wet and damp. One cuat of its own paint, which it will ake after twenty-four irs, is sufficient. Mouldings nay be rua in it, and castings made.
866\%. A cement which will witlistand 14 moist clinate, is atated to bo composed of one hel of lime with 15 gallons of water and half a bushel of tine gravel sand, mixed witn Lus, of enpperas dissolved in hot water, and kept sirred whle bring incorporated and inso. Sufficient should be made for the day during which it is to be used, as the colonr Hot eas ly matedeci. The bristol I'urimachos cement is new, and is stated to be an "fual firo-resisting matrrial, miting readily with a metal, brick, stone, or like surface, forming a permanent joint, impervious to air, gas, smoko, \&c. It rencws borrat-ont th of fire-brick without any taking down and rebuilding. It repairs cracked and od iron bilers, orons, stoves, pipes, \&ce. Used as a wash, it inmarts a smouth phazol
sfare to the interior of retorts of gas works. It may for many parposes ba nsed inst pat white or rel lead in making joints subject to the action of fioc. Other similar maternals bo noticed s, r. Piaspimer.

1866c. Gypsum, bet er known as Plaster of Paris. is a sulphate of lime It is found at Alston, in Cumberland; at Shotover Hill, Oxfordshire ; at Or-ton, near Granthan; in Notingham-hire, in Derlyshire and in Cheshire; in France, in the neighburhowd of Paris, chiefly at Montmartre; and in the departments of the Saone. Loire, of the Rhone, and of many others; and in 'Puscany, Savoy, Spain and Switzerland; in some parts of the British Colonies of North America, wherefrom it is exported principally to the Unitel States. The stone is broken into small blocks, and burnt in a walled space with openings in the tiled roof to tet out the stean. After its water of erystallization is driven off, it becomes pulverulent and like flour. Oll fresh water being added, it combines with the normal quantity of water, and reassumes the form of a hydrate, recovering its original density and strength to a very great degree. A heat of about 200° centigrade is sufficient. The London manufacturers adopt a kind of oven for burning the stone, wheh prevents the smoke from injuring the plaster. In France it has been proposed to throw a jet of steam heated above 400° Falir. over the stone, which is broken very much smaller than usual: this jet takes up all the water present, and luaves the plaster in the state of a pure anhyo drons sulphate of lime. 'I's e plaster obtained from Paris is considered the best of all in quality, probably arising from the fact that the stone is the hardest. Gypsum swells in setting in contradistinction to the cements, which generally shrink. The specific gravity of pure gypsum may be take.1 at $2 \cdot 3.2$; and its constituent parts to be sulphuric acid 46 , lime 32, and water 21. (See Glossaliy, s. v.)
1867. 'The best bituminous cements are obtained from the natural aspholte, which is found in large quantities on the shores of the Dead Sea; in Albania; in Trininad; at Lohsam. and Bekelbronn, in the department of the Bas Rhin; in the department of the Puy de Done; at Gangeac in that of the Landes, \&e. The asphalte which is found in mexhaustible quantities at Pyrimont Seyssel, in the Jura Mountains, in the department of the Aire in France, was introduced into England about 1838, under Claridge's patent. The principal ingredient in its composition is a bitmminous linestone, of a rich brown colour. After it has been reduced to a fine powder, a certain portion of grit is mixud with it ; it is then placed in cauldrons heated by strong fires with a sufficient quantity of mine al har to prevent the asphalte from calcining. The whole mass is thoronghly incorporated and reduced to a mastic, in which state it is run into moulds to form blocks, each 1 foot 6 mehes square, 6 inches in depth, and weighing 125 lbs.

1867a. The mastic is of three qualities, fine, gritted, and coarse gritted. The first, being without any admixture of grit, is used for magazine floors, and as a cement tor making, in special cases, very close joints in brickwork. 1l. The fine gritted is used tor covering terraces, roots and arches, lining of tanks, and as a cement for brickwork, and for ruming the joints of stones. II . The coarse gritted is used for pasing and flooring, and where great strength of work is desirable, such as gun-shed floors, tun-room floors, a..d margins of stable floors; while in gateways for ineavy carriage traftic, small picees of granite chippings are introduced. These mastics, and more partienlarly the first two, being ductile and readily yielding to any change that may take place on the surfaces upon which thes are latid, require a proper foundation to be prepared.
18676. When required tor use, an iron cauldron having been prepared, 2 lbs of mineral' tar are put in and then 56 lbs of asphalte broken into pieces of not more than 1 lb . in weight. These are mixed together until the aspnalte becomes soft. After a quarter of all hour the stirring is repeated, and another 56 lbs . of asphalte added, and so on until a proportion of $11 \underline{2} \mathrm{lls}$. of asphalte to each 1 lb . of tar, under ordinary cirenmstances, fills the cauldron and the whole is thoronghly melted. When fit for use the asphalte will emit jets of light sinoke, and freely drop from the stirrer.

1867c. It will be well to note that it is stated asphalte never flames, but merely passes nito a state of fusion. At the fire at Hambung in 1842, it was remarked that when asphalted roofs fell in, " the asphalte, in which a sort of rubble is mixed up, was found to have resisted the effects of the heat, and, like a mass of dirt, served rather to smother the flames than to give them increased vitality." A like result is recorded of a fire that took place at the Bazar Bordelais, at Bordeaux, in 1835 ; of another in Stangate, London, in 18.55; and experiments were made by order of the anthorities of the Jritish Museum befure this material was allowed to be applied to the snow gatters of the dome of the new Reading Room and other roofs, with a satisfactory result. Notice is not generally taken of the fart that if in works, asphalte or tar be used in places where it may be affected by heat, a smell arises which is very prejudicial to the comfort of the occupiers of the building.

1867d. The term asphalte has also been given to several compositions formed by the admixture of chatk, lime, gas tar, and other substances for cheapness. The coul tars, and vegetable pitch, although not so good as the bitumens, are fairly good substitutes in many cases, as in roating vaults, or walls exposed to the dampmess of earth. The proportion in which to mix powdered calcarcons stone must be regulated by practice, as also the heat, that the stone be not coaverted into quieklime, perhaps from 6 to 7 of the pited in volume to 1 of limestone will suffice; and it is recommended to use these in gratul thickness than the asphalte, being wbout halt an inch for she latter material.

Sect. XII

GLASS.

1858. Glass is a combination of silex with fixed alkali, generally soda. The mixture fen calcined receives the name of frit, which after the removal of all its impurities, is nveyed to the furnace and melted in large pots or crucibles till the whole mass becomes autifully clear, and the dross rises to the top. After being formed into the figures reired, it is annealed or tempered by being placed in an appropriate furnace. The fineness pends on the purity and proportion of the ingredients. An extremely fine crystal glas: obtained from 16 parts of quartz, 8 of pure potash, 6 of calcined borax, 3 of flake white, d 1 of nitre. The specific gravity of glass is about 2600; of French plates, 2840; of nglish flint glass, 3320. Glass is extremely elastic, and less dilatable by heat than etallic substances.
1868a. Four pieces of the common sort of glass bcing cut from one strip, each piece was inches wide, 6 inches long. and 4 inches thick. In the trial of strength they were calcuted out at a standard size, and gave 17.208 lbs ., $15,435 \mathrm{lbs} ., 14,931 \mathrm{lbs}$, and $11,385 \mathrm{lbs}$; e mean being $14,931 \mathrm{lbs}$. This great difference is the more singu'ar from the circhmance of all the pieces being cut from the same plate. The weight of the glass at a size $9.0 \times 4.5 \times 3$, all in inches, would be 11.12 lhs. Sheet glass is stated to be stronger than ufe or crown glass, but less fiexible. Ithe compressive strength of glass is about $12 \frac{1}{4}$ to a s r square inch. 'Ihe resistance of glass to a crushing force is about 12 times its rebistance extension.
1859. Pliny gives the following account of the discovery of manuracturing alass, which is well known in Aristotle's time, 350 в. с. "A merchant vessel laden with nitre or sil alkali, being driven on the coast of Palestine, near the river Belus, the crew accidenlly supported the kettles on which they dried their provisions on pieces of the fossil kali ; the sand about it was vitrificd by its union with the alkali, and produced glass." mught, according to Bede. artificers skilled in making glass were brought into England 674 , glass windows "ere not generally used here till 1180 , and were for a considerable ne cstecmed marks of great magnificence.
1860. The manufacture of window glass during the last thirty years has undergrone tire alteration, especially since the abolition of the excisc duty in 1845 . There are now ree special kinds of glass used for glazing purposes, and several varieties of them :
1870a. I. Crown glass, which is blown into large globes and opened ont into circular t tables. II. Shect glass, whech is blown into long cylinders or m"ffs; then split down d flattened. III. Plute glass, which is either cast on iron tables for large purpos'e, and lished; or for smaller squares, blown into a cylinder and polished
1861. Crown glass, the commonest wiadow glass, differs from flint glass in its containing lead or any metallic oxide except manganese, and sometimes oxide of cobalt, in minute rtions, for correcting the colur, and not as a flux. It is compomaded of sand, alkali, lice potash or soda, the vegetalle ashes that contain the alkali, and generally a small rtion of lime. To facilitate fusion, a small dose of arseace is frequently addal. Zattie oxide of cobalt, in the proportion of 1 ounce for 1000 pounds, is added to correct the lour: but when the sand, alkali, and lime are very fine, and no other ingredients are ed, zaffre is not required lis manuacture is conducted differently from that of flontuss articles, the otject being to produce a large flat thin plate, which is afterwards the glazier's diamond cut into the requisite shape. It is blown in cirenlar plates, way; from 3 feet 6 inches to 4 and 5 fect diameter: the process is as follows:- The rkman, liaving a sufficient mass of melted metal on his blowpipe, rolls it on an iron He, and then, swinging it backuard, and forwards, canses it by its own gravity to on into a globe, which is made and bronglit to the reguired thinness by blowing tha a fal of breath, which persons accustomed to the work know how to manaze. 'The: llow glole is then opened by holding it to the fire, which expanding the air confined thin it (the lowle of the blowpipe being stopped), bursts it at the weakest part, and while 11 soft it is opened out into a flat plate by centrifugal fore ; and being disenguged trom - r. d. a thick knol) is left in its centre. It is then placed in a furnace, or in a certan rt of the furnace to undergo the process of annealing. When the table is cut for use, : centre part in whielt the knob) remains is called hmologlass, and is nsed only for the ry commonest purposes. 'l'ables are now wade of snch a size that squares may be prored 38 inches by 24 inches as extra sizes.
1871a. '1\%ne ๆralities of crown glass in common nse are called hest, sconds, thirds, and irtias or eoarse; with two still coarser. 'Ithe last is of a very green luce, and only used inferior buildings. 'They were sold by the crate, at the same pric., wediflerence being de up by vurying the number of the tables contained in it. 'Ihns a crate of best crown as contained twelve tables ; of sconds, a erate contaibed fiftecn; and of thirds, eighteen les. I'hey are nuw wold (lyy Messes. Ilartley) in evaters of eightern tables of the was al
thickness averaging 53 inches ; and in crates of twelve tables of extra thickness averagin .52 inches. Flattened slabs of the same qualities are sold in erates of thirty-six slals of th usual thickness, and in crates of twort foforr slabs of extra thickness, eaeh averagin 24 inches, $29 \frac{3}{4}$ inches, and $21 \frac{1}{2}$ inches. The flattened slab is also made as obscured 'glins. The sizes of both qualities vary from 'quarries'; under 9 by 7 ; up to, above $4 \frac{1}{2}$ feet, an not above 5 feet superfieial. 'Taking the usual thicknoss of

Best	as	CO	extra thickness	150
Seconds	$"$	90	$"$	135
Thirds	$"$	65	$"$	110
Fouths	$"$	50	$"$	85
CC and CCC	$"$	43 and 40	$"$	63 and 50 (Adcuck

1872. Sheet glass has been manufactured in England with great improvements sinc 18.32 to 1838 by Messrs. Chance and Hartley, with the co-operation of M. Bontemps, Paris. Though inferior in colour, this glass is in other points generally superior to that the foreign manufacture. It is composed of the same or similar materials to the above, i well ascertained proportions, and with sulphate of soda to give whiteness. In the mamfar ture of sheet glass a sufficient quantity of the metal is collected at the extremity of a blow pipe, and then lengthened by swinging and blowing, till it acquires the form of a hollo cylinder, which is then detached, the neck being eut off with a thrad of hot glass; an one side of the cylinder is cut down lengthwise with a heated iron or diamond. It is the taken to the flattening kiln, where the heat causes it gradually to open nearly flat on abs called laryre, where it is rubbed down by means of a block of wood called a polissoir, an then becomes flattened sheet. After this operation it is placed in the annealing oven t cool gradually. This operation is referred to by the monk Theophilus, who wrote abou the end of the twelfth century or later, as in use in his time. The method was also em ployed by the Venetians especially for coloured glass, as it secured uniformity. But on th cessation for its demand, the employment of the cylinders was entirely supeiseded in Franec England, and the North of Germany, for the rotary principle.

1872a. The great advantage of sheet glass is that of affording plates of larger dimensions and not only of avoiding the waste arising from the circular form of the croun tables, bu also from the knob or bull's eye in the centre. The surface, however, is much less brit liant than that of crown glass, and is more wavy and undulated. Messrs. Chance, it 1838 , introduced a thicker quality of sheet glass, which was at the same time of a bette surface, and since then its use has become general.

1872b. In 1840 the same firm introduced a new variety of window glass under the nam of patent plate, which they obtained from a thick sheet glass by a new process of grindin: and polishing. They made plates of several de.rrees of thickness, and of sizes containim from 8 to 12 feet superficial. The surface of the glass obtained by this process, thoug not perfectly true, is very nearly so; and in brilliancy it is unsurpassed even by cast plate For glazing sashes it has nearly superseded crown and sheet glass. But for squares somewhat large dimensions, it may be calculated whether plate glass wili not be as chea or cheaper.

1872c. As will be perceived by the above short account of the mode of manufacture 0 shect glass, its size is almost only limited by the strength of the workman. It is ehiefly sold in crates as manufactured, in shects of not less in width than 28 inches, and not le: than 9 feet superficial area; with a limit of width not exceeding 45 inches, and a limit o length not excecding 75 inches; but these extremes of width and length cannot be cons bined in the same sheet. Thus in glass of 15 ounces to the foot, the dimencions 55 l 36 inches, or $12 \frac{1}{2}$ feet in area, is the largest plate. In 21 ounce glass, 75 by 45 inches, ${ }^{\prime}$ 18 feet area: in 26 ounee glass, 75 by 45 inches, or 17 feet area: in 32 ounce glass, 6.5 44 inches, or 15 feet area: in 36 ounce glass, 60 by 42 inches, or $12 \frac{1}{2}$ fect area : and in 4 ounce gla's, 55 by 38 inches, or 11 feet area. 'The four first weights are made in qualitie of best, seconds, thirds, and fourths; and the two first have two qualities A and B for pic tures. There is no four th quality to the two last named weights. All these sorts are eu into squares for glazing.

1872 d . Fhited shect glass of 15 ounce and 21 ounce is usually supplied in crates no above 43 inches long; but it is made up to 50 inches in length. Obscured yhet gluss i supplied in all substances.
1873. Patent plate glass, already describ d (par. 1872h.) is made in thrce qualitits B or best, C or second, and CC or third, quality. Each of these are of four kinds, known as No. 1, which is of an aserage thickness of $\frac{1}{6}$ th of an inch, and is of an average weigh of 13 ounces to the foot; No. 2 is $\frac{1}{12}$ th thick, and 17 ounces: No. 3 is $\frac{1}{16}$ th, anc 21 ounces; and No. 4 is $\frac{1}{9}$ th, or 24 onnces to the foot. No. 4 B is thus the very bes quality made ; the prices for the size required vary but about one or two pennies per fool in each kind; and from threepe:ce to sevelpence in each quality. They are manuactured in sizes from 4 to 13 feet in area, not above 50 inches long, or 36 inches wide.
1874. German sheet, or Belgian shest glass, as it is somctines called, was formerly in much demand in England; and is still used for cheaphess. Its appearance is nore way
d speckled than the English manufacture. Crystal white sheet glass, for glazing pictures ${ }^{d}$ prints, is imported from Florence in cases of 100,200 and 300 feet, in first, second 1 third qualities, and appears superior to other glass in whiteness, but it has the defect 'sweating.' Similar named glass for such purposes made hy Messrs. Chance, appears us to be very green, and therefore detrimental to prints and pictures; but on the other ad it d es not sweat.
1875. Plute glass is so called from its being cast in large sheets or plates. Its constint parts are white sand, cleansed with purified pearl-ashes, and borax. If the metal ruld appear yellow, it is rendered pellucid by the addition, in equal small quantities, of ng.nese and arsenic. It is cast on a large horizontal table, and all excrescences are ssed out by passing a large roller over the metal. To polish it, it is laid on a large horiHal block of freestone, perfectly smooth, and then a smalier piece of glass, fastencd to a nk of wood, is passed over the other till it has received a due degree of polish. For the pose of facilitating the process, water and sand are used, as in the polishin:s of marble; 1 lastly, Tripoli, smalt. emery, and putty, to give it lustre; but to afford the finishing ish the powder of smalt is used. Except in the very largest plates, the workmen polish ir glass by means of a plank liaving four wooden handles to move it, and to this plank late of glass is cemented.
876. For the unsilvered polished plate glass for mirrors there are two qualities, nd and best. The Paris factory supplied in 1865 two looking glasses for the yor's room in the Town Hall at Liverpool, each 15 feet by 10 feet. Pr,lished plate glass ranufactured for general glazing purposes up to about 80 feet superficial, of two qualiusual and best. The usual thickness is a quarter of an inch: higher prices are rged for glass selected to be cut above $\frac{3}{6}$ ths, $\frac{5}{56}$ ths..: and $\frac{3}{8}$ ths. thiek; while for above : thick, special prices are charged. The best quality is declared to be of the very est colour, free from specks, and not sulject to dampness or sweating.
877. Rough plate glass, cast, is used for roofing, in skylights, windows, \&c., in plates not above 20 inches long, to above 120 inches long, in thick nesses of $\frac{1}{1}, \frac{3}{8}, \frac{1}{2}, \frac{3}{3}$, inch, $1 \frac{1}{4}$, I_{2} inch; but these thicknesses have certain limited lengths. The widths are the same or plate glass. This glass is not ground or polished, but rough from the table, and ving the table marks on its underside.
378. The patent rough plate glass, which is also cast, must not be confounded with the e. It is extensively used for ridge and furrow roofs, conservatories, manufactories, ights, workshops, and other places where "obscured "glass is reguired to intercept the on without diminishing the light. Blinds are unnecessary, and when it is used in greennses, no scorching of the plants occurs. The quality known as $\frac{1}{6}$ th. of an inch thick, shing alout 2 lis, or 32 ounces to the foot, is usually provided for these purposes, and , more, weight for weight, than common crown glass. When greater strength is reed, ${ }_{8}^{3} 6$ this, and inch thick is said to be cheaper and of a fincr quality than the common li plate; but we demur to this statement, as of late years the manufacture appears to decreased in strength from the greater use of sand for cheapness; in moveable window es in warehouses, a lamentable quantity of broken squares is to be scen almost before floors are occupied.
78c. This glass is m•de of two kinds; I. Plan, which is merely marked by the fine I of the casting table, and is that abore noticed; and II. Fluted, of two sorts, No I, - pattern, having $3 \frac{1}{2}$ flutes to the inch; and No. 2, small pattern, basing 12 flutes to uch. Buth the plain and the fluted kinds are made $\frac{1}{8}$ th. $\frac{3}{16}$ ths. $\frac{1}{9} \cdot \frac{3}{6}$ ths. and $\frac{1}{2}$ inch in ness. The width is about s feet, and the length usually not above 70 inches; but O. and 100 inch sis long are also made. When a clear glass and inuch non-transparency equired, No, 2 fluted is the best.
i9. Quarry glass is also made in this material; No. 1 being 6 inches by $4 \frac{1}{1}$ th inches point to ponat ; No 2 being 3 inches by $2 \frac{1}{16}$ inch. A st ined ornamented patent quarry phue is mate for churehes, chapels, schools, \&e. A putent dianond rongh plate glass I mannfactured. A patent rough phate, and shect, perforated glass, polished or unhed, for centiation, can be obtained in sizes, which require consideration in arranging, comnt of the length of the slits or perfurations. 'It is usually made in columns $\frac{1}{2}$ - wide, and $2 \frac{1}{2}$ inches apart; the space between cach slit vertically being $1 \frac{1}{2}$ inches. rsizes, or the columns wider apart, can be obbained from various manulacturers, or im
6. Many other applications of glass will be metieed in the ensuing chapter. mist here state that the details gicen in this section are founded upon the price weed by Messrs. Hartley, of Sunderland, and would state our regret that the manuers have not deened it advisable for their own interest, to provide some place in on, nod in otlicr large towns, where the arehitect can call and comprare the qualities of supplied under his specilication "ith standards there placed. It was conparativel, a fonmer years to judge of good glass; now it is almost inpossible.

CHAP. III.

USE of materials, or practical buifding.

Sect. I.

FOUNDATIONS AND DRAINS.

1881. In the previous chapter, the principal materinls used in buidding have br enun trated; tris chapter will explain how those naterials may be most advantageou employed; but we shall net, in the various branches of practical building, again tot on the materials themselves, which have been already sufficiently described. The m important of al considerations-a due regard to the foundations on which a build is to stand-will be first entered upon. The advice of Vitrurius may still be follom In England, the recent introduction of concrete has superseded the use of wood un walls in the earth ; and piles are now quite exploded, exrept sometimes for the pi of bridges and other situations in which they can constantly be kept wet.
1882. The bes: soils fur receiving the foundations of a huilding are rock, grarel, close-pressed strong sandy earth; "but," says L. B. Alberti, " we must never trust has ily to any ground, though it may resist the pick-axe, for it maty be in a plain, and infirm, the consequence of which might be the ruin of the whole work. I hare sees tower at Mestre, a place belonging to the Venetians, which, in a few years after it , built, made its way through the ground it stood upon; this, as the fact evinced, wa loose weak soil, and buried itself in earth up to the very battlements. For this reas they are very much to be blamed who, not being provided by nature with a soil fit support the weight of an edifice, and lighting upon the ruins or remains of some structure, do not take the pains to examine the goodness of the foundation, but ine siderately raise great piles of building upon it, and out of the ararice of saring a li expense, throw away all the money they lay out in the work. It is, therefore, excel advice, the first thing you do, to dig wells, for several reasons, and especially in order to acquainted with the strata of the earth, whether sound enough to bear the superstruct or likely to give way." It is impor ant, previous to laying the foundations, to drain t completely, if possible, not only from the rain and other water that would lie about, from the land water which is, as it were, pent up in the surrounding soil. In soft, le and boggy ground, the use of concrete will be found very great ; and in these soils, m over, the width and depth it should be thrown in shouid, as well as the lower courses of foundation, be proportioned inversely to the badness of the soil. Clay of the plastickin a bad foundation, on account of the continual changes, from heat and moisture, to which subject, and which often cause it so to expand and contract as to produce very alarn setilements in a building. The best remedy against this inconvenience is to tie the r together by means of chain plates, buried in the centre of the footings, and on the to the landings that rest on the concrete ; these plates to he, of course, connected at the ret. ing angles, so as to encompass the whole buiding. In these cases, the clay must be e vated to make room for the concrete. This will be found an effectual renedy in clays
1883. By the Metropolitan Building Act, no building can be erected upon any which shall have been filled up or covered with impure matter enumerat d in the Act must be removed first, and any holes, if not used for basements, must be filled in with l brek or dry rulbish. Generally, if the soil be a soutd gravel, it will want little 2 than ramming with heary rammers; and if the building be not vry heary, not even t
1884. Where vaults and cellars are practised, the whole of the soil must, of cours excarated; but where they are not required, trenches are dug to receive the walls, wt in both cases, must be proportioned in strength to the weight of the intended su structure and its height. In general terms, we may direct the depth of foundations t a sixth part of the height of the building, and the thickness of the walls twice the those that are raised upon them. Care must be taken that that which is tn receire footings of the walls be equable ; otherwise, where external and internal walls are conre together, the former, being the heariest, may settle more than the latter, thereby can fractures, which, though not perhaps, dangerous, are extremely disagreeahle in appeare The lower courses, which are called the ffotings of the wall, are often laid dry; and. haps, at all events, a sparing use of mortar in a spot loaded with the greatest pressure sh be preferred. If the footings be of stone, very particular attention should be bestowe placing the stone in the courses in the same direction or bed as it lay in the quarr: prevent it splitting. The above mentioned Act requires that the foundations of walls of every house or building shall be formed of a bed of concrete not less ${ }^{1}$
nches thick, and projecting at least 4 inches on each side of the lowest course of footings such walls. If the site be upon a natural bed of gravel, concrete is not then required. 1885. In foundations where, from columns or small piers pressing upon particular ts, there would be a liability, from uneven bearing, to partial failure, it has been the tetice, from a very early periol. to n inverted arches (s e fig. 615) to ch on their springing the weight be proviled against by which means h weight is equally dis'ributed roughout the length of the foundan. "Standing thus," says our master b-rti, "they (the columns or weights) 1 be less apt to force their way intu earth in any one place, the we 'ght

Fig. 615. ng counterpoised and thrown equally on both sides on the props of the arches. And wapt columns are to drive into the ground by means of the great pressure of the weight)d on them, is manifest from that corner of the noble temple of Verpasian that stands the north-west; for, being desirous to leave the public way, which was interrupted by it angle, a free and opun passage underneath, they broke the arta of their platform, il turned an arch against the wall, leaving that corner as a sort of pilaster on the other : e of the passage, and fo tifying it as well as possible with stout work, and with the : istance of a buttress. Yet this, at last, by the vast weight of so great a building and tgiving way of the earth, became ruinous." When inverted arches are proposed to 1 used, they should be shown in the drawings.
1885a. A method of forming foundations has lately come into vogue for bridges and der hydraulic constructions by the use of cylunders, or other shaped air tight cases. In Hia the system of founding large masses of masonry on cylindrical piers built in the ierior of wo den curbs, has prevailed for a long period. The method of constructing t piers is the same as that used in England in sinking the steining for ordinary wells; if when sunk the interior is filled $u p$ with concrete or ruble masonry. Some of the iron 1 dges lately orected orer the river Thames and elsewhere have been placed on foundains formed by cast iron cylinders filled in with concrete. Further details must be sht in works devoted to Civil tengineering, as the system will seldom be applicable in \& C tly architectural constructions.
886. Air-drain. It is most important, when the walls are raised in the foundations, 81 brought up a little above the level of the earth, to take care that the earth, most ${ }^{6}$ ecially if moist, should not lie against t m ; for if walls, before they are dry and \& led, imbibe moisture, they rarely ever 1) with it, and thence gradually impart ret 1 he timbers throughout the house. It is, 1 n, most important to have a second thin $y l$ outside tho basement walls, so as to .ee between it and them a cavity for the ulation of the air, such carity being 1 nically ralled an air-drain. In moist loose foils it is essential for the duraty of the building, as well as for the hlith of those who are to dwell in it. The seiun rack building composition, l.y W. itce, of Abergavemy hits been largely "If for preventing damp passing through a

A wall mav lee built with half-bricks he flat and set in this composition, filling mirddle joint of half an meh, and an inch () of cachl hord. This is stated tw, be much Inger than an 18 -inot wall built in the nary why. A l,rik flat with a brick on Pe, ay for "otiagea, or for ecunonly, is quite p-prof f, and equal in strength to a 14 -inch built with mortar only. No skill is re3 cel; an intrlijgent labourer can use it. sxGa. It is impostant that the air-frain ry area should commence at least as low 10 fomdations of the building; in very

Fiz. 61tin. siruations it shomd be providel with pipes to carry off the mperabmelant moisture, bo independent of the main drain of the hailding. liven when provided, the nsmat ations to prevent damp arising in the main walts mist not be neglectod. The air-
drain, which should never be less than 8 inches wide, more if possible, is common: covered with a half-brick arch, or with stone, slate, or tile, below the surface of thi ground. This entirely does away with the benefit anticipated by its formation, becaus. the surface drainage descends and injures the main wall, even when cemented above th. covering; this covering should come some inches above ground. Unless care be taken i often degenerates into a liole for dirt and vermin. A good arrangement is to make a dry area, or a space wide enough to be easily cleared out, and to which a cat or dog cal have access, and to cover it with stone with moreable gratings at convenient distances the expense will not be much greater, while the result will be very effective. The mos secure arrangement, however, is to form an open are all round the building. The wan of nuch a precaution in the houses in the suburbs of towns renders a large majority o those haring basements nearly uninhabitable from the disagreeable consequences of dam walls. (See also fig. $615 h$.)

1856h. Damp courses. This simple provision to prevent wet, which is likely to ge into walls, from rising in them by capillary attraction, is too often neglected, especiall: in chcap work, for the present sáving of a pound or two ; but at the ultimate expenditur of many pounds. The simplest plan has generally been to work three courses of th brickwork abore the footings and below the ground floor, in cement. Messrs. Smith o Darnick state that a coating of cement, done in a very substantial manner, did n, appear to have the smallest effect, as the wall was as damp above it as below. For smat cottages they found an effective plan was to build all the parts of the wall undergroun quite dry, and not to use any mortar until clear of the earth. This left the walls quit dry above. The next method is to bed a course of sound whole slate slabs, $\frac{1}{4}$ inch thich in cement. When the soil is very damp, two or even three courses of ordinary slate may be laid in and well bonded, not only in the main walls, but in alt cross partition and dwarf walls. For some reason, probably that of the slates and cement haring se parated or crushed with the weight of the walls, allowing the damp to pass through, thi method has fallen into disuse. As Portland cement will adhere to slate, probably, i solid works, if used instead of Roman cement, the resu't would be more satisfactory.

1886c. Sheet zinc bedded in loam has been found to decay. In extensire works, fine gritted asphalte, applied in a hot state, is introduced as a layer, about half an inch i thickness. This naterial is stated, in the Appendix to the Report of the Fine Arts Com. missioners, to have liept out the effects of damp, which would have shown themselves, a the fouadations of the building referred to were always in water about 20 inches belo the level of the ground floor. The brickwork s ould be dry and protected from raiduring the operation, to prevent the asphalte becoming honeycombed. In building already erected, the walls can be underpinned to introduce the material. At the Ne Palace at Westminster the joints are only halt filled with mortar, the asphalte filling th remainder when poured over the bricks. The bricks for the next coursc, having bee heated at a coke fire, were placed on the asphatte in its fluid state, and the joints haj flushed up. The outer courses, however, should be first laid for short distances, tha they may set before the middle is filled in. In rubble masonry, it will be necessary ti fill up all inequalities on the surface with fino zoncrete; when this has set sufficiently. the asphate is to be laid as descrived for brickwork. Gas tar mixed with lime is s.id ve impervious to wet.

1886d. Two centuries ago, thin shcet lead was laid on the top course of a wall to pre vent damp coming down it from the guters; of late years, a layer of 4 ll . milled lear

Fig. 615b.

Fig. 61 ̌s.

Fig. $615 d$.

Fig. 615e.
has been proposed to prevent it rising; no doubt the best and most efficacious remed but the cost would be greater than usually allowed. But the best invention, hasim price also in its favour, is the damp-proof course, formed of brown stoneware, perforate throughout its entire width with a half air space, which remains open after the morta beds are laid, on each side of the slab. In an executed work, a course of bricks can b cut out and the stoneware be inserted. This is one of the many building inrentions o Mr. John Taylor, junior. Fig. 615b. shows one for an 18 -inch wall; other sizes as wel as angle blocks are prosided. Each foot superficial is stated to be equal to the suppor of 25 tons or 600 feet of vertical brickwork. Jennings has patented earthenware s'epper blocks, "non-conductors of damp and a cheap substitute for Lrick sleeper walls;" "de.
e also useful for carrying stone paving: figs. 615 c ., 615 D ., and $61 \overline{\mathrm{~J}}$. describe them-- wes. Fig. $615 f$. shows the section of a sleeper-wall in brickwork, carrying stone aving on one side and timber joist on the other. There are four courses of brickwork, a which is laid the timber sleeper, 4 inches by 3 inches, , carry the joist.
1886e. Fig. 61 \bar{b}. is also useful for admitting air into the pace under a floor, and then dispenses with the conmon ist-iron air-brick usually fixed for such a purpose. Air gratigs are of a larger size. The following arrangement, shown in igs. 615 g . and 615 h ., has been carried out where it wasthought Ivisable to provide for the admission of a large quantity of esh air at times into the bocly of the bulding. Funnels or ipes were in-erted in the side walls under the floor, say 1 ft . in. diameter. An area protects the front, to which a small reeping drain is put to carry off any rain water, and is pro-

Fig. $615 f$. ected at the top by a grating to provent animals getting in. On the inside is a late or slide, which can be let down through the floor, paring, or boards into a groove, o regulate the quantity of air or to shut it ff. The fresh air ascends through gratings, r by other means, in the floor, into the hall. 1886f. A preventive against the rise of amp in the inside of the building is to cover he whole area within the walls with a layer of morete, about 4 to 6 inches thick. By a byeIW of the Metropolitan Board of Works, the ite of every house or building shall be corered ith a layer of good concrete at least 6 inches hick, and smoothed on the upper surface, nless the site thereof be gravel, sand, or at ural rirgin soil. But as concrete, fspeciaily f of a coarse claracter, is of a honey-comb haracter, eren when fixed or set, being full of pttlo cavities, there is some danger in placing in wet soils, for it will often weep, and if cut, vater will be scen to ooze through it. Also, rhen placed under it basement floor to keep ut damp, water will invariably find its way hrough if there be any pressure, as from pringa. To prevent vapours rising from deomposed matter in the soil, a good practice, ren in dry localities, is to corer the soil, before be floor boards are laid, with a layer of two

Section. Fig. 6:5h. nches of unslaked Jime, which on slaking with damp, or damp air, will destroy any egetation that may have been left on the surface.

SEWERAGE AND DRAINAGE.

1887. Before a brick or stone of any building be laid, the arehitect neglects his duty he has not provided for perfect drainage in the lowest pats oit tho structuro. This lould not be by the aid of a stagnant tank, called a cesspool, if it can possibly bo roiled, although there are some localities where such a tank must be formed, and then he solid contents can possibly be made useful for manuring purposes, the surplus water wing drained off, possithy into some running stream at a distance frum the building, whose xhalations shall not le blown by any prevalent winds of the spot back upon the place Where they were genernted in a different form. The durabilty of the structuro is quite 4 muels involved in good drainage as is the health of the fanily whoso dwelling-plaen hie house is to becone. Iondon, with its suburbs, is now probably the lest drained upital in lsurope. The lines of sewers forming the Main Drainage scheme bave relie ved the noble river of nearly atl the sewago matter which had been carried into it. Every crect and allay has its public sewer, and nearly every binse has its separato drain into ho sewer. No new stwer enn now be made in London without the previous approval of ho Matropolitan Board of Works; and no Irail can be laid into a sewer without the rovions ayproval of the vestry or district buard, which has to apply to the Motropelitan frand of Works for their sanction in both cases. Many towns in England have now their ionald of Hoath zmpreviring the drainage of the streets and houses, pursuant to "The 'ublic Health Aet, 1818," and "This Leeal (iovornment Act, 1858."
1887u. Srumers are provided for carrying away foul water brought into them by the rains. Ordinary ntrent suwess are buith of hard hricks set int cement, anel aro mow enerally eggespaned in section, being about 3 fiet 3 inchers wide at the tol, and 2 fell

9 inches at the bottom, of the sides, which are formed by curves of a large radius, and 5 feet high in the clear. Smaller sewers are 2 feet 9 inches and 2 feet 3 inches wide, and 4 feet 6 inches clear height; and 2 feet 6 inches wide, and 4 feet clear height. The smaller end is placed downwards. The dif-

Fig. $615 i$. ference of friction or imptdiment in favour of a curved bottom is great. much power of the flow of water being lost by the use of a flator flatly curred bottom. This part of tht sewrr is called the invert, and is often formed of stoneware, the core being filled in with coarse cement; thus the foul tiquid does not pereolate through them into the soil. The figure (615i.) shows Jennings' con:pound inrert blocks, laid and jointed in Portland cement; the bricks at the angles set in blue lias lime. Smaller sewers are now made of large circular glazed stoneware pipes, and in a few exceptional instances of irou; and even rock concr te tubes, from 15 inches to 36 inchrs diameter, are made at Poole. The joiuts of these pipes are made watertight. These ordnary sewers pass into larger ones called "main sewers," all gradually inclined from the hisher to the lower levels, joining one another either with curves or acute angles, sc that the flow of one current shall not impede that of another ; and they gradually become larger and larger, according to the requirements of the town, uutil they end in one or more outfall sewers discharging into a river, or to reservoirs for a system of irrigation or for other purpose.

1887b. The accumulation of foul deposits in sewers is cansed by the want of sufficient fall or sufficient flushing with water, and so occasions foul air, or gas as it is wrongly called. Hence it is essential that the sowers should be well ventilated, in order that the foul air shall not escape or pass up the drains of the houses. This ventilation in a line of sewer is effected liy a shaft carried up from the crown of the sewer to tho surface of the street, where it is finished by a grating. Where there are plenty of these ventilating shafts, it is considered that no nuisance is produced by the bad air as a general rule, because the purer air is supposed to be continually passing into and out of the sewer through them, thus diluting the foul air. If a nuisance from foul air is complained of, it would show that something was wrong with that $\mathrm{p}+\mathrm{rt}$ of the sewer, or that another ventilator was winted in the distance between the two already in position. Instrad of these, it has also leen proprsed to ventilate sewers by means of pipes carried up houses and ending ab we the roufs, but this system is considered to be inefficient unless the pipes are of large size. The head of a system of sewers, or the end or head of a sewer, as to a court of houses. requires both a flushing apparatus to occasionally cleanse the sewer, and a pipe rentilator or ventlating shaft carried up to carry off the foul air which there collects. Other s stems have been suggested. Tarious attempts have been made to create strong upenst draughts by furnace chimneys, cowls, or other artificial means, but these attempts haro never been more than locally-and then only partially-success 'ul.

1887c. Whilst on the subject of sewerage, it may be well to refer to the new system of raising the sewage from a low to a higher level ty mpans of Shote's hydro-pneumatic sewage ejector. This successful system, as carried out at the Houses of Parliament, is described in the Transactions of the Royal Institu'e of British Architects, 1887, iii., new series, and in British Architect for January 28, 1887, p. 69. The work was perforned thus: in the bottom of the old main brick sewer, abont 1000 feet long, passing from north to south under the Houses. a 12 -inch cast-iron drain was embedced in concrete, with a fall of about 1 in 212 . This received all the sewage of, and rain falling on, the Houses and prounds. and was discharged into a receiver at the bott m of a sewage manhole. From the side of the receiver a 12 -inch cast-iron inlet pipe is cirried horizuntally into the adjoining rjector chamber, in which are three cast iron ejectors, one being capable of discharging 480 gallons, and the other two 335 gallons each, per minute. The sewage is conveyed into them by a 6 -inch cast-iron pipe. From the botrom of each ejector a 6 -inch cast-iron pipe passes vertically upwards into a 12 -inch cast-iron horizontal outlet pipe, which is carried through a dam lmilt in the old main sewer, and discharges beyond it int, the old outlet communicating with the Low Level Sewer, and abore the normal flow of sewage therein.

1887d. Compressed air is used for ejecting the sewage, \&c., from the ejectors by Atkinson's differential gas engin-s-four of them, each of 4 horse-power. Usuaily one only is employed. There is an automatic arangement for conducting the air, and ball valves for admitting and expelling tho sewage. The compressed air in the ejector is discharged by a pipe leading into the rentilaing shaft passing up the elock tower, The
nount of sewage ejected iu $d r y$ weather is found to a verage no more than 40 gallons per inute, so that a 6 -nch pipe would carry away all the sewage produced in the Houses. resh air is admitted into the subway and chamber, \&c. There is also a 9 -inch main anch drain under the basement along 'he west side of the Houses, which is alsn rentited. The total cost of the works, including the fuur gas engines, the three connpressel r receivers, the piping, and the three ejectors, has been a little over 11,500 .

Drains.

1888a. Into the public sewers are carried the drains from the houses. These drains ere formerly made of brick, and called "gun-barrel drains" from their circular shape. 1 course of time they got out of order from decay, rats working their way through, and lier eauses, so that foul matters soaked throigh into the soil, which thus became turated, and foul air ascended into the house. Such drains have been discarded since e introduction, about 1845, of pipes into the sewerage and drainage system. These pes are made of ritrified stoneware, and are very different to the glazed or unglazed irthenware pipes sumetimes substituted for cheapness. The sewage soon corrodes this lazing, which being removed, the half-burnt earthenware sucks in the foul water and ecays. Nur is it nearly so strong as the stoneware pipes; these are also supplied ith covers for occasional inspection. Pipes are also made specially, 3 feet long and a thickness equal to one-tenth of the diameter, with Stanford's patent jo'nts, iy Cliff' and Suns, near Leeds. Messrs. Doulton manufacture a patent self-adjusting int, securing several advantages.
18886. The main drain necessary for the service of the largest house (we suppose the se of one in the country), if the tall be even but moderate, requires no large dimensions. hen we see a small river draining considerable tracts of country, often in section only 9 , or 10 feet suprrficial, it m y easily be conceived that the surplus water from, and in falling on, a mansion is a quantity, even in pressing times, that exacts no large area discharge to free the place fr. m damp. There are few cases in which the greatest insion would demand more than a 12 -inch or 9 -inch pipe, with branches of 6 -inch and inch pipe; which, with $3 \frac{1}{2}$-inch lead pipes for soil pipes, if properly connected and d, will suffice for all purposes.
1888c. One object in draiuing a house, a mansion, a village, or a town is to make the ains and sewers so that the sewage in them shall never stagnate at any part, but be stantly flowing with a self-cleansing velocity; and so that the air in them shall newr tgnate at any part, but be always flowing, by fresh air passing into their lowest parts, I by foul air diseharging from their highest parts into the stratum of the atmosphere ore that in which we live and breathe.
$18:-3 d$. There are several systems of draining a country mansion. Near to the main thet is fixed a la ge intercepting trap, to be rentilated. Intu this parses, by drains on sides of it, all the water by the rain-water pipes from the roofs, the soil by those from ? water closets, and from the pantry and seullery sinks, as well as any surface water m trapped gratings. The waste pipe from the scullery siok should, pr-viously to ssing into the drain, be connected with a grase trap (see Prumisery). Some of the n -water pipes muy aet as inlets of fresh air and also as ventilators to the drain ; but usionally, and especially near traps, other pipes for inlets of fresh air may be provided prevent what is catled "syphoning." These ventilating pipes are to be of the same meter as tho drain, as required ly some authorities, or as the soil pipe as by others, be carricd up to the top of any gablo or roof of the house, and to some feet shove and ir of the chimney pots, so as to prevent fuul air from passing down them by down ughts; the top is sumetimes open, but thoy usually have a eap or exhdust ventilator.
1888c. The rain or surface water from bouses in the country, or on open land, should carried away into the nat ural streams by glazed stoneware or fireclay pipes, embedded -onercte if the soil requirc it, and of dianeter rarying from 3 to 24 inches or more, 1 with a proper fall. Where a building has to be crected on soil which holds water, site should be drained by the use of agricultural pipes, these buing al sch reged into opingully leading to the main drain, to a stream, or otherwise whore enurenieut.
688f. Toun drainage consists of the comparatively clean surface and subsoil water ; af of siled and used water containing organic maters enlled sewage. The combination hese two waters was established in London towards the end of the last an the comreement of this century, at the time that water suplly by pipes to houses becanso A cral. This was discharged into the cesspons, and thenee liy orerflow drains into Hes, watercourses, and sewers, upen and cosered, and thence into matural stromis and r Tre. The two systems of drainage shonkd, saty many persons, be keptecparate by the I vixion of one sel of drains for receriving the clean water and d scharging it into the 1) iral strems; and of a recond wet for receciving the dirty water and wewage and con'ng it ly selfectomeng drains, ax fast as it is produced, to prepared agriealtural haml.

removed from the second portion, and thus there is not sufficient to carry off the sedimentary matter, which would be done when the two systems are combined.

1888g. The position and size of the drains having been settled, the fall has to la arranged. It has been proved beyond a doubt that matters easily carried away by the increased velocity gained by using a small drain, remain as an obstruction in a large dmin. A velocity of 2 feet per second is the least which will keep sewers clear of ail ordinary obstructions; while house drains and small pipes require a velocity of 3 fuet per second to keep them clear (Hurst). A fall of from 2 inches or 3 inches in 10 feet will be found quite sufficient for all practical purposes. i fall of 1 in 30 is considered by many to be a good fall, and not always to be obtained. Pipes half full, with a velocity of 3 feet per seco:d require the following falls:-4 inch pipes, 1 in $100 ; 6$ inch, 1 in $150 ; 4$ inch, 1 in $225 ; 12$ inch, 1 in $300 ; 15$ inch, 1 in $350 ; 18$ inch, 1 in 450 ; 24 inch. 1 in $600 ; 30$ inch, 1 in 700. With a velocity of 2 feet per second, 4 inch pipes require a fall of 1 in $200 ; 6$ inch, 1 in $300 ; 9$ inch, 1 in $450 ; 12$ meh, 1 in $600 ; 15$ inch, 1 in $700 ; 18$ inch, 1 in $900 ; 24$ inch, 1 in $1200 ; 30$ inch, 1 in 1400 (Sears).

1888h. Hence also the advantage of flushing a drain. One person has urged that his ten-roomed house and outbuildings have not, in tho course of many years, ever bees inconvenienced by the use of a 3 -inch drain, whilst other houses of similar size, haring 6 -inch and even 9 -inch drains, have been seriously affected. Much depends on the fall, and on the careful laying of the pipes, and something cn tho quantity of water used for household purposes. Where a water closet is placed at or near the head of a drain, a stoppage of its pipe often oncurs; while grease from the kitchon sink incrusting in the pipe, for want of occasional flushing with hot water, is another frequent cause. Sewer: also occasionally require assistance by flushing them from their head. One of the best arrangements proposed is that of an iron tilting cistern, to hold about 90 gallons. inserted in a brick pit at the head of a pipe sewer. This cistern, with its brass bearing: and plates, brickwork, stone cover, and water tap, costs about nine pounds, and if on were placed at the head of each pipe sewer in a ciown, and all were turned off at the same time, a material assistance in keeping the main line also clear, would be found The "self-acting syphon flush tank" is now much used for such purposes. Rugers lield" patent consists of two concentric tubes, the outer one being closed at tho top and steadier by radial ribs projecting from the inner tube. The ennular space between the tube constitutes the ascending or shorter leg, and the inner tube the descending or longer leg of the syphon (Builder, 1879, xxxvii. 1,002). There is another arrangement patenter by him, combined with a grease intercepter. (See Water Waste Preventer.) A som what similar one is put forward as "Adams' patent flushing syphon." Another b Banner, as in The Sanitarian's Companion.

1888i. The house drain should be effectually cut off from aërial connection with il common sewer, or any other house drain; also, the house should be cut off from aëriconnection with all soil and waste pipes; and all these external pipes and the hou: drain should be so formed and so connected that they shall at all times be freely flushe w'th fresh air, and all contribute to their mutual purification. "House drains," writes hi Honeyman, "as usually laid at present are not rentilated. A 4-inch drain, as reconi mended by Sir Robert Rawlinson (Trans. of Sanit. Inst., vol. vi., p. 72) and other cannot be rentilated by merely leaving openings at each end of it. The friction in sule a pipe would neutralise a considerable amount of energy, and there is no encrgy. Tt movement of the air is sometimes in one direction, sometimes in the other, and 11 quantity which gains admission is just about sufficient to promote fermentation and the propagation of organisms, and to allow tho escape of abominably polluted air at citur end, or into the house if it hare the chance. My advice is to increase the size of th drain, to confine the sewage in a narrow channel, and to keep the whole clean. I am 11 prepared to say that eren a well-ventilated house drain would be superior to one ahs Lutely without rentilation, from which atmospheric air is entirely excluded; but appears to me to be indisputable that there must be either thorough rentilation or non and that in this case the usual via media is the very worst course that can possiblyl. adopted."

1888\%. A system has lately (1887) been patented by Mr. H. R. Newton, architet whercby he shows the absolute necessity for the total enclosure of sewage from air all ways, to prevent exbalations arising, and to absolutely control the method for the suppression. He points ont the injurious influence of forcing air into fouled water in at way, or of allowing fouled water to have any contact with air ; drains and sewers, 1 maintains, should be always full, instead of empty.

1888l. Various arrangements are advertised for obtaining access to drains for inspe tion without the necessity for breaking into them, or for clearing stoppages. At the er: of the drain next the sewer (and perhaps at other places) should be formed a manho or "inspection" chamber, having a syphon trap in it, or between it and the sewer. It m: be formed of bricks in cement, sometimes set on a concrete bed, and is usually 3 fel 6 inches by 2 feet 6 inches in the clcar, and finished with an air-tight cover, as ly
orkshire stone set in cement. The depth of the drain determines the depth of the amber, which must be larger if rery deap. At the bottom of it is an open channel out 9 inches deep, so that it ance whether the sewage is the end next the sewer an the drain between the t :ip g, if necessary. The cap to mes be securely fixed and can le ascertained at a flowing properly or not. eye-hole is fixed, to get and the stwer, for cleanthis ey e-hule must at all sealed.

Fig. 615k. A, Ingpection ehamber at the baek of the house. B, Ditto, or manhole, in the front of the house. G, C the drain rumning from the sewer at the end H, througk, , wherein is shown a syphut trap, with pipe bthrough whieh the drain can be eleansed, if necessary. This ehamber b is ventilated by a pipe 0. I. to let foul air out or fresh air in. The pipe No. II. is a ventilation pine to the honse drain, and also a soil pipe, No.111. E and F are tripped gullies or gratings in the fards or gardens. Into A would so be carried the drain from the grease trap. This figure is obtained from Catherine M. Buekton's ur. Dicellings, Heallhy and Unhealthy, 8 vo., Longmans, 18夭5, p. 65.
1888 m . Fig. 615l. is a plan and section of the interior of an ordinary town house, lowing the position of each sanitary apparatus, as urged by officials and ly others. The fure is from Buckton's Our wellings, 1885, p. 62. Plan: back kitchen ; F , front then; σ, front yard or areal yard or garden ; d, steps an to the hasement; x, the rain, tisking the trapped ally in garden, passing rough tho inspeetion amber. b, which takes - drain from the watter het soil pipe, and from a, - grease trap, with its nt pipe No. IV. frome, the is in the senilery. No. II. tho vent pipe to tho uso druin, and ลัo. III. the ut pipe to the soil pipo. the front area, 0 , is the pection elamber r, through ich pasnea the drisin x, *ing s, the trup to sepayo it from the sewer, and in this chamber rulls tho Ipporl gially; No. I. is tho t pro from it. Scetion: a a nre two water closets, plank are given ut tho and an a manitary urnanrout thare mhonked t,o a y. lightod and rontilated. roon tho witer clonet and sforcise, withowhat nu *ll guplan n ; \%, slup nink. "yphon trap gmanaig on hat hrowl of is pibu allis

Iron Drains.

1888n. The "Newman" complete system of Cast Iron Drainage, of which the first introducers and sole manufucturers are the North British Plumbing Company. A paper is published by them, On the use of Cast Irm for House Drains, by W. D. Scott Moncrieff, C.E., read at the National Health Scciety's Exhibition, 1883. The adrantages of cast iron are put thus: 1, its superior strength and capacity to resist fracture; 2, the greater lengths in which it can be manufactured, and the corresponding reduction in the number of joint:; 3, the greater facilities for making the joints secure by means of lead run in, sulphur, uxi ised iron filings, red lead and yarn, \&c. The points to be considered in adopting cast iron are: 1 , the arailable means fur preserving it ; 2 , the determination of the capacity and weight of the pipes; 3, the character of the comections best suitud to the material ; 4, the nature of the joints; 5 , the comparative cost. The preverving methods besides paint are: 1, the cuating with a preparation of tar, known as Dr. Angus Smith's composition; and 2, the Bower-Barff process, consisting of coating the surfaces of the iron with magnetic oxide after a very careful cleansing, and then painting to protect the surface from being injured too deeply at any time, for if scratched, oxidation quickly follows. They can also be glazed inside. At each ond of the drain a manhole can be formed, so that the drain could be swept clean from end to end by a sweep's machine. Some objections have been raised to iron drains, more especially that of the iron cracking, as it is well known iron rain-water pipes will crack, even when protected from the atmosphere.
18880. The pipes in 6 to 9 feet lengths, with inspection covers, curved junctions, are to be laid on concrete, or on a dwarf wall, or on iron bearers, and in a trench or subway under the passage, so that the whole length can be open to inspection at any time. Five-inch pipes are usualiy adepted, $\frac{3}{8}$ ths of an inch thick, giving atout 120 lbs . as the weight of a 6 feet length. When the soil pipe is counected to the iron soil drain, a copper ferrule should be wiped on to the end of the suil pipe, the latter being threaded and caulked as for the ordinary iron joint. The joints may also be serew joints. The company also furnish the necessary house drain terminal, manhole covers, flush tank with annular syphon, rain-mater flushing head, grease trap, water-waste preventer cistern, mica nonreturn valve, soil-pipe cowl, improved valve closets, air venti'ator and tubes, Winser's channel pipes and bends, stranght and taper, in lest enamelled stoneware; white enamelled sinks for kitchen and scullery; caulking sleeve of brass, for securing lead pipes in irun sockets, with oakum and lead; and many others of similar modern appliances.

Testing a Drain.

1888p. There are several methods of ascertaining if the pipes are properly laid, as well as for finding the plaee of an escape of smell into the house. 1. By the peppermint test, relying upon smell. This is applied by pouring down the ventilating or other accessible pipe outside the house, about two ouncts of strong (essence o^{\prime}) peppermint, quickly followed by about two quarts of hot water, the orifice of the pipe being instautly plugged up to prevent the escape into the atmosphere of the scent. If perceived in any room, or closet, or sink, there exists the evil. 2. By the smoke test, relying upon sight chiefly, the invention (1883) of Mr. C. Innes, C.E. Straw may be placed in the drain, say at the inspection shaft (if there be one), then saturated with petroleum, and lighted, wirh care on account of the flare. Then the drain nust be covered over so th it the smoke shall ascend the drain, escaping at the ventilating pipe, if there be no crack or defect by which also to escape. A pinhole in an iron pipe has thus been detected when the previous test failed to point out the exact spot. Pain's "smoko rockets" burn from ten to fifteen minutes, and emit a dense volume of smoke. "Tlis Banner patent drain grenade' or "drain ferret" is made of thiu glass, and chargrd with powerful pungent and volatile chemicals. When the grenade is dropped down any pipe it breaks, and the effect produ ed by its contents is distributed only as intended. When drains to be tested by the smell or smoke test pass through a house, care must be taken to close all openings; and when applied outside, the openings should be closed, to prevent any smell \& ntering frcm the outside.

1888q. In places where the drain is deep and has been laid in clay with rubbish over, and perhaps finished by concrete with a coat of cement over, cr tile, or other paring, if the ground be probed with an iron or steel rod to the bottum of the trench, it has been found that smoke was ac ually issuing for the drain; and it also showed the state of the ground, the point of the probe indicating the nature of the soil at the bottom of the trench. A third test is the water test to the main drain of a house. The pipjes have to be stopped up at both ends in order to be filled with water, and some upright part formed, or selected, for the purpose of observing if the drain hold the wat r, or the reverse. The ends of the branches into it having been also stopped up, the water may then be turned on, and the pipes filled to a purt markel on the upright pipe. It is then to be carefully watched to ascertain if the water fills
below the mark; should it do so, it at once proves that there is a leak somewhere. (James Stewart, senr.)
$18 s 8$ r. Among other general and special recommendations (Woodward, in R.I.B.A. Transactions, with additions), are the following :-

1. Constant superrision during the laying of drains, to secure good workmanship both in the laying and jointing.
2. Dra ns are best laid when the carcase is completed and the roof put on. They are not required sooner, and they aro then less likely to be disturbed. If left for a later time they may probably be hurried over.
3. Wherever possible, drains should be laid outside the house. When inside, their direction should be indicated on the floor by a sufficient wiath of the floor material being laid so as to be easily taken up at any time to obtaia complete access to the drains.
4. All old drains and cesspools, and all soil which has been in contact with or saturated by any of them, should be entirely removed from the premises.
5. Junctions should always be made by a gentle curre or bend with the length of the p:pe, and nerer at a right angle.
6. A regular and uniform fall should be secured; a too great fall may rapidly carry away the liquid while the soil remains.
7. The pipes should, if the soil be soft, be laid in a bed of concrete or on well-tempered clay puddle, and formed to suit the curve of the pipe.
8. The joints of all pipes should be well socketed, and the pipes should have a full bearing on the bed, not beirg allowed to bear only on the joint, so that chaunels should be formed in the bed, or be cut out for the sockets to rest in.
9. The joints should be carefully cemented or clayed in all round; not the least particle of cement or clay should remain on the inside of the pipes, as on hardening it turms an obstruction and the nucleus for stopping the drain.
10. All traps should be earthenware syphon traps, wich inlt ts and covers, with ready access for cleaning out. Greasa traps for scullery sinks should be ready of access fur pericdically remoring the grease, which otherwise passes into the drain and assists in ficrning an obstruction. These traps should be ventilated.
11. As flushing plays an important pat in all systems of drainage, the waste water from sinks, laths, rain-water pipes, \&c., should pass down the house drain. Lately, in sone systems, these have been kept distinct from the soil drains; but as very little water нссоmpanies the one emptying of a water closet apparatus, there is much danger of soll remaiuing, an evil which is avoided by the flushing obtained from the other sources.
12. At the junction of pipes a shaft or inspection chamber should be formed, with a proper cover, to allow of aceess to the pipes, and ly which rods may be passed up and duwn the drain in case of a stoppage.
13. Betere the drain enters the sewer, and outside the house, a similar shaft should be built, with a stone or iron corer weil cemented down, and a syphon trap fixed on the sewer side of the slaft, with a rentilating pipe carried up well above the rout of the house.
14. All overflows, wastes, and rain-water pipes should discharge orer an open gully trap, and nut be connected direct into the drain. Where practicable, gully traps should be fixed outside a building.
15. Air inlets shulld be fixed as far as possible from windows and doors.
16. If the drann has but a slight fall the use of a flushing tank is indispensable.
17. The importance of sanitary inspections may be slown in the necessity of some modifications to the existing drainage of a house. The fullowing remarks and sugyestions will be uscful to the investigator:-" It cannot be too strongly impressed on the pullic mind, that to make a house fairly safe from dangerous inroads of sewer gas (or mell), as it is termed, is not by any means a gigantic undertaking. In the case of a new fouse, an architect of ordinary professional capacity is quite alive to the modern idens of mantation, und he will no doubt see that, su far as his client permits him, all that is reper to be done is thoroughly carried out. The difficultics become apparent when he Ins to deal with an old house, the drains of which he knows nothing about; but even wre the task of socuring safety from poison from the sewer is not such a very hard ene. fako, for example, an ordinary strect house. The water closet mpparatus is of the ohd -ind, perlapss set in an apartment in the centre of the house, without any communien ion * the the open air. The sink waste is directly connected with the drain, supposed to le routreded by an old bell-trap, which is of liulle use. The ci-torn has the oll standing Vaste pipe, nlso directly connceted with the drain, and sceres the sink us well ns the piner closita. The rain-water pipes are also dircetly conneced with the drains, which nin nuler the kitchen flow or bisement passage, and nuinterruptedly on wards to the ohd in insptrip (nt the sewer), which, if it exists, or is in right action, is the only oppusag fieres to direct contact with the main sower in frunt.
18. "Now this is, arymrently, a very aharming state of things, to be romedied only anin wonld say) hy the remmal of pipes, cisterns, and upparatus thronghout the honse,
colvige prontw the dinhocation of evorything in it, and the substitution of the net-
work of arrangements of modern sanitation. If the client be willing to carry out these elaborate notions, there can be no objection to his having them; but for the larger class the following will, in ordinary eases, be sufficient to arrest danger ; first supposing that the water elosets, sinks, and cisterns, are in a proper state of repair, and that the drains or other pipes are all elear.

1888 u. "Take up the paving of the front area where the main drain runs threugh to the sewer. Cat out a length or so of the drain, and build, in 9 -ineh briekwork, a shat 3 teet by 2 feet. Render it inside in Portland cement. At the bottom let iu a half drain pipe, and at the sewer side fix a syphon trap. Conneet with the shaft two 4 -inch drain pipes, one on either side of the shafc; or carry up a t-inch galvamzer tron pipe a short distance to form inlets. If a rain-water pipe be near at hand, the joints may be caulked, and it may be connected with the shaft by one of the pipes; carry it well up above the roof, and treat it as the outlet ventilator. If a rain-water pipe is not near at hand, earry up from the shaft, and well above the roof, a separate 4 -ineh galvanized irou ventilating pipe. Cover the shaft wath a York stone, or iron cover, ald the drain job is done. As regards the water supply, the eistern should be well eleaned out periodieally, say once a month, and there will not be mueh to fear in that direction."-Woodward, Londma as it is and as it might be, read at Royal Institute of British Architects, and printed in Transactions, new series, vol. ii. p. 46.

Suct. II.

BRICELAYING AND TILING.

1889. Brieklaying, or the art of building with brieks, or of uniting them by eement or mortar into various forms, ineludes, in the metropolis, and mostly in the proriuees, the business of walling, tiling, and paring with brieks or tiles, and sometimes plustering; but this last is rarely, if ever, undertaken by the London brieklayer; though in the country the trades of brieklayiug and plastering are usually united, and not unfrequently that of masonry also. The materals used have been described in a previous part of the work, to which the reader is referred (1811. et seq.).

shoring.

1889a. It is advisible that the student should be acquainted with the mechanical prinerples involved in the eonstruction of shores, and the nature of the forees which are bronght into play. G. H. Blagrove, in Shoring and its Application, 1887, writes: "Though the student has to learn the principles of Shoring, the praetising arehiteet has to apply them, often in the utmost haste, to prevent the most disastrons consequences, and oceasionally surrounded with the most perplexing difficulties. Viollet-leDue says: 'Nothing enhances the respeet of workmen for the architect like his being ready to shore properly . . . and wothing is more satisfying to the eye than a system of shoring well eombined and well exceuted.'" The author divides his book into Raking, Flying and Dead Shoring, Needling, Centreing, 'Timbering for Exeavations, Underpinning, and Straightening Walls. In Raking Shores is explained the danger of using timber unneeessarily heary for the purpose, and the danger of the rertical sinking of a wall, eausing the shores to separate it; also the advantage of shoring against the floors, and the proper precautions to be taken for shoring, of a more permanent and efficient kind than the rough and ready shoring so often resorted to. In the case of Flying. Shores there is the risk of their sagging, though this may generally be obviated by using trusses, pirtieularly when the flying skores are in more than one leight. Little has to be said about "decd shores," but the rough way in which they are often put in is detrimental to the building. In the ehapter on Needling the necessary preeautious are carefully stated, but the proper ealeulation of the strength of the needlcs is not urged. The deviets which have be n put in practice at times to save expente, riz., the iron frames which enable the bressummer to be rolled in lengthwise, the case where the bressummerhas to be evelosed in the frames, then got in parallel and rolled end on to its plaee, and where it is only put in parallel, are also explained. Two devices are not notieed : one where the niddle of a wall has to be removed, but where an arch can be turned; the arch form is marked in chalk on both sides of the wall, holes begiuning at the skewbaeks are suecessively cut to the shape of the arch by men working on both sides, and the segments are then built in and wedged up, until the whole areh is turned without using needling, and, when the cement bas set, the brickwork below is cut away. The other is executed thus: narrow iron girders, not exceeding one-fourth of the thickness of the wall, are cut in, and fixed on both sides, then York stone is pinned in on the top of
nem, connecting the two girders, which are also bolted together. The brickwork helow then remored. This system will in most cases supersede all others. Careful advi e is iven for shoring up defective arches and vaults; and a French plan of supporting centreag on wood by pistens fitted into aron cylinders filled with sand; by this means the en reing can be accurately slackened by letting out the sand. The familiar methods of "imbering Excavations are given. Where the earth will not stand, sheet piling is reommended, 4 fc . wide, but 4 ft .6 in . is generally cons:dered to be the least width in which men can conveniently excavate. In Underpinning, the author points out the ifficulties of shoring when the defects hare arisen from. the ground being too soft; ho hows the shoring necessary fir crushed piers and columns, and adverts to the morelents occasioned by underpinning, on parts apparently too distant to be affected by hem. Descriptions are given of the methods employed in straightening walls, as at armagh Cathedral, Beverley Minster, and St. Albans abbey. (G. Aitchison, in R.I.B.A. 'roceedings. The Mechanies of Shoring, in Building News, Sept. 14, 1877, p. 249.)
1890. The tools used by the bricklayer, who has always an attendant labourer to supply im with bricks, mortar, \&c., are-1. A brick trowel, for taking up and spreading the nortar, and also for cutting the bricks to any required length. 2. A hammer, for cutting oles and chases in brickwork. 3. The plumb rule, being a thin rule, 6 or 7 inches wide, Fith a line and plummet swinging in the middle of it, in order to ascertain that the walls re carried up perpendicularly. 4. The level, which is about 10 or 12 feet long, with a extical rule attached to it, in which a line and plummet are suspended, the use of which is ptry the level of the wallsat various stages of the building as it proceeds, and particularly the window sills and wall phates. 5. The large square, for setting out right angles. The rod, for measuring lengths, usually 5 or 10 feet long. 7. The jointing rule, about or 10 feet long, as one or two bricklayers are to use it, and 4 inches broad, with which ney run or mark the centre of each joint of the brickwork. 8. The juinter, which is of on, shaped like the letter S. 9. The compusses, for traversing arches and vaults. 10. The aker, a piece of iron having two knees or angles, dividing it into three parts at right angles - each other, the two end parts being pointed and equally long, and standing upon contrary les of the middle part. Its use is to rake out decayed mortar from the joints of old walls r the prrpose of replacing it with new mortar, or, as it is called, pointing them. 11. The d, which is a wooden trough shut close across at one extremity and open at the other. he sides consist of two boards at right angles to each other; from where they meet ia indle projects at right angles to their union. It is used ly the labourer for conveging -icks and mortar to the bricklayer; for which purpose, when he has the latter office to rform, he strews dry sand on its inside, to prevent the mortar from sticking. 12. Tho re piny, which are of iron, for fastening and stretching the line at proper intervals of the all, that each course may be kept straight in the face and level on the bed. The pins have line attached to them of 60 ft . to each pin. 13. The rommer, used f , r trying the ground, well as for beating it solid to the utmost degrec of compression. 13. The iron crew and ok axe, for breaking and cutting through walls or moving heary weights. 14. The grindIstone, for sharpening nxes, hammers, and other tools. The following ten articles relate i ely to the preparntion and cutting of ganged arches. 15. The bankir, which is a bench (in) f^{6} to 12 ft . long, according to the number of workmen who are to work at it. It is t. 6 inches to 8 ft , wide, and about 2 ft .8 in . high. Its use is for preparing the bricks rubbel arelos, and for other galuged work. 16. The camber slip, it piece of wood, mally about lanf an inch thick, with at least ono curved odge, rising about 1 inch in wit, for drawing the sofite line of stranght arches. When the other edge is cursed, it is ubrout half that of the other, that is, about half an inch in 6 feet, for the purpose of wing the upper line of the areh, so as toprevent it becoming hollow by the settling of arch. The upperedge is not ulways cambered, may prefering it straight. The stip ng mifficienty long, it answers the width of many openings; and when the bricktayer hats wn hisurch, he delivers it to the carpouter to prepare the centre fir it. 17. The rubhing nv. This is of is cylindrical form, about 20 inches dianeter, but may bo less. It $4 \times$ fixed it. end of the bank r, urow u bod of mortar. After the hricks for the ganged work have If rough-shinpenl by the nxe, they ure rubbed smonth on tho rubljug stone. The henders atreblury, ill retum, which are not axed, are called rabled returns and rubbed headers nt retchers. 18. Tho brelfing stone, which is as straight piece of marblto 18 or 20 ineh sin 1. Whh, of uny thicknssa, und ubiont 8 or 10 inehes wide. It is used to try the rubbed side of a 1.) k, whel mane be firse squared to prove whether jty surfice be straight, so ns to fit it U" the lenthig skew buck, or leading end of the urech. 19. The symure, for trying the
 ', firilrawing the nofite line on the face of the brick 4. 21. Tho monde, fior forming tho

purpose of cutting them. 23. The tin saw, used for cutting the sofite lines about one eighth of an inch deep, first by the edge of the level on the face of the brick, then by the edge of the square on the bed of the br ck, in order to enter the brick axe, and to keep the brick from spalting. The saw is also used for cutting the sofite through its breadth in thedirection of the tapering lines, drawn upon t e face and back edge of the brick; but the cutting is always made deeper on the face and back of the brick than in the middle of its thickness, for the above-mentioned purpose of entering the axe. The saw is also used for cutting the false joints of headers and stretchers. 24. The lrick axe, for axing off the sofites of bricks t., the saw cuttings, and the sides to the lines drawn by the scribes. The bricks being always rubbed smooth after axing, the more truly they are axed the less labour will be requisite in rubbing them. 25. The templet. This is used for taking the length of the stretcher and width of the header. 26. The chopping block, for reducing the bricks to their intended size and form by axing them. It is made of any piere of wood that comes to hand, from 6 to 8 inches square, and generally suppurted upon two 14 -inch brick piers, if only two men work at it; but if four men, the chopping block must be lengthened and supported by three piers, and so on according to the number emplyed at it. It is about 2 ft .3 in . in height. 27. The float-stone, which is used for rubbing curved work to a smooth surface. such as the cylindrical backs and spherical heads of niches, to take out the axe marks. It is, before application to them, made of a form reversed to the surface whereon it is applied so as to coincide with it as nearly as poss ble in finishing.

Bonding.

1891. Before adrerting to the bond, as it is tcchnically called, of brick walling, whichis the form of connection of the bricks with each other, it must be obsersed that in working walls not more than 4 or 5 feet should be brought up at a time; for as, in settiog, the mortar shrinks and a general subsidence takes flace, the part first brought up, if too large in quantity, will have come to its be ring before the adjacent pasts are brought up, and thu: fissure, in the work and unequal settlements will take place. In carrying up any particula part above another, it should always be regularly sloped back to receire the adjoining part to the right and to the left. On no account should any part of a wall be carried higho, than one scaffeld, except for some very urgeut object.
1892. Previous to the reign of William and Mary (1689-1702), brick buildings it England were constructed in what is called English bond; and subsequent to the reigo is question, when, in building as in many other cases, Dutch fashions were introdured much to the injury of our houses strength, the workmen have become so infatuater with what is called Flemish hond, that it is difficult to drive them out of it. To the intre duction of the latter has been attributed (in many cases with justice) the splitaing o walls into two thicknesses; to prevent which, expedients have been adopted which woul be altogether unuecessary if a return to the general use of English boud could be estia blished.
1893. In ch \ddagger p. i. sect, ix. of this book (1503. ct sfq.) we have spoken generally n ? walls; our observations here, therefore, in respect of them, will be confined to bric walls and their bond.
1894. English bond is that disposition of bricks in a wall in which (expect at the quains the courses are alternately composed of headers and stretchers. In brick walling, and indec in stone walling also, a course means the horizontal layer of bricks or stones of which th wall is composed, being contained between two faces parallel to the horizon, and terminate on each side by the vertical face of the wall. The mass furmed by bick or stones in an arch are also termed courses, but receive the name of concentric courses. Tho term header is applied to a brick or stone whose small head or end is seen in the external face of the wall; and that of stretcher to a brick or stone whose length is parallel to the face of the wall. English bond is to be understood as a continuation either of header or stretcher, continued throughout in the same course or horizontal layer, and hence described as consisting of alternate layers of hearlers and stretchers (fig. 616.), the former serving to bind the wall together in a transverse direction or widthwise and thus prevent its splitting, whilst the latter binds it lengthwise, or in a longitudinal directica. None but the English bond prevents the former occurrence, as work executed in this way when so undermincd as to caus a fracture, separates, but rarely breaks through the solid brick, as if the wall were composed of one entire piece.
1895. The ancient Roman krickwork was pxecuted on this

Fig. 618.
inciple; and its extraordinary durability is as much to be attributed to that sort of work ing used for bonding it together, as to its extraordinary thickness.
1896. In this, as well as Flemish bond, to which we shall presently come, it will be obred, that the length of a brick being but 9 inches, and its width $7 \frac{1}{2}$ inches, in order to ak the joints (that is, that one joint may not come over another), it becomes necessary ar the angles to interpose a quarter brick or bat, a, called a queen closer, in order to preve the continuity of the bond in the heading course. The bond, however, may equally preserved by a three-quarter bat at the angle in the stretching course, in whicli case is last bat is called a king closer. In each case an horizontal lap of two inches and a half is t lor the next header. The figure above given is that of a two-brick or 18 -inch wall, but 2 student will have no difficulty in drawing, on due consideration of it, a diagram of the nd for any other thickness of wall; recollecting, first, that each course is formed either of iders or stretchers. Sccondly, that every brick in the same course and on the same e of the wall must be laid in the same direction, and that in no instance is a brick to be ced with its whole length against the side of another, but in such way that the end of e may reach to the middle of the others that lie contiguous to it, excepting in the outside the stretching course, where three-quarter bricks, or king closers, will of course be nccesy at the ends, to prevent a continued upright joint in the face of the work. Thirdly, it a wall crossing at right angles with another will have all the bricks of the same level irse in the same parallel direction, whereby the angles will be completely bonded. We : 11 close these observations with a recommendation to the young architect, founded on Ir own experience, on no account, in any building where soundness of work is a desiderain, to permit any other than English bond to be executed under his superintendence.
897. Flemish bond is that wherein the same course consists alternately of headers and tehers, which, in appearance, some may fancy superior to that just described. Such is our opinion. We think that the semblance of strength has much to do with that of 1) uty in architecture. But there is in the sufferance of Flemish bond a vice by which s.ngth is altogether lost sight of, which we shall now deseribe. It was formerly, though now i tially, the practice to face the front walls of houses with guaged or rubbed bricks, or with a cast a superior species of brick, as the malm stock; in the former cases, the bricks being raced in thickness, and laid with a flat thin joint frequently, what the workmen call a putty i. t, for the external face, the outer and inncr work of the same courses in the same wall, not e-esponding in height, could not be bonded together except where occasionally the courses 1. even, where a header was introduced from the outside to tie or bond the front to the int. Wal work. Hence, as the work would not admit of this, except occasionally, from the w it of correspondence between the interior and exterior courses, the licaders would be in orlused only where such correspondence took place, which wid only occur in a height of several courses. Thus a wall bricks in thickness, if faced on both sides, was very little cd better than three thin walls, the two outer half a brick and the middle one a brick or 9 inches thick. Brick laving little regard for their character will, if not preild the architect, not only practise this expedient, but for, umess rigilantly watcherd, when a better sort of briek is for the facing, cut the headers in half to cffect a paltry saving e better material. In walls of one briek and a half in thickthe strength of the wall is not diminished by the use of vish bond so much as in those of greater thickness, as may ecin by the diagram (fig. 617.). Many expedients have invented to obviate the inconveniences of Flemish bond; ve think it rather usctill to onit them, lest we should be dered as parties to a toleration of its use, for the continuwhereof no substantial reason can be assigned. As we before obmervel, all that cim be alleged in its favour is a

Fig. 617 in respect of its appearance: but were the English mode executed with the same tion and neatness bestowed on the l'kmish method, we should say it was equally ifnl; and thercfore we shall thas close our notice of it.
14. The two principal matters to be considered in brick walling are, first, that the he as strong as possible in the direction of its length. Secondly, that it be so con1 in its transverse dircetion that it shomld not be capmble of separating in thichnesses. roxluce the lirst, independent of the extrancons airl ol bond timbers, plates. 太心e, it is that the onethod which aftords the greatest quantity of longitudinal bond is to be red, as in the eransverse direction is that which gives the greatest quamtity of boud in ion of the thickness, We will, to exemplify this, take a piece of walling a bricks 4 bricks high, and 2 bricks thith, of English bond: in this will orenr 32 stretehers, whers, and tif half headers to break the joint, or prevent one joint falling over mether. in an equal piece of walling constructed in flemish bend, there wilt oceur only 20
stretchers and 42 headers; from which the great superiority of English bond may be at once inferred.
1899. Bond Timber should be used in pieces as long as circumstances will admit. In walls where the thickness will allow of it, some prefer that the timber should be laid in the centre, so that when it decays no material damage is done. Also that in case of fire, the bond timber is not affected by it. If so placed, when dressings of wood are required, wooden plugs must be provided to which to secure them. When a fire occurs and the bond is next the inside face, it is burnt out, and the strength of a thin wall, say 9 or 14 inches thick, is seriously affected thereby. Two or thrce tiers in the height of the room are usually employed.

1899a. However useful timber may be in bonding thin walls whilst the brick work is yet green, it has for some years been entirely superseded by hoop iron bond. This consists of narrow and thin stips of iron (see Smmery) laid between two courses of bricks. The iron should be tarred and sa:ded, the former as a preservative from rust, the latter to afford a firmer hold to the mortar. Some authorities go so far as to state that hoop iron bond, unless it is set in a cement course, is not so efficient as wood bond. A tier of bond is placed in cach thrce feet of height, one strip of iron to each half brick. In extensive works, or in special cases, two, three, or more, tiers are recommended. In addition to the use ol concrete on clay soils, it may be occasionally useful to build all the footings for four or six courses in height of brickwork in cement, each course well bonded with hoop iron, laid buth longitudinally and diagonally; it is perhaps better than a course of Yorkslire stone (par: 1882.) as the bond is continuous. During the execution of the works, the iron is continued through all openings as with wood bond; the latter is cut away when requisite, but the former should be turned down ayainst the brickwork. The laps at a junction should be care fully made to secure the continnity of the tie. An addition to the plain band of iron ha: been introduced, and Tyerman's patent nutched hoop iron bond has been extensively em ployed. It consists in forming a slight notch at intervals of $11 \frac{3}{3}$ inches on both sides al ternately, and turning it up in succession, in contrary directions, forming a triangula piecc, whereby a better key is obtained upon the bricks and mortar.
1900. Murtar joints. The propriety of using mortar beds as thin as possible, has heet inculcated in this work, and most specifications state that four courses of brick work formet of the ordinary sized bricks are not to rise more than $11 \frac{3}{3}$; sometimes 12 inches is named. a the joints should not exceed $\frac{3}{8}$ ths of an inch. When good mortar is used that sets rapidly the joint might be thicker than thus allowed. In Roman and most Eastern work, the joi was usually 1 and $1 \frac{1}{4}$ inches thick, and where the mortar has been good, such buildings: executed are sound after centuries of wear. "In modern practice, in all masonry and brickwol where strength is required rather than ornament, thick beds and joints of good mort: will be useful. Thin bricks or tiles will also be better than thick bricks, as the materi will be better burned, and consequently more enduring. More good mortar can also used, which in such work gives strength." Such is the practical opinion of R. Rawlinsu (Builder, xxi. page 152), who declares that "the proportion of mortar to rubble stonewor should be about 1 to 3 , that is, in 4 cubic yards of rubble wall there should not be less tha 1 cubic yard of mortar. In brickwonk (ordinary bricks) the proportion will be lt th. If thin bricks be used, or if very small stone be used for rubble-work, the proportions ma be as 1 to l." It has heen urged that the peculiarity of carly Norman masonry, even of th peri d of bishop Gundulph, is that of very thick beds of mortar. Mr. Rawlinson furth adds, " A s a general rule, buildings whether of inarble, limestone, sandstone, or of brickwor alone, or of brick and terracotta combined, which are ornamental in character, mist : have thia joints and beds. Thick beds and joints of mortar would destroy the harmony design by deteriorating the appearance of labour bestowed on the rich materials in sur buildings."
$190{ }^{\circ}$ a. The fine joints of rubbed brickwork are formed by lime puty, being mort reduced to the consistency of cream; the bricks are dipped into it to take up a coating, at then driven close upon each other. Ashlar work is usually set in a putty formed of lin white lead, and at small quantity of very fine sand.
1900b. The surfaces of many of the machine-made bricks are so hard as to prevent mortar sticking, unless first coated with sand. Many walls on being pulled down ha shown that the mortar had had no hold upon the bricks; a key had only been formed I tween two brieks by the holes at their ends. A wall, though built in first-rate wor was easily staken to pieces, even after it had been built four or five years. Bricks, es cially in hot weather, thould be soaked in water (par. 1832a.); and even some of t courses of bricks should be sprinkled with water, to prevent the brick absorbing all mo ture from the mortar before the lime has had time to crystallise. The walls, howery take longer to dry; as is aloo the case when grouting (par. 1860.) is employed. An i tere,ting communication fiom Norway has been printed in the Jo'rnals of January, 18 © explaining how brick work is carried on there in the winter; "such walls dry quicker th those raised in summer." The description is too long to be here further adsertect to.
$1900 c$. The mortar or eement should be sueh as will quiekly set, to prevent the supercumbent weiglit pressing the joints eloser, and thereby causing settlements, whieh even ith the greatest eare, often take plaee unequally. As oten as it is eonjectured, from the iture of the soil, or from the fuundation being partly new and partly old, that the work ill not eome to its bearing equally; it is better to earry up the suspeeted parts separately, id to leave at their ends what are ealled toothings, by whieh junetions may be made when e weaker parts have come to their regular sound bearing.
1900 d . 'I he thickness of walls has furnished the subject of previous pages: we shall crefore only add, that too mueh care eannot be bestowed on strengthening all angles as neh as possible, and well eonnecting the return of one wall into another; that piers pilasters are exceedingly useful in strengthering walls, inasmueh as they act by inereasg the base whereon the whole stands; and, lastly, that in earrying up walls to any eonlerable height, it is usual to diminish their thickness by sets off as they rise. In - tses, above the ground-floor, the sets off are usually made on the inside, having the outle in one face; but, if it be possible, it is better to set off equally from both faces, because the better balance aflorded.
1900e. Joints in briek work are finished on the face in several ways. The most eommon e the 'struek joint,' whieh is merely tinishing the joint by drawing the point of the trowel ng it : or 'jointed,' as done by a tool ealled a jointer (par. 1890, art. 8), so as to leave ine impressed on the mortar : or 'flush joint,' in which ease the joint is drawn at top d botto n with the trowel when the briek is laid, and afterwards when the mortar is parlly set, the middle of the joint is flushed flat with the 'jointer;' this is sometimes ealled ligh joint.'
1901. A bricklayer, with the assistance of one labourer. ean, if he be so inelined, lay in e day about 1000 brieks in eommon walling; but the trades unions now prevent him 111 laying nore than about one-third that number. Oecasionally, for a higher remuneion some non-union man may be found to lay near the former number, and then he uld complete a rod of briek work in four days and a hallf, its area being $272 \frac{1}{4}$ fect superal of the thickness of one briek and a balf. When, however, there are many apertures or er interruptions to his work, he will be proportionably longer over it. The weight 13 rod of brickwork is about 13 tons. Generally it may be taken as eonsisting of from 6) to 4500 stoek brieks, allowing for waste aceording to the quality of the bricks, bushels of ehalk lime, and 3 single loads of drift sand, or 18 bushels of stove lime and ingle loads of sand. In eement, of 36 bushets, and the same quantity of sharp sand. od of briekwork laid dry eontains 59,70 brieks. A cubie yard contains 384 brieks, requires about $6 \frac{1}{2}$ eubie fect of sand and $2 \frac{1}{2}$ of lime. A ton of bricks eontains about on an average. 330 well burnt brieks weigh generally about 20 ewt., so that a eubie f: weighs about 125 lbs .
902. Brich-noyging is a method of construeting a wall or partition with a row of posts IUurters is fect apart, whose intervals are filled up with occasional plates of wood with 1 kwork between, It is rarely more than the width of a briek in thickness, and the ks and timbers on the f.ees are flush. It should never be used where thickness ean be onined for a nine-inch wall. A halfbrick-nogged partition will require about 500 bricks; bule brick-rogaed partation about 1000 bricks; and with brick on edge about 340 .
${ }^{90} 22$. A half. .rich partition built in mortar is now adopted in many of the model If cing houses, sometimes with an oceasional hoop-iren bond. These are built four, five six stories in height, the joists of the floors steadying them as they are carried up. Of se the apartments in sueh plaees a:c small in all their dimensions, being abont 12 feet , 9 fect wide, and from 9 to 9 feet 6 inches in height. A half-briek woll of greater ansions may be boilt in ecment, and when the floor joists are laid upon it, it becomes steady, strong, and little likely to be injured by a fire. Thin slabs of stone have beea as partitions in small houses noar a puarry. Tiles in eement with woot plugs ind for tha dressings, nake a sound partition, and wen plastered direct upou the tilles, kes (1) much less room than a one-brick wall.
(0) f. Many varicties of hollow bricks are made for a similar purpose. The "patent bonded wh bricks or related tiles" (fiy, 617a.) of IIertslet and were anployed in 18:1fi-7, liy IIenry Roberts in the -1 lodring lomse in George Strect, St. Giles's; as also in (o)ealled I'rince Bbeat's model honses, crected in IIyde in 1851, and remoned to Kennington Park. 1 is : sone; 13 emonete, (' floor boards, and 1) a tie rod. nerd for partitions, or for roof and floor arclies, these whicks are fireproof, deaden somad more eflectually, re emmiderathy lighor, than solid briekwork. Such ons a lining to stone or flint walls, supersede the necesis bittening. 'They are also well adapted for cottage IHollow briks can be made by my goond tile machine,

in the same manner as ordinary drain-piples. They are more eompressed, require less drying, and are generally better burned than ordinary bricks. An interestiug and complete paper on the subject, with illustrations on the English and Frenel systems of making hollow bricks, is given in the Building News for 1858.

1902c. Hollow walls, formed of ordinary stock bricks, were employed for two-story cottages early in this century. Three methods are usually adopted in the construction of a wall. I. All the bricks plaeed on edge, as $f \mathrm{fg} .617 \mathrm{l}$, the stretehers and headers breaking joints, and the headers forming the bond. Many persons eonsider that this arrangemert produces a disagreeable appearance on the outside face. II. All the brickslaid flatways, but the stretchers are sawn in half, so as to leave a space of $4 \frac{1}{2}$ ins. between them; and in laying the headers, as fig. $617 c$, care must be taken only to fill up with mortar the joints

Fig. 617 c .

Fig. $617 b$. over the half brick on edge, so as to leave the middle of the joint open. III. T lay all the bricks flat in the usual English bond, leaving a space of about 2 inches br tween each face, and to make up the thickness thus caused, viz. 11 or $11 \frac{1}{2}$ inches, by bat to each header. This may be varied by using a less number of headers, and placin two or three stretchers together, according to the strength of the work required. A Sonthampton, and perhaps elsewhere, headers are not used, the two faces being boude together by hoop-1ron eramps (fig. 617 d .), with forked ends, $\frac{13}{16}$ ths by $\frac{1}{10}$ th inch, taili int, the fro sof the brick (f g. 61% e.), and having a bead in the middle of its length partly as a strut to the inside, and partly to prevent any moisture

Fig. 617%

Fig. $617 d$
 rumning along it to the inside face. A cast iron cramp (fig. 617f.) is also made, $\frac{1}{2}$ iuch 1 ${ }^{3}$ ths in. thick. Jennings has adopted bonding bricks of stoneware for hollow wal. Fig. 617 g . shows the application of the three sizes; A is $13 \frac{1}{2}$ inches long, to be usel garden walls and other plaees where an uniform face is not required; B is $11 \frac{1}{4}$ inehes lon

Fig. 6170.

Fig. 617h.
where bint one uniform face is required (the brick is shown to a larger size in fig. 617h): end of the bond brick being faced with a closure of the same material as the wall; anm is a brick 9 inches long, when both faces are to be uniform, closures being used at bu ends of it. A 16 inch hollow wall can be built with a 9 inch inside wall, a 2 inch spa and a $4 \frac{1}{2}$ inch wall outside, and so on. Such a wall is of very common erection in No. Anerica, and it is found to stand very well for country villas of good dimensions.

1902d. Much diversity of opinion exists as to whether the space so left should ventilated by air gratings just above the ground, and also by others under the coping obtain a eurrent of air and secure dryness if water be blown through the outer brickwo In exposed situations, especially on the sea-coast, if hollow walls are not built, either wall has to be slated on the outside; or it has to be battened on the inside, even wi cemented on the outside, to prevent damp showing on the interior surface. Hollow cem blocks have lately been introduced in France, and are said to be eheap, as dura as stone, ventilation easily seeured, and provide for the ready formation of shafts for wa air or for flues. The blocks have a resistance of 430 lbs . to the square inch, and adapted to walls about 20 irches thick as well as to partitions of less width.
1902e. Mr. Taylor has adopted an arrangement of an interior face of common bri B, with an cxterior faring block of a better manufactured brick A, in the shape of the let
leaving a cavity of 2 or more inches between mi, (fig. $617 i$).
1903. Groined arches, A groin is the angular rve formed by the intersection of two semi cylinrs or arches. The centering for raising the more aple groins that occur in using brick arches, ongs to the scetion Carpentry. The turning imple arch on a centre only requires care to keep courses as close as possible, and to use very tle mortar on the inner part of the joints. In cuting a brick groin, the difficulty arises from a peculiar mode of making proper bond, at the ersection of the two circles as they gradually rise the crown, where they form an exact point. At e intersection of these angles, the inner rib should

Fig. 617i. perfectly straight and perpendicular to a diagonal line drawn on the plan. After the ntres are set, the application of the brick to tle ang'c will inmediately show in what ection it is to be cut. Witb, respect to the sides, they are turned as for common cylinic raults. Mr. George Tappen, an arirect of great practical skill, introduced nethod of constructing groins rising from angular piers, which liad the advantage not only imparting streng th to the angle, ich in the common groin is extremely icient, but of increasing the space for e stowage or removal of goods, and furr, of strengthening the angles of the in in this construction by carrging the id round the diagonats (fig. 617%.) of tal breadth, and thus affording better id to the bricks.
190:3u. The Metropolitan Building Act, 5, requires that under a pullic way, arch, if it be employed, of a span of not re than 10 fect , is to he at least $8 \frac{1}{2}$ inches ; when not exceeding 1.5 feet, it must 13 incless at least; and beyond that Whothethickness requires special appro-

Fig. 617%. imb. If of iron construction or other incombustihle material, it must be built in a man approved by the district surveyor. An arch orer a public way must be formed in the ve namer, but a span not exceeding 9 feet must te 8 finches thick at least. A like tial approval is required if the arch or floor be of iron.

fheproof abches, floons, and roofs.

903b. Light arched flut floors, composed of bricks cemented with gypsum or plaster, e been in common use in Joussillon from time immemorial. Rondelet is of opinion the segnent of a circle is a better form for such arches than the low semi-ellipse. He ribes apartments of 18 feet by 2.5 feet, as used at the War Oilice at Versilles, covered brick arches of which the rise was ouly $\frac{1}{1}$ th part of the span and in fise stomies. coach-loouses and stables of the Barshal de Belle lsle at lisy near Vernon, were ed in an elliptical form, having a rise of $\frac{1}{5}$ th of their span, which was 32 fect 9 inders. were not linished matil a year after the walls and roof had been compheted. 'The were binlt of rubble-work having chains of ent stone at intervals of about 16 beet. y were 2 fiet 8 inches thick, being abont equall to $\frac{1}{12}$ th pat of the span. 'lhene es were formed of a double thickness of bricks latid lat, and in plaster, buile in suceeswith the vertical joints broken. The haunches were filled nu will rubble stome in er. 'The apringing was formed by notehes in the wall, above which the regular coures once projected inwards as gathering courses. Atrove all, a third courne of that bricks laid horizontally, forming "pavement. Rondelet considens that arehes of mall mind light rinde remened liy gypenm becone us it were one body, and exest little or no late ral -ure upon the aboutnents cxerpting at lirst, because that cement has a tendency to in metting. Romalelet relites that astone of foyolbs. or $5(0) 0$ lbs. weight wis dropped one of theae nrehes from a leight of 4 or 5 feet, which mate a lurge hele through the withont dimg any further injory. If mortar be used the parts must he thicker, and centering left, unt the work has act. I'orthand and loman ecment might he beter gypum for work in Einghand. Romdelet also states that it is better to nse coved a pringing from the four walls, than a common arch npringing from two ofjosite only.

1903c. The arch brick florrs, used in the dwell:ngs for workmen at Birkethead, by th architect, C. E. Lang, were 7 feet in span, worked in lialf-brick except at the springin and the skew-backs, with a few three-quarter and other parts of bricks inserted, so as 1 form a toothing or vertical bond with the concrete with which the spandrels were fille 'Ihe six or seven courses at the crown were wedged in with slate while the mortar w_{i} wet, and in no instance did the least subsidence take place at the crown, although subjecte to very severe trials, such as that of men jumping from the walls upon the arches. Il span of 7 feet is perhaps the limit of a half-brick arch turned in mortar with the ordinat rough brick. The arches rise about one inch to every foot in span. Tiles were laid mortar on the concrete, which mace the thickness of the floor at the crown of the are $5 \frac{3}{4}$ inches. There were altogether about 1200 arches of this kind turned, and without it slightest accident. This explains the nsual metbod of forming freproof floors, by turnit brick arches between iron girders, which are in large spans tied together at the springi by iron tie rods; a subject which has been so often considered and discussed, and nowhe more so than at the Institute of Architects, as detailed in their Transactions.

1903d. The Denu tt arclu. A fireproof system, patented by Messrs. Dennett, of Ne tisgham, and nsed since about 1855 . They execute a groin, dome, or circular ceiling any length, widih, or height, without tie rods or intermediate supports, at much less e than ean be done by any other fireproof material : cireular ceilings of 36 feet diamet with coffers in them, or any amount of decoration, can be exccuted on the soffits, and t upper surface can be finished smooth in itself, or with stone, wood, tiles cement, or asphalt and a current of air ensured underneath. Very few iron girders are required. For flum although in an arched shape, it is in reality a beam, as a eomplete floor can be turned fro wall to wall, resting on a projection of brickwork, and the material be left without a abutment. Its durability equals stone; and its strength is equal to Irickwork. ' ' floors are bad eonductors of heat; leave no harbour for vermin; ventilating pipes may laid in them, and also flues. The material (a concrete of broken stone or brick bedded in gypsum calcined at a red heat) can be be used for a sound-proof constructic when laid in the old method between wood joists, as at St. Thomas's Hospital.

1903e. Three courses of plain tiles laid in cement and well bonded have been for ma years employed for slightly curved roofs to form terraces ; roofs for cellars under paving; roofs over small back buildings, and for similar purposes. Wherc the walls are well back up, tic rods may not be necessary. It has been asserted that the tiles should not be cover with the cement. Portland or other cements laid on briek arehes, or on tile, or on a A concrete roof supported by iron joists; also asphalted roofs; all generally erack and let wet, especially where there is any traffie on them, or their foundations are not perfeetly stab At Anstin and Seeley's artificial stone works, New Road, flat roofs, floors and steps a formed in their material. The terrace roofing is formed of plain tiles in three courst rendered on the top to the thickness in all of abont 4 inches, earried over by arches slight cambered, springing from small brick piers, and tied by light iron rods, which for their chord line. 'These flats have an immense weight upon them, and are cast in oi picce, as it were, there being no perceptible joint; they are completely water-tight, and e. be casily cleancd.

1903f. Light arches may likewise be formed by placing thin iron plates between joistil of iron or wood, bending them to a slight curve, and filling in above them with eonerete form solid work. Mallet's buckled wrought iron plates, are usually made in square or oblo shapes, having a slight convexity in the middle, and a flat rim round the edge, called t fillet. These plates are considered the best form yet devised for the iron covering of a $p^{\text {ta }}$ form, and are usable for the above purposes. They are often placed so that the cons part is compressed, and the flat fillet stretched; when they give way under excessive load, it is usually by the crushing or erippling of the convex part. The safe lon given in the tables published by the inventor, for a plate 3 feet square, $\frac{1}{4}$ inch thick, a with 1.75 ineh of curvature, are 4.5 tons for a steady load, and 3 tons for a moving load. T square form, supported and fastened at all the four edges, is the most favourable to strengt The buckled plates used by Mr. Page for the platform of new Westminster bridge meast 84 inches by 36 inches, with a eurvature of $3_{\frac{1}{2}}^{1}$ inches, and thickness of $\frac{1}{4}$ inch; they be 17 tons on the centre without giving way (Rankine, Civil Engincering).

1903 g . In India, where all buildings of any importance have flat roofs, the long esta lished practice is to form them of tiles, mostly 12 inehes square and $1 \frac{1}{2}$ inches thick; Calcutta they are generally 18 inches square and 2 inches thick. These tiles are ma with great care : they are burnt the same as pottery, and are used both for roofing and flooring. In roofing a room of 20 feet span, it is first covered with teak beams 12 inch deep by $8 \frac{1}{2}$ inches broad, placed 3 fcet apart, which carry burgahs or joists, 3 inehes squa: fixed 1 foot apart, and on these the tiles are placed in two layers carcfully jointed withea other. Above them is laid 6 inches of concrete, formed of broken brieks and lime, sprei evenly and beaten down to 4 inches, and beaten until the mass is dry; finally it is plastere and rubbed or polished. If well made and of good materials, it is impervious to wet, al will last as long as the timber under it.

190: k. A \&c.or, or even a flat roof, patented by Bunnett in 18.58, is formed of hollow ricks, haring the two sides each composed of two parellel inclines, and each alout half ie depth of the block, connected by a horizontal or nearly horizontal plane, and the two iclines on one side are parallel with those on the opposite side. Through these bricks e rods are passed, and secured at each end to wall plates formed of angle iron ; the whole then serewed up, when the bricks form a slight curved areh in section, and from the inined sides they over and underlap one another and mutually give and receive support om the neighbouring blocks. This inrention has been carried to 21 feet span with a rise about $2 \frac{3}{4}$ inches, and about 13 feet wide. Other arches have been constructed for tho urpose of testing its bearing powers. One of the latter, 15 feet beween the bearing ulls, and 2 feet 3 inches wide, was loaded with 4 tons 10 lbs. (or 267 lbs . to the squaro ot), and was quite elastic. The deflection was about $\frac{9}{16}$ ths of an inch. The bricks are it together with Portland cement and sand. Each brick is $10 \frac{3}{8}$ inches long, by $9 \frac{3}{8}$ inches ide, and 6 inches thick, and weighs 21 lbs .100 square feet comprise :--

1903i. Pots and jars and hollow bricks have all been used in arched work to reduce its ight. Sir John Soane employed jars in the dome of the Rotunda at the Bank of ggland, which is about 65 feet in diameter. In floors of arched work either iron ties ust be used to prevent the walls being forced out, or iron girders employed, thus subdiling the length, and the work arched across the length, i.e. between each girder. The wilder of $18+9$ records the use of hollow bricks in the raulting of St. George's Hall, at verpool; and Daly's Revue Générale for the same year, the use of such bricks in walls. 1903k. The Indians about Nagpore build their stone vaults in a peculiar method, which ght be followed with advantage in some cases in this country. At the springing, stonfs is considerable depth are used, haring the intrados cut to the form of the curve; six rrses are laid, the upper one having a groove 5 iaches wide and 2 decp. Then mes of a smaller depth are laid, each having a groove cut in one face, 2 inches in depth 14 inches in breadth, with a corresponding projection in their other face, the groove ing on the upper side to receive the projection formed in the next course. Abont eight rrses haring been laid, it then becomes necessary to prevent the work from falling inrels. At every 10 fett in length two strong rods are placed horizontally across the 1 sm , and the ends are furced into the groores. From these courses as from a now baso aila: grooved stones to those already described are continued, the length of tach irse contracting until the key course is inserted. When this last course is completed, : rods are sawn across at either end of the finished vault, and the work continued. When , arch or vault is of considerable span, a series of bases may be adoptod, each at higher nts thin the other, until one part is keyed. A slight scaffolding supports the workn , but no frame or centreing is used.

903l. In viess of a fire, and for the preservation of property and life, fireproof floors uld bo more constantly insisted upon to replace the common wood floors, which (as has n deseribed) usually " consist of one inch of boards and one inch of plastering to separ(wheh story in a dwelling." Even these can be improved by some modern inventions. American (Wight) method is by fixing flat interlocking fireclay tiles, carried by irom is serewed to the underside of the joists, the underside of these tiles being grooved to ned a key for the plaster. A space of 2 inches is thus left between the plaster and the den joists, and as the tiles themselves will stand almost any heat that can be brought t ear on them, the joists are absolutely protected; on the upper sido fine concrete or I Ming might be used. This system can be affixed to existing floors by sumply lacking the lath and plaster, and it is probably quite new in this country. (J. slater, New Antione, in Royal Inst. of Pritish Architests, Transuctions, 1887.)
303:a. In the so-ealled "flats" and suites of offices, the floors aro now gencrally f ned of firepron? construction. There are many modern systems. Tho coro or ${ }^{11}$ orinl used to fill in between the wrought-iron joists, which are placed 2 feot to 3 feet a re, is generally determined by local circmastances, or the patent of the inventor of the ${ }^{6}$ om. Thesu are, metallie concrete, coke breoze, pit or river ballast, broken stone, l. kon brick, well-burnt elay ballast, granito chippings, pumico, pots, \&ce, all gonerally min cement. This preparation is covered by an asphaltic, granitic, or metallic surface. Ifly, the upper surface is finished with a floor of boards nailed to small wood joists - leepers resting on tho concreto; blocks aro also used for fixing them.

1303n. Archibald D. Dawnay's fireproof flooring is stated to be the simplest, cheapest, n strongent ever introduced; suitable for all brildings to 40 foct spnn without ef mos, being composed only of steel or iron joists cmbedded in a high class con-
crete, finished flat on both sides, forming a solid block of one thickness, absolutely indestructible.

1903o. Homan and Rodgers' flat brick fireproof floors. They are constructed with hard burnt bricks, jointed in cement, and bonded on the upper face with tough concrete. The depth of thie finished floor is 6 to 9 inches. "By the method of laying, the ironwork is protected from the action of firo. The brick soffit forms a key for the plaster; no laths or countereciling are necessary, but, where desired, wood blocks can be fixed in the soffit to receive the ordinary lath and plastered ceiling, then making the most perfoct sound-resisting fireproof floor known. The concrete being tough instead of friable, tho boarded finish may be nailed down without the use of sleeper joists; but, since serious failures slow that wood embedded in concrete, asphalte, or pitch, is liable to decay, it is recommended to use an inch strip as a sleeper fillet, which will also proride ventilation and space for gas and water pipes." The floor is stated to hare no thrust.

1903p. Lindsay and Co.'s patent system, wherein a steel decking is introduced, and also their patent trussed concrete flooring. The steel flooring is manufuctured of two differentstrengths, varying from 4 inches to 14 inches in depth, and suitable for spans of from 15 feet to 50 feet clear. It is stated as perfectly and equally distributing the floor loads to the surrounding walls, and as acting as a complete tie to the building; not affected by settlements of the walls; and is 30 per cent. lighter than ordinary arched floors. The trussed fireproof flooring is laid with pumice concrete, enclosing small joists joined by steel truss rods twisted together every 18 inches; or formed as an arch underneath between girders to 14 feet span. A slab of this concrete, 2 feet span and $4 \frac{1}{2}$ inches thick, was loaded to 22 cwt . on the foot withont injury. For a space of 30 feet the depth of tho decking is only 5 in . to support a load of $1 \frac{1}{2}$ ewt. per foot super. Brick partitions can be placed on this decking and concrete in any position, independent of walls or girders underneath. This flooring has been largely used in the National Liberal Club, by R. W. Edis, architect. The top table is made thicker than the sides, and the sectional strength is. thereby greatly increascd, and the varions sections are riveted together at a point whichis very closc indeed to the neutral asis. The concrete is called "pumice concrete," as it is very light and tough ; considered to be a good material for constructing roofs, domes, \&cc.

1903q. The "Doulton-Peto" patent fireproof flooring, in principle consists of a series of hollow blocks of stoueware placed between rolled iron joists, making a flat ceiling, which may be plastered or not. The iron girders are fixed in the ordinary way, but not so close together as usual. The tile next to the side of the girder is specially shaped to sel

Fig. 617 ,
against and beneath it, so as to isolate it completely. The fig. 617l. shows tile made for a flat ceiling, and set in cement; if no ceiling, then the under side is made

Fig. 617 m . smooth to receive whitewash, \&cc. The tiles for ordinary floors are 6 inches high and about 1 foot thick. The floor is stated to be one-third lighter that concrete or brickwork. A that roof car also be formed with them. Where an arch is desired between each girder another form of springer (fig. 617 m has been adopted. It has stood the test of upwards of 6 cwt . to the foo dead weight on material only, and witl an arch of 6 feet span and quite flat. 0 an arch of 8 fect span a cask of graphite weighing 7 cwt . has been rolled and rocked, the vibration doing no injury. A fire has been lighted beneath, making it red hot in parts and while in that state a hose has been turned on with a considerable pressure of wate without the least effect. It has also been tested with nnevenly distributed weights, anc with vibration and concussion, all which it has successfully withstood. This flooring hat been used throughout at the London Pavilion, where it was found very adrantagrou: from its lightness, the speed with which it was constructed, ard its cleanliness. A larg building of four stories at Messrs. Doulton's factory has been similarly constructed by
lat firm ; the under side of the flooring has not been plastered. (Builder, Dec. 19, 1885, 877. Transaetions of the Royai Institute of British Architects, 1886, p. 130.)

1903r. Bunnett's patent floor consists of hollow bricks laid in the form of a flat arch, -sting on angle irons tied together by tension rods. Each brick is so arranged as to ceive support from six adjoining bricks. Mcasures' patent floor consists of iron joists ith iron fillets 9 inches apart, at right angles to the joists, and resting on their lower uges, and cement concrete filled in, embedding joists and fillets. Hyatt's patent doroiled corrugated iron sheets are used for fire-resisting iron and concrete floors, ceilings, id partitions, giring great strength combined with lightness. Partitions can be made of ortland cement, concrete, and iron, only two inches thick, the iron being completely procted. The Wight fireproofing Company of America has introduced many novelties (Builder, 387, p. 701). Porous terra-eotta is made in America by mixing sawdust with the clay; aving been burnt it was perfectly fireproof, and although spongy, unless dipped in water was not absorbent, but was rather a dry material, besides being one of the best nonnducters of heat and sound. It weighed about half that of ordinary brick. It was ed to line outside walls to keep them perfectly dry ; also as fixing blocks, because the ails could be driven into it more easily than into deals. It makes a good fireproof roof placing sheets of it on the flanges of \perp iron; it came a little above the edge, and the ates or tiles could be nailed directly on this. Fireproof flooring bricks were made of rra-cotta, and were a great saving in strength of materials.
1903s. A concrete floor to the various stories of a building has often been formed, but t always with success. A system is explained in the Builder for April 3, 1886, which ould be well studied. Concrete slabs, the largest of which is 21 feet by 12 feet 6 inches, an average thickness of 13 inches, sustained the great loads and rudely impactive ces of a wholesale provision trade, in a warehouse at Sunderland, erected by Mr. ank Caws, whose description, though concise, is too long to be here inserted.
1503t. If properly mixed, care taken in laying, and thorough cleansing of all broken iterials used, then the results may be satisfactory. To receive stone paving and for mways, concrete is laid in successive layers of cement and gravel in proper proporns, not too moist, for the requisite thickness, well beaten down with iron beaters. For loor finish, a thick layer of about an inch of the cement and gravel finished off with a oother, carc being taken not to work up too fine a surface. The proportions to be used 1 part of Portland cement, 4 of gravel, and 6 of broken stone, the latter to pass -ough a $2 \frac{1}{2}$-inch ring. Goncrete flat floors are cheaper and equally as strong as arched rs, and should be at least from 5 to 6 inches thick, Such a floor will carry a safe d of about 5 cwt . per superficial foot. One tested went further. It was made of 1 of pent, 3 of gravel, and 3 of well-washed broken stones to pass a $1 \frac{1}{2}$-inch ring, the shing layer being of coment and gravel. The Purtland cement should be tested, for proper strength is of importance. (John Garthwaite, of Liverpool, 1885.)
$903 u$. Fur town buildings these various patents afford the means for obtaining fat $i_{s,}$ which have many adrantages for the inhabitants, as affording a promenade. Thoy e to bo thoroughly well constructed. Two of the latest constructions are at the new (y polico station, Cloak Lane, Cannon Streot, haring a superficial aroa of 2600 feet, Ined of iron joists, carrying concrete covered by a layer of ono inch of the finost Pyri-nit-Seysel asphalte, tho skirtings boing of the same material ; a thin layer of very fine clean pebbles from the sea shoro woro applied to the surfaco while hot. The othor is to tho Army and Navy Auxiliary Supply Association in Francis Street, Westminharing a superfices of about 12,000 square feet, and is of the same construction.

concreta bullding.

103v. The Mretropolitan Board of Works have approvod of such structures, and have o tho following regulations to bo observed in their formation:-

1. Tho concrute to be used to bo composod of Portland cemont and of cloan Thames ballast, or gravel, or crushed sniths' clinkers, or brick lurss, or small broken Htones, or any hard and durablo substance; and cach to bo passed through a sereen having a mesh not exceeding 2 inches in diameter. Sind to bo in, or nilled to, such materials in the proportion of one to two. All such materials to 1. porfuctly elean, and freo from all groasy, loamy, or clayoy matior.

These materiats and cement to he mixed in tho propurtion of not moro than 8 parts of material as aforesaid, by measure, to ono part by measure of the best Purt land cement.
In nuking the concroto, a box 2 fuet by 4 fect by 2 f(eft, or othor liko proportions, is to be wed for the matorials other than the cement, and another box, capable of Loldiug ono sack or lanff a cask containing 2 bushels, is to be ased for the cement. The cement and the maturiala aro to bo lurnel over ut least thre times, and theroughly mixedt toget her with water.
The wally of the buildinge to be carriad up all round in regular layers with cone crete thas compored, and grouted with cement in the froportion of 1 of coment
to 2 of clean sharp sand after each layer, until the walls are completed in brigh The grout to be made as mortar first, and then thimed with water to th neenssary consistence.
V. The concrete to be well and thoroughly bound together, so as to seeure the con plete adhesion of the materials and work during its progress.
VI. The thickness of walls to be equal, at the least, to the thicknesses for brickror prescribed in the Building Act.
VII. Suitable cores to be used for flues, and also for recesses. Flues to be formed wit stoneware or fireclay pipes, not less than half an inch in thickness, unles properly pargeted.
VIII. Dcor and window frames to be built into the walls.
IX. The portions of the party walls and chimney stacks above tho roofs of buildings t be rendered externally with Portland cement.
X. The rules of the Metropolitan Building Act, 1855, as to the use of timber in wall. and other rules of that Act, so far as they may be applicable to concrete builling: are to be observed.
$1903 w$. This concession was made after many attempts to obtain it, by Philip Brannon by Tall, Drake, and others. Mr. Wonnacott read a paper in 1871, On the Use of Portlan Cement Concrete as a Building Material, which enters fully into the merits and demerit of this construction. It was supplemented by another paper, Remarks on Concret Building, by A. W. Blomfield, who summarises the whole thus: The ehief advantag are, I. Cheapness ; II. Strength and durability; III. Rapidity of construction; 11 Economy of space. The chief drawbacks are : I. Its liability to failure, from the use improper materials, or from the want of knowledge and proper caro, or from the wiff misuse of good materials; II. The limits which the material and method of constru tion impose on architectural design and decoration.

1903x. J. Tall advertises conerete construction for cottages; aoor and window frame Drake and Co., concrete building apparatus; dovetailed self-fixing building slabs; marlil and granite facing bricks; fireproof floors, doors, staircases, wall tiles, \&e.; window head copings, terminals, steps; marble concrete baths. W. H. Lascelles has, panelled slat and concrete backings serewed to stud work; walls built of Potter's patent cement slabl. plain and moulded concrete forms of all varieties in building and ornamentation, window sills, door jambs, gables; concrete ceilings; and chimneypieces. The Eurch Concrete Company has steps, sills, strings, balusters, fireproof floors, mantelpiece thresholds; copings; a concrete door of four panels, hung in position and fitted with lecl Faija's concrete, hardened by his new patent procoss. J. Wright and Co. have made n " improved conerete lintel," having a curved upper surface and a T iron passing throup it lengthways; with their fixing block inserted to receive the sash or door frams. Si also par. $1864 i$; and Artificial Stone.
$1903 y$. In 1887 Mr. W. Simpson read a paper before the Royal Institute of Britis Architects entitjed Mud Architecture, relating many methods of construetion of simil.: materials in various countries; further interesting references were made in the discussio and correspondence of that year.

1903ac. Concrete and cenent blocks. Blocks formed of Roman cement, puzzuolan: lime, and sand, were soon suggested for such a parpose. Those made without it cement were found to be longer in setting, but erentually becamo the strongest. To the combinations potsherds were added, as Pliny relates was in use in the time of the Romare increased toughness resulted. Tho late Mr. Walker, engineer, possessed specimens Dutch terras, which had been used in Woolwich dockyard in the reign of George II. These were of very great hardness; in fact, gunpowder had to be used in breaking up th doek where it had Leen employed. For concrete and mortar for the river wall of th Houses of Parliament he used two measures of sand, 1 of puzzuolana, and 1 of lime. M Leo used Portland cement, Portland stone chippings, sand, and shingle, in blocks in culy of 16 feet and upwards, made in moulds, for the breakwater at Dover. Mr. Blashfiel had made experiments for that work with Lancashire terras mixed with broken tiles at sand; but it was not deemed equal in hardness to the Portland cement concrete blocks.

1903bb. Atkinson's or Mulgrave cement was used by its patentee for conerete bloks shingle, sand, and cement, used as ashlar stono in the case of a house at the eorner Mount Street, Grosvenor 'Square, still standing in a substantial eondition. Concrete small blocks, known as Ranger's patent artificial stone, has been used to a limited extent the construction of domestic buildings. It was employed in the additions to the Colle of Surgeons, Lincoln's Inn Fields, 1835-6; a guard-house in St. James's Park; th Imperial Assurance Office, in Pall Mall; and in a row of houses in the Western Road, Brighton, partly in blocks and partly in moulds as pisé work. This process is not co tinued, probably from the mortar not being properly mixed in the first instance, and I concrete being exposed too soon to the action of the weather, for it dries unerenly, al cracks in all directions.
$1903 c c$. Buckw lf's Granitic Breccia stone was patented about 1858 to compete with brickork in price, its strength and duratility being greater, and its bulk and weight conderably less. It was impermeable to wet and never regetated, so that for pavements ad linings for tanks it appears to have answered well ; but for some reason, not ascersined, the manufacture of it was lately given up. It could have been manufactured in single piece, of a weight rarying from 1 cwt. to 60 tons or more; also in slabs from 5 et to 100 feet superficial ; and to any contour. Whecble's Reading Abbry patent conzerctc tonc, formed with Bridgewater stone lime, when made into a brick, was found to be equal o strength to a common stock. Sorne specimens never attained the strength of concrete xcept in a case where large gravel or flint was the chief ingredient. Messrs. Bodmer's atent compricssed stone bricks, compounded chiefly of 1 part of hydraulic lime and 7 of iliceous sand, well mixed, are subjected to great pressure in moulds. Upon remoral, he bricks are piled up in the open air, when induration commences, and the material is onverted into stone. They appear to be ready for use after six weeks' to two months' xposure, and experiments show a steady progressive increase in strength as they advance age. When eleren days old they crushed at $3 \cdot 7 \%$ toas; at twenty-two weeks from 4 to 6.95 tons; and at sixty-three weeks a pressure of upwards of 8 tons was reached rithont effect.
1903dd. Coignet's Béton Agglomèré has Leen employed in France in the construction of church in the park of Vésinet, near St. Germain, from the designs of M. Boileau, and ito the construction of which he has also introduced cast and wrought iron. The béton formed with all the mouldings of Gothic architecture both cxternally and internally. Was built similar to pisé work, though it is also applicable fur blocks, like stone, in hich manner he has lately executed some bridges of 140 feet span. The very hard frosts - January, 1865, had not appeared to have had any effect on the béton at the church, whi•h as being extcuted at the time, and is described in the Builder for November, 1864; ows are also given in the rolume for 1865. It is stated that such structures cost only out one-half or perhaps one-third of the expense of a stone building, with greater coration.
$1003 e e$. The system of building with concrcte blocks at Sandown, Ventnor, and other aces in the Isle of Wight, is weli adapted for constructing walls to ensure dryness. The ocks are about 18 inches wide by 12 inches high, and are of two thicknesses, thoso for e outer wall being 4 or 5 inches, and for the inner about 3 or $3 \frac{1}{2}$ inches thick. These a tied together by pieces of iron, learing a space of about 3 inches between them. This -ms what looks, to those accustomed to the 2 feet thick solid walls of Scotch housers, is nsy wall, but it appears to be sufficiently strong for carrying another story orer the , und floor; and with a few openings abovo and below for the admission of air into tho ace between the walls, furms a structure which, in a sanitary point of view, may bo asidered perfect. Some would prefer to have the innor wall of brickwork.

1003f. Tanle of thie Resistance to Thrusting Stress of Nine 2-incii Culbes of Conchete, bedded between Pine three-eighths of an inch Thick. By I. Kirkaldy, for W. H. Lascolles, May, 1881.

Cracked slightly.				Remarks.
	Stress.	$\begin{aligned} & \text { Per } \\ & \text { sq. inch. } \end{aligned}$	$\begin{aligned} & \text { Per } \\ & \text { Eq. foot. } \end{aligned}$	Builder, xl, p. 619.
1	$\stackrel{\text { lis. }}{19,162}$	$\begin{gathered} \text { lbs, } \\ \mathbf{4 , 7 9 0} \end{gathered}$	$\begin{aligned} & \text { tins. } \\ & 308.0 \end{aligned}$	Neat cement, mado Dec. 15, 1880.
2	18, 928	4,657	299.1	Jitto.
3	16,298	4,074	2619	Neat eement, mado March 8, 1881.
4	12,982	3,2.15	$208 \cdot 6$	3 of cement to 10 of ground material, matde Jatu, 18, 1881.
5	12,218	3,062	196.9	Iitto.
0	8,188	2,122	$136 \cdot 1$	1 of cement to 4 of ground material, made Jair. 1, 1881.
7	8,023	2,005	$129 \cdot 0$	Litto.
8	8,838	1,469	038	1 of cement to 4 of ground material, minle Јぃи. 1, 1881.
0	8,796	1,419	$93 \cdot 1$	Jitto.

10.3gg. Then usn of comerete han extendid from the foundations of buildiugs, linchings whorf, ritaiuing walla, suld abutmonts of melses, to the comployment of it tor tho ing of visults to produco ulesol surfice ; for tho substanco of fireproof tloors ; for bano of Ilsore. prsemonts, and ronds; for tho walls, lloors, \&ec, of houses, bridges, tnelon; aud various other purposey.
1904. Many ornamental briek cornices may be formed by but little cutting, and changing the position of the bricks employed, and several, indeed, without cutting, by clamfering only. Of late years the maehines for making bricks have permitted the cxtensive use of moulded bricks of different forms, whieh have entirely superseded the more artistie advantages of eut briekwork to required outlines or ornamental details.
1905. Niches may be formed in brickwork. They constitute the most difficult part of the brieklayer's practice. The eentre will be described under the section Carpentry. The difficulty in forming them arises from the thinness to which the bricks must be reducd at the inner cirele, as they cannot extend beyond the thiekness of one brick at the crown or top, it being the usual as well as much the neatest method to make all the courses standing.

1905a. Flues. It has been an established rule to build flues 14 inehes by 9 inches, 14 inehes square, or larger, for kitehen fireplaees, because it suited the size of the bricks and bouling, contained a sufficient amount of superficial area, and afforded a space for a boy sweeper to ascend them. Since then eircular pipe flues, $8,9,10,12$ inehes diameter, or oblong pipes with rounded corners, have been adopted by many, the inside being smooth. These are easily swept, and no lodgments of soot and brick rubbish take place. An objeetion has been made, if the pipes be glazed, that during a storm, or other concussion, the soot falls down into the room if the register flap be not shut. These pipes make good work at the gatherings. It is almost an invariable rule to make the flue tho same size throughout; there is also the theory that the flue should be made larger at the top, and also smaller at the top, similar to a factory shaft. Also that a tall-loy is useless, for the top should only be finished by a terminal of a few inehes, just sufficient to divide the rushing currents and allow them to pass between each pot. The fireplace should lie covered orer at the usual springing line by a slab of stone, or conerete, or iron plate, with an aperturo in the centre of the size of the intended flue. On this the brickwork is carried up. Above it, in the breast, has been formed a chamber with sloping sides, to eounteract any down draught.

1905b. A briek flue is pargeted inside to render it smoke proof, that the velocity of the draught sloould be assisted or improved, and to prevent as far as possible the lodgment, and aceumulation of soot. The parget, which is a mortar made of a mixture of lime and cow-dung, should be sparingly applied, but sufficient to fill up open joints and all irregnlarities in the brickwork. If applied thiek, it shrinks and eracks, and falls off, aml assists in making a chimney smoke. It is now recommonded to use the ordinary mortar for this purpose, tho brickwork being kept as smooth inside as possible, by carreful pointing, as it has been found more successful for a number of years.

1905c. Pating. When neither slate, granite, Yorkshire or other stone, flint, nor shells, are used for paring, reeourse is had to brieks, tiles, and asphalte. A yard superficial of brick paving requires 32 to 36 stoeks laid flat; 48 to 52 laid on edge; 36 paving bricks laid flat, 82 on edge; 140 Duteh clinkers on edge ; 9 twelve-inch tiles; and 13 ten-jnch tiles. Brick paring is laid flat in sand ; jointed in mortar ; jointed in cement; and laid on edge, in the same manner. Tile paving is generally laid in sand or mortar ($p a r$. 2292 $)$. Besides the ordinary briek, some others have beon introduced, espeeially for stables and yards, such as the Terro-metallic grooved bricks, aud Towers and Williamson's Adamautine clinker paving bricks for stables and yards; it is stated to be superior to the old Dutch clinkicr in shape, eolour, density, and wear (par. 1829). Tebbutt's patent sufcty bricto for stables and yards, \&c., is considered to ensure porfect foothold, drainage, ensv eleaning, saving in labour and straw, to form a durable floor, and to have a good appearance. Eaeh briek is 5 inches by 10 inehes by $2 \frac{1}{2}$ inches; and the gutter brick is of tho same size. Homan's Quartz, Granite and Ferrolithic stone paving, for streets, pullic buildings, breweries, warehouses, stables, sehools, \&e. Beenett's improved Granitic stone, for parements, \&e. (1887), is said to be fire, damp, and vermin proof; the surfiee, though hard and indestructible, is not slippery, it does not absorb moisture, it is laid from $1 \frac{1}{2}$ to 3 inches in thiekness, is unaffeeted by tho weather, and hardens by time. Maeleod's Mctallic concrete is proof against fire, vermin, damp and frost, not slippery, and ean be used for paring, wall linings, roofing, \&e. It is very hard, and has been nsel in stabling, breweries, workshops, \&e., from before 1870. Stuart's Granolithic and impenetrablo pavement (1869), is very largely employed in this eountry and abraid. Wilkes' patent metallic paving and Eurela eoncrete is used at the war office, the fir brigade stations, and police stations. W. B. Wilkinson \& Co. patent a specular granitic concrete pavement, which is formed iu $1 \tilde{0}$-inch squares of 1_{1}^{1} inch thieknes, ground perfectly flat, presenting a spotted appearanee of red and different slades of grey colours. It may be laid on ordinary mortar, can be used for outside purposes, and is stated to eost less than tiles.
$1905 d$. Ordinary tile paving is made of about $8,9,10,11$, or 12 inch tiles, of a hard and well burnt clay. The 11 -ineh tiles used in the footpaths, which are each 14 foct 6 inches wide, of new Westminster bridge, were made by Blasnfield, and were laid diagon-
(par. 1839). The Staffordshire paving tiles, in blue, red, and buf, aro very durable, 1 for general purposes as effective as the more expensive qualities for inlaid purposes. 1905 e. Floors and paths are often finished with a face of $\frac{3}{4}$ inch, 1 inch, or $1 \frac{1}{4}$ inch of rtland cement. They are considered to be best laid with the cemeut aud sand thoroughly sed and just wetted sufficient so that a handful pressed by the hand will not fall to ces when the hand is opened. This laid down, and water brought through it by the ad float, stands well. Plasterers do not like to use it so stiff. To repair any worn ces the old cement should be thoroughly wetted before the uew work is applied.
$1905 f$. Here may be mentioned the use of cncaustic or inlaid tiles for paving; of saic tiles and of tessere for mosaic work, whether for pavements or for wall decoration ;
Roman mosaic parement; the Venetian marblc mosaic tiles; Italian marble mosaic 1 marble mosaic granite. There is also a patent wood mosaic, made of small blocks of od, end grain, and prepared in tiles to pattern 6 inches square.
$1905 g$. To clean dirt off tiles, dilute muriatic acid, i.e. spirits of salts, may be used, it must all be wiped off, and after washiug, the moisture must be wiped off with a an dry cloth.
1905h. Asphalte has now taken the place of most other sorts of manufactured pavents of the same character. A solid foundation is prepared by a bed of concrete of Traulic lime and gravel, with a layer of finer concrete over it, to fill up the vacuities. hen dry, the asphalte is put on, of a thickness for private purposes of about $\frac{8}{5}$ ths of an h ; for pullie purposes, from one to two inctes: it should be applicd as hot as sible. A small quantity of pure quick lime is added to the asphalte when in ebullition, prevont it melting by $t=e$ heat of the sun. This material has been much used for eshing floors of barns, for malt-houses, armouries, tun rooms (sometimes from 2 to $2 \frac{1}{2}$ hes thick), dissecting-rooms, dog-kennels, exercising yards, mills of many kinds, naries, rerandahs, aud numer us factories and buildings. For carriage traffic, the halte is embedded with small Guernsey granite chippings. This material is not table for any floor where oil, tallow, or other greasy matter is employed. The onceau and Seyssel Asphalte Company indent the surface into small squares, rding a foothold for horses in a stable; this is also considered useful for flat roofs I paving generally. The granite rock and Seyssel asphaltes, for floors, paving, \&ce., are sidered a certain preventive of damp and vermin. The Val de Travers compressed mastic asphalte, for rcadways, \&c., roofs, basenents, stables, warehouses, breweries, rroirs, slaughter-houses, markets, laundries, lavatorics, \&c. The Limmer Asphalto ing Company, and the Société Française des Asphalte, are also engaged in paring the roughfares of London and elsewhere. Wright's marble tar pavement for yards, playunds, \&c. has been used for the platforms of the Windsor and the Waterloo stations, in tho middle part of the quadranglo of Somerset House.

Tiling.

906. The tiler's tools are-tho lathing hammer, with two gauge marks on it, one at ches, tho othor at $7 \frac{1}{2}$ inches. The lathing staff, of iron, in the form of a cross, to stay cross laths and clinch the nails. The tiling trowel, to take up the mortar and lay it he tiles; it differs from the brick trowel, in being longer and narvower Tho bosse, IIf of wool, with an iron hook, to lang on the laths or on a ladder, for holding tho "tar and tiles. Tho striker, a piece of lath about 10 inches long. for separating and . ng away the superfluous mortar at the feet of the tiles. Tho lroom, to sweep the ig after it is struck.
907. Tiling is the operation of laying the tiles on a roof for the corering of tho building, is effected with cither plain or pan tiles; the former is the most securo description, n tiles are laid at different gavges (seo par. 2301). 210 plain tilos laid flat will cover nare of tiling, which can be laid in a day ly a man and his assistant. As old tiles aro much better consisteney than those now made, it may be desirable to re-uso the brist num with now tiles to fill in ; in which caso the old ones aro laid will tho best effect nures, say three or fomr rows of new and two of ohl tiles; or laid in a diapored ern, according to the qumaty. Pan tiles are generally pointed in mortar, which if it it rery strong will not stick; in consequence of this, tiled roofs requiro fresh pointin? y few yeara, espereially in exposed sitnations. A pactice has ebtained of late years, n phain tiles aro set in mortar, not to perg more tran abont ono tio in ten; this Id not be permitted. as whe tho decay of tho mover the tikes slip down. An ancient on prevailed, to bed the tiles in hay or moss, and when the roof is of tho full pithe snffie s without anortar; they may "ven thell be laid dry. But with any lese ptelh, - precantion mast lo used to kecp out drifting smow, and such wot as my be blown We wern the tiles lifted liy the force of the wind. In lien of ask pege, oxtratherge
 - thon nelvanage of allowing a tile to be replaced from the inside of the roof, liy ig up the onthers to place in the tile and drep, in tho mails in a few seconds. Tho 'y of the murtar is questioned in the Luilder for 186.j.

1907a. Pan tiling is laid to a 10 inch gange; and 180 pan tiles will cover a squat From the frequent repairs necessary to tiled roofs, slating has become the most usef corering, and is generally employed, except for the most common buildings. See pu 2301, in Specifications.

1907b. Weather tiles were fixed either by nailing them to battens or boards, whit rotted after about 20 years. Then nailing them to the mortar joints was bad, as gauge of 3 inches was too small, 4 inches being the ordinary gauge for tiles. Mr.] Nevill got blocks made $1 \frac{1}{2}$ inches thick; and generally for the top story of building to run in the inside of the wall two carriers and stretchers and a course of headel Thus a course was obtained for each course of tiles. Weather tiling ought to be head between the two tiles, and if they could get close to the wall the little space between t l wall and the htading might be filled with cement. The bricks might be used on eds thus giving a $4 \frac{1}{2}$ inch height, when the tile could be fixed to the joint. Whero t 4 inch gauge would not work, the tiler puuched out a small hole at the side of tha til when tinis gauge was obtained and the nail driven through the side of the tile: 3 in French nails were preferable. (E. T. Mill.)

1907c. The bricklayer las often to provide temporary coverings to buildings whil his other operations are being performed. The commonest method is that of mere mailing old boards laid weather-board fashion to any slope that may be desirable. 'I next is the use of tarpaulins supported by open boarding, and secured to posts scaffulding rigged up for the purpose; this must be efficiently done, as in case of hif winds the whole may be carried away. Felt is also used for temporary roofs, for whi purpose, likewise, Messrs. Rigg and Co. have a new material composel of canras cover with a waterproofing substance haring vegetable oil as a basis, and consequently liablo to the desiccating action of the rays of the sum.

1907d. As the bricklayer has to provido for the removal of water refuse, so ho has provide for the deposit of dust, ashes, and rublish, by a dust bia. This was former and is still in many places, built of brick with a wood cover, and is generally more than nuisance. With the modern arrangements for the periodical removal of dust by t parish or other local authority, the dust-bin need be no other than a galvanised iron reer tacle for such ashes or articles as cannot be dried and burnt up in the kitchen or oth fire (seo Spectfications). Burton's Combination Dust-bins are of galranized iron, and ec structed of such a size and shape as to stand side by side, each being removed and empt serarately: They form two, four, six, or eight in a compartment, each being 22 incl ligh, 21 inches wido, and 14 iuches from front to back, or about $3 \frac{1}{2}$ cubic feet, sufficient load for one man. When necessary, they can have a wood cover or be enclos in wood or brick. An improved dust-bin is explained in Builder, 1885, xlviii., p. 779.

1907e. The difficulty and expense of removing this refuse has caused the invention a refuse destructir on Fryer's principle. One is described lately as having twelve cells, e: capable of destroying seven tons of house refuso every twenty-four hours. The smu from theso will pass through a furnaco heated to 1500 or 2000 degrees Falr. bef: pasing into a shaft 180 feet high. The waste heat from the furnaces will bo utilised fu 30 horse-power engine for grinding the clinkers into powder for making concrete sla No fuel is required, as the "ashes "provido it. Leeds claims to be the first town to bil adopted this invention. Mr. C. Jones, of Ealing, added a muffle furnace between ${ }^{\prime}$ destructor furnaces and the main shaft, which effectually destroys the offensive propert of the gases and dust from tho furnaces.

Terra-Cutta.

1908. The more modern use of this material includes the Persian and Moorish til \&c., its use by the Italians during the thirteenth, fourteenth and fifteenth centur. as at the cities of Milan, Pavia, Padua, Terona, Pisa, Bologna, Brescia, Perugia, Veni \&c.; also in Nortl Germany ; many places presenting examples of colour decoration.

1908a. In England specimens of terra-cotta and moulded brickwork appear at Grals Church, Nottinghamshire, where at the east end is a window of considerable size, of l' pendicular date; the whole of the jambs and tracery are composed of contempori moulded terra-cotta. Layer Marney Hall, Essex. dating 1500-25, supposed of fore manufacture; Wolterton Maner House, Norfolk, circ. 1500 ; the tomb of John Young the Rolls Chapel, London, 1516 ; medallions at Hampton Court Palaco, commenced if perhaps foreign; Sutton Place, Surrey, 1529 ; Eastbury Manor House, near Ilford, 157 and other places. Generally it died out withe the Tudor family. At the end of sixteenth century nearly all pottery (excopt Oriental) had beon what is termed soft, ? although much of it was coated with a hard and duratro enamel not easily injnred, tho body could be generally scratched with a knife. In the seventeenth century sty ware was sought after, and works fur its manufacturo were established at Stratfond Bow. Elers, from Nuremlierg, settled at Burslem.

1908b. The first great adrance was made ly Coade, an ${ }^{\text {A }}$, later, Seeloy, of Lambeth, π

Jegan about 1762 to make statues, bassi-rilievi, \&c. About 1825 Rossi made the statues, capitals, antefixæ, and other Grecian ornaments for St. Pancras Church, London, or the Inwoods; and Bubb executed in terra-cotta the frieze of the opera-house in the Haymarket, as also the pedimental sculpture and statues of Cumberland Terrace, Regent's Park. The terra-cotta made by Coade and Seeley was chiefly from the Poole clay, combined with tlint and sand. It has withstood heat and frost, and is more perfect than tho stonework or cement work around it of the same date, which in some cases has had to be painted to preserve it. Their well-tried ingredients and proportions of clay and siliceous miterials, and the degree of ritrification, the essential to the durability of terra-cotta, were adopted by Mr. Pulham. One of the greatest revirals in pottery connected with architecture touk place about 1833, when Mr. Wright, of Shelton, obtained a patent for making inlaid tiles, a patent bought by Mr. Herbert Minton, who improved upon it. The churches at Leverbridge, and at Platt, in Lancashire, by the late Mr. Edmund Sharpe, in 1845, were important examples of the revival of the use of terra-cotta.
1908c. At Buckingham Palace, near the stables, were placed, about 1836, sereral large rases made by Mr. Blashfield; these are in perfect preservation, while the stone coping on which they are placed is decayed. He also turned out some of the best work ever made in this material, as at Dulwich College, 1866, and at Lady Marriane Alford's house at Knightsbridge. The façade of the Science Schools, in Exhibition Road, South Kensington, is a large and florid example. The Natural History Museum at South Kensington, by Mr. Alfred Waterhouse, R.A., is of terra-cotta inside and outside. Mr. R. W. Wlis has used it at the Constitutional Club in Northumberland Avenue; and many other uildings of late years show its use. Among those in progress are the new Law Courts it Birmingham, which hare been specially designed for its use by Messrs. Webb and Bell.
1908d. In works of art, as in sculpture, the artist has only to model in the clay, as he sobliged to do before he commences to carve out the marble; the clay is at once burned, fond all the after labour on the marble or stone is saved. Still it is attended with some isk, for an accident may happen in the burning, and then the modelling has to be redone. arge works should be done in conjunction with the potter, who would supply the proper lity, and see that the thicknesses throughout were as cren as possible. The largest pieco if sculpture ever executed in terra-cotta was the group of America at the Albert iemorial, executed in 1876 by Mr. John Bell. It consists of five figures, each 10 feet igh, with a buffalo of like proportion ; it is now at the Smithsonian Institute, Washingn. Other similar, or ornamental, work can be finished up at once in clay by the artist, nd burned, and are thus never repeated, in the sense of moulded work. Vascs, 12 15 feet circumfercnce, are made as true on the upper edge as rubbed stonc. They we cost less than if they had been moulded and cast in compo or cemeut, and they wre the sharpness of the best carred stone.
1908e. In 1880 it was alleged that English architects had not given to the architectural catment of terra-cottat the degree of attention and experiment which it deserves. Sir
G. Seott, in Gothic Architecture, Secular and Domestic, 1857, wrote: "Terri-cotta cms the natural accompaniment of brick, but it should not be usel as an artificial ane. It is the highest development of brick, and should be used as such. By a judipus use of brick, moulded as woll as plain, encaustic tiles, and terra-colta, wo might velop a rariety of constructive decoration peculiarly our own."
1908f. A writer puts the use of terra-cotta and stone as follows:-"It is argued that is improper, inartistic, and uneconomical to use terra-cotta constructively so as to itate stonework, but it is eminently suited for surface decoration and arehitectural ramentation, and when so used is capable of high artistic treatment at a moderate t. Stone is a natural material, and when fixed every part of it does duty construcIly. Terratentata is an artificial substanco ; it islnta shell or caso, which generally has he filled up with concrete or brickwork in walling, or with an iron core for a colnma, with a girder for a lintel, before it can be usel constructively. Torra-cotta used iminate stonowork is inartistic, for stone is worked with the greatest nicety, and fixed h porfect accuracy. With terra-cotta it is not possible, at its best, to keenre perfect fing or straight arrises; there is a monotony of texture in all its plain surfaers, as Ins 11 goneral inability in tho material to acquire additional charm under tho indluenso ho mellowing foneh of time. It is not ceommierl to rmploy tera-cotta in a way to tato atone conneructively. The rough stone is bronght to the works, equared, and tixed. strra-colti, howewer, urrives at tho works in the form of a hollow loody, to be atded afore it ma be worked in. Sone is cusily corrected if it he fonnd insectrate; whrens torra-cutha, chipping, chtting, and asping has to ber regorted to, to rectify twisted n und ohler inncenraciey; or gaps in a tmilding left for as time until defective or -innt blorks have bren marafucturel. As it is sent to the works so, probably, the "nrinl in fix ${ }^{\prime \prime}$ g"nerally."
108, "Terra-cota, ne a huperior sort of brick, las to be designed necordingly. and in atring conrses, eornicen, and nuch liko phare, whoro ordimary bricks so fixed aro "to bo nthected by the weother; and when manfactured in sumall pieces, for repeti-
tion work, it will come more true, will have a better appearance than when in large blocks, and these will fulfill all constru•tive requirements; while, as it can be highly decorated at a trifling expense, it can compete favourably with stone similarly used. Without donht, it is best adapted, both as regards form and colour, for a purely derorative material. It is true there is a great difficulty in combining stone and terra-cotta in the same building effectively; but brick and terra-cotta go well together, and when used legitimately afford the happiest results. Ancient examples show its proper use, but not that as a counterfeiter of stone."-(W. Henman in Briti.h Architect, 1887, p. 105).

1908h. For building purposes the great advantage of terra-cotta is the close and absolutely :mpervious claracter of the material. Whether the great advantage claimed for it as being impervious to the action of a London atmosphere, of the preseut day, is well fuunded or not, will have to be settled by the test of time, but theoretically it should stand better than any stone under the same conditions.

1908i. Another writer remarks as follows: "What are the special characteristics of architectural treatment which terra-cotta demands in order to produce a satisfactory architectural and artistic result with the capibilities and peculiar character of the matcriat? There are two points: 1. The size of the pieces is limited, and the material, while incapable of the ligh finisli and precision attainable in stone detail, and still more in marble, possesses, before it goes into the kiln, absolute plasticity; it can bo modelled by the hand with great ease and rapidity, and with much variety. Large projections are unsuitable; they cannot be carried out in a pure terna-cotta style, or without assistance, open or concealed, from other materials. Nothing should be attemptel in terra-cotta architecture which is not capable of being honestly executed in the material, without the aid of concealed supports and ties. 2. The designer has before him a material capable of endless variety of treatment, and the chief value of which consists in its artistic treatment. If a considerable amount of repeated ornament is required to be economically produced, it can be obtained by a mould more easily than in mosi materials; and this continuous ornament can be produced by hand with constantly varying detail. The architect or designer may, in fact, be tho actual worker of thi ornamientation. With this, if soneware be used, may be a considerable rariety o colour, which is not only indestructible, but is susceptible of being cleansed, an importan point in the midst of a town atmosphere.

1908j. "The first really architectural use of terra-cotta was in the clay plains of Nort Italy, and it is from the productions of the archite:ts of this district that much of th inspiration of the modern terra-cotta designer in architecture has been. or should b_{b} drawn. The earlier specimens are of great simplicity, consisting of the simple moulde brick cornice in two or three projecting rolls one over the other. Later came a gridu. elaboration of ornament, especially in cornices, in panels, and on the face of pilaster At the Certosa, at Pavia, the richness is carricd in some parts to its greatest possib) extent, and is a good example of the constructive ornamental details, but the whole too overloaded. On the other hand, in the Church of the Carmine, at Pavia, the "rn ment is for the most part confined to the cornices and horizontal string-, and is design so as to bring out some of the best capab.lities of the material. The cornice has a t outline, and a slight projection as compared with its vertical measurement. The ma divisions of a Classic cornice are kept in view, while in this is a reminiscence of coron bedmould, and frieze; the effect which cannot be got by projection is songht by increas depth and by richness of surface ornament. The twisted rope-like string below wh may be called the fricze. is easily carved out in a plastic material ; it is easy to moul. the same may bo said of the ornament abovo it. Uther coruices may be found exhibiti a like treatment.

1908 k. "Tne consideration of the difference which would have to be made in orv mental detail in transferring it from marble or stone to terra-cotti, or painted a glazed stoneware, suggests anothor influence in the nature of the material which m1 also affect the ornament executed. However well mixed and burned may be the clay, t shrinkage and twisting in the kiln render it impossible t t trust terra-cotta to gire precise, clear, and sharp symmetry of, say, Greek detail. It may be supposed that manufacturers of the North Italian artists devised the twists to, as it were, soften resulting twist of their more immature material, as compared with the modern mann! ture, and also in order to aroid the hard straight lines and altempts at symmetri detail, and to impart such a degree of irregu'arity in line that accidental irregularities the manufacture would be the less observable." The writer in the Builder goes on design, and to explain the modifications he has made in, Greek details, to bring th within the proper scope of terra-cotta, and concludes:
19081. "Another point in regard to the genertil treatment of the walling of ter cotta buildings is that in many of the Cinque-Cento terra-cotta buildings there is entire absence of any attempt to obtain a completely homogeneous wall surface. surface is as varied and broken up in this respect as that of a briek building, thus rat proving again that it is the material for varied and picturesque effect rather than
netrical finish and neatness. It has an appearance of surface treatment about it, h is much more in harmony with the feeling of the Renaissance than of Gothic itecture, in which we look for the appearance of great mass and solidity, rather than legant surface ornament. This terra-cotta may offer to architects wishing to carry Classic type of design with grat modifications, a material admirably suited to tho ilions of modern city architecture." (Builder, 1880, vol. xxxix. p. 195, 230.)
103 m . Large and fine works of art, as busts, bassi-rilievi, ornament, \&c., have to be elled and moulded in the usual way by the artist or sculptor. He gradually forms the into a rough outline, hollow, in a cellular way, propping his model true until it is finished and dry and ready for burning. This is an original terra-cotta. The le is great, but is fully compensated by the result. No moulded copy presents sueh ar, freshness, and grace. When, also, only one or two pieces are required, as in ration, they are formed ty hand-working on the clay itself, as in the case of seulpture e described. The more widely the knowledge of pottery is diffused, the more certain urchitcetural potter is to succeed in developing the use of argillaceous and vitreous tances, in the construction of monumental and sylvan works of art. It will be a branch of work for the genius of the architect; it will improve and advance the y of modelling in all its ramifications; and it will give refinement and taste to tho ars of the poorest bricknaker.
08n. Cornices of great size have been made, and eren portions of the shaft of a nn 5 feet long. Terra-cotta steps have been adrocated, but Messrs. Doulton have ed to make them ; they hare lately patented a tread (called the Sicilian tread) of density, which may be used also as a nosing to stone or conerete steps. At South ington a flight of steps after twe years' wear is still as perfect as when first fixed. low sills, label mouldings, jambe, water tables, copings, sinks, fire hearths (with ive rounded edge to serve as a fender), stove backs, chimney shafts, \&c., could bo elegantly and eheaply wrought in clay than in any other material.
080. Of late years terra-cotta has been used extensively for the facings and dressings suilding in the place of stone It is generally made of hollow blocks, furmed with inside so as to give streugth to the sides and keep the work true while drying, eas, when required to bond with brickwork it must be at least $4 \frac{1}{2}$ inches thick. extra strength is needed, these hollow spaces are filled with lime concrete, or an cement, as Portland cement is liable to swell and burst tho terra-cotta. It is so lear a very heary crushing weight. A bluck of about 1 foot cube, without cross or filling, at 40 tons splintered at the edges; and at 100 tons it became generally n, but not crushed, as on being tied with string it remained in shape.
$08 p$. The putting together of the material requires great care and consideration. pieces may be flanged and rebated so as to hold together almost without the assistof mortar. As the outer surface should be almost proof against any ordinary tools, ations cannot be made as the work proceeds, and tho design in detail must bo ced before the work be commenced.
189. The disadvantages in the uso of terra-cotta are neither numerous nor insuperBesides the difficulty of getring tho blocks true, which is a matter muinly for the facturcr, the architect has to design his work so as to be suitable to the material. reat difficulty is on the score of the extra timo required to prepare the necessary ngs, ono set for tho builder, and another set made to the shrinkago scale for the facturer. These last are now often made by the manafacturer from tho full-sized ngy supplied to him. Mr. Charles Barry writes: "Perlipps the most embarvassing disadrantages is tho arrangement nccessary to have the terra cotta blocks made and on the ground beforo the rest of the work is begun, ill orler to work in whero 1 as the l,ricklayers progress. At times this is fount impossible, and annoying in tho gencral work take place, for whieh clients aro apt to blamo their archiThe lesson, of eourse, to be leamed from this is to earefully mature the design outset, instead of contenting ourselvos with a mure sketch of what is intended, he hope atal intention of working in parts as time goes ou and tho work procecds." 3r. In good jobs it is recommended that the fixing should bo done by or unter the ision of one or more persons experieneed in the material, and tho proper uso of lo comonts-Portland cement will split a block in picces-espocially where most h is refuired, as eonsiderable additional strength may lee gained, which is ouly xl by prutice. An export will lee moro likely to make it work together for gool II) fit, by setting nad humouring, ats the piecess ure aft to le taken as they come; is is ospecinlly necessary whoro small pioces are adopted for simplicity of oxecuherrpaess, and expedition; time is un object for largo pioces to dry, lourn, and conl

in. Torrn-cotta rosists the action of fire. It is usod as a protectiol to ironwork, lumna, \&e., anil can ho treated antistically. Heat which would dostroy stone l,urns the dint from this material, giving it the apprarance of having just left

At a large fire at Mesurs. Shmbn's finctory tho mtono sills of the windows
and copings of the walls were destroyed, while the dressings of the windows, which wer of their terra-cotta, were perfectly sound and looking all the brighter for the burning.

Colours in Terra-cotta.

1098t. One advantage of the material is the delightful random variety of tone n colour which is often to be obtained. The colour varies, giving an appearance of dept to the work and producing very pleasing effects, at times. This variety is generall produced by the flash of the fire. The natural colours are buff, red, and blue, more 0 less intensified by the amount of heat to which they are subjected. Other colours cal be obtained by the admixture of foreign matter. The red terra-cotta of Ruabon is mad from a natural red-coloured clay when burnt, very hard and non-porous, with a clean smooth surface. The buff terra-cotta is a good and sound material, burns hard, an keeps its colour. The pink terra-cotta, a new colour, is made from pure clays, and i without any stain, very hard and durable. By a little additional cost and the operatio of a secoud firing, a soft dull glaze can be put on all terra-cotta bricks, mouldings, an ormaments, so that façades executed in this way could be washed clean by water from fire engine.

19082u. The aid of terra-cotta to polychromatic effect is capable of being developed i a very elaborate manner. Variety may be obtained in the unglazed ware by what called "slipping," or mixing two clays of different tones together in water to produce third or intermediate tone. In glazed terra-cotta the material can be painted in great rariety of colours, which are then fixed, and at the same time rendered mor brilliant in effect. This ware is formed by throwing salt into the fire when the ware i at a white heat, which is decomposed in the form of vapour, the soda suspended in incorporates itself with the surface of the ware, forming the glaze. Various miners colours are used, and the main colour is influenced by the fuel : the blue colour of t t ancient Rhenish productions is considered to be due to the use of woad. It has bec stated (Archroolog a, iii. 112, and Proceedings, xi.) that at Gatacre Old House, net Bridgenorth, "a glazing seems to have been applied to the stone of which the house built, by some unknown process, after the building was inished, as it covered the join as well as the stones."

1908v. The intense heat to which glazed ware is subjected, and the consequent dif culty of keeping its true shape, makes its use in this form very difficult. It is compat tively easy in all thrown ware, which, from its circular form, shrinks evenly in all parts. The liability in all moulded work to warp and twist requires increasing care all its preparatory stages. That it is not impossible may be ascertained from the sa glazed stoneware in the vestibule of tho "Palsgrave," opposite the Law Courts in t Strand. This greater risk seems to necessitate that "its use must be in small piee and in such places where absolute flatness of surface is not indispensable; but uni these conditions it may be applied with admirable effect to heighten mouldings, or panel terra-cotta pilasters, or as bases and capitals, especially as shafts to ornamen columns, and as bosses."

1908w. The paper read by the late J. M. Blashfield before the Northampton Archit tural Society, Sept. 6, 1859, on Ancient and Modern Pottery; and that by Mr. Jan Doulton, read April, 1886, at Carpenters' Hall, on Terra-cotta, have also been fre quoted from in the above account.

Sect. III.

masonry.

1909. Masonry is the science of preparing and combining stones so as to tooth, indr or lie on each other, and become masses of walling and arching for the purposes of buildi The tools of the mason vary as the quality of the stone upon which they are to act. $A b$ the metropolis the value of stone is considerable ; and it is accordingly cut into slips : scantlings by a saw moved horizontally backwards and forwards by a labourer. In th parts where stone is abundant it is divided into smaller scantlings by means of wed The principal tools of the mason are the mallet and chisels, the latter being formed of is except at the steel end, and the cutting edge being the vertical angle. The end of chisel struck by the mallet is a small portion of a spherical surface, and projects on sides beyond the adjoining part or hand-hold, which increases in magnitude towards middle of the tool, to the entering or cutting edge. The other tools of the mason at level, a plumb-rule, a square, a bevel, with straight and circular rules of divers sorts, trying surfaces in the progressive states of the work.
1910. In London, the tools used to work the face of a stone are, successively, the pen the inch tool, the boaster (the operation of working with which is called boasting, as t.
ith the point is called pointing), and the broad tool. The use of the point leaves the stone narrow furrows, with rough ridges between them, which are cut away by the inch tool, id the whole made smooth by the boaster. The point is from $\frac{1}{8}$ to ${ }_{8}^{3}$ of an ineh broad, the paster is 2 inches wide, and the broad tool $3 \frac{1}{2}$ inches at the cuting edge, which in use is ways kept perpendicular to the same side of the stone. It performs two sorts of operaons. Thus, imagine the impression made by the whole breadth of the tool at the cutting Ige, to be called a cavity ; in one operation, the successive cavities follow one another in e same straight line, until the bradth or length of the stone is exhansted; suceessive uidistant parallel lines are then reneated in the same manner, until the tool has passed er the whole surface. This operation produces a sort of tluted surface, and is ealled oking. In the other operation, each successive cavity is repeated in new equidistant lines roughout the length or breadth of the stone; then a new series of eavities is repeated ronghout the length and breadth of the stone; and thus until its whole length or eadth is gone through. This operation is ealled tooling. The tools for working the cylinical and conical parts of mouldings are of all sizes, from $\frac{1}{8}$ of an inch upwards. Those working convex mouldings are not less than half an inch broad, except the space be confined to admit of such breadth.
1911. A stone is taken out of winding prineipally with points, and finished with the h tool. In London, the squared stone used for facing buildings is usitally stroked, tooled, ruhbed.
1912. In those parts of the country where the stone saved by the operation of sawing not enough to compensate for the labour, the operation is altogether performed with the llet and chisel.
1913. When stones, previous to the operation of hewing, are very unshapely, a stone are,
ling axe, scabbling-hammer, or cavil, is used to bring the stone nearly to a shape; one end
the jedding axe is flat, and is used for knocking off the most protuberant angular parts,
en less than right angles; the other end is pointed for reducing the different surfaces to
r rly the intended form.
1914. In Scotland, besides the above deseribed sorts of work, there are some other kinds, t ned droved, broached, and striped. Droving is the same as that called random tooling in gland, or boasting in London. The chiscl for broaching is called a punch, and is the sie as that called a point in England. Broached work is first droved and then broached, at he work cannot at once be regularly done with the punch. Siriped work must also be 1. droved and then striped. If broaching is performed without droving, which is somet es done. it is never so regular, and the surface is fall of inequalities. Of the three kinds o urfaces olitained, the droved is the cheapest.
1915. It is, however, to be observed, that the workmen will not take the same pains to dve the face of a stone which is to be afterwards broached, as in that of which the d fing is to remain the final finish. When the surface of stone is required to be perfectly 5) oth, it is accomplished by rubbing with sand or gritstone, and it is ealled rubbed work. $315 a$. Some useful practical remarks for obtaining the face to stone in mediaval work, is iven in Denison's Lectures on Church Building, 1856, p. 216. "The mode of working π ldings depends a good deal upon the kind of stone used. In that from Steetly near lisop, employed almost exclusively outside the new church at Doneaster, and in the aster stone, used for pieces of window tracery and mullions too large for the blocks can be got from Stcetly, and in the Brodsworth stone, the mouldings are all comd with a dray. I do not nse the word 'finished,' because that means going over the to put a particular kind of surface upon it after it is really completed. On the other the Crookhill stone, of which all the pillars and a few other pasts are made, would ly defy any such small tooth-comb work, as a drag; nothing under a chisel with a y hanmer will touch it. Again, some stone from Huddlestone is too tough and c-like for dragging, and the mouldings in it are completed by shaving them with a 1 , sonething like wood carving. The effect of that is very good, because a chisel rum in that way will always make a rather undulating surface, though smooth enongh to ouel, even to prlease the finger of a elerk of the works. In some real Norman o, which had been covered with plaster for centuries, the mouldings showed that the or thol had never been allowed to make the marks directly across; generally they are ne and sometimes parallel to the direction of the moulding. Worked in this way, the will he sure to show themselves distinctly, and the effeet of the mortar staining the for a litule distanece from the joints, produees anything but a bad effect. Trueking, to rather rough masonry especially, ie., making prominent joints in mortar, with lges ent quite strainht and square, is another clonce of spoiling work. After a few this genterally splits off;" and the building may look at last as it should have done at The mortar should be finished within the face of the stone. The stone work at ban's Abbey is described by Mr. Neale, as finished by the are by the Nomans; d during the 'Transition period; bolster tooled during the Early English; claw during the Decorated, and the mouldings scraped; while during the Perpendicular it is fiurly acripiest.
1916. Grey granite, or moorstone as it is called in Cornwall, is got out in blocks by splitting it with a number of wedges applied to notches pooled in the surface of the stone, about four inches apart. The pool holes are sunk with the point of a pick, much in the same way as other hard quarry stones are split. The harder the moorstone the nearer it can be split to the scantling required. Generally speaking, granite has no planes of stratification, and it works or cleaves equally well in every direction; but in the porphyritic varieties there is a rough kind of arrangement of the crystals; and in gneiss there is a species of layer, formed by plates of the mica, which is plainly discernible. When brought to near the size required, it is first scabbled by a hammer with a cutting face $4 \frac{1}{2}$ inches long by $1 \frac{1}{2}$ inches wide, weighing 22 lbs.; then brought to a pirked face with a pick or pointed hammer weighing 20 lbs ., formed by two acute angled triangles, joined base to base by a parallelogram between them thus <0; and if to be finely wrought or fine picked, it is further dressed with a similar pointed hammer, reducing the roughness to a minimun. The finer finish or fine axed face is produced by a hammer or axe with a sharp edge on both sides, weighing 9 lbs ; for fine work the "patent axc" is also used, which is a hammer formed of several parallel blades screwed together, capable of being taken to pieces when required to be sharpened. Polishing can then be done by machinery, the granite being rubbed by iron rubbers with fine sand and water, and finished with other materials.

1915c. Aberdeen red granite possesses the property common to all granites, that of a distinct plane of cleavage, which, though not perceptible to the eye, is at once recognisable under the hammer of the workman, and of course can be wrought with much greater precision and effect with the bed, than transversely to it. This bed bears no traceable relation to the natural joints of the rocks, which are indefinite in their directions; and still less so to their stratification. The grey granites are but slightly affected with cleavage, being capable of being blocked with the hammer with about equal facility in cvery direction. The local varieties of workcd granite differ somewhat from those used in England, and are, I. Hammer-blocked, as in foundations, plinths, \&c. II. Scappled blucks, squared with the heavy pick, as in docks and heavy engineering works. III. Picked, a better finish than No. II. IV. Close picked, the bed and arrises made fair, and the outer surfaces made as fine as the pick will make them; used in ashlar work, \&c. V. Single axed, a finer finist tian No. IV., and used in quoins, rebates, cornices, \&c., in house building. And VI Fone ared, the finest finish before polishing, given to dressed granite by means of the patent are, used in the best work in house building, cemetery menorials, and as a finish to contrast with polished work.

WALLING.

1916. In stone walling the bedding joints are usually horizontal, and this should always indeed, be so when the top of the wall is terminated horizontally. In building bridges and in the masonry of fence walls upon inclined surfaces, the bedding joints may follow thr general direction of the work.

1916 . Footings of stone walls should be built with stones as large as may be, sifuares and of equal thicknesses in the same course, and care should be had to place the broades bed downwards. The vertical joints of an upper course are never to be allowed to fal over those below, that is, they must be made, as it is called, to break joints. If the walls " the superstructure be thin, the stones composing the foundations may be disposed so tha their length may reach across each course from one side of the wall to the other. Whe the walls are thick, and there is difficulty in procuring stones long enough to reaeh aero: the foundations, every second stone in the course may be a whole stone in breadth, an each interval may consist of two stones of equal breadth, that is, placing header ant stretcher alternately. If those stones canot conveniently be had, from one side of th wall lay a header and stretcher alternately, and from the other side another series of stone in the same mamer, so that the length of each header may be two thirds, and the breadt of each stretcher one third of the breadth of the wall, and so that the back of each heade may come in contact with the back of an opposite stretcher, and the side of that header mal come in contact with the side of the header adjoining the said stretcher. In foundations some breadth, for which stones cannot be procured of a length equal to two thire the breadth of the foundation, the works should be built so that the upright joints of an course nay fall on the middle of the length of the stones in the course below, and so th: the back of each stone in any course may fall on the solid of a stone or stones in the low course.
1917. The foundation should consist of scveral courses, each decreasing in breadth : they rise by sets oft' on each side of 3 or 4 inches in ordinary cases. The number of cours is necessarily regulated by the weight of the wall and by the size of the stones where these foundations or footings are composed.
1918. Walls are most commonly built with an ashlar faeing, and backed with brick c rubble-work. In London, where stone is dear, the backing is generally of brick-wor which does not occur in the north and other parts, where stone is cheap and comnor Walls faced with ashlar, and backed with brick or uncoursed rubble, are liable to becow
convex on the outside from the greater number of joints, and, consequently, from the greater quantity of mortar placed in each joint, as the shrinking of the mortar will be in proportion to the quantity; and therefore such a wall is inferior to one wherein the facing and backing are of the same kind, and built with equal care, even supposing both sides to be of uncoursed rublle, than which there is no worse deseription of walling. Where a wall consists of an ashlar facing outside, and the inside is enursed rubble, the courses at the back should be as ligh as possible, and the beds should contain very little mortar. In Scotland, where there is abundance of stone, and where the ashlar faces are exceedingly well executed, they generally back with uncoursed rubble; in the north of England, where they are not quite so particular with their ashlur facings, they are much more particular in coursing the backings. Coursed rubble and lurick backings admit of an easy introduetion of bond timber. In good masonry, however, wooden bonds should not be continued in length ; and they often weaken the masonry when used in great quantity, making the wall lialle to bend where they are inserted. Indeed, it is better to introduce only such small pieces, and with the fibres of the wood perpendicular to the face of the wall, as are required for the fastenings of battens and dressings.
1919. In ashlar facing, the stones usually rise from 28 to 30 inches in length, 12 incines in height, and 8 or 9 inches in thickness. Although the upper and lower beds of an ashlar, as well as the vertical joints, should be at right angles to the face of the stone, and the face and vertical joints at right angles to the beds in an ashlar facing; yet, when the stones run nearly of the same thickness, it is of some advantage, in respeet of bond, that the back of the stone be inclined to the face, and that all the backs thus inclined should run in the same direction; because a small degree of lap is thus obtained in the setting of the next course, whereas, if the backs are parallel to the front, no lap can take place when the stones run of an equal depth in the thickness of the wall. It is, moreover, advantagcous to select the stones so that a thicker one and a thimer one may follow each other alternately. The disposition of the stones in the next superior course should follow the same order as in the inferior course, and every vertical joint should fall as nearly as possible in the middle of the stone below.
1920. In every course of ashlar facing in which the backing is brick or rubble, lond, or, as they are called in the country, through stoncs should be introduced, their number being proportioned to the length of the course; every one of which stones, if a superior course, should fall in the middle between every two like stones in the course below. And this disposition should be strictly attended to in all long courses. Some masons, in carrying up their work, to show that they lave introduced a sufficient number of bond stones into their work, choose their bond stones of greater length than the thickness of the wall, and knock or cut off their ends afterwards. But this is a bad practice, as the wall is liable to be sbaken by the force used in reducing, by chiselling or otherwise cutting away the projecting part, and sometimes with the claance even of splitting the bond stonc itself.
1921. In piers, where the jambs are coursed with ashlar in front, every alternate jamh stone should go through the wall, with its bed perfectly level. If the jamb stones are of one entire height, as is often the case when architraves are wrought upon them, and also upon the lintel crowning them, of the stones at the ends of the courses of the pier which are to adjoin the architrave jamb, every alternate stone should be a bond stone; and if the piers be very narrow between the apertures, no other bond stones will be necessary in sueh short courses. When the piers are wide, the number of bond stones is to be proportioned to the space. Bond stones, too, must be particularly attended to in long courses above and helow windows. They should have their sides parallel, and of eourse perpendicular to each other, and their horizontal dimension in the face of the work should never be less than the vertical one. The vertical joints, after receding about three quarters of an inch from the face of the work with a close joint, should widen gradually to the back, so as to form hollow wedge-like figures for the reception of mortar and packing. The adjoining stones should have their beds and vertieal joints filled with oil-putty, from the face to about three-quarters of an inch inwards, and the remaining part of the beds with well-prepared mortar. P'utty cement is very durable, and will remain prominent when many stones are in a state of dilapidation, throngh the aetion of the atmospliere upon them. The use of the oil-putty is at first disagreeable, from the oil spreading over the surface of the contignous stones; but after a time this unpleasant look disappears, and the work seems as though of one piece.
1922. All the stones of an ashlar facing ought to be laid on their natural beds. From inatention to this circumstance, the stoncs often flush at the joints; and, indeed, such n position of the lamina much sooner admits the destructive action of the air to take place. Methods of building in cement and conerete blocks, are noticed in the previous section.

1922a. Ruprip-wonk. A wall consisting of unhewn stone is called a rubble wall, whether or not mortar is used. 'This species of work is of two kinds, coursed and uncoursed. In the ferancr, the btones are gauged and dressed by the hammer, and thrown into different heapt, eath
containing stones of the same thickness. The masonry is then laid in horizontal courses, but not always eonfined to the same thickness. The uncoursed rubble wall is formed by laying the stones in the wall as they emme to hand, without gauging or sorting, being prepared only by knocking off the sharp angles with the thick end of the scabbling haminer.

1922b. Apparently, wherever there was any difficulty in obtaining stone, the mediæval builders employed the worst of all methods of construetion in walling, viz., eonerete on rubble-work between the two faees of squared stone. In the early period of mediaxal art. flint or rough rubble, with "short and long work" to the quoins, seems to lave been very general; this "short and long work" was also used in faced walls; in both cases the short work eonsists of stone upon its bed, and alternates with the long work or stone upright : the short work ought to serve as bond thronghout the walls. In the 12 th eentury the use of rubble in conjunction with worked stone beeame frequent. The chief defect. frequently eonsidered one of the merits, of this system, eonsists in the omission of sufficient bond both in piers and walls; the oecurrence of joints in angles is too frequent; in fact any expedient seemed better than the trouble of making a back-joint.

1922c. Kentish Ragstone. This material, now so extensively employed for mediæva work in the metropolis and suburbs, is never used intermally, as it sweuts, that is, the condensed moisture from the atmosphere is not absorbed, and will show itself even through two coats of plastering. Hassock stone, however, whieh is the sandstone separating the beds o the ragstone, the sand being suffieiently agglutinated to allow of its being raised in blocks must never be used externally. It is easily worked, and makes a good lining for ragstont walls, as it does not sweat. It should be roughly squared, for if not done, the erumbling nature of the stone would endanger the security of the work, should it be exposed to any unequal pressure: it must not be placed where it would be exposed to very great pressure as in arehes, jambs, \&e. Hassock may be procured in London at from $6 s$. to $7 s$. per corc (3 fect cube), in roughly squared pieces; while rough rag is about $5 s$. per ton, and raf headers about 12s. 6d. per ton.

1922d. Sunk and moulded work in so hard a material is to be avoided, and so mucl wrought surfaee would eause decay. In using ragstone ashlar, it must be laid npon its na tural bed, otherwise rapid decay will almost eertainly follow, arising from the thinness of the strata, for blocks of a large size can seldom be entirely freed from hassock; and even wha appears to the eye as blue stone, retains for a considerable distance inward the prishm nature of its enveloping crust. A bloek of ragstone, if the face be worked, will present is damp weather an appearance precisely similar to the heart and sap of timber. In the cas of copings, $\mathcal{E} e .$, where one bed is exposed, the stone should be skiffled (or knoblled) as mucl as possible from the upper side, so as to expose only the soundest portion of the stone t the action of the atmosphere. In some situations, as mullions, door and window jambs an unsightly appearance would be produced by too exact an attention to the beds of tha stone, as the ashlar is gencrally too small to range with more than one course of headers In these cases the old masons seem to have departed from their usual rule, and to have se the blocks on end, so as to embrace two or three evurses ; but as the depth of the block re quired to work an ordinary jamb or mullion is not very great, it is not difficult to get th whole thickness required out of the heart of the stone.

1922e. Stone of the smaller layings are generally worked into headers; it is common t, work one side of the stone to a rough faee with parallel sides, without paying much atten tion to the beds and joints, which often recede at an acute angle with the face, so as t. bring the stones, when laid, to a closer joint. Such stones, however, must be propel] pinned in behind, and carefully bonded with the work at back. Headers are generall. knocked out to six, seven, eight, or nine ineh gauge for the height; the length and tai being determined by the size of the stone: on the face they do not vary much from th square form. Formerly headers were set on their natural bed, therefore it is not unusua to find stones in an old wall entirely gone from this cause.
$1922 f$. In the Whitelands bridge bed, a very free working stone of a bluish colour ca: be got 12 feet long with eertainty, and the Horsebridge bed yields a good stone to length of 15 feet. The white rag, the lowest of the beds in the quarry, tumbles to piece on exposure to the air (Whiehcord, Kentish Ragstone, 1846).

1922g. In its mechanical properties, ragstone possesses some of the qualities of granitc thongh in an inferior degree. In respect to resistance to pressure, it stands next to granit in the list of British stones; but when loaded for a transverse strain, the numerous vent to which even the best layings are liable, renders it untrustworthy for lintels, or in suspended position, without mueh precaution. In the former case of lintels and architrave: three stones, arch jointed, gives the requisite seeurity.

1922h. Whinstone, a inaterial, in one form or another, found almost over all Scotlano makes a very durable areh for bridge work, when well built with good mortar, the ston being in its natme weather proof. In the neighbourhood of Edinburgh, whinstone arche bave been erected since about 1770 , the greatest span being about 60 feet. 'The Messrs

Smith, of Darnick, stated, in the Transactions of the Institute of British Architects, that they had erected bridges with semi-elliptical arehes of the spans of 51 feet, and of $62 \frac{1}{2}$ feet, of whinstone faced with hewn stone. A bridge, almost entirely of whinstone, having an arch $63 \frac{1}{2}$ feet span, the depth of the masonry being $9 \frac{1}{2}$ feet on the average, was exected in 1833; while another, 76 feet 4 inches span, at Falshope, was entirely of whinstone, with a rise of about 18 feet. It sunk about seven inches when the centre was struck, but no broken stone was observed. The depth of the arch, requiring three breadths of stone to make it up, was 3 feet ; their average thickness was $3 \frac{1}{2}$ inches; Lut it varied from $1 \frac{1}{2}$ to 6 inches. The stones were laid as close as possible, and in crossing the bond the work was made firm, but the stones were not dressed straight upon the beds. Its cost was 360l. exclusive of the digging for the foundations.
192si. The most annoying part in the building of rubble arches, is the slowness of the setting or drying of the mortar, as until the mortar is able to bear considerable resistance the arch is extrcmely supple, and easily bent out of its proper curve when the eentre is struck. This bridge stood five weeks before that meature was considered advisable. Cement would perhaps be best for large rubble arches, and cven if expensive, the whole cost would be cheaper tham a bridge of hewn stone. With cement, almost any kind of stone, even the refuse of a slate quarry, inigl.t be worked into an arch of almost any extent.
1929. Flintwork. - In the chalk districts, the honses of the fifteenth century are frequently faced with flints, cut and trimmed, and arranged with great skill and effect. One of the best examples is a house in St. Andrew's, at Norwich, next the cemotery, a fragment of the decorated period of Gothic architecture, in which the flint work is so delicately finished that a penknife can scarcely be inserted in the interstices.
1922l. As flint itself is practically imperishable, and as flintwork becomes, when perfectly set, a mass of cencrete, it produces substantial work, if great care be taken in its manipulation. But flint walls frequently fall, by bulging while they are in course of construction, and splitting when they are old. On any sufficient natural cause, as the giving way of the foundation, they are riven into immense masses; hence a flint building gets out of repair less readily than a stone one, but if it suffer at all, it is very apt to become a complete ruin.
1922 m . Flint walls intended for durability should not be less than two feet in thickness, built slowly and solidly, flushed up with stiff strong mortar compounded of quick-setting stone lime and coarse sharp sand free from loam. As flint is a non-absorbent, bricks and tiles are often worked into the midile of the walls to assist in the induration of the mortar; but for the sake of econcmy, lumps of hard chalk, pebbles, and flat-bedded stones are frequently used as the principal components of the core or middle of the wall. The work must be kept as dry as possible during its erection, as well as subsequently; frost is found soon to level the work while saturated with water.
1922n. Flint walls are strengthened by lacing courses, formed of bricks three or four courses deep, not generally showing outside. At Cambridge, Brandon, and elsewhere, they do show, and are used every two or threc feet. The ohject is not only to get a contirnous bond, but to bring the work to a level bed and again start fair. When round flints are split, and the thicker portion is kept, as usual, at the face of the wall, driving rains are readily conducted by the inclination of the npper bed of each course to the middle of the wall, and by keeping it damp conduce to its decay; but as flints are seldom split at right angles to their axis, they can be so laid in the work as to be flush on the face as well as level, and the lower bed must be firmly pinned up with fragments. It is desirable that casitics for drainage, with exit holes at the plinth level, be formed in the iniddle of the wall by building in rods of wood or iron vertically, and drawing them up as the work progresses. The face is sometimes finished by inserting in the mortar joints guilets, or the sharp fractured bits of flint, when the work is called galleted or garreted (Dictionary of Architecture).
1920. Amongst examples of a systematic parsimony of labour and material in medixval art, may be no ieed the characteristic tables or courses, where cach projection
 is taken out of a separate course of stone or out of the smallest stone adjoining to it. The base (fig. 618.) and the capital (fiy. 618a.) of a shaft are kept so small as to be got ont of single blocks; the astragal belongs to the capital, and not, as in Roman work, to the shaft; the bell is in one stone, the abmens in another (fiy. 618 d .) ; cach order of an arch is an independent range of stones; the hoodmould is self-existent ; the sills are not dished, and the buttresses are toothed rather than bonded. In two cases, however, the ase of large stones prevailed, viz., in shafts of the 13 th century (in France, 1160 1230), which are long rods of stone 6,4 , or 3 inches in diancter and incapable of Learing any great weight, muless banded or bonded to the nearest rall or
pillar, and in the springing stones of vaulting, which are worked with level beds. (See pa 2002f.) The horizontal courses at the botton of the arch are also seen in the con struction of large horse-shoe arches. With the 13th eentury, also came the decider distinction between decoration and mere construction, which employed stone vertically not only for shafts of columns, but for mullions and tracery of windows and dwarf walls such tracery being cut out of slabs and confined by grooves or similar means.
1923. Where walls or insulated pillars of very small dimensions are to be carried up. every stone should be carcfully bedded level, and be without concavity in the middle. I the beds should be eoncave, as soon as the superimposed weight comes to be borne by the pier or pillar, the joints will in all probability begin to flush; and it is, moreover, better if it be possible, to make every course in the masonry of sueh a pier or piliar in onc stone.

corumins.

1924. When large columns are obtaincd in a single block, their effect, from that circumstance alone, is very striking; but as this is not very often to be accomplished, the next point is to have as few and as small joints as possible; and the different stones, moreover. ought to be sclected with the view, as much as possible, of concealing the joints, by having the blocks as much of the same colour as possible. It will immediately, of course, occul to the reader that vertical joints in columns are inadmissible, though in many of the greal edifices at Paris such do occur, much to their detriment.
1925. The stones for an intended column being procured, and the order in which they are to be placed upon one another having been determined, we must correctly ascertain the exaet diameter for the two ends of each of them. To effect this, draw an elevation of the column proposed to its full size, divide it by lines parallel to the base into as many heights as the column is intended to eontain stones, taking care that none of the heights exeeed the lengths the stones will produce; the working of the stones to the diameters thus obtainec then becomes easy. The ends of each stone must first be wrought so as to form exactly true and parallel planes. The two beds of a stone being thus formed, find their centres and describe a circle on each of them ; divide these circles into the same number of equa parts, which may, for example, amount to six or eight ; draw lines across each end of the stone, so that they will pass through the eentre and through the opposite divisions of the same end. The extremitics of these lines are to regulate the progress of the chisel along the surface of the stone; and, therefore, when those of one end bave been drawn, those o. the other must be made in the same plane or opposite to them respectively. The cylindrical part of the stones must be wrouglit with the assistanee of a straight-edge ; but for the swell of a column, a diminishing rule, that is, one made concave to the line of the column. must be employed. This diminishing rule will also serve to plumb the stones in setting them. If it be made the whole length of the column, the heights into which the elcvation of the column is divided should be marked upon it, so that it may be applied to give eac! stone its proper curvature. But as the use of a very long diminishing rule is inconvenien: when the stones are in many and short lengths, rules or rods inay be employed correspond ing in length to the different height.

1925a. The method of setting the blocks or frustra by the aneients, was to dish out thr beds to obtain a truly fine joint. In the Parthenon, an outer spaee of 7 inches in widt all round the drum, was left a perfectly level and smooth bed for aetua contact. The next space, of 1 foot in width, was very slightly tooled o: scratched over. The next, 9 inches in width, was made still lower by bein ${ }_{t}$ tooled over very roughly. The remaining portion round the centre w: left smooth, but was made as low as the surface of the second space. A square hole, worked at the quarry, in the centre of the shaft, was fillec with a cube of hard wood, in which was a hole to receive the half of : circular pin, also of wood, suggesting the idea that when the marble frustr were set, they were rubbed against each other. The first drum, at the temple of Hercules at Λ grigentum, when plaeed on the stylobate, wa: turned round until it had been well ground down. (Civil Engincer \&.c. vii. p. 241.) The practice of late ycars, for large columns, has beet to place a plate of thin lead between the beds of stone, so as to secur Fig. 6186 . an equal bearing and prevent the edges flushing, any space being fille
with putty or cement. At Paris, in many of the portieoes, the eolumns have ver! in with putty or cement. At Paris, in many of the portieoes, the eolumns have ver!
deep) thin rustics ($f i y .618 b$.), whicl would effectually prevent any broken cdges fron being observed. The effect is peculiar, especially in strong sunlight. The lieight o the faee of the stone is -385 of a metre; the height of the channel, ineluding the rounded a:rises, is 40 , and the depth of the chamnet is 85 .
10256. Besides the usual mode of drawing a volute, described in par. 2576, we inser a method recommended by Mr. Gwilt for adoption. A general method of inscribing: spiral in a rectangular cquadrilateral, A B C. D:-Multiply the given height by the givel the quotient from the height. The re-
 mainder is the radius of the first quarter revolution of the spiral : The formula is $h-h \times b=r(=\mathrm{BE}, b a$ or $\mathbf{F} a)$. Subtract the radius $a \mathrm{~F}$ so found from the height BD and the remainder FD will be the radius of the second quarter of the revolution, and is to be set from F to b. The difference $a b$ between $a \mathrm{~F}$ and $b \mathrm{~F}$ will form one side of the quadrilateral ubcd. Sultract the radius $\mathrm{F} b$ from the width CD and the remainder GC will give bd the other side of the quadrilateral alcd (whieh points will be the centres fur the portions of the firstrevolution), and will be a figure similar to, or of the same proportions as, the given quadrilateral ABCD. Then $d \mathrm{G}$ will be the radius of the third quarter of the revolution and H_{c} the radius of the fourth quarter. In the quadrilateral or parallelogram abcd, draw the diagonals $a d, b c$, and draw $b H$, eutting the diagonal ad in e, then will e be a point for the formation on the diagonals of another parallelogram efyh, whose angles (as in lat first made) will be the eentres for the radii of the second revolution. By again Irawing $\mathrm{H} f$ to cut the diagonal $a d$, another parallelogram may be formed, and so on to ring out the spiral. X is the centre part to a larger scale (Builder, xviii. p. 364).
1925c. From the nature of the formula it is evident that when $h: b$ is but by a trifte in greater ratio than $161: 1$ the first radius will be greater than the breadth of the quadriateral, and the spiral eannot be described within the figure. Also that when h and b are fllal, the spiral vanishes, for the formula bceomes $h-\frac{h^{2}}{2 h}$ and the first radius is equal to alf the side of the cireumseribing square. Hence a eircle is inseribed. Also that as se height and breadth approach equality the number of revolutiuns increases. In the iagran the lieight is taken at 27 equal parts and the breadth at 23 of such parts. Upon ial it will be fuund that the exaet proportion of the height to the breadth to bring out a firal within the given quadrilateral lies between $1 \cdot 61: 1$ and $1 \cdot 62: 1$.
192 d . When a pier was to stand upon the head of a pillar, the early medisval builders wided an crror which their ancestors often eommitted. Instead of turning the arehes and ling up the space at the springing until there was a elean base fur the pier (fig. 618d.), ey built some courses of the areh-stones in single hlocks excceding the width of the llar. When these had risen so high that the base of the pier would not interfere with the

h-stonce, these horizontal courses were discontinued (fig. 618e). . Λ dern fully (fig. $618 f$.) was unknown to them. Λ similar systen dic-

Fig. 618h.
on the constriction of a corbelted fuundation for any work standing frce from the crul thickness of the wall. In early pointed work the intrudus of an arch (as A in figs.
Sy, nad 618h.) was phunb with the face of the square block B, forming part of the
intal; and equally the front of a shaft over a capital is plumb with the same square block.
1012.5. Jogeling. Lintels or fat arches, stone architraves, chimney mantels, mid such
n. when formed of small stones, are secured by joggling the joints of adjacent stuntes so
to forma continnous beam, the strength depending npon the solidity of the abutnentso - gauged arehes formed of eut bricks and used as hads to openings, are similat in
effict, but as they have neither joggles nor dowels, they are now sometimes assisted especially in uncertain foundations, by placing under thens a thin flat bar of wrough, iron. Bartholomew, in his Specifications, 1840, gives some ancient specinens from Ronal sepulchres, the three lower courses being prevented from sliding by a wedge-shaped jogg! formed on the top bed of one stone, and a corresponding hole cut in the lower bed o the next stone, to receive it. Fig. 618i. is perhaps the earliest instance of a simila contrivance, and shows the oversailing portions (French crossetics). It is taken fros

Fig. 618.

Fig. 6182:

Fig. 6187.

Dioclctian's palace at Spalato, a building often referred to as exhibiting the germs several of the peculiar ornaments afterwards prevalent in the Romanesque and Norma styles of art (par. 198). The same principle is seen in a semicircular arch of eleve youssoirs in the lower story of the reputed tomb of Theodoric at Ravenna; in a chimney piece at Conisborongl Castle, Yorkshire; and at the gate of the Alhambra. Murphy Butalha, gives, in plate 2, two instances of the same kind of construction. With doubl set-offs, an example is found in the upper part of Theodoric's tomb. Fig. 618h., showin the introduction of tenons of a circular form, is the transom of the Norman west doo way of Rochester Cathedral. Fig. 6181. having three tenons to each stone, is from th mantel of a fireplace in Edlingham Castle, Northumberland.
192.5f. Serlio, in his Opere d'Architctura, in Book iv. chap. v., shows two excelle modes for relieving the weight from a lintel over an opening, figs. 618 m . and 618 n . $F_{!}$

Fig. 618 m . $618 o$. is the mode adopted by Mylne, erecting Blackfrians Bridge, where eat joggle consists of a cube foot of a la stone. During the repairs of this structu in 1833, the decayed or broken stones we cut out, and new blocks inserted by the genious arrangement shown in fig. 618 A represents the new block let in, in th parts. 13 is first fixed, having a hole cut receive a plug C , which is placed in a ho in the half D ; on this block being insert in place, the plug C drops half its length into the hole in B and secures the portion Chamels were also cut through the blocks, through which wires were placed attached the plug to insure its sliding into its place. These were cemented up subsequently. In small works, copper plugs, or dowels would be more proper than the large blocks shown in fig. 6180., as they require the removal of less of the substance of the arch stones as necessary for admitting joggles. Cubes, and dowels, of slate are now very much employed.

1925g. Another method much practised consists in joining, by an elbow to each voussoir, a portion of the neighbouring horizontal course of the work. This arrangement will be understood at once by reference to figs. 956 and 957 ; but, however good it may appear at first sight, it is liable to split at the junction of the horizontal portion with the radial parts, if any irregular settlement takes place. The rustic channels of arcades wrought in this form have, however, a good effect.

1925h. From Viollet le Duc, Dictionnaire, we chtain the use of the crossettes as exemplified in a chimneypiece (fig. 618q.). Fig. $618 r$. is the lintel to the door on the north side of the Church of St.

Fig. 618p. Blatckfrlate's Bmidge. Fig. 618 Etienne at Peauvais; and fig. 618s. that of the Church of Villers Saint Panl. Fig 61 shows the system described by Rondelet, in plate 27 of his valuable publication, for taining the requisite proportion of strength in such flat arches, as they are called. WI ever may be interested in the method of supporting and tying together by rods a bars, the stones of architraves, as formerly practised by the eminent architects of Fran must be referred to the publications of Rondelet, Patte. D'Aviler, Blondel, and th of that period; in fact, the system is still introduced in the modern publications on er struction, in the Prench school of architecture.

Fig. 618q.
ccured. During the restoraFions at Cologne Cathedral, the ornice (above the 55 feet high windows) is 3 feet 7 inches high, and in order to connect the stones, iron hooks were put hot into the holes, which were then filled up and surrounded rith asphalte. By this proceeding the iron is for ever preserved from oxidation; it has proved itself the best system, because the applications of mortar, gypsum, sulphur and ead, have all failed. On the exterior, bronze surrounded with lead has been ased, which ras hitherto proved satisfactory. Cramps are also now set in Portland cement.

STAIRS.

1926. Nothing to perplex will occur in carrying up stairs which are supported by a wall t both ends, because the inner ends of the steps may cither terminate in a solid newel, or e tailed into a wall surrounding an open newel. Where elegance is not required, and कhere the newel does not exceed 2 feet 6 inches, the ends of the steps may be conveniently apported by a solid pillar; but when the newel is thicker, a thin wall surrounding the ewel would be cheaper. In stairs to basement stories, where geometrical stairs are used hove, the steps next to the newel are generally supported upon a dwarf wall.
1927. In geometrical stairs, the outer end of eacli step is fixed in the wall, and one of he cdges of every step supported by the edge of the step below, and formed with jogglect inte, so that no step can descend in the inclined direction of the plane nor in a vertical irection; the sally of every joint forms an exterior obtuse angle on the lower part of the pper step, ealled a back rebate, and that on the upper part of the lower step of course an iterior one, and the joint formed of these sallies is called a joggle, which may be level from te face of the risers to about one inch within the joint. Thus the plane of the tread of tel step is continued one inch within the surface of each riser; the lower part of the joint - a narrow surface, perpendicular to the inclined direction or soffit of the stair at the end ext to the newel.
1928. With most sorts of stone the thickness of every step at the thinnest place need not sceed 2 inehes for steps of 4 feet in length; that is, measuring from the interior angle of very step perpendieular to the rake. The thichness of steps at the interior angle should eproportioned to their length; but allowing that the thickness of the steps at cach of ie interior angles is sufficient at 2 inches, then will the thickness of them at the interior ngles be half the number of inches that the lengtly of the steps is in feet; for instance, step 5 feet long would be 2 inches at that place.
1929. The stone platforms of geometrical stairs, that is, the landings, half pares, and warler paces, are constructed of one or more stones, as they can be procured of sullicient 24. When the platform eonsists of two or more stones, the first of them is laid on the Rer atep that is set, and one end tailed in and wedged into the wall; the next stone is joggled rebated into the one just set, and the end also fixed into the wall, as that and the preeling steps also are ; and every stone in suceession, till the platform is completed. When wher flight of steps is required, the last or mppermost platform becomes the suning stone Ir the lirst step of it, whose joint is to be joggled, as well as that of each suceceding step, milarly to those of the first llight. The principle upon which stone geometrical stairs e comatrieted is, that every body must be supported by three points phaced ont of a ruight line; and therefore, that if two edges of a body in diflerent directions be secured another borly, the two bradies will be immoveable in respect to each other. This last we oceurs in the geonctrical stairease, one end of each stair stone being tailed into the
wall so as to be ineapable of tilting, and another edge resting either on the ground itsel or on the edge of the preeeding stair stone or platform, as the ease may be. The stom which form a platform are generally of the same thiekness as those forming the steps.

ON THE SCIENTIFIC OPERATIONS OF STONE CUTTING.

1930. The operations by which the forms of stones are determined, so as to eombine the properly in the various parts of an edifice, are founded on strictly geometrical principle and require the greatest care and exactness in exeeution. It is only by a thorough knon ledge of the nature of these operations that the master mason is able to cut and earve th parts whieh, when joined together, eompose the graceful arch, the light tracery of tl Gothie vault, or the graceful and magnificent dome. The method of simple walling, an its general principles, have been given in this book, ehap. i. sect. x. In what follows π propose to confine ourselves, 1 st , to the leading operations necessary to set out the simp arch or vault, and the groins formed by it; 2 d , to the forms produced by vaults wi plain and eurved surfaces interseeting; 3d, and lastly, to dome vaulting; giving suc examples as will so initiate the student that he may, we trust, have little, if any, difficult in resolving any case that may occur, and reminding him that if he well understand tl section already submitted to him on Descriptive Geometry, his labour will be m.k abridged, not only in what immediately follows, but in that seetion which treats hereaft on Carpentry.
1931. I. Of the Construction of Arches and smple Vadits, and the Grol: formed by tufir Intersection. In arehes and simple vaults we have to ascertain ti exact form of the arch in all its parts, and the direction of its joints; both whieh points a dependent on the geometrical properties of the eurve used for the areh.
1932. To fund the joints of a flat arch without using the centre of the circle of which t arch is a part. Divide the arch AB (fig. 619.) into as many equal parts as there are intended to be arch stones, at the points $1,2,3, \& e$. From Λ, with any eonvenient radius, describe an are at α, and from 2, with the same radius, deseribe another arc, erossing the first at α, and join $a 1$;

Fig. 619. then 1 is the first joint from Λ. To find the joint passing through 2 ; with the same radins as before, from the joints 1 and 3 as eentres, 1 scribe ares cutting each other at b, and draw $2 b$; then $2 b$ is the sccond joint. In the sat mamer all the other joints between A and B will be found. To find the skew backs, abutting joints $\Lambda \mathrm{C}$ and DB ; with a radius equal to $1 a$, from the eentre A describe an : at C; from the contre 1 , with the radius $A a$, describe an are eutting the former at C, a draw the line $A C$, which will be the springing bed of the areh. In the same manner 1 joint BD may be found.
1933. The joints of any arch may be drawn with eonsiderable aceuraey by setting off equal distances a point in the eurve on each side of the place for the joint, and from the points, as centres, with any radius, ares to intersect, through whose intersections lis bcing drawn, will give the directions of the joints.
1934. To draw an elliptical arch to any two dimensions by circular arcs. Draw the strais line $A B$ (fig. 620.). Bisect $A B$ in C by the perpendieular $D g$, make $C A$ and $C B$ e:

Fig. 620.

Fig. 621.
equal to half the span of the areh, and make $C D$ equal to the height, and $A j$ parallel : equal to CD. In $\mathrm{C} g$ make $\mathrm{C} k$ equal to CD . Divide Λj and $\Lambda \mathrm{C}$ eaeh into two equal pat Through 1 in $\Lambda \mathrm{C}$ draw $k n$, and through 1 in $A j$ draw 1 D , eutting $k n$ at n. Bisect by the perpendicular $l g$, and from g with the radius $g n$ or $g \mathrm{D}$ deseribe the are n Dih. Dr $g h$ parallel to $A \mathrm{~B}$, and join $h \mathrm{~B}$, and produce $h \mathrm{~B}$ to meet the are $n \mathrm{D} h$ in i. Join $g i$ cutt $A B$ in f and make Ce equal to Cf . Join $g e$, and produee it to meet the are $n \mathrm{D} h$ it From f with the radius $f i$ describe the are $i B$, and from e with the radius $e A$ deseribe are Ann. Then AmDil is the arch required.
1935. An elliptical arch ADB (fig 521.) being given, to draw the joints for a given num
arch stones. Find the eentres $e_{,} f, g$ in the same manner as if the arch were to be drawn; n $g e$ and produce it to meet the arch; also join g, f and produce it to meet the are $i n i$. vide the elliptical eurve $A D B$ into as many equal parts as the number of areh stones. on the centre e draw lines through the points of division in the curve between A and ere $g e$ meets the curve. and from the itre g draw lines through all the intermete points between $g e$ and $g f$, and lastly iw lines from f through all the intermediate ints between i and B , and the parts of the es thus drawn on the outside of the eurve 1 be the joints of the arch stones.
1936. In very large arches it will be deable to find five centres, as in fig. 622., and se will be obtained by finding two inmediate points in each half of the curve tead of one; then bisecting each pair of jacent points by a perpendicular, we shall ve the centres e, h, g, i, f, to be used for awing the joints in the same manner as in

Fig. 622. preceding figure.
1937. The above methods are sufficient for ordinary purposes; but where strict aecuraey required, the following method is mathematically truc. Suppose any joint, as $g h$, is gired to be drawn (fig. 623.), and that point D is the middle of the areh and point \mathbf{C} the middle of the springing line; 11 with the distance CA or CB , from the nt D describe an are at e and another at ,o cut AB at e and f. Draw eg and $f g$; duce eg to i and $f g$ to h, bisect logi by the aight line $g h$, which will be the joint rered. In the same manner, by drawing

Fig. 623. 1 :s from e and f to each point of division, and bisecting the angle, lines for the other joints 1) be drawn.
938. To draw a Gothic urch to any given dinensions (fig. 624.). Draw the straight line

Fig. 624.
(CI is made equal to IBC)
equal in length to the span of the arch. Wiseet $A B$ in C by the perpendicular DI. draw AG and BII parallel to DI. Make CDequal to the height of the areh, aut the es ('I)(; and CODIl each equal to half the vertical angle; make CF equal to the difce between (Cl) and ΛG and join $F \Lambda$ and lib. Divide $A G$ and ΛF ach into the - number of equal parts, connting each from the point A. I'hrough the points $3,4 \mathrm{in} A 1^{\circ}$ draw $\mathrm{la}, \mathrm{l}, \mathrm{I} \mathrm{c}, \mathrm{I} d$, and through the points $1,2,3,4$ in $\mathrm{A} G$ draw $1 \mathrm{I}, 2 \mathrm{I}$, 4D cutting I $a, I b, I c, I d$ at the points a, b, c, d, then throngli the points A abcall) draw re; which will be half of the Gothic arch remaired. (Other methods. par. 1913 an, et seq.) 139. To draw the joints of the arch stoncs of a Cothic arch (fig. (;25.). Having formed

 il . D'rotuce li to p. Divide the curve into as many equal parts as the arch stomes ar o be in number. Then i will be the centre of the joints which pass though all the
points between A and p, and l will be the centre for drawing the joints of the arch stonc which pass through all the points between p and D.
1940. The reason for the foregoing rule is obvious; for the joints are merely made to radiate to the centres of the ares of circles whereof the arches themselves are formed; a in subsections 1934, 1935, they were drawn to the centres of the approximating circle wherefrom the elliptical curves were struck.
1941. To describe a parabolic curve for a pointed or Goihic arch by means of a series ? lines touching the curve, the dimensions of the arch and the angles it forms at the crown being given. Draw the straight line AB (fig. 626.) and draw CD perpendicular to AB . Make CD equal to the height of the arch, CA and CB each equal to half the span. Make the angles CDe and CDf each equal to half the vertical angle. Divide $A e$ and $e D$ each into the same number of equal parts, and through the corresponding points of division draw lines

Fig. 626. which will form one half of the arch: the other half DB may be found in the same mamer
1942. To draw the joints of the arch stones iv the above sort of arch. Draw the chords AD, DB for each half of the arch (fig. 627.) ; divide the arch into as many equal parts as there are to be arch stones. Let it now be required to draw a joint to any point h : bisect AD in k, and join $e k$ cutting the curve in l. Draw $h g$ parallel to $A k$, cutting $e k$ in g, and in el make $l i$ equal to $l g$. Join hi and draw hm perpendicular to hi. Then lm is the joint required. In the same manner all the remaining joints will be found.
1943. To describe a rampant pointed arch, whose span, perpendicular height, and the hergl of the ramp are given. Draw the straight line AB ($f(g .627$.), and make AB equal to th span of the arch. Draw BC perpendicular to $A B$, and make BC equal to the height of the ramp. Bisect $A C$ in D, and draw DE perpendicular to AB. Make DE equal to the height of the arch; draw Af and $\mathrm{C} g$ parallel to DE, and make $A f$ and $C g$ equal to about two thirds of DE. Join $f \mathrm{E}$ and Eg. Divide $\mathrm{A} f$ and $f \mathrm{E}$ cach into the same number of equal parts, and through cach two corresponding points of division draw a straight line. All the lines thus drawn will give one half of the curve. The other half may be

F4. 628. drawn in the same manner. To find the joints of the arch-stones to this sort of arch, procee as for a plain arch in the last example, as shown by fig. 629.

1943a. Besides the rule given in par. 1938, To draw a Gothic arch to any given dimer sions, the following plan has been put forward for finding the curves of arches and rib) The fundamental rule that the curves should spring from the line of the impost has bec abandoned by many; one centre was to be taken a little above this line, another a litt below it, and so on. The following rule furnishes a principle which gives the centres ali these curves with perfect certainty and perfect harmony, at the same time furnishm
hat is a further requisite, an independent projection for each rib. The author insits tat these curves were always clliptical. If the arch to be drawn be less in height than se half width, let AB, (fig. 629a.) be the half width; BC the height; join AC; draw lines om B and A perpendicular to AC , and the points E and D are those required. Then © C will be the smaller radius, and EC added to AD will be the longer radius. For ches whose height is greater than their half widtl (fig. 629b.), draw CF and BE perpenicular to AC , then EC will be the smaller radius; and EC added to CF will be tha inger ıadius. The author of this theory is Thos. L'Aker, as read at the Liverpool Arch. ociety, 16th October, 1850, and printed in the Civil Enyincer, vol. xiii. p. 365. Sce ir. 2002d.
19433. Although the term arc en tiers point is still used in France for an arch enclosing n equilateral triangle, as it was in the time of De Lorme, that architect, in his work atitled Nourelles Inventions pour bien bastir, published in 1578, showed that the arc en tiers int was obtained by division of the space into three equal portions, of which two gave er radius. The arc en quatre prints was obtained by division into four, three of them ising the radius. This medixval mode of determining some of the shapes of pointed rches, was noticed by Professor Willis in his elucidation of Wilars de Honecort's Sketch-book, 8.59, p. 138-40. He is disposed to call the equilateral arch, the arch of two points; ientions arches of six points; and instances cases with a radius of five-sevenths and a alius of live-eighths, besides the occurrence of a centre placed to the extent of half the pan outside the springing point. The same authority observes that the true method was orgotten soon after thic disuse of mediæval art, as Viola Zanini, in his book Della Arclitetara, published 1629 , defines the terzo acuto as the arch on an equilateral triangle, the unto acuto as the arch on a square with the dianetcr for radius, and the quinto acuto on pentagon : these last are respectively rather higher and lower than the true arch of four oints. The term point is here used as meaning a division, and not a puncture.

Fig. 629c.

1943c. The Procssor has also explained, p. 141, that to know the extia length of a vonssoir at the top of an arch of 2, 3,4 , or 5 points, the radius may be prolonged through the point P (fif. 629c.) of the arch to any extent S; then PS being divided into twenty-four parts, a line from S may be drawn parallel with the springing line to T, and respectively 12,6,8, or 9 of those parts in length; which will give a point V, so that $\mathrm{P} V$ will be the line of the central joint.

1943d. The construction of ogee arches is very simple; but as will presently be shown, the rule is open to judicious variation. The general principle is to draw the linc of the nose Z, (fig. 629 d .) of the hoodmould ; to take a point upon at line; to draw from the springing a line through that point to the centre line, to accept e place where the centre line is cut as the height of the ogce, and to find in the usual anuer the centre for the upper part of the ogec. The following directions are chicfly ken from Viollet le Due, Dict.
1943e. To draw an ogee arch of one point (fig. 629d.). Bisect the span in D, draw the centre line CD, describe the are $A G$,
 biscet AG in E, and through E from A draw a line cutting the centre line in II ; through H draw FK parallel to the siringing line, and through E from D draw a line cutting FK at M , which will be the centre for the upper pant of the ogee arch. In some cases, as in the figures $629 e, f$, and h, the three points KMN form an equilateral triangle.
1643f. 'Io draw an ogee arch of turo paints (fig. 629e.). Bisect the span AB, draw the eentre line, and deseribe the arrs $A G B$; then divide $G B$ into five parts G 1, \&ec, and proceed as before.

1943g. To drav an oyee arch of three points (fig. 629f.). Repeat the above operations. olserving to divide the span $A B$ into three parts, $A E, E F$, IH3, and to divide GB into fonr parts, (il, \&c. It will be observed that in fiy, 629y. (from Pugin), $A B$ is divided into three parts, und the centres lis with arere to describe the ares on their own sides of the centre line; that the distances . I.i, and 113 are ergual, and that EII is erpual to E 1 .

1943h. To draw an ogee arch of four points (fig. 629h.). Bisect the span, draw centre line, fix the four points, and describe the ares AG, GB; then divide GB into four parts, and proceed as above indicated. But a difference is taught by an illustration adduced by Viollet le Duc, to show another feature of medixval art. In fig. 629i. it will be ouserved that the areh GA is divided into fice portions, and that boltel. It should be notieed that some very
 good deeorated work of the middle of the 14th century, uses five-eighths of the spa for the radius, and finds the centre of the ogee curve upon a line drawn trom th central point of radius at an angle of 45° with the horizontal springing line.

1943i. To draw a cusped ogee arch (fiq. 6:9h.). Proeeed as above described for an arch of one point as far as the construction of the horizontal line JK. Then from the centre F through E draw a line, and thereon make IU equal to 1 S , being so much of IF as is intercepted by the centre line of the pointed arch; and then on the horizontal line JK make WH equal to IS: thus are obtained the two eentres for the cusp. But Viollet le Duc appears to prefer another mode, whieh very slightly differs in result. He draws SI produced at an angle of 45° with the base line; on this he marks $G^{\prime} U$, which is the half of a semicirele, equal to GA, fixing IU, and continuing the process as in the former method.
1944. II. Of the Construction of intersecting Vautrs or Groins. The forms of vaults may be so adapted to one another that the lines of intersection shall be in planes,
 and these planes the diagonals of the plan of the intersecting part of the vaults; jf , howers they be not so adapted, the lines of intersection will 1 e eurved on the plan, and these curves is necessary to asecrtain in making both the moulds and the centerings for exeeuting the wor:
194.5. To determine the form of a voult to intorsect with a giveia one in the plane of t diagonnt, and also to find the diagonal rib for the rentering. I.et the given vault be E1 (fig. 630.) and AC and BD the diagonals, erossing in f. Draw f 年erpendieular to E cutting EF in c. In the are IF take any number of points $a b$, and draw $a g$, bh parallel l f, cutting EF in d, e, and the diagonal AC in g, h. Draw $f p, g q, h r$ parallel to EF , cuttil the base GII at m, n, o. Make $m p, n q$, or, eaeh respectively equal to $c I$, $d u$, eb. Draw f) $g h, h l$, perpendicular to $A \mathrm{C}$, and make $f^{\prime} 1^{\prime}, g h, h l^{2}$ respectively equal to $c \mathrm{I}, d a, e b$. Mah

Fig. 630.

Fig. 651.
$f h^{\prime}$ each respectively equal to $f g, f h$. Draw $g^{\prime} k, h^{\prime} T$ parallel to $f^{\prime} \mathrm{I}^{\prime}$. Make $g^{\prime} \not \mathcal{F}^{\circ}$ equal g $k, h l$ equal to $h l$; also make $m n^{\prime}, m^{\prime} o^{\prime}$ each respectively equal to $m n$, mo. Draw the s $p q^{\prime}, p^{\prime} q^{\prime} r$, as also $I^{\prime} k l, I^{\prime} k^{\prime} l^{\prime}$; then, through the points thus found, draw the curves upon ir bases AC and GH, and that on GH is the form of the intersecting vaults, and that AC is the form of the angle rib. If the form of the given areh be that of a semicircle F (fig. 631.), let ABCD be the angular points of "the plan, AC and D) B the gonals, cutting each other at M. Draw MK parallel to GD, or CH cutting GII in N. aw ML perpendicular to $A C$, and make ML equal to the radius of the semicircle. en, with the transverse axis $A C$, and semi-conjugate axis ML, describe a semi-cllipse, ich will be one of the angle rilis, as required. Also make NK equal to the said radius; n with the lesser axis and the semi-greater axis NK describe the semi-ellipse GKII, ich is the form of the other vault.
1946. The same method applies in fig. 632, where the narrow opening is a semi-circle

1'ig. 6.52.

the wide ose, consequently, a semi-ellipse, having its minor axis vertical and its mafor horizoital.
917. When two circular-arched vaulds of different heights interserf, to detcrmine the phan of arrisses in which the arches meet. Let ABC (fig. 633.) be the arch of the main vanht, IOEF that of the lesser vanlt ; ACLO the plam of the man vanlt, and I) 1'(2F that of leaser vault; and let the two vanlts intersect each other at the points HKNM. Also, L: be the inidde point of the lesser semi-circular are IDEIF。 J'roduce III) to v, and in arch DI: take any mumber of points r, and draw rb, sa, EI parallel to DII. Draw u, Liv parallel to I)F゙, cutting I) v at the points fuv, and produce IIC to G. In (C
 thing the semi-circle $A B C$ in the points $z y 13$. From the points Byz draw 131, ya, zb, 1 dhel to ("l.: 'Then through the points Ial draw a curve, which will be one hatf of the If of the arri4. 'The other half will be fonnd in tise same manner.
1.18. The incthod of tracing the plan of the groins is the same (see fig. 634.) when the ist intersect obligucly.
H!. Ti, fino the plan of the intersertions of furo arches of the sume hright, aut cither af the

and let $\mathrm{H}, \mathrm{K}, \mathrm{N}, \mathrm{M}$ be the points where the two arches intersect eaeh other on the 1 Divide either of the ares BC or DE into parts, equal or unequal ; as, for example, in are DE take any number of points r, s at pleasure, and draw $r a, s b$, EI perpendicular to Produce IID to v, and draw $r t, s u$, Ev, parallel to DF, cutting D_{v} in t, u, v. Produee H G , and make $\mathrm{C} w, \mathrm{C} x$ respectively equal to $\mathrm{D} t, \mathrm{D} u$; and as the arches are equal in hei CG will be equal to D v. Draw $w y, x z, \mathrm{~GB}$, parallel to AC , cutting the are BC in points y, z, and touching it in B. Draw $y a, z b$ and BI parallel to HK, and through the points HabI draw the curve HabI, whieh will he half the plan of the groin as required. The other half IN and the other groin MK will be found in the same manner.
1950. To find the plan of the groins produccd by the intersection of a cylindric and a comic vault, the angle of position of the axis, the dianeter of the cylinder, and the plan of the conic vault being given. Let AB (fig. 636.) be the axis of the cylinder, CD that of the cone, C being the apex, and D the point through which the base passes. Through any point A in $A B$ draw EF perpendicular to $A B$, and make $A E$ and $A F$ each equal to the radius of the cylinder, and draw EII and FI parallet to AB. Through D draw KM perpendicutar to CD, and make DK and DM each equal to half the diameter of the cylinder. Join KC and MC , cutting EII and FI in the points $\mathrm{N}, \mathrm{O}, \mathrm{P}, \mathrm{Q}$. Divide the semicircles FGE and KLM into parts, whereof the corresponding ones are equal to one another. From the points of division in the semieircle EGF draw lines paraltel to AB ; and through the corresponding points in the semicircle KLM draw lines perpendicutar to the diameter KM, cutting KM. From the points of section draw lines to the apex C of the eone, cutting the former drawn through the points in the semicircumference FGE. Through each set of corresponding points draw a eurve, and the two curves will represent the arrisses of the groin on the plan. If in an octagonal ground vault the oetagronal range be cylinders, and the cross vaults, which tend to the centre, diminish to a line of the height of the vault, the following construction applies: - Let EFGIII (fig. 637.) be the exterior side of the vault, which is both equilateral and equiangular, and let JKLMN be the line of the exterior surface of the inner wall; so that the lines EJ, FK, GL, HM, IN, which pass through every two corresponding angles, may tend to the centre O of the groin vault. Let the sections of the given ribs be PQR and STU, so that I'R of the rib PQR may stand at right angles to the sides $\mathrm{F} . \mathrm{F}$ and JK and the sice SU of the rib STU on the middle of the side FG. Divide the two bases Pll and $S U$ in the same proportion, and through the joints of division in $S U$ draw lines from the centre O of the ground vault to meet the curve Sl'U ; and

Firg. 637.
rough the points of division in the base PR of the eross rib $P Q R$ drav lines paraltel EF, to terminate in the line FK, and in the semicircle PQR. From the points where ese lines meet FK, draw perpendiculars on one side of FK, and make the heights of ese perpendiculars respectively equal to the ordinates of the are PQR; and through the ds of these perpendiculars draw a curve FVK, which will be the angle rib. From the mints of meeting in the line FK draw lines parallel to FG, and throngh the points of vision in SU draw lines to the centre O, intersecting the former lines drawn from the ints of division in FK; through the corresponding points of intersection draw the urves SBL، and KBU, which will form the plan of the angle.
1951. In single groins the centres are made for the widest avenue, and are covered ove th boards (fig. 638.), so that the top of the boards may form the surfaee required for

Fig. 6.3.

Fig. 639.
rung the arch upon the interseetions; or the angles are found by the following practical ethod. The groins meet in the points I, C (fig. 639.), upon the boarding of the two wins. Ilace the straight edge of a board npon the point I, so as to range over the line 11 on the plan 'Then set up another straight edge upon the point H, so as to be vertical, d the straight vertical edge will med the horizontal edge; then apply a third straight ge to eaeh of the other two straight edges, so that it may also eome in eontact with c hoarding. After this draw a line along this third straight edge upon the boarding as - as may be found convenient ; shift the moveable or third straight edge, and apply it in e same manner to another adjoining portion of the surface of the boarding. Proceed in e same manner mutil the whole line be completed on the surface. Py this means, the cessity of laying down lines for the eovering is avoided. The lines being thus drawn, m for the eross vanlts are fixed on the top of the boarding; so that, making proper bwance for the thickness of the same, its surfaee, when fixed, may form the true surface the other cross vault. The ribs fixed upon the boarding to form the cross valts are Hed juek rils.
195?. The mode of constructing the carves by lines is shown for a rectangular groin in 640., in which A is the plan, I' the elevation. ere, to find the plinat monlds for forming the sins on the surfaec of the boarding, and working arch-stones, deseribe a semicircle on one of its lea, and divide it into any conveniont nomber equal parts. Draw lines perpendienlar to the we wr liancter, the semicircle being smposed to be thin the piers; the ordinates will ent the diagoIs: bust if it be laid down on the ontside, the ormates mom be prodneed matil they cut the diongoIs. Fron the pmints where the ordinates cont the ree, Ilraw lines parallel to the other side of the ing, and prosluee the side on which the dimmeter the semicircle is placed, ant extend the somicirlar are wish its divisions mpon any convenient part the line atas proslumed. Alarongh the points of (wann ifrow perpenendien) lars, sin as (1) intersent with, - former parallel linea: thenthrongh the pmints of "rwetion ulraw the eurve, ass shouw") at C, which II tre the monlil required.
19.53. Sometiosev several smites meet in mote comon cemtre, as in fig. Gith., which eahibites the plan
 . Seructenl of semicireular archow.

Fing. 6 ctes.

Fig. 611.
1954. Where the piers supporting groins (fig. 642.) are made octangular, the angles of the groins should be cut off or arched as ribs, by which they are rendered much stronger than when they are square. In stone groins, where the arch is cut ofl, there is no advantage in point of strength, and rather a defeet in point of appearance, to the groined angles.
1955. Arches intersecting a coved ceiling are similar to groins. Such arches are called lunettes, and are generally practised for semicircularheaded windows piercing the coves in the ceiling: fig. 643. exhibits a plan and section of such arches.
1956. A dome is a solid, which may be conceived to be generated by the figure of the base diminishing as it rises, till it becomes a point at the summit ; and when a dome has a polygonal base, the arches are plain arches, and the construction is similar to that of a groin. A domed ceiling of this kind upon a rectangular plan is shown in plan 13 (fig. 644.); the sections AA being elliptical in the top, and with lunette windows. C shows the geometrical construction.

Fis. 642

1957. When arches intcrsect an inclined rantt, and the projections of the arrisses cross ach other at right anghs, and the angle of etevation of one of the semicircular vertical ribs, f the ascending avemue or opening is given to ohtain the geometrical construction; so that he cross arches muty be cylintrical surfaces. Jraw the straiglit line $A B$ (fig. 645.) to cpresent the axis of the inclined vantt, and Iraw CD perpendieular to $A 13$. Produce $\therefore 1)$ to e and h; make $A C$ and $A D$ each 'pual to the radius whieh forms the edges if the ribs; draw $h \mathrm{~N}$ parallel to AB , and nake the angle Nho equal to the inclination of the axis represented by its plan AB. In he line ho take any point p, and draw $q r$ sarallel and $p s$ perpendieular to $h \mathrm{~N}$. Make is equal to A C or AD , and through s draw d parallel to ho. Draw pu perpendicular () U, , cutting it in u. Produce $p u$ to v. Set the circumfurence of the inclined vault rom u to v, divided into the equal parts $u, 1$, $.2 ; 2,3 ; 3 v$, at the points $1,2,3$. Divide ach of the quadrants $q s, s r$, into the same rumber of equal parts at the points $1,2,3$, nd throngh these points and in $u v$ draw $1 a$, b, isc parallel to $v t$, and through the points , 2,3 , in the curve $q s$, draw $i \mathrm{~L}, 1 a, 2 b, \therefore c$, parallel to p^{u}. 'lhrough all the points

Fig. Cts. $\ldots d, b, c$ draw the curve Labce, and this will be the plinhle mould for forming the angle or ruin over the plan, and for working the arch stones. I Hraw I k parallel to $A z$. Let E, ivile the circumference CED into the two equal parts $\mathrm{E}, \mathrm{C}, \mathrm{E} \mathrm{D}$; divide the ares DE, EC . Hu the sanc number of equal parts as $u v$ at the points $1,2,3$, and draw $1 u, 2 x, 3 y, \mathrm{E} \cdot$, arallel to $A B$; also through the points $1,2,3$ in the quadrant qu draw $g k, 1 u, 2 r, 3 y, w z$, erpendicular to $y N$; then through the points h, x, x, y, z, draw a curve, which will be the han bf the groin whereof the streteh-out is Laben. In the same manner the other balf of le plan will be found, as also the whole of the other parts.

1!).8. The firm of an arch crossing an inclined groined vantt at right angles, and the phun The dingonal ribs leing given; to find the arch of the tevel vault. Let A B, BC (fig. 646.) the plat of the axis of the vaults. 'I'hrough any wint A in $A 13$ draw I) $\mathrm{F}^{\text {p }}$ perpendicular to $A B$, and
 readth of the vault. Draw 1 G and lill paAllel to $A 13$; draw also any line I, K paraltel to 1 B , cutting 13 C in C , and make the angle KII, jnial to the inclination of the axis represented by "plane $\triangle 13$. Make C.D and CK cepuat to the readth of the level vanites draw $K(i$ and MN wralled to I\}(\%, and let MN cut I) (; in N, and FIl 1 I'. I) aw the diagomals $I^{\prime}(;$ and NII. I'ronce ($; \mathrm{K}$ to cot II, in I., and NXI to cut II, in Q. the enrve DEE Etake any number of points a, \therefore andi Iraw uh, br, ff pirallel to $A 13$, cutting 1) \mathfrak{l}° the puints μ, y, r, and the dingonal (I^{\prime} in d, e, f, 6] the rliggomal IIN in the points d', e^{\prime}, f^{\prime}. I'rowe 13.1 to E , draw all, fom, fri, 13 , paralled to I 3 (:, ibting ($2 l$, in the juints y, h, i, h; mashe $y l$, $l m$, in,

 rpendicular to Nil, and make If li eunal to K I., "1 join N: fle then will $111 /$ be the line of ranly for

 mulis.

from it only according to the different kinds of arches to be construeted; such as the bevelle. arch, that in a battering or sloping wall, and that on a circular urall.
1960. Draw two lines (fig. 647.) perpendicular to and crossing each other, as BA, GU From the point E, as a centre, describe the sofite curve ACB, and the extrados or upper curve FGII. Divide each of these arcs into two equal parts, as the dotted are abic. Draw LMI parallel to $A B$, and make the distance $A^{\prime} L$ equal to the thickness of the wall wherein the arch is to be constructed. Draw the outer and inner lines of the plan $\mathrm{F}^{\prime} \mathrm{K}$, A L, B'M, HN parallel to CD. Divide the are ACB into the proper number of equal parts for the areh stones or voussoirs, suppose five, by the joint lines 1 , 2, 3, 4; from the point E draw the joints $1-5,2-6,3-7,4-8$; then from every point where the joints cut the ases ACB, FGH, \&c. draw the perpendiculars cutting the line KN , as $8 d, c \mathrm{M}, 4 f, 7 g, h i, 3 k, 2 l, m n, 60$, $p, a \mathrm{~L}$, and $5 s$. Divide the sofite of each voussoir $A 1,1-2,2-3, \& c$. into two equal parts t, u, v, u, from which also let fall the perpendiculars $t \mathrm{Y}, u \mathrm{X}$, $v \mathrm{~V}, w^{\mathrm{T}} \mathrm{T}$.
1961. To draw the moulds of the sofite below NK. Draw the line OP parallel to the line KN ; prolong ED to Z and make the distance $Q Z$ equal to ED. Through Z draw RS parallel to OP, and on each side of QZ lay off the distances $\mathrm{C} 3,3 v, v 4,4 w$, and $u \mathrm{~B}$ respectively on $\mathrm{Q} x, x y, y a, a b$, and $b \mathrm{P}$.

Fig. 647.

On the other side lay off $\mathrm{C} 2,2 u, u$ l,
It and $t \mathrm{~A}$ on $\mathrm{Q} c, c d, d e, e f$, and $f \mathrm{O}$. Through the points O, e, c, x, a let fall on IRS the perpe: diculars $\mathrm{OR}, e a^{\prime}, c d^{\prime}, x c^{\prime}, a d, \mathrm{PS}$, and through the points f, d, y, b let fall the perpendicnlit from the middle shectings $f e^{\prime}, d f^{\prime}, y g^{\prime}, b h^{\prime}$; the distances of the dark lines give the bread of the sofite of each stone in the sofite curve.
1962. To draw the moulds of the joints: lay off the distance $1-5$ on eg, ch, $x i$, ak, al through the points ghin draw the lines $g q, h l, i m, h p$, parallel to QZ . To find the midd of the joint divide the distances $e g, c h, x i, a n$, each into two equal parts, as in $k^{\prime}, m^{\prime}, g^{\prime}$, through which draw the lines $k^{\prime} l^{\prime}, m^{\prime} n^{\prime}, q^{\prime} r^{\prime}$, st parallel to QZ.
1963. The elevation is a section of a hollow cylinder, of which the coneave or interi surface forms the intrados of the arch, and the convex or exterior surface the extrados, at of which the cutting plane of the section is perpendicular to the common axis of th cylinder.
1964. The angles of the stone are fonnd from the angle which the are of this sectic makes with any joint, and the curving of the sofite of the stone is found by a ruler mould, the edge of which is made to the eurve. The ends of the solite are found by developement.
1965. When the stones are shaped according to the moulds, and joined together in consecutive order, the whole mass, thus united, will form the solid arch as required.
1966. These separate operations being properly attended to, every difficulty will be removed, and no confusion will arise during the process, which can, in any degree, tend to perplex the delineator.
1967. To find the bevels and moulds for the joints and sofites of an elliptical arch cutting obliquely through a straight wall, the joints radiating to the centre of the opening. Draw the axis EN of the arch (fig. 648. , and therein take any point E, through which draw AB perpendicular to EN; make EA and EB each equal to half the space of the extrados or centre line of the arch; also make EC and ED each equal to half the spion of the inner arch. Produce the diameter NE to G;

Fig. 618.
nake EF equal to the height of the inner arch and EG equal to the height of the ourer arcls. On the major axis AB, and semi-minor axis EG, describe the seni-ellipsis A Glb, which is the extrados of the arch. Also, on CD as the major axis, and EF the semi-ininor ixis, describe the semi-cllipsis CFD.
1968. Make the angle ABH equal to the angle which the wall makes with the right icetion of the arch, and let BH cut the axis in K. Draw ML at such a distance from BH that they may comprehend between them the thickness of the wall, and let ML cut he axis in N. The intrados of the arch on the one side of the wall is OPR, and the 'xtrados is LQM; they are loth ellipses respectively of the same lieight as the intrados and extrados of the right arch, but with the axes OR and LM.
1969. Tu find the becel of the angle of the arch stones corresponding to the joint ab uding to the centre E. Describe the are bc from E with the radius $\mathrm{E} b$ cutting AB in

Draw by parallel to EN cutting BII in g, and draw cd parallel, and gd perpendicular, - EN, and join Kd: then EKd is the angle or bevel required (fig. 648.)
1970. The sofite of the arch is drawn according to the general principles of developement
1971. To muke the working drawings for an arch in a sloping rall, as, for instance, an arch in a terrace wall. 'To draw the elevation; from any convenient point o in the line $A B$ (fit!.649.), describe the are of the intrados s
' ${ }^{\prime}$ ' f and the are of the extrados $A Q B$: diride eaclo of these ares into odd numbers of equal parts (for the arch stones in this example five), and draw the joints $b g, c h, d i, e h$. For the plan of the arc of the intrados draw A13 perpendicular to AB, and draw the line of slope or batter AS. In the are of the iniradus take any number of points $b c d, \& c$. and draw the lines $b b, c c$, intersecting $A R$ in the points $I, 2, \& \mathrm{c}$. and meeting the line of atter $A S$ in the points $b c$. Draw Cl) paallel to AB, and at any convenient distance rom it draw aubecw perpendicular to CD , ntersecting it in the points e, l, m, n : \&c. Find he points $b^{\prime}, c^{\prime}, d^{\prime}$ in the straight lines $b v, m w$, is, such that the distance of those points rom the line El) may be respectively cqual o the intervals $1 b$, I c, \&c. between the perendicular AR and the line of batter $\Lambda \mathrm{S}$, had draw the curve $a^{\prime} b^{\prime} c^{\prime} d^{\prime} e^{\prime} f^{\prime \prime}$, which will e the plan of the are of the intrados. In he same manner the curve Eg / h ih D may be leseribed; which being done, the phan of the are of the extrados will be obtained.
1972. 'Ti, finul the moulds of the sofites ond lieds. Draw any straiglit line III in a eparate place, and extend the are of the inrados aliodef upon the line III from II to I; livide it into the sane number of parts that

Fig. 649. he are al'f of the intrados is divided into (in this instance five), and mark the points of divi$10, l^{\prime}, m^{\prime}, n^{\prime}, c^{\prime}$. Transfer the distances $e a^{\prime}, l b^{\prime}, m c^{\prime}$ between the line CI) and the plan of the re of the intrados, to the perpendiculars $n^{\prime \prime} a^{\prime \prime}, l^{\prime \prime} b^{\prime \prime}, m^{\prime \prime} c^{\prime \prime}, n^{\prime \prime} d^{\prime \prime}, c^{\prime \prime} e^{\prime \prime}$, and through the points " $b^{\prime \prime} c^{\prime \prime} d$ " $e^{\prime \prime} f$ " draw a curve, which will be the developement of the are of the intrados. ProHee the lines $l^{\prime \prime} b^{\prime \prime}, m^{\prime} c^{\prime \prime}, n^{\prime \prime} d^{\prime \prime}$, to $v^{\prime \prime}, w^{\prime \prime}, x^{\prime \prime}$, and transfer the distances $l^{\prime} v$, $r^{\prime} w$, d' x from he plan to the sofite on the lines $b^{\prime \prime} v^{\prime \prime}, c^{\prime} w^{\prime \prime}, d^{\prime \prime} x^{\prime \prime}$. Draw $f a a^{\prime}, h b^{\prime}, i c^{\prime \prime}$, h $f^{\prime \prime}$ perperndiular to 111 ; transfer the distances $g^{\prime} \alpha, h^{\prime} b, i^{\prime} c$ from the plan to the sofite upon $g u^{\prime \prime}, h b^{\prime \prime}$, ", and join $\ell^{\prime \prime} n ", l^{\prime \prime} u v^{\prime \prime}, x^{\prime \prime} c^{\prime \prime}$, which will complete the moulds of the joints.
1973. To make the drauings for an oblique arch by an abridyed methot. 'The following lethod is said to be abridged, because, by one very short operation the moulds of the ofites and joints are found within the plan of the arch ABDC (fig. 650.). Divide A 13 n lif juto two equal parts. and draw Jif parallel to AG. Fron the point A draw Λ (; erpendicular to $A C$; prolong 1$) 13$ to (; ; divide $A C$ into two equal parts in the point $I 1$. rom II, as a centre, describe the are $A \mathrm{l}^{\prime} \mathrm{G}$, which divide into vonssoirs, and draw the ints from the eentre II. Draw lines from each sofite parallel to Fi . F , and below the line [), the moulds for the sofites are comprised between the parallels of the hey, and those of fo joints are traced on the sides of the plan, as follows:-

 wirl \quad (2I' the point $\ 1$, and on lis tire point L, diaw the fiont line of the second sulite

MN, and the front line of the first IL. 'I'he iack of this sheeting sofite is found by the same operation below the plan. The mould of the key is formed by two lines RS, Q' , and the front and back lines of the plan A1, CD ; the two moulds of the sofites NMTS and LIXV serve to trace the two stones on each side, olserving only that the lower arrisses of the sofite on the side AC become those of the top on the side BD; or that the under arriss of one side may be that on the other side by reversing the mould, which will have the same effect.
1975. To find the moulds of the beds or joints. Prolong NQ to meet DG, to fiud the point P , and through it and the point E draw the front of the second joint P2; prolong LM to GD to find O , through which and the point E draw the front of the joint O3. Proceed in the same mamer to find the backs of the other joints, which are sufficient also to trace the stones by reversing them. It is not absolutely necessary to cut out the moulds of the sofites and joints, but the angles may be taken by bevels and applied to stones. The heads are prepared, as usual, with the moulds of the heads of the straight arc. It must be observed, that in this arch the face or

Fig, 650 . trome differs from a straight arch, being formed by different sections of a cy linder.
1976. To find the movids for an obluque arch, wherevf the front slopes and the rear apt pe pendicular to the axis. Leet $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{GH}$ (fig. 651.) be the plan of the imposts. From the point a, as a centre describe the ares $\mathrm{ACB}, \mathrm{DRI}$, which divide into five or more equal parts for the arch stones. Draw the joint lines from the centre, and the perpendiculars from the joints below the line $A B$. Fron the summits of the perpendiculars, draw lines parallel to AD , to terminate in the perpendicular DF. From the point D, as a centre, describe ares from the points which terminate in DF, to meet the line of slope DE in the points m, l, k, E. Draw the lines $m r, l s, h t$, EF parallel to AB, meeting the perpendicular DF in the points rotF; tranfer the distances $r m, t h, u \mathrm{P}$ from n to b^{\prime}, from o to c^{\prime}, from a^{\prime} to s^{\prime}, and through the points $A^{\prime} b^{\prime} c^{\prime} d^{\prime} e^{\prime} B^{\prime}$ daw the curve. Find the extrados or outer line Dfghi in a mamer simular to that in which the imer curve has beera found. Draw the points $b^{\prime} f^{\prime}, r^{\prime} g^{\prime}$, $d^{\prime} h, e^{\prime}$ i. Prolong Anl and BG to K and

Fin. 651. L, and draw the lines $b^{\prime} b, c^{\prime} c$, $d^{\prime} d$ parallel to AK .
1977. To make the straight arches. Draw KL perpendicular to $A^{\prime} \mathrm{K}$, and produce KL f^{\prime} and g^{\prime}. Transfer the distances between the points m, l, k, E, and the line QD to : ordinates of the lower are from b to v, from c to w, from d to x, and from e to y, and draw the curve Kowry L. Also find the outer curve in the same mamer, and draw VT at right angles to AH .
1978. To firal the moulds of the sofites. Draw the line WX (fig. 652.) in any convenient surface, and lay the breadths of sofite, not from the are ABC as before, but from those of the rigit are Kvwryl, that is transfer the distance $K v$, $u w, w x, x y . y$ l. to the line W X upon $\mathrm{W} a, a b, b c$, cal, and dX. Through the poi.ts WabedX, draw the lines $d y, e i, f h, y l, h m, y z$, perupudicular to

Fig 2. 2%

WX. Transfer the distances $1 \mathrm{~A}, 2 b^{\prime}, 3 c^{\prime}, 4 d^{\prime}, 5 e^{\prime}$ upon the perpendiculars to W X : that is, from a to e, from b to f, from c to g, from d to h, and from \mathbf{X} to y, and join $d e, e f, f g, g h$, ky. In the same manner draw the line yiklmz, which will complete the sofites.
1979. To find the moulds of the joints. Transfer the distances $v \beta, w \gamma, x \delta, y \epsilon$, to the line XW from a to a, from b to β, from c to γ, and from d to δ, and through the points, a, β, γ, δ draw the İmes $n r$, os, $p t, \delta u$ perpendicular to W X. Find the points n, o, p, q, as also, r, s, t, u, as in the preceding examples: then the moulds of the joints will be eirn, $f k s o, p t l g$, $h \delta \mathrm{~m}_{\mathrm{m}}$. It must be observed that the boundaries, or extrados and intrados, DRI, ACB of the ring of the arch, do not stand in a plane perpendicular to the plan, but are supposed to be the lines which are drawn on the wall itself; and this is the reason why ares are described between the perpendiculars 1 FF and the line of slope DE. It must also be observed, that the voussoirs of this arch must be cut by the moulds of the heads of the straight arch, and the moulds of the sofite must be applied on the voussoirs before the sofite is hollowed. Thus, let the first voussoir on the right hand be cut by the head mould on that face of the stone intended for the sofite; apply the first sofite mould, and its upper bed the first joint mould, and on its under bed the plan of the impost. Then cut the two heads according to these moulds, and hollow the sofite square to its arrisses, using for this purpose the curred bevel.
1980. To find the mon'ds for executing a semicircular-headed arch in a mass of masonry, of which one of its faces is a battering plane upon an oblique plan, and the other opposite face a portion of a cylindric surface. Describe the intrados and extrados of the elevation; draw the joints and describe the plan $a^{\prime} b c^{\prime} d^{\prime} e f$ ' of the intrados ($f g .653$.), and the plan Eg'h $i^{\prime} h^{\prime} \mathrm{D}$ of the extrados. Draw IBR perpendicular to AB , and draw BS', the portion of the cylindric surface. From the are BS draw the plan a't $m^{\prime} n^{\prime} o f^{\prime}$ of the intrados upon the line 'IU, and the plam 'Tpq'r's' U of the extrados in the same manner from the are BS, as the plan of the plane face was drawn from the line of slope $A S$.
1981. To find the plan of any joint, as that for the line or joint $c h$ in the elevation. Bisect $c h$ in v, draw $\mathrm{cm}^{\prime}, v \boldsymbol{w}^{\prime}$, and $h q^{\prime}$ perpendicular to AB , intersecting the lime Vis in the points quc. From the points $c \varepsilon h$, in the joint $c h$, draw ec, te, hh, meeting the line AS in the points ch, and intersecting the line $A R$ in the roints $1,3,2$ by three intervals, $1 r, 3 v$,

Fig. 6.3. Sh: Find the places here of the three mints $h v e$ on the elevation. In the same manner find the places $q^{\prime} u^{\prime} m^{\prime}$ of the three coresponding points; then will $c^{\prime} v^{\prime} h q^{\prime} w^{\prime} m^{\prime}$ be the plan of the joint required. 'The plans of the ther joints will be found in the same manner.
1982. To find the joint mould itself. Draw the line II (fig. 654.) equal in length to the levelopement of the intrados, and let He ce the developement of the are ar; draw $m^{\prime \prime}$ perpendicular to HI. Draw any line $N X$ in the plan parallel to VD, interceting the lines $c^{\prime} m^{\prime}, v^{\prime} w^{\prime}, h^{\prime} q^{\prime}$, in the oints $1,9,3$. Draiv $W \mathrm{X}^{\prime}$ in the deveprenent or sofite parallel to III, and the sance distance from HI that WX , from VI) in the plan, and let WX in. rect the line $c^{\prime \prime} n^{\prime \prime}$ in 1. Make the istances 1-2, 2-3 respectively equal ${ }^{1}$ ' $v, r h$, in the joint ch in the elevation, nd through the points $1,2,3$, just fomed,

Hig. fist. raw $V W^{\prime}, h^{\prime \prime} \eta^{\prime \prime}$, parallel to $\mathrm{C}^{\prime \prime} m^{\prime \prime}$. From the plan transfer the distances $2 v^{\prime}, 2 u^{\prime}, 3 h^{\prime}$, $3 q^{\prime \prime}$ to the fite from 2 to V, and from 2 to W; also from $3 h^{\prime}$:md from 3 to g the points crp" will be 1 a straight line, becanse they cormespond to the straight face of the wall, and the points ", w, $\eta^{\prime \prime}$ will be in a curve, becanse they correspond to the eylindric surfare. Draw, therere, the straight line $e^{*} h^{\prime \prime}$, and draw the curve line $m^{\prime \prime} w f^{\prime \prime}$, which will be a portion of an lipsis, diflering in its carvature hat in a very small degree fiom that of at circle drawn aroght the same the points. Howeres, if more exactacss be rapuined, we mity lime as
miny points in the joints of the surface of the wall and in the cylindric surface as we please; then $c^{\prime \prime} m^{\prime \prime} p^{\prime \prime} h^{\prime \prime}$ is the joint required, which serves for the upper and under beds of the two stones that unite together in that joint.

1933 . Find all the other joint moulds $b^{\prime \prime} t^{\prime \prime} p^{\prime \prime} g^{\prime}, d^{\prime} n^{\prime \prime} v^{\prime \prime} t^{\prime \prime}, e^{\prime \prime} o^{\prime \prime} s^{\prime \prime} l k^{\prime \prime}$, in the same manner, aul find the points $a^{\prime \prime} f^{\prime \prime}$ in the developement. Through the points $a^{\prime \prime} b^{\prime \prime} f^{\prime \prime} d^{\prime} e^{\prime \prime} f^{\prime \prime}$ draw a curve line by hand, or by a ruler bent to the points, and this will be the front curve of the so ite. Find the points $k^{\prime} p^{\prime \prime}$ in the developement corresponding to the points a^{\prime} and f on the plan, and through the points corresponding to the points a and f on the plan, and the points $k l^{\prime \prime} m^{\prime \prime} n^{\prime \prime} o^{\prime \prime} p^{\prime \prime}$, draw another curve, which will be the developement of the other side of the sofite. The developements of each of the parts of the sofite and of the two adjacent joint moulds give the three moulds for working one stone and the adjacent joints of the stone on each side of it. 'The angle which each of these joints makes with the sofite is found by making a bevel with one of its edges, circular for the intrados of the are of the elevation, and the other to coincide with the joint line adjacent.
1984. To fiud the m:nulds for exetuting a guteway in the quoin of a sloping wall. Let ABCD (fig.655.) be the plan of the angle in which the arch is to be constructed, whereof AB is the span. Draw the centre line EL, to which draw the perpendicular FG. Prolong the line CA to F , and DI to G; then from the point L, as a centre, describe the sofite FIIG and its extrados. Divide these ares into equal parts for the arch stones, and from the divisions let fall perpendiculars, and also from the middle of the sofites to EC, ED. From the summits of the perpendiculars draw lines parallel to FG terminated by the lines of slope Set off the slope at the different beights $a 1, a 2, a 3, a 4$ respectively at right angles to the lines on the plan, on $d 1, b 2, d_{3}, b 4$, $\mathbf{K} 5$; also on the opposite side lay $a 2, a 4$ on $d 2, b 4$; then on one side draw the curve $A b, K$, and on the other, to abridge the work, join $[3 b, b b, b \mathrm{~K}$. Again, for the outer curve, or extrados, set off $c 1, c 2, c \mathrm{G}$ on $d i, d 2$, N3. On both sides draw the curve MddO on the one side, and to abridge the labour, draw the straight lines $(b l, d i, d \mathrm{~N}$.
1945. To find the moulds of the sofites. Draw the line PQ (fig. 656.), on which lay the are of the sofite FIIG in the usual

Fig. $6 \cdot 5$. manner, making the points $1,2,3$, which correspond to the points dividing such are into equ: parts; then on the lines of the sofite lay the distances $\mathrm{F} A, f h, g b, l h, \mathrm{LK}$, on PR, $1 k, 2 l, 3 m, 4 m, Q \mathrm{~S}$, and trace the front curve of the sofite $\mathrm{R} k \mathrm{~lm} \mathrm{~m} \mathrm{~S}$. Also repeat the sane on the other side where there is only a straight line drawn from one sofite curve to another.
1986. To find the back curve of the sofite. Lay the distances $c o, f p, g q, k r, \mathrm{LE}$ on P'1, $10,2 t, 3 u, 4 v, \mathrm{QU}$, and trace the curve TotuvU.
1987. To find the moudds of the beds or juints. The

Fig. 656. sofite lines to which the beds belong are $2 t$ and $4 v$. Draw the straight lines $e b$, fa parallel to QU , respectively distant from $2 t, 4 v$ by 11 breadth GI of the joint, and let the lines be, $f d$ meet PQ in e and f; make ere equ to $g t$, and $a b$ equal to $d w$, and join $a l$, $b t$; make $f c$ equal to $l u t$, and $c d$ equal to $d x$, at join ne, vd. 'To trace the stones by moulds, prepare the voussoirs with the head of t ' moulds of the straight arch FHG. The sofite should be hollowed in each voussoir its particular mould: the rest is done as usual; but it must be observed, that if t sotite moulds are made with straight lines in front and near the sofite, it must not be he lowed till the last. The voussoirs may be worked by bevels, preparing the stones by t bians ACVM, BDWO, as for common imposts. Although the arch in each front be t absolutely necessary here, we shall give the method of constructing it. Let the line
 square to mm. Draw the perpendiculars op, $q r$, st, on which lay the heights of the joints the straight arch taken on the line of slope ; that is, lay $I \mathrm{I}$, on op, I4 on $\mathrm{gr}, 15 \mathrm{onst}$, a
iw the line $n t$, which is the slope. Then draw the curve $m p r t$, and from the point n draw a joint lines $p v$ and $r \mathbf{X}$. The centre of this gate is represented (in the upper part of the Igram) with voussoirs, and the keystone placed behind to show the mitre of the centre. le sofite moulds serve for curving the ends of the stone where the intrados meets the rface of the two walls. It must, however, be observed, that, previous to the application the sofite mould, the concave surface of the intrados must be formed by a mould with a nvex edge, and then the soite mould or moulds of developement must be bent into the llow, so that the two parallel edges may coincide with the corresponding edges of the ne. The angles which the intrados makes with the joints are taken from the elevation the face of the arch. This elcvation is no more than a section of the arch perpendicular the axis of the cylinder which forms the intrados.
1985. To construct a semicircular-headed arch in a round tower or circular wall. Let BDC (fig. 657.) be the plan of the tower. Biscet the \therefore AB, and through the point of bisection draw EF parallel the jamb line AC or BD. Through any point a in EF aw GH perpendicular to EF. Produce the lines CA and B to mect GH in the points G, H, and GH will be bited in a. From a, as a centre, and with the radius $a \mathrm{G}$ or I, describe the semicircular are GFH. Also describe the : of the extrados and divide the ares each into five equal rts, and let fall the perpendiculars of the joint lines, and ase of the middles of the sofite curves to the inside circuline CED of the tower. Having extended the ares of : intrados curve on the line $I K$, and having drawn the es of the sofites and those in the middle of each shect as fore directed, lay off the distances between the right line II and the circular outside line $\mathrm{A} b \mathrm{~B}$, viz GA on IX and $\mathrm{K} Z, c d$ on $e f, \mathrm{~V} g$ on $h i, \mathrm{~S} k$ on $l m, \mathrm{M} n$ on $o p, a b$ on $q r$; : n trace the front curve on the sofite $\mathrm{X} r \mathrm{Z}$. To find the or curve, lay GC on IY, $c \mathrm{C}$ on $e \mathrm{~S}$, \&c., by which the or curve will be obtained.
1989. We do not consider it necessary to pursue the istruction of the moulds, the operations being very silar to those already given in the previous examples.

Fig. 657.
1990. To find the moulds for an oblique semicircular arch in a circulur touer. The astruction of this differs from the preceding only in the bevel or olliquity of the tower; we it requires no particular description ; only erving, that the bevel causes the mould to be ger on one side than on the other (see fig. 3.), as is evident from the plan; therefore distances taken between the right line AB I the circular line of the tower CDE, being equal, must be transposed each on its particuline of the mould and joint to which it cor pouds in the sofite, that is, the distance $\triangle \mathrm{C}$ st be laid on IGG, BE on HI, and so of the t. 'To work the stones, dress the beds, then ly the proper moulds and cut the head and circular as before. 'Trace the breadth of the te on the upper bed, then hollow the sofite, I cut the joints by the bevel.
1991. To construct an oblique arch in a rounal ing tower interserting a semicircular arch within This is nearly the same as the two preceding

On one side draw the line of slope (fig. 1.) A13, and ou the other the are CD. Draw allels from the divisions of the sofites and their lilles, as in the figure, in order to cut the line lope and are. To work for the slope, set oll' the retreats comprised between the perpen'ilars AII and the line of slope AB on the pendiculars of the sofite, square to the front of the tower I' 19 G , as follows: 'Pransfer retreat $9-10$ on 19 - 20 by placing the con-

1is. cish. ses so that the line $19-20$ would pass migh the centre of the tower, and the point 20 fall on the centre of the gate 0 - 75 , 7 -8 on $17-18$, and on $21-22$ in the sance manner (only terminated by the lines
from the sofite instead of the centre line of the arch), set atso $5-6$ on 15-16, and on 2.--24, 3-4 on 13-14 and on 25-26, and lastly 1-2 on 11-12 and on 27-28, and through these points trace the sofite $28-0$ -11. The extrados is found in like manner, and the middles of the joints $47,49,53$; which done, draw the plan of the joints $14-47-35$, 18-19-37, 22-51-39, and 26-53-41.
1992. To find the curve of the plan which terminates the tails of the moulds. Set the projections of the buttress of the semicircular are at right angles to the inside line of the tower ; vil. 64-65 on 74-75; 62-63 on $72-73$ and on $76-77 ; 60-61$ on $70-71$, and on 78-79, 58-59 on 68-69. and on so-81; 56-57 on 66-67 and on 82-83; titen trace by hand the curve 83-75-66. 'The curves of the extrados and joints are

Fis. 659. found in the same manner.
1993. To find the moulds of the sofite. Draw the line of direction 94-84 (fig.660.) as before, below which set off the distances I-11 or 84-85, K-12 on $86-87$, L- 14 on $88-89$, M- 16 on 90-91, N-1 8 on 92-93, O-20 on 94-95, and then trace the front of the sofite moulds $85-95-99$. 'I'o find the rear, set $1-66$ on $84-33, \mathrm{~K}-67$ on $86-36, \mathrm{~L}-69$ on $88-100, \mathrm{M}-71$ on $90-98, \mathrm{~N}=$ 73 on $92-97,0-75$ on $94-96$, and trace the rear curve of the mould $101-96-33$.
1994. To find the moulds of the joints. Transfer $\mathrm{P}-19$ on $31-54, \mathrm{Q}-37$ on $32-48$. I- 47 on $42-52$, R-35 on 43-40, and through these points trace the front joint or bed moulds 93-54-48, 89-92-40.

Fig. 6fo. 'I'o find the rear, make 31-50 equal to PV, 32-38 equal to $\mathrm{QX}, 42-46$ equal to I'T, and $43-34$ equal to RS; which donc, trace the chirve lines $97-50-38$ and $100-46-34$. The two other joints are found by the saluk method. We do not consider it necessary further to multiply examples of the kind hert given: the latter sort, especially, rarely occur in practice; and if they should, all that will br necessary to master the operations will be the application of a little thought and study.
1995. Ill. Of Dome Vaulting. In whatever direction a hemispherical dome is cut, the section A is always the same. B represents one half (see fig. 661.) of the same in the plane of projection. The construction is sometimes such that the plan is only a semicircle, as B, as in the termination of the choir of a church: in which case the French call it a cul-dc-four ; with us it is called a semi-dome.
1996. Through the extremities of the joints, and through the middle of cach sofite of the section A, let fall on the line $a b$, perpendiculars, whereofall the distances $d c$ from the centre e will be the radii of the ares, which will serve for the developement of the sofites, of the joints, and for the eonstruction of the arch stones. The method which follows, thougn it will not perhaps give the sofites and joints strictly accurate, will do so sufficiently for all practical purposes. Upon the developement C make SC equal to the are MDGC, then set out to the right of the points of division the parts ST equal to st on the plan B; then raisc through the points ' I upon the line $S C$ perpendiculars equal

Five G(i).
o the correspondents e, t, d of the plan I，and draw the curve ESD through the points so olmel．
1997．The sofites are terminated by four curves，whereas the joints have two right sides， is DI，E1，and DO，EO，and two curved sides，as II，DE，and OO，DE；the widths I，DO of the joints are equal to DI，GE of the section；in one direction they are curved mly one way，but as respects their sofites they are so in every way．The heights of the onssoirs are given by the section A，their bases on the plan B Thus G，I，in the voussoir ext the keystone，being the most opposite points，the base of it on the plan will be comprised netween the two ares dte，whicb answer to the perpendiculars let all from G and I ．The rasc of the first voussoir，according to the first method，will be equal to the surface com－ rised between the are aff and the arc dse，which answers to the perpendicular let fall from he point D ．
1998．EF and GH are the diameters of the upper and lower bases of a truncated cone， vhose lower surface is hollowed out spherically．After working the voussoirs，so as to anke their bases such as we have just indicated，they must be worked to sofite moulds for fiving them the hemispherical form of the section；after which the angles of the monlds re joined by ares parallel to the arrisses of each stone，or by applying a general mould of he form of the section，that is，circular，of the radius of the dome．
1999．For the pendentives formed in an hemispherical dome．The piers D and E are upposed those of half the dome pierced by the pendentives．If we suppose the face or levation B（fig．662．）to make ne quarter of a revolution bout the point A ，we obtain he elevations B and C． lirongh the points of division （1）the elevation C draw to the re AI）right lines perpendicu－ ir to C．A．On the extremi－ es of these lines upon CA， ad from C ，as centre，duscribe os in the flan F，by which 1e plan of the projection on F obtained，whose intersections ith the right lines drawn from 3 will give the joints and ficeres or the level beds．The lines $1 \mathrm{~F}, \mathrm{FE}, \mathrm{F}, \mathrm{D}$ are right lines． ＇he spaces GAEl＇，J゙IIIだ are feces of eylindrical vanlting， －that the only difliculty is in fining to each of their vons－ birs their correspondent parts EJ，MHFE．
2000 ．The clevation B gives c lieight of the voussoirs；

Fig．G6．
cir bases，as seen in the preceding example，will he OPQRNO，GSTUVKFG．The ＂geth of the keystone will be XY，and＂－I will be half its width．
2001．The part 1 ： $2 l$ is the phan of the springing stones of the pendentive in the eleva－ 11．．＇Ine remaining parts of the constructimare sufficiently shown by the lines of the yrman，which will be understool by the stadent if he has previonsly made himself ＇flatinted with the previons portions of this section．
20x2．We shomld willingly have prolonged this part of our lahours，if space had per－ itted ne to do so withont sacrificing other and important abjects．If the subject be one which more than the ordinary practice of the architect is called upon to put into exeru－ 11，we refer him to Simonin，Compe dis P＇irres，Paris，1792，and Rondeliet＇s Art de laitir， bich we have used with mach freedom，and in which many more interesting details will found than we have thought it alsolutely necessiry here to introduce，thonght we be－ ve we have left no importam point in masonry motonched．We eamat close this section thont paying cur tribnte of respect to the manems of this eountry，who are ammar the ant inselligent of the operative buikders emplayed in it．A sery great portion of them efrom the north of the island，and poseses an menteness mad intelligence which fire exeveds at of the other classes of artisams．We must not，however，alfogether do this at the ex－ Hae of thome employed in earpentry，which will farm the sulject of our nest section， ang whon there will he fond mand skill and intelligence，when the nechiteet tahes the frer mona of drawny it out；and we lere advise hinn never to be abhamed of such $\therefore 115$

2002a. IV. Of Catssons in Cylindrical and Memispherical Vaubting. - Tt method of setting out the caissoms or sunken panels in cylindrical vaults and domes, is process required almost in every building of importance, and imparts great beauty to th effect of the interior when properly introduced: it is, indeed, one of the eements i composing them, and must therefore be well u derstood before the student ean succes in developing his ideas.

2002\%. In setting out the ribs of cylindrical vaulting, the vertical ones are supposed : falling on supports below the springing ; but if such supports fall too wide apart, th caissons themselves will be too wide, and the space must be divided into a greater number in which case, if practicable, an odd number is to be preferred, taking eare that the caisson are not too much reduced in widtl. This, however, is only for the purpose of ascertainit roughly how many caissons may be used in the circuit of the vault; and it is to be remen hered that they must be of an odd number, because a tier of caissons should always exten along the crown of the vault. Fig. 662a, is an example of a cylindrical vault wherein th

Fig. 662α.

Fig. $662 b$.
number of caissons is five. A is one half of its transverse section, and B a small portion the longitudinal section. The width of the ribs between the caissons is one third of then hence, if the number of caissons, as in the example, be five, the arch must be divided int twent y-one parts, one of which parts will be the width of a rib, and thrce will be given t the width of a caisson. As we have just observed, a caisson is always placed in the centrc we shatl therefore have the half-arch $=1 \frac{1}{2}+1+3+1+3+1=10 \frac{1}{2}$ and $10 \frac{1}{2} \times 2=21$. Tl vertical lengtlis of the sides of the caissons thus found will regulate the horizontal lengtl of their sides, inasmuch as they should be made square. If the caissons in the vault t seven in number, as in fig. 6626., the sofite or periphery must be then divided into twent nine parts; if their number be nine, into thirty-seven parts; and so on, increasing by eigl each step in the progression. The eaissons may be single or double smik, or mor according to the richness required ; their centres may be moreover decorated with fleurm and their margins moulded with open enrichments. Where the apartment is very highl ornamented, the ribs themselves are sunk on their fare, and decorated with frets, guilloche and the like, as mentioned for ceilings in Book iii., c. i., s. xxiv. Durand, in his Com d^{F} Architecture, regulates the width of the caissons entirely by the interaxes of the columus the building; but this practice is inconvenient, because the space may in reality be great as to make the caissons extremely heary, which is, in tact, the case in the exampl he gives.
$2002 c$. In the case of dome or hemispherical vaulting. the first point for consideratu, is the number of caissons in each horizontal tier of then; and the student must recolle that allowing, as before, one third of the width of a caisson as the width of a rib, th number of parts into which the horizontal periphery (whereof $e^{\prime} e^{\prime}$ on the plan A is on quarter, and its projected representation at $c e$ on the seetion B) is to be divided (fig. 662 c must be multiples of 4 , otherwise caissons will not fall eentrally on the two axes of t plan. Thus,

A dome having 16 eaissons in one horizontal tier must be divided into 64 parts.

-	20 ditto	-	-	-	-	-	80 dito.
-	24 ditto	-	-	-	-	-	96 ditto.
-	28 ditto	-	-	-	-	-	112 ditto.
-	32 ditto	-	-	-	-	-	128 ditto.

and so on increasing by 16 for each term in the progression. In the figure, the number caissons is sixteen. The semi-plan is divided into thirty two parts, three whereof a given to cach caisson, and one and a balf to each lialf-caisson on the horizontal axis of $t l$ plan. From the divisions thus obtained lines are earried up to the section $a b, a b, c d, c$ As the projected representations of the great circles of a sphere are cllipsus, if from b, d, d, we construct a series of semi-ellipses whose transverse diameters are equ
of the semi-diameter of the sphere, ind their conjugate axes determined iom the points of intersection b, b, d, d, we shall have the vertical sides of the caissuns. The next part of the process s to ascertain the ratio of diminution in the heights of the tiers of caissons is they rise towards the vertex, so that they may continue square in ascending. Upon a vertical line C^{\prime}. whose length is equal to the developed length of the ine of dome ef, or in other words, whose length is equal to one quarter of he lengtls of' a great circle of the sphere, so the right and left of C set sut at g ind g the half width of the caisson oblained from the plan, and make $h g_{,} h g$ equal to one third of the caisson for the width of the ribs on each side. Draw lines to the vertex of the deelopment from $h h$ and $g g$. A diagonal ii being then drawn, the horizontal line k will determine the lower edge of the lext caisson upwards. Proceed in this vay for the next from l and so on. The heights of the caissons thus obained, being transferred to the scetion n the quadrant $e f$, will give the proortionate diminution thereon of the aissons as they rise. They are disconinued, and the dome is left plain, when liey becone so small as to lose their ffect from below, and indeed they ould not beyond a certain limit be xecuted.

Flg. 662 e.

2002d. V. Of Gorhic Vaulting.-Professor Willis, in his valuable essay On the 'aults of the Middle Aues, printed in the Transactions of the Institute of British rehitects, 1849 , states that every rib should spring as a separate and independent areh, nd that the elliptic curves produecd by the method of obtaining the form by ordinates -om those of the transverse rits, are totally at variance with the characteristic forms f the Gothic style. De Lorme first taught this method, and others followed him, but it 'as never intended by them to be applied to Gothic rib-vaulting. 'Ihis anthor shows th. viii.) that every riis is perfectly independent of the other in its curvature; each rib consists f a single are of a circle whose centre is upen the impost level, and they cannot be thercfore ,nnected by projections. They all form pointed arches of different proportions, with the recputinn of the diagonal areh, which is very nearly a scmicircle. "This," says Willis, "may ave been the geauine French method, but in our English examples the centres are conionly placed without respect to the impost level, and the general forms of the vault are ifferent from those which are produced in this manner." Dérand, writing later than De orme, says, "that in this style the ribs are always made ares of circles, elliptieal or other urses being inadinissible" (p. 177). Willis, later, however, allows certain rils in a vault , be e semi four-centred arches," the others being ares of eircles. (See 1943a.)
240:e. "In the cinly stage of ribevaltiny," remarks Professor Willis, "the ribs consist of lepentent and separate voussoirs down to the level course from which they spring. I'the 'parate stones were roughly jointed at the back, instead of being each got out of a single he, as in later structures. The back of these ribs is concentric with the sollite. The ausvere rib of the north-cast transept of Canturbiry Cathedral consists of about one undred richly-moulded stones, but the workminship is exceedingly rude "
2002f. "I'he rough construction of the spandril, in the carly instances, was followed at oce by a more artificial structure, bespeaking a great advance in the art of masonry; nl it remained with very slight change to the very latest period of rib-vimlting. 'Ihis atem is shown in fig. beiqd. 'I'he junction of the solid mass L to N with the clearstory all, is boundel by parallel vertical lines 1), and this moss is always built of solid asonry bonded into the wall and finming part of it ; the lirench name for this block of nemery in eles de: churge. It is from the level of N that the real rib and panel work the vault begins, for separate ribs are erected upon the surface of this solich, and
connected liy vaults of a light material. The decorative construction, however, of the sau: exhibits the rib and panel from the abacus L, upwards. The point N is commonly at aboii half the vertical beight of the areh, and is ne necessarily guided by the inpost of any clean story rib adjoining. MI is the general positio where the mouldings of the several ribs run clea of one another at the divergence of the rilss The solid part LM is built of horizontal course of masonry, generally each of a single stone and its level beds cut the curved moulding obliquely in front."
£029g. Moller, Memorials, \&c., translatic 1836, p. 154, notices that, at Cologne, th lower part of the vanlting of the cathedral i formed ly horizontal courses of stone pre jecting from the wall, consequently the at tual span of the vaulting is proportionall diminished, while, on the otlier hand, the abu ment is in the same degree strengthened. Sti more deserving of attention is the manner i which the essential parts are so linked th gether as to be rendered incapalle of thrusting or giving way, and therefore of necessit remaining in their original position. Price, in his work on Salisbury Cathedral, 175: p. 25, quaintly remarks: "And here I beg leave to make a conjecture, that is, that all th springing stones of the vaultings were inserted into the walls at the time of their bein crected, and so left till the whole church was roofed and covered in ; and then hein defended fro:n rains, $\&$ e., they fixed their principal rilis and groins, and turned over th vaultings, as having the weight of the superstructure to act instead of a buttment."

2002h. "Above M," continues Professor Willis, "the ribs are cach built separately, vonssoirs, having their beds properly inclined to meet the axis of curvature of the rib. at these ribs are backed and united by solid masonry which connects them with the w.ill, al. which, appearing between the rib, seems to be a portion of the light vaulting surfaci really employed higher up. From the upper surface \mathbf{N}, each rib A is still built as from to \mathbf{N} with voussirs, but upon these rilss rests the light thin vault or panel-work."
$2002 i$. " It is remarkable that the courses of the vaults are not laid level, but are most cases made to incline downwards mpon the diagonal rib. The reason for it is n easy to explain, but it is very common, especially in the earlier examples. These course in the transepts at Westminster Abbey, are of a light coloured stone, probably chalk, is terrupted at regular intervals by a course of a darker stone; and the ridge, which has 1 rib, is also formed entirely of this darker stone, laid in a serrated inanner. These dia courses are rather broader than the light ones, and there are four or five courses of t) light between each of the dark. The surface of the pancl between cach rib is also mat slighty concave or domical (probably to preserve the effect of being level, as seen fro below it), and may therefore have been laid without any centreing, since each course won support itself. Thesa peculiarities may all be found with some variations in other vaul of the same age."

2C02h. "The architect of Leon cathedral," remarks Mr. Strect in his work on Goth Architecture in Spain, p. 110, "filled in the whole of the vaults with a very light tufa, ol tained from the mountains to the north of Leon; so at least I was assured by the sule intendent of the works at the cathedral. Some of the material l saw was no doubt tuff but some of it seemed to me to be an exceedingly light kind of concrete. The vanlting Salisbury Cathedral is similarly constructed. I do not know whether at Beanvais the san expedient was adopted to lessen the weight." Both at Beanvais and Lcon the constructic in every part was too light.

209\%. Over the vaulis was commonly laid a thick irregular course of rubblewor which again is also often covered with a kind of concrete. The vaults of the westcompartments of Westminster, and of the south transept and tower of Hereford, are h bare on the upper surface. and these vaults, instead of being built with small brick-li stones, are composed of long thin slabs. The ribs themselves are, in some later example formed of a few long bar-shaped voussoirs instead of the small and numerons pirces of t ' earlier examples. Thus, in the transept at Westminster, L to \mathbf{N} consists of 13 or 14 stone but at the west end of the nave of 6 only.

2002 m . Price notices (p. 24) that at Salisbury, "The groins and principal ribs are Chilmark stonc, but the shell, or vallting between them, is of hewn stone and chalk mixe on $t p$ of which is laid a coat of mortar and rubble of a consistence, probably ground in kind of mill, and poured on hot, while the lime was bubbling ; because by this, the whic is so cemented together, as to become all of one entire substance. This composition
y remarkable, somewhat resembling the pumice-stone, being porous ard light, by which contributes prodigiously to the strengtio of the whole, and at the same time the least in ight of any contivance that perhaps was ever used."
$2002 n$. "The early moulded ribs are formed as fig. 662f. from St. Saviour's Church, uthwark, the vaulting or panel-work ting only on their backs; but the ribs later date are rebated for the reception this work, as shown in fig. 662e." 20020. As early as 1225-50, the square ins for vaults were superseded by oblong es, which allowed the cross-rib, the groinand the uall-rib tu arrice at nearly one el. In the new system the groin-ribs re portions of circles, and the cross-ribs re struck with the same radius; but se vanlts were soon considered to be ak , and the cross-ribs were heightened ile the groin-ribs were cither stilted or ibsequently) sharper pointed.
$200^{2} p$. As soon as medizval builders nitted the principle that the strength

Fig. 66\%. arch-stones, like that of beams, is more dependent on the depth than on the width, they nced the width as much as they could in order not to require a large abacus to the ital. The next step was to risolve all thrusts upon that support into a force acting (ectly upon it; and consequcutly to endeavour to make the varions pressures, which pillar has to bear, combine in a point in a stone that should be filly as large in plan othe abacus, and perbaps rest upon others of the same character.
002%. The operation of deciding the form and place of this stone is very simple after size of the areh-stones has been determined. Supposing that the wurk is, as in a c ster, bounded by a wall, and with-wall-ribs, there will only be a ess.rib and two croin-ribs to be hilud. A line AB (fig. 662g.) s aring the face of the wall is to be c in O by another line CD repres. ing the centre of the cross-rib; a the plan of the areh-stunes for t) rib is to be projected by the aid 0 rese lines. It gives at the wall a (i) re O, and in its length $O E$ on the crfal line a radius with which a secircle may be described (as shuwn Ir he dotted line); a couple of pare $\cdot 1$ lines, FG and HK, will now If the theckness of the cross-riu. If proceed with a groin rib, a line fo O mist he laid down at the co cet angle made by the groin with vall ; and the plan of the groinril nust be so projected that, with th line for an inside line, the front whe arch-stone shall tonch the ne) eircle. A couple of parallel lines II aud $I^{\prime} Q$ will now show the thickof the groin-ril); and the plan e almacns of the pill:ir may be nerl, even so as to allow of wallthey should be intenderl.
22r. The use of the semicirele an indispeusable, lout is a na-
I 11 y connewient step, becunse the 11 yuartities so taken by it fiom will spans of the ribs leaves undistur 1 in general result all calculato mfounded upon lines drawn from
 in tical points that are taken as centres in a plan made to a smald sate; but any of the groin-ribs nay be placed anyw!ere upon their respective centre-lines
so long as the intersection or junction of the neighbouring lines of the widths of the ribs is seeured at some point. 'Ilisis intersection is not an absolute necessity, but it is the means of reducing the size of the abacus; and the point of junction S is that beyom which (working from the wall) the two ribs will be distinct. Taking this point S as fixime a line for the springing, the elevations of the two arches are to be drawn on the intersect ing lines; then lines SR and ST drawn perpendicular to the spingings, will cut the ex trados of each areh at points which deeide the level of the top bed of the horizontal work The mass of work between this bed and the capital will be divided into a eonvenien number of courses, and the plans of the beds thus fixed are easily drawn from the elevation of the arches; when it will be seen that, if the groin-ribs are less in depth than the cross ribs, the former will give a good starting-place for the material which is to form thspandrils of the vanlts. In a similar manner, the intersections of any number of ribs ma be found, and the tertiary and secondary ribs may be sucessively snppressed in favour
the primary principal ones. Viollet le Duc, Dictionnair

Fig. 662h. s.v. Construction, p. 96. Prof. Willis gives the followin illustration (fig. 662h.) showing the method of settin out mouldings for vaulting, belonging to the perpendicul: period; it is taken from one of the spandrils of a complt vault which formerly covered the extreme north-wester compartment of the nave of Canterbury Cathedral, th lower storey of the so-called Lanfranc's tower. The nun ber of ribs being seven required two stones in each of i upper courses at least : fig. 662 h . being only a portion the spandili, contains but four of them. It also shows th: the stone had been scored, then rejected, and another s of lines drawn, and actually employed. AB, AC, are the rejected eentres, and D a portion the fist outline. El', EG, EII, and EI are the true lines drawn, each parallel to its of rib. The average thickness of the courses is about 10 inches.

2002s. The key-stone or buss-stone was adopted by the inediæval architects as a necessa appendage to groin-ribs, because the solidity of the vaulting depends greatly upon t pressure exerted ly the key, whic!, must consequently le beavier than any of the arc stones; it will necessarily be an extremely large stone, allowing a great part of its mass

Fig. 662i. be cut away by the sculptor in order to diminish apparent heaviness. This stone should generally nearly cireular in plan; for if the ribs diverge enough 1. ave any large space between them, a fracture is alm certain. In cases of such divergence, it is best to desi the sculpture so that a mass may occupy the space. T remark, of course, does not apply whire there are or two groin-ribs meeting at right angles; but it governs 1 amount to which the groin-rib should be allowed to worked in the key-stone. No part of the boss ought lee sunk within a horizontal line connecting the intrat of one rib with that of another ; and it is generally desirable that, whether or not the r be back-jointed for the filling of the groining, as fig. $662 f$., the key-stone should b a projection or tail sufficient to stand above the back of the filling. "Every boss-ston says Professor Willis, "had its upper surface made horizontal, on which were drawn lines from the axis of the boss in the direetion of the respective ribs." The principles th indicated are illustrated in fig. 662i.
googt. In the construction of groined vaulting it has been eonsidered bost to fix the k stone on the centreing, before laying the arch-stones, for the sake of the guidance which affords in the work; the inconveniences of working a boss in its place, and of sething already worked, were obviated in the 13 th century by leaving its breast smooth, so the wooden boss, carved at leisure, might be fastened to it with hooks. In the 15 th cent such a boss was not unfiequently of stone instead of wood.

2002u. A striking feature of the Flamboyant style is the frequent use of pendents in vaulted roofs of the period. These, however, are not confincd to the Continent, for Tudor period in this country exhibits many splendid instances of their employment, n perhaps, more gorgeous, or more interesting as regards its construction, than the Chi of Henry the Seventh. Some of the various examples that exist have been scientifically vestigated lyy l'rofessor Willis, in his paper On the Construction of the Vaults of the Mis Ayes, alreaty quoted; and we the efore now proceed merely to indicate the principles " which the fairy-like system of not only snspending vast bosses from the ceiling was ducted, but that by which these bosses or pendents became in their thrn the springers supporting other vanlts as in the beautiful little Lady Chapel at Caudebec in Norman and many other examples. A plan is given in the section on Pranciples of l'roporth
¿OO2v. This ehapel is hexagonal on plan, about 23 feet in span, or from side to s

Fig. 662k. shows the mode by which, from the key-stone of an arch approaching a semicircular form, and suspended or elongated̀ beyond its ordinary depth, support is given or the springing of the vaults of the different bays. On this practice Pliilibert De Lome observes, "Les ouvriers ne font seulement une clef au droict de la croiséc d'ogives, mais

See another section andl
sussi plusieurs quand ils veulent rendre plus riches leurs voûtes, eomme aux clefs où s'assemblent les tiereerons et liernes, et lieux où ils ont mis quelquefois des rempants, qui vont d'une branche à l'autre, et tombent sur les clefs suspenducs, les unes étant circulaires, les antres en façon de souffet, avee des guymberges, mouchettes, clairc- voyes, feuillages, crestes de choux et plusieurs bestions et animaux : qui étoient tronvés fort beaux du temps quiou faisoit telles sortes de voîtes, pour lors appelées des ouvriers (ainsi que nous avons dict) routes à la mode francoise."

2002 w . We lave shown above the mode of suspending the pendent in a polygonal milding. The fig. 662l., by a little consideration, will explain the mode of suspending pendents not centrically situate, as in the ease of the ceiling of Itenry the Seventh's Chapeil. whose date runs coineident with the Flamboyant period. The figure is at trimserse section and plan of the vaulting of the building, in which one of the main arehes, on which the whole construetion depends, springs just helow A, and reaches its summit it B. 'The voussoirs or urch-stones whereof it consists are marked in their order. The dotted interval from a to b * not to be eonsidered as an interrnption of the formation of the arela hy the pendent, but nay he supposed an imaginary line passing through it, or rather through the arel-stone or oussoir C , whose general fom is trarked by the lomading letters cefefor ; so that, in act, the pendent is nothing more, as in the case of the Lady Chapel at Candelec, than a onsmir, a large part wheredl hangs down below the fiee of the valting. The ronssoirs are put of bloeks alsout 3 feet 6 inches deep; but a considerable portion of the solid below the office of the arch is ent away to lorm the lobes of the einguefoils. The arch D serves, by is connection with the walls, to stillen and give weight to the arch where it would be most equired, that is, towards the springing. 'I'he pendent or voussoir E , on the same block vith C, being thus estallished in its plice, serves at, or towards its foot, as a springer for the ribs of a lanwork tracery slown on the plan, whose ribs are, in liet, ribs of a dome, and o eonstruction do not dillier from it. Their section is shadowed somewhat lighter than the endent vinssoir. The fanwork romd each aflords the means of introrlucing another endent at it, meeting at F in the plan. (This pendent is shown at F in the two sections fiven in I'masentiss of l'uopotios.) 'The fin vaalt is very properly distinguished by 'rof. Willis from what he calls the stellar vault, which is formed of ribs that may be, anal wheal frequently are, of dillerent envature, and the rays of the star old difterent lengehs;
 © the fin is bounderl (see the fig.) by a horizontal cirenlar rib, instend of the ends of aengen forming the points of the star. "The elleet of the lan is that of a solid of revolte on, upon whene surfice pands are sunk : the affect of the star in that of al gromo of ranching rilm." It is manifest that the constrnctive detals of these twa sorts of vaniting
 rem, the filling in panels; while in the other the principle is similar to that of dome--ulting. This will be immediately pereeved by relivence to the plan (i, in wheh the murses are marked, ne alson in the part of the section murhed II. 'I lie plan I shows the neery of the arallite of the vante. The anelor mbave quoted observes, "The eomstaction
 vin the same work alopl, and it iv remarhmble that, at lease nh lifr ins I hoow, there are no

Continental examples of them; whereas, of the previous vanlts, there are quite as many or. the Continent as in England. In France, indeed, the lierue" (ribbed) "vaults are nor

Fig. $662 l$.
heniy the seventh's chapel, westminster.
very numerous; they are confined to small chapels, and their patterns are in general simpl But in Germany and in the Netherlands there is an abundance of them, distinguished. eft tanly, from ours by loeal peeuliarities, but nevertheless of similar mechanical construction and requiring the same geometrical methods."
$2002 x$. The introduction of fan vaulting scems to have occurred in the beginning of tl 1.5 th century. The first instance wherein the span was considerable is the Dean's Chap attached to the north-west transept of Canterbury Cathedral. In St. George's Chap at Windsor, the aisle and central compartment only have fan vaults, the principal vau not being fanwork. The chief works of this kind, of known date (about 1500), al Henry the Seventh's Chapel at Westminster, King's College Chapel at Cambridge, t^{1} central tower of Canterbury, and Bath Abbey ehurch. (See Phinciles of Proporton In the church of St. Etienne du Mont at Paris, we find a remarkable example of the sty of the renaissance contending with the expiring flamboyant style. In short, the whole of t interior is a mass of interesting incongruities. The church is cruciform, and at the inte suction of the cross is a pendent key-stone, most elaboratcly wrought, and more than fect deep. It is obvious, in respect of these pendents, that there is no mechanical differen between their pendency and their being insistent, as lanterns arc, on domes.

Sect. IIIA.

use of marble.

20c2aa. The Greek term " marble," to flash, gleam, sparkle, is well applied to the white marbles of the Greeks, which differed materially from those of Carrara, in Italy. The Greek and Roman marbles are noticed in the Glossary. The Byzantine interiors exhibit fine examples of durable applied marble decoration, about one inch thick, showing no desire to appear anything different. The walls were covered with oblong panels in liers of rich marbles opened out, framed with narrow white mouldings and bands of different colcur, continuous horizontal lines of colour on white being introduced between these panels; the whole surmounted by a marble mosaic frieze, with a cornice displaying small, sharp, tr:angular shadows, as at Constantinople and St. Mark's at Venice. At Palermo the panels were framed with bands of mosaic work.
$2002 b b$. The marble pavements of Greek temples were probably the earliest, and were usually of thick, large slabs. They perfected the tesselated mosaic pavements. The Romaus gained the knowledge from them, became proficient, and used them throughout their extensive empire. Although under half an inch square, the mosaic is one inch thick, made to last. Some of the grandest parements are the simplest, as those of the Pasilica Julia at Rome, of Santa Sophia, and the one under the central dome of St. Mark's. That of the Basilica Julia has been lately discorered, and is very perfect in part. The plan is a rectangle of about two squares, the centre space being divided into three squares and four broad bands. The squares consist of large slabs of Giallo antico, with a broad Lorder of Pavonazzetto, the bands being rectangular slabs of rich Africano and Porta Santa. The central slab is surrounded for about fifty feet with large slabs of Greek white marlle.

2002cc. The Opus Alexandrinum pavements, as at St. Mark's and at West minster Abbey, were usually composed of few colours-red and green porplyyies with white Palambino tor the mosaics, the bands being Greek white marble, and made out of old materials: a great rariety of geomerrical patterns. Some of the most beautiful examples are at Palcrmo. I'be Pallimbino was a limestone of pot-like texture. The great pavement in Siena Catliedral, one of the finest Italian Renaissance works, consists of pictorial subjects in dark green marble and mastic iuserted into thick slabs of white marble. These have not wora well, and are kept covered. The filled-in lace-like patterns used as borders round the monuments at Sta Croce, at Florence, are in a better condition, the fillings being in smaller quantities. These fillings might be of lead set in a white ground, and would look well. Bluck and white marble parements in squares were introduced about the time of Torregiano, and were largcly used, as at King's College Chapfl, Cambridge; tho Beauclamp Chapel at Warwick; and in mansions generally. The white squares came from Inly, and the black from Belgium; and are still used in that country.
$2002 d d$. The retiring grey marbles, as Petworth, Purbeck, or Frosterley, were used by the mediaval builders in England, and the colour was most useful in contrast with the Htone. The altars and tombs of the Italian Renaissance were executed in white marble, with only one colour introduced for the columns, pilasters, fricze, pediment, and panels of the buse. A variety of marble work of late date, seen at Palermo and Naples, consists of inlaid floral arabesque, of orange, red, and brown marbles, with black inserted into white, It is gaudy, being deficicnt in repose. Similar work is seen in the monuments at Agra, in India.
$2002 e e$. English Alabaster, if sclected free from earthy veins and used where wet would not run ower it, thongh only for interior work, may be better than many stones, und it wonld keep its colour. Of all building materials it is about the least porous or ubsorbent. It has boen used for monumental work from a very early period, and much delicate work has lreel executed in it. The inner arch monlding of the west doorway of Tutbury Church, enrval into birds' beaks, of the Norman period, is in ordinary alabaster, and remains in Lond presersation. This material cane into general use about the fourteentlo century in Derbyehire, and extensively so during the Lizateelhan period. Grat Britain and Irelatd (nee Makblek, 1681 ct seg .) Contain many varieties of well-knowa coloured marbles, little uand, we.n at the present day.

2002ff. Henorial slabs of incised marble preceded brassen, and were far superine to thent. The Einglishl Remassance producerl marble work in chinneypieces equal, if not suparior to anything on the Continent. The designs and the marbles were equally grood.
$2012 \% \%$ The Ongix mardles of Algeria, Mexico, and Cidifornia, of the amme muture as Oramal alahnater, can he cut and ground thin enough for window purpokes. At Tarragoma Cinhed rat nad at ervinto nre exmples of ornage-yellow Oriental alabaster. In the ont Whitown of san Minute ure slatse of amtique labonazacto, with red-purple markings, nearly two melien thick (par. 61.0).

2002hh. Carrara and Sicilian marbles are used for steps and floors, wall linings, jambs, lintels, eolumns, capitals and bases, entablatures, altar rails, fonts, pulpiis, sepulchral memorials, and many other purposes. If consistent defails were used, it might probably be employed for public and other luildings (par. 1677 a) .

2002ii. A new and beautiful white marble, ealled Hegqe marb'e, from near Brösö, in Norway, is stated to be a pure calciuci earbonate, hard, with a few small reins or spots, of nearly uniform whiteness, and taking a bigh polish. The price in London is about one hal that of similar marbles. A green and a red marble are sent from Greece. Verde Antico and Ierde di Corsica are composed of limcstone, calcareous spar, serpentine, and aslestos.
$2002 \mathrm{k} / \mathrm{k}$. The British Musenm, the South Kensington Museum, the University at Oxford, and the Geological Mnseum in Piecadilly all contain fine eollections of eoloured marbles, aneient and modern -some wrongly named. The most instruetive collection is in the museum of the Lourre. (W. Brindley, Marble: its uses as suggested by the past, read December, 1886, at the Royal Institute of British Arehiteets)

Mouldings

20022l. A marble to stand exposure to the weather should be close, hard, and vitreous-lookng. Plenty eould be selected. The mouldings used in the palaees of the Cres.urs and other important buildings in Rome were usually very simple, and mostly eonsisted of flat hollows and rounds, with small fillets proaueed out of a chamfer (fig. 662 m .). They looked well, and cost less than many modern ones, which are designed forgetful of masons' methods of work. Mouldings needed to be drawn specially to suit the colonr of the marble.

2002 mm . Marble linings, whenever possible, should be fixed hollow at the bick, and a few small plitees left opon in the joints until the solid walls are dry; the hollow allowing the slab to keep warmer than the solid wall, thus avoiding eondensation. Good well slaked lime mortar is the best for bedding. Cements are to be aroided. Plaster of Paris should be mixed with a little lime putty, to assist adhesion and prevent swelling. It must be remembered that marbles absorb water by capillary attraction, and are commonly permeable to gases. They absorb water from the mortar, which coming to the exterior surface becomes deposited at the mouths of the pores and gives the surface a brownish discolouration. If the interior surface be coated with asphaltum the discolouration will gradually disappear.

Polishing.

2002nn. As to polishing marble : properly polished chimney pieces of foreign manufaerure, and toilet tables, are rarely found, as acids are used to procure a rapid and cheap, though imperfeet and fugitive, result. At the Carrara quarries the marlle is first rubbed smooth with fine sand, then with punicestone, then with two or three stones of variable hard-
 ness. finishing off with lead, whieh gives the last and brightest polish. Water and friction do the work. (E. C. Rolins.) Marble steps shonl/ never be polished, as if properly done they are very slippery and dangerous. In Belgium only the face of the riser and rather more than half the nosing, stopping just wher the foot pitches, is polished. This trom below las the appearance of a enmpletel? polished stair, while at the same time there is no danger from slipping. (C. H. Brodie. Polished marbles and stone rarely go well togethor in the same work; but some marblesgreys, reds, aud eippolinos-look well dull-polished, and then would go better with stone White marble as used by tho Tuscan earvers was not polished.

These full-size illustrations (fig. 662 m .) have been taken, by permission, from amonl the specimens of old narbles in the collection of Mr. W. Brindley.

Sect. IV.

CARPENTRY.

2003. Carpentry is the scicnce of framing or letting into each other an assemblage of pieces of timber, as are those of a roof, floor, centre, $\mathcal{\&}$. It is distinguished from joinery in being effected solely ly the use of the axe, the adze, the saw, and the chisel, which are the carpenter's tools; whereas joinery requires the use of the plane. Sce 2102, et seq.
2004. Though necessalily of high antiquity, the very seanty information which Pliny and Vitruvins have left us on the subjeet would merely show that the seience was knowi by the ancients. The roofs of Egypt present us with no more than flat coverings of massy stone; a pediment roof, therefore, would seem to have been among the first efforts of constructive carpentry ; and upon the pitch whieh this, then and since, has received in different countries, we shall hereafter have to speak. The Greeks appear to have used carpentry in the construction of their floors and some other purposes; but in a country aloounding with stone and marble, it is not likely that wood was much used in the interiors of their buildings, unless where lightness, as in doors, for instance, required its emplyyment. With the Romans it was much more commonly used; and from all that can be gathered, we may consider them as the fathers of the science.
2005. Among the moderns it has been very suceessfully cultivated; and, with very few exceptions, we may almost assert that the works of Palladio, Serlio, De Lorme, Sir Cliristopher Wren, Perronet, and a few others, exhibit specimens which lave searcely been surpassed in later times, notwithstanding the scientitie form it has assumed in the present age.
2006. To the mechanical prineiples of carpentry we have, in Chap. I. Seet X. of this book, directed the attention of the student ; and to the section now under our pen we should have added the words Descriptive and Practical to Carpentry, but that muen of what could have been said on that head has already been anticipated in the section on Descriptive Geometry. Hence, in what follows, that which comes under such pred cament will be only given in particular cases, for the purpose of saving time and trouble to the reader in the application of its principles to them. We must, here, also remind the reader, that under the section Beams, \&e., and Thimer, have been deseribed the different sorts of timber used for building purposes, their strengths, and the strains to which they are nillject and which they are eapable of resisting; and that therefore this section is confined fimply to putting pieces of timber together, so as to form the assemblage of timbers under whicl we have commeneed by defining the seience. To do that properly requires great skill and much thought. Considerable waste, and consequent expense to the architeet's amployer, result from that ignorance which assigns to the seantlings of timber larger limensions than are absolutely necessary for the office of each piece; insufficient scantlings will bring the arehitect into trouble and responsibility ; and the improper connection of the pieces will be equally ruinous to his reputation. The principles of practical carpentry are, nevertheless, simple; and though to form new combinations and hazard bold and intried experiments in practice will require all the skill and science of a talented artist, the rdinary routine of earpentering is to be learnt by a little application and a due exercise of common sense.
2007. After these observations, we must introduce the student to the first operation which in practice may arise. It is not every where that timber ean be obtained in suficient lengths to stretch across the void he has to cover; and it will in such eases be necessary for him to know how one piece of timber may be so joined to another, for the purpuse of lengthening it, that the two pieces, when joined, may be as nearty as possible thal in strength to one whole piece of timber of the same dimensions and length. 'I'his peration is of great service to the bmilder, and is technically called scarfing. To perform t, the joints are indented, and bolts are passed through the pieces within the length of the balents, such boles being contined above and betow by means of mits and screws. In iy. fich. four ways are
Whilited of accomrishing the object in nestion. A and Bare the methods nisially mployed for joining "grether plates, lintels, n't tie ies, in which bolts

re rarely necessary; but if such a mothod is need for scarfing beams, bolts must be emloyed. The stronger firms, which only should be med for beams, shown in (and I), ate
 "ten withent lowe of length in the piecees of timber. 'Ihe langth of the joints of the
 idaning what way reppired. With fir, hewerer, when boles are neel, about hour times
the depth of the timber is a nsual length for a scarf. Scarfing requires great accurac in execution; for if the indents do not bear equally, the greater part of the strength wil be lost: hence it is improper to use very complicated forms for the indents.
2008. Pieces of timber are framed into and joined to one another, by the aid 0 mortices and tenons, and by iron straps and bolts; and on the proper placing of thes depends the soundness of the work. If a piece of framing is to stand perpendicularl! as in the case of partitions, without pressure from either side, the mortice and tenos should be in the centre of the wood. But in the case of framing floors, in whicl the pressure is on the upper surface, and entirely on one side, the mortices and tenor ought to be nearest the side on which the pressure is, by which the timber will not be so much weakened; and hence it is the constant practice to cut the mortiees and tenons as in figs. 66t, 665. By the method shown in the last-named figure, the tenon obtains more strength from in additional bearing below, which is further increased by the inclined butment above, called a tusk.

2009. The method of framing wall plates together at an angle, for the reception of th hip rafter on the dragon beam, and the angle ties for retaining the wall plates in thei places, is shown in fig. 666., wherein AB is the mortice cut for the tenon of the hip rafte

Fig. 666.

Fig. 668.

Fig. 669.
shown in fig. 667. Fig. 668. is one of the wall plates, showing the halving to receive th other plate, and the cutting necessary for dovetailing the angular tie. Fig. 669. shows th method of cutting the mortices and tenons of principal and hip rafters; another method being given in fig 670., and to be preferred where a greater resistance to thrust is sought, because by it a double butting is obtained on the tie beam. Inasmuch, however, as in this last case the beam is cut across the grain to receive the rafter, the part left standing to receive the heel of the rafter may be casily split away; to obviate which, the socket may be cut, as at A, parallel to the grain of the wood. cd is the iron strap for securing the rafter's foot to the tie beam, and keeping it
 in its place. A plan of the upper part of the tie bean is given at B, showing the socket and mortice of the section A in the last figure. C exhibits th mode in which a principal rafter is strapped to a tie-beam, with the joggling.
2010. The most approved method of forming butments (jig. 67 I .) for the struts or braces, ata, which are joggled into the king-post, is to make their ends, which act against the joggle, perpendicular to the sides of the brace; they will thus be kept firmly on their butments, and have no tendency to slide. C is a section of the king-post and tie beam, showing the mode of wedging and tightening the strap, with a single wedge, in order to draw the tie beam close to the king-post. D is a section of the same parts to a larger scale, and with the introduction of a double wedge, which is
 easier to drive than a single one, because there is less action upon the cross grain of the wood.
2011. Straps in carpentry should be sparingly used. Professor Robison has ve properly observed, that "a skilful carpenter never employs many straps, considering the as auxilianes foreign to his art." The most important uses of them are, that of suspening the tie beam to the king-post, and of securing the fect of the rrincipal rafters to th tie beams in roofs.
2012. Bolts are sometimes used for the last-named offiee, with washers and heads al serew nuts. in which case the washers, nuts, and heads should be well painted, thom
ven then they are liable to rust. Wherever the iron work used for seeuring a system f framing is exposed to the humidity of the atmosphere, it should be rendered Lurable by frequent painting. Price (BritishCarpenter, 1759) observes thus: "There is be particular that had liked to have escaped my notice, concerning the placing of irom raps on any truss, thereby meaning to help its strength, which is by turning the end quare (as shown at E, fig. 671.). This method embraces the timber in such a manner, to Hake it like a dovetail, which cannot draw from its place; another observation is, to bolt on our straps with square bolts, for this reason: if you use a round bolt, it must follow the mger, and cannot be helped; by this helping the auger-hole, that is, taking off the corners if the wood, you may draw a strap excceding close, and at the same time it embraces the train of the wood in a much firmer mamner than a round pin can possibly do." The sample given by Price, however, for turning square the strap, is injurious to the rafter, vhich must be partially cut to admit of it.

FLOOLS.

2013. The assemblage of timbers in a building, used for supporting the flooring boards and ceiling of a room, is, in carpentry, called naked flooring, whereof there are three lifferent sorts, viz. single flooring, double flooring, and double-framed flooring. But before entering on the particulars of either of the sorts, we will make some general observations on the construction of floors, which require the architect's attention. Finst, the wall plates, that is, the timbers which lie on the walls to receive the ends of the girders or joists, hould be sufficiently strong and of sufficient length to throw the weight upon the piers. jecondly, if it can be avoided, girders should not lie with their ends over openings, as loors or windows; but when they do, the strength of the wall plates must be inereased. I'o avoid the occurrence in question, it was formerly very much the practice in this, ountry, and indeed is still partially so, to lay girders obliquely across rooms, so as to avoid ipenings and chimneys, the latter whereof must indeed be always attended to. Thiкmis. Wall plates and templets must be proportionately larger as their length and the weight of he floor increases. Their scantlings will, in this respect, vary to $4 \frac{1}{2}$ by 3 inches, up to $7 \frac{1}{2}$ by inches. Fountily. The timbers should always be kept rather higher, say half to three fuarters of an inch higher, in the middle than at the sides of a room, when first traned, so hit the natural shrinking and the settlement which occurs in all buildings, may not ultinately appear after the building is finished. Lastly, when the ends of juists or girders are upported by external walls whese height is great, the middles of such timbers ought not t first to rest upon any partition wall that does not rise higher than the floor, but a space hould, says Vitruvius (lib. 7. e. l.), be rather left between them, though, when all has ettled, they may be brought to a bearing upon it. Neglect of this precaution will induce thequal settlenents, and, besides eausing the floor to be thrown out of a level, will most rulably fracture the corners of the rooms below.
2014. Singie Floobing is contructed with only one series of joists as slown in fiy. 672.). In this way f framing a floor, if a girder is used, should be laid as nearly as posbe over the centre of the apartrent. A simyle tloor containing re same quantity of timber as a ouble floor is much stronger; but te eciling of the former is liable - crack, and camot be got to so

Fig. 672. nod a surface when finished. Hence, where the bearings are long, it is much better to © domble flaoring.
201.5. The scantlings of fir joists for single flooring are exlibited in the subjoined table, id are foumded on our own practice. The weight of a spluare varies from 11 to 18 cwt .

In-ugthin livet.	Whath in luches.	Depth in Inches.
6	2	6
8	-1	7
10	$2!$	$7!$
12	$2!$	8
11	$2!$	9
18	21	12
20	$2!$	12

These sanalings may be varied if wanted, accesting to the laws litid down in the

2016. In fiy, 672. AA A we the joists, and 13 the 五oor boards. The laths for the ceiling e uniled !o the under side of the joits .I.I.1.
2017. In most flows, on account of the intervention of flues, chimney openings, and occisionally other causes, it will so happen that the ends of the joists camot have a bearing on the wall. In such cases a piece of timber called a trimmer is framed into two of the ncarest joists (then called trimming joists) that have a bearing on the wall. Into tho trimmer, which is parallel to the wall, the ends of the joists thus intercepted from tailing into the wall are mortised. The operation is called trimming. The scantlings of trimmers and trimming joists may be the same as those hereafter given for binding joists; or if to the width of the common joists an eighth of an inch be added for each joist supported by the trimmer, the depth being the same, the scantling will generally be sufficient.
2018. When the bearing of a single joist floor exceeds 8 feet, a row of strutting pieces should be introduced between the joists, by which they will be prevented from horizontal twisting, and the floor will be stiffened. If the bearing be more than 12 feet, two rows of stiffening pieces or struts should be introduced, and so on for each increase of 4 feet is bearing. They should be put in, in eontinued rows, and be well fitted. Beyond a bearing of 15 feet it is not advisable to use single flooring, neither ought it in any case to be use where it is required to prevent the passage of sound.
2019. A druble floor consists in its thickness of three tiers of timbers, which are called binding joists (thesc perform the office of girders), bridging joists, and cciling joists. From all inspection of fig. 673. the construction will be easily understood. AA are the binding joists, which are the principal support of the floor on the upper side, whereon Bls, the bridging joists are notched; which is

the best method, though sometimes they are framed between with chased mortices. The binders, of coursic run from wall to wall; and as for carrying the floor, the bridging joists, as their name im ports, are bridyed on to them; so the lower tier of timbers, eallcd the cciling joists, are eithe notched to them, or are what is called pulley mortised into them; that is, a chase D is cut i the binder long enough to allow tenons of the ceiling joists C being obliquely introduce into them, and driven up to their places. The scantlings of timbers used in this metho are the same as those for double-framed flooring of which, indeed, it is but a species.
2020. The double-framed floor differs only from the last-named by the binding joist instead of going from wall to wall, being frumed into large pieces of timber called girders (as shown in fig. 674.), wherein A is the girder, B a binding joist, C a bridging joist, D a ceiling joist, E the pulley mortice for the ceiling joist

Fig. fint. D, and \bar{F} is the floor. The great aovantages of this sort of flooring are, that it prevent the passage of sound between the stories, and enables the architect to make a solid ceiling.
2021. As in a double-framed floor the girders are the chief supports, it is exceeding important that they should be sound and free from shakes. The distances between or girder and another, or the wall, should not excecd 10 feet, and their scantlings as nth following table:-

Girders of the length of 10 feet should be 9 inches deep, 7 inches wide.

12	-	10	8
14	-	11	9
16	-	12	10
18	-	12	11
20	-	13	11
29	-	14	12
24	\cdots	15	13
26	-	16	12
23	-	16	13
30	-	16	14

2021a. Girders or beams whose bearing exceeds 24 feet are difficult to be procured of fieient depth, in which case an expedient is pot in requisition to strengthen a luss depth. e principles it involves are explaned onder the head of roofs, namely, those of trusing m (2031, et seq.), an operation that converts the beam within its own thickn'ss into a ce of framework, for the porpose of preventing the bending, or, as it is techimeally called, sagging, which produces an injurious horizontal thrust on the walls. This operation is resented in fig. 675 , in two different ways. No. 111 represents the plan.
1.

II.

III.

Fig. 675.
e hean is cot into two halses in the direction of its lepth and length, between and into ich the truss is inserted, as shown. It is better that the truss posts A, and abutment es B, should be of wrooght iron; the struts C may be of oak, or some stiffer wood in the beam itself. In I. and II., the whole, or nearly the whole of the timber, is in a e of tension.
O!1b. This operation is further developed by trussing the beam below itself, an mgement eunsidered to be safer and stronger than that above described. No. IV. has vrought iron tension , with a stay in the tre, which takes the sle of the tension, list the timber is thrown rely into emmpression. V. is the sime with IV.
stays. By these sysa heam, rafter, purlin, which will barely sup-
It its own weight safely, may be made to carry a load of many tons without sensible "ection. The tension rod is osefol in proportion to its distance from the bean (evid)ty within certain limits). If it be immediately under, or concealed within the onder e, it becomes nearly useless, especially in a cast iron bean with a wrooght iron rod, re the bean is much less extensible than the rod. In such a ease, the beam woold b) ik and fall before the rod has been brought into action. The respective size or suional area of the rod and beam is regolated by the respective strength of the materials, is useless to apply a rod capable of sostaning double the tensile force that the bean resist of crushing foree, and vice versâ ; it is merely adding weight (Warr, Dynamics, 2.59). The fliteh girder is deseribed in par. 1699μ.

12tc. The resistance of beans of soft wood thay be considerably increased by strengthG the centre of gravity. Du Ilamel, Force des Bois, took twenty-four sticks, colt from ig willuws, of equal strength. Each stick was 3 feet (French) long, and $1 \frac{1}{2}$ inch sguare. of these broke in the middle with an average weight of 566.48 lbs . In two other she made a ent across it $\frac{1}{3}$ inch deep in the centre, and filled it out with a piece of these brohe with an average weight of 594.73 lbs . I'wo more were ent $\frac{1}{2}$ inch and treated in the sane manner; they broke with 585 lbs . Five were cut ${ }^{3}$ iuch and broke with 579.78 lbs. All the tii.ls showed that the piece of harder wood ased the strengeth of the beam.
11d. Laves's girder is a simple and eflective contrivance for strongthening a beam. piece of timber having been cut nearly from end to end (fig. 675a.), is bound at each $0 \square 11+10$ termination with Blocks are divern in the cut so as to sepparate
We vered pieces to several inches dintance in the middle of the length, thereby throwim:"
the matcrial farther above and below the neutral axis. A solid beam, 40 feet long, $9 \frac{1}{4}$ inch deep, and $7 \frac{1}{4}$ inches wide, deflected $5 \frac{1}{4}$ inches with a load of $1,700 \mathrm{lbs}$. When a simila heam had been cut to 3.6 inches of each end, making the upper part 5 inches deep and t] lower part $4 \frac{1}{4}$ inches, and separated by blocks until the parts were as wide asunder as ha the depth of the beam, the beam suffered a less deflection by $1 \frac{3}{4}$ inch. A greater strengt was obtained by separating the parts to the whole depth of the beam, when it deflecte 3 inches less than the solid beam; and when separated to $1 \frac{1}{2}$ times the depth, it deflecte 4 inches less than the solid beam. The greatest strength is obtained by giving a sectio to the upper and lower parts proportional to the power of the material to resist tensio and compression (Civil Enyinter lor 1840, page 161, being a paper read at the Institu of British Architects).

2C2Ie. Floors are now largely made of firrprof materials, as referred to in the sectio lizicklayeli. The introduction of rolled inon joists and girders has enabled the areline () construct his floors of larger span, by supporting the timber joists betwsen them. B uning riveted steel girders a saving is made in the cost of construction.
2022. We now return to the subject of binding jaists, which ought not to be more tha 6 feet apart. The depth, if necessary, for accommodating them to the thickness of t Hoor, may he varied from the following table by the rules given under section Beams, $\&$:

Binding joists of the length of
6 feet should be 6 inches deep, 4 inches wide.

8		7		$4 \frac{1}{2}$	14	-	11	-	61
10	-	8		5	18	-	12	-	7
12	-	9	-	$5 \frac{1}{2}$	20	-	13	-	$7 \frac{1}{2}$

The scantlings of bridging joists are similar to those already given for single floorins These, as well as ceiling joists, whore ceantlings are subjoined, should not be more the 12 inches apart, and they require to be scarcely thicker than is necessary to bear the nai of the laths fixed to them, for which 2 inches is quite sufficient.

Ceiling joists of the length of
4 feet should be $2 \frac{1}{2}$ inches deep, $1 \frac{1}{2}$ inch wide.
${ }_{8}^{6} \quad$ - $\quad 4^{3 \frac{1}{2}} \quad$ - $\quad 2_{2}^{1 \frac{1}{2}}$
The weight of a square of framed flooring with connter flooring varies from 22 to 36 cwt .
2023. Though, perhaps, more curious than useful, we should not perform our duty t the student, were we to omit a method of constructing floors with short timbers, where lon (nes are not to be procured. Suppose it be required to floor the room 4 BCD (fig. 676

Fig. 676.

Fig. 677.

Let four joists, as in the figure, be mortised and tenoned at abcd, as there shown. N it is evident that these joists will mutually support each other, for each is support at one end by the wall, and at the other by the middle of the next joist. Fig. 67 shows another mode of accomplishing the same object; and many other forms wou immediately suggest themselves to the experienced architect. The expedient is of ancie origin, inasmuch as our old master (so we delight to call lim, notwithstanding the ne lights that modern erities have found to guide them). Serlio, has described the expedie without any difference. In the fourth volume of Rondelet (Art de Bâtir), an anthor whom we are under infinite ohligations, is descrihed a floor executed at Amsterdam for room 60 feet square, of exceedingly singular construction, inasmuch as it is without jois at all. Each side of the room is provided with very strong wall plates, whose angles a secured with iron straps, and are rebated to receive the flooring, which consists of thr thicknesses of $1 \frac{1}{2}$ inch boards Of these thicknesses, the first is laid diagonally across t opening, its ends resting on the rebates of the wall plates, ano rising about $2 \frac{1}{2}$ inch towards the centre of the room. The next (second) thickness is laid diagonally at rigt angles to the first thickness, and the two are well nailed together. In the third thicknes
the boards are laid down parallel to one of the sides of the room, and form the upper side of the floor, being, however, well nailed to those below. The whole of them are grooved ind tongued together, forming a solid floor $4 \frac{1}{2}$ inches thick. In this example is an instance well worthy the study of the architect, as respects a scientifie connection of parts, and the great adrantage of a well-disposed bond. The floor in question is, in fact, a thin plate, well supported round the edges, the strengths of the plates bting directly as the squares of their thicknesses, cqually strong to bear a weight in the middle, whatever thit bearing; though if the load be uniformly distributed, the strength will be inversely as the area of the space.

2023a. The flooring of the Middle Ages, as used for upper rooms, were constructed with large square timbers resting on wood plates, which formed the cornice to the rooms; sometimes they had stone cornices under them. Occasionally the under sides of the joists were covered with boarding, and this was divided into panels by small ribs, with bosses at the intersections, carved with foliage, or with shields of arms, or other ornaments. An example of the 15 th century exists at Wingham, in Kent; Parker, Dom. Arch. iii. 127. These were usually coloured in distemper. The ceiling of the nave and of the eastern part of St. Alban's Abbey church is a remarkable example of a fine flat ceiling of carly date, as is also that in the tower of the church at St. Cross, in Hampshire, and that of the library, 15 th century (and formerly in the chapel) of Merton College, Oxford. In Fingland, in the 13 th century, the ceilings (which were of wood) were fiequently painted the same as on the wainscot, in grecn and gold, and were sometimes also decorated with historical subjects and with gilded bosses.

2023b. The joists that came upon a beam were placed upon it, and, being cut, were pinned into corresponding blocks. If the beam took two sets of joists, the blocks might be made long enough to connect the ends of the two sets. But by the 14 th century the system of girders, binders, and joists was perfected; boarding one inch and a balf thick, rebated on both ed res, was laid with the wider face downward, and connected by rebatid battens, fixcd upon stop-moulded joists, and these were dovetailed for half their depth into moulded binders, that were dovetailed three-fifths of their depth into moulded girdeis, the backs of all being flush for the boarding, which received the mortar and tile floor.

2023c. Whetiner in eak or fir, this latier system was apparently never enriched with painting, but moulded and carved; indeed the inevitable towel decoration makes its appearance in panels formed by moulded strutting. These panels are let into r, b tes on the back of the struts and joists and binders, so as to leave a space between the panels and the flush floor, receiving the plaster or the tiles upon plastering. Another effective practice was to rebate the backs of the joists sufliciently deep to allow the apparent ceiling to consist of short pieces of board that were decorated on the two edges, laid close together, forming a pattern of circles, diamonds, foils, \&c., cut in open work, with a ground formed by laying a plank over the whole length between the joists; over this came the finished one, or three coated floor. In the 15 th and 16 th centuries, pendentives hanging by keys to timber ceiling-joists, between binders, formed an entirely new arrangement of decoiation, which rivalled in its complexity of drops and coflers the most elaborate works of Saracenic ctilings. In the time of IIenry VIII., the ecilings were commonly of plaster, with a mreat variety of patterns stamped in them. The ceiling of the chapel of the Savoy Ialace in the Strand is a rich example of panelling only.

202:d. Some of the timber houses built in Jroyes at the commencencnt of the 15 th century afferd good spectuens of the manner in which the construction of the floors was rentered onnanental. The studs of the framing carry the usual head-picee, which is monlded; and on this are notehed down the ceiling joists, which have their ends eut ass cantilesers: upon these rests a board, or plank, having its edge noulded, which is kept in place by the chantlates at the leet of the ralters. At other times the sill is separated from the josts; because they rest upon stanchions, upon which are planted brackets caraying the ends of the joints: between the ends, which are grooved, there is a piece of caried woodwoik, so that the ends of the joists, in conjunction with a moulded plate resting יןon lom and receiving the tie beams or ceiling joists, form a sort of conbel-table. (fry. 701l)
bog: Ae. Another method of forming a floor, with its ceiling, into decorated construction, is lne to the 1 sthe eentury. I'has eomsisted in cutting balks of tinber diagonally and laying fiem with the angres downward close tonether. 'Ihe ends were notehed into the ginders or bisders, leaving finsh backs. If not sightly enough, trimgular fillets were put in etween then ; sund the sharp angle might even be taken fron ofle the aris or under edge of the balks. Floors were nlso connposed of breck seg口ont arches (the bricks being set erring-bont*) between balks of timber laid with one corner "pwards, so as to fornn it hew-lack for the wrehes.

2023f. For these few remarks we are indebted to Viollet le Due's udnirable lirtionmmire. Is the systems therein shown will searecely be ndoptrd in fingland in gencond prnctice, the tudent will do well to refer to the work should lee rexuirenuy illistrations. A viry
suggestive late example, richly moulded and carved, as it existed before 1843 at Fontaine I:lean, when it appears to have been rensed and somewhat altered, is given in that worl anong many others.
$2023 g$. Timber groined ceilings are to be met with in the choir and lady ehapel at St Albans'; in Warmington Chutch, Northamptonshire, of the Early English period; in th cloisters at Lincoln and Gloucester; in the towers at Exeter; in the lantern at Peter horough; the lantern at Ely, and the ehoir at Winchester, cathedrals; in the choir a Selby Abbey Church, Yookshire; in the nave of Boston Church, Lincolnshirc, where i unfortumately occupies 29 feet of height; the chapel of St. Mary's College. Winchester and the entire rooling of York Minster. The vanlts spring from stone-work carried up a high as required to free the ribs from the wall ; there is no special mark of division at the point where the stonework ceas d and the woodwork commenced. The boarding was l_{t} into a groove in the sides of the ribs, or laid on a rebate 'The eastern part of the chancel, the 13 th eentury ehurch at Uffington, in Berkshire, is eridently groined or prepared to groining in this way, for whilst the walls and buttresses were insufficient to resist th thrust of a vault even filled in with chalk, the stone springers exist. "There seems to 1 , no good reason," eontinues Mr. Street, from whose lecture on Woodwork we are quoting "why this kind of ceiling should be condemned, as it has been by some writers, as thougl it were unreal, or in any way a sham. It is nothing of the kind, and no attempt wa made to make the wood look like stone. 'I'he boarding was frequently feather-edged, an grooved and tongned, and thus obviously of wood. (Fig. 780f.) It may be introduced is buildings not calculated to resist the thrust of a stone vault; and it may be carried far 川 into the roof and above the top of the walls, which in stone vaults is always, within litale, the limits of internal height attainable."

PAETITIONS.

2024. The framework of timber used for dividing the internal parts of a house int rooms is called a partition or quartered partition. It is commonly lathed and plastered when the spaces between the timbers or quarters are bricked up, it is called a brichnogyer purtition. The weight of a square of eommon partition is rarely less than from $1: 3$ t 18 ewt. ; henee it becomes necessary to take care that partitions should not be set upon th floor, without taking due precaution to relieve it of the weight, either by struts, braces, 0 the formation of a truss in it. When a partition occurs in an upper story, under a strong! trussed roof, it may be often advantageously suspended from the roof, and its weight thu taken off from the floor bclow. If it have a solid bearing throughout its length, requires nothing but struts between the quarters; but these are not absolutely required The scautlings of the timbers of a quarter partition should vary according to the exten of bearing. Where that docs not exceed 20 feet, 4 by 3 inches will be sufficient ; and wher it is as much as 40 feet, the quarters should not be under 6 by 4 inches, that is, supposin it to bear only its own weight. When it has to bear more, the scantling must, of cours be increased aceordingly.
2025. Fig. 678. represents a design for a trussed partition, with a doorway in the centr

of it: in which $h h$ is the head, and AA the sill; $d c, d c$ the doorposts; $g g$ the intert Ad, Ad the braces; $f d$, fld struts. Fig. 679. shows a method of trussing a partition which the doors are at the sides. It is obvious that additional strength may also be gaine when wanted, by introducing a truss between the intertie and head of a partition. 'Il angle of inclination of braces should be about 40° with the horizon.

CAREIAGE OF STAIRS.

2026. The framed timbers which support the steps of a staircase are ealled the carriut? They generally consist of two pieces inclined to the pitch of the stairs, called the rotu! sfrings. When geometrical stairs consist of two alternate flights with a half-pace betwet them, the carriage of the half-pace is eonstructed with a beam parallel to the risers of th
steps, whose joists are framed into the bean for the support of the flcoring. This beam is called the apron piece, and that which sustains the rough strings at the upper end is called the pitching piece. The joists of the half-pace are sometimes turned into the pitching piece, and sometimes bridge over it ; but the steps of both flights are always supported by string pieces, as before. The upper ends of the string pieces at the landing rest upon an horizontal piece of timber, called, as above, an apron piece. The scantlings of the strings, of course, vary with the length of the inclined part. The depth given to joists of similar length will be more than sufficient.

Roofs.
2027. The first obvious consideration in constructing a roof is the slope to be given to $i t$, which depends on the climate against which it is to serve as a protection, and on the materials to be employed in covering it. In hot countries, rain more rarely falls than in temperate ones; but when it comes, it deseends very abundantly, which, added to the temperature of the air, makes it unnecessary to give a great slope to the roof, from which the water immediately runs, and the air dries it alnost at the instant of the rain's cessation. In cold countries the rain is more searching, the air is more impregnated with moisture, and stow often lies for a long time on a roof; circumstances which require a greater proportional slope to be given to it. Again, roofs covered with lead, zinc, or copper, do not require so great a slope as those covered with tiles or slates. (See Roofing, in Glossary.)
2028. Though among architects there does not appear to have been any fixed principle by which the slope should be determined, we find that in different climates suitable slopes have been adopted for similar materials. Thus in the southern parts of Europe we find the roofs very flat; whilst as we proceed into its northern parts the roof acquires a very considerable elevation. We shall here transfer to our pages the notice of this subject in the L'ncyclopedie Methodique, which we consider extremely important and interesting, inasmuch as it shows that necessity was the parent of beauty in the inclination of the roofs of the ancients; and in the times of the madde ages it had some influence even in the production and developement of the lancet arch.
2029. The researches and observations made respecting the roofs of a great many ancient and modern buildings, situate in different countries, satisfy us that the slopes of roofs which lave lasted best are always proportioned to the temperature of the climate. Before entering into the consideration of any law for determining the slope of a roof, it will be proper to comprehend the meaning of the word climate as here introduced, which we shall use in the same way as it is understood by geographers. Aecording to them, the climates of the globe are comprised under belts or bands, of unequal size, parallel to the equator. of them there are twenty-four between the equator and the polar circle, each of half an hour ; that is, the length of the longest day of a place situated at the begiming of the climate is always shorter by half an hour than that of the place situated at the extremity of the same climate, or at the legiming of the succeeding one, proceeding from the eppator towards the polar circle. 'This difference in the length of the day, caused by the greater or less oblicuity of the tropic with the horizon, is one reason of the different degrees of temperature of countries corresponding to thie different climates. We are not, however, to assume that the temperature will be exactly the same for all places under the same climate, since there are many circumstances which tend to make a place more or less damp, in which cases the slope of the roof should rather have a relation to a more northern spot. In the roofs of The Continent covered with the hollow tile, as in the sonth of lirance for instance, less slope is required than with the Roman tiles (see the word The in Glossary), which are in rections alterrately Hat and circular; and these, again, repuire less slope than the common dain tile or slate. From the observations that have been made, we find that the stope of roofs eovered with hollow tile, \int thas, of the sonth of lirance, should be after the ate of three degrees for every climate, beginning from the efuator and proceeding northward, and that when the Roman tile is nsed, an addition of three degrees shonld be made t, .uch inclination; an addition of six degrecs, if covered with slates; and of eight degreen, fovered with plain tiles. According to this law, the table which will be perently sub. nined has been constructed, and a comparison of it with ancient buildings gives a remarkable corroberation of ils value. 'Thus, at Abhens, cithated alhont the middle of the sixth limate, the slope of a pediment would be alont $16:^{\circ}$; and that of the Parthenon is ctually uthont 16°; that of the temple of Pirecthens, 1.55°; of Thescus, 1.5°. In Rume, ohich is alont one third of the way up the serenth climate, the Roman tile requites an nclimation of 22°. The actual slope of the pediment of Septimine severns is 23°; those it the temples of Concord and Mars Ulor, $2: 3 \xi^{\circ}$; of Fortma Virilis and the Pantheon, ${ }^{1}$ '; and, of more modern date, the slope of the roof of St. l'aolo fiomi le mura was 23°. 2030. We shall now give the realer the table above mentioned. This ingenion, theory taken exceptinn to by $1 \cdot$. Waterhone in lis Wissaly on Pedinents, \&e., issib.

City.	Country.	Climate.	$\begin{gathered} \text { Length ong } \\ \text { Longest } \\ \text { Day. } \end{gathered}$	Covered with			
				$\begin{aligned} & \text { Hollow } \\ & \text { Yiles. } \end{aligned}$	$\begin{aligned} & \text { Roman } \\ & \text { Tiles. } \end{aligned}$	Slates	Plan Tile
		V1.	h. m.	n.	g. min.	in.	deg. min.
P'ale	Italy		1448	16	1948	22	24
Lisbon	Portugal		1450	17 00	$20 \quad 00$	$23 \quad 00$	2500
Toledo	Spain -		1458	$17 \quad 48$	$20 \quad 48$	$23 \quad 48$	2548
Madrid	Spain		1500	18 co	2100	2400	$26 \quad 00$
Naples	Italy	VII.	15	$18 \quad 12$	$21 \quad 12$	$24 \quad 12$	$26 \quad 12$
Constantinople	urkey			$18 \quad 24$	$21 \quad 24$	$24 \quad 24$	$26 \quad 24$
Barcelona	Spain		15	1848	2148	$24 \quad 48$	$26 \quad 48$
Rome	Italy		$15 \quad 10$	$19 \quad 00$	2200	$25 \quad 00$	$27 \quad 00$
lau	France		$15 \quad 20$	$20 \quad 00$	2300	$26 \quad 00$	$28 \quad 00$
I lorence	Italy		$15 \quad 22$	$20 \quad 12$	$23 \quad 12$	$26 \quad 12$	$28 \quad 12$
Avignon	France		$15 \quad 24$	$20 \quad 24$	$23 \quad 24$	$26 \quad 24$	$28 \quad 24$
Genoa -	Italy		$15 \quad 98$	20 48	2348	$26 \quad 48$	$28 \quad 48$
Bologna	Italy		$15 \quad 28$	$20 \quad 48$	2348	$26 \quad 48$	$28 \quad 48$
lordeaux	France		$15 \quad 30$	$21 \quad 00$	$24 \quad 00$	$27 \quad 00$	2900
Piaecina	Italy	III	$15 \quad 32$	$21 \quad 12$	$24 \quad 12$	$27 \quad 12$	$29 \quad 12$
'I'urin and Venice	Italy -			2124	$24 \quad 24$	$27 \quad 24$	$29 \quad 24$
Milan	taly		$15 \quad 36$	2136	$24 \quad 36$	$27 \quad 36$	$29 \quad 36$
Lyons -	rance		1540	2200	2500	2800	$30 \quad 00$
Geneva	Switzerland		1544	$22 \quad 24$	$25 \quad 24$	$28 \quad 24$	$30 \quad 24$
Dijon -	France		$15 \quad 52$	$29 \quad 12$	$26 \quad 12$	$29 \quad 12$	$31 \quad 12$
Zurich -	Switzerland		$15 \quad 54$	$23 \quad 24$	$26 \quad 24$	29	$31 \quad 24$
Munich	Germany		$15 \quad 58$	2348	$26 \quad 48$	29	3148
Vienna	Germany		1600	$24 \quad 00$	$27 \quad 00$	$30 \quad 00$	3200
Strasbour	France	$1 \times$.		$24 \quad 12$	$27 \quad 12$	30	$32 \quad 12$
Paris	ran		16	$24 \quad 36$	$27 \quad 36$	$30 \quad 36$	$32 \quad 36$
Ratish	Germany		16	$24 \quad 48$	$\begin{array}{ll}27 & 48\end{array}$	$30 \quad 48$	3248
Rheim	France	-	$16 \quad 10$	$25 \quad 00$	$28 \quad 00$	3100	3300
Nuremberg -	German	-	$16 \quad 12$	$25 \quad 12$	$28 \quad 12$	$31 \quad 12$	$\begin{array}{ll}33 & 12\end{array}$
Manheim	Germany	-	$16 \quad 12$	$25 \quad 12$	$28 \quad 12$	$31 \quad 12$	$33 \quad 12$
Havre -	France		1612	$25 \quad 12$	$28 \quad 12$	$31 \quad 12$	$33 \quad 12$
Mayence	Germany	-	$16 \quad 18$	$25 \quad 48$	$28 \quad 48$	3148	3348
Frankfort (Maine) -	Germany				$28 \quad 48$	3148	3348
Craeow -	Poland		$16 \quad 20$	2600	$29 \quad 00$	$32 \quad 00$	$34 \quad 00$
Valenciennes	Franc		1622	26 12	$29 \quad 12$	$32 \quad 12$	$34 \quad 12$
Brussels -	Belgium	-	$16 \quad 26$	$26 \quad 36$	$29 \quad 36$	$32 \quad 36$	$34 \quad 36$
Cologne	Gerinany		$16 \quad 28$	$26 \quad 48$	2948	3248	3448
Antwerp	Belgium		$16 \quad 30$	$27 \quad 00$	$30 \quad 00$	5300	3500
London	England	X .	$16 \quad 34$	$27 \quad 24$	$30 \quad 24$	$33 \quad 24$	$35 \quad 24$
The Hague -	Holland		$16 \quad 40$	2800	3100	$34 \quad 00$	36
Warsaw	oland		$16 \quad 42$	$28 \quad 12$	$31 \quad 12$	$34 \quad 12$	$36 \quad 12$
Berlin -	Germany		$16 \quad 46$	$28 \quad 36$	3186	$34 \quad 36$	36 36 7 48
Hamburg	Germany		$16 \quad 58$	$29 \quad 48$	$\begin{array}{ll}32 & 48\end{array}$	$\begin{array}{ll}35 & 48\end{array}$	$37 \quad 48$
Dresden	German		1700	$30 \quad 00$	33 00	$36 \quad 00$	3800
Dantzic	Poland	XI.	17	$30 \quad 48$	3348	36	3848
Moscow	Russia		$17 \quad 22$	$32 \quad 12$	$35 \quad 12$	$\begin{array}{ll}38 & 12\end{array}$	$40 \quad 12$
Copenhagen	Denmark		$17 \quad 28$	3248	$35 \quad 48$	$38 \quad 48$	$40 \quad 48$
Edinburgh -	Scotland	XII.	$17 \quad 32$	$33 \quad 12$	$36 \quad 12$	$39 \quad 12$	4112
Stockholm -	Sweden	XIII.	1830	$39 \quad 00$	$42 \quad 00$	$45 \quad 00$	47
Petersturgh	Russia -	XIV.	1844	$40 \quad 24$	$43 \quad 24$	46	48
Bergen	Norway	-	1844	40	43	$46 \quad 24$	48

"There is no article," says Ware in his Body of Architecture, "in the whole eompass of the arehiteet's employment that is more important or more worthy of a distinct consideration than the roof. The great caution is," eontinues our author "that the roof be neither too massy nor too slight. Both extremes are to be avoided, for in architecture every extreme is to be shunned, but of the two the overweight of roof is more to be regarded than too mucli slightness. This part is intended not only to cover the building, but
, press upon the wals, and by that bearing to unite and hold all together. This it wil. ot loe massy enough to perform if too little timber be emploged. so that the extreme is , be shunned. But in practice the great and eommon error is on the other side; and he ill do the most acceptable service to his profession, who shall show how to retrench and recute the same roof with a sunaller quantity of timber ; he will by this take off an uneeessary load from the wails, and a large and useless expense to the owner."
20:31. We shall now proceed to a popular view of the strains exerted by the timbers of ofs, referring the reader back to the section on Beams, linians, \&c., for a more extended ad scientific view of them. Suppose (fig. 680.), in ie simplest form of roof, the rafters (shown by otted lines) AB, CB to pitclı upon the walls Aa, c. Let the rafters be supposed to be comnected agether at B as by a hinge, as also similarly conected with the walls at A and C. Now if the frective weight of the walls be not sufficient to resist ie thrusts of the rafters, as respeets the height, riekness, and situation of the eentre of gravity of uch walls, taken as sol d masses and moveable on he points X and Y , it is manifest the rafters by eir own gravity will descend, and the walls will read and le thrown out of an upright, as in ab nd $c d$. and the rafters will take the places shown in re figure. It has already been slown (par. 1622) lat the horizontal thrust of a pair of rafters thus

lig lso. eeting each other. is proportional to the length of a line drawn perpendiculanly from e rafter's foot until it inlersects a vertical line drawn from its apex. As the roof therere becomes flatter, the length of the perpendicular inereases. Henee, if AB and BC be ie rafters, and their weights be represented by their lengths, the weight or power of irust exerted by the rafter AB in the direction of its length will be represented by BO, and e horizontal thrúst by $\mathbf{A O} ; \mathbf{A O}$ being perpendicular to AB . To secure, then, the walls in reir perpendicularity, which the thrust of the rafters tends to derange, a systen of framing comes nceessary. Thus, in fig. 681., beam AC , which from the offiee it rforms of tying or confining the feet the rafters is ealled a tie beam, is inoduced across the opening. and into is beain the rafters are framed. If e tie is introduced above the level of e walls, it is called a collar beam, as ac. is manifest that these beams exert eir power in the same way that a ing would, that is, that the primeipal

Dig. 6SI. ain which they have to perform is in edireetion of their length, and hence, that for such especial purpose, if they be prevented from ging or bending, a small size or scantling will be sufficient, for we have already seen that ecohesive power of timber is very great in the direction of its length. To take care t the tie beam thas introduced muld be strained only in the direction which it is used, we are now led to other expedient. The beam by its " gravity, especially in a large openb, would have a tendency to sag or ad in the middle, and the nore so if seantling le simply proportioned its offiee of a tie. To prevent this wh tie is introduced called a kingD13 (fig. 68!.), by which the m is tied or slong up to the apex of

Fine who.
prinepal rafters; and this combnination of a pair of ratters, a tie bean and a king. h, is ealled a truss, and is the most important of the assemblages whiel the carter proluces. When the rafturs are of sueh length that they would be liable of melves to sig down, supports ana are introduced at the points where such failures would Hr, and these supports are called strute, because their oflice is to strut up the rafter, eh they should do as nearly as the ease will adnit in a direction perpendicular to the se of the rafters.
032. It is elear that out of this last case a fresh systen of trusses may arise as in 693., for from those points procured liy the strits natinst the rafters new rorls mav
be slung for increasing the stiffness of the tie beam ad infinitum in theory, but not in practice, because the compressibility of the fibres of timber is considerable in lines perpendicular to their direction, and the contraction and expansion of metal places a limit to its use. This compression of tim-
 ber deserves great attention on the part of the architect. We may lay down as a rule in respect to it that the more the weights or pressures act in the direction of the fibres, the less will be the compression.
2033. To exemplify this, fig. 684. shows in No. 1. the principal rafters of a rool butting in an ordinary roof, against the shoulders Al, CD of the kingpost, whose fibres, being vertical, are compressed by the pressure against it, on each side of the rafters, whereby they approach each other, causing the whole figure of the roof to suffer a change. For by the action of com-

Fig. 681. pression and its consequence the kingpost must descend, and with it, consequently, the tif beam which is slung up to it. To remedy the inconvenience in roofs constructed of fir, the kingpost is often nade of oak, which is less compressible, a practice which should b observed in all roofs of consequence. But cast iron kingposts are the best substitute whert the expense can be justified. In No. 2. the end is accomplished much more conomically by housing the rafters in the head of the kingpost at the angle in which the rafter: meet, by which the fibres of the rafters butt against each other, bringing the compression nearer to that which takes place in a post according as the rafters are less inclined to eacl other, and the beam is then literally suspended from the vertical planes of the rafters a their junction.
2034. When a roof (fig. 685.) is trussed by two upright suspending posts, which be come necessary in increased spans, such posts, A B, CD, are called queenposts, and the piece between them, 13 D , is called a collar, which acts as a struining piece to prevent the heads of the queen-posts moving out of their places towards cach other. It
 will on mere inspection be seen that this roof has three points of support, B, E, and D; for by means of the struts AE, EC, new suspending point is gained from E for sustaining the tie beam between the points and C. It is also to be observed that the collar or straining piece BD performs in thi assemblage an office exactly the reverse of that which it does in fig. 681.
2035. The Mansard roof, so called from its inventor's name, and with us called a Cur roof, frequently used for the purpose of keeping down the height of a building, and the same time of obtaining sleeping or other rooms in it, is shown in figs. 686 and 687. may be considered as primarily consisting of four pieces of timber connected by binges at the points ABCDE. If these be inverted, they will arrange themselves by their gravity in such a manner that when returned to their first position they remain in a state of equilibrium, which, however, in practice is but a tottering one, and requires additional expedients to prevent the whole assemblage thrusting out the walls; and, moreover, to prevent the upper rafters from acting by their thrust to displace the lower ones. To obtain these ends the first object is to introduce the tie

Fig 686.

Fig 687. AE ; and, sccondly, the tie BD. It is to be understood that means are to be used, whe needed from their length, to prevent these beams from bending, similar to those alrea directed in the cascs of simple trusses. Fig. 686 is an example sclected from Krafl (Art. de la Charpente, fol. 1805), having an arched ceiling to give additional height
some large or fublie room. This form of roof has been frequently adopted in the palaces of France and Germany. Fig. 687 is a king-post Mansard roof, affording a wide space wver the tie beam available as an apartment. Fig. 698 is an example of the principles adopted for a much wider spanned roof.

2035a. We have thus far cndeavoured to explain in the simplest way the conduct to be pursued for obtaining stability in the construction of a roof; but before we proceed to the seantlings of the timbers to be employed, the readir must be informed that the trussts to roofing, with whose nature he has now become acquainted, are placed only at certain intervals (which should not excerd 10 feet) apart, and are thus made to bear the common raflers and the weight of the eovering, as well as to perform the office of suspending the tie beam by which the walls are kept together. Hence the rafters so franed in a truss are ealled prineipal rafters; and by the means of a purline A (fig. 688.), which lies horizontally throughout the roof's length on the principal rafters, they are made to bear all the superincumbent load. The purlines are in various ways made fast to the principal rafters, and upon it the common rafters are usually notched down. Their beatings are thus lessened, and
 less scantlings suffice for them. They are received at their feet on a piece of timber (B in the figure), which runs lougitudinally along the sides of the huilding. This piece of timber is called a pole plate, from being the uppermost plate in a building; at their summits they abut against a ridge piece D. When i1 roof slopes each way, the space enclosed between the interscetion of the slopes is called a hip ($f i g$. (i89.) ; and the longest rafters in it, which are those at the angles, are

Fig. 6S9. called hip rufters, and the shorter ones are named juck rufters, as Λ, A, A, \&e.
2036. We have, at the beginning of this section (2007.), obscrved, that the use made of bolts must be always in a direction as nearly as possible counter to the strain which the pieces exert; the method, therefore, of introducing them will, on duc consideration, be sufficiently obvious.

Before procecding to lay before the reader some few examples of roofs suitable to different spans, as well as of some of magnitude which have been executed, it may be as well to complete this portion of our labour, by giving some information on the seantlings of timher for roofing, in which a mediun, founded on our own practice, is introdaced letween ignorant overloading, and fanciful theory.
2037. For roofs whose spans are between 20 and 30 fect, no more than a truss with a king-post and struts will be necessary, in which ease the seantlings heremider given will be sufficient.

For a span of 20 fect, the tie beam to be 9 m . by 4 in .; the king-post, 4 in . by 4 in , principal rafter, 4 in . by 4 in ; struts, $4 \mathrm{in}$. by $3 \mathrm{in}$. .
For a span of 25 feet, the tie hean to be 10 in . liy 5 in ; the king-posts, 5 in . by 5 in .; principal rafter, 5 in . by 4 in ; struts, 5 in . hy 3 in .
For a span of 30 feet, the tie bean to he 11 in. by 6 in.; the king-post, 6 in. hy 6 in., principal rafter, 6 in . by 4 in ; struts, 6 in . by 3 in .
2038. For roofs whose spans are between 30 and 45 feet, a truss with two quen-posts ond strints will be required, and a straining piece between the queen-posts. Thas -
For a span of 35 feet, the tie heans to be $11 \mathrm{in}$. by $4 \mathrm{in}$. ; queen-posts $4 \mathrm{in}$. . hy $4 \mathrm{in}$. ; principals, 5 in. by 4 in . ; straining piece, 7 in . hy 4 in ; struts, $4 \mathrm{in}$. by $2 \mathrm{in}$.
For a spau of 40 feet, the tie beams to be 12 in . by 5 in .; queen posts, 5 in . hy 5 in .; principals, 5 in . by 5 in . ; strining piece, 7 in . hy 5 in . ; struts, 5 in . by 96 in.
For a span of 4.5 fect , the tie beans to be 13 in . by 6 in . ; queen-posts, $6 \mathrm{in}$. . by 6 in .; principal4, 6 in. by 5 in , straining piece, 7 in . by 6 in . ; struts, 5 im . hy 3 in .
2033. For roofy whose spans are between 45 and 60 feet, two quecen-pots are require: I, ond a straining piece betwen them; struts from the larger to the enaller gueen-ponts, and aruts again from the latter.

For a span of 50 feet, tie beams, 13 in . by 8 in .; queen-posts, 8 in by 8 in.; small queens, 8 in . by 4 in .; principals, 8 in . by 6 in .; straining piece, 9 in by 6 in : struts, 5 in . by 3 in .
For a span of 55 fect, tie beams, 14 in . by 9 in .; queen posts, 9 in . by 8 in .; small queens, 9 in . by 4 in .; principals, 8 in . by 7 in . ; straining-piece, 10 in . by $6 \mathrm{in.;}$ struts, $5 \frac{1}{2} \mathrm{in}$. by 3 in .
For a span of 60 feet, tie beams, 15 in . by 10 in ; queen-posts, 10 in . by 8 in .; small queens, 10 in . by 4 in. ; principals, 8 in . by 8 in .; straining piece, 11 in . by 6 in .; struts, 6 in. by 3 in.
2040. The seantlings of purlins are regulated principally by their bearing; and though we have subjoined scantlings for bearings of 12 feet, such should be avoided by not allowing the distances between the trusses to exceed 10 feer. Thus-fur a bearing of 6 feet, the scantling should be 6 by 4 ; for 8 feet, 7 by 5 ; for 10 feet: 8 by 6 ; for 12 feet, 9 by 7.

For common rafters the seantlings are as follow; 12 feet should be the maximum of the bearing. For a bearing of 8 feet the scantling should be 4 by $2 \frac{1}{2}$; for 10 feet, 5 by $2 \frac{1}{2}$; for 12 feet, 6 by $2 \frac{1}{2}$.
$2040 a$. To determinc the size of a rafter for a roof to support the covering of slate, the distan e between the supports being 6 feet, and the weight of a superficial foo ${ }^{2}$, including the stress of the wind, being 56 lbs. ; the deflection not to exceed $\frac{1}{40}$ th of an inch for each foot in length; the formula becomes: $-56 \mathrm{lbs} . \times 6$ feet $=336 \mathrm{lbs}$., and $\frac{336 \text { lhs. } \times 40 \times 6^{3}}{E=3072 \times 6}=157^{\circ} 5$, of which take $\frac{5}{8}$ this for uniform load $=98.44$. If the breadth be made $2 \frac{1}{2}$ inches, then $\frac{98 \cdot 44}{2 \cdot 5}=39 \cdot 3$, and the cube root of $39 \cdot 3$ is $3 \cdot 4$ inches, the depth required. These are the rules given by Barlow (page 179), who, in the several editions of his work on Strength of Materials, put the "reduced tabular ralue" for Riga iir, $\mathrm{E}=96$, and 32 times E became 3072 ; and for English oak, $\mathrm{E}=105$. In the edition of 1851, this has been altered to $\mathrm{E}=192$, and 16 times $\mathrm{E}=3072$ also, for fir ; or for oak $\mathrm{E}=210$. The reason of this change has been explained in Beams and Pillars, par. 1630 m .
$2040 b$. Another elcment in the calculation for timbers above-named, is the weights of the different materials used in covering buildings; these are stated to be as fullows. (Flat fireproof roofs have been considered s.v. Bricklayer) :-

The weights of iron roof coverings are given by G. S. Clarke, Graphic Statirs, 1880, p. 137, from Unwin, Wrought lron Bridges and Roofs. The column of fractions showe what the beight of the roof, in parts of the span, is usually made. As the timbers einployed are of course less in dimension as the weight decreases, it follows that a much less quantity of timber is requisite where the metals can be employed. On fats it will be necessary to eonsider the weight of the number of persons who may be probally standing on it at a time. The force of the wind has been considered in par. 1592a. When the rise or pitch is $\frac{1}{6}$ th of the span, the angle formed is $18^{\circ} 25^{\prime \prime} ; \frac{1}{4}$ is $26^{\circ} 35^{\prime \prime}$; $\frac{1}{3}$ is $33^{\circ} \pm 2^{\prime}$; $\frac{1}{2}$ is $45^{\circ} ; \frac{2}{3}$ is $53^{\circ} ; \frac{3}{4}$ is $56^{\circ} 20^{\prime \prime}$; when equilateral, 60°; a whole pitch is $63^{\circ} 30^{\prime \prime}$.
2041. By a study of the roofs which follow as examples, the architect will be led to other expedients and modifications of the forms submitted to his notice, as circumstances may call forth his ingenuity and talents. We have, we trust, already said enough to lend him on. Where economy must be consulted, the roof shown in fig. 690 may be used; it is only fit for a small building, and the span of such a one should not exceed 25 feet. The left end of the collar beam exhibits what is calle-1 the carpenter's boast, but it partakes somewhat of the rule joint, being worked out to a centre But in roofs above 25 feet span it is not
 But in Fig. 69 . well to omit the king-post and tie beam, though, if particular strains are to be provided
gainst, even in such small spans the struts should not be omitted, and the form shown in fig. 691. should be adopted, which will answer for spans at least up to 35 feet. In this and

Fig. 691.

Flg. 692.
other cases of larger span, it is often desirable that the common rafters should not stand above the principals, and then the purlines are framed by mortiees and tenons into the principals, as shown at A, fig. 692., wherein the line bc shows the underside of the common raiters notched on to the purlines. This is a usual practice in Gothic roofs.
2042. From 35 to 45 feet, the tie beam should be suspended from at least three points. or it will be unncesssarily heavy; and this suspension of the tie beam, so that it may be :eally a tic unsusceptible of alteration in form, is the true cause of this introduction of king and queen ports, as before explained. Indeal, as a general ruls, it is well that the distance between such points of support for a tie bean jhonld rot exceed

Fig. 604.
Fig. 693.

13 to 15 fect, without expedierts being used to prevent intermediate safging. Fiy. 693. is a pueen-post roof of a span of 43 feet, over the railway workshops at Worcester, showiag the introduction of skylights. The trusses are placed 15 feet apait. The principal rafters are 8 hy 8 ; tie beam, 12 by 8 ; queen-post, 8 by 6 ; struts, $4 \frac{1}{2}$ by $4 \frac{1}{2}$; straining beam, 9 by 8 ; common rafters, $4 \frac{1}{2}$ by 9 ; purlines, in two flitches each (trus ed with stirrup picces and iron ies), 9 by 3. The tie beams are carried on iron shoes. Fig. 694. is a queen-post truss or a span of 50 feet, which leaves a eonsiderable space free in the middle. The tie beam will probably be scarfed, which will be best made between a and b. The straining sill c, itrapped to the tie beam, will add materially to its strength.
2043. For spans above 60 feet we have not given scantlings of timber in the preceding alles; but such do not greatly increase beyond 60 feet with practicable spans, and enough has been already said to make the reader acquainted with that part of the subjeet. Fig. 695. is the truss of the parish chureh of Elgin, designed ly A. Simpson, of A berdeen. The trusses are placed 6 feet 6 inches fromeentre to centre. The tie beam is in two fitches, each 13 by $5 \frac{1}{2}$; prineijal rafters, 11 inches deep at lower end. 8 inches at top, and 6 inches thick; collar beam, 7 by $5 \frac{1}{2}$; kingwost struts. 5 by $5 \frac{1}{2}$: struts, 5 by $4 \frac{1}{2}$; horizontal rafters, $4 \frac{1}{2}$ by $2 \frac{1}{2}$. plaeed 13 inches apart, and covered with incl: grooved and tongued deal, and 7 lbs. lead. This is similar to the balian system intinated in Specifications, par. $2 \div 85$. The tie beams have cast irom shous 16 ach end, with abutments formed for the raters, and secured with $\frac{7}{8}$ inch diameter wolts with muts and washers. The wrought iron suspending rods are ineh square, and iave abutinent pieees for the rafters and struts.
2043a. Fily. 695%. is the truss of a roof for a span of 45 ft , with cast iron shoes as abutnents for the timbers acting as struts. The end of the tie beam has a east iron shoe, which two takes the foot of the principal ralter. The sole plate of the shoe is prolonged inwards, o admit of its being secured by bults to the tie beam. The head of the principal rafter a, ond tie end of the straining beam $\boldsymbol{a} b$, are inserted into a cast iron socket, shown in detail nfig. A. 'The suspension rod passes through the solid part of the socket; it has a head tits upper end, and at its lower end it is serewed and secured ly a mut. On the side of he socket is east a rest, c, for the side of the purline. To avoid cutting the principal
rafters, the other purline at B is also carried in a cast iron rest bolted to the rafter. '1he centre suspending rod passes throngh a cast iron socket, which serves as an abument to the main struts. Si:nilar abutments are provided for the lower end of the struts. Fig. 695b.

for a span of 45 feet, has also wrought iron suspension rods. A roof of this deseription, 54 feet span and 212 feet long, is erected at the passengers shed of the Croydon railway station. The figure E is a section through a cast iron socket taking the heads of the principals, and through which passes a wrought iron king bolt, shown in position at J).
2044. In all the cases given, the root is supposed to receive no support from any but the external walls, and the trusses to be in most eases not more than 10 feet apart.
2045. The reader who desires to b come aequainted with other examples, is recommended to the works by Krafft, Art de la Charpente, and Charpenterie; Rondelet, L'Art de Bâtir, and its continuation by Blouet; Emy, Art de le Charpenterie; Tredgold. Carpentry; Newland, Curpenter's and Joiner's Assistant, to which work we are indebted for the above new examples: and The Ductrines of Carpentry Explained-of a Roof, by Lieut.-Col. Waddington, in the Papers of the Corps of Royal Engineers, 1849, x. 71-15\%.

2046 Fij. 95 . represents a roof designed by J. Gibbs. From the centres of columns the

Fig. 696.
at. halitin's in-tile-fieldo, westminster.
middle aiste is 39 ft .11 in . The roof is well contrived and framed; but the timbers are stronger than they need have been. The seantlings are as follow: $-A$, principal rafter, 19 in . by 10 at bottom, and 11 in . by 10 at top; B, straining brace, 14 in . by 10 at bottom, and 11 in . by 10 at top; C, king-post, 9 in . by $9 ; \mathrm{D}$, strut, 7 in . by $7 \frac{1}{2}$; E, queen-post, 8 in. by $9 \frac{1}{2}: F$, strut, 7 in. by $7 ; G$, tie-baam, 14 in . by $9 \frac{1}{2} ; \mathbf{H}$, post over the column, 14 in. by $9 \frac{1}{2}$; I, brace, 7 in . by 7 ; K, brace, 7 in . by 7 ; L, post. 8 in . by 9 ; M, hammer beam, 14 in . by $9 \frac{1}{2}$; N, brace, $8 \mathrm{in}$. by 8 ; P, post in the wall; $Q Q Q$, purline rafters, 4 in . by 6 .
2047. Fig. 697. is the section of a roof by James Stuart, about 178.5 . The span is $51^{\circ} \mathrm{ft}$. and as a variation from the general forms of roofs, it is worth the student's attention. 'The

scantling of the timbers are subjoined. The distance between the trusses is about 7 ft . All the joints are well sceured with iron straps. AA, tie-beam, whose whole length is 57 f.i. 51 ft . clear between the walls. 14 in . by 12 in ; 1), an iron king-post. 2 in. oquare; CC

Hreen posts, 9 in. by 12; DDDD, struts, 9 in . by 7; E, straining beam, 10 in. by 7; F, training piece, 6 in . by 7; GG, GG, principal rafters, 10 in . by 7; hhhh, \&e. purline atters for boarding upon instead of rafters; H, a camber beam, supporting the platform.
2048. Fig.698. exhibits the roof of the old Drury Lane Theatre, which was built in

Fig. 698.
1793. It possesses great merit, from the simplicity of its composition and the acconmolation afforded in the middle space for the carpenters and painters. By dividing the breadth of the building into three parts, the roof was kept low, and the scantlings much reduced in size. The span is $80 \mathrm{ft} .3 \frac{1}{2}$ in., the trusses were 15 ft . apart, and the whole length of the oof was 200 ft . It was destroyed by fire on the 24 th of February, 1809. The scantlings of the timbers were as follow: - A , beams, 12 in. by $7 ; \mathrm{B}$, principal rafters, 7 in. thick; C, king-posts, 12 in . by 7; D, struts, 5 in . by 7; E, parlines, 9 in . by 5 ; F, ridge pieces, $\frac{1}{2} \mathrm{in}$. thick; G, pole plates, 5 in . by $5 ; \mathrm{H}$, gutter plates framed into beams, 12 in. by 6 , I. connmon rafters, 5 in. and 4 in . by $2 \frac{1}{2}$; K, beams, 15 in . by 12 ; L, posts, 15 in . by 12. M, principal braces, 14 im . by $12 ; \mathrm{N}$, struts, 8 in . by 12 ; 0 , oak truss es to the middle bearing of beams, $5 \frac{1}{2} \mathrm{in}$. by $4 \frac{1}{2}: \mathrm{P}$, straining teams, 12 in . by 12.
2049. The last example we shall present is of the method in which the external dome of St. Paul's is framed (fig. 699.). The internal dome Λa is of brickwork, two bricks hick, having, at every five feet, as it rises, a course onsisting of bricks cighteen inches long, which serves o bind the whole thickness together. This dome vas turned apon a centre, which rested upon the rojection at its springing, without any support from relow, and was afterwards left for the use of the minter. It was banded together with iron at the pringing. Exterior to the brick dome (which has ndeed, nothing immediately to do with the subject) 5 a cone of brickwork BBl, 1 foot 6 inches in lhickness, plastered and painted, part whereof is seen ron the pavement under the enpola through the pening a. On this cone BBb is supported the imber work which carries the external dome, whose lammer beans CC, DD, EE, FF are tied into the orbels G, II, I, K with iron cramps, which are well redded into the corbels with lead, and bolted to the lammer beams. The stairs which lead to the Golden Gallery on the top of the dome are carried between he trusses of the roof. The dome is boarded from he base mpwards, hence the ribs are fixed horizonally at near distances to each other. The scantling of the curve rib of the truss is 10 in . by $11 \frac{1}{2}$ at the nottom, and 6 in . by 6 at the top. The sides of the lome are segments of eircles, whose eentres are not marked in the figure ; and which, if eontinued, would
 nect at top, and form a pointed arch. Above the dome rises a lantern of Portland tone, about 21 feet in diancter, and 64 feet high, standing on the cone. The whole of this onstriction is manifest from the figure, which exhibits the inner and outer domes with the one between them. The combination is altogether an admirable example of the mathenatical skill and judgment of Sir C. Wren.
2050. The largest timber roof perlaps cyer projected, was over a riding 'oouse at Moscow, in 1790, for Paul I. Emperor of Russia, the representation of which may be seen in Kraft, Recueil de Charpente. The span is 235 feet, and the slope with the horizon about 19°. The external dimensions of the building were 1990 feet long by 310 feet wide. It was lighted by a lantern at top, and had an interior gallery round the building for spectatos. Cresy, in his Civil Engineering, states that this roof wa; never erected.
2051. We shall close this part of the section with a diagram (fig. 700.) of the roof of

Fig. 700.
the basilica of S. Paolo fuorì le morà, executed in the fifteenth century. The trusses art louble, each eonsisting of two similar frames, nearly 15 inches apart, at intervals from eacl wther of about 10 feet 6 inches. The principal rafters abut on a short-king post k Between the trusses a piece of timber S is placed and sustained by a strong key of wour passing through it and the short king-posts. This piece sustains the beams by means 0 another strong key at a. The tie beams are in two lengths, and scarfed together, the scarf being held together by three iron straps. The scantlings of the timbers are a follow : beams $t, 22 \frac{1}{2}$ in. full by nearly 15 in ; principal rafters $p, 21 \frac{3}{3} \mathrm{in}$. by nearly 15 in . auxiliary rafters b, full $13_{\frac{3}{3}}^{\mathrm{in}}$. by full $13 \frac{1}{4} \mathrm{in}$.; straining beam c, near 15 in . by full $12 \frac{3}{3} \mathrm{in}$.: purlines $d, 8 \frac{1}{2} \mathrm{in}$. square and 5 ft .7 in . apart; common rafters, full $5 \frac{1}{4} \mathrm{in}$. by $4 \frac{1}{4} \mathrm{in}$, anr $8 \frac{1}{2} \mathrm{in}$. apart. The roof, which is constructed of fir, is nearly 78 ft 6 in . span, and is covered with the Roman tile, the exact dimensions and form whereof will be found, under the head Tiue, in the Glossary appended to this work. The roof is ingeniously and welcontrived, and, with a different covering, would suit other climates. It was consumed by fire in the month of July, 1823. (275.)

Philibert Delorme, in his work entitled "Nouvelles Inventions pour bien bâtir a petit Frais," Paris, 1561, gives a mode of construeting domes without horizontal cross ties, whel the springing of eaeh rib is well secured at the foot. It is a very simple method, and o. great use in domes, even of large diamcter, the principle being that of making the severa ribs in two or more thicknesses, whieh are cut to the eurve in lengths not so great as to weaken the timber, and securing these well together by bolts or keys, and olsserving especially to break the joints of the several thicknesses. This method was adopted in the large Halle aux bleds at Paris, which was many years since destroyed by fire, and has been replaced by an iron-ribbed dome. The fig. 701. will explain the construction; and, if necessary, an iron
 hoop passed romen at different heights will add much to the strength.
2052. 'ithe scantlings of the ribs, as given by Delorme, are as under : -

For domes of 24 feet diameter, the ribs to be 8 in . decp, and 1 in. thick.

36 feet diameter,	-	10 in . deep, and $\mathrm{I} \frac{1}{2} \mathrm{in}$. thick.
60 feet diameter,	-	13 in. deep, and 9 in. thick.
90 fect diameter,	-	13 in. deep, and $2 \frac{1}{2}$ in. thick.
108 feet diameter,	-	13 in . deep, and 3 in . thick.

For small spans of about 24 to 30 ft ., the inch plank is about 4 ft . long by about 8 in wide. The fect of the ribs are tenoned into the wall plates; the shoulders of the tenow being about one inch. The ties A, placed about 2 feet distant, are 4 in . by 1 in ; they art sometimes shown passing through the planks pinned with keys 1 in. thick and $1 \frac{1}{2}$ in. wide and of a length ncarly the width of the plank; this method tends matcrially to weaken the t ibs; that shown in the cut is a better mode. The wall plates, 10 or 12 incles wide and 8 or 9 inches thick, have mortices 2 inches wide, 3 inches deep and 6 inches long. sunk at 2 feet apart, to receive the ends of the ribs. In a roof where the span was 64 feet, the scantling was increased to 13 inehes wide and $1 \frac{1}{2}$ inches thick. The tics were alternately double and single, and were 3 inches hy $1 \frac{1}{2}$; and cach rib was double tenoncd intc the wall plate. This system, with many modifications, was extensively adopted in the
construction of the nave and side erections of the building for the Exhibition of 1862 ; and also for some of the passages, \&c., of the Horticultural Society, where they still exist, and deserve examination. It is also adopted for temporary sheds of large spans.

2052a. This work by De Lorme deserves the study of every one that seeks to be an architect, thorgh in these unfortunate days for the art the reward of study and rading is very doubtful.
205%. Since the period of De Lorme, another system, arising ont of it, has heen extinsively adopted for la:ge buildings. Colonel Emy, having been called upon in 1819 to design a roof of 60 feet span, succeeded in composing one in which, while timbers of a grealer length might be used, the necessary solidity, with the lightness and economy of the system of De Loime. might be combined. This he carried out in 1825 and 1826. The workmanship is less than in De Lorme's roofs, as the wood is all in straigltt pieces, and is within the power of the ordinary carpenter. An arch is composed of a series of long and thin planks, laid flotways, the Hexibility of which permits them to be easily and quickly bent without the aid of heat; and their risidity, properly regulated, maintains the form given and destroys the thrust. Fig. 701 a is a portion of the lase of one are, which will illustrate the system. The details are best learnt fiom Emy's own work, as it would require much space to do instice to then. The vertical pieces A are $7 \frac{3}{4}$ inches thick, and placed abont 4 inches from the wall. lhe three first radial pieces \mathbf{B} are prolonged bey ond he uprichts, and enter ruceses in the wall to steady he f.ames. The plates C, breaking joint well with ne another, compose the are, and are $1 \frac{3}{8}$ inch thick, ${ }_{i} \frac{1}{1}$ inches broad, and abrut 40 feet long. bolted to;ether, the bolts being driven tightly into accurately nade holes, and are firther firmly tied together by ron straps ; the boits are $\frac{7}{T 0}$ inch diameter, and about fret 6 in . apart; the principal rafters are $5 \frac{1}{4} \mathrm{in}$. hick; the trusses are placed 9 feet 10 in . apart.
$20.5 \geq$ c. Upon an experiment that was made ly iny to tcst the strength and thrust of this arch, e found it necessary to add a supplementary plate ; a part of the extralos, and two plates to a part

flie intrados. The following is the proportion of the number of plates and their width. hich he adopted as a rule :-

From the springing to radial (B) No. 1 7 plates, \quad| ft |
| :--- |

From radial No. 1 to the tie placed between radials

Nos. 6 and 7	-	8	,		1	7	
From this tie to radial No. 6	-	6	"		1	o	
From radial No. 9 to the king-post	-	5				11	

hese supplementary plates were of oak, and of the same thickness as the others. These ofs are also given with sufficient detail in Newlands' work above-mentioned.
205?d. Menieval Roofs. - In the south of Franee the few Romanesque roofs did not Her from the common king-post roof, execpt in two points, viz., that the tie-bean and ehing-post were stop-chamfered; and the strain of the rlines upon the principal rafter was counteracted by a arly upright strut from the tie-bean. This sybtem t the principal rafter with a false bearing, if the walls re not extremely thick in proportion to the width of espartment which thcy enclosed. As a remedy, the - Romanespue builders tenoned the purline into the neipals, and, moreover, laid it with its wider side to rafters, in order that the backs of the common ters should be flow with those of the principal rafters milarly to fiy, 692.). The next step was to put per struts from the fout of the king-post. At the sent day the purline is placed on edge for economy of erial.

Fig. 7016 .

2052f. In the narth of France there was difficulty in roofing over the valuting: either manin walls hacel to be carried as ligh as the ridge-rib, or else the frame of the roof to be similar in principle to that slawn in fig. 7016 . Experience proved that the
latter scheme resulted in letting the prineipal rafters draw the tenons of the braces and sa destroy all idea of a tie connecting the two walls; hence the medixval builders were obliged to raise the walls sufficiently high to allow the tie-beams to pass over the bick of the ridge-rib, as would be the ease at A. This was expensive, and, moreover, it nas seareely praetieable where the walls were little thieker than was neeessary for the backing to the formerets of the vaulting over the arehes of windows. It is to these faets, rather than to any influence of elimate, that may be attributed the adoption of the bigh-pitehed roof, a system whieh required neither great width of focting nor large seantling of timber, for the purlines werc disearded, and the weight was distributed anong the rafters and trusses of eaeh bay. The details of such a roof are simple. Two plates \AA (fg .701 e .) are plaeed with their widest sides on the wall, and are strutted between from

Fig. 701c. the feet of the trusses to the eeutre of the bay. Upon these plates, tassels or short hammers B, are coeked down at intervals between the tie-beams, whieh are cocked down and dove-tailed, to take not only the feet of the common rafters, but also the nearly upright stud or ashlar rafter F, whieh serves to give a wider base to the prineipal and to the rafter. All these vertieal pieees are doubletenoned and pinned into the other portions of the work.
2059. The raeking motion to whiel large roofs are liable, sonn showed that this was not the manner in whie! to make then seeure. The purlines had been disearded, but the need of their serviee remained, the nceessity was obviated by ereeting a sort of trussed partition under the ridge. If the king-post was not carried by the tie-beam, the whole roof depended upon the strength of the head of the king-post, into whieh the ridge was tenoned, and the manner in whie. it was connected with the ends of the. prineipal rafters. It therefore appears to be more proballe that the king-post was supposed to be earried by the tic-beam; indeel, examples oeeur of trussed partitions (fig. 7old.) to ridges, supported by king-pots A, whieh stand upon tie-beams that ride in queen-stirrups, 1 , where the stirrups are hung from the prineipal rafters at three-quarters of the hight of the roof. Care has been giver: to this detail of the praetiee, because it seems to have
 been entirely mistaken by Viollet le Due, Dict. : fill example, the braces C, to the eollars D, are supposel: by him to exercise a favounable effect in pre. venting the flexure of the rafter outwards, wherear the faet would seen to be that the braee has to holo up the eollar D and with it the stirrup B , and witl them the tie-beam E, for the coilur is tenoued into th ling-post and rafter. That author defers dating thr period of the perfcetion of medixval carpentry (a well as of joinery) until the end of the 15 th and the beginning of the 16 th eentury.
$2052 / h$ The framing of cradle roofs, with king-post carried upon (mot carrying, as Viollet le Duc sulp. poses) the tie-beams, becamc a practiee that is Franee was general from the latter part of the 12th until the end of the 16 th eeatury, and which con tinued the same peculiarinies of construetion that ar above indicated. The distinction between the stirrul and the post is less easy in the truss shown in fig. 701 l but still it must be reckoned as a post; this exampl from the prefecture, formerly the episeopal palace, a Auxerre, eovers a hall which is 30 fect wide; thic trusses are placed 13 feet apart from eentr to centre. The seantlings are as follows: - King-fosts, 5 ly 5 , and prineipal rafters $5 \frac{1}{2} b$: $4 \frac{3}{4}$; the cominon rafters, 5 ly $4 \frac{3}{4}$. are shown in fiy. $701 f$, and are trussed in a differel. manner; they are plaed nearly 2 feet apart. The roof appears to be boarded on th inside to the eireular fo:m.
2052i. Although Viollet le Due is of opinion that the tie-beams to the fine cradle ron 57 feet 3 inehes span, constructed at the begiming of the 16 th century, over the grea hall of the l'alais de Justice, at Rouen (fig. 247.), have been cut away, it may not be milai to suggest that the work might have stood as well if, in its construetion, it had resemble the older and fine roof of the château at Sully-sur-Loire, whieh he so well illustrite. but which want of space prevents our also doing. The student las, perhaps, no cans fior regret, as its eonstruction eall scarecty be recommended for imitation in the presel day. It is abont 36 feet span.
$2052 k$. The absence of a ridge roll and the position of the ridge-picee in the majorit
medireval roofs deserve notice. As soon as the purines were discarded, it seems that rilders relied "pon the king-post to earry a ridgo-piece upon which rested the ends of e rafters; these were halved and iked together above it. Excepting a few eases the ridge-piece was ther a purline at the top of the roo: an an abutment. Much of the bolt id strap work applied in the visible mes of roofs is not always the most dicious as regards the conversion of nstruction into decoration. For ample, if it were calculated that a -beam would sag, instead of incasing its scantling, or of trussing the mediæsal carpenter would very whably liang it up to his truss, as Sgx. 70Ig. and 701h. At a later rior (say the 14 th century) with me spikes. Fig. 701/. illnstrates e method of forming the junction of st. bean, and strut in a roof; and 1. 701l. that of beams and posts in c timber franing of houses.

2052l. It will be at once perceived, by fig. 701c., that the hammer-beam B B' takes the ace of the tie-bcam, the middle part of which may bave been eut away. The tinted porm slows the foot of the rafters in a cradle roof; and the lighter portion the position and m of the hammer-beam, the outer end of which is tenoned and pinned on to the wall
 strut E , and at the same time forming a part of that structure. When : whole is put together securely, it has been considered almot impossible for hammerun roufs to spread, as from the stiffening action of the braces, it would reqnire a very "y foree to push mit the walls. But "the absence of that eurved brace which disgnishes the Westminster example, makes these ro.fs much more likely to exert a inst upon the walls, and, aecordingly, it is notorions that in very many cases this has mowd. In the fine example at Croxton, the strain was so great as absolutely to break "t ulf the perfectly sound heart of oak pins, nearly an incth in diancter, with which it 4 lield together; and it in to be feared that many of the finest of these examples are "ilarly in a dangerons condition." So writes Mr. Street, in his Eingtish Woodurork, read Che lnstitute of British Architects in 1865, a paner which shomld not be neglected by Atident. The princi, le of the construction of t ese roofs has perlap's not yet been wfar torily elucidated.
("Stur 'The timber roofs in Eingland may be divided into five classes:-1. Fioofs with beams: 11. Roofs with trused raltere, or singe framed roof's; 111. Roofs with brates In or withont collars; 1V. Roofs framel with hammer beams; and V. Aisle rools. e first are more genemal and better treated in France. The others are more peediar to gland, in which country daborate examples of these forms are to be found, espectially the hammer-berin system.
(o)SIn. Pitch. - Whese roofs are for the mont part acutely pitched, thongh this was liy tmenes their invariable elaracteristic. An angle of 90^{3} was perlaps the ordinary cleva' of Norman roofs, and in the enrly limflish period, thongh generally acotely pointed,
IT are neverthelews found of on egnilateral pitels or angle of 60°, though this is of nure arrence. In this and the mincereding style, "xamples are found of solow a pitch ans wa al the flatest specimens of the perpendicular peetiod. 'the rouf, of the decorate
style, over the larger south aisle of St. Masin's Church, Leicester, has a span of 21 feet with a rise of only 4 feet. (See par, 2040 b.).

S0.52o. I. The tie-biam bears the whole weirht of a low pitched roof. The roof ove the south chapel of Kiddington Church, Oxfordshire, is of rather a stecper pitch than tha at Leicester. The under side of the beam is well moulded, and is connected with th wall-pieces by moulded curved braces forming a very obtuscly pointed arch; the purline rest directly on the beam, and the ridge is supported on it lv a post, and by shor cuived braces, the whole of the space above the tie-leam being firled up so as to gire i the appearance of a solid triangular shaped beam. The naves of Rannds and of Highar Ferrers Churches, Northamptonshire, the latter of decorated date, and of Wimmingto Church, Bedfordshire, present good and differing examples. The tic-beam is rarely lei perfectly horizontal ; the collar-bcams and even the hammer-beans will be found to inclin upwards. 'Tie-heams were s:metimes employcd quite independently of the cther timber being simply laid across the building from wall to wall, notched down, and pinned to th wall plates. 'They were never entirely discarded. as they are to be met with in each of il four usually accented divisions of the stylc. At Southfleet Clurch, Kent, the tie-beam beantifully moulded; whereas, at Northfleet, it is lett in almost its natural roughnes while the roof itself, which is one of the trussed rafter kind, is panelled, and has moulde ribs with carved bosses at the intersections.
2)59p. An example of a strongly cambered tic-locam, with an ornamented king-post, is sce in Swardestonc Church, Norfelk, and it is by no means uncommon in the connties of Ker and Sussex. The tie-bcal

Fig. 701 m . of the roof over the aisle, No:th Walsham Chure Norfolk (fig. 701 m.), passı through the nave wall, tl end forming a corbel for 11 wall picces of the nare roo This roof also presents practice which became a most universal in roofs later date, viz., an inter:n diate truss between the ti beams, in consequence the extreme widil betwe the main trusses, to support the ridge and purlines, hy the adoption of double raft on each side, strongly united and framed together, springing from a small hamme

Fig, $701 n$. Whemotsham, Nobfolk. collar was generaly introduced above the first. Such wofs were very frequently a seco underncath, forming thus a polygonal barrel vault, and moulded ribs were applied, divi ing the boarding into panels, with carved bosses at the intersections. The above deta will be found combincd in the examples of the decorated period from the nave of Wit botsham Church, Norfolk (fig. 701n). The angle of the roof is 78°. The span is 21 k 9 inelies; the rafters and collars are $4 \frac{1}{2}$ inches by 4 inches. The former are placed 1 fo 9 inches apart between the contres. The nave roof of Reedhan Church. Norfolk, 31 if span, is framed on the same principle. The hall at Sully-sur-loire is a fine exarmple.
2059r. 111. Roofs constructed with braces may be divided into two classes: I. Tl:o with collar-beans and braces; and II. Those withont collar-beams. An example of t former is seen in the roof of the nave at Pulhan Clurch (fig. 701o.), which is formed an angle of 105°, with a span of 20 fect 5 inches. Wall pieces Λ, are used, pinned in
underside of the principal rafters, descending low down on the wall; the arched brace ings directly from this to the collar-beam, uniting them both with the principal. It is 1 that it would be impossible for this roof to spread until it had broken the curved ces. The vaistimbers are
effectively ilded. The icipal rafters, incles by 10 les; common ers, 6 inches $3 \frac{1}{2}$ inches; ar-beam, 14 les by $8 \frac{1}{2}$ nes; ridge c, 8 inclies 8 inches; line, 8 inches $6 \frac{1}{2}$ inclies;
 piece, 10 lies by $8 \frac{1}{2}$ inches. Width between centres of trusses, 6 feet 2 inches; and depth of cornice et 2 inches. Of class II. is the roof over the nave of Starston Church, Norfolk (fig. p). The angle formed is 100°. At the apex of the roof is a strut B , about 9 inches are, which bangs down 2 feet; its four sides are morticed, two to receive the ends of braces where they are pinned, thus preventing the possilinity of its dropping; and the er two on the opposite sides, to receive the arched ridge braces, as shown at C. This argement tends to prevent the roof either spreading ontwards, or rocking from east to west. e span is 21 feet 10 in . The principal rafters are 10 in . by 9 in . ; common rafters, 6 in . 4 in ; wall piece, 10 in . by $7 \frac{1}{2} \mathrm{in}$.; purline, $6 \frac{1}{2} \mathrm{in}$. by $5 \frac{1}{2} \mathrm{in}$. ; and cornice, 11 in . by 10 in . $: 0.52$ s. IV. Hammer-beam ronfs are always double-flamed roofs, the ralters being supted by a skeleton framing of purlines and ridge, resting on, or framed into, the principal ises. Among the many varieties of this description of roof may be noticed:-(1) Those th collar-beams and no struts, the collars, principals, and hammer-beams being united h curved braces; (2) Those in which the collar-bean is omitted, the curved braces lg carried up almost to the ridge, and framed at the apex of the arch into a strut, whieh ives also the upper ends of the principals; (3) Those with no collars or struts, the ,le of the truss being connected together and stiffened with curved braces only; in this ance the arched braces are formed of three es of timber, one on either side of the ; tenoned into the hammer-beam and prin1 , and reaching up as far as the purline, piece forming the apex of the arch, tenoned into eacl) principal, itself acting brace, and to a certain extent as a collar n ; and (4) Those having hammer-beams, ins, and struts, connected together with ed lıaces. (See par. 2052l.)
152\%. An example of the first sort is the " of Capel St. Mary's Chureh, Sulfolk 701%.) The angle formed is 87°, and very seldom that a hammer-beam roof 1 steeper pitch. The span is 18 feet 3 es. The principal rafter is 10 inches by

Fig. 701g. CATEL St. Maliv, SUFFOLK. -hes; common rafter, 6 inches hy 3 inches; hanmer-beam, 10 inches by 8 incbes; collartrusses are 6 feet apart from centre to centre. The second sort is shown in fig. 701r., have roof of Truncl) Clurch, Norfolk. The intermediate trusses are the same, except iastead of the long wall-piece and brace, the wall-piece is stopped at the crown of the of the clearstory window, and a very depressed brace comnects it with the hanmer-
The spandrils are filled in with perforated tracery. The span is 19 feet. The prinrafter is 10 inches by 9 inches; commom rafter, 6 inehes by 4 inches; hammer-beam, ches by 10 inches; purline, 8 inches by 5 inches; ridge piece, 10 inches by 10 inebes. trisses are 5 feet 6 inches apart. The third sort is shown in fig. 701s., from the nave of urlines and ridge braces are large carved flowers standing out in bold relief. Of the
fourth sort, the most noted examples are those of Westminster Hall, 68 feet span (g 196.); Hampton Conrt, 40 feet span; Eitt a 1ralace, 36 feet 3 inches; Beddington Hal

Fig. 70ir. trench, norfolf.

South Wraxlall, 19 feet 9 inches; Croydon, 37 feet 9 incles, \&c. It will be well notice, what is not usually known, or shown, in the sections of the Westminster roof, the the main purlines over the strut, are upheld with the collar-beam by an intermediate raft of great strength. Mr. S. Smirke has observed (Archaologiu, xxvi. page 417-18), that "this roof is the common collar-bean roof, and of extremely simple construction; the whole pressure is carried by the straight lines of the principal rafter, and (curved) brace, above alluded to, directly into the solid wall, where it ought to be." The examples of lesser importance, as regards span, are not all of the same elegance as that of Westminster, which, at the same time that it is the largest and best, is also the earliest (1397) of the series. Some examples present double hammerbeams, forming a sort of corbelling over up to the ridge or to the collar-beam. Fig. 701\%., from Knapton Church, Norfolk, is 32 feet span, and is a fair specimen of such roofs. The wall is 2 feet 10 inches in thickness. For all these examples, we are indebted to the excellent publication by Brandon, Mediaval Roofs, to which work we must refer the reader for dc-

Fig. 701t. Kisalton, nolfolh. tails of decoration and painting, as the above figures are only here introduced to sho the principles of construction displayed in such roofs.
£052u. In fig. $701 u$, we give the modern roof, of 31 feet 2 inches span, over the nave 13ickerstaffe Church, Yorkshire, designed by Sydney Smirke, R.A., as a good specimen the adaptation of modern science to medixval structures. The collar-beam is double, ea 9 in . by 3 in ., through which the king-post is tenoned and strapped. The purlines are 7 i by 4 in .; the brace, 9 in . by 7 in .; and the corbels are 11 in . wide, being also tailed in 11

E_{c}. $701 u_{0}$ DICKELSTATFE, YORKSHILE: 2052v. V. Aisle, or Lean-to, ronfs, may be described usually consisting of strong timbers, answering the p; pose of principal rafters, laid at each end on plates, \dagger lower plate resting on the external wall, the upper o either supported on corbels projecting from the na wall, or inserted therein. Wall-pieces are tenoned in the upper and lower extremities of the principals, a curved braces springing from the feet of these meet the centre of the principal, furming a perfeet arel, havi the spandrils generally filled in with tracery. A purl is usually framed into the principal, and on this and : plates the common ratters are supported (see also, 701o.). In aisle roofs the whole of the timbers, even the common rafters, were frequently found more ric moulded than those of the nave, possibly from be nearer the eye of the spectator.
2053. The following instructions relative to the lines necessary to be found in the fram of roofs are from Price's British Carpenter; and although published nearly 100 years,'t subsequent works on this subject give more complete information. Let abed (fig. 70,
a plan to be inclosed with hipped roof, whose height slope is Cb . Divide the an lengthwise into two jual parts by the line ef, hich produce indefinitely both ends. Make ag jual $e a$, and $d k$ equal to ; and through k and g, arallel to ab or cd, draw nes indefinitely mo, lp. ith the distance de or Ce , ther of which is equal to ie length of the common fters, set off $q e$, as also from to p, from i to o, and from on from k to m, and from to l. Make t s equal to Cb ,

Fは. 702. ad ab equal to ta, which oints join; then either a C or as represents the length of the bip rafter, and joining the veral lines aqb, bpoc, cnd, and dmla, they will be the shirts of the roof.
2054. To find the back of the hip. Join ge, and from r as a centre deseribe an anc uching the hip as, and cutting at in u. Then join $g u$ and $u e$, and $g u e$ is the back of the ip rafter required.
2055. Fig. 703. represents, in abcd, the plan of a building whose sides are bevel to each her. Having drawn the ontral line ef indefinitely, sect the angle rag by the se $a e$, meeting ef in e. rom e make eg equal to $r e$, id $r g$ perpendicular to $e a$; en, if e a be made equal $\epsilon \pi$, ra or a_{q}, it will be the ngth of the hip rafter from c angle a. 'Through e ad f, perpendicular to the les $d b, c a$, draw the lines , $m q$ indefinitely; and from as a centre with the radius , deseribe an are of a cirs cutting $m q$ in q, and er erpendicular to bas proaced in l. By the same

Fin $\mathbf{7} 0 \mathrm{~B}$. nd of operation oc will be ind, as also the other parts of the skirts of the roof. The lines $n t$, $t f$, and $v p$ are introeed merely to show the trouble that occurs when the beans are laid bevel. The angle of e back of the hip rafter, rug, is found as before, by neans of u as a centre, and an are of a cle touching uq. The backs of the other hips may be found in the same manner.
2056. Fig. 704., from Price's Carpentry, is the plan of a house with the inethod of placing : timbers for the roof with the upper part of the elevation above, which, after a pernsal of e preceding prages, cannot fail of being understood. The plan \mathbf{F} is to be prepared for a of, either with hips and vallies, or with hips only. The open spaces at G and II are er the staircases: in case they camot be lighted from the sides, they may be left to be ished at discretion. The chimney flues are shown at IKI.MNO. Then, having laid wn the places of the openings, place the timbers so as to lie on the piers, and as far as asible from the flues; and let them be so comected together as to embrace every part of ${ }^{2}$ plan, and not liable to be separated by the weight and thrust of the roof. 1 ' is a ssed timber partition, to discharge the weight of the roof over a salon below.
20:57. Q is the upper part of the front, and If a pediment, over the small break, whose ight gives that of the blank pedestal or parapet S. Suppose ' I ' to represent one half of - roof coming to a point or ridge, so as to span the whole at once, "which," as Price Ily olowrees, "was the good old way, as we are shown by Serlio, Palladio," \&e., or pose the rouf to be as the other side U shows $i t$, so as to have a flat or sky-light over the by F, its balustrade being W; or we may suppose X to represent the roof as spanning the whe at three times. If X be used, the valley and hip should be framed as at \bar{X}; if n is principal rafters innst be framed as at $\%$, in order to bring part of the weight of the roof I covering on the partition walls. The remainder needs not lurther explatation.

Fig. 704.

hIES FOR GROINS, ETC.

2058. We shall now proceed to the method of forming the ribs for groined atches niehes, \&e. The method of finding the shape of these is the same, whether for sustaining plastering or supporting the boarding of eentres for brick or stone work, exeept that, for plaster, the imner edge of the rib is eut to the form, and, in eentering, the outer edge. Groins, as we have already seen, may be of equal or unequal height, and in either ease the angle rib may be straight or eurved; and these eonditions produce the varieties we are about to eonsider.
2059. To describe the parts of a groin where the arches are circalar and of unequal height, commonly called Welsh Groins. We here suppose the groin to be right-angled. Let AB (.fig. 705.) be the width of the greater arch. Draw BD at right angles to Al3, and in the straight line $13 D$ make $C D$ equal to the width of the lesser areh. Draw DF and CE perpendicular to BD and EF parallel to BD. On AB deseribe the semieirele BghiA, and on EF deseribe the semieirele EqroF. l'roduce $A B$ to p, and FE to m, cutting Λ_{p} in y. Through the eentre x of the semi-

Fig. ins
cle Eqrs \mathbf{F} draw $t s$ perpendicular to BD , cutting the circumference of the semicircle in s. raw p parallel to BD. From the centre y, with the distance $y p$, describe the quadrant

Draw mi parallel to AB , cutting the semicircle described upon AB in the point i. the arc Bi take any number of intermediate points g, h, and through the points $g / h i$ aw $i t, h u, g v$, parallei to BC. Also through the points $g h i$ draw $g k, h l$, im parallel to B, cuttiug FE produced in \dot{k} and l. From the centre y describe the arcs $k n, l o$, cut${ }_{1 g} \mathrm{AB}$ produced in mo. Draw nq, or, parallel to BD, cutting the lesser semicircular c in the points q, r. Through the points q, r, s draw $q v, r u$, st parallel to $A B$; then rough the points tuv draw the curve tuve, which will be the plan of the intersection the two cylinders. The other end of the figure exhibits the construction of the framing carpentry, and the method in which the ribs are disposed.
2050. To describe the sides of a groin when the arches are of equal height and designed meet in the plane of the diagonals. Let af and al (fig. 706.) the axes of the two vaults, meeting each other in a, perpencular to $u f$. Draw AB cutting of in w, and perpendicular to draw BG cutting αl in u. Make $w \mathrm{~A}$ and $w \mathrm{~B}$ each equal to If the width of the greatest vault, and make $b \mathrm{~B}$ and $l \mathrm{G}$ each pual to half the width of the lesser vault. Draw AH and BE crallel to af, and draw BHI and DF parallel to al, forming the aralielogram DEHF. Draw the diagonals HD, FE. On the se $A B$ deseribe the curve BcdefA, according to the given height fof the required form. which must serve to regulate the form the other ribs. Through any points cde in the arc Bcdef. -aw the straight lines $c q, d r$, es cutting the diagonal HD at q, r, s. raw q^{h}, ri, s^{h} parallel to al cutting the chord BG at the points y, z, b. Make $x h, y i, z k, b l$ each respectively equal to $t c$, ud, . tef. and through the points Ghikl to B, draw the curve hild 13 . Draw $q^{m}, r n$, so, up perpendicular to HID. Make $i, r n, s o, u p$ respectively equal to $t c, u t, v e, u f f$ and through the ints D, m, n, o, p, II draw a curve, which will be the angle rib the groin to stand over IID; and if the groined vault be rightfled, all the diagonals wiil be equal, and consequently all the ugonal ribs may be made by a single moutd.
2061. The upper part of the above figure shows the method of placing the ribs in the con. uction of a groined ceiling for plaster. -ery pair of opposite piers is spanned a prineipal rib to fix the joists of the ling to.
20;2. The preceding method is not rays allopted, and anotlier is sometimes ployed in which the diagonal ribs are ed in with short ribs of the same curva. e (see fig. 707.) as those of the arches r the piers.
2Oi3. The manner of finding the secof an aperture of a given height cuta given arch at right angles of a ter height than the aperture is repreted in fig. 708.
Of4. When the angle rilss for a square te are to be fonnd, the process is the eas for a groin formed by equal arches aing each other at right angles, the th for the laths lecing inserted as in

Fig. 707.

Fig. 70 K.

保 angle ribs of a polygonal dome of any number of is the sanne as to determine the angle rib for a which will afterwards be given.
as\%. When a eireular-headed window is ahove the 1 of a plane gallery reiling, in a church for example, celindrical form of the window is romtinued till it recte the plane of the eeiling. To find the form 'be rurb or pieees of wood employed for completing arris, let dp (fig. 709.) be the brendth of the window ic plane of the ceiling. Hiseet $/ p$ in h, and draw h. endieular to ip. Make ha equal to the distance tho citendo from the will. I'roduce $1 /$ to 13 . Make

line ans.

$h \mathrm{~B}$ equal to the height of the window above the ceiling, and through the three points $d, \mathrm{~B}, p$ describe the semicircle ABC for the head of the wisdow. Divide $h \mathrm{~B}$ into any number of equal parts, as 4 at the points k, l, v; and $h 4$ into the same number of equal parts at the points $1,2,3$. Through the points $k l v$ draw the lines $c t, f u, g w$ parallel to $d p$, and through the points $1,2,3$ draw the lines $m g$, $n r$.os. Make $1 m, 2 n, 30$ respectively equal to $k e, ~ l f, v g$; as also $1 q, 2 r, 3 s$ equal to $k t$, $l n, v w ;$ that is, equal to $k e, l f, v g$. Then through the points $d m n o 4$, and also through pqrs4, draw a curve which will form the curb required. In the section X of the figure, AC shows the ceiling line, whereof the length is equal to $h 4$, and $A B$ is the perpendicular height of the window; hence BC is the slope.
2066. The construction of a niche, which is a portion of a spherical surfaee, and stands on a plan formed by the segment of a circle, is simple enough; for the ribs of a niche are all of the same cirvature as the plan, and fixed (fig. 710.) 111 planes passing through an axis corresponding to the centre of the sphere and perpendicular to the plane of the wall. If the plan of the niche be a

Fig. 710. senicircle (fig. 711.) the ribs may be disposed in vertical planes.
2067. In the constriction of a niche where the ribs are disposed in planes perpendicular to the horizon or plan, and perpendicular to the face of the wall, if the niches be spherital all their ribs are sections of the sphere, and are portions of the eircumferences of different circles. If we complete the whole cirele of the plan (fig.712.), and produce the plan of any rib to the opposite side of the circumference, we shall have the diameter of the eircle for that rib, and, consequently, the radius to describe it.
2068. Of forming the boards to cover domes, groins, $\not \subset$. The principles of determining the developement of the surface of any regular solid have already been given in considerable detail. In this place we have to apply them practically to carpentry. The boards may be applied either in the form of gores or in portions of conic surfaces; the latter
 is generally the more economical method.

Fig. 712.
2069. To describe a gore that shall be the form of a board for a dome cireular on the plan 1 Draw the plan of the dome ABD (fic. 713.), and its diameter BD and Ae a radius pel pendicular thereto. If the sections of the dome about to be described be semicirculal then the curve of the vertical section will coincide with that of the plan. Let us suppos the quadrant AB to be half of the vertical section, which may be conceived to be raised on the line $A e$ as its base, so as to be in a vertical plane, then the are AB will come into the surface of the dome. Make Ai equal to half the width of a board and join ei. Divide the are AB into any number of equal parts, and through the points of division draw the lines $1 i, 2 j, 3 k, 4 l$, cutting $A e$ in the points efgh and $e i$ in the points $i j h$. Produce the line $e \mathrm{~A}$ to s, and apply the ares $\mathrm{Al}, 12,23,34$ to $\mathrm{A} m, m o, o q$ in the straight line As. Through the points mnoq draw the straight lines $t n, u p, v r$, and make $m n, o p, q r$, as also $m t, o u, q v$, respectively equal to $e i, f j, g k$; then through the points inpr to s, and also through the points xtuv to s, draw two curves from the points x and i so as to meet cach other in s; and the curves thus drawn will include one of the gores of the dome, which will be a mould for drawing the boards for covering the surface.
2070. In polygonal domes the curves of the gore will bound the ends of the boards; as, for example, in the octagonal dome

rig. il4
(fig. 714.), the plan being ABCDEFGH. Let i be the centre of the circle in which the octagon may be inscribed. Draw the half diagonal $i \mathrm{~A}, i \mathrm{~B}, i \mathrm{C}$ perpendicular to any side $A 13$ of the plan. Draw the straight line $i h$, cutting $A B$ in k. Let $h h n Z$ be the outline of one of the ribs of the dome, which is here supposed to be the quadrant of a circle. Divide the arc $l Z$ into any number of egual parts from h at the points $l m n$, and through these points draw $I x, m y, n z$, cutting $B i$ at the points $x y z$, and $i h$ at the points $1,2,3$. Extend the ares $h l, l m, m n$, on the line $h n$, from It to o, from c to p, from p to q, and through the points opq draw the straight lines $\quad u, s v, t u$ perpendicular to $h n$. Make un, p^{v}, q^{w}, as also or, $p s, q^{t}$, respectively cqual to $1 x, 9 y, 3 z$; then through the points Arst draw a curve, and through the points now draw another curve, meeting the former one in the point μ. Thus will be formed the gore or covering of one side of the octagonal dome.
2071. When the plan of the base is a rectangle, as fig. 715., draw the plan $A B C D$ and the diagonals $A C$ and $13 D$, eutting each other in E. 'l'hrough E draw EI perpendicular to AB cutting $A B$ in F, and through E draw EJ per-

Fig. 715. endicular to $B C$, cutting $B C$ in G. Let the height of the dome be equal to half its ircadtl, and the section over the straight line EF a quadrant of a circle; then from the entre E describe the are FH, its base being EF, and with the straight line EG as half he major axis of an ellipsis, and EF the minor axis, describe the quadrant GF of an ellipsis. 'roduce EF to 1 , and EG to J. Divide the arc of a quadrant $\mathrm{F} \| \mathrm{ll}$ from F° into any umber of equal parts, and extend the parts on the line Fl to k / m, through which draw le lines $k q, b$, ms, \&cc. perpendicular to FI. Through the points 1, 2, 3, \&c. draw wt, $\boldsymbol{z} u$, $r, \& \cdot$., cutting AE at w, x, y, and FE at t, u, v. Make $k^{\prime} n^{\prime}, I^{\prime} o^{\prime}, m^{\prime} p^{\prime}$, also $k q, h, m s$, respecively cqual to $t w, u x, v y$, and through the points $n^{\prime} o^{\prime} p^{\prime}$ draw a curve, also through the oints grs draw another curve meeting the former in I; then these two curves with the ne $A B$ will form the gore r boundary of the buildig of two sides of the sne. Also in the ellipcal are GF, take any imber of points $1,2,3$, Id draw the lines $1 w^{\prime}, 2 x^{\prime}$, i, parallel to LSC, cutting C^{\prime} in the points $w^{\prime} x^{\prime} y^{\prime}$, id ($\mathrm{E}=\mathrm{E}$ in the points t^{\prime}, u^{\prime}, Eixtend the ares Gl, 23 from $\mathrm{G} k$ ', $k l^{\prime}, l^{\prime} m^{\prime}$, on the straight line GJ, d through the points m^{\prime} draw the lines $n^{\prime} q^{\prime}$, $p^{\prime} x^{\prime}$. Make $k^{\prime} n^{\prime}, ~ l o$,

$1 \mathrm{I}_{\mathrm{g}} \% 16$.
i^{\prime}, also $k^{\prime} q^{\prime}, l^{\prime} r^{\prime}, m$ s' respectively equal to $t^{\prime} w^{\prime}, u^{\prime} x^{\prime}, v^{\prime} y^{\prime}$, and through the points $13 n^{\prime} o^{\prime} p^{\prime}$ iw the curve 13J, and through the points C 'g'r's' draw the curve C'J ; then BJC will be gure required, to which the boards for the other two sides of dome must be formed.
2072. A general method of describing the board or half gore any pulygoual or circular dome is shown in fit. 716 . 1.et E. be half cither of the breadth of a board or of ane of the en of a polygon, $\mathrm{E}: \mathrm{F}$ the pierpendicular drawn from the centre. iw the straight line $A B$ paraltel to $\mathrm{F} \%$, and draw F, A and 3 perpendicutar to $\mathrm{k}: \mathrm{f}$; then upon the hase AB describe the 1 C of the vertical section of the dome. Divide the curve into the equidistant ares $A 1,12,23$, aud through the points rivion draw the lines $1 g, 2 h, 3 i$ jurpendicular to A l3 cutting
 12,23 upon the straight line $\mathrm{E} \% \mathrm{~V}$ from \mathfrak{F}, sucecessively to proints aprg. Through the puints opg draw the lines or, fis, mallel (1) J: i). Nake or, pe, ot respectively cqual to , f/k, in : then throngh the points r at draw a comese, mad I) LV V will L hee hati are or half mould of the boarting.

2073. To cover a hemispherical dome by boards moulded to portions of conic surfuces. Draw a vertical section of the dome $\mathrm{ABC}(f i g .717$.) and divide the circuinference into equal ares $\mathrm{C} d$, de, ef. 'Through the eentre E draw EB perpendicular to A C. Draw the chords Cd $d e$, of, and produce all these ehords till they meet the line EB , which they will produced in : convenient space; but those ehords that are next to the bottom AC will require a distance too remote from AC ; and for the present confining our attention to those ehords whish, whe produced, would meet the line EB at a eonvenient distance from AC, let ef meet the axi EB produeed in g, and from the point g as a eentre with the distanees $g e$ and of descrioe th arcs eh and $f i$. Then efih is the form of the board, so that its breadth is everywhere comprehended between the two eoncentric eircles $e h$ and $f i$, and when the boards are bent their edges fall on horizontal planes.
2074. We will here shortly repeat a method which has previously been given of describing an are of a circle independent of its centre, as commeted with this part of the subject, and useful in cutting out the boards of a dome where the centre is inaccessible or too distant for convenience. Let AB (fig. 718.) be the ehord of the are and CD its height in the muddle. In this case AI will be bisected at C by the perpendicular CD. Draw the half chord AD, and perpendicular thereto draw AE, and through the point D draw EF parallel to AB; also draw AG and BH perpendicular to the chord AB entting EF in the points G and H. Divide AC and ED each into the same number of equal parts, and draw lines through the corresponding points of division; these lines will converge, and if produced with the lines EA and FlB, would all meet in one point. Divide AG into the same number of equal parts as the lines AC, ED, and from the points of division draw lines to the point D) to intersect the former. A curve drawn through the points of intersection will form the are of a circle. The other part DB is found in the same mamer; and this is a convenient method, because any portion of a

Fig. 718. circle may be described within the width of a board.
2075. To tind the relation between the height and the chord of the are. Let a \&c. (fig. 719.) be the middle points of the boards in the are, and from a draw a line parallel to the base to meet the opposite curve; also from these points draw lines to the opposite extremity of the hase; then each paraltel is the base, as $f a$, and the distances eg intersected between it, and the point where the oblique line from its extremity cuts the middle vertical is the height of the segment.

2076 . It is, however, more convenient to deseribe the curvature of the board $1, y$ a continued motion, which may be done as follows. Let A13 (.fig. 720.) be the chord of the are. Bisect $A B$ at C by the perpendicular CD, and make CD equal to the height

Fig. 719. of the segment. Drow DE parallel to AlB, and make DE a little larger than ΛD; then form an instrument ADE with laths or slips of wood, and make it fast by a cross slip of wood GII. By moving the whole instrument, so that the two edges DA and DE may slide on two pins A and D, the angular point 1) of the instrument will deseribe the segment of a circle, and if the pin be takers out of A and put in the point B, the other portion $D B$ of the segment $A D D$ will be described in the same manner.
2077. The eovering of an elliptical dome is formed by considering each part a portion of the surface of a cone. ABC (fig.721.) is a vertical section through the greater axis of the base; the other vertical section through the axis at right angles being a semicircle; the joints of the boards therefore fall in the eireumference of vertical eircles.
2078. In the same manner the cover-
 ing of an annular vault whose section is semicircular is found, being on the same print is as now shown for a horizontal dome, which will be evident from an inspection of fig.

ERACKETING.

2079. The pieces of wood which sustain the laths of eornices, eoves, and the like re called brachets, and they take in form the gencral outlines as nearly as possille of the $\left.\right|^{\text {tI }}$ to which they are to be finished.
2080. A cornice bracket of any form being given, to make another similar one, or one that shall have the same proportions in all its parts. Let ABCDEF ($f g .723$.) be the given bracket. Draw lines from the angular points CDE, and let $A b$ be the projection of the required bracket. The lines AC, AD, AE , being drawn, draw bc parallel to the edge BC, eutting AC in c; draw $c d$ parallel to CD , cutting AD in d. Draw de parallel to DE, eutting AE in e, and draw of parallel to EF, eutting AF in f. Then Abcdef is the braeket required.
2081. To form an angle brackict to support the plastcring of a moulded cornice. Let fig. 724. X be the plan of the bracket. Draw the straight line AE equal to the projection $a b$ of the bracket on the plan X, and $\mathrm{A} a$ perpendicular to AE, to which make it equal. Join Ea, and on AE describe the given form AFGHIKLE of the bracket which stands perpendieular to the line of concourse of the wall and the eeiling. From the angular points FGHIKL, draw the lines $\mathrm{F} a, \mathrm{G} b, \mathrm{I} c, \mathrm{II} c, \mathrm{~K} \ell l$, $\mathrm{L} d$, cutting AE in the points BCD , and $a \mathrm{E}$ in the points a, b, c, d. Draw $a f, b g, c i, d h$, perpendieular to $a \mathrm{E}$. Miake $a f$. hig. ch, $c i, d h, d l$, eaeh respectively equal to $\Lambda \mathrm{F}, \mathrm{BG}$, CHI, Cl, DL, DK. Join $f g, g h, h i, i k, h l, ~ l E$. Then afyhilh E is the angle bracket required.
2082. An angle bracket for a cove (fig. 795.) may be described in exaetly the same manner.
2083. When eove brackets

Fig. 725. have different projections, the method of deseribing the angle one is shown in fig. 726. Let $A B, \mathrm{BC}$ be the wall lines. Draw any line (B) perpendicular to AB and LIF perpendienlar to BC. Make GI) equal to the projection of the braeket from the wall represented by the line AB, and make IIF equal to the proection of the bracket from the wail represented by l'C. Theci, as one of the brackets mist be given, we shall suprose the braeket GAD described upon GD. Draw DE raraltel to AB , and FE parallel to BC , and join BE. In he curve $A \mathrm{D}$ take any number of points Q, S, and draw QI ', SR entting GD in P ', K and BE in p, r. From the points $\therefore r$ draw the lines $p q, r s$ parallel to BC, cutting HF in he points p, r. Draw $p q$, r p perpendicular to BE. Make $q, r s$ also $p q, r s$ respeetively equal to \mathbf{P}^{\prime}, IRS, \&e. I \quad, nit HC equal to GA, then through the points aqs, \&e. lraw a curve whiel forms the bracket for the angle. Alsis lirongh the points $\mathrm{C}, 7, s$ draw another curve, and this vill form the cove bracket.
2084. The angle bracket of a cornice or cove may be ormed by the method shown in X and Y (fig. :i27.), thether the angle of the room or apartment be acute or ibtuse, external or interial. Let ABC be the angle. Bisect it by the line BI:. Draw GF perpendicular to ${ }^{13}$ C, and anake GF equal to the projection of the bracket, © C equal to its licight, and FC the curve of the given racket or rib. In the curve FC , take any number of oints I^{\prime}, and parathe to DC draw the lines $\mathrm{I}^{\prime} r$, (2 s, cuting BF: in the points r, s, and $G F^{2}$ in the points R, S. Draw $r p$, a 7 perpendicular to 13 F , and make the ordinates Poin rexpectively equal to IRP, SQ. and through all the mints $p q$, draw a enrve, which will be the bracket as equired.
208.5. When the angle is a right angle, it way be drawn The fig 728 , which is an omanemeal bracket for the string
 ugled trimgle.

Y4. 787
2086. In eoved ceilings, the coves meeting at an angle are of different breadths, and the plan of the angle is a curve to construct the brackets. Let ABC (fig. 729.) represent the angle formed by the walls of the room, and let $B d e f g$ be the plan of the bracket in the angle of a eurvilincar form. Draw HM, and thereon describe the bracket HOPQ intended for that side, and in the curve HOQ take any number of points NOP, and draw the lines NR, OS, PT perpendicular to AB, cutting it in the points R, S, T. Let MQ be the height of the bracket, and draw QA perpendicular to BA, and through the points NOPQ draw the straight lines $\mathrm{N} d, \mathrm{O} e$, $\mathrm{P} f$, cutting HM at IKLM. Draw hem perpenaicular to BC. Make $h r, h s, h t$, ha respectively equal to HR, HS, HT, MA, and draw $r n$, so, $t p$, aq perpendicular to BC; also from the points defg draw the lines $d n$, eo, $f p, g q$, and through the points hnopq draw a curve, which will form the other bracket required.
2087. Whether brackets occur in external or internal angles, the method of describing them is the same, and when the brackets from the two adjacent walls have the same projection, one of them must be given to find the angle bracket. When the brackets from these walls have unequal but given projections, then the form of one of the brackets must be given in form to find the angle bracket.
2038. To form a bracket for a moulded cornice. On the drawing of such cornice, draw straight lines, so as to leave sufficient thickness for the lath and plaster, which should in no case be less than three-fourths of an inch. Thus the general form of the bracketing will be obtained.

Fig. 228.

Fig. 729.

Dones.
2089. We have, in a foregone page, mentioned a method of constructing domes with ribs in thicknerses. We here present to the reader two designs for dome-framing, wherein there is a cavity of framed work between the inner and outer domes; with moderate spans, however, simple framing is all that is required. Fig. 730. Λ is a design for a domical roof. I exhibits the method of framing the curb for it to stand upon, the section of the curb being shown upon fig. A. The design here given is nearly the same as that used for the dome of the Pantheon in Oxford Street, which was destroyed by fire. C is another design for a domical roof, which is narrow at the bottom part of the framing, for the purpose of gaining room within the dome.

PENDENTIVES.

2090. If a hemisphere, or other portion of a sphere, be intersected (fig. 731.) by

Fig. 731.
cylindrical or cylindroidal arches, vaults at are formed, which are cailed pendentives. 'The termination of these at top will be a circle, whereon may be placed a dome, or an upright drum story, which, if necessary, may be terminated by a dome.

Ftg. 780

The reader will immediately perceive that many varicties may be formed. Our object tere is merely to show how the carpenter is to procced in making his cradling, as it is :alled, when pendentives are to be formed in wood.
2091. To cove the ceiling of a square room with conical pendentives. Let ABC (fig. 732.) je half the plan of the room, and DFE the half plan of the curb, at whose top the ribs tre all fixed. The hyperbolical arches agb, bhc on each of the four sides are of equal reight. The straight ribs $b f, i k, l m$, \&e. are shown on the plan by FB, IK, LM, \&e. [he method of finding the hyperbolical cuives agb, bhe will be explained in the following igure.

2092. To find the springing lines of the prcceding pendentives, the section in one of the vertial diayonal planes being given. Biscet the diagonal LK (fig. 733.) at the point N by the erpendicular NW, which make equal to the height of the cone, and draw the sides LIV ad KW. Bisect the side MK of the square at a, and on N, with the radius $\mathrm{N} \alpha$, describe a are a A, cutting the diagonal $L K$ at A. Then take any points B, C, D, between A and 5 , and with the several radii $\mathrm{NB}, \mathrm{NC}, \mathrm{ND}$, describe the ares $\mathrm{B} b, \mathrm{Ce}$, and $\mathrm{D} d$, eutting : II at the points d, c, and b. From the points A, B, C, and D, draw AE, BF, CG, and H perpendicular to the diagonal KL, cutting the side WK of the seetion of the eone at F, G, H. At the points $a b c d$ erect perpendiculars $\alpha e, l f, c g$, and $d h$ to the side ML, aking each equal to their corresponding distances $\mathrm{AE}, \mathrm{BF}, \mathrm{CG}$, and DH, which will be te half of the curve for that side from which the other may be traced. The dark parts show ic feet of the ribs.
9093. Fig. 734. shows the method of ving a square room with spherical pendenves, which a few words will sufficiently seribe. CI), DE are two sides of the plan; FIl 1 is half the plan of the curb. In the svation alsove is shown the method of fixing c ribs (which, in projection, are portions of lipses) on two sides of the plan. αb is the vation of the curb AFB ; cfd and dge are 14 on each side of the plan supporting the rtical ribs that form the spherical surface, ich vertical ribs support the curb afb. On 6 may, if necessary, be placed a lantern or ylight; or, if light be not wanted, a flat iling or a dome may be placed. This penative is to be finished with plaster; hence c ribe must not be farther apart than about inches.
2094. For finding (fig. 73.5.) the intersecIt1 of the ribs of a spandrel dome, whose ction is the segment of a circle, and whose an in a square A 13 CD . Let IDFFB be the

Fig. 734.
tion on the plane of the disgonal. First plan one quarter of the ribs, as at UC, 'TN,
121, and $Q^{(G,}$, this last being parallel to 1$) C$ or $A 13$, the sides of the square; on V,
the the radii VG, VI, VI, VN, and V'C, describe the ares G Pg, Iti, Ial, Non, \&c, cut.
ting the base DB of the angular rib in g, i, l, and n. Draw $g h, i l, l m$, and no, each perpendicular to DB, cutting the diagonal rib at h, h, m, and o. Then naking the distances GH, IK, LM, and No equal to the corresponding distances $g h, i k, l m$, and $n o$, through the points $\mathrm{H}, \mathrm{K}, \mathrm{M}, \mathrm{O}$ draw a curve which will be the under edge of that for the bottom of the ribs QG, RI, SL, TN, and UC, shown complete on each side of the square plan. If each of the circular segments on each side of the square plan be turned up at right angles to the plan ABCD , the ribs will then stand in their true position.

BRIJGES.

2095. We shall in this work confine ourselves to the simplest forms of timber bridges, which, as well as those of

Fip. 735. stone, will be formd fully treated of in the Encycloperdia of Engineering, by Mr. Cres. which forms one of the series. As they mostly depend on the pranciple of the truss, whe the span is large, and this eombination of timbers we have already explained; so in ston bridges the principle of construction of the arch is the chief matter for consideration, an to that a large portion of this work has been devoted; lienee, on the part of the architec we do not resign his pretension to employment in such works, for which, indeed, as reypec design, his general education fits him better than that of the engineer.
2096. The bridge over the Brenta, near Bassano, by Palladio, is an example of a wook bridge (fig. 736.), which is not only elegant as a eomposition, but one which is economic.

Fig. 336.
and might be employed with advantage where it is desirable that the piers should ocen a small space, and the river is not subject to great floods. The same great architect, in celebrated Treatise on Architecture, has given several designs for timber bridges, the prin ples of whose construction have only been carried out further in many modern instam He was the carliest to adopt a species of construction by which numerous piers were readered unnecessary, and thus to avoid the consequenees of the shock of heavy bodies against the piers in the time of floods. Of this sort was the bridge he threw over the rapid torrent of the Cismone (fig .737.) whose span was 108 feet.
2097. Palladio has given a design for a timber bridge (fig. 738.) which is remarkable as having been the earliest that has eome to our knowledge, wherein the arrangement is in what may be called framed voussoirs, like the arch stones of a bridge, a principle in later lays earried out to a great extent, and with success, in iron as well as timber bridges.

Fig. 737.

Fig. 738.

2098．We shall conclude our section on practical carpentry with a method of con－ structing timber bridges proposed by Price in his Treatise on Carpentry，and one not dissimilar in primeiple to the method of Philibert de Lorme，before mentioned．The bridge（fig．739．）is sup－ posed to consist of two principal ribs ik．The width of the place is spanned at once by an arch rising one sixth part of its extent．Its curve is divided into five parts， ＂which，＂says Price，＂I purpose to be of good sea－ soned English oak plank， of 3 inches thick and 12 broad．Their joint or inceting tends to the centre of the arch．Within this rib is another，cut out of plank as before，of 3 inches thick and 9 broad， in such sort as to break the joints of the other． In cach of these ribs are made four mortices，of 4 inches broad and 3 high， andi in the middle of the said 9 －inch plank．These
 mortices are best set out with a templet，on which the said mortices have been truly divided and adjusted．Lastly，put each principal rib up in its place，driving loose keys into some of the mortices to hold the said two thicknesses together；while other help is ready to drive in the joists，which should have a shonlder inward，and a mortiee in them outward；through which keys being drove keep the whole together．On theee joists lay your planks，gravel，\＆c．；so is your bridge compleat，and suitable to a river，\＆c．of 36 feet wide：＂

2099．＂In case the river，\＆c．be 40 or 50 feet wide，the stuff should be larger and more particularly framed，as is shown in part of the plan enlarged，as I．These planks ought to be 4 inches thiek and 16 wide；and the inner ones，that break the joints， 4 inches thick and 12 broad；in each of these are six mortices，four of which are 4 inches wide and 2 high；through these are drove keys which keep the ribs the better together；the other two morlices are 6 inches wide and 4 high；into these are framed the joists of 6 inches by 12 ； the tenons of these joists are morticed to receive the posts，which serve as keys，as shown in the section K ，and the snall keys as in L ；all which inspection will explain．That of M is a method whereby to make a good butment in case the ground be not solid，and is ＇by driving two piles perpendieularly and two sloping，the heads of both being ent off so is to be embraced by the sill or resting plate，which will appear by the pricked lines drawn from the plan I and the letters of reference．＂l＇rice concludes：＂All that I con－ zeive necessary to be said further is，that the whole being performed without iron，it is chercfore capable of being painted on every part，by which means the timber may be pre－ Hrved；for though in some respects iron is indispensably necessary，yet，if in such cuses where things are or may be often moved，the iron will unst and scale，so as that the parts will become loose in process of time，which，as I said before，if mande of sound timber，will always keep tight and firm together．It may not be amiss to observe，that whereas some nay imagine this areh of timber is liable to give way，when a weight comes on any par－ －icular part，and rise where there is no weight，such ohjectors may be satisfied that no part van yicld or give way till the said six keys are broke short ofl at onec，which no weight ：an possibly du．＂

Sect．V．

JO1さFル！゙。
2100．Joinery is that part of the seience of architecture which consists in framing or oining together wond for the external and internal finishings of houses，such as the limiug of wills and rongh timbers，the putting together of doors，windows，stairs，and the like

It requires, therefore, more accurate and nicer workmansiip than earpentry, being of a decorative nature and near the eye. Hence the surfaces must be smonth and nicely wrought, and the joints must be made with great precision. The smoothing of the wood is ealled planing, and the wood used is called stuff, which consists of rectangular prisms roughly brought into shape by the saw, such prisms being called battens, boards, and planks, aceording to their breadth and thickness.
2101. We shall give but a succinct aceount of the joiner's tools; an acquaintanee with their forms and uses being sooner learnt by mere inspection over a joiner's bench than by the most elaborate description.

TOOLS.

2102. The first is the bench, whose medium height is about 2 feet 8 inches, its length about 10 or 12 feet, and its width about 2 feet 6 inches. One side is provided with a vertical board, ealled the side board, pierced with holes ranged at different heights in diagonal directions, which admit of pins for holding up the object to be planed, which is supported at the other end of it by a serew and screw check, together ealled the bench screr, asting like a vice. The planes used by the joiner are the jack plane, which is used for taking off the roughest and most prominent parts of the stuff, and reducing it nearly to its intended form. Its stoch, that is, the wooden part, is about 17 inches long, 3 inches high, and $3 \frac{1}{2}$ inches broad. The trying plane, whose use is nearly the same as that last described, but used after it, the operation being performed with it by taking the shaving the whole length of the stuff, which is called trying up, whereas with the jaek plane the workman stops at every arm's length. The long plane, which is used when a picee of stuff is to be tried up very straight. It is longer and broader than the trying plane, its length being 26 inches, its breadth $3 \frac{3}{8}$ inches, and depth 3_{8}^{1} inches. The jointer, which is still longer, being 2 feet 6 inches long, and is principally used for obtaining very straight edges, an operation commonly called slonting. With this the shaving is taken the whole length in finishing the joint or edge. The smoothing plane, which, as its name imports, is the last employed for giving the utnost degree of smoothness to the surface of the wood, and is chicfly used for cleaning off fimished work. It is only $7 \frac{1}{2}$ inches long, 3 inches broad, and ${ }_{2}^{3}$ inches in depth. The foregoing are technically called bench planes.
2103. The compass plane which in size and shape is similar to the smoothing plane, except that its under surface or sole is convex, its use being to form a concave cylindrical surface. Compass planes are therefore of various sizes as occasion may require. The forkstaff plane resembles the smoothing plane in size and shape, except that the sole is part of a concave cylindric surface, whose axis is parallel to the length of the plane. The form is obviously connected with its application, and, like the last named, it is of course of various sizes. The straiyht block is employed for shooting short joints and mitres, instead of the jointer, which would be unwieldy : its length is 12 inches, its breadth $3 \frac{1}{8}$ inches, and depth 23 inches.
2104. There is a speeies of planes called rebate planes, the first whereof is simply caller the rebute plune, being, as its name imports, chiefly used for making rebates, which are receding plames formed for the reception of some other board or body, so that its edge may coincide with that side of the rebate next to the edge of the rebated piece. The length of the rebate plane is about $9 \frac{1}{2}$ inches, its depth about $3 \frac{1}{2}$ inches, and its thiekness varies according to the width of the rebate to be made, say from $1 \frac{3}{4}$ to $\frac{1}{2}$ inch. Rebate planes vary from bench planes in having no tote or handie rising out of the stock, and from their having no orifice for the discharge of the shavings, which are discharged on one side or other according to the use of the plane. Of the sinking rebating planes there are two sorts, the moving fillister and the sash fillister, whereof, referring the reader to the tool itself, a sight of which he can have no difficulty in proeuring, the first is for sinking the edge of the stuff next to the workman, and the other for sinking the opposite edge, whence it is manifest that these planes have their cutting edges on the under side. Without enumerating many other sorts which are in use, we shall mention merely the plough, ${ }^{2}$ plane used for sinking a cavity in a surface not close to the edge of it, so as to leave at excavation or hollow, consisting of three straight surfaces forming two internal righ angles with each other, and the two vertical sides two external right angles with the uppel surface of the stuff. The channel thus cut is called a groove, and the operation is calle: grooving or plowing. This species will vary according to the width from the edge; but i is generally about $7 \frac{3}{8}$ inches long, $3 \frac{5}{8}$ inches deep.
2105. Moulding planes are for forming mouldings, which, of course, will vary accordins to the designs of the architect. They are generally about $9 \frac{3}{3}$ inches long, and $3 \frac{3}{8}$ inche deep. When mouldings are very eomplex, they are generally wrought by hand ; but whel a plane is formed for them they are said to be stuck, and the operation is called stiching.
2106. The bead plane is used very frequently in joinery, its use being for sticking mouldings whose section is semieircular ; when the bead is stuck on the edge of a piect of stuff to form a semi-cylindric surface to the whole thickness, the edge is said to br
aded or rounded. When a bead is stuck so that it does not on the seition merely fall in ith its square returns, but leaves a space 㪯, thus, between the junctions at the des, it is said to be quirkcd. The beads or planes vary from very small sizes up to the inch and $\frac{7}{8}$ bead. They may however be larger, and are sometimes stuck double and iple. The snipebill plane is one for forming the quirk, whereof we have spoken; but we , not think a detailed description of it necessary, more than we do of those which are ade for striking hollows and rounds.
2107. The stock and bit is the next tool to be mentioned. Its use is for boring wood, id the iron, which varies as the size of the bore required, is made in a curve on its edge of intrary flexure so as to discharge the wood taken out. It fits into what is called the stock, hich has a double curved arm working on spindles, the end opposite to the bit being essed by the body, whose weight against the whole instrument is the power wherdy e operation is performed. The hit is also called a pin, or gouge lit. It is an impurtant al, and much used. (See Auger in Glossary.)
2108. Countersinhs are bits for widening the upper part of a hole in wood or iron for re head of a screw or pin, and are formed with a conical head. Rimers are bits for widenig holes, and are of pyramidal form whose vertical angle is about $3 \frac{1}{2}$ degrees. The hola first pierced by means of a drill or punch, and the rimer then cuts or scrapes off the inrior surface of the hole, as it sinks downwards, by pressing on the head of the stock. ccording to the metal on which they are to be used they are differently formed.
2109. The taper shell bit is conieal both within and without. Its horizontal section is a eseent, the cutting edge being the meeting of the interior and exterior conic surfaces. Its e is for widening holes in wood. Besides the above bits, there are some which are proded with a screw-driver for sinking small serews into wood with more rapidity than the rassisted hand will accomplish.
2110. The brad awl, the smallest boring tool, the gimlet, and the screw driver, are so well lown, that it would be waste of space to do more than mention them, the commones: of struments in the science of construction.
2111. The variety of chisels is great. They are well known to be edge tools for cutting ood by pressure on it, or by percussion with a mallet on its handle. The firmer chisel is ool used by the carpenter as well as the joince for cutting away superfluons wood by in chips. Those are best which are made of east steel. If much superfluous wood is to cut away, a strong chiscl, with an iron back and steel face, is first used with the aid of e mallet, and then a slighter one with a very fine edge. The first is the firmer first entioned, and the last is called a paring chisel, in the use whereof the foree employed from the shoulder or hand.
2112. The mortice chisel, whose use is for cutting out rectangular prismatic cavities in Iff is made of considerable strength. The cavity it so cuts out is called a mortice, and piece which fits into it a tenon, whence the name of the tool. This chisel is one acted only by the percussion of the mallet.
2113. The gouge is used for cutting concave forms in stuff. It is, in fact, a chiscI ose iron is convex.
2i14. The drawing lenife is an oblique-ended chisel, or old knife, for drawing in the Is of tenons by making a deep incision with the sharp, edge, guided by that of the tongue a square, for which purpose a small part is cut out in the form of a triangular prism. e use of this excavation is to enter the saw and keep it close to the shoulder, and thus ke the end of the rail quite smooth, for by this means the saw will not get out of its irse.
2114. There are many species of the saw, which is a thin plate of steel, whose edge is inted with teeth for cutting by reciprocally changing the direction of its motion. The ieties are-the ripping saw, which is used for dividing or sulitting wood in the direction the fibres; its tecth are large, the measure being usually to the number of eight in rehes, such teeth standing perpendicularly to the line which ranges with the points: length of the plate or blade of this saw is about 28 inches. The half riphr is used for dividing wood in the direction of the fibres: the plate of this saw is as long as of t last described, but it has only three teeth in an inch. The hand saw, whose plate is nches long, contains fifteen teeth in 4 inches; it is used for cross cutting, as in the direcI of the fibres; for which purposes the teeth recline more than in the two former saws. prinel saw has about six teeth in an inch, the length of its plate being the same as the but in this and the hand saw thinner than in the ripping saw: it is used for cutting y thin wood, either with or across the fibres. The tenom staw is most used for cutting Whe transverse to the fibres, as the shoulders of tenons. The phate of a tenon saw is lrom 1:0 19 inches long, having eight to ten teeth in an inch. This saw not being intended to f throngh the whole breadth of the wood, and the plate being too thin to make a night kerf, or to keep it from buckling, it has a thick pieee of iron fixed on the edge grite to the tecth, called the back. From the opening for the fingers through the
handle of this and the foregoing saws being enclosed all round, it is ealled a double handir. The sash saw is used for forming the tenons of sashes; its plate is 11 inches in length, having about thirteen teeth to the inch. It is sometimes backed with iron, but more frequently with brass. The dovetail saw is used for cutting the dovetails of drawers and the like; its plate is backed with brass, it contains fifteen teeth in about one inch, and is about 9 inches long. The handles of this and the last saw are only single. The compass saw, for cutting wood into eurved surfaces, is narrow, thicker on the eutting edge as the teeth have no set, and is without a back; the plate, near the handle, is about an inch broad, and about $:$ quarter of an inch at the other extremity, having about five teeth to the inch; the handle is single. The keyhole, or turning saw, in its plate resembles the eompass saw, but the handle is long, and perforated from end to end for inserting the plate at any distance with in the handle; there is a pad in the lower part of the handle, through which is inserter a screw for fastening the plate therein. As its name implics, it is used for turning our quick curves, as keyholes, and is therefore frequently called a keyhole saw.
2115. The teeth of all saws, except turning and keyhole saws, are bent alternately or the contrary sides of the plate, so that all the teeth on the same side are alike bent through out the length of the plate, for the purposes of clearing the sides of the eut made in th wood by it. The saw is a tool of great importanee in every case where wood is to b divider, for by its means it can be divided into slips or scantlings with no more waste that a small slice of the wood, whose breadth is equal to the depth of the piece to be en through, and the thickness of it equal to no more than the distance of the teeth between their extreme points on the alternate sides of the saw measured on a line perpendicular t them; whereas, by any other means, such as the axe for instance, large pieces of timbe could only be reduced in size by cutting away the superfluous stuff, which would be no les a waste of labour than of the material used; and even then it would have to be reduce to a plane surface.
2116. Joiners use the hatchet, which is a small axc, for cutting away the superfluou wood from the edge of a piece of stuff when the part to be cut away is too small to b sawed.
2117. The square eonsists of two reetangular prismatic pieees of wood, or one of wou and the other, which is the thimest, of metal, fixed together, each at one of their extren ties, so as to form a right angle both internally and externally; the interior right angle therefore called the imer square, and the exterior one the outer square. Squares are, fi different applications, made of different dimensions. Some are employed in trying u wood, and some for setting out work; the former is called a trying square, and the latter setting out square. To prove a square it is only necessary to reverse the blade after havil drawn a line on the surface to which it is applied: if the line of the blade on revers do not coincide with that first drawn, the square is incorreet.
2118. The bevel consists, like the square, of a blade and handle; but the tengue moveable on a joint, so that it may be set to any angle. When it is required to try 1 many pieces of stuff to a particular angle, an immoveable bevel ought to be made for t purpose; for unless very great care be taken in laying down the moveable bevel, it will i likely to shift.
2119. The gauge is an instrument used for drawing or marking a line on a piece of st to a width parallel to the cdge. It consists generally of a square piece with a mortiee in through which runs a sliding bar at right angles, called the stem, furnished with a sha point or tooth at one extremity, projceting a little from the surface; so that when the si of the gauge next to the end which has the point is applied upon the vertical surfice the wood, with the toothed side of the stem upon the horizontal surface, and pushed 1 drawn a'ternately by the workman from and towards him, the tooth makes an incision fre the surface into the wood at a parallel distance from the upper edge of the vertical side the right land. This line marks precisely the intersection of the plane which divides. superfluous stuff from that which is to be used. When it is required to eut a mortice it picee of wood, the gauge has two teeth in it, and is called a mortice guuge, one tooth bei stationary at the end of the stem, and the other moveable in a mortice between the fil tooth and the head; so that the distances of the teeth from eaeh other, and of each from head, may be set at pleasure, as the thickness of the tenon may require.
2120. The side hook is a rectangular prismatie piecc of wood, with a projeeting kr at the ends of its opposite sides. The use of the side hook is to hold a board fast, its fib being in the direction of the length of the bench, while the workman is eutting aeross fibres with a saw or grooving plane, or in traversing the wood, whieh is planing it it direction perpendicular to the fibres.
2121. The mitre bnx consists of three boards, two, ealled the sides, being fixed at ri. angles to a third, called the bottom. The bottom and top of the sides are all parallel; sides of equal height, and cut with a saw in two directions of straight surfaces at r ri angles to each other and to the bottom. forming an angle of 45 degrees with the sii The mitre box is used for cutting a picee of tried up stuff to an angle of 45 degrces with
its surfaces ; or at least to one of the arrisses, and perpendicular to the other two sides, at least to one of them, obliquely to the fibres.
2122. The struight edge is a slip of wood made perfectly straight on the edge, in order to ike other edges straight, or to plane the face of a board straight. It is made of different Igths, according to the required magnitude of the work. Its use is obvious, as its applition will show whether there is a coincidence between the straight edge and the surface which it is applied. When joiners wish to ascertain whether the whole surfaee of a see of wood lies in the same plane, they use two slips, each straightened on one edge, with e opposite edge parallel, and both pieces of the same breadth between the parallel edges; rence each piece has two straight edges or two parallel planes. To find, therefore, rether a board is twisted, one of the slips is placed across one end and the other across e other end of the board, with one of the straight edges of each upon the surface. The mer then looks in a longitudinal direction over the upper edges of the two slips, until his e and the said two edges are in one plane; or otherwise the intersection of the plane ssing through the eye and the upper edge of the nearest slip will intersect the upper edge the farthest slip. If it happen as in the former case, the ends of the wood under the ips are in the same plane; but should it happen as in the latter, they are not. In the st case, the surface is said to wind; and when the surface is so reduced as for every two hes to be in one plane, it is said to be out of winding, which is the same as to say it is a rffect plane. From the use of these slips, they are denominated winding sticks.
2123. The mitre square, an instrument so called because it bisects the right angle or itres the square, is an immoveable bevel, for the purpose of strihing an angle of 45 degrees ith one side or edge of a piece of stuff upon the adjoining side or edge of the said picce stuff. It consists of a broad thin board, let or tongucd into a piece on the edge called e fence or handle, which projects equally on each side of the blade, whereof one of the ges is made to contain an angle of 45 degrees with the nearest edge of the handle, or of at in which the blade is inserted. The inside of the handle is callect the guide. The malle may be about an inch thick, 2 inches broad : the blade abont $\frac{3}{\frac{3}{1}}$ to $\frac{1}{3}$ of an inch thick, id about 7 or eight inches broad. The arris of a pieee of stuff is the edge formed by o planes.

MaCllinert.

2124a. In many of the operations of the joiner, where numerous eopies of the same ing have to be produced, accuracy is ensured by introducing the principle of the guide, ther to dircet the tool over the work, or the work over the tool. The mitre box, not blocks, and the various kinds of fences and stops, are examples. The principle of the ide is also applied to simple sawing and planing, and to grooving, tonguing, morticing, noning, and shaping. The circular saw was introduced about the end of the last century
to England, and attempts to construct a plaing machine were made about 1776 and 1791
3. L. Molesworth, On the Conversion of Wood by Machinery, read at.the Institute of Civil ngineers, November 17, 1857). When Sir S. Bentham was in Russia previous to 1790, - had made considerable progress in eontriving machinery for shaping wood. such as all e parts of a lighly finished sash window ; another for preparing all the parts of a wheel, that the joiner or wheelwright in that case had only to put the sevcral pieves together. - 1802 Branalı patented machunery for pr ducing straight, parallel, and eurvilinear surces on wood. In 1807 Bruml's famous block machincry was set in motion in Portsouth doekyard. Thomson's machinery for sawing, gauging, grooving, and tonguing or boards was in operation in 1826; and, in 1827, Anir of Glasgow patented a machine r working floor boards, which has since served as a model for others. This machine has proaehed perfection in that of MacDowall of Johnstone. A raek circular saw beneh, r round or square timber, quickly converts a log or balk into square timber.
2124b. For the ordinaty workshop, where the trade is limited and much varicd, the npler American machims are more suitable. 'The sato bench occupies hatle space and on be applied in plain and bevel sawing, and ripping, mitring, tenoning, rebating. \&c. It only 3 feet 2 inches long. 2 feet 2 inches wite, and :3 feet $6 \frac{1}{2}$ inehes high; the saw is inches in diameter and makes $15 \frac{1}{2}$ revolutions for each turn of the hamd'e. A cramk oy be acted on by a trealle when the stnfl' is thin, but in ordinary cases the machine quires two operators. We cannot satifactorily deser be the details, withont illustrations, the many operations which this handy beneh aids in performing with accuracy aml patel. In Furness's patent wood working macline for plaming, moulding, mortieing, wing, sfuaring, tenoning, boring, rebating, and groosing, the stuff is operated up, in ly Hers, bedd by horizontal arms fixed to a vertical shaft, in which it resembles the Bramah's achine of 1802 , but it is much simpler and less expensive. Worssam's " general joiner" r the same purposes will, it is said, with a 2 horse power, do the work of at least lifteen Filled joiners. P'erin's patent French bund suw blades are made from $\frac{1}{16}$ th of an inch to inches in width and up to 50 fect in lengeth.
2124c. In machine with revolving colters the gencral opinion is, that the greater the eed of the cutting tool the better will be the quality of the work. The practical limit,
howerer, appears to be between 2,500 and 3,500 revolutions per minute. A higher velocity hears the bearings, destroys the balance, and causes injurious vibrations. To produce a good re-ult the travel of the work should be very slow relatively to the travel of the cutters. In some of the planing machines the cutters revolve with a velocity of 7,000 feet per minute, while the work advanees at the rate of only 30 feet, but as a general rule the work travels about $\frac{1}{20}$ th of an inch for each stroke of the cutters. To withstand this high velocity the framing of the machine requires to be perfectly constructed, the beaings made of a hard alloy, and precautions taken for obviating the wear of them. Newlands' work gives illutrations and detailed deseriptions of some of the machinery.
$2124 d$ Mention mast be made of Jordan's patent wood and stone carving machine, invented about 1843 , and worked by Pratt in 1845 to 1850 on a large scale. It roughed out the material actording to the design, leaving but little labour to be received from the hands of the carver. Muulded work has also been obtained by applying red-tot iron moulds to the wood, and so charring off the superfiucus mood. This system is probably cheap, but the work is flat and spinitless. Carved panels for dours, consisting of a thin veneer of wood on a layer of pulp, the whole pressed in moulds, is put forward by the Decurative Wood Company, and has a good appearance.
2124 . The introduction from New York, Steden, and other places, of prepared flooring, ready-made donrs and machine worked mouldings, out of well seasoned pine, is of great adrantate for cheap houses in the neighbourhood of large centres of population.
2125. In joiners' work exeeuted during the 13 th, 14 th, and 15 th centuries, the wood has neither warped, split, nor shrunk in the tenons and at other joints. 'Tlus excellenee is ascribed to the practice of seazoning the wood for at least six years after it was sawn, by first leaving it in damp places or even in water, and then stacking it in open piles under cover, when it was often turned and sometimes smoked; after such treatment the wood, when worked, has a tendency to acquire the appearance of Florentine bronze.
$2195 a$. As very old timber is likely to show shakes and to be worm-eaten, the mediæval joiners felled oak from two to three hundred years old; i.e, timber which, at a yard from the ground, measured from 66 or 72 to 120 or 126
 inches in girt without the albumen, and commenced its conversion by marking it with one diameter crossing another at right angles. The cuts on these lines having been made, the quarters were sawn in various ways, regard being had, as much as possible, to the texture of the wood. An unseasoned \log of oak splits as shown at A, fig. 739a. because the inner concentric circles are harder and more compact than the outer ones; therefore the latter, being the most extensive in surface as well as the most porous, contain a greater quantity of moisture, and shrink more than the inner ones in drying, thus causing splits or shakes leading to the centre. If timber be converted without regard to this result of dryness, the stuff will not only split, but will be so affected by changes of weather as to twist. If the cuts he made in lines converging, or even tending to the centre, the stuff may shrink in width but will neither split nor warp. Although oak is formed like other exogenous trees by a succession of layers, these are united and solidified in this particular wood by the medullary rays which form a sort of natural dowel.

2125u. The best method of converting oak for the use of the joiner is shown at B, fig. 730a, in which there is no waste, as the triangular portions form feather-edged laths for tiling and other purposes. The next best method is that at C; that at D is inferior; but the most economical method, where thickness is required, as for planks or for moulded work, is that marked E. The resemblance to a watered silk, which is sometimes called the feather, or flower, or corl, or pattern, of wainscot, is due to the medullary rays, which show most when the saw follows the chink-grain as in B ; in C and D the silky appearance does not exist, as most of the rays are cut across; very slight examination will show which course has been followed, especially in the case of the quarter-srain stuff produced by the method E. It is probable that the cross cuts will folluw the line of a layer, called the felt-grain, in the plan marked B , whielt is that adopted in Holland on tumber furnished in great part from Champagne (whence, simply, the superiority of Duteh wainscot), and in all cases of split oak for lathing and for park paling. (Viollet-le-Due).
$2125 c$. The wood principally used for joinery is of three sorts, pine, and white and yellow deal; the two first for panelling, and the last for framing. Of late years mucls American wood has been used, both for panels and frames. It works easily, is soft, free from knots, but more liable to warp than white deal. But joinery is not of course limited to the use of a particular sort of wood. When the exporter cuts a log, the first thing done is to get one good deal or more for the London market; the residue is then converted to supply other makets. Many deals 3 inches thick are sent to France, perhaps as large a proportion as those of 2 inch and $1 \frac{1}{4}$ ineh, but they are not of so good a description as those sent to london. France is the great mart for all deals that will not suit the London
arket. The following are the modes which have been and are at present practised to tain deals for both m.arkets. In 7396. (the mode practised until the French market iproved), are oltained an Eugth deal, A, 9 in. by 3 in, and o battens, B, 7 in. by $2 \frac{1}{2}$ in., aking 64 feet surerficial. In 39c., the old mode of cutting, ave two English deals, C, 9 in. i $2 \frac{1}{2}$ in., and two English batns, $\mathrm{D}, 7 \mathrm{in}$. by $2 \frac{1}{2} \mathrm{in}$., making) feet superficial. In 739d., the esent mode of eutting, gives two

Fig. 730 b .

Fig. 739.

Fig. 759d. .nglish deals, E, 9 in. by 3 in., and two French deals, F, 9 in. by $1 \frac{1}{4} \mathrm{in}$., making $76 \frac{1}{\frac{1}{2}}$ et superficial. This eommunication has been obligingly furnished by Mr. T. A. Brittch, obtained at the Docks.
2125d. Glue is a material extensively ased in joinery; see Glossary.
mouldings.
2126. When the edge of a piece of wood is reduced to a cylindrical form, it is said to be unded, which is the simplest kind of moulded work. (Fig. 740.) When a portion of the ris is made semicylindrical, so that the surface of the cylindrical part is flush both with eface and the edge of the wood, with a groove or sinking made in the face only, the lindrical part is called a bead, and the sinking a quirk; the whole combination (fig. 741.) eing called a quirked lead.
2127. If a quirk is also formed on the other or returning face, so as to make the rounded irt at the angle three fourths of a cylinder, the moulding (see fig. 742.) is called a bead d double quirk.

Fig. 710 .

Fig. 741.

Fig. 712.

Fig. $74 \overline{3}$.

Fig. 714.

Fig. 745.
2128. If two semicylindrical mouldings both rise from a plane parallel to the face, and ic comes close to the edge of the piece and the other has a quirk on the further side, and surface flush with the lace of the wood, as in fig. 743., the cumbiration is called a double (dd or double bead and quirk, wherein the bead next to the edge of the stuff is much smaller ail the other.
2129. Mouldings are usually serarated from one another, and often terminated by two rrow planes at right angles (fig. 744.) to each other : these are called fillets, and show o sides of a rectangular prism. The different pieces of the combination of mouldings ecolled members. A semicylindrical monlding, rising from a plane parallel to the face, d terminated on the edge by a fillist (fig.745.), is called a torus. In the figure there are o semicylindrical mouldings, whence that is called a double torus. The reader must serve that the distinction between torus mouldings and beads in joinery is, that the outer ge of the former always terminates with a fillet, whether the toms be single or dmuble; iereas a bead never las a fillet on the outer edge. A repetition of equal semicylindrical ,uldings, springing from a plane or cylindrical surface, is called reeds. In joinery, \int, cima rectu, and cima reversa, are called respectively the ogce and ogee erse. The ovolo $\{$, so named from its egg-like form, and the quurter round, the irth part of a cylindrieal surface, are the remaining of the prineipal mouldings used in aery. When the margin of any framing terminates on the edges next to the panel, with - or more mouldings, which b, th advance before and retire from the face of the framing the panelling, the mouldings thus introduced are called bolection mouldings. Their ontination is shown further on. (See fiy, 759.) Greek, Homan, and Itatian mondings alnoshown in 2531. and 2532.; and inedieval mouldings are treated in Practres or chitectuage.

nooas.

2130. We shall now mnee paticularly address ourselves to the sulject of doors and their nldingy. The mote inferior surt of door used in building is the common tedyed door, in ich live or six or seven vertical boards are held together usually by three horizontul ces called ledges, t which the vertical mess are maited. Sometimes there is an onter ming, consisting of the top rail and the two outside stiles, but still having ledges as
befne; these are called framed and ledged doors. A door, properly made, is formed by framing and fitting pieces of stuff together of the same thickness; those which are horizontal (fog. 746.) AAAA being called rail and those which are vertical B131B13 being called stiles. These form a skeleton into which paucts, usually of a less thickness, are fitted. And this, indced, is the general practice in all systems of tramed joinery. In

Fig. 746 doors. the upper rails are called top rails; the next in descending, frieze rails; the next, which are usually wider than the two first, are called the lock or mildle rails; and the lowest, from their situation, are called bottom ruils. The stiles on the flanks are called outsile stiles, and those in the middle are called middle stiles. The panels are also named from their situations on the door; thus CC, being the uppermost, are called frieze pantls; the next D1) are ealled middle panels, and EE bottom panels. The rails and stiles are wedged together, being previously morticed and tenoned into each other. The student should, however, to obtain a clear comprehension of the method adopted, sce a door put together at the bench. The varieties and forms of doors are dependent upon the will of the architect, from whom the design of the whole emanates; it will be, therefore, here sufficient to mention the three sorts, viz. the common door, just described; the jib dorr, which is made with the same finishings and appearance as the room in which it is placed, so as not to have the appearance of a door; and, lastly, folding dones, which open from the centre of the doorway, and are used for making a wider commuication between two apartments than a common door will permit, or, in other words, to lay two rooms into one.

2130a. A patent sofety and escape door, applicable for all positions, has been produced to supply the demand of the authorities that all doors in public buildings be made to open outwards. This invention consists of a door within a door, onc opening inward, the other outward; the inner door being so constructed that on a rush it yields to the pressure. Sufficient fittings are provided to afford security as well. Messrs Chubb have pioduced a door, having a superimposed spring panel on the inside of the door, in which the lock is enbedded. While a smart knock, or even a slight pressure, on this panel canses the donble doors to fy open outward, it is impossible to open the door from the outside without a key.
2131. Though the fanclling of framed work is gencrally sunk witnin the face of the framing, it is for outside work sometimes made flush. In the best flush wor k, the panels are surrounded with a bead formed on the edge of the framing. and the work is called bead and flush. In the commoner kind of flush framing, the bead is run only on the two edges of the panel in the direction of the fibres, and is called bead and butt.
2132. The different denominations of framed doors, according to their mouldings and panels and framed work in general, are shown in section of panel and framc. Fig, 747. represents the commonest door; it is technically deseribed, first mentioning the numl cl

Fig. 747.

Fig. $7 \$ 8$.

Fig. 719.

Fig. 70.

Fig. 751 ,
of' panels intended in it, as a door square and flat panel both sides. The number of panel will not be repeated in the following explanations of the figures. (Sec Spectifications.)
2134. Fig. 748. represents the rail and panel of a door, with a quirked ovolo and fillet on one side, but having no mouldings on the other. The panel flat on both sides, i is described as a door with quirked ovolo, fillet and flat with square back.
2135. Fig. 749. only differs from the last in having a bead instead of a fillet, and i deseribed as quirked ovolo, bead and flat panel with square back.
2136. Fig. 750., with an additional fillet on the framing, is described as quirked orold bead fillet and flat panel with square back. The back, in the forcgoing and followng cases is described as square, because of its having no mouldings on the framing, and of the panc being a straight surface on one side of the door.
2157. In fig. 751. the framing is formed with a quirked ogee, and a quirkcd bead on on side and square on the other, the surface of the panel being straight on both sides, and th door is described as quirked ogee, quirked bead and flat panel with square back.
2138. Fig. 752. only differs from the last in the bead being raised above the lower pas of the ogee and a fillet It is described as quirked ogee, cocked bead and flut panel wit squure back.
139. Fig. 753. is deseribed as a door with ceve, cocked beud, flut panel and sq:are bach.

140 Fig. 754. is a combination by which much strength is imparted to the door, and i) therefore much used for external doors. It is, however, often used in the interior of 1 ises, and is lescribed, quirhed ovolo, bend fillet and raised penel on front and square buek.] s from the raising of the panel that the additional strengh is acquired.
141. Fig. 755. resembles the last in general appearance, the difference being in the (lu on the raised panel, It is described, quirked ovolo, bead and raised panel, with ovo'o or ${ }_{i}$ raised panel and square baek. When an external door has raised panels, they are always

1.12. In fig. 756. there are more mouldings than in the !ast on the raised panel. It is 'aribed, quirked ogee, raised panel with ovolo and fillet on the rising and astragal on the flat 4) anel in front and square back.
143. Fig. 757. is described, quirked ovolo, bead fillet and flat panel on both sides. This 'ription of doors is used where a handsome appearance is to be equally preserved both sides of the door, as between rooms, or between halls or principal passages and I ns.
144. Fig. 758. is a combination used, as all bead butt and bead flush work is, where 3 ngth is reguired. The form here given is described, bead and fush fromt and quirked - raised panel with ovolo on the rising, grooved on flat panel on bach.
145. 'The series of mouldings are, as we have before mentioned, called bolection mouklin: (fiq. 759) , and are laid in after the door is framed square and put together. They I ect beyond the framing on each side. When bradded on through the sides of the If ks , the heads of the l. Is will be entirely conserd: but it is to be obmed that, in driving the If is, they must not be d cted towards the panels, If into the solid of the rphing. 'the form of these In ction mouldings is of sife varied according to 11 pleasare of the architect.
1.5a. Mediriral Domes, of

Fig. 7isa.
21 mhy phaced upright, grooved or feather-tongued at the edges, and generally secured
together by plain band-hinges, or more or less ornamented, or with scroll work. These planks are further nailed to a skeleton framing. Fig. 759 a. gives a sketch of the bach of the door at Bidborough Church, Kent, with its planking at A; and B is a section o the same at Stapleliurst Church, Kent; the place for the nails is only indicated. Thes examples were supplied to the Dictionary of Architecture by Professor Lewis. Large doors were made up of frames and rails, strutted or braced, on the same prineiple a the modern ledged doors and coach-house gates. Viollet le Duc's Dictionnaire has man. examples of this mode of framing, all the timbers being stop-chamfered, and the plank bolted through the braces
214.3 . The head of a door enriehed with panelling; the door, with the planks carve with panelling, rumning onnament, and niches with figures; an early English door, wit

Fig. 7596. two foliated band linges; of th same period with three linges of the decorated periou, th panelled and enriehed heade door at Holbeach Churein, Lii colnsline, of which the con struction (a framing of squar panels, AA) is shown in fig. 759b., rising from a plain plank $14 \frac{1}{2}$ inches high; with othe examples, are all given in Brandon, Analysis, etc. together with one of the perpendicula period, wherein the face has panelled planks, and square panel framing at back.

2145c. 'Tlie framework is sometimes plaeed externally and ornamented, as in fig. 759r from the west door of the Chureh of San Pictro; and fig. 759d., from a door in a courtyan opposite that of Sta. Maria Antica, botlı at Verona. The sizes are $9 \frac{1}{2}$ inches and 1

Fig 759c. inches respectively, from centre to centre of panels. The cuts are taken from the plates of the Dictionary. Tl very elaborate moulded and carved door from the Norman portion (12th century) of the Palazzo Reale, at Palermo, is given in the illustrations of the Dictionary of Architecture, from careful measurements by the late J. M. Lockyer. In the doors of cedar or deal, but covered with paint, at the chapels of St. Martin and St. Giles at Notre Dame le Puy (cir. 1043-53.),

Fig 759d. the subjects, inscriptions, and borders are all obtained simply by sinking the grou 8.16ths of an inch. Gates of the same description are said to exist in the churches

1 yy .760. Chamaliètes and Lavoûte-Clilhac in the samed tift. The wood doors, having iron plates beaten into a pattern secured with large brass nails, Huesca Cathedral, date about 1400-140.5, 1 ela of the erection of the west entrance. (Street

SHUTTERS.

2146. Shuttcrs, which are the doors of wind openings, are fiamed upon the same principles doors themsetves; but their backs are very often flu. In the better sort of buildings they are foldea it rccesses called boxings, whereof we shall give a figt below as an example of the ordinary method; but the extent and different forms of windows vary, 1 ingenuity of the architect will be often required contrive his shutters wihhin a very small space. In minutie we cannot enter in a work of this natur however, in all their shapes, they are dependent the leading principles given.
2147. Fig. 760 is a plan of the shutters, architra' sash-frame, and part of the sash of conmon shutte The cavity which forms the boxing into which ! sashes fold is formed by the ground B (upon whin the architrave A is nailed), the back lining F of t boxing, and the inside lining G of the sash-fran whereof H is the inside bead. L is the outside linr of the sash-frane, M the back lining of it, and K ! purting beod, so called from parting the upper a
wer sash. The vacant space J, between the pulley piece I and M, is a cavity which eunias tae weights for balancing the sashes; N shows the plan of one of them. The slauttere, hen stretched out in their different folds, are supposed to cover one half of the window, iuther series being supposed to be placed on the other side of it. The fiont shutter CCC hung ly hinges at a to the inside lining G of the sash-frame. The inner shatters DD D id EE are called the bach flups, the former of which is hinged on to the front shatter at b, id the latter is hinged on to DDD at c. It will be innmediately seen that these thee ill thus altorether turn upon the hinges at a, and cover, in one straight line, from be th les, the whole of the ligl:t of the window. When the boxes are scanty, the hinge, called back flap hinge, may be placed as shown in X attached to the fignre.
2148. In ordinary cases, this example will sufficiently exhibit the method to be adopted. hen it is not applicable, the architect must apply himself to the work pro re uutî, in hich, with very little attention, he will not find insurmountable difficulty.
2148a. The boxings of a window are further described in the Glossary and Addendun. -sides the lifling shutters commonly used in houses of a lower rate. which in their construction is simply a repetition of the sash-frame, we must notice brietly the many revolving shutters for inside and outside purposes, whether of iron, stcel, or wood, laths. The latter were tirst made at Ipswich, some twenty years since, and were woond up and down by a winch and upright rod working a toothed wheel. 'Ihey were soon afterwards made of iron, also worked by machinery. Within the last few years, ilieir great convenience has led to many improvements, and the greater use of wood; instead of machinery, counterbalance weights were introduced. Later, they were "constructed of laths of wood rebated together, having numerous mortices, through which pass a series of tempered steel bands, causing the shotter to be sclf-roiling." Iron laths were also used. Lately, they "are made of steel, in one sheet, without either chains, links or rivets, or pins; the steel being corrugated transversely gives them the appearance of laths, and enables them to be coiled into a small space." We avail ourselses of some iliustrations issned by Clark and Co., showing the adaptability of this shatter to various places, as wirdows, shops, doors, fireplaces, \&c. Fig. 760a. shows the head and loot of an ordinary lomse window. At A, it is fitted with the shotter inside, and to pull down. At 13 , it is fitted also inside, and to lift $n p$, the coil being placed in a boxing forming a step on the floor. When lhe position of the joists admit of so doing, the coil may be placed in the flooring, as at C ; and oceasionally it may be more convenient to place it even under the ceiling, at 1). Fiy. 7601 . is the plan of a window frame, showing the groove, a, tor the shutter, which is 1 inch dece by thes wide.

2148b. A great improsement in securing the common shop shutters whonon a shotter-bar is one of the early inventions i oducen by Jennings; these shutter shoes are so much advertised with illustrations that her notice of them leerein is needless.

hingeing.

149. A very essential consideration in the neatness and beanty of joiners' work, is the mation of the joints on which are placed the hinges of doors and shatters. 'They ought fe so continued as to preserve the miformity of the door or shuter on both sides, and m neth as powsible to be elose enongh to caclude a rosh of ain betwern the edges of the 1 ion to be hinged together, which, in this cold chmate, is essential. In these joints, both hes of one of the botios is usually beaded, to conceal the open space, which would Uswise lxe seen ; and for preserving the appearance of the work, the hinges are made of B 1 at eurvantere towards the eye, as to seem, when painted, a part of the bead itselt on side where the knuckle is placed, so that when lomg the whole may appere to he one 41
150. The section of a door style, and part of the hemging at the joint, are represented in A ind 13 (fig. 76il.), rein the eentre of the lead on each side is in the line of veraighe piat of the joint from the opponite side. In this re, C^{C} is the centre of the bead, A (i part of the joint in ee with its edge, Joming AC, draw A J3 perpendiontar

is the faee of the door or hanging style. This is a joint suitable for many purposes, and may be made with common hinges. If crooked, it will assist in excluding the current of air, a point of no mean importance.
151. In fig. 762. A and B exhibit a plane joint, beaded similarly on both sides. In this case, the plane of the joint is a tangent to the cylindrical surfaces of the two beads: and as the margin on each side is alike, no check to the rush of cold air is afforded. The linge, moreover, is such that it cannot be made in the usual manner, but must be formed as at C.

F゙ig. 76\%.

Fig. 763.

Fig. $7 \mathrm{G4}$.
21.6. Fig. 763. A and B represent a hinging wherein the plane of the joint from onc side is directed to the axis of the bead on the other. 'The principle in it is the same as that in fig. 761 ., and it may therefore be hinged with common hinges, as shown in C , it which the two parts are conjoined. The methods shown in this and fig. 761. are useful is eases wherein a part of the margin is concealed on one side of the door.
2159. Fig. 764. A and \mathbf{B} exhibit the beads of similar size on each side, and exactls opposite to each other, the joint being broken by indenting a part terminated by a plan directed to the axis of the two opposite beads. The hinges are required merely of th eommon form, the arrangement is strong, and the apartment rendered comfortable by thei use. In C the parts are shown as hinged together.
2154. In fig. 765. the beads are on both sides, but not on the same piece, as in the las figure. 'The appearance is uniform, but the bead, which projects the whole of its thicknes is weakened. The junction is seen in the representation at C.

2155. Fig. 766. is a method that has been adopted for concealing the hinges of slutter A is the imner bead of the sash-frame, B the inside lining, C the style of the shutter. F the form of the joint, let $a f$ be the face of the shutter, perpendicular to $a r$ the face of t inside lining. Let the angle f a r be bisected by the straight line $a a$, and in the cent take c. Draw dd perpendicular to ad, cutting it in c, which is the centre of the hing From c, as a centre, describe the are am, which must be hollowed out from the insilining of the sash through the height of the shutter. In order to make room for the ope ing and shutting of the hinge, the internal right angle of the shutter must be eut out of i edge to the breadth of the hinges. The twils of the hinge are here for the purpose strengthening them, represented of different lengths.
2156. In fig. 767. the hinges, which are for a door, are eoncealed, as the door allows in the thickness of the wood, the ends of the hinges being of equal lengths.
2157. Fig. 768. shows the common method of hingeing shutters, a mode wherein the whole thickness of the hinge is let into the thickness of the shutter, the inside lining being assumed as too thin to afford sufficient hold for the screws employed to fasten them.
2158. Fig. 769. exhibits the hanging of a door with the centres eoncealed. Let ad be the side of the jamb in contact with the edge of

Fir. 768.

Fig. 769. the door; bisect it in l, and draw bc perpendicular to $a d$, make $b c$ equal to ba or $l d$, a join $a c$ and $c d$; from c, as a eentre, describe the arc aed, which will show the portion be hollowed out of the jamb. The centres are fixed to the upper and under parts of t door, and the former is to be so coistructed as to allow its being taken out of the socl to unhang the door when required.
2159. Shutters are usually hung in the way represented in fig. 770, whercin the cen
the knuckle of the hinge exactly opposite to the pendicular part of the bate. The dotted lines exit the flap when folded ck.
2160. When the axis of a knuckle camot be dis-

Fig. 7%.

Fig i:1. sed so as to fall opposite to the joint, the hinge is to be placed as shown in fig. 7 il uns, $a b$ being the distance of the edge of the flap from that the shutter, biseet it in c, which will be the point opposite sereto the centre of the hinge is to be placed. This arngement is necessary, both when the shutters are not uare at the ends, and when the boxing is restricted in ace; the principle being to place the centre of the knuckle the hinge at half the distance of the edge of the flap from e rebate on the edge of the shutter. In fig. 772. the oo parts are shown hinged together.
2161. When a door has attached to it any projection, and, hen open, it is requisite to bring it parallel to its place hen shut, the knuckle of the hinge (fig. 773.) must project least as far as the projection in question. An inspection the diagram, wherein the dotted lines show the situation the door when folded back, will sufficiently convey the ode of conducting this expedient.
2162. Fig. 774. is the representation of what is called a de joint, which is used when the piece to be hung is not quired to open to more than a right angle. In this case, e centre of the hinge is necessarily in the centre of the arc. 1 fig. 775. the expedient shows the nethod curned to a ght angle.
2163. The various methods - lingeing to suit every posble case would occupy a very rge space, were we to enter to them; and even after

Fig. 771. hausting all the cases that we may have imagined, others would ise to which no example given might he applicable; we therere leave this portion of the subject of joinery, under an impreson that the principles have been sufficiently developed to enable le student to pursue from them the application to any ease that

Fig. 3 :

Fig. 773.

Fig. 735. - may be ealled upon to put in practice.

SASH-FHANIES AND SASHES.

2164. In fig. 760. the connection between the shutters and sash-frame bas been fully splained; we may now, therefore, proceed to the detail of a common sash-frame with * sashes, supposing them to be hung so as to be balanced by weights, suspended by sashnes running over pulleys, capable of balancing those of the sashes themselves. Ou the tse of French sashes, which open like doors, we do not think it necessary to dilate. hey are, in fact, nothing more than glazed doors; and the prineipal object for attaimment their construction, is to prevent the rain from penetrating into the apartments they rve, as well where they meet in the middle as at their sills, which is a subject requiring weh eare and attention.
2165. In fig. 776 . is slown the eonstruction of a sash-frame, and the method of putting yether the sereral parts, wherein it is the elevation of the frame, of which ABCD is the ter edge. The thimer lines at EIF, GII, FG, are grooves whose distances from the edires "the sash-frame LAI and KI are equal to the depth of the boxing, together with threephtis of an inch more that is allowed for margin between the fice of the shutter, when, in ic boxing, and the edges MI, and KI of the sash-frame next to the bead. S is a horizonal section of the sides, whereon is shown also the plan of the sill. ' T ' is a vertical section of se sill and top, in which is shown the elevation of the pully style m and n, and the pullies let to the pully piece. U is the horizontal section of the sides, showing also a plan of the ead of the sash. frame. V the elevation of the outer side of the sash-frame; the outside ning being removed for the purpose of showing the work within the sash-frame. In this I is the parting atrip fastened by a pin; ed one of the weights connected to the sash by ears of a line going over the pilley c, the other end being fixed to the edge of the sash.

The weight $d e$ is made equal to one half the weight of the sash. W is the head of the sash-frame before put together, and X shows the edge of W. Y is the edge of the bottom, exhibiting the mamer of putting the styles in it, and Z is the plan of Y. Fig. 777., Nos 1. and 2., are sections of the sills of sash-frames, with sections of the under rail of the sash, showing the best method of construeting them, in order to prevent rain from driving under the sash-rail. In each of these, A is the section of the bottom rail, B a section of the bead tongued into the sill, C a section of the sill. Fig. 778. exlibits sections of the meeting rails of the upper and lower sashes, with side elevations of the upright bars; C is the rebate for the glass, D a square, E and F an astragal and hollow moulding, G a fillet. The smaller letters mark the same parts of the under sash. Fig. 779. is the section of an upright bar with the plans of two horizontal bars, showing the franking or mamner in which they are put together to keep the upright bars as strong as possible.

Pla. 776. Ahe thickness of the tenon in

$F_{\text {if. }} 778$.

$\mathbf{F}_{\text {ig, }}$ isto.
general is about one sixteenth of an inch to the edge of the hollow of the astragal, and close to the rebate on the other side. $h h$ is a dowel to keep the horizontal bars still firmer together. In this diagram the letters refer to the same parts as in the preceding figure; and it is also to be observed, that no rebate is made for the glass on the inside meeting rail, a groove being made to answer that purpose. Fig. 780, exhilits four seetions of sash bars. But their forms, as in the case of mouldings, generally depends on the taste of the arehitect.
$216 \overline{3} a$. Several patents have been taken out, of late years, for hanging sashes so that they may be removed from the frames for elenting or repairing without taking down the inside beads, an operation which always results in at least

Fig. 379. damaging them in a few years. 'They are not always satisfactory. Gurman's sash pocket " fittings, and Gribbons' sash mountings, were introduced about 1858. Other inventio have been made for hanging them so that the upper and lower sashes shall open with t : same action. William M.Adam's "Imperihable material applied to sash and oth pulleys, economical sash weights, and improved methods of hanging windows," compri: a material for pulleys of vitrified stoneware, proof against tice action of the weath

For window weights he substitutes a cheap material manufactured out of various kinds of refuse; and suggests an improvement in the mode of hanging windows whereby one wcight can be made to answer the same purposes as two appiied in the usual way. R. Adams has a patent anti-accident reversible and sliding window, for cleaning, ventilation, \&e, whereby the outside of the sashes can be safely revolved, or reclined into the room for cleaning, \&c., thus removing all danger to the eleaner. Meakinhas a new patent standard sliding sasl, for cleaning. For sash lines, see par. 2260.
2165b. The French casement window, or sash door as it is called when it opens down to the ground, is a feature commonly introduced even in English town houses. Its most ordinary form for small apertures is that of two leaves opening inwards or outwards, meeting in the centre of the opening; one leaf being secured to the frame by a bolt at top and buttom, and the other, when closed, is.fastened to the first by a handle, fixed on the second leaf and turning over a staple fixed on the first. When the casement is high, t is
 second leaf may require a bolt also at top and bottom to prevent the wind bending it (when inwardis), and so admiting cold air and wet. When placed towards an exposed quarter

Fig. 780 b .

Fig. 780c.
and subject to driving rains, it becomes necessary to take extra prccautions to prevent the wet being blown through the joints at the bottom and the sides. 'To effect this ohject, the stiles, rails, and frames are beaded and sunk in various manners; some are shown in figs. 780a. and 780b, sills and bottom rails. For the latter, a water bar is now much used.
2165c. The next improvement is perhaps that of affixing to the leaf which is first opened an upright bar, which turns, and on being closed, fits against the other leaf, and by a hook at top and bottom effectually fastens both leaves. A similar method is shown in fig. 780c., adopted at Pisa, as given in the lapers of the Royal Enmineers, x. 187. The upright square recded bar D , is moved to or from the sash, as the window is required to be opened or shut ; the top and bottom of the bar being rounded, as shown at E , so as to slide into two segmental plates F , secured

Fa 7 3 \&
to the sill and lintel. 1 is a plan of the two casemente, and of a plan of the head and sill.

2165\%. The best arrangement is that of the Vispagnolette buth, which is mato of brass, and acts in the same mmoner as that of the bar above inentioncel. There are several other contrivnaces of a similar kind to cffect the object, but the ahove
are those in most general use. There is also a late invention for forming the bolt into a plate, and setting it in a groove in the edye of the meeting stile, a corresponding groove being formed in the other stile to receive its half of the plate when moved forward by the handle in closing the casement. 'This, at the same time, forms a weather bar. (See pur. 2259.)

2165 e. The fig. 780a. is a section of an ordinary arrangement in France for a casement. A is the plan, taken across the middle of the height, near the handle; and B the plan of the hooks at top and bottom of the rod, working into a staple fixed in the head and in the sill, with the movement of the rod ly its handle. The round and hollow joint in the middle of the casement necessitates the two leaves being closed together and pressed into the frame when shutting the leaves, thus securing all the joints from admitting air or water.
216.5f. Fig. 780d. is a plan of the elaborate but usual French casement, as lately put up to the stone-fronted houses in the Rue de la Victoire, at Paris. It is given by Daly, in thic Revue Generale de l'Architecture of 1858. A shows the casements when shat; B the shutters closed in the boxings; and $b b$ the shutters when opened ont. C the persiennes or outside blinds shut against the stone reveals; the ordinary mode is for them to shut on the $f_{\text {ace }}$ of the wall, which spoils the architecture of the façade; c c the same when closed; \mathbf{D} the espagnolcte bolt; \mathbf{E} the outside arehitrave; and F^{\prime} the inside architrave.

GROUNDS.

2166. Grounds are formed of pieces of wood forming skeleton frames, and attached to walls, around windows, doors, or other openings, for the facility of fixing architraves or other mouldings upon them. For doorways the fiont and back grounds were connected by a third, specified as dovetailed lacking. They are disused in common work, the grounds being the wrought woodwork carrying the mouldings, forming a single or double faced architrave, and having the jamb space filled by a single or a double rebated and bealed jamb lining. The grounds served as screeds for the platering, for which purpose the edge was chantired, rebated, or grooved. Grounds or norrou th munds were those to which the bases and surbases of rooms were fastened; slips of wood now receive the skirtings of rooms. All these appliances were secured to wond lr cks, which them-elves have given way to pluas or wedges. Wright and Co's patent inprovea fixing llooks for linings to walls, and floors, are substitutes for wood as a fixing. They take and retain nails equal to wood; they do not shrivk, split, or decay, or become loose; whilht the crushing weight is fully equal to good average brick or stone. They are built into reveals as tricks, withont destroying the bond. When reguired for skirtings, for boarding, and such like, the brick is made $\frac{3}{4}$ inch wider, offering for the plastering a better key than that obtained when using the wood ground. They are nsetul alss in other cases. In all cases the grounds ought to be fixed yertical on the face and edge, and be fixed firm and solid in every part; for otherwise the inside work cannot be well finished, as in plastered rooms the plaster is worked to them.
2167. In fixing window grounds, the sash-frame must be first carefully placed so as to stand perfectly vertical; and then the face of the ground must stand quite parallel to the face of the sash-frame, and project about three quarters of an inch from the face of the naked brickwork, so as to leave a sufficient space for the thickness of the plaster. The edge of the ground should be in the same plane with the cdge of the sash-frame, or, as the workmen term it, "out of winding." 'The edge of the architrave, when finished. in ordinary cases, will stand about three-eighths of an inch within the imner edge of the sash-frame, so that a perpendicular line down to the middle of the grounds would stand exaetly oppositu to a perpendicular line down to the mildle of the sash-frame.

ILOORS OR ILOOR BOARDS.

2168. In the laying of floors, the first eare to be taken is that they be perfectly level, which, owing to the nature of the materials whereof they are constructed, is a difficult task. The chief sorts of floors may be divided into those which are follded, that is, when the boards are laid in divisions, whose side vertical joints are not eontinuous, but in bays of three, four, five, or more boards in a bay or fold; and those which are straight joint, in which the site joints of the boards are continuous throughout their direction.

As soon as the windows are fixed, the floors of a building may be laid. The boards are to be placed on their best face, and put to season till the sap is quite exhausted, when they may be planed smooth, and their edges shot and squared. The opposite edges are brought to a breadth by drawing a line on the face parallel to the other edge with a flooring guage, after which the common guage is used to bring them to a thickness, and they are rebated down on the back to the lines drawn by the guage.
2169. The next operation is, to try the joints, which, if not level, must be brought so, either by furring up if they be hollow, or by adzing down if they are convex, the former being more gencrally the case.
2170. The boards used for flooring are battens, or deals of greater breadth, whose qualies are of three sorts. The best is that free from knots, shakes, sapwood, or cross-grained uff, selected so as to match well with one another. The second best is free of shakesand ppood, and in it only small sound knots are permitted. The third, or most common rt, are such as are left after taking away the best and second best.
2171. The joints of flooring-boards are either quite square, ploughed and tongued, reated, or dowelled; and in fixing them they are nailed on one or both edges, when the ints aro plain and square without dowels. When they are dowelled, they may be inled on one or both sides; but in the best dowelled work the outer cdge only is nailed, y driving the brad through the edge of the board obliquely, without piercing its surface. hich, when the work is cleaned off, appears without blemish.
2172. In laying the floor-boards, they are sometimes laid one after the other, or one is rst laid, then the fourth, at an interval of something less than the united brendth of the cond and third together. The two infermediate boards are then laid in their pleces with ae edge on the edge of the first hoard and the other upon that of the fourth board, the vo middlo edges resting against eneh other, rising to a ridge at the joint. In order to ree these boards into their places, two or three workmen jump upon the ridge till they are brought the under sides of the boards close to the joints; they are then fixed in their laces with brads. This method is that first mentioned under this head, and in it the vards are said to be foldel. We have here mentioned only two boards, but four boards re most commonly folded at a time, and the mode is always resorted to when a suspicion sists that the boards are not sufficiently seasoned, or they are known not to be so. The cadings of these folds are either square, splayed, or ploughed and tongued. If a heading curs in the length of the floor, it should be invariably made to fall over a joist, and one eading should not meet another.
2173. In dowelled floors, the dowels should be placed over the middle of the interjoist ther than orer the joists, so that the edge of one board may be prevented from passing at of the other. When the boards are only bradded upon one edge, the brads are conaled by driving them in a sianting direction through the outer edge of every successive ard, without piercing the upper surface. In adzing the under sides of floor-boards over ch joist, great care should be taken to chip away the stuff straight, and also to avoid king away more of the stuff than is necessary, in which case the soundness of the floor ill not be compromised.
2173a. The praetice of joining the edges of boards by means of rebates, or of tongued ooves, does not appear to hare existed before the 15th century. Previously to that riod, the use of ledges dovetiled to the whole or part of their depth into chases, of retailed wooden eramps, or of wood or iron pins or dowels, was general. In the catheal at Meesina the rrding under the ing is in two knesses that cross It other; and, in eradle roofs, it

Fig. :80e.

Fig. $750 f$.
s usual to groove and tongue the wainscoting, and also to cover those joints with ulded fillets, as shown in the examples in fig. 780e. The thickness of this wainscoting, ich was oak split, not sawn, was only three-eighths of an inch (barely moro or less), 1 it was frequently put together in the manner shown in fig. $780 f$.
11736. The nailing of floors is not satisfactory in appearance. S. Putney has designed l'avodilos solid wood flooring to remedy the disadvantages of an ordinary nailel floor, In obviato the neeessity for a parquet floor over it. By a mode of interlocking pughout the sides of each board, a perfectly smooth, air-tight, and dust-proof surfate btained, free from nail holes and indentations (fig. 780g). This floor is laid upon joists direct, and edge-nailed to it in the shoulder. Another method is adopted by

K゙g. 78 g.

1 ig . 780 h .

Tonnings, the boards being solid, rablected, and tongued, and edge-nailefl, forming -proof ioints, with a fair surface (fig. 780%).
isse. Wondllock fluoring. A warn, solid, durable, non-slippery floor, free from foul aumin, und damp, being laid on a eoncrete bed, is that inventerl about 1856 ly Mr. White, F.I.I B.A., and called woochlock flooring. It consists of oblong blocks, placed
diagonally on concrete, being prepared from first or second yellow deals, which are Burnetized and seasoned. This invention has produced othtr systems. W. Duffy: patent immoveable acme, being pioned at the end and sides. Lowe's improved system. the blocks being secured to the bed of concrete by a composition. S. Jennings's preparec paraffined flooring, which has been laid in several large hospitals and infirmaries, for which places it appears well suited, as also in houscs. Geary's patent premier system wherein the blocks are keyed down and cannot get loose. In Gary and Walker's improved patent Invincible system, each block forming the flooring is firmly keyed to the sub structure ly means of metal keys dovctailed into the under side of the blocks; the othe end of the keys being embedded in a matrix, acting not only as a damp-proof course an against dry rot, butalso as a floating to the concrete foundation in place of the usua cement surface. Another is Nightingale and Co.'s bevelled principle of woodblock floor ing. Ebner's patent hydrofuge flon is formed of, first, a cement bed in which are se small iron channels; sccond, a bed of mastic which runs into the channels and int grooves formed in the bottom of the wocd blecks or parquet; it is considered to b. a fireproof, damp-proof, noiscless, and warm floor.

2173d. It is stated that in Western Australia both the woods called Jarrah and Karr are used for paring, and from exhaustive tests it is considered that Karri is the superio wood for most purposes, and paving in parcicular. This refers to paving for roadway: a subject of high importance, and upon which opinions are much divided. It, howerer does not come within the province of the joiner, and scarcely within the scope of thi work. The engineer to the Corporation of the City of London reported (1888) that abon forty years since many of the princıpal thoroughfares of the City were paved with wood ... most of which proved unsatisfactory; in 1853 only eight streets remained so pared Since 1873 (Dceember) the granite in ncarly the whole of the main thoroughfares in th City has been replaced by either asphalte or wood, but mainly asphalte. Of the latte there are now 23,579 lineal yards, or about 13 miles; and of the former, 10,898 line yards, or about 6 miles. The parishes in the metropolis differ in their opinions, som entirely condemning wood fur asphalte, others using wood only, and one, at leas keeping to granite as cheapest in all ways.

2173e. Parquetry, fe. Floors of principal rooms of the better class of houses at now being finished with parquetry. It is composed of different pieces of some four five coloured and hard woods, arranged in regular geometrical figures, for the whole of room, corridor, or gallery; or applied as borders round carpets, to treads and risers stairs and landings; and even as dadoes, panellings, friezes, \&c. Parquetry is kept clen by sweeping and periodical waxing. It is usually made solid, one inch thick, groove tongued, and keyed at the back and corners. When the woods are applied only as veneer, they are liable to warp and separate by heat. Turpin's thin parquet floos $\frac{5}{16}$ in. thick, prepared on deal back laminations to wear equal to inch solid parquet; can be used for veneering an old existing deal floor, and is susceptible of removal pleasure.

2173f. Wood carpet parquetry is three-eighths of an inch thiek, firmly nailed down wi: small barbed wire brads on to the top of the old floor; it is stated to be of a durab nature and texture, bearing constant traffic. It may likewise be used for wainsenting and walls and ceilings. Ebuer's parquetry is attached firmly to basement floors witho any under flooring, as above explained. "Wood tapestry (Huward's patent) for core ing walls, ceilings, and other surfaces with real wood at a less cest than painting ib graining," dates from about $186 \overline{0}$.

2173g. Marquetry, or the inlaying of coloured woods, became very general at the lall. end of the 16 th century. Oak was inlaid with ebony ornaments in the panels and stil of wainscoting; and the framing of doors, windows, and shatters was sometimes made dark-coloured woods, the pancls being of light colours, inlaid with ornaments, profiles heads, \&c. This process is applied greatly to furniture, where it is imitated by paint. new method has been introduced, of applying a printed pattern to the prepared wood, in the Tunbridge ware, and then varnishing it as usual. "Ornamental pyrographic wou work," for panels and in cabinet work, being a process for burning-in ornament up wood, is now in operation.

FRAMING。

2174. In fig. 781. aro shown several methods for framing angles in dadoes, skirtin troughs, and other objects, whoreof A exhibits the method of mitring a dido on cxter angles in an apartment. In fixing this together, brads may be driven from each side. is a morhod of framing used for troughs or other rectangular wooden vessels. C is method of putting a dado or skirting together at any interior angle of a room. This mi
is also employed for water-trunks, or tronghs. In D is shown the manner of fixing and finishing two pieces of framing together, with a bead at their meeting, by which the joint is concealed. It is used only in common finishings. In those of a better sort the angle is kept entire, and only a three-eighth bead used at the joint. It is of great importance in all joiner's work to preserve the sharpness of the angles of the work, and many prefer to employ the method shown in F , without any bead at the joint. In this the joint is made as close as possible, and is wall glued together. If additional strength be required, blockings may be glued in the interior angle, which will make it quite firm. The method. hy a simple mitre at E, is not so good as at A, because it has no abutment.
2175. When it is required to gluc up large work, those edges which are to receive the glue shuuld be well warmed at a fire, and then, while warm, and the glue as hot as possible, they should be united, inasmuch as glne never holds well when it is chilled or cold.

2175a. In studying mediæval framing, much attention

Fig. 781. should be given to the modes in which the junction of pieces was effected; there are two which are chiefly important. The first is a characteristic in the work of the carpenter as well as of the joiner, viz., the shoulder, either solid or applied (figs. 701h. and 701l.). In the first case, it is not economical of material, which was a great point of consideration ; and thercfore it is rarely seen except on short pieces, such as the posts of doorways: but as an applied means of strength it is almost as common in good work as a corbel in masonry. The second is the use of the mortice and tenon with trenails; and the extreme care which was given to this part of the work is scarcely to be expected in these days of speed and cheaphess. It may be predicted that no truly mediaval work will now be ever reproduced exeept Ω the fancy-work of the cabinet-maker and the smith.

2175b. Another peculiarity is the use of stops to all chamfers and mouldings at points of junction of framing : it is not until the last phase of pointed art, that the stop of the noulding of a stile is worked in the rail, or that the corner of a panel is rounded: it is only n the dawn of the renaissmec that the four-panel quirk ogee front and square buck can be ortion of a specification for a door; for a mitre-joint is eminently not a feature of melixal joinery. The juxtaposition, even accidentally. of two stop-chamfered edges, suggests means of emriching work, whether in open or close panels. The avoidance of work gainst the grain, and of large hollows, is also mentioned as a characteristic of joiner's ork in pointed art; but this disappears in the course of the 15 th eentury. 'The rediesal joiner, depending sometimes upon halving his work together, more frequently longht time less valuable than material, and did not repent a profnsion of morticing and enoning, to which he added the trouble of fistening with wooden trenails or iron pins. s large an amount of rebating and of grooving, however, was done in framing by the joiner
s conld be expected by those who were accustomed to the back-jointed and the grooved ork of the mason.
2175r. Perhaps the most defective part of the joinery of the middle ages is that which maisted in planting one thickness upon another. The contrivances in glucing and doweiling were not of themselves sufficient ; and recourse was obliged to be hatd to uails. lie absence of serews and mails, execpt where mail heads could be made decoration, is lother characteristic of medieval joinery. It was not until the begiminer of the $14 t h$ ntury that the transition from planted work to panel work can be said to have appeared any strength. At the end of that century, an architect might have specified a door as ne panelled, beaded three edlyes, shamfered buttom, and raised panel both sides; but his heads ould have been stuck in the solid, and not applied: during the whole of the 14th century anted work was eommonly introdnced, as in sereens, closets, and shuters, where perhaps ham buttress serves to conceal the wide joint mode by the work in couseguence of the ecurate finish of the hingeing. A curions method, which must have heen haborions wre the introduction of the plane, of athehing the planted work, consisted in ruming in egronid n clase wide enough to take the whole breadth of the phated stuff, and then pran a conple of grooves in that chase; of conse the back of tice phanted stull had to be rked to mateh, with two tongres to enter the grooves.
17.5d. The size of the inaterials was restricted. Three ineh stuff for the thickness of Is nud stiles, with a not moch wider face; inch and n linlf stufl for mouldings to be inted: panels not more than eifht inches wide, nud threcequarters of an inch thick; y be quoted ns usual dimensions for joiner's work. 'Ihe observance of this restriction stututes an essential characteristic ol inedicual work.

STAIRS.
2176. Stairs and their handrails are among the most important objects of the joiner's shill. The choice of situation, sufficiency of light, and easy aseent, are matters for the exercise of the architcects best talent.
217. There are some leading principles which are common to all staircases, of whatsoever materials they may be constructed. Thus it is a maxim that a broad step should be of less height than one which is narrower ; and the reason is sufficiently obrious, becausf in striding, what a man loses in breadth he can more casily apply in raising himself by his feet. Now, as in common practice it is found that the convenient rise of a step 12 inches in width is $5 \frac{1}{2}$ inches, it may be assumed as some guide for the regulation of other dimensions. Thus $12 \times 5 \frac{1}{2}=66$, which would be a constant numerator for the proportion. Suppose,
 agrees very nearly with the common practice. The breadth of stcps in the commoncst staircase may be taken at 10 inches at a medium. In the best staircases the breadth of the step should not be less than 12 inches, neither should it be more than 18 inches. (See 2814.)
2178. Having adjusted the proportions of the steps, the next consideration is to ascertain the number of risers which will be necessary to pass from one floor to another. If the height divided hy the rise of each step should not give an exact number of risers, it is better to add one rather than diminish the number.
$2178 a$. An easy mode of proportioning steps and risers may be obtained by the annexed method. Sct down two sets of numbers, cach in arithmetical progression ; the first set showing the width of the steps, ascending by inches, the other showing the height of the riser, descending by halt-inclies. It will readily be seen that each of these steps and risers are such as may suitably pair together. (Newland, Carpentr's and Joiner's Assistant, 1860, p. 197.) It is seldom, however, that the proportion of the step and riser is exactly a matter of choice-the space allotted to the stairs usually determines this proportion; but the above will he found a useful standard. In tirst-class buildings the number of steps is considered in the plan, which it is the business of the architect to arrange in accordance with the style of the edifice.
2179. The width of the better sorts of staireases shonld not be less than 4 feet, to allow of two persons freely passing each other; but the want of space in town houses often obliges the architect to submit to less in what is called the going of the stair.

Trears. inches.	Risorss iucties.
5	9
6	$8 \frac{1}{2}$
7	8
8	$7 \frac{1}{2}$
9	7
10	$6 \frac{1}{2}$
11	6
12	$5 \frac{1}{2}$
13	5
14	$4 \frac{1}{2}$

2180. The parts of every step in a staircase are one parallel to the horizon, whicl is called the tread of the 'tep, terminated on the edge by a moulded or rounded nosing, and the other perpendicular to the horizon, which is called the riser of the step. Where grcit traffic exists, the treads of stairs wear down at the nosing. This is often protected by a brass edging, and by lining it with lead. Hawksley's patent treads have come largely mot use, not only at railway stations, but in warehouses and other buildings where there is much traffic or the stairs and landings.

2180a. A curious instance of economy of material is given in fig. 781a., which shows the mode of getting six steps out of round timber 30 inches in diameter, being a saving of about ten per cent. upon the attempt to cut up square timber. Suel solid steps were housed into the carriage; A slowing the under side of it in relation to the step B. ln straight flights the system of carrying solid newels from bottom to top of the staircase is one which has since been repeated successtully in iron construction. The ingenuity of the mediæval joiner in this subject is seen best treated in Viollet le Duc's dictionary. (See par. 2185.)
2181. Stairs have many varieties of structure, dependent on the character, situation, and destination of the building. We shall now, therefore, describe the method of carrying up

Fig. $781 a$. dog-leqged, bracket, and geometrical stairs.
2182. A Dog-legged Staincase is one which has no opening or well-hole, and in which the rail and balusters of the progressive and teturning flights fall in the same vettical planes. The steps in it are fixed to strings, newel, and carriages, the ends of the steps n the inferior kind terminating only upon the side of the string without any housing. Y anc Z in fig. 782, are the plan and elevation of a staircase of this kind; AB is the lower newri whereof the part BC is turned. On the plan, a is the seat of this newel. DF and FG ir \mathbf{Y} are the lower and upper string boards framed into newels, KL is a joist framed into the trimmer I. The lines on the plan represent the faces of the steps in the elcvation withou' the nosings. $M O$ and FQ are called the upper and lower ramps, the metloci of arawing
which is as follows: - In the upper ramp, for cxample, produce the top of the rail HM to ${ }^{\prime}$; draw MN vertical, and produce the straight part ON of the pitch of the rail to meet it in N, making NO equal to NM. Draw OP at a right angle to ON. From P, as a centre, describe the are MO , and then the other eontrary corve, which will complete the ramp required. The story rod RS is in the fixing of all staircases a necessary instrument; for in fixing the steps and other work by a common measuring rule, bit by bit, the chances arc that an excess or defect will occur, to make the stairease faulty; which eannot be the case if the story rod is applied to every riscr, and such riscr be regulated thereby.
2183. A Bracket Staincase is one which has an opening or well, with strings and newels, and is supported by landings and carriages. The brackets are mitred to the end of each riser, and fixed to the string board, which is usually moulded like an architrave. In this sort of staircase the same methods are to be observed in respect of dimensions and laying off the plan and section as in a doglegged staircase. Nothing is to be done without the story rod just described, which must be rontantly applied in making and setting up the stairs. The method of forming the ramps and knees has seen touched upon in the preceding article, and the ew particulars we intend to give respecting scrolls ind handrailing will be reserved for a subsequent rage. In bracket stairs the internal angle of the
 teps is open to the end, and not closed by the string, as in common dog-legged stairs; he neatness also of the workmanship is as much attended to as in geometrical stairs. The balusters should be nicely dovetailed into the ends of the steps by twos, and the ace of cach front baluster is to be in a plane with the front face of the riser, and all the ralusters being equally divided, the face of the middle one must of course stand in the niddle of the face of the riser of the preceding step. The treads and risers are previously 11 glued up and blocked together, and when put in their places the under side of the tep is nailed or screwed into the under edge of the riser, and then rough bracketed to the trings, as in a dog-legged staircase, in which the pitching pieces and rough strings are inilar.
2184. A Geometrical. Staircase is one whose opening is down its centre, or, as it acalled, an open newel, in which each step is supported by one end being fixed in the wall r partition, the other end of every step in the ascent having an auxiliary support firon hat immediately below it, begiming from the lowest one, which, of course, rests on the floor, he steps of a geometrical staircase should, when fixed, have a hight and clean appearance, ad, for strength's sake, the treads and risers, when placed in position, should not be less $1 \mathrm{~m} \frac{1}{6}$ ineh thick, supposing the going of the stair or length of the step to be 4 liect. lor rery 6 inches in length of the step an eighth of an inch should be added. The risers muld be dovetailed into the cover, and in putting up the steps, the treads are serewed up oin below to the under edges of the risers. The holes for sinking the heads of the serews ught to be bored with a eentre bit and fitted closely in with wood well matched, so that te crews may be entirely conceated, and appear as a milom surface without blemish. frackets are mitred to the risers and the nosings are continued romed; but this practice iduces an apparent delect, from the brackets, instead of giving support, being themFwes unsupported, and actually depending on the steps, being indeed of no other use ban mercly tying together the risers and treads of the internal angles of the steps; and om the internal angles being hothow, exeept at the ends, which terminate by the wall at ee extremity, and by the bracket at the other, there is an appearance of ineomplete fiash. hee eavetto or hollow is carried all romed the front of the slip. returned at the end, and sain at the end of the bracket, thence along the inside of it, and then along the imternal gle at the back of the riser.
218.5. 'The anceicnt mode, however, was the best, in which the wooden was an imitation the method of constructing (geonetrical stairs in stone, which will be fomed under lawnery, in the previons feetiom 111.; that is to say, the making of the steps themselves s.shid. in in section of the form of a bracket thronghont their length. "This is a mure experne ve inethod, hut it is a solid and grod one, and is still practised on the Contiuent, espelly in Firance. (See a'so pirf, elsou.)
2186. In fig. 783. \mathbb{X} is the plan and Y the elevation, or rather section, of a geometrical stairease. AB in X is what is called the cur-tail step (curved like the tail of a cur dog. which must be the first step fixed. CCC are the flyers supported from below by rough carriages, and partly from the string board DHEF in Y. The ends next the wall are sometimes housed into a notch board, and the steps then are made of thick wood and no cariages used. GGG are winders fixed to bearers and pitching pieces, when carriages are used to support the flyers. The winders are sonetimes made of strong stuff firmly wedged into the wall,

Fig. 784. the steps screwed together, and the other ends of the steps fixed to the string DEHF. In all cases of wooden geometrical stairs their strength may be greatly augmented by a flat bar of wrought iron coinciding with the under side and serewed to the string immediately below the steps. HIK in Y is the wall line of
 the sofite of the winding part of the stairs, and LMN part of the rail supported by two lalusters upon every step. Where the space of the going of the stairs is contined, the French have long siluce introduced, as in fig. 784., the practice of placing the balusters outside the steps, which affords more room for persons aseending and descending.

handkalls and cur-tall ster.

2187. The upper part of the fence formed by capping the balusters of stairs is called the handrail, whose use, as its name imports, is for a support to the hand in the ascent and descent of stairs. The hand, for support to the body, should glide easily over it without any strain, whence it is evident, that to be properly formed, it must neeessarily follow the general line of the steps, and be quite smooth and free from inequalities. It must be obvious to the reader who has thus far followed us throughout the different previous portions of our labours, that the chief principle of handrailing will be dependent on the methods of finding sections of eylinders, cylindroids, or prisms, according to three given points in or out of the surfaee, or, in other words, the section made by a plane through three given points in space. The cylinder, cylindroid, and prism are hollow, and of the same thickness as the breadth of the rail, or the horizontal dimension of its section; and their bases, their planes or projections on the floor. Thus is formed the handrail of a staircase of a portion of a cylinder, cylindroid, or prism whose base is the plane of the stair, for over this the handrail must stand, and is therefore contained between the vertical surface of the cylinder, cylindroid, or prism. As the handrail is prepared in portoons each whereof stands over a quadrant of the circle, ellipse, or prism of the base which forms the plane, such a portion may be supposed to be contained between two parallel planes, so that the portion of the handrail may be thus supposed to be contained between the cylindrical, cylindroidal, or prismatic surfaces and the two parallel planes. The parts to be joined together for forming the rail must be so prepared that in their place all the sections made by a vertical plane passing through the imaginary solid may be rectangular: this is denominated squaring the rail, and is all that can be done by geometrical rules. But handrails not being usually nade of these portions of hollow cylinders or cylindroids, but of plank or thicknesses of wond, our attention is naturally drawn to the consideration of the mode in which portions of them may be formed from planks of sufficicut thickness. 'The faces of the planks being planes, they may be supposed to be contained between two parallel planes, that is, the two faces of the plank. Such figures, therefore, are to be drawn on the sides of the plank as to leave the surfaces formed between the opposite figures, portions of the cylindrical, cylindroidal, or other surfaces required, when the superfluous parts are cut away. A nould made in the form of these figures, which is no more than a section of them, is called the face mould.
2188. The vertical, cylindrical, or cylindroidal surfaces being adjusted, the upper and lower surfaces must be next for:ied : and this is aceomplished by bending another mould
:ound the cylindrical or cylindroidal surfaces, generally to the convex side, and drawing ines on the surface round the edge of such mould. The superfluous wood is then cut away from top to bottom, so that if the piece were set in its place, and a stiaight-edge applied on the surfaces so formed, and parallel to the horizon directed to the axis of the well-hole, it would coincide with the surface. The mould so applied on the convex side for forming the top and bottom of the piece, is called the falling mould. For the purpose of finding these moulds it is necessary to lay down the plan of the steps and rail; next, the alling mould, which is regulated by the heights of the steps; and lastly, the face mould, which is regulated by the falling mould, and furnishes the three heights alluded to.
2189. Fig. 785. exhibits two of the most usual forms of handrails. The upper part, 4 and B of the figure, are sections of the rail and mitre cap of a dog-legged stairease. Vertical lines are let fall from the section of the rail A, to the mitre in B; from thence, n ares of circles, to the straight line passing through the centre of the cap at right angles to the former straight lines; then perpendiculars are set off and made equal in ength to those in A. 1 curve being traced hrough the points gives the form of the ap. C is called a toad's usck rail, and is used or a superior descripion of staircases.
2190. Fig.786. shows he method of drawing he seioll for terminating the handrail at the rottom of a geometrical taircase. Let ΛB be he given breadth; raw $\mathrm{A} E$ perpendicuir to ΛB, and divide it to eleven equal parts, ud make A Fis equal to ne of them. Join 13 L , isect $A B$ in C and $B E$ F. Make CD equal CF and draw 1)G erpendicular to AlB. rom I', with the radius E or F B , describe an

Fig. 785.

Fis. ist.
ceutting DGat G. Draw GII perpendicular to BEeutting BE at O. Draw the diagonals ()K and 10 L perpendicular to DOK. Draw 1 K parallel to BA ; KL . parathel to 1 D , id so on to meet the diagonals. From D as a centre, with the distance DB, describe the c BG. From I as a centre, with the distance $I G$, describe the are $G E$. From K as a

F18. 787.

Fig. 784.
(tre, with the distance $K \mathrm{~F}$, deserihe the are IVII. Firom I, as a centre, with the distance 1, describe the arc IIP. Proceed in the same manner mad complete the remsining fee quarters, which will finish the outside of the seroll. Make IBR equal to the breadet (he rail; nantly, about two incles and a quarter. 'Tlen with the centre 1) and distance

DR describe the are RS, with the centre I and distance IS describe the are ST, and with the centre K and distance K'l describe the are TU, and the scroll will be completed.
2191. Fig. 787. gives the construction of the cur-tail step, or that which lies under the scroll, abed is the veneer that covers the riser ; efgh, the nosing of the eover or horizontal part of the step; ikl the face of the string board, and mo the projection of the nosing.
2192. In fig. 788 is shown the cover board fur the cur-tail step, abed and efgl in dotted lines represent the plan of the scroll ; opqrs, the nosing of the eur-tail step; t, u, v, s, the nosings and end of the risers. The circle $1,2,3, \& c$ is described from the centre of the seroll, and divided into equal pats equal to the distances of the balusters from centre to centre, and lines are drawn to the centre of the scroll in order to ascertain the middle of the balusters, by giving a regular gradation to the spaces. The whole of the spiral lines in this and the previous tigure are drawn from the same eentres as the scroll.

bencines.

2192a. "It must be confessed," says Denison, in his Lectures on Church Building, 1856, page 242, "that our ancestors did not ofler much temptation to people to come to churcb by the comforts they provided for them when they got there. Nothing, indecd, can be better for sitting in than some of the old stalis, such as those in King's College Chapel, where the baek has a slope of one to four ; but most of the eommon old chureh seats are frightfully uncomfortable-the back of the seat ought to be inclined, especially when it rises as high as the shoulders. It is not of so much consequence when the seat backs are low, but even in them it is better to lave a little inclination, about one in eight; and abote all things, the top rail ought not to project. The sats ought never to be less than 13 inches wide with a sloping back, or 14 inches with an upright one, and they will be all the better if they are an inch or two more. Nothing under 2 feet 10 inches at the very least will allow proper room for sitting, standing, and kneeling, especially if there are any divisions under the seats to prevent people from kicking their ncighbours' hats, or apporpriating their hassocks. Where it is necessury to save room in every possible way, it is not a bad plan to make the division under the seat only come down to 3 or 4 inches from the fluor; and never in any ease ought thate to be (what there often is) a thick rail or bar of wood lying along the floor and taking off an inch or more from the space for the fret. The book boards are best not sloping, wbich is of no use, but flat and narrow, just wide enough to lay a book upon shut, and to put the arms upon in knecling. As regards the diffeculty of finding a good place and proper height for the pulpit and reading desk, I know of no better advice to give upon the subject than to try various places before you finally fix upon any one, unless the construction of the church is such that there is one place marked out by nature (as we may say) as the proper one."

2192b. Examples of benches and beneh ends are represented in so many publications that it is deemed unnecessary to give any illustration. Some cappings to benches, and edges to divisions, are shown in the section Wood Mouldings in Book III. Those shown in Brandon's Analysis, and Bury's Wooluork, give the following dimensions:-

Name of Church.	17eight.	Width.	Seat.	Opering.	
Comberton, Cambridge -	2. 9	3. 4	1. 0	1. 6	
Bentley, Suffolk - -	2. 5	2. 10	0. $111 \frac{1}{2}$	1. 6	
Great Waltham, Essex, 14:0-	3. 1	2. 6	1. 2	i. I	
Bishops Lydeard, Somerset	2. $10 \frac{1}{4}$	$\left\{\begin{array}{ll}2 . & 3 \frac{1}{2} \\ 2 . & 7 \frac{1}{2}\end{array}\right\}$	O. 11	$\begin{cases}1 . & 0 \\ \text { 1. } & 4\end{cases}$	
Westonzoyland, Somerset	3. 3	2. $9 \frac{1}{2}$	-	1. 7	$\left\{\begin{array}{l}\text { end } \\ 1.4\end{array}\right.$
Atherington, Devon Ickleton, Cambridge	3. 9 2. $4 \frac{1}{2}$	-	$\begin{aligned} & \text { O. } 11 \frac{1}{2} \\ & \text { O. } 10 \frac{1}{2} \end{aligned}$	-	1. 10
Stalls, Bridgewater, Somerset " Wantage, Berks -	-	3. 5	0. $111 \frac{1}{2}$	centre to centre 1. 4 占	$\left\{\begin{array}{l} \text { situing } \\ 2.3 \\ 1.10 \end{array}\right.$

The rules of the Incorporated Society for Promoting the Building of Churches state, that "the distance from the back of one seat to that of the next must depend in great measure on the height of the backs. Where the funds and space will admit, convenience will be best consulted by adopting a clear width of 3 feet; but a width of not less than 2 feet 8 inches from centre to centre will be allowed if the back of the seat is not more than 2 feet 8 inches in height. If a greater height be adopted, the distance from back to back must be inereased one inch at least for every additional ineh in height; but undes no circumstanees must it exceed 3 feet. There must not be any projecting capping on the top of the backs. Facilities for kneeling in all cases to be provided. The width of the seat boards for adults to be not less than 13 inches. 20 inches in length must be allowed for each adult, and 14 inches for a child. Children's seats must be at least 26 inches from:
back to front, and must have hacks," Her Majesty's Commissioners for building neve hurches allow 20 inches by 34 inches for each sitting; free seats 20 inches by 27 inehes, Ind 14 inches for children. Benches for fiee sittings are to be 3 feet, 4 ceet 6 inches, or j feet long. The allowance made for each sitting in St. Yaul's Cathedral is, as nearly as sossible, 20 inches by 33 inches. From 4 to 5 square feet of floor is not too much space to je calculated for each person, allowing for gangways, communion table, \&e.
2192c. Cloisters, porches, eanopies, over-doors, stall-work, lych-grates, windows, staircases, CH^{H}-wheels and carriages, luffer or lonvre boards, fencing, screens, pulpits, desks lecterns, hests, tables, cum multis aliis, are amongst the many other productions of the joiner, being ar too numerons t, be described in dstail herein.

FORMATION OF BODIES BY JOINING THEM WITH GLUE.

2193. The way in which bodies are glued up together for different purposes will be iven below, and with them will close this section.
2194. Fig. 789. shows at A a section of two boards glued up edge to edge. At B the ce of the same is seen. C shows the section of two boards glued edge to elge, each iece being grooved, and a tongue inserted at their junction. By similar means a board may e increased to any width, be the pieces whereof it is composed ever so narrow. D shows wo boards fixed at right angles, the edge of one being glued on the side of the other. A luck for the purpose of strengthening the joint is fitted and glued to the interior side.

「ig. 789

Fig. 790.
2195. Fig. 790. A is a section of two boards to be joined at an oblique angle. They e mitred and glued together with a block at the angle. I3 shows the imner sides of ie boards so fixed. It is by repeating this operation that columns are glued up.
2196. Fig. 791. A is the section of an architrave. The moulding is usually, if not ways, glued to the board; the vertieal line therefore, showing the extreme boundary of re inoulded part, is the seean of the piece to be glued, is the face of the archiase, C and D) a section ad front of it before it is oulded, E a section of it ith the button and nail to ow the way in which the o parts are glued together, d F shows the baek of the chitrave with the buttons bich are used for the purse of bringing the two sur-

Fig. 791. es to be glued together in contact, till after they are set and fully held togetlier, being ncked off when the glue has beceme hard, and then the moulding shown at A and I is ick.
2197. Fig. 792. exits the inethod of inig up a solid niche wood where Λ is elcvation. The rk is performed in same way as if it re stone or brick. ept that the joints all parallel to the fie of the base, be"e of the difficulty 'making a joint with 'ved surfaces, which ${ }^{1}$ ald necessarily be 1 cane if they all 1 led to the centre of aphere. 13 and C the two bottom

Vig. 792.

Fik. 793.

Fic. 796.
e. rus. where the vertieal juints are uname to break, as seen whe the elevion A.
198. In fig. 793. is exhibited the mode in which vencers are ghed together for the Por of forming cylindrical surfaces. Brachets with their faces npwards are unhed to
a board. Their ends are perpendicular, and a cavity is left between them sufficient to Hecive the veneers and wedges. In A the thin part in the form of an are shows the vencers as in the state of glucing, the wedges being on the convex side. \mathbf{B} is a section of the board and braeket. The work when putting together should be dry and warm, and the glue sloould be hot. When this last has set hard, the wedges must be slackened, and the veneers, which now form a solid, taken out.
2199. Fig. 794. is a strong method of forming a eoncare surface by laying the veneer mpon a eylinder, and baeking it with bloeks in the form of brieks, which are glued to the convex side of the veneers and to eaeh other. The fibres of the bloeks are to be as nearly as possible parallel to the fibres of the veneers. A is the section of the eylinder veneer and blocks, and B shows the convex side of the blocks.
2200. Fig. 795. is another mode of glueing vencers together with cross pieees screwed to a cylinder, the veneers being placed between the former and the latter.

Fig. 795.

Fig. 796.

Fig. 797.
2201. In fig. 796. is shown the method of glueing up columns in pieces, which here ar eight in number, eaeh being glued to the other after the manner of fig. 790 . The work man should be eareful to keep the joints out of the flutes, when the columns are to bi Aluted, by which the substanee will be more likely to prevent the joints giving way. A i a section of the eolumn at top, and B at the bottom. After glueing together, the ostagon and mitres should be eorrectly laid down for the true formation of the joints. In \mathbb{B} ar shown two bevels, one for trying the mitres, and the other for trying the work when put together.
2202. Fig. 797. is the mode of glueing up the base of a column. It is formed in three eourses, the pieees in eath of which are mode to break joint over one another. The horizontal joints of the courses must be so adjusted as to fall at the junetion of two mouldings, forming a

Fig. 798. re-entering angle. After the glue is set quite hard, the rough base is sent to the tumer, by whom it is reduced into the required profile. The fibres of the wood should lie horizontally, in which direetion the work

will stand much better than when they are vertieal. A is the plan of the base inverted, and B is the elevation.
2003. The formation of a modern Ionic capital is given in fig. 798., wherein \mathbf{A} is the plan inverted, showing the method of placing the bloeks; and B is the elevation.
2204. Fig. 799. is the method of glueing up for the leaves of the Corinthian capital, A is the plan inverted, and \mathbf{B} is the elevation. The abacus is glued up in the same mamet as in the preceding example

2205. Fig. 800. exhibits the mode of forming a cylindrical surface without veneers, by neans of equidistant parallel grooves, A is the elevation, and B the plan.
2206. Fig. 801. exhibits the method of eovering a conic body. It is, in fact, no more lian covering the fristum of a cone, and is accomplished by two concentric ares terminated t the ends by the radii. The radius of the one are s the whole slant side of the eone, that of the other s the slant side of the part cut off. In this case, he grooves are directed to the centre, and filled in ith slips of wood glued as before. The plan is hown by the circle ABC. The are HI must be qual to the cireumference ABC.
2207. Fig. 802. shows the same thing for a naller segment.
2208. Fig. 803. shows the manner of glueing up globe or sphere by the same method. A is the cee of the picce; 13 the edge showing the depth f the grooves; C shows the mould for forming ie piece to the true curvature; and D) the faces two picces put together.

Fif. 9 cos.

Sect. VI.

sLating.

2209. An account of the materials used by the slater has been detailed in Chap. Il Sect.IX. The tools used by this artificer are the seantle, which is a gauge by whic slates are regulated to their proper length; the trowel; the hammer; the za.x, an instru ment for cutting the slates; a small handpiek; and a hod and a board fur mortar. This $z a x$ is an instrument made of tempered iron, about 16 inches loug and 2 inches wid, like a large knife bent a little at one end, with a woozen handle at the other, an haring a projecting piece of iron on its back, drawn to a sbarp point, to make holes i the slates for the nails, the other side being used to chip and cut the slates to their re quired size, as when br ught from the quarry they are not sufficiently square and cleanc for the slaters use. The places for the nail holes are marked usually ou the slate wher they hare to be punched, with a gauge, and then the iron of the $z \alpha . x$ is struck through th slate. Each slate has two holes; large slates require three. A better mode of obtainin the place for the holes is to mark a plank with two small pieces of wood across it, at tha distance required ; the position is thus shown at once.
2210. Slating is laid in inclined courses, beginning from the eaves and working upwardthe courses nearest the ridge of the roof being less in width than those below. The la, of one slate orer another is called its bond, and it is the distance between the nail of th under slate and the lower end of the upper slate. Tho bed of a slate is its under sid and the upper side is called its back. The part of each couree which is exposed to th weather is called its gunge, bare, or margin. The slates are nailed to close or open board ing, lying on the back of the rafters, with nails, which shoull be of copper or zinc 1 iron nails are used they should be well painted. The operation of cutting or paring th side and bottom edges of the slates is called trimming them; but the head of the slate i never cut. In that part the holes were formerly pierced by which the nails pass to th boarding. This boarding (or sarking, as it is called in the north of Grat Britain) usually $\frac{3}{4}$ inch to $1 \frac{1}{4}$ inches thick, rough, of equal thickness, and well secured in th common rafters. A good practice obtains of bedding slates in mortar, on boarding, whic gires them a sound bearing, especially if the roof will have to stand much wear fro: persons passing along the gatters, or over the ridge, for repairs or other purposes.

2210a. Another method of forming a roof, as lately employed by some architects, en sists in slating on boards fixed to purlin-rafters, without any common rafters, as show in figs. 675π. and 697. The purlins are placed somewhat closer than when rafters an used; the boards are $1 \frac{1}{4}$ inches thick, usually placed diagonally. It makes very soun work, and raves height, where that may be an object. A nother method, as noticed par. 2285a., is to nail the boarding on to common rafters laid as purlins, as shown figs. 695 and 696.

2210h. The common method of slating is to nail the slates to laths or battens, 88 ; tiling, but a house so done is more lialle to be affected with the various chauges fro heat to cold than by the other system. These laths are cut to boards of $20,25,30$ or 3 Thus a board $12 \times 9 \times 3$, cut 3 deep and 4 flat, equals 1 board 20 . If cut 4 decp al 4 flat, equals 1 hoard 25. If cut 4 deep and 5 flat, equals 1 board 30 . If cut 5 det and 5 flitt, equalls 1 board 36. Slating laid on battens, at places on the sea coast, and usual in work in Ireland, is either wholly "rendered" with lime and hair on the unt side, or unly the under edges and laths are thus secured. Without this precaution t slates rattle, and the driving winds get under them, tending to strip the roofs. Rend iug properly done, lasts as long as the slates exist in a perfect state.
$22,0 c$. Ofen or ventilated slating, which is nearly equally as waterproof as the usu method of slating, will save one third of the quantity per square.

2210d. Felt. Slate is also laid on felt, on $\frac{3}{4}$-inch boarding. Croggon's patent asph roofing felt is impervious to rain, snow, and frost, and is a non-conductor. From its an corrosive properties, it is of service when placed between iron and wood and betw metals. It is manufactured of any required length. by 32 inches wide. There is sor risk of dry rot occurring, however, hy using it thus; tho better plan is to lay the felt boards, and then to batten for the slates orer the felt, so as to leare an air space betwe the felt and the slates. Its general weight is about 42 lbs. per square. Patent asphal roofing felt is about $\frac{3}{16}$ in. thisk; slaters' or sarking felt is about $\frac{1}{g} \mathrm{j}$ n. thick, as is al inodorous felt. Fibrous asphalte or foundation felt is suggested for preventing dan rising when placed abore the footings of a wall; "but it has some disadrantages. conducting dry hair felt, in shcets 34 inches by 20 inches, is also obtainable in loug lengl|

Rnofing felt is specially prepared for hot climates, Noir-conducting felt is formed atirely of hair, and is used for corering boilers. steam pipes, \&c., for the purpose of pre;enting the radiation of heat. When applied to boilers, a cement of 2 parts of white ead, $1 \frac{1}{2}$ parts of red lead, 4 parts of whiting, is mixed with boiled linseel oil; after uing spread over the felt, the whole is patted down on the boiler, and in a short time he felt firmly adheres. No cement is needed for steam-pipes, the feit being wrapped mund and secured by trine. Sheets of this felt are made 32 inches by 20 inches; and f the followirg weights:-No. 1, 16 oz ; No. 2, 24 oz .; No 3, 32 oz ; No. 4, 40 oz .; No. 5,48 oz. This dry hair or inodorous felt is also useful for deadening sound, by utting it into 2 or $2 \frac{1}{2}$ inch strips, and laying it on the joists under the floor boards; also is lining to walls and floors; and for lining iron houses to equalise the temperature.
$2610 e$. Felt is also applied for forming roufs of temporary buildings. It has been ouggested for permanent buildings, but to that employment of it we must withhold our ppproval. The rafters may be about 2 inches by $1 \frac{1}{4}$ inches, placed 20 to 24 inches apart, aid at a pitch of 2 or 3 inches to the foot, and corered with $\frac{1}{2}$-inch boarding. The felt s to be stretched tight, overlapping 1 iuch at the joints, nailed with two-penny fine lont nails, firt heated and cooled in grease, about $1 \frac{1}{2}$ inches apart; copper nails are oreferable. The wholy roof is then to have a good coating of hot coal tar and lime, in the oroportion of 2 gallons of the former to 6 pounds of the latter, well boiled together, put on with a common tar nop, and while it is soft some coarse sharp sand sifted orer t. The gutters are made of two folds, cemented together with the boiling mixture. The coating to the roof must be renewed every fourth or fifth year, according to the :limate. The felt is found to last better, if it be not made to adhere by any mixture to he boarding.
$2!10 f$. Felt for sheds, or oceasional purposes, nay be put up without boarding; the afters in this case would not exceed 3 inches by $1 \frac{1}{4}$ inches, placed at a distance of 20 inches apart. To prevent the fult bagging, battens, or slighter rafters, of about 2 inches 1 inch, are placed between the others. To such roofs the felt must be laid from eaves weares, nailing through the orerlap into the main rafter. The pitch of this roof should about 6 inches to the foot. The "rentilated " slating will bear an economical contrast, ruvided the smaller size of slates be used, and is more durable.
$2 \cdot 210 \mathrm{~g}$. Another modern material for roofing is Willesden paper and eaneas. Two-ply aper is used for underlining slates, tiles, leaky roofs; for interior lining; fixing against lamp walls, under floors, and for interior decorations. It is waterproof, and does not mell. 100 square feet of it equals $16 \frac{1}{4} \mathrm{Ibs}$. The 1 -ply paper is used for underlining, fixing gaisst damp walls, waterproof wrapping, packing, stencil paper, \&c. The canvas is rater-rofelliant and rot-proof. The scrim is waterproof, and useful for shading greenhouses, lerneries, \&c., and for fixing to damp walls to protect ornamental wall-papers.

2210h. Slating is sometimes laid lozengewise, but it is much less durable than when aid in the usual metlod. It is introduced for the sake of ornamental effect. The ends of the slates nre als, rounded, or cut angleways to it point, or the angles only cut off; or, : the slates be of a small size. they are set angleways orer courses with square ends. Shese are all shown in an excellent maticle in Viollet-le-Duc's Dictionnaire, s.v. Ardoise. flating is also mule to hatro a decorative effect by formirg zigarg patterus with red -oloured shates among blue slates; or a few courses of the one above a larger number of lo onther.
2210i. Jnmes Wyatt, R A., arranged a system for forming roofs with slate slabs, sthont bmarding or battons. In this the elates were all reducell to widths equal to tho listanco between fentro and eentre of the rafters. On the bache of these last they are crewed hy two or three strong inch-ind-lalf screws at each of their ends. Over the anetionn of the shates, on the backs of the rafters, tillets of slates about two and a half ir threo inches widn, belded in putty, are screwed down, to prevent the ontrame of rain. The handmome regular nppearance of this sort. of slating gained it at first. much et lebrity; ,nt it was momenamelonet, on necount of the disoriler it is linblo to sumtan from tho ghtest partian mothlement of the lailding, ns well un from the constint dinlorgment of ber futty, upon whelh greatly dopended its being impurvions to rain.
2211. Saljoined is a suceinet afeconnt of tho differont sorts of mates bronght to the andon market, and emmerated in the ord.r of their goxalness nad value.
2211a. Wiasemoreland alders. These aro from 3 ferio 6 inches to 1 foot in lungth, and roun 2 foo 6 indhen to 1 fout in breadth. They abonk bo miled with not lons than six-
 an wight of azed mintem will usmally cover ut out two apmare and a quarter. The weigh of the comenent Wentmoreland in to, that of eomamot tiling an 36 to ô 1.
22116. Weloh rags ure noxt in guoplnesy, and ure nearly of the same sizes ne those liat
mentioned; but a ton of these will cover only from one square and a quarter to one square and tbree-quarters. Permanent green, Eureka unfading green, Whitland Abbey green, Westmoreland green, best blue Bangor, best red Bangor, Eureka red, Old rein Portmadoc, are among those now supplied.

2211c. Table of the Names and usual Sizes of Slates,

with the squares a thousand (1200) will cover according to their size, and the gauge at which they are laid, as stated in various works.

* Denotes best Welsh rooting sizes.

During last century, when building works werc executed with more regard to durability, a thousand duchesses were said to cover 9 squares; countesses, 6 squares; ladies, 3 squares ; and doubles, 2 to $2 \frac{1}{4}$ squares.
$2211 d$. Slates are now split so thin, that in specifications it is desirable to state the weight per square of the slating required. The scientific journals noticed (1865) that at the Rhiwboyfdir Slate Company's quarries, sheets of slate 8 feet long and $\frac{7}{22}$ nd part of an iuch were obtained, the widtli being generally 16 inches. The grain must, of course, be very fine to permit of so thin a cleavage.
$2211 e$. The strength of slate 1 incle thick is considered equal to that of Portland stone 5 inches thick. A foot superficial weighs from $11 \frac{1}{4}$ to 14 lbs . Slates of the usual thickness will not bear much heat before cracking: the thicker the slate the more readily dors it crack with heat ; and they will fly at once if cold water be poured suddenly upon them when in a heated state.
$2211 f$. The Taristock slates werc sold by the thousand of ten hundred, which quantity covered about three equares and forty feet.
2211 g . Horsham slate, obtaintd in Sussex, is a limestone, and is found to have no limit

- its durability ; but being very heary, proper preparation is nceded for it, as timbers of (u-h greater scantling than usual are required.
2211 . French slates, formerly used in London to some extent, are very light, and ust therefore only be used on boards; otherwise the wiud would act upon them. In runce they are ledded in plaster on the boarding.
2211i. The ridge, hips, and valleys of a slated roof were formerly always corered with ad. The ralleys are still usually so formed, but slate has been introduced fur the two urmer. The pieces require to be cut truly juare, screwed to the boarding, and the unts and heads secured with putcy or white ead. For hips and ridges, slate roll ribbing o often emplojed (fig. 803a.). Sherter slates, 1, are first nailed to each side of the ridgeniece, C , or of the hip rafter, to form the addle, and then the slate roll B is put on and secured by screws through the top. This oll is made also with rebated joints, but it solviated by the roll b eaking joint with the addle. The roll, as shown in the figure, is ometimes attached to one side of the saddle, which must le made according t the pitch if the roof. The 3 -inch diameter roll has

Fig. $803 a$.

7-inch width of saddle, or wing, on each side ; the $2 \frac{1}{2}$-inch a 6 -inch; and the 2 -inch a 5_{2}^{1}-inch saddle. There are 175,225 , and 320 feet in a ton of the ribbing; and 400, 560 , and $70^{\prime \prime}$ feet of the ribbing.
$2211 k$. The edges of the slates next a wall, either at the head or sides of a roof, hare to e protected. This, in the best work, is effected by lead fltshings (par. 2214.). In the ormer case, it is laid on the head of the slate for about 5 to 7 inches, and then turned up gainst the rall for about the same height, and secured by holdfasts; it may also be either urned over into a course of bricks, and the brickwork continued up, or the turned up edge s protected by a lapping of lead inserted in the brickwork. Tris lapping, in commoner work, is replaced by cement. At the edge of the roof against a wall, lead is likewise laced in a similar manner; but as the lapping cannot be laid in a straight joint, it is cut iu sigzag form, called "s' cpping," to each course of bricks. Of late years this lead flashing is -atirely replaced by filteling of lime and hair plaster; of gauged stuff, being lime and ument mixed; or of cement and sand. But as these materials crack and fall away in a ew yerrs, the filleting has to be looked to periodically or whenever damp makes its appearance. Kinc also takes its place, but is not so effective, as it is more difficult to dress (t) the surface of the slates.
2311l. In exposed situations, where filleting cannot be trusted, and lead is too expensive, arious contrivances havo been made for preventing the entrance of wet. One of these onsitts in forming a small gutter between two rafters, lining it with leal, tnrning ono iide of the lead under the slates, and turning up the other side against the wall, and ementing over it. Another grod method is to cement a row of tiles against the wall above he slates, and when dry to curer the tiles and wall with cement, tucking it well into all he crevices.
2211 m . The medixal method of easing the line of tiling at the fuot of the franing leberres some notice; thus, as shown in fig. $701 e$., it appears that the use of chantlates, Λ, rees the tic-beams, tassels, and other timber, except plates, from all contact with the natoury; and. as a matter of course, from any consequent tendency to rot. This method fems urore atwantigeons than that of beam-filling, wheh is altogether prevalent at the resebt time, in order to keep out draughts, but it requires care in closing the work. I'miso has been already described in the section Beackeasina.
2211n. In many churches with open roofs, the solid rafters, withoat any under panelling or borrling, may be seen corered with rough slabs of boirding, having large fi-sures lrongh which the lend is visible. Great inconvenience is often felt in roofs so constructed, luring the autumn and winter months, when, upon sudden alteration of temperature, ondeneation takes place mider the lead, and the drops of water fall in almost a shower. Hhis defeet has breen the cause for ceiling many open roofs. A space of two inches left etween the inner bomding and the onter covering has beon fond to be sulficient to frinte this discomfurt. F'elt (par. 221 hed.) is also sometimos used, to assist in remedy ing he evil.

2:110. In l'embrokeblire, slate is nacel for ererything. For posts and raits of the same wanting ne if for wousl. The walls of lmildings aro of square blocks, rongh casted. A mane of rabling might be erectacl of rough bloeks, with the do ir mill window-frames of wurkel mate. A prijulice exastaganst the nse of equared blows w.thout phatering hom, on the gromad that they mainit damp. It was found that if there was the smallent
perforation in the slate, or if, as was often the case from the want of absorption, the joints were not perfectly close, the damp is driven throngh. The defeet, might, perhaps be obviated by laying every block with the b d slightly inclining outwards.
$2211 p$. Slats of slate, sawu, self-faced, and planed are now extensively manufaetured at all the large quarries. They are usually in $\frac{1}{2} \cdot \frac{3}{4}, 1,1 \frac{1}{4}, 1 \frac{1}{3}, 1 \frac{3}{4}, 2,2 \frac{1}{2}$, and 3 inch thicknesses A quarter of an inch is required for each face planed from the rough and they are sandet in addition afterwards. The best quality Bangor slabs can be o'tained in sizes rarying from 4 to 6 feet long, or from 2 to 3 feet wide; and trom 6 to 8 feet long, or from 3 te 3 feet 6 inches wide. The second quality slabs, quarry planed, are under 6 feet long on 3 feet wide.

2211 q. The purposes for which slate slabs are now used are multifarious. Amongst them are: cisterns (Plombery) from $\frac{3}{4}$ inch to 2 inches thick; sinks of inch slate, 4 juches derp inside, either bolted together as cisterns, or with flush ends, planed both sides. and screwed; troughs ; filters; baths, 2 feet wide, 2 feet high, 4 feet 9 inches at botom an 5 feet 9 inches at top, all outside dimensions, of plain slate, sanded iuside, or enameller self-colour inside, or enamelled Siena marble inside, and so on ; urinal back and divisions. phaiz or enamelled, fitted with angular earthenware basins, flat back basin, hollow back cradle basin, square basin, or with slate apron only; linings to damp walls; panels of dours table tops; biliiard tables; shelring to dairies and pantries; fittings for wine bins, will permanent or with movable shelves and ledges; steps; and landings.

2211r. Enamelled slate.--Slate, as just shown, has a surface of paint put upon it, for utility as well as appearance. This can be either plain, or marbles and granites can be represented to great perfection. Several coats of paint are applied, and polished, art dried in a kiln at a great heat. The Kingston Enamelled Slate Company base theit reputation on all their enamel work being imperishable. First, the slate has to be finely surfaced to rective the body colour, after which it is placed in a proper stove and buent or baked in three times, the process being repeated each time, and rubbed down witb pumice between eack, then a coat of enamel is placed thereon; finally, it is subjected to it high polish oltained by hand friction. It is claimed that by this process a neal resemblance to marble and granite is gained; that the depth of body of ename procured renders it imperishable; and that it has an extromely high polish of the surface when fiuished. Cheap work is not lasting.

2211s. Thatching is an admirable covering for securing warmth in winter, and coulness in summer; but it is subject to injury by birds, and to risk from fire. It was much used for churches in Norfolk and Suffolk (fig. 701n.). The thatcher requires a common. stable fork, to toss up the straw together before being made into bundles; a thatcher's forli to carry the straw from the heap up to the roof; a thatcher's rake, to comb down the stras straight and smooth; a linife, or eaves: knife, to cut and trim the straw to a straight line a knife to point the twigs; a half glove of leather, to protect the hand when driving in thr smaller twigs or spars; a long flat needle; a pair of leathern gaiters to come up above the knees, used when kneeling on the rafters; and a gritstone to sharpen the knives. Wheal straw lasts from 15 to 20 years; and oat straw about 8 years. Reed thatching, as done in the West of England, is the truss after the ears have been cut off, leaving the clean sound pipe straw, of which a thickness of 3 inches is laid on the common thatehing witl spars only. The mateitials required are straw or reeds, laths, nails, withes and rods. A load of straw, laid on about 12 to 16 inches in thickness, will do a square and a half a bundle of oak laths, $1 \frac{1}{4}$ inches wide, and from $\frac{1}{4}$ to $\frac{3}{8}$ ths thick, nailed about 8 inche apart, 1 square; a hundred of withes, 3 squares; a pound of rope yarn, 1 square; ift of rods. $3 \div$ quares; and $2 \frac{1}{2}$ hundred of nails, 1 square. The fish-house at Meare, Somer set shire, of about the middle of the 14th century, still retains its thatched roof. Probably thatched roo?s were ornamented by a species of cresting, for in some parts of the country the withes or willow twigs that bind the thatch are sometimes arranged on the tops 0 ricks and cottages in an interlacing manner, terminating with a spike with a rudels formed cock. Viollet-le-Duc alludes to the custom of forming the ridge in mud, it which plants and grasses were inserted to prevent the earth being dissolved and washeel away ly the rain.

Sect. VII.

PLUMBERY.

2212 . The plumber has but few working took, for the feeili y with which the metal in Whieh be works is wrought does not render a valiety necessary. The prineipal are-a heary iron hammer, with a short but thick handle. T'wo or three different sized wooden matcts, and a dressing and fatting tool, which is made of becel wood, usually about 18 inches long and $2 \frac{1}{2}$ inehes square, planed smooth on one side, and rounded on the other or upper side. It is tapered and rounded at one of its e.ids for eowenient grasping ly the workman. Its use is to stretch and fla:ten the shect had, and dress it into the shipe required for the various purposes whereto it is to be appliad, by the use of its flat and round sides as wanted. The jack and trying planes similar to those used by carpenters, for planing sttaight the edges of their sheet lead when a regular and correct line is reguisite. They also use a line and roller called a chall line, for lining ont the lead into different widths. Their cutting tools are chisels and gonfies. of difficrent sizes, and cutting knives. The latter are for eutting the sheet lead into strips and picees to the division marked by the eltalk line. 'They use also files of different s zes for making eistern heads to pipes, for pumpwork, \&c. For the purposes of soldering, they have a variety of different sized groziny irons, which are eommonly about 12 ineles long, tapered at both ends, the handle end being turned quite ronnd to allow of its being held firmly in the hand whilst in use. The opposite end is spherical, or more usually spindle-shaped, and proportioned to the differ at sitnations for which they are required. The grozing iron is heated to redness when in use. The iron ludles are of three or four sizes, and used for the purpose of melting lead or solder, The plumber's measuring rule is 9 feet long, in three parts, eaeh of 8 inches. Two of the 1.gs are of b.s wood, and the third of steel, which is attaelied to one of the box legs by a pivot wheeon it turns, and sluats into the other legs in a grocve. The steel leg is useful for passing into places which the plumber has to examine, into which arything thicker would not eacily enter, and it is often used also for removing oxide or other extraneous matter from the surfaee of the heated metal. The plumber morcover is provited with centre bits of all sizes, and a stock to work them in, for perforating lead or wood where pipis are to be inserted, as well as with compusses, for striking out cireular portions of lead Sortes and weights are also in constant requisition, as nothing done by the plumber is elargeable till the tead is weighed.
221:3. The method most commonly adopted in laying shicet lead for terraces or flats, is to place it on a surface as even as possible, either of boarding or plastering. If boards are employed, they slould be sutficiently thick to present warping or twisting, which, if it oceur soon, e:luses the lead to crack or to become unsightly. As sheets of lead are not more than abont 6 fect in width, when the area to be covered with them is large, joints become necessary, which are contrived in varions ways to prevent the wet from penctrating. To do this, the best method is that of forming rolls, whieh are fieces of wood about 2 inches square extending in the direction of the joint, planed and rounded on their upper side. These heing fastened moler the joints of the lead between the edges of the two sheets which meet together, one is dressed upp over the roll on the inside, and the other ever both ol them on the outside, wherely all entry of the water is prevented. No fastening is required other than the adne rence of the lead ly close hammering together and down on the llat: indeed, any fastening would be injorious, as by it the lead would not have free play in its expansion and contraction from heat and cold. When rolls are used, the rule should 're specially eaforeed of turning the open sides or laps from the sonth-west, west, or south, wherever practicable, so as to ensure the lap from being toreed up ly the wind, and thereby the water consecpuently b.own in. If rolls are nat employed, which from their prajection Tre in some cases found inconsenient, seams are substitued for them; but they are by no means erfual to the roll cither for neatness or security. They are formed by merely -ending up the two cdges of the lead, and then over one another, and then dressing them lown close to the flat throughout their length. 'Ifoongh some solder the joints, it is a badd ractiec, and no good phmoor will do it, for the same reason as that just gien in respeet of lastenings in llats. A load flut, as well as a gutter, should be laid with a fall to keep it dry. A quarter of an incel in a foot is sullicient inclination for lead, if the sheels be 20 feet Ingo, so that in this ease thry will be 5 inchess ut one end higher than at the other. 'This yning is current, as it is called, is ustally provided for by the carpenter previons to liybitg the lend.
221.1. Ronnd the extrome edges of flats and pinter, where lead is used, are bixed pieces of mitted lead whect are ealled fleshmys. When the lead work is bounded liy a wall of
brick or stone work, the flashings are passed on one edge into and between a joint of the work, and the edges of the flat or gutter being bent up, the other edge of the flashing is dressed over it. If there be no joint into which the thashing can be inserted, it is fastened on that side with wall hooks (pur, 2911k., Drips in flats and gutters are used when the lengh of the gutter or flat is greater than the lengt! of the shect of lead, or sometimes for convenience, or to avoid joining lead by soldering it. Some architects place them erery 6 or 8 feet, which however good in a box or parallel gutter, it raises an ordinary gutur too much, and causes great width of lead at the head. They are formed by raising one part above another, and dressing the lead round, as has been described for rolls. No sheet shonld be laid in greater length than 10 or 12 feet withont a drip, to allow of expansion and contraction. Small cisterns are often smk in gutters to collect the water before passing off into the head of the down pipe. The cistern has usually over it a perforated lead rose, to prevent dirt, leaves, \&c. passing down with the water.
2215. The work of the plumber is estimated by its weight and the time employed in fixing it.
$2215 a$. The thickness of sheet lead varies from 5 to 12 lbs . in weight to the superficial foot, and is used in covering large buildings, in flats or slopes, for gutters, the hips, ridges, and valleys of roofs, the lining of cisterns, \&c. Thus ilb. lead is commonly used for roofs, flats, and gutters; it is the least thickness in which bossing can be properly done. 81 b lead is a better quality for all these purposes. 61b. lead is nsed fur hips and ridges; this is the thmnest quality for such purposes. 5lb. lead is used for Hashings. It is said that 16 l . lead was used on the earlier medieval churches. The following thicknesses, obtained from Hurst, Surceyors' Hendlook, may be compared with the Birmingham Wire Gauge given in pur. 2254, Sect. x.

Table I. of the Tinceness and Weighf of Lead, per Siperficlal Fuot.

Thickness or Decimal of an luch	$\frac{\frac{1}{16}}{0625}$	$\begin{gathered} \frac{1}{8} \\ \cdot 125 \end{gathered}$	$\left\lvert\, \begin{gathered} \frac{3}{16} \\ \cdot 1875 \end{gathered}\right.$	${ }^{2}$	$\begin{gathered} \frac{5}{16} \\ \cdot 3125 \end{gathered}$	$\cdots 3{ }^{\frac{3}{8}} 5$	- 43375	$\stackrel{\frac{1}{2}}{5}$
Pounds -	5-708	$7 \cdot 417$	11-125	$14 \cdot 833$	15.542	22.250	25.958	29667
lhickness (1) Decrinal of an Inch .	$\begin{gathered} \stackrel{9}{16} \\ 56 \div 5 \end{gathered}$	$\begin{gathered} \frac{5}{8} \\ .625 \end{gathered}$	$\begin{gathered} 11 \\ .6875 \end{gathered}$	$\begin{array}{r} \frac{3}{4} \\ \cdot \\ \cdot 75 \end{array}$	$\begin{gathered} \frac{13}{13} \\ .8125 \end{gathered}$	$\begin{gathered} \frac{7}{8} \\ 875 \end{gathered}$	$\begin{gathered} 15 \\ .9375 \end{gathered}$	lneh. 1%
Pounds -	33.375	$77 \cdot 083$	40792	$44 \cdot 500$	48208	$51 \cdot 917$	$55 \cdot 625$	59:33:3

'Table Il. of the Weight and Tmokness of Lead, per Foot Superficial,

Wricht in l'sumis.	Thickness in inches.	Weight in l'uunds.	Thickness in inches.	Wrimht in Pounas.	Thick ess itimblyo.
1	0017	6	0.101	11	0186
2	$0 \cdot 0: 34$	7	0.118	12	$0 \leq 03$
3	0.0 .31	8	$0 \cdot 135$		
4	00.68	9	0.152		
5	$0 \cdot 5$	10	0169		

22156. Lead is generally cast about 7 feet wide and about 33 feet in length, but its width and length depend upon the margin which is cut off after easting, as the seum, ke., is driven to those parts. This may reduce it about 6 inches in widh and 18 to 24 inches in length. Lead is now cast to the above-named weights, and also "bare," accorling to the directions of the contractor. The architect, to do justice to his employer, should carefully ascertain for himself the weight and size of the shect of lead from which the piuce is eut. It is usually marked or painted upon it. A small pisce is not a true test either fur weight or gaugr, and the edge is sometimes cut on a bias. The best direction is that it should weigh over the weight specified.
22157. A hundred weight of shect lead will usually cover on a platform, roof, gutter, \&ut, at $4 \mathrm{lbs}=28 \mathrm{ft} . ; 5 \mathrm{lbs} .=22 \mathrm{ft} .5$ ins. $; 6 \mathrm{lbs}=18 \mathrm{ft} .8 \mathrm{ins} ; 7 \mathrm{lbs}=16 \mathrm{ft} . ; 9 \mathrm{lbs}=14 \mathrm{ft}$. ; $9 \mathrm{ths}=12 \mathrm{ft} .6$ ins. ; and $12 \mathrm{bs} .=9 \mathrm{ft}$. Old lead weighed for recasting has generally a deduction made of 6 lbs . per cwt. for waste, \&e.
22158. Lead is used to fasten iron cramps, posts, and bars into masonry by filling up the eavities between them. Sheets of thin lead are sometimes placed between the droms of columns (par. 1925a.), as well is in the bed joints of wronght stone arehes, to distribute
he pressurc between the stones. Lead work treated ornamentally for ridges, and hips I roofs, knobs, vanes, \&c., as during the mediæval period, is superseded iu the prestnt ay by cast and wrought iron, and by zine work. (Euilder, 1856, p. 410.) The skill of he plumber is brought to action in, among other things, eaves and other gutters, flasliigs and valleys, hips to flats or platforms, hatches, windows, and domes; also rainater pipes, waste and soil pipes, water-closets, baths, cisterns for hot and cold water, asins or lavatories, cabinet stands, sinks, urinals, pumps, the hydraulic $\mathrm{r} i \mathrm{~m}$, syphon nd other traps, \&c. Many of these will be f,und treated herrin, and more in detail in fuchac, llumting, 8vo., 1876. This section includes many articles which should peraps have come under Bhicklafer and Founder, but would have caused repetition.

WATER SUPPLY.

2218. Water is obtaiced by various means. The aqucducts of the Romans have been revionsly described. In England, the chief means of supply, according to locility, is (1) y puinps from springs and wells; (2) by water companies; and (3) by the hydraulic ram. 2218a. Modern sanitation has put down surface wells in towns and cities. It has cen found that the quantity of saline and organic matter in two gallons of water from rtain wells in Louson ranged from 2663 grains to $129 \cdot 73$; while that of the New iver water had but 1716 grains. Solid matter in these wells ranged from 50 to 10 grains, and some to 130 . As most of these waters were bright and sparkling, and ad a cool and agreeable taste, they were much sought after for drinking purposes; but Recolness and br:skness are dangerous, for they are both derived fron organic decty. coording to Dr. Letheby, the dead and decomposing matters accumulated in the soil are artially changed by a wonderful power of oxidation, and thus converted into carbonic id and nitre. This, although frequently druuk without any apparent injury to health, t the products of such corruption admitted into the human body must canse insidious ischirf, while, if the impurities of the soil pass unchanged into the water, quick aud rtain injury must result.
$2218 b$. As the plumber finds and fixes the pumps for the supply of water to a dwellg is sume lucalities, a description of the three sorts commonly used, namely, the ting, the common, and the force pump, will be here given.
2218c. Fig. 894. is a diagram of a lifting pump. ABCD is a short cylinder sulrged in the well or other reservoir, whence the water is to be raised. In this linder a valre is placed at x, abore which the pipe or tube CE carried upwards as high as is requisite for the delivery of the ter. In the cylinder AD a water-tight piston, $c d$, muves ttically, being workerl by rod or framework, m, n; to this ton is fixed a valve at v, opening upwards. On the descent of e piston the pressure against the water opens the valve v, and cylinder between the two valves is fil ed with the water. When piston is then raised, the water between the valves being :eseed upwards against the valve x, opens it, and is driven into Labe CLE, from which, on the renewed descent of the piston, its nrn is intercepted by the valve x. The water folluws the fon in its ascent by the hydrestatic pressure of the water on the yervoir outside the cylinder; and on the next descent of the Itun the water will again pass through the valve v, and will be Tren through the valve x on its next ascent. In raising the Fon a force is required sufficient to support the entire column cwiter from the valve y to the surface of the water in the tube

To estimate this, the weight of a column of water is taken, Bhe base is equal to the area of a section of the piston, ind we height is equal to that of the surface of the water atoove ${ }^{1}$ Falso v in the tubu CE. Hence, after cath stroke of the pump, t pressure on the piston and the furce neeessary to raiso it will

Fige 81.

1. heroused ley tho weight of a culumn of water whose base is the horizontal section of pinton, atud its height equal to the increase which the elevation of the column in CE ryives from the water driven through the valve x. W IV is the level of the water in t wrll.
218%. The cominon household pump, or, ns it is nsually called, suction pump 805.), is nothing more than a large syringe connected with a tulno whose lower enity is planged in the well from which the water is to be raised into the cissern , nod delirered by its grasity at the nozate c. The tube SO is callod a suction pige"; Ond in the well is at 0, which, for the purpose of preventing the nacent of solid proties, that, might chuke the pipe and impede its action, is piereed with holes /akr a Finer. At the upper end of his surtion pipe is pheed the valvo x in the llage spening mpards. At this phace the tube is conneted with another, BC , which
acts as a great syringe, and in which works a piston $c d$, worked by the piston rod a having a valve at v, also opening upwards. The piston is worked alternately upward

Fig. 805. and downwards in common pumps by a lever called the brali but it may be worked in many ways. In the figure, W the lovel of tho water. At the commeneement of pumpin as soon as the syringe ABCD exhausts the air by the upwar and downward action of the piston $c d$, the pressure of th air in SO being diminished and rendered less than that on th surface, the water in the well will rise in SO by the atmospler pre:sure. The valve x should on no account be more than $\stackrel{18}{ } 8$ fer above the level of the water in tho well. The cistern MN at tu top is placed for the purpose of affording an unintermittent di: charge of the water by holding more than the whole accum lation of water, which is contrived to be greater than the spout nozzle will diseharge.

2218e. The forcing pump (fig. 805a.) is a combination of tl common suction and lifting pumps. CEFD is a suction pipe d scending into the well, and at its top is the valve V, openir upwards. The pump barrel, ABCD, has a solid piston cd, who rod is $a b$, without any ralve. From the side of the barrel, juabove the suction ralve V, a curved pipe proeeeds, communicatio with an upright cylinder or force pipe, GH, carried to su height as the water is intended to be raised. At the bottom, this cylinder is placed the valve V^{\prime}, opening upwar's. At 11 commencement of working, the suction pipe CDEF and "1 chamber between the piston and valres are filled with air. Whe the piston descends to the valve V, the air enclosed in the latt chamber becomes condensed, and opening, therefure, the valve I a part of it escapes through it. On raising the piston the air belo it becomes partially exhausted, and that in the suction pip opening the valve V by its greater pressure, expands into the upper chamber. A A of this is expelled when the piston next descends, by means of the valve V^{\prime}. Th

Fig. 855 . action is similar to that of an air pump or exhausting syring When by the repetition of this action the air is sufficient exhausted, the atmospheric pressure upon the water in the w. causes the water to rise there rom through the suction pi and the valve V, into the chamber between the piston and t t valres. When the piston next descends it presses on the su face of the water, and the valve V closing prevents the retu of the water into the suction pipe, while the pressure of V^{\prime} piston, being transminted by the water to the valve V^{\prime}, of e it, and as the piston descends, the water passes into the for: pipe GH, and so on. By repeating the action the quantity Water in the force pipe increases, receiving equal additions each descent of the piston. This force pipe may be porpe dicular, oblique, or horizontal ; for in each case the water w be propelled through it. A column of water suspended 34 fe in height in the force pipe will press on the base of the pist with a force of about 15 lbs . fur each square ineh; and t pressure at other heights will be proportional to this. Thust force necessary to urge the piston downwards may alwals calculated. The valve V^{\prime} is closed in drawing up the piston, and it then reieves tie pistl from the weight of the incumbent column. If the valve V is opened, tho piston is sullje. to the same pressure as in the suction pump (fig. 805.), and this is equal to the wright of column of water raised above the I-vel of the water in the well. When the he ght of t force pipe is equal to the length of the suction pipe, the pistou will be pressed upwar aud downwards with equal forces; but when the height of the force pipe is grenter less than the length of the suction pipe, the downward pressure nust be greatur or le in the samo proportion, than the force which draws the piston up.
2218f. The supply of water by the force pipe through the valve V^{\prime} is evidently iuts mittent. being suspended during the ascent of the piston ; hence the flow from the poi of discharge will be subject to the same intermission if means be not taken to couuteri such effect. A cistern at the top of the force pipe, as al ready shown for the sicti pump, would answer the purposo; but it is fonnd more convenient to use an apparit ctlled an air vessel (fig. S05b.), in whieh immediately above the valvo V^{\prime} a short tu communicates with a strong close vessel MN, of sufficient capacity, tlirough the 1 whereof the force pipe GH passes, and descends to near the bottom. When tho pur.
in action the water is forced into this air vessel MN, and when its surface, as at $u w$, ses above the mouth H of the force pipe, the air in the ressel MN is contined abore the ater; and as the water is gradually forced in, the air, being compressed, acts with icreased elastic force on the surface of the water. This pressure recs a column of water up the pipe HG, and maintains it at an evation proportional to the elastic force of the condensed air. Then the air in the vessel MN is reduced to half its original alk, it will act on the surface of the water $w w$ with double the mospheric pressure; meanwhile, the water in the force pipe eirg subject to merely once the atmospheric pressure, there is 3 unresisted frce upwards equal to the atmospheric pressure hich sustains the column of water in the tube, and a column t feet high will thus be sustained. It the air is reduced to ne-third of its original bulk, the height of the column susrine I will be 68 feet, and so on. If the force pipe G were made , terminate in a ball pierced with small holes, so as to form jet d'cau, the elastic pressure of the air on the surface would tuse the water to spout from the holts.

Fig. 8056. 2218 g . In the formation of all pamps the parts should be nicely fitted, and as air-tight s possible, otherwise, in using thrm, munll of the power employed will be lost. All exedients which tend to this great, desideratum are of value. The joint CD, figs. 805 and $05 a$, is especially liable to leak if no: well fitted. The rariety of pumps nuw mate is ery great, although they are all formed on the principles first explained. The architect ad best select the manuffecurer, and learn of him the make and powers of the article equired for the proposed purposc. Nearly one hundred varieties are shown in Messrs. ylor and Sons' illustrated Cutalogue for 1885, 14th edition. They consist of a pumping pparatus for public thoroughfares, with cast iron eased well-engine frames, with fly theel and with one or two handles; pillar well-engine frame and single or double ranks; the same with wheel and pinion to decrease labour; rotary action, fixed on lunk; horse whecl frame, for horse power, and others applicd to steam power ; pumps rr artesian wells ; lift-pump; vibrating standard lift-pump; and rotary action lift-pump, 11 on planks, \&c.
2218h. The Pulsometer is a patent pump, of great service for foundation and sinking ork of all kinds, and for general pumping work; skilled attention is stated not to le equired, and it will pump thick gritty water. Norten's Abyssinian and artesian tul:e ells and pumps are of much service fur large and pure water supplies from slallow or eep sources; they are also called driven tube wells.
2218i. Tho Aqueous Works and Diamond Rock Boring Company, Limited, by their te hod of using black diamonds (or carbonate), are alle to bore through hard strata, such 3 granite ; they drive a tube for a well say 25 feet decp; or to a depth say of 1144 feet, aring a bore hole $9 \frac{1}{4}$ inch diametor; or in the case of minerals eren to a depth of 1906 eet, as at Battle in Sussex.
$2218 k$. As to water supplied by a company, it will only be needful to refer to the unntity, and to the two systems: I. the ordinary pressure; and II. the non-intermittent - constant supply. A Parliamentary return issued about Midsummer, 1866, states that, ${ }_{10}$ New Rivar Company supply was equal to 209.5 gallons per house per day; or, tking each tenement to hold five persons, it was equal to 41.9 gatlons per individual per ly. The daily supply of water to the metropolis in 1865 by all the companies was early 93 millions of gallons, or at the rate of rather more than 200 gallons per house, or cer 30 galtons per head. In 1887 the metropolis was supplied by eight companies. lhe Eist Londun supplies a population of $1,180,000$ persons; the New Riser Company, 125,000; the Southwark and Vauxhill, 800,000; the Lambeth, West Middlesex, r.nd Junstion, and Kent, 500,000 cach ; and the Chelsea, 260,000 . The daily total Pplied is $179,600,000$ gallons, for a population of $5,3 \cdots 0,000$, being an average of rather Cer 33 gallous per head, and ranging over $72.5,912$ houses.
2218%. It may be useful to note that the non-internittent system, or constant supply, Ta been relopted at Manchester, Nottingham, Derly, Durham, Leeds, Dundee, Glasyrw, swich, Chatham near hochester, Wulverhampton, Bristol, \&ce; the twolast are deribed in C'resy's Eincycloperlia of Civil Eingineering. At all these plares the result phears to be satisfictory in every way, buth to the water compuics mul to the collmern. At Hitchin tho averige daly consumption was 235 galtons per house; at nydon, at one time 500 ; Whitehaven, 250 , or 50 per person; York about 200 ; Exetel, 20); while at Brimol, Rugle, Sandgate, and Barnard Castle, the waste was so grent o smpply hecame inadequate. Notiogham had only 20 gatlons per prorsom, and nrhan 20 th 2.0 In America, New York has 90 gallons per person; Buston not lexs ans 55. In 1881 it whe stated that, taking the daily consump ion of water in london 29 galkons per heal, in Paris it was lers, white at lerelin it was but 20 . At Detroit,

Miohigan, it was 100 ; while at Chicago and Washington it was 119 and 155 gallons rospectively.
2219. The third mode of obtaining a supply of water is by the hydraulic ram. It is more arailable in the country on account of the noise caured by the continual clicking of the valve. It is a simple self-acting machine for raising water into a cistern or tank, where a fall of water can be secured fiom a stream, or other source. Once set in motion, it will continue to work as long as it is supplied with water, or until the wearing of the iron ralve disables it. A fall of only 5 feet to the ram will enable it to supply a tank 60 feet higher than the source and 2,000 yards distant. Much of our present information on the sulject of supply of water was known to the Romans, and is carefully described by Vitruvius in Book VIII. of his work.

Water Closets.

2220. It is unnccessary to describe at length the machinery of a water closet. The principle on which the usual apparatus is formed is that of a head of water in a cistern placed above it, which by means of a lever attached to a valve in the cistern allows a body of water to rush down and wash the basin, whose valve, or pan, is opened for the
 discharge of the soil at tho same monent that the water is let down from the cistern (par. 2223a. describes the cistern). Bramah's patent was among the first; Underlay's among the latest, which does away with wires and caanks, the supply pipe being constantly filled with water. The student will obtain by the inspection of a closet a far better notion than words or diagrams will convey. The apparatus of a water closet has also been made self-acting, eit her by opening the door of the closet, or by lifting or depressing the seat of the apparatus. For the more modern fush clesets it is generally necessary to pull a chain, which allows a certain quantity of water to flow from the cistern by a valve, or from a water-waste preventer (par. 2223f.), into the pan, and so wash out the fuul water.
$2220 a$. Notwithstanding the many forms of water closet apparatus, nearly all of them may be classed under four heads. I. The old pan apparatus (Fig. 806.), where the water is retained in a pan, which is dis-

Fig. $806 u$. charged on drawing up a handle, into and through a " container," and thence by a short pipe into a trap, called from its shape a D trap. This form was considered to be so objectionable from the occasional deposit in the container, that under par. 69 of the Byellaws as to New Streets and Buildings, issued by the Local Government Board, "he shall not construct or fix under such pan, basin, or receptacle, any contitiner or any other similar fitting;" and "he shall not construct or fix in or in connection with the water closet apparatus any trap of tho kind known as a D trap." The "Banner system" has introduced an ordinary pan closet improved, and also a patent closet with a pan, both without traps.

2220b. II. The valve apparatus (fig. 806a.), is now generally fixed in the houses of the better classcs. On lifting the handle a valve or flap is let down into the pipe, when the soil descends through it at once into a syphon trap. The water is, however, only kept in the basin by the closeress of the fit of the valre and its seating, or bottom of the basin. Any slight corrosion, grit, hair, soapy slops, or paper, not washed through, causes the valve to fail to close properly ; the water then escapes, the basin is left in a state unfit for use, and smells arise which the ralve is intended to provent. Hayward Tyler and Co. make valre closets with copper bellows or brass regulators. Adams's improved elastic valve closet, with brass or bellows regulator. Warner's patent valve closets. Stiddcr's improved valve closet, with patent orerflow trap
d rentilating junction combined; also his patent Siamese trapless closet; and his tent London side outlet ralre closet. Bamner's Nestor, Elastic, Simplex, Safety, ard oin basin valve closets. Buchan's (Edinburgh) patent sanitary closet, "wherehy sewer smell can pass into the room, eren when the handle is pulled up. When the set valve is lifted, the water falls in full volume direct into the soil pipe, pressing ill e gas beiore it, and causing a syphonage that sends the wholc contents in one body to e drain. There being no trap unler the valve, the soil pipes are scoured and kept cle:n." $2220 c$. III. This class comprises the hopper water closet, or flushing \sin (fig. $806 b$), which is simply a basin or pan finished with a syphon ip at the botton, without any furt her apparatus than that which admits 3 water to flush or wash it out. These pans require the addition a pail or two of water poured down oceasionally to help the clearing dirt and paper. They are popular for servants' closets and for cotje and common use, but require occasional clcaning out. One of 3 most simple pans is that called by Messrs. Doulton the enamelled

Fis. swo b. neware closet pan, figure D , which, with pan and syphon trap complete, is sold at 9d. each. This class includes Adams's hopper pattern closet, with flushing appaus; Warner's patent cottage basin and trap; Stidder's houselold closet ; and others. 2220 d . IV. includes a series of more modern contrinees, invented for the purpose of obviating certain deffets the others. They are called the wash-out basia or set (fig. 806e.) ; but many still retain the chief defect the carrying down of the discharge into another receple, or trap, below, or at the side, only partially out of ht, and not always with a sufficient flushing power each re it is used, especially where only a small "preventer" allowed. Among the many paterits of these closet pans, Bostell's Excelsior; Woodward's Excelsior ; Winn's mplete sanitary closet; Twyford's National; Sharpe's ent pan basin; Winn's free flushing basin and trap; odward and Rowley's wash-out closet ; Adams's wash-
 pattern closet, with flushing apparatus; Stidder's Tort water closet ; Banner's patent wash-out closet (fig. 80Cc.), \&c.
2220e. The Merits ant Demerits of Varinus Kinds of Watcr Closets in General Use, by Emptage, is printed in the Sanitary Record of October 10., 1883, p. 187. The figures re of these closets are obtained from Dr. Corficlds Laws of Health, 8ro., 1887.
2220f. A protest has bcen often made against the continuation of the general mode of fing up a water closet with a seat, lid, and riser, cr enclosure, which too often proves 1 , eall fair without but foul within. Probably not one of them when taken down but Ild disclose a state of things, as regards cleanliness, as foul as any drain; especlly so. when the closet has been used for disposing of bedroom slops in contravention of Horders. The lead safe gathers the overflow which will occur, as the servant cannot 1 I up the handle at the samo time as she empties the pail; and unless it has a fall to waste pipe (if thore be onc), it lies there to dry up and annoy the house with the foul 11. Ont n this waste pipe passes into the trap or into the soil pipe, making matters vise. Ifence the admirablo arrangement put forward by Doulton and Co., in the Lam${ }^{1}$ Combination closet, which has the basin and trap made in one piece of stoneware drated, so that the enstonary riser is unnceessary; it stands on a finished wood or
${ }^{t}$ I floor; the seat being made to lift up, it forms a slop sink. Tho Dcsideratum eloset ; lea's closet, aro others. Twyforl's speeial water closet basins, which comprise the 'as, the Natimal patent side outlet closet and trap; while the Alliance front outlet ct and trap is a rariation of the former one. The Crown sanitary closet basin and is a cheap and simple apparatus. Tho Farnley sanitary closcts comprise the Trinal, cersal, National, and Simplex, cach in one piece, with or without trap and ventilator.
lencres improverl London open water closets, combining in an elegant form a water ft, slop sink, and urinal, woll trapped abovo the floor line. Shanks's pat ent Tubal and Sen water closet with hinged scat, \&cc. Shanks and Co.'s patent system of combinerl chets and ciaterns, where the closet is in one piece of cnamelled stoneware, laring a large inlet horn made with the closet. On it is seated a single or donble valve rn, haring a correspondingly large outlet valve, which from its sizo gives a flush ponsating for the lack of the usual height, and washes out and replenishes the lacin
lanner's Holhorn combination water closet. All these require an inch-and-nter pipe from the cistern, or two gallon syphon cistern or water-wasto pretcnter, for ping purposes.

TRAPS.

2220g. Traps to water closet pans consist of the old-fashioned and now eondemnr σ trap (fig. 806d.), with its dip pipe near one side of it; the 0 trap; and the 0 ,

Fig. $806 d$. syphon trap. These two last are now generally used. Helly makes a patent cast lead V dip trap, or "anti-D" trap as was termed, of about 8 lb . sheet lead. It is as self-cleansin as all syphons, and leaves no corners for lodgment of dir This has an air pipe on the top of the "out-go" portion the trap, whieh may be a useful addition.

2220 h . The traps themselves must be rentilated to preve syphonage; they may be uns+aled by the momentum of a dischargo passivg through the trap itself, and by the pa sage of a considerable quantity of water through a pipe with whieh the trap is connecte The passage of this water canses a momentary vacuum, by means of which the water sucked out of the trap.

2220i. The question has been raised, why should the water closet be trapped if the sc pipe bo kept rentilated and trapped? There must always be some portion of the refu matter adhering to the inside of the pipe, even if there be good and constant flushing hence the adrisability of trapping it.

2220\%. The importance of good stench traps to drains is not to be overrated. The usu iron bell trap, as supplied to a sink, or let into a parement, is sufficient as long as the br remains perfeet. Tye and Andreas manufacture a good new patent sink trap; Cotia has also a cast iron trap or "effluvium intere ptor." Leard and Dent have patented cast lead pipe trap of 2 and 4 inches diameter, and claim for it that it is of pure and sol lead, without solder or seam of any kind; as clear inside and out as any pipe made hydraulie pressure; of a perfectly regular substanee throughout; and that, being con posed of one metal, it is not subject to expansion, nor liable to be affected by the gas which tend to destroy tho ordinary trap. Jennings's "Du Bois" drawn lead traps a Lends are made by hydraulic pressure, in the samo manner as ordinary lead pipes, fro $1 \frac{1}{4}$ to $4 \frac{1}{2}$ inches diameter; the inside becomes accessible for cleaning ty a screw tap the botrom of the bend. All these traps only continue effective as long as water, mains either in the cup or at the syphon bend, a fact which is either not known to, forgotten by, very many housekeepers, who complain of the bad smells from the drains summer time, or after some days of dry weather. Nany of such syphons are now mal factured for various purposes in glazed stoneware, which are readily cleaned. Stiff 1 sereral" sewer air excluding traps," as the Interceptor trap, and the Weaver ventilat? trap. Buchan's patent stoneware dain trap is one of the most useful of the sort.

Fig. 8ube. adopted first a trap with a slope down into the syph but found that a fall was better; hence the fig. 80 having a fall of 2 inches for a 4 inch trap, $2 \frac{1}{2}$ inci for 6 inehes fully, and 4 inehes for 9 inches fuil Doulton and Co.'s safety sanitary trap (Henmal patent, 1855) is for connceting a water closet । with the soil pipe; no untrapped joint within a bui ing. Adams's special disconnecting traps. Smeat Son and Co.'s interceptor trap. Banner's main dr: traps, as the Ifxcello, and the Ccrus. Boldıng's shaft or disconnecting trap, with inlet at top: inlet for easy access to drain for elearing sloppagi his soil pipe intercepting trap ; and his "disconnector" for 6 -inch and 4 -ineh stonet. drains. Daries's discounecting receiver and trap for house drains is stated to gire: Thorough disconneetion from the sewer. 2. Thorough ventilation if drains. 3. Simplic in planning houso drains. 4. Easy access to drains and traps in case of stoppage. Convenience of fixing in any position, irrespectıve of sewer. f. A barrier agaiust r coming up from the sewer. It is made by J. C. Edwards, of Rualon.

2220k. Gully traps, for taking off water from yards and from rain-w-ter pipos, provided of sconeware as well as of iron. Sueh as Bolding and son's simptex gully t for various purposes; salt glazed and galvanized iron grates, squaro and round, some n raking inlets. Bellman's patent gully receives and disconneets one rain-water pipe three waste pipes; it avoids splashing, ventilates the pipes and drain, forms a gully dritin from a yard or path, and is easy of access for cleaning out; the ordinary ∇^{0} or trap can be used with it, and placed at any angle to meet the drain. Adams's pal street gully and yard traps. Banner's gully trap.
2220l. A scouring trap is a late invention; it appears to possess some advantages affording a good scouring wash-out and dip to the drain. Daries's receiveř, \&c., al deseribed, is for a somewhat similar purpose.

2220 m . When drain traps are left for some time they should be flushed out and left full of fresh water, into which should be placed some ordinary calciura chloride, a byproduct of a chemical process, and rery cheap. This is exccedingly hydroseopic, having a great affinity for water. Thus the traps would remain full of water for any lengh of time. (Prof. Babcock of Cornell University, U.S.A.)
2220n. A grease trap to catch the meltel fat, \&c., from the kitchen sinks, is considered a desirable addition, as it tends to prevent tho grease from passing into and stopping tho drain. Therc are several varicties, chiefly of stoneware. Those readily cleaned out by hand are perhaps the best; buckets, used in some, can scarcely be considered satisfactory. Emptying the usual greaso trap is one of thoso many works in connection with a household that almost amounts to emptying a cesspool, as it is usually left and becomes fonl; this trap is to be avoided if possible. It is recommended to be ventilated (fig. 807c.). The hest of the number is the patent of Mr. Farrow, the first one introduced as a special fixture. Hellyer's, Buchan's, Stiff's, Doulton's, with others, are to be procured. One has been devised by Mr. J. Honeyman, architect, consisting of a shallow box encased with cold water, and covered with a movable grating resting about half an inch or more below the level to which the water would rise. The cold water would be frequently replaced from the service to the sink. The greasy water would adhere to the sides, and be forced up through the grating for removal, and the box, being iu sight, would be cleaned out as required. Smeaton, Son \& Co.'s grease trap ; Adams's grease trap only; and his combination grease trap and flush tank; Durrans' patent glazed stoneware gully and fat trap, by J. C. Edwards of Ruabou, is a cast iron hox dropping into the water, and remorable for cleansing purposes, giving free access to the drain pipe.
22200. The self-cleaning Trough closet, as Adams's patent, is largely used in schools, fictories, barracks, workhouses, and other such institutions where a number of persons are collected or employed. It is automatic, having a Field's self-acting flushing cistern. About five or more closets, or stalls, are formed over the stoneware trough that communicates with the drain. The trough is also mide of iron, and is also arranged to he disclarged on land and disposed of by irrigation. These troughs require occasional inspection and good water supply.

2220 p. Reference has been made (pars. 1887h. and 1888h.) to flushing requirements. To these may be added, Adams's patent automatic flush tank, "giring an instant start with drop by drop supply"; his patent improved automatic flushing syphon; his syphon cistern for closet, urinal, \&c. ; his flushing valves and penstocks for drains and sewer's; Stidder's patent syphon water flusher ; Doulton and Co.'s automatic flush tank; and uthers by Jennings and Co.
2221. Urinals are made of slate for public use, of various forms and arrangements. A water supply from a self-acting flushing cistern, holding from 10 to 20 gallons, arranged for a disclarge according to uso; about every quarter of an hour is considered sufficient to free a mach frequented urinal from all nuisanco. Sometimes water is tumed on for a time at several hours of the day. White pottery urinals for private use are of all rarieties and shapes. The overflow pipe supplid to some is not always a desirable addition. I Oonlton and Co's improved urinal and laratory; Adams's patent lavatory ranges for schools, \&ce; ; und urinal and closet erections. Jonning's urinal erections for two or moro persors. Stidder's school lavatory and slop sink, as used in the London and other loard schools. Mounted lavatories for domestic use, by Warner and other manufacsurers above mentioned.
2222. The use of Earth closets ns one of tho safeguards against smells from sewers has made no headway for large populations, and is beset with practical difficultics. In tho lidland and Lancashire towns the pail or tub system las been much more largely introluced as a substitute for the water closet, and it has, from a landlord's point of view, nany attractions. The first cost, as compared with that of a water closet, is suatl, and he landlord is, in most towns, relieved aftorwards of all fature cost and matintemanec. Wherens in the case of water closets in cottage proporty there is undonbtedly great diftiulty in keeping them in gool working ordor, especially during frosts. There are, howwer, many oljections to the pail system, expecially that it appears to bo a costly appendago " the water-carringe systent, inasmuch as the remaining liquid refuso has still to bo leult with ly the modern systems of precipitation or irrigation, at practically the same ont ns would have been the caso if the water-arriage system had been adopted in its ntiroly by the municipal aul horities.
$22: 2$ a. The deposits are at one dendorised by a small quantity of coal ashes or earth, - hich absorbs the ummonia and other fertilising propertien, tor removal to the garden r field. It may le considered more serviceable where there is a deficiont water surply r a want of proper drainage, and in rountry, rather thom in town, locatities. Moule's itent was the first inventel. Morrell's putent cinder sifting asb closet, and /houp's went dry closct, are other inventions. The carth may, with proper drying, be used
over and over again for years. Ashes, fine and dry, may be used, to oltain which there is the modern automatic cinder sifter. They are not considered preferable to the watercarciage system, where obtainable.

Tanks and Filters.

2222b. Having obtained the source of a water-supply, a tank for a collection for a farm, or a cisterin for the supply of a house, are requisite. The former may also be required to retain the rain water from the wood, lead, or zinc gutters of the buildings; water from copper gutters is poisonous. The tank is usually formed of brick or stone built in cement, and cemented ivside, and when of a small size it is domed over, with a man-hole for access. If of large size, iron girders supporting slate or stone slabs will form a fint covering to it. These should be well jointed to prevent dirt falling in. Pain!ing the cement with a solution of silicate of potash is said to prevent the soft rain whter becoming hard in a new tank. Such a ssstem as the fullowing would be tound rery serviceable on many farms having c'ay lands.
$2222 c$. In Venice, the rain water is collected from the roofs and led into the courtyard, where it undergoes a regular system of filtration before il reaches the tank, whence it is raised by buckets. The construction to effect this consists of -I. A water-tight enclosure. II. A well of dry brick work in the centre of, III. A wall of sand, filing up the remainder of the enclosure round the well, and serving partially as a reservoir, and partially as a filter; care being taken that no water enters the well but what pases through the sand. The systen is shown in the Allyemeine Bauzeitung for 1836, pl. 556 ; and in the Transactions of the Institute of British Architects, 1842, p. 187.

2222d. Another and more simple method is described in the Building News, 1862, p. 127. A large hole is dug about 9 feet deep; the sides are supported by an onken tramework of a square truncated pyranid, the wide base being turned upward. A coating of compact clay, 1 foot thick, is applicd on the frame with great care, to stop the progress of the roots of plants, as also to prevent the pressure of the water. A large circular stone, partly hollowed out like the bottom of a kettle, is placed therein with the carity upwards, and on this as a ioundation a cylinder of well baked bricks is constructed, having no insterstices except a number of holes in tho bottom row. The large vacant space left berwen the sides of the pyramil and the cylinder is filled with well scoured sea sand. At the four corners of the pyramid a stone trough is placed, covered with a stone lid pierced with holes; they conmunicate with each other by means of a small channel made of bricks resting on the sand, and the whole is then paved over. The rain water is led from the roof to these four sink stones, and, penetrating into the sand through the channels, filters down and passes into the filter itself by the small holes left in the bottom row of bricks. These cisterns get filled about five times a year, and the distribution of water is at the rate of about 212 gallons per head.
$2222 e$. The arerage annual rainfall is 31 inches. Where rain water has to be dependec upon, a separator has been insented by Roberts, which "prevents the first portion of the rainfall passing into the storage tauk. It cants and stores the water when the roof has been washed by the first rain."

2222f. The Rivers Pollution Conmissioners put the several waters derived from rarinus sources in the following order, having regard to their hardness:-I. Rain water (softest). II. Upland surface water. III. Surface water from cultivated lard. IV. Polluted rive water. V. Spring water. VI. Deep well water. VII. Shallow well water (hardest) They consider water at or below six degrees of hardness to be soft, and above that number of degrees to be hard.

2222g. Filters are used for purifying water for towns, or purposes for which largt quantities are required. They are usually formed in England of several layers of satu and gravel, gradually increasing in the volume of its particles in desconding; an! in the lowest course of gravel perforated tiles are laid, through which the water tows into th reserroirs. The water is supplied on the top, so as to stand at a depth of from 4 to 6 feel over the sand and other filtering mediat. At the Lambeth Water Works these mertis consist of: I. A layer of sand 3 feet thick. II. A layer of clean sea-shells 6 inches thick III. Fine grarel 6 inches thick. IV. Coarser gravel 6 inches thick. V. Very coarscreened and washed ballast 6 inches thick; and VI. Pierced tiles covering the druins At the Southwark Water Works the filtering media are rather thicker. At Hull the sani is 2 feet thick, and the gravel 16 inches thick. At York the sand is 4 feet thick, anc the gravel 4 feet thick. At Paisley the sand is 2 feet thick, and the gravel only 6 inches but the upper part of the sand is mixed with animal cbarcoal. Local conditions mus regulate the proportion of these materials, fur the thickness of the sand must be nereisel according to the impurty of the water. When the water is at all turlid, it is advisabli to make settling reservoirs by the side of the filtering basins, to collect the impuritie
in the first instance. The usual yield of filtered water from a basin established under the preceding conditions, is about 80 to 100 gallons per foot superficial per day.
$222 \pm h$. Dr. Clarke's approved process for softening water is stated to be by adding ans equal quantity of lime in solution to the pure lime of the bicarbonate contained in the water. The solution of lime combines with one-half of the carbonic acid and forms chalk, at the same time reducing the bicarbonate to chalk also. Chalk being insoluble, scttles to the bottom. The Consumers' Economic Water Softening and Purifying Company (Limited) has been formed for the use of Atkins's patents, to adopt the recommendations of the Ruyal Commission on the Pollution of Rivers; and tbough several towns of emall or moderate size had carried out those recommerdations by adopting one nr other of the systems then arailable, it was considered impracticable for any large town to do so. At the Southampton Water Works, the largest works of this sort are now (1888) completed. and many other towns are contemplating the introduction of the system.
$2222 i$. In some places both the chemical and mechanical impurities may be eliminated from water by diviling the tank by a cross wall of a filtering stone. Such a stone will filter about 60 gallons per foot superficial per day. Chemically, this could be effected by causing the water to pass through a diaphragin or cross wall, composed of two slabs of filtering stone, placed at a small distunce from one another, and filled in will animal clarcoal or with magnetic oxide of iron. The latter material appears to be the best for such water as is collected from roofs, because it parts with its oxygen with great rapidity to the rain water, and is susceptible of rapid revivification; it is also cheaper than charcoal. A double wall thus formed ought to pass 100 gallons per foot superficial per day. A few drops of permanganate of potash, put into water tasting and smelling of deraying organic matter, will render it in a few minutes clear and sweet. A small quantity of alum tends to render water very pure, by freeing it from matters held in suspension. Ransome's patent siliceous stone is the best material of the kind ordinarily obtainable in Englard. Filters of porous sandstone, as made at Halifax, are recommended as effectire ini durable. A paper on the subject of filtration, read at the Institute of British Architects, $1850-51$, by Mr. G. R. Burnell, and given in the Builder, ix. 401, destrres zttention. Household filters, whether for occasional use or fur a system of domestic iltration of water as it fows from the cistern, is now often a subject of consideration for 2 tenant and landlord. Among these are Lipscombe's; Maignen's patent Filtre Rapide, xith his patent process for softening water by means of the patent Anti-calcaire; the patent Porous C'arbon Company's material ; Halliday's patent high-pressure self-cleansing ilter, which can be attached to the main or supply pipe; the Chanberland-Pasteur filter; Compound charcoal filter; Atkins's patent cistern fitter, a pure charcoal block filter; he Queen, which can be fixed to any tap; the patent Moulded carbon block and posa charcoal thorough self-cleansing rapid water filter; the Grant revolving ball water lter, also attached to the tap on a main or service pipe, and is rapid and self-cleaning ; nd others.

Cistcrn and Supply for daily use.

2223. The amount of water used varies very much in different communities, but where 1e allowance is scanty divease of various kinds is encouraged by the absence of attention - the clcanliness of persons and of things, the want of sufficient water to flush the rainч, \&c. About 10 gallons a head per day are required for domestic purposes, includg bathing, and about as much morefor flushing purposes; the arerage amount required r trade purposes is generally roughly put down at an average of 20 to 30 gallons a head ar duy. Many towns have a less supply. Where there are large public baths, or maulctories requiring tnuch water, or even a large number of animals, 30 gallons or more e required. Runie had probally from abont 170 gallons to 300 gallons per head per day, t authoritics vary. An imperial gallon per man por day appears to be the allowance board a vesscl. In stables, each horse should be provided with 16 ga lons, four of nich is consumed with his food. Each four-wheeled carriage takes about 16 gallons. ich two-whorled carriare about 9 gallons. To wash a paved court or passage, a gallon water may be provided for each superficial yard. The available rainfall from roofs iu gland is estimatod at 18 inches per annum; and if the source of supply be only usin1, a tank capable of holding 4 montbs' collection shoulil be provided. (ILurst, Surreyors' rudhook.) One cube foot of cistern will hold ncarly $6 \frac{1}{2}$ gallons of water ; and a cube foot of ter weighs $62 \cdot 321 \mathrm{lbs}$. ; a gallon weighs 10 lbe . ; a cylinder inch, 02812 lhs . nucl a inder foot, $49.1 \mathrm{lbs} ; \mathbf{3 5}$ culicic fect of water equal 1 ton. The supply for cach man, woman, 1 child in n house is reckonerl at 15 gallons per day. tlinugh it is considered no oun fily uses much more than 6 gallons, or athout 12 gallons, as calculated by Sir 14. ay, by a family in London.
2223n. The ciatron for a homse was originally placed mutside, and made entircly of learl, front of it being frequently decorated with levices, ether cast with it, or secured by
paleing, i.c., the soldering on of cmbossed figures. Lead cisterns are still in uso, but they are cased with wood, and placed were most wanted for tho supply. No cistern shonld be put where the sun can act upon it, as regetation in the water sometimes ensues. (1785a).

22233 . A cistern is usually made of $1 \frac{1}{4}$ or 2 inch memel fir, lined with 6 lb . Iead. A cover should al ways be provided. This metal lining is now much superseded by one of zinc, on account of the deleterious effects arising by the action of pure water on the iead; but zine can only be trusted as a temporiry resource. Slate is a better material for all collections of water or other liquids in general use. Care must be taken that a porons quality be not supplied; and it should not be placed where mild damp air will meet it and condense on its cold surface, and so rm down in drops. As it is very unyielding to the expansion of ice, its position in the house in that respect is an important consideration, and in case the joints become leaky from that or any other cause. Cisterns are supplied with water by a main service or feed pipe sufficiently large to allow of its filling during the time the water is turned on. The flow of water is regulated by a ball cock. The water supply to each bath, water closet, \&c., is snggested to be controlled by a stopcock of a bore equal to the pipe. Ball cocks to be supplied with a stop cock to each, in case of repair. The cistern to have a proper standing waste for clcansing purposes only, as well as tho ordinary half or three-quarter warning pipe, which must be prosided, according to some water companies' rules. The fig. 615 k . shows a system of water supply, where c is the cistern in the roof Z, which is often placed over, but quite separated from, the water closct A. m, wator pipe, cased; y, slop sink, having a tap from the main η. X , flushing tank; the cistcrn c, in B , also supplies the syphon flushing cistern in the servants' water closet d. The dotted line o shows the line of water pipe from the cisteru c in the garden, supplying the kitchen boiler.
$2223 c$. The cistern to supply a water closet should properly be distinct from that for domestic purposes; and when the former is placed in a confined spot, necessitating smallness of dimensions, one of an upright form is cssential

Fig. sc6f. to provide the head of water for flushing the basin, Fig. 806f. shows an apparatus fitted to a lead cistern
for supplying wates

Fig. 8.7.

Fig. silia.
ball valse pulled down by the wire B, and thus lifting, by the wire C, the ralve I which admits the water into the lead service-box E, soldered into the bottom, l of the cistern. The air-pipe G lets out the air from the box forced into it by t l pressure of the water rushing through the down pipe H. A waste pipe for emptyin the cistern, or for carrying off the surplus water when being over filled, must alway be prorided. When a cisteru supplies the house, a service pipe is required fioi it, the outlet having a rose. For a slate cistern, a brass flange (fig. 807.), fitted wit screws and nuts, is soldered to the lead scrvice-box, and then secured to the slat A " round closet valve with union, fly-nut," and air-pipe (fig. 807a.) is occasionally used ? leu of the above contrivances; or a spindle valve with union, fly-nut and air-pipe.

2223d. Iron tanks and cisterns made of plate iron riveted, plain or galranized, ai for*oed to any shape or size; as also of a small size in stoncware. A question hit arisen as to zine and zinc-coated iron fur cisterns. Soft water, such as rain water, disolves zinc more easily than hard water. Water containing carbonic acid is specially ab to dissolve it. The French Government have prohibited the uso of galvanized iron tani on board men-of-war. Professor Heator analysed spring water, with a further analy: after it had passed through half a mile of galvanized iron pipe, and fornd it had taken 1 641 grains of zinc carbonate per gallon. Dr. Venable states that where spring wat passed through 200 yards of such pipes it took up 429 grains of zine carbonate per gall (John Smeaton). To stop leaks in iron cisterns, mix litharge and red lead; if to d quickly, gold size mixed with boiled linsced oil. Extra hard carriage varuish is usef for inside purposes only, well rubbed into the crack.

2223e. With the constant supply system, now heing generally introduced, service e terns are said to be unnecessiry; but it will be advisable to have one, and especially ne
any office requiring a good supply of water, as the service is occasionally cut off for two or three days during repairs or cleaning of the mains. Some lower-class houses are said to have a 6 -incla zinc-lined trugh instead of the usual cistern; benee frequent stoppage of drains occur from want of flushing power, as depth of water is essential for it.

Water-waste Preventer.

2223f. In some towns the water company insists upon a small cistern being placed in the water closet, or to a urinal, to prevent waste of water, as it is stated. There are various patents, worked by a syphon or other action. They are each regulated for a supply or flush of about a couple of gallons of water at a time. Such are Purnell's syphon; Winn's Aeme; the PeeZham (No. 2) improved pneumatic syphon cistern for fixing in a cistern, has no valves, rubbers, washers, \&c., the action is noiseless, and the connection is by an air pipe of $\frac{1}{18}$ inch bore, worked by a push knob; the Invieta; the Peerless; the Syphon; the Double valve ; the York ; Trott's patent ; Crapper's syphon; Bolding and Sou's syphon, their Simplex after-fush, which is not syphon action, is a simple apparatus; the registered double syphon; Tylor and Sons' improved patent model waste-not cistorn valve, for fixing in a cistern under water; Smeaton's ucw water-waste prerenting valve; Humpherson's syphon cistern; Bean's direct-acting valveless cistern; Bostell's cistern. Most of the patents are noisy in action, and all are of questionable utility fur the purpose, often getting out of order and wasting water rather than preserving it, besides preventing that useful flush of water which aids in keeping the drains clear.

Pipes.

2223g. The pipes used for the purposes of building are proportioned to their uses. Those, for instance, called soil pipes, for carrying away the soil from a water closet, or those for conveyiug water from roofs, called rain-water pipes, and those occasionally from sinks, are, of course, of larger diameter than those called service pipes, which are merely, as their name implies, for laying on water to a house, those of semewhat larger diameter being called main service or supply pipes: the service pass from tho mains to the cistern.

2223h. From the cisterns pipes are required to convey the water to the sereral places it is desined to supply. Those of lead are cither cast round or soldered. In casting, a mould is made of brass, whorein down the middle a core of iron is loosely supperted, at such a distance from the mould all round as is equal to the contemplated thickness of tho pipe. When this is set the core is remored, and the cylinder opened so as to withdraw the pipe, which is much thicker than is needed, and must be lengthened, while its substance is reduced, by drauing it through a succession of holes in steel plates, diminishing gradually in diameter, similarly to the method employod in drawing iron rods. This machinery became gradually improved in its construction, so that it was of rare occurrence to meet with an imperfect pipe. Lately tho manufacture of lead pipes has becn further improved by casting them under hydraulic power. A quantity of lead is placed in a box, and forced through the mould at a certain rate, whicli gires the metal time to $\cos { }^{1}$, so that it is pressed out gradually in a complete state, and wound round it wheel ready for use, its length beng made within the limits of carriage. When pipes are made ly soldoring, a core of wood is provided, round which the sheet lead is rolled, and the elges aro brought togother and joined with solder. A solid dṛawn lead pipe with it distinct, insido lining of block tin $\frac{1}{10}$ th of an inch thick was made, but it was founcl expensire, and the labour involved in fixing it prevented its ready adoption; also a solid drawn square or rectangular fall pipe; both by Hanson, Dale \& Co., of Iludderstield. Hellyer las mado a square drawn lead pipe for outside of houses. Glass lined pipes aro liter. (ilias pipos for conveying distilled water are used in laborateries.
2223i. Concussion in water pipes is caused by the weight of water being shut off and stopped in its flow while turning off tho end tap suddenly. If it be turned slowly this does not take phace. The noise may be obviated by continuing the pipe (or is smaller ono) over tho tap, and inserting the end into tho pipe. Lithor tho water relonuds into tho supply or the cursed piece of pipo contains air, which serves as a buffer: The same arramgenont answers for gas pipes whero tho last jet sometimos has a quivering flame; or the pipe (in either casc) can be carried into anotheo pipe near to it, so as to oblain a circuit.

Soil Pipes.

2223k. Tho most important point in connection with tho water closet is the suil pipe. Great care is necossary in fixing it. It sho ald bo hung on tacks of lend at least ono pound hoavier than that from which tho pipe is made, at least nine inches long, so tako three courses of bricks, and three tacks to cach ten feet longth of soil
pipe. Often in the course of three or four years the soil pipes start crawling down, owing to the fixings being seamped. It slould not be nailed too clescly. Hipes from slop sinks are often branched into the soil pipe, and require the sane treatment, alsu care to prevent syphonage, Its trap should be as close to the fixture as possible, so as to avoid a length of pipe, which might become fual on the near side of the trap, and so become a nuisance of itself. Banner's soil pipe traps are either for the soil pipe at the end, or the soil pipe in the centre, cach trap having a fresh

being incorrodible, with junction picces, fastened to the walls by ornamental iron bands, readily adapting themselves to any settlement of the brickwork ; and are made in lengths of 3 feet, and of 4 in . and 6 in . diameter.

2223l. The wastes from a bath, a lavatory, a pantry, or a wash-up sink (as partly shown in fig. 807h.), require special treatment. The discharge from a sink should be uuder the grating of an intercepting trap, not upon it, as is sometimes cone. Under the fixture, and as near to it as possible, should be a syphon trap of good construction, soldered, if to a siuk, with only a taper piece to take its grating or washer. The waste from a bath, \&c, is sometimes carried through the wall into the open head of a rain-water pipe, or other contrivance, and so to a grating the end being left open; a syrhon trap under the fixture is useful, though not often put A 2 or $2 \frac{1}{2}$ inch lead pipe may not be found too large. Safes are provided under the old mater closet apparatus, and under a kath, for which 4 lb . lead is enough. The waste pipes from these should also be carriel outside, the end prorided with a mica or brass flap valve to prevent an in-draught.
2223 m . The fresh air inlet pipe is consideret by many as preferable if kept smaller than the rentilating pipe. The soil pipe, if it hare considerable fall, must have a provision made for the partial vacuum which the column of water in descending tends to create causing syphonage of the traps. This pipe being open at the top is not sufficient to remedy the eril; a separate vertical ventilating pipe is the only effectual remedy, into which, from all the horizontal branches, are secured ventilating branches. This vertical pipe may be about 3 inches in diameter, with 2 inch or $2 \frac{1}{2}$ inch branches at least, carried from the soil pipe into the other vertical pipe. The fig. 807c. shows how the trap under a water closet may be ventilated, where closets are placed one above another to prerent syphonage. A is the soil pipe; B the ventilating pipe, or ventilating pipe from the grease or other trap; and P, ventilating pipe from branch pipe to soil pipe. The separate air shaft to the O trap might perlaps be better dispensed with by carrying the small pipe through the wall to the open air, and using a mica valve; thus fresh air would be constantly brought in. Mica ralves are considered by some to decay. (E. T. Hall.)

2223n. Solder is a misture of two parts of lead with one part of tin. In soldering, portions of the lead must first be scraped, and when finished they are then done over with a black paint. This solder is used also for tin plates and zinc work. There is a nevw process for connecting lead pipes without solder, called a cold metal double cone mechanical lead pipe joint. By means of a small piece of a double coned full-bore tube, assisted by a tubular hexagonal-headed screw and nut, the joint is firmly and securely made, and easily taken apart when required. A new system of jointing, which is readily applicable to every kind of joint required for lead pipes, is adopted at Manchester, whereby the joints are not merely soldered, but welded. A lining pipe is used somewhat similar to the ibove mentioned process. A cleay bore is obtained, no lodgment of solder inside, and a sightly external finish instead of the ugly bulb by the common method. Stidder patents a closet arm joint mith india-rubber cones.

22230. Tabla I. of tue Weight of Lrad Pipes per Foot Lineal, as now usually Made.

Bore in Inches.	Thickness of metal in parts of an inch. [Hurst.					
	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{3}{17}$	$\frac{1}{4}$	$\frac{5}{16}$	$\frac{3}{8}$
$\frac{3}{16} \quad 10 s$.	$\cdot 243$	-607	1.092	1699	$2 \cdot 427$	$3 \cdot 277$
$\frac{1}{4}$ ",	-303	$\cdot 728$	1.273	1.942	$2 \cdot 730$	$3 \cdot 641$
$\frac{5}{16}$,	-364	-850	1456	2.184	3.034	4004
$\frac{3}{8}$,	-425	.971	$1 \cdot 638$	$2 \cdot 427$	$3 \cdot 337$	4369
$\frac{7}{16}$ "	-485	1.092	1.820	$2 \cdot 670$	$3 \cdot 640$	$4 \cdot 733$
$\frac{1}{2}$ "	$\cdot 546$	$1 \cdot 214$	2.013	$2 \cdot 913$	3944	$5 \cdot 197$
$\frac{9}{16}$ "	-607	1.335	$2 \cdot 184$	$3 \cdot 155$	$4 \cdot 248$	5460
$\frac{5}{8}$ ",	$\cdot 667$	1520	$2 \cdot 366$	$3 \cdot 398$	4.551	$5 \cdot 825$
$\frac{11}{16}$,	-728	1.578	$2 \cdot 548$	$3 \cdot 641$	$4 \cdot 8.53$	6.189
$\frac{3}{4}$ "	-789	1.699	2.731	3.873	5157	6.553
$\frac{13}{16}{ }^{6}$	-851	1.820	2.913	$4 \cdot 126$	$5 \cdot 461$	6917
\% $\frac{7}{8}$,	-910	$1 \cdot 942$	3095	$4 \cdot 368$	5764	7.281
$\frac{15}{16}$	-971	2063	$3 \cdot 276$	$4 \cdot 611$	$6 \cdot 167$	$7 \cdot 646$
1	1.032	$2 \cdot 184$	$3 \cdot 47$	$4 \cdot 854$	$6 \cdot 371$	$8 \cdot 009$
$1 \frac{1}{4}$,	1.274	$2 \cdot 670$	$4 \cdot 186$	$5 \cdot 825$	$7 \cdot 085$	$9 \cdot 466$
$1 \frac{1}{2}$ "	1.517	$3 \cdot 155$	4.915	6.796	$8 \cdot 796$	$10 \cdot 923$
$1 \frac{3}{4}$ "	1.760	3641	$5 \cdot 612$	$7 \cdot 768$	10.013	$12 \cdot 375$
2 "	2.001	$4 \cdot 127$	6.372	$8 \cdot 73 t$	11.223	13.833
$2 \frac{1}{4}$ "	$2 \cdot 245$	$4 \cdot 607$	7096	$9 \cdot 707$	$12 \cdot 436$	15290
$2 \frac{1}{2}$ ",	2.499	$5 \cdot 100$	7829	10683	13651	16.762
$2 \frac{3}{4}$,	$2 \cdot 729$	$5 \cdot 583$	$8 \cdot 554$	$11 \cdot 650$	14869	18.204
3 "	2.971	6.066	$9 \cdot 286$	$12 \cdot 492$	16.080	19660

Table II. of the Weight of Lead Pipey in their Lengthe, as variously Cast.

Bore in Inches.	Length in feet.	Weight of lengtl in pounds of various makers.										
		Common. Per foot.			Middling. Per foot.				Strong. Per foot.			
${ }^{\frac{1}{2}}$	15	15	16	107	17			0	22		26	0
$\frac{5}{8}$	15	17			20			-	24			
$\frac{3}{4}$	15	24	24	1.6	28	27	28	1.8	32	30	30	$2 \cdot 0$
1	15	30	30	$2 \cdot 0$	42		40	26	50	46	42	$2 \cdot 8$
$1 \frac{1}{1}$	12	36	36	$3 \cdot 0$	42		44	3.7	52		53	4.4
15	12	48	48	$4 \cdot 0$	56		56	4.7	64	70	66	$5 \cdot 6$
13	12	76	-	-	84		\bigcirc	-	96			
2	10	50	56	$5 \cdot 0$			70	6.0			83	$7 \cdot 0$
$2 \frac{1}{2}$	10	-	70	$7 \cdot 0$			86	$8 \cdot 6$			100	$10 \cdot 0$

2223p. Earthenware pipes, like iron mains, are employed ucderground. At the beginling of this eentury, machinery was invented for forming stone pipes, which were nsed for ome time, but did not supersede those in use formed of timber. Noar Lincoln have been ound circular carthe iware tiles, 6 inches diameter and 22 inches long, set in a thick casing feement, so as to exelurle air entirely, and to strengthen and protect the piping, which onsryed the water for about a mile and a half. It is always necessary to have some urlets for letting off the air whieh accumulates in any length of sueh tubing. When vater is first allowed to enter a long length of new piping, a quantity of very fine sand or URE should be put into it to fill up any cracks or spaces left in the joints. This is also ecummended to be done for now iron boilers, iron water tanks, \&c., as it tends to make he joints watertight. A well-made stoneware pipe of 4 inches diameter will bear a prcsure of from 70 to 100 lbs . per square inch.

2223q. Iron watcr pipes for the service of a house are orjectionable in case of their ursting in winter, but thisis remedied by placing a stop-cock at the entrance of the pipo
into a house, to shut off the supply for repairs, or in anticipation of a frost. Some wrought iron pipes are lined and coated with hydraulic mortar; othors are enamelled in the interior, These latter have been found, both for gas and water purposes, absolutely incorrodible; in the former case preventing the great loss from leakage, and in the latter case convejing the water in perfect purity. For a high service hot water supply, a galvanized wrought iron hot water cistern, with man hole screwed down, is supplied. It is usually 2 feet 6 inches long, 2 fett wide, and 18 inches deep. Cast iron pipes are naturally rery poruus; so much so, that water when very forcibly compressed, as by an hydraulic machine, will make its way through the thick cast iron cylinder in a sort of perspiration on the exter ial surface. Oxidation, to a certain extent, will close the pores of the metal, and prevent this cscape of water or of gas; and it is recommended that all new gas pipes be prove 1 with a solution of sal ammoniac, which leing forced into the body of the metal effectually oxidises it, and to a great extent cures the evil. Patent weldod wrought iron tubes and fittings, and malleable iron fittings, are made for gas, or low pressure steam, and cast irull pipos for water, of from $\frac{1}{8}$ to 4 inch bores: such pipes are also made for high pressuresteam or water, and prored to a pressure of 200 lbs . per square inch. The ordinary gas pipe is proved to 75 lls . on the square ineh.

2223r. Gutta Percha. On account of the injurious effects of water on lead cisterns and piping, this material has been recommended as a substitute for it in loth cases, since its general introduction about 1849. But it is uncertain whether the materide can be giaranteed as a lining ; and some soils appear to affect it when luried underground. It is also attacked by a fungus. Experiments made at the Birmingham Water Works, on the strength of gutta percha, showed, that tubes made $\frac{3}{4}$ inch diameter and $\frac{1}{8}$ inch thick, attached to the iron main, and subjected for two months to a pressure of 200 feet head of water, were not in the slightest degree deteriorated. They were afterwards subjected to a proof of 337 lus. per square inch. The material being slightly elastic, the tubes expanded, but recovered theic former size on the pressure being withdrawn. At Stivling, $1 \frac{1}{2}$ inch tuling bore a pressure of about 450 feet, without the slightest injury, whilst the same pressure upon strong leather hose scattered the rivets in all directions. A vulcanistd fibre is a new sulistitute for leather, rubler, gutta percha, \&c., for packing hot or culd water taps, valres, washers, \&c.
$2223 s$. Pipes to cisterns are supplied with ball cocks and valves, both romnd way and square way, of various forms and sizes, too numerous to be here described. The "Brockley" patent ball valve, of Wood Brothers of Brockley, is an improvement consisting of the usual ball turning on a pivot fixed to the screw. "The spherieal form of the seating, and the cup into which it works, have been designed to prevent the collection of grit. The rubber envelope at the end of the seating fitting into the opening through which the water flows is specially made, and is durable as there is no cutting edge to destroy it; they only require to be stretched on." For sinks, or the usual supply taps, lib-cucks having a " T key," or a "spanner" or other key, are required; these are of different makes, and often produce a recoil. "Screw-downs" or "valves" are used where the hight pressure system is adopted, the " T key" then screws down the valve. A "stop-cock" or "valve" is used to shut off the water in a length of pipe, as the service from the main pipo, as above noticed, and likewise for reducing the pressure of the water on the "screwdown" valres in a constant service. This system is described in Cresy, Encyclopadia, pages $1655-57$. Stidder's patent hydraulic ball valve is intended to resist the highest possible pressure; the greater the pressure the more secure from leakage.

2223t. Lavatories are fitted up with an apparatus for supplying the basin with hot ard cold water, and for taking off the waste. Baths are supplied from a boiler either placed at the back of a kitchen range, or set in the fireplace of the bath room, or of an adjoining chamber. They are also heated by a gas boiler called "Geiser," or other name, fixed close to or on the bath, having a flow and return pipe; or by ranges of lights under the bath itself. A five-feet bath is said to bo heated to 100° in half an hour by gas, at a small cost. A bath generally contains about 60 gallons of water, and requires about 20 gallons of boiling water to heat it. Ewart's lightning geyser gives a hot bath in five minutes. Shanks's new instantancous gas water heater, Doulton and Co's Lambeth patent water heater.
$2223 u$. The bath itself is sometimes formod of marble, cast iron enamelled, opalized glass, glazed earthenware, and glazed po celain tiles (Rufford's), the weight of which is 7 cwt. The Farnley poreelain bath, of fireclay and enamelled, is reduced in weight to $4 \frac{1}{2} \mathrm{cwt}$. ; they are made of four shapes, from 60 inches to 74 inches in length. Zinc, lead, copper, galvanized iron, and slato all require a coating of light-coloured paint, so as to render easily apparent any want of purity of the water. A patent stamperl tinned steel bath is designed to obriate the disadrantages of cast iron; it does not chill the water,
d is ligbt and durable. If not painted, all netal baths require considerable friction appear clean. The difficulty of making a bath with joints that shall not leak is if-evident. Ty lor's pattern-book gives several descriptions of their baths (par. 2228a.). ianks and Co. have approved baths and fittings.
$2223 v$. With water raised to a high level geat power is gained for various purposes, mestic and otherwise. The hydraulic lift, lately introduced into banks and hotels, is e saving of much trouble and time. The general details for hotels were described by Whichcord, in a paper read at the Institute of British Architects, in 1864. Waygood d Co. are manufacturers of the more modern lifts, cranes, and hoisting machinery of
descriptions by hydrulic and hand power. The American Elevator Company are ikers of the "Standard" hydraulic elevators fixed in rarious public edifices, hotels, \&c. small lift, to be worked by hand, is readily arranged fur raising a scuttle of coals, or ier package, from the bottom to the top of a building. Other manufacturers are Clark, mnett and Co. ; the Hydraulic Engineering Company, Limited (of Chester); Goddard 1 Stewart ; S. Chatwood, 1878, balanced hydraulic lifts; and Attwood and Co.'s is and hoists for goods and passengers, worked by gas, steam, hydraulic, or hand: wers of the ABC self-sustaning lift for houses, clubs, \&c. Water applied to a bine is capable of producing a small motive power, useful for organ blowing, turn; a fan to effect ventilation, and other such purposes, without wasting the water so ployed.
$2223 w$. It will be useful to note the non-compressibility of water. It is often necessary, fore re-melting cast iron, to reduce the large masses into smaller pieces. This by the linary methort is both troublesome and difficult. A simple and ingenious mode of proing the required fracture has been recently employed in France. It consists in drilling ole in the mass of cast iron for about one-third of its thickness, and filling the hole with er, then closing it with a steel plug, fitting very accurately, and letting the ram of a -driver fall on the plug. The first blow separates the cast iron into two picecs.

COPPER

22t. Many of the uses to which copper is put have already been noticed in the parains 1787 to 1791. The nave of Chartres Cathedral was roofed in 1836-41 with irou covered with copper plates; in 1853 the latter had so much oxidised as to require oval. It is said that if strips of the best zinc, about 8 inches by 2 inches, be screwed ach course of copper, galvanic action would prevent the oxidation of the latter material. cramps encased and brazed in copper, or guu-metal cramps, in lieu of iron merely, exfoliation of which bursts and delnolishes stonework, is a precaution now generally ted in good work. In the Indies, copper gutters decay after twenty years' uso, not. h. ing longer thau shingles, the heat and moisture of the climate converting the metal red oxide of copper; iron nails decay there very fast from the sans cause
$24 a$.
Table I. of Thickness of Copper Sheets

mber of wire gauge ight of one foot 1 uper. in pounds - $\}$	${ }_{1}^{1} 1$	2 139	1275	4 $11 \cdot 6$	5 101	6 $0 \cdot 4$	7 $8 \cdot 7$	8 79	9 $7 \cdot 2$	10 63
nioer of wire gauge ight of ono fort? uper. in pounds - j	$\begin{aligned} & 11 \\ & 5 \cdot 8 \end{aligned}$	$\begin{aligned} & 12 \\ & 5.08 \end{aligned}$	13 $4 \cdot 3.4$	$\begin{aligned} & 14 \\ & 3 \cdot 6 \end{aligned}$	$\begin{gathered} 15 \\ 3.27 \end{gathered}$	16 2.9	$\begin{gathered} 17 \\ 2 \div 62 \end{gathered}$	18 $2 \cdot 1.5$	$\begin{gathered} 19 \\ 197 \end{gathered}$	$\begin{aligned} & 20 \\ & 1.78 \end{aligned}$
* nber of wire gauge Thate of one fout) por. in pounds $-f$	21 1.62	22 145	23 1.3	$\begin{gathered} 2.1 \\ 1 \cdot 16 \end{gathered}$	$\begin{aligned} & 2 \% \\ & 1.01 \end{aligned}$	$\begin{gathered} 26 \\ 0.9 ? \end{gathered}$	$\begin{gathered} 27 \\ 083 \end{gathered}$	$\begin{gathered} 28 \\ 0.7 .4 \end{gathered}$	29 061 Noler	30 0.68

[^11]2224l. Table II. of the Weight of a mineal. Foot of Round and Square Copper, in l'ounds.

Inches			$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{2}$	$\frac{5}{8}$	$\frac{3}{4}$	$\frac{7}{8}$	1	$1 \frac{1}{81}$	$1 \frac{1}{4}$	$1 \frac{3}{6}$	$1 \frac{1}{2}$	$1 \frac{3}{8}$
Squarc	-		-24	$\cdot 54$	$\cdot 96$	$1 \cdot 50$	$2 \cdot 16$	$2 \cdot 94$	$3 \cdot 84$	$4 \cdot 86$	6.00	7.97	$8 \cdot 65$	10.15
Round	-	-	-188	-424	$\cdot 755$	1•17	$1 \cdot 69$	2.31	$3 \cdot 02$	3.82	$4 \cdot 71$	$5 \cdot 71$	6.79	7.94
Inches	-	-	$1 \frac{3}{4}$	$1 \frac{7}{8}$	2	21	$2 \frac{1}{4}$	23	$2 \frac{1}{2}$	25	$2 \frac{3}{4}$	$2 \frac{7}{8}$	3	
Squaie	-	-	11.77	13.52	$15 \cdot 38$	$17 \cdot 36$	$19 \cdot 47$	21.69	24.03	$26 \cdot 50$	29.08	31.79	$34 \cdot 61$	
Round	-	-	$9 \cdot 21$	$10 \cdot 61$	12.08	13.64	15:29	1703 ${ }^{1}$	18.87	20.81	22.84	$24 \cdot 9$	$27 \cdot 18$	

The table given in Hurst's Handbook, page 82, is a slight increase on the above; from that work, page 85, the following tablc has been derived.
2224c. Tabte III. of the Weight of Copfer, per supfrficial foct, in Pounds.

Thickncss -	$\stackrel{1}{16}$	$\frac{1}{8}$	${ }^{3}$	$\frac{1}{4}$	5	$\frac{3}{8}$	$\frac{7}{16}$	$\frac{1}{2}$
Weiglit - -	2.891	5.781	8.672	11.563	14.453	17.344	$20 \cdot 234$	$23 \cdot 125$
Thickness -	$\stackrel{9}{16}$	5	$\frac{11}{16}$	$\frac{3}{4}$	$1{ }^{13}$	$\frac{7}{8}$	$1{ }^{13}$	1
Weight - -	26.016	$28 \cdot 906$	31.797	34-688	37.578	$40 \cdot 469$	43.359	$46 \cdot 250$

2224d. Solder for copper, iron, and brass, is composed of an alloy of zinc and copper for perter an alloy of tin, lead, and bismuth. Copper is a metal too soft to use ver: much in decoration, but it goes well with brass, in inlay, incrustation, or bands. tinned copper bowl where the ground is cut away and the pattern left is a good exampl of work.

2224e. Wetterstedt's patent metal should be laid by a good plumber. The flats are forme with rolls and drips similar in every respect to lead, but the latter should be formed wit a gradual descent. The rolls need not be more than 1 to $1 \frac{1}{4}$ inch diameter, tapered at th ends, and brought close up to the edge of the drip. Circular and sloping roofs may : laid either with rolls or welts, the ends of the sheets being joined by a welt or overlap! 6 inches. The metal should be laid free, and nails avoided as much as possille, but used they should be of wrought copper. Soldering is to be avoided, but to secure th metal as against an upright face, a solder dot over a screw is the best means to adopt.
2224f. Muntz's metal is used as a coating for iron vessels under water; to prevent gal vanic action a band of vitreous sheathing is attached for some distance below and abor the water line. This sheathing consists of small plates of iron covered with a preparatic of glass, and is intended to be an anti-fouling as well as a protective agent.

ZINC.

2224g. The common sheets in general use are 12, 14, 16, 18, and 20 ounces to the for superficial; and as 18 thicknesses of 16 ounces to the foot are half an inch thick, ti following show the thicknesses of the different weights:-

Plates or sheets of 10 ounces to the foot are 0.01786 inch thick.

12	-	0.02083	$"$
14	-	0.02430	$"$
16	-	0.02777	$"=\frac{1}{36}$ of an inch.
18	-	0.03125	$"$
20	-	0.03472	$"$

It is employed for water-cisterns and baths, rain-water pipes-in short, for almost : purposes where lead has been hitherto employed. Latterly it has been formed into sis bars for skylights and ornamental sashes; for which purposes, strength excepted, it superior to iron, as not being liable to rust, and loosen the putty and glass. It is, in erc respect, equal to copper, and not more than one-third the cost of it. The discovery of t electro process was said to have introduced the application of zinc to cast and wroyg iron, so as to prevent its oxidation or rust, but such has not been the case (see galvaniz and zinked Iron).

224h. Ahout 1861 , the Vicille Montagnc Zinc Mining Company took steps to improve mode of laying zinc roofs, and to prevent the use of thin gauges of sineet zine, which unfit for the purpose. T'his Company recommend that for roufs ard Aats on boards garge thimer than No. $1: 3$ be used : a medium thickness, No. 14, for roofs, flats, and ters: for best woik and for roofs without boards, Nos 15 or 16 . The Company is paring thicker zinc, Nos. 17 and 18, principally for gutters. Steel cut gauges notched roonng numbers only, are supplied whereby to test the thickness. The weight of 13 gauge is 19 oz .10 drs. ; No. 14 is 21 oz .13 drs ; No. 15 is 24 oz .; and No. 16 is oz 3 drs., per square foot.
:224i. Good zinc, properly laid, has been proved by long experience in France, Pelgium, rmany, and Italy, to be a secure, durable, and economical covering. No detrimented cts from any particular climate are to be feared, so that care be taken to adopt the per mode of laying, and to select the proper gauges, of the best quality of zinc. Even id zinc badly laid will prove a failure. Screws or embossed holes on the surface of good : work are not requircd. As the prescribed mode for laying zinc, illustrated by diains, can be obtained on application to the agents cf Devaux's Vieille Montagne Zinc mpany, and to the agents for the supply of the lmproved roofing zinc, we do not sider it necessary to describe it here in detail.
'224k. Slamped ornamental zinr, for dormers, Mansard roofs, vanes, finials, moulding, enrichments, has becn used on the Continent for many years with good effect. In don it is hardly known, but has been employed latcly at the Charing Cross Hotel; at Langham Hotel; and at No. 114 Piceadilly. 'The steeple of Ripple Church, Kent; Victoria Railway Station, Pimlico; and many other public and private buildings ughout the kingdom, now show the employment of this uscful material.
$224 l$. Perforated zinc for various sizes of perforations or in patterns, is extensively emed in filling up squares in sashes, or panels in partitions, to assist ventilation by breaking furce of the current of air.
iuc has been noticed in paragraphs 1792 to 1797.

BRASS.

2.24m. Brass is a metal which has bcen adopted very widely in the last thirty years, in rogress, for the decoration of public buildings, churches, and houses. The feeling of ess, which the special smootbness and polish of brass calls for in design, requires isludy; the rounded contours, with great delicacy in the curves, and fine detait, some almost imperceptible, is what the skilled turner knows how to give to the work. Hesticks, chandeliers, di hes, fire-irons, fenders, des s, balustrades in sereens to ehoirs hapels, as in Belgium and Holland (the last having a very ich and teautiful effect); , desk rails. lecternc, sepulchal brasses, arrangements for lighting, are among the purposes for which this material is employed. Inferior brass turns nearly black by moke of towns and chemical vapours, but good brass only requires moderate care to it louking well.

Pable of the Weight of a superficlal Foot of a Plate of Brass, in Puuns. (Moleswoth, Formulre.)

3 material has been described in paragraph 1790.

Sect. VIII.

GLAZING.

2225. Glazing, or the business of the glazier, consists in fitting glass in sashes, frames, and casements, either in putty or lead. It may be classed under the heads of sashwork leadwork, and fretwork. Glass, as a material, has been already described in Cbap. II. Sect. XII. of this book.
2226. The tools necessary for sashwork are-a diamond, polished to a cutting point, and set in brass in an iron socket, to receive a wooden handle, by which it is held in a cutting direction. The top of the handle goes between the root of the forefinger and middle fiager. and the under part between the point of the forefinger and thumb. In general, there is a notch on the side of the socket, which should be held next the lath. Some diamondshar nore cuts than one. Plough diamonds have a square nut on the end of the socket next the glass, which, on running the nut square on the side of the lath, keeps it in the cutting direction. Glass benders have their plough diamonds without long handles, as they camnot make use of a lath in cutting, but direct them by the point of their middle finger: The ranging lath should be long enough to extend beyond the boundary of the talle of glass. hanging of glass is the cutting it in breadths, and is best done by one umbterrupted cut from one end to the other. A short lath is used for stripping the square to suit the rebate of the sash, as in ranging they are generally cut full. A square, for the more accurate cntting at the right angles from the range. The carpenter's chisel is usec in paring away some of the rebate of the sash when the glass does not lie so flat as to allow a proper breadth for front putty. The glazing knife is used for laying in the putty on th rebates, for bedding in the glass, and finishing the front putty. A bradding hammer is mad with a head in the form of a small parallelopiped, with a socket for the handle, using it a an obtuse angle from the middle of one of its sides. Thie square edges of the head driv the brads in a horizontal direction, and with this toul there is less liability to accident that with any other. Some use the basil of the chisel for the purpose. Brass points are con sidered the best for bradding; small cut brads are also used. All new works should 1 , lradded, to prevent the glass being moved out of its bed. The duster is a large brush fo brushing the putties, and taking the oil from the glass. The sash tool is used wet, f taking the oil from the inside atter tho back puttics are cleared off. The hacking knife for cleaning out the old putty from the rebates where squares are to be stopped in. Tl use of the glazier's rule needs no explanation: it is 2 feet long, doubling in four differet pieces.

2226a. The putty in which the glazier beds the glass is of four sorts. Soft putty, whic is composed of tlour, whiting, and raw linseed oil; hard putty, composed of whiting an boiled linseed oil; harder putty, the same ingredients as the last, with the addition of small quantity of turpentine fur more quickly drying it; hardest putty, composed of o red or white lead, and sand. The first of these putties is the most durable, because forms an oleaginous coat on the surface, but it requires a long time for drying. The lat sorts are apt to crack if not soon well painted, and the hardest of them renders it difficu to replace a pane whem broken; hence it is altogether unfit for hothouse and greenhou: work. Probably the best manner of fixing glass and glazed frames in stone mulliu is with a mixture of Bath stone dust and linseed oil, made up similarly to putt Its clasticity allows of any slight settlement if the work be new, and it is more of waterproof cement than Portland, as it is not nearly so liable to crack: that cemel without a large proportion of sand, will almost invariably burst glass or stone after few months; and it also stains freestones, Corsham Down stone especially, giving it t appearance of having been burnt. (Builder, 1864, p. 796.)

2226b. To remove glass from old sashes, a mixture of 3 parts of American potash w 1 part of unslaked lime, laid on both sides with a stick, and allowed to remain for tweul four hours, will soften the putty enough to cut out casily. This misture will also take paint, and even tar.

2226c. Many systems of glazing large roofs have been introduced of late years, eit supposed to be an improvement upon the other, and recommended ly the designers billiard-rooms, picture-galleries, dining-rooms, concert-halls, yards, large span roofs, \&
Braby's patent glazing; glass set free, allowing expansion and contraction, and precludi breakage.
Prown's patent system of glass and iron roofing. No putty, zinc, galvauised iron, cil iron, india-rubber, felt, asbestos, or ot her perishable material.
Causley's system of glazing without putty, 1881.
we's dry glazing ; simple and cheap.
immond's patent roof-glazing; sash-bars in iron, steel, zine, or wood.
,ver \& Co.'s simplex glazing. No iron, zine, or putty. Lead strips on wood-bars, \&e. liwell's patent perfection system of imperishable glass roofing. No putty used.
frey's patent system of glazing, guaranteed air and water tight.
inson Brothers \& Co.'s patent imperishable glazing.
ckenzie's patents, by the British Patent Glazing Company (Limited). No zinc used;
a lead cushion orer an iron bar.
llowes and Darby's eclipse glazing ; tin-lead bar, V section.
adle's Acme glazing.
ndle \& Burrow's indestructible glazing. Wood sash-bar, the glass corered on it by a wood capping.
elley's patent standard system of glazing, using glass up to 10 feet in length, with his patent bars placed two feet apart.

- Pennycook patent universal system of glazing without putty.
ch system must be examined for its peculiarity.
2225d. The Transparent Wire Wove Roofing Company (Limited) has manufactured a bstitute for glass, made in sheets 10 ft . by 4 ft ., at $6 \frac{1}{2} d$. per foot. Much is said in our of it, and for many purposes it may work in usefully as a temporary material. 2226 . The diminution of light by passing through various sorts of glass has been en thus: British polished plate, 13 per cent. ; rough cast plate, 30 ; rolled fluted plate, flutes to the inch, $53 ; 32 \mathrm{oz}$. sheet, 22 ; common window glass, about 10 ; ground ass, trom 30 to 60 ; opal globes, from 50 to 60 ; green, purple, and ruby glass, 82 to 89 ; d porcelain transparency, over $97 \frac{1}{2}$. Light decreases in the ratio of the square of its stance from its sourees.

2227. Lradwork for fised lights is used in ecrlesiastical buildings, often in inferior ices, and frequently in country buildings. Frames made with crosstars recoive thene hts, which are fastened to saddle bars. Where openings are wanted, a casement is troduced of wood or iron. Sometimes a sliding frame is used, particularly for house ndows. Plain, painted, and stained lead lights have of late years been largely introced in the so-called "Queen Anne " designs, and adapted for blind or transom, fanlight, or panel, or window.
2228. The glazicr's vice is for preparing the leaden slips called cames with groores, \&c., fit them fur the re eption of glass. The German vices are the best, and turn out a riety of lead in different sizes. There are moulds belonging to these vices in which bars lead are cast; in this form the mill roceires them, and turns them out with two sides rallel to each other, and about $\frac{3}{8}$ of an inch broad, and a partition connecting the two les together, about $\frac{\frac{1}{6}}{6}$ of an inch wide, forming on each side a groove near $\frac{3}{16}$ by $\frac{1}{8}$ of an ch, and 6 feet long. The setting bnard is that on which the ridge of the light is worked, al divided into squares, and struck out with a chalk line, or drawn with at lath. which ree to guide the workman. One side and end is squared with a projecting bead or let. The latterkin is a pieco of hard wood pointed, and so formed as to clear the groove the lead, and widon it, for the more readily receiving the glass. The setting knife is a ade with a round ond, loaded with lead at the buttom of the blado, and having a long uaro handle. Tho square end of the handlo serves to force the squares honse tight in c lead; boing loaded with lead, it is of greater wei,ht, and also cuts off the ends of the ad with greater ease, as in the courso of working those lights the lead is always longer an is nccessary till trimmed.
2229. Tho resin box contains powdered resin, which is put on all the joints previous to Idering. Clips are for holding the irons. All the intersections are soldered on both les except the outside joints of the outer side, that is, where they come to tho outer colge. hese lights should be cemented, which is dono by thin paint beiug run along the loud urs, and the chasm filled with dry whiting. After it lass stond a short time, a small mantity of dry red or white lead is dusted over it, which will enable it to resist tho enthor well.
2222 a. Frestwonk is the ornamental pat of loadht work, and consists in working ground or stained las into different patterns and deviers, as may loe sten the old stainerl glass windows. Tho loads used untul - middluof the sorentoenth century are nearly of one uform width, and are innch narrower in tho leuf than 0 ("mmon inndern leads. That this was the cise, can proved not only by the existence of the origimal leads omselves, hat mare sat isfactorily perphips l,y the hanck ". n drawn upon the ghass, with which the glass painters
 re accustomed sanctimes to produce the cifcet of leads without unneesssarily cutting
the glass. A in fif. 8cid. represents an ancient lead of the usual width; B its section, consisting of the leaf, a and b, and the core c. C is the section of a German lead of the early part of the 14 th century. D is a piece of modern fret lead of the ordinary width, and which is now considered (1847) as being very narrow; and \mathbf{E} its section. The process of compressing the lead between rollers to the proper dimension makes them more rigid than the old leads. It is the practice at the present day to surround each glazing ranel with abroul lead, that is, a lead three-quarters of an inch broad in the leaf, to strengthen the work (page 27.). Leads somewhat narrower than these were very extensively employed. An enire window, at Stowting Church, Kent, probably of the early part of the reign of Edward IV., wis leaded with leads as F. 'The other lead, G, is of the early part of the reign of Henry VI., and is from Mells Chureh, Somersetshire, where similar lead is commonly used. This mode of strengthening the lead without increasing its width was not confined to the d corated period. Both these specinens had all the ajpearance of being cast in a monld. One of the faces in each is narrower than the others; these were placed outside, and the differen e probably arose from decomposition of tise metal. A still narrower lead may he oceasionally met with in heraldry and other minute mosaic work of the 15 th and 16 th centuries. It is hardly necessary to obscrve that the greater the number of leads enlployed, the weaker individually may they be made (page 259-61.). The width of the leads must be proportionate to that of the lines usually painted on the glass, for the lader outlines will easily be detected if they are much stronger than the painted ones. The effect of the increased width of modern leads, E, althongh so trifling, is very perceptible.

2229b. Saddle bars in ancient windows will be found to be usually placed from 8 to s inches apart, which seems to be the most agreeable distance, though one of 6 inches doe not appear too little in some cases. 'Ine great object is to avoid, as much as possible causing the light to appear as if it were divided into a number of square compartmeus, l, making the height too nearly the width of the glass. Amongst the advantages resulting from the use of saddle bars at short intervals, is the opportunity it affords the glazier o carrying a horizontal lead across the light immediately in front of each saddle bar, the opacily of which hides the lead. This method of concealing lead work was carried t. stich perfection during the first half of the 16 th century, that a person ignorant of i would find it difficult to conceive how some of the works of that period were constructed.

2299;. Iron stendaids or stanchicons, in ancient windows put through the saddle bar: should be retained in pattern windows, which they improve, and do not appear to be ou of place in picture windows whenever they do not happen to pass inmediately belind t : had of the principal fignre. They scemalso on the whole to improve the elfect of th architecture from without. (Winston, Inquiry into Style in Glass Puinting, Svo. 1847.)

2229 d. It is stated that at Cologne Cathedral the glass is strong; the different pice are joined together with lead. and soldered with tin, both inside and outside, which give the whole great strength. The panes are fastened upon iron franes, which are agai fastened upon rods. In the interior the panes are serewed upon iron bars, halt an in thick, which are let into the masonry.
2230. In London a large portion of the glazier's miness consists in cleaaing windows
2231. Glazed partitions formed of wood, or of iron frames with the lower farels filh in with slate, are now very usual in warehouses, banks. and counting-houses. If sound desired not to pass through such fittings, they must be glazed with extra thick glass; b double sheets or squares, placed about half an inch or more apart, and carefully puttied, best. This method will also conduce to the warmth of the room. Double windows the fronts of houses are common fittings to effect both the above purposes.
$2231 a$. Glass has been introduced for a varicty of building pmposes. Thus, Lloydan Summerfeld's patent crystal window bars, for windows, shop) fronts, and cases, are 1 uncommon. They are fitted with arched heads and spandrils of glass, having pattern silvered or gilt, on a coloured ground. Glass tiles and slates are a useful auxiliary th roof where a small modicum of light is required. Lockhead's perforated glass ecntila can either be set in the sash, or fixed ontside of it in a frame for the whole width of opening, air being admitted by moving the sash. For the like purpose are such inventic as Moore's louvre ventilators in a sash pane; Buyle's dranghtless window ventilators, hei a fine gauze of wire set in a pane of glass, and used with or without a glass cover ; and circular glass "revolving" ventilator. Glass baluzters and handruils; pilasters chimneypieces; door handles, knobs, and plates; mirror frames; trays for dairies; cristal and opal letters; Pratt's patent proerss of gilding by precipitation (1886), are amo other usefu! inventions in this material. See Pavement Lighte, par 22951.

2231b. Coloured or stained glass. We can on'y here name the varietic:. There are th modes of colouring glass: I. Pot metal glass, in which the colour is mixed up with molten mass. Il Flanhed, covered, or coated gla s, formed by uniting a thin layer coloured glass with another layer, either of a different col ur or colourless. III. Pain glass, the white substance being painted on, and then the eolour or pigment hurit The colouring materials are in all cases metallic substanees. Such are the methods which all coloured glass windows are produced.

2231c. For ornamental purposes, besides coloured glass, glass may have a ground sufface, hicl is obtained by grinding it with a stone, or by the use of fluoric acid. Embossed 1ss, which permits the application of devices, according to the fancy of the designer or tention of the manufacturer, is effected by covering the square of glass with a varnish, cept where the device is intended. An acid is then poured on which eats away the covered glass for a small depth. The varnish is then cleaned off, and the general surface ground as usual. Its imitation is obtained by covering the plate with a varnish, a lace stencil pattern placed on it, then dusted over with a colouring matter in the state of fine swicr, and the plate thus treated sufficiently heated to vitrify and fix the dusted varnish the glass. Mestrs. Chance, and other manufacturers. sell various enamell d stencilled itterns, as white enamell d, enamilled and flocked, embossed repeated pattern. stuined enamelled, id double etched gluss, self shadowed glass, 1 atent polychromatic glass, printed glass, stumped rolou s, and many otlier kinds, all which are better seen at the factorics than deseribed. 2231d. The compressive strength of glass, that is, its resistance to a force tending to ush it, is about $12 \frac{1}{9}$ tons per square inch. This is nearly equal to one quarter the re gth of cast iron. Glass has three times the specific gravily of iron. In the form of irs, a favourable shape for developing a highly tensile strength, one ton per square inch - area is the highest amount to be assumed for it.

2?31e. Mosaic work. This durable manner of deeoration in glass, requires a short rice. The Roman mosaic is composed of pieees of enamelled glass, thus rendered opaque, inctimes ealled smallo and sometimes paste, made of all kinds of colours and of every difrent liue. For large pictures they take the form of small cakes. For small works they e produced as threads, varying in thichness from that of a piece of string to the finest oton thread. The Venetian musaie picturs are formed of pieces of very irregular shapes id sizes, of all colours and tones of colours; the ground tint almost invariably prevailgis gold. The manner of execution is always large and coarse, and rarcly approaches y neatness of joint or regularity of bedding. Opus Greranimm consists in the insertion, to groores eut in white marble to a depth of about half an inch, of small cubes of these loured and gilded smulto, and in the arrangement of these forms in such geone'rical mbination as to composs the most elaborate patterns. It was customary to combine the nds of this mosaic work with large slaths of Serpentine, Porphyry, Pavonazzetto. and -er valuable marbles. and to use it in the decoration of ambones, cancelli, \&c.; its use ternally was comparatively rarc. The hexagon, triangle, square, and octagon, form the 'al baves of most of the specienens of this ingenious art to be found in laty. Patterns accumuliting intricacy are sen at Palermo, and at Monreale, Illustra ions in colour - given in the useful work on Mosaies, by M. D. Wyatt.

S231f. Coloured enamels are made of a vitroous phaste (or glass), to this are added other neral substances, which, when properly prepared and tused together, im; art to the paste deusity and extreme hardness, and also its colour; the better the innmufacture, the more isfactory the appearance and the greater the durability of the mosaic work. In an peffect manufacture, the mosaic is liable to be injured by damp, smoke, and all atmoeric claanges; when well produced, they can be made to give precisely the same eflect the painting.
2.31g. Gull and silcer enamels were introduced: these are made of the precious inetals, t in such thin slecets that their use is comparatively inexpensive. The process is a Ficult one, for, toproduce tone gold and silver chancls, great knowledge and cape rience neecssary. On a ground of thick glass or enamel, accurding as it is desir d to render -gold enamel transparent or opaque, or to impant to it a wam or variegated colour, re is laid a leaf of gold or silver, which is attached ;rinempally by the action of tire ; "1 a film of the purest glass is spread over it, and this may either be perfectly colourless of any tint that may be required. Wheu well manufactured, these thin layens, after "g fused, beceme perfectly mited with cach other, and fom a homogeneons body, and metal is for ever protected against all possibolity of injuly from any eanse except actual lence.
231h. Stevens has produced a new hiod of glass mosaic, excented at ahout one third the -e of the ancicmt manufacture of this kind. The ghoss is stained or gilt amb ther methorl ondpod for many purpuses. Messrs. Rust are working in groh, silver, and chamed sien of their own insention; and Dr. Salvinti umploys his "indestrustible system of intion enanel-musaic, in works, in a conparatively inexpensive and expeatitions Mer." At the Wolsey tomblhonse, at Wiudsor, the cintire ceriling, comsisting of 2,100 - was denanted in the space of ten months, inclualing the tine of the transit of the
 amployed at St. Duals ('atludiul, for the ligure of the prophet l-aiahl, coveritge 2.50 Whint was exeenteal mul lixed in two months, at the price of 600 . (Lecture rend ut I de, ley A. Salvinti, 186:5.)
2310. Thie erments nisul ate of thece sorts. The first, for large tesserae ill forming a is composed of pitel, luxed with a black eartlo. The encomed, for stones of a mide
dling dimension, is made of tufa and oil. The third, for the more delicate mosines of pieces of glass, is made of white of line, pounded bricks, gum andragan, and the white of eggs. The ancients are said to have used 1 part of slaked lime and 3 parts of pounted unarble, made up with water and white of egg. But as this is eonsidered to hardeu twe quickly, a mixture of 1 part of slaked lime, and 3 parts of powdered travertine stone, mixed IIP with linseed oil, and kept stirred every day, is used, adding oil as it dries. The mas is ready sooner in warm weither than in cold, varying from 20 to 30 days, when it i : like a smooth ointment. For the larger works, Keene's, Portland, or other similar cement: might be used.

Sect. 1 X .

PLASTERING.

2232. In the finishing of our dwellings, the decoration owes much of its effect to th labours of the plasterer: it is in his department to lay the ceilings, and to wive, by meai of plaster, a sinooth coat to the walls, so as to hide the irregularities left by the brieklayi and mason, and make them sightly and agreeable. He also, in the better sort of huilding furnishes plain and deeorated mouldings for the cornices and eeilings; and in the extern. parts, where stone is expensive or not to be procurcd, eovers the exterior walls with stuer or other eomposition imitative of stone.
2233. The plasterer's tools are-a spade or shovel of the usual description; a take with tr or three prongs bent downwards from the line of the handle, for mixing the hair and mort together; stopping and picking out tools; rules ealled straight edyes; wood models; and trore: of two sorts and various sizes, namely, the laying and smoothing tools, consisting of A pieces of hardened iron, about 10 inches long, and $2 \frac{1}{2}$ inches wide, very thin, and grom to a semicircular shape at one end, but square at the other. Near the square end the back of the plate a small iron rod is rivetted, with two legs, whereof one is fixed the plate, and a round wooden handle is adapted to the other. All the first coats of pl: tering are laid on with this tool, as is also the last, or setting, as it is teclmically call The other sorts of trowets are of three or more sizes, and are used for gauging the fine st and plaster for cornices, mouldings, \&c. The length of these trowels is, the largest aln 7 inches in length on the plate, and the smallest 2 or 3 inches: they are of polisl steel, converging gradually to a point, with handles of mahogany adapted to the heel or brr end with a deep brass ferrule.
2234. The stopping and picking out tools are of polished steel, of various sizes, abos or 8 inches long and half an inch broad, flattened at both ends, and somewhat rome They are used for modelling and finishing mitres and returns to coruiees, as also for ing up and finishing ornaments at their joinings. There is also used a small instrum. which is a piece of thin fir 6 or 7 inches square, called a hawh, with a handle vertieal to for holding small quantities of plaster.

22:35. The composition used by the plasterer is a groundwork of lime and lair, which, for the finish, a coating of finer material is laid. The sorts of it are various; for instance, white lime and hair mortar on bare walls; the same on laths as for partiti; and plain ceilings ; for renewing the insides of walls; rougheasting on laths; plastering brickwork with tinishing mortar, in imitation of stone work, and the like upon laths. cornices and the decorations of mouldings, the material is plaster of Paris, one whieh 1 litates the giving by easts the required form and finish to the superior parts of his wh The phasterer uses it also for mixing with lime and hair, where the work is requires dry and set hard in a short time. For inside work, the lime and hair, or course stul prepared, like common mortar, with sand; but in the mixing, hair of the bullock, olta from the tanners' yards, is added to it, and worked in with the rake, so as to distribu t over the mass as equally as possiblc.
2236. What is called fine stuff is made of pure lime, slaked with a small quantit if water, and afterwards, without the addition of any other material, saturated with w ${ }^{\text {" }}$, and in a semi-fluid state placed in a tub to remain until the water has evaporated. "11 some cases, for better binding the work, a small quantity of hair is worked into the position. For interior work, the fine stuff is mixed with one part of very fine wald sand to three parts of fine stuff, and is then used for trowelled or bastard stucco, which in s a proper surface for receiving painting.
223.3. What is called gauge stuff is composed of fine stuff and plaster of Paris, in 1 portions according to the rapidity with which the work is wanted to be finished. A it four-fift hs of fine stuff to one of the last is sufficient, if time can be allowed for the sel This composition is clicfly used for cornices and mouldings, run with a wooden m d. We may here mention that it is of the ntmost importanee, in plasterers' work, that "e lime should be most thoroughly slaked, or the consequence will be blisters thrown it upon the work after it is linished. Many plasterers heep their stuffs a consid te
seriod before they are wanted to be used in the building, by which the ellanee of blistering s much lessened.
2238. When a wall is to be plastered, it is called rendering; in other eases the first 'peration, as in eeilings, partitions, \&e., is luthing, nailing the laths to the joists, quarters, or battens. If the laths are oaken, wronght iron vails must be used for nailing them, but sast iron nails may be employed if the laths are of fr . 'The lath is made in tbree and four ivot lengths, and, according to its thickness, is ealled single, something less than a quar:er of an inch thick, lath and lalf, or double. 'I'be first is the thinnest and cheapest, the iecond is about one-tbird thicker than the single lath, and the double lath is twiee the :lickness. When the plasterer laths eeilings, both lengths of laths should be used, by whieh, in nailing, he will have the opportunity of breaking the joints, whieb will not only help in unproving the general key, (or plastering insinuated behind the lath, which spreads there beyond the distance that the lathis are apart,) but will strengthen the ceiling generally. The thinnest laths may be used in partitions, because in a vertical position the strain of the plaster upon them is not so great ; but for eeilings the strongest laths should be employed. In lathing, the ends of the laths should not be lapped upon each other where they terminate upon a quarter or batten, whieh is often done to save a row of nails and the trouble of cutting them, for sueh a practice leaves only a quarter of an inch for the thickness ot the plaster; and if the laths are very crooked, which is frequently the ease. sufficient space will not be left to straighten the plaster. (2246b.)
2239. After lathing, the next operation is laying, more commonly ealled plastering. It is the first eoat on laths, wben the plaster has two coats or set work, and is not scratched with the scratcher, but the surface is roughed by sweeping it with a broom. On brickwork it is also the first eoat, and is ealled rendering. The mere laying or rendering is the inost economical sort of plastering, and does for inferior rooms or eottages.
2240. What is ealled pricking up is the first coat of three-eoat work upon laths. The material used for it is coarse stuff, being only the preparation for a more perfect kind of work. After the eoat is laid on, it is scored in diagonal directions with a scratcher (the end of a lath), to give it a key or tie for the coat that is to follow it.
9241. Lath layed or plastered and set is only two-coat work, as mentioned under laying, the setting being the guage or mixture of putty and plaster, or, in common work, of tive stuff, with which, when very dry, a little sand is used; and here it may be as well to mention, that setting may be either a second eoat upon laying or rendering, or a third eoat upon floating, which will be hereafter described. The term finisbing is applied to the third coat when of stueco, but setting for paper. The setting is spread with the smoothing trowel, which the workman uses with his riglt hand, while in his left he uses a large Alat-formed brush of hog's bristles. As he lays on the putty or set with the trowel, he draws the brush, full of water, backwards and forwards over its surfaee, thus produeing a twlerably fair f ee for the work.
2242. Work which consists of three coats is ealled floated: it takes its name from an hustrument called a float, which is an implement or rule moved in every direction on the plaster while it is soft, for giving a perfeetly plane surface to the sceond eoat of work. Floats are of three sorts: the kund foot, which is a short rule, that a man by himself may ase; the quirh foat, which is used on or in angles; and the Derby, which is of such a ength as to require two men to use it. Previous to floating, which is, in fact, the mperation of making the surface of the work a perfect plane, such surface is subdivided -u several bays, which are formed by vertical styles of plastering, (three, four, five, or even ten feet apart, formed with great aceuracy by means of the plumb rule, all in the same hame. 'These styles are called screrds, and being earefully set out to the coat that is applied retween them, the plaster or floating laid on between them is bronght to the proper surace by working the float up and down on the screeds, so as to bring the surface all to the anne plane, which operation is termed filling out, and is applicable as well to ceilings as to walls. This branch of plasteriug requires the best sort of worknen, and great eare in the exrention.
224:3. Bastard sfucco is of three coats, the first whereof is roughing in or rendering, the xeend is floating, as in trowelled stuceo, which will be next described; but the finishing *at contains a small guantity of hair or white sand. This work is not hand floated, and lie trowelling is done with less labour than what is denominated trowelled stuceo.
2.241. Trourleal stuccn, which is the lest sort of plastering for the rereption of paint, is "orned on a floated cont ol' work, and such floating should lee as dry as possible before the Auceo is applied. In the last proeess, the plasterer uses the hand float, which is made of a pirce of half-int deal, alout nine incless lang and three incles wide, planed smooth, with ts lowers edges a little rounded off, and having a handle on the upper surlaec. The groncud 2o be stuceod being mule as smocth as po-sible, the stuceo is suread unon it to the extent of four or five fert square, aud, moisteuing it continually with a brush as he proeceds, the vorkman trowels its nuface with the float, ulternately sprinkling and rubbing the face of lie stucco, till the whole is rehlued to a fine ewen surface. Thus, ly small potions at a
time, he proceeds till the whole is completed. The water applied to it has the effect of hardening the face of the stucco, which, when finished, becomes as smooth as glass.
2245. From what has been said, the reader will perceive that mere laying or plastering on laths, or rendering on walls, is the most common kind of work, and consits of one coat only; that adding to this a setting coat, it is brought to a better surface, and is two-coat work; and that three-coat work undergoes the intermediate process of floating, between the rendering or pricking up and the setting.

2245a. This plain plastered surface has received an improvement in a method of stamping or incising it, while wet, the invention, in 1857, of Mr. Benj. Ferrey, architect. 'It is well known that the external rough-casting on old timber houses was stamped or wrought in small devices, known by the term pargetting; but it never assumed the importance of extensive wall decorations. The plan now proposed is to impress the common stuceo with geometrical or other forms, and applied according to taste, either under string courses, around arches, in spandrils, soffites, or in large masses of diapering ; and texts may be imprinted on the plaster instead of teing simply painted on the walls. If colour be desired, it can be effected by mixing the desired colour with the coat forming the groundwork, then by laying the stencilled pattern against it, and filling in the solid portions of the device with the ordinary stucco or plaster." The process does not pretend to do more than enliven wall surfaces, but for this purpose it is very effective. Whippingham Chureh, in the Isle of Wight, is decorated in this manner, with deviees in different colours.
2246. Ceilings are set in two different ways; the best work is where the setting coat is composed of plaster and lime putty, commonly called gange stuff (2237). Common ceilings are formed with plaster without hair. as in the finishing coat tor walls set for paper. The deflection of $\frac{1}{40}$ th of an inch for each frot in length is not injurious to ecilings; indeed, the nsual allowance for settlement is about twice that quantity. Ceilings have been found to settle about four times as much without causing cracks, and have been raised back again without injury. (Barlow, p. 179.)

2246a. In Dublin, the designations in plasterers' work are different to those we have named above. Work to ceilings is deseribed as "Lath scratehed, floated, and coated, while to walls it is described as "scratched, floated, and coated "Skimming, to plasterers work, is a very thin coat of white (i.e. lime) put on float work to smoothea it, and to leave a clean face; coated is the term for better work of the same character.
2246b. Hitchin's fireproof plaster appeared about 1877; it is valued for its simplicity economy, and facility in working. The fibrous slab plastering is always dry and read! for fixing. The slabs on a wire base protect ceilings, walls, and woodwork fron fire Casings on wire base protect iron and wood girder, columns and such like. Puggin slabs are used for prevention of sound. Wilkinson and Co's fibrous plaster slabr ar intended for lining walls and ceiliags, and for fixing under slating; also to paritiois an under floor-boards for deadening stiond.
2246c. Johnson's patent rolled firpronf wire lathing is now occasionally used as a sulsti tute for wood laths. It is a foundation for fire-resisting plater. His woren uire and irn fireproof partition wall is intended to supersede the ordnary stud and brick partitions, an is applicable to roofs. Metal luths, of thin sheet iron, by Edwards's patent, are for use : fire-resisting ceilings, partitions, and doors. Wirewnrk, in place of lathiag, for formin ceiliugs and other plaster surfaces, patented in 1841 by L. Leconte, had been previousl adopted in the buiding of the Pantechnicon, near Belgrave Square.

2246d. Nickson and Waddingham have patented a slate ground fir plaster, by using, it stead of laths, those slates which do not urn out in the quarries sufficiently wide for size roofing slates; an immense nunber of them being necessarily thrown acide daily, althoug of the best quality. The slates are fixed $\frac{1}{4} \mathrm{in}$. apart ; the piater to be $\frac{3}{4} \mathrm{in}$. thick, of we haired stuff, which keys itself between the slates; they run from 12 to 7 in . ong an upwards. The system was worked about 1862 at Manchester
2247. Pugging is plaster laid on boards, fitted in between the joists of a flocr to prevel the passage of sound between two stories, and is executed with a coarse stuff made of lin and hay ehopped into lengths of about 2 inches. Silicate cotton or slag wool, nailed in stal to the under side of the joists of a floor, or against the studs of a partition, acts as a no conductor of heat or cold; it is also fireproof, sound-proof, vermin-proof, and frost-pro One ton of it, one inch thick, covers 1,800 square feet. This material is now greal used; also for protecting exposed iron work. Asbestos millboard is another mater greatly employed for lining partitions, to deaden sound passing through; as well as fireproof purposes.
2248. The following materials are required for 100 yards of render set; viz. $1 \frac{1}{2}$ hu dred of lime, I double load of river sand, and 4 bushels of hair; for the labour, i platet 3 days, 1 labourer 3 days, 1 boy 3 days; and upon this, 20 per cent. profit is usu allowed. For 130 yards of lath plaster and set-1 load of laths, 10,000 nails, $2 \frac{1}{2}$ hundr of lime, $1 \frac{1}{2}$ double load of river sand, 7 bushels of hair; for the labour, 1 plaste

6 days, 1 lal:ourer 6 days, 1 boy 6 days; and upon this, as before, 20 per cent. is ustally allowed.

1 buslicl of Portland or Roman eement will cover, yards super.
1 ditto, and 1 of sand
1 ditto, and 2 ditto - - - -
1 ditto, and 3 ditto - - \quad -
1 cwt. of mastic and 1 gallon of oil
1 cubie yard of ehalk lime, 2 vards of sand, and 3 bushels of hair, will eover 75 yards of render set on brickwork ; 70 yards on lath; or 65 yards plaster ; or zender two coats and set on briek; and 60 yards on lath. Fioated work requires about the same as two coats and set. A bundle of laths and 500 naits will cover about $4 \frac{1}{2}$ yards superficial. Two hundred laths, 4 feet long, are required for a square. A bundle of laths eontains 500 fiet nominally.
2249. In the country, for the exterior coating of dwellings and outbuilaings, a speeies of plastering is used called roughcast It is elieaper than stuceo or Roman cement, and thercfore suitahle to such purpo es. In the proeess of exceuting it, the wall is first pricked up with a eoat of lime and hair, on which, when tolerably well set, a seeond eoat is laid on of the same materials as the first, but as smooth as possible. As fast as the workman finishes this surface, another follows him with a pailful of the rougheast, with which he bespatturs the new plastering, so that the whole dries together. The rougheast is a composition of small gravel, finely washed, to frue it from ail earthy particles, and mixed with pure lime and water in a state of semi-fluid consisteney. It is thrown from the pail upon the wall, with a wooden float, about 5 or 6 inches long, and as many wide, formed of lialf-ineh deal, and fitted with a round deal handle. With this tool, while the Hlastcrer throws on the roughcast with his right hand, in his left he holds a common whilewasher's brusi dipped in the rougheast, with whieh he brushes and colours the mortar and the roughcast already sprcad, to give them, when finished, an uniform colour and appearanee.
2.219a. Gypsum or p!aster of Paris is largely used in France for the construction of walls, both internally and externally, as well as for rendering them afterwards. We adopt the following method of working it, as explained by G. R. Burnell: "The eoarser hinds of plaster are used for rendering; the finer qualities for ceilings, eorniees, and deeorative works. For walls, the plaster must be gaugcd stiff for the first eoats, and more fluid for the setting eoat. For cornices worked out in the solid, the eore is made of stiflly gauged plaster, whieh is floated with finer material, and lastly finished off' with plaster laid on by hand, about the eonsistence of cream. Iraetice only ean ascertain the precise degree of stilliness to be given, as every burning yields a different quality of plaster. When walls are to be rendered, they require to he first jointed, and then wetted with a broom. 'The surface is then eovered with a eoat of thinly gauged stuff, laid on with a broom, or at least worked with a trowel in such a manner as to leave sufficient hold for the next eoat. This is gauged stiff, and is laid on with a trowel; it is floated with a rnle, but the face is finished with a liand trowel; the surfaees, however, are never so even, or the angles so mpuarc and true, as in the usual plasterers' work adopted in England. 'The ceilings are lathed about 3 to $.3 \frac{1}{2}$ inehes from eentre to centre, and the plaster poured in from above on to a sort of flat eentering, leaving about an inch for the thickness of plaster; the ceiling coat is added after the centering is removed. 'The better deseriptions are made with laths 4 inches from ecutre to eentre, the spaee between cciling and flour filled up witl fight work, and the under and upper surfaees rendered to reecive the ceiling and tiles."
22196. With gypsunn, only about ${ }_{8}^{3}$ this of the evaporation arises as from ordinary plastering. A series of experiments made in 1850 , proved that the eost of ordinary works need ot exeeed in any sensible propirtion, if at all, those usually ealled "render set;" and hat they are stijetly the sanc as "render float and set." A room was begun and finished is thirty hours, whilst a eommon lime and hair rendering coat would have required, proverly speaking, about a montl. French plaster mnst never be used in any position where noisture is likely to affect it for any length of time. It is very hygronetric, and soon lecnys if k cpt moist. If it be used as mortar, as in brick-nogged partitions, to be covered vor immerliately, a space for its expansion must be allowed. ln lirance, a small space is eft between the wall and partitions; this is filled in by the plastering eoat. The ame observation spplies to floors with plaster phiging, and even to corniees with a large raly of that nisterial, the mitres and retirns being excentel some time after the straight noulding ${ }^{\text {. }}$
2250. In forming the eoves and eornices which are apllied below the ceitings of roons, : Is of the greateat importance to nake then as light ins possible, for the plaster whereof liey are formed is lieavy, and ought not to depend merely on its adhesion to the vertieal nd horizontal surfaees to which it is attached. Ilenee, when cornices run of liuge dinen-
sions, brackoting, as has already been described in the section Joinery (2079, et scq.), must be provided, of the genoral form of the cornice or cove, or other work, and on this the plastering is to be forme I. On this, when roughod out, the work is run with wooden moulds, having zinc or copper edges, so as to give the general outline of the cornice. If eurichments are used in it, they are cast in plaster of Paris, and afterwards fixed with that material in the spaces left for thent to occupy. These enrichments are previously modelled; and from the model a matrix is formed, as for all other plaster casting. Great nicety is required in all the operations relative to the moulding and fixing of cornices, and wost especially that the ornaments be firmly fixed by screws or other means, that they may not lee detached from their places by partial settlements of the building, and cause accidents to the occupiers of the rooms where they are used.
$2250 a$. Selenitic lime was the inrention, about 1836, of General Scott, R.E., who obsersed that limestone capable of conversion by burning into a hydraulic lime, might be able to furnish a good cement by simply allowing a small portion of sulphuric acidgas to pass into the kiln during the kuraing of the lime. The process, since about 1870, is explained as consisting of carefully mixing with the water used in the preparation of the mortar a small quantity of plaster of Paris or gypsum, or green vitriol. The lime may then be ground in an ordinary mortar-mill with the mixture into a creamy paste for three or four minites; the sand, burnt clay, or other ingredients may then be added, and the whole thoroughly gronnd for ten minutes or more. The lime is a good buff in colour With double the usual quantity of sand the tensile strength of the mortar is increased fourfold. It sets rapidly and well, and as "stuff" in plastering it effects a considerable saving in time over that usually made from lime. "Selenitic mortar sares half the lime, is four times as strong, and sets in a quarter of the time of common mortar."

2250b. A rendering plaster, for superseding the use of lime and hair mortar in the plastering of walls and ceilings, has been brought torward by A. G. Barham, of Bridg water. It is stated to be very tough and strong, nut liable to crack or swell, and is appliti without hair, direct to brick walls or lathwork. The surface dries and hardens rapidly, and it c an be painted or papered at once, as there is nothing in the plaster to imjuri rither of the processes. When dry it is of itself a good grey in colour. For outsid, stucco it is also stated to be a safe material, and is likewise free from regctation anc colouring.

2250 c. Adamant cement has last year (1887) been introduced into this country, a Birmingham, from Syracuse, New York, by a company. It is a wall plaster and cement and is manufactured in three qualitics, No. 1, 2, and Chromolith. The two first are user as for ordinary plastering, and the third in pace of the superior Parian cement, at a les cost. As all the bright mineral and regetable pigments can be used with it, flourings mosaics, and mantels are produced; also tiles, marble slabs, terra-cotta, and other article of a similar character. It is very hard; costs but littie more than lime plaster; th room plastered one day can be used the next; is easily applied, even to iron lath or wir work; is impervious to wind or weather; smooth to work over for painting, absorls bu little oil, the colours do not change, requires no sizing, and from a sanitary point 0 view is of gieat valuo. It is also considered to have fireproof qualities.

2250d. Stucco is a species of plastering which is sometimes subsequently worked t resemble marble. There are two sorts of stucco, those made of limes, and those made o plaster. The former are often classed under the name of cements, but their disagreeabl colour prevents their being used for ornamental decoration. They serve, howerer, to forn the foundations for the better class whenever humidity is to be feared. The latter ar generally made of lime, mixed with calcareous powder, chalk, plaster, and other substances in such a manner as to oltain in a short time a solid surface, which may be coloure!? painted, and polished with such perfection as to allow of its being used instead of mor expensive materials.
$2250 e$. The Italians usually execute their stuccoes in three coats. The first is rery coarse to form the renderirg. The second is much finer, and contains a larger proportion 0 lime, bringing the work up to a very even close grain. The last is made of rich lime, whic has been slaked and run through a very fine sieve; it is allowed to stand from four to fir months, in order that every particle may be reduced to a hydrate. If the lime cannot l kept for so great a length of time, the slaking may be assisted by beating it up very fri quently. When great perfection is reqnired, pounded white Carrara marble is mingled wit it ; gypsum and alabaster are used for enclosed situations. Colours are obtained by mixin with the lime such metallic oxides, \&c., as the case may require. The excellence of th work consists in the care with whish the effects of the natural marbles are imitated.
2250f. When plaster is used ins'ead of lime, it is gauged with lukewarm water, in whic size or gum has becı dissolved, so as to fill up the pores, to give more consistency, and t render it susceptikle of receiving a better polish. Any colours nsed should be previous! dissolved in the size watcr. When the nhole of the stuceo is perfectly dry, the surface
then rubbed with grit stone and polished up with rubbers, much in the same way as real m.rrble. The thickness of a coat of stucco varies from one-sixth to one-eighth of an inch.
2250 g . Stucco work, as it is called, and as expented daily in Ireland for outside work, consists of their roche lime, slaked for three or four months previously, as abore described, mixed with sand, and worked up with the trowel. It stands the weather as perfectly as Roman cement. The term is also given to the interior moulded and cast work.
22.50h. There are practically five mortars now in use. 1. Ordinary grey stone lime moitar; 2. The same selenised; 3. Lias lime mortar; 4. The same selenised; and 5. Portland cement mortar. The four last take a rapid set. If after a few days set they become expanded and disintegrated by frost. it is doultful if, when thawed, they will reassume a pasty condition and set again. The first derelops heat in slaking, and can be used hot, and will therefore take longer to freeze, but then as it sets slower it remains longer open to the attack of frost. The bulding journals in the first month of 1888 printed a communication from Norway explaining how bricklaying was done there in frosty weather. It has been suggested by Mr J Woodley that, after all, the secret lies in 'dry slaking' the lime, and following it up in small quantities at a time, thus keeping up a continuous supply of mortar in a hot state. This method is to lay out a portion of unslaked lime, and to sprinkle upon it just so much, and no m re, water as is sufficient to set the action called 'slaking' in motion: it is not to be run; then to add the stipulated proportion of sand, which should be spread over the lime in such a manner as to effectually prevent the escape of the generated heat and steam. Ordinarily, this should be repeated again and again until the whole consignment of lime is absorbed in one heap, which should be sleltered from the weather, and when required for use passed through the usual 'sand-screen' or sieve to remove the core. But if desirel to bo used warm, it can he slaked and made up in small quantities as required; hence hot mortar. In winter time the bricks should be protected from excessire saturation by rain or snow; in summer time it is difficult to get them wetted at all by the builder.

2250i. The plastering of a house has occasionally to be dried artificially. Ligny's patent drying process is used: 1. Fur damp walls and plaster in new houses, so that they may be papered, painted, and occupied as quickly as possible without risk to health, and that at a cost of from thirty shillings a room, ace reding to degree of dampness: 2. For old buildings and basements where the damp arises from contact with wet soil; also for drying thin walls much exposed to the weather and through which wet penetrates.

2250k. Scagliola work is an imitation of real marble. Its manufacture has generally been assumed as a mystery. It is a species of plaster or stuceo inrented at Carpi, in the state of Morlena. by Guido Sassi, between 1600 and 1649 . It is sometimes called mischia, from the mixture of colours introduced in it. It was not, however, till the inidelle of the eighteenth century that the art of making scaglola was brcught to perfection. The following is the method of making colnmns and pilasters:- A wooden crall'e, composed of thin str ps of deal or otber wood, is made to represent the column designed, but about, $2 \frac{1}{2}$ inches less in diameter than the shaft is intended to be whon finished. This cradle is lathed round, as for common piastering, and then covered with a rricking-up coat of lime and hair. When this is quite dry, the scaglio'a artist commences his oparations, and, by imitating the rarest and most precious marbles, produces 1 work which cannot be, except hy fiacture or sound, discovered to be counterfeit. The purest gypsum which can le oltained is broken into small pieces, and calcined. As soon 15 the largest frigments lese their brilliancy, the fire is withdrawn; the calcined powder ${ }^{14}$. passed through a re'y filue sieve, and mixed up with a solution of Flanders glue, singlass, etc. In this solution the colours are diffused that are required to be imitated n the marble; but if the work is to be of various colours, each colour is separately prepared, and they are afterwards ningled and combined nearly in the same manner that a minter mixes the primitive colours on his palette to compose his different tints. When he powdered gypsum is prepared and ningled for the work, it is laid on the slaft of the olumn or other surface over the pricked-up coat of lime and hair, and it is then floated with proper mou'ds of wood, the artist during the floating using the colours necessary for he imitation, ly whicla means they becume mingled and incorporated with the surface. The process of polishing follows; and this is done by rubling the surface with punicetone in one of his hands, while with the other he cleans it with a wet stone. It is hen prolished wihh tripoli and charcoal and fine and soft linen; and after going over it rith a pie ere frlt dipperl in a mixture of oil and tripoli, he finishes with application of uro vil. Scaglisla work is so casily put up in a building, and requires so small an monnt of time and expense for renoration and repair, compared with repointing and
varnisling, that those who are induced to go to the expense of plastering the walls with mastic, to be ready for immediate painting, marbling, and high polishing, might be justified in expending a further sum and adopt scagliola at once. For the walls of the stair. case in the building formerly called Crockford's Club House, St. James's Street, the seagliola was prepared upon slabs of slate half an inch thick, sawn on the surface with cuts about one-eighth of an inch deep, to form a key for the plaster groundwork. When the slabs were fit for polishing they were secured with battens fixed to the wall. The sragliola to the staircases at the Reform Club House is worked upon the walls; they are richly panelled, moulded and inlaid. The fluted eolumns, in the same building, to the gallery a d skylight of the saloon are done mpon stone. The three-quarter columns in the drawing and cottice rooms were cast in three lengths, and each backed with tiles bedded in coarse plaster. Some black and gold columns, worked in Keene's cement on stone, and two twis ed columns in plaster, are placed in Wilton Church, Wiltshire. When Parian cement is used, the groundwork is formed of wet cement of the eoarse quality, th:e veneer being of the same thickness as common seagliola; but one half of the quantity of colours will produce the same depth of colouring as in the common scagliola. For polisling, the same process is to be followed as for walls, as described in par. 2251 i .

2250l. Scagliola foors exist at Sion House, Isleworth; at the entrance hall at the Athenæum Club House, London; and at Crewe Hall, Cheshire. Many other examples of the cmployment of scagliola work will be found named in an excellent article in the Builder for 1863, p. 840, one of the best on the stilject; and another in February 1845. A very inferior initation of scagliola is too often to be seen.
$225(m$. A material has been lately prepared at the latent Marble Works, for similar purposes. It is manufactured in slabs from $\frac{3}{4}$ to 1 ineh thick, of any size, for lining, and for moulded work. The prices are stated to be under those of enamelled slate. Marezzo marble, made of cement, has been introduced since 1868. The entrance hall at the Society of Arts, London, has been lined with it.
2251. In the present time, the use of ornaments made of carton -pierre, a species of papier maché, has been reintroduced for cornices, Howers, and other decorations. The basis of it is paper reduced to a pulp, which, having other ingredients mixed with it, is pressed into moulds, and thus ornaments are foimed of it. They have not all the delicacy of the plaster cast. and therc is the want of that nicety which a good eornice workman in plaster exhibits; but their lightness, and the security with which they can be fixed with screws, render them often preferable to plaster ornaments. The "Critic" newspaper in 186.3 s ated that in Bergen, in Prussia, there is a church capable of holding 1,000 persons, constructed entirely, statues and all, of papier maché. Probably, however, the material is that used to a very great extent in Norway and Sweden for forming the roofs of houses, und said to be incombustible. It appears to be in many respects similar to the Fibrums slab, the manufacture of which, by Bielefeld, was discontinued a few years since, aftel anch succes; though the dust penetrated through it, showing the marks of the joists. as in:
 Another material, superseding carton-pierre and papier maehé, is Desachy's Fibrous plaster, which is formed of a thin eoat of plaster of Paris, run upon a backing of roarse eanvas. It is of great lightness, not inflammable, and is ready to be painted inmediately after it is made. It is adapted for the speedy and economical production of any coffered or circular work; and for wagon-headed eeilings, as but little bracketing is necessary, it being fixed to the joists dircet; for fluted or ornamented columns, panclled dadoes, \&e., for the lining of walls and ceilings, and for all purposes of ornamental plaster work. Mr. Owen Junes has. extensively used this material for his interior decorations, (2246b.)

CEMENTS.

2251 a. We have already adverted to the cements used in plastering. Roman, Blue Lias and Portland cements are the principal ones for the outside coating of buildings, and the process of laying them on is so similar to that of other plasterers' work, that it will not br neeessary to say mueh respeeting them. The best mode, perhaps, of using these natura cements is to employ them purely in works under water, or where a great crushing weigh is to be brought upon them at once. For foundations in damp situations, where rapidit! of execution is desired, the mixture may be 2 parts of sand to 3 of cement; and also for eorniees or coatings exposed to the weather. For upright faces, the proportion is o 3 parts of sand to 1 of cement. Care must be taken that no fis sures are formed such a will admit water, as the aetion of frost will destroy it. The brickwork in mortar, to bh co zered, should be thoroughly dry, or the expansion of the water will throw off the cement the briekwork itself must, however, be wetted before a coat is applied. to prevent thr absorption of the moisture before the coat sets, or it will not harden. With slow settint cements, it is too often the costom to allow the filling out, and even plain faces, to becom
partially set, when the adhcsion of the next quantity will be found imperfect ana unsound. 111 work requires to be finished off at once for a good result. Dirty sand causes the ement to be crumbly. Cement once set, or even partially so, should not be worked up n a fresh mixture, or it will form rotten work. Like lime in the setting coat in plastering, sement fa ings and mouldings are not so liable to show fire-eracks on the face if a small fuantity of sand be mixed up with it.
2251b. In using Portland cement, plasterers should use thicker screeds, and finish their rork in one coat with the screed-rule, instead of working all the water used in gaugirg o the surface with the inand-float and trowel, spoiling the thinner coat whilst they lay it on. This cement has an advantage over others, that it can, with good management, be sorked in winter, while other cements camot be so used without great risk of the frost ijuring them before they are dry. More cement added to make a coat set quicker, causes t to crack and burst. This cement is best when used of a uniform thickness of $\frac{3}{3}$ ths of an neh, any dubbing out being done with pieces of brick and Roman cement. \vec{A} proportion of Portland cement mixed in the usual plastering coat affords a quicker drying mate--ial for finishing with Portiand or with Martin's cement. The coarse quality of Martin's ement may take the place of plaster, and all the delays consequent on its use.
225Ic. Lime puity should never be put in the finishing coat of Portland cement; it is lone to make the cement fat, and to save labour in trowelling the face up to a smooth suraice; the lime takes weeks to get hard, the cement takes days only, hence the two cannot agree. Labour to the cement and clean washed sand is all that is required.
2251 d. For interior embellishments, the cements known as Martin's. Keene's, ana Parian, are largely adopted. Martin's cement is manufactured in three qualities, coarse fine, and superfine. The coarse quality presents a whitish speckled surface, and is supplied in red, light red, and grey, colours. The fine is whiter ; the superfine is a cream colour. It is said to cover 20 per eent. more surface, at half an inch in thickness, at a less cost than an equal quantity of any other cement for internal nse, and to be 35 per cent. cheaper than such cements. For walls. 1 part of coarse cement is used with $1 \frac{1}{2}$ of clean dry sharp sand, for the under coat of half an inch thick. finished with $\frac{1}{6}$ inch thick of pure cement. It is of a fireproof character, and preserves to some extent the building from damp : the cement is supposed to continue to indurate with age, and therefore to be very durable. When Idopted for floors, skirtings, and other finishings, whether plain or ornamental, in lieu If wood, the cost is stated to be less than similar work executed in that material, while n appearance it is very much superior, as it takes a tine polish. It can be painted upon within twenty hours after having been worked on old brickwork, and in twelve hours when on lathed work; but all three qualities are as well without paint. Plaster of Paris nust not be mixed with it, or Rornan or Portland cement used as an undercoat.
245 I . Keene's cement is said to show on its face the lines of any woodwork which it nay be carried across. If required, it can be painted upon in twenty-four hours after the oat on old brickwork is completed. Skirtings, flooring, and internal stueco are worked in his material, on account of its superior hardness. This cement will mix with any of the netallic oxides, \&c., to produce a coloured cement.
2251f. Pariun cement (Kcating's patent), for internal stucco, has been used throughout he Westminster palace. It does not efforesce, takes paint or paper in forty-eight hours, nd makes a very hard and beautiful scagliola. It sets in four or five hours. It must not e treated as common plastering, by being hand floated up with water, as for all purposes s little water as possible is to be used with it. This material must not come in contact ith green lime, or with linewater in any of the operations. On brickwork, it is first oated abont $\frac{1}{2} \mathrm{in}$. thick, with equal parts of clean washed sharp sand, and the surface lightly drayged. The next day a setting coat, $\frac{3}{16}$ in. thick, of net coment, may be worked, id down with a beech float and slightly trowelled. If intended to be painted or papered, fe first coat of paint should be applied from twenty to twenty-four hours after. The aint is to be mixed, for the first coat, only one-fourth oil and three-fourths turpentine, nd with a very sinall portion of red lead and gold sizc. The succeeding coats of pint are , be mixed in the usual manner. On lathing, the laths may be closer than usual; the first zut of equal parts of clean washed sharp sand and cement, broomed while soft, and floated re next day with cement as before; the setting coat to be followed up next day, and aished as described for brickwork. The three coats will be ${ }^{3}$ in. in thiekness.
2.51 g . Damp walls require a first coat of Portland cement ${ }_{3} \mathrm{im}$. thick; when dry, a coat of pait of Parian cement mixed with fart of washed sand, ganged very stiff, rubbed in hard, id dragged before it sets. When hard, a floating coat without sand is to be applied ; to he t as before on the following day, nud painted on the succeeding morning, without fail.
2251h. For flurs, the cenent mixed with! part of Buth stone dust, $\frac{7}{8}$ in. thich, is to be id on a solid bottom of Poriland concrete, in one body 3 in . thick. On comman phastering/ here the ordinary time is allowed lor finishing the works, the plaster is to be luid fair, id dragged and lel't to dry; the cement to be mixed with an equal purt of washed sharp nd and Hoated fin. thick. The next day a thin coat of eement laving of sand is hid Jwn and trowelled as before. If required to be pipered, it must first lave two coats of
paint. In pa'ehing, when required to be painted or distempered on immediately, the edge of the old plastering is to have first a coat of paint.

2251i. For polished work on walls, the floating coat is mixed with equal parts of sharp sind and eement. The setting eoat is $\frac{1}{4}$ in. in thickness, of fine net cement, rubbed down with grit stones and water; the grit is to be then well washed off, and when the water is \#une, a stopping of fine eement mixed up stiff in a pan is to be applied a.d well rubbed in, This is then to he seraped off. witt: a wood seraper, and the stopping repeated until a proper faee is obtained, laving a seum on the face to be taken off by the next grinding, which shonld be done with finer grit stones. The stopping is to be repeated and fally finished with snake stone, putty powder, and elean eloths. 'Three or four weeks' time is required before a good polish can be obtained it being essential that each successive stopping of fine cement should be allowed several days to harden before the surfaee is again scraped.
$225 t k$. For casting work, the cement is to be mixed stiff and dubbed in the moulds with a brush, and then left until thoroughly set. Such are the instruetions for all the se several processes issned by Messrs. Franes, the mamufacturers of this eement, which was applied to the walls of the wards, eorridors, and staircases of Middesex Hospital, in 1849, fiom it: non-absorbing qualities.

2251l. A very good specimen of plain decora'ive work is to be seen in the booking. office of the London, Chatham, and Dover Railway Company, at the Victoria Stanon. The walts, piers, \&c., were executed in this cement, then painted in flat tints, and var nished and polished several times.
22.51 m . Cement floors may be made in an economical manner, by first forming a bed of conerete to prevent damp rising, then placing on it a eoat $1 \frac{1}{2}$ in. thiek of Atkinson's cement, mixed with three of clean fine sand; or in Roman cement; or in Portland cement, with four of sand, floated in by a rule on screeds, care being taken to prevent the joints setting. If the eement set slow, it may be trowelled down while soft, but not when it is setting, of the face will be injured. If the cement sets very quiek, a rough key is to be formed. and then covered with fine mortar $\frac{1}{8}$ in. thick, trowelling it gently before it begins to set. rising damps be not anticipated, the floor may be first paved with clean hard brickbats ir lieu of concrete, and eovered an inch thick with good cement.
22.51\%. l'ortland cement floors have answered perfectly in several instances, but it is an uneertain material; therefore, where the floors were not to be eovered, or where : sight defeet was of consequence, it has been considered better to use other eements, such a Keene's, as employed at the Metropolitan Convaleヶcent Asylum, Walton-on-'lhanes. good floor for eommon purposes is made of a eoncrete formed of 6 parts of clean gravel t 1 of gronnd lias lime: this is generally impervious to damp and vernin.

2251o. The bituminous cements are used for pasing, and for eovering the extrados o arehes to prevent the pereolation of water through them. In all new eonstruetions, there are always movements whieh eraek the coatings exeented in limes and ratural eements, whic! are also subjeet to unequal shrinkage, producing ereviees; and from these united causes, i is very rare to find such coatings impermeable. The bituminous eements are more elastic it may happen that small erevices, so to speak, so:der themselves, and if any serious repair: are required they are much easier to be executed than in those works executed with limes When asphalte is to be us d, it is placed in a quantity of nearly boiling mineral pitch th secure its melting. Colonel Emy found the tollowing proportions as the best for the asphalte of Gaugeac, and it may be taken for the others of this class of cements, when uset as a coating for arches: -
$2 \frac{1}{g}$ pints (wine measure) of pure mineral pitch.
11 lbs , avoirdupois of bitumen or asphalte.
17 pints of powdered stone dust, wood ashes, or minion.
It is advisable to lay this nixture upon a bed of eoncrete or mortar ; and as much as possibl! in slabs of 9 feet 6 inehes to 3 feet in width. It should be evenly spread and compressed witi a trowel, well rubbed, and redueed to a uniform elose surface. When all the bublles hav been expelled, a fine sand is sprinkled over the surface, and worked in with the trowei observing never to fill the crevices formed by the air-bubbles with sand, but only witl asphalte. The thickness for eoating any arches is not more than from three fithos to half an-ineh. The quantity of cement thus employed to cover a yard square is about $4 \frac{1}{2} \mathrm{lbs}$,
2252. It is searcely within the branch of the plasterer's practice, but as we shall hat no other plaee for adverting to it, we may as well here mention what are called "compo sition. "ornaments, seldom nsed in comices, but principally for the decoration of chimney glasses. frames, and to wood work generally. The composition is very strong when dry, a brownish eolour, eonsisting of about 2 pounds of powdered whiiing, 1 pound of giv. in solution, and half a pound of linseed oilmixed together in a copper, heated and stire with a spatula till the whole is incorporated. After heating it is laid upon a stone covere with powdered whiting, and beaten to a tough and firm eonsistence, when it is laid by fo use, eovered with wet eloths to keep it fresh. This eomposition is then put into mould and pressed. Later inventions have nearly caused its disuse in arehitectural deeorat on,

Sect. X.

SMITHERY AND IRONMONGERY.

22.53. Sinithery is the art of uniting several lumps of ircn into one lump or mass, and forming them into any desired shape. The operations necessary for this are primarily performed in the forge, and on the anvil with the hammer; but for finishing, many other implements and tools are necessary. These, however, we do not think useful to particularise, a course we have pursued in the other trades, because the expedients introduced by the engineer and machinist have of late years, except in rough work, superseded many of them. It is now, for instance, easier to ple re iron to a perfect surface than it was a few years ago to file or hammer to what was then always an imperfect one. Formerly a man would be occupied as many minutes in drilling a hole as by nachines it now takes seconds 10 perform.

ع254. We have, in a previous section, given all the particulars relating to the produce of the metal from the ore; in this section we propose little more than to enumerate the different objects which the smith and ironmonger furnish in the construction of buildings; and introductory to that it will be convenient to subjoin tables of the weights of round and bar iron, and also of the weights of 1 foot of close hammered bar iron of different thicknesses; remembering that a cube foot of close hammered iron weighs abont 495 lbs , of common wrought iron about 480 lbs ., and of cast iron 450 lbs ., whence may be derived the weight of other solids whose cubic contents are known.

Table showing the Weight of one Foot in length of a squabe Iron Bar.

Side of Square inches.	Weight in lbs. avoirdupois.		Weight in lbs avofrdupois.
$\frac{1}{4}$	$0 \cdot 1875$	21	15.0625
$\frac{3}{8}$	$0 \cdot 4687$	21	16.8740
$\frac{7}{2}$	08125	$2 \frac{3}{8}$	$18 \cdot 8125$
$\frac{8}{8}$	$1 \cdot 2812$	$2 \frac{1}{2}$	$20 \cdot 812.5$
3	1.8740	25	22.9687
$\frac{1}{8}$	2.5625	$\underbrace{3}$	$25 \cdot 1875$
1	3.3125	27	. $27 \cdot 7500$
$1!$	$4 \cdot 2187$	3	$30 \cdot 0000$
11	5-1875	38	32.5312
18	$6: 3125$	31	35.1875
12	$7 \cdot 5000$:33	$37 \cdot 9687$
15	$8 \cdot 8125$	$3 \frac{1}{2}$	40.7819
11	$10 \cdot 1875$	85	42.7812
12	$11 \cdot 7187$	33	$46 \cdot 8740$
2	13.3125	87	$50 \cdot 0520$
		4	53.3125

'Table showing the Welght of onb Foot in length of a round Ihon Bar.

Diameter ill inches.	Weight in lbs. avoirdupois.	Diarneter in inches.	Weight in lus avoirdupois.
$\frac{1}{1}$	0.1562	21	11.812 .5
3	0:3750	21	13.2500
$\frac{1}{3}$	$0 \cdot 6562$	$2 \frac{3}{8}$	14.750
5	$1 \cdot 0000$	$2 \frac{1}{2}$	16:3437
3	$1 \cdot 4687$	${ }^{2} 5$	18.0000
7	$2 \cdot 0000$	23	19.7812
1	2.59:37	27	$21 \cdot 6250$
18	3:3195		$43 \cdot 5625$
$1 \frac{1}{3}$	$4 \cdot 0937$	$3 \frac{1}{8}$	25:56 25
$1 \frac{3}{8}$	4.93775	$3 \frac{1}{7}$	$27 \cdot 6562$
$1!$	5•937t	$3{ }^{3}$	$29 \cdot 8125$
15	$6 \cdot 90.52$	$3 \frac{1}{2}$	$32 \cdot 0625$
13.	$8 \cdot 0000$	$3{ }^{\text {3 }}$	$34 \cdot 4063$
17	9•1875	33	$36.812{ }^{\prime}$
2	10.4607	$3{ }^{3}$	$39 \cdot 3116$
		4	$41 \cdot 8740$

liese tables give a little less weight than some others now in use. To convert into weight "other me als, multiply the numbers, for cast iron ly 9.3 ; for stect by 1.01 ; for copper y $1 \cdot 15$; for brass by $1 \cdot 09$; for lead by $1 \cdot 48$; and for zine by 92 .

Table 1. of thr Weight of Illoop Ihon, according to the customary width and thickness, by the Birm'ngham Wire Gange, per 100 feet lengtis (IIurst).

Mark. Nos.	Width fin linches.	Wrャight in P'ounds.	$\underset{N}{M ., r k .}$	Wilth ill luches.	W. ight in P'onnds.
11	23	$115 \cdot 78$	15	1 !	$35 \cdot 37$
11 (1)	3	126:30	1.5	$1 \frac{3}{15}$	33:31
12	2.	91.78	16 (16)	17	26.52
12	\bigcirc	73.42	17	$1 \frac{1}{10}$	$20 \cdot 8.4$
19	24	$71 \cdot 2$ \%	18	$1{ }^{\text {H }}$	16.17
14	2	$63 \cdot 32$	19	7	12.38
1.	13	47.1.5	20	,	-8.81
-	1	$40 \cdot 41$	21	3	6.95

Table II. of the Weight and Thiceness of a superficial Foot of Sheet Ihun, by the Birminghan Wire Gauge :-

$\begin{aligned} & \text { M..rk. } \\ & \text { N(1). } \end{aligned}$	D.cimals of all lich litick.	Pounds Weqht.	$\begin{aligned} & \text { Mark. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Decimats } \\ & \text { of an Juch } \\ & \text { Thick. } \end{aligned}$	Pourds Weight.	$\begin{aligned} & \text { Mark. } \\ & \text { Nu. } \end{aligned}$	Decimals of an Inch Thick.	Pound Weight.
00000 ($\frac{1}{2}$)	-500	20°	10	-137	$5 \cdot 62$	24	-022	1.00
0000	-450	18°	11 ($\frac{1}{8}$)	-125	500	93	- 20	$0 \cdot 90$
$000\left(\frac{7}{16}\right)$	-4375	$17 \cdot 50$		-109	438	26 ($\frac{1}{61}$)	-018	$0 \cdot 80$
$00\left(\frac{3}{6}\right)$	$\cdot 375$	15°	13	-094	$3 \cdot 75$	27	-016	0.74
0	-340	$13 \cdot 60$	14	-080	$3 \cdot 12$	28	$\cdot \mathrm{Ol4}$	$0 \cdot 64$
1 (${ }_{\text {(}}^{16}$)	$\cdot 3195$	$12 \cdot 50$	15	-079	$2 \cdot 82$	29	$\cdot 013$	$0 \cdot 56$
2	-284	1200	16 ($\frac{1}{16}$)	-06:5	$2 \cdot 50$	30	-012	0.50
${ }^{3}$	$\because 61$	11.00		-055	$2 \cdot 18$	$21\left(\frac{1}{218}\right)$	$\cdot 010$	$0 \cdot 40$
$3-4\left(\frac{1}{4}\right)$	-250	10.00	18	-048	$1 \cdot 6$	32	-009	$0 \cdot 36$
5	-292	$8 \cdot 74$	19	-012	$1 \cdot 70$	33	-008	032
6	-208	$8 \cdot 12$	20	-035	$1 \cdot 54$	34	$\cdot 007$	0. 28
7 ($\frac{3}{16}$)	-1875	7-50	$21\left(\frac{1}{32}\right)$	-0312	$1 \cdot 40$	35	$\cdot 005$	$0 \cdot 20$
8	-166	$6 \cdot 86$	92	$\cdot 099$	$1 \cdot .5$	36	$\cdot 004$	$0 \cdot 16$
9	$\cdot 158$	6.21	23	-025	1-12			

Table III. of the Weight of a Superficial Foot of Plate Iron in Pounis.

Thickness, parts of an Inch	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{3}{16}$	$\frac{1}{4}$	$\frac{8}{16}$	8	76	$\frac{1}{2}$
Weight in pounds -	$2 \cdot 526$	5052	7.578	0.104	12.630	$\mid 15 \cdot 156$	17.682	$\underline{20.208}$
Thiekness, parts of an Inch	星	$\frac{5}{8}$	118	3	178	7	${ }_{15}^{15}$	1
Weiglt in pounds -	734	260	7•i86	30312	32.839	${ }^{1} 35 \cdot 365$	$\mid 37891$	$40 \cdot 417$

Table lV, of the Weigit of Ormara Ange Ifion in Pounds per Lineal Fum

| Preadth in inelıes | - | - | - | $1 \frac{1}{4}$ | $1 \frac{1}{2}$ | 13 | 2 | $2 \frac{1}{4}$ | $2 \frac{1}{2}$ | $2 \frac{3}{4}$ | 8 | $3 \frac{1}{1}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$| 3 \frac{1}{2}$.

Table V. of Weight of Iron Bolts and Nuts. (Mnlholland, in Builder, iv. 22.)

Diame	$\frac{1}{4}$	$\frac{3}{6}$	$\frac{1}{2}$	$\frac{5}{8}$	$\frac{3}{4}$	$\frac{7}{8}$	1	$1 \frac{1}{8}$	$1 \frac{1}{4}$	$1 \frac{3}{8}$	$1 \frac{1}{2}$	15
Weight per foot of? round Iron, pounds $\}$	\cdots	$\cdot 4$	$\cdot 7$	1.0	1.5	20	$2 \cdot 7$	3:4	42	5.0	6.0	7.0
Weight per inelı of round Iron $\quad\}$	016	033	-58	-083	$\cdot 125$	-166	.225	$\cdot 283$	-350	$\cdot 416$.5Sn
$\left.\begin{array}{c} \text { Weight either of } \\ \text { ILead or Nut } \end{array}\right\}$. 021	-062	$\cdot 145$	$\bullet 260$	-468	$\cdot 7.29$	1•125	$1 \cdot 77$	$2 \cdot 187$	$2 \cdot 86$	3.75	4.74

2254a. Bolts are now often made with square heads, so that these being let into t . timber, the stem eannot turn while the nut is being serewed up. Machinery lias bee t:rought to bear for the manufacture of bolts, rivets, spikes, and other like artieles; "t motions are so arranged that no attention is required beyond entering the bars into tl feed rolls and cleaning the picees of the eads of the iron out of the dies."

4ie shoting the Weicht of close-hammerd flat Bar Iron, from One Inch wide and an Eighth of an Inch thick to Twelve Inches wide and Une Inch thick.

Enches, id their 'arts in resulth.	Thickness in Parts of an Ivch, and Weight in Pounds avoirdupois.							
	$\frac{1}{8}$	$\frac{1}{4}$	\square^{8}	$\frac{1}{2}$	8	$\frac{3}{4}$	8	1
1	$0 \% 4 \%$	0.859	$1 \cdot 289$	$1 \cdot 718$	$2 \cdot 148$	2578	$3 \cdot 0 \cdot 17$	3437
$1 \frac{1}{8}$	$0 \cdot 484$	0. 68	$1 \cdot 503$	$1 \cdot 937$	$2 \cdot 422$	$2 \cdot 905$	$3 \cdot 383$	38 n 8
$1 \frac{1}{4}$	0539	1.078	$1 \cdot 639$	$2 \cdot 148$	$2 \cdot 682$	3:226	5.758	A 305
J $\frac{3}{4}$	0.593	$1 \cdot 187$	$1 \cdot 773$	$2 \cdot 368$	2953	$3 \cdot 547$	4.133	4726
11 $\frac{1}{2}$	$0 \cdot 648$	$1 \cdot 289$	$1 \cdot 937$	$2 \cdot 579$	3.218	$3 \cdot 867$	$4 \cdot 508$	$5 \cdot 156$
$1{ }^{\frac{1}{4}}$	0.695	$1 \cdot 398$	$2 \cdot 093$	2.789	3492	$4 \cdot 187$	4890	$5 \cdot 545$
$1 \frac{3}{4}$	$0 \cdot 750$	1.500	2251	3.008	3.758	$4 \cdot 508$	5266	6016
$1 \frac{1}{8}$	080 t .	1619	2.414	$3 \cdot 218$	4281	4835	5641	6.445
2	0859	1.699	2-578	$3+37$	$4 \cdot 297$	$5 \cdot 156$	6016	6.874
$2 \frac{1}{8}$	0.913	$1 \cdot 828$	2.742	$3 \cdot 3.56$	$4 \cdot 562$	$5 \cdot 476$	6391	7-305
$2{ }^{2}$	0.948	1.937	2.897	3867	$4 \cdot 835$	$5 \cdot 805$	6766	$7 \cdot 734$
$2 \frac{3}{3}$	$1 \cdot 023$	2039	3062	$4 \cdot 148$	$5 \cdot 101$	$6 \cdot 125$	$7 \cdot 148$	$8 \cdot 16$ 1
$2 \frac{1}{2}$	$1 \cdot 069$	$2 \cdot 148$	3218	$4 \cdot 297$	5375	6.445	$7 \cdot 547$	$8 \cdot 594$
2	$1 \cdot 125$	$2 \cdot 250$	3383	$4 \cdot 516$	$56+1$	$6 \cdot 766$	$7 \cdot 897$	$9 \cdot 023$
23	1•179	$2 \cdot 366$	$3 \cdot 500$	4726	$5 \cdot 905$	$7 \cdot 093$	$8 \cdot 273$	$9 \cdot 443$
$2 \frac{1}{8}$	1234	$2 \cdot 468$	$3 \cdot 721$	$4 \cdot 937$	6180	7.414	8.648	9.882
3	$1 \cdot 289$	2.578	$3 \cdot 867$	$5 \cdot 1 ; 6$	6.445	$7 \cdot 734$	9.023	$10 \cdot 312$
$3 \frac{1}{8}$	$1 \cdot 344$	2.687	$4 \cdot 031$	$5 \cdot 375$	6.734	$8 \cdot 055$	$9 \cdot 398$	$11 \cdot 742$
$3 \frac{1}{4}$	$1 \cdot 398$	$2 \cdot 789$	$4 \cdot 187$.	$5 \cdot 609$	6.484	$8 \cdot 375$	9.773	$11 \cdot 172$
$3{ }_{8}$	1.443	$2 \cdot 905$	$4 \cdot 335$	$5 \cdot 805$	7250	$8 \cdot 703$	$10 \cdot 156$	$11 \cdot 601$
$3 \frac{1}{2}$	1.500	3.007	$4 \cdot 508$	6.016	7.516	$9 \cdot 039$	10.503	12.031
$3{ }^{2}$	$1 \cdot 562$	$3 \cdot 117$	$4 \cdot 672$	$6 \cdot 226$	7.789	$9 \cdot 344$	10915	$12 \cdot 461$
$3{ }^{3}$	$1 \cdot 609$	3.218	$4 \cdot 860$	6.445	$8 \cdot 062$	9.654	$11 \cdot 281$	$12 \cdot 890$
$3 \frac{7}{8}$	1.630	$3 \cdot 328$	$5 \cdot 000$	$6 \cdot 656$	$8 \cdot 328$	9.992	J1.656	13320
4	1718	$3 \cdot 437$	$5 \cdot 156$	6.874	$8 \cdot 593$	10312	12031	13.750
8	$3 \cdot 436$	6.874	$10 \cdot 312$	13.748	17.186	$20 \cdot 62 t$	$24 \cdot 062$	27.400
12	$5 \cdot 156$	$10 \cdot 312$	$15 \cdot 469$	$20 \cdot 620$	$25 \cdot 781$.	$30 \cdot 937$	$3 \mathbf{c o s}^{0} 04$	41250

If of Cast Iron.

12	4.835	9.664	14.500	19.336	$24 \cdot 172$	29.000	$33 \cdot 836$	38672

225. For the earease of a building the articles furnished by the smint are, wrought a columns with caps and bases for the support of great superineumbent weights. ought iron columus were used in England as carly as 1860 by Sir W. Fairbairn, ther with wrought iron girders, and brick arches for fireproof work. When columns beyond a certain length in proportion to their diameter they fail by bending, and not crushing; also wrought iron is much stronger to rosist tension than east iron; as it is an undoubted fact that connections can be made to wrought iron much better It in east, wo have here a combination of advantages where long columns have to be 1 which cannot but be nppreeiated. The uso of stecl for eonstruetional purposes is -essing rapidly, as it is so mueh more reliablo than iron. Messrs. Lindsay roll many ions of aterl whieh can very easily be formed into columny by riveting. A column le of a scrics of steel troughs, 16 inches diameter externally, would bear a safe lond 15 wins if 30 fect long, and the weight would be 74 lbs , per foot only. A cast irons min 16 inches in dinmeter, 30 feet long, with $1 \frac{1}{2}$ inches of metal, would (roughly) in the be 230 lbs . per foot run, and safe lond 100 tons (J. Slater). Combination columns "crl emb be-mado to 6 feet diameter; these, having a central concrete filling and out er ; of bricks in cement, can be flesigned to sustain a load up to 2,000 tons. They are the from 13 inches to 48 inches in diameter, and are stated to be not more expensive o cost iron columns, and far superior. Cast iron columns, and stanchions were premix the for ceonomy and stiflinoss, as whs ulso that matcrinl for girders, batms, joists, hrennummers, until tho introluction of plate iron and rolled iron (atl which have beron ted in grerious seetions). Iron eotumns ean bo renderol firfpronf by eneasing them Areclay blocks, grooped and socured by iron phates with chaws, wheh fit on thos rivet 1s. For round columns a metal band is bronght round the eolumn, hooked together, dropped into the growo of the blocks. In either came a hemsy led of mortar in next ul, and then anuther eourse of blueky is bedded over the band or phate. Then it is
ñinshed with Keene's or Parian cement, making a gond surface for decoration. Cn blister, shear, and spring steel; charcoal :hets and plates; boiler, tank, and flitch plate galvanized and timed shects; chcquered floor plates, buckled plates; flat bars up to 12 i wide, round bars up to 8 in. diameter, square bars up to 5 in ; angle, T, and trom irons. Ties of all descriptions, straps, bolts, nuts and screws, plates, washers, and t like, employed in connecting pieces in framing where the strain is greater than the me fibres of the wood will resist. Half-round, bevelled, oval, octagon, hexagon, moulding, an funcy irons; hoop iron, nail rods, and sash iron; shors for piles, when that mode obtaining a fo:ndation is adopted; sanitary appliances in iron ; manhole covers tor ater to sewers and drains; The K non disconnecting trap and cover, hinged to manhole f outside a building, and air-tight cover for inside a building. Cramps for holding blor of stone together; but those of cast iron are better, as less likely to lie subject to osid tion, while those of copper or gun-metal are still better; area gratings and uindow ba for securing openings, now generally superseded for those of east irm, especislly whi of an ornamental character, as are balusters and railings for stairs and bale nit Ornamental fancy gates. Rain-water pipes in 6 feet leagths, 2 to 8 in. in diameter, wi their cistcrn heads, offsets, cllows, branch pieces, shoes. union soskets, and ears plain al oruamental. Square rain-water pipes, $2 \frac{1}{2}$ in. square, 3 in . by $2 \frac{1}{2} \mathrm{in}$, 3 in. square; $3 \frac{1}{\frac{1}{f}} \mathrm{i}$ by 2 in .; $3 \frac{1}{2} \mathrm{in}$. by $2 \frac{1}{2} \mathrm{in}$., $3 \frac{1}{2}$ in. by $3 \frac{1}{4}$ in., 4 in . by $2 \frac{1}{2}$ iu., 4 in . by 3 in ., $4 \frac{1}{2}$ in. by 3 i 4 in. square, and 5 in . by $3 \frac{1}{2} \mathrm{in}$., with branch pieces, slmes, ears, \&c. Rain-watcr guth of ail shapes and sizes, plain and moulded ; patent spout irons or brackets, with a s.re pin to bind the spout to the clip; roof gutters between slopes, square, angular, and squal and angular. Gregson's perfectum down spouts; where the pipe is simply hung on t nails and projects an inch from the wall ; it has a 7 -inch socket for sliding to wall join and for sliding out any broken middle lengths for renewal without remoring others drawing the nails. His separate patent hanger can be bolted to the ear ot any oth makers pipes; when bolted they project $1 \frac{1}{4}$ inches, so as to be painted all round. Par ment gutters, air or stench traps, scrapers, and coalplates, for which last have lately be brought out Banner's self-fastening ; Stidder's self-locking ; also one self-fastening. p forward by a company; Hyatt's glazed coalplates; with many, if not all, of the artie required for stable fitings, either plain, enamelled, or galranized, as advertised by Varme Cottom and Hallen; the St. Pancras Iron Work Company ; Musgrave, at Belfast; a others. Pavement lights, or Hayward's patent "semi-prism," are extensirely used ! lighting basements, cellars, and under,round apartments, giving a briiliaut resu Hayward's stall board lights. The former differs greatly from the prismatic or ship deck lences. T. Hyatt's patent ormameutal tilo and glass lights for pavements, sell prism gratings to light basements. \&c., stall-board lights, \&c.; the former harc a ne appearance, and affird a better footlold than glass alone. There are also Hamillon patent prism, an 1 Halford's patent prism pavement. Circular iron strircases with head, riser, and spandrel in one, and adaptable where the space is eonfined, or to p from one story to another only; and among other things, chimney bars to reliere i weight of brickwork over a chimney opening (in kitchers and rooms where a har opening is required, and two bars inay ntt be sufficiently strong, a wrought or cast ir cradling is nece sary). The Metropolitan Building Act requires that under certain cas the abutments of a chimney mist be tied in by an iron bar or bars, turned up and dor a^{+}the ends, and built into the jambs for at least $8 \frac{1}{2} \mathrm{in}$. on each side.

2255a. The advantage of now being ablo to procure wrought iron flitches of a go length and depth has obviated the necessity of welding two or more lengths together the sledge hammer, which has not a sufficient impetus to reach the very cure of t metal, sind thus the joint became weaker than the remainder of the flitch or har. 1 1864 experiments were made at Paris, on the effect of welding by hydraulic pressur I wo bars, each $1 \frac{1}{2}$ in. square, were thus welded tog ther with great ease, and the machl was stopped whn the part welded was brought down to the thickness of the bar. Af cooling, the wellded part was cut through, and the inside was found perfectly compact.
2250. Boiler pla'e is made of rolled or wrought iron. They are termed sheets wh under $\frac{1}{4}$ inch in thickness; plates from a $\frac{1}{4}$ ineh to 2 inches thick; and slabs when mt than 2 inches thick. They are named according to the quality of the iron, or the locall where they are manufactured. The sizes of those nost in use are from 6 feet to 9 f : long. 2 feet to 4 feet wide, and from a $\frac{1}{4}$ to $\frac{3}{4}$ of an inch n thickness. Pure charel Swedish galvanized. flat sheet iron is imported for zoofing purposes, instead of zinc lead. It can be bent and hammered without cracking.
2255 c. Corrugated iron is sheet inon which has been rolled into the form of a series waves.- It is in that state frequenlly used for a covering for temporary purposes; ${ }^{1}$ tween joists to carry concrete, \&c.; and for fencing, the corrugation giving a thin the great capability for carrying a heary weight, or for stiffening framework. The flutes a generally about $5 \frac{1}{2}$ or 6 inches from centre to centre. Sheets of Nos. 16, 18 and 20 w gaugo are mado from 6 feet by 2 feet, to 8 feet by 3 fect; and of Nos. 22,21 , and 2

76 feet by 2 fest, to 7 feet by 2 fect 6 inches. In calculating the measure for fixed ing, add $\frac{1}{10}$ to the weight per square for lapping. The sheets should orerlap each ar about 6 inches, and be double riveted at the joints. About 3 lbs . of rivets are reed for a square of roofing. In roofs, the iron sheets are best used in a curved form.
255 j . Wrought iron casements are still introduced into buildings. This has given rise everal improvements upon the old method of manufacture for making them wind and er tight. Those now generally advertised are :-patent wrought iron windows, by the eral Iron Foundry Company (Limited); Burt and Potts' patent wrought iron watert window and frame; Gibbons and White's urought iron weather-tight casements and fes for stone mullions; and casements for wood mullions, as designed by Mr. G. Devey, iitect. All these are fitted with casement stays and fastenings. Connected with this

Fig. 807 . purpose are Smith's (of Princes Street, Leicester Square) " patent weather-tight water-bar," for French casements, furmed in the sill; and one (f another make, by a manufacturer of the same name (formerly of Queen Street, Oxford Street). In councetion with this subject is the use of iron bars and casements for forming tho lights in retr of warehouses and offices in crowded localities, tor the purpose of obtaining as much space and light as prssible, at the same time so as not to interfere with neighbours' lights. A useful example, designed by Mr. Bassett Keeling, architect, is given in the Builder, 1880, vol. xxxix. 202 , from which the following cuts forming fart of the illustrations are here given. Fig. 8u7e. is a section of the lower part of the vertical framing and sill. Fig. 807 h . is a section of one of the upit hars, showing hinge of casement. Fig. 807i. is a section of the other bars and of side of carement. Fïg. 807 g . is a section of the horizontal bar on the curved head
 from the vertical to the head. Fig. 807f. shows the finish of the curved head against a wrought iron girder carrying a wall above. The letters B show the iron framing; C the iron casement ; G the glass; W the iuside beaded wcod framing. 2250. Firc-proof iron doors are made to shut in a rebate, as required under the Metropolit $\because n$ Building A.t. or are made sliding; or sliding as carried out by Messrs. Hobbs, Hart and Co. on their new par trat clutch rebate principle. A dror on each side of the party wall is usually required; and fir warehouse purposes in Tondon they are specificd to be made folding, and to be not larger than a definite size. The usual dimensions, outside of frames, of fireproof wrought iron doors and frames, naty to usefully inserted here:-5 ft. 9 in, high by 2 ft .3 in. wide; 6 ft . by 2 ft .4 in .; 6 ft .2 in . by 2 ft .6 in.; 6 ft .6 im . by 2 ft .6 in ; 6 ft .2 in. by 2 ft . 8 in., and 6 ft .4 in . by 3 ft .

2255f. Iron shop fromts are introluced in many towns. They are made from 12 feet ly 6 f -et $w 14$ fuet by 10 feet, gonerally at one shilling per superficial fout. "Whole lams" and "latif brass" ansh bars, of nearly every form and size, aro manufactured, nas - an brass, copper, and zine beads. Metal "stall-board plates" hardly come withia
our province, except to notice them. With this subject is connected the rarieties of revolving shutters in iron, wool, or steel, and with or without machinery; and made ic lift up, or down, or to move sideways. A revolving safety shutter in one sheet of ster] is probably the last invention; it requires no machiuery. Where the old method of putting up shutters exists, Jennings's shop-slutter shots secure them as they are cach pu! up, without the necessity of any shutter bar.

2255 g . Wrought iron wine bins, and new registered iron bins, adarted for small quantities of wine, placed in a closet in a sitting or other room, and with or without doors will be found a useful addition in small houses.

ORNAMENTAL METAL WORK.

2250h. The ornamental portion of smirn's work has been largely introduced, of late years especially, in wrought iron shaped by hand into various devices and patterns, more especially according to the several periods of mediæval architecture. The taste is chiefl! developed in gates, railings, altar and staircase standards, screens, grilles and gratings tombs, hinge fronts, the band finishing either in a fleur de lis or trident, reaching ts about three-fourths of the width of the door, and of $\frac{3}{8}$ ths iron; or in s?me serollwork which curls and scrolls over the entire face of the door; shutter hinges, common doo linges; gable crosses, terminals, vanes, and bipknobs; ridge crestings; drop handles with plates, closing rings and plates; lock plates and escatcheons, knockers, keys, latche and bolts, bell pulls, levers and phate pulls; umbrella statids; scrapers; fenders an fire-jrons; dog-grates; lecterns and book rests; candlesticks, gas, lamp, and candlf pendants and brackets, desk lights, and standards; coronæ lucis, lanterns, and pillars It is almost unnecessary to add that many of these articles are to be had in polishec brass, and that many of them are imitated in cast iron. Wrought and cast iron, as is panelled work to gates, are sometimes employed together, the wrought parts enclosing the panels.

2255i. As iron has now neither the tenacity nor the ductility which it gained by the old process of being repeatedly forged, the modern smith can scarcely hope to emulat the tine works which were produced in medixal times, unless the iron be made for th purpose. It js not easy to repeat the mediæval operations of slotting a bar, so as to get th eyes at equal distances, without a machine; or of fastening hot (or, as in later time cold) clips; or of cutting slits into a bar from the cdge, and then curling the splinteree parts; yet these were common work for the smith in the 12 th century. It is equall: difficult to produce the twisted work which was easy to the medieral smith, whose chit care in the 13 th and 14th centuries was bestowed in welding, stamping, and chiseling the file was scarcely ever used. In welding he was careful to fire the two parts separately getting the upper one to a white heat, the lower part to a red heat, and hammering th joint lightly at first, but harder as the iron grew colder. He disguised the uneven stat of the upper part by punching on it separate dots, or else close ones, forming a sort c incised line.

2255j. In very large specimens of ancient work, some parts are additions ontirel welded, others are additions confined at the ends by bands, which are welded anross thi groundwork. 'To imitate work of the 13th century, such as a grille, requires a drawing a full size, and a matrix for each leaf or bud, with an anvil cut to each section which a ba or a band is to assume; this last setms, with regard to the bar, to have been overtooke by M. Viollet-le-Duc. Then, when a bar has been rounded (if needful), and the eir stamped, the curl is given, and the smith has a stalk with a foot. Two of these must b applied to the drawing to have the point of junction marked, and the feet are to be weldec together. If the sprigs then made are to be combined into branches, the larger stem is t, le prepared; and, if moulded on the face, this was passed between the hammer and th cut anvil by a process equivalent to rolling the bar. After the sprigs are welded with th. branch, the poverty of the joist is perhaps to be masked; usually the mask was a moulde band, to which an ornament, e.g. a cup of foliage, was sometimes added; but frequent? the band was superseded by a stamped button. After the feet of the branches are welde to the trunk or main stem, bands are laid over the junction, are welded, and are finisher with the chisel. The whole has to be riveted to the framework. The sizo and weigh of the picces at the last times of welding were difficulties that were partly obviated afte 125θ by omitting the welded bands.
$2255 k$. These operations were superseded by the introduction of sheet iron, in Englan before 1300 , in Germany before 1400 , and in France soon afterwards, which was cu and bossed to a remarkable extent, sometimes stamped, and frequently welded, bu later was riveted. In work of the 15th century the bars are neither stamped no chazed, and the sheets are riveted instead of being welded; but liter they are eithe planted or housed. Finally, the medixal sm:th re'urned to the slots, morlises, an
ort bars of the earlier periods, and used clips which were closed cold with rivets of t iron.
$2255 l$. The use of metal work in decoration, both as fixed in buildings, and in useful vable articles, is most ancient; the use of bronze is recorded extensively in Greece d Rome. The metal so used has been mostly lost to us. Except gold, this is the most luring metal, and is susceptible of the finest work which the modeller can bestow upon and the chaser can enlarge on it. Its tenacity, too, enables cast work to hare thick d thin places, such as cast iron, and to some extent cast brass, will not allow without ccking. The statue of Colleoni at Venice, by Verocchio, is a fine example, together th its band of bronze ornament round the pedestal. The gates and enclosure of the nb of Henry VII.'s chapel in Westminster Albey should be studied for the art as well for their curious construction. Bronze is a metal which is beautiful if left in its own iden tone, and in changing from this tone it never becomes ugly. It can be'gilt, anl 1 take rarious patinas, the green, hrown, and black; and when used with marble of atrasting colours, produces effects which cannot be had so well in any other way. J. S. rlner, M. numental Use of Bronze, in Journals of February and March, 1888, which cribes the cire perdue process of casting.
2255 m . Wrought iron has special qualities of strength, tenacity, durability. and relative eapness. It has lately come more and more into use. Hinges, screens, railings, grilles, ockers, door handles, dogs, fenders, fittings for lights, fire irons.
22.55n. Polished iron is to be seen, but is not generally suitable for use in this mp climate, but the fine grey polish it takes is very harmonious with rooms richly nished.
2255n. Steel was much used in the latter part of the 18 th century; it has rather rold and severe tone, but where it can be kept clean it may bo used with excellent. 'ct.
225.5p. For external work, black or painted wrought iron must be used. The present unfacture of iron is not favourable to durability ; the old mode of smelting by charcoal de a finer, close and ductile iron, and less liable to rust ; and perhaps the at mosphere he great cities and towns is not farourable to tho duration of wrought iron work. - fine work the best iron should be used, especially when the work is intricate and needs 1 ny welds. The French work of Louis XIV.'s time is rery stately, rich, and well 1 noced in design, with firm leading lines and graceful foliage and garlands. In Louis 's time the curves beame bolder and looser, as in all art of that time, as in the eight ens in the Grand Place at Nancy. In Louis XVI.'s time the work became elegant rather stiff. Soon after, fine ironwork died out. The German work is comparatively nsy, and the endless serolls with sprays going out at strange tangents, and passing uugh the scrolls in gratuitously difficult ways, the scrolls ending in flowers of the of cocoons, and with autenne springing from them, so as to remind one of great cts, are not very beautiful, if clever from the ironworker's point of view. In later is ironwork throughout Europe seems to have been greatly affected by the French of the time. In Eugland, the very noble work of Huntington Shaw, now at the h Kensington Museum, having been remored from Hampton Court Palace, is different any other work, though it has its points of rescmblanee with French ironwork. and tho gates and grilles in St. Paul's Cathedral are some of the best ironwork in land. The construction is grood, and tho ornament is so applied as to enrich the truction without hiding it, and to make a good eomposition of open and solid work, enntrasted and varied in the screens almost infinitely. There is a largeness of in theso rercens and in the St. Paul's work, probably impressed upon it by Sir ren. The later work at tho Adelphi has a very good contrast of free and rigid

Sho. Thore is no reason why the men now living should not do work as good as the nen did. 'I here is still skill, patienco, and dexterity in the comery, and lenglish from tha 12 th to the 18 th century ean be well eompared with work of ottior rien, an we need not be ashanied to comparo that of the 19 th century. The design bo anitablo to tho material. (lI. Longden.)
ibr. The chof artucles furnished ly the 1 monmonofr are for the joiner's use, excers in particular eases, are kept in store by that tradesman for inmediato
;7. Thoy consist in screus made in hrism, copper and iron, whoso ermmon sizes are : Iree-quarters of an inch up to 4 inehes in length. 'Tliey aro sold by the dozen. ming wodd acreua, tho throal boing made at a particularangle, aro suppliod in lengt has - $9,1,11,1 \frac{1}{2}, 1 \frac{3}{3}, 2,2 \frac{1}{2}, 3,3 \frac{1}{3}$, and 4 inches.
ia. Jinifa ard now both wrought, cut, and cast, and made of iron, copper, and zinc. wo calloil ly is raricty of numes, according to their special usos. Tho principal ure aumarne le lack nais, whose mhanks are flat so as to hold fast but not opern the
wood. Clamp nails are for fastening clamps. Clasp nails, or hrods, are those wit flatted heals, so that they may clasp the wood. They alsu render the wood smooth, as to admit of a plane going over it. The sorts of most eommon use in building ar known by the names of ten-penny, twenty-penny, aud two-slilling wails. Clench nails ar sueh as are used by boat and barge buildras, sometimes with bores or nuts, but ofte without. They are made with clasp leads for fine work, or with the head beat flat o two sides. Clout maiis, use! for nailing clouts on axle-trees, are flat headed, and irol work is usually nailed on with them. Deck nails, for fastening decks in ships and Herr nailed with planks. Dog or jubut nails, for fasteuing the hinges of doors, \&e. Fhe points are of two sorts, long and short; the former much used in shipping, and usef where it is necessary to hold fast and draw without requiring to be elenthed; the lath are furnished with points to drive into hard wood. Lod nails, used for nailing lear leather, and eanvas to hard wood, are the same as clout nails dipped in lead or sulde Port nails, for nailing hinges to the ports of ships. Fibbing mails, used for fastening it ribling to keep the ribs of ships in their place while the ship is building. Rose nails at drawn square in the shank. Rother nails, chiefly used for fistening rother irons to shif Scupper nails, mueh in use for fastening leather and canvas to wood. Sharp noils, mu used in the West Indies, and made with sharp paints and flat shanks. Sheathing wai for fasten ng sheathing boards to ships; their lengrli is usually three times the thi kne of the board. Square nails are of the same shape as sharp nails; chiefly used for ha wood. Brads are long and slender nail; without heads, used for thin deal work to aro splitting. To these may be added tacks, the smalle-t sort of which serve to fasten pap to wood; the middling for medium work; and the litger size, whieh are much used upholsterers. These are known ly the name of white tachs, two-penny, thrce-penny, n four-pemy tacks. Cut nails are now much used.
$2257 b$. Nails of Crown quality comprise "cut clasp of inch. $1 \frac{1}{2}, 2,2 \frac{1}{2}$, and 3 to 6 inch long. Floor brads of $2 \frac{1}{4}$ and $2 \frac{1}{2}$ inehes long. Cut lath of $\frac{7}{8}$ and 1 ineh. Joiners bra of $1,1 \frac{1}{4}, 1 \frac{1}{2}, 1 \frac{3}{4}$, and 2 inetes. Steel flat point rose for clenehing, $1 \frac{1}{2}, 1 \frac{3}{4}, 2,2 \frac{1}{4}, 2 \frac{1}{2}$: and 3 to 4 inehes long. Cordes' patent rose, flat points, $1 \frac{1}{1}, 1 \frac{1}{2}, 1 \frac{3}{4}, 2,2 \frac{1}{2}$, and 3 to inches long. Slate nails, $1 \frac{1}{4}$ or $1 \frac{1}{2}$ inehes, of zine, wire, malleable, galvanized." Spikes 5, 6, and 7 inch lenghth. See Glossary, adhesien.
$22 j 7$ c. Weight of Flooring Brads ier 1,00 (rarely exceeding 900 Nails).

Wrought.		Patent Cut.		Thickuess of Hwors.
Length,	Weight.	Length.	Weight.	
2 ineh.	8 lb .	2 inch.	8 lb .	${ }_{4}^{3}$ inch.
$2 \frac{1}{4}$,	10 "	$2 \frac{1}{4}$ "	10 ,	Inch.
$2 \frac{1}{2}$ "	12 ,	$2 \cdot$,	12 ,	Ineh.
$2 \frac{3}{4}$ "	16 ",	$2 \frac{3}{4}$,	15 ,	$1 \frac{1}{4}$ inch.
	20 ,"		18 "	

2257d. Tacks are tinued over; and all nails can be galvanized to prevent it rusting. Na:ln for ornamental purposes, and likewise screws, are made with brass hec and the latter also with gilt heads.
2258. Butt hinges, whose name is probably derived from butting close surface to face when rlosed, are used for hanging doors and shutters, and made of wrought aud iron and brass, the former varying in size from $1 \frac{1}{4}$ to 4 inches in length; the latter fil 1 inch to 4 inches. These, as well as all other hinges, are in size necessarily proportio to the magnitude and consequent weight of the shutters or doors they are to carry; it is to be observed that, for the well-hanging of a door or shutter, the size of the hi should be rather on the outride of enough than under the mark. There is a specit hinge used for doors called the rising joint hinge, a contrivanee in which the pirot, har on it a short portion of a spiral thread, and the part to which the door is fixed hari correspondent mass, the door in opening rises, and clears the earpet or other impedin usually placed on the floor. The projecting brais butt is used when the shutter or ? is required to clear some projection, and thus, when opened, to lie completely back i p'ane parallel to iis direction when shut. All hinges are sold by the pair, iucluding neerssary screws.

2258 a. Besides these hinges there are cross garnets, whose form is like the lerter sid+wise. These are only used on the commonest external doors, and are made f 10 to 12 inches, rarying in their dimensions by differenees of two inehes. H hinges of the shape of the letter H, showing their form as well as the ori,in of their name, in their sizes range from 4 to 12 inehes by differences of an ineh. H hinges (H an . conjoined), whose form is implied by their name, and whose sizes are from 4 to 14 inc ,
roceed by inches. Parliament hinges are to allow a shutter to open back upon a wall, nd are made of cast and wrought iron, from $3 \frac{1}{2}$ to 5 inches, procet ding in size by half iches.
2258b. Redmund's patent hinges consist of, iron rising butts; oir in brass with leulded burnishell knuckles and concealed joints; iron and brass projecting butts with oulded burnished knuckles, flaps, and concealed joints, in three sizes of proportional trenglh, from $1 \frac{1}{4}$ to $4 \frac{1}{2}$ inches projection ; pew hinges, in iron and hrass, projecting $1,1 \frac{1}{2}$, nd 2 inches. Rising spring hinges in iron ; and not rising spriug hinges, in brass, iron, nd patent malleable iron, and of single and double action; these are made flush, the nuckle being made to suit the bead of the architrave; rising swing hinges, which rise and ct each way; gate hinges of many descriptions, \&c.
2258 . Coliinge's patent spherical hinges run from 2 to 6 inches, in plain brass, orn:iental brass, and cast iron. The gate or strap hinge, from 1 foot 6 inches to 3 feet 6 chos, in steps of 3 inches. Improved gate springs, with hardened joints. Spring inges, and also to open both ways, are made light, strong, and extrà strong, for $1 \frac{1}{2}, 2,2 \mathrm{f}$, nd $2 \frac{1}{2}$ inch doors, in iron and brass.
2258d. Among other useful hinges are swing centres, double action, to open both ways, nown as Smith's patent, Redmund's and Gerish's, rhiefly for 2 and $2 \frac{1}{2}$ inch doors. Iat's iron rod door springs, from 15 to 42 inches, called No. 1, No. 2, No. 3 and No. 4 ualities, also brass mounted. Circular door springs. Rising and not rising door laack prings; spiral door springs; and patent climax door springs for single and double iction deors, must also be noted for closing doors.
2259. Rough rod bolts are those in which there is no continued barrel for the bult, and re for the most common service. Their sizes begin with a length of 3 inches, and proced by inches up to a length of 10 inches; such, at least, are their common sizes. 3right rod bolts run of the same sizes as the last ; and, as the name indicates, the bolt is olished and finished, so as to makc them a better fastening, as far as appearance is cononcerned. The spring plate bolt is contrived with a spring to kecp the bolt up to its ork, but one which so soon gets out of order thst we wonder it is now manufactured or sed. It is made of lengths from 3 to 8 inches, by variations of an inch in size. Barrelled olts are those in which the whole length of the bolt is enclosed in a continued cylindrical arrel, and are superior to all others in use, as well as the most finished in their appearnee. The common sizes are from 6 to 12 inches, varying by steps of an inch. All the olts above mentioned are sold per piece by the ironmonger, as are thrise called flush bol/s, name given to such as are let into the surface to which they are applied, so as to stand ush with it. They are mostly made of brass, and are of two different thicknesses, riz. If and thrce-quarter inch. Their lengths vary from $2 \frac{1}{3}$ to 12 inches, and ocrasionally; 3 circumstances may require, as in book-case doors and French sashes, to a greater lengt h. at for French chsements, what is called the Espagnolette bolt, a contrivance whose figin is French, though much improved in its manufacture here, is now more generally use. Smith's patent weather-tight casement fastcnings.for French windows, consist of a ate formed in the edge of one door, which when shut is forced half its width into a oore in the other door. This acts in lieu of the E-pagnolette bolt above mentioned. nith's patent uater bar for easements opening outwards has been mentioned in r9. 2165 F . and 2255 d . Jackson's patent mortise bolt appears to be a late improvement mon the round or the flush bolt. Elliott's patent perfict simplex metal weather bar is apted for all sorts of casements and doors opening inwards. It is mato in zinc, Lrass, 11 imn.
2260. Pulloya, for hanging sashes and slutters, are made of iron and of brass, and with isy shealres and brass axles. Their sizes are frem one inch and a half to two inches In half in diametcr. M'Adam's pulleys for window sashes, of porcelain or vitreous itcrind, are consicered to be exempt from damp and rust through whieh enrds may come rotten. He adds to them a method of hanging doublo sashes witha a single weight each side of the window. Johnson's patent axle pulley for sashes, wheroly the cel, axle, and rushes ean le removed for oiling and cleaning; the two last lecing rered in, are protectad from dust and damp; and the wheels cannot get fixed as in linary pulleys. Adnms' patrnt reversiblo and sliding window, by which tho ghas ean clonned from the inside. Solid-frame oilatle sasli pulleys. Austin's imperial patent hand blind lines are mado of flax in four qualitios, und his new imperinl putent x sanh line for heary weights. Patent braided sald line with a twisted eopper wire tro, known as the "patent grolden engle sash line." A common description is mado n jute, lut it is very inforior io flax. Henry's pastent sanh lino fastemer is easily fitted 1 the cord realily niljusterl. N'wall's patont copper wire cord and wire strand are ennively nsed fur window sonsla line, hothonses. lightning couductors, pisture enrd, k zorl, tent ropes, clerhes lines, \&e ; tho adrantages, na roportod, being that, they chaper, much more chrable, equally floxille, and one-sixtly pare the bulk. Newill's Th improsed iron wire rope wo do not detnil.

Table I. of Nefall's Copper Cords.

Number		$0 \quad 1$	14	$1 \frac{1}{2}$	13		3	4	5	6	7	8	9	10
Diameter; inch	-	${ }_{8}^{8}$				${ }_{7}^{2}$		$\frac{1}{20}$						
Breaking strain, lbs. . Working load, in lbs. .		Lightning Conductor.	For Window Sash Linc, Hotbouse, \&c. 960 (690 $480\|300\| 180 \mid 125$							Picture Cord, \&c.				
		1260							45	90			130	300
	.	336			112	75	45	31	11	22	30	32	50	80

Brass axle pulleys and hothouse pulleys are supplied to suit.
Table II. of Iron Cords-Galvanized and Plain.

Wire strand, 4 and 6 wire, of No. 3, 4, 5, 6, and 7 qualities; galvanized and ungalvanized.
2261. The rarieties of locks, their contrivances for security, and their construction, are so many, that to describe them minutely would reqnire almost a work of itself. All that the architect has to deal with, for common purposes in building, we shall mention. For fastening places where particular security is requisite, as strong closets for plate or cash, some of the patented locks should be used, and we must leave this matter for inquiry in the hands of the architect. Erery patentee says his invention is the best. We nevertheless beliore, notwithstanding the boasts of all the inventors, that no lock has appeared which an expert locksmith acquainted with its construction will not be able to pick. The locks in common use are stock locks, whose box is usually of wood, and whose sizes rary from 7 to 10 inches. Dead locks, whose sizes are from 4 to 7 inches, and so called fron the key shooting the bolu home dead, without a spring. Cupboard locks, of 3 , $3 \frac{1}{2}$, auc 4 inches in size. Iron rim locks, whose box or case is made of iron, and which are fittod ol to one of the cides of a door, and whose sizes are from 6 to 8 inches. Of those malde or the last-named size, there are some, as also of 9 inches, which are used for external doors called iron rim drawback locks. lior the doors of all well-finishod apartments mortis locks are used. Thase take their name from being mortised into the thickness of the door and being thus hidden. Gerish's patent cylindrical mortise lock, Barron's patent locks Bramah's patent locks, Hodges' patent lock furniture, Kaye's patent automatic lock ant docr opener, or push and pull look, an I Chubb's putent locks. Holbs's patent locks "ar" made for all purposes, from the smallest cabinet to the largest fortress gate." Hill' patent reversible rim lock has four "hands" in one lock, doing away with the necessit of considering which way the door is to open. Tucker's new patent flush bolt sprin: lock, self-locking dead lock, and railway carriage flush bolt spring lock; they loct themselves when closing or elosed. Birgs' patent tubular reversible murtise leck; th machinc-made lock, 6 inches long and one inch diameter ; the foreplate and striking platare 3 inch by 1 inch, with rounded ends. To these cither plain or fancy furniture, tha is, knobs and escutcheons, aro affixed. Longbottom's patent adjustable lock furniturt simple and reliable.

2261a. Pitt's patent slf-adjusting spindle, with his new patent mount and spind' and Ager's patent adjusting spindlc, all command a large sale. They are all fitted witl knobs and plates, from china, plain white and buff, to gold lines, gold bands, flowers, \&c. and in hard woods, as ebony, maple, satin, rose, mahogany, wainscot, and walnut; th knohs in many shapes: also with plain and fancy brass, brass and china combined, al: buffalo horn furniturc. Also with glass farniture, crystal and amber of varying slape and cutting, with green, hlack, and opal eut octagons. Above and below them fingt platcs are generally directed to be fixed, to prevent the door being soiled ir the plice whore it is mostly caught.
2262. The different surts of latches in use are tho thumb latch, which receives its nam from tho thumb being placed on the lever to raise its latch; the Norfolk-latch, which sunk, and requires a pressure on the lever to raise the latch; the Suffolh-latch; the four inch bow latch, with brass knobs; the brass pulpit latch; the mortise latch; and Gothi latches.

2262a. Wishaw's registored improred "tclckouphonon," for speaking pipes, consis" of a whistle mouth-piece of irory, wood, or metal, with an indicator attached to point ol from which one or two or more tubes the whistle proceeds. These pipes are no arranged for one or more mouthric ces. Electric bells are named in the next sectio The ordinary crank system of bell hanging is noticed in Specifications, 2202.
2263. Besides the articles alrcady mentioned, the ironmonger furnishes holdfosts, wollcols, door springs of var ous sorts, door ehains ond barrels of brass and iron, thumbecreus; hutter fastenings, shutter bars, sash fastenings, of which there are now many varieties gainst burglary, adjustable silent door springs, brass turn buckles, closet knohs, brass u.h rings, iron drauer handles, brass flush draw handles, brass roll.rs, bars with latchets, kelf bracke ts, sash weights, with numerous other articles.
$2263 a$. Bults, straps, and other exposed iron work are preserred from the action of moisure on them by the following mixture:--To two quarts of boiling oil add half a pound f litharge, putting in small quantities at a time, and cautiously. Let it simmer orer the re two or three hours; then strain it, and add a quarter of a pound of fine'y-pounded sin and a pound of white lead, keeping it at a gentle heat till the whole is well incorarated. It is to be used hot. A composition of oil and resin and finely levigated briekust is found useful in preserving iron from rust. It is to be nixed, and used as a paint the usual consistence (see par. $1779 e$. it seq.). Wrought iron ornamental work exposed the weather has been cased with copper and gilt, as much for decoration as for prorration. The surface of iron may be decorated and highly ritrified, the colours being urnt in. Thus the iron can be shaped to elaborate designs and artistically treated; being ısily cleaned, it is a permanent material for walls, ceilings, and other parts of a building. ee the Barff-Power process, \&c. for protection of iron, $1780 c$.
22633 . Mr. T. Fletcher, of Warrington, has lately (1887), ly the use of compressed rygen and coal gas, with a $\frac{1}{8}$-in. gas supply, brazed a joint of a 2 -in. wrought iron pipe about one minute. He then tried welding, a proeess not possible with ordinary coal ts and air, and found that a good weld was obtained on an iron wire $\frac{1}{8}$ in. diam., with very small blowpipe, haring an air jet about $\frac{1}{32}$ diam. Larger articles, as boiler plates, thinks could be dono perfectly with little trouble and no handling. By this process fused a large hole in a plate $\frac{1}{4}$ in. thick wronght iron by an apparatus which could be rried up a lacder by one man.

GAS FITTER.

226 t . The work of this artizan may be placed under the head of this section, although s trade is now kept distinct. Gas is required by the Companies' Acts of Parliameat to roa lighting power of 16 sperm candles when consumed at the rate of 5 cubie feet per ur. As regarls purity, the gas must be entirely free from sulphurotted hydrogen, and o maximuni quantities of sulphur and ammonia allowed aro fixed from time to time for ndon by the gas referees (188 in). The pressure of gas usnally during the day varies m $1 \frac{1}{\text { a }}$ inches to about 3 inches at night. This causes the burners to flare and s. To regulate this pressure various contrivances have been invented. Carnaby's for the turning off of any number of lights ly working the handle of a dial in the ster's room or office. The Stott, Tice, Oalily, and other gas economisers are autotic, having valves that rise and fall according as the pressure is larger or smaller ; y are said to save from 20 to 40 per cent. of gas without dininution of light. A ready. n of regulating the supply is to put the tap to the meter at such a point, by trial, as I supply the lights in ordinary use. In large establi-hments this has been done by a in, specially instructed, who alters it arcording to the lighting up or putting out of the its. A great saving has been thus effected. The various formule for calculating the ocity and the pressure of eflluent gas are to be found in Cefga, Treatise on Gias Light.

Tho most eeonomical working pressure is equivalent to the weight of a column of er on tho outlet, of about 1 inch . The formula for caleulating the quantity discharged $q=1350=\sqrt{\frac{h i d}{s} l}$; in which $q=$ the quantity sought in cubic feet per hour $; d$, the meter of the pipe; h, tho working pressure in inchos; l, tho length of the pipe in ids; and s, the specifie gravity of the gas compared with atmospheric air as unity.
Table of the Delivery per Hour througif Fipfa of the Diameters named.

\%.	Thickness,	Length.	Weight.	Delivery	Slze. dlam.	Thiekness.	Length.	Weight.	Delivery.
$\}$	wronzlit iroll. Inch.	fret.	cwt. qr . Ibs.	cubic ft.	ins.	Ineh.	feet.	cwt. qr. lbs,	cubic ft.
				90	5	13-32 ndl	0	$1 \begin{array}{lll}1 & 3 & 21\end{array}$	12, ${ }^{2} 00$
				160	6	7-16thy	0	$2 \quad 2 \quad 2$	$1 \times, 004$
				250	7	10-32nds	0	$\begin{array}{lll}3 & 0 & 11\end{array}$	21,504
				880	8	1-hulf	9	$3 \quad 3 \quad 3$	32,004
				500	9	$17-32 \mathrm{nds}$	$?$	422	40,501)
	bit 161 lia 1132 nds		10124	2,5100	10	0.16011 as	9	516	50,010
	1132 nds $3-8418$		103	4,800	12	5-8t1.s)	$7 \quad 0 \quad 5$	72,000
	3 -4ths		1124	8,006)					

ir cost of laying, tce Lockwood's I'rice Book, 1887, art. Gas Filter.

2264a. The main distribution of gas is effected through cast iron pipes with socke and spigot ends, whenerer the diameter exceeds 2 inches. Wrought iron welded tubil for gas is made from 3 in . diameter, $1 \frac{1}{2} \mathrm{in}$., and then down by each $\frac{1}{4} \mathrm{in}$. to $\frac{1}{2} \mathrm{in}$., the $\frac{3}{8}, \frac{1}{4}$, and $\frac{1}{8}$ in. diameter, in lengths of from 4 to 12 feet, from 2 to 4 feet, and short pieces under 2 feet; together with all their connecting pieces, cucks, taps, screws, \&ec. $\frac{1}{4}$ inch pipe is used for 2 lights, $\frac{3}{6}$ inch for 6 , $\frac{1}{2}$ inch fur $12, \frac{3}{4}$ inch for 25,1 inch for is $1 \frac{1}{4}$ inches for $70,1 \frac{1}{2}$ inches for 120 , and 2 inches for 200 lights. In the details of hou: fittings; wrought iron pipes are used when the diameter is, and exceeds, half an inet $\frac{3}{4} \mathrm{in}$. is the least size recommended to be used, even for supplying upper rooms. lis pipes of small diameters, and for abrupt bends, block tin and conposition pipes at tixed. Fur occasional use, flexible pipes are employed, such as those made of gutt: percha, caoutchouc, with or without a wiro coil inside, and caoutchonc coated wis varnish. This last is the safest of the flexible pipes; the other, though safer when use with a wire core, is not impermeable to gas, though a coat of linseed oil may render it s The first-named is not only permeable, but causes an unpleasant smell, and is liable contraction at any junctions with metal work, allowing of the escape of gas. Thero hi lately been patented one formed of two layers of rubber, with pure soft tinfoil, vulcanise between; perfectly gas-tight under any pressure and free from smell, and rery flexibl The braided or cloth-covered tube has not come into general use. Brass pipes a generally used for the gasalier.

2264b. Under no circumstances whatever should either iron or composition pipes be 1 into the plastering, as is too constantly done, or into solid brick or stone work; for t? salts in the latter are liable to affect the pipes in a serious manner, and the contractic and expansion of their materials may injure tho joints; whilst it must always be diffici to trace a leakage. When placed in a partition, any gas escaping fills all the spac between the studs, and between the joists of the floors, so that when it comes in conti with a light the whole ignites, and the force of the explosion may cause the enti destruction of the house. The police regulations of Paris require that gas-pipes in hous should be visible throughout thcir length, excepting when they travers floors, partitier \&c., when the pipe conveying the gas is required to be enclosed in a larger one, projec ing beyond the floor or partition, so as to ensure ventilation round it. Cupper pip should never be used, on account of the action of the gas on the metal. Gas pipes sheu be laid with a slight fall, on account of the condensation of the gas, and a draw-off t is required to empty it. Gas by itself will no more explode than air, and on issui into the air it will, if at once ignited, burn quietly, as at a gas burner. When gas previously mixed with air, the mixture, on ignition, explodes with terrific force.
$226+c$. The form of burner which yiclds the best economical results is the argand; t bat's-wing is the next best; and the fish-tail the worst. A number of small burne dispersed will give a better light than collections of them. The argand burner, with holes, will burn about $5 \frac{1}{2}$ to 8 feet per hour, according to the pressure; ordinary str lamps, having the bat's-wing, burn 3 to 8 feet per hour, and are usually contracted for the rate of $5 \frac{1}{2}$ feet. Bronner's burners afford a steady light, and each is made to censu as many fect per hour as may be required. The number of new burners have been mu increased. Bray's have a large sale; Sugg's are of various sorts for private use and public thoroughfares and edifices. His burners for public lamps affording 20 cand power consume 5 cubic feet per hour; 35 candles, 8 feet; 50 candles, 12 feet; and candles, 15 feet. The former are two burners, and the latter three burners. Tho Hero duplex has two small burners impinging upon one another and so affording a clearer ligh 34 of Bray's burners burnt 230 feet of gas, 34 of the duplex for one hour burnt 1 Hart's economising burner dates from about 1859. Peeble's needle governor burn save 20 to 40 per cent. of gas. Many of these lights are now supplied with " b corrosive " burners made of soapstone. One of the latest inventions (1887) is Welsbac. system of the incandescent light; it consists of a prepared "mautle" placed orer Bunsen burner. It is stated that it doubles the illuminating power of the gas; gis a steady, brilliant light; and saves 50 to 70 per cent. of gas; there is greatly diminisl heat, no dirt, and no smoke ; the light rivals the clectric light. Another is the Clamo incandescent gas light, supplied by the Eolus Company; each gives a 40 candle-pon light on a consumption of 6 feet of gas per hour. The Chandler patent regenerat gas light has no burner, the gas issuing from a free, open pipe. By the action of 1 air supply and the shape of the burner opening the flame assumes the form of an ince descent sphere, like a ball of fire, brilliant and white. It is adapted for burniug 2 to cubic feet per hour. Λ matchless self-lighting gas burner is in use. It is stated th 60 gas burners produce 2 gallons of water per hour by the combustion, henco part of damage caused to the walls, works cf art, \&c.
$226.1 d$. The ordinary lights are stated to require 4 cubic fcet of gas per hour, but t is much too large ; $2 \frac{1}{2}$ and 3 will be found to give sufficient light if the burner is fai near the person; the high lights of a gasalier arc eithcr inefficient or wasteful for read or working purposes, and often affect the eyesight.

264e. For lighting large rooms the solar or sun-light arrangement is agreeable, and 3 fitted to promote the rentilation of the room. It is very costly, not only in its first wlishment, partly from the necessity of securing the burners and pipes from setting to the surrounding timbers, but also in the subsequent consumption of gas. In rooms noderate height, the heat to the occupants is objectionable. The Wenham lamp is rewhat similar, but having a globe under, is better adapted to a small room. Benham's emerly Rieket's) ventilating lamps are also fixtures. The reflecting and ventilating :pton light is economical in gas and suitable for public places. The patent Albo-carlight is said to save 30 to 50 per cent. of gas, by the gas passing through a white aposition, which, on being melted by the heat obtained from the burner, gires off a our which is taken up by the gas, thus giving increased brilliancy to the light.
226 $4 f$. As illustrations of the mode of lighting public buildings may be cited: I. The teert room at Liverpool, designed and executed by Mr. A. King; it is effected princiIy by carrying a pipe in the core of the ceiling, which pipe is pierced with numerous es for fish-tail burners. II. St. James's Hall, London, and the great hall of the form Club, which are admirable illustrations of the use of the stellar and of the solar hts. LII. The new theatre du Chatelet, at Paris, where the lighting is effected by 300 burners placed above a vault of ground glass, and under a large enamelled reflector ; glass vault forms, in fact, the ceiling of the body of the house, so that the burners omselres are entirely hid. This arrangement was also employed for a few years at the ture gallery in Suffolk Street, London. And IV. The various passages and rooms of Houses of Parliament, which are lighted and ventilated under Faraday's principle.
2264 g . Table of Comparison of Light-Producing Materials, by Dr. M. Tidy, in Handbook of Modern Chemistry.

Light-producing Material qual to 12 standard Sperm andles, each burning 120 Grains per Hour.	Cubic Feet Oxygen Consumed.	Cubie Feet Air Cousumed.	Cubie Feet Carbonic Produced.	Cubie Feet Vitiated.	Heat $=1 b s$. of Water raised 10 deg. Fahr.
Vanncl Gas	$3 \cdot 30$	16.50	$2 \cdot 01$	217.50	$195 \cdot 0$
Common Gas	$5 \cdot 45$	$17 \cdot 25$	321	348.25	$278 \cdot 6$
'jerm Oil	4.75	23.75	$3 \cdot 33$	356.75	233.5
Benzole	$4 \cdot 46$	22.30	3.51	376.30	2326
Paraffin	6.81	$3+\cdot 05$	$4 \cdot 50$	$48 \pm .05$	361.9
Sperm Candles -	$7 \cdot 57$	37.85	$5 \cdot 77$	614.85	351.7
Wax	$8 \cdot 41$	$42 \cdot 05$	$5 \cdot 90$	$632 \cdot 25$	$383 \cdot 1$
Tallow -	12.00	$60 \cdot 00$	8.73	$933 \cdot 00$	$505 \cdot 4$
Eilectric Light -	None	None	Nono	None	13.8

A tablo, prepared by Mr. V. B. Lewcs, showing the amount of oxygen remored, the ebonic acid gas and water vapour generated, by variousilluminants to give a light equal 32 candle-power, is printed in the Proceedings of the Royal Institute of British Arehits, for April 12, 1888.
2264h. A noticc was issued in Tanuary, 1862, from the London Fire Engine Establishnt, stating that, "It uppears absolutcly necessary that some steps should be taken to ation owners of property, particularly in largo wharves and warehouses, as to tho posiIn and protection of the dangerous gas lights. These remarks may not be considered necessary when it is remembered that in many of the most valunble buildings in the tropolis morallo gas brackets are placed within 20 irches of the ceilirg without the ghest protection whatever. It may bo laid down as a rule that the jet on the outer m of the bracket should never be less than 36 inches from the ceiling over it, and that alould ba protected on the top by a hanging shade, and on the sides by stops on the irel jointa, which should prevent the brackets moving beyond a safo distanco. 'Attention ght, prophas, also be called to the very common and dangerons practice of nailing tin imn on the arljoining timbers. It his lass loug proved to be no protection, and it lans a din ideratage of allowing the timber to bo clarred completely through before it is own." In momo places gas lightsaro used within 15 inches of the ceiting, and when - Glans ahude has been liroken and not replaced, the heat has been known to ignite the or timbers over the plastering.
2201i. It will not bo necessary here to do more thun mention the uso of gas in the tchen for beiling water, or for baking and roasting (tho apparatus for each, or for such Tromen, aro now supplied in Iondom ly the gas companies at arent); tho lathas atell by gan, an readily adaptablo in phaces uhere a conl stovo cannot bo usod; or the reral gan mown for warming l, uildings and row ms, \&c. Seo $2270 c$.
225 fj . The urgency of etlicient eentitution when gas in burnt in a room habitually is a lijere nf immediate importanco. It is principally to the neglect of this preantion that. - bulk of tho injurious effects snid to attend the use of gas may intect be uttributed.

In the case of libraries, the destruction of book-bindings may be assigned more justly 1 the heat than to the chemical action of the products of combustion. No doubt the b saiphide of carbon, which is p esent in eren the most carefully purified gases, must gis rise to the formation of minute quantities of sulphurous acid: and this, in its turn, mus he destructive to some descriptions of leather-especially Russian (as noticed in th Builder, vi. 89), but a rapid removal of the products of combustion would almost entire! obviate this effect. It seens, however, that the excessive dryness and the heat of the air i. the upper part of rooms where gas is burnt may occasion the injury quite as much as th cliemical reactions supposed to take place; the books which suffer most being alway those placed above the level of the lamps. Under any circumstances, ventilation slionltake place close to the plane of the ceilings. Even when provision is nade for ventilatio over gas burners, a stratum of heated air is often allowed to stagnate over the openingc'ose under the line of the ceiling; and the area of the opeuings is rarcly sufficient to allus the escape of the decomposed gases. Again, if any sulphurous acid should be product it will be found also to tarnish the colours of tapestry and hangings, and to turn imitatio yold; hence none but the best leaf-gold should be enployed iu roonis where gas is burn. The injury caused by the use of snch gas as is supplied in London, Paris, Bruxelles, \&c is very small compared with the brilliance of the light; and the gas of Liverpeol, Edil: burgh, Mauchester, and some other places having, bulk for bulk, a higher illuminatin bower than that of London, is even less injurious. Mr. Spencer has raported that th quantity of gas leaking from London gas pipes is not less than 9 per cent., or between si aud seven million cubic feet per annum, which causes the stinking black carth of th London street subsoil. No such leakage occurs at Liverpool or Manchester, where th. joints of the pipes are bored, turned, and fitted to each other, like ground stoppers in glat bottles; whereas in London the pipes are jointed with tow and lead, so that after expansio and contraction in summer and winter the perfection of the joiuts is destroyed. The ge then, acting upon the subsoil. forms sulphuretted carbon, which corrodes not only the ge pipes, but the water mains also, and converts them in ten years almost entirely into a so of plumbago, although in pure London sulsoil they last a certurg.

ELECTRIC APPLIANCES.

2264k. For the important sulject of Lightning Conductors, reference should be mu. to R. Anderson, Their History, Nature, and Mude of Application, of which the the edition, revised, rearranged, and enlarged, was putlished in 1887: "The numeroi accidents to buildings fitted with conductors sufficiently indicate the indispensal, necessity for occasional inspection. The chief causes that detrict from-their efficacy a original defects of capacity, conductivity, and fitting, faulty earth conne tions, aceident. injury and mechanical derangements, oxidation of joints and of earth contacts, at. alterations in the couductive capacity of the ground in consequence of improved drainage The efficiency of a conductor is in proportion to the sectional area of the metal. 'Ial' are made $\frac{1}{10}$ th of an iuch thick, being iuch, $1 \frac{1}{2}$ inches, and 2 inches wide; $\frac{1}{12}$ th of an in thick, being $\frac{5}{8}$ the of an inch wide; $\frac{1}{8}$ th of au inch thick, being $\frac{3}{4}$ ths of an inch, inch, an $1 \frac{1}{2}$ iuches wide. The conductors should not be less than $\frac{1}{8}$ th of an inch thick and $\frac{1}{1}$ t of an inch wide, weighing 6 oz per foat, as recommended by the lightuing liud cui ference, 1882. The upper terminal should be in the form of a sharp point, or a clust of sharp points. As this point may become blunted, an alley of 835 parts silver ar 165 parts of copper is therefure used for it, at Yaris. The earth termination should 1 taken some depth, and into moist grouud or water, and have a large area of coutac When this is not to be obtained, a copper plate at least 9 feet square should be carefull? riveted to the end of the tape and be buried in a well, packed with cindors or colk Professor Flemiug has pointed out that the ultimate safety of a conductur lies in tl proper periodical testing of the earth counection of the conductor.
$226+l$. Electricity for lightiug purposes can be obtained by chemical action, as by : arrangemeut of a voltaic battery, and the combination of cells is ternced a "primal battery." A steady light, is stared to be maintained at a cost not much in excess of th. from a "dynamo" machine. Such a battery may suffice fur a small country house, but large number of lamps will require a battery of great bulk; hence ir is mnre cconemic to produce electricity mechanically, by couverting the energy of the prime moter in electric force by the use of the dynamo machine. This mutive power is obtained ! steam, water, or gas, according to circumstauces. The engine house would contan 1 dynamos for generating tho electric current. The current is then taken to a "swit, loard," which is a simple apparatus ou which all connections are made with suital arrangements, so that either one or more machines can be made to deliver into the sat conductor. On this board is an instrument for measuring the strength of the currel to fixed that it can be read by the attendant by turning the handle of a switch. lir this board the mains go towards the lamps, starting as a cable, which ramifies it
naller mains and branches until each incandescent lamp is reached. It is of supreme apor:ance iu electric lighting that the current should always be uniform at all times in ich indiridual part of the work, and be unaffected by changes in other parts. The mpound shunt machine has been devised to effeet this arrangement.
2264 m . A source of danger to property is in the mains and branch wires conducting the urrent to the lamps; they must lie of sufficient proportion, and of a material whose sistance is uniform. Copper wire is used because it can be obtained in a purer state ian any other available metal, and vext to silver it is the best conductor of electricity. rent aftention is required to the connectors and joints, and the connections made with inding screws; besides causing resistance in the circuit, bad centact between a wire and terminal will produce heat. A faulty junction may also upset the calculations made -r the current to be taken by an otherwise efficient cable; solder alone must not be rel e 1 pon, as it may become softened by the current; it must be mechanically perfect. A short circuit" is the current taking the shorter path, where, haring no work to do, it anses fire. The only preventive is a "cut out" or a "safety fuse," described as "a piece f ensily fusible metal, which would be melted if the current attains any undue magniide, and would thus cause the circuit to be broken." From are lights pieces of heandescent carbon are apt to drop; morc fires have occurred from this cause than any her. Electricity, haring no smell to betray a leak, shows when it is escaping by the iminished appearance of the lights, caused by the diversion of the system.
$2264 n$. Even if the cost of electric lighting be higher than of hat of a private gas supply, he extra cost of it for those rooms where the preserration of works of art, bouks, and derations has to le considered would be amply returned. The property of not vitiating or eating the air will be the salient one which, when fully appreciated, must bauish gas and I from the houses of those who consider sanitary excellence the principal feature of a anutiful housc. (K. Hedges, in Transactions of Royal Institute of British Architects, 983-4, p. 143). The Electric Lighting Act was passed August 18, 1852. The Maxim"eston Electric Company (Limited) supply (Nor. 1887) the new "Watt" system lighting. They claim that they can now obtain six are lamps of 150 candle-power in iace of one, as heretofore, from one electrical horse-power. The Pilsen-Joel arc lamp is 1,000 to 10,000 candle power ; the incandescence or glow lamps are of $5,10,16,20$,), to 100 candle-fower, for lighting rooms, \&c. To popularise the electric light is the aly way to make it pay-it must be cheap and effecient. By cheapness is to be underood, either a small first cost and a correspondingly small cost for maintenance, as in - caso of a battery placed in the house, or a moderate charge for the supply of the arreut, as in the case of a central distributing station. The lamps must be adaptable the present gas fittings, aud the cost of the light must bo but little, if at all, in cess of that of the ças of the district. Though the advantares of this light are great in hagienic and domestic point of riew, the public would, in the main, contime to use the rsent methods of illumination rather than adopt any new system which entailed extra st, howerer s:itisfied they might be that positive advintages were to be gained by it.
l. Mersey, On Irimary Butteries, Nor. 1887.) The Plœnix Fire Office rules for fixing, 2., n in instillation are those new generally required to be carried out by the fire offices. 22640 . Although electricity has not ousted gas from the field, as it was at one time onult it would do, it has yct made more progress than many people imagine, and 10 -hitect would design a public lall witheut fitting it with incandescent lamps. These not give off as much heat as gas, nor do they contaminate the atnorphere. The wertion of "etorage battcrics" as a yout of buffer between the machine and the lights, and a means of avoiding the risk of a break-dowu of the rigine, hass done much to sentere ctic lighting more generally available; and cousiderable improvements have been mado these "storage batterics" during the last few years. The batery of the Union Electrical wer Light Company, of fifteen cells, will run twelve ten-caudle incandescent lamps, I orcupios a frw feet only. A small primary battery and lamp combined is invented, so It an eloctric lamp can be placed on the talle; this can be recharged by simply pouriug 10 the cell containing the plates the necessary liquid. These lamps will run for about -op honrs-any a dimner time.
$2261 p$. A methoxl of eloctrie lighting for small arens, where the trouble and expense of ing np and working engines and dynamos constitute a serions objoction, has been introwhl ly Messes. Wordhouse aud Knwson, in which no machinery is requirerl. The whole pratur is containel in a space of some of feet by 6 fect, liy 8 feet in height, with it fect abpence of sinoll, noike, or dirl. 'The light is generated by an "Upward " lattery. - comt for the cquipnent of mu instalationts ran clevon lamps (10 candle-power each) two hours, or six for four hourw, is 561. ; while fiftem lights for three honrs, or enght nix hours, in 812 ., and mo on. The House to House Electric Light Supply Co. is takiug inn atops to promate thin menns of itlumiuation.
2:61\%. Thore is in new dertric gas lighting syatem, by which gas is lightes, lurned on, extinguishecd ut any distatce by simply pressing a buthon, as in ordinary olectric In; and nt the mane time tho lentery may he used for ringing electric bells.

2264r. Bells. The principle, as applied to all the different method, of construction, that the completion of the circuit of the electric current rings the bell, the medium communication from the distant points being wire of various descriptions, carefu insulated. The mechanism is colfined to the push (the reverse of the crank byste 'which has the pull) and to the bell itself, which is struck by a hammer attached to small and light magnet. The wires are fixed. One bell will answer the purpose for a number of rooms. The battery whence the electric power is supplied is, for an ordine house, a snall six-cell battery, about twelve inches long, nine inches wide, and six incl deep. The posilive poles of the six cells are all connected with each other, and also negative poles, each to brass knobs on the outside of the box. From the positive polt the battery a wire passes, which is connected with each room, and from each room a w passes to the indicator. This is a tablet with openings, upon which are inscril numbers for, or names of, the rocms. The push, a lightivory knob, completes the elict circle; on being set in action by it, the current travels through the wire to the indicat and then by the movement of a balanced magnet the number or name appears, and by light magnet attachel to a spring it rings the bell, which can be made to ring untili magnet is released by the hand, or a button, which also returns the name or number to place. Tho wires are insulated by gutta-percha or india-rubber and coils of cotton silk, which, if exposed, can be made of a colour to match the paper or paint of the roo The bell pushes and other furniture can be carried out in any decorative character.

2264 s . The electric bell system can be adopted for protection against thieves and fi For the former, every external door and window may be connected with a battery so th: when the circle is complete, the opening of the door or window will ring the bell. In t daytime a switch is used to disconnect the commanication, so that the doors and windo may be opened without ringing the alaram. For the latter, or fire, a thermomet hermetically seaied, into which a platinum wire is fixed, is regulated to any point indic: ing danger, say 100° of heat, and connected with the battery. Should the mercury r to that point, the contact of it with the platinum completes the circuit, the bell rings a sounds the alarum. For the sick bed, the invalid has only to give a slight pressure to knob at the end of a silk cord, laid close to the pillow, instead of ha ring to orercon the stiffness and weight of the old crank and wire system.
$226+t$. Moseley's patent electric bells are fixed on the system of the battery not bei in use when the bell is not ringing.
$2264 u$. The best time to commence fixing the bells is stated to be when the first cont plaster is laid on the walls, and before the floor boards are nailed down. The joints a connections between the compo tubing and the bells should be carefully soldered, and i iron wall boxes fixed flush with the finished wall, with the screw holes in front perfect vertical. The fixings required are press buttons or pushes, lever action pulls, or b ropes, for rooms used in the day. Bed-head pulls, flexible cords, or pushes, for t bedrooms. Pull-out pulls or pushes for front door or entrances. The tubing is $\frac{1}{-} \mathrm{i}$ boro composition, let into the plaster, \&c., and protected therein by wood, or ly late zinc bell tubing. The palls may be either the "sunk" pattern, or the " raised "patter which is fixed on tho face of a wall or partition.

We can only here rofer to the later invention of the "telephone."

Sect. XI.

FOUNDERY.

2265. The very general uso of cast iron by the architect induces us to give a succiu account of the common operations of foundery, or the art of casting metal into differ forms. To gain a proper knowledge of the operations, tho student should attend a fi castings at the foundery itself, which will be more useful to him than all the description. could detail of it; howerer, we give a few particulars not noticed in the previous secti on Iron. Some of the articles cast are noticed in par. 2255 k.
2265a. Those manufacturers who will attend to the good quality of the irons they 5 can generally command their own price. Thus, the Low Moor and the Bowling bariro continue in possession of the market at nominally high prices, whilst the ordinary iro are hardly saleable at remunerative ones. Tho Welsh iron, known as the SC brands, the Staffordshire mitre iron, are of at least equal quality to the above, and there are othe as good.

2265h. Staffordshire, Shropshire, and Derbyshire afford the bist irons for "astirg The Scotch iron is much esteemed for hollow wares, and has a beantifully tmootl surfic which may be noticed in the stoves and other articles cast by the Carron Cunpany. T Welsh pig iron is principally used for conversion into bar iron. Almost all irons are ir proved 1 y admixture with others, and thercfore, where supcricr castings are required, th
hould not be run direct from the smelting furnace, but the metal should be remelted in s upola furnace, which gives the opportunity of suiting the quality of the iron to its intended We. Thus, for delicate ornamental work a soft and rery fluid iron will be required, whilst or girders and castings exposed to cross strain the metal will require to be harder and nore tenacious. For bed plates aud castings, which have merely to sustain a compressing orce, the chief point to be attended to is the hardness of the metal. Various mixtures of lifferent qualities of iron have been recommended as materials for large castings (see Fairrairu's Application of Iron, $£(\mathbf{c} .6 \mathbf{j})$. Most engincers are agreed in considering that the best pourse for an engineer to take, in order to obtain iron of a certain st rength for a proposed tructure, is not to specify to the founder any particular mixture, but to specify a certain ninimum strength which the iron should exert when tested by experiment.
22650 . As noticed in a previous chapter, the ores are smelted by cold and hot air blasts. The latter iron makes very fine castings, but is deficient in tenacity, and requires great care It its application to the purposes of machinery, and for girder castings, by employing it as ecend runnings from the cupola, and mixing third-class pig iron with the first. On iccount of some defects in it, hot blast iron should be excluded from all such works as gider bridges, machinery castings, \&c., and from the preparation of bar iron where great strength in the metal is required. It appears that there are no means of detecting hot or cold blast irons in pig castings. Whenever great strength is required, air furnaces instead of cupolas should be used, and where it is not connected with too great an expense, loam instead of green sand should be used for moulding.

226jd. Table of the Weight of Cast Iron fer Foot Superficial. (Hurst.) The weight of a cubic fiot is put at 456 lbs . and 460 lbs .

Thickness in inches -	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{3}{16}$	$\frac{7}{4}$	$\frac{5}{16}$	$\frac{3}{8}$	$\frac{7}{16}$	$\frac{1}{3}$
Weight in pounds -	$2 \cdot 34$.	$4 \cdot 68$	7.03	9.37	$11 \cdot 72$	$14 \cdot 06$	$16 \cdot 40$	$18 \cdot 75$
Thickness in inches -	$\frac{9}{16}$	$\frac{5}{6}$	$\frac{11}{16}$	$\frac{3}{4}$	$\frac{13}{16}$	$\frac{7}{8}$	$\frac{15}{16}$	1
Weight in pounds -	$21 \cdot 09$	$23 \cdot 44$	$25 \cdot 78$	$28 \cdot 12$	$\frac{1}{30 \cdot 47}$	$32 \cdot 81$	$35 \cdot 16$	$37 \cdot 50$

2:65e. Collinson's Mansfield moulding sand has a wide reputation among the modellers ff the finest brass and iron castings, arising, no doubt, partly from its exquisite fiueness of erin, but more particularly from its clay-like adhesireness and plaster quality, combined with a total frecdom from any coarse or gritty particles. It is fcund under a deep deposit if coaree sand, ordinarily known as building sand, and within a short distance of the wellnown white and red Mansfield stone quarries, in Nottinghamshire. The Isle of Wight ands are also used for the purpose. The sand usually employed in casting is of a soft -ellow and clammy nature, over which, in the mould, charcoal is strewed. Upon the sand roperly prepared, the wood or metal models of what is intended to be cast are applied to ho mould, and pressed so as to lcave their impression upon the sand. Canals are provided or the metal, when melied, to ruu through. After the frame is finished, the patterns are aken out by loosening them all round, that the sand may not give way. The other lialf if the mould in then worked with the same patterns, in a similar frime, but having pins vhich, entering into holes that corruspond to it in the other, cause the two cavities of the matern exsetly to fall on each other. The frame thus moulded comes now under the caro I the melter, who prepares it for the reception of the metal.
2265f. In making paterns for cast iron, an allowance is always made of about one-cighth if an inch per foot for the contraction of the metal in cooling. And it may be also requisite hat the patterns should be slighty bevelled, that they may be drawn out of the sand withat injuring the impression; for this purpo-e. $\frac{2}{16}$ of an inch in 6 inches is sufficient.
2265%. All castinges should be kept as nearly as possible of the same bulk, in order that he coxoling may take phace equally. It is of importance to prevent air-bubbles in castings, nd tha nore time there is allowed for cooling the better, beasuse, whell rapidly cooled, he iron flocs not become se tough as when gradually cooled. It is important in any casting " I.nvo the metal as uniform as possille, and not of different sorts, for different sorts will hrink differently, nod thus will he caused an unequal tension anoug the parts of the metal, ybich will impair its strength; and, beyond this, an unevemass is produced by such mixseo on the nurfine of the casting, for different norts can never be perfectly llenalod thgethere. 2265h. Cantings slould show on the outer sirface a sinooth, clear, and continnons kin, with rogular faces and aharpanglem. When hroken, the surface of fracture should be of light hluish-grey colour, mul close-grained text In ro, with considerable metallic lustre; buth Alour mad texturo shomld be uniform, oxcept that noer the skin the colome may be nomethat lighter and the grain eloser: if the fracturad anffice is mothed, either with pathens ? darker or ligher irou, or with eryshalline patches, the catsting will be unsafe; and it
will be stial more unsafe if it contains air-bubbles. The iron should be soft enough to be slightly indented by a blow of a hammer on an edge of a casting. Castings are tested fol air-bubbles by ringing them with a hammer all over the surface. Iron becomes mort compact and sound by being cast under pressure; and hence cannon, pipes, columus, \&e.. are stronger when cast in a vertical than in a horizontal position, and stronger still wher provided with a head or additional length, whose weight serves to compress the mass of iron in the mould below it. The air-bubbles ascend and collect in the head, which is brokon off when the casting is cool. Care should be taken not to cut or remore the skiv of a piece of cast iron at those points where the stress is intense. The most certain test of the goodness of a piece of cast iron is by striking the edge with a hammer : if a slight impression be made it denotes some degree of malleability, the iron is of a good quality, prorided it be uniform; if fragments fly off, and no sensible indentation be made, the iron will be hard and brittle. The difference between good and bad iron is shown mainly by tho breaking ; good iron breaks like a piece of good fir timber ; bad iron will break like a carrot, it snaps in two.

2260i. Malleable cast iron is made by embedding the castings to be made malleable in the powder of red hæmatite. They are then raised to a bright red heat, which occupies about twenty-four hours, maintained at that heat for a period varying from three to five days, accordiug to the size of the casting, and allowed to cool, which occupirs about twenty-four hours more. The oxygen of the hæmatite extracts part of the carbon from the cast iron, which is thus converted into a sort of soft steel: and its tenacity, accorling to experiments by Messrs. A. More and Son, beenmes more than $48,000 \mathrm{lbs}$. per square inch. (laankine.) Steel is noticed in Book II. Chap. II.

2265\%. For resisting fire, as in fireplaces, good strong cast iron is the best material. The quality of breadth of design can be got by cast work better than by wrought work, and each requires its own system of de-igu. 'The street railing or screen to All Saints' Chureh, Margaret Street, is considered a good sptcimen. It can be covered with fine delicate ornamentation, as done by Mr. Philip Webb. The backs of old fireplaces are generally fine specimens of cast work. There are also cast iron fire-dogs.
2266. The foundery of statues, which is among the most difficult of its branches, belongs exclusively to the sculptor, and is usually carried on in bronze. The execution of the bromze castings, made by the firm of Barbedienne of Paris, is attributed muinly, after the skill of the modeller, to the fineness of the sand, which can only be obtained at Fontenay-rux-Roses, in France. When new it is yellow in colour, but on account of its cost it is mixed in well-ascertained proportions with the old sand, which has become black, the mixture forming a good conbination for the mould; other sands are considered to hare two much silex in them, whereas the Fontenay sand has exactly the proportion neccssury for the fiuencss of the work.

TESTING AND MACHINERY.

2266a. Ironmasters are, to some extent, averse to testing. A writer has beon adrised, to exhibit his knowledge of the subject by simply specifying " best merchantable iron," and if from inspection it was not found to be good it could be tested. Testing is athont the only m+ans at the disposal of an engineer to obtain really what he wants. Work rests mean. tapping plates with a hammer to ascertain if they are solid, in which case tach tap will produce a ringing sound; also breaking the corner off a plate here and there, of course before the plates are "worked"; and examining the punchings from the iron. for the purpose of forming some idea of its quality. Those from Low Moor and some of the Staffordshire brands will stand the punch without the slightest sign of cracking, whilst hard, brittle iron will break up in all directions on the convex side of the puncling. (rood ordinary iron, such as ought to be used in girder work. will only show slightt cracks, at 1 running with the fibre of the iron. (C. G. Smith, Wrought Iron Girder Work, 1877.)

2266b. Granting that it is advisable to carry cut tests, and that these tests slould lie realities and not mere forms, it is certamly advisable that some method of testing should bue substitutrd for the present plan of testing girders whole. At present, a certain per"entage of the rolled joists or other girders for a building are speciticd to be tested up to loads equivalent to those given in "Shaw's Tables," which correspoud to a maximum stress of 6 tons per square inch in the material, and should return to their original forms without permanent set; and this deflection test is the only one carried out. But it is not easy to measure a emall permanent deflection, say $\frac{1}{10}$ of an inch, witb certainty on a 30 -foot joist with such means as are commonly used in the yard, and so it cannot be very rigidly enforced under oidinary circumstarces. But it affords no clue to the propertics of the material used. It would be much more satisfactory, and probably not mure expensive or trouthesome, if the rests specified were made more like those adopted by the Registry societies. The temper test, for the architect's purpose, might be onitred, The ultimate extension test is an imbication-a rough indication-of the difficulty of the metal; we ought to know the maximumextenis mefore the material begins to give way
locally. This, however, is somewhat more difficult to measure. It would be sufficient to specify that cne out of, say, every ten joists or angles should be supplied 18 inches moro than the ordered length. the extra picce cut off, and two strips cut from it (one from the web, and one from the flange in the case of the joist) tested for tenacity and extension. The limits fised might be, according to circumstances, either 28 to 32 tons tenacity per square inch, and 20 per cent. extension in 10 inches; or 38 to 42 tons tenacity and 12 per cent. extension. The tests are made by preference at the manufasturer's yard, in the prespnce of the inspector, doubtful or special cases being sent to some independent testing mashine. In cases of large orders not less than 2 per cent. of the mumber of plates, \&c., have to be tested in this way. (A. B. W. Kennedy.)
$2266 c$. To test a stanchion, or other cast iron work, especially if painted, it should be examined carefully all over by a good-sized hammer, having a sharp point at one end, such as a scatfelder's ase. Ply the point or edge of the hammer to any scaly-looking or white spots, and follow it on. Some founders are clever at filling up faults with a suft metal, and 1he deftets are generally on the face that lies uppermost in the monld. One fanlt may be frumd that would jeopardise the stability of a building. To test the same for strength can only hedone by a scientific apparatus now provided at many establishments for the purpose.

2266d. Testing Stone. 'The weight necessary to crush a stone varies with the state of a,hesion and hardness of the particles composing it. (Fee par. $1500 \mathrm{et} s \mathrm{sq}$.) The full frarticulars of the quarry and bed of each stone tested should be stated. It is almost usele:s to experiment upon cubes of one inch, as was necessarily done before the powerful machines of the present day were invented; 4 -inch or 6 -inch cubes are the least sizes, especially where large shells appear. Murh care and skill are also requisite in the manner of testing. Tho cubes should all be carefully dressed by rubbing down the faces, which -hould be strictly parallel. perhaps made so in a steel frame. They should all be placed on or against their natural bed. The Bath stones tested by Messrs. Poole are stated to have been placed betwern parallel iron plates, and the pressure communicated to the cules, having a sheet of lead at the top and bottom, and between the upper or movable blate and the upper lead plate was a conical heap of fine sand, which was carefully pressed 'y the upper plate, so as to ensure an equal pressure on every particle of the upper and , Wwor beds of the stone. Sometimes the stone is bedded with pieces of pine, from f $10 \frac{1}{2}$ inch thick. Lether has likewise been used (Buildcr, 1886, p. $\mathbf{5} 61$) ; also milloard. Prof. Henry (of the American Association of Science, 1855) experimented on blocks f $1 \frac{1}{2}$-inch cule hetween thin plates of leal. It was fuand that while one of these cubes rouil sustain 30,000 lbs., it would sustain 60.000 lls . without the lead plates. When the hilocks were rendered perfectly parallel by a machine, the marble chosen for tho ixpital. from a quarry at Lee, Massachusetts, would sustain about $25,000 \mathrm{lbs}$. to the quare incl. Barlow states that the crushing strength of Portland stone ranges from Lwot $\mathrm{l}, 38+\mathrm{lbs}$, to 4000 lbs . per square inch; the Institute experiments give $2,576 \mathrm{lbs}$. ire 2 -inch cubes, $4,099 \mathrm{lbs}$. for 4 -inch cules, and $4,300 \mathrm{lbs}$. for 6 -inch cubes, pr wing the drantage of testing large sizes. Remaie gives 3,720 lbs., followed by Molesworli; vhite llurst gires 2,022 lus.
2266e, Trsting cement has heen described in par. 1864e. The madhincs commonly used ro those by Mr. Adio and Mr. Michele (Builder, xlviii. p. 283); by the former, rapnettes of $1 \frac{1}{2}$ inch square can be tested. Reid and Bailey's is described in Buidder, S77, xxxi. p. 1015; Arnold's in Builder for Octobor 22, 1887, p. 579.

226fif. The hydraulic press is genorally used for testing. This is a closed vessel, with a "pper surfice level, complately filled with water; two openings are made in it, Hich ure replaced by pistons of areas 1 and 1 t square inches. If a weight of 1 lb . be lacisl on the smaller piston, a pressure of 1 lb , will be folt everywhere in the interior of To fluid, and the pressure on the larger piston will he 10 lbs . Thus a force of 1 lb . ating The aren 1 rquare inch, produces a pressure of 10 lbs on the arear 10 square inches. $226 f \mathrm{~g}$. Messrs. W. H. Builey \& Co., of Salford, manfacturo tosting machines, ns tmraturis for tersion; Bramalis hydraulic, for cement, tensile, crnshing and transerse, id for yarn and ail; testers for tensile, torsion, and compression. mind other purposes, - buper, wire, cloth, \&c.; nlso test pumps for stom boilers, kitchen boilers, high Pseure, gas fittingy, unter works, \&c.; P'rofessor Tharston's patent testers for materials connmetion; nad Tangyo's patent hydraulic boiler prover. There are many wollonw: American testing muchines.
The filoning persons and institutions hare set up testing machinery for public nse or r instruction:-

 ments, timbers, \&.c. The powefnl michinery is ndapted tor may kind of strain-

 Il mae, iny numbut of prouf strain desired em le applied, or the ir ultimate breahing
strength can be ascertained. The delicacy and accuracy of the machine is prored by it ability to test cement, canvas, and wire up to the greatest strains required for practica purposes. The capabilities for sizes are as follows:-Pulling stress, any length up ti 300 inches. Crushing stiess, any length up to 250 inches for columns, \&c. For testins bricks, six of a sort are required for average results. For stones, three or four 6 -incl cubes, accurately ground ; concrete, usually 12 -inch cubes. For cement, half a bushel i required, and it is suitably made up at the works for testing under pulling or thrustim stress. Bending stress, any span up to 300 inches. For comparing the strengths of full sized timber or iron joists, 10 feet span is recommended as a good standard. The fin museums at Messrs. Kirkaldy's works are open to architects and others taking an interes in the subject; and the results of the many experiments on full-sized work of ever variety of material used in building or engineering operations, since January, 1866, wil be seen. An apparatus of simple construction is engrared in his Results-into the Com parative Tensile Strength, \&c., of Wrought Iron and Stcel, 8vo. 1862.

2266i. King's College, Strand. The plant for mechanical testing consists of tw machines. One is a Kirkaldy machine, 23 feet long, taking test pieces up to 4 feet it length; it exerts a strain of $50,000 \mathrm{lbs}$., and is constructed to make tensile, transverse compression, and torsion tests. The other is a Thurston automatic recording machine A dessription of the first machine is given in Engineer, October 5 and 12, 1883.

2266j. City of Londun and Guilds Central Institution, South Kensington. The machinn is a 100 -tons machine, and will take in ordinary tension specimens up to 4 feet 6 inchet in length. It will take in 6 feet 6 inches in specimens with eyes. It has compression and transverse shackles and autographic diagram apparatus. It takes in about 3 feet specimens for compression, but will be altered for 4 feet. The Enqincer, July 25, 1884 shows a nearly similar one. Prof. W. C. Unwin, Machines for Testing Matcrials, es pecially Iron and Stecl. in Journal of the Society of Arts, July 8, 1887. Also, 1h Testing of Materials of Construction, 8vo.. 1888.

2266k. W. Harry Stanger has opened a chemical laboratory and testing works a Broadway, Westminster. There is a 50 -ton machine by Buckton \& Co. (Limited), witt Wickstead's patert apparatus for measuring and autographically recording stresses i tension, deflection, compression, and torsion, from $\frac{1}{100}$ th of a ton up to 50 tons. Als other machines and apparatus for various purposes.

2266l. Messrs. Shaw, Head \& Co., Queen's Wharf, Bankside, have a testing machin for girders. It is shown and described in Builder, 1869, xxvii. 1020.

Sect. XII.

Painting, GILDING, PAPER-HANGING, DECORATING, ETC,

2267. Painting is the art of corering the surfaces of wood, iron, and other materials wit a mucilaginous substance, which, acquiring hardness by exposure to the air, protects th material t. which it is applied from the effects of the weather. House painting was de scribed ly the editor at the Institute of British Architects, Transactions, Nov. 1857.
2268. The requisite tools of the painter are-brushes of hog's bristles, of various size suitable to the work; a seraping or pallet knife; earthen pots to hold the colours; a ti can for trerpentine; a grinding stone and muller, \&c. The stone should be hard and close grained, about 18 inches in diameter, and of sufficient weight to keep it steady. The knot tspecially of fir, in painting new work, will destroy its good effect if they be not first pro erly killed, as the painters term it. The best way of effecting this is by laying upon thos kuots whicly retain any turpentine a considerable substance of lime immediately after it i slaked. This is done with a stopping knife, and the process dries and burns out the tur pentine which the knots contain. When the lime has rema:ned on about four and twent hours, it is to be scraped off, and the knots must be painted over with what is called siz Rnotting, a composition of red and white lead ground very fine with water on a stone, an mixed with strong double glue size, and used warm. If doubts exist of their still remair ing unkilled, they may be then painted over with red and white lead ground very fine i linseed oil, and mixed with a portion of that oil, taking care to rub them down with san paper each time after corering them, when dry; so that they may not appear more raise than the other parts. When the knotting is completed, the priming colour is laid on. Th priming colour is composed of white and a little red lead mixed thin with linseed oil. On pound of it will cover from 18 to 20 yards. When the primer is quite dry, if the work i intended to be finished white, mix white lead and a very small portion of red with linser oil, adding a little quantity of spirits of turpentine for second colouring the work. Of thi second primer, one pound will esver about 10 to 12 square yards. The work should no
remain for some days to harden; and before laying on the third coat it should be rubbed down with fine sand paper, and stopped with oil putty wherever it may be necessary. If the knots still show through, they should be covered with silver leaf, laid on with japanned gold size. The third coat is white lead mixed with linseed oil and turpentine in equal portions, and a pound will cover about 8 scuare yards. If the work is not to be fini-hed white, the other requisite colour will of course be mixed with the white lead, as in the case of four coats being used. When the work is to be finished with four coats, the finishing coat should be of good old white lead as the basis, thinned with bleached linseed oil and spirits of turpentine; one of oil to two of turpentine. If the work is to be finished dead white, the very best old lead must be used, and thinned cntirely with spirits of turpentine.
2269. When stucco is to be painted, it will require one more coat than wood-work; the last coat being mixed, if the work is as usually executed, with half spirits of turpentine and balf oil, for the reception of the finishing cont of all turpentine or flatting. If the work be not flatted, the finishing coat should be with one part cil and two of turpentine. It would be impossible to enter into the details which are to be observed in painting walls of fancy colours; all tbat can be said on this point in instruction to the architect is, that when fancy colours, as they are called, which in these days a painter construes as anything but white and a tinge of ochre or umber, each coat must incline, as it is laid on, more and mere to the colour which the work is intended to bear when finished.
2270. In repainting old work, it should be well rubbel down with dry pumice stone, and then carefully dusted off, and when requisite, the cracks and openines must be well stopped with vil putty. After this, a mixture of white with a very small portion of red lead, with equal parts of oil and turpentine, is used to paint the work, which the painters echnically call second colouring old work. After this, the work being dry, a mixture of Id white lead, adding a small portion of blue black in a medium of half bleached oil and ralf turpentine, is used for finishing, or, if flatting be intended, the former preparation will e suitable for receiving dead white or any fancy colour. The same process will serve for tuecoed walls, observing that, if more coats be required, the mixture of half oil and half urpentine is proper. To remove old paint, see 2275.
2271 . In respect to outside work, the use of turpentine is to be aroided, for turpentine a more susceptible of water than oil, and thence not so well calculated to preserve work xposed to the weather. Oil, however, having from its nature a natural tendency to disolour white, that is necessarily finished with a portion of half oil and half turpentine; but n dark colours this is not necessary, and in such cases, boiled oil, with a little turpentine, 3 the best, or indeed boiled oil only.
$2271 a$. When linseed oil is clarified and cleansed by means of sulphuric acid, much of he cohesion in the regetable property of the oil is destroyed, preventing its forming that erfeet pellicle which it invariably does upon exposure to the atmosphere during drying. Thite lead slonld be ground with linseed oil in its pure state; this oil is now largely dulterated with oils of resin and pine, as those oils are very much cheaper. Oils are thus larified that the lead, when ground, may appear at once as white as possible; whereas, if round in pure linserd oil which has had the refuse cast downly means of ivory black or owdered litharge, it will at first have a yellow tinge, which is only to be got rid of by me ; and hence arises the value of old ground white lead. (Builder, xir.).
2271b. The blackness which in the winter frequently shows itself upon exterior painted ork prebably arises from the outer skin of the oil having been rendered porous by tho 1lphuric acid, and the foul, or hydrogen, gas readily fastens itself to the unprotected lead, ir which it has an affinity, and hence results the mottled appearance of such work.
2271c. The best linsecd oil is obtained from good Baltic and Bombay linsced. crushed. fincral turpentine is sometimes used as an adulteration of that article; the paint made ith it dries, and then softens, becoming sticky even under a coat of sugar of lead and rnith. Woorlwork prepared with bad linseed oil for being stained, prevents the varnish m drying: good size is all that is required. To distinguish the good and bad qualities, ates a writer in the Buildcr, xxi. p. 919, pure vegetable turpentine, upon exposure to the $r_{\text {a }}$ always loses in bulk by eraporation, but gains in weight by absorption of oxygen, hich makes it more binding in its propertics. This peculiarity none of the mineral subtutes possess; on the contrary, the mineral is so extremely volatile that, upon exposure, 0 spirit all flies off, leaving the oil without anything to assist it to harden, and of course cronses the evil of the bad oil, instead of counteracting it. The use of varnish in white od work cannot be tufficiently reprehended, on account of the ultimate defect of the rk.
2271d. Nut oil has been stuted to be more durable, and to stand the weather much guer than any other oil in puint.
2271. White lead, which is tho principal hasis of all stone colours, is curbonate of lend, nerally containing hydrated oxide of lead, which is sonetimes combined in the proporIn of one atom of hydrated oxide to two of carbonate of lead. It is usually mule either precipitation, as when carbonic acid or a carbonate is used to decompose a moluble salt, a subsalt of lead; or by exposing plates of cast lead to the joint action of the vapour of
acetic aeid air and carbonic acid. It is by the latter process only that the resulting carlonate of lead is oltained of that degree of density, opacity, and perfoet freedom from crystalline texture whiel fits it for paint. The last, called the Duteh process, was introduce] into England about 1780. White lead is often largely adulterated with sulphate of baryta which nay be detected by insolulility in dilute nitric aeid, whereas pure white lead is entirely dissolved by it. Fine lead is now made from slag lead, whieh is treated wifl nitrate of soda, thus oxidising all impurities exeept copper. Tho same effert is accomplisl ed by caleining the lead in an mproving furnace, especially when the lead contains mueh antimony. The copper is next removed by a process not yet published, and finally the lead is crystallised by Pattinson's process. The resulting metal is remarkable for itf fine erystalline surface and bold columnar fracture. Lead containing even only $2 \frac{2}{4}$ ounces of copper per ton communicates a pink tint to the corrosions of white lead, which it is inportant to remove.
$2272 a$. The ill effects on the constitution of persons engaged both in the manufacture and use of the article have recently (sinee the publieation of the first edition of this work induced the French chemists to find somo less deleterious substitute for it, and MI. de Ruolz has discorered two substances which fulfil the required conditions-viz., combina tion with oil, good colour, property of coneealing, \&c. The first is an arsenical compouno (product) hitlicrto little known, whieh M. de Ruolz does not describe, because, althougl inoffensive, it may be made, by very simple chemieal reaction, to retake its poisonous qualities, and be employed criminally. The seeond, which he considers well adapted for use, is the oxide of antimony, and possesses the following properties: its colour is a very pure white, rivalling the finest silver white; it is very fasily ground, and forms with oi an uuetuous and cohesive mixture, comparatively with the white lead of Holland as 40 to 22 ; mixed with other paints it gives much clearer and softer tones than white leal It may be obtanned direetly from the natural sulphuret of antimony, and at one third o. the cost of ordinary white paint. (See Literary Giazette, Nov. 25, 1843.) If the fimishing colour is white, nothing but whito lead should be emploved.

2272b. A new process of making white lead is tiat of H. J. B. and H. B. Condy, whe claim the following advantages: I. White lead of the finest colour and body can be nad within seven days, instead of four to five months, as requirod by the ordinary process II. Old lead or any description of metallic lead can be used, all impurities being remover by their proeess, instead of buying "refined pig lead" for the ordinary process. III. Th prosent uncertainty in composition is corrected by the new process, which is identica time after time; the corering properties are better. IV. The colour is preserved it impure atmosphere. V. Tho absence of danger to workpeople, since nearly all the operations are effected by machinery, instead of being handled at each stage in th ordinary mode.
$2272 c$. The other metallic white paint used is Hubbuck's patert zinc white, known fir its intense whiteness, its resistanee to sulphurous and other deteriorating causes, and it harmless qualities to the painter and the inmates of the house under decoration. It i requisite that the oil used should be as white as possible, that the bru-hes and pots shoul nut have been used for white lead, or else have been eleaned with spirits; and that drioz and colours will a lead basis should not be mixed with it. Zinc u-hite possesses les body than white lead, and great care is requisite that the colour when ground in oil is o sufficient consistence to be laid on a flat surface without showing through; for in tha state any oil in excess will form a slight glutinous coating on the surfaee, retaining ever particle of dust brought in contaet with it, until it has evaporated. Proper drying oil will cause zinc white to dry as quickly as the other eolour. With these preeautions, ${ }^{1}$ few trials will enable any painter who is willing to work zinc white to overcome the ditio culties whieh appear at first to condemn the invention. It is asserted that in ensequene of the great durability of the colour of this material, a house painted with it may b washed for a suecession of three, four. or eren five years; and that after each successir washing the surfaee will be found as clear and bright as when fresh painted. The effer in appearance, of this paint is perhaps better when it is applied as a finish to a coat o pure white lead; generally it looks better on new work than on old, as somo specimen prove that it was then apt to turn black. An Ameriean discovory eonsists in subjectin the oxide of zinc, in its dry state, to the combined action of frietion and pressure, b whieh means its bulk is greatly redueed, and it is enabled to be ground with a roduce quantity of oil, while a greater body is given to the paint. IIubbuck states that 2 cw of his paint, with 6 gallons of oil, eovers as much surface as 3 cext. of wlite lead an 12 gallons of oil ; and that it is cheaper also than white lead.
$2272 l$. Lead colours are furmed by a mixture of white lead with lamp black; π colours, however, that are ealled fancy colours have white lead for their basis, chocolate. black, brown, and wainsent only excepted. The fancy colours are drabs, Fronch grey peach blossom, lilae, light greens, patent greens, blues, vermilion, lake, \&c.
2273. There is a process used by painters termed cleur-coleing, which is executed wit white lead ground in water, and mixed with size. This is used instead of a coat of paiut
but it has not sufficient body usefully to answer the end for which-it is usually employed. It prevents the oil paint sinking into the wood; it scales off, and in damp situations its coluur almost immediately changes. The only occasions wherein it is useful are where the work is greasy and smoky, in which the use of it prepares better for the reception of paint. It should however, never be employed upon joiner's work or cornices to ceilings, where much enrichment is found; for, of all things, it destroys the sharpness and beanty of the ornaments. Painters are very fond of using it; but their endeavours to persuade the architect should always be resisted, except in cases of alsolute necessity, namely, that iu which a fair appearance cannot otherwise be given to the work. The old work should be well cleaned and dried, and then the mixture abore stated applied. For finishing. the white lead is mixed in half linseed oil and half turpentine, and used as stiff as possible; blue black, or same colour, and a little drier, are requisite.
$2273 a$. Various prepared paints are employed. One of the oldest is Carson's Auticorrosion paint, used for out-door work only, sueh as farm buildings, implements, fencing, \&c., $11 l$ kinds of iron work, brick, stone, compo, \&c. It is stated to be lower in price, and o last twice as long as the best white lead. The powder, in which state it is supplied, is composed of ground glass bottles, scoriæ from lead works, burnt oyster shells, and the equired matter for the colour that may be chosen. 112 lbs of this paint requires 7 gallons of raw linseed oil and 1 gallon of turpentine ; to be mixed over-night; 2 coats are required on paint, 3 on new work; 3 or 4 on brick, compo, \&c.; everything to be well acraped first, and the paint rubbed in well. It is thus more laborious to put on than common paint; it wears out the brushes in a very short time, and as it lasts so long, oainters will seldom use it. The appearance of a surface painted with it is rough, reembling that of uurubbed cast iron or freestone. It will blunt the edges of carpenters' ools when being sawn or cut through.
2273b. Oxide of iron paint, of various colours, is a ferruginous paint, for iron and wood, nade at Matlock. Messrs. Peacock and Buchan have successfully applied their improved oating composition to many iron vessels and life boats, for many years, and it is found to reserve the plates, keep the iron cleaner, and to stand the sea air and salt water much elter than most, if not all, other paints. The Pure Carbon paint protects iron from ust, and is valuable for all outside work. When tar is used as a paint, about a pint of pirits of turpentine is put to a gallon of tar as driers, or a larger quantity if it be reuired to dry quickly. The addition of yellow ochre will change the black to several hades of lirown.
2273c. The Bideford and mineral black paint has been exclusively used in H. M. dockards, \&c., for the last forty years. "Its superiority is observable in the preservation of ood, iron, and canvas; it covers the work well, dries quick and hard, is more durable, Id does not blister like other blacks, and has a body inferior only to white lead." The irbay iron paints, made at Brixham, in Deronsliire, lave been much used in dockyards, c., for coating materials under water, or in a position to be affected by damp. Their culiar characteristics are, great covering properties, 62 lbs . effeetually cuating as large surface as 112 lus. of lead paint ; economy, durability, protection of iron from corrosion, resting oxidation at any stage, and resistance to sulphurous and other gascs. (Hunt, trdhook, 1862. Builder, xx. 527.)
$2273 d$. The Iron ninium paint, by A. de Cartier, manufactured at Auderghem, near uxelles, is a pure oxide of iron nixtel with abont one-fourth its weight of siliceous ly, and not containing any acids. It is now extensively used in this and other countries painting the ironwork of ships, g.s-holders, \&c., superseding red lead and other pigmits for such furposes. It is sad to be solid, durable, cheap, and, above all, to preTe iron from oxidation, and of hardening wood. It is a dark brown in colour, but xes easily with other colours, such as blnek, yellow, green, \&c. To test its purity, it *aid to bo sufficient to dilute it with a small quantity of water, spreading it on paper, en, if purr, the edges of the paper will preserve the special tint of the iron minium. an change of tint is perceived, an adulteration has been effected.
2273e. Warner's Sticate of iron paint is sold prepared in genuine boilod linseed oil, of reat varicty of coluurs, for paisting iron work. It is said to stand fextreme heat and np, and not to be affected by the strongest acid, sea-wator, sulpburetted hydrogen, or nonia; and to bo rgually well adapted for iron or wood. It adheres so temeciously, t sheet iron may lo beat until it lreaks, without the paint coming off. The powder; anderl up with tar, is a vory cheap preservative for iron or wood.
273f. Whrn visiting I'reis in 1860 , the present aditor was much struck with the arance of the rargins of the stairs at the botel. On examination, they proved to bo poul with a thickish coat of a hard compound, having rather a glossy surface, aul ") what of a light orange tinge. A water-closet which hud been ont of orler on one foing was not only repaired, but tho scat nod riser, tho tloor, and tho wall to a height 1) bre fect, corered with this mixture, and ready for nse by tho next day. The tiled of the manascript room at tho library of St. Géneviéve, which had been covered with uname mixture, was then in rurious mages of obliteration according to the traflic. 'Tho
attendant there spoke rery highly in farour of its cleanliness. It is believed to be com posed of 10 lbs . of purified yellow wax, 10 lbs . of linseed oil, 8 lbs , of spirits of turpentint and 5 lbs. of eommon resin. The wax is dissolved sepirately in the linseed oil, and th resin in the spirits of turpentine by heat, and are subsequently intimately mixed, whe they form a pasty eompound. In this condition it is used as priming, being nearly eolou less after application. Pigments ground up in oil in the usual way are added in the pri portion of one-thitd of the rehicle, and then spirits of turpentine added in quantit sufficient to produee the desired amount of liquidity. So soon as the turpentine ha evaporated, the eoat of paint will support rubbing, if not too hard, without damage, bo it takes some time to become completely hard. It is put on in one eoat, without apparentl any of the smell or inconveniences attending the ordinary process of painting.

2273 g . Among the modern inventions the following are notieed. Albissima paint, whic is brilliant and pure, non-poisonous, without smcll, and unchanged by gases. The Salu tary Paint Company manufactuses non-poisonous silicate and other hygienie paints an colours for all purposes. The Silicate Paint Company manufactures the patent Charlto white, for use in place of white lead, zinc, \&e, and other materials. Price's chez-lui is lard drying enamel for metals. The granitic paint and the silicate zopissa eompesitio is stated to be a eure for damp walls. Morse's "perfect oil paint" is put forward f_{c} inside and outside work, old and new ; and as damp-proof and weather-proof. Magnet oxide of iron paints of all eolours; a eure for damp walls.
$2273 h$. Paint done upon recently set Portland eement will not stand. The work mur be finished in Portland cement eompo, and faced with at least half an inch of Keene eement or, better still, Martin's eement, followed at once with paint having plenty boiled oil in it ; the paint must be put on before the eement is thoroughly set, or the fac becomes greasy and will not take the paint. In ordinary work, the stuceo or center must be dry, whieh may take six or twelve months to effect, or the paint will go i blisters, and colours will dy. Pure red lead and good boilod oil should always bo th. first or priming eoat.

2273i. The Indestructiblo Paint Company proteeted in 1880 the obelisk ealled Cle patra's Needle, fixed on the Thames Embankment, with Browning's patent prescrvati solution, which appears to have prevented the stone absorbing damp. (See also P_{13} servation of Stone.)

2273j. Fireproof paints. These are modern inrentions. Astrop's patent Cyanite stited to le non-poisonous; a colourless or coloured priming for paint or varnish, or alo as a staining for wood. It is greatly recommended for painting timber as well as $\{$ textile fabrics, to resist the action of fire. (Builder, Sept. 15, 1883.) The Aslocstos pai does not contan any oil, anä wood coated with it has resisted fire. Griffith's Pyrice paints and liquids were used in 1887, in the Royal Jubilee Exhibition buildings at 0 Trafford, near Manchester, under the recommendation of Professor Watson Smith. © Samuel Blane's fireproof paint has been used at the new theatre in the Strand, built, 188 for Edward Terry.

Distemper.

2274. The use of distemper is older than that of oil and varnish. Whitewashing is kind of distemper, especially when size is used with it. Common distemper colour f walls is Spanish white, or whiting, broken into water, to whieh is added strong size whil warm, and then allowed to cool, when it should appear a thin jelly; two eoats are general neeessary. The old work should be first washed by a brush with water. This proce in old publications is called, "painting in water colours." It is much used for ceilint and always requires two, and sometimes three, coats, to give it a uniform appearan! It is not generally known that walls which have been distempered cannot afterwards limewhited, in eonsequence of the lime when laid on whiting turning yellow; oil coloun however, ean be applied, and thon whitelead is used as the vehiele. Papered rool ecloured in this manner, espeeially over flock papers, look well, as the raised pattern e be seen through the eoats of eolour. Rooms may be distempered and dry again in a da with little dirt. When wood is eovered with distemper, it is liable to swell with t damp. Rooms that are to be afterwards varnished are prepared in two ways: I. applying the intended distemper eolour, and then eovering it with as many conts varuish, eoloured or uneoloured, as may be required ; but it the wood be not, dry, ! colour becomes hardened and tlakes off. If. The eolour is ground and mixell 1 p w varnish, which produces a better result. If the last coat of varnish be applied colourle it then forms a glazing to the under tints, and its brilliancy will be greater. The uso size here, again, produces a eonsiderable saving of varnish. For new plaster work eoating of size is desirable.

2274a. Morse's patent Calcarium distemper, or washable non-poisonous water colot in cold water, does not require to be washed off previous to re-doing; colours for ins: or outside work, but not on outside painted walls ; white for ceilings. It will rub off; is stated to be one-fourth the eost of lead paint; that one hundredweight w
ice corer 200 to 300 square yards of inside work, and from 100 to 200 square yards of tside work.
2274b. Mander Brothers' non-poisonous colours for distemper. They recommerd one und of first-rate glue to be dissolred in water over the firc, adding more water to make bucketful of size of about $2 \frac{1}{4}$ gallons. A preparative coat, made of whiting slacked in ld water, ad ling the proper proportion of colour ; then reduce four ounces of soft soatp a little warmed size, and mix thoroughly in the colour, adding it to each bueketful of uff. Tleen thin down the whole with jelly size until it is fit for use. This coat should made much thinner (with size) than the finishing coat, and it should be laid on erenly th a flat brush and allowed to dry. For the firishing coat, make the colour as for the eparative coat, but, with rather less size and more colour, and omit the soft soap. The alls shculd always Le properly dry before being coloured, unless made with Parian ment, otherwise they will not dry of a uniform colour. Manders supply about one andred fine colours for various purposes.
$2274 c$. Duresco is a new washable distemper.
$227 \pm$ d. Distemper and fresco painting are subjects we do not to treat in this section, as ey would come under "Decorative Painting," a higher branch of artistie skill.
2275. Some colours dry badly, black especially, and in damp weather they require a ier, as it is called, which may be made from equal parts of copperas and litharge, ground ry fine, and added according to circumstances. Drying oil is made as follows:-To gallon of linseed oil put 1 lb . of red lead, 1 lb . of umber, and 1 lb . of lirharge, and boil em together for two or three hours. Great care must be taken that the oil does not jil orer, on account of the danger to which the premises would be thereby exposed. hus, iu a pot capable of holding fifteen gallons it would not be prudent to boil more than e-third of that quantity. To remove old paint, varnish, \&c., the Electric paint remover, well as the Egyptian clay, are said to be very pfficacious. The Wellington automatic rch fur burning off paint, and for plumbers' work, as soldering, is a useful instrument. $2275 a$. Painter's putty is made of whiting and linseed oil, well beaten together.

Imitations.

2276. Graining (or combing, as it is termed in some late specifications) and marbling, the imitation of real woods and marbles, is done by the painter. Makogany grained 1798 is the earliest notice the writer on the suljeet in the Arehitectural Publication ciety's Dictionary had found; grained wainscot appeared in 1815. Imitation wainscot obtained by giving the painted work a coat in oil of a brownish tone, the colour being cker than usual; this is then scratched over by comhs of bone, with blunt points, and various degrees of coarscness, laving the ground visible. The cross white veins or emps are next taken out with the corners of a piece of soft leather doubled up. The kt process, which in cheap work is omitted or carclessly done, is over viuing; this is 'cted with a wide that brish, the hairs of which are long and slender, dipped in transent culonr, when the hairs stick together in a sort of lock; the cross veins of the ods are dexterousiy imitated with this tool, and show the other veins below. Other "rdieuts have been made to imitate knots, vems, mottles, \&c., of various woods. The $\$$ lo dark spots with a lighter shade round them in maple wood are imitated by dexgus tourlies win the tips of the fingers on the wat pigment. Almost every other sud. as weii as wainscot, is amitated in distemper, for which small beer and water od with Vandyke bsown ind burnt sienna, according to the tint required, is found to anficirntly glutinoms without the aid of size. to prevent it smearing during the applich of the coat of copal rarnish which follows soon afterwards. Graining operations shays dune after the wood has bern painted; in best work, indecd, the coats are ker than usuhl, to affurd a good ground for the combing. Traken with the subsequent ishing, grainel work is considered to be more lasting than painted work. Certain shave been invented for performing this work; the grain lass been imitated by hinery; und grained papers have been printed from the grain of the wood itself. To the Iclay consequent on pisinting and all its annoyances, the editor of this celifion ained, in 18.578 , his system of graining on the wool itself, whereby only a pretory sizing is necessary ; the result is that scarecly any smell of paint is perceived : eater Lrilliancy in effect is uttained; and the woodwork may be left to dry unt il the mument.
\%on. Mrublang is painting on a preparerl painted surface, an imitation of the material ract us the talent of the painter will admit, and requires to detailed explanation.
ish. Vurniahin?, a sulsequent operation to breth of the above procusars, requires much and the use of gors mutorial, the berst copal varmiah, to bring out the colons of then
 copal cank, for grained interior work; mahogaty varniah, licing durker in colonr ;

hangings, \&c. Where expense is not an olject, two or three coats are applied, especially t marbling, each coat being well rubbed down to obtain an even surface and a high degre of polish. To restore the gloss of varnished graining, of inarbling, or of rarnished paper the whole must be well cleaned, then sized afresh, and revarnished. But the origina colvur of the work can never be fully reproduced, as the varnish darkens by time. Bruns wick black rarnish, a quick drying jet black, is used for grates, iron work, \&c. Cop: cabinet varnish, and a white, and a brown, bard varnish, and French polish, are used fi cabinet-makers' work. A water flatting varnish renders paperhangings washable withou imparting a gloss. These rarnishes are all as made ly Mander Brothers, Wclverhamptor

2276 c. To clean varnished work, soap and water applied carefully with a sponge, an the use of warm woollen cloths to dry the work, is very efficacious. The steps of woode staircases, painted, grained, and varnished, last a very long time, and neither dust na. dirt adhere so easily to such work as to paint. Real woods, especially wainscot, ar prepared for receiving coats of rarnish, by being tirst sized to prevent the rise of th grain which ensues when the slightest quantity of water touches it. When to be polisher they are well smudged over a short time previouly with Russian tallow. A preparatio called Lethicium is said to remove paint from wood in twenty minutes, doing away wit the necessity for burning it off. A hypo-nitro kali has been introduced for the same purpost

2276d. Sand paper, glass paper, emery paper, and emery cloth, of various degree. 1 fineness, are employed to rub down work to a surface. It is made by the pulverise material being placed in fine sieres, and by a gentle motion distributing it by hand ovt the paper or cloth prepared for its reception.

2276 e. Stains, as substitutes for paint, the tints resembling oak, mahogany, rosewoor walnut, and satinwood, cause the natural grain of the deal on which they are applied 1 . appear. The wood is then sized and varnished; their durability is stated to be at lea: three times that of paint in interior work, and only at half the cost. This is Stephen p eparation. Naylor's stain is said not to require sizing, and to stand exposure to th weather. Swinburn's Transparent staining and anti-dry-rot fluids are chemically pror pired, and show the natural grain and feathery apporance of the wood. When sized an the proper varnish used, they are said not to fade or blister by exposure to the weather.
$22 \% 6 \mathrm{f}$. Muder Brothers supply perntanent wood stains in dry powder, which aro it stantly soluble in boiling water and perfectly fast in daylight; they are provided in box of $1 \mathrm{oz}, \mathrm{g}^{2} \mathrm{oz} . .4 \mathrm{oz}, 8 \mathrm{oz}$, and 16 oz . A pale copal varnish, or a dark hadd-drying o: varnish, should follow in two coats, put on in a warmish room, free from dust. Kalliolic is a new patent priming and stain; it is considered to be best used as a first coat of pai to wood, to impart durability to all oil colours, and that the paint does not blister. It very useful to prepare walls for paperhangings.
2277. In the outside work and stairs, the process of sanding is frequently adopted. is performed with fine sand thrown on the last coat of paiut while wet. Cement work generally colnured with its own cement mixed up with water. Roman cement, or bla cement, as it is sometimes called, must have a wash or two ; and while Portland ceme is declared not to require anv colouring, certain it is that in London not many yea pass over before its dirty louk urges a colouring or painting process. The process painting the artificial cements, such as Parian, \&e., is noticed in pars. 2251f, and 2273/

Gilding.

2277a. Giling is of two kinds, burnished, and mat or dead, gilding. The former seldom ustd in architectural decoration. The latter is done in oil-size on woodwork: water-size on plastering. The gold leaf of rarious thicknesses, but generally about $\frac{1}{282}$ of an inch, is called "single," "double," and "thirds," and of tints, is furnished in broo of 25 leaves, each leaf being $3 \frac{1}{8}$ by 3 inches, or in the book 18 inches and $\frac{6}{8}$ of an in saperficial, covering about 1 foot of plain work. It should not be too thin nor have t much alloy. Gilding on metal is effected by first giving it a coat of paint or sol other substance to prevent oxidation. Gold, absolutely pure and of extra thickness, w applied to the ironwork of the great tower at Westminster; and donble gold leaf. pur was used in the reading room of the British Museum. It has been stated, that if ju before commencing to gild, each leaf of the book be slightly rubbed over with wal sufficient only to cause the adhesion of the gold, that gilding in the open air, even wirdy weather, may be done without the loss of a leaf, as the stickiness of the gold-s will overcome that of the wax, and no part be blown away, as is generally the case.
$2277 b$. A gold paint, patented by H. Bessemer, is now nuch used, which, by the high improved manufacture of bronze powder, is greatly reduced in price in England, though very much is still purchased from the German dealers. As an impalpable metal powder, its application to plaster, wood. \&c., is effected by using a camel's hair brus which is dipped into a little of the powder and rubbed up in a small portion of trais purent gummy varnish, by which it adheres to the surface. For all outdoor works requires to be varnished over for better preservation.

Paperhanging.

$2277 c$. With painting is often comected the practice of paperhanging by the same artificer. The rarious surts of paper used for lining walls may be described as follows : Block printed by hand, a process now seldom done. Machirie printed, of great variety. Slocks, the pattern being furmed by a wool ground to a fine powder and fixed to tho mper by a slicky oil. Raised flocks; ratent embossed flocks; imitation leather, of which the new Coriacene is an example. Wwollams and Co. were the original makers of zon-arsenical papers. They are also mnnufacturers of patent embossed flock papers, mbossed imitation leather paper, and raised flock papers for painting over. Arsenical recn in printed papers is considered injurious to health, from its flaking off in light arricles, and floatiog in the air, when it is taken into the lungs whie breathing. ! his colour nay be at once detected by placing a few drops of ammonia on it, wherely he green will be changed into a deep blue.
2277d. The methods of manufacturing marlle, granite, and wainscot wall papers, is rell descriled in the Builder for 186j, p. 912, and which need not be bere entered upon.
2277 e. It may be mentioned that papers are printed 12 yards in length, such a lengh reing called a piece, and 1 foot 8 inehes wide; hence 1 yard in length contains 5 toet uperficial ; therefore, any number of superfieial feet divided by 60 (the length $36 \times 1 \mathrm{ff}$. ins.) will give the number of pieces wanted for the work; 1 piece in 7 or 8 is :lllowed r cutting and waste to common papers, and any odd yards are allowtd as a piece. reach papers contain about $4 \frac{1}{2}$ yards superficial per picce, being of rarious widths. In est papers this allowance for waste is not enough. Borders are 12 yards or 36 feet in wh le bgth, each being technically a dozcn. A ream of printed paper of 20 quires of 24 heets to the quire, is equal to 28 pieces of paper, or each piece cont ans 17 sheets. atin papers should be hung over a lining poper. The paperlanger has to provide and -ng materials required for covering damp walls.
$227 i$. Walls of rooms should aluays he stripped before the new paper be put up, a rocess usually attempted to be sbirked, even when charged in the estimate. In bad mmon plasterer's work the setting coat often comes off in parts with the paper and has be repaired. The walls are commonly prepared for papering by a coat of clearcole, - similar material, and for better work by rubbing down, \&c.

22iry. Paperhangers' paste is made of flonr, a little alum, and single size.
2277 h . Tectorium is stated to be a sanitary decoration for walls ; it is a fine textured lico paintel, with the patterus printed thereon. The dado filling is made in 22, 27, 3^{0}, ; and 45 inches widths. The filling 22 iuches wide is either in plain oil colours, or luurs varnisherl, so that it can be washed with soap and water. The material is apied in the usnal way as a paper; it ehecks the ioroals of damp into a room. Lencrustu Falfon, formerly known as Muralis, the Sunbury wall decoration, is impermoable moisture, and has other advantagrs. Muraline is one among the many urashable pers. A Sanitary paper is made of non-al,sorbent materials, and being printed under Rest pressure, the colnuring is pressed into, and thoroughly ine rporated with, thes re of the 1nper. These papers are well adapted for sick roons. and eaa be washed :ls culd water. The Duro-tentule is of this character, and is made 24 inches wide. W. , k : \& Cors golden lustre silk paper hangings are stated to be free from all impurities.

Other Decorative Appliunces and Proresses.

127-i. Distemper and Fresco painting. Syraffito, an ancient Italian process for external internal plaster work. l'argetry, or modelling in wet plastrpr as carried ont in the f-timbered bnildings of the 16 th and 17 th cemluries. Modclled fillows plaster work, erilings, \&ce. Marlle mosaic floors. Tile paving. Artistic joinsry in dados, doors, elling, \&ec, in all woorls. Chimneypices in marble and wood. Real wood veneering ive of painting and paperhanging. Xylatechuigroply, a new and permanont process decorating woodwork in lien of painting or graining. Radeke's compressed wool Stuined glass and leadod lights. Embossed and painted modern lea her, and Hishly leather, for walls, screens, \&e. Tapestry, imitation painted or prioted, for wall rings, stuffs for curtains, furniture corerings, \&c. Pyrographic woodwork (par. 2173g.). -quelry (par. 2173 g .). Colsur decorat on, applied to walls, continually fails. Mr. 1 tun has inventel choismne mosaic, a matorial that will tako colours on the priacips oimonnd work, which comal lie applied in panels of feet ly 3 feet. It is a metal lining, lif 1 in with a colenared material, and walable.

Sect. XIII.

VENTILATION OF BUILDINGS.

2278 . Though this and the following section can scarcely be said to come legitimats under the heading of this chapter, the subjects are so intimately eonnected with each the sections, and tare been referred to oceasionally in their description; and as, moreor the arehiteet is expected to make himself fully acquainted with these subjects, this pla then, appears to be suitable for the consideration of them.
$2278 a$. Whether rentilation be left to ehanee, or whether any special apparatus be erect for the purpose, foul or vitiated air must be got rid of ; while fresh air, adapted to purposes of respiration, must be admitted in sufficient quantity, that is, at the rate of abo 4 cubic fert per minute for each indiridual in the apartment. The foree or impetus of 1 incoming air ought slightly to compress the air of the roum and assist the efflux of vitiated air; and this, in its turn, ought to be so heated as to have a certain amount ascensional power. Mechanieal means are sometimes necessary to expel or withdraw air, such as fanners, bellows, pumps, \&c.; lut for general purposes it is more eourenient well as economical, to trust to the natural method of getting rid of vitiated air; thatis, making certain ventilati,g tubes or openings at the highest point of the room, towa wheh the hot air tends to flow.
$2: 786$. Some authors have divided artificial ventilation into two branches, called plen and racuum. Ky the first, fresh air is forced into the interior of a bulding, and vitiated air is allowed to escape by openings contrived for the purpose. By the seco vitiated air is drawn out of the building, and fresh air finds an entrance through cham adapted to the purpose.
$2278 c$. As the rebeity of a falling body in a second of time is known to be eight ti the square root of the lieight of the descent, in decimals of a foot, so the reloeity of charge per second, through vent tubes or chimneys, may be briefly stated as equa eight times the square root of the difference in height of any two eolumns of air, in d mals of a foot. This number, reduced one-fourch for friction, and the remainder m plied by 60 , will give the true velocity of efflux per minute. The area of the tube in or deeimals of a foot, multiplied by this last number, will give the number of cubicfer it air discharged per minute. The height of a column of heated air must be calculated 1 , the floor of the room to the top of the tube where it discharges into the open air. Wo several rent tubes are employed, they must all be of the same vertical height, or the hig t vent will prevent the efficient action of the lower ones, so that there might be a smi r discharge through two tubes than through one only.
$2278 d$. When sereral openings are made above the level of the floor of a room, lighest one may be the ouly one capable of acting as an abduction tube, the other 1 i openings often serving as induction tubes, discharging cold air into the room instea it taking it out, and, in doing so, it may lower the temperature of the hot ritiated air d prevent it from escaping, thus not only causing the bad air to be breathrd over a ${ }_{4}{ }_{4}$ but filling the room with unpleasant draughts. But if the highest alduction tube l, 10 small to earry off the requisite qu ntity of hot air, the tube next below it in eleratic any part of the room will act as an abduetion tabe. If the lower openings (to be pror d with shding valves) for the admission of fresl air be too small in proportion to the in the escape of hot air, a current of cold air will descend through one part of the ho 18 tube, and the hot air will ascend through another part of the same tube. In order it ventilating tubes or openings may be effective, the lower opening for tho admissin of fresh air must bo at least as large as the upper ones, and larger if possible. Tredgol eommended that the lower should be abont double the area of the upper openings, a to so sublivided as to break the current. (Tomlinson, Warming and Ventilution, ', 18.50.$)$

2278 e. It musí be noted that all noxious gases do not rise, and therefore that in: 17 exceptional eases ventilation must be effeeted at the floor level. Taking atmospheri ir at 60° Fuhr., and under a pressure equal to 30 inches of mercury as 1,000 , then byd ${ }^{n}$ gas equals 6,926 ; nitrogenous miasma, alout 975 ; oltfiant gas, 978 ; sulphuretted hyd gas, 1,178 ; carbonic oxide, 057 ; and sulphurous acid, when anhydrous, 3,000 . O1 ${ }^{19}$ eontrary, earburetted hydrogen gas, or marsh miasma, is as light as 555 ; and common it gas ranges between 514 and 420 . Thus above or below the temperature of 60° the ditions of the diffusion of gases rary in a marked manner, and it is on this account th: his frul air of sewers, \&c.. exercises a more extended action laterally in lot weather, wl it is able to diffuse itself more easily through an attenuated atmosphere, than in cold wei rr, when the greater density of the atmosphere, and the comparatively inigher tenperat of
e gaces giren off from the reseptacles mentioned, enable the foul air to rise vertically th greater ease than to spread laterally. In a room, the carbonic acid emitted ly the hts and ly the breath of its occupants being of greater specific gravity than atmospheric ; would, at the ordinary temperature of the air, tend to accumulate in its lower strata; it the temperature of the products of respiration and of combustion is usurlly so much excess of that of the air, that they are enabled to r.se through it, and to accumulate in e upper portions of the enclosed room until some change in their temperature takes ace. The foul state of the air in the lower portions of a pubic building on the day Hlowing a crowded meeting may be due to the change of temperature during the night, d the retention, by closed doors and windows, of the air so rendered impure. In 1865 3neral Morin read a papor to the Paris Academy of Sciences, again urging as a fundaental principle the exploded practice of drawing off ritiated air from the stratum nearest o floor, pure air being admitted near to the ceiling.
$2278 f$: Our limited space will not pernit us to do more than very bricfly notice the ief principal methods of rentilation; the application of any one of them must be left to e ingenuity of the architect. He will fied that all public buildings, and eren all private uses, from the highest to the lowest class, must be spontaneously rentilated, for if any ouble be entailed, it will be neglected. The means for ventilation must be cheap, easily ocurable, always in place, self-acting, and not liable to get out of order. Such an invenin is the Arnott ventilator, when placed as cluse to the celling as practicable, forming a rect communication between the room and the chimney. The chimnoy has been mado e means of securiug a ventilation by a separate and rarified air channel. Thus, besides a ere channel left in the wall adjoining a fluo, Doulton's patent combined smoke and f flucs, of terra-cotta, for 12, 10, and 8-inch chimneys, are effective. Boyd's patent flue ates are similir in principle. Chowne's patent air-syphon, consisting of an inverted syphon be, acts upon the principle of the air mosing up the longer leg, and of entcring and deending in the shorter leg, without the necessity for the application of artificial heat to tho nger leg. This, however, does not appear to be always proved in practice, for whethtr o current in the longer leg be ascending or descending, depends chiefly upon differences temperature within and without a building; but as the brickwork of chimneys of en *s heated by the ricinity of the kitchen flue, or even by the sun shining upon it during 3 day, an ascending current is more likely to be sustained than a descending one, since ckwork will retain its heat for some hours.
22789. The system adopted by Dr. Reid, at the House of Commons, was that of admitg air into a chamber undergronnd, where it was (and is still) purified by boing washed ile passing through a stream of water, and then through eanras, wherely other imritics are extracted. It then rises to the floor of the apartment, which is pierced with ny :housind heles, and passing through them is then further distributed by means of a r-cluth, ascending towards the ceiling at about the rate of one foot per minute. This is, in cold weather, warmed below ; and in warm weather it is conled with ice. Tre ect is to keep the air in all seasons at a uniform temperature of 64°. The air is often Her in the House than that outside it. From the ceiling it is carried rapidly away along funnel to feed the great furnace which creates this current of ventilation. The com) int is made that it carries with it from the floor the fine dust brought in by the imbers' fect, which, being inhaled, sometimes affects those in the Honse. The method : pted by Ir. Reid to warm and ventilate St. George's Liall, at Liverpool, is detailed in Civil Engineer for 1864, page 136. The systcm employed from 1736 to about 1517 at old House of Commons, which was effectivcly ventilated, was by a fan placed over it f extracting the beated air, its rate of working being dependent upon an attendant, who r-ived his directions from a person within the House. The conmon revolving windfrd plaed at the top of a chimney to induce a suction, whereby the smoke nay be Wh out, is of the same system; as is also Hlowarth's patent revolving Archimedean 2F rentilator. One of the latest systens of effecting the regularity of working such for screws is ly the aid of the high service water supply; a flow of water inpinging un the blades of a wheel turns the extracting fan, and the water is conveyed to a lower r ronir, to bo nsed for domestic or oticer purposes.
278h. Tho opposite system, that of air being foreed into apartments ly mechanical $\pi \mathrm{n} 4$, such as the fan driven by steam power, is $\mathrm{l}^{\text {practised with grent succors at the }}$ 1 ,rm Club, Houso, the General Post Office, and many other buildings, public and Wato, and erpecially in factorics. Tho fin is regulated to a volocity of bet ween 80 and feet for Recond. Dr. Van Hecke's system of warming and ventilating, as arranged A he now French hospitals, is effected by means of a $3 \frac{3}{2}$ horse-power engino, working a whirl drives the external air through long subterrancous channelsinto fonr warming Grutusen, whenee it ascends into flues, which conduct it into all the wards, passing
if ngl regulating air gratings in the walls. In each ward are two or more escape flucs c) ying the vitiated air ahme the roofs.

278i. The Blackiman air propoller, for ventilating, cooling, and drying, has given grod
results. One of 14 inches diameter, revolving 1,000 to 1,500 revolutions per minu moved 1,500 to 2,500 cubic feet of air per minute. One of 24 inches dianeter, revolvi 500 to 900 per minute, mored 3,000 to 6,000 cubie feet of air. Another of 48 incl diameter, revolving 300 to 600 per minute, mored 13,500 to 30,000 cubic fect of air] minute.
$22 ; 8 \%$. The Boyle system of rentilation of workhouses and hospitals (1882), by si acting air pump ventilator (perfected Oct. 1887) and the air inlet brackets, is used St. George's Hospital for the extraction of the foul air and admission of fresh air, wh is effected without draught, and is put forth as " the simplest, cheapest, and most efficin system of rentilation that is at present in existence."

2278l. Another system prevails to some extent. The rentilation is combined with nuethod of warming, be it a church or other room devoted to a public purpose. This effected ly means of flues for extracting the air in the building being connected with furnace of the apparatus. Such is the principle adopted by Messrs. Haden and Co., Trowbridge. It has been in practice with success at the Royal Polytechnic Instituti London, for rentilating the large theatre since its erection in 1838. After the fire is o lighted, all its communications with the outer air are closed, and that of the exuract flue opened, which then supplies the fire with air lrought down from the upper part the theatre. Fresh air is admitted to the theatre only through the ordinary doors a openings.

2278 m . As regards rentilation by windows, or the natural method, as it is called, as system of making a sash working upon a horizontal axis, such as French casements, wisely dispense with stay-bars, even when made to open and shut by means of a wh and axle, our attention may be confined to lights hung on pulleys, or on hinges, or centres. The first of these three clas-es is the common lifting sash. Wind-boards top and bottom to prevent the effects of direct currents have been suggested; machinery has been fitted to open both sashes simultaneously, so as to ensure the desi circulation of air through apertures at pleasure, or that shall not be altered withou key. This improvement has lately been successfully managed by the "patent couns balance rack slips," which also do away with the use of lines. pulleys, and weights, double windows, however, as in the lavatories at Middlesex Hospital, a roller has b placed between the two pairs of sashes, which more reeiprocally, like the double bue action; so that when the imer top sash is lowered the outer bottom one is raised, the reverse; and the extension of this idea to the lights of water closets has 1 advocated. It has also been suggested that, in the usual windows, the horns of the sash styles should eppear above the top rail, so that the window could never be tigy shut; lut the benefit from this plan is enfined to periods at which the window is closed by shutt-rs or by roller-hlinds. The same objection applies to the use of s jerforated glass and other contrivances as are mentioned in par.2231a. It is stated no draught is felt by the use of these inventions, as the air passing through the perfi tions is diffused equally and imperceptibly. We must notice that it will be found t the air is always passing into the apartment, and that when the wind blows towards glass, the extra supply of air sent in is undoubtedly felt by the occupants, but sol times not appreciated by them. Another method consists in the admittance of air cil by a space left between the top bead (the horns, as before, stopping the sasli from go home) and the head of tlie opening, or by such a space over the outer bead, to comm cate with the box formed by the inside lining and the architrave or other dressing, latter being either pierced with holes or detached slightly from its grounds. Anot method much practised is to make the inside bead to the lowar sash of a greater hei than usual, say about two in hes; thus when the sash is raised a litile and clears meting bar, fresh air will be admitted at the meeting bar and not admitted at the lo. part. Old sashes may he so treated; eren a lar of wood about three inches high, it with baize, its length being the width between the sash reveals, can be put on the when the sash is raised, and the sash shut down upon it. This admits fresh air ut meeting bar sufficient to rentilate the room without draught.
$2278 n$. Of the second class is the common hopper to a window, framed with or witl side lights. In this are included all greenhouse sashes that are hung from the top, w? may be made to open simultaneonsly by means of ratcheted stay-bars dropping toothed wheels fixed on a continuous axis, worked by a wheel against an endless ser When double windows are used, as in rery cold climates, or when it is desirable 10 s out noises, the lipper portions of them should le made to open ly the action of opel. the inner window. This scheme has been adopted in the hospital of the Wieden eul and also in the Imperial stables, at Vienna, with success; its action is not described, the outer window is presumed to be fixed, the heads of it forming a hopper, whic opened or shut by lowering or raising the inner window.
22780. To the third class belong nearly all the modern English patonts for win' ventilation, which consist of one or more planes working like a ja!ousie lath upon ab
zontal axis. Of the two principal adaptions of the system to an entire window, Hurwood's, shown in fig. 808a., and worked by an endless screw, is the simplest ; there is another arrangement of this kind by Mackrory, where the action is similar to that of a carriage window; the sash runs in a groore, and being turned by means of a toothed pivot working against an endless screw, it can be kept at any desired height. The method indicated by fig. 808., adopted at Middlesex Hospital, seems more simple and more pconomical. By turning the handle to the points in the plans A, B, and C, the glazed lourres are simultaneously opened or shut to those limits.
$2278 p$. Ventilation is effected on the principle of the extracting valve, as adrocated by Dr. Arnot, which is a plate of metal hinged to the luwer edge of a metal box next to the room, and on the other open to its chimney. The draught of the flue tends to carry away the air of the roum, when the current is upward; should it he downw rd, a silk or mica flap is driven against
 the plate, tending to prevent the ingress of smoke. Howerer useful this contrivance may be, its result in cubical consumption of a'r is necessarily small. A cowl with rertical, or hurizontal, or slanting jalousied sides has also beeu employed,

F 1 g . 9055. with or without an Archimedean screw, at the top of a flue, to exhanst the air of a room. The simplest means of the admission of air to a rom is a hole in front of which, on the inside, should be a board inclined to throw up the current of fresh air, as fig. 808b. Another well-known invention is Sheringham's inlet rentilator. An opening is made in an exterual wall for the introduction of air, and a metal box inserted, which is a solt of hopper, having at its mouth a ralre, so hung as to direct the current of air towards tho ceiling, whereby no dranght is felt by tho occupants of the apartment. Somewhat simitar is Hart's ventilator, the facs being of perforated zinc. Such articles are also made with a box to contain charcoal as a purifier of the air before it is admitted. Looker's patent ventilator, consisting of a tubular piece of pottery fixed in the wall, into which on the inside is placed another tube, perforated all round with small holes, the inner end being closed altogether. This second tube is pushed in or out, according to tho quantity of air required.

2278 q . Amongst the carliest of other and $\mathrm{l}_{\text {titer systems is }} \mathrm{W}_{\text {at }}$ son's doublo-current rentilator, consisting of a tube divided by a diaphragm, and rising from the ceiling to the external air ; it was intended that the air should circulate, as shown in fig. 808c., by an

Flg. AMC. ascending and a descending current. It has been said that this result only occurs in rooms that are perfectly closed, and that the two tubes generally serve as exhausters; but our own experienco is more favouralle to tho effectivo working of this invention. Somewhat similar to this is fig. 808r., called the Shaftesbury ventilator, which appears to have been applied in small tenements with success, probably for the very reason that the rooms in such cases are generally kept as closo as possible; for it lass been necessary to conceal the opening at the ceiling by an ornamental rose, and to put at G an air grate with large openings. At times,

Fig. RORA.

lisg. bate.
linworer, the riah of rold air is pery grent through this tube into the roon ; to remerly thi", the ond G may he monnerted wilh h horizontal thio or box nbout 3 fret loug, and anmowht larger than tha tulde 11 ; weh end of this hox is open, but tilled with wery fino wire ganze; tho rewnt then has ganerally proved satinfactory. A modiflention of
the preceding invention is adopted by McKiunol. Two concentric tubes are so fixed tlat the imner one is longer than its envelope. This apparatus, shown in fig. 808!, nearly answers its purpose, according to certain anthorities, and certainly gives, in some cases, a result that would be satisfactory if its regularity were not affected by atmospheric influences, The openngs require to be covered, so as to prevent the admission of rain. A square turret, diagonally divided, as shown in fig. 808f., is known as Muir's rentilator. The inventor calculates upon utilising the slightest current of air, as he supposes that when it arrives at one of the sides it will enter, descend, and force an equal quantily of foul air to discharge itself at the other sides. The report of MM. Elondel and Ser upon the London Hospitals in 1862, states broadly that none of these methods gives a satisfactory solution of the question.

2278r. Honeyman's diaphragm ventilator, 1886, is prepared fur use for open timber roofs and fur ceiled apartments. Air pressing in on one side shuts a valve on the windward side of a middle diaphragm, passes through an orifice in it, creating an upward current in an air trunk, which draws out the foul air in the room through other valves on the lee side. When there is no wind, the valves on both sides of the diaphragmo open
 freely for the cxit of the heated air.
$2278 s$. The system of Mr. Tobin (of Leeds) for proriding access of fresh air into a room is now extensively used, and sometimes under other names. It was promulgated by him about 1874, and although the principle is of an earlier date, it is to his endervours that it has become recognised as a most valuable auxiliary. The principle is that of a tube carried up from the Hoor against the inside of an external wall to a height of about 7 feet. Fig. 808 g . shows a section of the tube on this principle, from Dr. Corfield's Laws of Health, p. 41. The bottom of the tube is made to communicate with the outer air and the top is left open. This tube may be made of planed deal or metal. The top is by some manufacturers covered by a piece of coarsely perforated zinc to prevent articles dropping down the tube. Others put in a coarse canras bag to filter the air as it passes through into the room. A regulating valve is also sonetimes provided, but this is best avoided, as when: once shut it is not always opened again. A "deflecting shield" is often added to the top to prevent the wall decorations from beiug marked by the dust often in the air passing in. Inlet brackets are also made, which are short tubes placed ligh up, but their efficacy may be doubted. They are also called "rertical tubes" and "air inlets" by some manufacturers. E. H. Shorland, of Manchester, claims to have used "vertic a pipes for ventilation" long before they were introduced by Tobin, The opening on the outside of the wall should be protected by a grating : a patent automatic air washer, for washing the air by a spray, is adapted by some to this system, as also the introduction of gas lights for warming the air.

Table of Cubic Feet of Air Discharged per Minute through a Ventilator, haying an Area of One Square Foot. (Huod.)

Height of Ventilator, in Feet.	Difference between Temperature in Room and the External Air, in Degrees.					
	5	10	15	20	25	30
10	116	164	200	235	260	284
15	142	202	245	284	318	324
20	164	232	285	330	368	404
25	184	260	318	368	410	450
30	201	284	347	403	450	493
35	218	306	367	$4 £ 6$	486	531
40	235	329	403	465	518	570
45	243	348	427	493	551	605
50	260	367	450	518	579	635

The openings for the inlet of fresh air must be smaller than those for the escape of the heated air, otherrise there will probably be a descending current of cold air in ihe same

1be with the ascending current of hot air. It is now proved that all inlets should admit 1θ air in an upward direction.
2278t. The Fiolus uaterspray ventilator is patented to supply a constant circulation of ure air entirely under control. It is adapted for all public edifices, as well as houses, tables, \&c., and for use in hot climates. Ico can be used to cool the fresh air, and a gas arnace can be attached to warm it. The air passing through the apparatus is clearsed rom dust and all impurities. The consumption of water is stated to be small, and the otal cost of ventilating and warming a large apartment for nine hours does not exceed sixence. The company has also an exhaust roof ventilator, a waterproof downcast shaft ship entilatcr, an automatic invisible roof ventilator, a chmmey cowl, and a ventilating stove.
2278u. F. H. Smith, patentee of the automatic syphonic aspirator system of ventilation, shich produces ventilation without draught by supplying air to the room by ducts at tho oor level. The exit for the vitiated air is placed in the ceiling, and consists of two tubes, large and a small one, parallel to each other, between the floor joists. In the case of op rooms the two tubes may be concentrical. The larger tube carrics off the foul air, hile the smaller one forms an induction tube for cold air, its outer extremity being open 0 the outer air, the inner one opening under the rim of the foul air tube. The principle ras applied to the hot "island room" of the fountains of 1884 Exhibition, reducing the emperature from 110° to about 70°. The Eon ventilators, extractor, and chimney cowl re stated to be the cheapest and most effective used with the eon inlet. The Acme ysten of ventilation (Liverpool) is an exhaust and blower type, dependent on mechanial action for its motive power. The action of the ventilator produces a partial racuum l cach stroke, and with the graduated pipes fresh air is brought into rooms without raughts, and may be warmed as it enters. The system has been applied at the new ounty Sessions Courts, at the Town Hali and Council Chamber, and at the Conservaire Club, all at Lirerpool. Its application at the former building is described, with an lustration, in the British Architect of December 2, 1887. Westmorland's patent imroved automatic ventilator combines an iron breast trimmer and fireproof hearth bearer 1885), to carry the air from a ceiling up into a smoke flue. The ventilating and warming rrangements of the new portion of Eton College (1888, A. W. Blomfeld, architect) have ceuc carried out by J. Weeks \& Co., by air passing over hot water coils, and the foul air urried off by ducts at the ceiling of the passages to a shaft having a series of gas jets to cure an updraug'lt.

2278u. Where gas lights are much used in apartments or buildings, it is desirable to arry off the products of combustion and heated air by a tube placed over the light, hereby its heat assists the escape of the impure air. An ordinary gas-burner is calcured to vitiate, to the same degree, three times the quantity of air that a man does in ec same timc. This plan was first effected by Professor Faraday. The improved ventiting sun-burner, with its self-acting valve for preventing a down draught, as manuctured by Strode and Co.; Rickets's ventilating globe-light; and others, all tend to oduce the desired result.
ale of Quantity of Air Required per Hour to make op for Vitiated Air by Forms of Artificial lllumination.

2278w. The Commissioners for Barracks and Hospitals, in their Report, 1855, p. 65, ., state that for such establishments the different systems adopted in the Parisian xpitaly appear to be too expensive and too complicatcd. Those which they approve nsist of induction, and of flucs for exhaustion, each of two sorts. Induction.-I. Open${ }^{3}$ s with un nir-brick in the face of the wall, and a wooden hopper near the ceiling, iced at an angle of 45°, coverd with zinc pierced with holes from $\frac{1}{6}$ to $\frac{1}{8}$ iuch in smeter. A plate of zinc or galvanized iron, hung at the bot tom and worked by a string, -alates at pleasure the admission of air, the size of the opening being calculated at inch square for each 60 culic feet of space in the room, whero there is not a special arision for fresh nir to pass round the stove; when there is such provision, the size for opening may bo ono half loss. II. Openings with an air-brick in the face of the
wall, and a trunk or tube leading the air to a ease belind the store, sn that warm air may rise in a tube to a luffer-boarded opening at the ceiling, the size of the tabe being calculated at an inch square for each 100 cubic feet of space in the room.

2:78x. Echaustion.-I. Flues of the warming apparatus extrant the bottom layers of air in the room. The experiments made between 4.30 and 6.30 A.m. in April, 1855. showed that the volume of air extracted was on the arerage 9,000 to 10.000 cubic feet by each flue, the rapidity being at the rate of 5 to $5 \frac{1}{2}$ feet; by which numbers the section of the flue would be 0.446 English feet. II. Tubes from the ceiling to the roof, the size of the opening being calculated at an irch square for each 50 cubic feet for an upper story, and for each 55 cubic feet for the story below it, and for each 60 cubic feet fur the lower story. The rapidity of the current is regulated by the difference between the interntl and external air, by currents, \&c. When the temperatures are equal the current is feeble, when the reverse occurs it is strong. The rolume extracted (undor the above conditions) was 8,500 to 9,000 cubic feet, the rapidity being at the rate of 3 to $3 \frac{2}{2}$ feet So that the greatest effect by the combined systems only takes 8,000 to 10,000 culic feet by each flae on the average, and this irregular result is sometimes annulled; moreover, the currents may reverse the action of the flucs, and enter by the exhausting tubes
$2278 y$. Other systems.-In the new buildings at Guy's IIospital, as also at the Luatic Asylum at Derby, Sylvester's method was carried out. Here the air arrives by a large inducting flue, capped by a cowl which utilises the action of currents of wind; the ain passes undergroued in contact with hot-water pipes, rises in flues, and enters the room at the ceiling; it escapes ly exhaustion holes in the skirting of the opposite walls, and rises to the roof by flues continued by plate iron tubes to an exhausting flue, which sur rounds the smoke flue of the warming apparatus. The inventor calculated for aboul 4,000 cubic feet per bed per hour, and stated that in the winter about 4,300 had beel obtained geuerally, but that once about 2,200 only were gained.

2278z. The methods of ventilation adopted in France are required to produce effect absolutely free from perceptible currents of air. The report produced by MM. Blonde and Ser, before noticed, mention Duvoir-Leblanc's system, in one portion of the hospita Laviboisière, as drawing away about 2,500 cubje feet per bed per hour, half of which i supplied by the doors and windows; and the method of MM. Thomas and Lanren which gives 3,200 cube feet per bed per hour, and is not found always sufficient \dagger remore every trace of odour. They consider that Dr. Van Hecke's system, used at th Baujon and Necker hospitals, leaves much to be dosired. They require 3,500 cubie fer per bed per hour; and perceive that in order to obtain any thing like such a resul recourse has necessarily been had to large exhausting flues, or to mechanical means, sac as the fan.

Table of Air Required per Hour for Each Prbson.

Prepared by Herr ron Fragstein of Berlin (Builder, xlis. 1883, 56).
cubic feet.
Drawing rooms
School rooms and libraries
Sick rooms, ordinary
Sit 2,100 to 2,500
Sick rooms, wounded and confined 3,500
cubic.feet.
Sick rooms, epidemic diseases - - - 5,300 Theatres - $\quad-\quad 1,400$ to 1,7 Assembly rooms - $\quad 1,050$ to 2,11

Each person is considered, in England, to require from 3 to 5 cubic feet of air y minute, equal to 180 to 300 cubic feet per hour. At Einsbury Technical Colle about 11 cubic feet of air per minute is provided in the class rooms, and 50 cubic f_{t} per minute in the chemical laboratories and draught closets.

Shet. XIV.

WARMING OF BUILDINGS.

2279. Heat, as required in architretural structures, results from raising the tempe ture of the air by means of various contrivances so arranged as to take advantage of laws which govern the transmission of heat. A body capable of affording heat gi out caloric by two methods; these are radiation and conduction. Radiation is diffiu through the air at an immense velocity without materially raising its temperature, immediately warming solid bodies exposed to its influence, which in turn give out acquired heat slowly; the redder the fire, the warmer is the radiant heat. When the in a large apartment is to be raised in temperature, the method of leating by contact employed; this is effected by volumes of air coming in contact with a heated surfo and, becoming raised in temperature, are put in motion, and communicate the hent t receive to surrounding bodies.
$2270 a$. In order to obtain full adrantage of heating surfaces, their area must be 1
portioned to the cubic fert of air required to be marmed. A small surface, if raised to a very great temperature, will heat a large quantity of air if means are taken to pass it rapidly from contact with the heated surface. It is better, in all respects, to have a large surface maintained at a mild temperature with a gradual change of air. In general, if the temperature of the heated body is above that of boiling water, i.e. 212°, the air in contact is rendered unhealthy. Ventilation rery greatly assists the endearours to warm successfully a room or building.
$2279 b$. The method of warming classed under radiation and conduction may be further arranged under the following heads:-I. Open fires, including grates and stove grates of erery sort, having ordinary flues or chimneys; this is warming by radiation. Warming by cunduction is effected by, II. Close fires, as furnaces, cokles, $\mathbb{\&}$ c., and the Cabin, Arnott, Vesta, Gill, Chunk, Dumpy, Nott or American, laundry or ironing, caloric, remilating, \&c. stores; and by Gas, as the atmopyre, asbestos, calorifere, cylinder, and gas heating apparatus ; baring metal or brick flues continued some distance from them fir the purpose of heating. III. Hot water on the low temperature system, with pipes alout 3 or 4 inches in diameter. IV. Hot water on the high temperature system, with fipes about 1 inch in diameter. And V. Steam, both on the high and low pressure systems,
$2279 c$. The principle of erecting one chimney to serve for all the fire places of a house is liable to very unsatisfactory results, unless such a system be carried out as that exhitited at Osmaston Manor, near Derby, by its architect, H. J. Sterens, and described at the Institute of British Architects in 1851. All the rooms in Fair Oak House, Isle of Wight, are warmed by means of one shaft in the middle of the house, heated by a large open fire in the basement. Around this shaft is a thin enclosing case of brickwork, in cement, leaving a space between to receive the cool air, which is then warmed by the heated shaft, and is admitted into the several apartments through perforated cornices, the supply being regulated by a valre. Obstacles presented themselves which rendered it necessiry to adopt the cornice and not the floor as the place for the admission of the warm air. The arrangements are stated to have met with a decided success; the plan and details are given in Builder, 1860, p. 329. In a series of small dwellings where the one shaft system was tried, its complete failure necessitated the new formation of all the fireplaces and flues.
2279 d . I. It scarcely enters within the province of this work to describe the best form for an open grate. The point has been $\mathrm{t} \boldsymbol{\mathrm { k }} \mathrm{t}+\mathrm{n}$ up of late years by mabufacturers, and very mary excellent forms adopted. The result is that iron at the back and sides has been grealy discarded, and fire-lumps substituted, whereby greater heat is thrown out with the same quantity of fuel. The firc-hump grates for cottages, bedrooms, schools, \&c., hare had a large sale. But it has also been found that too large a surface of the fire-lump tends to consume the coal ton quickly, consequently it is now chiefly confined to the back of the grate. A length of bar equal to about I inch for cach foot of length of room, and the height of the front half an inch for each foot of breadth of the room, are dimensions found to produce good proportions foraverage purposes. The depth of the part in which the fuel is placed has lieen greatly decreased, abuut 9 inches leing ordinarily sufficient at the bottom, and enlarging upwards at the back, so as to present a good heating surface in the front, and at the top, of the fucl. The height that the lowest bar should be from the heurth is a matter of greater uncertainty; we adrocate that it should be as near to 12 inchos as possible, in preference to the 6 inches which the grates are now usually made. We have haul grates raised from tho latter to the former height with greatly increased results. divintage has been taken of the fire-clay stoves, since the period of their invention ly Cuunt Rumford, to combine the back and sides with air flues of the samo material, which, scoming heated, impart their heat th the cold air supplied from the outside, admitting xarm frem air to the apartment. These stoves were first, adopted by Cundy. Numer,ms nrms of slumbecombitum grates have leen introduced of late years. The Carron. 1/usuraee's, anl Barnard, B'shop \& Co.'s Norwich stove, are amnng many others of that 'eurription. The registcred E-onomiser grate and fire-brick back, manufactured by Nelson and sions, of Leeds, on the principles advocated ly T. P. Teate, in Ecenomy of Conl in Iouse Fir's, has a door to tha ash-t it to close the dranght; the sides and lack of the fire re of fircobrick, while ahove the fire tho back slopes forward and over it to near the mantel, chen it ngain stopes back to the back of the chimney; all this being in firebrick and hannelled whereabove the fire. It is considered to give perfect combmstion of fuel, with mplete radiation and profection of tho heat protuced, tho form of hack ensuring the rentest possible consumption of smoke. It can bo readily fixad by any bricklayer. Tif Narllorough grute (Garland's patent), with adjustalin canopy ating in phace of a gister door, firt-hrick sides and baek on the sane principle with Eeonomiser ; when is firo is not ued, the eannpy can bo let down to shat up the thas opening, like a register. Cidution of heat has been materially assister by sylvester's arramgenmat of tho ends of ha fire bars grejecting into the room forming a hot hearth; and also by Joyce. Ur.
 roducing "the Baikder's fire," are r ints of consideration for the hotheholder rather
than for the architect. The Galton ventilating air store is largely used in hospitals and infirmaries. The Manchester grate, manufactured by E. H. Shorland, of Manchester, for houses, schools, hospitals, asylums, \&c., is used by the Bank of England at its branclı establishments. It is called a patent first class smoko consuming and warm air generating grate. Heat is not only given off by radiation, but warm air can be supplied to rooms above or adjoining the one in which the grate is fixed ; in 1882 it was stated to possess nearly 80 per cent. more heat-giving properties, and to be nearly 100 per cent. hetter as a smoke consuming grate, than others tested at the time. The Wharncliffe patent warm a'r ventilating grate. Grundy's patent warm air ventilating fire grate, in which the leating surface is stated to lic greater than any otlier. Reere, Ratcliffe \& Co.'s Cosy grate is the only open fireplace in which the products of combastion are filtered through a red-hot wasteless purfier, and thesefore is a smoke consuming economical grate,

2279e. II. The varieties of close stoves are very numerous, but the principle upon which they depend for their efficiency is in all cases nearly the same. This may be stated to le the heating of metal plates by the combustion of fuet in actual contact with them. The quantity of heating surface in the room wherein the stove is placed can he materially increased, and nearly the full effects of the heated products from the fuel obtained, by lengthening the smoke flue; but the longer the flue the less is the draught of the fire, which is further lessened by its becoming choked with soot; thus a 3 -inch pipe attached to a small stove, burning coal and in constant use, has been found so completely filled up with soot in the course of a week that a stick half an inch in diameter could scarcely be passed through the hole left in the centre. The now common American cooking-stores are on this principle. The principle of the Arnott stove is that of consuming the peculiar fuel recommended for its use very slowly, and the detention of the heat in the stove. The addition of a descending flue to some of these stoves is an adrantage when it is desired to place the store in the middle of a shop or warehouse. Franklin's calorifere, or the vase stove, having a descending flue, was formerly much used. When this system has been adapted to flues carried under a stone floor (after the Chinese fashion), it has been found to warm most efficiently an office and principal staircase with a mere handful of firo, at a cost of about 30s., while by another apparatus the cost was 18%. (Beaumont, Hints for preventing Damage by Fire, 1835.) This is an elaboration of the common method of warming greenhouses by the brick or smoke flue, through which the smoke and flatue travels from the furnace. A fire-clay casing for the fuel is also combined with some of them. Haden's apparatus has been mentioned (par. 2278 .) for warming large buildings; and equally efficient is that by Grundy, which is also much used for churches and large buildings. The Tortoise stove is a late production for a small room.

Gas stoves are of various sorts. There are many of iron make, which render the air unwholesome. Wessel's patent heat disseminitor (about 1850), made of copper, has proved of value even in rooms kept closed. Ritchie \& Co.'s Lux-calor new patent apparatus tor heating and ventilating large buildings by gas, requires no flue, and has no suoke nor smell ; the principal parts are made of copper. It was much used in the Bank of England. S. Clark \& Co.'s patent Syphon stove is a condensing gas heating, similar in principle.
$2279 f$. Tho Bigh tempe-ature stoves, such as the cokles, the Strutt or Belptr stove, the Sylvester's, and others, all used for warming extensive spaces, consist of large metal plates or surfaces of brick or stone, heated in or by a furnace or fire, the air to be warmed being caused to impinge upon or pass between them, and then carried along in tubes to the several rooms or floors where the heat is required. The hot air pipe furnace is used for the same purposes, whereby the flame and smoke passes along the inside of the tubes. In Davison and Symington's furnace for obtaining heated currents of air for manufacturing purposes, the cold or fresh air is driven by a fan at a great relocity through the pipes, which are placed in contact with the flames. Any cessation of the blower may be expected to cause material injury to tho pipes.

2279 g . A writer explaining the common American system of warming houses by hotair, says that the whole comfort of the result depends upon how the at mospheric air is heated. The various plans are effected by a turnace, from the dome of which plpes are coiled and twisted about so as to gain the utmost possible radiating surface, and the air is bronght in contact with them as it passes through the chamber. To get cheaply a great amount of heat, the castings are made very thin, the air chambers and hot air pipes small; whereby the result is, that a hot desiccated poisonous air is discharged into the room, injurious to the lungs, and causing headaches. Where the air chamber, however, is lurge, the furnace very wide and shallow, and its dome high, with the radiating surface largely extended, and the external cold air shaft spacious, this mode of heating is excellent. No apparatus of its kind ever surpassed the old Boston furnace, first invented by Chilson, and since so greatly improved by his successor in New York. In the "Boynton furnace," as it is called, the shaft hringing in the cold air is very large, frequently 4 feet wide and 2 feet or more deep, and the air chamber and tin pipes therefrom are also of consideralle gizo. In the air-chamber a small jet of water is kept playing to restore the natural moisture to the air. Anthracite coal is used, a ton of which, for an ordinary hozse,
would be a sufficient supply for nearly three weeks. No other fires, except that of the kitchen range, is usually seen in houses possessing this apparatus. (Builder, xxiii. 582.)

The heating of houses by warm air, and the substitution of gas for general heating and cooking purposes, adrocated by a method adopted by Mr. A. E. Fletcher, was considered in the Journals of Jan. 1888. A brick chamber in the basement contains a stove in which coke is burnt; air is brought in from the outside, and then conveyed by means of pipes to the entrance-halland ground-floor rooms, thus warming the whole house, with the result of a considerable economy of fuel. Then asbestos gas fires were used in the rooms, and gas cooking ranges in the kitchen, with great avantages of less dust, cleaning grates, lighting fires, \&c. This is not all new (see par. $2279 g$). Many persons have for years found the adrantage of the hall and staircase being warmed, if not carried to too great a heat, but only as an auxiliary to open fires, and the upper floor kept ventilated. Gas fires are not to be depended upon as successful. Gas cooking stoves are useful in many cases, but much depends ou the domestic eren then.

2279 h . III. The cireulation of hot water in pipes is caused by the unequal density of the fluid, arising from the difference of temperature in the ascending and descending columns of water connected with the heating reservoir; and its velocity is governed by the height of the columns; Bramah, in appendix to Tredgold, Heating. A boiler (the "conical" boiler is consid + red the best form by some manufacturers, while others prefer the "saddle-back") heats the water, which, as it becomes warmed, rises and passes out through the flow pipes; these are laid at a vary slight inclination, to assist the current. When the water las arrised at its furthest extent, it enters what are termed the return pipes, on its way lack to the boiler, which it enters at the lowest part, to be re-heated, to rise, flow, and return as long as a fire is kept up. A rough calculation has becn made that for every 50 feet of 4 -inch pipe 1 square foot of boiler surface is required. The self supplying cistern and its expansion box must be plaeed somewhat above the highest lerel at which the hot water is desired to rise, yet not so high that the pressure in the pipes will affect their joints. It should be covered, and have a pipe to allow the rapour or steam produced by over-heating to escape into the external atmosphere. With this, the low temperature system, the heat of 212°, or that of boilirg water, cannot be exceeded. Jeffrey's patent Radiator, for hot water or steam, in siugle or double loops or coils, is ornamental.
2279i. IV. The high temperature system was introduced by Perkins, and is frequently calied by his name. Water is placed in a coil and range of piping of small diameter, hermetically closed, so as to prevent all communication with the external atmosphere. A coil, Leing at least one-sixth of the whole piping, is heated by the action of the fire in immediate contact with it, by which means the temperature of the water in it can be raised easily to 300° or 400°; but then the same objection applies to the air warmed by pipes so heated as to that from high temperature stores. As water expands with heat, allowance has to be made by the addition, at the highest point, of a larger tube to receire the surplus, which varies from 10 to 12 feet per cent.; one-tenth of the space of piping may thus be allowed for expansion. After the pipes are fixed, they are rery caretully filled with water, so as to expel all air, through a filling tule situated at the bottom of che expansion tube, and when sufficiently full they are hermetically closed. The danger to be chiefly apprehended from this apparatus is that, if leakage takes place, the loss of Water causes red-hot vapour to be formed, with the possibility of setting fire to any wood of which it may be attached. There is now no doubt but that wood, suljected to a zonstant current of greatly heated air, becomes very liable to combustion.
$2270 k$. When heating surfaces of great extent are required to be obtained by the appliation of hot water or of steam, Walker's system will probably be found to be the most iffectnal yet introluced. It must bo sufficient hero to describo it as consisting of a aumber of small iron blocks, each block having square perforations passing through it for he current of air from the top to the bottom, of yery thin metal. The blocks are enlosed in a correspondirg perforated iron box, leaving 1 inch for water or steam all round wh block, which hents the metal forming the llocks By this very compact arrangement 601 feet of heating surface may beoltained in a box measuring not more than 2 fect cubo. 2279l. The rules for finding the area of hot water pipes for any sized apartucht are in 01 respects cescentially the same as will be given for steam, excepting the mean temperaure of tho pipes: for steam-pipes 200° is given; but 140° to 150° may be taken as that ff low temperrature hot-water pipes. From data oltained ly Hood, Prastical Treatise, irl edit., 18.50 , it appears that water in a pipe of 4 inches diameter loses 8.51 of a degreo is hent por minute, when the exeess of its temperature over that of the surromiding air 425°; and also that, under the same condition, one foot of such a pipe will heat 222 -uble fere of nir ono degreo in the same time ; whace he deduces the following rule:-Anltiply 122° by the difference between the maximum proposed temprature of tho room nil that of the external air, and divide this product by the difference letwech the twinerathere of the pipes and that proposel for the room ; then the frotient is th be multihed by tho eumber of enbic feet of air to bo warmed per minute ; and tho frolnet,
divided by 222 , will give tho number of ftet, in length of pipe of 4 inches diameter, required to produce the same effect ; this length is to be multiplied by $1 \cdot 33$ or by 2 , for equivalent lengths of pipes respectively 3 and 2 inches in diameter.

2279 m . In making arraugements for heating by steam, we need not describe the construetion of the furnace and boiler, or of the chimuey, matters which are perhaps better arranged by the engineer fitt ng up the apparatus, as stean for warming purposes is rarely adopted except where waste steam can bo broubht into use, as in factories and workslops using steam power. The thicker the metal of the pipes the better for greenhouses and sueh like places; for buildings, the thinuer the better, consistent with strength; say about $\frac{3}{8}$ ths of an inch in thickness. Provision must be made for the expansion of pipes, both for steam and water, of about one-eighth of an inch for every 10 feet of length. The pipes should be placed near the floor, and as close as possiblo to the apertures for the admission of fresh air. The pipes should be laid with an inclination to the boiler, so that condensed water from the steam shall be returnel to it; and they should be carried at onee to the highest part of the building and des eend to the lowest.

2279n. To form some idea of the r. quisite area of piping for any desired buildings, the quantity of cubic feot of air required per minute must first be ascertained. In order t. ascertain this, attertion must be given to the loss of heat by ventilation, and the direct influence of cold external walls, glass windows, \&c. From the first cause there will be a loss of heat proportioned to the quantity of the air withdrawn per minute: if 4 culic fret are supplied to each individual per minute, then "there will be fur each indiridunl 4 cubic feet of air convesing off a quantity of heat equal to the diffrence bet ween the hent of the external air and that of the room." Thus, if the heat of the room be 70° and that of the external air 50°, then the withdrawal of 4 eubic feet of air per minute must lead off a quantity of heat equal to the differeuces between 70° and 50°, or 20°. From the second canse there wall also be a loss, as heat is transmitted very quickly through glass; the quantity of air cooled in a given time being simply proportional to the surface of the glass exposed to the external air, and, consequently, will be constant, whatever variation of temperature may take place. The rule given by Tredgold, $\$ 67$, is as follows:-"If the area of the suraco of glass be multiplied by 1°, the product will be the numbor of cubic feet of air per minuto which will be cooled from the temperature of the room to that of the external air;" and to this loss will also be added that arising from each door and nindow (independently of vecasionally opening and shutting the former); this was calculated by the same author, § 65 , to be equivalent to $\mathbf{i} 1$ cubic feet per minute, the difference of temperature between the internal and external atmosphere being $6 u^{\circ}$.

22790 . From a combinatiou of these eircumstancos, assisted by various experiments, Tredgold, $\S 68$, dedaced the following rule :-If tho number of people the rom is intended to contain be multiplied by 4 (or the quantity of air allowed per minute), and added to 11 times the number of external windows and doors (as 11 cubic feet of air is pas sed through each per minute on an average), added to $1 \frac{1}{2}$ times the area in feet of the glass exposed to the external air, the sum obtained will be the quantity, in cubic feet, to be warmed per minute. The next operation is to find tho area or surface of piping which will warm this quantity of air. The mean temperature of a steam pipe at the ordinary pressure is 200°. The temperature of the air supplying ventilation is to be known at the extreme case of cold, which for the day may be taken at 30°, but for the night may be assumed in this country at zero of Fahrenheit's thermometer; the temperature to to maintained at the same season of co'd is also to be settled. Then, T, edgold, $\$ 44$, gires the following rule:-Multiply the culic feet per minute of air to be heated, to supply the ventilation and loss of heat, by the difference between the temperature the room is to be kept at and that of the external air, in degrees of the thermometer, and divide the product by $2 \cdot 1$ times the difference between 200 and the temperature of the room. This quotient will give the quantity of surface of cast iron steam pipe that will be sufficient to maintain the room at the required temperature. According to Dr. Arnott. 1 foot of superficies of heating surface is rquired for every 6 feet of glass; the same for every 120 feet of wall, roof, and ceiling; and an equivalent quantity for every 6 culic feet of air withdrawn from the apartment by ventilation per minute. (Tomlioson, p. 124.)
2279p. "The Metropolitan Muilding Act, 1855," requires that:-I. The floor under cvery oven or stovo used for the purpose of trade or manufacture, and the floor around the same for the space of 18 inches, shall be formed of materials of an incombustitle and non-rondueting nature; II. No pipe for conveying smoke, heated air, stenm, or hot water, shall be fixed against any building on the face next to any street, alley, mews, or pullic way ; (III. A pipe for conveying hot water, or steam, at low pressures is now not required to bo kept clear of comlustible materials); IV. No pipe for conveying hot water sl.all be placed nearer than three inehes to any combustible material; and V. No pipe for conveying smoke or other products of eombustion shall be fixed nearer than nine inches to any cumbustitle matcrial; with a penalty not exceeding 201. for non-compliance.

Sect. XV.

SPECIFICATIONS.

2280. The importance of an accurate specification or discription of the materials and rork to be used and performed in the execution of a building, is almost as great as the reparation of the designs for it. The frequent cost of works above the estimated sum, and its freedom from extra charges on wiuding up the accounts, will mainly depend on the learness, fulness, and accuracy of the specifications; though it is but justice to the archiect to state that extras arise almost as often from the caprice or change of mind of his mploger durisg the progress of the work, as from the neglect of the architect in making he specification. A specification should be made in all cases of new designs, additions. r alterations in reference to designs, which, the more they are given in working drawings y the architect, the better will it be for his employer, no less than for the artificer.
2280a. When the drawings have been brought to sait the client's tastes and requircpents, the architect commences to preparo the working plans ind details. Before the:e re completed, he should take up the specification. The primary and main object of a precifieation, is to gire, fully and clearly, all necessary and uspful written explanations an t ustructions for the execution of the work, and fur making due preparations for the ffecting of a definite and elear bargain between the person or company acceptiug an offer nd the contractor offering to execute the work.
2286 b . To write out a document fultiling all these requirements, going into erery articular, and describing fully and accurately each different part of the work, mu-t aturally cause a lengthened document. But a line must be drawn between rumning to in almost absurd length and being too brief. The former may occasionally cause the pecificution to bo neglected, as the builder or his foreman has seldum the time to refer aten to it. The rotation of the various paragraphs is a very important matter. It was rmerly, and is now, much the custom to divide the specification into trades, which system fose when separate contracts were taken for different branches of the work; but at the -exent day, when it is so general to have one contractor to carry out the entire work, it is occasionally been attempted to wrice a specification in a form more quickly and easly nisulted than by referring to paragraphs in sereral trades respecting somo one single ,rtion of the work.
2280 c. Some architects hare written the main portion of the details on the drawings emselves, detaching them from the general and +pecific work, particulars, and conditions; it the drawings are not always at hand to refer to, if there be no "office" on the ildinge.
2280, In many large towns it has become the custom to relegate this important part n1 architeet's business, especially of a young one, to a "qu'ntity surveyor." By doing is, he loses that grasp of construetion and of details which the preparation of a speciation, as of quantities, so gratly helps. The man who originally draws tho working Juss ean with math greater facility write out tho specification for the execution of the me than the man who, so to say, has first to learn his lesson. It shonld bear tho iness of the artistie feclingy of the designer, which the quantity surveyor cam never give it. wh item is usually taken separately, and should be clearly doscriberl; simple larguage comld he used, without ubbreviations; all such words as preper, properly, sufficient, the on hers, should be aroided; involved sentences, bal punctuation, and faulty grammar omld iot apprar, and cach sentence should bear but one meming; but, regarding the Ho with which specifications have to be drawn up, these are sometimes unavoidabre. When masle in the margin, of difficult bits of construction, as well as of ormamental ails, may be erpiomaly used, especially if the detail drawings are not fully preparect. 2280e. Siectifations are now usinally lithographod, which saves much trouble and ri.k (xamining each eopy that may lee required.
2:280f. It is alvidillo that. the ngrecment with the artifiecer or contractor should to iwn up liy the elient's solicitor, who, no doult, will seek the nssistiance of the arehitere.
 -a of lmildinges. Sismething like a list or rkeleton of the component farts of bildings given in the following pages, from which the arehtert may select such as me saitabla the particular came wheron he may te onguged. This is not carriod into the repairs

 "toish. Bundens, may be consulted fir many other thetils.
: 280 . The following puges haven been rewriten, eondensel, nud aldal to as neressary. arge minomit of infirmation say to the manner in which materinls are nacol and puit

2280i. Among the Acts of Parliament, \&c., to which the attention of the architert an of the builder has to be directed, are the following. Towns and several other places and the London prishes, \&c., hare their own local Acts and bye-laws.

Metropolitan Building Act, 1855 , 18 \& 19 Vict., c. 122. Amendment, 1860, 23 \& 2 Vict., c. 52 . Amendment, $1869,32 \& 33$ Vict., c. $\delta 2$.

Metropolis Management Act, $18 \overline{5} 5$, c. 120 . Amendment, 1862.
Metropolis Management and Building Acts Amendment Act, 1878, 41 \& 42 Vict., c. 3 c Amendment Act, 1882, 45 Vict, c. 14.

Metropolitan Board of Works, Bye-Laws, after 1878.
Public Health Act, 1875, c. 55.
Knight's Aunotated Model Bye-Laws of the Local Government Board, 8ro., 18s: is useful.

generally.

$2280 k$. The contractor to supply all requisites; to provide all materials, new and the best quality; to execute and complete in the best and most workmanlike manner a the works set forth in the specification and drawingz, to the satisfaction of the architect tog give notices to, and pay fees and charges of all local authorities and officers, as distri surveyor, paving board, for hoarding, water, gas, and such like (the rights as to adverti: ing on hoardings to be reserved, or not to be allowed as on some estates, and as to th gravel and sand that may be found on the site) ; to provide a watchman; to insure fro fire iu the names of the builder and the client; to proride and maintain on the site a office for the clerk of the works, furnished, and for the custody of the drawings and paper: to afford access for the arcbitect, his representative, clerk of the works, and the client, the premises; to remove all dirt and rubbish ; to sweep out and scour all floors, and clei ull glass, and to deliver up the building and premises in a satisfactory state at the e clusion of the works, or at a specified time (it is not very clear when a house is "cor pleted"); as to the use and possession of the documents, and of making copies; to keep (the building a foreman of the works; to carry ou the works, and to complete the same; as unfit workmanslip and materials, and works not in accordance with the directions; as day bills; all disputes to be settled by the architect, or arbitrator agreed to before signi the contract; sum to be allowed for contingent works; as to sureties, time of paymen $\& c$. Besides the above, it would be well to refer to the "Heads of Conditions of Builde Contracts," sanctioned by the Royal Institute of British Architects, 1882.

EXCAVATOR.

2281. To take down any old buildings and impediments that may be on the site of \mid new works. If any old materials are to be used again, he is to clean, sort, a stack them for re-using in such parts of the premises as may be directed. T rabbish, as well from these as from any superfluous earth that may come ont of t basement and foundations, if not wanted for any purposes, he is to cart away, eitl wholly, or to such part of the premises as he may be directed, as well as rubbish that may accumulate in executing the works. To reserve any clayd out, and to thoroughly burn it with small coal into ballast, as directed.
To strip the surface soil to a certain depth. To dig out for basement story (whe one is to be), for the foundations, areas, drains, floors, and all other works requisi To beat down to a solid consistence the ground forming the beds of the trencl for receiving the foundations and walls, and after they are in, he is to fill in a ram down the ground; to level, and to do such other rough groundwork as m be necessary for forming the sectional ground lines shown upon the drawin, To prepare for concrete in foundations. To cover over the ground under pas or tiled flocrs (except where the tiles are laid on joists) with broken bricks W rammed and grouted with liquid mortar. This layer is to be made of suff il thickness to receive 6 inches of concrete, which is to be properly rammed : covered with a layer of 2 inches of fine concrete, finished with a level surface. bascments no earth is to be lett nearer than 9 inches to any floor or other timbe such cavities being by the specification to be filled in with dry lime core. If wa cannot be supplied by any public company, a well may have to be provided, as next section. To leave the ground free from all useless soil or materials.
Roadway and Paths. Remore the top soil from the intended lines of the roa spread over the site a stratum of coarse stone ballast, or of brick rubbish, 12 inc defp; covor the same with coarse gravel, spread, beaten, and rolled down u hard and solid, forming the width with a curre to each side, and rising ... inc in the middie. The Paths to have a stratum of coarse stone ballast (or br lriek ballast where snch is to be obtained), or of brick rubbish, 4 inches d cover the same with 3 inches of fine red gravel, well beaten down and rolled c until solid, and to be formed to a curre rising . . . inches in the centre.

81a. Excavator.

To bale out or pump out and remore all soil and water which may be necessary for laying the foundations, whether arising from springs, drans, cesspools, rain, on otherwise, and to be answerable for all accidental damage that may occur whilst the foundations and walls are carrying up; as also, when buildings a join, fur all damage that may oceur to neighbouring buildings.

HRICKLAYER.

2282. The brickwork is to be executed with the rery best hard well-burnt grey stocks (or kiln-burnt red stock bricks, or such others as mav be directed), to be laid in flat joints, and so that every four courses shall not exceed $11 \frac{1}{2}$ inches in height.
When better bricks are used for facing external walls, they are to be specified (as best marle stocks, second marle stocks, Suffolk white bricks, as the case may br), in which case it must be specified that no headers of the facing are to be cut off, except where absulutely necessary to form good bond. Fronts so faced are to bo either carried up with a neat flat parallel ruled joint, or to be afterwards tuck-joint pointed if a finished face is wanted, though the latter is not altogether a sound practice. In old work the joints have to be raked out, the brickwork washed, stained, and tuck-joint pointed. No place or sanilie bricks to le allowed in any part of the work.
The mortar is to be compounded of well-burnt stone lime and sharp clean grit or drift sand (if the work be of importance), to be ground in a pug-mill, or otherwise to be well tempered and beaten with wooden beaters, and to be in the proportion of one heaped bushel of lime to two of sand. (The use of sea sand is sometimes to be avoided; and road scrapings, unless very we!l washed and screened.)
When the earth foundations are bad, concrete should be provided; it is to be formed in the proportion of six parts of Thames or olher unscreened clean ballast, and one part of fresh-burnt Dorking (or other) stone lime, beaten to powder on the premises, and unslaked. They are to be thoroughly mixed in small quantities at a time, the lime at mixing being slaked with as small a quantity of water as possible. The concrete, after mixing, is sometimes stated to be dropped from a stage, but this is 2. bad practice. The thickness may vary from 4 feet to 18 inches in height, according to the quality of the earth or soil, and the width about six inches on each side wider than the wall.
Damp course. The brick or stone walls and partitions to be covered with a continuous layer of asphalte at least $\frac{1}{4}$ inch thick, poured on while lot, at above the level of the outside ground as finishel. A continuous layer of 5 lb . milled lead has been used. Taylor's patent vitrified stoneware, of $1,1 \frac{1}{2}$, or 3 inches thick. A courso of Bangor slates in cement 3 inches lower than the general level of the ground floor (and where else as needed). See par. 1886b, et seq. for methods of obviating the rise of damp.
English bond is preferred by many to Flemish bond; for good work, the brickwork should be specificd to be flushed up at every course with mortar. No bats to be allowed except for closures; and for sound work every furth course to be grouted with liquid mortar, and in the foundations every course, or at loast every second course. The walls, chimneys, their shatts, piers, and other works, to be carried up of the height and thicknesses and in the manner shown and figured on the soveral plans and drawings, together with all brickwork requisite for the completion of the house. When the work is within a district under bye-laws of a local hoard, and not required to be of special solidity, it will be well to describe that the thicknesses, of the walle, their heights above the roofs, and other matters, shall be conformable to the regulations.
Wiork to appear without a stone or plaster facing requires rubbed and gauged arches fur all the external openings in the principal fronts, of 9 inches in dopth (or more necording to their span), accurately cut, and set closely in front, in back, and on lleir softes. To the other openings the arches will be plain arches, closely set; thase which appear externally to be tuck-pointed on their outside faces. Over all lintols, in external walls, should ie provided ment accuratoly formed arehes.
Then fascias are formed of brick, their projections must be named; also all cornices formed by urrangements of bricks; but a drawing should, for the latter, appenr fill the drawing or specification.
ny moulded briclis are to bo carofully made in accordance with tho detail drawingr, and to be trimmed up before they are placed in the kiln. They are to be made a little thicker thun the other bricks, so that the beds and joints may be rubbed true before they are laid; they are to be set in fine mortar, and (before the seaffolding is atruck), they are to be rasped, rubbed with gritstone, and the arrises to be madu क力 月traipht and true as stonework.
2282π. Bhicklayer.
Work into the exterior and interior faces of the walls (if required), crosses, diapor zigzags, or other pattems; and form bands, string-courses, \&c., with white, blac red, or other bricks, as shown on the elevations, \&c. The red and black bricks an to be laid in blue-black or other mortar, or the joints to be raked out and pointe with the same.
Shafts of chimneys carried up above the roof, out of the common way, must be referre to drawings; otherwise what relates to them and their flues is described, follows:-Turn, parget, with cow-dung mortar (or paint the inside of all flues wit a flat mortar joint), and core the chimney flues, and finish the shafts with saliet courses 6 inches (or more) in height, with double plaintile creesing thereto; fo each flue provide and fix a large-sized chimney-pot (of cement, plain or mouldec or of earthenware, or ornamented, as may be necessary) ; the npper courses of t l shafts abore the crcesing to be laid in cement.
Parapets not eoped with stone or cement are finished with double plaintile creosin, and a brick on edge on top, or as shown on drawing, all laid usually in eement.
Where weather is to be provided against, as in upper courses and elsewhere, th laying in cement must be described.
Turn trimmers of t-inch brickwork to all the fire-places for receiving tho stone, marbl or cement hearths throughout the building, except where, as iu basement storis the hearths lie on fender walls, or on the ground.
Tile-arch or fat. The to be covered with 3 courses of plain tiles set in cemer the tiles to be first well soaked in water.
To basement stories. or the story on the ground, describe piers 9 inches square, continued walls 9 inches thick, to carry the sleepers whereon the joists of the flo or the courses of paring stone are to lie; the carity, if small, may be filled wi dry lime core. Where the piers or sleeper walls are ligh, arches may be form in them to save material, afford ventilation, and sometimes access throughout t eavity.
Build 9 inch sleeper walls to support ends of joists of wood floors abutting upon par floors (as in a church), and build half-brick honeycomb sleeper walls on one bri footings, 4 feet apart, under all wood floors in basement, or on gromd floor wh not excarated under.
Foundations to piers of arches to be in brickwork of hard bricks, laid in cemeut, a every course throughout the foundations to be well grouted.
Bed in mortar all bond timber, wall or other flates, lintels, wood, bricks, temple stone, or other work connected with the brickwork. All the door and wind frames to be bedded in and pointed round with lime and hair mortar. Execute requisite beam-filling.
Whem the building is faced with stone, or stone dressings are used ; to the above m. be added-back up and fill in solid with brickwork all the stone work and ir work that is set in the brickwork.
If eornices, fascias, \&c., are to be run in cement, then-prepare and fix brickwo and such Yorkshire stone slabs and other materials as may be necessary for formi the several external cornices, pediments, strings, sills, and dressings to openin, in cement, as shown on the drawings.
Brek relicving arohes that are visible are to be formed of three or four eourses red and black bricks, alternately or otherwise, as shown, or as the architect m hereafter direct.
Turn arches in cement (if wanted) for carrying entrance or other steps. Provide brickwork for stone steps. Turn vanlts of brickwork (describe thickness notl than 9 inches) over the intended cellars, according to the drawing, and propelly . all groins of intersections. The spandrels to be filled in with solid brickwork to the level of the internal crown of the vanlting, the whole grouted with liq mortar. When the centering is struck, the sofires of the raultings are to beerei and fairly cleaned off, and pointel.
Construct round the building a dry drain or area, as shown on the drawings. R r down the ground at the back thereof as the work is carricd up, and proride 81 stays of stone, slate, or iron wall-ties from the building as may be necessary maintaining such wall in its place, and as will not carry the damp to the m wall. Such dry area may probably require a drain if the soil be very wet.
Drains for draining the premises, as shown on the plans, to fall iuto a main sel (or cesspool, as the case may be). The principal drains to $b 0 \mathrm{lft} 6 \mathrm{in}$. and smaller ones 12 inch, 9 inch, 6 inch, and 4 inch diameter, as the case may requ. of glazed socketed stoneware pipes (state manufacturer), at depths as figured the drawings. Provide all necessary bends and junctions. All the pipes to jointed in cement, and tho drains to be proper'y connected with the serrer (orc

32b. Bricklayer.
pool). The outlet of the drain to have a galvanized iron flap to shut flush all round. The feet of all rain-water and waste pipes are to be brought on to the grating of a syphon trap, or to be let into it under the grating, as may be preferred. The lead soil pipes to be earried into syphon traps. The main drain is to be ventilated by a lead pipe carried up above the roof and clear of all openings and chimneys ; and at or near its connection with the sewer thould be placed an "interceptor" with a syphon trap, for the purpose of readily cleaning out the drain if it become stopped. This chamber should also be ventilated in like manner to prevent foul air ascending the drain.
When foul water cannot be carried off to a public sewer or runing stream, cesspoo's must be formed to receive it, and made water-tight, if possible, or allow absorption by the earth. They are usually 3 feet 6 inches to 5 feet clear diameter, circular on plan, steened round with hard stocks, in half a brick thick, laid dry till within 18 inches of the top, which 18 inches are to be laid in cement. It the waterclosets be far apart, each may late to be provided with a cesspool, and apart from the building. Cesspools (and also wells) are sometimes domed over in brickwork, with an eye or opening for access, a circular stons being let into the opening; or the cesspool he covored with a Yorkshire stone slab.
Wells, when above 6 feet in diameter, to be steened one brick thick; and when less than that size, in half a brick, laid flat, pared at bottom, and domed over as for cesspool.
Execute walls for carrying the columns of the portico as slown on the plan, all piers or cross walls for receiving the landings, and brick work to receive the steps. If the portico be of large size, describe discharging arches above the arehitrave in the space over intercolumniations, and from return columns to main walls. If a pediment, back up with brickwork behind the tympanum of pediment quite up to under side of raking cornice of pediment.
For fence walls, ther footings, thicknesses, heights, and lengths are to be mentioned, and of what bricks they are to be bult. If anything peculiar in their form, a drawing should be given.
Bricknogged partiiions are described as with grey stock bricks laid flat in mortar, or on edge, filled in between the timber quarters, ties, \&c.
Strong closets for plate or deeds require a description of thickness of walls and brick arch and paring, and usually 4 -inch walls brought up for holding the requisite numbe: of slate or iron shelves. A fireproof (and perhaps burglar-proof) door may be required to be named; and if the room be large, an iuner grated door may be useful. The same of wine cellars, whose bin walls and s'ate shelving must bo mentionel.
When the building is to be heated with hot air or hot water. then :-build furnace room where shown on plan, with flues as necessary ; or, build channels for hot water pipes under floors; the channels to be 2 feet high by 12 inclies wide in the clear, resting upon 3 inches of concrete and a double course of Bangor duchess slates to form channel floors; the sides to be half a brick thick in mortar.
Paving with bricks is described to be cither of stocks, paving bricks, malm paviors, or clinkers, which may be laid flat, or on edge, in sand, mortar, or cement, and either straight-coursed or lierring-bone. Javing with tiles is usually in mortar; the tilcs either $6,8,10$ or 12 inches square.
All splays, ramps, and chases to be cut where wantral ; the two former to be rubbed where necessary, and the latter to be pargetted.
lirick ouchs (one 10 fect wide and 8 feet 6 inches deep will bake twelve bushels of lrearl, and one 8 feet wide and 7 feet deep will bake eight bushels, and so in proportion) are to he constructed with Welsh lumps or firebricks for fire-place, domed orer, and hooped with iron hoops. The bricklayer is to provide the bars, plate door, bar to the archway of door, and other ironwork, and to carry up a proper flue from the fire. This is often a separate trade.
In lron oven, c ıpalite of baking two bushels of liread, to bo sot in propor brickwork.
Coppors and stewing stours to be set neatly in brickwork, the latter in ganged brickwork with tile top, and flucs carried up therofrom. Sel the kitcheu range (or kitchener) wecording to its requirements; and eet all fire-grates at back und sides well backed up with brickwork in cement, and cemented at top to prevent sout getting down behiad the gruto.
oluntns to porticues, or fronts, which are to be coated with cement must be doscribed of sich diameters as the drawings require, with entablature, \&e., ws the cise may bo, carried up in cement.
or slables, besides what may le applicalld from the furegoing directions, two airfuen are to be constructed to exch btall and loose box, 9 inclies square, and ciuried

2282c. Bricklayer.
up orer the racks within the thickness of the brickwork, communicating at the tops with the extcrnal air, and secured from the penetration of tbe rain.
Dung-pit walls, whose dimensions depend on the size of the stables.
Dust-hin, to coutain 30 feet cube, to be of half-brick walls in cement. The deal to and cover hinged with water joint hinges. and with deal slides and door in fronts be provided by the carpenter. Morrell's patent cinder-sifting ash closet is adapt for outdoor use. The "galranized iron dut-bin," which is easily emptied towns, has much supersedte the old wood or brick dust-bin, with its inconvel ences and smells. They are non-absorbent, and are made $24 \times 20 \times 37$ ins. hig at back; also $27 \times 20 \times 37$; also $30 \times 20 \times 37$ (see also $1907 d$). Dust shoots a now used in artizans' dwellings; one is so arranged as to prevent the passage foul odours into the building should the hopper be left open.
In cases of underpinning, the bricklayer is to cut all holes for the needles, and remove the old work, and to bring up the new work in cement on concr foundation; and, finally, drive in the cast iron wedges for loringing the wro a solid bearing.
Hollow walls for exposed situations. The external walls above the plinth line are to built with a hollow carity in the middle of about 3 inches, haring courses bonders or through stones not more than 1 foot apart in height, and of raric widths, but never more than 2 feet 6 incbes apart. At the level of the top of t plinth a course of thick slates, or of thin stones, is to be worked on the wal closely bedded in strong mortar under all the roids or flues thus formed, and small aperture, 9 inches by 6 inches, is to be made for the admission of air and carry off any moisture that may hare leen driven in; openings into each of the flues are also to be made between the joists of the different floors for rentilatio Other methods of building such walls are described in Chap. III. Sect. II. p $1902 c$.
Fence wall. The site to be enclosed with a 9 -inch stock brick wall in mort ... feet high, with brick footings 6 inches high, with two $2 \frac{1}{2}$-inch set-offs on ei sidc of the wall, laid on concrete 9 inches thick and 2 feet 6 inches wide, bottom being. .. feet below the finished surface of the ground. The top of wall to hare a brick on edge course set in cement (or other coping, to be specifie
Provide (according to the extent of the job) a certain number of rods of brickwo at a price per rod to be named, for such extras as may be ordered in writing the architect; if the whole or any part thereof should not be wanted, a deduct to be made on settling the accounts.
To build all the walls level, except otherwise directed; to be answer:1ble for damage that may occur to the wurk, by settlements or otherwise, during the t of building, and to rebuild or make good the same as the architect shall dire and, further, to perform all such jobbing work as shall be neressary for complet finishing the building. To provide good sound and safficient scaffolding, whid to remain for, and to be altered for, the mason, carpenter, and other artificers 1 may have occasion to use the same. A specimen brick of every descript splayed, moulded, for facing, \&c., to be submitted to the a chitect for his appr before the commencement of tbe work.

SLATER.

2283. To cover the roofs with the best strong Westmoreland, best Bangor, Tarist or other slate and size to be named, cach securely fixed with two best strong col nails. To be properly bonded, especially at the eaves and heading courses, slates cut to keep the bond unifurm; the bands and diapers to be formed of ' narvon or Westmoreland green, or other coloured slates; or courses to be lain slates cut to a cotched pattern. No slates to be laid lengthwise. A little latit may be allowed as to the exact size of the slate to be used. By specifying si other than Countesses and Duchesses, there would frequently be less deliy and expense in covering.
If ronfs are covered with tiles, either pan or plain, the description for the for will be either laid dry, or bedded in lime or hair, or pointed outside or inside on both sides; or if glazed pantiling, to be so deseribed, laid to a 10 -inch gaug stout fir laths, with hip, ridge, and valley tiles, filleting, cutting to splays, b filling, painted T naik, hip hooks, \&c. Plain tiling is described to be of ε sound tiles, laid to a close gauge on heart of oak double laths, combined ornamental tiles, to form patterns, as shown; every tile to be pegged with a E English-oak peg, and laid in mortar to a 3 -inch lap. Tbe hip and ridge tiles 1 set in cement, with T nails dipped in molted hot pitch, in all the joints. Str similarly pitched, wrougbt iron hip hooks. Filletings of cement, with strorg

33a. Slatefe.
iron nails for forming a key driven into the walls or other brickwork at intervals close enough to secure the same. Cover tho ridyes with socketed roll Staffordshire ridge tiles set in cement; the tiles to be grooved for cresting (if any). Cover the hips with proper lapping hip tiles or rolled hip tiles. Provide ornamental tile cresting (if any), and fix same on ridges where showu on elevations.
Fillets (other than lead flashing) against the brickwork, where requisite, of gauged stuff or cement, formed on nails driven at intervals to form a hold. Fillets of brick or stone may be built up with the wall, level or raking; and if they should be preferred, they must be described in the brieklayer's or mason's works.
If the slating be required to be rendered air-tight, it must be described to be pointed on the inside with lime and hair mortar; but this pointing, from the expansion and contraction arising from heat and cold, may soon fall out. The slater to be answerable for twelve months for his work.
All the slating is to be rendered up perfect on completing the building, and all jobbing wark to be performed that may become necessary as the work is carried on.
Provide slates to form damp-proof course in walls; and for the bottoms of hot water pipe cliannels (if any).
Slate slabs are now much used for sinks, cisterns, steps, skirtings, sills, covering to bay windows, mouldiugs, doorsteps, linings, chimney-pieces, trusses, lavatories, nosing to steps, \&e.; they must be described.

Mason.

2284. The stone to be used in a huilding generally depends of course on the place where it is to be built, unless, without regard to expense, the employer determines ou the use of any particular sort. Chap. II. Section IJ. furnishes the meaus of describing the best of its sort. In London, Portland stone is most used. Granite or wther hard stone is used where great strains and pressures occur, or where use and wear, and the action of the weather, indicate its employment.
Haring described the sort of stone selected to be of the best quality, free from all vents, shakes, \&c., the next direction is, that it shall be throughout laid in the direction of its natural bed in the quarry; and if the whole building is of stone, many of the following particulars will be unnecessary. Where tho building is only faced with stone, then the. . fronts (describing them) are to be faced with Portland (or other) stone, ashlaring in courses to fill in with the courses of brickwurk; the strctchers of such ashlaring being $4 \frac{1}{2}$ inches deep and the headers 0 inches, with bond stones running through the whole thickness of the wall in the proportion of $\frac{1}{16}$ of the face, to be introduced where the piers allow. No quoins tu show a thickness of less than 12 inches. The whole to be cramped with gunmetal cramps, the mason finding the same and properly running them with lead.
Where the building is of brick with stome dressings, then-To provide and set a Portland stone (or other stone or granite) plinth all round (ir part, as the case mny be) the building, . . . feet . . .inches high and $8 \frac{1}{2}$ thick, in stones not less than 3 feet in length, the vertical joints to bo cramped with 'I' crantps not less than 12 inches long. Describe whether joints are to be close or channelled, and whether ashlar is to be rusticked (rockworked). To provide and tix at the angles of the building, as shown upon the drawings, solid quoins of Port'and (or other') stonn [rescribo whether close, chamfcred, or chaunelled joints, and whether rustick [d] of the length and lieight shown.
Kentish liag. The Kentish rag to be of the best quality, from the quarries at Broughton, sound and free from hassock, laid in random conrses, gallcted and pointerl with dark mortar. A sufficient number of bond stones to be built in, one through alone (at least) to each yard superficial.
Buth Stone. To be tho best Bath stone from Sumsion's, Pictor's, or Randall aul Saundors's Cembe In, wh quarries (no l'arleigh Down stone to be used), to be latil on its natural bed in all eases, and cleaned off when sot. All plinths, lases, aml other work for a height of feet above the ground level to be of lox Ground atsto.
Randon walling of lucal stome. The stono fur the walls generally is to be broneht from. . . (state the quarry). that for the foundations (muldey brickwork is used fur theme) to be of largo size; all those in the visible suriace of tho walle are in be carefully hammerel, seablibed, or sawn (as the quality of the stone and nature of the work may reqnire). All stone nsed in the main walls of the buikling to be of gowe seanting, and no fery thin stone will he alluwed in any part.
 wableal, or suwn stone. I'lo internal fuco to bo limltup in sawn (or othor) ashlare, or in rough brickwork, in linglish bond, or rubble if it is to bo plastered. Tho

2284 a. Mason.
body of the walls to be filled in with strong concrete, composed of 1 part ground stone lime and ò parts of clean sharp gravel, filling in interstices. A every 2 feet 6 inches in height a double eourse of bricks is to be set in morta and at every 8 feet 6 inches in height a bonding through stone, from 10 inches t 1 foot 3 inches decp, is to be fixed. Small stone chippings may be mixed with ti gravel forming the concrete.
Regularity in the quoin stones is not desired, but they may be worked and set in an reasonablo scantling so as best to bond in, and larmonise with, the intermediat rubble. The upper beds of the stones to be laid with a slight inclination outwards and as elose as their nature will allow. Every precaution is to be taken to avoi risk of the settling of the work from impcrfect beds and open joints. The wor is to be carried up regularly all round the building. In the case of a church wit a tower, the walls of the latter are to be specified to be built up rery slowly an without b-ing bonded into those of the ehurch, but are to have slip joints or chase worked in them for forming the eonnection; this is in all cases to be so free as i allow for the settlement of the masonry without injury to the work in the churc walls; with this exception, no part of any wall is at any time to be raised mor than three feet higher than another, during the progress of the works.
The walls of the tower of a church are to built quite solid, and inve ted arches ar to be turned under all the large apertures therein. All flat headed apertures ar to be covered with York (or other) lintels, of thickness proportionate to the widt of the opening.
A cornice and blocking course, scantling . . . by , . , moulded, to be provide according to the drawings, the bed to be such that the weight of each block c stone in the projecting part shail not bo equal to that on the bed by one-fourth c its cubic contents. The same to be exccuted according to the drawings; to har proper sunk water joints, and to be channelled and plugged with lead at all ihe joint
String-courses to be . . . inches by . . . inches, throated and berelled on the uppe face, and tho joints plugged with lead.
Blocking course, as shown on the drawings, . . . inches high, . . . thirk on the be and . . . on the top, plugged with lead at all the joints, with solid block at th: quoins, returned at least 24 inches.
The quoins, jambs, string-courses, hoodmoulds, buttress weatherings, copings, al dressings generally, to be strictly worked according to detail drauings, and to i dragged, chopped, tooled, or rubled (according to the quality of the stone) so a to be truly worked in every particular.
All the tracery and monldings to be set out full size, and cut and set to the rigl jointing, as approved by the architect or the clerk of the works.
Face the walls of with Minton's glazed (or other) tiles, value . . . per yar superfieial, to be secured with cramps of stont copper wire inserter in holes i edges of the tiles.
All the paving tilcs to be of the best quality, free from blemishes; to be set i. Roman eement, and to have all cement removed from their face after the work finished ; the edges of the tiles to be rubbed, where necessary, to ensure neatnes and care is to be taken that the tilcs are not injured by the workmen aftor the are laid.
The base mouldings of the tower, jambs, and arches of the windows and doon throughout the bnilding, and whatsoever parts are tinted . . . upon the eleration: are to be of tooled or dragged masonry.
The plinths, eaves, string courses, and the labels over the windows and doors, are ! be of Ketton (or other suitable) stonc, finished with a dragged or tooled face.
The coping of the gables to be of Bramley Fall (or other stone that is not pornus worked as shown, and the apices of the (here enumerate which) gables to surmounted by crosses worked in Ketton or other stone, according to drawing, se with copper dowels.
Balustrades to be provided of the heights and sizes shown on the drawings. Th balusters to be wrought out of one stone, allowing at least one inch of joggle at thei ends into the plinth and impost. All the vertical joints to be well plugged wit lead; the imposts to be cramped with cast iron (or bell metal), and the whole t be securcly fixed. The half balusters to le worked out of the same block stone as their adjoining pedestal.
Columns and pilasters, with their pedestals, capitals, bases, plinths, \&e., and er tablature, to be fixed as shown on the drawings. The columes and pilaters to 1 monoliths, or not to be in courses of more than . . . Hocks of stone. The architrare to be joggled from those restivg on the columns or pilasters themselves, and thes as well as the fricze and cornice to break joint orer the architrare. The arch traves, if bloeks of stone can be supplied large enourh, to be in one block fron

284b. Mason.

centre to centre of column, with relurn architrares in like manner. The whole of the entablature (as well as the pediment, if any) to be executed with all requisite joggles and cramps (and if a pediment, the apex to be in one stone). The pilasters (if any) to be bonded not less than . . . inches into the wall, against which thry are placed in every ofther course. The sofites of the pertico to be, as shown on the plan and sections, formed into panels and ornamented. Provide and let into the top of the architrare good and sufficient chain bars, with stubs on the other side for letting into every stone composing the architrave.
The caps and brses to piers to be in large stones. The caps and bases to dwarf shafts (if any), and the corbels under wall pieces or other roof timbers, to be well pinned into walls, and sunk and dowelled to receive shafts or timbers.
If a portico is shown, to proride and fix of solid ... stone . . . steps round the portico, seantling . . . by . . ., properly back-jointed and worked all over; and within the portico to proside and fix a complete landing of stone, at least 4 inches thick (or less, if a small portico), in slabs, as shown. The joints of the steps and lindings aro to le joggled and run with lead. If the portico be very large, it is not necessary to make the frieze solid, but concealerl arches should be turned in the space from column to column to support the superincumbent weight of the cornice and pediment. If the columus are finted, it must be mentioned. When a pediment, the tympanum may be described to be faced with a:hlaring.
To construct and fix dressings and sills to the external windows and doors, as shown on the drawings, with all such throated, sunk, moulded, carved, rebated, and other work as may be necessary.
To describe sills generally :-
Sills to . . . windows of . . . stone, $9 \frac{1}{2}$ by 6 inches. To . . . windows monlded and of . . . stone, it by 8 inches. To ... windows of Aberdeen granite, finely tooled, $1+$ by 9 inches. To . . . windows of . . . stone, 9 by 5 inches. All sills are to Le properly sunk, weathered, and throated, and at each end to be 4 ineles longer than the opening.
The tower and spire to be carefully carried out in accordance with detailed drawings. The spie to spring from squinch arches or from the solid broaches (or as the caso may be), and gradually reduced towards the top, each stone to be wrought and cut to its through bed and incliuation of its plann, the parts (as shown) to be in solid ashlar and carefully tai.ed and booded. The bands, mouldings, cornices, strings, \&e., to be worked as shown, and continued round ; the storm lights to be formed with solid sills, heads, \&e.; the vane to drop throngh the finial and to be steurcly fixed. The windows of the tower and the storm lights of the spire to be grooved for lousres of wood or slates (or to be filled in with thin slabs of stone with ornamental piercings).
Turn relicving arches over all arches of nave, ehancel, \&c., forme 1 of different coloured stones, arranged as direrted, and form bands, diapers, crosses, \&c., of same where shown. The stones for parti-coloured work to be Pennant, Caen, Temple Quiting, Red Forest of Dean, Silrer Grey Forest of Dean, Red Mansfield, Whinstone, or Bhte Warwickshire stone (or local stone, if of snititle colour).
I'rovide shafts where shown of Derbyshire, Devonshire, Purbeck, or other marlde, or of alabaster, serpentine, Aberdern or Peterhoad granito (or other material as may be selected), to be well polishecl, and to be sunk, dowelle.l, and secured into caps and lases. Shafts in angles of doorways (if ally) to le of any suitable dark stone (if necessary) to eontrast with the jainl.
All ornamonts, carring, enrichment of capitals, of columins and pilasters, and of such as may be shown in the cntablature, is to be executed in an artlst-like good st yle; Models from the working drawings are to be made at the contractor's expense. and the whole to be exrented to the satisfaction of the architect. The Orlep may, howerer, bedescribed if the working drawings are not sufficiently made ont.
Plinths amd. hase monldings to the portico, as slown on the drawiugs, to lo worked out of (describe stonc) . . . stone of . . . by . . . seantling.
Finish the chimency shafis, with monldings ats slum in the drawngs, our with sunk moulded and throated copings, . . . inches wide and . . . inches iluek.
Domp courge. All the walls to hare lorkstrive stone 3 inches think and 4 inches on each side wider than the serveral lowest frotinge, in shabs of ome length acress the width of the footing. 'This wam an old emstom.
Ria'conirs in a housn:-A lalcony lauding of fortland stone, . . . inches thick, monlded on the edgen and the picres carotully joggled together, and rum with lead, in lee provided with holes cut therein for the iron railing. The said balcony is to be tailed into the will, and securdy piuned ap.
Steps to the donrwayn munt be descriled us to scantlinge. All external steps s? mild to mesthared.

22stc. Mason.
For a buck staircase, cary up and construct a stairease from the basement to the principal floor, with solid Yorkshire quarry steps 13 incles wide and $6 \frac{1}{2}$ inches ligh, properly back-jointed and pinned into the brickwork; cut holes for the irun bainstrades. N.B. This sort of staircase of Portlaud will serve also for back stairs of upper flights. That from the basement may also be made of granite street curb, 12 by 7 or 8 inches. A staircase may, for cheapncss, be made of Yorkshire stone paring 3 inches thick, wrought with fair tooled edges, and securely pinned into the brickwork.
Principal stairs to be of Portland stone (as may be), to exten 1 from principal to . . floor, with steps and square (or semicircular, as may be) landings, entirely of solid stone, tailed! 9 inches into the brickwork, with moulded nosings and returned nosings, and also at the back. The sofites to be moulded to the shapes of the ends of the steps. The landings to be 6 inches thick, with moulded nosings and joggled joints, run with lead, to be inserted at least 4 inehes in the walls, but such as tail into the walls, as steps, must go at least 9 inches into the walls. When the under sides of the steps of the geometrical staircase are not moulded, the nosings are returned so as to fall beyond the upright line of the succeeding tread; in this case the sofite or string is plain wrought.
The steps to the sanctuary and chancel of a chureh to be of rubbed Portland, Red Mansfield, Robin Hood, Craigleith, or other hard stone, or of marble, in lengths of not less than 10 feet, very carefully set and bedded, pinned, joggle jointed, and rin and plugged witl lead, and back-jointed to receive tile paving.
Pave the entrance hall and principal staircase, together with (any passage, \&ce), with the best . . . marble, and border according to the pattern drawn. The back staircase (and such other parts as require it) to be paved witli Portland stone 2 inches thick, laid in squares, and with a border 8 inches square.
Where story posts are used in a front, it is well to place along the front two pieces of parallel square Aberdeen or other good granite curb, 12 inches by 9 inches, cut out to receive the bases of the eolumns and story posts.
Pave the scullery, larder, pantry, passages, lobbies (and other such places as may require mention), with rubbed Yorkshire stone $2 \frac{1}{2}$ inches thick, laid in regular courses with close rubbed joints
Pave the bottom of the air drain with Yorkshire paring.
Yards may be paved with $2 \frac{1}{2}$-inch Yorkshire paring, or such other as the place affords, as in common use. The same to basement stories.
Pave (if a church) the entrance passage, porches, \&c., where coloured on plan, with Minton's (or other) encaustic tiles, one third (or more or less) being figured, combined with chocolate and black tiles, value . . . per yard superficial, mantufacturers' prices. Pave the chancel (usually with richer tiles) with tiles value . per yard superficial.
The tiled floor (when laid on joists): Spike fillets to joists at 3 inches below their upper surfaces; fill in betwcen the same with inch rough boarding. The vacuity to be filled up with pugging of concrete flush with the upper surface, finished with a layer inch thick of Roman cement smoothly floated to receive the tiles.
Dairy to be paved with . . . stone (or marble) in regular courses, . . . incbes thick. Provide a shelf or dresser round the said dairy of veined marlle (or slate) 1 inch thick, and a skirting round it 6 inches high. The dresser to go into the wall 1 inch, and to be supported on reined marble piers 4 inches square.
To fit up the winc cellar with bins, as per drawing, with 2 -inch Yorkshire stone she'ves (some prefer siate), fairly tooled, supported on half-brick uprights, all set in cement. A cellular hexagonal brick has been patented by King and Smiti, of Weedon, to be used to form the wall of a vault; each is hollow and open at the inner extremity, so that each brick becomes the receptacle for a bottle. They are made of three different sizes.
To provide and fix a warm bath of veinod marble; rendered waterproof by being praperly set in Dutch tarras, and plugged and cramped with copper at the joints, with all requisite finishing. A marble step round two sides of the bath. Cut all boles necessary for laying on the water. A bath, if a fixture, inay be similarly made of slate, which is of course much cheaper.
Where iron girders are used, describe picces of granite street curb, or 3-in. Yorkshire stone, as corbels or plates, each long and wide, to receive the ends of the iron girders.
Where chimneys project without support from bclow, corbels must be described proportioned to the weight they have to carry. The best corbel, however, is the gradual projection of the work by inverted steps, which, if there be height to bide them, should always be the mode of exceution.

Cellar doorways should have in each of them three pieces of Portland or other such stone 18 in . wide, 18 in . long, and 9 in . high, cut out to receive the hinges and also the rim of the lock.
The commonest chimney-pieces that cau be described are of $1 \frac{1}{4}$-inch Bath stone, jambs, mantels, and shelres, 6 inches wide; with slabs of 2 -inch Portland stone, 20 inches wide, and 6 inches or a foot wider on each side than the width of the opening. Those of butler's and housekeeper's rooms would be of a better quality.
A hitchen chimney is described as jambs and nantel (in one piece) of 2 -inch Po:tland stone 10 (or 12) inches wide, with a slab of $2 \frac{1}{2}$-inch rubbed Yorkshire stono, if used with a wood floor; but sometimes the whoie width of that side of the kitchen is pared.
Where marble chimney-pieces are to be placed, they are descrited to be provided of a given value of such marble as may be determined, or working drawings and workmanship may be referred to. It must always be provided in the specification that the slabs are included, and that the price is, or is not. to include the carriage and fixing. Marble, wood, and iron chimney-pieces, with grates; fenders, tile borders and hearths, \&e. cn suite.
All fire-places should hare back hearths of $2 \frac{1}{2}$-inch rubbed Yorkshire stone. Front hearths of stone, or of Portland cement, or of marble.
Sinks of rubbed Portland or other stone, 7 inches thirk (describing the size required), sunk $3 \frac{1}{2}$ ins. deep, with holes cut for the grating and socket-pipe, and fixed with all requisite brick or stone bearers or supports, complete. A sink of earthenware is now to be obtained. An improved patent combined sink and wash-up tub is specially adapted for kitchens, sculleries, cottages, artizans' dwellings, \&c. It is made of galvanized or enamelled iron. Housemaids' slop sinks in earthenware or in plain or enamelled slate are made, to suit any position.
Sink stones to drains to be prorided where shown on the plan.
Flint work. Flint walling is of the following descriptions:--Rough, or as the flints are dug ; random, or broken without any regard to regularity; split, so that they are true on the face and oval in form; or, split and squared, by which neat and square work is produced. The walling is to be built in the soundest manner with . . . flints (state which of the four descriptions is to te used). laid in mortar compounded of quick-setting stone lime and coarse sharp sand, free from loam; bricks, tiles, pebbles, \&c., may be bedded in the centre or core of the wall. The long fints to be selected and laid as through stones, and the string-courses, \&c., to Le laid entirely through the thickness of the wall, so as to give additional bond. The work to be kept as dry as possible during the construction, to be protected ly boards in wet weather, and to le covered in as soon as possible after completion. No, grouting to be used. If the walling is faced with half-fints, care is to be taken in laying them to keep their upper surfaces as level as possible, to prevent rain driving into the centre of the wall; firmly pin up the lower bed with fragments.
The joints of the masonry generally are to be where exhibited on the drawings, and the work is to be left perfectly cleaned off, all necessary joggles, joints, rebates, moulded, sunk, weatherd and throated works, groores, eliases, holes, back joints, and fair edges, that may be necessary in any part of the work, and all jobthing, though not particularly mentioned under the several heads, is to be prrformed that may be requisite for the execution of the lailding, and all the work is to be well cleaned off before delivering it up. The whole of the work is to be warranted perfect, and any damago that may oceur to it by reason of frost or settlement within two Jears after the completion of the building is to be repaired, under tho architect's direction, at the sole expense of the comractor.
All mortar is to be of the same quality as that described in the hricklayer's work.
All cramps to le of copper; iron cramps not to be allowed (see par. 2286). Lead joggles, and slab slate dowels set in cement, to be inserted in tho joints where directerd. Ther contractor is to poride lead to run tho cramps and joints.
In Aluble, granite should be provided to receive the hecl-posts if cast iron be not em1 loyed, and at the piers of gates, hinge and spur stonew, the lattor, of granite, if to be harl, should be described. The eaps and bases of the last can he noted only with reference to the drawings of them. The paving of stah'es and their comets is Ifecriberl thas: Prepare the gromul for paving (stating where) with goorl and sufficient hard materials, and pare it with Alerdeen granite faving, properly dresurel and sorted, 8 inches deep and 5 ineles wide at the top and buttom thercot. The wholo to le laid with good currents upon a layer 4 inches at least. in thickness of gron! rough grawe, the joints of the surface to he rin with stone limo and river maded grouting. It in to be well ramined, and the contractor is 10 relay, at his ewn

2284e. Mason.
expense, all such parts as may sink within eighteen months of the work being completed.
To provide and fix under the contract cubic feet of . . . stone, including plain work and sttting thereto, also superficial feet of $2 \frac{1}{2}$ inch Yorkshire paring, laid in regular courses; and in case the whole or any part of either or both should not be wanted, the quantity not used or directed shall be deducted frotn the amount of the consideration of the contract after the rate of . : . per foot of cubic stone and per foot superficial for the Yorkshire paring, insluding the workmanship and fixing thereof.
Where the work is within the metropolitan district, or within a town, a sufficient hoarding must be erected for enclosing the premises during the execution of the works, which is to be removed and carried away when they are complete. So, also, all shoring is to be provided, if the works be alterations, or the adjoining buildings may be injured by carrying them into effect. The shoring is to be performed in a sufe, scientific, and workmanlike manner, of the several fronts, floors, or otherwise, as the case may be.
l'ol' a stone building:-To proride, fix, maintain. alter as occasion may require, and finally remove, the ncetssary double square fir framed scaffolding, travelling cranes and other implements, and utensi's and plant necessary for the performance of the wkole of the works; and perform all the requisite sawing, lifting, lointing, setting, and other labour that may be necessary for the carrying out of the whole of the works.

Carpenter and Jolner.

2285. To provide all materials requisite for completion of the buildings. The oak is to be of English growth and perfectly sound; the timber is to be of the best Dantzic, Riga, or Memel yellow fir. No American, Swedis!, or Scotch fir to be used in any part of the building. All the floors and joiner's work are, excopt where otherwise directed, to be of the best yellow Christiana deals. The timb rs and deals are to be cut square, entirely free from sapwood, shakes, large knots, black outsides, and all other defects. If any part or parts of the joiner's work shonld shrink or fly within months from the finishing and fixing the same, the contractor is to take down, make g. od, and refix the same, together with all works that may be affected thereby, at his own expense.
Proride and fix . . . cubic feet of Baltic yellow fir timber, with all labour thereto, beyond the quantity necessary for the work herein described, to be used in such additional works as may be directed by the architect ; and if the whole or any part thereof should not be ordcred, the same shall be deducted from the amomat of the consideration of the contract, after the rate of per foot cube. All additional fir, if any should be ordered, is to be taken at the like price of per foot cube.
No joists, rafters, or quarters are in any case, unless particularly so directed, to be more than 12 inches clear distance from one another.
Provide and fix, ease, and strike all centering and turning pieces for the vaults, arches, trimmers, and ol her works. Provide all temporary shores that may he necessary. Provide and fix all necessary templets, linings, blocks, stops, casings, beads, springing fillets, angle stafis, grounds, linings, backings, furrings, cappings, and other finishings incident to carpenter's and joiner's works, together with all necessary grooving, rebating, framing, tonguing, housing, beading, mitring, framing, and other workmanship necessary for completing the works.
Provide casing for all tho stone dressings, to secure and protect the same from injury during the execution of the works; any accident arising from neglect in this respent is to be made good at the expense of the carpenter.
Bond timber, 4 inches by $2 \frac{1}{2}$ inches all around the walls, except where intercepted by the chimneys, to be lapped together, where joints occur, at least 6 inches, and to be properly spiked together. One tier is generally enough for basement story. Two tiers in the other floors, unless very lofty. One tier in the upper story. These are now dispensfd with, hoop iron bond being used, and party walls may be so bonded, if thonght proper, for a greater security against fire.
All wood, or patent, bricks to which the finishings are to be fixed.
All lintels, and filling in lintels necessary to the several openings ; each to lee 4 inches ligh, of the width of tho brickwork, and 16 inches longer than the opening. Two small lintels will do if the width of the sofite be considerable, and arches, as directed in the bricklayers work be turned.
For ground or, rather, hasement floors, walls are brought up for receiving oak sleepers 5 by 3 inches, on which fiv joists $4 \frac{1}{2}$ by $2 \frac{1}{2}$ are generally the scantlings employed

285́q. Carpenter and Joiner.
For other floors. - Wall plates, 6 inches by 4 inches; girders; joists according to the kind of floor; trimmers and trimming joists; all which, with their requisite seantlings, will be found in Practical Carpentry. (2013 ct sec.)
Cradling to the girders and such piris as my be necessary to form panels and coffers on the under side for the ceiling, if such be practised. State if the girders are to be trussed. Cock down all girders on the wall plates. Pin bridging joists to binders with $\frac{3}{4}$-inch eak pins.
Wall plates to roofs should be at least 6 inches by 6 inches. The different timbers of the several sorts of roofs are described in l'ractical Carpentry, and seantlings given. (2027, et scq.) Ceiling joists to be described. Hips and ridges rounded for lead ought to be 10 inches by 2 inches.
The trusses of ronfs are to be framed as shown, and of timbers of the scantlings respectively figured (or as here specified). They are to be mortised, tenoned, arched, notched, moulded, chamfered, and siopped, as shown on the detail drawings; and to be bolted and strapped witl wrought iron straps, forged with ornamental ends; all bolts to have washers and nits, notched as shown.
The curved ribs (if any) to be put together in (thrte) thickncsses, so as to break joint, to be wrought all over, and the joints to be tongued. These (three) thicknesses are to be screwed close together with long screws, and bolted with $\frac{1}{2}$-inch bolts between each joint. The centre thickness to be tenoned into the timbers on which it abuts. Tongue a bold 3 -inch bead to underside of same.
The hammer-beams (if any) are to be engged down upon the wall plates, and framed to the ribs, and bolted, as shown. The principals are t.o be notched and tenoned to the hammer-beams, and well spiked to ribs, and tenoned together and pinned at top. The collars (if any) are to be firmly tenoned into and spiked to principals. The purlins are to be notched down and housed into the principals on each side, and spiked. The king-post, or queen-posts, are to be framed in the usual manner.
All the timbers of the roofs exposed to view are to be wrought, and the angles moulded, or chamfered, or stop chamfered.
All roofs (if exposed to view) to be boarded above the rafters with $\frac{7}{8}$.inch wrought matched V jointed boarding, laid diagonally, and securcly nailed to rafters and corered with (asphalted) felt (or specify, to lath on the top of rafters and plastor letween the same). Lay battens 3 inches by 1 inch orer the boarding or laths, on the back of every rafter, and on the battens lay 3 incl by linch slating battens (or double oak tiling laths if the roof be tiled), fixed to a proper gauge for the sized slates required.
Where close boarding is used, it should not be less than $\frac{3}{4}$ to an inch thick. If battens for slating, they should be $2 \frac{1}{2}$ inches wide; the first should be nailed with eightpenny nails. Provide lear boards. On many accounts the Italian method of laying the rafters horizontally as so many purlins is to be preferred. For the boarding not lying lengthwise towards the gable, any wet that may find its way on to it from defective slates or lead, is not apt to ledge against and rot the edges.
Flats.-Wall plates usually 6 by 6 . Trimmers and trimming joists against chimneys, and where skylights occur. $1 \frac{1}{2}$-inch yellow deal boarding, listed, free from sapwood, laid with a current of $1 \frac{1}{2}$ inch to 10 fect lineal, with $2 \frac{1}{2}$ drips to heading joints, of lead rolls to longitudinal joints, and inch yellow deal riscrs not less than 4 inches wide next the gutter.
Giutters to the roof, or roofs, are to be as shown on the plan, with incb ycllow deal bottoms on strong fir bearers, and laid with a current of $1 \frac{1}{2}$ inches to every 10 feet; $2 \frac{1}{2}$ rebated drips, and at the sides to lave $\frac{3}{4}$-inch deal lear boards, 9 inches wide. Gutter boards are rarely more than $1 \frac{1}{4}$ inches thick. Gutter plates, if any, to be describod, but they should never bo used without support from below.
Trim for trap doors, size as shown, if any, leading to the inside of tho roof Dormers thercto on to roof, with all necessary framing.
Cheeks, doors, beaded stops and linings, and ironmongery. Boarding for slating or lead to top and chefks, as the caso may be.
Dormers may bo similarly described for windows in the roof.
Quartered partitions, whero shown on the plan, with heads and sills 4 inches by 4 inches. Ties alove the doors 4 inches by 5 inches. Posts 4 inches by $3 \frac{1}{2}$ inehes. Braces or struts 3 inches squarc. Quarters 4 inches by 2 inches, and thre tiers of intertics, 1 inch by $2 \frac{1}{2}$ inches. In cases where partitions are to be trussed for carrying either their own or somo additional weight, reference must be mado to drawings.
Battening to external walls, usually from $\frac{8}{4}$ inch to $1 \frac{1}{4}$ inch thick; theil widths 24 inchre fixed from 7 to 12 inches apart. If boud timber is not used to mail them to, plings, or fixings, to bre let into the wall.

298.5. Carpenter and Jonner.

Lrackting and cradling is usually, for cornices, coves, \&e., $1 \frac{1}{4}$ inch thick; for eutablatures, circular sotites, and waggon-headed ceilings, $1 \frac{1}{2}$ to 2 inches thick.
All brarers to be fixed and provided as shall be necessaty.
Heather boarding, $\frac{3}{4}$-inch or 6 boards to a 3 -inch yellow deal, wrought or wrought and beaded: or l-inch or 4 boards to a 3 -inch deal. Louvre or Luffer boarding of 1 -inch deal, wrought two sides and splayed.
Warehouse posts must be described with their relation to the weight they are to carry (see Beams and Pillars, 1635, et seq.), the caps 3 feet long, with splayed ends, so that the posts may not press into the girders; and iron dowels should pass through the girders to catch the bases of the posts in the floor above. Fir story posts are usnally about 9 inches square.
Hater trunks are made from 4 to 6 inches or more square, of $\frac{3}{4}$-inch to $1 \frac{1}{4}$-inch deal; to be pitched and fixed complete, with hopper heads and shoes, wall hooks, hold-fasts, \&c.
Park paling is of the following varieties: 4 -feet oak cleft pales, 2 arris rails and oak posts; 5 -feet oak cleft pales, \&c.; and 6 -feet oak cleft pales, 3 arris rails and oak posts. Described oak plank at the bottom, and oak capping at top, if required.
Floors.
$\frac{3}{4}$-inch white (or yellow) deal, rough, with edges shot. T These may be of lattens
${ }_{3}^{4}$-inch white (or yellow) deal, wrought, and laid folding. $\}$ for better floors,
l-inch white (or yellow) deal, rough, with edges shot. 7 Also of bat-1-inch white (or yellow) deal, wrought, and laid folding.
l-inch white deal, wrought, and laid straight joint and splayed headings. f tens.
$1 \frac{1}{4}$-inch white (or yellow) deal, rough, with edges shot.
$1 \frac{1}{4}$ inch white (or yellow) deal, wrought, and laid folding. \quad Also of battonk. $1 \frac{1}{4}$-inch white (or yellow) deal, wrought, straight joint, and splayed \int Also of battonk. 1 -inch white (or yellow) deal battens, edge nailed, and tongued headings.
$1 \frac{1}{4}$-inch yellow deal batten (or cloan batten), dowelled with oak dowels, wih mitred and glued borders.
Warehouse floors.
$1 \frac{1}{2}$-inch yollow deal, rough, edges shot. $1 \frac{1}{2}$-inch yellow deal, wrought, and laid folding. $\quad 1 \frac{1}{2}$-inch yellow deal, wrought, and straight joint and splayed headings. 2 -inch yellow deal, rough, edges shot, and 2 -inch yellow deal, wronght, and lail folding. 2-inclı yellow deal, wrought, and laid straight joint, and splayed headings
All these last may be ploughed, rebated, and fcather-tongued.
Put to floors (or to the whole, if desired) sound boarding of $\frac{3}{4}$-inch rough deal fixed upon fillets, to receive the pugging. (See 2287a.)
Floors of inlaid or parquetry work to be specially described according to drawings.
In churches, the floors under the seats are nsually of wood, and require rebated and chamfered oak margins, 6 inches by 4 inches, laid flatw'se, where they abut upon pared floors. These margins arc to be mortised or dowelled to receive bench ends, and the wood floors to be kept 3 inches above the tile floors on whice they abut. See wood b'ock floors.
Shirtings.- $\frac{1}{2}$-inch (or $\frac{3}{4}$-inch) deal square. $\frac{3}{4}$-inch (or 1 -inch) deal torus. $1-$ inch (or $1 \frac{1}{4}$-inch) deal square; or 1 -inch deal square skirting, rebated and backed plinth, with fillet nailed to floor. $1 \frac{1}{4}$-inch deal torus; or $1 \frac{1}{4}$-inch deal torus skirting, rebated and backed plinth, with fillet nalled to floor. If any of these, as to stairs, are raking, and to be scribed to steps, they mist be so described, and if ramped or scribed to moulded nosings, or circular on plan.
Dado, nailed to gronnd: $\frac{3}{4}, 1$-inch, and $1 \frac{1}{4}$-inch deal keyed. $1 \frac{1}{4}$ inch deal keyed, ploughed and tongued, or feather-tongued, if required. Mcntion if they are to bo scribed to steps, circular on plan, and wreathed, or ramped. Dadoes are now made of framed wainscot, in panels, \&c., according to drawings.
Wainscoting, with fascia and kirting.-1-inch deal, square framed; and perhaps dwarf. $1 \frac{1}{4}$-inch deal, squarc framed; and perhaps dwarf. $1 \frac{1}{1}$-inch deal, bead butt (or moulded), or bead flush. The number of panels high to le specifizd. State if any to bo made raking, or to have a leaded or moulded capping.
Partitions of deal for the division of rooms.
1 -inch deal board, and braced with $\frac{1}{2}$-inch panels.
$1 \frac{1}{4}$-inch deal, braced with $\frac{3}{4}$-inch panels.
The:e are seldom made.
$1 \frac{1}{2}$-inch deal, rough and ledged edges shot.
$1 \frac{1}{2}$-inch deal, wrought both sides, and ploughed ; or tongued and beaded.
$1 \frac{1}{4}$-inch, or $1 \frac{1}{2}$-inch, square fiamed.
I $\frac{1}{2}$-inch, bead butt, moulded and :quare; or bead flush and square or moulded both sides.

28jc. Carpenter and Joiner.

2-inch, square framed; or bead butt or moulded and square; or bead flush and square ; or moulded both sides; or moulded and bead flush ; or bead flush and bead butt; or bead flush on both sides.
Grounds.-Those of $\frac{3}{4}$-inch deal, of 1 -inch deal, of $1 \frac{1}{4}$-inch deal, of $1 \frac{1}{2}$-inch deal, and whether circular ; also 1 -inch, $1 \frac{1}{4}$-inch, and $1 \frac{1}{2}$-ineh skeleton grounds (par. 2166).
Door cases are usually about 5 by 5 inches for basements; should be of oak in preference to fir. They fit, or are fixet, into the brickwork, and should be tenoned (the tenon being pitched or set in white lead) into a stone step or threshold; any Food sill soon rots.
Door linings.-These are either plain, the commoner sort ; or framed, for better work.
l-inch deal, single rebated; or double rebated (that is, so that the door may hang on either side)
$1 \frac{1}{4}$-inch deal, single rebated; or donble rebated.
$1 \frac{1}{2}$-inch deal, single rebated; or double rebated.
Either of the foregoing may be beaded on the edge.
Framed door linings and sofites for doors are-
I $\frac{1}{4}$ inch, square framed in one panel and double rebated: and bend butt or moulded: and bead flush.
$1 \frac{1}{2}$-inch, square framed in one panel and double rebated: and bead butt or moulded: and bead flush. If the panels in the linings are te be raised, to correspond with panels of doors, they must be so described.
Framed back linings are-1-inch deal, two panel square; and bead butt. 1-inch deal, three panel square; and bead butt. 1-inch deal, fur panel square; and bead butt. If there be more panels, or they are splayed on the plan. or if bead fiush, or of a greater thiekness, they must be so specified.
Window backs, elbows, and sofites.-l-inch deal, keyed; or framed square.
$1 \frac{1}{4}$-inch deal, framed square ; or monlded or head butt ; or bead flush.
$1 \frac{1}{4}$ inch deal, square framed sofite, with one elge circular. $\}$ Applicable to bay win] $\frac{1}{4}$-inch deal, square framed sofite, with two edges circular. $\}$ dows.
$1 \frac{1}{4}$-inch cleal, square framed sofite, mrulded, or bead butt.
$1 \frac{1}{2}$-inch deal, framed square; or moulded; or tead butt: or bead flusin. If any of these are splayed, fancy moulded, and with cappings. or are cireular on the plan, they must be so specified.
Shutter boxings. - 1 -inch deal, splayed boxings; 1-inch deal, proper boxings; $1 \frac{1}{4}$-inel deal, splayed boxings; $1 \frac{1}{4}$-inch deal, proper boxings; $1 \frac{1}{4}$-inch deal, buxings with circular head; 1-inch (or $1 \frac{1}{4}$-inch) deal, boxings for sliding shutters, with pulley pieces, beads, fillets, and grooves, complete. These, if to be doukle hung, must be so dascribed.
Shutters to windows. $-\frac{3}{4}$-inch deal, ledged or clamped; and may be in two heights. l-inch deal, clamped; and in two heights; or clamped in two heights, one panel, bead butt, and square; or one panel, bead flush, and square; or bead butt. These may be described of $1 \frac{1}{4}$-inch deal and of $1 \frac{1}{2}$-inch deal, but the baek flaps need not be more than one inch. The additional panels in height. projecting mouldings (if any), and any other variations, must he mentioned.
Shutiers, sliding, hung with lines and weights.-1-inch (or $1 \frac{1}{4}$-iuch) dcal, two panels square ; $1_{4}^{\frac{1}{4}}$-inch deal, bead butt and square (or bead flush and square) ; $1 \frac{1}{4}$-inch deal, head butt and moulded (or beal flush and bead butt). If of $1 \frac{1}{2}$-inch deal, if more panels in loeight, if circular on the plan, and if patent or other lines are to Le used for the hanging, they must be mentioned.
Outside shutters.- 11 -inch deal, three panels, bead butt and square; or boad flush and square. I 1 -inch deal, three panels, head flush and bead butt ; or bead flush on both sides. $1 \frac{1}{2}$-inel deal, three panels, bead butt and square; or bead flush and square; or luad flush and bead butt. These may be circular on plan, or contain more than three panels in height.
Slaircases. - 1 -inch yellow deal, steps, risers, and carriages. $1 \frac{1}{4}$-inch deal, steps, inch risers, and carriages. 1 -inch deal, steps and risers glued up and blorked to close string moulded nosings, and two fir carriages. $1{ }_{1}^{1}$-inch doal, stops and risery mitred to eut string, and dovetailed to latusters. $1 \frac{1}{4}$.jnch deal, steps to winders, mitred to cut string, and dovetailed to balusters, one end cirenlar; or both ends circular. The risers may be tongued to the steps; or feather jointed; or of clean dral. $1 \frac{1}{2}$-inch deal, wrought steps, risers, and strong carriages. 2-inch deal, wronglit, steps, risers, and strong carriages, 1_{1}^{3}-inch Oak. treads and risers mitred to atring and dovetailed with fir carriage (with solid quarter ends to steps if required), alan eurtailed step and riser (2187, et seq.), returued monlded and nutred nosings, circular (if necessary), with cut plain (and circular) brackots.
Sfounings to rads of steps and winderw, and the same to monlsled nowings amd circulat ende, wre (0) be upecifind.

2250d. Carpenter and Joiner.
String boards to staircases to receive the ceilings of stairs (calls d strings). -1 -inch deal, framed; or framed, rebated, and bcaded. $1 \frac{1}{4}$-inch deal, framed string board; or sunk and beaded. $1 \frac{1}{4}$-inch deal, framed string board, sunk, beaded, and moulded; and mitred to risers. $1 \frac{1}{2}$-inch deal, wreathed outside, string glued upright, rebated, and beaded; and sunk; and moulded. The string may be glued up in thicknesses ; and also plain or moulded circular cuttings or ramps. 1 -inch (or $1 \frac{1}{4}$-inch; or $1 \frac{1}{2}$ inch; or 2 -inch) deal, plain wall string ; and these may be moulded.
The principal staircase to have $1 \frac{1}{4}$-inch pitch pine (or other) treads, with rounded nosing and hollow moulding under same, and inch risers, glued and blocked to fir carriages; the ends of the steps to be housed into 14 -inch wall strings, and 2-inch outer string boards, sunk and staff beaded, and tinished at the top with a boldly moulded capping, framed at the bottom and corners into 6 inch square newels, with moulded finials, bases, and pendents, as drawing. Boldly moulded oak handrail, 4 inches wide and 6 inches deep, with $1 \frac{1}{2}$-inch square oak balusters, rtop chamfered.
The landings to be formed by joists resting upon boldly monlded stopped beams, e.s shown on sections.
Handrails to staircases.- $1 \frac{1}{4}$-inch (or $1 \frac{1}{2}$ inch; or 2 inch) deal, plain wreathed. These may be moulded; as deal monlded $2 \frac{1}{2}$-inch handrail ; or $2 \frac{1}{2}$-inch handrail, ramped (or circular where required) ; or $2 \frac{1}{2}$-inch handrail, wreathed and twisted. Spanish (or Honduras) mahogany (or wainscot) monlded handrail. To be described with all necessary ramps circular and twist, or with sccoll and twist to the curtail step. Mention if grooved for balusters, circular, or sunk for iron cores, mitred and turned caps.
Balusters and newels.--Deal square framed newels; or chamfered. Single and double turnings to nowels to be mentioned, as also pendent drops, when used. Deal square bar balusters ; or dovetailed. Turned balnsters, according to drawing, or selected from manufacturers' patternc. Planceer rounded on both edges; or moulded. Fix all necessary iron balusters and stays.
Sash frames are of great variety. Deal cased frame for $1 \frac{1}{2}$-inch sashes, oak (or deal) sunk sill with brass (or other) pulleys for single hanging. Ditto, for double hanging. Ditito, ditto, with circular head. Ditto, circular on plan (and with circular head). Deal cased frames for 2-inch sashes, oak (or deal) sunk sills with brass pulleys for single hanging. Ditto, for double banging (and circular on head and plan, or either). Deal cased frames for 2-inch sashes, oak (or deal) sunk sills with wainscot (or deal) pulley pieces and beads, brass axle pulleys prepared to hang double; and if circular on head and plan (or either). Deal eased frames fur 2-inch sashes, oak sunk sills, mahogany pulley pieces and beads with brass axlo pulleys, prepared to hang double. Ditto, for $2 \frac{1}{2}$-inch sashes; and if circular on head and plan (or either).
Fenetian frames.-Deal cased frames for $1 \frac{1}{2}$-inch sashes, oak sunk sills, prepared to hang siagle (or double). And if circular on plan and head (or either). The above serves for 2 -inch and $2 \frac{1}{2}$-inch sashes ; and if wainscot or mahogany.
Casement frames for French casements. - Fir solid wrought frames for $1 \frac{1}{2}$-inch (or 2 -inch) cascments, oak sunk sills (plain or circular on the plan, as the case myy be). Ditto, with wainscot or mahegany stiles and beads, to correspond with the sashes. Ditto, for $2 \frac{1}{2}$ inch sashes.
Hanlight frames over doors.- $1 \frac{1}{2}$-inch deal frames, square framed. Ditto, semicircular head. 2 -inch deal, square framed. Ditto, semicircular head. If elliptical, so describe them.
Sashes.- $1 \frac{1}{2}$-inch deal ovolo (with circular head or circular on plan). 2 -inch deal ovolo (ditto). 2 -inch deal astragal and hollow (ditto). $2 \frac{1}{2}$-inch deal astragal and hollow (ditto). These may be moulded according to drawing. The abore may be of wainscot, Honduras or Spanish mahogany; also to be hung single or double, with patent lines and iron (or lead) weights, and sash-fastenings (patent to be named) complete.
French casements,-2-inch deal ovolo cascments. They may have marginal lights, or be circular on plan, or both; or if with astragal and hollow. The same of $2 \frac{1}{2}$-inch, with the same modifications. The above may be of wainscot, Honduras or Spanish mahogany. The hanging is commonly with 4 -inch iron, or brass, butt hinges; the species of fastening at a price from fire to twenty shillings. When Espagnolette fastenings aro used, they must be particularly specified.
Skop-fronts vary so much that their thicknesses will only be noticed. They range from $1 \frac{1}{2}$ to $2 \frac{1}{2}$ inches; the forms of their horizontal sections must be stated, or to be executed according to the drawings. Metal bars are now largely used.

8joc. Carpenter and Joneh.
For revolving wood or iron shutters, the particulars of the manufacturers had best bo obtained.
Stall-board, and other shop-fittings, \&e., of the like nature, are to be described with reference to the drawings, or to the manufacturer.
The ceilings of the principal roons:--after they are plastered, to be divided into square panels about . . . feet square, by nailing thereon hollowed tillets $2 \frac{1}{2}$ inches by 1 inch (or moro), neatly seribed at intersections, with staff beads 1 inch (or more) diameter, nailed along the centre of the same, mitred at intersections, and courcyed round walls as a cornice. Care to be taken in laying the joists so that they may form nailing points for these panel ribs.
Friezes and cradling for cornices should be referred to drawings, specifying their height.
Skylights.-The common sort are, 1_{2}^{1}-ineh deal ovolo skylight (and hipped, and with cross bars). 2 -ineh deal ditto (ditto). $2 \frac{1}{2}$-inch ditto (ditto). If astragal and hollow moulded; or if of oak, to be specified. Small skylights are often made of copper or zine.
Kerbs for skylights.- $1 \frac{1}{2}$-inel kerbs to (circular) skylights in two thieknesses, berelled and chamfered. 2 -inel ditto. $2 \frac{1}{2}$-inch ditto. These may be elliptical.
Coach-house doors and gates. - 2 -inch deal, framed and braced, filled in with 2 -ineh deal, and ploughed, tongued, and beaded. Ditto, filled in with battens. $2 \frac{1}{8}$-inch deal, framed and braced, filled in with 1 -inch deal, ploughed, tongued, and beaded. Ditto, filled in with battens. These are sometimes filled in with whole deal.
2 -ineh deal bead butt and square gates, in eight panels; and bead flush and square; and bead flush on both sides. These gates may have nore panels; or be framed with a wieket. A sum may be provided for the hanging of gates, and their hinges and fastenings may be inserted at from 10l. to $15 l$., or even $20 l$.
Doors.-For out-houses and the like: ${ }_{4}^{3}$-ineh ledged wrought deal door; ditto, ploughed, tongued, and beaded. 1 -inch wrought deal ledged, ditto. 1 -inch ploughed, tongued, and beaded. $1 \frac{1}{4}$-inch wrought deal ledged, ditto. 1^{1}-inch ploughed, tongued, and beaded. $1 \frac{1}{2}$-inch and 2 -ineh deal ledged donrs are similarly described. These doors may be hung with HL or cross garnet hinges; and hare bolts, loeks, latehes, and other fastenings, as may be deseribed. External doors with 4 -ineh cast or wrought butt hinges, and internal doors with east or wrought iron $3 \frac{1}{2}$-inch butts. Water-joint hinges are useful for light outside flap-doors.
For a dwelling house: the principal entrance door to be of deal $1 \frac{1}{2}$ inehes thick, framed flush, with \mathbf{V} jointsinside ; the exterior to be cased with $\frac{3}{4}$. inch oak boirds, with monlded fillets over the joints, the same to return round the head, and to die at bottom on an oak rail, 9 ineles deep, sometines having sunk quatrefoils, \&c. The door to be hung on wrought iron ornamental hinges to hooks let into the jambs (or serewed to frames); an 8 -inch rim lock and ornamental drop handle, escutcheon, and key-plate, and two 8 -inch barel bolts
The back, or side entrance, door to be $1 \frac{1}{4}$-inch, framed, ledged. and braced, covered with $\frac{3}{4}$-inch wrought oak boarding with chanfered joints, mitiled on with rose nails driven through and elenched; lung on hinges and fastened with loek and bolts, similar to those specified for front entranec.
The internal doors may be of the jollowing varietics:- $1 \frac{1}{2}$-ineh four-panelled, with hollow on the room side, and $\frac{3}{4}$-inch diagonal \mathbf{V} boarding next the hall or passage ; to be hung with fleur-de-lis or ornamental wrought iron hinges, made to clasp the door si as to show on both sides, and fastened with wrought iron latches and ornamental drop rings. $1 \frac{1}{2}$-ineh four-panelled, square framed, stop ehamfered, filled in with upright or diagonal V-jointed boardiug, and hung on hinges as previously specified.
1-inch deal 1-panel square door. 1-inch deal 1-pancl square door, folding. These are rarcly used.
1_{4}^{1}-inch, 2 pautls, square ; and lead lutt and square; and bead flush and square; and moulded and square; and bead butt on both sides; and bead butt and bead flush; and bead butt and moulded; and bead flush on both sides; and bead flush and moulded; and moulded on both sides. When hung folding, to be no sperified.
$1 \frac{1}{2}$-inch deal, 2 pancls, square, follows in the same orler.
2. inch deal follows in the same order.
$2 \cdot$-inch deal follows in the same noder.
${ }_{2}$ - intel dean, 4 panels, follows in the same order.
2 inch deal, 4 pancle, follows in the same order.
$2 . \frac{1}{2}$ inch deal, 1 panels, follows in the same order.
$1 \frac{1}{2}$-juch deal, G panely, follows in the same order : and on on.

2289f. Cabpenter and Jonfar.
If the panels of $1 \frac{1}{2}$-inch doors are raised, or if double marginal dr ors, so describe them. All the above must be specificd as to be hung folding, if the nature of tho work so requires.
Wainscot doors.- $1 \frac{1}{2}$-inch wainscot, 2 panels, square ; and bead flush and square; and moulded and square ; and bead flush on both sides; and bead flush and noullded. 2 -inch wainscot, 2 panels; $2 \frac{1}{2}$-inch wainscot, 2 panels; follow in the same order. $1 \frac{1}{2}$-inch wainscot, 4 panels, follow in the same order, and may be moulded on both sides; also 2 -inch wainscot, 4 panels; and $2 \frac{1}{2}$-inch wainscot, 4 panels; also 2 -inch wainseot, 6 panels; also $2 \frac{1}{2}$-inch wainscot, 6 panels; and so on.
Wainscot sash doors.-2-inch wainscot, with diminished stiles, lower panel moulded, bead flush, with astragal and hollow sash; or ditto, with astragal and hcliow sash, moulded on both sides; or $2 \frac{1}{2}$-inch wainscot sash doors, diminished stiles, lower panels moulded, and bead flush, with astragal and hollow sash; or ditt, with astragal and hollow sash, moulded on both sides. These may be hung folding, double margined, or monlded on the raising.
Malogany doors, or best Spanish mahogany if required (of course now venecred)2 -inch Honduras mahogany, 2 panels, moulded and square; or moulded on both sides. 2-inch Honduras mahogany, 4 panels, moulded and square; or moulded on both sides. 2-inch Honduras mahogany, 6 panels, moulded and square; or moulded on both sides. $2 \frac{1}{2}$-inch Honduras mahogany, 4 panels, moulded and square; or moulded on both sides. $2 \frac{3}{2}$-inch Honduras mahogany, 6 panels, moulded and square; or moulded on both sides. These may be hung folding; with projecting mouldings; or with double margius.
Mahogany sash doors.-2-inch Honduras mahogany, astragal and hollow, bottom panel moulded and square; or bottom panel moulded on both sides; or $2 \frac{1}{2}$-incla Honduras mahogany, astragal and hollow, lottom panel moulded and square; or bottom panel moulded on buth sides. These may be hung folding; or with double margin; or diminished stiles.
Extcrnal doors.-2-inch wrought, ledged, framed, and braced, folding (or other) doors, with stop chamfered, arched heads, stiles, rails, and bracts, ervered on the outside with $\frac{3}{4}$-inch wrought, tongued, and \mathbf{V} jointed oak boarding, hung to solid oak frame (or on hinge-hooks let into stone jambs), with strong, heary, wronght iron mediæral hinges, and fastened with best rim dead lock cased with oak, and a heary wrought iron latch, with bold ornamental drop handle and plate, key-plate, \&c., all wrought according to detail drawing (or a price to be stated for each article). The frames to be of oak, 6 inches by 4 inches, wrought, double rebated, stop chamfered, grooved, \&c., tenoned into stone steps, and to have extra strung hooks on plates screwed to same.
2 -inch deal, 4 panels, the lower panels bead butt and squire, and the upper pancls square both sides; or the upper panels bead butt on the backs; or the upper panels bead flush on the back. The panels may have raised mouldings.
2_{2}^{1}-inel deal, 4 panels, the lower panels bead buit and square, upper panels square on both sides; or bead butt on the back; or bead flush on the back; with perhaps raised mouldings.
2 -inch deal, 6 panels, lower panels bead hutt and square, upper panels square both sides; or bead butt on the back; with perhaps raised mouldings.
$2 \frac{1}{3}$-inch deal, 6 panels, the lower panels bead butt and square, and the upper panels square both sides; or bead butt on the back; or bead flush on the back; with perhaps raised mouldings, double margined, \&c. Describe any of these external doors, if to be hung folding, or with circular or curved heads.
Sash doors.--1 $\frac{1}{2}$-inch deal, 2 panels, square, diminished stiles, and orolo sash; and bead butt and square, diminished stiles, and orolo sasb ; and bead fushin and square, diminished stiles, and ovolo sash; and moulded and square, dimininhed stiles, and orolu sash; and moulded and bead butt, diminished stiles, and orolo sash; and moulded and bead tlush, diminished stiles, and ovolo sash; and moulded on both sides, diminished stiles, and ovolo sash.
2 -inch deal, 2 panels, square, diminished stiles, and orolo sash, in the same order. $2 \frac{1}{2}$-inch deal, 2 panels, squarc, diminished stiles, and orolo sash, in the same order All these may be hung folding, or with marginal lights.
It describing joiner's work, specify the ironmongery to be used ; that is, the hinges. locks, fastenings, and furniture. There is now great variety.
Common framed t-panel doors are usually hung with $3 \frac{1}{2}$-inch butts and i-inch iron im stock locks. Better doors are hung with 4 -inch iron or brass butts, morise locks and brass knob furniture. Folding doors, if heary, should have $4 \frac{1}{2}$ or 5 -inch brass butts, and if necessary io clear mouldings, they should be hung with projecting brass butts, be provided with flush and other bolts, and mortise locky and

35g. Carpenter and Jonver.
furniture. Doors of dining, drawing, and other rooms, where they are required to clear the carpet by rising as they open, should have 4 or $4 \frac{1}{2}$-inch rising joint butts. Closet doors have usually $3 \frac{1}{2}$-inch butts, with brass tumbler locks and keys. External doors require larger locks, which are usually iron rim locks, or patent locks and keys; aiso 10 or 12 -inch bright rod bolts, chains, staples, \&c. Shatters have butts, which for the back flaps are of a less size, and spring bar fastenings. Brass or other china koobs to the front flaps. Doors, mouldings, and joinery are now to be obtained of American and Swedish manufacture, as well as English.
Moulded architraves to doors and windows, are described by their width and mouldiugs, or referred to drawings.
Columns und pilasters.- $1 \frac{1}{4}$-inch (or $1 \frac{1}{2}$-inch) deal diminished columns, inches diameter. Pilasters similarly specitied. Both one and the other to be glued up and hlocked. If fluted, to be mentioned; as also any necking groores to columns. Caps and bases aceording to the Order, or to drawing, carved, or of papior-mâché, as the expense will allow.
Entablatures got out of deal, as to drawing. To be glued up, blocked, and fixed with all necessary brackets and grounds.
Water-closet, fitted up with 1-inch clean deal (wainseot or mahogany), seat with hole cut therein, riser (panelled and moulded) and clamped flap (not always considered a necessity), square (or beaded) skirtings, with all requisite bearers and pipecasing. Prinies are deseribed as to seats and risers the same as water-closets, but sometimes have a lid to cover the hole instead of a flap.
Cisterns, internal and external, must have their cases proportioned in thickness to their sizes. Thus one about 3 or 3 feet 6 inches long, and 2 feet $:$ inches deep, will be $1 \frac{1}{4}$-inch deal dovetailed, with requisite bearers, and a cover of $\frac{3}{4}$-inch deal with a wood handle. For a good-sized external cistern, provide and fix a wrought and dovetailed 2 -inch deal cisteru case, . . . feet long, . . . feet wide, and . . . feet deep in the clear. Provide and fix all necessary bearers for the same, with all other requisite fittings, and a $\frac{3}{4}$-inch deal strongly ledged cover, with saddle-back fillets aud water channels at each joint. Each water-clo-et to have a cistern case of 2-inch deal, to contain 36 culic feet of water, fixed with strong bearers, ledged cover of $\frac{3}{4}$-inch yellow deal tongued and headed. All these cisterns are supposed to ho lined with lead, or zinc.
Sinks.-For a wooden one lined with lead, $1 \frac{1}{2}$-inch dovetailed sink, enclosed with 1 lanch deal square-framed front (and perbaps sides), and top or door hung with 3-inch butts, with deal or lead skirtings, and other necessary ironmongery. A proper drainer to be fixed at one side.
Plate-rack for scullery to be provided over the sink, and of tho same length.
Bath to be fitted up with riser, frame, and clamped flap (of the best Spanish mahogany), provided and fixed with all requisito bearcrs and other fittiugs and appurtenances. The flap to he moulded (in front), and hung with $3 \frac{1}{2}$-inch brass butt hinges, and the riser pancllod and moulded as shown in tho drawings, or to follow tho windows and doors.
Dresser.-For a good house:-2-ineh deal, with cross-tongued top 10 feet long and 2 feet 9 inches wide, supported on strong framed legs and bearers. 1 -inch deal poi-hoard and bearers. Six 1 -inch sunk shelves, whoso widths are to average 7 inehes. Back of the shelves to bo of 1 -inch denl, wrought, beaded, grooved and cross-tongued. 1-inch deal top, 14 inehes wide, with moulded cornice. Five drawers with bottoms and dovetailed rims of 3 -inch deal. The fronts to be of 1 -inch deal, beaded. A pair of brass (or black) drop handles and a good patent Lumbler tock to cach drawer; together with all slides, runners, bearers, and other requisite appurtenances. To be fixed complete. Others from 6 to 7 feet long.
Dresser top for scullerg, $1 \frac{1}{2}$-inch clean deal, 2 feet 6 inehes wide, and 6 feet long, cross-tongued, and fixed upon strong wrought and framed legs and boarcrs.
Ciuphard, fromts to corrospond with the doors of thicir respectivo rooms, hung on ornamental S. H. ne other sianilar hinges, fastened with small tumbler locks, wrought iron key phater, and small twisted or other drop, or f.mey, handles. The fittings to closets depend upon the rooms in which they oceur ; ns the attics, bedromns, nursery, sitting room, kitehen, honsede por's room, store room, butler's pantry, conk's roorn, \&c.
$1 /$ warf closels.--These vary. 1-ideh deal, square framed and mouldel in front to follow other donss. The top to have 11 -inch muhogany tip, monded in front, and 3 -inch skirtings. Ono shelf, same depth us closett. Tho doors to be hung (folling) with $2 \frac{1}{2}$-inch lutia, a bolt inside, a bratss knob ousside, and tmalker lex-k.

2285h. Carpenter and Jonner.
Pipe casings, wrought and framed, to be provided where necessary, to hide lead and other pipes of all descriptions the fronts to be made to unscrew for coming at the pipes when necessary.
Larder jittings.-Dresser top of clean deal, $1 \frac{1}{2}$ inch thick, 2 feet 6 inches wide, and . . . feet long, to be feather-tongued and fixed on strong framed legs and rails. Two meat rails, 6 feet long, of wrought fir, $3 \frac{1}{2}$ by 2 inches, suspended from wroumht iron stirrups. A laaging shelf, 6 feet long, 10 inches wide, and $1 \frac{1}{4}$ inch thick, suspended from wrought iron stirrups.
Laundry.-To be fitted up with $1 \frac{1}{2}$-inch clean white deal washing troughs, wrought two sides, and splayed and put together with white lead (as shown on drawing). $1 \frac{1}{4}$-inch deal ironing board, wrought both sides and clamped, hang with hinges to a proper hanging stile. Provide two clothes racks, hung with pulleys and ropes to the ceiling to raise and lower the same.
Dust-hin. See Bricklayer.
Arris gutters to eaves should always be of zinc, or iron for better use, not of wood. Stable fittings, where the old class of work is required :-

Mangers, dc. -2 -inch deal bottoms and $1 \frac{1}{2}$-inch deal sides. Wrought oak mangerrails, 4 by 3 inches. Wrought, rebated, and rounded oak manger post, 6 by 4 inches, wrouglit and framed with bearers thereto. Oak heel-posts, wrought, 6 by 5 inches, and groove for partitions. Oak top rails, 5 by 4 inches, groorel and rounded at the top. Oak bottom rails, wrought, 4 by 4 inches, grooved and arris rounded off. $1 \frac{1}{2}$-inch deal partitions, wrought on both sides, ploughen, tongued, and beaded. $1 \frac{1}{4}$-iuch deal raits on each side, board wide, and the arrises rounded off.
Fronts to hay-rucks.-Onk standard, 4 by 4 inches, wrought and franed into oak bearer under the manger. $1 \frac{1}{4}$-inch deal fronts, framed for the reception of cast iron hay-racks, well secured. Fix fir bearers and 1 -inch deal partitions at cadn end of hay-racks, with fir arris rails 3 iuches apart at the bottom of each rack.
Dressings over stalls connected with heel-posts. l-inch deal frieze, wrought joints feather-tongued, and backings thereto, segmental sofites and keystone in centre of arches. Impost mouldings at the springings and moulded cornice to girt about 10 inches.
Line the walls to the height of 5 feet with 1 -inch yellow dea', wroughe, ploughed, tongued, and beaded, with a $\frac{5}{8}$-inch beaded capping thereon.
Stable fittings have now become an almost distinct trade.
Oak fencing.--The site to be enclosed with an English oak feuce, having oak posts 5 inches square, 6 (or more) feet long, the lower end tarred and fixed in the ground 2 feet, and wall rammed round with dry ballast or brick rublish, fixed 9 (or 10) feet apart, and framed with two tiers (or three) of oak arris rails secured with oak pegs. The whole covered with oak cleft pales 4 (5, or 6) feet high, nailed with galvanized iron nails. 'The bottom to be finished with $1 \frac{1}{2}$-inch oak plank 12 inches wide, tenone 1 to posts. The top of pales to be covered witl inch oak capping 2 inches wide, secured with galvanized iron nails. Sometimes the fenco fronting the public way is rarnished, with two or more coats.
7ar.-Cuver the . . . with cne (or two) coats of good Stockholm tar.
Churches.-To give general directions for the specification of a church would be impossible. The principles of its timbering may be cullected from what has preceded. The old style of pewing, planned as drawings, of deal square-framed partitions two panels high; $1 \frac{1}{2}$-inch framed doors and enclosures one or two panels high, with stiles, munnions, and top rails 3 inches wide, and bottom rails 6 inches wide. The panels of the doors atd enclosures should not be more than a board in width, and the framework round them chamfered. The doors are hung with 3 -inch butt hinges, and should have hrass knob pulpit latches. Capping to the whole of the pewing, grooved and moulded according to drawing. Pew fittings are, $\frac{1}{2}$-inch wrought and rounded seats. 12 inehes wide, with proper bearers and $1 \frac{1}{4}$-inch cut brackets not more than 3 feet apart. Seats mounded next the pew doors. Flap-seats in the galleries to have strong joints. All the pews to lave $\frac{3}{4}$-inch book boards 6 inches wide, with $\frac{1}{2}$-inch rounded capping bearers, and $\frac{1}{2}$-inch cut brackets thereunder, not more than 2 feet 6 inches apart, and the ends rounded next the pew doors. If there be an organ, its enclosure would correspond with the pews, or be specially designed for it. Frce sea/s of $1 \frac{1}{4}$-inch deal, as shown in the drtwings; the seats to be 11 inches wide, rounded in front ; backs framed with stiles, mumnons, and rails, $3 \frac{1}{2}$ inches wide, and the standards, ends, an lhearers, according to the drawings. Childjer's scats to be of 1 -inch deal, with brackets same thickness, not more than 2 fect 6 inches

35i. Carpenter and Jonner.
apart ; at least 8 inches wide, ard the flap seats, where they occur, to be hung with strong butts. Pulpits and reading deskis are usually of $1 \frac{1}{4}$-inch deal, framed according to drawings, with $1 \frac{1}{4}$-inch doors, hung with brass hinges and pulpit latches. Whole deal floors on bearers, 1-inch book boards, cappings and bearers. 1 -inch clean deal or wainscot steps and risers, moulded returned nosings, $1 \frac{1}{4}$-inch, beaded, sunk and cut string boards, strong bracketed carriages. 1-inch square framed sofite under pulpit floor and stairs, mahi gany or wainscot moulded handrail, with caps turned and mitred; square bar balusters with one in ten of iron; turned newels to block steps; seats of $1 \frac{1}{4}$-inch dfal, 13 inches wide, and proper bearers thereto, together with all appurtenances and requisite fittings for executing the drawings. This exploded manner of fitting up a place for religious worship is well delineated in T. L. Walker, Architectural Practiee, 8ro., London, 3rd edit., 1841. The details may be occasionally useful.
For more modern work may be specified:-The whole of the seating throughont to be fornied as detail drawings, of good, well-seasoned English oak (or otherwise), to be wrought, chamfered, and stopped, or moulded and cut, as shown or required ; to be carefully framed and put together. The hench ends to be (at least) 3 inches thick, tenoned and pinned to the chamfered oak sill. The backs to have solid moulded oak capping. The seats to be $1 \frac{1}{4}$ inches thick, and the book boards to be 2 inehes thick (fixed flat or sloping), edges chamfered ; all to be well housed and cut into bench ends. Fix cut brackets, not more than 4 feet apart, under the seats; and cut brackets, not more than 3 feet apart, under the book boards. All the seats to be kept clear of the piers (if any). See par. 2192a.
The carpenter and joiner is to provide and include all sueh jobbing work, in following or preceding the other artificers engaged on the works and their appurtenances, as may lee requisite fur the completion thereof in every respect.

Founder, Smith, and Ironatongifr

2286. Cast iron girders and columns. Reference must be had to Chap. I. Sect. X. (1628e et seq.), wherein will be found the method of determining their scantlings; all girders to be previously tested before fixing, by weighting at the foundry.
Cast iron cradles, when used for openings, must be described for the particular occasions as they occur.
Chimney bars. - To kitchen chimney two wrought iron cradle bars, each 2 inches wide and $\frac{3}{4}$ inch thick, long enough to extend to the outside of the chimney jambs, and turned up and down (or cock-d down and up) at each end. The other openings to have each a wrought iron chimney bar 3 inches wide and $\frac{1}{2}$ inch thick.
Straps, stirrup irons, nuts, bolts, screws, and washers, together with all other wrought iron work for the roofs and partitions, to be prorided as may be requisite, and tho smith is to deliver to and assist the carpenter in fixing or attaching the same. Where the quantity is uncertain, a given weight beyond the above general direction should be prorided in the contract, such part thereof as may not be wanted to be deducted from the accounts after the rate of . . per cwt. To provide for the carpenter's and joiner's works, and use, and fix thereto, all requisite spikes, nails, screms, and other proper iromongery, and all requisite brass work, all to be of the rery best quality.
Cramps of cast, and wrought, iron, or copper (par. 2284d), as may be directed, for the meson; the former to be nsed where the works are exposed to the air.
Wrought iron door for strong room or opening in a party wall (it may be folding) to be of the best quality (name the manufaturer). with linges and proper fastenings, of the ralue of . . . pounds, without fixing.
Clast iron soshes as necessiry.
Wedges for underyinning must le described with reference to the hickness of walls they are to eatch; each pair must le at least as long as the wall is thich.
Balusters to a back atone staircuse and landings.- W rought iron balusters, $\frac{3}{}$ inch square, with turned wrought iron newel equal to $1 \frac{1}{2}$ incli diameter, with roundod haodrail of wrought iron $1 \frac{1}{2}$ by $\frac{1}{2}$ inch. The balusters und newel are to be riveted into the handrail at top, und at the bettom let into the stonework, and run will leud.
Balusters to a principal staircaue.-Ornamental cast iron dulusters, as shown on the drawings, or to pattern ly a manufacturer, with top rail of wronght iron if by友 an inch, let into and firmly serowed to the mathgany (or wainscot) landrail. The lalu tors und newels are to be riveted into the iron rail, and at the botton thry are to bs let into the top or side of tha stonework, and rinn with lead.
Baluaters of urought iron for strongthening the principul staireare whell of wool. Every tonth Laluter to be of wrought iron, well seenred.
Kinocher. - Provide and fix . . iron, or hrass, hurcher for . . . door ("pecify a price).

2286a. Fucnder, Smitif, and Ironnonger.
Air bricks of cast iron, single or double, and fixed in the brickwork of the outside walls, for the ventilatiou of the floors; also air gratings, . . . in number, 9 inches square.
Area gratings.-Of cast iron, with bars $1 \frac{1}{2}$ inch by $\frac{3}{4}$ of an inch, and not more than $1 \frac{1}{2}$ inch apart. Frames $1 \frac{1}{2}$ inch by 1 inch, and with strong flanges to let into the surrounding stonework, and properly fixed.
Window guards, of wrought iron to the windows of . . . , and . . . bars, to be 1 inch square and 4 inches apart, with framework of iron of the same substance, and let well into and securely fixed to the brickwork in cement.
Coal plates of cast iron, with proper fastenings, to be prorided to the coal shoot Hayward's patent self-locking plate is one of the new patents.
Cast iron ornamental railing, to the windows, or to the balcony in front of the house, as the case may be, according to the drawings, or selected from a manufacturar.
Traps of cast iron, or stoneware, to all commurications of surface water with drains, to be of appropriate size, with all gully gratings that may be necessary.
Drains to roads or paths to be of unglazed earthenware pipes, in 2 -feet lengths, of a . . . inch bore, laid to a fall of . . . inches in each 100 feet into . . . , with all necessary bends, junctions, \&c. Iron gully trap or glazed stoneware trap, or traps. jointed as drains.
The Kitchener apparatus for cooking must be specially named; and in large mansions many modern conveniences are required to be specified. The Carron Company have issued (1887) a book of appliances of various sizes.
Coppcr.-A copper, . . . inches diameter (or cubical quantity), of copper, or of galvanized iron, with all requisite bars and iron work.
Stable fittings.-No. . . . cast iron lay-racks, 3 feet wide and 2 feet high in the clear. $1 \frac{1}{4}$-inch round staves, about 3 inches apart, the frames $1 \frac{1}{4}$ ly $\frac{3}{4}$ of an inch, with the arris rounded off next the staves. Fix two manger rings in each stall.
Cast iron coping to the walls of the dung-pit $\frac{7}{8}$ of an inch thick, and returned on each side 4 inches down at the least.
Cust iron gratings to stable yards are usually described as of the weight of 1 cwt .
Cluurch and Chapel work. The founder's, smith's, and ironmonger's work is so dependeut on the design, that no general instructions can be given.
Cust iron saddle bars to the windows $\frac{5}{8}$ by $1 \frac{1}{4}$ inch (or $\frac{1}{2}$-inch square), 12 inches longer than the clear width of each window, with lead lights, laid into and worked up with the brickwork, at the height shown on the drawings, to be fixed on anaverage 12 inches apart.
Each window to have wrought iron framework for a hopper casement, to be fited up complete, with patent lines, brass pulleys, and all other requisite appurten mnces. Or the hoppers may rest on the sill, and be hinged next to it, so that when closed the exterior glazing may be flush, and to be fitted with opening racks and fastenings.
To outside of windows, where necessary, fix 1-inch square stanchions, not more than 6 inches apart, with ornamental heads forged to drawing, let into (frames or) stone sill at bottom, and passed through saddle bars with mortises formed thereon.
For church windows with tracery heads, provide and build in across the springing of the arch of all windows of 3 lights and upwards, wrought iron bars 2 inches by $\frac{1}{2}$-inch, corked, and well turned up 2 feet from janlbs, on each side; these bars to be well galvanized, and fixed with play for expansion or strain, in notches throngh the mullions.
All straps, bolts, nuts, and washers for the varions roofs. Where visible, the strape are to be worked to detail drawings; and the washers aud nuts to be notched and stamped as directed.
Wrought (or cast) iron vanes, crosses, ridge cresting, guards to areas, balconies, \&e., according to drawings; all to be securely fixed; the ranes and gable crosses 10 have stems as long as possible, and to be leaded into the stone or screwed to the roof timbers, as the case may be.
Ornamental wrought iron hinges, latches, key-plates, closing rings, \&c., on doors, all to be strictly worked according to detail drawings.
Ornamental grating of cast iron to pattern, to cover hot water pipe channels in floors.
Cast iron rain-water pipe.-To be $2 \frac{1}{2}, 3,3 \frac{1}{2}, 4,4 \frac{1}{2}$. 5 or 6 inches diameter, fixed from the roof into the drain, with proper head and shoe, ears or bands, \&c., complete.
Eaves gutter.-All overhanging oaves to have a 4 -inch cast iron eaves gutter, with all necessary angle pieces, valley pans to internal angles, swan-necks, and socket pipes cast on the gutter to lead into heads of rain-water pipes. The gutters to be fixed on strong wrought iron brackets screwed to the feet of the rafters, and the

6h. Folnder, Smith, and Imonmonger. juints to be screwed together and bedded in red leal putty. Rectangular rainwater down pipes are frequently used, with ornamental ears or bands.
Ncwall's (or other) copper wire lightning conductor, with point, prop ry secured, to . . (the highest portion of the building), and brought down with all requisite insulators; the end to be carried into the earth for a depth of 3 feet from the surace ; and all to be carefully fixed. See par. $226+k$.

Plasterer.

2287. Lath, plaster, floct, and st all the ceilings, also the striugs of staircases, and the quartered partitions on attic stories.
Render, float, and set all brickwork in attic storics.
All sides of the kitchen offices and office passages to be plastered with best floated rough stucco, lathed where requisite.
All the remainder of the sides of the interior throughout is io be executed with the very best floated stueco, latlied where requisite. Stucco of offices (or office buildings, if any) to be finished with rough surfaces; all the rest of the stucco to be trowelled quite smooth.
All the arched, groined, pinelled, and coffered work, and the bands and architraves, to be executed in gauged stuff, in the best and most accurate manner.
To run cornices in plaster round the several rooms, lobbies, passages, and other parts of the building, with enrichments thereto to be accurately modelled in accordance with the drawings (the enrichments may be of papier-mâché). An oraamented rose or flower to the centrc of the ceiling of each room on the ground (and one. ptir) floor, securely fixed. Those of papier-matche can be casily screwed to the ceiling joists.
Skirtings to bacement or ground story (or both) are to be run in cement round all the rooms, lobbies, passages, \&c., 10 inches high, $1 \frac{1}{4}$ inch thick, whited when soft, and finally washed of stone colour (or painted).
All necessary beads, quirks, and arrises; ail internal and external reveals to be stuce ed; dubbing out where the work may require it, so as to bring out all extra thicknesses and projections; and counter-lathing the work over large timbers an I elscwhere, to be done as may be necessary. Enrishments to be carefully trimmed and finished off, and where heavy leares or embossed work may require it, to be serewed with strong copper screws.
Lathing throughout to be lath-and-half heart of fir laths, free from sap.
If the walls of a church are to be plastered, the stone jambs to windows and doors are usually specified to project one inch beyond the face of wall, so as to form a stop for plaster, and afterwards cleaned off and left flush.
Latl for, and plaser to, the spaces between the rafters (unless the boarding is intonded to be left visible).
To sluccs in the very best manner with cement, jointed to imitate masonry, the whole (or part, if such be the case) of the exterior of the building, with columns, pilasters, plinths, entablatures, strings, mouldings, labels, jambs, reveals, chimneys, chimney moulds, decorations, enrichments, and appurtenances of every kind, as shown on the drawings and profiles. Such work to be subject to further instructions from the architect ; to be roughly coloured as each portion is executed, and finally coloured with weather-proof colouring, fixed with proper ingredients.
Decorative chimency pots, of cement, and of the value of . . . to be provided for each flue.
Pugging.-To fill in upon the sound boarding between the joists, where s) provided, with gond limo and hair pugging mortar, laid throughout at least 1 inch in thickness. Par. 2247.
Roughcasting.-For the mode of describing this, see Plastering, Sect. 1X. (2249.)
Martin's cement, if used for walls and partitions, is to be laid in Murtin's eoarse cement rand clean washed dry sund, 1 of cement to $1 \frac{1}{2}$ of sand, floated and set with puro Martin's fine cement $\frac{1}{4}$ inch thick. A skirting to be 9 inches high, dubbed out with tiles in cement, and run as above described, finishorl on the top with a . . . moulding, . . . inches in girt, mitrod at angles. Reveals to bo run in pure Martin's fine cement. For floors, equal parts of eoarse comont and sand, beaten down and keyed ${ }_{3}$ thick, aud finished with a coat of pure Martin's cement, sad brought to a fine surface.
Keene's patent coment.-Brickwork to ho rendered with . . . cement and clean sharpsand, in proportion of $9 t a 1$, aud t ho luid and sot with Keone"s patent fine marlse cement, highly polished. I'a lail with Keene's patent coarse marble comcut If ins, thick. Skirting will be the mime as for Martin's coment.
$\because 28^{7}$ ($\%$ Plasterer.
I'arian cement.-To be lidid with course quality Parian cement and clean sharp saml in equal proportions, and set wi h fine white Parian, highly polished.
Portland cement. - Rendering to walls, in proportion of 1 of cement to 3 of clean sharp grey sand Drawn and jointed to form blocks (stace size). For rough work the proportion may be 1 of cement to 9 of sand.

Plumber.

2288. The flats and gutters to be laid with milled lead of $6(7$ or 8$)$ lus. to the fout superficial. Where against walls, to be turned up 7 inches; where against slopes, as rafters, to turn up 10 inches. Rolls not to exceed 27 inches apart.
Flashings of nilled lead to the walls of 4 (or 5) lls. to the foot, to be worked in the wall, and to turn down over gutters and flats. Where flashings adjois the slopes of a roof, they should be described to be formed stepwise into the brickwork, and of an arerage width of 12 inches.
Hips and ridges to be covered with milled lead 6 llos. to the foot, and a , least 18 inches wide, well secured with lead-headed nails.
Eaves gutters.-To put round the eares at the curb plate 4 -inch iron (or zinc) guttering, fixed complete with bands and brackets, with iron (or zine) down pipes, . . inches diameter, with neat heads and appropriate shoes, and let into the gutter, syphon trap, or drain.
To fix . . staiks of rain-water pipes (if to be of lead) from the gutters to the drains, of (5) inclies bore, turned up from milled lead of 8 lbs . to the foot superficial, and securely fixed with ornamental cistern heads, as shall be approved by the architect, and 2 -inch strong overflow discharging pipes. Similar description for conveying watcr from the roof or flat of a portico.
Roses pierced with holes of sufficient size to be provided of $10-\mathrm{lb}$. lead to rain-water cesspools, and pipe heads.
No pipes but of lead or zine should be used against stone buildings. Cast iron piper should only be used to offices.
Domes should be covered with lead from 6 to 8 lbs . to the foot superficial, according to their size, and must be well secured with proper seams or rolls thereto.
Tops and sides of dormers to be covered with 6 -lb. milled lead, turned down 81 round full 8 inches. A flashing of $5 \cdot \mathrm{lb}$. milled lead, 30 iaches wide, to be firec over the sill of the dormer door or window, as the case may be.
Aprons of 6-1lu. milled lead, and 10 inches wide, should be described to sky-lights.
lixternal mouldings of wood may be covered with $6-1 \mathrm{lb}$. milled lead, to turn ul 6 inches, and to have flashings of $4-\mathrm{lb}$. milled lead let into the brickwork, and l be turned down 5 inches.
In London, it is usual to specify that the water supply should le laid on fur the service of the house in following manner (regulating cisterns are required by some companies):-Lay on water from the main of the Company witl ${ }_{4}$-inch strong east lead pipe to the cistern of the upper water-closet, with ball-cocl complete. Similarly to lower water-closet and to such other cisterns as art provided, with ball-cocks, \&c. complete, and to pay all official fees.
Line the $\sin k$ in the scullery, and in the butler's pantry (and other small ones, 1 any) with 6 -lb. milled lead, and fix thereto a 2 -inch waste pipe, with brass bel trap complete, to le carried outside on to or under a grating, and so into t's drains. (Another to each for hot water.)
Line the kitchen eistern with milled lead, bottom 9 lbs . and sides 6 lbs . to the foot with all soldering thereto. To provide to the same a $1 \frac{1}{4}$-inch waste pipe. Lim the kitchen sink with lead of 8 lbs. to the foot, to turn well orer the woodwor? and to have a 2 -inch strong waste pipe to lead into the drain, with brass bel grate complete. A $\frac{3}{4}$-inch service pipe and brass cock t, be provided from thi cistern for supplying water to the sink. (Another for hot water).
Water-closets to be constructed and fitted up in every respect complete, with.. basin, and the rery best patent valve apparatus. Soil pipe of $4 \frac{1}{2}$-inch bore out o 8 -lb. lead, to lead into drain with strong. . . trap; lead service box, 10 inche by 7 , and 6 inches dcep, of $10-\mathrm{lb}$. milled lead; $5-\mathrm{lb}$. lead safe under pan, with 2 -inch swan-necked waste pipe. 1 inch supply pipe to the basin, and all othe pipes, wires, cranks, handles, and other proper fitments. The cistern is to b lined, bottom with 8 -lb. cast lead, and sides with $5-1 \mathrm{~b}$. milled lead. $1 \frac{1}{2} \mathrm{inc}$ waste pipe, to be carried outside, with washer and waste complete. (See par, 222 for modern contrivances).
Iuftrior water-elosets to be provided with stoneware syphon pan, with water laid or and in all respects to be fitted complete, to modern requirements.

an. Pluyber.

Proride all stench-traps, syphon-traps, and other similar contrirances as may be named, where the pipes are to communicate with the drains.
Cold bath.-A . . . feet . . . inches bath, if of copper of 16 ounces to the foot superficial, tinned on the inside, and painted in japan to imitate marble, or as may be directed. Lay on the water with stong $1 \frac{1}{4}$-inch lead pipe, with brass cock, and fix $2 \frac{1}{2}$-inch strong lead waste pipe, with brass washer and plug, thereto.
If the hot bath be not of marlle (as before statel, see Mason), the following clauses will describe the several positions and rarieties of the boilers by which a supply of hot water is obtained in the present day:-
I. Proride a Tylor and Sons' 5 feet 2 inch taper oval-end copper (or galvanized tinned irou) bath, white marbled inside, with copper pipes, mounted in wood cradle. with $1 \frac{1}{4}$-inch deal framing, panelled, with French polished Honduras mahogany top. Three of Tylc.r and Sons' inch roundway bath taps. S.B., with socket keys and handsome levers, hot, colt, waste. A Tylor and Sons' patent bath boiler, with stove front to fit opening of fireplace, with dors and damper (no setting required). Inch lead pipe from cold water cistern to boiler, ${ }^{3}$-inch lead pipe to relieve boiler up to and turned over top of cistern (or any convenient outlet). Inch lead pipe for hot, coll, waste, and overflow pipes to bath. Lead safe with waste under coeks, and leave the work perfect ; as estimated, at 39I. 0s. 9 d., exclusive of carringe and any bricklayer's, plasterer's, or carpenter's work, cutting away for pipes and making gool, fixing bath framing, and graining and varnishing it. A gial vanized timed iron bath is $6 l$. less.
II. Tylor and Sons' 22 -gallon copper chimney boiler, with wrought iron band, with bols and nuts to carry ditto, and stove front to fill up opening in fireplace, with sliding blower, revolving damper, soot door, and bars; as estimated, at 3sl. 0s. 9 d .
III. Tylor and Sons' copper saddle boiler with unions, a stove front to suit ditte, with sliding blower, revolving damper, so t dror, and bars. A galvanized wrought iron cistern, close top, with manhole screwed down, to be fixed with two lines of inch wrought iron pipe from boiler to het cistern. inch ditto to supply cold water to hot cistern, $\frac{3}{3}$-inch ditto to relieve hot cistern, inch hot, cold, waste, and overtlow pipes to bath, \&c.; as estimated, at 47l. 4s. 3 d .
IV. Proride a 5 -feet (larger or smaller, as deemed necessary) strong lest make improved kitchen range, with strong wrought iron back boiler with close top, wrought iron oven, and line fireplace with panelled covings. A galvanized wrought iron hot wator eistern, \& © . ; as es-imited, at 61l. 3s. 9d.
V. The range fitted with two boilers, one for the lath, the other for domestic use; where a fire is kept sufficiently large to work two boilers, they are recommended. Eatimate 41 . extra to No. 1V.
WI. A range with partially closed fire instead of one with opern fire. 4l. 15s. extra to No. IV.
VII. Tylor and Sons' 22 -gallon copper dome-top boiler, with f rnave iron work, doors, bars, and dumper, and continue as No. I. This boiler may be fixed in the lasement, and will supply a hot bath in any apartment below the level of the cold water eistern. As estimated, 43l. 15s. 3 cl .
Notr. In I., the lath milboiler may be fixed in the same or separato upartments ; opon or close fire at pleasure. All the estimates are framel presming on at cold water eistern and a rain-water pipe, or a drain, being within 10 feat of the room. In III., the hot water cistern is place 1 over the fireplace in the room. In IV., the hot eistern is anpposed to be 25 fert uhove the boiler. In VII., the cold cistern is mupposish to be 2.5 fect above boriler. The waste pipe from the bath to the drain whould always have as great a fall as possible nul never be lail to so small a fall as allowerl lyy placing it within the depth of the floor.

Common pumps aro generally deseribed as 3 -inch pumps, with neat cast iron cases, fixed complete, with proper lead auction pipe to bring sulficient supply of water from well info the cistern, ald all other appurtenauce4. The manufacturer's atock to bo aren if othore be required. Where water is net laid on, in in lamdon, fix a 3 -inch lifting engine plunp, with brase harrel; and provide from the well. . feet of 1 f-itreh atrong metion pipr"; with servieo pipes to the cistorns, nad all eocke and joints that may be nereresary.
Provide all enpper and zinc naila that may be wabterel for laying the metal works.
I'rovide in the contract.. ewt. extra of milled (or other) land, including latour and all propor matorials an may lon wantod aud dirceted ly tho arehitect; and if the samo or any purt thoreof should not le weed, it deduction to be made for the wamo on making up the acponints, aftor the rate of . . . per cut. for such portion tharenf se shall not have beren used.

Geazitr.

2289. All the windows to be glazed with best crown glass ; the offices with seeund crown glass. To glaze all the front win lows with best sheet glass; or with best thattened shect; or with patent plate; or with British plate; as the case may le, and according to the wright specified. For varieties of glass, ard glass for ether purposes, see Chap. II. Sect. XII., yar. 1870 et stq. The architect ofien namws the manuactory or firm from which the glass is to be procured, to ensure the proper quality being supplied.
All the glazing is to be properly bedded, stoppod in, sprigged, and bark-putticd, the convex side out wards (of crown and sheet glass), to be free from specks, blisters, or other blemish ; and to be left whole and clean, on the works being rendered up as complete.
Glaze all the windows (of the church) and tracery heads (if any) with quarries and iorders in strong church lead $\frac{3}{8}$ inch wide The lead to le secured to thr saddly lars and stanchions with strong copper wire, soldered to lead, and securely twisted round the saddle; the glazing to be properly cemented, to be let into the grooves of stonework, and neatly pointed with lime and stone dust.
Tho glass to be Powell's quarries, or Hartley's patent rough cathedral glass, $\frac{1}{8}$ inch thick. The quarries to be of one tint, and the borders of another tint (as fur instanco, green and yellow).
Skylights and windows, in exposed situations, where much light is not required, nay be glazed with Hartley's rongh plate glass, $\frac{1}{4}$ inch thick, or less.
Water-closet and similar windows (where privacy is desired), with Hartleys patent rough plate glass, $\frac{1}{8}$ inch thick; with fluted glass; or with diapered; or with em. bossed glass.
Enumerate any widows to be glazed with ribbed, enamelled, embossed, or stained glass.
Provision to be made in window sills and skylights (where practicable) for coureying condensed water to the exterior of the building.

Painter.

2290. Knot (with silver leaf in best work), pumice down, and smooth, stop, and otherwise properly prepare all the wood and other works intended to be painted.
Paint four times (or till they bear out), with the best oil and colour, all the internal and external wood and iron works, all the stuceo, and all other works that aro usually painted. The plain painting to be of tints of brown, drab, or stone colour, as may be directed.
The walls of the principal staircase, lobbies, and entrance-hall are to be carcfully executed imitations of marbles, as directed by the architect, jointed like masonry, in blocks of sizes as directed, and twice varnished with the best copal.
The doors, shuttcrs, didoes, skirtings, boxings, architraves, and other dressings on the ground and one-pair floors (and others, if required), are to be grained in addition wainscot (or other wood, as may be specified), in an artist-like manner, and sizell and varnished twice with best copal varnish.
Some of the mouldings of doors and shutters may be gilt.
All the wrought woodwork (except the floors, and the work exccuted in oak) to be stained with . . . stain, once coated with linseed oil, and twice varnished with the lest copal varmish. Or, if the deal has been picked, it may be left plain, and only varnished. Or, if selected with much care, the deal and pine may be puli-hed. Inside oak work is best left to obtain an effect by use, but where immediately desirable, it may be once or twice oiled.
Pick out the ornamental ironwork on doors, roofs, screens, \&cc, in black or dark blue. A pattern or diaper is sometimes done in gold leaf upon it.
To flat extra, of such tints as may be directed, all the rest of the stucco work and wood work on the principal and one-pair floors.
Distemper the ceilings (or as fullows):-
The ceilings and cornices on gronnd and one-pair floor to be painted four times in oil, and flatted and picked in with such extra colours as may be directed.
The ceilings (and perhaps the cornices and centre flowers also) on the two principal floors to be distempered. All the rest of the ceilings, strings, and mouldings are to be whitened.
The sides of the rooms in the attic (as the case may be) story, as well as tho lobbies, closets, passages, \&c., are to be finished of such tints as the architect may direct.
Stables and coach-house walls, larders, and sculleries, cellars, including vaulting undr sides of floors where open, to be lime-whited.

30a. Painter.

Sashes to be finished on the outsile of . . . enlour.
To a church: Stop with coloured stopping, twice oil with linseed oil, and twice varnish with best copal rarmish, the exterior doors and fr:mins.
Stop with stained stopping, and knot with coloured knotting, the wrought woodwork of roofs; brush the whole twice with boiled oil, and once varnish the same. Pick out the chamfers innl mouldings in roofs with vermilion, cobalt blue, chocolate, pale yellow, and white, in two oils, and stencil patterns thereon, according to drawing.
Deal seats, or benches, are to be knotted with stained knotting, stained with . . . stain (approved by the arehitect), and twice varnished with tackless varnish.
To french polish in the best manner the handrail of the staircase, the mahogany work of the bath and water-closet, and other parts (if any).
All paint and varnish to be of the best quality; sizing and mineral turpestine will not ue allowed.

Paperminger.

2291. To prepare and bring to a proper fice all the walls and surfaces intended for papering. All the papers are to be approved by the architect, or ly his client.
To hang with figured paper, value . . . per yard (ow per piece) the rooms (to be described) on the . . . floor, with borders (as may be desired).
The remainder of the rooms to be lung with paper, . . . per yard (with or without borders).
Where satin paper is to be put up, or any of the more expensive descriptions, then to underline (or line the walls) with lining paper, joints rubled down, and hang with . . . paper of . . . shillings per piece, the roons on the . . . floor. Borders also, if thought desirable, must be specified.
The entrance passage or hall, staircase, and landings, up to . . . to be papered with Siena marble (or other) paper, value . . . per yard, hung in blocks, or hung horizontally and lined to stze blocks with brown lines (or black pencil), twice sized, and rarnished (once or twice) with best copal.
A ${ }_{4}^{3}$-inch gilt . . . moulding to be fixed with needle points round the dressings, and aleng the top aud hottom of the . . . room (or rooms).

beblhinger.

292. Bells to be put from the following places . : . to the sereral positions marked for them. A 14-oz. bell and . . . oz. cop per wire, brass cranks, and . . . spring lever and rose.
The pulls in the principal rooms to be bronze or iron lever pulls of medireval character, and very strong; the wire of strong copper ; the cranks to be lest hora crauks. Floor boards over bell wires to be serewed (not miled) down, for ready removal.
b'ut ${ }_{4}^{3}$-inch zine tubing for the concealment aud casing of the wires to the belis, secured by round fine galranized iron hooks. The bells to be hung and furnished with strong brass T-plate bnek and spring lever carriages. To be lung on a $\frac{3}{4}$-inch wrought nnd lwaded deal board, secured to wood bricks (or strong wedges) by serews.
The front (and side) entrance door (or yard, or gate) to have bold pendant medieeval wrought iron pull, according to detail drawing, or to be selected.
It is anmal to mark the place, both up and down stairs, where the lells are to le hung. Whero many bells are fixed together on a bell board they are sometimes described to be se tuned as to form a musienl venle. 'l'hey are also to bo mmbered; ometimes the names of the severnl rooms from whence the bells aro pulled wes printed on the loaird mender the bell.
Tho electric, and the pneumalic, bell system will somewhat depend on tho patenteo nelecterl. The following specification for a twelve-roomed house is taken from Menry I. Jorl and Company's Illustrated Catalogue, No. 3 :-
To providing nnd fitting the following system of bells:-
Ground foor. Front entrance. One ornamental lronze pull, marked "Visitors," fixed ly the aide of tho doer, to ring and indiento in kitchen.
'Pridesmen's ontrance. One plain bronzed pull, fixed by side of the duor, to ring on a sepmrate bell in kitelen.
Ibiningerom. Two bluck and golel porcelnin pushes (or walnut woorl), dixmb ono on ench side of the fireplace, to ping and indicato in kitchen,
1)rawing-room. Two ivory nad gold patecrn purcelan punlay (or polished bruss), litto, ditto.
Sibary. Two black and gold line porcelnin pushen (or onk wood), ditto, ditto.
IIall. Onu black and gold line prorcolain parsh (or onk wookl) wring on "Can!" bell in (or outside) tho serrants bedroom. Also one 3 -wny pheurmetic
$2292 a$. Bellhanger. switch to ehange the front entranee bell at night, so as to ring on "Call" bell in (or oatside) the servants' bedroom.
First floor. Best bedroom. One bed-head pull, fixed by the side of the bed, to ring and indieate in the kitchen. One bed-head pull, fixed on the other side of the bed, to ring a "Chattering call" bell in servants' bedroom (same bell as used for the hall).
Dressing-room. One ivory and gold line porcelain push, fixed by the side of the fireplaee (or by the side of the door), to ring and indicate in the kitchen.
Two other bedrooms. In eaeh room, one plain ivory porcelain push, fixed by the side of the fireplaee, to ring and indieate in kitehen.
Bath-room. One plain ivory porcelain push, to ring and indicate in kitchen.
Sccond floor. Two bedrooms. One plain ivory porcelain push in each, to ring and indieate iu kitehen.
In all eighteen bells, the switch being taken as one bell.

Gasfiticrr.

2293. The gas to be laid on from the . . . company's main to the . . . with $\frac{1}{8}$ (or to 3) inch patent strong galvanized wrought iron welded tubing of the . . . diameter, jointed in iron eement, with all necessary bends, elbows, tees, erosses, junctions, stopped ends, diminishing soekets, and nipples, and other neeessary joints for the rendering of the whole perfect and complete. The whole to be seeured by iron barrel clips or hooks, as the ease may require, secured by strong screws. The gas tubing to be stout $\frac{1}{4}\left(\frac{3}{8}, \frac{1}{2}\right.$, or $\left.\frac{3}{4}\right)$ iueh composition pipes, soldered at joints and secured by fine hooks, furnished with the requisite galranized iron (or brass) bends, \&e., jointed in iron eement. This tubing is often laid in iron.
Stop cock to be supplied. A meter of . . . value to be provided and fixed on l-inch wrought clean deal shelf, supported on a pair of plain iron brackets (or one of cut deal).
Gasaliers, pendants, hall lamp, standard, braekets, sun-light, and sueh like, must depend on the elient and the mannfacturers.
Each of the principal rooms to have a peadant eorona (or other gasalier) of \therefore. lights, value . . s. each, fitted with balance weights and a ball and socket joint (or fitted with the patent balanee around the pipe). Bronzed (or brass) bracket burners (swing or armed) in passitges (or where else required), value . . s. each, eomplete, to approval.
Church lights are of (wrought iron, bronze, or) brass standards, corone, brackets, \&c., according to their situations, for gas or for eandles (speeify value of each).
All lights to be fitted with argand, fish-tail, batswing (or other burners. Ground glass, or figured glass globes, where stated, are sometimes ineluded by the arehitect. For other details see par. $2264 a$ et seq.

Zinc-worker.

2294. Roofs and fats.-To be laid with No. . . . or . . . oz. malleablo Vicillo Montagne (or other) zine, with 6 in . laps and $1 \frac{1}{2}$-ineh rolls, turned up 5 inches all round against walls and lights, finished with flashings 6 inches wide, inserted 1 ineh into joint of the briekwork, and seeured by galvanized iron wall hooks, Cesspools to be formed at the head of rain-water pipes, and the zinc lapped over. The whole to be laid with slotted fastenings lapped and soldered at angles. The trap to be covered, lapped over edge, soldered at joints, and secured by zinc nails. Or-the flats to be eovered by "Braby," London, with their No. gauge V.M. roofing zine, square roll eaps, and patent holding-down elips. All ridys plates and stopped ends are to be formed in the solid metal, not α rooved in. Stretching of sheets, or soldering, to form stop ends must be partieularly avoidrd. Giutters to be laid with No. . . or . . . oz. malleable zine, with 6 -inch laps at drips, turned up under slates for 11 inehes on eaeh side and 5 inehes against the walls, finished with flashings 6 inches wide, inserted 1 ineh into the wall, and secured by galvanized irou holdfasts. Cesspools to be formed, \&c., as above described.
Eaves gutter.-To be of 2 (to 5) inch, No. . . . or . . . oz. zinc, fixed upon galvanized iron brackets, furnished with nozzle pieees, eut splash boards, and angles, and to be soldered at the joints. Care to be taken that one end shall be left free to allow the whole to expand and eontraet.
Rain-water pipe.-To be of 2 (to 5) inch, No. . . . or ... oz. zinc, with square heads, fixed with soeket joints and $4 \frac{1}{2}$-ineh strong galvanized iron nails, with the plates turned over.
Lining to cistern.-To be of No. . . . or . . . oz. malleable zinc, lapped 2 inches at joints and angles and turned down over edge, secured by strong zime nails 4 inches apart, and to be sol?ered at angles.

9ta. Zinc-worker.

Chimney cowls, rentilating shafts, louver ventilator, perforated zinc, skylight frames, fanlights, \&c. For other details see par. 222 $\mathrm{d} g$.

2294b. The following proposed Sanitary Specification for a Suburban Villa, by Hygiene," published in the Journal of the Clerks of Works Association, for Nozember 381, is deemed of sufficient importance to be here reprinted as a guide:-

Dig trenches the required depths for all drains as shown on plan; fill in after the drains are laid, and well consolidate the same. Where the drains cross the newlymade ground they must be bedded on a layer of Portland cement concrete 6 inches thick, the bottom of the trench being preriously well rammed. Cart away any superfluous earth.
The pipes are to be the best salt-glazed socketed drain pipes, free from five flaws or other defects, straight, and well burnt. No square junctions will be allowed. All drain pipes to be jointed in neat Portland cement, and carefully wiped inside.
Erery facility must be afforded to the architect, or his representative, for inspection during the laying of the pipes. The drains are to be tested in lengths as the work proceeds, in any manner the architcet may approve. The builder must procure an intelligent bricklayer, or other man to be approved by the architect, to lay the drains and build the inspection chamber.
Lay in the soil pipes in positions as shown in red lines on plan, with a continuous and eren fall of not less than 2 inches in 10 feet. All soil pipes are to be 6 inches diameter, and waste pipe branches, \&c., 4 inches, as shown.
Pay all fees to local board for connections to scwer, and provide and fix a 6 -inch galranized iron flap pipe for inlet to same.
J'ix one of Doulton's No. 39 (see list) or other approved interceptor trap just within the boundary fence, in position as marked on plan; carry up from same a 6-inch diameter vertical pipe, provide and fix a 4 -inch junction in the tirst length above trap; seal the top of pipe and cover over 6 inches below the ground line with 12 inch by 12 inch by $2 \frac{1}{2}$ inch York stone.
Carry 4 -inch pipes from junction to a convenient p'ace behind the shrubbery; bring to surface with an easy bend, fix on top a 4 -inch square junction pipe, the top to be about 12 inches above the ground. Seal the top with a di e plate, and provide and fix a galvanized iron grating in the junction opening.
Build inspection chamber, as shown, near to the corner of house, with Portland cement concrete bottom, well-burnt stock bricks, and Portland cement sides. Provide a channel pipe and a curved junction channel pipe, and fix in chamber as shown; furm sloping sides with concrete, and finish with neat Portland cement, perfectly smooth, and to the required form. Cover over the top with $2 \frac{1}{2}$-inch York stone corer, 4 inches under ground.
Provide and fix in yard $11 \frac{1}{2}$-inch syuare trapped gully and dished iron grating, with two 4 -inch inlets and 6 -inch outlets (prime cost 7 s ., see fig. 19, Doulton's list). Continue drain to inspection chamber, and connect through the side of chamber abore the sloping sides.
Continue from the inlets to gully 4 -inch branch drains to the two rain-water stack pipes, and finish with an easy bend to receive the rain-water pipe.
Proride and fix an 8 -inch by 8 -inch trapped gully, with inlet on two sides for bath and laratory wastes, and connect from gully to soil drain, as shown.
Cuntinue the 6 -inch soil drain from inspection chamber to side of house, as shown; insert a junction, and put an easy bend at end of cach branch to receive the soil pipes from the water-closets.
Provide and fix Weaver's or other approved grease trap (prime cost $25 s$) outside scullery wall, to take waste fromisink, and cortinue to the drain with 4 -inch pipes.
Irovide and fix in yard at the front of coach-house a $11 \frac{1}{2}$ inch square trapped gully, as before described, conncet drains from stables, and connect, as shown, to inspection chamber.
Proride and fix 8 -inch by 8 -inch trapped gully at foot of mir-water pipe in front of nouse, and continue a 4 -inch drain to soil drain.
Notc.-If local board will not allow storm-water in the soil drain, a 6 -inch stormwater drain must be laid to take all rain-water from roofs and surface of ground.
Connect with a 4 -inch branch from rain-water pipe at end of stable, and to join the tinch drain from stable just below the gully. This drain must not have any trap in it, as it is required to ventilate this branch.
If any deviation be made from the course marked on the drain plan, the same must he carcfully noted and marked on the plan, and then roturned to the architcet's office.
in'ernal fittings.- Provide and fix in best whter-eloset, first floor, one of Jennings's ornamental Queen's ware combination " I'edestal" closets, automatic flushing tank,
oruamental chain and handle, and a mahogany circular hinged flap seat. Prime cost ralue, 7l. 7 s., exelusive of fixing. (These closets do not require any enclusure.)
Provide and fix in lower water-closet one of Doulton's stoneware (ornamental) ronbination closets, and all as before specified for fittings to first floor (prime enst, 4l. $9 s .8 d$, exclusire of fixing).
The soil pipe trom water-closet, first floor, is to be 4 -inch lead pipe, and to pass through and down the face or external wall, aud to comnect to branch of soil drain. The suil pipe from the lower water-closet to be as last described, and conneet to the branch of soil drain provided for same. Continue the lead soil pipe frum first floor water-closet to S feet above the eaves to roof, the full size of 4 inches. Put a fixed cone on top.
Provide and fix a 3 -inch lead waste-pipe from bath through wall and into a 3 -inch cast iron pipe down face of wall, and connect to gully provided for same.
Provide and fix a lavatory cabinet-stand complete (No. 21, Doulton's !ist, prime cost, $21.2 s$.) ; carry a 2 -inch lead waste pipe, and conncet to gully provided for same, fix under this lavatory a Beard and Dent's 2-inch trap and inspection cap. Lay on water from the down service pipe with a $\frac{3}{4}$-inch branch pipe and a $\frac{1}{2}$-inch silver-plated urn tap.
Provide and fix in maids' water-closet, and also in man serrants' water-closet. one of Doulton's Lambe h flush-out closets, with syphon flushing cistern, handle and chain, all complete.
Connect the flushing cisterns throughout with $\frac{1}{2}$-inch stout lead pipe, and from cistern to water-closets with $1 \frac{1}{2}$-ineh lead pipe.
Provide and fix in scullery a Doulton's vitrified buff-glazed stoneware sink, hest quality, size 3 ft .6 in . by 2 ft . (prime cost value, 17.) ; provide and fix a 2 - in . earthenware waste pipe, and connect to grease trap outside seullery wall. (Housemid's slop sinks are not required, the combination closets being available for slops.)
The work must be thoroughly well done; the best materials are to be used; and all to be finished to the entire satisfaction of the architect or his representative.

Sect. XVI.

measuring and estmating.

2295. The practice of measuring is dependent on rules alrcady given under Mensuration, in Sect. VI. Chap. I. of this book (1212 et seq.), in which are described tho methods of ascertaining the superficial and solid contents of any figure. The application of them to architecture, in the practice of measuring and estimating the different paits of a building, forms the subject of this section.
2296. For the purposes of measuring, a 10 -feet rod, and a pair of 5 -feet rods, all divided into feet, inches, and half-inches, and a 2 -feet rule divided into inches and eighths and twelfths or tenths of inches, are required. If a tape, say of 50,66 , or 100 feet, the used, it should be carefully checked by a standard, and by the 10 -feet rod.
2297. The mode of "squaring dimensions," as usually practised by duodecimals, will le now explained. They are a series of denominations beginning with feet, and then inches and parts of an ineh; they form a series of fractions. Feet and inches are marked with their initial leiters, but twelfths, or tenths, or seconds by a double accent, thus $2^{\prime \prime}$.

2297 a. To multiply duodecimals together, write down the two dimensions to br multiplied in such a way that the place of feet may stand under the last place of the multiplicand ; begin with the right-hand denomination of the multiplier, and multiply it ly every denomination of the multiplicand, throwing the twelve out of every product, aud carrying as many units as there are twelves to the next. Placing the remainders, if any, under the multiplier, so that the like parts in the product may be under like parts of tho multiplicand; proceed with every successive figure of the multiplier towards the left, in the same manner, always placing the first figure of the product under the mulliplier. Then the sum of these partial products will be the whole product. In duodecimals there will be as many denominations below feet as in both the factors taken together.

Example 1.-Multiply 7 ft .5 in . by 3 ft . 4 in.

$$
\begin{gathered}
7: 5 \\
\frac{3: 4}{2: 5: 8} \\
\hline 22: 3 \\
\hline 24: 8: 8
\end{gathered}
$$

Example 2.-Multiply $24 \mathrm{ft} .8 \mathrm{in} .8^{\prime}$ by 3 ft .7 in .

$\begin{array}{r} 24: 8: 8^{\prime} \\ 3: 7 \end{array}$
14:5:0:8
74:2:0
88:7:0:8

2297b. In example I. there is only one place of duodecimals in cach factor; there aro herefure two places in the product. In the second example there are two places of uodecimals in the multiplicand and one in the multiplicr, which make, together, three; here are therefore three denominations in the product. This method of placing the enominations of the factors gives the correct places of the product at once; since like arts of the product stand under like parts of the multiplicand. It also shows the affinity etween duodecimals, decimals, and every series or scale of denominations whereof any umber divided by the radix of the scale makes one of tho next towards the left hand. 'he consideration is, moreover, useful in discovering readily the kind of product arising rom the multiplication of any two single denominations together.
2297c. When the number of feet runs very high in the factors, it will be better to write own the product of each multiplication, without casting out the twelve, and add together hose of each denomination beginning on the right, and divide by 12 , to carry to the next igher place, then add these, and so on, as often as there are places in the whole product.

Example.-Multiply 262 ft .
$5 \mathrm{in} .1 \cdot \mathrm{y} 5 t \mathrm{ft} 8 \mathrm{in}$.

262	$\begin{gathered} 5 \\ 54: 8 \end{gathered}$
	2099:4
1048	: 20
13100	250
197	$=\underline{2369}$
	12

Thus, under inchos, the products being set down and added, they amount to 2369 , which, divided by twelve, gives 197 to carry to the place of feet, and 5 remainder. Then adding the feet together with the quantity carried, it gires the whole number of feet; while the operation is extremely simple and free from the troubles of either side operations or useless stress on the memory.

2297d. The division of the foot into 12 parts renders the application of the rules of practice very valuable in the computation of duodecimals. The practical rule is to set down the two dimensions one under the other, that is, feet under feet and inches under the other, that is, feet under feet and inches
m in the multiplicand by the feet in the multiplier, ader inches, and multiply cach tcrm in the multiplicand by the feet in the multipher,
eginning at the lowtst; and, if the numbers be large, put down the inches without carryg for every 12 frum inches to feet. Then, instead of multiplying by the inches, take ich aliquot parts of the multiplicand as the inches are of a foot; after which add the nes together, earrying 1 for every 12 inches.
Example I.-Multiply 7 ft .5 in.

by 3 ft .4 in.
$7 \mathrm{in} .=\frac{1}{3}$
$7: 5$
$3: 4$
$2: 2: 3$
$2: 5: 8$
$24: 8: 8$

Example 2.-Multiply 262 ft .5 in .

	by 54 ft .8 in .
$8=\frac{2}{3}$	262: 5
	54: 8
	1048:270
	1310
	87: 5:8
	87: 5:8
	$23=\frac{281}{12}: 4$

1434. : $5: 4$
re same examples have been used to show the relative advantages of the two methods. 2297c. Thus far we have treated of the squaring of dinnensions to obtain the superficies work. To learn the solidity of certain materials, such as tinber, stone, and some others, - dimensions have to be cubed. The process is similar to the above, and is continued a rther step. One example will suffice to explain the method, and we will take the figures ren in the ahoro system.
Example. What is the cule of a block of stone, 7 ft , 5 in . wide, $3 \mathrm{ft}, 4 \mathrm{in}$. thick, and 12 ft . long?
$7: 5$
$3: 4$
$22: 3$
$2: 5: 8$
$21: 8: 8$ super.
12

296:8:0 cule.
2297f. The abridgment of the labours of practical men is ulways a matter of importance-being identical with the saving of time which is lost in calculation, and which with the areliotect is of the utmost importunce, when it is recollected what muhifarions dutics he has to discharge. Heneo the following table of squares, cubers, and roots of numbers, up to 1000 , will be most accoptable to him. The first column of the Table shows the number, the second the square of such number, the thimd exhibits its cube. In the fourth column is found the square ℓ of the number, sud ir. the fifth its cube rost Thas, lookirg to tho number 61 in firat column, its square is fomal to be 3721 , its cube 226981 , i 's square root.

No.	Square.	Cube.	Square Root.	CubeRoot.	No.	Square.	Cube.	Square Root.	Cubellast
1		1	$1 \cdot 0$	0	61	4096	262144	\mathcal{E}	
2	4	8	1.4142136	$1 \cdot 259921$	6.5	4225	274625	$8 \cdot 0622577$	721
3	9	27	$1 \cdot 7320508$	$1 \cdot 442250$	66	4356	287496	8-1240384	-04124i
4	16	64	$2 \cdot 0$	I 5887401	67	4489	300763	8•1853528	06154:
5	25	125	$2 \cdot 2360680$	1•709976	68	4624	314432	8-2462113	65
6	36	216	$2 \cdot 4494897$	$1 \cdot 817121$	69	4761	328.509	8-3066239	-101 56
7	49	343	$2 \cdot 6457513$	$1 \cdot 912933$	70	4900	343000	$3 \cdot 3666003$	2128.
8	64	512	$2 \cdot 8284271$	$2 \cdot 0$	71	5041	357911	$8 \cdot 42$ ¢1498	4.14081:
9	81	729	$3 \cdot 0$	$2 \cdot 080084$	72	5184	373248	$8 \cdot 4852814$	$4 \cdot 16016$
10	100	1000	$3 \cdot 1622777$	$2 \cdot 154435$	73	5329	389017	8-5440037	4.17933
11	121	1331	3:3166248	$2 \cdot 223980$	74	5476	405224	$8 \cdot 6023253$	4-19833
12	144	1728	$3 \cdot 4641016$	2-289428	75	5625	421875	$8 \cdot 6602.540$	716
13	169	2197	$3 \cdot 6055513$	$2 \cdot 351335$	76	5776	438976	$8 \cdot 7177979$	-23582
14	196	2744	$3 \cdot 7416574$	$2 \cdot 410142$	77	5929	456533	$8 \cdot 7749644$	-25432
15	225	3375	$3 \cdot 8729833$	$2 \cdot 466212$	78	6084	474552	8.8317609	$4 \cdot 2726.5$:
16	256	4096	4.0	$2 \cdot 519842$	79	6241	493039	$8 \cdot 8881944$	$4 \cdot 29084$
17	289	4913	4-1231056	2.5:1282	80	6400	512000	$8 \cdot 9442719$	-30887
18	324	5832	$4 \cdot 2426407$	$2 \cdot 620741$	81	6561	531441	9.0	4-32674:
19	361	6859	$4 \cdot 3588989$	$2 \cdot 668402$	82	6724	5.51368	$9 \cdot 0553851$	$4 \cdot 34448$
20	400	8000	$4 \cdot 4721360$	$2 \cdot 714418$	83	6889	571787	$9 \cdot 1104336$	4.36207
21	441	9261	4-5825757	$2 \cdot 758923$	84	7056	592704	9•165151	37951
22	484	10648	$4 \cdot 6904158$	$2 \cdot 802039$	85	722.5	614125	$9 \cdot 2195$	683
23	529	12167	$4 \cdot 7958315$	$2 \cdot 843867$	86	7396	636056	9-2736185	-41400
24	576	13824	4.8989795	2.884499	87	7569	658503	$9: 3273791$	-43104
25	62.5	15625	$5 \cdot 0$	2.924018	88	7744	681472	9:3808315	4.44796
26	676	17576	5•0990195	2962496	89	7921	704969	9-4339811	-46474
27.	729	19683	5•196152	30	90	8100	729000	$9 \cdot 4868330$	-48140
28	784	21952	5•2915026	$3 \cdot \mathrm{C36589}$	91	8281	753571	$9 \cdot 5393920$	4.49794
29	841	24389	5.3851648	$3 \cdot 072317$	92	8464	778688	$9 \cdot 5916630$	435
30	900	27000	$5 \cdot 4772256$	3•107232	93	8649	804357	$9 \cdot 6436508$	$4 \cdot 53065$
31	961	29791	5:5677644	3•141381	94	8836	830584	9'6953597	-54683
32	1024	32768	56568542	3'174802	95	9025	857375	$9 \cdot 7467943$	$4 \cdot 5629 \mathrm{C}$
33	1089	35937	5•7445626	$3 \cdot 207534$	96	9216	884736	$9 \cdot 7979590$	$4 \cdot 57885$
34	1156	39304	5•8309519	$3 \cdot 239612$	97	9409	912673	9•8488578	$4 \cdot 5947 \mathrm{C}$
35	1225	42875	5.9160798	$3 \cdot 271066$	98	9604	941192	$9 \cdot 8994949$	4-6104:
36	1296	46656	$6 \cdot 0$	3:301927	99	9801	970299	$9 \cdot 9498744$	-6260
37	1369	50653	$6 \cdot 0827625$	$3 \cdot 332222$	100	10000	1000000	10.0	4.6415
38	1444	54872	$6 \cdot 1644140$	$3 \cdot 361975$	101	10201	1030301	$10 \cdot 0498756$	4.65%
39	1521	59319	$6 \cdot 2449980$	$3 \cdot 391211$	102	10404	1061208	$10 \cdot 0995049$	4-6723:
40	1600	64000	$6 \cdot 3245553$	$3 \cdot 419952$	103	10609	1092727	10•1488916	-6875 ${ }^{\text {d }}$
41	1681	68921	$6 \cdot 4031242$	$3 \cdot 448217$	104	10816	1124864	$10 \cdot 1980390$	$47026 r$
42	1764	74088	6.480740	$3 \cdot 476027$	105	11025	1157625	$10 \cdot 2469508$	4-7176
43	1849	79507	$6 \cdot 5574385$	$3 \cdot 503398$	106	11236	1191016	$10 \cdot 2356301$	4.7326:
44	1936	85184	$6 \cdot 6332496$	$3 \cdot 530348$	107	11449	122.5043	10:3440804	4.7474:
45	2025	91125	$6 \cdot 7082039$	$3 \cdot 556893$	108	11664	1259712	10-3923048	622
46	2116	97336	6.7823300	$3 \cdot 583048$	109	11881	1295029	$10 \cdot 4403065$	6
47	2209	103823	$6 \cdot 8556546$	$3 \cdot 608826$	110	12100	1331000	$10 \cdot 4880885$	47914
48	2304	$110592 \mid$	$6 \cdot 9282032$	$3 \cdot 634241$	111	12321	1367631	$10 \cdot 5356538$	4×8058 !
49	2401	117649	7.0	$3 \cdot 659306$	112	12544	1404928	$10 \cdot 5830052$	-8202
50	2.500	125000	$7 \cdot 0710678$	$3 \cdot 684031$	113	12769	1442897	$10 \cdot 6301458$	$4 \cdot 8345$
51	2601	132651	7-1414284	$3 \cdot 708430$	114	12996	1481544	$10 \cdot 6770783$	8488
52	2704	140608	$7 \cdot 2111026$	$3 \cdot 732511$	115	13225	1520875	$10 \cdot 7238053$	86
53	2809	148877	7-2801099	$3 \cdot 756286$	116	13456	1560896	$10 \cdot 7703296$	769
. 54	2916	157464	7-3484692	$3 \cdot 779763$	117	13689	1601613	$10 \cdot 8166538$	4•8909
55	3025	166375	7-4161985	$3 \cdot 802953$	118	13924	1643032	$10 \cdot 8627805$	$4 \cdot 9048$
56	3136	175616	$7 \cdot 4833148$	$3 \cdot 825862$	119	14161	1685159	$10 \cdot 9087121$	$4 \cdot 9186$
57	3249	185193	7-5498344	$3 \cdot 848501$	120	14400	1728000	10.9544512	4.9324
58	3364	195112	7-6157731	$3 \cdot 870877$	121	14641	1771561	11.0	$4 \cdot 9460$
59	3481	205379	$7 \cdot 6811457$	$3 \cdot 892996$	122	14884	1815848	$11 \cdot 0453610$	4.9596 $4 \cdot 9731$
60	3600	216000	77459667	3-914867	123	15129	1860867	11.0905365	$4 \cdot 9731$
61	3721	226981	$7 \cdot 8102497$	3-936497	124	15376	1906624	$11 \cdot 1355287$	986
62	9844	238328	$7 \cdot 8740079$	$3 \cdot 957892$	125	15625	1953125	$11 \cdot 1803899$	
6.31	3969	2.50047	7.9372539	3-979057	126	1.5876	2000376	$1 \cdot 22497$	0132

16129 16384 1664 I 16900 17161 17424 17689 17956 18225 18496 18769 19044 19321 19600 19881 20164 20449 $207: 36$ 21025 21316 21609 21904 22201 22500 22801 23104 23409 23716 24025 24:336 24649 24964 25281 25600 25921 26244 26569 26896 27225 27556 27889 28224 28561 28900 29241 29584 29929 30276 3062.5 30376 31329 31684 32041 32400 32761 3.3124 33189 $3.3 \times .6$ 34225 $31: 996$ 54969 3.5344 9.5721

2048383 11•26942775•026526 209715211•S1370855•039684 $214668911 \cdot 35781675 \cdot 052774$ $219700011 \cdot 40175495^{\circ} 065797$ 2248091 II•445523I 5•078753 $229996811 \cdot 48912535 \cdot 091643$ $2352637 \cdot 11 \cdot 53256265 \cdot 104469$ 2406104 11•57583695•117230 246037.5 11•61895005•129928 $251545611 \cdot 66190385 \cdot 142563$ $257135311 \cdot 70469995 \cdot 155137$ 2628072 11•7473444 5•167649 268561911•7898261 5•180101 274400011•83215965•192494 2803221 11-87434215*204828 2863288 I $1 \cdot 9163753.5 \div 17103$ $292420711 \cdot 95826075 \div 229321$ $298598412 \cdot 0 \quad 5 \div 241482$ $304862512 \cdot 04159465 \cdot 253588$ $311213612 \cdot 08304605 \cdot 265637$ 3176523 12•1243557 5•277632 $324179212 \cdot 16552515 \cdot 289572$ $3: 307949$ 12•2065556 $5 \cdot 301459$ 3375000 1 $2 \cdot 2474487.5 \cdot 313293$ 3442951 12•2882057 $5 \cdot 325074$ $351180812 \cdot 32882805 \cdot 336803$ 3581577 12:36931695•348481 $365226412 \cdot 40967365 \cdot 360108$ $372387512 \cdot 44989965 \cdot 371685$ $379641612 \cdot 4899960$ 5:383213 3869893 12: $22996415 \cdot 394690$ 3944312 12•5698051 $5 \cdot 406$ I 20 $401967912 \cdot 60952025 \cdot 417501$ $409600012 \cdot 64911065 \cdot 428835$ $417328112 \cdot 68857755 \cdot 440122$ $425152812 \cdot 72792215 \cdot 451362$ $433074712 \cdot 76714535 \cdot 462556$ $441094412 \cdot 8062485.5 \cdot 473703$ $449212512 \cdot 84523265 \cdot 484806$ $457429612 \cdot 88409875 \cdot 495865$ $465746312 \cdot 92284805 \cdot 506879$ $474163212 \cdot 96148145 \cdot 517848$ $482680913 \cdot 0 \quad 5.528775$ 4913000 13 • $03540485 \cdot 539658$ $500021113 \cdot 07669685 \cdot 350499$ 5088448 13•1148770.5•561298 $517771713 \cdot 15294645 \cdot 572054$ $526802413 \cdot 19090605 \cdot 582770$ $535937513 \cdot 22875665 \cdot 599445$ $545177613 \cdot 26645925 \cdot 604079$ $554523313 \cdot 304131715 \cdot 614673$ $563975213 \cdot 34166415 \cdot 625296$ $573533913 \cdot 37908825 \cdot 635741$ $543200013 \cdot 41640795 \cdot 646216$ $592974113 \cdot 45362405 \cdot 656652$ $1,02856813 \cdot 49073765 \cdot 667051$ $612848713 \cdot 52774935 \cdot 677411$ 6229501 1:3•5646600 5•687734 $63: 3162513 \cdot 60147055 \cdot 698019$ $643485613 \cdot 63818175 \cdot 708267$ 653920:3 13•6747943 5•718479 $664467213 \cdot 71130925 \cdot 728654$ $675125913 \cdot 7 \cdot 1772715 \cdot 73879112.52$
$190 \quad 36100$ 19136481 $\begin{array}{ll}192 & 36864\end{array}$ $\begin{array}{lll}193 & 37249\end{array}$ 194 3'6636 19538025 $196 \quad 38416$ 19738809 $198 \quad 39204$ 19939601 20040000 20140401 20240804 20341209 20441616 20542025 20642436 20742849 20843264 20943681 $210 \quad 44100$
21144521 21244944 21345369 21445796 21546225 21646656 21747089 $\begin{array}{ll}218 & 475 £ 4\end{array}$ 21947961 22048400
22148841 22249284 22349729 22450176 22550625 $226 \quad 51076$ $227 \quad 51529$
$68.5900013 \cdot 78404885 \cdot 748897$ $696787113 \cdot 82027505 \cdot 758965$ $707788813 \cdot 85640655 \cdot 768998$ $718905713 \cdot 89244405 \cdot 778996$ $730138413 \cdot 92888835 \cdot 788960$ $741487513 \cdot 96424005 \cdot 798890$ $752953614 \cdot 0 \quad 5 \cdot 808786$ $764537314 \cdot 03566885 \cdot 818648$ $776239214 \cdot 07124735 \cdot 898476$ 7880599 14•1067360 $5 \cdot 838272$ $800000014 \cdot 14213565 \cdot 848035$ 8120601 14•17744635•857765 $824240814 \cdot 21267045 \cdot 867464$ 8365427 14.2478058 5•877130 $848966414 \cdot 28285695 \cdot 886765$ $861512514: 31782115 \cdot 896368$ $874181614 \cdot 35270015 \cdot 905941$ 8869743 14•38749465•915481 8998912 $14 \cdot 42220515 \cdot 924991$ $9123.32914 \cdot 45683235 \cdot 934473$ 9261000 14.4913767 5.94391I 9393931 14•5258390 $5 \cdot 953341$ $952812814 \cdot 56021985 \cdot 962731$ $966359714 \cdot 59451955 \cdot 972091$ $980034414 \cdot 6287388$ 5•981426 $993837514 \cdot 66287835 \cdot 990727$ $1007769614 \cdot 69693856 \cdot 0$ $1021831314 \cdot 73091996 \cdot 009244$ 10360232 $14 \cdot 76482316 \cdot 01836: 3$ $1050345914 \cdot 79864866 \cdot 027650$ $1064800014 \cdot 83239706 \cdot 036811$
 $1094104814 \cdot 3996644$ 6.05504s 11089567 $14.9331845 \quad 6.064126$

 $1154317615 \cdot 0332964 \mid 6 \cdot 091199$ $1169708315 \cdot 06651926 \cdot 100170$ $118523.5215 \cdot 09966896 \cdot 109115$ $1200898915 \cdot 13274606 \cdot 118032$ $1216700015 \cdot 1657509$ 6•126925 $12326391 \quad 15 \cdot 19868426 \cdot 135792$ $12487168 \mid 15 \cdot 23154626 \cdot 114634$ $126.19337|15 \cdot 2643375| 6 \cdot 153449$ $1281290415 \cdot 29705856 \cdot 162239$ $1297787515 \cdot 32970976 \cdot 171005$ $1314425615 \cdot 36229156 \cdot 179747$ $1331205315 \cdot 39480436 \cdot 188463$ $1348127215 \cdot 42724866 \cdot 197154$ $1365191915 \cdot 45962486 \cdot 205821$ $1382400015 \cdot 49193346 \cdot 214464$ 13997521 15.52417476:223083 $1417248815 \cdot 55634926 \% 231678$ $1434890715 \cdot 58845736 \cdot 240251$ $1452678415 \cdot 62049946 \cdot 248800$ $147061251565247586 \cdot 257324$ $1488693615 \cdot 68438716 \cdot 265826$ $1.506922315 \cdot 71623366.274304$ 15252992 15•7480157 6:282760 $1543824915 \cdot 77973386 \cdot 291194$ $1562.500015 \cdot 81138836 \cdot 299604$ $158132.511584297956 \cdot 30-992$ $1600300815 \cdot 87450796: 31635!$

No.	Square	Cube	Square Root.	C	.	Sq	Cub	ot.	Cube Itor
	64009	16194277	$15 \cdot 9059737$				31554496		
254	64516	16337064		$6 \cdot 333025$	31	100489	31855013	17-8044938	
255	65025	16581375	$15 \cdot 9687194$	$6 \cdot 341325$	318	101124	32157432	$17 \cdot 8325.545$	6:
25	65536	16777216	16.0	6.349602	31	101761	32461759	711	$32{ }^{\circ}$
257	66049	16974593	16.0312195	$6 \cdot 357859$	3	102400	32768000		6.8399
258	66564	17173512	$16 \cdot 0623784$	$6 \cdot 366095$	321	103041	33076161		70
259	67081	17373979	$16 \cdot 0954769$	$6 \cdot 374310$	322	103684	33386		54
0	67600	17576000	$16 \cdot 1245155$	$6 \cdot 382504$	32	104329	33	$\cdot 9722008$	8612
261	68121	1777958	$16 \cdot 1554944$	$6: 390676$	32	4976	3401	$18 \cdot 0$	6.8682
269	68644	17984798	$16 \cdot 1864141$	$6 \cdot 398827$	32	05625	34328	0277564	53
26	69169	18191447	$16 \cdot 2172747$	$6 \cdot 406958$	32	06276	3464597	55	6.8823
26.4	69696	18399	16.2480768	$6 \cdot 415068$	32	6929	34	$18 \cdot 0831413$	894
265	70225	18609625	$16 \cdot 2788206$	$6 \cdot 423157$	32	07584	35287552	$18 \cdot 11$	96
266	70756	18891096	$16: 3095$	-431226	3	8241	35	571	
26	71289	19034163	163401.346	$6 \cdot 439275$	330	108900	35937000	$18 \cdot 1659021$	9104
26	71824	19248832	$16 \cdot 3707055$		331	109561	36264691	$18 \cdot 1934054$	73
	72361	19465109	$16 \cdot 401219.5$	$6 \cdot 455314$	332	110224	36594368	$18 \cdot 220$	2.1?
27	72900	19683000	$16 \cdot 4316767$	$6 \cdot 463304$	333	110889	36926037	18	
	73441	1990¢511	$16 \cdot 4620776$	$6 \cdot 471274$	3	111556	37259704	1	985
272	73984	20123648	16.4924225	$6 \cdot 479224$	335	112225	37595375	18.30	451
27	74529	20346417	16.5297116	6.487153	336	2896	37933056	18:3305028	95:
27	75076	20570824	$16 \cdot 5$	495064	33	113569	38272753	18-3575598	58
27	75625	20796875	$16 \cdot 58$	02956		114244	38614472	1	65
	76176	21024576	$16 \cdot 6132477$	6.510829	339	114921	38958219	$18 \cdot 4$	2
97	76729	21253933	16.643317	18684	310	115600	39304000	$18 \cdot 4$	79
	77284	21484952	$16 \cdot 6733320$	$6 \cdot 526519$		116281	39	46	6.986
27	77841	$217176: 39$	$16 \cdot 7032931$	$6 \cdot 534335$	3	116964	40001688	$18 \cdot 4932420$	993
88	78400	21952000	$16 \cdot 7332005$	$6 \cdot 542132$		17649	40353607	18	
28	78961	22188041	$16 \cdot 7630546$	6.549911	344	8336	40707584	1	. 06
282	79524	22425768	$16 \cdot 7928556$	$6 \cdot 557672$	3	19025	41063625	18	13
283	80089	2266.518	16.8226038	$6 \cdot 555415$	346	9716	41	$18 \cdot 60107.52$	$7 \cdot 020 ?$
28	80656	2290630		3139	347	120409	417	$18 \cdot 6979360$,
28	81225	23149125	16.88194	$6 \cdot 580844$		121104	421	$18 \cdot 6547581$	-
286	81796	23393656	16.9115345	$6 \cdot 588531$		121801,	4250854	$18 \cdot 6815417$	
28	82369	23639903	16.9410743	$6 \cdot 596202$	350	122500	42875000		
288	82944	23887872	16.970.5627 6	6.603854	351	123201	43243551		
28	83521	2413756	17.0	$6 \cdot 611488$	352	23904	436142	$18 \cdot 76$	
-	84100	24385000	d $7 \cdot 0293864$	$6 \cdot 619106$	353	609	43986977	18.7882942	
291	84681	24642	$17 \cdot 0587221$	$6 \cdot 626705$	354	125316	44361864	$18 \cdot 8148877$	
292	85264	24897088	$17 \cdot 0880075$	6.634287	355	126025	44738875		
293	85849	25153757	$17 \cdot 1172428$	$6 \cdot 641851$		126786	4511801		
294	86436	25412184	17-146428	$6 \cdot 649399$	357	127449	4549929		
35	87025	25672375	$17 \cdot 1755$	$6 \cdot 656930$	358	128164	45882		
296	8761	2593433	17.204650	664443	359	128881	4626827		
297	88209	2619807	$17 \cdot 2336879$	$6 \cdot 671940$	360	29600	46656000	-9736660	
	88804	2646359	$17 \cdot 26267656$	79419	361	130321	47045881	19.0	
299	29401	26730899	$17 \cdot 291616$	86882	362	131044	47437928		
300	90000	27000000	$17 \cdot 3205081$	$6 \cdot 694328$	363	131769	478.321471	19.05	
	90601	27270901	$17 \cdot 3493516$	6.701758	364	132496	48228544	19.078	
:302	91204	27543608	$17 \cdot 378147$	$6 \cdot 709172$	365	133225	48627125	$19 \cdot 104$	
	91809	27818197	$17 \cdot 406895$	6.716 .569	366	153956	49027896		
; 30	92416	28094464	$17 \cdot 4355958$	$6 \cdot 723950$	367	134689	49430863	$19 \cdot 1$	
30	93025	28372625	$17 \cdot 4642492$	31316	. 368	135424	49836032		- 80
S0	93636	2865261	$17 \cdot 49285$	738665	369	136161	50243409	19	
. 307	94249	28934443	$17 \cdot 52141556$	$6 \cdot 745997$	370	136900	50653000		
	94864	2921811	$7 \cdot 5499288$,	6.753313	371	137641	51064811	19×26	$\begin{array}{l:l} 106 \\ 1 & 166 \end{array}$
309	95481	2950362	$17 \cdot 57839586$	760614	372	158384	51478848		5
\|310	96100	297910001	$17 \cdot 60681696$	6.767899	373	139129	51895117		
311	96721	30080231	$17 \cdot 635192 \mathrm{~L} 6$	$6 \cdot 775168$	374	39876	52313624		
S12	97344	303713281	$17 \cdot 66352176$	- 782422	375	40625	52734375		
313	97969	306642971	1769180606	789661	976	41376	53157376		
31	98596	3095914	$17 \cdot 72004516$	$6 \cdot 796884$	377	142129	53582633	$19 \cdot$	
315	99225	3125587	898	04	378	42884	54010152		

Square．

Cube．	Square Root．	Cube Root．
54439939	$19 \cdot 4679223$	$7 \cdot 236797$
54872000	$19 \cdot 4935887$	$7 \cdot 243156$
55306341	$19 \cdot 5192213$	$7 \cdot 249504$
55742968	$19 \cdot 5448203$	$7 \cdot 255841$

442195364 443196249 444197136 445198025
446198916 447199809 448200704 449201601 450202500 451203401 452204304 453205209 454206116 4.55207025 456207936 $45720 \div 849$ 458209764 459210681 460211600 461212521 462213444 463214369 464215296 465216225 466217156 $0119469621 \cdot 58703317 \cdot 752860$ $46731808910184756321 \cdot 61018287 \cdot 758402$ 468219024102503232 21 $63330777 \cdot 763936$ 469219961 103161709 $21 \cdot 65640787 \cdot 769462$ $47029090010382300021 \cdot 67948347 \cdot 774980$ $471221841104487111 \mid 21 \cdot 70253447 \cdot 780490$ $47222278410515404821 \cdot 72556107 \cdot 785992$ $473223729105823817.21 \cdot 74856327791487$ $47422467610649642421 ヶ 71541177796974$ $475225625107171875 \cdot 21 \cdot 7944947 / 7 \cdot 802453$ $47622657610785017621 \cdot 81742427 \cdot 807925$ $47722752910853153321 \cdot 8403297 \quad 7 \cdot 813989$ $47822848410921535221 \cdot 8632111781884.5$ 479 22944I I $09902239 \quad 21 \cdot 88606867 \cdot 824294$ 480230400 3 $10.592000 \quad 21 \cdot 9089023 / 7 \cdot 829735$ 481231361 111284641 $21 \cdot 93171227 \cdot 855168$ 482232324 I $1198016821 \cdot 95449847 \cdot 84059 \cdot 1$ $483233289 \mid 1267858721 \cdot 97726107 \cdot 846019$ $484234256 \mid 13379904220 \quad 7 \cdot 851424$ $485235225114084125 \quad 22 \cdot 02271557 \cdot 856828$ $486236196 \mid 1479125622 \cdot 0454077 \quad 7 \cdot 862224$ $48723716911550130322 \cdot 06807657 \cdot 867613$ $483238144116214272 \quad 22 \cdot 0907220 \quad 7 \cdot 872994]$ $489239121 \quad 11693016922 \cdot 11384447 \times 878568$ $490|240100| 17649000 \quad 22 \cdot 13594367 \cdot 853734$ 451 $241081118370771 \quad 22 \cdot 15851987 \cdot 889094$ 492 242064 119095488 22•1810730 7．894446 49： 243049 1198231．57 22｀2036033 7 7－899791 $49424403612055378422 \cdot 2261108,7 \cdot 905129$ $4951245025121287375 \quad 22 \cdot 24859557 \cdot 910460$ 496 246016． 122023936 22．2710575 $7 \cdot 91.5784$ $49724700912276347322 \times 29934968 \mid 7 \cdot 921100$ 498 248004 123505992 $22 \cdot 91.591: 367 \cdot 926408$ $49924900119425149922 \cdot 33830797 \cdot 931710^{1}$ $500,25000012500000022 \cdot 3606798 \quad 7 \cdot 937005$ 501 2b1001 12.5751501 ＇22 $3880293 \quad 7 \cdot 94229 \div$ $502 \cdot 2.5200 \cdot 4126.506008 \cdot 22 \cdot 405356.57 \cdot 947579$ $50325300012726352722 \cdot 42766157 \cdot 95 \cdot 8 \cdot 17$ 50425401 ； $12802406422 \cdot 14904487 \cdot 058114$

No.\| Square.	Cube.	Square Root.	Cube Root.
505255025	128787625	$22 \cdot 4722051$	7-963374
506256036	129554216	$22 \cdot 4944438$	$7 \cdot 968627$
507257049	130323843	$22 \cdot 5166605$	7-973873
,508 258064	131096512	$22 \cdot 5388553$	$7 \cdot 979112$
\|509 259081	131872229	$22 \cdot 5610283$	7-984344
510260100	132651000	22-5831796	$7 \cdot 989569$
511261121	133432831	$22 \cdot 6053091$	$7 \cdot 99$
51226214	寿	22-6274	

513263169135005697 22•6495033 8•005205 $51426419613579674422 \cdot 67156818 \cdot 010403$ 515265225136590875 22•6936114 8•015595 $51626625613738809622 \cdot 7156334,8 \cdot 020779$ $51726728913818841322 \cdot 73763408 \cdot 025957$ $51826832413899183222 \cdot 75961348 \cdot 031129$ $51926936113979835922 \cdot 78157158 \cdot 036393$ $52027040014060800022 \cdot 80350858 \cdot 041451$ 521 271441 141420761 $22 \cdot 89542448 \cdot 046603$ $52227248414223664822 \cdot 84731938 \cdot 051748$ $52327352914305566722 \cdot 86919338 \cdot 056886$ $52427457614387782422 \cdot 89104638 \cdot 062018$ $52527562514470312522 \cdot 91287858$ 8.067143 $52627667614553157622 \cdot 93468998 \cdot 072262$ $52727772914636318322 \cdot 95648068 \cdot 077374$ $52827878414719795222 \cdot 97825068 \cdot 082480$ 52927984114803598923.0
8.087579
$53028090014887700023 \cdot 02172898.092679$ $531281951149721291 \quad 23 \cdot 04343728$ 8.097758 $53228302415056876823 \cdot 06512528 \cdot 102838$ $53328408915141943723 \cdot 08679288$ 8•107912 $53428515615227330423 \cdot 10844008 \cdot 112980$ |535 $28622515313037523 \cdot 13006708 \cdot 118041$ $53628729615399065623 \cdot 15167388 \cdot 123096$ $53728836915485415323 \cdot 17326058 \cdot 128144$ 538289444 155720872 $23 \cdot 19482708 \cdot 133186$ 539'290521 $15659081923 \cdot 21637358 \cdot 138223$ $54029160015746400023 \cdot 23790018 \cdot 143253$ 54I 292681 $15834042123 \cdot 25940678 \cdot 148276$ $54229376415922008823 \cdot 28089358 \cdot 153293$ $54329484916010300723 \cdot 30236048 \cdot 158304$ $54429593616098918423 \cdot 3235076$ 8•163309 $54529702516187862523 \cdot 34523518 \cdot 168308$ $54629811616277133623 \cdot 36664298 \cdot$ I 73302 $54729920916366732323 \cdot 38803118 \cdot 178289$ $54830030416456659223 \cdot 4093998,8 \cdot 183269$ $54930140116546914923 \cdot 43074908$ 8-1 88244 $55030250016637500023 \cdot 4520738$ 8-193212
 $55230470416819660823 \cdot 4946802$ 8•203131 $55330580916911237723 \cdot 51595208 \cdot 208082$ $55430691617003146423 \cdot 5: 3720468$-21 3027 1555 $30802517095387523 \cdot 55843808 \cdot 917965$ $55630913617187961623 \cdot 57965228 \cdot 222898$ $55731024917280869323 \cdot 60084748 \cdot 227825$ 5558 $31136417374111223 \cdot 62202368 \cdot 232746$ 555 $31248117467687923 \cdot 64318088^{\prime \prime}$ 237661 $56031360017561600023 \cdot 66431918 \times 242570$
 562315844177504328 23•7065392 $8 \cdot 252371$ $56331696917845354723 \cdot 72762108 \cdot 257263$ $56431809617940614423 \cdot 7486842$ 8.262149 $56531922518036212523 \cdot 76972868 \cdot 267029$ $56632035618132149623 \cdot 79075458 \cdot 271903$ 1567,32148918228426323•81176188.276772

| No. Square. Cube. | Square Root. Cubellout | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | |

$56832962418325043223 \cdot 83275068 \cdot 28163$, $569323761 \mid 8422000923 \cdot 85372098 \cdot 28649 \div$ $57032490018519300023 \cdot 87467288 \cdot 291.34$ $57132604118616941123.89560638 * 29614$ $57232718418714924823 \cdot 91652158 \cdot 30103$ $573328329188132517 \mathcal{2} 3 \cdot 9374184.8 \cdot 30586$, $57432947618911922423 \cdot 95829718 \cdot 31069$ $57533062519010937523 \cdot 97915768 \cdot 31551$ $57633177619110297624 \cdot 0 \quad 8 \cdot 32033$ $57733292919210003324 \cdot 02082438 \cdot 32514$ $578,334084193100552,24 \cdot 04163068 \cdot 32995$ $57933524119410453924 \cdot 06241888 \cdot 33475$ $58033640019511200024 \cdot 08318928 \cdot 33955$ $581|337561196122941| 24 \cdot 10394168 \cdot 34434$ $58233872419713736824 \cdot 12467628 \cdot 34912$ $583339889198155287,24 \cdot 14539298 \cdot 35390$ $58434105619917670424 \cdot 16609198 \cdot 35867$ $58534222320020162524 \cdot 18677328: 36344$ $586.34339620123005624 \cdot 20743698 \cdot 36820$ $58734456920226200324 \cdot 22808298 \cdot 37296$ $588345744203297472,24 \cdot 24871138 \cdot 37771$ $58934692120433646924 \cdot 26932228 \cdot 38246$ 590348100 205379000 $24 \cdot 28991568 \cdot 38720$ 591349281 206425071 $24: 31049168: 39194$ $592350464,207474688,24 \cdot 33105018 \cdot 39667$ $59335164920852785724 \cdot 35159138^{2} 4013$? $59435283620958458424 \cdot 37211528 \cdot 40611$ $595354025210644875.24 \cdot 3926918 \cdot 8 \cdot 4108$ $59635521621170873624 \cdot 41311128 \cdot 4155$ $59735640921277617324 \cdot 43358348 \cdot 4202$. $598,35760421384719294 \cdot 45403858 \cdot 4249$. $59935880121492179924 \cdot 4744765,8 \cdot 4296$ $60036000021600000024 \cdot 4948974,8 \cdot 4343$ 601361201 פ1 $708180124 \cdot 51530138 \cdot 4390$ $60236240421816720824 \cdot 53568838 \cdot 4436$ $603363609219256227,24 \cdot 55605838 \cdot 4483$ $60436481622034886424 \cdot 57641158 \cdot 4530$ $605366025221445125,24 \cdot 59674788 \cdot 4576$ $606 \mid 367236,222545016,24 \cdot 61706738 \cdot 4623$ $607 \mid 36844922364854324 \cdot 63737008 \cdot 4669$ $608369664224755712,24 \cdot 6576560,8 \cdot 4716$ $60937088122586652924 \cdot 6779254,8 \cdot 4762$ $61037210022698100024 \cdot 6981781,8 \cdot 4809$ $61137332122809913124 \cdot 71841428 \cdot 485$ 5 $61237454422922092824 \cdot 7386338 \mid 8 \cdot 490$ J $613375769230346397 \quad 24 \cdot 75883688 \cdot 494$ ह 6 I $437699623147554424 \cdot 7790234 / 8 \cdot 49$ ¢ 4 $615378225232608375,24 \cdot 79919358 \cdot 5041$ $61637945623374489624 \cdot 8193473,8 \cdot 5080$ $61738068923488511324 \cdot 8394847 \mid 8 \cdot 515$ $618381924236029032,24 \cdot 8596058,8 \cdot 517$ \& $61938316123717665924 \cdot 87971068 \cdot 522$ $62038440023832800024 \cdot 89979928 \cdot 527$ $621|385641| 239483061 \mid 24 \cdot 91987168 \cdot 531$ $62238688424064184824 \cdot 9399278,8 \cdot 536$ $62338819924180436724 \cdot 95996798 \cdot 540$ $62438937624297062424 \cdot 97999208 \cdot 545$ $625390625244140625 \cdot 25 \cdot 0 \quad 8 \cdot 549:$ $626391876,245314376,25$ 'OI $999208 \cdot 554$ $62739312924649188325 \cdot 03996818 \cdot 558$ $628,39438424767315225 \cdot 05992828 \cdot 563$ $62939564124885818925 \cdot 07987248 \cdot 568$ $63039690025004.00025 \cdot 0998008 \cdot 8 \cdot 572$ 为

Square．	Cube．	Square Root．	Cube Root．	No．Square．	Cube．	Square Root．Cube loot．

531398161 251239591 25•11971548．577152 $532,39942425243596825 \cdot 13961028 \cdot 581680$ $63340068925363613725 \cdot 15949138 \cdot 586204$ $334401956,25484010425 \cdot 17935668 \cdot 590723$

 $636404496 \quad 25725945625 \cdot 21904048 \cdot 599747$ $63740576925847485325 \cdot 23885898 \cdot 604252$ $638407044259694072,25 \cdot 25866198 \cdot 608752$ $639,408321 \quad 26091711925 \cdot 27844938 \cdot 613248$ $64040960026214400025 \cdot 29822138 \cdot 617738$ 641410881 263374721 $25 \cdot 31797788 \cdot 622224$ $64241216426460928825 \cdot 33771898 \cdot 626706$ $64341344926584770725 \cdot 35744478 \cdot 631183$ $64441473626708998425 \cdot 37715518 \cdot 635655$ $64541602526833612525 \cdot 39685028 \cdot 640122$ $64641731626958613625 \cdot 4165301 \quad 8 \cdot 644585$ $64741860927084002325 \cdot 43619478 \cdot 649043$ $64841990427209779225 \cdot 4558441 \times 653497$ $64942120127335944925 \cdot 47547848 \cdot 657946$ $65042250027462500025 \cdot 49500768 \cdot 662301$ $65142380127589445125 \cdot 51470168 \cdot 666831$ $65242510427716780825 \cdot 5: 3429078 \cdot 671266$ $653.42640927844507725 \cdot 55386478 \cdot 675697$ $65442771627972626425 \cdot 57342378 \cdot 680123$万35 $42902528101137525 \cdot 59296788 \cdot 684545$ $656,43033628230041625 \cdot 61249698 \cdot 683963$ $55743164928359339325 \cdot 63201128 \cdot 693376$ $358432964284890312,25 \cdot 65151078 \cdot 697784$ $55943428128619117925 \cdot 670995: 3 \cdot 702188$ S60 $43560028749600025 \cdot 69046528 \cdot 706587$ $561436921|288804781| 2.5 \cdot 709920: 38 \cdot 710982$万62 438244 2901 $1752825 \cdot 72036078 \cdot 715373$ $563439569291434247 \mid 25 \cdot 74878648 \cdot 719759$ jヶ4．440896 292754944 $25 \cdot 7681975.8 .724141$ $36544222529407962525 \cdot 78759398 \cdot 728518$ 5fi6 $44355629540829625 \cdot 8069758 \mid 8 \cdot 732891$ ［f7 $444889296740963|25 \cdot 8263431| 8 \cdot 737260$ if $9846224298077632,25 \cdot 84569608 \cdot 741624$ if9 $447561 \quad 299418309 \mid 25 \cdot 86503438 \cdot 745984$ ；70 448900 30076：3000 $25 \cdot 8843582 \mid 8 \cdot 750340$ ；71450241 $30211171125 \cdot 90366778 \cdot 754691$ ；72451584303464448 $25 \cdot 92296288 \cdot 7590.38$ $073452929304821217|25 \cdot 9422435| 8 \cdot 763380$ $; 74454276,30618202425 \cdot 96151008 \cdot 767719$ | |
| :--- |
| 75455625 | $307546875|25 \cdot 9807621| 8 \cdot 772053$

776 456976．30891577626．0
, 77458329 31 0288733 26．01 $92237 \mid 8 \cdot 780708$ $1784.5968431166 .575226 \cdot 0384.3318 \cdot 785029$
$7946104131304683926 \cdot 05762848 \cdot 789346$
40， $46,2400,314432000$ 26．0768096 8－793659
＇81 16．3761 $315821241|26 \cdot 0959767| 8 \cdot 797967$
i82 465124 317214568 $26 \cdot 11512978 \cdot 802272$
83 166489 318611987，26•1：3426878．806572
$8446785632001: 350426 \cdot 15339378 \cdot 810868$
$85469225,32141912526 \cdot 17250478 \cdot 815159$
$36470596,322828856,26 \cdot 19160178 \cdot 819417$
； 47 471969，324242703 26－2106848 8－823730
$48473341,32566067226 \cdot 22975418 \cdot 828009$
89， 474721 ｜ 327082769,26 －2488095 $8 \cdot 832285$
$5047610032850500026 \cdot 26785118 \cdot 836556$
i91，177181 329939371 $26 \cdot 28647898 \cdot 840822$
193 ， $17886133137388826 \cdot 30589298 \cdot 84.5085$ $1480249332812557,26 \cdot 3244932,8 \cdot 819341$
$694481636|33425538426 \cdot 3438797| 8 \cdot 853598$ $695483025335702375,26 \cdot 3628527 \mid 8 \cdot 857849$ $69648441633715353626 \cdot 3818119.8 \cdot 862095$ $697485809 \mid 338608873,26 \cdot 40075768 \cdot 866337$ $693487204|340068392,26 \cdot 4196896| 8 \cdot 870575$ $699488601341532099,26 \cdot 4386081 \mid 8 \cdot 874809$ $70049000034300000026 \cdot 4575131 \mid 8 \cdot 879040$ 701491401 S44472101 $26 \cdot 47640468 \cdot 883266$ $702492804345948408,26 \cdot 49528268 \cdot 887488$ $70349420934742892726 \cdot 51414728 \cdot 891706$ $704495616348913664 \mid 26 \cdot 53299838 \cdot 895920$ $70549702535040262526 \cdot 55183618 \cdot 900130$ $70649843635189581626 \cdot 57066058 \cdot 904336$ $707499849353.39394326 \cdot 58947168 \cdot 908538$ $70850126135489491226 \cdot 60826948 \cdot 912736$ $70950268135640082926 \cdot 62705398 \cdot 916931$ $71050410035791100026 \cdot 64582528 \cdot 121121$ 711505521 35949．5431 $26 \cdot 66458338 \cdot 925307$ $712506944360944128 \mid 26 \cdot 68332818 \cdot 929490$ $713508.369362467097 \mid 26 \cdot 70205988 \cdot 933668$ $71450979636399434426 \cdot 72077848 \cdot 937843$ $71551122536552587526 \cdot 7 ் 3948398 \cdot 942014$ $71651265636706169626 \cdot 75817638 \cdot 946180$ $71751408936860181326 \cdot 77685578 \cdot 950343$ $718515524,37014623226 \cdot 79552208 \cdot 954502$ $71951696137169495926 \cdot 81417548 \cdot 958658$ $72051840037324800026 \cdot 83281578962809$ $721519841 \mid 374805361 \quad 26 \cdot 85144328 \cdot 966957$ $722521284 \mid 37636704826 \cdot 87005778 \cdot 971100$ $723522729.37793306726 \cdot 88865938 \cdot 975240$ $724524176 \mid 37950342426 \cdot 90724818 \cdot 979376$ $725525625.38107812526 \cdot 92582408 \cdot 983508$ $72652707638265717626 \cdot 944: 38728 \cdot 987637$ $72752852938424058326 \cdot 96293758 \cdot 991762$ $728529984.38582835226 \cdot 98147518 \cdot 995883$ $729531441 \quad 38742048927 \cdot 0 \quad 9^{\circ} \mathrm{O}$
$73053290038901700027 \cdot 01851229 \cdot 004113$ $731534361 \quad 390617891 \mid 27 \cdot 0.701179 \cdot 008222$ 73253582439222 ？168 $27 \cdot 05549859 \cdot 012328$ $73353728939: 383283727 \cdot 0739727 \mid 9 \cdot 016430$ $73453875639544690427 \cdot 0924844 \mid 9 \cdot 020529$ $73554022539706537527 \cdot 1108834 \mid 9 \cdot 024623$ $73654169639868825627 \cdot 129: 3199 \mid 9 \cdot 028714$ $73754316940031555327 \cdot 14774399 \cdot 032802$ $73854464440194727227 \cdot 16615549 \cdot 036885$ $739546121403583419,27 \cdot 184.5 .5449 \cdot 040965$ $74054760040522400027 \cdot 20994109 \cdot 045041$ 741549081406865021 27．2213152 $9 \cdot 049114$ $742,550564408518488.27 \cdot 2.3967699 \cdot 053183$ $7435.5204941017240727 \cdot 25802639 \cdot 057248$ $7445.535364118307842727636349 \cdot 061309$ $74555502541349362527 \cdot 2946881 \quad 9 \cdot 065367$ $746556516415160936{ }^{2} 27 \cdot: 31$ SOCO6 $9 \circ 069422$ $74755800941683272327: 33130079073472$ $7485.5950441850899227 \cdot 34958879 \cdot 077519$ $74956100142018974927 \cdot ? 6786449 \cdot 08156.3$ $75056250042187500027 \cdot 38612799^{\circ} 085603$ $75150400142356475127 \cdot 40 \cdot 137928 \cdot 089639$ $75256550442.5250008,27 \cdot 42961849 \cdot 093672$ $753567009426957777.27 \cdot 44084559.097701$ $75456851642866106427 \cdot 45906049 \cdot 1017: 6$ $75.57002 .543036887527 \cdot 47796339 \cdot 10.5 \cdot 48$ $756.571 .53645208121627 \cdot 4951.51519 \cdot 109766_{1}$
 758 $57456443551951227 \cdot 5317998$ 9•117793 $75957608143724547927 \cdot 54995469 \cdot 191801$ $76057760043897600027 \cdot 5680975$ 9•125805 $76157912144071108127 \cdot 5862284$ 9•129806 $76258064444245072827 \cdot 60434759 \cdot 133803$ $76358216944419494727 \cdot 62245469 \cdot 137797$ $764.58369644594374427 \cdot 64054999 \cdot 141788$ $76558522544769712527 \cdot 65863349 \cdot 145774$ $76658675644945509627 \cdot 67670509 \cdot 149757$ $76758828945121766327 \cdot 69476489 \cdot 153737$ $76858982445298483227 \cdot 71281299 \cdot 157713$ $76959136145475660927 \cdot 73084929 \cdot 161686$ $77059290045653300027 \cdot 74887399 \cdot 165656$ $771594441458314011 \quad 27 \cdot 76688689 \cdot 169622$ $77259598446009964827 \cdot 7848880 \quad 9 \cdot 173585$ $77359752946188991727 \cdot 80287759 \cdot 177544$ $77459907646368482427 \cdot 8 \& 085559 \cdot 181500$ $77560062546548437527 \cdot 83882189 \cdot 185452$ $77660217646728857627 \cdot 85677669 \cdot 189401$ $77760372946909743327 \cdot 87471979 \cdot 193347$ $77860528447091095227 \cdot 8926514 \cdot 9 \cdot 197289$ $77960684147272913927 \cdot 91057159 \cdot 201228$ $78060840047455200027 \cdot 92848019 \cdot 205164$ $781609961476379541 \quad 27 \cdot 94637729 \cdot 209096$ $782611524478211768 \mid 27 \cdot 96426299 \cdot 213025$ $78361308948004868727 \cdot 98213729 \cdot 216950$ $78461465648189030428 \cdot 0 \quad 9 \cdot 220872$ $\mid 78561622548373602528 \cdot 01785159 \cdot 224791$ $78661779648558765628 \cdot 03569159 \cdot 228706$ $78761936948744340328 \cdot 05352039 \cdot 232618$ 788620944489303872 28•0713377 9•237527 $78962252149116906928 \cdot 08914389 \cdot 240433$ $79062410049303900028 \cdot 10693869 \cdot 244335$ $79162568149491367128 \cdot 12472229 \cdot 248234$ $792627264491 ; 79308828 \cdot 14249469 \cdot 252130$ $793,62884949867725728 \cdot 160255719 \cdot 256022$ $79463043650056618428 \cdot 17800569 \cdot 259911$ $79563202550245987528 \cdot 195744419 \cdot 263797$ $79663361650435833628 \cdot 2134720 \mid 9 \cdot 267679$ $79763520950626157328 \cdot 23118849 \cdot 271559$ $79863680450816959228 \cdot 2488938 \quad 9 \cdot 275435$ $79963840151008239928 \cdot 2665881 \quad 9 \cdot 279308$ $30064000051200000028 \cdot 284271 ヶ 9 \cdot 283177$ 801 $641601|513922401| 28 \cdot 3019434 \mid 9 \cdot 287044$ $80264320151584950828 \cdot 3196045 \quad 9 \cdot 290907$ $803644809517781627 \mid 28 \cdot 33795469 \cdot 294767$ $804646416519718464 \mid 28 \cdot 3548938 \quad 9 \cdot 998623$ 805648025521660125 28：3725219 9•302477 806649636523606616 28•3901391 $9 \cdot 306327$ 807651249525557943 28•4077454 9•310175 $80865286452751411228 \cdot 42534089 \cdot 314019$ $80965448152947512928 \cdot 4429253 \mid 9 \cdot 317859$ $81065610053144100028 \cdot 46049899 \cdot 321697$
 $812659344|535387328| 28 \cdot 4956137 \mid 9 \cdot 329363$ $81966096953736779728 \cdot 51 \cdot 31549 \quad 9 \cdot 333191$ $81466 \div 596.539353144 / 28: 53068529 \cdot 337016$ $815664225 \cdot 54131337528 \cdot 54820489 \cdot 340838$ $816665856543338496,28 \cdot 56571379 \cdot 344657$ $81766748954533851328 \cdot 58321199 \cdot 348473$ $81856912454734343228 \cdot 6006993$ 9•352285 ｜819，670761 549353259．28•6181760｜9•356095

$82067240055136800028 \cdot 63564219 \cdot 35990$ $82167404155338766128 \cdot 65309769 \cdot 36370$ $822,67568455541224828 \cdot 67054249 \cdot 96750$ $82367 \div 32955744176728 \cdot 68797669 \cdot 37130$ $82467897655947622428 \cdot 70540029 \cdot 37509$ 825 ＇680525 561515625 28•7228132 9•37888 $82668227656355997628 \cdot 74021579 \cdot 98267$ $82768392956560928328 \cdot 75760779 \cdot 38646$
 $82968724156972278928 \cdot 7923601 \quad 9 \cdot 39402$ $83068890057178700028 \cdot 80972069 \cdot 39779$ $83169056157385619128 \cdot 82707069 \cdot 40156$ $83269222457593036828 \cdot 84441029 \cdot 40535$ $83369388957800953728 \cdot 86173949 \cdot 4091$（ $834,69555658009370428 \cdot 87905829 \cdot 4128$ $83569722558218287528 \cdot 89636669 \cdot 4166:$ $836698896,58427705628 \cdot 91366469 \cdot 42038$ $83770056958637625328 \cdot 9309523 \cdot 9 \cdot 42414$ $83870224458848047228 \cdot 9482297$ 9•4278！ $83970392159058971928 \cdot 96549679 \cdot 4316$. $84070560059270400028 \cdot 98275359 \cdot 43538$ $84170728159482332129 \cdot 0 \quad 9 \cdot 4391$ ：
$84270896459694768829 \cdot 01723639 \cdot 4428^{\prime}$ $84371064959907710729 \cdot 034462319 \cdot 4466$ $84471233660121158429 \cdot 05167819 \cdot 4503$.
$84571402560335112529 \cdot 06888379 \cdot 4540$ $84671571760549573629 \cdot 05607919 \cdot 4577$ $84771740960764542329 \cdot 10326449 \cdot 4615$ $84871910460980019229 \cdot 12043969 \cdot 4652$ $84972080161196004929 \cdot 13760469 \cdot 4689$ $85072250061412500029 \cdot 15475959 \cdot 4726$ $85172420161629505129 \cdot 17190439 \cdot 4763$ $85272590461847020829 \cdot 18903909 \cdot 4801$ $85372760962065047729 \cdot 20616379 \cdot 483$ \＆ $85472931662283586429 \cdot 22327849 \cdot 487$ ！ $85573102562502637529 \cdot 24038300 \cdot 491$ \％ $85673273662722201629 \cdot 25747779 \cdot 494$ ！ $85773444962942279329 \cdot 2745623 \cdot 9 \cdot 4981$ $85873616463162871229 \cdot 2916370,9 \cdot 502$ ： $85973788163383977929 \cdot 3087018,9 \cdot 505$ $86073960063605600029 \cdot 32575669 \cdot 509$ $861741321638277381 \quad 29 \cdot 34280159 \cdot 513$ $86274304464050392829 \cdot 35983659 \cdot 517$ $86274476964273564729 \cdot 37686169 \cdot 520^{\prime}$ $864746496644972544 \quad 29 \cdot 39387699 \cdot 524$ $86574822564721462529 \cdot 41088239 \cdot 5281$ $866749956649461896,29 \cdot 42787799 \cdot 531$ $867751689651714363^{\prime} 29 \cdot 44486379 \cdot 535$ $868753424653972032 \quad 29 \cdot 46183979 \cdot 33$ ？ $86975516165623490929 \cdot 47880599 \cdot 542$ $870756900658503000 \quad 29 \cdot 49576249 \cdot 54 \mathrm{C}$ $871758641660776311 \quad 29 \cdot 51270919 \cdot 550$ 872760384663054848 29•5296461 $9 \cdot 55$ 87376212966.5338617 29：5465794 9．55 $87476387666762762429 \cdot 56349109 \cdot 512$ $87576562566992187529 \cdot 58039899 \cdot 56$ $87676737667229137629 \cdot 59729729 \cdot 56$ $87776912967452613329 \cdot 61418589.57$ $87877088467683615229 \cdot 63106489 \cdot 57$ $8797726416791.5143929 \cdot 64793259 \cdot 57$ $880 \mid 774400$ 6 $6147200029 \cdot 66479399 \cdot 58$ $881|776161.688797841| 29 \cdot 6816442,9 \cdot 58$ $882 \mid 777924,+8612896829 \cdot 69848489 \cdot 59$

| quare. | Cube. | $\frac{\text { Square Root. }}{}$ Cube Root. |
| :---: | :---: | :---: | :---: |
| 79689688465387 | $\frac{29 \cdot 7153159}{9 \cdot 593716}$ | |
| 81456690807104 | $29 \cdot 7321375$ | $9 \cdot 597337$ | 83225693154125 29•7489496 $9 \cdot 600954$ $84996695506456 \cdot 29 \cdot 76575219 \cdot 604569$ 86769697864103 29•7825452 9•608181 $88544700227072 \cdot 29 \cdot 79932899 \cdot 611791$ $9032170259.536929 \cdot 81610309 \cdot 615397$ $92100704969000 \quad 29 \cdot 83286789 \cdot 619001$ $9388170734797129 \cdot 84962319 \cdot 622603$ $95664709732288.29 \cdot 86636909 \cdot 626{ }^{\circ} 91$ $97449712121957.29 \cdot 88310569 \cdot 629 ، 97$ $9923671451698429 \cdot 89983289 \cdot 633390$ $0102571691737529 \cdot 91655069 \cdot 636981$ $0281671932313629 \cdot 9332591 \quad 9 \cdot 640569$ $0460972173427329 \cdot 94995839 \cdot 644154$ $0640472415079229 \cdot 96664819 \cdot 647736$ $0820172657269929 \cdot 98332879 \cdot 651316$ $1000072900000030 \cdot 0$

$9 \cdot 654893$ $1180173143270130 \cdot 01666209 \cdot 658468$ $136047338708083003331489 \cdot 662040$ $1540973631439730 \cdot 04995849 \cdot 665609$ $1721673876326430 \cdot 06659289 \cdot 669176$ $1902574121762530 \cdot 0832179,9 \cdot 672740$ $2083674367741630 \cdot 09983399 \cdot 676301$ 22649 $746142643330 \cdot 11644079 \cdot 679860$ 24464748613312 30•J330383 9•683416 $2628175108942930 \cdot 14962699 \cdot 686970$ $28100753.57100030 \cdot 16620639 \cdot 690521$ $29921756058031 \times 30 \cdot 18277659 \cdot 694069$ $31744758550528 \quad 30 \cdot 19933779 \cdot 697615$ $33569761048497 \quad 30 \cdot 21588999 \cdot 701158$ 135 ?96 $76355194430 \cdot 23243299 \cdot 704698$ $3722576606087530 \cdot 24896699 \cdot 708236$ $39056768575296 \times 30 \cdot 26549199 \cdot 711772$ $4088977109521330 \cdot 2820079 \cdot 9 \cdot 715305$ $4272477362063230 \times 2985148 \quad 9 \cdot 718835$ $44561776151559130 \cdot 31501289 \cdot 722363$ $4640077868800030 \cdot 3315018.9 \cdot 725888$ 48241781229961 30•3479818:9•729410 $50084783777448 \quad 30 \cdot 36445299 \cdot 732930$ 51929786330467 |30 $38809151 \cdot 9 \cdot 736448$ $15377678888902430 \cdot 39736839 \cdot 739963$ $55625791453125 \cdot 30 \cdot 41381279 \cdot 743475$ 55476794022776 S0•4302481 $9 \cdot 746985$ $59329796597983 \quad 30 \cdot 44667479 \cdot 750493$ 61184799178752 30-4630924 9•753998 $6304180176508930 \cdot 17950139 \cdot 757500$ $6490080 \cdot 1357000030 \cdot 49590149 \cdot 761000$ $6676180695449130 \cdot 5122926!9 \cdot 764197$ $6 R 624$ 809 $5.5751 ; 8) ? 0 \cdot 52867509 \cdot 767992$ $70-18981216 G 23730 \cdot 5450487$ 9.771484 $7235081478050430 \cdot 56141869 \cdot 774974$ S.1225 $817400375(30 \cdot 57776979 \cdot 778461$ $77609682002585630 \cdot 59 \cdot 11171$ 9.782946 $3779698296.56553 .30 \cdot 610 \cdot 15.579 \cdot 785428$ $79841182529367230 \cdot 62678579 \cdot 788908$ $351721827 \cdot 36019: 30 \cdot 613106999 \cdot 792386$ $8860083058400030 \cdot 659419+9 \cdot 795861$ $385481833237621130 \cdot 67572339 \cdot 799333$

No.	Square.	Cube.	Square Root.	Cube Root.

$942 \quad 88736$
943889249
944891136
945893095
$\begin{array}{lllllll}946 & 894916 & 846590536 & 30 \cdot 7571130 & 9 \cdot 816659\end{array}$

| 947 | 896809 | 849278123 | $30 \cdot 7733651$ | 9.820117 |
| :--- | :--- | :--- | :--- | :--- | :--- |

| 948 | 898704 | 851971392 | $30 \cdot 7896086$ | $9 \cdot 823572$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

| 949 | 900601 | 854670349 | $30 \cdot 8058436$ | $9 \cdot 827025$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

| 950 | 902500 | 857375000 | $30 \cdot 8220700$ | $9 \cdot 830475$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

| 952 | 906304 | 862801408 | $30 \cdot 8544972$ | $9 \cdot 837369$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{llllll}954 & 910116 & 86825066430 \cdot 8868904 & 9 \cdot 844253\end{array}$

| 955 | 912025 | $87098387530 \cdot 9030743$ | $9 \cdot 847692$ |
| :--- | :--- | :--- | :--- | :--- |

| 956 | 913936 | $87372281630 \cdot 9192497$ | $9 \cdot 851128$ |
| :--- | :--- | :--- | :--- | :--- |

$\begin{array}{llllll}960 & 921600 & 884736000 & 30 \cdot 9838668 & 9 \cdot 864848\end{array}$
961 923521
962925444
$963 \quad 927369$
$964 \quad 929296$
965,931225
966933156

| 967 | 935089 |
| :--- | :--- | :--- |

$968 \quad 937024$
969938961
$970 \quad 940900$
971942841
972944784
$\begin{array}{ll}973 & 946729\end{array}$
974. 948676

975950625
976952576
977954529
978956484
$979 \quad 958441$
$980 \quad 960400$
981962361

982	964324

983966289
984968256
985970225
$\begin{array}{ll}986 & 972196\end{array}$
$947 \quad 974169$
988976144
$989 \quad 978121$
990 980100
991982041
$992 \quad 984064$
$95: 3 \quad 986049$
$991 \quad 988036$
$995 \quad 990025$
$996^{1} 992016$
$997 \quad 991009$
$998 \quad 996004$
$999-998001-9670020991$-600961 $100010000(0) 1000000000,31 \cdot 6227767 / 10 \cdot 0$
$9 \cdot 868272$ $9 \cdot 871694$ $9 \cdot 875113$ 9.878530 9•881945 $9 \cdot 8853.57$ $9 \cdot 888767$ $9 \cdot 8921$:4 9.895580 9.898983 $9 \cdot 902383$ 9.905781 $9 \cdot 909177$ 9•9125ヶ1 9.915962 9.91 6.251 9-922738 9.926122 9•929504 $9 \cdot 932883$ 9.936261 $9 \cdot 939636$ $9 \cdot 943009$ 9-940379 ? $9 \cdot 949717$ $9 \cdot 953113$ 9-956477 9-95983! $9 \cdot 963198$ 9•9665554 9-969009 $9 \cdot 973262$ $9 \cdot 976612$ 9.979959 9.983304 9.9866 .18 9.989990 9-99:3:328 $9 \cdot 996665$. 99666

2297h. A power is that number which is obtained by multiplying a number screral time by itself. A square is the number muliplied by itself; a cube, twice by itself. Th, square is called the second power; and the cube the third ; when multiplied again b itself it becomes the fourth power (commonly called the bi-quadrate); and so on :-

Power.	Of No. 2.	Of No .3.	Number	4th Power.	5th Power.
1.	2	3	1	1	1
II.	or square 4	orsquare 9	2	16	32
III.	or cube 8	orcule 27	3	81	243
1 V.	16	81	4	256	1,424
V.	32	$2+3$	5	62.	3,125
VI.	64	7:9	6	1.296	7.776
VII.	128	2,187	7	2.401	16,807
VIII.	256	6,561	8	4,096	32,768
1X.	512	19,683	9	6. 561	59,049
N.	1,024	59,049	10	10,000	100,000

2297i. We shall now at once proeeed to the general principles on which the measurt ment and estimation of work in the several artificers' departments are conducted; pr mising that the Manchester Society of Architects have issued a revise / edition (July 1880 of their recommendations as to the method of taking out quantities and measuring u work, which may possibly be of use and interest to many students. It is reprinted i the British Architect for September 3, 1886, p. ${ }^{233}$.
2298. Excavator. Digging is performed by the solid yard of 27 cubic feet (that i 3 feet $\times 3$ feet $\times 3$ feet $=27$ feet). Where the ground is soft in consistence, and nethin more is necessary beyond cutting with a spade, a man may throw up a cubic yard per hou or ten cubic yards in a day; but if of firmer quality, hacking becomes necessary, and a additional nau will be required to perform the same work; if very strong gravel, mol assistance will be required. If, therefore, the wages of a labourer were $2 s .6 d$. per du: the price of a yard would be $3 d$. for cutting only, without profit to the contractor; 6 d . fi cutting and hacking, and $9 d$. if two hackers be necessary. In sandy ground, whe) wheeling becomes necessary, three men will remove 30 cubic yards in a day to the di tance of 20 yards, two for filling and one for wheeling. But to remore the same quantit in a day to a greater distance, an additional man for every 20 yards will be required.
2290. The quantity of excaration is the length multiplied into the depth and widtl In the cases of trenches dug for the reception of walls, and sloped to prevent the earl falling in, a mean width is to be taken. Thns, suppose an excaration 24 feet long, 4 fe wide at top, and 2 feet at the bottom (average width thercfore 3 feet), and 5 feet deep, v have for the quantity of earth $\frac{24 \times 3 \times 5}{27}=13.33$ cube yards.
2300. Brickwork. In measuring and estimating the value of brickwork, the followit points must be remembered. A rod of brickwork is a mass $16 \frac{1}{2}$ feet square; hence tl quantity of superficial feet which it contains is $272 \frac{1}{4}$ feet (16.5×16.5); but the $\frac{1}{4}$ of the fo is too trifling to make it worth while to embarrass calculations with it, and consequent 272 feet is universally taken as the superficial standard content of a rod. Its standal thickness is one brick and a half (or $13 \frac{1}{2}$ inches). Hence it follows, that a cubic rod brickwork would be 272 feet $\times 13 \frac{1}{2}$ inches $=306$ feet cube. The allowance for the numb of bricks is taken as between 4000 and 4500 ; much depending on the closencss of t joints and the nature of the work. In walling, a reduced foot is generally taken as 1 quiring 17 bricks; a foot superficial in Flemish bond, laid in malm facing, about 8 brick and a fout superficial of gauged arehes, 10 bricks. In paving, a yard requires 82 parin bricks, or 48 stock bricks, or 144 Dutch clinkers laid on edge, or 36 bricks laid flat.
2301. Tiling is measnred by the square of 100 superficial feet; a square will requi 800 at a 6 -inch guage, 700 at a 7 -inch gauge, and 600 at an 8 -inch gauge. The gau necessarily regulates the distance of the laths, and, at the same time must be depende on the slope of the roof, which, if flat, slould not be less than 6 inches, as for instanc above the kerb in a kerb roof; and not more than 8 inches in any case. A square plain tiling requires about on an average a bundle of laths, two bushels of lime, and fi of sand, and at least a peck of oak pins. The laths are sold in bundles of 3,4 , and $5-\mathrm{f}_{\mathrm{c}}$ lengths. A bundle of the 3 -feet contains eight score, the 4 -feet six score, and the $5-\mathrm{ffi}_{\mathrm{i}}$ five score to the bundle. The nails used are fourpenny; they are purchased by the lo hundred, that is, of six score, and, in day work, are charged by the bricklayer 5 -score the hundred. The name of nails, as fourpenny, fivepenny, \&c., means $4 d ., 5 d$, \&c. per 10 The number of nails required for a bundle of 5 -feet laths is 500 , for 6 -feet laths is 600
2302. A square of pantiling requires 180 tiles laid at a 10 -inch gauge and a bundie 12 laths 10 feet long. (See Table 2321.)
2303. In lime measure, a "hundred" is 100 peecks, or 25 striked bushels (a measure,
8304. In sand measure, 18 heaped bushels, or 21 striked bushels, nal to 1 yard cube, is a single load, and about 24 cubic fect 1 ton. 2305. In mortar 27 cubic fect make 1 load, which on common casions contains half a hundred of lime with a proportional quantity sand. Eleven hundred and thirty-four cubic inches make a hod mortar; that is, a mass 9 inches wide, 9 inches high, and 14 shes long. Two hods of mortar are nearly equal to half' a buslel. re following measures and weights it may be also useful to rember: -
23_{2} cubic fect of sand $=1$ ton; hence 1 cubic foot weighs $95 \cdot 3$ lhs. $17 \frac{1}{2}$ cubic feet of clay $=1$ ton ; bence 1 cubic foot weighs about 0 lbs.
18 cubic feet of common eartl $=1$ ton; hence 1 cubic foot weighs arly 124 lbs .
306 cubic feet of brickwork $=13$ tons; hence 1 cubic foot is equal iull 95 lbs.
2306. In the measurement of bickwork, from the surface being 272 t and the standard thickness $1 \frac{1}{2}$ brick, it will be immediately seen at nothing more is requisite than, having ascertained the thickness of ch part of the work, to reduce it to the standard thickness above ated, and this will be found sufficiently easy in almost all cases. here, however, this cannot be done, we can always ascertain with fficient accuracy the cubic contents in feret of any mass of brickwork; d dividing by 306 we have the number of rods.
2307. We here present an illustration in a wall of the most mnon occurrence (fig. $808 h$), which we vill suppose 20 feet long thout reference to any wall which mignt return from it, and thus diinish its length in measuring therewith a returning wall. The followg is the method of entering and calculating the dimensions.

Fig. 80\%h.

	Length multiplied by the Height.	Area.	Number of Bricks in Thickness.	Factors to redace the Area to Standard of [1 13rick.	Thickness reduced to $1 \frac{1}{2}$ Brick in Fcet sup.
ootings 6 courses	$\left\{\begin{array}{r} 20 \cdot 0 \\ 6 \\ \frac{60 \cdot 0}{6} \end{array}\right.$				
		$10 \cdot 0$	4	23	$26 \cdot 8$
		10.0	31	21	$23 \cdot 4$
Basement wall		10.0	3	2	$20 \cdot 0$
	$\int 20 \cdot 0$				
rommel-floor wall	-	1200	21	$1 \frac{2}{3}$	$200 \cdot 0$
	$\left\{\begin{array}{l}20.0 \\ 120\end{array}\right.$				
	$\underline{ }$	$240 \cdot 0$	2		
)ne-pair wall	$\int 20 \cdot 0$		2	3	320.0
	-	$280 \cdot 0$	11	1	280.0
wo-piair wall -		140.0	1	3	93.4
					$963 \cdot 4$

Therefore the total is $963 \cdot 4$ superficial feet $1 \frac{1}{2}$ brick thick, and $\frac{993}{272}=3$ rods, 147 feet. 2308. Upon this principle the measuring and estimation of brick work is conducted, and ving the price and quantity of brieks in a rod, and the lime, sand, and labour, which !I presently be given, we may cone to a pretty accurate knowledge of its value. But cre are other articles which will require onr attention, to which we shall presently vers. Before proceeding, however, we may as well obscrve that the above result of rons 147 fert might have heen similarly obtained by cubing the mass of brick work and riting the whole mass by 306 , but with much more labour.
2309. In measuring walls faced with bricks of a superior quality, the area of such facing must be measured, or allowance extra is made in the price per rod of the brickwork.
2310. All apertures and recesses from any of the faces are deducted.
2311. Gauged arches are sometimes deducted and charged separately, sometimes not; but whether deducted or not does not signify, as the extra price must be allowed in the latter case and the whole price in the former. Rubbed and gauged arches, of whatever form, are measured and charged by the superficial foot.
2312. The angles of groins, outside and inside splays, bird's mouths, bull's noses, are measured by the lineal or ruming foct; but cuttings are measured by the foot superficial. Chimneys are measured solid to allow for the trouble of forming and pargetting the flues. The opening at bottom, however, is to be deducted.
2313. Quarters in bricknogging are measured in, as are all sills, stone strings, and timber inserted in walls. Two inches are also aliowed in the height of brickwork for bedding plates if no brickwork be over them.
2314. Ovens, coppers, \&c. are measured as solid work, deducting only the ash holes; but all fire stone, Welsh lumps, tiles, $\&$ c., though measured alone, are not to be deducted out of the brickwork. Pointing, colouring, \&c. to fronts, is measured by the foot superficial. Plantile creesing by the foot lineal.
To estmate the value of a rod of brickwork, the method is as under : -

2315. In measuring and estimating all sorts of artificers' works, the method usually adopted for saving labour in making out the account is to arrange in separate columns cach sort of work, and then to add them up and carry the total to the bill. In brickwork, where walls are of different thicknesses, these with their deductions are arranged in sepirate columns, and then ali are reduced to the standard thickness.
2316. The common measure for tiling is a square of 10 feet, containing therefore 100 feet supcrficial. Claims are made for the eaves to the extent of 6 inches; but in pautiling this ought not to be allowed, as a claim not founded in justice, though custom is pleaded for it.
2317. The following table shows the number of bricks necessary for constructing any number of superficial feet of walling from 1 to 90,000 , and from half a brick to $2 \frac{1}{2}$ bricks thick; and thence, by addition only, to any thickness or mmber required, at the rate of 4500 bricks to a reduced rod. Thus, if it be required to find the number of bricks wanted to build a piece of work containing 756 feet super. of walling $1 \frac{1}{2}$ brick thick, we find by inspection for 700 feet 11580 bricks; for 50 feet, 827 bricks; and for 6 feet, 99 bricks; in all, $11580+827+99=12506$.
'Table showing the hequisite Quantity of Buicks for a given Suterficies of Walinino.

$\begin{aligned} & \text { Area } \\ & \text { of Wall in } \\ & \text { Feet. } \end{aligned}$	No. of Bricks to Thicknesses of				
	$\frac{1}{3}$ Brick.	1 Brick.	112 Brick.	2 Bricks.	$2{ }^{21}$ Bricks.
1	5	1:	16	22	. 27
2	11	22	33	44	55
3	16	3.3	49	66	82
4	22	44	66	88	110
5	27	55	82	110	137
6	33	66	99	132	165
7	38	77	115	1.54	193
8	44	88	132	176	220
9	49	99	148	198	248
10	5.5	110	165	220	275
20	110	220	3:30	441	551
30	16.5	3:30	496	${ }_{6} 61$	827

Area of Wall in Feet.	No. of Bricks to Thicknesses of				
	${ }_{6}$ Brick.	1 Brick.	$1 \frac{1}{2}$ Brick.	2 Bricks.	212 Bricks.
40	290	441	661	882	1102
50	275	551	827	1102	1378
60	330	661	992	1323	1654
70	386	772	1158	1544	1930
80	441	882	1323	1764	2205
90	496	992	1488	1985	2481
100	551	1102	1654	2205	2757
200	1102	2205	33508	4411	5514
300	1654	3308	4963	6617	8272
400	2205	4411	6617	8323	11029
500	2757	. 5514	8272	11029	13786
600	3308	6617	9926	19235	16544
700	3860	7720	11580	15441	19301
800	4411	882.3	13233	17647	22058
900	4963	9926	14889	19852	24816
1000	5514	11029	16544	22058	25753
2000	11029	22058	33088	44117	55147
5000	16544	33088	49632	66176	82720
4000	22058	44117	66176	88235	110294
5000	27.57 .3	55147	82720	110294	137867
6000	33088	66176	99264	132352	165441
7000	38602	77205	115803	154411	193014
8000	44117	88235	132359	176470	220588
9000	49632	99264	148896	198529	248161
10000	55147	110294	165441	220588	275735
20000	110294	220588	330882	441176	551470
30000	165441	3:30882	496:323	661764	827205
40000	220588	441176	661764	882352	1102940
50000	275735	551470	827205	1102940	1378675
60000	330882	661764	992646	1323528	1654410
70000	386099	772053	1168087	1544116	1930145
80000	441175	8823.52	1323528	1704704	2205080
90000	496323	992646	1468969	1985292	2481615

2318. The next table which we submit for use exhibits the number of reduced feet to aperficial feet from 1 to 10,000 , the thicknesses being from $\frac{1}{2}$ to $2 \frac{1}{2}$ bricks.

Area of Wall in superficial lect.	Reduced Quantity in				
	$\frac{1}{1}$ Brick.	1 Brick.	1\% Brick.	2 Bricks.	23 Bricks.
	Todis. qrs. ft. in.	Rods. qrs. ft. in.	Rods. qrs. ft. in.	Roils. qres. ft. in.	Rods. qres. ft in.
1	$\begin{array}{llll}0 & 0 & 0 & 4\end{array}$	$\begin{array}{llll}0 & 0 & 0 & 8\end{array}$	0	$\begin{array}{lllll}0 & 0 & 1 & 4\end{array}$	$\begin{array}{llll}0 & 0 & 1 & 8\end{array}$
2	$0 \quad 0 \quad 0 \quad 8$	0 0) 14	$0 \quad 0 \quad 20$	$\begin{array}{llll}0 & 0 & 2 & 8\end{array}$	$0 \begin{array}{llll}0 & 0 & 3 & 4\end{array}$
3	$0) 010$	$0 \quad 0 \quad 20$	$0 \quad 0 \quad 30$	$0 \quad 0 \quad 4 \quad 0$	00050
4	0 O 101	$\begin{array}{lllll}0 & 0 & 2 & 8\end{array}$	0 O 040	$0 \quad 0 \quad 5 \quad 4$	$0 \begin{array}{llll}0 & 0 & 6 & 8\end{array}$
5	$0 \begin{array}{llll}0 & 0 & 1 & 8\end{array}$	$0 \quad 0 \quad 34$	$0 \quad 0 \quad 50$	0068	$0) 084$
6	$0 \quad 0 \quad 2$	$0 \quad 0 \quad 40$	$0 \quad 0 \quad 6 \quad 0$	$0 \quad 0 \quad 80$	000100
7	$0 \quad 0 \quad 24$	0 0 1 8	$0 \quad 0 \quad 70$	$0) 094$	$0 \quad 0 \quad 118$
8	$\begin{array}{llll}0 & 0 & 2 & 8\end{array}$	$0 \quad 0 \quad 5 \quad 4$	$0 \quad 0 \quad 8 \quad 0$	() 0108	$0 \quad 0 \quad 13 \quad 4$
9	$0 \quad 0 \quad 30$	$0 \quad 0 \quad 6$	$0 \quad 0 \quad 9 \quad 0$	$0 \quad 0120$	$0 \quad 0 \quad 150$
10	0 0 $0 \cdot 304$	$0 \quad 0 \quad 6 \quad 8$	0 O 010	$0 \quad 0 \begin{array}{llll}0 & 13 & 4\end{array}$	$0 \quad 0168$
11	00038	() $0 \quad 7 \quad 4$	0 0 1-11 0	$\bigcirc \quad 0148$	$0 \quad 0 \quad 18 \quad 4$
12	0040	0 O 0880	$0 \quad 0120$	00160	$0 \quad 0200$
13	0 O 01	$\begin{array}{lllll}0 & 0 & 8 & 8\end{array}$	() 013130	00174	0 () 218
14	() 018	$0 \quad 0 \quad 91$	0 O 14 0	0 O $018 \quad 8$	00234
1.5	() 050	$0 \quad 0100$	() 01150	$0 \quad 0200$	() 0250
16	() 01505	$0 \quad 0108$	$\begin{array}{llll}0 & 0 & 16 & 0\end{array}$	0 0 21 4	0 0 26 8
17	0088	$0 \quad 0114$	00170	0 0 0228	0 0 028 1

Area of Wall in superficial Feet.	Reduced Quantity in				
	$\frac{1}{2}$ Brick.	1 Brick.	1\% Brick.	2 Bricks.	$2 \frac{1}{2}$ Bricks.
	Rods. qrs. ft. in.	Rods. qrs, ft. in.	Rods. qrs, ft. in.	Rods. qrs. ft. in.	Rods. qrs. ft. in.
18	$0 \quad 0 \quad 6 \quad 0$	$0 \quad 0 \quad 120$	$0 \quad 0180$	$0 \quad 0 \quad 24 \quad 0$	$0 \quad 0 \quad 30 \quad 8$
19	00064	$\begin{array}{lllll}0 & 0 & 12 & 8\end{array}$	$0 \quad 0190$	$0 \quad 0254$	$0 \quad 0.31 \quad 8$
20	$\begin{array}{llll}0 & 0 & 6 & 8\end{array}$	$\begin{array}{lllll}0 & 0 & 13 & 4\end{array}$	$0 \quad 0200$	0 0268	0 0 33
21	$\begin{array}{llll}0 & 0 & 7 & 0\end{array}$	$\bigcirc 0140$	0 0 21 0	0 028 0	() $03.35 \quad 0$
22	$\begin{array}{lllll}0 & 0 & 7 & 4\end{array}$	$\bigcirc \quad 0 \quad 148$	$0 \quad 0220$	$0 \quad 0294$	$\begin{array}{llll}0 & 0 & 36 & 8\end{array}$
23	O) 0078	$\bigcirc \quad 0154$	$0 \quad 0230$	$0 \quad 0308$	$0 \quad 0 \quad 38 \quad 4$
24	$\begin{array}{llll}0 & 0 & 8 & 0\end{array}$	O 01610	$0 \quad 024 \quad 0$	$0 \quad 0320$	$0 \quad 040$
2.5	O 00	$\bigcirc \quad 0 \quad 16 \quad 8$	$0 \quad 0250$	$0 \quad 0 \quad 334$	$0 \quad 0418$
26	$\begin{array}{llll}0 & 0 & 8 & 8\end{array}$	$\bigcirc \quad 0 \quad 174$	$\bigcirc 026 \quad 0$	$0 \quad 0 \quad 34 \quad 8$	$0 \quad 0430$
27	$0 \quad 0 \quad 9 \quad 0$	$0 \quad 0180$	$0 \quad 027 \quad 0$	O. 0.360	$0 \quad 0454$
28		$\bigcirc \quad 0 \quad 18 \quad 8$	$0 \quad 028 \quad 0$	$\begin{array}{llll}0 & 0 & 37 & 4\end{array}$	$0 \quad 046 \quad 8$
29	$\begin{array}{llll}0 & 0 & 9 & 8\end{array}$	$\bigcirc \quad 0 \quad 194$	$0 \quad 029 \quad 0$	$0 \quad 0.388$	$0 \quad 0484$
30	$\bigcirc \quad 0 \quad 10 \quad 0$	$0 \quad 020 \quad 0$	$0 \quad 030 \quad 0$	$\bigcirc 040$	$0 \quad 050 \quad 0$
31	$0 \quad 0 \quad 10 \quad 4$	$0 \quad 0208$	$0 \quad 0.31 \quad 0$	$0 \quad 0411$	$0 \quad 0518$
32	$0 \quad 0 \quad 10 \quad 8$	$0 \quad 0214$	$0 \quad 0 \quad 32 \quad 0$	00428	$0 \quad 0 \quad 534$
33	0 O 1110	$0 \quad 0220$	$0 \quad 0330$	$0 \quad 0440$	00550
34	$0 \quad 0 \quad 114$	$\bigcirc \quad 0228$	$0 \quad 0340$	$0 \quad 0454$	O $0.56 \quad 8$
35	$0 \quad 0 \quad 118$	$0 \quad 0234$	$0 \quad 0350$	O 04646	$0 \quad 0 \quad 58 \quad 4$
36	$0 \quad 0 \quad 12 \quad 0$	$0 \quad 0240$	$0 \quad 036 \quad 0$	$0 \quad 048 \quad 0$	$0 \quad 060 \quad 0$
37	$\begin{array}{lllll}0 & 0 & 12 & 4\end{array}$	$0 \quad 0248$	$0 \quad 0 \quad 37 \quad 0$	0 O 494	$0 \quad 0618$
38	$\begin{array}{llll}0 & 0 & 19 & 8\end{array}$	$0 \quad 0254$	$0 \quad 0380$) 0508	$0 \quad 063 \quad 4$
39	$0 \quad 0 \quad 130$	$0 \quad 026 \quad 0$	$0 \quad 0.39 \quad 0$	$0 \quad 0520$	$0 \quad 0650$
40	$0 \quad 0 \quad 13 \quad 4$	O 0268	$0 \quad 0400$	$0 \quad 0 \quad 53 \quad 4$	$0 \quad 0668$
41	$\bigcirc \quad 0 \quad 138$	O 0274	$0 \quad 0410$	$0 \quad 0548$	$\begin{array}{llll}0 & 1 & 0 & 4\end{array}$
42	$\bigcirc \quad 0 \quad 14 \quad 0$	$0 \quad 028 \quad 0$	$0 \quad 0420$	$0 \quad 056 \quad 0$	01120
4.3	$0 \quad 0114$	$0 \quad 028 \quad 8$	$0 \quad 0430$	$\bigcirc \quad 0 \quad 57 \quad 4$	$\begin{array}{llll}0 & 1 & 3 & 8\end{array}$
44	$0 \quad 0 \quad 148$	$\bigcirc \quad 0294$	$0 \quad 0440$	$0 \quad 058 \quad 8$	$0 \quad 158$
45	$\bigcirc \quad 0150$	$0 \quad 0 \quad 30 \quad 0$	$0 \quad 0450$	$0 \quad 060 \quad 0$	$\begin{array}{llll}0 & 1 & 7 & 0\end{array}$
46	$0 \quad 0 \quad 154$	$0 \quad 0308$	$0 \quad 046 \quad 0$	0 O 61 4	$\begin{array}{lllll}0 & 1 & 8 & 8\end{array}$
47	$\begin{array}{llll}0 & \mathrm{C} & 15 & 8\end{array}$	$0 \quad 031 \quad 4$	$0 \quad 0470$	$\bigcirc \quad 0628$	$\begin{array}{lllll}0 & 1 & 10 & 4\end{array}$
48	O $016 \quad 0$	$0 \quad 0320$	$0 \quad 048 \quad 0$	$0 \quad 0640$	$\begin{array}{lllll}0 & 1 & 12 & 0\end{array}$
49	$0 \quad 0 \quad 16 \quad 4$	$\begin{array}{llll}0 & 0 & 32 & 8\end{array}$	$0 \quad 0490$	$0 \quad 0654$	$\begin{array}{llll}0 & 1 & 13 & 8\end{array}$
50	$\bigcirc \quad 0168$	$0 \quad 0334$	O 050	$0 \quad 0668$	$0 \quad 1154$
60	$0 \quad 020$	$0 \quad 040 \quad 0$	00600	$\begin{array}{llll}0 & 1 & 12\end{array}$	$0 \quad 1320$
70	$0 \quad 0234$	$0 \quad 046 \quad 8$	$\begin{array}{llll}0 & 1 & 2 & 0\end{array}$	$\begin{array}{llll}0 & 1 & 25 & 4\end{array}$	$0 \quad 1488$
80	О 0268	$0 \quad 0 \quad 53 \quad 4$	$\begin{array}{llll}0 & 1 & 12 & 0\end{array}$	$\begin{array}{llll}0 & 1 & 38 & 8\end{array}$	$\begin{array}{llll}0 & 1 & 65 & 4\end{array}$
90	$0 \quad 0300$	0060	(1) 122	$0 \quad 1520$	O $2114 \quad 0$
100	$0 \quad 0 \quad 33 \quad 4$	$\bigcirc \quad 0668$	$\begin{array}{llll}0 & 1 & 32 & 0\end{array}$	1654	O 2308
200	O $066 \quad 8$	$\bigcirc \quad 1654$	O 264.4	O 3628	10614
300	$0 \quad 1320$	\bigcirc ¢ 64 O	10280	11600	130240
400	$0 \quad 1654$	- 3628	1160	$1 \begin{array}{llll}1 & 3 & 57 & 4\end{array}$	$2 \begin{array}{llll}2 & 1 & 54 & 8\end{array}$
500	O 2308	10614	13240	$\begin{array}{llll}2 & 1 & 54 & 8\end{array}$	300174
600	$0 \quad 264 \quad 0$	11600	$2 \quad 0.56 \quad 0$	$2 \quad 3 \quad 52 \quad 0$	324801
700	$0 \quad 329 \quad 4$	$1 \begin{array}{llll}1 & 2 & 58 & 8\end{array}$	$2 \quad 2 \quad 20 \quad 0$	$\begin{array}{llll}3 & 1 & 49 & 4\end{array}$	$\begin{array}{lllll}4 & 1 & 10 & 8\end{array}$
800	- 3628	$1 \begin{array}{llll}1 & 3 & 57\end{array}$	$2 \quad 3520$	$3 \quad 346$	$\begin{array}{llll}4 & 3 & 41 & 4\end{array}$
900	10280	20560	$\begin{array}{llll}3 & 1 & 16 & 0\end{array}$	41144	$\begin{array}{llll}5 & 2 & 4 & 0\end{array}$
1000	10614	2×15158	$3 \quad 2480$	$4 \quad 3 \begin{array}{llll}4 & 41 & 4\end{array}$	6
2000	$\begin{array}{llll}2 & 1 & 54 & 8\end{array}$	$\begin{array}{lllll}4 & 3 & 41 & 4\end{array}$	71280	$\begin{array}{llll}9 & 3 & 14 & 8\end{array}$	$\begin{array}{llll}12 & 1 & 1 & 4\end{array}$
3000	$3 \quad 2480$	$7 \begin{array}{llll}7 & 1 & 28 & 0\end{array}$	110080	$14 \quad 2 \quad 46 \quad 0$	$18 \quad 136$
4000	43414	$\begin{array}{lllll}9 & 3 & 14 & 8\end{array}$	$14 \quad 256$	$\begin{array}{llll}19 & 2 & 29 & 4\end{array}$	$\begin{array}{lllll}24 & 2 & 2 & 8\end{array}$
5000	$6 \quad 034 \quad 8$	$\begin{array}{llll}12 & 1 & 1\end{array}$	$18 \quad 1 \quad 36 \quad 0$	$24 \quad 2 \quad 2 \quad 8$	3082374
6000	$\begin{array}{llll}7 & 1 & 28 & 0\end{array}$	$\begin{array}{llll}14 & 2 & 56 & 0\end{array}$	$22)$	$\begin{array}{llll}29 & 1 & 44 & 0\end{array}$	$\begin{array}{llll}36 & 3 & 4 & 0\end{array}$
7000	$8 \quad 2214$	$17 \quad 0 \quad 42 \quad 8$	$\begin{array}{llll}25 & 2 & 64 & 0\end{array}$	3418174	$\begin{array}{lllll}42 & 3 & 38 & 8\end{array}$
8000	$\begin{array}{lllll}9 & 3 & 14 & 8\end{array}$	$\begin{array}{llll}19 & 2 & 29 & 4\end{array}$	$\begin{array}{llll}29 & 1 & 44 & 0\end{array}$	$\begin{array}{llll}39 & 0 & 58 & 8\end{array}$	$\begin{array}{llll}49 & 0 & 5 & 4\end{array}$
9000	110	$\begin{array}{llll}22 & 0 & 16 & 0\end{array}$	$\begin{array}{llll}33 & 0 & 24 & 0\end{array}$	$44 \quad 0320$	$\begin{array}{llll}55 & 0 & 40 & 0\end{array}$
10000	1211	$24 \quad 2 \quad 2 \quad 8$	36340	$49 \quad 0 \quad 5 \quad 4$	61168

2319. The following table exhibits the value of a rod of brickwork (allowing 450 bricks to a rod) at the prices from 30s. to 60s. per thousand for the bricks, and for labour mortar, and scaffolding the several sums of 31.5 s . 31.10 s ., 31.15 s , $41 ., 41.55$., and 41.10 s per rod.

icks per rousand	Labour, Mortar, \&c. per liod, 3l. 5 s	Labour, Mortar, \&c. per Rod, 3l. 10 s .	Labour, Mortar, \&c. per Rod, $3 l .15 s$.	Labour, Mor- tar, \&c. per Rod, 4 l.	$\begin{aligned} & \text { Labour, Mor- } \\ & \text { tar, \&c, per } \\ & \text { Rod, } 4 t \text {. } 5 s . \end{aligned}$	$\begin{array}{\|c} \text { Labour, Mor- } \\ \text { tar, } \mathrm{La} \text {, per } \\ \text { Rod, } 4 l .10 \mathrm{ser} \end{array}$
.	$\begin{array}{lll} \pm & s . & d .\end{array}$				\boldsymbol{t} s. d	t^{t} s. d d
30	1000	$\begin{array}{llll}10 & 5 & 0\end{array}$	10100	10150	1100	1150
32	$\begin{array}{llll}10 & 9 & 0\end{array}$	10140	10190	1140	119	1114
34	10180	$1: 30$	1180	11130	1118	12
36	1170	11120	11170	$12 \quad 20$	127	1212
38	11160	1210	1260	1211	1216	13
40	1250	12100	1215	130	135	1310
42	12140	12190	134	$13 \quad 9 \quad 0$	1314	1319
44	$13 \quad 30$	1380	13130	13180	143	148
46	1312 o	13170	1420	1470	1412	1417
48	14 I	146	14110	1416	15	156
50	14100	14150	15 O 0	$15 \quad 50$	1510	1515
52	14190	1540	$\begin{array}{lll}15 & 9 & 0\end{array}$	15140	1519	164
54	1580	15130	15180	$16 \quad 30$	168	1615
56	15170	$16 \quad 20$	1670	1612	1617	172
58	165	1611	1616	171	17	1711
60	1615	17	17	1710	1715	18

320. The following is a table of the decimal parts of a rod of reduced brickwork.

Dec. Parts.	Feet.	Dec. Parts.	Feet.	Dec. Parts.	Feet.	Dec. Parts.	Feet.	Dec. Pirts.
-00367	41	$\cdot 15073$	81	-29779	121	-44485	161	. 59191
-00735	42	$\cdot 15441$	82	-30147	122	-44852	162	-59.559
-01102	4.3	-15809	8.3	$\cdots 30515$	123	$\cdot 45220$	16.3	-59926
-(01470	44	-16176	84	-30882	$1 \because 4$	-45588	164	-60294
-01838	45	-16544	85	$\cdot 3125$	125	-4,5956	16.5	-60662
-02206	46	-16912	86	$\cdot 31617$	126	-46323	166	-61029
-02573	47	$\cdot 17279$	87	$\bigcirc 31985$	127	-46691	167	$\cdot 61397$
-02941	48	-17647	88	$\cdot 32353$	128	-47059	168	-61765
-0.3309	49	-18015	89	-32720	129	-47426	169	-62132
-03676	50	-18382	90	$\checkmark 33088$	130	-47794	170	-625
-04044	51	-1875	91	33456	131	-48162	171	-62867
-0.1412	52	-19117	92	-33823	132	-48529	172	-63235
$\cdot 04779$	53	-19485	9.3	-34191	13:3	-48897	173	-63604
.05147	54	-19852	9.4	-34.5.59	134	-49265	174	-63971
-05515	. 55	-20221	95	-34926	153	-49632	175	-64338
-05882	56	-20588	96	-35294	136	- 5	176	-6.4706
-0625	57	-20956	97	$\cdot 35662$	137	$\cdot 50637$	177	-6.5073
-06617	58	-21.323	98	-36029	138	-50735	178	-65411
-06985	. 59	-21691	99	-36397	139	-51102	179	-65809
-07353	60	-22059	100	-36765	140	-51.170	180	-66176
07721	61	-22426	101	-37132	141	$\cdot 51838$	181	-6654.4
-08088	62	-22794	102	- 375	142	-52206	182	-66912
-08456	6.3	-23162	103	37867	143	- 52579	183	-67279
-04823	64	-23529	104	-8235	144	-52941	184	-67647
-09191	6.5	-23897	105	-38604	145	-53309	18.5	-68015
'09559	66	-24265	106	-38970	146	-53676	186	-688882
05920	67	-24632	107	-3,9338	147	-54044	187	-6875
-1029 1	68	-25	108	-39706	148	-54412	188	-69117
-10662	69	-25367	109	-40073	149	-51779	189	-69185
-11029	70	-2573	110	-40441	150	$\cdot 55147$	190	-698593
-11397	71	-26;10:3	111	-40809	151	$\cdot 5.515$	191	.79221
-1176.5	72	-26470	112	-41176	152	-5.5882	192	-70.589
-12132	$7: 3$	-268:38	113	-41.514	153	-562.5	19:	-70056;
-125	74	-27206	114	-41912	15.4	$\cdot 56617$	194	-71:32:3
-12867	75	-27573	115	-42279	155	-56985	19.3	-714; ${ }^{\text {a }}$
-13235	76	-279.11	116	- 426.17	1.56	-573.53	196	-79059
-1360.4	77	-28309	117	-1301.5	157	-57721	197	-72.1:6
-13970	78	$\cdot 28676$	118	$\cdot 13382$	158	-58088	198	-723:94
-14738	79	-29041	119	-1375	1.59	-58156	199	7316%
-1170f	so	-2, 3112	140	$\cdot 4417$	160	-5488:3	$2(x)$	-73529

Feet.	Dec. Parts.	Feet.	Dec. Parts.	Feet.	Dec. Parts.	Feet.	Dec. Parts.	Feet.	Dec. Parts
201	$\cdot 73897$	216	79412	231	-84926	245	$\cdot 90073$	259	-95291
202	$\cdot 74265$	217	-79779	232	-85294	246	-90441	260	-95588
203	$\cdot 74633$	218	-80147	233	-85662	247	-90809	261	-95956
204	$\cdot 75$	219	-80515	234	-6029	248	$\cdot 91176$	262	-96323
205	-75367	220	80882	235	-86397	249	$\cdot 91544$	263	-96691
206	$\cdot 75735$	221	-8125	236	-86765	250	-91912	26.4	$\cdot 97059$
207	$\cdot 76103$	222	-81617	237	. 87132	251	-92279	265	.97426
208	$\cdot 76470$	223	-81985	238	-875	2.52	$\cdot 92647$	266	.97794
209	-76838	224	-82353	239	-87867	253	-93015	267	-98162
210	$\cdot 77206$	225	-82721	240	-88235	254	-93382	268	-98599
211	$\cdot 77573$	226	-83088	241	-88604	255	-9375	269	-98897
212	$\cdot 77941$	227	-83456	242	-88970	256	$\cdot 94117$	270	-9926.5
213	-78309	228	-83823	243	89338	257	-94485	271	-99632
214	-78676	229	-84191	244	-89706	258	-94853	272	$1 \cdot 00000$
215	$\cdot 79044$	230	-84559						

2321. The subjoined table shows the number of plaintiles or pantiles required to covel any area from I to 10,000 feet.

Feet superficial.	Plaintiles.			Pantiles.		
	Gauges.			Gauges.		
	6 inches.	$6 \frac{1}{2}$ inches.	7 inches.	11 inches.	12 inches.	13 inches.
1	$7 \frac{1}{2}$	7	$6{ }_{2}^{1}$	12	$1 \frac{1}{2}$	13
2	15	14	13	31	3	$2{ }_{3}^{2}$
3	$22 \frac{1}{2}$	21	$19 \frac{1}{2}$	5	$4 \frac{1}{12}$	4
4	30°	28	26	$6{ }_{3}^{2}$	6	53
5	$37 \frac{1}{2}$	35	321	$8 \frac{1}{3}$	71	6_{3}^{2}
6	45	42	39	10	9	8
7	$52 \frac{1}{2}$	49	451 $\frac{1}{2}$	$11 \frac{2}{3}$	$10!$	93
8	60	56	52	$13 \frac{1}{3}$	12	10_{3}^{2}
9	$67 \frac{1}{2}$	63	$58 \frac{1}{2}$	15	$13 \frac{1}{2}$	12
10	75	70	65	$16{ }_{3}^{2}$	15	133
20	150	140	130	331	30	$26{ }_{3}^{2}$
30	22.5	210	195	50	45	40
40	300	280	260	66_{3}^{2}	60	531
50	375	350	325	831	75	66_{3}^{2}
60	450	420	390	100	90	80
70	525	490	455	$116{ }_{3}^{2}$	105	931
80	600	560	520	$133 \frac{1}{3}$	120	$106{ }^{\text {? }}$
90	675	630	585	150	135	- 120
100	750	700	650	$166{ }_{3}^{2}$	150	1333^{1}
200	1500	1400	1300	$333 \frac{1}{3}$	300	$266{ }_{3}^{2}$
300	2250	2100	1950	500.	450	400
400	3000	2800	2600	$666{ }_{3}^{2}$	600	5393
500	3750	3500	3250	$833{ }^{\frac{1}{3}}$	750	$666{ }_{3}^{2}$
600	4500	4200	3900	1000	900	800
700	5250	4900	4550	$1166{ }^{2}$	1050	9833_{3}^{1}
800	6000	5600	5200	13331	1200	$1066{ }_{3}^{2}$
900	6750	6300	5850	1500	1350	1200
1000	7500	7000	6500	$1666{ }_{3}^{2}$	1500	$1338{ }^{1}$
2000	15000	14000	13000	$3333{ }_{3}^{1}$	3000	$2666{ }_{3}^{2}$
3000	22500	21000	19500	5000	4500	4000
4000	30000	28000	26000	6666_{3}^{2}	6000	53333_{3}
5000	37500	35000	32500	$8333 \frac{1}{3}$	7500	$6666{ }^{2}$
6000	45000	42000	39000	10000	9000	8000
7000	52500	49000	45500	11666_{3}^{2}	10500	$9333{ }^{1}$
8000	60000	56000	52000	$133331 \frac{1}{3}$	12000	$10666{ }_{3}$
9000	67500	63000	58500	15000	13500	12000
10000	75000	70000	65000	16666^{2}	15000	13339\%

The use of the foregoing tables it can scarcely be necessary to explain, They are such o indicate, on inspection, their value; and we shall therefore leave them without furcomment for their application.
322. When work is performed by the day, or the materials used are to be numbered, oftimes necessarily occurs, fire bricks, red rubbers, best marle stocks for cutters, and best ditto, pickings, comnon bricks, place bricks, pawing bricks, kiln-burnt bricks, Duteh clinkers are charged by the thousand,
323. Red rubbers, kiln and fire-burnt hricks, are also charged by the hundred. Foot a and ten inch tiles are charged either thy the thousand or hundred.
324. Sunk foot tiles and ten-inch tiles with five holes, now never used in the south of gland, are charged by the piece.
325. Pantiles, plaintiles, and nine-inch tiles are charged by the thousand.
326. Oven and Welsh oven tiles, Welsh fire lumps, fire bricks, and chimney pots are sold loy the piece.
327. Sand, clay, and loam are charged by the load; lime sometimes by the hundred ght; hut the hundred of 100 pecks is the more usual measure in and about the metrois, Dutch terras is charged by the buskel, which is also sometimes the measure of lime. rtland and other cements are similarly charged. Plaster by the bag.
398. Pantile and plaintile laths are charged by the bundle or load; hair and mortar the load; hip looks and T tiles by the piece.
?29 Neither here, nor in the following pages, is it intended to convey to the reader re than the principles on which an estimate is fcunded. The prices of materials are in ate of constant fluctuation; something approaching a constant value, from the known formance of a good work man, was given in the previons editions from the computations Peter Nicholson, but they are now omitted. Wood working machinery has also altered values very materially.

CARPENTRY AND JOINERY.

2330. The works of the Carpester are the preparation of piles, sleepers, and planking, other large timhers, formerly mueh, but now rarely, used in foundations; the centering which vaults are turned; wall plates, liwtels, and bond timbers; naked flooring, quarter titions, roofing, battening to walls, ribbed ecilings for the formation of vaulting, coves, 1 the like in lath and plaster, posts, \&e.
2331. In large measures, where the quantity of materials and workmanship is uniform, articles are usnally measured by the squate of 100 feet. Piles should be measured the foot cube, and the driving by the foat run according to the quality of the ground 0 which they are driven. Sleepers and planking are measured and estimated lyy the t yard, or the spuare.
2332. Plain centering is measured by the square; but the ribs and hoarding, being ferent qualities of work, should be taken separately. The dimensions are obtained by ting round the areh, and multiplying by the length. Where groins oecm, thesides the asurement as above, the angles must be measured by the foot run, that is, the ribs and ards are to be measured and valued separately, aceording to the exact superficial contents each, and the angles by the linear foot, for the labour in fitting the ribs and boards, and ste of woorl.
2:333. Wall plates, bond timbers, and lintels are measmed by the cubie foot, and gat der the denomination of fir in bond.
2333. In the measnrement and valuation of naked flooring, we may take it cither hy square or the cutee foot. 'lo form an idea of its value, it is to be ohserved, that in wal cubie quantities of small and large timbers the latter will have more superficies than former, whence the saving is not in proportion to the solid contents; and the value, refore, of the workmanship will not be as the cubie grantity. 'The trouble of moving abers inereases with their weight, hence a greater expenditure of time; which, thaugh in an exact ratio with the solid quantity, will not be vastly different, their sections not ying conviderably in their dimensions. As the value at the satving npon a cube foot is enparatively sinall to that of the work performed by the carpenter, the whole cont of our and materials may he ascertaned with sullicient acouracy when the work is sfurin.
2334. When girders occur in maked flooring, the uniformity of the work is thereby crrunted by the mortices and tenons which lecemme necessary; thus the monont arising in the rubie quinatity of the girders would not be suflicient at the same rate per foot as put on the oblier parts, not only beemse of the dillerence of the size, but bechase of the ntien which are rat for the reecetion of the tenoms of the binding jaists. Ifence, for uing the laburar and materialv, the whole shoult be measired and valoned by the cubte

 put npal every mortice and tenon in proportion to their sian, 'Tle bimding joints ure
not unfrequently pulley or chase-mortised for the reception of the ceiling joists; sometimes they are notched to receive the bridging joists on them, and they should therefore be classed by themselves at a larger price per foot eube, or at an additional price fur tho workmanship, beyond common joisting. All theso matters must be in proportion to the description of the work, whether the ceiling joists be put in with pulley mortises and tenons, or the bridgings notched or adzed down.
2335. Partitions may be measured and estimated by the cube foot; but the sills. top pieces, and door heads should be measured by themselves, according to their cubic eontents, at a larger price; bezause not only the uniform solidity, but the uniform quantity, of the workmanship is interrupted by them. The braces in trussed partitions are to be taken by the foot eube at a larger price than the common quartering, on account of the trcuble of fitting the ends of the uprights upon their upper and lower sides, and of forming the abutments at the ends.
2336. All the timbers of roofing are to be measured by the eubie foot, and classed aecording to the difficulty of execution, or the waste that occurs in performing the work. Common rafters, as respects labour, are rated much the same as joists or quarters; purlins, which require trouble in fitting, are worth more, because on then are notched down the common rafters. The different parts of a triss should, to come accurately at the true value, bo separately taken, and the joggles also separately considered, including tho tenons at the ends of the struts; mortising tie beams and principals, forming the tenons of the truss posts; mortising and tenoning the ends of the tie beams and principals; also the work to the feet of common or bridging rafters. The iron strapping is paid for according to the number of the bolts.
2337. The battening of walls are measured by the square, accorling to the dimensions and distances of the battening.
2338. Ribbed ceilings are taken br the eubic quantity of timber they contain, making due allowance for the waste of stuff, which is often considerable. The price of their labour is to be orlered by the nature of the work, and the cubic quantity they contain.
2339. Trimmers and trimming joists are so priced as to include the mortises and tenons they contain, and also the tenons at the extremities of the trimmers. But to specify all the methods required of ascertaining the value of each species of carpenter's work wonll be impossible, with any respect to our limits. "They must be learned by observation; all we have to do is with the prin iples on which measuring and estimating is conducted.
2340. When the carcass of the building is completed, before laying the floors or lathing the work for receiving the plastering, the timbers should be measured, so that the scanlings may be examined and proved correct, according to the specification; and in this, as a general rule, it is to be remembered that all pieces having tenons are measured to their extremities, and that such timbers as girders and binding joists lie at least 9 inches at their ends into the walls, or $\frac{1}{3}$ of the wall's thickness, where it exeeeds 27 inches. In the measurement of bond timber and wall plates, the laps must be added to the net lengtis. If a necessity occur for cutting parallel pieces out of truss posts (such as king or quee日posts), when such pieces exceed 2 fect 6 inches in length, and $2 \frac{1}{2}$ inches in thickness, they are considered as pieces fit for use, deductiug 6 inches as waste from their lengths.
2341. The boarding of a roof is measured ly the square, and estimated according to its thickness, and the quality of boards and the manner in whiel they are jointed.
2342. Where the measurement is for labour and materials, the best way is, first, to find the cubical contents of a piece of carpentry, and value it by the cubic foot, including the prime cost, carting, sawing, waste, and carpenter's profit, and then to add the price of the labour, properly measured, as if the journeyman were to be paid. It is out of the quesrion to give a notion of any fixed value, because it most necessarily vary, as do materiak and labour. The only true method of forming a proper estimate is dependent on the price of timber and deals, for which general tables may be formed.
2343. A load of fir timber contains 50 cube feet: if, then, the price of a load is known in the timber merchant's yard, the approximate value of a cube foot is found as under say, if taken at $4 l .10 s$. per load, then-

2344. Now, ${ }^{66.189 .6 d .}=2.77$ shiilings, or 2 shillings and 9 pence and nearly 1 farthint p or foot cule.

46-50. It is only in this way that the value of work can be arrived at ; it is much eregretted that from no species of labour of the carpenter havo been formed tables ble of furnishing such a set of constants as would, by application to the rate of a aeyman's wages, form factors, or, in other words, furnish data tor a perpetual price-

As we have before hinted, the best of the price-books that have ever bcen ished are useless as guides to the value of work. The method of lumping work by square is as much as possible to be avoided, unless the surfaces be of a perfectly orm description of workmanship; as, fur instance, in hipped roofs, the principal ble is at the hips, in fitting the jack rafters, which are fixed at equal distances thereon; e such a price may be fixed for the cubic quantity of hips and valleys as will pay not for them, but also for the trouble of cutting and fixing the jack rafters. Such parts, ed, as these should be separatcly elassified; but the analysis of such a subject ires investigation of enormous labour; and as it must depend on the information ed from the practical carpenter, is, we fear, not likely to be soon, if ever, accomplished. 51. The works of the Jowner consist in the preparation of boarding, which is measured estimated by the foot superticial. Ot this there are many varieties; as, erges shot; s shot, ploughed, and tongued; wrought on one side and edges shot; the same on sides and edges shot; wrought on both sides and ploughed and tongued. Boards d and clamped; mortise clanped, and mortise and mitre clampfd. The value per increases accordiug to the thickness of the stuff. When longitudinal joints are d, an addition per fuot is made; and if feather-tongued, still more.
5%. The measurement and estimation of floors is by the square, the price varying as urface is wrought or plain; the method of connecting the lungitudinal and heading s, and also on the thickness of the stuff; as well as on the circumstance of the boards g laid une after another or folded ; or whether laid with boards, battens, wainscot, or r wood. Skirtings are massured by the foot super, aceording to their position, as her level, raking, or ramping. Also on the manner of finishiug them, as whether . torus, rebated, seribed to floors or steps, or whether straight or circular on the plan. i53. The value of every species of framing must depend on the thickness of the stuff loyed, whether it is plain or moulded; and if the latter, whether the mouldings be ek on the solid, or laid in; whether mitred or seribe l, and upon the number of panels siven height and breadth, and also on the form of the plan.
54. Wainsrotings, window-linings, as backs and elbows ; door linings, such as jambs sufites, with their framed grounds; back linings, partitions, doors, shatters, and the are all neasured aud valued by the foot super. The same modo is applited to sashes their frames, either together or separately.
55. Skylights, the prices whereof depend on their plans and clevations, are also sured by the font super.
56. The ralue of dado, which varies as the plan is straight or circular or being level iclined, is measured by the foot super.
37. In the measurement of staircases, the risers, treads, carriages, and brackets are, - being classed together, measured by the foot super, and the string board is somes included. The value varies as the steps may be flyers or winders, or from the seing mirred into the string board, the treads dovetailed for balnsters and the an sings riecl, or whether the bottonn edges of the risers are tongued into the step. The curtail is ralued by inself, and returned nosings are sonctimes valued at the picee; and if are circular on the plan, they are charged at double the price of straight ones. The Irnil, whose value depends upon the materials and diameter of the well hole, or whet her yed, swan necked, level, circular, or wroathed; whethor got out of the solid, or in snebsery glined up togesher, it meatured hy the foot run. Thu scroll is eharged by $f, n *$ is the naking und fixing each joint serew, and 3 inches of the straight part at each of the wrenth is mensured in. The dual balusters, ay also the iron ones and the iron mas to chrtail, housings to steps and risers, eommon cut brackets, square and circular he plan, together wisn the preparing and fixing, are valued all ly the piere. lixtrat ing in the rail for iron Palusters is walued by the foot run, the price depending on tho
 font super, und its vaho is greater or less us it is moulded, straight, or wreathed, or rling (1) the methoxl in which the wreathed string is constructed by leeing properly rorl upon as cylinder.
38. Thas alafin of colamens are measured by the foot euper, their ralan depending It:o dimmetor, or whether it be straight or curved on the wide, and "pon its leen' arely gland and blerkerd. If the colnmas be fluted, the flates are taken in linean anfo, the price depending on the size of fle thates, whome hanlinges at top and lottom chargod hy tho pisen. Jilastors, atraight or enreed in the height, are similarly *ured, and the prico tuken ly the fort snper. In tho caps and lases of nilasters,

:959. Mouldings, as in double-face architraves, base and surbase, or straight ones strmek by the hand, are valued by the foot super. Base, surbase, and straight mouldings wrought by hand, are generally fixed at the same rate per foot, being something more than double. faced architraves. When the head of an architrave stands in a circular wall. its value is four times that of the perpendicular parts. as well on account of the extra time required to fit it to the circular plan as of the greater difficulty in forming the initres. So all horizontal mouldings on a circular plan are three or four times the value of those on a straight plan, the trouble being increased as the radius of the circle upon which they are format diminishes. The housings of mouldings are valued by the piece. The value of mouldings much depends on the number of their quirks, for each whereof the price increases. It wil also, of course, depend on the materials of winch they are formed, on their running figure and whether raking or curved.
2360. Anong the articles which are to be measured by the lineal foot are beads, fillets bead or ogce capping, square angle staffs, inch ogees, inch quirk ogee, ovolo and bead astrag ls and reeds on doors or shutters, small reeds, each in reeded mouldings, struck b. hand up to half an inch, single cornice or architrave, grooved space to let in reeds an: grooves. And it must be observed, that in grooving, stops are paid extra; if wrought by hand, still more; and yet more if circular. Besides the foregoing, narrow grounds is slirting, the same rebated or framed to chimneys, are measured by the foot run. Rule joints, cantilevers, trusses, and cut brackcts for shelves are charged by the piece. Wate trunks are value accoriing to their size by the foot run, their hopper heads and shot being valued by the piece. Moulded weather caps and joints by the piecc. Scaffolding where extra, must be allowed for:
2361. Flooring boards are prepared according to their length, not so much each; the standard widtl is 9 inches; if they are wider, the rate is increased, each board listing at s mu,h per list. Battens are prepared in the same way, but at a different rate.

2362 . The following memoranda are useful in estimating: -
1 hundred (120) 12 -feet-3-inch deals, 9 inches wide (each deal containing, therefore 2 feet 3 inches cube), equal $5 \frac{2}{3}$ loads of timber.
1 hundred (120) 12 -feet- $2 \frac{1}{2}$-inch deals, 9 inches wide (each deal containing, therelure 1 foot 10 inches cube), épual $4 \frac{1}{2}$ loads of timber.
1 hundred (120) 1 t-feet $1 \frac{1}{2}$-inch deals equal 1 reduced hundred.
1 load of $1 \frac{1}{2}$-inch plank, or deals, is 400 feet superficial.
1 load of c-inch plank, or deals, is 300 feet superficial. And so on in proportions.
Twenty-four 10 -feet boards, at a 5 -inch guage, will finish one square.
Twenty 10 -feet boards, at 6 -inch guage, will finish one square.
Sesenteen 10 -feet boards, at a 7 -inch guage, will finish one square.
fifteen 10 -feet boards, at an 8 -inch guage, will finish one square.
Thirteen 10 -feet boards, and 2 ft . 6 in . super, at a 9 -inch guage, will finish one squar
liwelve 10 -feet boards, and 2 ft .6 in super., at a 10 -inch guage, will finish one spuare.
Twent 12-feet bourds, at a 5 -inen guage, will finish one square.
Sixteen 12 feet boards, at a 6 -inch guage, will finith one square.
Fourteen 12 -fect boards, at a 7 -inch guage, will finish one square.
Twelve 12 -fect boards and 4 feet super., att an 8 -inch guage, will finish one square.
Eleven 12 -feet boards, and 1 foot super., at a 9 -inch guage, will finish one stuase.
Ten 12 -feet boards, and 1 foot super., at a 10 -inch guage, will finish one square.
Battens are 6 inches wide.
Deals are 9 inclues wide.
l'lanks are 11 inches wide.
Feather-edged deals are equal to $\frac{3}{7}$-inch yellow deals; if white, equal to slit deal.
A reduced deal is $1 \frac{1}{2}$-inch think, 11 inches wide, and 12 feet long.
2363. It inay here be useful to advert to the mode of reducing deals to the standard what is called a reduced deal, which evidently contains 1 ft .4 in .6 parts cube; for 12 $\times 11 \mathrm{in} . \times 1 \frac{1}{2} \mathrm{in} .=1: 446$, or in decimals, $12 \mathrm{ft} . \times 91666 \mathrm{ft} . \times 125 \mathrm{ft}=1 \cdot 375$ cube nearly. Hence the divisor 1.375 will serve as a constant for reducing deals of differt tengths and thicknesses. Thus let it be required to find how many reduced deals there : in one 14 feet long, 10 inches wide, and $2 \frac{1}{2}$ mehes tinick. Here $14 \mathrm{ft} . \times 8333 \mathrm{ft}$. (or 10 i : $\times \cdot 20833$ (or $2 \frac{1}{2} \mathrm{in}$) $=2 \cdot 43042$ cube feet, and $\frac{2 \cdot 43042}{1 \cdot 375}=1 \cdot 767$ reduced deal.
2364. The table which is now subjoined exhibits the prices of deals and parts ther calculated from 30l. to $95 l$. per hondred, a range of value out of which it can ratrely hapl that examples will occur, though it has fallen within our own experience during the 1 war to sce the price of deals at a very extraordinary height. This, however, is not likel! happen again. The elements on which it is based are -

First．Price of deals，each being 12 feet long，three inches thick， 10 inches wide．Then from $\frac{302 .}{180}$ we have the prime cost of each dcal Second．Profit on prime cost， 15 per cent．
Third．Planing both sides and waste，the former a constant depending on the price of labour（say 5 s．per day used in the table），and the latter a variable，increasing with the cost price of the material
$6 s .7 d$ as in the table for a 12 feet deal $=$ creasing with the cost of the material，the latter was eliminated by experiment and found ual to 9466 shilling for every 10，upwards of the price per hundred of the deals．
The width of the running foot is 9 inches．Forinstance at 45／．per cent．the cost of a foot
per．$(=144 \mathrm{in})=.1 \cdot 25 \mathrm{~s} .=1 \mathrm{~s} .3 d$. and of a foot run $\cdot 9375$ shilling $=11 \frac{1}{2} d . \therefore \frac{\frac{144 \times \cdot 9775}{1.25}}{12}$
9 inches This table is applicable purely to joinery．

		lif feet		$\substack{\text { Per foot } \\ \text { nun．}}$	Fer foot	部					${ }_{\substack{\text { Per foot } \\ \text { un．}}}$	
				$\begin{aligned} & 0 \\ & 0 \end{aligned}$		袻			cre			
3_{3}^{24}		1 2 3 3 4 4 5 6 6 7		$\begin{aligned} & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \quad 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned} 1$	－		（1）				
$\left(\left.\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ \frac{1}{2} \\ \frac{2}{24} \\ \frac{24}{3} \end{array} \right\rvert\,\right.$						安						
$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 2_{1}^{2} \end{aligned}$						要	\％				（1）	
			$\begin{gathered} 211 \\ 3 \\ 3 \\ 1 \\ 5 \\ 5 \\ 5 \\ 6 \\ 6 \\ 6 \\ 10 \\ 10 \\ 12 \\ 12 \\ \hline \end{gathered}$			\％	$\frac{1}{2}$ $\frac{1}{1}$ 12 1. 2 2 3 3 3					$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 4 \end{aligned}$
1 1 2 2. 2_{3} 3	810^{4}			$\left[\begin{array}{ll} 0 & 3 \\ 0 & 30 \\ 0 & 3 \\ 0 & 8 \\ 0 & 6 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 1 & 1 \\ \hline \end{array}\right.$		宾	1 1 1 1 2 24 1 1					
			$\begin{array}{\|ccc} 3 & 8 \\ 4 & 1 \\ 6 & 1 \\ 6 & 1 \\ 10 & 1 \\ 10 & 2 \\ 12 & 2 \\ 11 & 111 \\ \hline \end{array}$		$\begin{array}{ll} 0 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 6 \\ 0 & 1 \\ 1 & 1 \\ 1 & y \\ 1 & 11 \end{array}$	8	$\begin{aligned} & 1 \\ & 1 \end{aligned}$				$\left.\begin{array}{\|cc\|} \hline 0 & 8 \\ 0 & 64 \\ 0 & 64 \\ 0 & 10 \\ 1 & 10 \\ 1 & 0 \\ 1 & 3 \\ 1 & 1 \\ 1 & 104 \end{array} \right\rvert\,$	

2365-9. The above table almost explains itself, but one example will be taken for illustrating its use, premising that if deals are at a price between, abore, or below that stated in the first column, the rules of arithmetic must be applied for the intermediate prices. Suppose deals, then, to be at 45l. per hundred; an inspection of the table shors that the value of $1 \frac{1}{2}$-inch deal is $8 d$. per foot super., or $6 d$. run; that a 12 -foot deal 2 inches thick is worth $6 s .8 \frac{1}{4} d$. ; and that a foot run of 3 -inch deal 11 inches wide, whick is the standard width, is worth $11 \frac{1}{4} d$. The preceding table, which is applieable purely to joinery, is all that can be here given in general terms as to the prices of work.
2370. Slater. The work of the slater is measured and estimated by the squareo 100 feet superficial. The different sorts of slate, and how much a given quantity of eacl will corer, have been described in Chap. II. Sect. IX. (1798 et seq.). To measur slating, in addition to the net measure of the work, 6 inches are allowed for all the eares and 4 inches by their length for hips; such allowance being made in the first-named eist because the slates are there double, and in the latter case for the waste in cutting anw the sides of the slates to fit. When rags or imperial slates are used, an addition allowanci of 9 iuches is made for the eares, becuuse those slates run larger than the other sorts.
2371. Mason. Solid works, such as pilasters, cornices, coping, stringings, an others, should be first measured to ascertain the cubic quantity of stono they contail as going from the banker to the building; and on this, additional work, as plain work sunk work, moulded or circular work, must be measured in surerficial feet an separately valued. It is usual to allow a plain face to each joint, but no more than one should be taken to a 3 -feet length. In staireases the flyers should be taken wher splayed on the back, their full length and width by three-fifths of the depth of the rises to allow for waste in getting two of the steps from the same block of stone. The measur ment for the wiuders seems to be most properly conducted by ascertaining the net cubi enntents of them, and then making the allowance for waste. Indecd this is a more props and satisfastory mode for the flyers. The top of the treads are then taken on the supel ticies as plain work, and the fronts and ends of the risers as moulded work. In an ope staircase, the under side of the flyers is measured as plain work; the under side of th winders as circular plain work; the rebates, cuttings out, pinnings in, \&c., as they al found. Cylindrical work, such as of columns, after the cube quantity is ascertained, neasured as equal to plain work twice taken. In Potthand dressings to chimney wherever edges appear, it is cu-tomary to add an inch to the dimensions for extra labou to marble, $\frac{3}{4}$ of au inch; or to take the running dimensions of the cdges.

2372-3. Paving slabs and stones under 2 ins. thick are taken by superficial measur Cornices are measured by obtaining their girt, and multiplying by their length for il quantity of moulded work in them.
2374. Founder. The proper mode of estimating cast iron is by the ton or $\mathrm{c} \pi$ Moulds for the castings, when out of the common course, are charged extra. Very ofte too, cast iron pipes and gutters are, aceording to their sizes, charged by the yard. Wroug iron beams and girders, of various shapes, are charged for by the ton. (See 1765 et ssty For ornamental castings patterns have to be made ; these are usually paid for in additic and are often expensive.
2375. Smith and Ironmonger. Wrought iron for ehimney bars, iron ties, screw bol balusters with straps, area gratings, handrails and balusters, hook-and-eye hinges, bracke for shelves, chains for posts, wrought iron eolumns with caps and bases, fancy iron railir casements, shutter-bars, and the like, are charged by the pound, at various priees, accordi to the nature of the work. In the ironmonger's dcpartment nails and brads are charged the hundred, though sold by weight, seldom exceeding 900 to the 1000 . Screws, whi take their names from their length, are charged by the dozen. Cast, and also wrought bu and screws, cast and wrought baek flaps, butts and serews, side or \boldsymbol{H} hinges, with serews, the pair. All sorts of bolts with screws, of which the round part of the bolt determin the leugth, by the inch. H. hinges and cross garnet hinges ky the pair. Other hinges a screws hy the piece. Locks by the piece. Fulleys according to their diameters. On ironmongery 20 per cent. is charged on the prime cost. Wrought iron ornamental wi is churged for according to the time and skill. (See 2253 et seq.)
2376. Plasterfr. The work of the plasterer is measured, generally, by the yardsuly ficial. The usual way of measuring stucco work to partitions and walls is, to take the heit from the upper edge of the ground to half way up the cornice, the extra price of the stu making good for the deficiency of floated work under it. In ceilings and other work, the s face under the cornice is often taken, because there is no deficiency but in the setting, and t
mpensated for by the labour in making good. Cornices are measured by the foot super1 , and estimated according to the quantity of mouldings and enrichments they contain. ere there are more than fur angles in a room, each catra one is charged at the price per run extra of the cornice. Stucco rereals are charged per foot run, and according to r width of 4 or 9 inches or more. Quirks, arrises, and leads by the fout run, as are gins to raised panels, small plain mouldings, \&c. Enriched mouldings are measured the foot run, and with flowers to ceilings, pateras, \&c., must be considered with referto the size and quantity of ornament; modelling may have to be charged if under iet run. For some of these, papier-mâché and other materials (see 22j1), which are dighter than plaster, are coming now into general use, and from the ease and security which they are fixed, often supersede the use of plast-r ornaments. Scaffulding is rged for when the "hawk" cannot be served from the floor.
377. Plomber. The work of this artificer is clarged by the cwt., to which is added labour of laying the lead. The superficies of the lead is measured, then multiplied he weight, as 5 lb . lead, 6 lb . lead, \&c., and brought into cwts . Water pipes, rainer pipes, and fundel pipes are charged by the foot run, according to their diameter; ss are socket fipes for sinks, joints being separately paid for. Common lead pumps, i iron work, including bucket, sucker, \&c., at so much eaeh; the same with hydraulic other pumps, according to their diameters. In the same manner ave charged waterets, basins, air traps, washers and plugs, spindle valves, stop-cocks, ball-cocks, \&e. 2212 et seq.) By the increase of manufacturers of sanitary appliances these are priced at per atticle.
378. Glazier. The work of the glazier is measured and estimated by the superficial , according to the speciality as well as the quality of the glass used; it is always asured between the rebates. (See 2225 ct seq.) Stained and painted glass are usually en at agreed prices.
379. Painter. In the measurement and estimation of painting, the superficial quantity aken, allowing all edges, sinkings, and girtls as they appear. When work is cut in on helges it is taken ly the foot sun. The quantity of feet is reduced to yards, by which oing is charged for in large quantities. In taking iron railing, the two sides are measured lat work; but if it be full of ornament, once and a half, or twice, is taken for each side. Ih frames are taken each, and sash squares by the dozen. On gilding wo have already ken in Sect. XII. (2277 et seq.) Cornices, reveals to windows and doors, strings, low sills, water truuks and gutters, handrails, newels, \&e, are taken by the foot run. ay small articles by the piece. Plain and enriched comices ly the foot run, according he quantity of work in them. Work done from a ladder is paid for extra. The price painter's work greatly depends on the purity of the materials employed, as oil, turpen\&.., as well as on the quality and the number of times over that the work is painted; latour is usually considered as one-third of the price charged. Seareely any trade ies so greatly. Imitations of woods and marbles are charged according to the artistic atment and the labour employed on them, and the quality of the rarnish used.
380. Paperiancra. In common papers the price used to be settled according to the , urs or quantity of l,locks used in priming the pattern. Now the price appears to nd on the sale, or fashion, of the pattorn, or on the manufacturer's pleasure. Until Iy the old priecs were charged, with a large discount, but now the price marked by te of the leading firms is sulject only to the ordimary discount to the trade. Embossed 1 other papers are of higher prices. These, as well as lining paper, are charged by the co, containing 6.3 feet super. The langing is charged separate, and borders, dadocs, mouldings, \&e. by the yard run. (See 227Tc.)

CHAP. IV.

MELIUM OF EXPRESSION.

Sect. I.

DRAWINC IN GENERAL.

2381. Under this section it is not our intention to enter into the refinements of t art, but merely to make the attempt of directing the student to the first principles on laithful representation of ordinary and familiar objects, with all their imperfections; in other words, of transferring to a plane surface what the artist actually sees or ct ceives in his mind. 'lhis power is of vital importance to the architect, and without he is unwortliy the name.
2382. The usual mode of teaching drawing now in use is, as we conceive, among most absurd and extravagant methods of imparting instruction t]at can be well conceiv The learncr is usually first put to copying drawings or prints, on which he is occupicd a considerable time. Much more would he learn, and much more quickly, by followi the course which the following lines will prescribe. Outline is the foundation of all drawi the alphabet of graphic art. As soon as the student has attained the use of the pencil and pen in drawing purely geometrical figures, he is prepared to receive the rudiments of spective. As shown in the following section, the representations of all geometrical sol is dependent upon mechanical means; and these may, if it be desirable, be shadowed tr by the methods given in Sect. 1II.; but what is now called free-hand drawing is the ma for our present consideration.
2383. Outline, as we have stated above, is the foundation of all drawing, the alpha of graphic ait. Every representation of an object, or series of objects, however com cated, is in reality but a set of outhines composed of straight or curved lines. The kn ledge, or rather the power of forming these lines, is essential to the student, and in same manner that he was obliged to form pothooks and hangers before he proceedec) ellipses when he was taught to write, he should begin his study of free-hand drawin̨ practising himself in the production of straight lines, proceeding to segments, ald the curves of contrary flexure. It is a good plan to compare the copy with the patteru; is inasmuch as all formal diagrams that are set as patterns should be perfect, it is desir. 3 that the standards for straight lines, segments, and contrary flexures should be draw the teacher himself from rulers; these rulers can be subsequently applied to the col, and are sometimes the only evidence upon which to make a mutinous pupil conscior his errors. The student ought not to proceed to the elliptical and oval furms untile hand, first turning one way, can draw a tolerably correct circle; and then, turning in e other direction, can make another equally good. The next step will be to acquire e power of drawing spiral lines in one direction, and of repeating the:m in another; w will be followed by that of drawing lines either parallel or slowly approximating.
$2383 a$. After this, the student is sufficiently advanced to attempt to repeat all te stages with copies of a size larger or less than the patterns; and he will be ready to 1 n the mechanical use of chalk. This branch of his tuition needs only such examples as e prints, which have been prepared for that purpose, of purely geometrical forms: in ${ }^{\text {is }}$ stage the rudiments of shadow are implanted, and the use of the brush may be acquir

2383 b . The student will then be ready to learn the mode of obtaining local co $r_{\text {, }}$ and of blending his materials so as to obtain tints and shades of the different colours. e next steps would be to draw in chalk, in ink, or in colour, the simplest architectural l^{-} ments, such as a chevron or an ovolo; and to proceed through a course of architer il foliage fiom prints. The result of such training is usually a confidence in the eye; ${ }^{\text {t, }}$ what is sometimes highly important, a judgment so sound as to be able to reproduce ${ }^{\prime} y$ part of a suljeet that may have been destroyed.
$2.383 c$. Aptitude of the pupil must be a consideration, but in general a year of st ly application may be sufficient so to imbue the mind with the grammar of architectural an ment, as to cnable the hand to represent it; after which the student ought to be capal of inventing for himself. Indeed, it is only by such a course that originality in desis 18 ornament can beobtained. The study of natural foliage, first as scen, and then as co: in tionalized, may be carried out at the same time.
2.383d. It is very remarkable that all the inferences are falso, which usually are derived in the asscrtion that he who can draw the human figure will be ahle to draw any other ject that is submitted to him for representation. The few men who can faulleessly draw c human figure as they see it, may doubtlessly have eyes keen enough and hands true ough to repeat the minutest details so accurately that any comparison of a particular detail Wh the original shall be creditable to them; but these men have spent years in obtaining, sides delicacy of handling, that knowledge of anatomy which reminds them at every roke of the pencil that such a muscle is in such a place, that here it overlaps another, at there it dies into a bone, and that consequently they have to mark the curves and gles which occur, for instance, six or seven times between the elbow and the wrist, and determine how many can be omitted if the scale be less than that of life,
2384. The majority of men who can draw the figure tolerahly well ean draw nothing se equally correctly : for the reason that their attention has been given to the mechanism ot e human form solely; the representation, by our best portrait-painters, of the accessories hich they introduce into their pictures, especially of architectural details, is almost withIt an exception ludicrously inaceurate. Every person who has tried to apply his power - representing geometric forms to the task of copying in chalk from a mask, must be aware the enormous faeility which he acquires by previously studying the usual methods of spressing the totality of the eye, the ear, the nose, and the lips. In a similar manner, the rist who wishes to give the effect of a suite of mouldings, or of a carved ornament, requires know previously all the parts which compose the work. In other words, some men can rutend to sketeh distant rocks and yet miss the very features by which the outlines intirate the geological charaeter.
2385. Such are the reasons which have for many ycars led to the conviction that the chitect's course of drawing should lave the figure alone until he has made one or more udies from carving in each style of art that opportunity presents to him; this is affirmed , be the only method of obtaining a satisfactory appreciation of the minute characteristics hich sometimes constitute the differences between styles; and the only method of making royal road to the object, which some teachers pretend is the easiest, but is truly the most ifficult, in art. Having acquired the power of aecurate representation of ornament, lich involves dexterity in the use of his materials, the student may commence his perations with the figure.
2386. The method proposed in the following pages is old, at least in prineiple, yet has been of late years published as new in Paris, by M. Jupuis. (" De l'Enseignement du jessin sous le point de vue industriel," 1836.) The principles of the work, however, are erhaps better expressed and arranged, in some respeets, than we might have presented ien to the reader: and we shall not, therefore, apologise for the free use we make of it, remising. however, that in respect to the whole figirre and the application of the method , landscapes, what follows is not found in the work of M. Dupuis.
2:387. Betwcen the ancient mode of teaching the student (we will take the head, for istance, shown in fig. 809, as the first roughing of the leading lines of that which in y. 812. has reached its completion) and te method practised by M. Dupuis, the only ifference is this, that M. D., instead of letng the student form the rough outline at wee from the finished bust, roughing out n paper the principal masses, provides a eries of models roughly bossed out in their ifferent stages, which he makes the student raw. The system is ingenious; but as the reatest artists have been made without the rodification in question, we do not think it laterial ; at all events, the principles are the ame. M. Dupuis, for this purpose, has a eries of sixteen models, the first of each four f the series are yuite sufficient to show the 'd as well as his own practice. Thus, in

Fig. 809.

Fig. 810. iy 809 , the general mass of the oval of the head is given, in whieh it is sean that the rufile is indicated by an obtuse angle, whose extreme point corresponds with the lower rart of the nose, and the lines at one extremity terminate with the roots or commencensent pi the hair, and at the other with the lower jaw. 'Ihe form of the rest of the head is the esult of combining the most projecting points of it by curved lines, in short, of supposing rungh mass, out of which the seulptor might actually, in narble or other material, form (3) l mad. 2
2.38\%. The nextstep is exhibited in fig. 810 ., with the four principal divisions : the occipital to the begiuning of the hair, the forchead to the line of the eyes, the projection of the ause, and the inferior part of the lidec, with sonce indication of the mouth.

2389 In fiy. 8 il. it will be scen that another step is gained. The eyes (here only ons appears, but we speak with reference to the st. bjeet. being less in profile), the mouth, the elini, and the ear are more cleally marked out, with some sort of expression of the while work, but still wihout details, though sufliciently indicating that little more is necessary to bring the rude sketeh of $f i g$. 809. to a resemblance.
2390. In fig. 81খ. this is ohtained; but still, necording to the degree to which an artist conaiders finishing necessary, to be further pursued and carried through to make a jerfect drawing; all that is here intonded being to show the principles upon which the matter is conducted, and upon which we shall presently have firther observations to make. It wilt be observed, that on the shadowing and finishing in this way the

Fig. 811.

Fig. 812. drawings the student may make we set no value: when he ean draw, if those maters be of importance to him, they will not be difficult of acquisition.

239a. Having aceomplished the art of drawing, with tolerable correctness, the figure the architeet will have little diffieulty in drawing the most complex productions of nature The principles are precisely the same; but we wish here to impress upon thin the necessit of reeuring to nature herself for his ornaments: a practice which will always imfart freshness and novelty to them which even imitation of the antique will not impart.
2391. The port crayon, whether carrying chalk or a black lead pencil of moderate weigb and size, say full seven inches long, is the best instrument to put into the hands of the be gimer. The first object he must consider in roughing the sulject, as in fig. 809., is th relation the height of the whole bears to its width; and this determined, he must procee to get the general contour, without regard to any internal divisions, and thus proceed b, subdivisions, bearing the relative proportions to each other of the model, comparing the with one another and with the whole. We will now show how the port crayon assists i this operation. Let the pupil be supposed seated before the model, at such a distance fron it that at a single look, without changing the position of his head upwards, downwards, c sideways, his eye takes in the whole of it. The strictest attention to this point is necessar: for difficulties immediately present themselves if he is too near, as well as if he is too f : from it. And here let it be observed that the visual rays (see fig. 813.) upon every objed

Fig. 813.
may be compared to the legs of a pair of compasses, which open wider as we approach th olject and close as we recede from it. This is a law of perspective well known, and whic the student may easily prove by experiment, keeping the head of the compasses near h cye, and opening the legs to take in, in looking along them, any dimension of an objec He will soon find that as he approaches sueh object he must open the legs wider in ord to comprise within them the given dimension. Hence every diameter or dimension, sep: rately considered, is comprised in the divergence of the visual rays. It is on this accout that, being at a proper distance, any moveable measure which with a free motion of h body he can interpose upon some one of the points of the distance between his eye and ti model, may, though mueh less than the model itself, take in the whole field of view, reas the extremities of the dimension, and consequently become of great assistance in certal mathematieal measures. For by applying such a measure to one division only of the mode we shall obtain, as it were, an integer for finding a great many others into which the mod may be subdivided.
2392. Thus, taking fig. 809., which is profile, and supposing the width at the nec unity, if this is twice and a half contained in the general height of the bust. we have imm diately the proporticns of one to two and a half, whiel may be immediately set out on t1 apper or canvas. This is not all; the integer or unity obtained by the diameter of th
neek serves also for measuring the horizontal diameter of the head. and also of the bust ; whence new proportions may be obtained. So much for the first casting of the general form. Now, in the entire bust, as respects the head only, suppose we wish to obtain the proportions of the principal divisions, - . for example, from the base of the bust to the base of the chin, - we may establish another integer to measure other parts; as, if from the point of view, the distance from the base of the bust to the base of the chin is the same as from the last to the summit of the head, the learner wonld have nothing more to do in that respect than to divide the whole height into two equal parts. On the same principle, passing from divisions to subdivisions, the distance between the base of the chin and the poin.t whence the nose begins to project, may be found a measure for the height of the nose, and from thence to the top of the cranium. We are here mere'y showing the method of obtaining different integers for measuring the different parts mentioned ; others will in practice occur continually, after a very little practice. We do not suppose our readers will behieve that we propose to teach drawing by mathematical rules; we now only speak of oltaining points from which undulating and varying lines are to spring and return, and which none but a fine and sensitive eye will be able to express. But to return to the port crayon, which is the moveable measure or compasses whereto we have alluded, and requires only skilful handling to perform the offices of compasses, square, plumb rule, and level. By interposing it (see fig. E13.) on the divergence of the visual rays between the eye and the object, we may estimate the relative proportions; since in the field of view the learner may apply it to the whole or any of the parts, and make any one a measure for another. For this purpose he must hold it, as shown in the figure, steadily and at arm's length. Any portion of it that is cut by the visual rays between any two parts of the object, becomes the integer for the measurement of other parts whereof we have been speaking. This in the drawing will be increased according as the size is greater or less than the portion of the port crayon intercepting the visual rays. This process may be easily accomplished by making, upon one and the same line of the visual ray, the extreme point of the port crayon to touch one of the extremities of the proportion songht upon the model, so that they may exactly correspond. Then at the same time fixing the thumb or fore-finger where the visual ray from the other extremity is intercepted, we shall find any equal length by moving the port crayon with the thumb and fore-finger fixed to any other part we want, as to size, to compare with the first, or by using the same expedient to other parts, other integers may be found. The different integers, indeed, which may be thus obtained is infinite. The port crayon will also serve the purpose of a plumb bob by laying hold of it by the chalk, and holding it just only so tight letween the fingers as to prevent its falling, so that its own gravity makes it assume a vertical direction. 1 loing so, if it then be held up to intercept the visual rays, we may discover the pro. portion in which a line swells whose directon approaches the vertical, as also the quantity one part projects before another in the model; and comparing this again with the integer, obtain new points for starting from. Again, by holding it before the eye in an horizontal direction, we shall obtain the diflerent parts of the model that lie before the eye in the same horizontal line. By degrees we shall thus soon find the cye become familiarised with the model it contemplates; judgment in arranging the parts supervenes; the hand becomes bold and unhesitating, and the leading forms are quickly transferred to the paper or canvas to be sulodivided to such extent as is reguired by the degree of finish intended to be bestowed upon the drawing.
2393. The process that we have considered more with relation to the bust is cipally applicable to the whole figure. In fig. 814. we have more partieularly shown by the dotted lines the horizontal and vertical use of the port crayon; bat the previons arljumtment of some measure of unity fur proportioning the great divisions to each olluer is almon applied to it as already stated. In the figure, f.F: is the line of the horizon, or that level with the eye; it will be

$\boldsymbol{F}_{\text {/g. }} 81 \%$.
seen passing through the knee of that leg upon which the principal weight of the body is thrown.
2394. Though our object in this section is to give only a notion of the way of transferring to paper or canvas such objects as present themselves, we think it proper to hint at a few general matters whieh the student will do well to consider, and these relate to the balance and motion of the human figure. Geometry and arithmetie were with the painters of antiquity of such importance that lamphilus the master of Apelies declared, without them art could not be perfected. Vitruvius particularly tells us the same thing, and, as follows, gives the proportions of the human figure: - "From the chin to the top of the forehead, or to the roots of the hair, is a tenth part of the height of the whole body; from the chin to the crown of the head is an eighth part of the whole height; and from the nape of the neck to the crown of the bead, the same. From the upper part of the breast to the roots of the hair, a sixth; to the crown of the head, a fourth. A third part of the height of the face is equal to that from the chin to the under side of the nostrils, and thence to the middle of the eyebrows the same : from the last to the roots of the hair, where the forelead ends. the remaining third part. The length of the foot is a sixth part of the height of the body ; the fore-arin, a fourth part; the width of the breast a fourth part. Similarly," continues our author, " have the other members their due proportions, by attention to which the ancient painters and senlptors obtained so mueh reputation. Just so, the parts of temples should correspond with each other and with the whole. The navel is naturally placed in the centre of the human body ; and if a man lie with his face upwards, and his hands and feet extended, and from his navel as the eentre, a circle be described, it will touch his fingers and toes. It is not alone by a circle that the human body is thus circumseribed, as may be seen (fig. 815.) by placing it within a square. For, measuring from the feet to the crown of the head, and then across the arms fully extended, we find the latter measure equal to the former; so that the lines at right angles to eaeh

Fig. 815. other, enclosing the figure, will form a square."
2395. "How well," says Flaxman (Lectures on Sculpture), " the ancients understood the balance of the figure, is proved by the two books of Archimedes on that subject; besides, it is impossible to see the numerons figures, springing, jumping, dancing, and falling, in the Herculaneum paintings, on the painted vases, and the antique basso-rilievos, without being assured that the painters and sculptors must have employed geometrical figures to determine the degrees of curvature in the body, and angular or rectilinear extent of the limbs, and to fix the centre of gravity." Leonardo da Vinci has illustrated the subject in his Trattato di Pittura, a perusal of which eannot fail of being highly bencficial to the student.
2396. As in all other bodies, the centre of gravity of the human figure is that point from which, if suspended, the figure would remain at rest when turned round upon it. Flaxman, hy some strange mistake, has descritred the rentre of gravity as " an imaginary straight dine, which falls from the gullet between the ankles to the ground, when it (the figure) is perfectly upright, equally poised on both feet, with the hands hanging down on each side." (Fig. 816.). The fact is, that the centre of gravity is found to be in a line so drawn, or rather removed backwards from it, in a vertical plane returning from that line.
2397. Motion implies change of position; for instance, in fig. 817 ., the weight of the figure is thrown on one leg, hence a line passing through the centre of gravity falls from

Fig. 816. the gullet on one leg, on which side also the shoulder becomes lowered, and that on the opposite side raised; the hip and knee sinking below those on the side supporting the weight. In fig. 818. the dotted lines terminated by the letters $A B C D$ represent lines of motion, as also the extent of such motion. The same are also shown in fig. 819., whercin A shows the inclination of the head to the breast; 13 the extreme bend of the back over the legs, without ehanging their position; C that of the baek bent backwards, the legs
semaining in the same position．If the back be bent as far as 1），the thighs and legs will pro－ ject as far as E ．
2398．Referring back to fig．817．for compari－ son，as the commence－ ment of motion，with fig．820．，we shall imme－ diately see that the pre－ paration for running consists in throwing the balance beyond the standing foot ；and that when the eentre of gra－ vity，whieh is now about to take plaee，falls out of the eommon base，the hinder leg must be out， and of the ground，to

Fig． 819.
balance the fore part of the figure，whieh would otherwise fall．
2399．In preparing to strike（fig．821．），the figure is thrown back at the begiming of

Fig． 820.

Fig．821．
he nction to give foree to the blow：the dotted line shows the extent of the springing rrward，in which the aetion is ended by the fall of the blow upon the object．
2400．In fig．822．，bearing a weight，the combined centres of gravity of the figure and

ドル． 422

Fig．823．

e weight to be bornc must be found ；and through it the line falls between the feet，if e whole weight rests equally on both，or on the supporting foot，if the weight is thrown on one．Flaxman，who was a finer artist than a geometrician，las，in his feetures，Falten （t）another mistake on this head，by saying the centre of gravity is the centre of the －umbent weeght，which is absurd；because the figure has not only to balance the weight celf，but alke its own weight．
2401．In leaping（ fig．823．），the body and thighs are drawn together to prepare for the ring；the mascles of the leg draw up the heel，and the figure rests on the ball of the t ；the arms are thrown back to be ready immediately for swinging forward，and thens risting in the impulse．When the figure alights，the arms，at the instant of alighting， 11 be fonnd raised above the head；and a tine dropped from the eentre of gravity will to nuid to fall near the hecks．
2．nn2．In leaning（fiy，824．），if on more than one point，the greatest weight is almot that int on which the figure chiefly rests．
2.803. Fig. 825. is a flying, and fig. 826. a falling figure, both whereof being in motion through the air rest on no point. In the first it wall be observed that the heaviest portion of the figure is bounded by lines inclined upwards; as in falling the heaviest portion of it has a downward direction We have thought these elements would be useful, as exhibiting those leading primeiples without the comprehension whereof no motion or action

Fig. 825.

Fig. 826. can be well expressed. "Every change," says Flaxman, "of position or action in the human figure will present the diligent student with some new application of principles, and some valuable example for his imitation."
2404. We shall close this section with the application of the principles detailed in the management of the port crayon to the drawing of landscapes. The subject of fiys.897.

Fig. 827.

Yig. 893.
and 828. is from a spot a little way out of Rome, the tower of Cacilia Metella being seen in the distance.
$2404 a$. In fig. 826. the masses are ronghed in from the oljects themselves: and the principal mass abcold on the left side is first very carefully drawn by itself, being, as resperts leading lines ind thickursses, corrected until the eye is satisfied of the truth of its general form. The eye is as high as \mathbf{E} and \mathbb{E}, which therefore show the height of the horizontal line, and are also, in fart, the vanishing, points for the wath on the right-hand side of the picture, and the house on the same side a little beyond it. Hoikling the port crayon level, and taking on it with the thumb or forefinger the distance 01, we shall find that twice that measure in 2 and 3 will give the junction of the wall with the pier: and that a line contimued horizontahy from d cuts the top of the plinth of the gate pier. I'he pieture happens \boldsymbol{c} b be divided into two equal parts by a vertical line drawn throngly the break in the city wall in the distance. dl, eontinued upwards, ditermines one side of the house on the right-hand side of the road, and from a point at a break in the foreground interscets the projecting wall at r : a vertical line determines the left side of the tower. The remaining horizontal lines, it will be seell, determine other points and lines; and thus it is manifest that the whole arrangement has been accomplished by making the mass abcold a measure or unit for ascertainmg the size and relarive position of the other parts. In fig. 828 . the detail is tilled in, and brought to a higher state of finish.

2404\%. There is a mechanieal method of obtaining the exact relative sizes of objects, and their positions in making drawings from nature or easts, which we will endeavour to explain. If the draftsman take a pair of pretty large sized compasses, and, fastening a piece of string at the joint end of them, hold the paints upen before his eye, so as to take in the extent of space his drawna is intended to occupy ; then tie a knot In the string to keep it between his teeth, so that the compasaes noin's may be kept in any plane always equally distant from the eye; he may, for the various par's of his drawing, by opening or elising the comnpasses, have their exact relative lieights, widths, and jositions, to be at once transterred to the draning.

Sect. 11.

PERSPECTIVE.

2405. A perspective delineation is the linear representation of any object or objects, as it or they appear to the eyc, and is such a figure of an object as may be supposed to be made by a plane making a section of the body or pyramid of visual rays directed from the eyc to the different parts of the object. A delincation so made, being properly coloured and shadowed, will convey a lively idea of the real object, and at the same time indicate its ovsition and distance from the eye of the observer.
2406. Definitions. - I. An original olject or oljects is or are an object or number of nijects proposed to be delineated: for instance, a honse, a slip, a man, or all or any of hem together. In fig. 829. the house \triangle BCDFHK is the original object.

F1g. 829.
2. Original lines are any lines that are the boundarics of original objects, or of planea in three objects. The lines $\triangle B, B C, C D$ are original lines, leing partly the boundaries of the original object ABCDF FHK .
2. The grouml plane is that upon which the oljecets to be drawn are placed, and is
always considered a boundless level plane. The plane X in the figure is the ground plane, upon which is placed the object ABCDFHK.
4 The point of view or point of sight is the fixed place of the eye of the observer, viewing the object or objects to be delineated : E in the figure is such point.
5. The station point is a point on the ground plane, perpendicularly under the point of sight or eye of the observer, and expresses on the plan the station whence the view is taken. S is the station point in the figure, being a point on the ground plane vertically under the eye of the observer at E.
6. The plane of delincation or the picture is the canvas or paper whercon it is intended to draw any object or number of objects. Thus, in the figure, the plane GlKL is the plane of delineation; but, in the extensive sense of the word, the plane of delineation is considered a boundless plane, however circumscribed may be the delineation made thereon.
7. The horizontal line or the horizon is a line on the plane of delincation in every part level with the cye of the observer or point of view. VZ is the horizontal line on the plane of delineation GIKL. It is supposed to be obtaincd by the intersection of a plane passing through the eye of the observer, parallel to the ground plane, produced till it touches the plane of delincation.
8. The centre of the picture is a point perpendicularly opposite the eye of the observer, or point of view, and is consequently always somewhere in the horizontal line. () in the horizontal line VZ is the centre of the picture, being perpendicularly opposite to the eye at \mathbf{E}.
9. The vertical line is a line drawn through the centre of the picture perpendicular to the horizon. In the figure PR is the vertical line. It is here worthy of notiee that the vertical line dutermines how much of the view lies to the right and how much to the left of the cye of the artist.
10. The distance of the picture is a direct line from the eye to the centre of the picture. EO is the distance of the picture, or plane of delineation, GIKL.
11. The grozind line is that where the ground plane intersects the plane of delineation, as GL in the figure.
12. An intersecting point is one made on the plane of delineation, by producing a line in an original object till it touches the plane of delineation. 'Thus, T ' is the intersecting point of the original line $B A$.
13. An intersecting line is one made on the plane of delincation, by producing any plane in an original object till it touches the plane of delineation, or where, if produced, it would touch it. Thus W'T is the intersecting line of the original plane ABCDN, being the line, where that plane, if produced, would touch the plane of delincation.
14. A vanisking point is that point on the plane of delineation to which two or more lines will converge, when they are the perspective representations of two or more parallel lines in an original object, whose seat is inclined to the plane of delineation. The point V in the figure is the vanishing point of the line $A B$, being found by the line EV, drawn from the eye of the spectator parallel to it, and produced till it touches the plane of delincation in the point V. For a similar reason, V is the vanishing point of the line CN ; it is also the vanishing point for any other lime parallel to the line CN , as BA ; all parallel lines having the same vanishing point. The point Z is the vanishing point of the line $A K$, being obtained by a line drawn from the eye parallel to the line $A K$, and produced till it touches the plane o delineation. 'The point Z, moreover, is the vanishing point of the original lin DF and NH. And it is to be recollected by the student, that there will be a many different vanishing points of lines in the delineation of an original object a there are different directions of lines in that original object. The point Y is th vanishing point of the parallel original lines DN and FH, being found by the line EY being drawn from the eye parallel to them till it touches the plane of delineation So also Q is the vanishing point of the line CD. ln the process of perspretis delineations, as we shatl presently see, the plan of the object being drawn, the place of the various vanishing points are found on the gronnd line, whence they at transferred to the horizontal line by means of perpendiculars raised from thens.
15. A varishing line is one supposed to be made on the picture by a plane passit through the eye of the observer parallel to any original plane produced till touches the picture. The line $V Z$ is the vanishing line of an horizontal plane, as of all horizontal planes, being found by the intersection of a plane passing hor zontally through the eye, or parallel to an horizontal plane. The vertical line IV is the vanishing line of the original vertical plane, $A B C D N$ being the line where plane passing the eye of the spectator parallel to that plane would touch the pla cf delineation. There will be as many different vanishing lines on the plane delineation as there are diflerent positions of planes in the object or objects; at
all parallel planes will have the same vanishing line. Similarly, all lines lying in the same plane will have their vanishing points in the va:ishing line of that planc. All planes or lines 11 an original object which are situated paratlel to the plane of delineation can have no vanishing lines or vanishing points on the plane of delineation.
16. A visual ray is an imaginary right line, drawn from the eye to any point of observation. EA and EY, \&c. are visual rays, being right lines drawn from the eye to the points A and Y . Hence a number of visual rays dirceted to every part of an object will form a pyramid of rays, whereof the eye is the apex, and the object the base.
17. A perxpective delineation, then, is the section of a pyramid of rays producing a perspective projection, and is most commonly considered as being made between the object and the eye. But the section of rays may be taken when they are extended beyond the object; in which case such a section is called a projected perspective representation of the object.
240\%. It will then be seen that a knowledge of perspective is, as Addison has said, a knowledge of "the science by which things are ranged in picture, according to their appearance in their real situation."
2403. The situation of the objects being given with the plan and position of the planc of delineation and the height and distance of the eye of the observer, the delineation of such objects is truly determinable by rule. The mechanical operations necessary for this purpose form the subject of what follows. It is however necessary, before procceding to lay them before the reader, to premise that he must thoroughly study and understand the preceding definitions before he can proceed with profit to himself, and we recommend a repeated perusal of them until that be effectually accomplished.
2409. Example I. In fig. 830., No. 1., we have the plan of the original object

the plane of delineation will determine the vanishing points (Def. 14.) of the horizontal lines AE and AD, and of all other horizontal lines paraliel to them. Draw the line so perpendicular to GL, whieh line being the direction of the eye perpendicular to the plane of the picture determines the point thereon to which the eye should be direetly opposite to view it when eompleted, showing also how mueh of the object is on one side, and how much on the other of the point of view. We have now to draw the visual rays $\mathrm{SA}, \mathrm{SB}, \mathrm{SE}, \mathrm{SF}$, SC, SD, eutting the plane of the picture or delimation in l, x, w, c, and d; the point A of the nearest cube touching, itself, the pieture at that point. The preparation on the pian is now completed.
2410. The picture (No. 2.) or plane of delineation is to be prepared as follows: - First draw the ground line GL, and to such ground line transfer, by dropping vertieals, tlie points Kabwe A and d. Above, and parallel to GL, at such convenient height as may le neecssary to show more or less of the upper surfaces of the cubes or otherwise, as desired, draw the horizontal line VZ; mark on such horizontal line the point O, to which the eye is supposed to be perpendieularly opposite for viewing the delineation when eompleted. All the other preparations are obtained from the plan, and may be obtained as follows:... First set off on the horizontal line VZ the points V and Z, which are the vanishing points of the sides AE and AD respectively. As A, the nearest angle of the object, touclies the plane of delineation, it is manifest that a line vertically drawn from that point will be of the same height as the object itself, that is, as the figures are cubes, equal to AB or AD in the plan No. 1. Take, therefore, AB No. 2. of the height required, and draw the lines BD and AV, also AZ and BZ, which being crossed by verticals carried up from xhwed will determine the points ke and i at the bottom, and in f and $/$ at the top, and $p q$ and r in the part where the eube is double the height. Drawing $K V$ it is intersected by the vertieals from the visual rays at c and v, eutting in g and n. The line K K forms another line of heights, if desired, for finding the height F_{q}; indeed, by continuing any line BC (No. 1.) to K , intersecting the pieture, a line of height may be obtained. The representation of the cube marked A will be understood withont difficulty, if what has preceded be well comprehended. As by Definition 15. we have seen that all planes or lines in an original object sitnated parallel to the plane of delineation have no vanishing lines or points in the plane of delineation, so two of the sides of the cube will be bounded by horizontal and vertical lines, inasmueh as those sides lie parallel to the plane of delineation. The vanishing points for the other lines will of eourse be found in O , which passes throngh the pieture at right angles to it from S , the station point.
2411. Example II. To find the representation of a quadrangular building, situated inclined to the pieture, covered with a single spamed roof, having a gable at each end.

2412 . Let the rectangle ABCD (No. 4.) (fig. 831.) be the plan of the building, the line EF will be the place of the ridge of the roof extending from end to end. Let the linc QL be the plaee of the plane of delineation, and let S be the station point.
2413. Find O the centre of the picture, also the points Q and L, the vanishing points of the lines AB and AD, and their parallels, by lines drawn from S parallel to such lines, and intersecting the picture. Produce the face of the building AD to I for an intersection with the picture, and draw the visual rays interseeting the gromid line of the pictur in the points benf and d. These need not, however, be drawn beyond the plane of delineation.
2414. Prepare the pieture (No. 5.) by drawing the horizontal and ground lines VZ anc GR at any distance from each other at pleasure; fix upon the centre of the pieture 0 , anc draw the vertical line OO; set off the distances of the va:ishing points OV and O\%, equa the distances o the vanishing points $O Q$ and $O L$ in No. 4. Draw the intersecting lint. 1 L (No.5.), and all the visual lines, through the points beaf and d, taken from theil respective places and distances beaf and d (No. 4.), and proceed as follows: -
2415. On the interseeting line IL (No. 5.) set up the height 1 K equal to the height o the building BC or HG (Nos. 1. and 2.), and draw the lines KZ and $1 Z$, determining the plane g mop for the front of the building. Draw the lines $m \mathrm{~V}$ and $g \mathrm{~V}$, determining the end of the building ghim. It now remains to place the roof, which is readily done, bu which, however, requires some cireumspection in the process.
2416. Place the lieight of the roof XD (No.1.) on the intersecting line at IL (No. 5.: and draw LZ, which will give the height of the roof on the angular line of the building g' at r; from which spot it may readily be transferred to its proper place in the vistal line eh b the line $r \mathcal{V}$, which cuts the line ek in the point k, the point required. From the point draw the lines $k i$ and $k m$, completing the gable end of the building. Draw the ridge of th roof $k Z$, cutting the end visual line, in the point n; and lastly, draw the line no, completin the whole linear delineation of the building gliknop. It is to be observed, that whater original plane is produced to the picture to obtain an intersection, such intersectio serves only to obtain heights in the direction of that plane; whence they may be transferre to other planes in contact with it, as in the present instance. The intersceting line 1 (No 5.) is the intersecting linc of the plane gmop; hence any original leeight set 1

hereon can only be transferred throughout the direction of that plane. Thus the heirght the roof 1 L was transferred by the line LZ along that plane to its other extremity s; It the line $r s$ is not the place of the ridge of the roof, which lies in the middle of the ane ghikm, proceeding from the point k; but any height on the angular line $g r$ is casily ansferred along that plane by means of its horizontal vanishing point V , by whieh means e height of the roof was olitained by the line $r \mathrm{~V}$ at k. If, instead of the plane over the (e AD (No. 4.) being prodnced for an intersection, the plane of the middle of the honse the dircetion of the ridge of the roof had been daaw, and the height of the roof had en set u_{i}) on that line, it would at one applieation be tramserred to its proper place.
2:117. Let the line FE (No. 4.) be produced to I' for an intersection, set off the distance P^{\prime} at OP' (No.5.), and draw the intersecting line P'R. On P'R set up the height of the lge of the roof equal XI) (No.I.), and daw the ridge line $1 \mathrm{~K} Z$, and it determines the act rilge of the roof between the proper visual lines, and will be found to correspond actly with the ridge obtained by the former process.
2:118. The roof may, inowever, be found by another process, thus:-The slant lines of the of have their vanishing points on the picture as weil as any other direetion of lines in the ne olject. The line hm (No.5.) being in the vertical plane glihm, witl have its vanish: points somewhere in the vanishing line of that plane. (Def. 15.) Λ vertical line iwn throngh the horizontal vanishing point V will be the vamishing line of the plane ihm; therefore the vamishing point of the lines $k m, k i$, and of all lines parallel to them, II le somewhere in the vertical GVX(S.
2419. Two lines drawn from the cye paratlel to any two tines in an object, fanding their inhing points, with make the same angle at the eye as the lines in the object make with In ohter; for the two lites in the one instance are respectively parallel to the two lines the other.
2120 . The line $S Q$ is drawn from the station S parallel to the line $A 13$ (No. 4.), and a edrawn from the station S , making the same angle with SQ a as E D does with EC, 1. 1.), will find the vanishing point of the line EDD, and this point must be evidently newhere in a vertical line through the point (2. 'To obtain this point in practice, tahe dinsance of the vanithing line it is in, than is, the length from sto \mathbb{Q} in the companses, I eet att the same in the horizon (No. S.) from V'. to W. At the poin W make an antio A. A epral to the inclination of the roof, that is, equal to the angle ('E: (No. 1:), and
produce the line till it intersects the vertical line through the vanishing pont V in the horizon in the point X . The point X will be the vanishing point of the line of the roof $k m$ (No. 5.), and of the line no, paraltel to it. The slant lines of the roof $k m$ and $n o$, already obtained, will, on application of a ruler, be found to tend to the point \mathbf{X}, as above stated.
2421. In the same way the line of the roof $k i$ (No. 5.) will also have its vanishing point, and in the same vertical line GVQ. It will be found to be as much below the horizonta! vanishing point V as the point X is abse it. (Def. 14.)
2422. Let the line AB (No. 6.) be the line of the horizon, and CD the vanishing line ot a vertical ${ }_{p}$ pane, being the gable end of a house, and let the angle ABC be that of inclina tion, finding the vanishing point of the slant lines of a roof in one direction. Let the line BD be the line, finding the vanishing point of the slant lines in the other direction having the same inclination to an horizontal line; then the angle ABD will be equal to the angle ABC , and the distance AD equal to the distance AC .
2423. Example III. To find the representation of a quadrangular building situates inctined to the picture, covered with a single hipped roof.
2424. Let the quadrangle GDHK (No. 7.) be the plan of the building; the line Ms will represent the ridge of the roof. The former line QL may be the place of the plane o delineation, and it may be viewed from the same station S. The position and direction o the lines of this object being the same as those of the last example, the preparatory line will also answer for this. We have then only to draw the visual rays MS, NS, CS, 1': and KS , intersecting the picture in the points m, n, g, p, and k, and to produce the line $\mathrm{D}($ for an intersecting point at R.
2425. Prepare the picture (No. 8.) ; let the line VZ be the horizon, GR the grounline, O the centre of the picture, and the points $m, n, g p$, and k coresponding wit m, n, g, p and k. (No. 7.) Draw the visual line lines through those points and the intersect ing point R , and proceed as follows: -
2426. On the intersecting line RE set up the height RT, equal the height of th object HG (No. 2.), and draw the lines TV and RV, cutting the visual lines of the frol of the bu lding in the points z and o, y and p, determining the plane ypoz for the represen ation of the plane of the front. From the angular points z and y draw the lines $z w$ and 3 to their vanishing point Z determining the plane $y z w x$ for the end of the building.
2427. On the intersecting line set up the height of the roof TE equal the height N (No. 3.), and draw EV cutting the angular visual line of the building in the point e, fro which point draw the line $e z$, cutting the visual line $p a$ in the point a, the point of directi of the ridge of the roof. Draw the line $a \mathrm{~V}$, which, cutting the visual lines through the poir m and n in the points t and v, detêrmines the exact position of the ridge of the roof $t v$, whi is the representation of OP (No. 3.), or of the ridge MN (No. 7.) ; draw the lines t, and $v w$, which will complete the whole representation required. In No. 8., if the lin $a z$ and $a w$ be drawn, they will form a gable end $y z a w x$, of which the point a is the point the gable, and will answer for the direction of the ridge, whether it be a gable end or nipped roof, for in both cases it lies in the middle of the breadth of the house; wherefi the line $a \mathrm{~V}$ answers as well the edge of a hipped roof as of a gable end.
2428. In examining the plans (Nos. 4. and 7.) of the two buildings, it will be seen t) they are placed at right angles to each other, and in contact at the point D , so that sccond example might have been easily accomplished from the first, without the aid another intersection and other preparatory lines, than the additional visual rays from angles, which the student will have surely no difficulty in carrying through, without necessity of encumbering these pages with the detail.
2499. Example IV. In fig. 839. No. 1. is the general plan of a church similar many country churches. ABCD is the main body of it ; EFGH its tower; IKLM MLNO subordinate parts of the building, and abcd the porch. No. 2. is its geometri elcration; the ends and measurements, AB and BC, answering to IM and MO in No. and the points of the roofs D, E, and F. (No. 2.) answering to the lines of the rid QR, TV, and PL, No. 1. To find the perspective representation of this building on plane of delineation YZ , the station being at S , the following is, perhaps, the read process.
2430. Find the vanishing points Y and Z of the horizontal lines of the building by lines SY and SZ being drawn from the station parallel to them. O is the centre of picture. Draw the visual rays from the visible angles of the object in direction to station S, to intersect the plane of delineation.
2431. When a complicated object, that is, one composed of many parts, is to be dre it requires, of course, a great number of visual rays for the precise determination of t parts, and the whole together forms an apparently confused number of lines. The however, which views them properly, does not perceive that confusion; ${ }^{*}$ and, if it per the student, different coloured inks, or of different shades of depth, may be used top. cularise different parts. In the delineation of such an object as the present exanple, most important consideration is the choice of a proper intersection; for theugh any in

taon will do, that should be chosen whieh unites most parts in its direetion witl the catest exactness and the least trouble. In the ease under consideration, none seems ore eligille than the direction of the roof $\mathrm{P} \mathrm{I} M$, which produce to W .
2432. In the pieture No. 3., GL is the ground line, GV the height of the horizon, e line VX being then the horizontal line. O in the horizon is then the eentre of the eture, from whieh, place the distances of the horizontal vanishing points OV and OX ual OY and OZ , No. 1. AB (No. 3.) is the intersecting line, and all the visual lines the plane of delineation are drawn eonformably to their interseetions on the ground e in the plan. On the intersecting line the heigbt $A C$ is made equal to the height $A G$ the elevation No. 2.; and the lines Cc and Aa , being drawn in direction to the vanishing int V, determine the height ac; being the height of that part of the building on the visual e answering to the ray from the point M in the plan No. 1. Through the points a and c aw the lines de and bf to their valishing point X , determining the plane bdef, the repreitation of the plane AGIIC, No. 2.; the visual lines $b d$ and $f e$ answering to the ray: m the points I and O in the plan. Draw the lines dh and $b g$ tending to their vanishing int V, to the ray from K in the plan completing the plane bghd. On the intersection the the height A) equal to the height of the roof NE of the clevation No. 2., and iw D_{i} in direction to V. Through idraw the line $k l$ to the vanishing point X, touching evisual lines of the roofs in the points k and l. Draw the lines $k m, m h, k d, k c, l c$ and $l e$, fieh will complete the whole of the strueture over the plan IKNO, No. 1.
2.43.3. The height of the roofs of the low buildings is equal to the height of the right walls of the body of the buiding, as shown by the line P'll in the elevation No. 2.; nee, the line mo, and the return line on, misy be drawn to the visual lines corresponding th the intersections from the angles A and B of the plan From the angle g the tine $g s$ ty also be drawn, which will determine the lines $s r, r t$, and $t p$ of the poreh. Nake A F ; the intersection equal to the height of the roof $\mathbf{B F}$ in the elevation, and draw the line V determining the ridge of the roof between the two visual lines from the points P and of the plan. Draw the lines of the gable end vo and $r z$, the point z being obtained by line om drawn to its vanishing point X, cutting the visual line from the angle I) of plan in the point z.
9434. Make ΛG and $A F$ on the intersection equal to the heights of the tower $B O$ an BM of the elevation, and draw the lines GV and FV eutting the visual line from P in th plan, in the points a and b; through whieh points draw the lines ac and ef to their vanish ing point X ; and the lines $c d$ and eg to their vanishing point V ; the points g, e, and f bein in the proper visual lines from the angles of the tower F, E, and H in the plan. Th tower will be eompleted by drawing the lines $d g, d e, a e$, and $a f$.
2435. This example elueidates the general practiee of vanishing points, which are as we to be obtained of other positions of lines as horizontal ones. It is not aiways that th vanishing points of inclined lines are required, but they are often useful, and sometime absolutely necessary. In the geometrical elevation No 2. the lines MO, PF, GD, IE ar all parallel lines, as also are the lines OV, FR, EH, and DI, and though situated in dit ferent, yet they are in parallel planes, and will therefore have a eommon vanishing point A line drawn perpendieularly to the horizon through the vanishing point X ($f i g$. 3.), a $L Q$, will be the vanishing line of the plane of the end of the ehureh over the line $I O$ of th plan, also of the end of the body AD, likewise of the side of the tower EII; and a lin drawn through the point V (No. 3.) perpendieularly to the horizon, as GM, will be th vanishing line of the planes over the lines (No. 1.) IK, AB, $a b$ of the poreh, and FE of th tower, and all lines in those planes, or the boundaries of those planes, will have the vanishing points somewhere in those vanishing lines.
2436. To obtain the vanishing points of the inelined lines of the roofs and tower, tak the distanee of the vanishing point Z from the station S in the compasses, and apply it o the horizon from X to H . At the point H make an angle with the horizontal line equa the angle of the roofs $\alpha \mathrm{Pc}$ (No. 2.); the eurve Kl and the distance of it from the centr H being equal to the eurve $a c$, and distance of it from its eentre P : then is the angle $K l l$ equal to the angle of the roof $a P c$ (No. 2.). Produee the line $H K$ to $Q ; Q$ will be th vanishing point of the line ea of the tower, also of the parallel lines ov, $d k$, and $c l$, whicl though obtained by a different proeess, will all be found, by application of a ruler, to tet truly to that point, as is shown by the dotted lines in the example. Proeeeding in th same way with the distance of the vanishing point Y from the station S, we obtain th vanishing point of the same inelination of lines in the other planes of the object. Take th length SY in the eompasses, and set it off on the horizon from V to N . At the point make an angle IN'T on the horizon equal the angle KHI, that is, equal the angle of it clination of the roof $a \mathrm{Pc}($ No. 2.). The line N'T produeed to M in the vanishing lis GM will be the vanishing point of the line de of the top of the tower, also of the lines x and $y 5$ of the porch (the inelination of the roof of the poreh being the same as the othe roofs of the body of the ehureh), as shown by the dotted lines in the example. 'Il walls of the poreh are obtained from the height $A P$ on the interscetion, equal the heigl AT, No. 2., Pmbeing drawn to the vanishing point V , and $m n$ to X , give the lines $n 5,5$ and 32. We may observe that the inelined lines " $f, l e, h c$, and $v z$ have a common vanist ing point, which, if required, may be obtained; it will be in the same vanishing line wit the point Q, and as much below the horizontal vanishing point X as the point Q is abo it. to whieh point, were it obtained, the lines already drawn will be found exaetly to tend. is seldom absolutely neeessary to have both those points; in this instanee one only of the the point Q, is obtained, whieh answers every end required of both; for, supposing it we left to that vanishing point for finding the inclined lines, the visual lines being drawn, al the heights of the upright walls being found, the line $d k$ being srawn in direetion to t vanishing point Q determines one side of the gable end at the visual line in the middl the other is aceomplished by joining the points k and c together. So of the other gab: $c l$ being drawn, $l e$ is also had by joining together the points l and e.
2437. To eomplete the whole, draw the line $x q$ on the tower from the point x to t angle of the tower, in direction to the vanishing point Q; then draw the lines $q h$ and $n h$ their proper visual lines and vanishing points V and Q. The putting on of the spire 1 quires some eonsideration, and in it we must proceed with some thought and eare. T base of it is intended to be a remular oetagon. If the two external lines in the geometric elevation of the spire be eontinued till they touch the sides of the tower, as is done at and L. (No. 2.), and an oetagon be there constructed, extending the square of the tower, will be the base of the spire. Set up the height of the spire BW (No. 2.) on the int seetion (No. 3) at B ; also the height of the base line KL at K, and draw the lines BV a. $R V$; the first, cutting the visual line through the eentre of the tower in the point 0,1 termines the height of the spire; the other, euting the tower in the point u, determines base. Throngh the point u draw a line round the lower, and find the points of the octag in the middle of caeh face of the tower, to whieh let lines be drawn from the top $0, a$ the whole will be eompleted, as shown in the example.
2438. Thus have we gone through the proeess of finding the representation of rathe complieated object with as little confusion of lines as possible; but one thing suceeedi another, and each being required to remain for the student's observanee, the wh unavoidably beeomes intrieate. Indeed, it is not now so perfeetly exeeuted but t
onething remains for the student to complete, whieh must result from his own study or ecupy more space than all we have already written on it. We allude to the intersections hat take place at the lodgment of the spire on the top of the tower, to elucidate which it s drawn to a larger seale at No. 4., the mere inspection whereof will convey a full and, ve hope, satisfaetory idea of what we advert to. The student has been left to complete he base of the octagon, a process so simple that we cannot, if he retain what re has read, ,elieve he will find difficulty in accomplishing, either by visual rays or otherwise. It is ext to an impossibility to describe intricate matters like these so as to leave nothing for he exercise of the reader's judgment; for, however copious the instruction, there will lways remain sufficient unexplained to keep his mind in action, and afford lim the opporunity of exereising his own ingenuity.
2439. Example V. In fig. 833. the objects X and Y are plans of columns with bases

Id capitals, whose gencral forms are shown at X and Y (No. 1.). Y'Z, as before, is the ane of the picture, S the station point. The picture, as previously, is prepared with the uishing points VZ, and the ground line GI. OO is the central line of the picture, and $A, B A$ are, it will be seen, lines of height.
2440. In the spluares X and Y the dotted lines show the diagonals and boundaries of uares inseribed in the circles, by which so many more lines are gained for obtaining the arves which the circles form in the perspective representations. 'The visual rays are awn as in the preceding examples, and transferred to the picture, the process being, in et, nothing more than making squares following the protiles, which, at the different ights, gnide the formation of circles within and around them, of which the upper ones ly, for preventing confinsion, are shown in the perspective representation. In each ies, the extreme width of the appearance of the circle may be obtained by visnal rays, as ι, b, b.
2.41. At Z and z (Nos. 3. and 2.) are the plan and clevation of an arcade, from which will be seen that the principle of inseribing squares and diagonals is equally applicable the vertical representation of circles. I'resuming that we have sufticiently described the aream to enable the stadent to proceed in drawing the examples at large, we shall now brit an example of general application.
-4.12. Fixmmple VI. In fig, 834. Y\% is the plane of delineation, and the plan of the alding, with its projections, roof, and chinneys, is shown in No. 1. In practice, this is perally made on a separate drawing buard, to comble the dranghtoman to make his perapective

outline without injury from constantly working over the paper. Here the vanishing point are too distant to be shown on the diagram; but the reader, from the tendency of th several lines, will easily find where they lie. In the same manner, he will find whereaho the station point is placed. BA, BA, BA, No. 2., are lines for the transference of the heiglit: The projection of the cornice is dotted round the leading lines of the building on the plat The rest of the figure cannot fail of being understood and put in practice by the studel who has made himself master of the preceding examples.
2443. We shall now turn to a point whereon much difference of opinion has prevaile namely, the adjustment of what may generally be considered the best angle of vision, with, which objects should be seen to obtain the most agreable representation of them. For this angle is enlarged or decreased by viewing the objects at greater or less distances, the appearance will vary, and their delineation, in consequence, be affected thereby, and di tortion of the objects will be the result.
2444. By the angle of vision or angle of view is understood the expansion of the lin. proceeding from the eye, by the two extreme visual rays embracing the whole extent of the view, and this whether it consists of one ohject or of many. Let A (fig. 835.) represent the plan of a mansion; let B be the outhouse contiguous to the mansion, and let the places of trees be at CCC and DDD. Let S be the station or point of view from which the whole is seen. Considering the mansion A as a lone object, the extreme visual rays $\mathrm{Sa} \mathrm{S} b$ form at the eye the angle $a \mathrm{Sb}$; then $a \mathrm{~S} b$ is the angle of view under which that object is seen, $S a$ and S_{b}^{b} being the two extreme visual rays embracing the whole extent of the object. Again, if the outhouse B be taken as a single object, then will the extreme visual rays $c \mathrm{~S}$ and $d \mathrm{~S}$ form, at the eye, the angle $c \mathrm{~S} d$, being the magnitude of the angle under which that objeet is seen. So of any object, the visual rays that embrace its whole extent form the angle of view under which it is said to be seen. It is then mani-

Fig. 835. fest that the angle of view will be either large or small, as the eye is near to or remote fr the object. Suppose both the objects A and B are to be taken into the view, with the:
dition of the trees to their right and left. Let visual rays be drawn from the trees on botin sides to the station S . The angle CSD is the angle of view under which the whole extent is seen, and the rays CS and DS are denominated the extreme visual rays of the view.
2445. Objects may not only be placed too near the cyc for comfortably vicwing them, but they may be so nearly placed to the eye as to give it pain. The cye only contemplates a small portion at a time ; it is only by its celerity and continual motion that it beeomes perfectly sensible of a whole and of the many forms whereof it is composed. But when an objeet, or many objects, widely extended, are placed too near, the traverses of the eyc in viewing the whole beeome painful. Every one must have experieneed that this is so, and why so we must leave to others to aecount for. When the eye is removed to an agreeable distance, the extent of the view to be delineated is at once seen without turning the head to one side or the other, so that all the objects are at onee comprehended.
2446. In taking a view, the turning of the head is to be avoided. The view should on no aecount comprise a greater extent than can be taken by a coup d'ail, or than ean be viewed by the traverse of the eye alone; and this necessarily confines the extent of that with whieh we have to deal, and brings the angle of view within certain limits. What the eye can contemplate without trouble it riews with pleasure, and beyond a eertain extent the eyc becomes distracted.
2447. Smallness of object has no relation to the angle of view ; a dic, or the smallest possible objcet, may be brought so near the eye as to give pain in looking at it, and a large extent of view may be contemplated with as much ease as a small one, by merely plaeing the larger one at a greater distance. If the place of the planc of delineation be at FG , then FSG will be the angle of view. If a seetion of the same visual rays be taken at HI, then III will be the cxtent of the picturc, and the angle IISI is the angle of view ; but the angles FSG and IHSI are the same, therefore the eye views both with equal satisfaction: but in this case one must be plaeed at the distanee SO, and the other at the distanee SP.
2448. The attempt to selcet an angle suitable to all the cases that may occur, as the best angle of view, would be as vain as it would be absurd. Different subjeets require different treatment. External subjects differ from internal ones; and the last from caeh other, according to circumstanees. Some authors on the subjeet have laid it down as a rule, that the greatest distance of the eye from the picture should not exceed the width of the pieture laterally, which makes the angle of view about 53 degrees; others have insisted that the distance should be less, requiring that the angle of view should not be smalter than 60 degrees; and others allow of a still larger angle. The elder Malton, and his son, to whom we are indebted for all that is valuable in this seetion, and whose (both of them1) experience in the matter was very extended, advise that the angle of view should never exeed from 53 to 60 degrees; the former recommending an angle of 45 degrees as the best, because neither too large nor too small. The elder Malton advises to keep between the one and the other, that is, not to let the angle of vicw exceed 60 degrees, nor be less than 4.5 , the first being likely to distort the objeets, and the last rendering them too tame in the outline. We can add, from our own experience, that the advice is sound; for though, under very particular circumstances, it may be neeessary to use a larger angle of view than 60 degrees, such a casc docs not frequently oceur. Much must always be left to the discretion of the artist in respect to points which are to guide the angle of view he adopts. After a little experience, he will find that angle best suited to the eircumstances under which his drawing is to exhibit the object or objects.
2449. Example VII. The principtes upon whieh we delineate any of the interior parts of a building are in no wise different from those used for the representation of their external views, for it is of course immaterial whether we represent the external faces of their sides, or those which form their internal faces; the only difliculty which arises in making an internal view being that which arises from the inability, on account of the restrieted distance under which they are in reality viewed, of placing the station point at such a distance as to take in a sullicient ypantity of the objects to be represented. A person placed in a room can of course only see the whole of one and part of another walt; in short, in every direction The cannot see comfortably more than, as we have above mentioned, forty, or, at the most, fifty, degrees of the objects aromul him. On this account, and for the purpose of showing more than in reality can be seen, it is customary, and perhaps justifiable, in order to give a more comprehensive view of the interior to be delineated, to place the station point of the pectator out of the room or place, supposing one or more of its sides to be removed. This is, in fact, a delusion, as is every view of an interior possessing any merit that has come under bur notice. But for pieturesque delineation, it is not only one which is necessary, Dut one withont the practice whereof no satistactory representation em be given of an interior whowe dinensions are not very extended. The seetion whereon we are now engaged - hot snpposed to be a treatise on Perapective, but merely a concise developement of its rmeiples so as to give the reater :uch a benernl howledge of the subject as may enable
him to pursue it, if he please, from the hiats it affords. With this apology for not prom ducing to him a more complicated, though not less useful subject, we proceed.
2450. Fig. 836. (No. 1.) represents the plan of a stairease one third the size used for the

Fig. 836.
purposes of the delineation ; YZ (No. 1.) is the plane of the picture, O is its centre. Itul the data, therefore, there will be no difficulty of obtaining the vanishing points of the sid Y a and $a b$. The diagram is not encumbered with the visual rays necessary for the delinc ation, which we are to suppose drawn and transferred to their proper places on No. 3 wherein HII is the horizontal line. No. 2. is a longitudinal section of the stairease, wherei are shown the rising and descending steps, and the dotted line $c d$ gives the section of th vaulted eeiling over the stairease. It will be immediately seen that the ends of the stel will be determined by visual lines, notwithstanding the ascent and descent of them, becaus cither is determined by referring to any lines of height, which may be oltained from th plan and section, by which the portions seen of the flights will be immediately found an
ransferred to their respective places on the picture. With these observations we leave the Jiagram for the exercise, on a larger scale than here given, of the ingenuity of the student.
2.51. Example V11I. The last perspective example to be submitted is that of a comic

Fig. S53.
fg. 837.), wherein the contrivance of the elder Malton is usid for finding the places f the modillions and the other parts.
2452. Let EM, FN, GO (No. 1.) represent the angles of a building in perspective, 3 NO being the lower horizontal line of the cornice, whose geometrical elevation and rofile are shown in No. 2. Make MQ equal to mq the depth of the cornice, supposing 'e edge EQ to be in the plane of projection; draw PQRS, \&c., the lines of the top of the orniee, to their respective vanishing points. Make QT, QT in $\mathrm{RQ}, \mathrm{P}^{\prime} \mathrm{Q}$, produced equal , the perspective projection of the cornice $q t$. Then place the depths of the various ouldings along MQ, and fix the lengths of their projections on the lines drawn to the mishing points through those in EQ, an operation which may be manch facilitated by rawing MT, M'T', by which, in many places, the points of the mouldings are at once etermined, as in the case of the top and bottom of the fillets of the ovolo; and very often, if ce drawing is not on a very large scale, mit and its perspective images MT, MT, \&c. will lable the eye to proportion the mouldings. Thus the perspective projections MQT, I 2 T' of the sections of the cornice by the plames of the sides EN, EL, supposed to be olonged or extended, may be found; and it is manifest that lines through the points these sections to the proper vanishing points will give the perspective forms of the corce mouldings as they would appear.
2453 The lines found will by their intersections supply the mitre MQU ; but where e scale is large, it is better to obtain mitre sections at each principal angle of the building shown by the lines MQU, NRX, \&ec. The planes of the mitres form, of course, augles forty-five degrees with the sides of the building itself, consequently the vanishing points QU, RX, \&c. may be found by bisecting perspectively the right angles found, or by awing on the plan lines parallel to the diagonal lines or mitres from the station point to tersect the picture. If these, indeed, are sound in the first place, there would be no esssity to draw the square sections MQ'T, MQ'T', inasmoch us lines drawn from the mildings intersecting the mitre sections to the vanishing points will nt once form the rspeetive representation of the comice. In practiee, this is the usual mode of proceding, canse a skilful dranghtsman can pretty well proportion ly has cye most mondings ns seen perspective; lont where great accuracy is repuired, the method of proceeding ly spuare tions is recommended, because, from the great foreshortening of the diagonal line, the allest inacentacy of intersection on it will cause very lange errors in the mondings.

When the diagonal scetions alone are used, it is clear that the geometrical profile, No. 2 . will not be the same as that formed by the oblique section of the cornice: this last must therefore be obtained from a plan and elevation of the mouldings as shown in No. 3.
£45t. Instead of finding the square section made by the plane FNGO at the angle OG it may be drawn on the plane TQM, where it is more readily found by producing the lines nhereby the section TQM was obtained; so the lines $T^{\prime} T^{\prime \prime}, M O^{\prime \prime}$ are set out in perspective equal to the projection of the break of the building $O N$: morcover by the lin $\mathrm{I}^{\prime \prime} \mathrm{O}^{\prime \prime}$ we may obtain the mouldings of the eornice on the face of the wall GH as produce

or prolonged to $\mathrm{T}^{\prime \prime} \mathrm{O}^{\prime \prime}$, and conversely the cornice 11 perspective may be drawn from this imaginary section, if it be previously found. Where vanishing points are at an inconvenient distance in drawings, a mode may be adopted to obviate Flg. 837, a. the inconvenienee, the principle whereof is this. Let A (fig. 837 a) be the vamishing point, CDB a segment of a eircle whose centre is A; then if CB be bisected in $D, A D$ will be

Fig. 83j. b. a vanishing line for such bisection; and if CD be bisected, and a ruler applied to join $C D, i$ will, by the application of a square on $C D$, give the vanishing line for the new bisection Fig. 837, b.
2455. Our next care is to find the vanishing point of the raking mouldings, which may be found from wha has already been said, and a perspective section must be made of these mouddings lyy means of any vertical pl an where must convenient; but the best place is through the apex of the pediment, which, as it cound not, fo want of room. be done in the present example, is taken through the line oo, No 2., passing through the ex treme lett angle of the tympanim of the pediment.
2456. As the monldings of the pediment ($f 6.837$.) here are of the same depth and projection as in the hori zontal parts, they will not, when inclined, concide with the diagonal section of the horizontal cornice at os hence that section, if found in perspective at $O \mathcal{O}$, cammt be used for drawing the perspective representation, the pediment cornice, except for the bead or fillet above the corona, u hich, from the construction of th pediment, will coincide at this mitre, as we may see in No. 2 ; whence it may also be seen that the point does not coincide with t. X'x cannot, therefore, in the herspective represen ation, be drawn through X , th puint answering to t in the diagonal scetion NRX. 0^{\prime} in the line OH is to be made in perspective equa to mo, No.2., and the whole depth oo, and those of the several mouldings on the oblique scction, heing st upon EQ produced, they are to be transferred to OO^{\prime} ' by means of the vanishing points. 'The distance O^{\prime} is the perspective distance of the projection $q t$ of the cornice as before, and is most readily obtained from th section $O^{\prime \prime} T$ ", which is transferred to the plane $O^{\prime} l$, and will be easily comprehended from the rigure: th quantity of projection of each raking moulding of the pediment is equat to that of the same moniding wher horizontal. Thus the per-pective representation of an oblique section made by a plane passing throngh of No. $2 .$, is obtained, and the mouldings are then drawn to the vanishing point throngh the various points, th line $1 X^{\prime}$ cutting ' ${ }^{\prime \prime} \mathrm{X}$ in the point corresponding to x, No.2. As to the modillions, their representations ar found with less confusion hy planning them apart and using visual rays; but if no plan is used, the followin method, invented by the elder Malton, may be adopted:-
2457. Draw BC, the line intersecting the plane of the sofite of the corona, Nos. 2. and 3., through the prope point x in MQ at risht angles to it, and draw ay to the vanishing point. Produce the linc corresponding to A No. 3. to A in xy , and transfer A to I in BC , so as to be proportional to it in respect of the whole exten Then set off the proportional widths and intervals of the modilhons, as shown on Nos. 2. and 3. on BC, at transfer them by means of the same proportioning point by which z was transferred to 1 ; and from th points $2,34,5,6, \& c$. in $x y$ thus obtained, draw on the perspective of the sofite by the use of the vanishin point the lnes representing the tops of the modillions corresponding to $2,3,4, \& \mathrm{c}$, No. 2 . The cyuatiu round them and the inner angle of the sofite may be drawn by the eye, or where great accuracy is require The mitre or diagonal sections may be determined as for the principal mouldings already desciibed. At the backs of the modilions the verticals are to be determined either by means of visual rays from a juan, or through the medium of intersections of the perspective lines (f the upper parts of them on the sohte, which is as much as can be iequisite for guiding us to a correct delineation. The same process is to be used for the modillions on the other sides.
The following is an easy method for dividing vanishing ilnes in perspectire. Let $A B, C D$ be the perspective representation of two jrarallels, no matter in what plane. It is required to divide the given fortion of $A B$ on one of them so that its part; shall be the perspective representation of cqual portions of the real hinc (or in any assigned ratio). Draw BE parallel to CD and equal to AB , and divide it into the required number of equal parts or of parts in the desired propor-

Fig. 837. c tion beginning at E. Join AE and produce it to meet CD in F. From F draw lines to each of the $\rho_{\text {infi }}$ of division P'QRS of the line AE, and they will cut AB in the required points of subdivision $p q r s$.

Sect. III.

SHADOWS.

2458. Seiography, or the doctrine of shadows, is a branch of the science of projectu ard some preparation has been made for its introduction here in Sect. VI. Chap. I. (11) et. seq.) on Descriptive Gcometry, which, if well understood, will remove all difficulty comprehending the subject of this section.
2459. The reader will understand that in this work, which is strictly architectural, t only souree of light to be considered is the sun, whose rays, owing to his grat distan are apparently parallel and reetilineal. It is moreover to be premised, that such parts any body as may be immediately opposed to the rays of light are technically said to be
ight, and the remaining parts of such body are said to be in shade. But when one ody stands on or before another, and intercepts the sun's rays from the latter, which stbreby deprived of the action upon it of the rays of light, the part so deprived of the mmediate action of the light is said to be in shadou. It seems hardly necessary to oberve, that the parts of any body nearest the source of light will be the brightest in ppearance, whilst those furthest removed from it will, m!less under the action of reflected ight, be the darkest.
2460 . It has been the practice, in architeetural drawings, to represent the shadows of heir objects at an angle of forty-five degrees with the horizon, as well on the elevations as on the plans. The practice has this great convenience, namely, that the breadth of the hadow cast will then actually measure the depth of each projecting member which casts t, and the shadowed clevation may be thus made to supply a plan of the external parts of he building Now, if in the elevation the shadows be cast at an angle of forty-five degrees. t will on a little consideration be manifest, that, being only projections of a more lengthned shadow (for those on the plan are at an angle of forty-five degrees), the actual shadow cen diagonally must be at such an angle as will make its projection equal to forty-five legrees upon the elevation; because all elevations, sections, and plans, being themselves notbing more than projections of the objects they represent; are determined by perpenlicular, horizontal, or inclined parallel lines drawn from the wints which bound them to the plane of projection, and simiarly, a shadow in vertical projection, which forms an angle of orty-five degrees with the horizon, can only be the representaion on such projection of an angle, whose measure it is our msiness now to determine.
2460. In the cube ABCDEFGH (fig. 838.) the line BD, orming an angle of forty-five degrees with the horizon, is a rojection or representation of the diagonal BHI on the verical plane ABD ; and our object being to find the actual angle AHB , whereof the angle ADB is the projection, we have the ollowing method. Let each side of the cube, for example,

Fig, S38. $=10$. Then (by 907.) $\mathrm{AD}^{2}+\mathrm{DH}^{2}=\mathrm{AH}^{2}$.

That is, $10 \times 10+10 \times 10=200=A H^{2}$, consequently $\Lambda H=14 \cdot 142100$.
As BAII is a right angle, we have by Trigonometry, using a table of logarithms, -

$$
\begin{aligned}
& \text { As AH }(=14 \cdot 14142100) \text { or Ar. Co. Log. . } 98494850 \\
& \text { To tangent } 45 \text {. . . . } 10 \cdot 0000000 \\
& \text { So } \operatorname{AB}(=10 \cdot 00000000) \text { log. . . } 1.0000000 \\
& \text { 'To tangent of angle FIII }=35^{\circ} 16^{\prime} \\
& =9.8494850 \\
& \text { The angle ABII is therefore } 54^{\circ} 44^{\prime} \text {. }
\end{aligned}
$$

Hence it follows, that when shadows are projected on the flan as well as on the elevaion, at an angle of forty-five degrees, the height of the sun which projects them must be $35^{\circ} 16^{\prime}$.
2462. It is of the utmost importance to the student to recollect this fact, because it will e hereafter seen that it will give hin great facility in obviating difficulty where confusion if lines may lead him astray, being, in fact, not only a check, but an assistance in proving he accuracy of his vork.
2463. We now proceed to subnit to the student a series of examples, containing the nost common eases of shadowing, and whieh, onee well understood, will enable hiim to xecute any other case that may be presented to his notice.
2464. In fig. 839. we have on the left-hand side of the diagram the common astragal llet and cavetto occurring in the luscan and other pilasters, above in tevation and below in plan. The ight-land part shows the same conreted with a wall, whereon a shadow s cast ly the several parts. LL is a ine showing the direction of the light © projection at an angle of forty-lise iegrees. It will on experiment be ound, by a continuation of the line, r by one parallel to it, to touch the ide of the asinagal at a, whence an
 rorizontal line drawn along it will ectermine its line of shade. We here again repeat, to prevent misunderstanding, that p1 the matter we are now attempting to eaplain we are not dealing with reflected light, on with the softening off of shadows apparent in consex olyjects, but are about to
determine the mere boundaries of shade and shadow of those under consideration. The rest must be learned from observation, for the circumstances under which they are sect must constantly vary. 'This, however, we think, we may safely state, that if the boundaries of shade and shadow only be accurately given in a drawing (however eomplex), the satisfaction they will afford to the spectator will be sufficient, without further refinement. But it is not to be understood from this that we discountenance the refinement of finish in architectural subjects ; all that we mean to say is, that it is not necessary. 'To return to the diagram : it is manifest that if the boundary of shade be at a from that point parallel to the direction of the light a line ab will determine the boundary of shuduw on the fillet at b, and that from the lower edge of such fillet at f a line again parallel to the direction of the light will give at e the boundary of the shadow it casts upon the shaft S . As, in the foregoing explanation, a was the upper boundary of shade, so by producing the horizontal line which it gave to a on the right-hand side of the diagran we obtain there a corresponding point whence a line aa' parallel to the direetion of the light is to be drawn indefinitely; and on the plan a line $a a$, also parallel to the direction of the light, cutting the wall WW whereon the shadow is cast at a. From the point last found a vertical line from α, where the shadow euts the wall on the plan, cutting aa in a', will determine the point a ' in the shadow. 'The point e, by a line therefrom parallel to the direetion of the light, will determine similarly the situation é by obtaining its relative seat on the diagonal ed, which perhaps will be at once seen by taking the extreme point d of the projection of the astragal, and therefrom drawing dd' parallel to the direction of the light. From the line $d d$, drawn similar! y parallel to the direction of the light, and cutting W W in d, we have the houndary of the shadow on the plan, and from that point a vertical ad being drawn, the boundary of shadow of the extreme projection of the astragal is thus obtained. The boundary of shadow of the fillet on the right-hand side at b, similarly by means of $b b$, and by the vertical $b \mathrm{~b}$. gives the boundary point of the shadow from b . The same operation in respect of ec gives the boundary of shadow from e to e^{\prime} in the latter point. We have not described this process in a strictly mathematieal manner, beeause our desire is rather to lead the student to think for himself a little in conducting it; but we canunt suppose the matter will not be perfectly understood by him even on a simple inspection of the diagram.
246.5. In the diagram (fig. 840.) is represented a moulding of common oceurrence in architectural subjects, and, as before, the right-hand side is the appearance of its shadow on the wall WW on the plan. It will be immediately seen that LL being the projected representation of the rays of light, the line aa determines the boundary of shadow on the ovolo, and that at b , the boundary of its shade, is also given by a line touching that point parallel to the rays, or rather projected rays, of light. On the right-hand side of the figure $0 o^{\prime}$, dr'wwn indefinitely parallel to the direction of the light,

Fis. 8:0. and determined by a vertical from $a^{\prime \prime}$, the intersection by $a^{\prime \prime} a^{\prime \prime}$ with the wall, will give o'a", the line of shadow of oa'. The line aa determines the shadow on the ovolo, and this continucd to a^{\prime} horizontally gives also a like termination to $a^{\prime \prime}$ in the shadow; b, the boun dary upwards of the ovolo's shade, is represented to the right by b^{\prime}, and to the right on the plan by b, whence by a vertical cutting the line $b^{\prime} b^{\prime \prime}$ in $b^{\prime \prime}$, the boundary of shadow which b^{\prime} will cast is obtained. cc on the plan is in projection the distance of the line of shade c^{\prime} from the wall whereon the shadow is cast, and its place in the shadow is at $c^{\prime \prime}$, ee" $b^{\prime \prime}$ being the length of horizontal shadow produced by the circumstances.

In fig. 841 ., which, it will be scen, is a common fillet and cavetto, LL is, as before, the direction of the

ht, and aa gives the boundary of shadow, as well of the fillet's lower edge as of the ver edge of the cavetto itself. In respeet of the right-band side of the figure, a' a^{\prime} is a e showing in profile the extent of projection of the fillet before the wall line WW, and m a^{\prime} a line drawn indefinitely parallel to the direction of the light, and terminated by e intersection of a vertieal from a^{\prime} in $a^{\prime \prime}$, will give the point a^{\prime} in the shadow. So is found through a vertical from b on the wall, by a line drawn parallel to the direction the light from L on the plan. The several points being connected by lines, we gain the undaries of the shadow, wherein $a^{\prime} a^{\prime \prime \prime}$ is represented by $a^{\prime \prime} a^{\prime \prime}$.
2466. Fig. 842. exhibits a fillet and cyma reversa or ogee, wherein, as before, LI is the rection of the light at a similar gle to that used on the plan. om the lower edge of the fillet, rallel to the direction of the ht, is obtained the point a on e ogee, and from b a similarly rallel line gives the boundary of show in c. A line from o in diction of the light, drawn indefirely, intercepted by a vertieal e from d^{\prime}, its projection on the an in d determines o'd, the undary of the shadow of the et on the wall WW. cc"' is e line of profile of the projectb boundary in elevation, of the ade of the ogee before the wall, lereon its shadow is terminated im c and $c^{\prime \prime \prime}$ by a vertical $c^{\prime \prime \prime} c^{\prime \prime \prime}$. the boundary of shade of the
 ee itself, is fuund in shadow by the line b, $b^{\prime \prime \prime}$ drawn indefinitely parallel to the direetion the light, and terminated by a vertical from b^{\prime}, the point on the wall eorrespondent to on the plan, the plaee of the shade's point in the elevation. By the junction of the es so found, we shall have the outline of the shades and shadows cast. It is here to observed, that the portion of light $a^{\prime} h^{\prime}$ whieh the moulding retains is represented in \because shadow by $a^{\prime \prime} b^{\prime \prime \prime}$, all the other parts of its curved form being lidden, first by the protion of the fillet, and secondly by the line of shade $\mathbf{b b}^{\prime \prime}$, whieh aets in the same way as the et itself in producing the line $a a^{\prime}$, for the moment the light is intereepted, whether by traight or curved profile, shadow must follow the shade of the moulding, whatever it ; and this is by the student to be especially observerl.
2467. Fig. 843. exhibits the mode of obtaining the shadows and shade in the cyma ta. LL is the direetion of the ht, parallel whereto the line ab termines the line of horizonshadow cast hy the lower edge the fillet upon the cyma, and that of the under part of the na itself upon the fillet at d. is the mpper boundary of the rde of the eyma, and e the point determining the shadow of the ver fillet, the points abed corremrling with abed on the plan. IV on the right hand is the face the wall, whereto the lines $c^{\prime} e^{\prime \prime}$, ", $c^{\prime} c^{\prime \prime}, b b^{\prime \prime}$, and $a^{\prime} a^{\prime \prime}$ are drawn allel to the direction of the it. l'rom $e^{\prime \prime} d l^{\prime} c^{\prime \prime} b^{\prime \prime} t^{\prime \prime}$ vertical ${ }^{n} \mathrm{~g}$ drawn, cutting the indelie lines 00°, $a^{\prime \prime} a^{\prime \prime}$, \&ce parallel the direction of the light in

Fig. 81,3. d"', $e^{\prime \prime}, b^{\prime \prime}$, and $a^{\prime \prime}$, we have the m of the shadow in elevation. 'Lhe part from b' to e' af the eyma being in light, its dow will Le the eurve e b" $^{\prime \prime}$, wherein, if it be sequired on a large seale, ally ummber points unay le taken to determine its form by means of correspondent points on the phan for the parts already deseribed.
3468. Fiff. 814. is the plan aurd clevation af some stops, surranmeied by a wall, and I' in plin is a spuare pillat standing in front of them, It will be seen that the line Als
corresponds with ab on the plan, as do the points E, F, G, II with efgh, from which verticals deter. mine them in the elevation. The projection of the plinth on the lower step is found by KJ and a corresponding line and vertical, which, to prevent confusion, is not shown on the plan. The shadow of the square pillar P is found in a similar manner lyy the line CDcorresponding to cd on the plan, the shadows on the steps being also determined by the points $\mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}$, through the medium of verticals from $1, m, n, o$. The left-hand side of the shadow of the pillar is determined in a similar way by the line Pq . and QR in the elevation is given by qr in the plan, and is the line representing the back ps of the top of the pillar. It will be observed that we have not described any of the preceding diagrams in a strict way, neither shall we do so in those that follow, presuming that the reader has, from the perusal of the section on Descriptive Geometry acquired sufficient knowledge to follow the several lines.
2469. The fig. 845. is a sort of skeleton plan and clevation of a modillion cornice, but deprived

Fig. 845.

of a corona, so as to show the shadows of the modillions, independent of any comectic with other parts of the assmblagc. FG, HI, and AB parallel to the direction of the lig! determine, by means of verticals from d and i, the points of shadows from the correspon ent points c , l , the points D, L, and I , whereof L is the point of shadow of M .
2470. In fig. 846. we approach a little nearer to the form of a modillion connice. It line EF determines the shadow of the corona, and $A B$ by means of the lines cd , Ik, and tl verticals dD, kK, the boundary of the side ILL of the modillions. A line also dran horizontally from B will give the under sides of their shadows. FG is a line representin the shadow of the corona.
2471. Fig. 847. gives the finished modillion, and the lines $\mathrm{Aa}, \mathrm{Bb}, \mathrm{Cc}, \mathrm{Dd}$ will dete
mine, by horizontal lines drawn from them, the shadows which we are secking. The auxiliary lines, to which no letters are attached, cannot fail of being understood; but if difficulty arise in consprehending them, it will be removed by phaning the several points, and therefrom drawing on the plan, to meet what may be called the frieze, vertical lines to intercept those from the correspondent points in the clevation, and the opcration will be facilitated, perhaps, by projecting the form of the curved lines (as seen in the fignte) whereof
 the modillion is formed.
2472. Fig. S 18 . will searecly require a deseription. It is a geometrical elevation of t

Fits. sis.
oric triglyph and fricze, with the usual accesnies. AB gives the boundary of shadow on e femora of the triglyph, $A C$ the boundary of radow on the light sides of the glyphs, and AD the shadow of the corona on the frieze.
6473. Fig. 849. is a skeleton representation a threc-quarter column, forming part of an cate: Tlie alacus is the mere block of material AK. In the plan ab shows the ngth of the line of shadow AB, and is determined by the vertical bB. In the same way, D is found by ed and the vertical dD. K G is e representation of kg on the plan, and by a ritical from g the line GH is also determined; giving also by the horizontal line FH , in which is already found, the situation of shadow of the int $1 ;$ of the abacus, as also by a vertical from $1,11 \mathrm{~N}$ are places of the shadow of the column The impost moulding of the arch, whereof two rrespondent points are seen in 1 and n.
2474. The form of shadow of the console in 1. 850 . will be seen on inspection to have been and from the lines aa, ce, dd, \&c. on the elevaHI, corresponding with $a \alpha, c c, d d, \delta, \mathcal{L}$. on the ction, all which are parallel to the direction of e light, and sufficiently explain themselves.
9475. Fig. 851. is the elevation and section of bemispherical niche, wherein are shown the adows cast thereon by the vertical wall in which

Fis. 850. is placed. Through the tre O draw DD at right gles to the direction of the ht, and from O draw $O A$ rallel to the direction of the ht: A will be found the point the wall casting the longest idow. Produce AO indefi . ely; and from a, the corrending proint in the section A on the elevation, draw aa', allel to it, which will cut surface of the nishe in a^{\prime}. aw the horizontal line $\mathbf{a}^{\prime} \mathbf{a}^{\prime \prime}$ (ting AO produced in $a^{\prime \prime \prime}$, $1 n^{\prime \prime}$ will represent in the dow the point A in the ciriference. T'ake any other

 Int B in the edge of the niche, and by means of a line drawn therefrom horizontally we e the correspondent point b of B in the section. From B draw in the direction of the Iat the line $\left[3 b^{\prime \prime \prime} b^{\prime \prime}\right.$, eutting DD on the diameter in $b^{\prime \prime \prime}$; transfer the point $b^{\prime \prime \prime}$ in the 1 ation to h in the section, and draw $b b^{\prime}$ in the direction of the light indefinitely. -n with $13 \mathrm{~b}^{\prime \prime \prime}$ as a ratius from b as a centre, describe an are cutting bb' in b^{\prime}; and 1. $n l^{\prime}$ draw the horizontal line $b^{\prime} b^{\prime \prime}$, cutting $b b^{\prime \prime \prime}$ produced in $b^{\prime \prime}$, and $b^{\prime \prime}$ will be the Int in the shatlow corresponding to 13 in the clevation. To avoid the confusion which
wonld follow the description of the remainder of the operation; we have not encum. nered the diagram with more letters of reference; the lines showing, on inspection similar applications of the process for all parts of the eurve. The fact is, that the whole of the shadow may be completed by taking the line DD as the transverse axis of al ellipsis, and finding the semi-conjugate axis O a by the means above described, for $\mathrm{Da}^{\prime \prime} \mathrm{D}$ i a semi-ellipsis in form, inasmuch as it is the projection of a section of a hemisphere. This example is applicable to the shadow of a cylindrical niche with a hemispherical head. The line NN shows the shadow of the portion of the head, and the remainder is obtained by the mere intersection of lines in the direction of the light from different points to the lef of N, of which enough has been already given in the previous examples to make the appli cation intelligible.
2476. Fig. 852 . is the representation of a pediment wherein the section Λ is that of the

Fig Sit2.
mouldings of the pediment at its apex. In the section, ab drawn from the projection a of the corona in the direction of the light, determines the point b therein, wherefrom the horizontal line intercepted by the line ab in the elevation, also drawn parallel to the direction of the light, gives the point b in the elevation. A line from b, parallel to the inclined sides of the pediment on the left, will give the shadow of the corona on the tympanum on that side, and simitarly the line of shadow from b on the right side. ad determines the line of shadow on the frieze, and B is the section of the shadow of the assemblage of mouldings on the right.
2477. In fig. 853. is given the plan, elevation, and section of a square recess, covered with a cylindrical head. The lines $A \Lambda, B B$, CC of the elevation are determined by aa, bb, and ce of the plan; and in the section c'e' is the representation of the line ec of the plan. D, the point at which the direction of the light begins to touch the circular head, is d^{\prime} in the section.
2478. Fig. 854. is the elevation of an arch, below which isits plan and the shadow cast by it on the plane upon whieh it stands. AA is shown by aa on the plan, the corresponding points in the rear of the arch being $a^{\prime} a^{\prime}$, and $a^{\prime \prime} a^{\prime \prime}$ the points in the shadow. In a similar way, by BB corresponding with $b b^{\prime}$ on the plan the points $b^{\prime \prime} b^{\prime \prime}$ are obtaincd in the shadow.
2479. Fig. 855. is the plan and elevation of the upper part of a hotse,
herein the upper story is occupied an attic in the centre, against hich, on each flank, the sloping roof terminated. aa on the plan in edirction of the light, produced intersect the hip at b, gives, by a rtical to B on the elevation, the rection BB of the shadow thereon; id $B B$ cut by $A A$ in the direction the light, the length $B A$ of the ne of shadow, which may, by letig fall the vertical Aa, determine e length aa on the plan. 'The ee of shadow ac is determined by tting fall a vertical from C , where e line of shadow is intercepted the hip of the roof; and from e e shadow will be found on trial to turn as shown in the diagram. E id D on the elevation are found,

Fig. 855. seen in previous examples, in ee, and d on the plan, and their shadows at e'é and d^{\prime}. 2480. What is called an attic base is given in plan and clevation by fig. 856 . The theod of obtaining the shadows thereof plan and elevation is now to be plained. It is an example which nstantly occurs in architectural bjects, and should be well studied d understood. The operations reisite for obtaining a representation the lines of shadow of the different ouldings in this example depend on the principles developed in the eceding subsections. The lower rtion of the figure exhibits the 10 , and the middle portion the eleion of the attic base in question. he uppermost portion of it presents ee sections of the mouldings of the e in question cut in three different ces parallel to the direction of the ht. 'This last portion of the figure rot absolutely necessary, inasinuch the profiles in question might e becin obtained upon the eleva1 ; but we have preferred heeping eparate to prevent a confusion of widiary lines. There is moreover ther advantage in thus separating parts from each other, namely, t of immediately and more distly seeing the lines at each selectplace, in which the rays of light arate the parts actually in light n trose in shadow; and where sturlent is likely to mect with

Fig. 856. Pers of perphexity, nothing should be left untried to save his time, and, what is often re important, his patience. The mode to be adopted is as follows:-
Hake on the plan any number of sections $a^{\prime} a^{\prime} a^{\prime} a^{\prime}, b^{\prime} b^{\prime} b^{\prime} b^{\prime}$ in the dircetion of the light, and w on the elevation the corresponding sections auaca, bubL. LL being the direction of the t, draw parallel thereto tangents to the curves of the convex mouldings, and the boundaof their shades will be obtained, as will also those of their shadows, by continning them fo such boundarics till they cut the other parts in each section, as will be nore especially 8 at ec. It will be recollected that in our first mention of the projected representation of ' line of light and shadow we found that it was an angle of 54 44' of the diagonal of a ' 6 . 'lhis angle is set out in $x y z$ on the plan. We have therefore another mode of fing the boundaries of shade and shadow on the monlding, by developing the sections ${ }^{s} s^{\prime} a^{\prime}, b^{\prime} b^{\prime} b^{\prime} b^{\prime}, \& e$, as at A, B^{\prime}, and C, and drawing tangents $y z$ to the convex mouldings for
boundaries of shade thereon, and continuing them, or otherwise, for the other parts, as shown in the diagram.
2481. In fig. 857., which represents the capital of a column, a similar method is used to that last mentioned for obtaining the shades and shadows, by means of $a^{\prime} a^{\prime} a^{\prime} a^{\prime}$ and $b^{\prime} b^{\prime} b^{\prime} b^{\prime}$, which are shown on the elevation by aaaa and $b b b b$. We apprehend this will be understood by little more than inspection of it.

It is obvious that the means here adopted for obtaining the lines of shadow are precisely similar to those used in the preceding example. In this, however, the sections of the capital parallel to the direction of the light are made on thę elevation, and it will be seen that many of them are not required to obtain an accurate boundary of the lines of shadow sought; for after having obtained those points from which the longest shadow falls, and on the other side those where the line of shadow com-

Fig. S. 7. mences, a curve line of an elliptical natnre connects the points found. If the drawing to be made be on a large scale, it may then be worth the architect's while to increase the momber of points wherefrom the shadow is to be projected, so as to produce the greates possible accuracy in the representation.
2482. The shadows of an Ionic capital are given in fig. 858. The shadow of the volut on the column is obtained by any number of lines $A \bar{A}, \mathrm{Bl}, \mathrm{CC}$, \&. from its differen

Fig. 8.58.
parts and verticals from their corresponding ones $a c, b b, c c$, \&e. on the plan, and similar the shadow of the capital on the wall. In this example, as in those inmediately precedir the employment of seetional lines parallel to the direction of the light is again manife The use of them is most especially seen in the example of the Corinthian capital whi follows. As a general rule, it may be hinted to the student of sciography, that in the dif cultics that may occur, they will be most expeditiously and clearly resolved by the v of the sectional lines, whereon we have thought it proper so much to dilate.
2483. The Corinthian capital in fig. 859 . will require little more than inspeetion monderstand the construction of its sciography; and all that we think necessary to partic larise are the developed projections A, \bar{B}, C, D, E, F of the abacus and the leaves, where the termination of the shadows at angles of $54^{\circ} 44^{\prime}$, as explained in fig. 856., give th respective depths on the elevation.
'There is another method of arriving at the result here exhibited, by drawing sectio lines parallel to the direction of the light through the different parts and leaves of

pital on its elevation, as in fig. 857, and such was the mode we were formerly in the habit adopting. It however induces such a confusion of lines, that we have long since abanmed it, and have no hesitation in recommending the proeess here given as the best and ost likely to avoid confusion. It is of course unnecessary, in making drawings, to project ore than the shadow of one capital, as in a portico, or elsewhere, similar eapitals, similarly posed to the light, will project similar shadows, so that the projection on one serves for e projection on all of them.
2484. For instruction upon the mode in which reflected light acts upon objects in shade d shadow, we must refer the learner to the contemplation of similar objects in relief. ie varietics of reflexes are almost infinite; and though general rules might be laid down, ry would nceessarily be so complieated, that they would rather puzzle than instruct, and rder this head we recommend the study of nature, which will be found the lest instructress e student can procure.

Sect. IV.

general princlples of composition.

2485. The end of arehitecture, without whose aid no other art ean exist, is not merely please the eye, but so to provide against the changes of the seasons as to be serviceable man. Pleasure to the cye may, however, result from the uscful, well combined with the autiful modilications whereof it is suseeptible. It is in eombining thus that the genins the arehitect is exlibited. The art of decorating a well-proportioned edifice is a very zondary and comparatively easy part of his work, thongh requiring, of course, the early ltivation of lis taste and an intimate acquaintance with the parts, whereof this may tanght and that acquired; but the distribution and arrangement of the several portions the jlan, upon which every accessory is dependent, requires great knowledge and nsiderable experience. And in this is involved not only the general convenienee and et of the luilding, but what is of mueh consequence to the proprictor, the cost of the rk. None but chose practically conversant with the planning of a building would lieve the saving that may be produced by proper distribution. In the ease of many crual oreaks, for instanee, much addition arises in the length of walls erelasing the lice, without gencrally increasing the convenienee of the interior, but always when the vation romes to be adapted to the plan, with the certainty of breaking up the masses, Idestraying the simplicity of the effect. 'l'his is mentioned merely as an instance of indecity of ilan always producing slmplicity of section and elevation.
2486. All ormament in architecture is non-essential, inasmuch as the pleasure receised by the cye is not its end. To public and private utility, the welfare and comforts of individuals. which are the ends of the art, every other point must be sacrificed; and it is vily when these have been accomplished that we are to think of decoration. An anecdote is related of a certain nohleman, who, having boasted to a fricnd of the beanty of the façade of his house. which within was exceedingly ill contrived, was told that he thought tha peer would do well to take the house opposite, that he might be thus always able to look at it. Those who make the internal parts of an edifice subservient to the project of a façarle, and adjust their plan and section to the elevation, nust be considered as making the end of less importance than the ornament of the building. Those who work in this mode prodnce little varicty in their designs, which, numerous though they be, consist of but few different combinations, whilst those that result from the natural order of making the façade subservient to the internal parts, whieh the plan and section impose, are susceptible of infinite variety and dceoration.
2487. It is not, however, to be supposed that we are, in what has been said, sanctioning the student's neglect of careful eomposition and adjustment of the façades. Upon the adaptation of the different fronts of the building to sort with the internal concenience, the greatest eare should be bestowed. It is from these his reputation is likely to flow, because they are the parts most susceptible of comprehension by the public. The arelitect will, mpon every succeeding day's experience, find that the two objects are not incompatihle; but if such a case, which is possible, arise, he had far better sacrifice the façade, considering first the comforts of those who are to inhabit the house, and then the gratifation of those who are only to look at it.
2488. Durand has well ohserved that compositions conducted on the above principles must please. "Has not nature," says that author, "attached pleasure to the satisfaction of our wants, and are our most lively pleasures other than the satiffaction of our most pressing wants? These wants arc better satisfied in the interior distribution of a building tham in the cxterior." Who Ieaves the I'antheon without more satisfaction than he expected from the view of the portieo, fine though it be? Again, faulty as are both St. Peter's and St. Paul's, will any one w^{-1} o understands the subject aver that he has received more plea. sure from their respective façades than from their noble interiors? The pleasurable sensations produced by both are entircly dependent on their interior distribution. But whan we tind that in the former of these buiddings there is no mockery of a dome, the interior and exterior being as far dependent on each other as the circumstances of construction would permit, whilst the dome of the latter is worse than a mockery, the interior and exterior domes having nothing in common with each other, the last being no more than a timber leaded appurtenance to the fabric, Wren, with all his greatness, for great he was, slurimk into nothingness by the side of Michael Angelo, although the external form of the dome o Luondon be more elcgant than that of the Vatican. This is a strong but not a forced ithustration of our opinions, the goed sense whereof must be lift for appreeiation to our readers who, we doubt not, on a little reflection, will concur with us.

Q $\ddagger 89$. In nincty-nine cases out of a hundred the student will find that a good distribution of his plan leads him, with anything like ordinary tact, to the composition of good scetion and good elevations, far better, indeed, than he could arrive at by pursuing an opposit course. In domestic Gothic architecture, this is notorious, for in that a regular distribution of the openings would often produce the tamest and least picturesque effect. 'Th Gothic architects placed windows internally where only they would be scrviceable, lettint them take their chance in the extcrior. It is not to be understood, because such would b. rather outré, that this method will exaetly suit the principles of composition in Italian archi. teeture; but it is well known to practical men that a required opening in a particular plate instead of being a blemish, may be converted on many occasions into a beauty. Indeed, is incontrovertibly true that distribution and disposition are the first objects that shoul engage the architect's attention, even of him whose great aim is to strike the attention b ornament, whieh can never please unless its source can be traeed to the nost convemien and cconomical distribution of the leading parts. Theorists may be laughed at, but it dox not move us, nor diminish our regret to see many architects without any other theory tha that whereon, in an inverted position, their own wild faneres are giafted. If what we hay stated be truc, and from the nature of things we cannot imagine a eontroversy can ari upon our observations, the talent of the arehitect is to be estimated, as Durand propur oberves, according to his solution of the two following problems: -

First. For a given sum, as in private buildings, to erect the most eonvenient and sui able house for his employer.
Second. The requisites in a building being given, as in public buildings, to erect it the smallest possible expense.
2490. An investigation of all the modes of aecomplishing these desiderata can only 1 filly effected in a work of much larger extent than this; but we have, in the practic parts of our volume, sn prepared the reader, that he will not generally be at a loss in respe of the econstruetion of a building, whatever its nature or destination

Sect. V.

DRAWINGS NECESSARY IN COMPOSITION.

2490 a. For the thorough comprehension of a projected edifice, at least three drawings are necessary, the plan, the section, and the clexation. The first is a horizontal section of it, .he second the vertical section, whiel shows the building as if it were cut in lalf, that half hearest the spectator being removed from its plan, so as to permit the inner parts to become risible, and the third is the geometrical appearance of the front represented as if viewed ron an infinite distance, in which no contergence of the lines would be seen.
24906. In making a design, it is always butter to put he general iden together on a single sheet of paper, and onsequently, in most eases, on a small scale. This, n afterwards making the drawings, is, as may be neessary, inereased in size. The tliree parts being drawn -ider one another, as shown in fy. 895a., wherein the niddle diagram is the plan, the lower one the seetion, nd the upper one the elevation. By thus beginning on single sheet, in which the whole is before the eye, the orresponding lises are more readily transferred from ne part to another. Having drawn through the middle f the paper the vertical AA, eut at right angles by he horizontal line BB, draw the required centres or xes of the walls CC and DD, and supposing the buildug is to be square, with the sane opening of the eomasses set out the axes of the return walls EE and F. Having determined the thiekness of the walls, ne half may be set out on each side the axes, as in $f f, c c$, and $d d$, and then the lines showing the thickesses of the walls may be drawn. The width of renings in the walls may be next set out, half on each de the axes $B \mathrm{~B}$ and AA, first drawn towards $b l$ and b, and the lines drawn to their places. Having thus oceeded, we shall diseover that not only has the plan en drawn, but at the same time a considerable portion the section and clevation. To distinguish the voids om the salids, the latter should be eoloured or tehed, and then the next step will be as follows:wrallel to the prineipal axis BB , draw the ground lines G and GG. From these lines the heights of the filding, its cornice and openings, may be set up in the ction and elevation; and afterwards, the height of the of and projection of the cornice having been demined, they may be set out and drawn. In the tion, as in the plan, it is usual either to colour or tch the solid parts, as we have done in the figure. 2490c. Simple as the above process may be, it contains - whole elementary part of the mechanieal proeess "essary for making a design. It might have been rulueted on a more romplicated nuass, but had we done it would not have been so well understood, and we refore deprecate any observations on the simpleness our process by those who have been brought to know re things ly practice and experience. We do not, wever, feel we should discharge our duty before sing this seetion, without a censure on the attempt enuvert drawings of geometrical elevations and sec\therefore into pietusestue representations, becanse sucb

Fig RSna. ctice is not only injurious to the art, hut is dishonest, and has a tendency to missead urelitect's employer; and we are sorry to say that it is not unfrequently done with In a view. We denounce it, and without hesitation aver that the casting of shadews a design is only adinissible for the purpose of showing the relative depths of projecting low and when so admitted, the nedium should he cont ned to Indian ink or sepin, nud ur.

Secr. VI.

working drawings.
2491. Working drawings are those made of the parts at large for executing the works, which could not be well done from drawings on a small scale, wherein the small parts would not be either sufficiently defincd, or could not be figured so as to enable the workman to set out his work with accuracy. They are generally in outline, except the scctional parts, which are frcquently tinted to bring the profiles more readily before the eye.

2491a. It is obvious that though drawings made to a tweltth or a twenty-fourth part of Cheir rial size may well enough supply the wants of the workman where there is no complication in the distribution and arrangement, and where there is a simple treatment of regular forms, of right angles and the like; yet in all cases wherein we have to deal with the minor details of architecture, and in construction, where the variety of forms used is infinite from the variety of the circumstances, nothing short of drawiugs of the full, or at the least of half, the size will safely guide the workman.

2491b. The art of making working drawings, which must have been well understood at all periods of the practice of architccture, involves a thorough knowledge of projection, or descriptive geometry, and consists in expressing by lines all that occurs for the development of every part of the details of a building, in plan, elcvation, and profile, each part being placed for the use of the workman with clcarness and precision. All the rules by whieh working drawings are wrought are dependent on the matter in this work already communicated to the reader, excepting only those details of the orders, and some othei matters, which will be found in Book III. But we shall here, ncverthe!ess, briefly replace before him the leading principles whereon working drawings are to be prepared. Anc first, he is to recollcet that solids are only represented by the faces opposite to the eyc secondly, that the surfaces by which solids are enclosed are of two sorts, that is, rectilinea or curvilinear. Those bodies in which these properties are combined may be divided ints threc sorts: 1. Those which are bounded by plane surfaces, such as prisms, pyramids, ank generally all straight work. 2. Those in which there is a mixture of stagight and curvee limes, as cylinders, cones, or portions of them, voussoirs of vaulting, and the like; and 'Those solids wherein a double flexure occurs, as in the sphere, spheroid, and in man cases of voussoirs.
$2491 c$. We should, however, unnecessarily use our limited space by further entering 0 these matters, on which enough has been said in previous sections. The plain truth is, tha working drawings are to be so made for the use of the artificer as to embody on a scalc, t prevent any mistake, all the information which this work has already given on constructio: and that which follows in the more refined view of architecture as a fine art.

2491d. In works whose magnitude is not of the first class, the drawing of every par both in construction and in those which involve the work as one of art, should be give of the full size whereof it is proposed to be exccuted. Where the building is larg as also the parts, this may be dispensed with; but then it becomes (the detail bein drawn on a smaller but fully intelligible scale) the duty of the architect to see that tt drawings he furnishes are faithfully drawn out to the full size by the artificer on propi moulds. Often it is useful-ncver, indeed, otherwise-to offer up, as it is called, sma poitions of mouldings on the different parts of a building, to ascertain what the effect ma be likely to be at the heights fixed for their real places. In these matters he should lea no means untried to satisfy himself of the effcet which his first drawings in small is likely produce when exccuted.

2491e. We have presumed that the architect is so far educated as to have acquirel full knowledge of all that rules can teach, and that, strictly speaking, he has proportion his work in conformity with them. Still, in real practice, there are constantly so mai circumstances which concur in making it almost necessary to depart from establisin rules, such as surrounding buildings; where it is of importance to give predominance to part for the purpose of making it a feature, that the expedient of trying a portion of t proposed detail in the place it is actually to occupy, is a matter that we would advise eve architect to adopt after he has made and studied the working dravings whereof we treat
$2491 f$. We have not alluded to the matters of carpentry and joinery, in which it is oft necessary to give the artificer information by means of working drawings; but the methe of trussing in carpentry, and of framing in joinery, often require working drawings. Wl has already becn exhibited under those heads (2031, et seq.) will prevent his being 1 usinstructed, and will, moreover, have afforded such information as to prepare him, by 1 excreise of his own ingenuity, for such cases as may not have been specially given in 1 examples herein contained. We therefore here close our observations under this sect by an intimation to the student, that the proper preparation of working drawings for use of the artificer tests his acquaintance with the theory and practice of the art, anc of the utmost importance to the pocket of the employer, which it is his duty as a genthen incessantly to protect.

BOOK III.

IRACTICE OF ARCHITECTURE.

CHAP. I.

GRECIAN AND ITALIAN ARCHITLCTURE.

Sect. I.

BEAUTY IN ARChitecture.

2192. The existence of arehitecture as a fine art is dependent on expression, or the aeulty of representing, by means of lines, words, or other media, the inventions which the rehitect coneeives suitable to the end proposed. That end is twofold; to be useful, and o conneet the use with a pleasuralle sensation in the spectator of the invention. In loquence and poetry the end is to instruet, and sueh is the object of the higher and histoieal elasses of painting ; but arehitecture, though the elder of the arts, cannot elaim the ank due to painting and poetry, albeit its end is so mueh more useful and necessary to nankind.: In the seiences the end is utility and instruction, but in them the latter is not f that high moral importanee, however useful, which allows them for a moment to eone nto competition with the great arts of painting, poetry, and eloquence. It will be seen hat we here make no allusion to the lower branches of portrait and landseape painting, ut to that great moral and religious end whieh fired the mind of Miehael Angelo in the jistine Chapel, and of Raffaelle Sanzio in the Stanze of the Vatiean and in the Cartoons. Bove the lower branches of painting just mentioned, the art whereof we treat oecupies in exalted station. In it though the chief end is to produce an useful result, yet the exression on which it depends, in common with the other great arts, brings each within the cope of those laws which govern generally the fine arts whose object is beauty. Beauty, whatever difference of opinion may exist on the means neeessary to produce it, is by all dmitted to be the result of every perfection whercof an oljeet is suseeptible, sueh perfecions being altogether dependent on the agreable proportions subsistent between the everal parts, and those between the several parts and the whole. The power or faculty of nventing is called genius. By it the mind is eapable of conceiving and of expressing its oneeptions. Tuste, which is eapable of being aeyuired, is the natural sensation of a mind eliued hy art. It guides genius in discerning, embraeing, and produeing beanty. Here ve may for a moment pause to inquire what may be considered a standard of taste, and hat eannot be better done than in the words used on the subjeet by Hume (Essay xxiii.): "The great variety of tastes," says that author, "as well as of opinion, whiel prevails in the vorld, is too obvious not to have fallen under every one's observation. Men of the most onfined knowledge are ahle to remark a difference of taste in the narrow eirele of their mequaintanee, even where the persons have been educated under the same gevernment and bave early innbihed the same prejudices. But those who ean enlarge their view to conemplate distant nations and remote ages are still more surprised at the great ineonsistence find eontraricty. We are apt to eall barbarous whatever departs widely fiom our own aste and appreliension, but soon find the epithet of reproach retorted on us, and the iighest arrogance and self-eonceit is at last startled on observing an equal assurance on all fides, and seruples, amidst sueh a contest of sentiment, to pronounce positively in its own avonr." True as are the observations of this philosopher in respeet of a standard of taste, ve shall nevertheless attempt to guide the reader to some notion of a standard of taste in welisteeture.
2193. There las lately grown into use in the arts a silly pedantic term nuder the name of Dinthetics, founded on the Greek ward 'Atr0クTuks, one which means having the power of ereeption ly means of the senses; said to be the science wherely the first prineiples in all he arts are derived, from the effect which eertain comnhations lave on the mind as em reeted with nature and reason: it is, how ever, one of the metaphysical and useless additions
to nomenelature in the arts, in which the German writers abound, and in its application to arehitecture of least value; because in that art form is frem eonstruction so limited by necessity, that sentiment can scarcely be said to be further eonneeted with the art than is necessary for keeping the subordinate parts of the same character as the greater ones under which they are combined; and, further, for thereby avoiding incongruities.
2194. It is well known that all ati in reation to nature is subject to those laws by which nature herself is governed, and if we were certain that those rules of art which resulted from reason were neessissily and actually connected with sensation, there would be ne difficulty in framing a code of laws whercon the principles of any art night be firmly founded. "Irinciples in ant," as well defined by Payne Knight, "aze no other than the trains of ideas which arise in the mind of the artist out of a just and adequate consideration of all those loca!, temporary, or accidental cireumstances upon which their propriety or impropricty, their eongruity or incongruity. wholly depend." By way of illustrating the observation just made, we will merely allude to that maxim in architecture which inculcates the propriety of placing openings over openings and piers over piers, disallowing, in other words, the placing a pier over an opening without the exhibition of such preparation below as shall satisfy the mind that security has been eonsulted. There can be no doubt that a departure from the maxim creates an unpleasant sensation in the mind, which would seem to be immediately and intimately eonnected with the laws of reason; but there is great difficulty in satisfying one's self of the precise manner in which this operates on the mind, without a reeurrence to the primitive types in arehitecture, and thence pursuing the inquiry. But in the other arts the types are found is nature herself, and hence in them no difficulty oceurs in the establishment of laws, because we have that same nature whereto reference may be made. We shall have to retam to this subject in the section on the Orders of Architecture, to which we must refer the reader, instead ot pursuing the subject here.
2195. Throughout nature beauty seems to follow the adoption of forms suitable to the expression of the end. In the hmman form there is no part, eonsidered in respeet to the end for which it was formed by the great Creator, that in the eye of the artist, or rather, in this ease the better judge, the anatomist, is not admirably calculated for the function it has to discharge ; and without the ancurate representation of those parts in discharge of their several functions, no artist by means of mere expression, in the ordinary meaning of that word, can hope for celcbrity. This arises from an inadequate representation having the appearanee of incompetency to discharge the given functions; or, in other words, they appear unfit to answer the end.
$\subseteq 496$. We are thus led to the eonsideration of fitness, whieh, after all, will be found to be the basis of all proportion, if not proportion itself. Alison, in his Essay on Teste, says, "I apprehend that the beauty of proportion in forms is to be aseribed to this cause," (fitness) " and that eertain proportions affect us with the emotion of beauty, not from any original eapacity in such qualities to excite this emotion, but from their being expressive to us of the fitness of the parts to the end designed." Hogarth, who well understood the subjeet, concurs with Alison in considering that the emotion of pleasure which proportion affords does not resemble the pleasure of sensation, but rather that feeting of satisfaction, arising from means properly adapted to their end. In his Analysis of Beouty that great painter places the question in its best and truest light, when, speaking of chairs and tables, or other eommon objects of furniture, he considers them merely as fitted from their proportions to the end they have to serve. In the same manner, says Alison, "the effect of disproportion seems to me to bear no resemblance to that immediate painful sensation which we feel from any disagreeable sound or smell, but to resemble that kind of dissatisfaction whieh we feel when means are unfitted to their end. Thas the disproportion of a chair or table does not affect us with a simple sensation of pain, but with a very observable emotion of dissatisfaction or discontent, from the unsuitableness of their construction for the purposes the objects are intended to serve. Of the truth of this every man must judge from his own experience." We cannot refrain from eontinuing our extracts from this most intelligent author. "The habit," he says, "which we have in a great many familiar cases of immediately eonceiving this fitness from the mere appearance of the form, leads us to imagine, as it is expressed in common language, that we determine proportion by the eye, and this quality of fitness is so immediately expressed by the material form, that we are sensib'e of little difference between such judgments and a mere determination of sense; yet every man must have observed that in those eases where either the object is not familiar to us or the eonstruction intricate our judginent is by no means speedy, and that we never diseover the proportion until we previously discover the principle of the macine or the means by which the end is produced."
2196. The nature of the terms in which we eonverse shows the dependence of proportion on fitness, for it is the sign of the quality. The natural answer of a person asked why the proportion of any building or machine pleased him, would be, because the olject by suck proportion was fit or proper for its end. Indecd, proportion is but a synonyme of fitness
for if the form be well contrived, and the several parts be properly adjusted to their end, we immediately express our opinion that it is well proportioned.
2197. There is, however, between proportion and fitness, a distinction drawn by o:rr author, which must be noticed. "Fitness expresses the relation of the whole of the means to the end ; proportion, the proper relation of a part or parts to their end." But the distinction is too refined to he of importance in our consideration; for the due proportion of parts is simply that particular form and dimension which from experience has been fonnd best suited to the olject in view. "Proportion," theref,re continues Alison, "is to be considered as applicable only to forms composed of parts, and to express the relation of propriety between any part or parts and the end they are destined to serve."
2198. Forms are susceptille of many divisions, and consequently proportions; but these are only subordinate to the great end of the whole. Thus, for instance, in the constantly varying forms of fashion. say in a chair or table, the merely ormamental parts may bear no relation to the general fitness of the form, but they must be so contrived as to avoid anpleasant sensation, and not to interfere with the gencral fitness. If we do not understand the nature of its fitness, we cannot judge of the proportion properly. "No man." cays Alison, "ever presumes to speak of the proportions of a machine of the use of whith he is ignorant." When, however, we become accquainted with the use or purpose of a particular class of forms, we at the same time acquire a knowledge which brings under our siew and acquaintance a larger circle of agreeable proportions than the rest of the world merstand; and those parts which by others are segarded with indifference, we contem,iate with pleasure, from our superior knowledge of their fitness for the end designed. The proportions of an olject mu-t not in strength be carried beyond what s required for fitness, for in that case they will degencrate into clumsiness, shilst elegance, on the contrary, is the result of the nicest adjustment of ropertion.
2199. Fitness cannot exist in auy architectural object without equilibrium n all the parts as well as the whole. The most complete and perfect notion hat can he conceived of stabrity, which is the result of equilibrium, may oe derived from the contemplation of an horizontal straight line; whilst, in the contrary, of instability nothing seems more expressive than a vertical traight line. These being, then, assumed as the extremes of stability and instability, by carrying out the gradations between the two extremes, we pay, extending in two parts the vertical line, obtain various forms, more or uss expressive of stability as they approach or recede from the horizontal ne. In fig. 860. we have, standing on the same base, the general form of ne lufty Gothic spire ; the pleasing, solid. and enduring form of the I'gyptian yramid; and that of the flat Grecian pediment: which last, though in its recination aljusted on different grounds, which have been examined in book II Chap. III. subsect. 2027, et seq., is an eminent instance of stability.
 he spire, from its height and small base, seems to possess but a tottering equilibrium mpared with the others.
2200. Stability is obviously dependent on the laws of gravitation, on which, under the ivision of statics, not only the architect, but the painter and sculptor, should bestow consiyrable attention. We cannot for a moment suppose it will be disputed that at least one the causes of the beauty of the pyramid is a satisfactory impression on the mind of the the of rest or stability it possesses. Rest, repose, stability, balance, all meaning nearly csane thing, are then the very essential ingredients in fitness; and therefore, in architeeral sinbjects, instahility, or the appearance of it, is fatal to beauty. Illustrations of this ist in the famous Asinelli and Garisendi towers at Bologna, and at Pisa in the celeated leaning Campanile.
2201. It may be objected to what we have written, that fitness alone will not account ot the pleasure which a rises in the contemplation of what are called the orders of archieture, and Alison seems very much to doubt whether there be not some other cause of anty. It will, however, be our Insiness to show how the ancients, their inventers, conlired principally their fitness; and upon these groneds to show, moreover, how the oportions in ancient examples varied, and may he still further varied, without infringing ont the principles which guided them in the original invention. Payne Knight has well "erved, "that the fundanental error of imitators in all the arts is, that they servilely py the eflects which they see proclueed, instead of supplying and adopting the principles nich guided the original artists in producing then; wherefore they disregard all those al, temporary, or aecidental circminstances upon which their propriety or impropriety, ir congruity or incongruity, wholly depend." "Grecian temples, Gothic ahheys, and dial eastles were all well adapted to their respective uses, circumstances, aul sitnations; distrbation of the parts snbservient to the parposes of the whole; and the ormanents 1 de orations snited to the character of the parts, and to the manners, habits, and enngments of the persons who were to occupy them: but the honse of an English noble-
man of the 18 th or 19 th eentury is neither a Grecian temple, a Gothic abbey, nor a feudal eastle; and if the style of distribution or decoration of either be employed in it, such changes and molifications shonld be admitted as may adapt it to existing circuustances, otherwise the s ale of its exactitude beeomes that of its incongruity, and the deviation from principle proportioned to the fidelity of imitation." This is but another application of the prineiple of fitness which we have above eonsidered, the chief foundation of beanty in the art. We have shown how it is dependent on stability as a main source of fitness, and here subjoin some maxims which will lead the student to fitness in his designs, and prevent lim from running astray, if he but bring himself to the belief that they are reasonable, and founded upon ineontestable grounds, which we ean assure him they are.

First. Let that which is the stronger part always bear the weaker.
Seeond. Let solidity be always real, and not brought to appear so by artifice.
Third. Let nothing be introduced into a composition whose presence is not justified by neeessity.
Fourth. Let unity and variety be so used as not to destroy each other.
Fifth. Let nothing be introduced that is not subordinate to the whole.
Sixth. Let symmetry and regularity so reign as to combine with order and solidity.
Seventh. Let the proportions be of the simplest sort.
Eighth. Let him recollect that nothing is beautiful which has not some good and useful end.

If, after having made his design, he will scrupulously test it by these maxims serialim and will strike out what is discordant with the tenor of them, he will have overcome a few of the difficulties whieh attend the eommeneement of his career.
2503. We are not of the same opinion with those who, on a geometrieal elevation of : building, draw lines from its apex, which, bounding the prineipal parts of the outline, finc a pyramidal form, and thence infer beauty of general outline. If those who favour such a notion will but reflect for a moment, they must see that this cannot be a test of its effect inasinueh as the construction of a geometrical elevation of any edifice supposes it to be viewed at an infinite distance, whereas, in fact, it is most generally viewed under angles which would puzzle the most leamed arehitect, without full investigation, to discover the primary lines which they assume to be the causes of its beauty. The obscurations am foreshortenings that take place are at points of view near the building itself; and, howeve judieious it may be to form the gencral masses in obedience to such a system, so as to pro duce an effect in the distanee that may be in aecordance with the principle, it would in extremely dangerous to lay the principle down as a law. The finest view of St. Paul's i: perhaps a little east of Fetter Lane, on the northern side of Fleet Strcet; but it wouk puzzle any one to discover its pyramidal form from that point of view.
2504. The beauty of the proportions of architecture in the interiors of buildings i dependent on those which govern the exteriors. Much has been said on proportions o rooms, which, hereafter, we shall have to notice: we mean the proportions of their lengtl to their breadth and height. That these are important, we cannot deny ; but whether thr beauty of a room is altogether dependent on the due adjustment of these, we have som doubts; that is, under certain limits. We here address ourselves more particularly to tha fitness which, in ornanenting a ceiling, for exanple, requires that the beams which appear bclow the general surface should invariably fall over piers, and that in this respect cor responding sides should be uniform. In the study of this point, Inigo Jones is the grea English master who has left the student the most valuable examples of this branch e the art.
2505. It may, perhaps, be useful to observe generally that the bare proportions of th interiors of apartments depend on the purposes for which they are intended, and accordin; to these we seek immediately for the expression of their fitness. This point, therefor involves on the part of the architect so general an acquaintance with the most refine habits of his employers, that we should be almost inelined to agree with Vitruvius on thi multifarious qualifications necessary to constitute a good one. Certain it is that 1 . instructions he ean receive for building a mansion will qualify him without an intimat acquaintance with the habits of the upper classes of society.
2506. We have already stated that it is hopeless to arrive at a fixed standard of tast That considered worthy of the appellation will not be so considered in another. "Ill sable Africans," says Knight, quoting from Mungo Park, "view with pity and contemy the marked deformity of the Europeans, whose mouths are compressed, their noses pinche their cheeks shrunk, their hair rendered lank and flimsy, their bodies lengthened as emaciated, and their skins unnaturally bleached by shade and seclusion, and the banef influence of a humid climate." In the eountrics of Europe, where some sinilarity of tas may be expeeted, the tyranny of fashion, no less than that of habit and circunstance, be and always will have, its influence on the arts. Within the short space of even a $f t$ months we have seen what is called the renaissance style of architecture imported fro France, drawing into its vortex all classes of persons; many of them among the high
ranks, possessed of education to have patronised better taste; and in architecture, and some other arts, no one solves the question of what is really right by saying that there have been errors in the tastes of different ages.
2507. The specimens of Greek sculpture, whose beauty is founded in nature herself, will throughout all time exeite the admiration of the world; because in this case, the standard or type being nature, mankind generally may be supposed to be competent judges of the productions of the art. But it is very different in architecture, whose types in every style are, as respects their origin, uncertain; and when we are asked whether there be a real and permanent principle of beauty in the art, though we must immediately reply in the affirmative, we are at the same time constrained to refer it to the quality of fitness. If this were not the case, how could we extend our admiration to the various styles of Egyptian, Greeian, Roman, Gothic, and Italian architecture? These at first appear, compared with each other, so dissimilar, that it seems impossible to assign beauty to one without denying it to the rest. But on examination each will be found so fitted to its end, that such cause alone will be found to be the principal sonrce of the pleasure that an educated mind receives from each style; and that thence it arises, rather than from any certain or definable combinations of forms, lines, or colours that are in themselves gratifying to the mind or agreeable to the organs of sensation. If this be true, what becomes of the doctrine or the German asthetical school, so vaunted of by self-constituted critics and reviewers, who pass their judgment ex cafedrâ on works they have never seen, and, strange to say, are tolerated for a moment by the public? The truth is, the public rarely give themselves the trouble to judge; and unless led, which is easily done by the few, do not undertake the trouble of judging for themselves. That the Egyptian pyramid, the Grccian and the Ioman temple, the early Christian basilica, the Gothic cathedral, the Florentine palace, the Saracenic mosque, the pagoda of the East, are all beautiful objects, we apprehend none will dispute; but there is in none of them a common form or standard by which we can judge of their beauty: the only standard on which we can fall back is the great fitness of them, under their several circumstances, for the end proposed in their erection.
2508. We are thus unavoidably driven to the conclusion that beanty in its application to architecture changes the meaning of the word with every change of its application; for those forms which in one style are strictly beautiful on account of their fitness, applied to mother become disgusting and absurd. By way of illustrating this, let us only picture to purselves a frieze of Grecian triglyphs separating the nave and clerestory of a Gothie zathedral. From what we have been taught to consider the type of the Doric frieze connected with its triglyphs an idea of fitness immediately arises in the mind; but we cannot race its fitness in a dissimilar situation, neither can we comment on such an incongruity setter than in the oft-quoted lines of Horace : -

> " Humano capiti cervicem nictor equinam
> Jungere si velit, et varias inducere plumas
> Undique collatis menlris, ut turpiter atrum
> Desinet in piscem mulier formosis uperne,
> Spectatum admissi risum teneatis amici?","

The influence of cireumstances in every age has imparted to each style of architecture its eculiar beauty and interest ; and until some extraordinary convulsion in society give the mpetus to a new one, we are constrained to follow systems which deprive us of other hovelty than those of changes which are within the spirit of the universally established aws of the art. Turn to the Gothic churches of the present day, - the little pets of the hureh commissioners and elergy. What objects of incflable contempt the best of them re! 'The fact is, the religious circumstances of the country have so changed that they are Wholly unsuitable in style to the Protestant worship. Had, with the scanty means aflorded o the architects, such a model as St. Paul's, Covent Garden, been adopted, we might have cen a number of edifices in the eountry, though

$$
\begin{aligned}
& \text { "Facies non omnibus una } \\
& \text { Nec diversa tamen," }
\end{aligned}
$$

hat might have been an honour to the age in which we live, and suitable to the circhmtances of the times.
2509. Unity aud harmony in a work necessarily enter into that which is beautiful ; and will not therefore require any argument to show that from a mixture of styles in any uilding incongruity and unfitness, and consequently a want of unity and harmony, must e the result. Hence we cannot agree with those wise reviewers who advocate the posfibility of amalgamating the arch with the severe Grecim style. We leave then to their reams, and trust that before we give them credence we may have some proof of their ractical power in this respect.
2.510. Symmetry is that quality which, as its name imports, from one part of ann assemlage of parts enables us to arrive at a knowledge of the whole. It is a subordinate, but evertheless a necessary, ingredient in beauty. It is necessary that parts performing the ane office in a building should be strictly similar, or they would not cx ef termini be
symmetrical ; so, when relations are strictly established between eertain parts, making one the measure of another, a disregard of the symmetry thus induced cannot fail of destroying beauty. But here again we have to say, that for want of attention to the similarity of the parts, or negleet of the established relations on which the whole is founded, they have lost their symmetry, and have thus bceome $u n f i t$ for their purpose; so that thus again we return to fitness as the main foundation of beauty.
2511. Colour ahstractedly considered has little to do with architeetural beauty, which is founded, as is sculpture, on fine form. We are here speaking generally, and are not inclined to assert that the colour of a building in a landscape is unimportant to the general effect of that landscape, or that the colours used on the walls of the interior of a building are mnessential considerations; but we do not hesitate to say that they are of ninor consequence in relation to our art. We believe it would be difficult to paint (we mean not in the sense of the artist) the interior of the banqueting room at Whitehall, were it restored to its original destination, and divested of the ruinous accessories whieh from its original purpose have turned it from a banqueting room into a chapel,- we believe, we say, that it would be diffieult to paint it so as to destroy its internal beauty. But as we intend to be short under this head, we shall quote a brochure touching on this subjeet published by us in 1837 .
2512. One of the beauties tending to give effect to the edifices of Greeee has been. on the testimony of ahnost all rravellers, the colour of the materials whereof they are eomposed. Dr. Clarke observes that a warm ochreous tint is diffused over all the buildings of the Acropolis, which he says is peculiar to the ruins of Athens. "Perhaps," says the author. "to this warm colour, so remarkably characterising the remains of ancient buildings at Athens, Plutarch alluded" (In Vita Pericles) "in that beautiful passage cited by Chandler, where he affirmed that the structures of Pericles possessed a peculiar and unparalleled excellence of chtaracter; a certain freshncss bloomed upon them and preserved their fiaces uninjured, as if they possessed a never-fuding spirit, and had a soul insensible to aye." It is singular that recent discoveries have incontestably proved that this species of beauty at all events did not originally exist in them, inasmuch as it is now clearly ascertained that it was the praetice of the Greeks to paint the whole of the inside and outside of their temples in party colours. It had been some time known that they were in the habit of painting and pieking out the ornaments on particular parts of their buildings; but M. Schaubert, the architect of the King of Greece, found on examination that this fell far short of the extent to which this species of painting was carried, and M. Semper, another German arehitect, has fully corroborated the fact in his examination of the Temple of Theseus. The practice was doubtless imported into Greece from Egypt, and was not to be easily ahandoned, seeing the difficulty of falling away from the habits of a people whence it seems: certain the arts of Greece more immediately came. It is by no means uncommon for a person to be fully alive to all the beauties of form, without at the same time having a due feeling or pereeption of the beauty resulting from harmony in colouring. It is therefore not to be assumed that the Greeks, though given to a practice whieh we wonld now discourage, possessed not that taste in other respeets which has worthily reeeived the admiration of posterity. The practice of painting the inside and outside of buildings. has received the name of polychromatic architecture, and we shall here leave it to the consideration of the student as a curious and interesting circumstance, but certainly without a belief that it could add a charm to the stupendous simplicity and beauty of such a building as the Parthenon.
2513. After all that we have said of fitness, it will be expeeted that in decoration it slall form a principal ingredient. By the term decoration we understand the combination ol objects and ormaments that the neeessity of varicty introduees under various forms, th. embellish, to emrich, and to explain the subjeets whereon they are employed. The art at deeoration, so as to add to the beauty of an object, is, in other words, that of carrying oni the emotions ahready produced by the general form and parts of the object itself. By it: means the several relations of the whole and the parts to each other are increased by new combinations; new images are presented to the mind whose effect is variety, one greal souree of pleasure. From these observations two general rules may be deduced in respec' of decoration. First, that it must actually he or seem to be necessary. Second, thit such objeets must be employed in it as have relation to the end of the general object 0 the design. We are not to suppose that all parts of a work are susceptible of ornament Taste must be our guide in ascertaining where decoration is wanted, as well as the guantit! requisite. The absence of it altogether is in many eases a mode of decoration. As i) language its richness and the luxurianee of images do not suit all subjects, and simplicit: in sueh eases is the best dress, so in the arts of design many subjeets would be rathe impoverished than enriched by decoration. We must therefore take into consideration th charaeter of the building to be decorated, and then only apply such ornament as is nece, sary and suitable to that eharacter. We may judge of its neeessity if the absence of i canses a dissatisfaetion from the void space left; of its suitableness, by its developing th character. History has recorded the contempt with which that decorator was treated wis
ornamented the senate house with statues of wrestlers, and the gymnasium with statues of senators.
2514. By some the art of architecture itself has been considered nothing more than that of decorating the buildings which protection from the elements induces us to raise.
2515. The objects which architecture admits for decoration result from the desire of producing varicty, analogy, and allegory. We here follow Quatremère de Quincy. (Eucyc. Method.) The first seems more general than the others, as being eommon among all nations that practise building. It is from this souree we have such a multitude of cutwork, embroidery, details, compartinents, and colours, more or less minute, which are found in every species of arehitecture. It would be useless for the most philosophical mind to seek for the origin of these objects in any want arising out of the mere construction, or in any political or superstiticus eustom. Systems of conjecture might be exhausted without arriving one point nearer the truth. Even in the most systematie of the different kinds of architecture, namely, that of the Greeks, we eannot avoid perceiving a great number of forms and details whose origin is derived from the love of variety, and that alone. In a eertain point of view, thus considered, an edifice is nothing more than a pieee of furniture, a rase, an utensil, the ornaments on which are placed more for the paipose of pleasing the eje than any other. Sueh, for instance, are the roses of caissons in ceilings and sofites, the leaves round the bell of the Cormthian capital, the Ionic volutes, and many others, besides universally the carving of mouldings themselves. These ornaments, drawn from the storelivuse of nature, are on that account in themselves beautiful; but it is their transfcrence to architecture, which in the nature of things can have but a problematical and conjectural origin, that secms to indicate a desire to vary the surface. Unless it was the desire of varicty that induced them, we know not what eould have done so.

2516 It has been well observed by the author we have jnst quoted, that though the art has been obliged to aeknowledge that many of its decorations depend in the:r application on such forms as necessity imposes, and in the formation of them on enance, capriee, or whatever the love of variety may dictate, yet in the disposition of them there must reign an order and arrangement subordinate to that caprice, and that at this point commences the difference between architecture as an art subservient to laws which are merely dopendent on the pleasure imparted to the eye, and tiose which depend on the mere mechanical disposition of the building considered as a piece of furniture. Architecture, of all the arts, is that which produces the fewest emotions of the minds of the many, because it is the least comprehensible in regard to the causes of its beauty. Its images act indirectly on our senses, and the impressions it seems to make appear reducible chiefly to magnitude, larnony, and variety, which after all are not qualities out of the reaeh of an architect of the most ordinary mind, and therefore not - at least the first and last - unattainable where economy does not interfere to prevent the result to be attained.
2517. Analogy, the second of the objects by which decoration is admitted into archiecture, scems to be resultant from the limited nature of all human inventions in the arts, and the power of being unable to invent except by imitation and alteration of the forms of drjects pre-existti:t. It is most diffieult to discard altogether what have been eonsidered Pipes in architecture, and that difficulty has so prevailed as to limit those types to their nost probable origin in the case of the orders.
2518. The reader will begin to perceive that our analogy in decoration tends upon trees ior columns, the ends of beans for triglyphs, and the like. Whatever truth there taly be in this analogy, it is now so entablished as to guide the rules of decoration that are in. olved in it ; and it must be conceded, that if we are desirous of imilating the pecoliar art If any country, we have no hope of suecess but by following the forms which the contruction in such comntry engenders; and we must admit that, as far as external circumtances can direct us, the architecture of Greece, which, modified, has become that of the whole of Aurope, and will become that of America, seems so founded on the nature of hings, that, however we may doubt, it would not be prudent to lead the reader away from he consideration, and perhisps from a belief, that such is the truth. Without holding mirselves bound by the aualogy of the types of the tree and the cross beam, which appear o) have gnided the architects of Greece, we can without hesitation assent, that whenerer hove have been abandoned the art has fallen on the most flagrant vices; witness the mrrors of the school of liorromini, where the beans are broken, pediments, which are the Falles of roofs, are broken into famtastic forms, and none of the parts seem maturally conreted with each other. The worhs of the school in question seem indeed so broken up, hat the study of then would almost convince an impartial and competent julge that the onverse of its practice is sufliciently beatiful to establish the truth of the types wherem *e have here and before expressed our seepricism. "Sitot," says De (2uncer, "que le génie ecorateur seest eru libre des entraves de lanalogrie, tontes les formes caractéristicuues se "hit contomrnées, perverteis, et dénaturées, au point qu’̉l $y^{\text {a }}$ a curtedles et celle de la bonne relsitecture, plus de distance quentre celles ei et les types de la primitive construction."
-515. In the decoration of architecture, neither of the other two means employed are
more important than that ocular language which architecture occasionally employs in its ornaments. By its use architecture is almost converted into painting, and an edifice becomes a picture, or a collection of pictures, through the aid of the sculptor. We shall refer to no other building than the Parthenon to prove the asscrtion. Here the history of the goddess is embodied in the forms of the building, and to the decoration thus introduced the subordinate parts of the sculpture, if it be not heresy so to call them, is kept so under that we are almost inchined to ery out against their not having been principals in. stead of accessorics. This is the true principle upon which buildings should be decorated to impress the mind of the spectator with the notion of beauty, and the principle which, carried out, no matter what the style be, will insure the architect his most ample reward, reputation. The matter that is supplied by allegory for decoration in architecture may be considered under three heads - attributes, figures, and paintinys.
2520. The first takes in all those foliages, plants, flowers, and fruits, which from their constant use in sacrifices were at last transferred from the altar to the walls of the temple. The garlands, fectoons, chaplets, and crowns which we find sculptured on temples seem to have had their origin from the religious ceremonies performed in them; as do the instuments of sacrifice, vases, the heads of the victims, paterre, and all the other objects employed in the worship of the ancients. Thus, in architecture, these have become conventional signs, indicating the destination of the buildings to which they are applied. From the particular application of some ornaments on temples we derive in the end a language in the arts of imitation. It was thus that the eagle grasping in his talons the attribute of Jupiter, came to represent ctcrnity and omnipotence; the myrtle and dove of Venus, the passion of love; the lyre and laurel of Apollo, to point to harmony and giory; the spear and hehnet of Mars, to represent war. Palms and crowns became the emblems of victory, as did the olive the emblem of peace. In the same way the ears of corn of Ceres, the scrpent of Esculapius, the bird of Minerva, and the cock of Mercury were equivalent to the expression of abundance, science, and vigilance. Instruments of the arts, sciences, in short, all objects useful to the end for which an edifice is erected, naturally become signs of that edifice; but applicd otherwise become absurd. What, for instance, could be more ridiculous than placing ox sculls and festoons on the frieze of a Protestant church ? - and yet this has been done in our own days.
2521. Figures of men and animals come under the second head. The application o these nay be seen to their highest perfection in the Parthenon, to which we have alread! alluded. They may be introduced in low, high, or full relief. In the last case theil situation is usually that of a niche. We shall say no more on the subject of figures that that of course they must have relation to the end for which the edifice is erected, and i not in that respect perfectly intelligible are worse than useless.
2522. The walls of Pompeii furnish ancient examples of the decoration obtained by thaid of painting, as do the loggie of the Vatican and the ceilings of the Farnesina moder examples of it. Herein the moderns have far surpassed anything we know of the ancile application of painting. Sculpture, however, seems more naturally allied to archirectur than painting, and, except in purely decorative painting on walls and ceilings, the intri duction of it seems bounded within narrow limits. The rules as to fitness of the subject introduced, applicable to the first two heads, are equally so under that of painting.

Sect. II.

THE ORDERS.

2523. An order in architecture is a certain assemblage of parts subject to uniform esti blished proportions, regulated by the office that each part has to perform. It mayl compared to what organisation is in animal nature. As from the paw of a lion his dine sions may be deduced, so from a triglyph may be found the other parts of an example the Doric order, and from given parts in other orders the whole confignration may found. As the genus may be defincd as consisting of essential and subservient parts, t first-named are the column and its entablature, which, as its name imports, is as it we the tabled work standing on the column. The subservient parts are the mouldings at detail into which the essential parts are subdivided, and which we shall hereafter separate consider. The species of orders are five in number, Tuscan, Doric, Ionic, Corinthian, a Composite, each of whose mass and ornaments are suited to its character and the pression it is intended to possess. These are the five orders of architecture, in the prop understanding and application whereof is laid the foundation of architecture as an a The characters of strength, grace, and elegance, of lightness and of richness, are d tinguishing features of the several orders, in which those characters ought to be fou not only in the column employed, but should pervade the whole composition, whercof
olumn is, as it were, the regulator. The mode of setting up, or, as it is technically ermed, profiling an order, will be given in a subsequent part of this section. Here we hall merely observe that the entablature is subdivided into an architrave, which lies anmediately upon the column, a frieze lying on the architrave, and a eornice, which is its upermost subdivision. The height of these subdivisions together, that is, the whote leight of the entablature, is one fourth that of the column according to the practice of the ncients, who in all sorts of entablatures seldom varied from that measure either in excess r defect. "Palladio, Scamozzi, Alberti, Barbaro, Cataneo, Delorme, and others," says iir William Chambers, " of the modern architects, have made their entablatures much ower in the Ionic, Composite, and Corinthian orders than in the Tuscan or Doric. This, in some occasions, may not only be excusable but highly proper ; particularly where the ntercolumniations are wide, as in a second or third order, in private houses, or inside lecorations, where lightness should be preferred to dignity, and where expense, with every mpediment to the conveniency of the fabric, are carefully to be avoided; but to set ntirely aside a proportion which seems to have had the general approbation of the ncient artists is surely presuming too far."
2524. As rules in the fine arts which have obtained almost universal adoption are ounded on nature or on reason, we may be pretty certain that they are not altogether mpirical, albeit their origin may not be immediately apparent. The grounds on which uch rules are founded will, however, in most eases become known by tracing them to irst principles, which we shall here endeavour to do in respect of this very important elation of height between the column and its entablature. We were first led into this nvestigation by the perusal of a work by M. Lebrun, entitled Théorie de l'Architecture ;recque et Romaine deduite de lanalyse des Monumens antiques, fol. Paris, 1807; but our esults differ very widely from those of Lebrun, as will be seen on reference to that work.
2525. One of the most obvious principles of proportion in respect of loads and supports, fond one seemingly founded on nature herself, is, that a support should not be loaded with greater mass or load than itself; or, in other words, that there should be an equality etween weights and supports, or, in the case in point, between the columns and enablature. In respect of the proportion of the voids below the entablature between the olumns or supports, a great diversity of practice scems to have prevailed, inasmuch as re find them varying from $1 \cdot 03$ to $2 \cdot 18$, unity being the measure of the supports. Lebrun aakes the areas of the supports, weights, and voids equal to one another, and in what nay be termed the monumental examples of the Doric order, such as the Parthenon, \&c., e seems borne out in the law he endeavours to establish; but in lighter examples, such s the temple (Ionic) of Bacchus at Teos, where the supports are to the voids as $1: 2.05$, nd in the temple of Minerva Polias, where the ratio is as $1: 2 \cdot 18$, he is beyond all uestion incorrect: indeed there hardly seems a necessity for the limitation of the voids e preseribes, seeing that, without relation separately to the weight and support, stafility would be oltained so long as the centre of gravity of the load fell within the exernal face of the support. If it be admitted that, as in the two examples alove menFoned, the voids should be equal to the supports jointly, we have a key to the rule, and istead of heing surprised at the apparently strange law of making the entablature one mirth of the height of the column, we shall find that no other than the result assumed an flow from the investigation.
2526. In fig. 861. let ΛB be the height of the column, and let the distance between the olunns be one third of the height of the column=CD. Now if (B) be subdivided into four equal parts at a, b, and c, and the horimital lines ad, be, and of be drawn; also, if C1) be divided horimally into four equal parts, and lines be drawn perpendieularly pwards intersecting the former ones, the void will be divided into xteen equal parallelograms, one half whereof are to be the measure F the two whole supports BC and DE; and DE being then made gual to one lalf of CD , it will be manifest, from inspection, that ic two semi-supports will jointly be equal to cight of the parallelorans above mentioned, or one half of the void. We have now to lace the entallature or weight AGHI upon the supports or counns, and equal to them in mass. Set up from A to F another iw of parallelograms, each equal to those above mentioned, shown : the figure by APKI. These will not le equal to the smpports y two whole parallelograms, being in number only six instead of ght ; dividing, therefore, 8 , the number in the supports, ly 6 , the imber already obtained, we have $1 \cdot 333$, \&c., which is the height

Fig. 4fit. be assigned to $A G$, so that the weight may exictly erpual the 1pport, thus excceding one duarter of the height of the support (or colnmn) by 391.3 of ech quarter, a coincidence sufficient to corroborate the reason on which the liaw is cunded.
2.507. From an iaspection of the fifs. $8 t i 1,862.863$, it appears that when the void ix one third the height of the supports in width, the supports will be 6 dimneters in height; when one fourth of their height, they will be 8 diameters high; also that the intereolumniation, called systylos or of two diameters, is eonstant by the arragement. When the surfaee of the eolumns, as they appear to the eye, is equal to that of the entablature, and the voids are equal to the sum of those surfaces, the height of the entablature will always be one third of that of the columns. Thus, let the diameter of the columns be $=1$, their height $=h$, their number $=n$. Then the surfaee of the columns is $n h$; that of the entablature the same. As the surface of the voids is double that of the eolumns, the width of the intercolumniations is double the width of the columns, that is, $2 n$ diameters, whieh, added to the n diameters of the columns, gives $3 n$ diameters for length of the entablature; therefore, the surface of this entablature is $n h$, and its length being $3 n$, its height must be $\frac{\pi h}{3 n}=\frac{h}{3}$ exactly.

2528. Trying the prineiple in another manner, let fig. 864. be the general form of s tetrastyle temple wherein the eolumns are assumed at pleasure 8 dianeters in height.

Fig. S61,

Fig. 865.

Then $4 \times 8=32$ the areas of the supports; and as to fulfil the eenditions the three voids are equal to twice that area, or 64 , they must eonsequently be in the aggregate equal to ε diameters, for ${ }_{8}^{64}=8$, and the whole extent will therefore be equal to 12 diameters of a support or column. To obtain the height of the entablature so that its mass may equa that of the supports, as the measures are in diameters, we have only to divide 32 , the eolumns, by 12, the whole extent of the faeade, and we obtain two diameters and two thirds of a diameter for the height of the eutablature, making it a little more than one quarter of the height of the column, and again nearly agreeing in terms of the diameter with many of the finest examples of anticuity. If a pediment be added, it is evident, the dotted lines $A C, C B$ being biseeted in a and b respectively, that the triangles $A E a, b F L$ are respeetively equal to $\mathrm{CD} a$ and $\mathrm{D} b \mathrm{C}$, and the loading or weight will not be ehanged.

95こ9. Similar results will be observed in fig. $865 .$, where the height is ten diameters, the number of eolumns 6, the whole therefore 180 , the supports being 60. Here $\frac{60}{18}=5 d$ diametere will be the height of the entablature. This view of the law is further borme out by an analysis of the rules laid down by Vitruvius, book iii. ehap. 2, ; - rules which did not emanate from that author, but were the result of the practiee of the time wherein h lived, and, within small fraetions, strongly corroborative of the soundness of the hypothesis of the voids being equal to twice the supports. Speaking of the five speeits of temples after speeifying the different ir.tereolumniations, aud reeommending the custylos as the most beastiful, he thus direets the formation of temples with that interval between thr eolumns. "The rule for designing them is as follows:- The extent of the front beins given, it is, if tetrastylos, to be divided into $11 \frac{1}{2}$ parts, not including the projections o the base and plinth at eaeh end; if hexastylos, into 18 parts; if octastylos, into 24 parts. One of either of these parts, aecording to the ease, whether tetrastylos, hexa stylos, or octastylos, will be a measure equal to the diameter of one of the colnunns." ... "The heights of the eohnmns will be $8 \frac{1}{2}$ parts. Thus the intereolumniations and the heights of the eolumns will have proper proportion." In the same chapter he give directions for setting ont aræostyle, diastyle, and systyle temples. The tetras ylos, lie states is $11 \frac{1}{2}$ parts wide and $8 \frac{1}{2}$ bigh ; the area thereforco the whole front becomes $11 \frac{1}{2} \times 8 \frac{1}{2}=97 \frac{3}{4}$
ic four columns are $4 \times 8 \frac{1}{2}=34$, or very littemore than one third of the whole area; the maining two thirds, speaking in round nambers, being given to the intercolumns or voids. re hexastylos (see $f i g .865$.) is 18 parts wide and $8 \frac{1}{2}$ ligh ; the whole area therefore is $\times 8 \frac{1}{2}=153$. The six columns are $6 \times 8 \frac{1}{2}=51$, or exactly one third of the whole area; 3 voids or intercolumns occupying the remaining two thirds. The octastylos is $24 \frac{1}{2}$ parts de and $8 \frac{1}{2}$ high. Then $24 \frac{1}{2} \times 8 \frac{1}{2}=208 \frac{1}{4}$. The eight columns are $8 \times 8 \frac{1}{2}=68$, being a fle less than one third of the area, and the voids or intercolumns about double, or the naining two thirds. The average of the intercolumns in the first case will be $\frac{-4}{3}=2 \frac{2}{2}$ diameters. In the second case $\frac{18-6}{5}=2 \frac{2}{5}$ diameters. In the third case $\frac{-8}{-8}=2 \frac{\text { sist }}{1000}$ diameters.
530. A discrepancy between practice and thenry, unless extremely wide, must not be allowed to interfere h principles, atid therefore no hesitation is felt in submitting a sunopical view of snme of the most celeted examples nl antiquity in which a comparison is exhibitcd between the voids and supports; certan it hat in every case the tormer exceed the latter, and that in the earlier examples of the Doric order, the 0 between then nearly approached equality. In conparing, however, the supports with the welolits, re is every appearance of that part of the theory beint strictly true ; tor in taking a mean nf the six mples of the Doric order, the supports are to the weights as $1: 1 \cdot 16$, in the five of the lonic order as $1 \cdot 05$; and in the four of the Corinthian order as $1: 1 \cdot(0)$, a coincidence so remarkib'e that it must be ibuted to something more than accident, and deserves much more extended consideration than it has terio received.

Building.	Order.	Number of Columns.	Supports.	Weights.	Voids.
emple of Jupiter Nemeus	Doric	6	1.00	079	103
arthenon - - *	-	8	$1 \cdot 10$	107	$1 \cdot 04$
emple at Bassæ - - -	-	6	$1 \% 0$	$1 \cdot 14$	$1 \cdot 16$
emple of Minerva at Sunium	\cdots	6	$1 \cdot 00$	$1 \cdot 40$	$1 \cdot 17$
emple of Theseus it Athrons - -	-	6	$1 \cdot 60$	$1 \cdot 13$	$1 \cdot 21$
emple of Jupiter Panhellenius	-	6	100	$1 \cdot 45$	1-36
emple of Erectheus - -	lonic	6	1.00	$0 \cdot 9$	1-24
mple of Fortuna Virilis at Rome.	-	4	100	$1 \cdot 15$	1.71
mple on the Iyssus - -	-	4	1×0	096	$1 \cdot 7 \%$
emple of Bacchus at Teos -	-	8	$1 \cdot 00$	1:35	$2 \cdot 07$
mile of Minerva Polias, Athens	-	4	109	1.01	218
ortic. of Septimius Severus -	Corinthian.	6	$1 \cdot 00$	093	$1 \cdot 37$
a18on Carrée at Nisines -	兂	6	$1 \cdot 60$	0 0	$1 \cdot 58$
mple at Jickly - -	-	6	100	0.90	$1 \cdot 62$
atheon at Rome - - -	-	8	$1 \cdot 00$	1.43	1.8.4

instead nf taking the apparent bulk of a colnmı, that is, as a square pier, we take its real bulk, which is it three quaters ($\frac{3}{4}$) that of a square pier of the same diameter and height; height of the entablatule witl be one fourth of the height of the column;
of $\frac{h}{3}=\frac{h}{4}$.
ere is a curious fact connected with the hypothesis which has been suged chat requires notice; it is relative to the area of the points of support fit he edifice which the arrangement atlords. In fig. 86 b the hatehed squares fesent the plans of quarter piers of colunns in a serics of intercolnmainevery way, such intercolumniations being if two dimneters, or tour dhanters. These, inded to the quarter piers, make six semadianeters, in square 36 is therefore the area to be covered with the weight. The quarter piers or columns $=4$, hence the points of sipport are $-{ }_{3}^{4}$ of the area (1) Nuw in the list (1583.) of the princiual buildings in Eusope the mean Is 0168 , differing onls 0.057 from the iesult heregiven; but if we select d fllowing buildings the mean will be found to difler much less.

Fig. 566.

$$
\text { Temple of I'eace } 0157
$$

S. Pioto fuori le Muià - 0 tix

MOULDINGS.
331. The sulservient parts of an order, called mouldings, and common to all the Roman 01 rs , are eight in number. They are-1. The ovolo, echinus, or quarter round. (Fig. 867.)
It commonly found under the abacus of capitals; and is also almost always placed en the corona and dentils in the Corinthan cornice: its form gives it the appearance eming fitted to support another member. It should be used only in situations above evel of the eye. 2. The talon, ogee, or reersed cyma (fig. 868.) is also, like the ovelo, a ding fit for the support of another. 3. The cyma, cyma rethe, or cymatium (fiy. 869.) - well contrived for a covering and to shelter other members; it is only used properly ionall members, though in Palladios Donic, and in other examples, it is found the (fig 871) phl d between the fillets which always accompiny the tori, is ussally blew the eye; its aseing to separate the tori, and to contrast and streng then the effee of ofher mouldings as 11 as to impart variety to the prolile of the base. G. 'The carcto, mouth, or holiow

Fig. 873.
Fig. 874.
(fig. 872.) is ehiefly used as a crowning moulding, like the cyma recta. In bases a eapitals it is never used. By workmen it is frequently called a casement. 7. The astra: (fig. 873.) is nothing more than a small torus, and, like it, secms applied for the purpose binding and strengthening. The astragal is also known by the names of bead and baguet? 8. 'The fillet, listel, or anmulet (fig. 874.) is used at all heights and in all situations. chief office is the separation of curved mouldings from one another.
2539. In Grecian examples, the sections of mouldings are obtained by portions of ellipse, parabola or hyperbola, all parts of a conic section, so that they give a great delicacy of outline than do the Roman examples. "These latter," writes J. B. P'apwort in his edition (1826) of the work by Sir W. Chambers on Civil Architecture, "produc similar quantities of middle tint, light, and shadow; the Greeks carefully avoided t $\}$ sameness, and judiciously and tastefully made the shadows to prevail distinctly. Hut in all their works we find the result of a superior understanding of the principles a effects of light and shade, which are opposed to each other, and relieved with grtat ski whereas, in the Roman style, being divided and broken, they are certainly less beauti and less capable of affording the eharms of reffected light than the vestiges of Grecian a

Fig. 833ac.

Fig. 869a.

Fig. 8740 .

Fig. $86 \mathrm{k} \%$.

Fig. $871 a$.

Fig. $868 b$.
which by their w studied proportic merit respect and ii tation." Sir Will observes on these ferent mouldings that their inventors ineant to exp something by their different figures, and that destinations above mentioned may be deduced only from their figures, but from the practice of the ancierts in their most esten works; the cyma and cavetto are constartly used as finishings, and never applied wh strength is required; the ovolo and talon are always employed as supporters to essential members of the eomposition, such as the moditlions, dentils, and corona; the c use of the torus and astragal is to fortify the tops and bottoms of columns, and someti of pedestals; and the scotia is employed only to separate the members of bases, for wl purpose the fillet is likewise used not only in bases but in all kinds of profiles.
2533. The names of the Greek mouldings are the same as those already mentioned; there is another (fig. 874b.) called from its appearance a bird's-boak moulding, compri the outline of the echinus hollowed ont below and then brought down with a ct into the fascia. It is ehiefly used in the capital of an centa or pilaster, as in fig. \& Fig. 867b. is a quirked ogee, having a separation from the fascia above to obtain a d of shadow. Fig. 868b. is a quirked ovolo. Fig. 867 a. is used in the cap of the D order. Fig. 869a., the cyma recta, used as the crowning member of a cornice, was ol elegantly decorated. Fig. 868 c . is an ogee projecting furmer than the ordinary f_{c}. Fig. $874 c$. is an outline of the base of the Choragic Monument of Lysicrates at $A t h$ is showing a combination of mouldings; three of the mouldings being inverted. Exam ${ }^{3}$

Greek capitals are given on pages 906 and 907, in addition to those in Figs. 883 887.
584. The simplest method of describing the contours of mouldings in Roman or lian architecture is to form them of quadrants of circles, as shown in Figs. 867 574. Where circumstances justify a variation, the ovolo, talon, cyma, scotia, and etto, may be either described from the summits of equilateral triangles, or be posed of portions of the ellipsis, but the section of the torus and astragal is always ieircular.

ORNAMENTS OF MOULDINGS.

535. In ornamenting the profile of an order, repose requires that some mouldings should eft plain. If all were enriched, confusion instead of variety would result. Except for icular purposes, the square members are rarely carved. There are but few examples he best age of the art in which the corona is cut; indecd at this moment the only one occurs to us wherein work is in fine style is that of the three columns in the npo Vaccino. So where the ovolo above and talon below it arc carved, the dentil d between them should be uncut. Scamozzi, in the third chapter of his sixth book, alcates that ornaments should be neither profuse nor abundant, neither are they to be sparingly introduced. Thus they will be approved if applied with judgment and dision. Above all things, they are to be of the most beautiful forms and of the exactest portions; ornaments in buildings, being like the jewels used for the decoration of ces and princesses and persons of high rank, must be placed only in proper situations. ther must variety in ornaments be carricd to excess. We have to recollect that, being accessories, they must not obtrude upon but be kept subordinate to the main object. is ornaments applied to mouldings should be simple, uniform, and combining not more Itwo distinct forms in the same enrichment; and when two forms are used on the same alding they should be cut equally deep, so that an uninterrupted appearance may be served. Mouldings of the same form and size on one and the same profile should be ilar; and it is moreover a requisite of the greatest importance, so to distribute the res of the ornaments cmployed that the centre of one may fall exactly over the centres hosc below, of which the columns of the Campo Vaccino form an example for imitation his respect. Nothing is more offensive than, for example, to sec the middle of an eggg ed over the edge of a dentil, and in another part of the same moulding to sec them e right, centre over centre, and the like negligent and careless distribution. This may ays he avoided by making the larger parts regulate the smaller. Thus where there are lillions they must be made to govern the smaller ornaments above and below them, and e smaller ones should always be subdivided with a view to centring with the larger

The larger parts are dependent on the axes of the columns and their intermniations; but all thesc must be considered in profiling the order. It will of course ecessary to give the ornaments such forms as may be consistent with the character of order they enrich. The enrichment of a frieze depends upon the destination of the diug, and the ornaments may have relation to the rank, quality, and achievenents of proprictor. We do not agree with Chambers in condemning the introduction of arms, is, and cyphers, as an mbecoming vanity in the master of the fabric. These may often , introduced as to indicate the alliances of the family, and thus give a suceinct history es conncetions. In Gothic architecture we know the practice induced great beauty variety. We have before observed, in Sect. I. of this Book (2520.), that the instruts and symbols of pagan worship are highly indecorous, not to say ludicrous, on cess devoted to the Christian religion.
7i3f. In carving ornaments they must be cut into the solid, and not carved as if they - npplied on the solid, because the latter practice alters their figure and proportion. In every monlding should be lirst eut with its contour plinin, and then carverd, the most anent part of the ornament being the actual surface of the moulding belore carving, rving that all external and reentering angles are kept plain, or have only simple leaves the eentral filament expressed on or in the angle. In the circular temple ol 'hivoli principle of cutting the ornanent out of the solid is carried out so far, that the leaves, mal in most exanples of the Corinthian order, instead ol being mere mpliquées to the of the capital, are actaally cont ont of it.
37. "The degree of relicl" which ormaments ought to have is dependent on their dintance the eye and the character of the composition: these matters will also regulate the ee of linish they onrge to possess. There are some monldings whose prolile is inive of beuring weight, as the ovolo and talon, which by being deeply cut, though welves henvy in character, are thereby susceptible of having great lightness imparted to D, whilst such ns the cymand anvetto should not be ornamented deep in the solid. The doll froun matnre of the abjeets represented shonhll be earefully oberved, the remult sof will impart beauty and interest to the work on which such attention is hestowerl.

CHARACTERS OF THE ORDERS.
2538. In the First Book of this work, Sect. XI. (133, et seq.) we have considered history of the five orders of architecture; we shall here offer some general observati upon them before proceeding to the detail of each separately. The orders and their seve characters and quatities do not merely appear in the five species of columns into which it have been subdivided, but are distributed throughout the edifices to which they are appl the columm itself being the regulator of the whole composition. It is on this account name of orders has been applied to the differently formed and ornamented supports, columns, which have received the names of the Doric, lonic, Corinthian, Tusean, Composite orders, whereof the three first are of Grecian origin, and the two last, it is : posed, of Italian or Roman origin. Each of these, by the nature of its proportions, the character resulting from them, produces a leading quality, to which its dimensic form, and ornaments correspond. But neither of the orders is so limited as to be confi within the expression of any single quality. Thus the strength indicated in the Doricor is capable of being modified into many shades and degrees of that quality. We may sat ourselves of this in an instant by reference to the early compared with the later 1), column of the Greeks. Thus the columns of the temple at Corinth are only four diane high, while those of the portico of Philip are six and a half.
2539. As the Doric seems the expression of strength, simplicity, and their various mo so the lonic, by the rise in height of its shaft and by the slendemess of its mass, as as by the elegance of its capital, indicates a quality intermediate between the grave solic of the Doric and the elegant delicacy of the Corinthian. Bomnded on one sideby strems and by elegance on the other, in the two orders just named, the excess of elegance in Corinthian order ends in luxury and richness, whereof the character is imprinted on it.
2540. We cannot here refrain from giving, in the words of the excellent Sir lle Wotton, a quaint and homely, bit most admirable description of these five orders, from Elements of Architecture. "First, the T'uscan is a plain massive rural pillar, resemb] some sturdy, well-limbed labourer, homely clad, in which kind of comparisons, Vitrus limself scemeth to take pleasure." (Lib. iv. cap.I.) . . . ". The Dorique order is the gra that hath been reeeived into civil use, preserving, in comparison of those that follow, a in masculine aspect and little trimmer than the Tuscan that went before, save a sober garn ment now and then of lions' hocads in the cormice, and of triglyphs and metopes always in frize." . . . "To discern him will be a piece rather of good heraldry then of archited for he is knowne by his place when he is in company, and by the peculiar ornament of frize, before mentioned, when he is alone." . . . "The Ionique order doth represent a b of feminine slendernesse ; yet, saith Vitruvius, not like a light housewife, but, in a der dressing, hath much of the matrone." . . "Best known by his trimmings, for the br of this columne is perpetually chancled, like a thick-pleighted gowne. The capitell dre" on each side, not much minlike women's wires, in a spiral wreathing, which they call Ionian voluta." . . . "The Corinthiun is a colmme lasciviously decked like a courte and therefore in much participating (as all inventions do) of the place where they , first born, Corinth having beene, wichout controversie, one of the wantonest towns in world." . . "In short, as plainness did eharacterise the Tuscan, so, much delicacie varietie the Corinthian pillar, besides the height of his rank." . . " "The last is the ' pounded order, his nume being a briefe of his nature: for this pillar is nothing in effect a merlic, or an amasse of all the precedent ornaments, making a new kinde by stealth, though the most richly tricked, yet the poorest in this, that he is a borrower of his beau Each of the orders, says De Quincy, is, then, in the building to which it is applier? governing principle of the forms, taste, and eharacter of that system of moral order with in Grecian architecture which alone seems to have suited the physical order of portions with each part, so that what is agreeable, ormate, and rich is equally found iia whole as in the parts.

2541 . On the two Latin orders we do not think it recessary to say more than that will be fully described in following pages. The invention of new orders must arise on other expressions of those qualities which are already sufficiently well and beautif expressed; hence we consider, with De Quincy, to attempt such a thing wonld be Chambers thus expresses himself on this subject, without the philosophy of De Qu yet with the feelings of a learned and experienced architect: " The ingenuity of man hitherto, not been able to produce a sixth order, though large premiuns have been ofli and numerons attempts been made, by men of first-rate talents to accomplish it. Sur the fettered human imagination, such the scanty store of its ideas, that Doric, lonic. Corinthian have ever floated uppermost, and all that has ever been produced amount nothing more than different arrangements and combinations of their parts, with : trifling deviations, scarcely deserving notice; the whole tending generally more to dim than to increase the beaty of the ancient orders." Again: "The suppression of par
neient orders, with a view to prodnee novelty, has of late years been praetised among tha full as little sueeess; and though it is not wished to restrain sallies of imagination, diseourage genius from attempting to invent, yet it is apprehended that attempts to the primary forms invented by the aneients, and established by the eoneurring appron of many ages, must ever be attended with dangerous eonsequences, must always be ilt, and seldom, if ever, sueeessful. It is like eoining words, which, whatever may be value, are at first but ill reeeived, and must have the sanetion of time to secure them rent reeeption."
12. In the progress of the five orders, from the Tusean up to the Composite, taking diameters for the height of the Tusean eolumn, and eleven for that of the Composite, entablature be taken of the same absolute height in all, and at the same time in t one quarter of that of the column, we shall have the height of the entablature in of the diameter of the eolumn, as follows: -

> In the Tusean order $\quad \frac{1}{4}$ of $\frac{7}{1}=1 \frac{3}{4}$ entablature diameters high. In the Dorie order $\cdot \frac{1}{4}$ of $\frac{8}{1}=2$ entablature diameters high. In the Ionie order In the Corinthian order $\frac{1}{4}$ of $\frac{9}{4}=2 \frac{1}{4}$ entablature dianeters ligh. In the Composite order $\frac{10}{4}$ of $\frac{11}{1}=2 \frac{2}{4}$ entablature diameters ligh. Intature diameters ligh.

HEIGHT AND DIMILNUTION OF COLUSINS.

13. Vitruvius tells us that the aneients were aceustomed to assign to the Tusean on seven of its diameters for the height; to the Dorie, eight ; to the Ionie, nine; and c Corinthian and Composite, ten. Scamozzi, the leader of the moderns, adopts ir proportions. But these are not to be considered as more than an approximation to mits, nor as relating to the proportions between the heights and diameters of the it Dorie examples, whereof in our First Book we have examined eertain speeimens. work cannot be extended to a representation of the variety under which the orders appeared in their various examples of eaeh order. The works in which they are ined inust be consulted for particulars of detail in this respeet. Our intention is to peneral information on the subject, and to follow, with few exeeptions, in that respect, recepts of Vignola, as tending to the most generally pleasing results, and as being linse which have been adopted on the Continent for general instruction in the art.
14. We have already spoken (2524, et seq.) of the general proportion of the height of itablature to that of the column as one fourth, and, without returning to the discassion propriety of that proportion, will only here incidentally mention that Scamozai, BarAlberti, and Palladio have not assigned so great a height to their entablatures, chiefly ears, because they seemed to eonsider the slenderness of the columns in the more delioflers unsuited to the reception of heavy burdens. If, however, the reader will bear in eetion what has been said at the beginning of this section relative to the supports and ats, it will directly ocenr to him that the practice these great masters sanctioned is unded upon just deductions. Chambers seems to have had a glimpse of this theory, ihout any notion of its developement, when he says, "It must be remembered that, h the leeight of an entablature in a delieate order is made the same as in a massive et it will not, cither in reality or in apparance, be equally heavy, for the quantity of r in the Corinthian cornce A (fig. 875.) is considerably less than in the Tinsean © 13 , and the increased number of parts composing the former of these will of course it appear far linhter than the latter." Ile was, however, nearer the exact truth : he speaks in a previous passage of the possibility of increasing the intervals between dumas.
15. Thue diminution or tapering form given to a column, whereof all the anthors find pe, whethe truly or not, in that of the trunk of a tree, in the ancient eximples, someconmances frobn the foot of the shaft, sometines from atharter or one third of its t, in which case the lower part is a perfect eglinder. 'Though the latter medool has montly adopted by modern artiots, the former seems more to have prevailed among the uts. Of the tuceloul of entasis, that is, of swelling cohmoms as they rise, we have alreaty
 pat does ant much vary from the eylimber, but never much excecting its bumalary elenght ol' one third apwarels, is the best, and to something like that we now come:

 - methent, whitel, it is said, wis that used fior the coluntus in the lanelocon; but the aster fade etome wi near to it that we shall first beseribe V'ignolis's method, mad then

(Stampani's edit. Dci cinque Ordini d'Architettura, Roma, 1770, eap. 7. p. 51.), "In spect of this second mode, it is my own discovery, and will be soon understood by figure, though not so well known as the first named. The measures of the coln: having been fixed, namely, the height of the shaft and its upper and lower dianeti from C (fig. 876.), draw an indefinite line through D perpendicular to the axis of column. From A, the extreme point of the upper semi-diameter, to B , a point in axis, set off CD the lower semidiameter. Through B from A draw the line ABE, entt the indefinite line CD in E, and from the point of intersection E and through the asi: the column draw any number of rays, as $\mathrm{EB} \alpha$, whereon, from the axis towards the eirct ference, setting off the interval CD, any number of points aaa may be found, and throu them a curve being drawn gives the swell and diminution of the shaft.
16. This method is so far defective as to require the curve to be drawn by hand the application of a flexible ruler through the points found. To remedy the defect, B3 del, who on investigation of the curve found it to be a conchoid, applied the instrun. of Nicomedes for the purpose, the description of which instrument here follows. height of the shaft and the upper and lower diameters of the column having been do. mined, as also the length (fig. 876.) of the line CDE, take three rulers, FG, ID, and 1 , of which let FG and ID be fastened together at right angles in G. From top to bot ? let a dovetail groove be cut down the middle of FG , and at E on the ruler ID, wi length from the centre of the groove in FG is the same as that of the point of intersec ? from the axis of the column, fix a pin. On the ruler AHI set off the distance $A B$ cl to the lower semidiameter of the column CD, and at the other end of the ruler cut a t through it from H to K , the length whereof must at least be equal to the differene in length between EB and ED, and its breadth sufficient to admit the pin fixed at E to s through the slit, and allow the ruler to slide thereon. Now, the middle of the groo: 11 the ruler FG being placed exactly over the axis of the column, the ruler AII in mo : along the groove will with its extremity A describe the curve AaaC, which curve is e same as that produced by Vignola's method, except that the operation is performed continued motion of the ruler AH. If the rulers be of an indefinite size, and the pill E and B be made to move along their respective rulers, so as to be able to increas r diminish at pleasure the lengths AB and DE, the instrument will answer for dran' columns of any size.
17. The diminution of the column as respects quantity is rarely in aneient exan s less than one eightl of the lower diameter of the column, nor often more than one sixt is will be seen in the subjoined examples. One sixth is the diminution recommende y Vitruvius, and followed by Vignola, in all his orders, execpt the Tuscan. In the follo g table the first column contains the order; the second, the example; the third, the he it of the column in English feet and decimal parts of a foot; the fourth column show is diameter in similar terms ; and the fifth the ratio of diminution. The dimensions are " Perrault, reduced here from French to English feet.

Oıder.	Examples.		Height of Column in English Feet.	Diameter of Column in English Feet.	Ratio of Diminution.
Doric	Theatre of Marcellus -	\rightarrow	22.386	3.198	0.200
-	Coliseum -	- -	$24 \cdot 384$	$2 \cdot 865$	0.077
Ionic	Temple of Concord, now of Saturn	- -	38.376	$4 \cdot 485$	0.182
-	Temple of Fortuna Virilis -	- -	$24 \cdot 340$	$3 \cdot 109$	$0 \cdot 12.5$
orinthion	Coliseum - -	- -	$24 \cdot 518$	$2 \cdot 909$	0.166
Vorinthian	Temple of Peace -	- -	$52 \cdot 400$	6.041	$0 \cdot 111$
-	Portico of Pantheon -	- -	$38 \cdot 998$	$4 \cdot 7.6$	0.106
二	Altars of Pantheon -	- -	11.548	$1 \cdot 465$	0. 133
-	Temple of Vesta -	- -	$29 \cdot 226$	$3 \cdot 109$	0.111
-	Temple of the Sybil at Tirsli	- -	$20 \cdot 254$	$2 \cdot 487$	$0 \cdot 133$
-	Temple of Faustina -	- -	$38 \cdot 376$	$4 \cdot 796$	0.133
-	Temple of the Dioscuri	- -	$39 \cdot 975$	$4 \cdot 840$	$0 \cdot 111$
-	Basilica of Antoninus -	- -	$39 \cdot 442$	$4 \cdot 752$	$0 \cdot 106$
-	Arch of Constantine -	- -	23.097	$3 \cdot 435$	0.117
	Interior of Pantheon - - -	- -	$29 \cdot 314$	3.642	$0 \cdot 133$
emposite	Portico of Septimius - -	- -	39.442	$3 \cdot 632$	0.125
omposite.	Baths of Diocletian -	- -	$37 \cdot 310$	$3 \cdot 553$	$0 \cdot 200$
-	Temple of Bacchus -	- *	11-371	$1 \cdot 443$	$0 \cdot 111$
-	Arch of Titus - -	- -	$17 \cdot 056$	$2 \cdot 102$	$0 \cdot 117$
-	Arch of Septimius Severus -	- -	$23 \cdot 097$	$2 \cdot 877$	0.117

548. The recommendation of Vitruvius (lib. iii. c. 2.) to give different degrees of unution to columns of different heights has been combated by Perrault in his notes on passage ; and we are, with Chambers, of opinion that Perrault is right in his judgment, smuch as the proper point of view for a column fifty feet high (fig. 876. unshaded part) ht not to be at the same distance as for one of fifieen, the point being removed more tant as the column increases in lieight, and therefore the apparent relation between the ser and lower diameters would appear the same. For supposing A to be a point of view ose respective distance from each of the columns $f g$ FG, is equal to the respective ghts of each, the triangles $f A g$ FAG will be similar; and $A f$, or $A h$, which is the same, l be to $A g$, as $A F$, or its equal $A H$, is to $A G$: therefore, if de be in reality to be as \therefore is to BC , it will likewise be apparently so: for the angle $d \mathrm{~A} e$ will then be to the angle c, as the angle DAE is to the angle BAC; and if the real relations differ, the apparent \Rightarrow will likewise differ. "When, thercfore," observes Chambers, "a certain degree of inution, which by experience is found pleasing, has been fixed upon, there will be no essity for changing it, whatever be the height of the column, provided the point of view not limited; but in close places, where the spectator is not at liberty to choose a proper ance for his point of sight, the architect, if he inclines to be scrupulously accurate, may y; though it is, in reality, a matter of no importance, as the nearness of the object render the image thereof indistinet, and, consequently, any small alteration impertible." Our author afterwards adds: "It must not, however, be imagined that the e gencral proportions will in all cases suceced. They are chiefly collected from the ples and other public structures of antiquity, and may by us be employed in clurches, ices, and other buildings of magnificence, where majesty and grandeur of manner should extended to their utmost hmits, and where, the composition being generally large, the ts require an extraordinary degree of boldness to make them distinetly perecptible from proper general points of view."

SUmivision of entablatures.

549. We have spoken of the entablature as the fourth part of the height of the colnmm. zeneral terms, its subdivisions of architrave, frieze, and comice are obtained by dividing reight into ten equal parts, whereof three are given to the architrave, three to the frieze, four to the cornice; except in the Roman Dorie order, in which the whole height of entablature is divided into eight parts, of which two are given to the arehitrave, three he frieze, and three to the cornice. From these gencral proportions variations have 1 made ly different masters, but not so great as to call for particnlar observation. They rate but little from the examples of antiquity; and the case with which they may be Hected render them singularly useful.

SIODE OF MEASUHING THF OHIEER
350. Several methods have bech used fur forming the seale of equal parts, by which the To are incasured; but they are all fambed on the diameter of the column at the bothm Ie aliaft; for thowe that use the module or semi-dimuter as the measuring whit (which bure done in the Dorle order) mant still reenr to the diancter itself. 'fhe nuthors have unally divided it into thirty parts, but all conear in meanaring by an unit fomadet he diameter. We shall follow the practice of Vignota in deseribing the orders, that ter dividing the dianefer into two equal parts, of which each is the unit of the seale for
profiling the order. The module for the two first orders, the Tusean and Doric, is divid into twelve parts or minutes; and for the Ionic, Corinthian, and Composite orders in eighteen parts, by which minute fractions are avoided.
2551. For drawing or proffiing, as it is ealled, an order, the proper way is to set out t height of the leading parts and their projections, and then proeeed to the subdivisions each. As a general rule, we may mention that it is usual to make projections of comin nearly or quite equal to their heights.

APPLICATION OF THE ORDERS.

2552. The applieation of the orders among the aneients was exeeedingly extensi Porticoes abounded about their eities; their temples were almost groves of eolumns, w which also were profusely deeorated their theatres, baths, basilicæ, and other pub buildings, as were no less the eourts, vestibules, and halls of their private dwellings. 'I moderns have in a great measure imitated their example, and their use has very mu exceeded the limits of propriety. The maxim of Horaee, "Nec Deus intersit," has in ease been more violated by architeets than in the unnceessary introduetion of the orders the façades of their buildings. The test of fitness being applied to their employment the best that the young arehiteet can adopt.

Sect. III
THE TUSCAN ORDER.
2.553. The reader, in fig. 877., has before him t're geometrieal representation of the Tust order and its details. A shows the plan of the sofite of the eorniee, and 13 is a plan of the eapital. The example is from Vignola's profile, whereon we consider it proper to remark, in conformity with an opinion before expressed (2532, 2533.), that the ovolo which crowns the corniee is an improper moulding for the situation it occupies. The substitution for it of a fillet and eyma recta would have been much more suitable, and would have also been more pleasant in effect.
2554. "The Tusean order," says Chambers, "admits of no ornaments of any kind; on the eontrary, it is cometimes eustomary to represent on the shaft of its column rustie einctures, as at the Palaee Pitti in Florence, that of the Luxembourg in Paris, York Stairs in London, and many cther buildings of note. This practice, though frequent, and to be found in the works of many eelebrated arehitects, is not always excusable, and should be indulged with caution, as it lides the natural figure of the column, alters its proportions, and affeets the simplieity of the whole composition. There are few examples of these bandages in the
 remtins of antiquity, and in general it will be advisable to avoid them in all large desi reserving the rustic work for the intercolumniations, where it may be employed with g^{\prime} propriety, to produce an opposition whieh will help to render the aspeet of the wl composition distinet and striking." Our author proeeeds to observe, that "iar sma works, of which the parts being few are easily comprehended, they may be someti tolerated, sometimes even recommended, as they serve to diversify the forms, are pror tive of strong contrasts, and contibute very considerably to the masculine bold aspect
re composition." Le Clerc allows their propriety in the gates of citadels and prisons, nd also considers them not out of plaee for gates to gardens or parks, for grottocs, founins, and baths. Dclorme made abundant use of them in severai parts of the Thailleries, sering them with arms, cyphers, and other eurichments. They are to be found in the etail of the Louvre, with vermiculated rusties. Dc Chambrai, who banishes the Tuscan rder to the country, nevertheless admits that the Tuscan column may be consecrated to re commemoration of great men and their glorious actions, instancing Trajan's columm, ne of the proudest monuments of Roman splendour, as also the Antonine column.
255.5. Having adjusted the size of the module with its subdivisions of twelve parts, that the paper or other material on which the order is profiled may contain the whole the order, it always being understood that the representation for practical purposes need ot include the whole height of the shaft of the column, whose minutia of diminution ray form the subject of a separate drawing, the first step is to draw a perpendicular line ir the axis of the column. Parallel to the base lines are then to be drawn, aecording to ie dimensions (parts of the module) given in the table subjoined; and the begimer, as ell as the more practised man, is recommended not to set up these as they are given parately, but in every ease to add the succeeding dimensions to those preeeding rather lan to set them off one by onc, which, on a small seale, causes minute errors in reading If from the scale to become in the end large in amount. By the adoption also of th a practice the work corrects itself as it proceeds. As the heights are set up, the rojection of each member from the axis of the column is to be set off, and this should \approx always done on both sides at the same time, by which gulling of the paper from ic point of the compasses, and errors in other respects, are avoided. The fiy. 878. is

the detail on a larger seale of the general representation exhibited in that preseding " measures of each part are given in the tollowing table.

Table of the Parts of the Tuscan Order.

2556. Vitruvius in this order forms the columns six diametcrs high, and makes theis diminution one quarter of the diameter. He gives to the basc and capital each one module in height. No pedestal is given by him. Over the capital he places the architrave of timber in two thicknesses connected together by dovetailed dowels. He however leaves the height unsettled, merely saying that their height should be such as may be suitable to the grandeur of the work where they are uscd. He dirccts no friezc, but places over the architrave eantilevers or mutuli, projecting one fourth part of the height of the eolum, including the base and capital. He fixes no measure for the cornice, neither does he give any directions respecting the intercolumniations of this order. The instructions are not so specific as those which he lays down for the other orders, and there have been various interpretations of the text, which unfortunately cannot in any of the suppositions be tested
n ancient remains. The whole height, according to the measuring unit which we have dopted from Vignola, is 16 modules and 3 parts.
2557. Palladio makes the height of his 'Tusean eolumn 6 diameters, and diminishes the naft one fourth of a diameter. The height of the base and eapital are each half a diameter. le provides no pedestal, but, instead thereof, places the base of the eolumn on a zoccolo, r lofty plinth, whose height is equal to the diameter of the column. He leaves the interolumniation unsettled, merely hinting that as the architraves are of timber, they, the itereolumniations may be wide. The whole height by him assigned to the order is 9 ianeters and three quarters of the column. The whole height aceording to our scale is 9 modules and 6 parts.
2558. Serlio makes the column of the order 5 diameters exclusive of base and capital, ach of which are half a diameter in height, and his diminution is one quarter of the liameter. He gives half a diameter to the height of the arehitrave, and an equal height 0 the frieze and to the cornice. His pedestal is with a plinth and base, a die, and ynatium, the whole being a third of the height of the column. He gives no rules for the atercolumniations, though in book 4. he inserts a diagran wherein intereolumus appear, nerely saying that they are equal to 3 dianeters. 'The total height aecording to our neasure is 19 modules and 3 parts.
2559. Scamozzi makes the shaft of his eolumn 6 diameters, and diminishes it one fourth part of its diameter. The heights of the base and capital are each half a diameter. 'To the entablature he assigns for height one fourth of the height of the column, ineluding its رase and capital, less half its diameter. He places a sort of triglyph in the frieze, which arises from a misconception of the text of Vitruvius. The height of his pedestal is a fourth part of that of the eolumn, with base and capital, less half a dianeter. The whole height in our measure is 21 modules and 9 parts.

Sect. IV.
THE DORIC ORDER.
2560. The Doric order of the moderns is of two sorts: mutular and denticular, the ormer is represented in fig. 879. A is a plan of the sofite of the corona; B, a plan of the

Fig. 879.
pital; and \mathbb{C}, upian of the base. In the fricze the channelled projections are cailed glyphe, und the spuecs hetween them metorid, which should in breadeh be equal to their
height, which is that of the frieze. The shaft is usually chamnelled with twenty flutes. Over the triglyphs are distributed mutules or modillions, and another peculiarity is the introduction of gutta or drops, which decorate the sofite of the corniee and the fect of the triglyphs.
2561. Daviler, speaking of the two Doric entablatures given by Vignola, admires the eleganee of their composition, and scarcely knows whieh of them to select as the most beautiful. "The first" (or denticular), hereafter immediately subjoined, says Chambers, following that author, "which is entirely antique, is the lightest, and consequently properest for interior deeoration or objeets intended for near inspection; the other, eomposed by Vignola himseif from various fragments of antiquity, being bolder, and consisting of larger parts, seems better ealeulated for outside works and places where the point of view is cither distant or unlimited. On polygonal plans, however, the mutule cornice must be avoided, because the sofites of the angular mutules would form irregular and very disagreeable figures : neither should it be employed in concaves of small dimensions, for the same reason; nor in places where frequent breaks are requisite, it being extremely dificult, often impossible, to prevent the mutules from penetratng and mutilating each other in various unsightly manners; and wherever this cornice is used on a eonvex surface, the sides of the mutules must be made parallel, for it would be both disagreeable and unnatural to see them broader, and consequently heavier in front than where they spring out of the mutule band." We have elsewhere observed that there is very great difficulty in distributing the parts of the Doric entablature, on aecount of the intervals between the centres of the triglyphs, whieh necessarily eonfine the eomposer to intercolumniations divisible by three modules, thus producing spaces which are often tor wide or too narrow fir his purposes.

9662. In for. 880. the entablature of the mutular Doric order is given to a larger seali that that of the preceding figure; and we subioin, as in the Tusem order, --

Table of Parts of the Entablature of the Mutular Doric.

2563. To olviate the difficulties mentioned in 2561. relative to the triglyphs, they lave uften been omitted and the entablature left plain, as in the Coliseun at Rone, the colonmades of St. l'eter's of the Vatican, and in many other buildings. This, says Chambers, is an easy expedient; but as it robs the order of its principal characteristic distinction, the remedy is a desperate one, and should only be employed as a last resource.
2564. The Doric order was used by the ancients in temples dedicated to Minerva, to Mars, and to Hercules. In modern buildings, Serlio (lib. iv. c. 6.) recommends it in chnrches dedicated to saints remarkable by their suffering for the Christian fitith. Le Clere suggests its use for military buildings. "lt may," says Chambers, " be employed in the houses of gencrals, or other martial men, in mausoleums erected to their memory, or in trimphal bridges and arches built to celebrate their victories."
2665. Ae the difference between the mutular and denticular Doric lies entirely in the entablature, we give in the following table the whole of tie details of the order,

olmerving. that froin the capitals downwateds, the measures assigned to them are the

Which, with those of the capital, base, and pedestal, are in fig. 882. given to a larget

Fig. 882.
bcale, as we have before represented the parts of the Tuscan order. The general table is subjoined : -

2566. Vitruvius, with more clearness than in the others, describes the Doric order book iv, chap. iii.). In order to set out its proportions, he tells us, though not giving a lirect rule, that its pedestal is composed of three parts, the cymatium or cornice, the die, Ind the base; and that the base and cimatium are composed of many mouldings, whose udividual proportions, however, he does not give. He assigns no particular base to the Doric order; but, nevertheless, places under half a diameter in leeight the attic base, whose nembers are the plinth, small fillet, scotil, and the upper terus with its superior and inferior illets, together with the apophyge of the column. He gives to the projection of the base lifth part of the diameter of the column. The height of the shaft he makes of 6 diameters, nd its diminution a sixtly part of the dianeter. 'The capital's height he makes equal to alf a diancter, and divides it into three parts, one for the abacus and its cymatimun. nother for the eelinus and its lillets, the third for the hypotrachechum. 'Io the arehatrave he sigus the height of one half diancter of the columm; and to the frieze 50 parts of the module semidiancter divided into 30 pirts), including the fascia, forming the capital of the trilyplis. His cornice consists of 50 parts of the module, and its projection 40 . The whole eight which he gives to the order is, in the meanure here adopted, 17 modules and 20 parts. 2.5;7. Palladio makes the Dorie pedestal rather less tham $2 \frac{1}{2}$ diameters of the colmm, ividing it into three parts, the bise, die, and cymatimm. To the die he assigns uenty a fancter and one third of the colomn. To the cymatimo a little more than one third of te diancter. Hic uses the attic base to the order, but, for the sake of carrying ofl the ater, turns the plinth into am inverted eavetto (guscio), ending in the projection of the
cymatium of the perlestal. To the slaft of the column he assigns various proportions, directing that if accompanied with pilasters, it should be of the height of $8 \frac{5}{12}$ diameters, and if entirely isolated, 7 or at most 8 dianeters high. He cuts the shaft into 24 flutes, and diminishes it the tenth part of its diameter. The height of his capital is half a diamcter, and, l.ke the annotators on Vitruvius, he decorates the neck or fripze, as they both call it, with ruses, adding, however, other thowers, and making its projection a little more than a fifth part of the diameter. To the architrave, frieze, and cornice he gives a little more than one fourth part of the height of the column, so that the whole height of his order is in our measure 24 modules and a fraction above $2 \frac{1}{2}$ parts.
2568. Serlio makes the height of the pedestal of his column a little less than 3 diameters, with its base, die, and cymatium. The height of the die is set up equal to the diagonal of a square, formed on the plinth of the column. The height of the cymatium, according to the strict text of Serlio, should not be less than that of the base; but he altogether omite any mention of its projection. His base is the attic base, to which he assigns a projection of a quarter of a diameter. The column is 6 diameters high, and has 20 flutes. His capital differs only from that of Vitruvius in its projection, which is rather more. The architrave and frieze do not much differ from those already described. The projection given to the cornice is equal to its height. The whole height in our measures amounts to 23 modules and 5 parts.
2569. The Doric order as described by Scamozzi is not very dissimilar to those already described. The pedestal is by him made 2 diameters and a little more than a quarter, with a base, die, and cymatium, and the projection barely a quarter of the diameter of the column, to which he gives the attic base. His column is $7 \frac{1}{2}$ diameters high, and the diminution a fifth part of the diameter. There are 26 flutes on the shaft, separated from each other by fillets, whose width is one third of the flute. This author gives three different sorts of capitals for the order : the first has three amulets; the second has only the lower amnulet, the two upper ones being changed to an astragal; the third, instead of the two lower annulets, has a cyma reversa. Lastly, above the corona he places a cyma reversa, and in the other parts does not vary much from the preceding authors, especially in the frice and architrave, except that in the last he uses two fascia. To the eornice he assigns the projection of five sixths of a diameter of the column. His whole entablature is a little lews than one fourth the height of the column, including base and capital. The whole height of the order in our measures is 23 modules and 8 parts.
2.570. In fig. 883. the profile of the Grecian Doric from the Parthenon at Athens
is given. Though very different to those we have already described of this order, the resemblance is still considerable. Its character is altogether sacred and monumental, and its application, if capable of application to modern purposes, can scarcely be made to any edifice whose general character and forms are not of the severest and purest nature. 'The various absurd situations in which the Grecian Doric has been introduced in this country, has brought it into disre. pute ; added to which, in this dark climate the closeness of the intercolumniations excludes light, which is so essential to the display of architecture under the cloudy skies with which we are constantly accompanied in high tatitudes. 'The diameter of the columns in the original is 6 feet 2.7 inches.
2571. Lest we may be reproached with neglecting to submit to the student in this place (and the remark equally applies to the following section on the lonic order) more examples of the Grecian Doric, we would here observe that this work is not to stand in place of a paratlel of the orders. Nothing would have been easier than to have placed before him an abundance of examples; but they must be sought elsewhere,
 :masmuch as the nature of our labours requires general, not special, information in this respect. We have not, however, refiaised in the first book (14\%, et seq.) from cutcriug into details respecting the Grecian Doric, which we consider much more valuable to the reader than would be the exhibition of a sernes of profies of its principal examples. We mave, moreover, at that place, suggested some criteria of their comparative antiquity. We to not think the nice copying of a profile into a modern work any other than a disgracetul exhibition of the vant of ability in the man, we cannot call him artist, who adopts it, and shall be much better pleased to leave the student in aonst, so that he may apply hinself fro, re nuiâ to the matter which calls his genius into play. From what we hive siid on the orders in Sect. II. of this Book, (2523.3 , et seq.), relative to the odder, asd on moulding,
(2532 , et seq.), it must be quite elear that the variety of every order, keeping to first prineiples, has not been yet exhausted, neither is it likely to be so.

Table of the Parts of the Grecian Doric (Pabithenon).

2572. The minutia of the Grecian Dorie, as we have just olserved, camot be given in general work of this nature. In its smaller refinements it requires plates on a much arger scale than this volnme allows. 'The reader, therefore, must be referred to Stuart's futiquities of Athens (original edition), and the pnblications of the Dilettanti Society, for urther information on the subject of the Grecian Dorie. All that was herepossible was to ive a general idea of the order. In the figure, E is the section of the eapitals of the inner whmes of the temple on a larger scale. Di) relate to the principal columns. I' is a setion of one of the ante or pilasters to double the scale of the capital. The centre interlummiation 4 modules $\frac{55}{100}$, from axis to axis of columas. The primeipal Grecian Doric ramples are - the l'arthenon, the temple of 'Theseus, the propylaum and the portico of e Agoris at Atherer the temple of Minserval at Sunium; the temple at Corinth; of npiter Neminns, between Argos and Corints; temple of A pollo and portico of $\mathrm{P}_{\text {Pilip }}$ in ce ivand of Delos; the temple of Jupiter Pambllenins at legina, and of Apollo Lepicurius Phigalia; the two temples at Solinus; that of Juno Lacina and Coneord at Agri"ntmm; the temple at Egesta, and the three temples at l'estum. (See 149, te seg.)

Sact. V.
 THE IONIC ORDER.

2573. Of the Ionie ordur there are many extant examples, both Grecian and Roman ; el, exeept the de?sased later examples of the latter, there is not that wide dillerenere twe then that exists between the Grecian and Roman Doric. 'The lonic has been phidered as delicient in appearance as compared with the other orders, on aceonnt of
the irregularity of its capital, which, on the return, presents difficulties in use. These difficulties are not obviated by the practice of the Greeks, who made an angular volute ons each extremity of the principal façade, and then returncd the face of the capital. With all our respect for Greek art, we think the expedient, though ingenious, a deformity; albeit, in the case of the type being a timber architrave, we must admit that the face of the capital should lie in the direetion of the superincumbent beam.
2574. In the example given (fig. 884.) we have, as in the examples of the preceding

Fig. 884.
orders, selected the profile of Vignola as the most elegant of the moderns; and the read. will here recollect that in the Ionic, Corinthian, and Composite orders, the module cr sem diameter of the column is divided into 18 parts. In the figure, A is a plan of the sofite the cornice, and B a plan of the capital. The method of tracing the volute will be give in a subsequent figure : previous to which, as in the orders already given, we subjoin a tabl showing the heights and projections of the parts of the order.

	Members composiug the Order.		Heights in Parts of a Module.	$\begin{gathered} \text { Projections } \\ \text { from Axis of } \\ \text { Column in inar } \\ \text { of a Module. } \end{gathered}$
A, cornice, 34 parts.	Entablature.			
	Fillet of cyma	-	$1 \frac{1}{2}$	46
	Cyma recta -	-		
	${ }_{\text {Fillet - }}^{\text {Cyma reversa }}$	-	$2^{\frac{1}{2}}$	$40!$
	${ }_{\text {Corana }}^{\text {Coba }}$ -	-	6	38.
	Fillet of the drip	-	1	291
	Ovolo -	-	4	281
	Astragal	-	1	25
	Fillet	-	$\frac{1}{2}$	$24 \frac{1}{2}$
	Dentel fillet -	-	$1 \frac{1}{2}$	21
	Dentels	-	6	24
	Fillet -	-	1	20
	Cyma reversa -	-	4	1919
B,	Frieza -	-	27	15

ie flutes in this order are separated by a listel.
7.5. The letters to the leading divisions of the above table reffer to the fig. 88.5., ein the parta are drawn to a larger scale, and wherein 1 is the eye of the volute, pre-
to be described.

Fig. 885.
2576. Fig. 886. shows the method of drawing the volute, the centre of whose eyr, a is callel, is found by the intersection of an horizontal line from E, the bottim of

thinus, with a vertical from D , the extremity of the cyma reversa. On the point of tersection, with a radius equal to one part, describe a circle. Its vertical diameter is Iled the cathetus, and forms the diagonal of a square, whose sides are to be bisected, and rough the points of bisection (see 1, fig. 885.) the axes 1,3 and 2, 4 are to be drawn, ch being divided into 6 equal parts. The points thus found will serve for drawing the terior part of the volute. Thus, placing the point of the compasses in the point 1 , with re radius 1D, the quadrant DA is described. With the radius 2 A another quadrant may edescribed, and so on. Similarly, the subdivisions below the points used for the outer nes of the volute serve for the immer lines. The total height of the volute is 16 parts of module, whereof 9 are abore the horizontal from \mathbf{E}, and 7 below it.
2577. Vitruvius, according to some authors, has not given any fixed measures to the edestal of this order. Dimiel Barbaro, however, his commentator, seems to think otherise; and, on this head, we shall therefore follow lim. The height of the pedestal is made early a third part (including its base and cymatiom) of the height of the column. To ie base of the column he assigns half a diameter, and to the shaft itself nearly 8 diameters, s surface being cut into 24 flutes, separated by fillets from each other. His method of escribing the volute is not now thoronghly understood; and it is, perhaps, of little nportance to trouble ourselves to decypher his directions, seeing that the mode of forming is derived from mathematical principles, as well understood now as in the days of the uthor. The architrave he leaves without any fixed dimensions, merely saying that it must larger or smaller according to the height of the columns. He prescribes, however, that Ie architrave, frieze, and cornice should together be somewhat less than a sixth part of the cight of the column, with its base and capital. The total height he makes the order, :cording to our measures, is 25 modnles and ncarly 9 narts.
2578. Palladio gives to the pedestal 2 diameters and nearly two thirds of the height of :column. He adopts the attic, though without rejecting the Ionic base, and makes it alf a diameter high, adding to it a small bead, which he comprises in the height of the laft, which he makes 8 diameters in height. To the architrave, frieze, and cornice, taken gether, he assigns a little less than one fifth of the height of the column, including its ise and capital, and makes the projection of the cornice equal to its height. The total eight of the order, in our measures, is, according to him, 27 modules and nearly 8 parts. 2579. Serlio, in this order more than any of the others, varies from Vitruvius. 'To the edestal he gives, including base, die, and cymatium, a little more than a third part of the sight of the column, with its base and capital. To the shaft of the eolumn he gives diameters, and diminishes it a sixth part of its diameter. His capital is that of Vitruvius, far as we can understand that master. His mode of constructing the volute differs from her authors. Ilis directions are, that laving found the cathetus, which passes through ce centre of the eye, it inust be divided into cight parts, from the abacus downwards, one hereof is to be the size of the eye of the volute, four remain above the eyp, and three low that part comprised below thic eye. The cathetus is then divided into six parts, operly numbered by figures from 1 to 6 . With one point of the compasses in 1 , and e other extended to the fillet of the volute, he describes a semicircle, and so on with micireles consecutively from 2 to 6 , which will ultimately fall into the eye of the volute. ec camot speak in high tenns of Serlio's method, and therefore lave thought it umesary to aceompany the description with a figure. It is rather a clumsy method, and we ir, if exhibited in a figure, would not satisfy our readers of its clegance. The height of arehitrave, fricze, and cornice together is a little than a fourth part of the height of the column, luding the base and capital. The whele height of order, in our measures, is 2.5 modules and 6 parts. 2.580. Scamozi direets that the pedestal shall be thits hase and cornice two diameters and a half of columm. He uses the attic base, and, like l'alio, gives an astragal above the npper torns. To the fif of the colnmn he assigns a lecight of little less II 8 dianeters, and makes its diminution a sistl tof the diameter. He adopts the angular eapital. nething like the example of that in the temple of stuna V'irilis. The height of his architrave, firieze, cornice is a little less than a fifth part of the folt of the collom, with its hase and eapital. The al height of lus oriler, in our measures, is 26 mo--c.
:31. The principal examples of the (;recean Ionic in the temples of Minerva Polias, of Freethems, the nequeduct of llatrian, at Athens; in tho ple of Minerva I'olias at l'riene; of lateclus at

Teos; of Apollo Didymæus at Miletus; and of the small temple on the Ilyssus, nea Athens, whereof in fig. 887. the profile is given, and below, a table of the heights an projections of the parts. It is to be observed, that in the Grecian Ionic volute the fill of the spiral is continued along the face of the abacus, whilst in the Roman exampl it rises from behind the ovolo. Some of the Athenian examples exhibit a neek below $t 1$ echinus, decorated with flowers and plants. The entablatures of the early Ionic a usually very simple. The architrave has often only one fascia, the frieze is generally plai and the cornice is composed of fev parts. In Book I. Chap. II. (153. et seq.) we ha already examined the parts of the Grecian Ionic, and thereto refer the reader.

Table of the Pabts of the Greclan Ionic in the Temple on the Ilyssus.

The height from the top of the echinus to the centre of the eye of the volute is 1.5 parts. Total projection of the volute from axis of column, $27 \cdot 90$. The flutes are ell tical on plan (fig. 887.), and the distance between axes of columns, 6 mod., 3.241

2581a. An Ionic capital from the celebrated Temple of Diana, at Ephesus, can no seen at the British Muscum, having been recovered during the explorations made in 1 1, by Mr. J. T. Wood. The shaft was 6 fiet 1 in. diam., and a part of its base was fuund in t.

Sect. VI.

THE CORINTHIAN OKDER.
2582. For the Corinthian order, we must seek examples rather in Rome than in any part Greece. The portico at Athens, and the arch of Hadrian at Athens, do not furnish us th specimens of art comparable with the three columns in the Campo Vaccino, belonging, is generally suppcsed, to the temple of Jupiter Stator. Those in the temple near My lassa, 1 the Incantata, as it is called, at Salonica, do not satisfy the artist, as compared with 3 examples in the remains of the temple of Mars Ultor at Rome, the temple of Vesta Tivoli, and others, for which the reader may refer to Desgodetz.
2583. The reader is again here reminded that the motule or semidianeter is to be

Fig. 888.
idel into eighteen parts. In fig. 888 . is a representation of the Corinthian order, whose asures are given in the following table: -

2;84. Fig. 889. show's the details of the entablature, \&e. and also the profile and front the Corinthian modilion to al larger scale. On the profile is shown the caisson or sumk anel on the sofite of the corona. The height is six parts, and the projection sixteen. As en in the figure, a distance equal to three parts and a half is taken for the height of the naller volute, and on this distance a scale of sixteen equal parts is made ; the figure shows ce dimensions to be given to the sinall squares, whose angles serve as centres to describe te curves. Having drawn the line Alb, it is divided into four equal parts by lines ןercondicular to it, wheh, mecting vertical lines from Λ and 13 , give the points, which serve centres for striking the curve of the modillions. The acanthus leaf which supports it, well as the curves which form the profile of the roses in the eaisson, are also struck by ınpasses.
22885. In fig. 890 ., which exhithits the method of drawing the Corinthian eapital, one halt the plan shows the eapital in phim, and the other half of it laid down diagonally. Having rawn the nxis of the plan corregrondent to the nxis of the elevation of the eapital, with a alius efual to two modnles, deserihe a circle, which divide into sixteen equal parts heir lines of division will each correspond to the eentre of ench leaf. The vase of the apital is determined by a circle whose radins is $1 / 1$ parts. The fignre shows the cireles lich hound the leaves npwards on the vase.
2396. The elevation shows the heights whereon are carried the projections of the plan.

Above the leaves come the sixteen volutes, whereof the eight larger ones support the fon angles of the abacus, and the eight smaller ones support the flowers whieh decorate th middle of the abacus. The volutes seen in profile may be drawn geometrically with th eompasses, but they are always more agrecable and easy when drawn by the eye with hand which feels the eontours.

The diflerent parts of the eapital are as follow: Λ, plan of the leaves and abacus; 1 plan of the larger and smaller volutes; C , the vase or body of the capital; D , the fir tier of leaves ; E, the second tier of leaves; F, the eaulicolus; G, the larger volute ; If the smaller volute ; II, the flower; K, the abacus; L, the lip of the vase.
2587. Vitruvius is scanty in the information he gives on the Corinthian order, and wha he says respeeting it relates more to the origin of the eapital and the like than to the pro portions of the detail. He makes the capital only I diameter high, and then forms upo the plan a diagonal 2 diameters long, by means whereof the four faces are equal accor ing to the length of the are, whose curve will be the ninth part in length and its heigl the seventh part of the capital. He forms the order with a pedestal, with base and cornic as Daniel Barbaro would have it. The whole height given to it in our measures is abou 27 modules and 2 parts.
2588. Palladio uses the pedestal with its ordinary subdivisions, making it between third and fourth part of the height of the column, including its base and capital. If the base he gives $\mathbf{1}$ module; the shaft of the column a little less than 8 diameters, an places twenty-four flutes upon it, which two thirds downwards are ehannelled, and on th other or lower third neatly fitted with convex pieces of segments of eylinders called cal lings. He makes the capital 1 diameter and a sixth in height, giving it two tiers , leaves, caulicoli, and abacus. To the architrave, frieze, and cornice he assigns a little le
an a fifth part of the column, including the base and capital. The whole leight given the order by this author is about 27 modules and 10 parts of our measures.
2589. Serlio makes his pedestal pretty nearly as the rest. To the base of the column assigns half a diameter for the height, when that is about level with the eye, but when uch above it he directs all the members to be increased in height accordingly, as where e order is placed above another, he recommends the number of parts to be dimished. To the shaft of the column he gives a little more than 7 diameters, and to e capital the same height as that given by Vitruvius, whom, nevertheless, he considers error, or rather that some error has crept irto the text, and that the abacus ought not to included in the height. The heiglit of the arcliitrave, frieze, and cornice he makes a tle less than a fourth part of the column, including its base and capital. The whole of e order, according to him, is 28 modules and a little more than 1 part of our measures. 2590. Scamozzi gives to the pedestal of this order the height of 3 diameters and one ird, composing it with the usual parts of lase, die, and cornice ; to the base of the lumn the same height and mouldings as Palladio. To the slaft of the column lie signs the height of 8 diameters and one third, and diminishes it on each side an eighth rt of its thickness at bottom. The capital is of the same height as that by Palladio. The ditrave, frieze, and cornice he directs to be a little less than a fifth part of the height of e column. By our measures the whole height of his order is 30 modules and 20 parts.

Sест. VII.

THE COMPOSITE ORNER.

2591. The Composite orler, as its name imports, is a compound of others, the Corinan and lonic, and was received into the regular number of orders by the Romans. wilander, in his notes on Vitruvius, has described its proportions and character. Its Dital concists, like the Corinthian, of two ranges of acanthus leaves distributed over the face of a vase, but instead of the stalks or branches, the shoots appear small and as uigh flowering, adhering to the vase and rounding with the capital towards its ddle. A fillet terminates the vase upwards, and over the fillet an astragal is placed, 1 alove that an echinus, from which the volutes roll themselves to meet the tops the upper tier of leaves, on which they seem to rest. A large acanthus leaf is bent we the volutes, for the apparent purpose of sustaining the corner of the abacus, which lissimilar to that of the Corinthian order, inasmuch as the flower is not supported by a Ik seemingly fixed on the middle of each face of the abacus. The principal examples of

the order are at Rome, in the temple of Bacelius, the arehes of Septimius Severus, of the Goldsmiths, and of Titus; also in the baths of Dioelesian.
2592. Fig. 891. (see preceding page) is a representation of Vignola's profile of the order Its measures are subjoined in the following table : -

	Members composing the Order.			Heights in Parts of a Module	Projections from Axis in Parts of a Module.
A, Cornice, 36 parts.	Entablature.		-		51
	Fillet of eornies	-			
	Cyma recta -	-		5	51
	ríllet -	-		1	46
	Cyma reversa			2	451
	lead -	-		1	43%
	Corona -	-		5	43°
	Cyma under the corona	-		11 ${ }^{\frac{1}{2}}$	41
	Fillet -	-		1	33
	Cyma reversa	-		4	293
	Fillet of the dentils	-	-	$-\frac{1}{1}$	28
	Dentils -	-	-	$7 \frac{1}{2}$	29
	Fillet \quad -	-		1	2.3 22
B, Frime, 27 parts.	[Bead -	-		1	17
	Fillet -	-	-	$\frac{1}{2}$	161
	Congê -	-	-	$\frac{3}{1}$	15
	Upright faee -	-		$17 \frac{1}{4}$	15
	$\Lambda_{\text {pophyge }}$ -	-		7	22
C, Architrave, 27 parts.	Fillet	-		1	22
	Cavetto	-	-	2	$20 \frac{1}{2}$
	Ovolo	-		3	20
	Bead . -	-		1	173
	First fascia -	-		10	17
	Cyma reversa	-		2	16_{3}^{2}
	Second fascia	-		8	15
Capital, 42 parts.	Columiv.				
	Echinus and fillet -	-		2	$20{ }_{3}$
	Lower member of abacus	-		4	diagomally:
	Volute -	-		12	diagonally
	Bend of upper leaves	-		3	24
	Upper leaves -	-		9	22
	Bend of lower leaves -	-		3	193
$\begin{gathered} \text { Column, } \\ 16 \text { mod. } 12 \text { parts. } \end{gathered}$	Astragal	-		2	$17 \frac{1}{2}$
	Fillet	-	-	1	16.
	Congé -	-		2	$1.5 \frac{1}{1}$
	Shuft $\left\{\begin{array}{l}\text { Above }\end{array}\right.$			6 mod 19	15
	Shaft $\{$ Below			6 mod 12 l	
	Apophyge -	-			18 20
	Fillet	-		11	20
D, Base of column, 18 parts.	Congé	-	-	Ω	20
	Fillet	-	-	11	20
	Torus	-		3	22
	Fillet	-		1	$2 \mathrm{O})^{1}$
	Scotia	-		11	20
	Fillet	-	-	1	211
	Bead	-	-	1	219
	Fillet		-	4	21_{3}
	Scotia -	-	-	2	20_{3}^{2}
	Fillet	-	-	${ }^{1}$	
	$\xrightarrow{\text { Torus }}$	*	-	4	25

2593. The flutes in this order are separated by a fillet between them, and are, whed wed, twenty-four in number.

2594. Fig. 892. (see preceding page) shows the parts of the entablature, base, and peadest to a larger scale, and fig. 893. gives, similarly, a more intelligible, because larger, represent-

Fin, 893 ,
ation of the mode of setting up the capital, which, as we have airealy observed, has onl eight volutes. In this figure A is the plan, as viewed frontwise; 11 , that of the capits viewed diagonally ; C, the vase or body of the eapital; D, the first tier of leaves; E , th second tier of the same; F, the volutes; G, the flower; H, the abacus.
2595. Vitruvius has not given any instruetions on this order; we are therefore oblige to begin our parallel, as in the other orders, with -
2596. Palladio, whose examples of it are light and much decorated. To the pedestal height this master assigns 3 diameters and three eighths of the colnmu, adding to it lower plinth of the height of half a diameter. He makes the base of the columu half diameter in height, and assigns to the shaft 8 diameters and a little more than one fourth, ar euts on it twenty-four flutes. The height of this capital is 1 diameter and a sixth, 1 volutes being very similar to those he preseribes for his Ionie. The arehitrave, frieze, a: cornice he makes a little less than a fifth part of the height of the column. The wh leieght of his profile in our measures is 30 modules and 12 parts.
9597. Serlio seems to have founded his profile of this order upon the example in t Coliseum at Rome. He makes the height of the pedestal a little less than 4 diameters the column. To the shaft of the column he assigns 8 diancters and a half. To 1 height of the eapital he gives 1 dianeter, differing therein from his profile of t Corinthian order in the disposition of the volutes and leaves. Hís cntablature, which i little less in height than one fourth of the eolumn, he divides into three equal parts for t
hitrave, fricze, and cornice The total height of his profile in our measures is $32 \mathrm{mo}-$ les and 9 parts, being much higher than that of Palladio.
2598. Scamozzi's profile greatly resembles that of Paliadio. His pedestal is 3 diaters, and the base of his column half a diameter in height. The shaft of his columar hout base or capital, is a diameters and one twelfth high, and the capital 1 diameter 1 a sixth. The entablature is one fifth part of the column in height, and the whole the profile in our measures is nearly 29 modules and 7 parts.

Sect. VIII.

pedestals.
2599. We think it necessary to devote a small portion of our labour to the consideron of pedestals, on account of the great difference which exists in the examples of the lers, and this we shall place in a tabular form, previous to the general remarks it will be cessary to make.
Table showing the Height of Pedestals in ancient and modenn Wonks.

		Plinth in Minutes.	Mouldings above Plinth in Minutes.	Die in Minutes.	Cornice in Minutes.	$\begin{aligned} & \text { Total } \\ & \text { Height in } \\ & \text { Minutes. } \end{aligned}$
Doric	$\{$ Palladio -	26	14	80	20	140
	\{Scamozzi	30	15	$68{ }^{4}$	$22!$	1366
Ionic	$\left\{\begin{array}{l}\text { Temple of Fortuna Vi- } \\ \text { rilis }\end{array}\right.$	44	193	$93{ }^{3}$	234	$180{ }^{3}$
	Coliseum -	3:31	$9 \frac{1}{2}$	815	17	$141 \frac{1}{2}$
	Palladio	28^{2}	$14 \frac{1}{3}$	973	211	$16 . \frac{1}{4}$
	Scamozzi	30	15	82.1	$2-\frac{1}{2}$	150
Corinthian	Arch of Constantine	17.1	29	153	$29!$	228
	Coliseum -	23	111	78	$19{ }^{\frac{1}{4}}$	1313
	Palladio -	23.1	$14 \frac{1}{2}$	93	19	150
	Scamozzi -	20^{-}	15	$132 \frac{1}{1}$	929	200
Composite	Arch of Titus -	55	30	141	29	255
	Arch of the Gold-	46	2.51	144!	251	2.11
	Areh of Septimius Sc-					
	verus - -	30	30^{5}	$140!$	296	1821
	Palladio -	33	17	133	17	200
	Scamozri -	30	15	1121	$22!$	180

2600 . The minutes used in the above table are eachequal to one sixtieth of the dianeter tbe shaft.
2riol. Whether the pedestal is to be considered a component part of an order is of little portance. There are so many cases that arise in designing a building, in which it nout be dispensed with, that we think it usefin to eonneet it with the eolumn and rablature, and have consequently done so in the examples alrealy given of the several lers. Vitruvins, in the Doric, Corinthian, and 'luscan orders, makes no mention of leatals, and in the lonie order he seems to consider them rather as a neeensary part in - construction of a temple than as belonging to the order itself.

260\%. A perdestal consists properly of three parts, the base, the die, and the cornice. pome antlours," says Chambers, "are very averse to pedestats, and compare a colmman ed on a pelestal to a man monnted on stifts, imagining they were first introduced rely throngli necessity, and for want of colnmas of a sufficient lengrth. "It is indeed e," lie continmes, "that the ancients oliten made use of artifices to lengthen their finner an sppears ly some that are in the baptistery of Constantine at loone; the shafts which, being wo short for the baildiug, were lengrhened and joined to their bases by an halated sweep, ndorned with acanthn4 leaves; and the same expedient has been made of in sone fragments which were diseovered a fer years ago at Nismes, contignons to femple of Diana. Neventhelese, it doth not seem proper to comprehend pedestals in
the number of these artifices, since there are many oceasions on which they are evidently necessary, and some in whieh the order, were it not so raised, would lose much of its beautiful apprarance. Thus, within our churches, if the columns supporting the vault were placed immediately on the ground, the seats would hide their bases and a good part of their shafts; and in the theatres of the ancients, if the columns of the scene had been placed immediately on the stage, the actors would have hid a considerable part of thens from the audience; for which reason it was usual to raise them on very high pedestals, as was likewise necessary in their triumphal arches; and in most of their temples the solumns were placed on a basement or continued pedestal (stylobata), that so the whole might be exposed to view, notwithstanding the crowds of people with which these places were frequently surrounded. And the same reason will authorise the same practice in our churches, theatres, courts of justice, or other publie buildings where erowds frequently assemble. In interior decorations, where, generally speaking, grandeur of style is not to be aimed at, a pedestal diminishes the parts of the order, which otherwise might appear too clunsy; and has the farther advantage of plaeing the columns in a more favourable view, by raising their base nearer to the level of the spectator's eye. And in a second order of arcades there is no avoiding pedestals, as without them it is impossible to give the arches any tolerable proportion. Sometimes, too, the situation makes it necessary to employ pedestals, an instance of which there is in the Luxembourg at Paris; where, the body of the building standing on higher ground than the wings, the architect was obliged to raisc the first order of the wings on a pedestal, to bring it upon a level with that of the body or corps de logis of the building, which stands immediately on the pavement."
2603. The dies of pedestals are occasionally decorated with tablets or with sunk panels whose margins are moulded; hut, generally speaking, such practices are to be avoided. In very large pedestals the surface may be thus broken, as in single monumental columns, whieh, at best, are but paltry substitutes for originality. Habit has reconciled us to view with pleasure the Trajan and Antonine columns, the monument of London, and the column of Napoleon in the Place Vendôme at Paris, in each of which the pedestals are ornamented in some way or other, so as to tell in some measure the story of the person in whose honour they were erected, or, as in the basso-relievo of the London column, the event which it records. But care must be taken when inscriptions are used to presere a rigid adherence to truth, and not to perpetuate a lic, as was the case in the monument just named, against a most worthy portion of the people of the British empire.
2604. As respects the employment of pedestals, we should advise the student, excep: under very extraordinary eircumstances, to avoid the use of them under columns whiel are placed at a distance from the main walls of an edifice, as, for example, in porehe peristyles, or porticoes, - a vice most prevalent in the Elizabethan architecture, or rathc the cinque-eento period, which the pcople of this day are attempting with all its ab surdities to revive. Here we must again quote our author, Sir William Clambers whose excellent work we have used above, and on which we shall continue to draw largely "With regard," he says, "to the application of pedestals, it must be observed, tha ${ }^{w}$ w.en columns are entirely detached, and at a considerable distance from the wall, ${ }^{\text {a }}$ when they are employed to form porehes, peristyles, or porticoes, they should never b piaced on detached pedestals, as they are in some of Scamozzi's designs, in the templ of Scisi (Assisi) mentioned by Palladio, and at Lord Archer's house, now Lowe's hotel, , Covent Garden; for then they indeed may be compared to men mounted on stilts, as the have a very weak and tottering appearance. In compositions of this kind, it is generall best to place the columns imncdiately on the pavement, which may be either raised on continued solid bascment, or be ascended to by a flight of fronting steps, as at St. Paull and at St. George's Bloomsbury; but if it be absolutely necessary to have a fence in th intcreolumniations, as in the ease of bridges or other buildings on the water, or in a secon. order, the eolumns may then, in very large buildings, be raised on a continued plinth, as i the apper order of the western porch of St. Paul's, which in such case will be sufficient high : and in smaller buildings, wherever it may not be convenient or proper to plaee H balustrade between the shafts, the eolumns may be placed on a continued pedestal, as thr are in Palladio's designs for Signor Cornaro's house at Piombino, and at the villa Arsienear Vicenza, another beautiful building of the same master." The same author continue " The base and corniee of these pedestals must run in a straight line on the outside throug out, but the dies are made no broader than the plinths of the columns, the intervals betwe. them being tilled with balusters, which is both really and apparently lighter than if t whole pedestal were a contimned solid." The author quoted then proeceds to caution t student against the employment of triangular, eircular, and polygonal pedestals, and su as are swelled and have their die in the form of a baluster, or are surrounded ly cineturc

These extravagances were rife in the age of Louis XV., but notwithstanding the zeal the jobbing upholsterers and decorators of the present day, who are the curse of all arc tectural art, we hope they will never be permanently revived in this country, though th introduction has already proceeded to a considerable extent

Sect. IX.

INTERCOLUMNIATIONS.

605. An mitercolumniation is the clear distance between two eolumns measured at the er diameter of their shafts. 'This distance must depend principally on the order em. yed: in the Tuscan, for example, the nature of its composition allows a greater width ween columns than would be admissible in the Corinthian order, independent of what already been stated in Sect. II. (2524, et seq.) in respeet of supports and loading; and ; because of the enrichments of the several orders requiring that they should take their artures (to use a phrase borrowed from another scicnce) from the axes of their rective columns. The ancient names (whieh are still preserved) of the different interumniations are described by Vitruvius in his sccond and fourth books. They are-the nostyle, wherein the space between the columns is I diameter and a half, as its etymology a $\pi \cup \kappa \nu 0 s$ and $\sigma \tau \cup \lambda o s$ imports (thick in columns), an intercolumniation used only in the iic and Corinthian orders; the systyle ($\sigma v \sigma \tau v \lambda o s$, with columns a little more apart), erein the interval between the columns is a little greater; the custyle ($\epsilon v \sigma \pi v \lambda o s$, or walltrived interval), whercin the intercolumniation is of 2 diameters and a quarter ; the style ($\delta \alpha a \sigma \tau u \lambda o s$, with a more extended interval between the columns), having an inter(umniation of 3 diancters; and the araostyle (apaloovv入os, with few columns), wherein interval is 4 diameters. In the Doric order the triglyphs necessarily regulate the i rcolumniations, inasmuch as the lyph should fall over the axis of column; hence the intercolumniat is in this order are either systyle notriglyph (that is, with a single trioh in the intercolumniation), or liameter ; diastyle, or of $2 \frac{3}{7}$ diaers; or arwostyle, which will make interval 4 diameters, as will be nediately understood on refer\therefore to fiy. 894.; whercin A is the tle monotriglyph intercolumniaof 3 modules; B , that of the diasile, or 6 modules; and C , the areos1), or of 8 modules. The intermmiation marked D serves for

Fihos91. application of coupled columns, wherein the rule seems ncecssarily to be that the space beeen the eolumns may be increased, so that the requisite number of supports accordto the order and intercolumniation is preserved.

7is. 89\%,
Of. The metervals of the 'Iusean order are indicated in f fog. 89.5., wherein A shows the columniation called eustyle of $4!$ molules; 13 , the diastyle of 6 modules; and C , the at gle of 8 . I), of 1 module, is the space of conpled columns.
Io intercolumnations in this order are scarecely susceptible of rules ether than those we indicated in our previotus disenssion on the orders generatly in Sect. 11. (2523, et seq.), cin we have entered on the subject at such length that we refrain from saying mote ? place. We may, however, observe, that the application of the principles there med are so intimately connected with this section, that the separation of one from the thriluciples in fuesion will be applied to and tested on areades.
2607. In fig. 896., of Ionic intercolumniations, A is the eustyle arrangement; B, that of the diastyle; C , that of the armostyle ; and D , that of coupled columns.
2603. Fig. 897. is a similar application of the intercolumniations to the Corinthian order, wherein also A exhibits the eustyle; B, the diastyle; and C , the arrostyle intervals: D also showing the space used of 1 module for coupled columns.
2609. Sir William Chambers, for whose observations we have much respect, - and, indeed, to whose valuable labours we acknowledge ourselves much indebted,-seems to have had a distant glimpse of the doetrine of equal weiglits and supports, but knew not exactly how to justify his notions on the subject. He therefore avoids the main question by attributing the pyenostyle intercolumaiation rather to necessity than choice ; olserving, that "as the architraves were composed of single stones or blocks of marble, extending from the asis of one column to that of another, it would have been difficult to find blocks of a sufficient length for diastyle intervals in large buildings." But this is a reason altogether unsatisfactory, inasmuch as

Pig. 896.

Fig. s97. we know that they were sufficiently inasters of masonry to have conquered any such difficulty. We are much more inclined agree with him when he says (always, however, reverting to the principle of equal suppor and weights), "With regard to the areostyle and Tuscan intercolumniations, they are much too wide either for beauty or strength, and can only be uscd in structures whe the architraves are of wood, and where convenience and economy take place of all oth considerations: nor is the diastyle suffieiently solid in large eompositions." These consid ations, however, may be always safely referred to the doctrines laid down in Scction of this Chapter, already alluded to ; and, indeed, that reference is justified by the instrit tions of Vitruvius in the second chapter of his third book, wherein he directs that t thickness of the column should be augmented in an enlarged intercolumniation: as, f example, supposing the diameter of a column in the pyenostyle species to be taken o tenth of the height, it should in an arxostyle be one eighth; arguing, that if in all arrosty the thickness of the columns exceed not a ninth or tenth part of their height, they appe too slender, and in the pyenostyle speeies the column at one eighth of its height is clum? and unpleasant in appearance. Upon this passage Chambers observes, "that the intenti, of Vitruvius was good, but the means by which he attempts to compass it insufficiel His derign was to strengthen the supports in proportion as the intervals between the were enlarged; yet according to the method proposed by him this cannot be effects sinee one necessary consequence of augmenting the diameter of the column is enlarging t intercolumniation proportionably. Palladio and Scamozzi have however admitted tit precept as literally just, and by their manner of applying it have been guilty of very co siderable absurdity." We are not at all inclined to admit the truth of the opinion Chambers; for, again reverting to the doctrine of the supports and loading, which was u known to him, it is to be remembered that increase in the space of the intercolumniati immediately involves increase of weight in the load or entablature, and therefore seet to demand increase of diameter to the supports. Palladio and Seamozzi were not the: fore guilty of the absurdity laid to their charge.
2610. Among the other reasons for our adopting the practice of Vignola is that he ! observed so much uniformity in his intercolumniations, except of the Doric order, wher the triglyphs prevent it, aware as we are that the practice has by many able writers be nueh condemned. Chambers even says that his praetice in this respect is "preferable any other, as it answers perfectly the intention of Vitruvius, preserves the charaeter of eil order, and maintains in all of them an equal degree of real solidity."
2611. With the exception of the Doric order, wherein the most perfect arrangement of he detail results from the interval produced by the ditriglyph, there can be no doubt that, Isstractedly considered, the diastyle and eustyle intercolumniations are very convenient in use, and may be employed on most occasions, except, as just mentioned, in the Doric rder.
2612. In setting out the intervals between columns expecial care must be taken that the entres of modillions, dentils, and other ornaments in the entablature fall over the axes of he columns. It is on this account that Vignola gives about two diameters and a third to he intervals in all the orders except the Doric, instead of two diameters and a quarter, as equired by Vitruvius; an alteration which removes the difficulty and greatly simplifies the ules.
2613. Cases from many circumstances often occur where greater intercolumniations han the eustyle and diastyle are too narrow for use, and the moderns, headed by Perrault, lave adopted an interval which that master has called araosystyle. This disposition is btained without infringing on the law of weights and supports, to which we have already a often alluded. In it the columns are coupled, as shown in the preceding figures, the inerval being formed by swo systyle intercolumniations, the column separating them being, is Chamhers observes, " approached towards one of those at the extremities, sufficient room cing only left between them for the projection of the capitals, so that the great space is $3 \frac{1}{2}$ diameters wide, and the small one only half a diameter." One of the finest exumples of this practice is to be seen in the façade of the Louvre, (see fig. 176.) which in nany respects must be considered as the finest of modern buildings. The objections of 13 londel to the practice are not without some weight, but the principal one is the extra xpense incurred by it ; for certain it is that it requires nearly double the number of olunns wanted in the diastyle, besides which it eannot be denied that it causes coniderable irregularities in the entablatures of the Doric, Corinthian, and Composite orders, rhich, however, are not apparent in the other two. It is, nevertheless, so useful in cases f difficulty which constantly arise, that we should be sorry to exclude the practice altocther, though we cannot recommend it for unlimited adoption.
2614. A great many expedients have been employed to obviate the irregularity of the wdillions in the Corinthian and Composite orders, arising from the grouping of columns. Vc, on this head, agree with Chambers, whose instructions we subjoin in his own words: The simplest and hest manner of proceeding is to observe a regular distribution in the intablature, without any alteration in its measures, beginning at the two extremities of the uilding, by which method the modillions will answer to the middle of every other column, ad be so near the middle of the intermediate ones, that the difference will not easily he erceivable. The only inconvenience arising from this practice is, that the three central itercolumniations of the composition will be broader by one third of a module than is ccessary for eleven modillions: but this is a very trifling difference, easily divided and -ndered imperceptible if the extent be anything considerable." In the Doric order, the couping of columns is not so easily managed, and therein our author reeommends the cpedient employed by Palladio, in the Palazzo Chiericato, and in the Basilica at Vicenza. ithe last-named, the coupled columns are only 21 mimites apart, thus making the space tween the axes 2 modnles and 21 minutes, that is, 6 minutes beyond the breadth of a prular metope, and 2 half-triglyphs. To conceal the excess, the triglyphs are 31 minutes oad, and their centres are carried 1 minute within the axis of the column, and the ctope is 3 minutes broader than the others. I'hese small diflerences are not perceptibie ithont a very eritical and close examination of the distrihution. In this arrangenent e attic hase of lalladio shonld he cmployed, because of its small projection, and the rger intercolumniation must be araostyle.
2f15. Intercolumniations should be preserved of equal width in all peristyles, galleries, ricoes, and the like; hut in loggias or porehes, the middle interval may be wider than e others hy a triglyph, a modillion or two, and a few dentils, that is, if there he no upled columus at the angles nor groupings with pilasters, in which cases all the other ecrvals should be of the same dimensions. It has been ohserved hy Blondel, that on casions where several rows of columns are used, as, for instance, in the curved colomades the piaza of St. Peter's, the colmmns ought as much as possible to be in straight lines, "anse otlerwise the arrangement can ouly be understood hy viewing it from the centre of fighre employed. 'I'he observation is well worth the stadent's consideration, for the alting effect of a departure from this role, as Chamhers has properly observed, is hothing but conlision to the spectator's eve from every point of view." I'he same thor eondemas, and with justice, though in a smaller dengrec, the use of "engaged asters or latf colmons placed behind the detached colmmens of single, cireular, aval, or lygenal perintyles, as may be sen in those ol Bmolington llanse. Wherefore," he \%, " in hoildings of that kind, it will perhaps he best ta decorate the back wall of the fistyle with windows or nidmes only." We aib hatlly suphose it here necessary to ition the student against the use of intereohmaintions without reference to the absalate
size of them: they must not be less than three feet even in small buildings, because, as Sir William Chambers seriously says, "there is not room for a fat person to pass between them."
2616. Before leaving the snbject which has furnished the preceding remarks on intercolumniations, we most earnestly recommend to the student the re-perusal of Section II. of this Book. The intervals between the columns have, in this section, been considered more with regard to the laws resulting from the distribution of the subordinate parts, than with relation to the weights and supports, which seem to have regulated the ancient practice: but this distribution should not prevent the application generally of the principle, which may without difficulty, as we know from our own experience, be so brought to bear upor, it as to produce the inost satisfactory results. We may be perhaps aceused of bringing a fine art under mechanical laws, and reducing refinement to rules. We regret that we camot bind the professor by more stringent regulations. It is eertain that, having in this respect carried the point to its utmost limit, there will still be ample opportunity left for him to snateh that grace, beyond the reach of art, with the negleet whereof the critics are wont so much to taunt the artist in every branch.

Sect. X.

ARCADES AND ARCHES.

2617. An areade, or series of arches, is perhaps one of the most beautiful objects attached to the buildings of a city which architecture affords. The utility, moreover, of arcades in some climates, for shelter from rain and heat, is obvious; but in this dark clinate, the inconveniences resulting from the obstruction to light whieh they offer, seems to preclude their use in the cities of England. About public buildings, however, where the want of light is of no importance to the lower story, as in theatres, courts of law, ehurches, and places of public amusement, and in large country seats, their introduction is often the source of great beauty, when fitly placed.
2618. In a previous section (25:4.) we have spoken of Lebrun's theory of an equality between the weights and supports in decorative architecture: we shall here return to the subject, as applied to arcades, though the analogy is not, perhaps, strictly in point, because of the dissimilarity of an arch to a straight lintel. In fiy. 898. the hatehed part A EDIFDCOB is the load, and ABGII, CDIK the supports. The line GK is divided into six parts, which serve as a scale to the diagram, the opening III being four of them, the height BH six, NO two, and OM one. From the exact quadrature of the circle being unknown, it is impossible to measure with strict accuracy the surface BOC , which is necessary for finding by subtraction the surfaee AEMFDCOB; but using the common

Fig. 598. method, we have

$$
\begin{aligned}
\mathrm{AD} \times \mathrm{AE}-\frac{\mathrm{BC}^{2} \times 7854}{42} & =\text { to that surface; or, in figures, } \\
\quad 6 \times 3-\frac{4 \times 4 \times 7854}{2} & =11 \cdot 79 .
\end{aligned}
$$

Now the suports will be $\mathrm{IK} \times \mathrm{IC} \times 2$ (the two piers) $=$ the piers; or, in figures,

$$
1 \times 6 \times 2 \quad=12.00
$$

That is, in the diagram the load is very nearly equal to the supports, and would have hee found quite so, if we could have more accurately measured the circle, or had with great nicety constructed it. But we have here, where strict mathematical precision is not ot object, a sufficient ground for the observations which follow, and which, if not founded r something more than speculation, form a series of very singular accidents. We have chose to illustrate the matter by an investigation of the examples of arcades by Vignola, becall we have thought his orders and arcades of a higher finish than those of any other maste. but testing the hypothesis, which we intend to carry out by examples fron Palladio, Sc mozzi, and the other great masters of our art, not contemplated by Lebrun, the smi differences, instead of throwing a doubt upon, seem to confirm it.
2619. In fig. 898. we will now carry, therefore, the consideration of the weights at supports a step further than Lebrun, by comparing them with the void space they sr round, that is, the opening HBOCI; and here we have the rectangle $H B C I=H B \times I$ that is, $6 \times 4=24$, and the semicircle BOC equal, as above, to $\stackrel{4 \times 4 \times \cdot 7854}{2}=6 \cdot 28$. Th $24+6 \cdot 28=30.28$ is the area of the whole void, and the weight and sufport being 11.72
$12=23 \cdot 72$, are a little more than two thirds the areas of the whole void; a proportion which, if we are to rely on the approval of ages in its application, will be tound near the limits of what is beautiful.
2620. We shall now refer to the examples of Vignola alluded to ; but to save the repetition of figures in their numbers, as referred to, each ease is supposed in what immediately follows as unconnected with the entablatures which they exhibit, it being our intention to take those into separate consideration.

Fig. 859.

Fig. 900.

262I. Suppose the Tusean example (fig. 899.) without an entablature, we have the

$$
\text { Supports, } 9.75 \times 3=
$$$29 \cdot 25$

The whole of reetangle above them, $4 \cdot 25 \times 9 \cdot 5=40 \cdot 375$

$$
\text { Less semi-areh, } \frac{65 \times 6.5 \times 78.54}{2}=16.6
$$

$23 \cdot 775$
53.025 solid parts.

The area of the void is $16.6+\overline{9.75 \times 6.5}=79.97$, whereof 53.025 , the portion of solid irts, in not widdy different from two thirds.
lut Vignola's Doric example, (fig. 900.), again without the entablature, we have

$$
\text { Supports, } 10.5 \times 3=
$$

The whole rectangle above them, $5.5 \times 10.0=55.00$

$$
\text { Less semi-arch, } \frac{7 \times 7 \times 7 \times 5.4}{2}=19.24
$$

The area of the void is $19.24+\overline{10 \cdot 5 \times 7}=92 \cdot 74$, whereof 67.26 , the portion of solid parts, Hut unch dillerent from two-thirds.
lu the lonie example (fig. 901.), still without considering the entablature, the following ill result : -

$$
\text { Supports, } 12 \cdot 64 \times 2 \cdot 66=\quad 33 \cdot 61
$$

The whole rectangle above then, $10.88 \times 5.2=56.57$
L.ess semi-arch, $\frac{6.4 \times 64 \times 78.4}{2}=16.08$
$40 \cdot 49$
$74 \cdot 10$ solid parts.
The area of the void is $16,08+12.61 \times 7.1-10.5 .82$, whereof 74.10 , the portion of olid parts, ditlerf little in anount frem ewo thirds of the void.

Fig. 901.

Fig. 902.

In the Corinthian example (fig. 902.), not taking into eonsideration the entablature, the following is the result :-

$$
\text { Supports, } 14 \cdot 11 \times 3 \cdot 55=\quad 5009
$$

The whole reetangle above them, $11 \cdot 33 \times 5 \cdot 88=66.62$
Less semi-arch, $\frac{7.76 \times 7 \cdot 76 \times 7854}{2}=23 \cdot 65$
$-=32 \cdot 97$

- 83.06 solid parts.

The area of the void is $23 \cdot 65+\overline{4} \cdot 111 \times 7 \cdot 76=133 \cdot 15$, whereof 83.06 , the portion of solid parts, is somewhat less than two thirds of the void.
2622. The result which flows from the above examination seems to be that, without respeet to the entablature, the ratio of the solid part to that of the void is about 666. Bearing this in mind, we shall next investigate the ratio of the supports and weights, considering the entablature above the areade as a part of the eomposition ; and still following Vignola, whose examples, as we have above stated, do not so much differ from thase of other masters as to make it neeessary to examine those of each, we will begin with that arehitect's Tuscan arcade, without pedestals, exhibited in fig. 899. on the preceding page. In this example, from eentre to eentre of pier,

The whole area, in round numbers, $17.5 \times 9.5 \quad-\quad$ - $=166.2$
Area of semi-arch, $\frac{6.5 \times 6.5 \times 7854}{2} \quad-\quad-=16.6$
Rectangle under it, $9.75 \times 6.5 \quad-\quad-=69.3$
Total void, therefore, $=79.9$
863
$\begin{array}{lllllll}\text { Entablature, } 9.5 \times 3.5 & - & - & - & - & =33.2 \\ \text { Leaves for the supporting parts } & - & - & - & - & - & 53.1\end{array}$
In this example, therefore, the supporting parts are 53, those supported 33 , and thr voids 79. The ratio between the solid and void parts $=\cdot 9$, and the ratio of the support to the weights is ${ }_{33}^{3}=62$.
The distance between the axes of the eolumns is 9 modules and 6 parts; the height of the scmi-arch, 3 modules and 3 parts; and between the erown of it and the under sille a the architrave is 1 module; the whole height, including entablature, being 17 moculc and a half.
2623. Following the same general method, we submit the Doric areade (fig. 300.) vithout pedestal. Measuring, as before, from centre to centre of piers,

The whole area, in round numbers, $20.2 \times 10 \quad-\quad . \quad-\quad=202.0$
Area of semi-arch $\frac{7 \times 7 \times 7854}{}-$
Rectangle under $\mathrm{it}, 105 \times 7$
In this example, therefore, the supporting parts are 67, those supported 42, and the oids 92 . The ratio between the solid and void parts is 85 , and the ratio of the supports 0 the weights is $\frac{42}{67}=63$.
The distance between the axes of the columns is 10 modules, the height of the semi-areh 3 modules and 6 parts, and between the crown of it and the underside of the architrave s 9 modules; the whole height, including the entablature, being 20 modules $3 \frac{1}{2}$ parts.
2624. The Ionic arcade, without pedestal, is shown in fig. 901. The measurements, is above, from centre to centre of pier,

Hence, in the example, the sopporting parts are 88, those supported 52 , and the voids 05 ; so that the ratio of the voids to the solids, in this order, is 88 , and the ratio of the upports to the weights does not materially differ from the other orders, being ${ }_{8, ~}^{52}=6$.
The distance between the axes of the columns is 10 modules 16 parts, the height of the ani-arch is $3 \frac{1}{2}$ modules 3 parts, and between the erown of it and the under side of the rchitrive is 2 modules; the whole height, including the entablature, bcing 22 modules $3 \frac{1}{2}$ parts.
26ㄴ5. Fig. 902. represents the Corinthian areade without pedestal. The measurement, s before, is from centre to centre of pier.

the Corinthian example, therefore, the supporting parts are 97, those supported 58 , d the voids 133. The ratio between the solid and void parts $=8,8$, and the ratio of t pports to the weights $3_{97}=59$. The distance between the axes of the columns is modntes and 6 parts, the height of the semi-areh is 3 modules 16 parts, and between e erown of it and the under side of the architrave is 2 modules $3 \downarrow$ parts; the whote ight, including the entablature, being 25 modntes 31 parts.
26i26. The laws laid down by Chambers for regulating areades are as follow : - "The id or aperture of arches should never be much more in height nor much less than nble their width; the breadth of the pier should seldom expeed two thirds, nor be less an one third of the width of the arch, aceording to the character of the composition, at the angular piers should be broader than the rest by one half, one third, or one fomrth."
-" The height of the impost should not be more than one seventh, nor need it ever be - than one ninth of the width of the nperture, and the archivolt must not be more than ee eighth nor less than one tenth thereof. The breadth of the console or mask, which seen as a key to the arch, should at the botton be cquinl to that of the nrehivolt, and - vides must be drawn from the eentre of the arch. The tength thereof ought not to less than one and a half of its botem breadth, nor more than double."
2697. The ratios that have been deduced by comparing the void and solid parts, if ther be any reason in the considerations had, show that this law of making arches in areades o the height of 2 diameters is not empirical, the following being the results of the use of th ratios in the areade without, and that with pedestal, of which we shall presently treat. Thu in the

2628. In the examples of the areades with pedestals, we shall again repeat the process b wheh the results are obtained, first merely stating them in round numbers. Fiy, 903 is

Fig. 903
Tuscan areade from Vignola's example, as will be the following ones. In this the wl area is 306 , omitting fractions, the area of the void is 156 , that of the entablature and the supports 100. The ratio of the supported part (the entablature), theref is $\frac{50}{100}=\cdot 5$, and the supports and weights are very nearly equal to the void The heigh the pedestal is almost 3 modules and 8 parts, the opening 9 modules 6 parts, and width of the whole pier 4 modules and 3 parts.

The detail of the above result is as follows . -

will be seen that we have taken the numbers in the preceaing paragraph without supplyg strictly the decimal parts that arise from the multiplication and subtraction of the veral portions compared. The coincidence of the hypothesis with the apparent law is no is remarkable in this example than it will be found in those that follow; and, secpal as we at first were on the appearances which pointed to it, we cannot, after the exnimation hereand hereafter given, do otherwise than express our convietion that, in ear ryg out the prineiples, no unpleasant combination can result.

$\begin{array}{lllllllllllll}1 & 1 & 1 & 1 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 6 & 7 & 8 & 10 & 11 & 12 & 13 & 14 & 10 & 16\end{array}$ Motules

Fig. 904.
2629. Fig. 904. exhibits the Dorie areade, whose whole area from centre to eentre of dumis is 374 . The area of the void is 189 , that of the entablature 62, and of the suporting parts 112. The ratio of the entablature to the supports is therefore $\frac{6.9}{1 / 2}=55$, and vat of the supports and weights to the voids 9 . The height of the pedestal is almost modules and 4 parts, the opening 10 modules, and the width of a pier 4 modules and parts.
As in the preceding example, we think it will be useful to detail the proeess by which e general results stated have been arrived at. It is curious and interesting to observe te similarity between the eases. It is searecly possible to believe that accident conld ave produced it. Miay not the freemasons of the middle ages have had some laws of this ature whieh guided their operations? But we will now proceed to the ealculation.

The whole area, $254 \times 14.75 \quad-\quad$ - $\quad=374.65$
Area of semi-arch, $\frac{140 \times 10.0 \times 78.74}{2}=39.27$
Delow that, 12.75×9.75

- $=1.50 .00$

	Total voids, therefore,	$=\frac{189.27}{185.38}$		
Entabiature, $1.475 \times 4.2 .5$	-	-	-	-
-	-	$=\frac{62.68}{129.70}$		

numbers, that the mind of the reader may not he distracted from the general proportions The detail again corroborates the hypothesis, as in the preceding subsection was predeated and the further we proceed, as will be presently seen, its truth becomes more manife,t.

26.30. The Ionic arcade with a pedestal is shown in fg. 905. The whole area is 448 between the axes of the columns; that of the void, 228. The entablature's area is 73 , and the supporting parts 146. The ratio, therefore, of the load to the support is ${ }_{737}^{73}=5.5$ and supports and weights are very nearly equal to the void. The height of the pedestal is 6 modules, the opening 11 modules, and the width of a pier 4 modules and 12 parts.

Once more returning to the detail on which the above proportions are based, and which in this as in the following example we think it better to supply, observing, as before, that the numbers above stated are given roundly, we shall have in the Ionic areade,

Whence it will be seen that the round numbers first given are shown to be sufficiently aeeurate for exemplification of the law, and that the further we examine the hypothesis the more elosely we find it eonnected with the theory of weights and loads that has occupied a very eonsiderable portion of this Book, and which we hope may not have had the effect of exhausting the reader's patience. We trust we shall have his pardon for pursuing the course we have taken.

$$
\text { Fig. } 906 .
$$

2631. Fig. 906. is an areade with pedestals of the Corinthian order. Its total area is 8 , that of the void 284 , the area of the entablature 84 , and that of the supporting rts 159. Ilence, the ratio of the load to the support is $\frac{84}{859}=\cdot 52$, and the supports and ight are equal in area to the void within a very small fraction. The height of the destal is $6 \frac{1}{2}$ modules, the opening is 12 modules wide, and the width of a pier is nodules and 9 parts.
We here elose the eurious proofs of a law whose existence, we believe, has never been peeted by modern arelniteets. It was elearly unknown to Rondelet, and but for the rk of Lebrun already quoted, we might never have been led to the investigation of it. bat author himself, as we believe, did not entertain any notion of it.
In the Corinthian areade with pedestal we have
Whole area, 32×16.5 - \quad - $\quad=528.00$
$\begin{array}{ll}\text { Area of semi-areh, } \frac{12 \times 12 \times \cdot 7854}{2} & =56.05 \\ \text { Below it, } 19 \times 12 & =228.00\end{array}$

$$
\text { Total area of voids, thercfore, } \quad=284.05
$$

$-243 \cdot 95$
Leaves for supporting parts - $\overline{159.85}$
us, agnin, the law seems to be borne out, and to prove that the assumptions we have -In making are not those of empiricism.
2632. In fig. 907. are collected the imposts and arelivivolts used in the areades of the Fisent orders.

Fig. 907.
2533. We are not of the opinion of Sir William Chambers in respeet of the arcades which Vignola has given; that author had not, we think, eritically examined their compo sition, and we eonfess we do not think his own examples are improvements on those of thr master in question; but we are willing to admit that in the examples of areades with pedestals, they wonld have been much improved by assigning a greater height generally to the plinths of the pedestals, which are, doubtless, much too low, and might be wcl augmented by adding to them a portion of the dies of the pedestals.
2634. Great as is our admiration of Palladio, we do not think it necessary to say mor relative to his areades, than that he has given only designs of arches with pedestals, an that their height is from one and two thirds to two and a half of their width. His pier are generally 3_{3}^{3} modules, except in the Composite order, wherein they are $4 \frac{4}{5}$ modules.
2635. Scamozzi makes his Tuscan arch a little less than double its width, increasing the height gradually to the Corinthian arch with pedestals to nearly twice and a half the width. He dimmishes his piers as the delicacy of the order increases, his Corinthial piers being only 3_{4}^{3} modules in width. We do not, however, think it necessary to dwel longer on this part of the subject, and shall close it by observing that the impost of the arch should not much vary from half a module in height, and that the width of th archivolt, which should touch the shaft of the eolumn or pilaster in the geometrical ele vation, at its springing, is necessarily prescribed by the width of pier left after sitting out thi eolumn upon it. Where columns are used on piers, their projection must be such that the mui prominent member of the impost should be in a line with the axis of the column on thr transverse section. In Ionic, Composite, and Corinthian arcades, however, it may projec a little beyond the axis of the eolumns, to avoid the disagreeable mutilations which ar: otherwise rendered necessary in the capitals. Areades should project not less than thei width from the front of the wall which backs them." With regard to their interior deco ration," says Chambers, "the portico may either have a flat ceiling or be arched in va rious manners. Where the ceiling is flat, there may be on the backs of the piers, pilastel of the same kind and dimensions with the columns on their fronts; facing which pilastel there must be others like them on the back wall of the portico. Their projection as we as that of those against the back of the piers may be from one sixth to one quarter of the diameter. These pilasters may support a continued entablature, or one interrupted an ruming aeross the portico over every two pilasters to form colers; or the architrave an frieze only may be continued, while the cornice alone is carried across the portico over th pilasters as before, and serves to form compartments in the eeiling, as is done in the vestilui of the Massini palace at Rome, and in the great stable of the King's mews, near Chan Cross," - no longer in existence, having been destroyed to make way on its site for 11 execrable mass of absurdity to which the government who sanctioned it have facetions
given the name of National Gallery. Chambers thus continues: - " Where the portico is arched, either with a semi-eireular or elliptieal vault, the backs of the piers and the inner wall of the portico may be decorated with pilasters, as is above described, supporting a regular continued entablature, from a little above which the areh should take its spring, that no part of it may be hid by the projection of the corniee. The vault may be enriched with eompartments of various regular figures, such as hexagons, octagons, squares, and the like, of which, and their deeorations, several examples are given anong the designis for ceilings." Of these we shall hereafter give figures in the proper place. " But when the vault is groined, or composed of flats, circular or domical coves, sustained on pendentives, the pilasters may be as broad as are the columns in front of the piers, but they must rise no higher than the top of the impost, the mouldings of which must finish and serve them instead of a capital, from whence the groins and pendentives are to spring, as alsc the bands or arcs-doubleaux which divide the vault."
2636. In the examples of areades, we have followed those given by Cbambers, as exhibiting a variety which may be instructive to the student, and at the same time afferd lints for other combinations. Fig. 908. is one of the compositions of Serlio, and is at

Fig. 908.

Fig. 909.
expedient for arehing in cases where columns have been provided, as in plaees where the use of old ones may be imposed on the arehiteet. The larger aperture may be from $4 \frac{1}{2}$ to 5 diameters of the column in width, and in height double that dimension. The smaller opening is not to exceed two thirds of the larger one, its height being determined by that of the columns. Chambers thinks, and we agree with him, that this sort of disposition might be considerably improved by adding an architrave eornice or an entablature to the column, by omitting the rusties and by surrounding the arehes with archivolts. It is not to be inferred, because this example is given, that it is inserted as one to be followed execpt under very peculiar cireumstanees. Where an arrangement of this kind is adopted, care must be used to seeure the angles by artificial means.
2637. Fig. 909. is given from the cortile of the eastle at Caprarola by Vignola, a struefure whieh in the First Book of this work we have (346.) already mentioned. The height of the arches is somewhat more than twice their width. lirom the under side of the areh to the top of the eornice is one third of the height of the arelh, the breadth of whose pier is equal to that of the arch, and the aperture in the pier about one third of its breadth.
2638. A emposition of Bramante, executed in the garden of the Belvedere at liome, is piten at fig. 910 . The arel! in height is somewhat more than twice its width, and the

Y4. 910

breadth of the picr equal to the opening. By dividing the latter into twelve parts we have a measure which seens to have prevailed in the mind of the architect, inasmuch as two of them will measure the parts of the pier supporting the archivolts, four the space for the two columns, two for the intervals between the niche and the columns, and four for the niche. Half the diameter of the arch measures the height of the pedestal ; the columns are of the height of ten diameters, and their entablature one quarter of the height of the columns. The impost and archivolt are each equal to half a diameter of the column.
2639. Fig. 911. is an example whose employment is not uncommon in the designs of Palladio, and was considered ly our great countryman Inigo Jones to be worthy of his imitation. The arch may be taken at about twice its width, and the pier not less than oue nor more than two thirds of the width of the aperturc.

Fip. 912.

Fig. 913.
2640. The example in fig. 912. is from the hand of Vignola, and was executed for one of the Borghese family at Mondragone, near Frascati. In it the arch is a little more in height than twice its width, and the breadth of the pier columns supporting the ark includes a little less than the width of the arch itself. We are not quite satisfied in having here produced it as an example, though, compared with the following one, we scarculy know whether we should not on some accounts prefer it.
2641. The last, example (fig. 913.) is one by that great master, Palladio, from the basilica at Vicenza. From the figure it is impossible to judge of its beauty in execution, neither can any imitation of it, unles; under circumstances in every respect similar, produce the sensation with which the building itself acts on the spectator; yet in the figure it apperars meagre and nothing worth. We can therefore casily account for the conduct of the critics, is they are called, who, never having seen this master's works, indulge in ignorant speculations of the pictorial effects which his compositions produce. Though not entirely agreeing with Chambers in his concluding observations on arcades and arches, we may safely transfer them to these pages. "The most beautiful proportion," he observes, "for compositions of this kind is, that the aperture of the arch be in height twice its width; that the breadth of the pier do not exceed that of the arch, nor be much less; that the small order be in height two thirds of the large columns, which height being divided into nine parts, eight of them must be for the height of the column, and the ninth for the height of the architrave cornice, two fifths of which should be for the architrave and three for the cornice. The breadth of the archivolt should be equal to the superior diameter of the small columns, and the keystone at its bottom must never exceed the same brcadth."

Sect. XI.

ORDERS ABOVE ORNERS

s642. Vitruvius, in the fifth chapter of his book "On the Forum and Basilica," in both which species of buildings it is well known that orders above orders were employed, thus instructs his readers: - "The upper columns are to be made one fourth less than those pelow" (quarta parte minores quam inferiores sunt constituenda), "and that because the latter. being loaded with a weight, ought to be the stronger; because, also, we should follow the practice of nature, which in straight-growing trees, like the fir, cypress, and pine, makes the thickness at the root greater than it is at top, and preserves a gradual diminution throughout their height. Thus, following the example of nature, it is rightly ordered that bodies which are uppermost should be less than those below, both in respect of height and thickness." It is curious that the law thus given produces an exactly similar result to that
d dowr. by Sca:nozzi, p. 2. lib. v. cap. ii., whereon we shall have more preses tly to speak. Iliani, Chambers, and others have considered the above-quoted passage of Vitruvius in nnection with another in chap. vii. of the same book, whieh treats of the portico and other rts of the theatre, wherein the author states, after giving several to this question unimrtant details, "The columns on this pedestal" (that of the upper order) "are one fourth sin height" (quartà parte minores altitudine sint) "than the lower columns." The reader 11 here observe the word altitudine is introduced, which does not appear in the passage st quoted; and we beg him, moreover, to recolleet that the latt quotation relates entirely the scene of the ancient theatre, in whieh liberties were then taken with striet arehitecral proportion as much as they are in these later days. Those who think that beeause truvius interlarded his work with a few fables, he is therefore an author not worth nsulting, as ephemeral critics have done in respect of that great master of the art, Patlio, may opine we have wasted time in this discussion ; but, adopting the old maxim of orace, " Non ego paueis offendar maculis," we shall leave them to the exposure which, th the instructed architect, their own ignorance will ultimately inflict on them, and to e enjoyment of the felicity attendant on a slight knowledge of the subject a person is in habit of handling.
2643. We will now place before the student our own reading and explanation of the ssage of Vitruvius relative to the use of orders above orders, and attempt shorv what we conceire to be its real meaning. In fig. 914 . the diagram libits an Ionic placed above a Doric column : the entablature (which wever does not belong to the consideration) being in both cases one urth of the height of the eolumn. Inasmuch as in our previous rules llowing Vignola) it will be recollected that the module of the Doric der is subdivided into twelve, whilst that of the Ionic is subdivided into shtecn parts, we must, for the purpose of obtaining an uniformity of easures in both orders, reduee those of either to the other to obtain silar dimensions. Instead, therefore, of measuring the upper order by itself, nich would not afford the comparison sought, we shall have to reduce established measures to those of the lower one, or Doric, and this, as Il as the measurement of the lower order itself, is taken in modules and cimal parts of its semidiameter. Thus, the lower order being 2 modules its bottom diameter and $1 \cdot 666$ modules at its upper diameter, the ean, without descending to extreme mathematieal nicety, may be taken $1 \cdot 833$, whieh multiplied by the height. 18 modules $=32^{\circ} 994$, the area of cetion through the centre of the colunm. Now if the upper columns e to be the same thickness at the bottom as the lower ones are at the top, It is, $1 \cdot 666$ module of the lower order, their upper diameters will be $1: 987$ lat is, five sixths of the lower diameter), and the mean will be $1: 596$, ieh, multiplied by 16 , the height, $=24.416$ the area of a section down e centre of the column, and just one fourth less than that of the lower lumn. The investigation tends to show us that we should not lightly at the laws laid down by Vitruvius and his followers at the revival of 3 arts, for we may be assured that in most eases the y are not empirical, tfounded on proper principles. We cannot, however, leave this point thout giving another reason, which is eonclusive against Chambers's istruction of the passage ; it is, that supposing the upper colmm's lower uneter to be the same or nearly so as the lower colnm's upper diameter,

Fig. 914. the fourth part had relation to the height instead of the bulk, we should have had the urdity in the illustration above given, of an Ionic eolumn in the second order only and three quarters dianeters high, whilst the lower or Dorie is nine diameters in height. 3f:14. Seamozzi, we donbt not, thought as we have expressed ourselves on this subject, and l.ere translate the words he uses in the cleventh elapter of his sixth book (seeond part). lenec it is more satisfactory, and they suceed better and are more pleasing to the eye, on these eobmms (the npper ones) are made according to their proper diminution, so the lower part of the npper eohum may be just the thickness of the upper patt of the ver one, and sof from one to the other, as may be seen in the Ionic order of the Theatre Mareellus and other edifiees; and this is the reason and natural canse that it is the same hongh out of a long and single tree the shafis were ent ont one after the other."
Wh. 'The laws of solidity seem to refuire that where more than one order is used, the nigest is to ocenpy the lower situation; thus the boric is placed on the linsenn, the fic on the Dorie, the Corinthian on the lonic, and the Conposite on the Corinthian; "ngh, with reqpet to the last, we fund examples of importance wherein the renerse has in the eave. Two tiers of colnmis should not be of the same order, neither slould an rmediate order be onitted; such, for instance, as placing the Ionie on the Tinconn dman, or the (Corimthina on the Doric: for by this practice many ircegnlarities arr forluced, eqpeeially in sle details of the mentieros.
2646. Frontwise the axes of the upper and lower columns must be in the same vatic: plane, but viewed in flank this is not absolutely necessary; they should not, however, deviat too much from it. In the theatre of Marcellus the axes of the upper columns are nearly foot within those of the Doric below them ; but circumstances required this, and there no great objection to the practice if the solidity of the structure be not lessened by i Chambers observes that the retraction shond never be greater than at the theatre, Marecllus, where the front of the plinth in the second order is in a line with the top of if shaft in the first. When the columns are detached, they should be placed centrally ove each other, so that the axes of the upper and under ones may form one continued line, 1 which means solidity is gained as well as a satisfactory result to the eye. As to the fall bearings of the bases of the upper order on the profile, this is a matter neither really aflec mg stability nor the appearance of the design.
2647. In England there are not many examples of orders above orders, while on 1 l Continent the practice has not been uncommon ; but it is always a matter of great difficul? so to arrange them as to avoid irregularities where triglyphs and modillions in the san design meet in the eomposition. We have used the figures of Chambers for our illustratio here, because they are nearly coincident with the rules of Vitruvius and Scamozzi, and shall now place them before the reader, observing that the irregularities alluded to a almost altogether avoided.

Fig. 915.

Fig. 916.
2648. Fig. 915. exhibits the Dorie over the Tuscan order. The intervals A, B, and ure respectively $2 \frac{1}{6}, 4 \frac{1}{4}$, and $6 \frac{1}{3}$ modules; and $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}$, and $\mathrm{C}^{\prime}, 3,5 \frac{1}{2}$, and 8 modules of th order. The entablature of the lower order is $3 \frac{1}{2}$ modules, the column, including bin and eapital, being 14 modules high; and the entablature of the upper order is 4 modul high, the column with its base and capital being 16 modules in height.
2649. The distribution of the Doric and Ionic orders is given in fig. 916., wherein t intervals A, B, and C are respectively $3,5 \frac{1}{2}$, and 8 modules ; $D, \cdot 7$ module ; and $A^{\prime}, B^{\prime}, 1$ and D^{\prime} respectively $4,7,10$, and $1 \frac{1}{7}$ modules. The Doric order in this example is modules high, whercof 1 are assigned to the entablature; the Ionic 22 modules hin whereof 4 belong to the entablature.
2650. In fig. 917. is represented the Corinthian above the Ionie order; the intery $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are respectively $5,6,7$, and 1 modules, and those of $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime} \mathrm{D}^{\prime}$ respective $6 \cdot 4,7 \cdot 6,8 \cdot 8,1 \cdot 6$ modules; the lower order is $22 \frac{1}{2}$ modules high, 18 being given to 1 eolumn with its base and capital ; and the upper or Corinthian order is $24 \frac{1}{2}$ modules his whereof 20 belong to the beight of the column, including its base and capital.
2651. The last (fig. 918.) is of the Corinthian order above and Composite below. the lower order the intervals $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are $4 \frac{2}{3}, 6,7$, and 1 modules respeetively, 9 $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}$, and D^{\prime}, in the upper order, $6,7 \cdot 6,4 \cdot 8$, and $1 \cdot 6$ modules respectively. I whole height of the Corinthian order is 25 modnles, whereof 5 are given to the entablatul the Composite order here is $24 \frac{1}{2}$ modules, of which 20 belong to the column, ineluding base and capital.
2652. We insert the observations of Chambers relative to the above four figures, whi

Fig. 917.

Fig. 918.
swe have adopted them, shall be in his own words. "Among the intercolumniations iere are some in the second orders extremely wide, such as the Ionic interval over the poric areostyle; the Composite and Corinthian intervals over the Ionic and Composite wostyle, whieh, having a weak meagre appearance, and not being sufficiently solid, rcepting in small buildings, are seldom to be suffered, and should seldom be introduced. he most eligible are the custyle and diastyle for the first order, which produce nearly e diastyle and aræostyle in the second." Speaking of the use of pedestals in orders ove orders, the author thus proceeds: -" Many architcets, among which number are alladio and Scamozzi, place the second order of columns on a pedestal. In compositions nsisting of two stories of areades this eannot be avoided, but in colonnades it may and ight ; for the addition of the pedestal renders the upper ordonnance too predominant, and e projection of the pedestal's base is both disagreeable to the eye and much too heavy a ad on the inferior entablature. Palladio, in the Barbarano palace at Vicenza, has placed e columns of the second story on a plinth only, and this disposition is best; the height of e plinth being regulated by the point of view, and made sufficient to expose to sight the iole base of the column. In this case the balustrade must be without cither pedestals or If balusters to support its extremities, because these would contract and alter the form the colunn; its rail or cap must be fixed to the shafts of the colunns, and its base made el with their bases; the upper torus and fillet of the colunns being continued in the errval, and scrving as mouldings to the base of the balustrade. The rail and balusters ist not be elunsy; wherefore it is best to use double-bellied balusters, as Palladio has ne in most of his buildings, and to give the rail a very little projection, that so it may t advance too far upon the surface of the column, and seen to cut into it. In large ildings the centre of the baluster may be in a line with the axis of the column; but in all ones it must be within it, for the reason just mentioned. The height of the balusde is regulated in a great measure by its use, and cannot well be lower than three feet, r should it be higher than three and a half or four feet. Nevertheless, it must necesily bear some proportion to the rest of the architecture, and have nearly the same relation the lower order, or whatever it immediately stands uron, as when a balustrade is plated reon chiefly for ornament. Wherefore, if the parts are large, the height of the balustrade ise be angmented, and if they are small it must be diminished; as is done in the Cassino Wilton, where it is only two feet four inches high, which was the largest dimension that fild be given to it in so small a buildiug. But that it might, notwithstanding its lowness, -wer the intended purpose, the pavenent of the portico is six inches lower than the bases the eolumns, and on a level with the botton of the plat-band that finishes the bascment" We inust here leave this subject, recommending the student to an intinate aequaintance th the varions exanples that have been exeented, and further advising him to test cach of examples that may fill under his notice by the primeiples first adverted to in this section, the only truc means of arriving at a satiofactory result:

Sect. XII.

Arcades Above arcades.

2653. As the disposition of one arcade upon another is, under certain regulations, suhject to the same laws of voids and solids as the simple areade of one story, which has formed the subjeet of a previous section, we shall no further enter intor the rules of its combination than to offer a few general observations on the matter in question; and herein, even will the reproach of a want of originality, we shall draw largely on our much-quoted author Chambers, whose language and figures we are about to use. So sound, indeed, is the doctrine of Chambers in this respect, and so well founded on what has been done by thase whom we eonsider the greatest masters, that we shonld not be satisfied without transferring his dicta to these pages, and that without any alteration.
2654. "The best," says Chambers, "and, indeed, the only good disposition for twe stories of arcades, is to raise the inferior order on a plinth, and the superior one on a pedestal, as Sangallo has done at the l'allizzo Farnese; making both the ordonnances o an equal height, as Pa!ladio has done at the Basilica of Vicenza."
2655. "Scamozzi, in the thirteenth chapter of his sixth book, says that the arches in the second story should not only be lower, but should also be narrower, than those in the first supporting his doctrine by several specious arguments, and by the practice, as he says, of the ancient architects in various buildings mentioned by him. In most of these, however, thi superior arches are so far from heing narrower, that they are either equal to or wider that the inferior ones. In fact, his doctrine in this particular is very erroneous, entirely contrary to reason, and productive of several bad consequences; for if the upper arches bo narrower than the lower ones, the piers must of course be broader, which is opposite th all rules of solidity whatever, and exceedingly unsightly. The extraordinary breadtho the pier on each side of the columns in the superior order is likewise a great deformity even when the arehes are of equal widths it is much too considerable. Palladio has, in the Corità at Venice, and at the Palazzo Thiene in Vicenza, made his upper arches wider that the lower ones, and I have not hesitated to follow his example; as by that means the weight of the solid in the superior order is somewhat diminished, the fronts of the appe piers bear a good proportion to their respective columns, and likewise to the rest of th composition."
2656. "In a second story of arcades there is no avoiding pedestals. Palladio has indeed, omitted them at the Carità, but his arches there are very ill proportioned. Th extriordinary bulk and projection of these pedestals are, as before observed, a considerabl defect; to remedy which in some measure they have been frequently employed withon bases, as in the theatre of Marcellus, on the outside of the Palazzo Thiene, and that of the Chiericato in Vicenza. This, however, helps the matter but little ; and it will be hest t make them always with bases of a moderate projection, observing at the same time 1 reduce the projection of the bases of the columns to ten minutes only, that the die may no larger than is absolutely necessary; and in this case particular care must be taken un to break the entablature over each column of the inferior order, because the false bearin of the pedestal in the second order will by so doing be rendered far more striking, and i reality more defective, having then no other support than the projecting mouldings of th: iuferior cornice. There is no occasion to raise the pedestals of the second order on u^{\prime} linth, for as they come very forward on the cornice of the first order, and as the poin of view must necessarily be distant, a very small part only of their bases will be hid from the eye."
2657. "The balustrade must be level with the pedestals supporting the columns; " rail or cornice and base must be of equal dimensions, and of the same profile with their It should be contained in the arch and set as far back as possible, that the form of the are may appear distinct and uninterrupted from top to bottom; for which reason, likewise, thi cornice of the pedestals must not return nor profile round the piers, which are to he col tained in straight perpendicular lines from the imposts to the bases of the pedestals. Th back of the rail may either be made plain or sunk into a panel in form of an open surbas for so it will be most convenient to lean upon, and it should be in a line with or somewhi recessed within the backs of the piers. The back part of the batustrade may be adorne with the same mouldings as the bases of the piers, provided they have not much proje tion ; but if that should be considerable, it will be best to use only a plinth crowned wit the two upper mouldings, that so the approach may remain the nore free."
2658. In fig. 919. is a Doric above a Tuscan areade, from the example given 1 Chambers, whereon, before giving the dimensions of the different parts, we shall mere observe of it that the voids or arcades themselves are in round numbers to the solidsas 2? to 205 , being vastly greater. We are inclined to think that the voids in this case are rat! too great in volume, and that, had they been reduced to one half their height exactly, it
portions would have been somewhat more pleasing. It is that a trifling irregularity would have been introduced the triglyphs of the upper order, or rather the metopa ween them; but that might have been easily provided against a very trifing alteration in the height of the frieze itself. is fault of making the voids too large pervades Chambers's mples, and but that we might have been thought too preing we should have slightly altered the proportions, little ng requisite to bring them under the laws which we have ught to be founded on reason and analogy. We have indeed oughout this work refrained from giving other than approved inples, preferring to confine ourselves to observations on m when we have not considered them faultiess.
2659. In the figure the clear width of the lower arcade is and its height $14 \frac{1}{2}$ modules. The width of each pier is 1 dule. Of the upper arcade the width is $9 \frac{1}{2}$, and the height 233 modules. The width of the piers is $1 \frac{1}{4}$ module each. e height of the plinth of the lower order is $1 \frac{1}{2}$ module, that the column, including base and capital, $14 \frac{1}{2}$ modules, the ablature $3 \frac{1}{2}$. The height of the pedestal of the upper order 733 modules, of the column with its base and capital 16 , of the entablature 3.733 modules. In the proportions ween the voids and solids above taken the balustrade is not sidered as a solid, because, in fact, it is nothing more than ailing for the protection of those using the upper story. we have expressed our desire to give the examples of others

Fig. 319. her than our own, we feel bound to recommend the student set up the diagram in question, with the simple alteration of reducing the solids rly to an equality with the voids, which may be done with sufficient accuracy by asning to the lower arcade a module less in width than Chambers has done; and we ture to say that he will be surprised at the difference, as regards grace and clegance, ich will result from the experiment. It is to be understood that no change is proposed the other dimensions of the ordonnance, the width of piers, orders, entablatures, all reining untouched.
2660. In fig. 920. we give another example from Chambers, which, in our opinion, uires a rectification to bring it into proper form. Herein the Ionic is used above Doric arcade, and the voids to the solids are as 3.33 to $2 \cdot 98$, being much more n equal to them. In this, as in former example, we should have ferred a greater equality between solids and voids, though in that ler consideration there is a nearer roximation to it.
2661. In the figure the clear width he lower arch is 81 , and its height modules; the width of each pier 1 module. Of the upper areade wideh is 101 , and the height 201 dules. The width of the piers is module each. The height of the 1th of the lower order is $1 / \frac{1}{2}$ module t of the coluinn, including the base eapital, 161 modules, and of the ablature 4 modules. The height the pedestal of the upper order 4 duler, of the colnmn, including e and capital, 18 modnles, and of entubliture 4, and of the balusle abrove it :
5f/2. The dinensions of the Ionic Corinthian arcades in fig. 921. as follow:- Clear width of er arch 9 modules, its height 18 h dules. 'The width of each pier is indule. Of the upper areade the th of an arch 15$\}$ modules, und its ght 23 modules. The width of

the piers is $1 \frac{1}{4}$ module each. The height of the plinth to the lower order is 12 module; of the column, including base and capital, 18 modules; the entablature $4 \frac{1}{2}$ modules. The pedestal of the upper order is $4 \frac{1}{2}$ modules high; column, including base and capital, 20 modules; entablature $4 \frac{1}{2}$ modules; and, lastly, the balustrade is $3 \frac{3}{3}$ modules in height.
2663. Fig. 922. is an arrangement adopted by Palladio in lis basilica at Vicenza, being the dimensions, or nearly, of the arcades on the flanks. The intermediate ones are much wider. In the basilica, however, the entablature breaks round the columns of the orders. The width between the axes of the columns of the lower order is 15 of their modules. The arch is 15 modules high and 7_{5}^{5} wide. 'lhe order wherefrom the arch springs is 10_{6}^{5} modules high; from axis to axis of the small columns in the lower arcade is 9 modules. The height of the plinth is $1 \frac{1}{2}$ module, of the principal columns, including bases and plinths, 164 modules, and of their entablature 4 modules. In the upper arcade the distance between the axes of the principal columns is 18 of their modules. Their pedestals are 4 modules high, the columns, including bases and capitals, 18 modules, and entablature 4 modules high. The width of the arch is $9 \frac{2}{3}$ modules, and its height 20_{6}^{5} modules. The height of the small columns is 11.733 modules high, including their entablature.
2664. The use of arcades above arcades seems from its nature almost confined to publie buildings, as among the ancients to their thcatres and amphitheatres. In the in-

Fig. 922. terior quadrangles or courts of palaces they have been much cmployed on the Continent and in the magnificent design made by Inigo Jones for the palace at Whitehall are to be found some very fine cxamples.

Sret. XIII.

BASEMENTS AND ATTICS.

2665. When the order used for decorating the façade of a building is placed in the madil or second story, it is seated on a story called the basement. The proportion of its height t the rest must in a great measure depend on the use to which its apartments are to appropriated. "In Italy," observes Chambers, "where their summer habitations are ver frequently on that floor, the basements are sometimes very high. At the palace of Port in Vicenza, the height is equal to that of the order placed thereupon; and at the Thient in the same city, its height exeeeds two thirds of that ot the order, although it be almo: of a sulficient elevation to contain two stories; but at the Villa Capra, and at the Lor Arsieri, both near Vicenza, the basement is only half the height of the order; because i both these the ground floor eonsists of nothing but offices." It may hence be gathered tha no absolute law ean be laid down in reference to the height of a basement story. Yet we ma state, generally, that a basement should not be higher than the order it is to support, for would in that ease detract from the principal part of the composition, and, in fact, would b likely to interfere with it. Besides which, the principal staircase then requires so many ster that space is wasted for their reception. "Neither," says Chambers, "should a basemen be lower than half the height of the order, if it is to contain apartments, and consequent) have windows and entrances into it ; for whenever that is the case the rooms will be low the windows and doors very ill formed, or not proportional to the rest of the composition as is observable at Holkham : but if the only use of the basement be to raise the groun floor, it need not exceed three, four, or at the most five or six feet in height, and be in th: form of a continued pedestal."
2666. Basement stories are decorated generally with rustie work of such varions kind that we fear it would be here impossible to deseribe or represent their varieties. Mat are capriciously rock-worked on their surface, others are plain, that is, with a smooth su face. The height of each course, including the joints, should on no account be less the one module of the order which the basement supports; their length may be from ouce al a half to thrice their height. As respects the joints, these may be square or ehamfer off. When square joints are used, they should not be wider than one eighth part of th
beight of the rustic itself, nor narrower than one-tenth, their depth not exceeding their width. When the joints are chamfered, the chamfer should be at an angle of forty-five degrees, and the whole width of the joint from one third to one fourth of the height of the rustie.
2667. The courses are sometines (uften on the Continent) laid without showing vertical joints; but, as Chambers says, this "has in general a bad appearance, and strikes as if the huilding were composed of boards rather than of stone. Palladio's method scems far preferable, who, in imitation of the ancients, always marked both the vertical and the horizontal joints; and whenever the former of these are regularly and artfully disposed, the rustic work has a very beautiful appearance." We shall presently make a few remarks on the subject of rustics; but here, to continue and finish that more immediately under eonsideration, have to add, that when a high basement is used, it is not uncommon to crown it with a cornice, as may be seen in fig. 909 ; but the more common practice is to use a platband only (as in fig. 911.), whose height should not be greater than that of a rustic exclusive of the joint. Of a similar height should be made the zoccolo or plinth; but this may, and ought, perhaps, to be somewhat higher. When arches oceur in basements, the platband, which serves for the impost, should be as high as a course of rustics, exclusive of the joint; and if the basement be finished with a cornice, such basement should have a regularly inoulded base at its foot ; the former to be about one thirteenth of the whole height of the basement, and the base about one eighteenth, without the plinth.
2668. The Attic - which is used instead of a second order where limits are prescribed to the height of a building, examples whereof may be seen at Greenwich Hospital, and in the Valmarano palace, by the great Palladio, at Vicenza - should not exceed in height one-third of the order whereon they are placed, neither ought they to be less than one quarter. Bearing some resemblance to a pedestal, the base, die, and cornice whereof they are eomposed may be proportioned much in the same way as the respective divisions of their prototypes. They are sometimes continued without, and sometimes with, breahs over the column or pilaster of the order which they crown. If they are formed with pilasters, such ought to be of the same width as the upper diameter of the order under them, never more. In projection they should be one quarter of their width at most. They may be decorated with sunk moulded panels if neeessary; but this is a practice rather to be avoided, as is most especially that of using capitals to them - a practice much in vogue in France under Louis XV.
2669. We now return to the subject of the rock-worked rustic, whereof, above, some notice was promised. The practice, though occasionally used by the Romans, seems to have had its ehief origin in Florence, where, as we have in a fcrmer Book (329.) observed, each palace resembled rather a fortification than a private dwelling. Here it was used to excess; and if varicty in the practice is the desire of the student, the buildings of that city will furnish him with an almost infinite number of examples. The introduction of it gives a boldness and an expression of solidity to the rusties of a basement which no other means afford. In the other parts of Italy it was sparingly applied, but with more taste. Vignola and Palladio seem to have trcated it as an accident productive of great variety rather than as a means of decoration. The last-named architect bas in the Palazzo Thiene earried it to the utmost extent whereof it is susceptible. Yet, with this extreme extent of application, the design falls from his hands full of grace and fecling. To imitate it would be a dangerous experiment. De Brosse failed at the Luxembourg, and produced an example of clumsiness whieh in the Palazzo litti does not strike the spectator.
2670. Rnstics and rockwork on columns are rarely justifiable execpt for the purpose of some particular picturesque effeet whieh demands their prominence in the scene, or street view, as in the gateway at Burlington House in Piecadilly,-of which a good view, with the house itself, is to he sem in the "Builder" for 18.54 , p. 559 . It was pulled down ahout 1896\%.

Sect. XIV.
Hll.ASTFILS.
2671. ['ilasters, or square eolumns, were by the Romans termed ante, by the Grecks purantata. This last word implies the placing one object standing against another, a sufficiently good definition of the word, inasmuch as in ninety-nine cases out of a hundred they ve engaged in or baeked against a wall, or, in other words, are portions of square columns rojecting from a wall.
2672. It is usual to eall a square eolnmn, when altogether disengaged from the wall, pillur or pier; and we are inclined to think, notwithstanding the alleged type of trees, lat the primitive supports of stone buildings were quite as likely to have beren spuare
as round, and that the inconvenience attendant upon square angles may have led the carliest builders to round off the corners, and gradually to bring them to a circular plan. Isolated pillars are rarely found among the examples left us by the ancients; the little temple at Trevi furnishes, indeed, an example, but not of the best period of the art. The principal points to be attended to in their use are their projection, diminution, the mode of uniting the entablature over then with that of their columns, and their flutings and capitals.
2673. In respect of the projection of pilasters, Perrault says they should project one half, and not exceed that by more than a sixth, as in the frontispiece of Nero, unless circumstances require a different projection. The pilasters of the Pantheon project only a tenth part of their width ; and sometimes, as in the forum of Nerva, they are only a fourteenth part. But when pilasters are to receive the imposts of arches against their sides, they are made to project a fourth part of their diameter; and this is a convenient proportion, because in the Corinthian order the capital is not so much disfigured. Hence, when pilasters are made to form re-entering angles, they should project more than half their diameter. Many and various opinions have been formed on the propriety of diminishing pilasters. Perrault, with whom we incline to agree, thinks that when one face only projects, pilasters should not be diminished. Those at the flanks of the portico of the Pantheon are without diminution. But when pilasters are on the same line as columns, we want to lay the entablature from one to the other without any projection, in which case the pilaster must be diminished in the same degree as the column itself, speaking of the front face, leaving the sides undiminished, as in the temple of Antoninus and lanstina. When the pilaster has two of its faces projecting from the wall, being on the angle, and one of those faces answers to a colunm, such face is diminished similarly to the column, as in the portico of Septimius, where the face not corresponding to the colnmn receives no diminution. 'There are, however, ancient examples where no diminution is practised, as in the interior of the Pantheon, where it is so small as not to be very apparent, being much less than that of the column, as is also the case in the temple of Mars Ultor, and in the arch of Constantine. In these cases, the custom of the ancients is sometimes to place the architrave plumb over the column, which brings it within the line of the pilaster. This may be seen in the temple of Mars Ultor, in the interior of the Pantheon, and in the portico of Septimius. Sometimes this excess is divided into two parts, one whereof goes to the excess of projcction of the architrave above the column, and the other half to the deficiency of extent above the pilaster, as in the forum of Nerva. The whole matter is a problem of difficult solution, which Chambers has avoided, but which, with reference to the examples we have cited, will not he attended with difficulty to the student in his practice.
2674. We have abose seen that pilasters, when used with columns, are subject to the form and conditions of the latter. As to their flntings we are left more at liberty. In the portico of the Pantheon we find the pilasters fluted and the columns plain. This, however, may have been caused by the difficulty of fluting the latter, which are of granite, whilst the pilasters are of marble. On the other hand, we sometimes find the columns fluted and the pilasters plain, as in the temple of Mars Ultor, and the portico of Septimius Severus. Generally, too, it may be observed that when pilasters project less than half their diameter, their return faces are not fluted. In respect of the number of the flutes, if the examples of the ancients were any guide, there could have heen no fixed rule, for in the portico of the Pantheon, the arch of Septimius Scerrus, and that of Constantine, seven flutes only are cut on the pilasters, whilst the flates of the pilasters in the interior of the Ianthicon are nine in number. This, however, is to be observed, that the flutes must always be of an odd number, except in re-entering pilasters, wherein four are placed instead of three and a half, and five instead of four and a half, when the whole pilaster would have nine. This is done to prevent the ill effect which wonld be produeed in the capital by the bad falling of the leaves over the flutes.
2675. We shall hereatter give from Chambers some represeatations of pilaster capitals which, except as regards their width, resemble those of the order they accompany. This practice of the ancients in this respect was very varied. Among the Greeks the form of the pilaster capital was altogether different from that of the column, seeming to have ur relationship to it whatever; but on this point the student must consult the works on (ivecian antiquities, an example whereof will be found in fig. 883.
2676. A pilaster may be supposed to represent a column and to take its place under many circumstances; and, notwithstanding all that was said on the subject by the Abbr Iaugier, many years ago, against the cmployment of pilasters altogether, we are decidedl? of opinion that they are often useful and important accessories in a building. It would be difficult to enumerate every situation wherein it is expedient to use pilasters rather thai insulated or engaged columins. In internal apartments, where the space is restricted, a column appears heavy and occupics too much room. The materials, morever, which can b obtained, often restrict the architect to the usc of pilasters, over which the projections o the entablature are not so great; indecd, as the author in the Encyglopedic Methodique ob
serves, a pilaster may be considered as a column in bas-relief, and is thus, from the diminished quantity of labour and material in it, simpler and more economical in application. That in houses and palaces of the second class the decoration by pilasters is of great service may be amply shown by reference to the works of Bramante, San Gallo, Palladio, and the other great masters of Italy, no less than in this country to those of Jones, Wren, and Vanbrugh.
2677. In profiling the capitals of Tuscan and Doric pilasters there can of course arise no difficulty; they follow the profiles of those over the columns themselves. In the eapitals, however, of the other orders, some difficulties occur: these are thus noticed by Chambers.
"In the antique Ionic capital, the extraordinary projection of the ovolo makes it necessary either to hend it inwards considerably towards the extremities, that it may pass behind the rolutes, or, instead of keeping the volutes flat in front, as they commonly are in the antique, to twist them outwards till they give room for the passage of the ovolo. Le Clerc " (Traite d'Architecture) "thinks the latter of these expedients the best, and that the artifice may not be too striking, the projection of the ovolo may be considerably diminished, as in the annexed design " (fig. 923.), "which, as the moulding ean be seen in front only, will oceasion no disagreeable effect."
2678. "The same difficulty subsists with regard to the passage of the ovolo behind the angular Ionic volutes. Le Clerc therefore advises to open or spread the volutes sufficiently to leave room for the ovolo to pass behind them, as in the design" (fiq. 924.)" annexed; which may be easily done, if the projection of the ovolo is diminished. Inigo Jones has in the Banqueting House made the two sides of the volutes parallel to each other, according to Scamozzi's manner, and at the same time has continued the ovolo in a straight line under them, so that the volutes have an enormous projection; which, added to the other faults of these eapitals, renders tlie whole composition unnsually defective and enceedingly ugly."

Fin. 9\%.
2679. "What has been said with regard to the passage of the ovolo behind the volutes in the Lonic order is likewise to be remenbered in the Composite; and in the Corinthian the lip or edge of the vase or basket may be bent a little inwards towards its extremities, by vhich means it will easily pass behind tlie volutes. The leaves in the Corinthian and Composite capitals must not project beyond the top of the shaft, as they do at San Carlo in the Corso at Rome, and at the Banqueting Honse, Whitehall; but the diameter of the eapital must be exactly the same as that of the top of the shaft. And to make out the thickness of the small bottom leaves, their edges may be bent a trifle outwards, and the large angular leaves may be directed inwards in their approach towards them, as in the annexed design" (fig. 925.), " and as they are executed in the ehurch of the Roman eollege at Rome. When the small leaves lave a eonsiderable thickness, though the diameter of the capital is exaetly the same as that of the shaft, in each front of the Composite or Corinthian pilaster eapital, there must be two small leaves with one entire and two half large ones. 'They must lee either of olive, acantlus, parsley, or laurel, massed, divided, and wrought, in the same manner as those of the columns are, the only

difference being that they will be somewhat broader."

2680. It is desirable to avoid the use of pilasters at inward angles penetrating each other, because of the irregularity sueh practice produces in the eutablatures and capitals. Gne break is quite as much as should be ever tolerated, though in many of the ehurches in lame they are multiplied with great profusion of mutilated capitals and entablatures; "than which," observes Chambers, " nothing can be more confused or dibagrceable."
2681. Neither should eolumis be allowed to penetrate each other, as they do in the sourt of the Louvre, inasmueh as the same irregularity is induced by it as we have above rotieed in the ease of pilasters.

Sect. XV.

CARVATLDES AN1 PERSIANS.

e858. The origin of earyatides we have in the First Book (165, et seq.) so far as regaras our own opinions, explained, and in that respect we shall not trouble the reader. Our objeet in this section is merely to offer some observations on the use of them in modern practiec. The figures denominated Persians, Atlantes, and the like, are in the same eategory, and we shall not therefore stop to inguire into their respective merits; indeed, that has already been sufficiently done in the book above alluded to. The writer of the artiele in the Encyclopedie Methodique has, we think, thrown away a vast deal of elegant writing on the subject of earyatides; and using, as we have done, to some extent, that extraordinary work, we think it neeessary to say that we eannot reeommend anything belonging to that article to the notiee of the reader, exeept what is contained in the latter part of it, and with that we do not altogether agree.
2683. The object, or apparent object, in the use of earyatides is for the purpose of support. There is no ease in which this eannot be better accomplished by a solid support, such as a column, the use of the attie order, or some other equivalent means. But the variety in tquest of whieh the eye is always in seareh, and the pieturesque effeet which may be induced by the employment of earyatides, leads often to their necessary employment. The plain truth is, that they are admissible only as objeets necessary for an extreme degree of deeoration, and otherwise employed are not to be tolerated. There ean, as we imagine, be no doubt that the most suecessful applieation of these figures as supports was by Jean Gougeon in the Louvre; as was the most unfortunate in the use of them in a churclı in the New Road, whieh at the time of its ereetion was much lauded, but which we hope will never be imitated by any British arehitect.
2684. As to the use of what are called Persians or male figures, originally in Persian diesses, to desigrate, as Vitruvius tells us, the victory over their country by the Greeks, the observations above made equally apply, and in the present day their application will not bear a moment's suspense in eonsideration.
2685. We have been mueh amused with the gravity wherewith Sir William Chanbers, ant with his usual sound sense, treats the elaims of the personages whose merits we are disenssing : he says, " Male figures may be introdueed with propriety in arsenals or galleries of armour, in guard-rooms and other military plaees, where they should represent the figure of captives, or else of martial virtues; such as strength, valour, wisdom, prudence, fortitude, and the tike." He writes more like himself when he says, "There are few nobler thoughts in the remains of antiquity than Inigo Jones's eourt " (in the design for the great palace at Whitehall), "the effeet of whieh, if properly executed, would have been surprising and great in the highest degree." (See fig. 207.)
2686. What is ealled a terminus, whieh is, in faet, nothing more than a portion of an inverted obelisk, we shall not observe upon further than to say that it is a form, as applied to architecture, held in abhorrenee. For the purpose, when detached and isolated, of supporting busts in gardens, it may perhaps be oeeasionally tolerated: further we have notrivg to say in its favour. Those who seek for additional instruction on what are called ternini, may find some aeeount of them, as the boundary posts of land among the Romans, in books relating to the antiquities of that people.
2687. We shall now proeeed to submit some examples of caryatides for the use of those whose designs require their employment. Fig. 926. is from a model of Michael Angelo

Fis 920.

8in. 927

Hig. 928

Fig. 929
nonarotti, and is extracted from the Treatise on Civil Architecture, by Sir William hambers, as are the succeeding examples.
2688. Figs. 927. and 928. are also designs by Michael Angelo, which, though not signed for a building, are well adapted for the purpose under certain conditions.
2689. Fig. 929. is the design of Andrea Biffi, a sculptor of Milan, in the cathedral of hich city it is one of the figures surrounding the choir. The statue possesses muen grace, d was admirably suited to the edifice wherein it was employed.
2690. Fig. 930. comes from Holland, having been executed by Artus Quellinus in the dgment-hall of the Stadthouse at Amsterdam.

2691. Fig. 931. is by Michacl Angelo, and is at the Villa Ludovisi at Rome.
2692. Fig. 932. is from the design by the last-named master for the monument of Pope ulius, whereof we have had occasion already to make mention in the First Book of this ork. (335.)
2693. Fig. 933. is a representation of one of the celebrated caryatides by Jean Gougeon the Swiss guard-room of the old Louvre at Paris, and does not deserve less admiraon than it has reccived. The scale on which this and the preceding fignres are given es not admit of so good a representation as we could wish.
2694. Fig. 934. is from the arch of the goldsmiths at Rome, being thereon in basso lievo, but considered by Clambers as well as ourselves a suitable hiat for carlying out e puipose of this section.

Sect. XV1.

BALUSTRADES AND BALUSTERS.

2695. A baluster is a species of column used as an ornamental railing in froat of ndows, or in arcades, or on the summit of a building, whose professed object is the otection of its inhabitants from accidents: analogously, too, it consists of a capital, slaft d base.
2696. The baluster is not found in the works of the ancients, and we believe it owed introduction in architecture to the restorers of the arts in Italy, in which country a vast riety of examples are to be found. They made their first appearance in the form of inted columns, not unfrequently surmounted by a clumsily-shaped Ionic capital. The m is said to lave had its rise (with what truth we cannot pronounce) from the Latin 'austium, or the Greek Ba入auatiov, the flower of the wild poncgranate, to which in form e architectural baluster is said by some to bear a resemblance. The writer in the reyclopedie Methorlique has taken the opportunity, in the article "Balustre," of launching his athema against the use of it, but we by no means agree with himn and instead of calling as he does, "une invention mesquinc," we incline to think that it was almost the only ention of the modern architects that deserves our admiration. It is true that the form n bern abused in every possible shape; but we are not, in art more then m morals, to ive at the eonclusion that anything is bad becanse it has been abused and misapplied. ich. then, being the case, we shall proced in a serious vein to consider its proportions, inded on the best examples that have come to our hands. We must first premise with
IP. Blondel, that balusters and balustrades, which last are a series of the first, should in m and arrangement partake of the character of the edifice. They have even been in cir apecies so subdivided as to be arranged under as many classifications as the orders rnmelves, a distinet sort laving been assigned for employment with each order. We are ${ }^{t}$ fuite certain that sucla an arrangement is necessary, but are rather inclined to think it ciful; thongh we are quite willing to allow that where the lighter orders are employed,
the balustrades to be used over them are susceptible of a more minute and lighter sul division of their parts.
2697. The general rules to be observed in the use of the balustrade are, that its baluste be of an odd number, and that the distance between them should be equal to half the larger diameter, from which will result an equality between the open and solid spaces. Blot del disapproves of a half baluster on the flanks of a subdivision of a balustrade: in this " dissent from him, and would always recommend its adoption if possible. In respect of t ! detailed proportions of the balusters themselves, we are to recollect that the subdivisio are of the capital, the shaft or vase of the baluster, and its base. For proportioning the to one another, Chambers (and we think the proportions he uses not inelegant) divides t whole given height into thirteen equal parts, whereof the height of the baluster is eigh that of the base three, and of the eorniee or rail two. If the baluster is required to be les he divides the height into fourteen parts, giving eight to the baluster, four to the base, ar two to the rail. He ealls one of these parts a module for the measurement of the rest, an that measure we think convenient for adoption in this work. The module he divides int nine parts.
2698. Balusters intended for real use in a building, as those employed on steps or stair or before windows, or to enclose terraces, should not be less than three feet in height, n r more than three feet six inches; that is, sufficiently high to give security to the persons usin them: but when merely used as ornamental appendages, as in crowning a building, the should bear some proportion to the parts of the building. Chambers says that their heigl never ought to exceed four fifths of the height of the entablature on which they are place nor should it ever be less than two thirds, without counting the zoccolo or plinth. the heigl of which must be sufficient to leave the whole balustrade exposed to view from the best poit of sight for viewing the building. We ean scarcely admit these rules to pass without notin the examples in Palladio's works, which give a much greater latitude for variety. Whi balusters fill in between the pedestals, as in the façade of the Palace Chierieato at Vicenz the balustrade's height is of course regulated by that of the pedestal itself; but in ti court of the Porti palaee the crowning balustrade is not higher than the cornice of t entablature on whieh it stands. The same proportion is observed in the atriun of t Carità at Venice. In the Valmarana palace the height of the balustrade is equal to th of the entablature of the small order. It is true that in a few instances this master ma the height of the balustrade equal to that of the whole entablature, and Inigo Jones has some instanees followed his example; but this was not the general practice either of t one or the other.
2699. We have already said that the baluster generally varies in form, so as to appropriate to the order over whieh it is used. It is moreover to be observed that t baluster is susceptible of a pleasing variety of its form by making it square instead of c cular on the plan, whereof examples are given in figs. 938, 939, and 940.; but when t situation requires an expression of solidity, almost all the eireular examples we submit the reader may be changed from a cireular to a square form on the plan, and thus as quired we may obtain the charaeter suitable to their respective situations. These chang from one to another form in details of this description, are in their adoption much m the index to the eapacity and genius of the arehiteet than the restless and eapricious longi after variety recently exhibited in some of the latest works produced in the eity of Lond works which reflect no credit on the age in which we live. In fig. 935. is given a balus

suitable to the Tuscan order; and using the module of nine parts above mentioned, following is a table of its dimensions:-

2700. In fiy. 936. is given the form of a baluster suited to the Doric and Ionic orders, of - hieh also the table of dimensions is subjoined:

2701. A nitable baluster for the Corinthian or Composite order is exhibited in fig. 937. , hereof the measures are as follow : -

2702. The Tusean baluster (fig. 938.) is suitable for terraces and basements: its rat:

Fig. 938.

Fig. 939.

Fig. 940.

Fig. 941

Fis. 912.

Fig. ${ }^{243}$.
and pedestal may be the same height as in the fig. 935. Its principal measures being a follow: -

her forms of Tuscan balusters are given in figs. 939. and 940., but it is not nery to give the detail of the parts, as the proportions are sufficiently preserved in the es.
2703. The double-bellied bahuster is used in situations where greater lightness is red from the smallness of the parts and the delicacy of the profiles. The proportions te bases and rails need not vary from those already given. Perhaps they need not bo so large.
2704. Fig. 941. is an example of a double-bellied baluster suitable to the Doric order arts are as follow : -

2705. In fig. 942. we give an example of the double-bellied baluster for the Ionic order, is measures are subjoined:-

	Members.			Heights in Parts of a Module.	Projections in Parts of a Module from Centre of Baluster.
Baiuster, 0 modules.	(Abacus - -	-	-	$4 \frac{1}{2}$	9
	Fillet and cyma reversa		-	$4 \frac{1}{2}$	
	Upper part -	-	-	$3 \mathrm{O}_{2}$	$\begin{cases}4 \frac{1}{2} & \text { neek } \\ 9 & \text { belly }\end{cases}$
	Middle part -	-	-	9	$7 \frac{1}{2}$ eentre
	Lower part -		-	301	$\left\{\begin{array}{l}9 \\ 4 \text { belly }\end{array}\right.$
	Inverted cyma and fillet		-	4	14, neek
	Plintlı - -	-	-	$4 \frac{1}{2}$	9

JG. The last example we shall give of the double-bellied baluster (fig. 943.) is suit o the Corinthian order. The measures are as follow: -

	Members.		Helghts in Parts of a Piodule.	Projections ln Parts of a Modulo from Centre of Baluster.
Toluster, inodulea.	(Abacus - -	-	5	11
	Eehinus and fillet -	-	4	
	Neck - -	-	56	5.)
	Astrigal and fillet -	- -	31	
	Upper part - -	-	$\bigcirc 9$	$\left\{\begin{array}{c} 51 \\ 11 \\ 1 \end{array}\right. \text { at tow }$
	\{ Middle - -	- -	6	
	Lower part - -	-	29	$\left\{\begin{array}{c} 11 \\ \text { ut le.lly } \\ 5!\text { at hotemn } \end{array}\right.$
	Fillet and astragal - -	-	3.1	(D_{2} at bothom
	Neck - -	- -	. 51	51
	fillet mad inverted echinus -	- -	1	
	I'liuh - -	- -	5	11

2707. We do not deem it necessary to give any examples of the scroll and Guiluc balustrades, which were so much in vogue during the reigns of Lonis XIV, a Louis XV., though the present taste seems almost to require it. As that taste has be mainly generated by house decorators, as they are called, and upholsterers, these gent will soon find out another means of amusing the public, by driving them out of fashi ard finding all that is beautiful in some renovated and equal absurdities.
2708. We have already observed that the intervals between balusters should not he m! than half the diameter of the balister at its thiekest part; to this we may licre add, tl they should not be less than one third of that diameter. The pedestals for supporting : rail ought neither to be too frequent nor too far apart ; for in the tirst ease they impar heavy appearance to the work, and in the last the work will seem weak. Seven or ni balusters are good numbers for a group, besides the two half ones engaged in the pedest: The disposition, however, and number of the pedestals depend on the places below of 1 piers, columns, or pilasters, for over these a pedestal must stand ; and when, therefore happens that the intervals are greater than are required for the reeeption of nine balustc the distance may contain two or tirree groups eael, flanked with half balusters, and width of the dies separating the groups may be from two thirds to three quarters the wis of the prineipal pedestals. The rail and base should not be broken by projections, run in unbroken lines betwcen the pedestals.
2709. When the prineipal pedestals stand over eolumns or pilasters, their dies should he made wider than the top of the shafts, and on no account narrower; indeed, it is better to flank them on each side when the ranges are long with half dies, and give a small projection to the central pedestal, and to let the base and rail follow the projection in their profiles. This practice will give real as well as apparent solidity to the balustrade.
2710. Fiy. 944. shows the application of a balustrade to a portion of a staircase, and herein the same proportions are observed as on level ranges. Some masters have made the mouldings of the different members of the baluster, follow the rake or inelination of the steps; but the practice is vicious: they should preserve their horizontality, as exlibited in the figure, in whicl, at A and B , is also shown the method in which the horizontal are joined to the inelined mouldings of the base and rail. In the balustrades of stairs the spaees between the balustess are usually made narrower than they are on level beds; and Le Clere recommends that the height of the plinth should be equal to that of the steps; but this is not absolutely required, though it must on no account be less.
2711. The bulbs or bellies of balusters and their mouldings may be earved and otherwise enriehed: indeed, in highly deeorated interiors,
 this seems requisite.
2712. The following observations as to the height of statues placed upon lalustr are from Sir William Chambers:-"When statues are placed upon a balustrade it height should not exceed one quarter of the column and entablature on which the ba trade stands. Their attitudes must be upright, or, if anything, bending a little forwa but never inclined to either side. Their legs must be close to eaeh other, and the drape close to their bodies, for whenever they stand straddling with bodies tortured into a var of bends, and draperies waving in the wind, as those placed on the colomades of Peter's, they have a most disagreeable effeet, especially at a distance, from whenee appear like lumps of unformed materials, ready to drop upon the heads of passent The three figures plaeed on the pediment of Lord Spencer's house, in the fireen p which were executed by the late ingenious Mr. Spang, are well composed for the purpn
2713. "The heights of vases placed upon balustrades should not exceed two third the height given to statues," says the same author. We are not altogether averse to applieation of either statues or vases in the predieated situations, but we think the gre: diseretion is required in their employment. When it is necessary to attract the eye f an indispensably obtrusive roof, they are of great value in the composition; but we ! not further enter on this point of controversy, for such it is, inasmuch as many objec their use altogether, and have considerable reason on their side. We must, however, br state the ground of objection, and Chambers's answer as respeets statues. There aric says, some "who totally reject the practice of placing statues on the outsides of build " founding their doctrine, probably, upon a remark which I have somewhere met with ${ }^{3}$ French author, importing that neither men, nor even angels or dcmi-gods, eould sta1 ${ }^{n}$ all weathers upon the tops of houses or churehes."
2714. "The observation is wise, no doubt," (we doubt the wisdom of it,) "yct, " pieee of marble or stone is not likely to be mistaken for a live demi-god, and as sta when properly introduced, are by far the most graecful terminations of a composition ic of the most abundant sources of varied entertainment, and anongst the riehect, st
ble, and elegant ornaments of a structure, it may be hoped they will still continue to olerated," We fear that if the only reasons for their toleration were those assigned by author, their doom would soon be sealed.

Sect. XV1I.

PED1MENTS.

715. A pediment, whose etynology is not quite clear, consists of a portion of the zontal cornice of the building to which it is applied, meeting two entire continued ng cornices, and enclosing by the three boundaries a space which is usually plain, ed the tympanum. It is not, however, necessary that the upper cornice should be ilinear, inasmuch as the cornice is sometimes formed by the segment of a circle. The agement in question was the Roman fastigium, and is the French fronton. The Greeks d pediments aєtot, or cagles; why, this is not the place to inquire. The origin of the ment, according to authors, seems to have arisen from the inclized sides of the primitive
This is a subject, however, which in the First Book (subsec. 5.) has been already idered, and we shall therefore in this section confine ourselves to its employment in the itecture of the day.
716. Of the varied forms which, by masters even of acknowledged talent, have been In to the pediment, whether polygonal, with curyes of contrary flexure, with mixed as, broken in the horizontal part of the cornice or in the raking parts of it, or reversed s office with two springing inclined sides from the centre, we propose to say no more that they are such abuses of all rules of propriety, that we shall not further notice a that by observing that in regular arclitecture no practice is to be tolerated where pediment is composed otherwise than of two raking unbroken and one horizontal roken cornice, or of the latter and one continued flexure of curved line. To these , therefore, we now apply ourselves.
717. Generally, except for windows and doors, the pediment ought not to be used, as a termination of the whole composition ; and though examples are to be found out number in which an opposite practice bas obtained, the reader, on reflection, will onvinced of the impropriety of it, if there be the smallest foundation for its origin in ermination of the slant sides of the hut.
718. The use of the pediment in the interior of a building is, perlaps, very questionable, Ih the greatest masters have adopted it. We think ir altogether umecessary ; if the midal form is desimole for any narticular combination of lines, it may be ubtained by t number of other means than that of the introduction of tne pediment. Hence we fopinion that the attempted apology for them in Sir William Chambers's work, is altoer weak and unworthy of him, and only to be explained by that master's own practice. 19. Vitruvius ordains that neither the modillions nor dentils which are nsed in the ontal cornice should be used in the sloping cornices of a pediment, inasmuch as they - ent parts in a roof which could not appear in that pceition: and the remains -rally of antiçnity seem to bear him ont in the assertion; but the Roman remains seem ar a diflerent testimony to the validity of the law, and to our own eyes the transrion affords pleasure, and we should recommend the student not to feel himself at all 0 d by it ; for, as Chambers most truly observes, "'the di.parity of figure and enichbetween the horizontal and indined cornices are sucls defects as cannot be compenby any degree of propricty whatever, and therefore to me it appears best, in imitation - greatest lloman and modern architeets, always to make the two cornices of the profice, thus comnitting a trifling impropriety to avoid a very considerable deformity." 2. Diflerent sifed pediments in the same fogade are avoided: but as respecets their forms in ranges of ws and niches a pleasing variety is often obtained by Ig them alternately enrved and rectilinear, as in the e ut Nismes and in the niches of the Pantheon at
719. In the horiontal part of a cornice muder a pe. the two mpler momedings are always omitted, and bersection of the inclined with the horizontal lines, ing the inclined members of the cornice to be of the reight as thowe which are horizontal, will not fall into ofile (fig. 0.15.) whereof AB and BC are the leadne To abviate this inconvenience, some architects fande a break in the cymatiem and fillet, as shown

lin. 4us.
in the figure. But this is a bad practice, and to it we prefer cither making the cyma a fillet higher, as the dotted line AD indicates, or altogether lowering the height of the ey on the horizontal line. If the inclined cornice is joined on each side by horizontal ones, best expedient is to give only such small projection to the eyma as that it may meet inclined sides.
720. The heights of pediments should be regulated by their lengths, independent of consideration of climate. (See Book II. Chap. 111. Sect. IV. 2027.) Thus, when the base the pediment is short, the height of the pediment may be greater; and whea long, it sho tee diminished; for in the former case the inclined cornice leaves but scanty space for tyinpanum, and in the latter case the tympanum will appear overcharged. From one f. to one quarter of the length appears to have been agreed on as the limits; but we subjt from a work by Stanislas L'Eveillé (Considerations sur les Frontons, 4to. Paris, 1824), incthod which we consider the best for determining the height of a pediment, observing, the way, that a strict adherence to the ordinary rulcs for finding the height may prod the absurdity of a pediment higher than the columns by which it is borne, a condit which would not at all accord with the view we have taken of the orders in Sect.

Chap. 1. of this Book. In fig. 946. we have a synoptical view of pediments of vait extents, and as the letters applied to the central pediment will apply to all the rest c shall restrict our description to that. Suppose the points a and b to be the extrer :ss of the fillet of the corona. Then, with a radius cqual to $a b$, from the points a a b, describe the ares $a x, b x$, and from their intersection x with the same radius let ibe ar ${ }^{y} b^{x}$ be described. From y, as a centre, with a radius cqual to the height of the horiz al part of the cornice, describe the portion of the eircle $f g$, and from a and b drav th to tangents intersecting in y. Then $y b$ and $y a$ will be the proper inclination of the fil of the corona to which the other members of the inclined parts will neeessarily be paralle
2723. We eonclude this section by the words of Chambers. "The face of the ty in is always placed on a line perpendicular with the face of the frieze; and when large, , 1y be adorned with sculpturc, represcnting the arins or cypher of the owner, trophi of various kinds, suited to the nature of the structure, or bas-reliefs, representing oor allegorical or listorical subjects; but when small it is much better left plain."

Sect. XVll1.

colinices.

2724. In many cases the façades of buildings are crected without any of the appearing in the design, other, perhaps, than those which are applied as the dressi of windows, niches, or doors. The palaces of Florence and Rome abound with such exa- cs, in most of which the edifice is erowned with a eorniec, which adds dignity to the bulig, producing a play of light and shadow about it of the utmost importance as rega it picturesque effect. The moderns have generally failed in this fine feature of a buing, and it is only within the last few years, in this country, that a return to the practice the old masters, a practice properly appreciated by Jones, Wren, Vanbrugh, and Burli on, has manifested itsclf. If a building be entirely denuded of pilasters and columi ind there are very few common instances that justify their introduction, it secms ratio to
duce the proportion of the height and profile of its cornice from the proportions that ould be given to it if an order intervened.
2725. If we consider the height of the crowning cornice of a building in this way, and the portion of an entablature whose height is, as in the case of an order, one fifth of that the building, we should immediately obtain a good proportion by dividing the whole eight into 25 parts and giving two of them to the height of the cornice. For the ttablature being one fifth of the whole tight, and its general division being into 0 parts, four whereof are given to the rnice, we have for its height the $\frac{4}{10}$ of $\frac{1}{5}=\frac{4}{50}$ $\frac{2}{3}$, or the twelfth and a half part of the tal height of the building $=0.08$. ow there are cireumstances, such as hen the piers are large, and in other IsS when the parts are not very full in cir profiles, which may justify a dearture from the strict application of this le; but it will be seen that in the llowing ten well-known examples the actice has not much differed from the cory, nearly the greatest deviation beng the cclebrated cornice of the Farnese lace, which is here placed (fig. 947.) as extraordinary work of art in connection ith the building it crowns. The exaples alluded to are as follow, and we all begin with those of carlier date,

Fig. 947. e diminution in height being almost a chronological table of their ereetion, with the ception of those by Palladio:-
In the Spannocehi palace, at Siena, the cornice is $\frac{81}{1000}$ of the whole height of building, or $37=081$.
In the Picolonini palace, at Siena, the cornice is $\frac{7^{4}{ }^{4} 0}{}$ of the whole height of building, or $\frac{2}{27}=0.074$.
In the Pojana palace, built by Palladio, at Pojana, in the Vicentine territory, the cornice is $\frac{7 \pi}{700}$ of the whole height of building, or $\frac{1}{1}=071$.
in the Strozzi palace, at Florence, the cornice is $7^{\frac{69}{000}}$ of the whole height of building, or ${ }_{2}^{2}=\cdot 069$.
" the Paudolfini palace, at Florence, by Raffaelle, the cornice is ${ }_{1090}^{600}$ of the whole leight of building, or $\frac{2}{29}=\cdot 069$.
11 the Villa Montechio, by Palladio, the cornice is $\frac{69}{1000}$ of the whole height of building, or ${ }^{2} 9=\cdot 069$.
n the Villa Caldogno, by Palladio, the cornice is TV90 $_{69}^{60}$ of the whole height of building,
or $\frac{2}{20}=069$.
${ }^{1}$ another villa by Palladio, for the family of Caldogno, the connice is $\frac{68}{1000}$ of the whole height of milding, or $\frac{1}{5}=\cdot 066$.
the Farnese palace, at Rome, the cornice is $\frac{59}{1090}$ of the whole height of building, or in $=0.59$.
the Gondi palace, at F lorenee, the corniece is $\frac{57}{5030}$ of the whole height of building, or $\frac{2}{3}$ $=0.37$.
rom these examples it appears that the mean height of the cornices under consideration mething more than one liftenth of the height of the building, and experience shows except under partienlar cireumstances, mueh more that is too great, and much less too little, to satisty ducated eye. The grace beyond the reach of art We may use an Hibernicism, in the power of few, the bounds have been passed with success, as is ied in the Farnese paliec. It may be olijected to isten that we have generally adopted in this work, we are too inuch reducing the art to rules. But is a practice of which the painter is not ashamed e proportions of the human figure, and we must Id our reader and the student that all rukes are more of purpose of restraining excess than bounding the - of genius.

2f. fig. 918. is an entalhature by Vignola, which wher great beanty, and has been often imitated in Win Wiys for crowning a bailding; this must be con-

rig.! ! ハ
sidered more in relation to a building than a mere cornice, and requires rustic quoins, if possible, at the angles when used. Chambers, speaking of this example, says, that "when it is used to finish a plain building, the whole height is found by dividing the height of the whole front into eleven parts, one of which must be given to the entablature, and the remaining ten to the rest of the front." We suspect that the smallness which is assigned by this author to its height has been induced by some error, and that a better rule would be induced by assigning to the cornice its proper height, according to the laws above hinted at, and proportioning the rest of the entablature from the cornice thus obtained,

2727. In figs. 949, 950, and 951. are given three examples of block cornices (th second being by Palladio), whose proportions the figures sufficiently show without her giving a detail of their parts. The height of cither should not be less than one fifteenth , the height of the building.

Fig. 352.

Fig. 954.

Fig. 953.
2728. Figs. 952. and 953. are block cornices, which we have adopted from Chambe the first being from a palace at Milan, and the other, by Raftielle, in a house in Lungara at Rome. The height of these, says the author, and we agree with him, it not exceed onc sixtcenth part of the whole front, nor should either be less than eighteenth. Fig. 954. is what is called an arehitrave cornice, which was frequently cmplo by the old masters. It seems well adapted to the entablatures of columns bearing arci being rather in the nature of an impost ; but it is useful, changing it to suit the order eases where the height does not admit of the whole of the entablature being used over order.

Sect. XIX

PROFIIES OF DOORS.

2729. One of our oljects in this work has been to impress throughout on the mind our readers that architecture does not depend on arbitrary laws; and though we may have proved satisfactorily to the student that the precise laws have been exactly stated, trust we have exhibited sufficient to show and convince him that there was a method limit in the works of the ancients which in the best times prevented the artists from fal on either side into excess.
2730. In fig. 955. we give a door with its architrave, frieze, and cornice, without lation to mouldings, but merely considered in the masses. Its proportions corresp with those most usually adopted; that is, its height is twice its width, the cntablatur one fourth of the height of the opening, and the architraves on each side, together, sixths of the width. The opening, therefore, measuring it in terms of the width of t architrave, will be 6 parts wide and 12 high, and its area consequently 72 parts. is
will be tound that the solid parts of this are exactly on their e two thirds of this area; for up to the top of the opening each chitrave being equal to 12 , the sum will be 24 ; and the entablare being 8 wide and 3 (one fourth of twelve) high, $8 \times 3=24$; rich added to 24 for the arehitraves gives 48 for the solids, and $=\frac{2}{3}$, as above stated. The same analogy does not seem to hold respeet of doors and windows, of making the voids equal to the ppurts and weights, as in intercolumniations; nor indeed ought ? to expcet to find it, for the conditions are totally different, smuch as no door can exist except in a wall, whereas the office columns is connected with the weight above only. We trust, sefore, we have slown cnough to keep the reader's mind alive some such law as above developed, without insisting very strongly a minute attention to it in detail.
2731. We shall now, before submitting any examples of doorways

Fis. 935. the reader, touch upon some important points that must be attended to; the first of which that all gates and doors, independent of all other considerations, must be of sufficient siz6 - eonvenient passage through them. Hence internal doors must never be reduced unde1 fect 9 or 10 inches, and their height must not be under 6 feet 10 inehes or 7 feet, so as to mit the tallest person to pass with his hat. These are minimum dimensions for ordinary uses in the principal floors; but for houses of a superior class, whieh are provided with what y be called state apartments, widths of 4,5 , and 6 feet, folding doors and the like, will not too great for the openings, and the heights will of course be in proportion. The entrance ors of private houses ought not to be under 3 feet 6 inches, nor ordinarily more than feet in width; but in public buildings, where crowds of people assemble, the minimum dth should be 6 feet, and thence upwards to 10 or 12 feet. No gate should be less than feet wide; and when loaded waggons or carts are to pass through it, 11 or 12 feet 11 not be too much. As a general observation we may mention that all doors should open wards, for otherwise the person entering pulls the door in his face, which is an inconvenient de of entering a room. Also when the width of a door is greater than 3 feet 8 inehes should be formed in two flaps, by which three advantages accrue : first, that the door il not occupy so much space for opening ; second, that each door will be lighter ; and, rd, that the flaps will more nearly fold into the thiekness of the wall. Chambers proly says, "That in settling the dimensions of apertures of doors regard must be had to - architecture with which the door is surrounded. If it le placed in the intercolumniation an order, the height of the aperture should never exceed three quarters of the space ween the pavement and the architrave of the order ; otherwise there cannot be room for ornaments of the door. Nor should it ever be much less than two thirds of that ce, for then there will be room sufficient to introduce both an entablature and a iment without crowding; whereas if it be less it will appear trifling, and the interumniation will not be sufficiently filled. The apertures of doors placed in arches are lated by the imposts, the top of the cornice being generally made level with the top he impost; and when doors are placed in the same line with windows, the top of the ture should be level with the tops of the apertures of the windows; or if that be practicable without making the door much larger than is necessary, the aperture be lower than those of the windows, and the tons of all the eorniees made on the same $41 . "$

17:32. To say that the principal door of a building should if possible be in the centre of front would seem almost unnecessary; but it is not so, perhaps, to inculcate the necessity is being so situated in eonncetion with the internal arrangement of the building as to 1 with facility to every part of it, being, as Scamozzi observes (Parte Secunda, lib. vi. .), like the mouth of an animal plaeed in the middle of the faee, and of easy eommunion with the inside. In the internal distribution the doors should as much as possible gh sometimes necessary, should if possible be exeluded.
93. The ornaments with which doors are decorated must of conrse depend on the lof ling in which they are used; and as this is a matter in which common sense must he: the architeet, it is hardly necessary to say that the ornmments applied to them in a thre would ill suit a church.
34. The composition and designing of grates and their piers most of necessity suit the sion. as well as the folding gates attached to them, for the encosure of the parks.
gardens, and other plaees they are to serve. There are few finer examples in the high elass of this species of design than the eelebrated gates at Hampton Court.
2735. The evil days on whieh we have fallen in this country, in respect of the arts, pr clndes the hope of again seeing the doors of our buildings ornamented with bassi relievi al bronze ornaments, a praetiee common among the aneients no less than among the revivc of the arts; witness the doors of St. Peter's, and, above all, those monuments of the art, t doors of the baptistery at Florenee by Lorenzo Ghiberti, wherein art rises by being ma only subservient to the holy purpose to whieh it is the mere handmaid. In the menti of doors those of San Giovanni Laterano at Rome must not be omitted; they have the ere of having been the enelosures to the temple of Saturn in the aneient eity.
2736. The manufaeture of doors has been alrcady suffieiently notieed in the Seco Book; and it therefoe only remains for us to subjoin a few examples, whieh, we thit anong many others, deserve the attention of the student.

Fig. 957.

Fig. 9:6.

Fis. 958.
2737. Fig. 956. is an external doorway designed and exeeuted by Vignola, at Caprar, not a great distanee north of Rome; it must speak for itself: if the reader be of r mind, he will see in it a beautiful handling of the subjeet; but we eanot further answe 5 our opinion, knowing as we do that some of the reviewers of these days may find out it possesses no asthetic beauties. There are eases where imitation has been permitted; the sanetion for our opinion is, that it has been imitated by one whom we and all ot hold in reverenee at Greenwieh Hospital, though, as we think with Chambers, for worse. "The aperture is in the form of an areh, and oeeupies somewhat inore than thirds of the whole height. It is adorned with two rustieated Dorie pilasters and a gular entablature. The height of the pilasters is 16 modules, that of the entablatuy The width of the aperture is 7 modules, its height 14 , and the breath of each pin is 3 modules." To the detail of Chambers we have to add that the void in this exan 2 which has no analogy to that whieh as a general rule we gave in the commenceme , the seetion, is about one third of the area of the whole desigin, the void being to such "a as $7 \cdot 57$ to $20 \cdot 88$.
2738. Fig. 957. is a design by the last-mentioned master, in which the void is as nuty as possible equal to one third of the area. the supports another, and the weights the (it third: in other terms, the aperture oceupies two thirds of the whole height and one $1!$ of the whole breadth, being, in faet, a double square. Its entablature has an alliance is the Tusean order, and the eorniee is equal to one fifteenth of the whole height of the (r . These two examples are especially external; those whieh follow are from their icre applieable in general form to either external or internal doorways.
2739. Fig. 958. is a doorway in the Caneellaria at Rome, and is from the desie of Vignola. The width is one half the height, and the height of the entablature is equal to one third of the height of the aperture. The breadth of the arelitrave is one fifth of the aperture's width, and the vilasters below the eonsoles are half as broad as the architrave. It is heavy, as might have been expected from the proportion be. tween the voids and the solids.
2740. Fig. 959. is a design by Miehael Angelo Buonarotti, and its aperture may be twiee its height,

Fis. 959.

Fig. 960.
$=$ whole entablature a quarter of its height, and the arehitrave one sixth of the width the aperture. The faee of the pilasters or columns at the sides must be regulated the lower faseia of the arehitrave, and their breadth is to be a semidiameter.
2741. Fig. 960. is by Vignola, and is in the Famese palace at Rome. The opening is iee the width in height, and the entablature is three eleventlis of the height of the aperre, one of the foregoing elevenths being given to the arehitrave. The whole of the ornaent on the sides is, ineluding architraves and pilasters, equal to two sevenths of the width the aperture. The eornice is Composite, with modillions and dentils, and the frieze is riched with a laurel band.
2742. Fig. 961 ., another of the examples given by Chambers, is betieved to be by goli. The void is rather more in height than twiee its width. The impost of the ajeh equal to talf a diameter, the columns are rather more than nine dianeters higb, ana stieated with five square einetures. The entablature is not so mueh as one quanter of - height of the eolumn, and its tablet is equal to the width of the aperture.

2743. Fig. 962. is by Inigo Jones, and the aperture may be twiec as high as it is wide. he arehitrave may be a sixth or seventh of the width of the aperture, the top of it being el with the astragal of the colunns, whieh are Corinthian, and ten diameters in height. wy must be so far removed on each side from the architrave as to allow the full projee in of their bases. The entablature may be from two ninths to one fifth of the eoluint, d the pediment should be regulated by the rules given in Seet. XVII. (2722.).
2744. Fig. 963. is by Serlio. The aperture may be a double square, or a trifle less; : diameter of the columns a quarter of the width of the aperture, or a trifle less; their ight 8 to 8 d diameters; the entabiature about a quarter of the height of the eolumns. 1 the pedinent should be drawn in eonformity with the direetions in Sect. XVIl.

Sect. XX.

wiN1)OW'S.
74.5. Windows, of all the parts of a building, are those which require the greatest nicety adjustment between the interior and exterior relations of them. 'The architeet who cly looks to the effect they will prodnce in his fagades has done less than half his work deserves no better name or rank than that of a mere buider. It seems alnost useto observe that the windows of a building should preserve the same character, that be in each story must be of the same beight, and that the openings must be directly over another. Blank windows are, if possible, to be avoided. they always indieate that arehiteet wanted skill to unite the internal wants of the building with its external detion. Windows, norcover, should be as far removed as the interior will permit from quoins of a buitding, beeause they not only apparently, but really, weaken the angles n placed too near them.
745. Vitruvins, Pallialio, Scamozai, and Philibert de l'Orme, besides many other mas1 ted en dimerent proportions to them as eombeeted with the apartments to be n lers have written. Nould be different is indieated by the diflirent plases in whieh those 1 bortion of wo mothe to disullow general laws as the

Icng,th of the days, the general clearness of the sky, the wants and customs of commere and of life generally. In hot climates the windows are always few in number and small a dimension. As we approach those regions where the sun has less power and the winter i longer, we observe always an increase in their size and number, so as to enable the in ${ }^{\text {trabitants }}$ to take as much advantage as possible of the sun's light and rays. It seems therefore, ahnost impossible to give general rules on this subject. We shall on this accom endeavour, in the rules that this section contains, to contine ourselves to the sizes whies seem suitable in this clinate, as resuects the proportion of light neeessary for the comfor of an apartment.
2747. It is a matter of expertence that the greatcst quantity of light is obtained for a apartment when lighted by an horizontal aperture in the ceiling. Of this a very extra ordinary verification is to be found in the P'antheon at Rome. This edifice, whose clea internal diameter is 142 feet 6 inches, not including the recesses behind the columns, nearly 74 feet high to the springing of the dome, which is semicircular. The total clea number of cubic feet in it may therefore be taken in round numbers at $1,934,460$ cubi feet. Those who have visited it well know that it is most sufficicntly and pleasing? lighted, and this is cffected by an aperture (the eye, as it is technically called,) in the crow of the dome, which aperture is only 27 feet in diameter. Now the arca of a circle 27 fel in diameter being rather more than 572 feet, it follows that each superficial foot of th: area lights the astonisling quantity of nearly 3380 cubic feet. Independent of all cons derations of clinate, this shows the amazing superiority of a light falling vertically, wher it can be introduced. But in a majority of cases the apertures for light are introduced vertical walls; and the consequence is, that a far greater area of them for the admision of light becomes necessary. In considering the question it must be prenised thi a large open space is supposed before the windows, and not the obstructed light whic it is the lot of the inhabitants of closely-built streets to enjoy. Again, it is to be recollect. that in the proportioning of windows it is the apartments on the principal floor that are be considered, because their width in all the stories must be guided by them, the only r riety admissible being in the height. In this country, where the gloom and even darkne of wet, cloudy, and foggy seasons so much prevails, it is better to err on the side of ti much rather than too little light, and when it is superabundant to exclude it by means shutters and blinds. We are not very friendly to the splaying of windows, because of t irregularity of the lines which follows the practice; but, it must be admitted, it often L comes necessary when the walls are thick, and in such cases a considerable splay on I inside increases the light in cffect by a great diminution of shade. It is wefl, if possib, to have an odd number of windows in an apartment : nothing wherein contributes me to gloom than a pier in the centre.
2748. We do not think it necessary to advert to the rule of Palladio for the dimensic of windows given in the first book of his work, chap. 25. ; because, were it true for t climate of northern Italy, it would not be so for that of Great Britain; neither are we all satisfied with that which in his practice Sir William Chambers says he adopted, a which is as follows, in his own words:--" I have generally added the depth and heigg we suppose width" of the rooms on the principal floor together, and taken one cigl part thereof for the width of the window ; a rule to which there are few objections: ; mitting somewhat more light than Palladio's, it is, I apprehend, fitter for our climate th his rule would be." This rule is empirical, as indeed is that on which we place m dependence, and to which we shall presently introduce the reader, being ourselves inclir: to the belief tinat in the lighting a room there is a direct relation between the arca of apcrture admitting the light and the quantity of cube space in the room. Indeed the I which we arc about to give is one founded on the cubie contents of the apartment; ant the results bore a regular ratio to that quantity, the discussion would be at an end, for should then have only to ascertain the cubic contents, and, knowing how much an area light one foot square would illuminate, the division of one by the other wonld supply superficies of windows to be provided. Our own notion on this subject is, that I foot sup ficial of light in a vertical wall, supposing the building free from obstruction by h objects in the neighbourhood, will in a square room be sufficient for 100 cube fect if plat centrally in such room. It will, however, immediately occur to the reader, that this r cannot in many cases satisfy the requirements of an apartment as respects the quantity light necessary for its proper illumination. The subject is beset with numerous difficuli which to overcome requires the greatest skill. In the case of an apartment, long as c : pared with its widtl, it is well known to every practical architect that windows of the : 2 collective area at either of the narrow ends of such apartment will light it much n effectively than if the same area of light were admitted on either of the long sides, and n. especially so, if it should happen that on such long side there were a pier instcad of a wint in the centre of such side. In illustration of what we mean, let us refer the realer to ball room at Windsor Castle, an apartment 90 feet long, 34 feet wide, and 33 feet hi This room is lighted from the northern narrower side by a window nearly ocenpying
dth, and is supplied by an abundance of light. But thad the same quantity of light been mitted from either of the long sides of the room, so many masses of shadow would have en introdneed through the interposition of piers, that its effeet would have differed most dely from the cheerful and airy aspect it now presents. We have taken this as an ample that more presently occurs to us, but the reader from his observation will liave no ficulty in supplying instances in eorroboration of our impressions on this subject.
But we shall now proceed to give, in the author's own words, the rules of which we ve spoken. That author is Robert Morris, and the work quoted is Lectures on Architure, consisting of Rules founded on Harmonich and Arithmetical Proportions in Building. ndon, 8vo. I734. "There arc rules, likewise, for proportioning of light aecording the magnitude of the room by which any room may be illuminated, more or less, ording to the uses of them, and at the same time preserve an external regularity; ich, as it is on an uncommon basis, I shall explain to you as well as I conveniently

Let the magnitude of the room be given, and one of those proportions I have , posed to be made use of or any other ; multiply the length and breadth of the room cther, and that produet multiply by the height, and the square root of that sum will the area or superficial eontent in feet, \&ec. of the light required."

749. "Example. Suppose a room (.fig. 96t.), whose magnitude is the arithnetical fortion of 5, 4, and 3, and is 20 feet long, 16 feet broad, and 12 feet high, the eube or Fhet of its length, breadth, and height inultiplied together is 3840 , the square root of ch sum is 62 feet. If the height of the story is 12 feet as before mentioned, divide 62 fect into three windows; each window will eontain 20 feet 8 inehes of superfieial t, and those will be found to be 3 feet $2 \frac{1}{2}$ inches broad, and 6 feet 5 inches high, which windows of two diameters."
750. "Let us now suppose another room on the same range whose height is 12 feet, as preceding example is, and its proportion (fig. 965.) shall be the eube. 'The product of cube is 1728 , and its root is 41 feet 4 inches, or thereabouts: divide that 41 feet ches in two parts for two windows, and eneh will be 20 feet 8 inches of superficial t, and those will be two dianeters in height, and the magnitude the same as the preng room."
'51. "For example sake, I will only suppose one more room (fig. 966) upon the same c , and 12 feet in height, se proportion shall be the innetical of 3,2 , and 1 ; is, its height being 12 the breadth will be 24 length 36 , the product of numbers multiplied toer will be 10.368 , and its 101 feet 8 inches, or alrouts: divide this room five windows, each winwill have 20 feet 4 inches ficial light, and the magewill be near or equal to

thers, and if the proportion be 6,4 , and 3 , and coved, the light is the same."
52. "There is," says the author, rather perlaps simply, "but one objection to this to make it universil for all kinds of proportioned rooms on the same floor, and that : square root doth not always happen to be exaet enough for to make them alike; but variation will be so small, it may be made use of; and if the area something exeeeds landard of the principal room, that room may be converted to a nse which requires than standard light, and the necessities of fanilies sonnctimes require it. But, howthe rule will serve for the purpose near enonght for any practice."
2753. "If you extend the rule to larger rooms, the same methods will be preservec even if the height be continued through two stories, if the upper windows be made square

and to lave two tire " (tiers) " of windows. Let us suppose the room (fig. 967.) with th tire of windows in height, to be 50 feet long, 40 feet wide, and 30 feet high, the aril metical proportion of 5,4 , and 3 , the product of those numbers multiplied together will 60000 , the square root of which sum is 245 superfical feet; divide that sum for the tirt (tiers) " of windows into three parts, or take one third of it, and that makes the attic square windows 81 feet 8 inches superficial light; divide this into 5 windows, and they a 4 feet and half an inch square, and the five lower windows, eonsisting of 163 feet 4 ind superficial light, being what remains out of the 245 feet, the root, each of these windows 4 feet and half an inch by 8 feet 1 inch, or two diameters, which 245 feet. the whole sti of the square root of the room, will sufficiently illuminate the same."
2754. The extreme piers should not, if possible, be less than half the width of t prineipal piers. This eannot always be obtained, but a much less width eauses gre irregularity, and that more especially when one of such end piers falls opposite a chimm breast, besides causing a great mass of shadow on the other side of the chimmey, wh ha; a tendency towards making the room dark and gloomy.
2755. Windows in the same story should be similar. There may be an oceasional viation for a great eentral window, but such deviation must be used with much cauti Another praetiee, most properly reprobated by Chambers, is that of intermitting the are trave and frieze of an order in the intervals between the eolumns to make room for wind and their enrichments, as on the flanks of the Mansion House in the eity of London practice from which Sir Christopher Wren was, unfortunately, not exempt, as may noticed in St. Paul's Cathedral.
2756. What are ealled Venetian windows are occasionally allowable, when so rans and introduced as not to interfere with the composition, - a task often difficult to efli They should not be much repeated, as in the front at Holkham, where they become actu. disgusting. Though in the examples whieh follow there be two which are compl with semicircular-headed centres, we do not approve of the general use of examples signed on such principles, and would advise the student rather to study the composition the Venctian window, when required, as in fig. 968 ., whieh we do not present as one of beauty, but rather of propriety, where the want of light to the apartment renders a Venetian window expedient. The method of making sashes, shutters, and the other aceessories of windows has been described in a previous section; we therefore proceed to offer a few of the most eelebrated examples of windows. It is not necessary, after the investigation relative to the voids and solids of doors, to pursue the inquiry into the relative proportions of windows as respects that part of the subject. They are, in a measure, in regard to windows, subject to the same principles, and this, by trial, will be immedigtely apparent to the student; and we therefore shall not stop for such investigation.

Fig. 968
57. Fig. 969. is after the lower story of windows at St. l'eter's at Rome, by Miehael elo. and is rather less than the doubte square in height. Tue arehitrave is one seventh

Fig. 969.

Fig. 970. e aperture's width, being the same as that of the pilasters. The length of the consoles se third of the width of the aperture, and the entablature one quarter of its height.
75\%. Fig. 970. is from the Mattei palaee at Rome, and is the design of Bartolonec manati. It possesses, though rather heavy, eonsiderable beauty, and well deserves the ntion of the student. Chaunbers, from whom we have seleeted many of our examples nis and others seetions, says, "the parts made somewhat less would sueceed better, as Id also a pediment instead of the sloped covering at top:" but we entirely disagree him, and are of opinion that what he proposes would ruin the design.

Fla. 971.

rig. 9: 2 。
759. Fiyz. 971. and 972. are the compositions of Bernardo Buontalenti. The aper-- are a domble square, or something less, the architraves a sixth or seventh of the turea, and the pilaters may be ubont the sane. The height of the entablature shoukd le more than a quarter that of the aperture, nor much less. The greatest length of consoles should not exceed half the width of the aperture, nor should their tenst length w than one third of it.
60. Fig. 973. is from the old Louvre at Paris, and is by the eelebrated Fierre I.ecent.
abbot of Clugny in the reigns of Francis I. and Henry II. Its proportions are not mueb dissimilar from the two last examples.

Fis. 973.

Fig. 974.

Fig. 975.
2761. Fig. 974. is a window constantly used by Palladio. The opening is a double sfuire, the breadth of the architrave equal to one sixth of the aperture, and the fricze and cornice together equal to double the height of the architrave. The breadth of the consoles equal to two thirds the width of the architrave. The breaks over the consoles in the bed mouldings of the cornice are perhaps not strictly correct, but are deviations from propriety which may be tolcrated. The breaks in the upper vertical parts of the architrave would perhaps be better omitted. The practice gencrally should be avoided, except it cases where a greater length of cornice is wanted for the purpose of filling the bare wall to which the windows are applied.
2762. Fig. 975. is from the Banqueting House at Whitehall, by Inigo Joues. The aperture is a double square, the entablature one fourth of its height, and the architrave somewhat more than one sixth of its width.
2763. Fig. 976. is by Michael Angelo, and exccuted at the Farncse palace at Rome. It possesses all the wildness and funcy of the master, and though abounding with faults, is redeemed by its grandeur and originality.
2764. In fig. 977. is given the design by Ludovico da Cigoli of a window from the ground floor of the Renuccini palace in Florence. It can scarcely be properly cstimated without its connection with the façade, to the character whereof it is in every respect suitable.
2765. Fig. 978. is a design of Palladio, nearly resembling that executed in the Barbarano palace at Vicenza. It has been imitated by Inigo Jones, and perhaps improved on by him, in the flanks at Greenwich Hospital.

F4.936.

Pig. y_{i}.

Fig. 978.

FLg. 979.
2766. Fig. 979. is also by Palladio, and executed by him in the Porto palace at Visenz. 2767. Fig. 980. is the design of Raffaclle Sanzio, and worthy of the reputation of thi
reat painter and arehitect. It is executed in the Pandolfini palaee at Florence, on the rineipal tloor. The height of the aperture is a very little more than twi ee its width, the rehitrave is one seventh the width of the aperture. The eolumns, whieh are Ionie. are

Fig. 950.

Fig. 981.
diameters high, and should be as much detached from the wall as pessible. The distance - them from the architrave of the window is a quarter of a diameter, which is also the stance of the entablature from the top of the same arehitrave. The total height of the itablature is two ninths of that of the column, and the height of the pediment is one sarter of its base or somewhat less. The pedestals are one quarter of the height of the hole order.
2768. Fig. 981. is one of the vindows of the Braceiano palace at Reme, by Bermini. he aperture is more than a double square, and the arehitrave about one sixth the width the aperture. The entablature is only one fifth of the height of the eolumns, inading their sub-plintis, and the pediment is less in height than one quarter of its extent.

F18. 982.

$\mathrm{F}_{\text {R. }} 98 \mathrm{~s}$.
3769. Fig. 982, is from the principal floor of the Palazzo Thiene at Vicenza. The erture is two and two teuths of its width in height; the eolumms are nine diameters hign. l one fraster engaged in the wall. The under sides of the Ionie capitals are level with otop of the aperture, having angular volutes with an astragal and fillet below the volute. e bases are Tusean, and there are on each shaft five rustic dies of an equal breadth
whese inner sides are on a line with the sides of the aperture, and their projection equal to that of the plinth of the base, that is, one fifth of a diameter of the column. The keystones incline forwards towards the top, and they are hatched, only the surface being left rough, as are likewise the dies on the columns, except at their angles, which are rabbed smooth. The entablature is Ionic, the architrave consisting of only two fascix, the frieze swelled, and the dentil band placed immediately on the frieze, without any intervening mouldings, a practice not very unusual with Palladio. The pedestals are rather more than one third the height of the columns. The dies and balusters stand on the platband of the basement, Which was done to diminish the projection.
9770. Fig. 983. is a design by Inigo Jones, which has been much used in this country. It is rather higher than a double square. The width of the arehitrave is one fiftly that of the aperture, and the rustics are a trifle less than the third of it. The entablature is two ninths of the height of the opening, and the height of the pedestal is $\frac{27}{100}$, or nearly so, of the height of the aperture and pedestal taken together.

Fig. 984.

Fig. 985.
2771. Fig. 984, is the design of a Venetian window by Colin Campbell, the compiles of the three first volumes of the Vitruvius Britamnicus; and
2772. Fig. 985. is very similar to the Venctian windows in the west façade of the Horst Guards, exccuted by Kent. It is perhaps as favourable an example of this species of window as can be produced.

Sect. XXi.

NHCHES AND STATIPS.

2773. A niche is a recess constructed in the thickness of a wall for the reception of differen objects, such as statues more especially, but occasionally also for that of busts, vase and tripods. Vitruvius makes no mention of niches, and but for an inscription publishe by Visconti in the Monumenti Gabini we should not have known that they were by the ancients called zothece, or places for the reception of a figure. Our English word niche i evidently derived from the Italian nicchio, a shell.
2774. In the early Greek temple the niche is not found; at a later period, as in the monument of Philopappus, we find a circular and two quadrangular-headed niches occupic: in the time of Stuart by statues; and it does not seem improbable that in the Gymnasi: Agora, Stadia, \&c. of the nation mentioned, the use of the niche was not uncommon. Bu the different forms of the ancient tomb, and the early methods of sepulture, would soon suggest to the Greeks and Romans the use of the niche, especially in such tombs as wer devoted to the use of a particular family. These scpulchres, whose subdivisions wer called columbaria, had their walls ornamented with sinall niches for the reception " cinerary urns, or those containing the ashes of the dead. In these, a large-sized nich occupies the principal place in the apartment, and in this was deposited the urn or sarcu plagus of the head of the family.
$2^{\circ} 75$. The sinall temples (adicula) of the Romans are often found decorated with niches and in the small building on the Lake of Albano, generally supposed to have been Nympheum, we find each side of the interior dressed with six niches, whose height suff ciently indicates that they were provided for the reeeption of statues. In the temple, Diana, at Nismes, in the South of France, which is now considered to have becn a portic
of Thermæ, as the great aqueduct ran rear it, the interior has two sidss decorated with six Corinthian columns, and in the wall between each column is a niche (called tabernacle by he moderns). Each is placed on a pedestal, and at the sides have pilasters alternately urmounted by segmental and triangular pediments. We do not, however, consider it recessary to enumerate the various Roman works wherein the niche finds a place, and shall herefore do no more than refer the student to the Pantheon, the temple of Peace, the arch of Janus, at Rome, and to its exuberant employment at Palmyra, Baalbec, and S_{i} alato. The buildings cited will furnish bim with examples of all sorts and characters.
2775. The dresses of niches seem to bear an analogy to those of windows and doors in heir form and decoration; the niche may really be considered as an opening in a wall, and indeed there are, in the arch of Claudius Drusus, now the Porta Maggiore, at Rome, openings used as niches, in which an object placed may be seen from either side of the wall. It therefore appears not improper to dress the niche with the ornaments which custom has sanctioned for doors and windows. The author of the article "Niche" in the Encyclopedic Methodique, has divided niches into three classes. The first are such as are square on the plan, and either square or circular-headed. These are the simplest, and are without dressings of any sort. Second, such as are square on their plans, and with square licads, but ornamented with dressings, or crowned with a simple platland supported by two consoles. In the third elass are included all niches whose plan and heads are semicircular, either ornamented with festoons, or with dressings, or with columns and entablature, These, says the author, are to be introduced into buildings according to their several characters, from simple to highly enriched, as requisite.
2776. Some architectural authors have laid down positive rules for the proportions of niches. According to others the proportion is found in a niche twice and a half its width in height; and indeed this produces a proportion not inelegant. But in considering the -lasses separately, they have divided the width of the niches invariably into twelve parts. To a niche of the first class they give twenty-eight of such parts; to one of the second lass, thirty; and to one of the third class, thirty-one parts. This reduction, however, of the proportions of a niche seems to us to partake of empiricism; and we would rather ilways trust to an educated eye than to rules which seem to have no basis on fitness and ropriety. It is, moreover, to be recollected that all rules of art can be considered only ag nean troms, serving more as approximations than positive laws for the guidance of the rttist in the different combinations he imagines.
2777. The use of tiers of niches over each other is eondemned by J. F. Blondel, unless eparated by a line of entablature between them, which may seem to indicate the existence of a floor; otherwise, he olserves, onc figure seems to stand on the head of another, Chis, however, is an abuse of reasoning; not that it is to be understood that we think the ractiee very allowable. The recommendation of this master in respect of the relation retween niches and the statues that are to occupy them is worthy of attention. He pposes, and we think with great propricty, the placing a statue without a plinth in the iche. The plinth is, indecd, necessary to the good effect of every statue; and to pretend lat the initition in marble could or ever was intended to be mistaken for the object it mitates, would be to leave behind all those matters of convention in art for which the pectator is well prepared. In arelintectural decoration, no less than in the abstract imitaion of the oljeets of sculpture, no one is desirous of believing them natural and living, but nly as models of imitation.
2778. 'The following observations are from Chambers, relative to the size of the statues sed in nicles. "The size of the statue depends upon the dimensions of the niche; it wuld neither be so large as to seem rammed into it, as at Santa Maria Maggiore, in Come, nor so sinall as to seem lost in it, as in the l'anthion, where the statues do not ceupy above three quarters of the height of the niche, and only one half of its width. allaclio, in arehed niches, makes the chin of his statues on a level with the top of the innont (springing), so that the whole licall is in the coved part. In the nave of St. Peter's, at Rone, the same proportion has been observed, and it has a very good effect. The distance etween the outline of the statue and the sides of the niche should never be less than one arrd of a head, nor more than one half, whether the niche be square or arehed ; aut when is apuare, the distance from the top of the head to the soflite of the niche should not exed the distanee left on the sides. 'The statues are generally raised on a plinth, the leeight "whicls mary be from one third to one half of a heard; and sometimes, where the niehes every large in proportion to the architecture they accompany, as is the case when an oder eompreliends but one story, the statues may be raised on small perlestals, by which cans they may be made lower than usual, and yet hill the niche sullicicntly, it being to be ared lest statues of a proper size to till such niches should make the columns and entablase appear trilling. 'The sane experlient must also be made use of whenever the statues the niches, according to their common proportions, come considerably larger than those aced at the top of the building. A trifing disparity will not be casily perceived, on as:
count of the distance between their respective situations; but if it be great, it has is rery bad effect; and therefore this must be well attended to and remedied, either by the above-mentioned method, or by entirely omitting statues at the top of the building, leasing the balustrade cither free, or placing thereon vases, trophies, and other similar ornanents."
Further on in the same work, the author says that "niches, being designed as repositorics for statues, groups, vases, or other works of sculpture, must be contrived to set off the things they are to contain to the best advantage; and therefore no ornaments should ever be introduced within them, as is sometimes injudicionsly practised, the eove of the niche being either filled with a large scollop shell, or the whole irside with various kinds of pro. jecting rustics, with moulded compartments, cither raised or sunken, or eomposed of different coloured marbles, for all these scrve to confuse the outline of the statue or group. It is even wrong to contime an impost within the niche, for that is of considerable disadvantage to the figures, which never appear so perfect as when backed and detached on a plain smooth surface. An excess of ornaments round the niche should likewise be avoided, and particularly masks. busts, boys, or any representation of the human figure, all whith serve to divide the attention, and to divert it from the principal object."
2779. "The depth of the niche should always be sufficient to contain the whole statne, or whatever else it is to contain, it being very disagrecable to see statues, or any other weiglity objects, with false bearings, and supported on consoles or other projections, as i: sometimes done, and in the case of niches, the side views become exccedingly uncouth; for in these a leg, an arm, a head, in short, those parts alone which project beyond the niche appear and look like so many fragments, stuck irregularly into the wall." We trust wh shall be excused for this and many other long quotations from Chambers, on account of the strong common sense with which they abound, though not always expressed in the most elegant language that might have been selected.
2780. We conclude the section with a few examples of niches, whose general proportions are sufficiently to be derived from the figures which represent them, and which, therefore, will not require our more minute description in this place, the diagrans themselves being the more useful mode of submitting the subject to the student.

Fig. ISf.

Fiz. 9s:。

Fig. 9—s.

Fig. 3 sy .
2789. Fig. 986. is the simple niche, square and circular in the head and in the plan; in. the latter we have before, as a general ruie, given the proportion of its height as twice and half that of its width; but the former, or the square-headed one, may be a double squarc yet it never should execed in height twiec and a half its width.
2783. Fig. 987. is a common form of using the niche where the opening of window, with which it is accompanied requires a correspondent square recess for the niches, as alse in interiors where the leading lines may require such an expedient.
2784. Fig. 988. shows the method of introducing niches in a rusticated basement, whicl is often requisite. The rustics are received on a flat ground, in which the niche is forme ! The reader is not to understand that any of the figures are intended as models for imitation, but merely as modes on which, in using them, he may so work as to reduce them to his own views in the design whereon lie is engaged.
2785. Fig. 989. is from the plate of Palladio's Egyptian Hall, and exhibits the violation of Chambers's exeellent maxim of not allowing the impost to be continucd round the springing of the niche. If uiches are merely introduced for play of light and shadow without reference to their reception of statues, the practice of this abuse may be tolerated; but certainly not in cases where statues are to be placed in them.
2786. Fig. 990 . is the niche accompanied by entablature, pediment, architraves, consoles, and pedestals, as in the windows wiich have already

rig. 9 KK.

Fis. 991.
een given, and their proportions will serve as a guide in this; the only differcnce being, hat a niche is inserted within the architrave of the opening.
2787. Fig. 991. is imitated from one of the niches of the Pantheon, for the details hereof the reader may refer to Desgodetz.

Sect. NXil.

CHIMNEY MECES.

2788. It is not our intention to devote much of a space, necessarily restricted, to the onsideration of designs for chimncy pieces; not because we consider them unworthy of the erious attention of the student, nor because the ever-varying fashion of the day seems to reate a desire for now forms, but because they come under the catcgory of doors and win:ows (strange as it may seem) in respect of the relation of the void to the solid parts. We re not aware that any view of this nature has heretofore been involved in the consideration f them. but we are not the more on that account to be driven from our hypothesis. The xamples of chimney pieces that have been given by Chambers, and, beforc him, by old ierlio, were but fashions of their respective days; and if it be possible to establish somehing like a canon on which they might be designed, we apprehend it would be useful to le student.
2789. A chimney piece is the ornamental decoration applied to the aperture of a chimney pening, and it seems but reasonable that in its general distribution it should be subject to lose laws which regulate the ornaments of other openings. The forms and fancies into hich this ormanent of a room may be changed are infinite, and we therefore consider that its appendages can be drawn into a consistent shape we shall be of service in the few

marks subjoined. In fig. 992. the chimney opening to be decorated is 4.0 wide and fect 6 inches high; its area is therefore equal to $4: 0 \times 3: 6=14$ feet. The principle re recommended is to make the two supporting picees cyual to one half of that area, or vell fuet, and the supported piece B equal to the other half. Now, as the height is $3: 6$, - shall have $\frac{7}{3.5}=2$ for the width of the two piers, that is, cach will be one foot wide. By e addition of these to the width of the opening, the dimension becomes six feet; and as is to contain seven feet superficial, it follows tiat $\frac{7}{6}=1 \frac{1}{6}$ is the height of B that it may ntain 7 fect.
2790. In fig. 993. we have shown the method of developing the principle; in it the pports, load, and void hear the same relation to each other as in the preceding figure. te entablature is divided into threc equal parts for the architrave, fricze, and cornice, and sses are placed on the pilasters by the sides of the architrave. The tablet is of course zabsolutely required, and the trusses may be formed of leaves instead of being plain, as e slown.
-791. Fig. 994. is another mode of using the proportions given in fig. 992., and upon as well as that last given, we lave only to observe, they are not introdnced as specimens lesign, but solely with the view of illustrating a principle. The projection of chimneycees should not generally be greater than the whole width of the support, nor less than f.
'799. We wish we could give some rule for adjusting the size of a chimney openiug to t of the rom it is to warm. Morris, in his Lesturrs on Architecture, before quoted, rined that he had fonnd ont one, and he speaks with confidence on the results which Iow its use; but we confess we are not satisfied with them. We nevertheless shonld !wrong in omitting it, and therefore give his words for the consideration of the student. - first rule is as follows: - "To find the height of the opening of the chimney from any en magnitude of a room, add the length and height of the room tagether, nud extract " Muare root of that hum, mio half that root will be the height of the ehinumey." The and rale is as follows:-" low find the breadth of a chimev from my giren mingitude
of a room, add the length, breadth, and heiglit of the room together, and extract the square root of that sum, and half that root will be the height of the chimney." The third rule he gives is, " To find the depth of a chimney from any given magnitnde, including the breadh and beight of the same, add the breadth and height of the chimney together, take one fourth of that sum, and it is the depth of the chimney." His fourth and last rule is, "To find the side of a square or funnel proportioned to elear the smoke from any given depth of the chimney, take three fourths of the given depth, and that sum is the side of the square of the funnel. Observe, only, that in cube rooms the height is equal to the breadth, and the foregoing rules are universal." The rules given by Chambers are extremely vague and general. He says that "in the smallest apartments the width of the aperture is never made less than from three feet to three feet six inches; in rooms from twenty to tweutyfour feet square, or of equal superficial dimensions, it may be fonr feet wide; in those of twenty-fise to thirty, from four to four and a half; and in such as exceed these dimensions, the aperture may be extended to five or five feet six inches; but should the room be extremely large, as is frequently the ease of halls, galleries, and salons, and one chimney of these dimensions neither afford sufficient heat to warm the room nor sufficient space round it for the company, it will be much more convenient, and far handsomer, to have twe chimney pieces of a moderate size than a single one exceedingly large, all the parts of which would appear clumsy and disproportioned to the other decorations of the room.' It is well so to place the chimney as that persons on entering a room may at once see it. In this climate a cheerfulness is imparted by the sight of a fire; but it is not to be so placed as to be opposite a door, ncither ought it, if possible to be avoided, to be so placed as to have a door on either side of it. 'There are, however, circumstances under which even the last-named category cannot be avoided, but it is always well if it can. The fact is, that the further the door can, generally speaking, be removed from a chimney, the better; and the architect must, if the plan admit it (and he ought so to distribute his parts), avoid all cross draughts of air in a room. Angular chimneys are only admissible in small rooms where space and other considerations permit no other means of introducing a chimney We can hardly think it necessary to say, with Chambers, that "whenever two chimueys ar introduced in the same room they must be regularly placed, either directly facing eacl other, if in different walls, or at equal distances from the centre of the wall in which the: both are placed. He observes, however, with a proper caution to the student, that "thit Italians frequently put their chimneys in the front walls, between the windows, for the benefit of looking out while sitting by the fire; but this must be avoided, for by so doing that side of the room becomes crowded with ornaments, and the other sides are left tor bare; the front walls are much weakened by the funnels, and the chimney shafts at th top of the building, which must necessarily be carried higher than the ridges of the roof: have, from their great length, a very disagreeable effeet, and are very liable to be blow down." All these objections, however, may be easily answered, and the funnels colleeter or shafts, as they then become, be, with skill, made even ornamental to a building. It i in cases like these that the power of the architeet above the artisan is manifest.
2791. Where the walls of a building are sufficiently thick, their funnels rise within th thickness of the walls, but in walls of a mean thickness this cannot be accomplished, fi nuder such circumstances the walls and chimney pieces will necessarily project into the, rooms, and if the break be great, the effeet is unpleasant; but this may always be obviate by making arched recesses on each side, which, in commoner rooms, may be occupied b presses or closets, thus enabling the architect to carry the cornice unbroken round th: room, a point which should never be forgotten, inasmuch as by the cornice or entablatut of the apartment being carricd round it without a break, which gives the ceiling an unbroke and regular form, a regularity is preserved infinitely more satisfactory to the eye than th disagreeable appearance of a broken, and, we may say, disjointed cornice.
2792. Of the materials employed in the construction of chimney pieces, nothing more refuisite than to say that the costliness of the material must follow the wealth of $\$$ founder of the building. Marble, however, is the material usually employed, and th various sorts known are not unfrequently intermixed, so as to produce a pleasing cffce When the aid of the sculptor is called in, much latitude is allowed in the proportions; bt on this head we hope we may, without prejudice, deliver our opinion, that the effect h: never amounted to anything like what might have been expected from his extraneous air and the solution is easy : his object is not to produce a work in harmony with the apar ment, but rather to exhibit his own powers.
2793. In the external appearance of chimney shafts, so as to group them with th buitding to which they belong, no architect can be put in competition with Sir John Val brugh. Those of Blenheim, Castle Howard, and other of his buildings, exceed all prais and deserve the closest investigation of the student. They become in his works, as the always should do, parts of the building, inseparably commected with it, and their remor wonld detract from the majesty of the strueture with which they are connected. On tl point we are certain that the best advice that can be given to the student is a consta
:ontemplation of the works of Vanbrugh. In these days there seems to be a return to ;ood feeling in this respect; and we hope it will, for the credit of the English school, be ollowed up.

Sect. XXIII.

STAIRCASES.
2796. A staircase is an enclosure formed by walls or partitions, or both, for the reception ff an ascent of stairs, with such landings as may be necessary. Of the construction of tairs we have treated in previous sections; this will be confined to general observations on chem and their enclosures.
2797. Scarcely any subdivision of a building is of more importance, as respects the haracter of the architect and the comfort and pleasant oceupancy of it by his employer, than ts principal and subordinate staircases. There is, moreover, no part, perhaps, in which nore room is left for architectural and picturesque display. In our own country there are some extraordinary examples of great beauty produced in staircases on comparatively mall scales; whence the student may learn that without great space he may produce very mposing effects. One of these may be still seen, though in a very neglected state, as are nost of the buildings attached to the collegiate church of Westminster, at one of the prerendal houses there built by our great master Jones. It is a specimen of his consummate kill as an artist, and well worth the attention of the student, if he can obtain admittance to lew it; but if he cannot, we may refer him to some plates executed from drawings made y us many years since, and published in the first and best edition of Illustrations of the Public Buildings of London (Lond. 1828). The extreme space occupied by the stairease in uestion does not exceed 24 by 23 feet; and within these small dimensions he contrived a taircase fit for a palace. So highly did the late Sir John Soane think of this bijou that he ad a series of drawings made to illustrate its parts, and exhibited them in his lectures at he Royal Academy.
2798. It is almost unneeessary to impress upon the student that an exeess rather than a cfieiency of light is requisite in a stairease, and that it should he easily accessible from all arts of the building. Those laws upon whieh the ease of persons ascending and descending epend will form the subject of two subsections shortly following (2804. and 2814.), to which e partieularly recommend the reader's attention. They are of the utmost importance, nd we record with surprise that they have not been attended to by architects generally of ate years. We have crept up, staireases in houses of consequence, which deserved little more ran the name of ladders, and we are sorry to say that this defeet is found even in the works f Chambers himself; but never in those of Jones and Wren. We shall with these relarks proceed to further observations on the subject, which has already been partiaily uched upon in 2176 . et seq.
2799. We know little of the staireases of the Greeks and Romans, and it is remarkable that itruvius makes no mention of a staircase, as an important part of an edifice; indeed his lence seems to lead to the conclusion that the staireases of antiquity were not construeted ith the luxury and magnificence to be seen in more reeent buildings. The best preserved reient staircases are those constructed in the thickness of the walls of the pronaos of inples for ascending to the roofs. Of this sort remains are found in several peripteral inples. That of the temple of Concord at Agrigentum is still entire, and consists of rty-one steps. According to Pausanias, similar staircases existed in the temple of the lympian Jupiter at Elis. They were generally winding and spiral, like the inside of a cell, and hence are called scule a humeca by the Italians, and by the French esculiers en nacon. Sonctimes, as in the Pantheon at Rome, instead of being circular on the plan, ey are triangular; so were they in the temple of I'eace, and in the baths of Dioclesian.
$28(0)$. Very few vestiges of staireases are to be seen in the ruins of lompeii ; from whieh may be inferred that what there were must have been of wood, and, moreover, that few the houses were more than one story in height. Where they exist, as in the building at e above place called the country hoose, and some others, they are narrow and inconnient, with steps sometimes a foot in height. Oecasionally, too, we find private staireases -ntioned, as ill the description of Pliny's 'Tuseulan villa, where one was placed by the side the dining room, und appropriated to the use of the slaves who served the repast.
2401 . Theanthor of the article " Fiseatier" in the Eincyc. Method. observes that the magienere of the stairease was but tardily developed in modern mrehitecture, and that it owed sh of its luxury to the perfection to which a knowledge of stereotomy brought the enee of masonry. The manners too and the eustoms of domestic life for a length of ne rencered unnecessary more than a staircase of very ordinary description. Thas in carliest palaces the stairease secm to lave hech constracted for the use of the inha-
bitants only, possessing in fact no more beauty than we now give to a back stairease. The are for the most part dark, narrow, and inconvenient. Even in Italy, whieh in the splen dour of its buildings preceded and surpassed all the other nations of Europe, the staireas was, till a late period, extremely simple in the largest and grandest palaces. Such are th staireases of the Vatican, Bernini's celebrated one being comparatively of a late date. 'Th. old staircases of the Cuilleries and of the Louvre, though on a considerable seale, are, fron their simplicity, construction, and situation, little in unison with the richness of the res of these palaces. And this was the consequence of having the state apariments on the ground floor. When they were removed to a higher place, the stairease which conducter to them necessarily led to a correspondence of design in it.
2802. It will be observed that our observations in this seetion are confined to interna staircases. Large flights of steps, such as those at the Trinita de' Monti and Araceli a Rome, do not come within our notice, being unrestricted in their extent, and scarcel: snhject to the general laws of architectural composition. In these it should however b remembered that they must never rise in a continued series of steps from the bottom to th summit, but must be provided with landings for resting places, as is usually the case in thr half and quarter spaces of internal stairs. An extremely fine example of an external flight c stairs may be cited in those descending from the terrace to the orangery at Versailles. Fo simplicity, grandeur, design, and beauty of construction, we scarcely know anything i Europe more admirable than this staircase and the orangery to which it leads.
2803. The selection of the place in which the stairease of a dwelling is to be seate requires great judgment, and is always a difficult task in the formation of a plan. Palladic the great master of the moderns, thus delivers the rules for observance in plaming them that they may not be an obstruction to the rest of the building. He says, "A particula place must be marked out, that no part of the building should receive any prejudice b them. 'There are three openings necessary to a stairease. The first is the doorway tha leads to it, which the more it is in sight the better it is; and I highly approve of it being in such a place that before one comes to it the best part of the house may be sect for although the house be small, yet by such arrangement it will appear larger : the doo however, must be obvious, and easy to be found. The second opening is that of the wit dows through which the stairs are lighted; they should be in the middle, and larg enough to light the stairs in every part. The third opening is the landing place by whic one enters into the rooms above; it ought to be fair and well ornamented, and to lea iuto the largest places first."
2804. "Staircases," continues our author, "will be perfect, if they are spacious, ligh and easy to ascend; as if, indeed, they seemed to invite people to mount. They will ! clear, if the light is bright and equally diffused ; and they will be sufficiently ample, if the do not appear scanty and narrow in proportion to the size and quality of the building Nevertheless, they ought never to be narrower than 4 feet" (4 feet 6 inches English *), ": that two persons meeting on the stairs may conveniently pass each other. They will L convenient with respect to the whole building, if the arches under them can be used f_{i} domestic purposes; and commodious for the persons going up and down, if the stairs a. not too steep nor the steps too high. Therefore, they must be twiee as long as broa 'The steps ought not to excecd 6 inches in height; and if they be lower they must be so! long and continued stairs, for they will be so much the casier, beeause one needs not li the foot so high ; but they must never be lower than 4 inches." (These are Vicentil inehes.) "The breadth of the steps ought not to be less than a foot, nor more than a fou and a half. The ancients used to make the steps of an odd mumber, that thus beginning ascend with the right foot, they might end with the same foot, which they took to be good omen, and a greater mark oif respeet so to enter into the temple. It will be sufficie) to put cleven or thirteen steps at most to a flight before coming to a half-pace, thus to he weak people and of short breath, as well that they may there have the opportunity resting as to allow of any person falling from above being there caught." We do not pr pose to give examples of other than the most usual forms of staireases and stairs; thi variety is almost infinite, and could not even in their leading features be compassed in work like this. The varieties, indeed, would not be usefully given, inasmuch as the for are necessarily dependent on the varied circumstances of each plan, calling upon t architect almost on every occasion to invent pro re natâ.
2805. Stairs are of two sorts, straight and winding. Before proceeding with his desig the architect must always take care, whether in the straight or winding stairease, that the pi son ascending has what is called headway, which is a clear distanee measured vertically frc any step, quarter, half-pace, or landing, to the underside of the ceiling, step, or other pa immediately over it, so as to allow the tallest person to clear it with his hat on; and this the minimum height of headway that can be admitted. To return to the straight a uinding stairease, it is to be observed, that the first may be divided into two flights, or

[^12]
de quite square, so as to turn on the four sides ronnd a close or open newel, as in fig. 995. which the former is the case, light being obtained by windows in the walls which enclose newel ; or, as in fig. 996. : in which case, the newel is open, and the light may be received er from a vertieal light above, or from side windows in the walls. Palladio says these , sorts of stairs were invented hy Sig. Ludovico Cornaro, a gentleman of much grenius, 1) ereeted for himself a magnificent palace at P'adua.
2806. Of winding or spiral stairs, some are circular on the plan, either open or with a id newel ; others elliptical, also with open or solid newels. Those with the open newel preferable, beeanse of their athowing the stairease to be lighted additionally, if repaisite, the light obtainable from above; besides which, persons passing up and down may see 1 other. Palladio thes directs the setting ont of spiral staircases. "'lhose," be sitys. hich have a newel in the middle are made in this mamer. The dianeter being divided , three parts, wo are given for the steps, and the third is for the newel ; or, otherwise, diancter may be divided into seven parts, three of which are for the newel and fonr the steps. "Tolus," he salys, "was made the stairease of the columu of 'liajam at leome ; I if the stairs are made circular," (that is, the treads segments of circles on the plan,) "ey will be handsomer and longer " (of course) "than if made straight."
2807. "But as it may hapen that the space will not give roon for these measures. dianeter may be rediced and divided according to the plates." The essence af these 115, omitting the step whose plan is segmental, we here subjoin.
9o4. Fig. 997. is at plan and section of at staincase with a solid newel, in which the whe diameter is divided into twelve parts, and of these four are given to the neweh the semainder divided egnatly between the steps.

2809. Fig. 998. is the plan and section of a spiral staircase with an open newel, wher the diameter is divided into four parts, two being given to the newel, and the remaim equally divided between the steps.
2810. Fig. 999. is the plan and section of an elliptical stairease with an open newel. '] conjugate diameter is divided into four parts, whercof two are given to the conjug. diameter of the newel, and the remainder one on each side to the steps.
2811. In fig. 1000, the same staircase is given, but with a solid newel, and of course quiring many openings on the sides to light it.
2812. It is not the difficulty of multiplying the examples of staircases which preve our proceeding on this head, but the space into which our work is to be condensed. Enor of example has been given, by using portions of the examples, to meet every case, the de ration being dependent on the design of the architcet, and the distribution on his goods: in the epplication of what we lave submitted to him.
2813. There is, however, one important point in the construction of a staircase to wh we must now advert, and that is easiness of ascent. Blondel, in his Cours d'Arehictit was, we believe, the first architect who settled the proper relation between the height : width of steps, and his theory, for the truth whereof, though it bears much appearance it, we do not pledge ourselves, is as follows.
2814. Let $x=$ the space over which a person walks with ease upon a level plane, $z=$ the height which the same person could with equal ease assend vertically. Then if $/$ the height of the step, and w its width, the relation between h and w must be such when $w=x, h=0$, and when $h=z, w=0$. These conditions are fulfilled by cquations of form $h=\frac{1}{2}(x-w)$ and $w=x-2 h$. Blondel assumes 24 (French) inches for the valuc x, and 12 fer that of z. We are not sufficiently, from experiment, convineed that these are proper values; but, following him, if thuse values be substituted in the equation $h=\frac{1}{2}$ ($24-$ and $w=24-2 h$: if the leight of a step be 5 inches, its width should be $24-10=14$ inci and it must be confessed that experience seems to confirm the theory, for it must be served, and every person who has built a staircase will know the fact, that the met

ducing the height of the riscrs without giving a corresponient width of tread to the step inconvenient and unpleasant.

Sect. XXIV.

CEILINGS.
2815. Economy has worked so great a change in our dwellings, that their ceilings are, late years, little more than miserable naked surfaces of plaster. This section, therefore, 11 possess little interest in the eye of specalating builders of the wretched houses erceted out the suburbs of the metropolis, and let to unsuspecting tenants at rents usually about ee times their actual value. To the student it is more important, inasmuch as a wellsigned ceiling is one of the most pleasing features of a room.
2816. There is, perhaps, no type in architecture more strictly useful in the internal distri tion of apartments than that derived from timber framing; and if the reader has understood : section on flours, he will immediately see that the natural compartments which are formed the carpentry of a floor are such as suggest panels and ornaneuts of great variety. en a single-framed floor with its strutting or wind-pieces between the joists, gives us - hint for a ceiling of coffers capable of producing the happiest effect in the most insigcant room. If the type of timber-framing be applied to the dome or licmispherica! Hing, the interties between the main ribs, diminishing as they approach the summit, in the skeletons of the coffers that impart beauty to the Pantheon of Agrippa. We 4de thus to the type to inculcate the principle on which ornamented ceilings are designed. Ing satisfied that a reference to such type will insure propriety, and bring us back to that
fthess which, in the carly part of this Book, we have eonsidered one of the main ingre dients of beanty. If the panels of a ceiling be formed with referenee to this principle namely, how they might or eould be securely framed in the timbering, the design will be fit for the purpose, and its effeet will satisfy the spectator, however unable to account fo, the pleasure he reeeives. Whether the architrave be with plain square panels between i and the wall, as in the temples of the Egyptians, or as at a later period decorated with eoffers for instanee in the Greek and Roman temple, the prineiple seems to be the same, and verifie the theory. The writer of the article " Plafond" in the Encyc. Meth. has not entered into the subjeet at much length, nor with the ability displayed in many other parts of that work but he espeeially dircets that where a eeiling is to be deeorated on the plane surface wit? painting, the eompartments should have referenee to the eonstruetion. With these preli minary observations, we shall now proceed to the different forms in use. Ceilings are eithe flat, eoved, that is, rising from the walls with a eurve, or vaulted. They are sometines however, of eontours in which one, more, or all of these forms find employment. When eoved ceiling is used, the height of the eove is rarely less than one fifth, and not more thas one third the height of the room. This will be mainly dependent on the real height the room, for if that be low in proportion to its width, the eove must be kept down; whe otherwise, it is advantageous to throw height into the eove, which will make the excess c the height less apparent. If, however, the architeet is unrestrieted, and the proportion of the room are under his control, the height of the eove should be cne quater c the whole height. In the eeilings of rooms whose figure is that of a parallelogran the eentre part is usually formed into a large flat panel, whieh is eomnonly decorate with a flower in the middle. When the eove is used, the division into panels of the eei ing will not bear to be so numerous nor so heavy as when the eeiing appears to rest o the walls at once, but the same sorts of figures may be employed as we shall presentl give for other eeilings. If the apartment is to be highly finished, the cove itself may 1

rig. 1001.

Fig. 1001.

Fig. 1002

Fig. 1005.

Fig. 1003.

Fig. 1006.
decorated with enriched panels, as in the figs. 1001, 1002, 1003, 1004, 1005, 1006. In ceilings it is desirable to raise the centre panel higher than the rest, and the main it sions represconting the timbers in flat ceilings should, if possible, fall in the eentre of t piers between the windows.
2817. Fig. 1007, shows the eeiling of a square room in two ways as given on each si of the dotted line, or it may be considered as representing the ends of a ceiling to a rox whose form is that of a parallelogram. The same observation applies to figs. 100 os. a 1009. The sofites of the beans should in all cases approach the width they would

Fing 1007.

Fig, 100s,

Fig. 1600.
considered as the sofites of architraves of the columns of the order to which the eomice belongs, and they may be decorated witl guiloches, as in fig. 1010., or with frets. (See the word "Fret" in Glossary.)

Fig. 1010.
2818. In the two following figures (1011. and 1012.) are given four exmmples of rooms which are parallelograms on the plan, and above each is a section of the compartments.

Fig. 1011

Fig. 101%.
2819. As to the proportion of the comice, it ought in rooms to be perhaps rather less than in halls, salons, and the exterior parts of a buidding; and if the entablature be taken at a fifth instead of one fourth of the height, and a proportional part of that filth be taken for the cornice, it cannot be too heavy. Perhaps where columns are introduced it will be better to keep to the usual proportions. Chambers, if followed, would make the proportions still lighter than we have set them down. He says that if the rooms are adomed with an entire order, the entablature should not be more than a sixth of the height nor be less than a seventh in flat-ceiled rooms, and one sixth or one seventh in such as are coved; and that when there are neither columns nor pilasters in the decoration, but an entablature alone, its height should not be above one seventh or eighth of those heights. He further says that in rooms finished with a simple cornice it should not exceed one fifteenth nor be less than one twentieth, and that if the whole entablature be used its height should not he more than one eighth of the upright of the room. In the ceilings of staireases the cornices must be set out on the same principles; indeed in these, and in halls and other large roons, the whole of the entablature is generally used. In vaulted ceilings and domes the panels are usually decorated with panels similar to those in figs. 1001, 1002, 1003, 1004, 1005, 1006., but in their application to domes they of course diminish as they rise towards the rye of the dome. (Sce 2837.)

Srct. KXV

PROTORTIONS OF KOONS.
2920. The use to which rooms are appropriated, and their actual dimensions, are the principal points for consideration in adjusting the proportions of apartments. Abstractedly considered, all figures, from a square to the sesquialteral proportion, may be used for the plat. Many great masters have carried the proportion to a double square on the plan; hit exeept the room be subdivided by a break the height is not easily proportioned to it. Lhis objection does not however apply to long galleries which are not restricted in length,
on which Chambers remarks, " that in this." ease the extraordinary length renders it im. possible for the eye to take in the whole extent at once, and therefore the eomparison be tween the height and length ean never be made."
2821. The figure of a room, too, neeessarily regulates its height. If a room, for example be coved, it should be higher than one whose ceiling is entirely flat. When the plan i square and the eeiling flat the height should not be less than four fifths of the side no more than five sixths; but when it leaves the square and becomes parallelogramie, tho height may be equal to the width. Coved rooms, however, when square, should be as higl as they are broad; and when parallelograms, their height may be equal to their width, in ereased from one fifth to one third of the difference between the length and width.
2822. The height of galleries should be at least one and one third of their width, and a the most perhaps one and three fifths. "It is not, however," says Chambers, "alway possible to observe these proportions. In dwelling-houses, the height of all the rooms ut the same floor is generally the same, though their extent be different; which renders i extremely diffieult in large buildings, where there are a great number of different-sizer rooms, to proportion all of them well. The usual method, in buildings where beauty ame magnificenee are preferred to eeonomy, is to raise the halls, salons, and galleries highe than the other rooms, by making them oceupy two stories; to make the drawing-rooms o wther largest rooms with flat eeilings; to eove the middle-sized ones one third, a quarter, o a fifth of their height, aeeording as it is more or less exeessive; and in the smallest apart ments, where even the highest eoves are not sufficient to render the proportion tolerable, i is usual to contrive mezzanines above them, which afford servants' lodging-rooms, baths poudering-rooms," (now no longer wanted!) " wardrobes, and the like; so much the mor convenient as they are near the state apartments, and of private aecess. The Earl o Leicester's house at llolkham is a masterpiece in this respeet, as well as in many others the distribution of the phan, in particular, deserves mueh commendation, and does grea eredit to the memory of Mr. Kent, it being exeeedingly well eontrived, both for state am eonvenience."
2823. In this country, the coldness of the climate, with the eeonomy of those who buil superadded, have been obstaeles to developing the proper proportions of our apartments and the eonsequence is, that in England we rarely see magnifieence attained in them. IW ean point out very few rooms whose height is as great as it should be. In Italy, the rulc given by lalladio and other masters, judging from their works, seem to be sevenfold i respeet of lengths and breadths of rooms, namely, - 1 . eireular ; 2. square; 3. the lengt equal to the diagonal of the square; 4 . length equal to one third more than the square5. to the square and a half; 6. to the square and two thirds; or, 7. two squares full. A to the height of chambers, Palladio says they are made cither arehed or with a plai eeiling: if the latter, the height from the pavement or floor to the joists above ought to 1 equal to their breadth; and the ehambers of the second story must be a sixth part le: than them in height. The arehed rooms, being those commonly adopted in the princip: story, no less on aecount of their beauty than for the security afforded against fire, if syuar are in height to be a third more than their breadth; but when the length exeeeds th breadth, the height proportioned to the length and breadth together may be readily four by joining the two lines of the length and breadth into one line, whieh being bisectec one half will give exaetly the height of the areh. Thus, let the room be lig feet lou and 6 feet wide, $\frac{12+6}{2}=9$ feet the height of the room. Another of Palladio's methods , proportioning the height to the length and breadth is, by making the length, height, at breadth in sesquialteral proportion, that is, by finding a number which has the same rat, to the breadth as the length has to it. This is found by multiplying the length and breadt together, and taking the square root of the produet for the height. Thus, supposing il length S and the breadth 4 , the height of the areh will be $\sqrt{ } 9 \times 4=6$, the height requirer the number 6 being eontained as many times in 9 as 4 is in 6 .
2824. The same author gives still another method, as follows : - Let the height assumed as found by the first rule $(=9)$, and the length and breadth, as before, 12 and Multiply the length by the breadth, and divide the produet by the height assumed; the $\frac{12 x}{y}-6$ for the height, whieh is more than the sezond rule gives, and less than the first.

CHAP. II.

PRINCIPLES OF PROPORTION.

Sect. I.

GENERAL HEMARKS.

2825. In undertaking to point out some of the mechanieal methods of ebtaining proortions of length, bruadh, and height, in plans and elevations, as traeeable upon geometr:c epresentations of the design, we wonld recall the reader's attention to the adinirable renarks on the true naturc of proportion made by the author of this Encyclopadia in ject. I of the first chapter in this book.
2826. But, however just those remarks may be, they do not, any more than any of the nechanical means, result in sncecss in the building as executed and seen in perspective. The ever varying relation between the sides of a mass, sueh as a Greek temple, ean hardly e supposed to be at every moment equally beautiful in proportion, and the finest medixval tructure equally owes thic satisfactory effeet whiel it produces to the speetator's judicious hoice of his point of view. Some very judieions observations on the rectifieation of proortions aecording to the position of the spectator are given by James Pennethorne, in his Elements and Mathematical Principlts of the Gieek Architects, 8vo, London, 1844.
2827. Before the probable effect in exeeution of an intended design ean be aseertained, he designer must have well mastered the routine of drawing, as explained in the several ections on Drawing, Perspective, and Shadows, given in this work. He should likevise have familiarised himself with the varying effects of the ehanges resulting from points fivew and alteration of light upon some bnilding of which he may have opportunities to nake studies in the usual Geometric Drawings (explained 2490a. et seq.), so as to beeome mbued with that sense of general fitness of parts to the whole, which is meant by having the compasses in one's eye."
2828-2837. The simpler sueh a building may be, the easier it will be at first to begin to "quire the power of anticipating correctly the effect in a design if it be exccuted : that ower ean then be applied to designs of more eomplieated charaeter resulting from the arious methods, which we are about to point out, of obtaining proportions.

Sect. II.

HORIZONTAL AND VERTICAL COMBINATIONS OF BUILDINGS.

2838. The different elements of a building are ranged by the side of or above eaell other, nd in designing an edifiee both these combinations must be kept in mind, though in the tudy of the subject, in order to lighten the labour, they may be separately eonsidered. The two speeies of disposition are horizontal, as in plans, and vertical, as in sections and levations.
2839. As respeets horizontal disposition of the elements of a fabric, beginning with olumns, their distance in the same cdifiee should be equal, but that distance may be varied s circuntstances require. In buildings of small importanee, the number is redueed as nuch as possible, on the seore of ceonomy, by increasing the distanee between them; but in public buildings they should be introdueed in greater number, as contributing to the greater solidity of the edifice by affording a larger number of points of support. They ught not, however, to be at all introduced exeept for the formation of portieoes, galleries, and the like subdivisions. The least distance at whieh they can be properly placed from a vall is that which they are apart from one another. This distance, indeed, suits well nough when the eolumns are moderately wide apart; but when the intercolumniations re small eompared with their height and the diameter of the columns, their distance from he walls in porticoes must be increased, otherwise these would be much too narrow for their height, affording shelter neither from the sm's rays nor from the rain. On this wecount, under such cireumstances, they may be set from the walls two or three times the listance between the axes of the eolumns. From this arrangement will result an agreeable und suitable proportion between the parts.

28:10. The eeiling of a portieo may be level with the under side of the arehitrave, or it
may be sunk the depth of the arehitrave, which may return in a direction towards the walls, thus forming sunk panels in the ceiling, or the sinking of the pancls may be as much is the whole height of the entablature, whose mouldings should then be carried round then. When several ranks of eolomns oceor in a portico the central part is sometimes vanlted, the two central columns of the width being omitted. The method of disposing pilasters ins respeet of their diminution !as been treated of in a former part of this work. (2671 , ef seq.)
2841. The exterior walls which enelose the building should rim as muel as possible in straight continoed lines from one angle to another ; a straight line being the shortest that can be drawn. The internal walls, which serve for subdividing the building into its sevenal apartments, should, as much as may be, cxtend from one side to the opposite one. Where they are intereepted by openings, they should be conneeted again above by lintels or other means.
2842. In fig. 1013. is shown the method of forming a plan or horizontal distribution, and combining it with the vertical distribution in the section and elevation. The thing is so simple that it ean hardly want explanation. The cquidistant parallel axes being drawn and cut at right angles by similarly equidistant ones, the walls, according to the required aceommodations, are placed centrally opon the axes; and the columns, pilasters, \&e. upon the intersections of the axes. The doors, windows, niehes, and the like are then placed centrally in the interaxes, which must be bisected for that phrpose. Above and below the horizontal combiation the saction and plan are to be drawn. These vertical eombinations are infinite, and from every plan many sections and elevations may be formed. The figure exhibits a boilding of one story only, with a central apartment oeeupying the height of two stories. But on the same plan a boilding of two or more stories may be designed. These may have two tiers of porticoes, one above the other, or one only on the ground story, forming by its covering a terrace on the first floor; or a portico might receive on its columns the walls of the next story, and thus beconse recessed from the main front. So, again, the stories may be eqoal in height, or of different heights, as eircmonstances may require. The most usual practice is, above a basement to make the snceeeding story higher; but above a prineipal floor the height of succeeding ones is diminished. The method of placing orders above orders does not require that any addition should be made to what has been said on that subjeet in Chap. I. Sect. 11. of this Book, and by the same methods areades over arcades may be eondocted.
2843. Not the least important of the advantages resolting from the method of designing just submitted to the reader is the eertain symmetry it produces, and the prevention, by the use of these interaxal lines on each Hoor, of the architect falling into the error of false bearings, than which a greater or more dangerous fault cannot be committed, more especially in pobiie boildings. 'The subterfuge for avoiding' the eonsequence of false bearings is now a resort to east iron, a material benefieialy enoogh employed in buildings of inferior rank; but in those of the first class, wherein every part should have a proper point of support, it is a practice not to be tolerated. Neither shoold the student ever lose sight, in respeet of the ties lee employs in a building, of the admirable observation of Vignola on the ties and chains proposed by Tibaldi, in his design for the baptistery at Mitan: "Che le fabbriche non si hanno da sustenere colle stringhe ; "- Boildings most not depend on ties for their stability. The foregoing figore is from Durand's Precis d'Architecture. We now submit, in fiy. 1018., an illostration of the prineiples of interaxal division

Fis. 1013.
from the eelebrated and exquisite Villa Capra, near Vicenza, by Palladio, wherein it will b seen, on comparing the result with what has actually been execoted, how little the desiy caries from it. It will from this also be seen how entirely and inseparably conected wit.

心horizontal are the vertical combinations in the sec. un and elevation, the voids falling over voids, and the lids over solids. Whatever the extent of the buildig, if it is to be regular and symmetrical in its compotion, the principles are applicable, and that even in uildings where no columns are used; for, supposing ren to exist, and setting out the design as though uy did exist, the design will prove to be well proorticned when they are removed. The full appliation of the principles in question will be seen in e works of Durand, the Précis and Cours d'Architecre, which we have used freely; and where we have id the misfortune to differ from that author, we have ot adopted him.
2844. The student ean scarcely conceive the infinite unber of combinations whereof every design is susptible by the employment of the interaxal system are brought under his notice; neither, until he has sted it in many cascs, will he believe the great astery in design which he will acquire by its use. a the temples and other public buildings of the aneuts, it requires no argument to p:ove that it was the tal principle of their operations, and in the courts, vadia, \&c. of their private buildingss it is sufficiently ovious that it must have been extensively used. That ; use in the buildings of those who are called the othic architects of the middle ages was universal, a ance at them will be sufficient to prove. The system triangles which appears to have had an influence on e proportions of the early cathedrals may be traced the same source (see the early translation of Vitruus by Cæsar Cesarianus), and iudeed, followed up to at source, would end in the principle contended for. 2845. It is impossible for us to prove that the teraxal system was that upon which the revivers of ir art produced the astonishing examples many hereof are exhibited in our First Book; neither n we venture to assert that it was that upon which r great master lalladio designed the example above $r \mathrm{ch}$, unquestionably one of his most clegant works; t, to say the least of the coincidence which has been oved between the actual design and the theory upon hich it appears to have been founded, it is a very rious, and, if not true, a most extraordmary cireumnee. Our belicf, however, is, that not only l'allio but the masters preceding him used the system question, and that is strengthened by the mode ot strictly, we allow, analogous) in which Seamozzi, the tenth chapter of his third book, directs the adent to adopt in buildings seated on plots of ground nose sides are irregular.
2846. To Durand, nevertheless, the public is eatly indebted for the instruction he has imparted the student in his Précis d'Architeciure more espelly, and we regret that in our own country the art reated by its professors too much in the manner a trade, and that the scramble after commissions ; prevented their occupation upon works similar to se which have engaged the attention of professors the continent. The fault, however, is perhaps not, r all, so much attributable to them as to a governnt, whatever the party in power, till within the last
 a years (nay perchance even now) totally indifferent to the success of the fine arts, whose 1 my days here were under the reign of the unfortunate Charles. Our feetings on this subt, and love for our art, betray us perchance too much into expressions unsuitable to the bject under consideration, and thereon we entreat, therefore, the patience of our readers, lowing "we have a good conscience."
2817 Our limits preciude the further enlargement on this part of the subject, which in
detail would occupy the pages of a separate work, and which, indeed, fruen its nature could not be exhausted. We trust, however, enough has been given to conduct the studen on the way to a right understanding of this part of the laws of composition.

Sect. III.

SUBIIVISIONS AND APARTMENTS OF RULIDINGS AND THEHR POLNTS OF SUPRORI.

2848. The subdivisions, apartments, or portions whereof a building consists are almost a many as the elements that separately compose them: they may be ranked as porticoe: porehes, vestibules, staircases, halls, galleries, salons, chambers, courts, \&c. \&c. All thes are but spaces enclosed with walls, open or covered, but mostly the latter, as the case ma requirc. When eovered, the object is accomplished by vaults, floors, terraces, or root In some of them, columns are employed to relieve the bearing of the parts above, or to di minish the thrust of the vaulting. The horizontal forms of these apartments - a gener name by whieh we shall designate them, be their application what it may - are usuall squares, parallelograms, polygons, cireles, semicircles, \&c.; their size, of course, varyin with the service whereto they are applied. Some will require only one, two, or three inter axal divisions; others, five, seven, or more. It is only these last in which columns becon useful ; and to such only, therefore, the system is usefully applied. The parts whereof w speak may belong to either public or private buildings: the former are generally confine to a single story, and are covered by vaults of equal or different spans; the latter hav usually several stories, and are almost invariably covered with roofs or flats.
2849. When columns are introduced into any edifice to diminish the action of the vanlt and inerease the resistance to their thrust, the choice of the speeies of vault must be we considered. If, for example, the vault of a square apartment (fig. 1015.) of five interax:

Fig. 1015.

Fig. 1016.

Fig. 1017.
disisions be covered with a quadrangular dome, or, in other words, a quadrantal cor mitred at each angle, twelve eolumns would be required for its support. If the vault we eylindrical (fig. 1016.) eight columns only would be necessary; but if the form of t covering be changed to the groined areh (fig. 1017.), four columns only will be reguire Supposing a room of similar form on the plan eontained seven interaxal divisions each wo twenty eolumns must be employed for the eoved vault, twelve columns for that who covering was semi-eylindrical, and still but four for the groined vault. It is obvious, therefor keeping eeonomy in mind, that the consideration and well weighing of this matter most important, inasmuch as under ordinary cireumstances we find it possible to make fo columns perform the office of twelve and even twenty. Here, again, we have proof of t value of the interaxal system, whose combinations, as we have in the previous scction o served, are infinite. But the importance of the subject becomes still more interesting wis we find that economy is inseparable from that arrangement whose adoption insures stabil and symmetry of the parts. These are eonsiderations whereof it is the duty of the arch tect who values his reputation and character never to lose sight. If honour guide him n the commission wherewith he is intrusted had better have been handed over to the me builder, - we mean the respeetable builder, who will honestly do his best for his employ
2850. What oecurs in square apartments oceurs equally in those that are oblong, for first or square is but the element of the last. If it happen that from the interaxal divisi contained in the length of an oblong or parallelogram, the subdivisions will not allow of th bays of groins, it does not follow that the arrangement must be defective, for one may obtained in the middle bay. In subdivisions of width, allowing five interaxes, at least f_{1} columns would be saved, and in those of seven interaxes eight columns might be disperr with. (See fig. 1018.)
2851. When the subdivisions on the plan, supposing it not square, take in five intera whichin the longitudinal extent of the apartment inelude several bays of groins, whose $n u$ ber must always be odd, one eolumn is suffieient to receive caeh springing of the arch, in those of seven interaxal divisions two colums will be necessary. (See fig. 1019, A.
2852. If the vaulturg be on a large scale, its weight and thrust are necessarily increa
i the columns may be chauged into patasters connected with the nair, walls, as in 109., or as II in the preceding figure.
2853. The height of the apartment from the floor to the springing of the arehes will be ad three interaxes in apartments whose horizontal combination is of five interaxes, 1 four and a half for the height to springing of such as are of seven interaxal divisions on plan. Where the combinations are different in the adjoining apartments the heights t mentioned afford the facility of lighting the larger one above the crown of the lower s. as at 1 B in fig. 1019.

t.g. 1018.

Fits. 1020.

Fig. 1019
28.54. Sometimes the springing is from the walls themselves, as at C, fig. 1019., insteat from the colums as at L. The first of these arrangements should be permitted only en en suite with the apartment there is another, D , wherein the springings are from umns. When the apartment is the last of the suite, the springings must be from piers columns, one interaxis at least from the wall. If all these matters are well understood, also the seetions upon the orders, and upon the different elementary parts of a building, raphie combination has been established by which we shall be much aided in the comsition or design of all sorts of buildings, and enabled, with little trouble, and in a much rter period of time than by any other process, to design easily and intelligently. To do re distinguishes the man of genius from the man who can be taught only up to a eertain int.

Sect. IV.

combination of the parts in leading forms.

2855. Having shown the mode whereby the parts of a building are horizontally and vertily combined in the several apartments, which may be considered the grammar of comsition, we shall now show its applieation in the leading forms or great divisions of the plan. cping in mind the advantage, upon which we have before touched, of arranging the walls of ildings as much as possible in straight lines, we should also equally endeavour to dispose - primecpal apartments on the same axes in each direction. Upon first thoughts the stunt may think that a want of variety will result from such arrangement, but upon proper
lection he will in this respect be soon undeceived. The combinations that may be made lection he will in this respect be soon undeceived. The combinations that may be made the differcut principal axes are, as above stated, numberless, that is, of those axes whereon e parts may be advantageously placed so as to suit the various purposes to which the ilaing is destined, paying also due regard to the nature fif the ground whercon the rice is to bee erected
2856. Let us, for example, take a few only of the combinations which may be formed from the simple square, as in the first sixteen diagrams of fig. 1021 ., by dividing it in both directions into two, three, and four parts. The thick lines of the diagrams may be considcred as representing either walls or suits of apartments, in which latter case the open spaces between them become courts. In reference also to the vertical combinations commected with the dispositions in question, some parts of them may consist of one, other parts of two and three stories, as well for additional accommodation of the whole building to its purpose as for producing variety of outline in the elevation. If, as in some of the diagrams, we omit some of the axes used for the division, such omissions produce a new series of subdivisions amost to infinity. By this method large edifices may be most advantageously designed; it enables us to apply to the different leading axes the combinations suitable to the destination of the building. Considered however as merely an exercise for the stadent, the use of it is so valuable that we do not believe any other can be so benencially employed by those masters who profess to teach the art. We have not gone into the subdivisions of the circle in detail, contenting ourselves with the two most obvious dispositions. These are susceptible of as great variety as the square, observing however that the leading axes must be concentric.
2857. Following up the method just proposed, let us imagine a design consisting of a certain number of

Fig. 1021. simitar and dissimilar parts placed in certain relations to cacll other. Now, having fixed clearly in our mind the relative situations of the sever: parts and the mode by which they are connected with each other, we shall have a distinct pe ception of the work as a whole. We may abbreviate the expression of a design by a f marhs, as in fig. 1022 , wherein the erosses sepresent square apartments, and the simple lin. are the expressions of parallelograms, whose relative lengths may he expressed by the lengths, the lines. The next step might be to expand these abbreviations into the form given in fig. 1029., on which we may indicate by curves and St. Andrew's crosses, as dotted in the diagram, the way in which the several apartments are to be eovered.
2858. We may now proceed with the design; but first it will be well to consider one of the apartments, for which let one of the angles 13 be taken (see fig. 1024. and 1025.). Suppose it, for instance, to be tive

Fig. 1022.

Fig. 1023 or any other number of interaxal parts square. This, then, will be the width of the apartmen whose forms are that of a parallelogram; and inasmuch as in this apartment the diamet of the vault will be diminished by two interaxes, which results from the use of the fo angular columns, the groined vault will be of the width of three interaxes, and the sal: arrangement will govern the rest of the apartments. In the centre an open court is : tendant on the disposition, as indicated by the diagram. The section whech is the ress of the combination, subject however to other regulation in the detail, is given under ! plan of the figure, and the elevation above it entirely depends upon, and is regulated 1 the joint combination of the plan and section. The example is given in the most genes way, and with the desire of initiating the student in the theory of his art. The buildi here instanced might serve some public purpose, such as a gallery for the reception painting or sculpture, or at least give the hint for one; but our object is not to be m understood, - we seek only to give the tyro an insight into the principles of composition
2859. It is not our intention to enter further on the variety which fohows the methot designing, of which the foregoing are only intended as hints; but we cannot leave subject without submitting another example for the study of the reader. Our de is that of establishing general principles, whereof fig. 1026. is a more complete ill tration than those that have preceded it. The abbreviated form of the horizontal dispusit is shown at A, and in B it is further extended, and will be found to be very similar to t of No. 15. in fiy. lo21. In the exampie the interaxal divisions are not drawn through

, but it will be immediately seen that the space allotted to the whole width of the rtments is three in number. In the eentre a eireular apartment is introdueed and ared with a dome, which might have been raised, in the vertical combination, anothers y, and thus have added more majesty to the elevation. And here we repeat, that in

Fig. 1026.
designing buildings of more than one story, (for it cannot be too often impressed on the mind of the student), the combination of the vertical with the horizontal distribution wil suggest an intinite varicty of features. which the artist may mould to his fancy, although it must be so restrained as to make it subservient to the rules upon which fitness depends.
2859a. We close this portion of the subject with an example in perspective from Durand The general plan, A, fig. 1026., will be found similar to No. 11 in fig. 1021., and the dis. tiibution may be a good practice for the student to develope. It is an exeellent exampl for exhibiting of what plastic nature are the buildings which the vertical combinations whl adhait as based on those which are horizontal.

Secr. V.

general plinclples of phopolition.

('The following pages of this section were orig'nally compiled by the late Edward Cres for his Encyclopadia of Civil Engineering, publi?hed by Messrs. Longmans, who have nov deemed it preferable to place it in this edition of Gwilt's Encyclopadia of Architecturt as being in every respect a more suitable place for it,) (1867).

That branch of the principles of architceture whieh is most intimately eonnected witl the architect's practice, the proportioning of masses, or the arrangements for the supports 0 an cdifiee, must be the objects of his unwearied study and attention. We shall, therefurt here endeavour to point out, as briefly as possible, the general features whieh in this respec belong to the two oldest divisions, viz. the Greek, and the Roman, architecture.

That part of Greece which lies to the south of Thessaly, near the foot of Mount Othry: is supposed to have contained the capital of Hellen, who left his kingdom to his three sol Aolus. Durus, and Xuthus, the sccond son becoming the founder of the Dorian ace, an the yomgest that of the Ionian.

Architecture can hardly be said to have existed as a seience until the Dorians perfecte that style, which we find in the temples and other buildings seattered throughout the: islands and eountries in the Mediterranean Sca which received Dorie eolonies. Il dwellings of these carly eivilisers of mankind were plain and simple; the laws of Lyourg forbade the use of any carving or decoration, their doors being fashioned only with the sa and their roofs by the axe ; but in their temples and publie edifices, they were encourag to bestow more labour and superior workmanship : the Dorian arehitecture appea never to have undergone any great ehange ; the same style, and almost the same proportion are found in most of the examples that have been spared us.

These people spread a knowledge of the arts of construetion wherever they settled; al we find them at a very early period in the northern distriets of Grcece, under the Olympi. ciain of mountains, in the island of Crete, on the eastern side of the northeru coast, on whiis sitnated the town of Cnossers with its harbours. Heracleum and Apollonia, at whi latter places their religious rites were celebrated. After having overrun Thessaly, they se from thence a colony to the district of Driopis, called the Doric Tripolis, between (E and Pamassus, from the union of the threc eities Bxum, Cytinium, and Erineus, an subsequently, when Acyphas was added, 'retrapolis.

The country next ocenpied by the Doric tribes extended from the river Sperchi beyond CEta to Parnassus and Thermopyla, but the most important of their migratio was that called the Return of the Meraclide. After this period they were for a short tir driven into Attica, where they received protection trom Theseus, and when again settled the Peloponnesus, they sent out colonies to Rhodes, Cnidus, and Cos, led by prinees of t Herachide from Argos and Epidaurus. Another eolony from Trozen was establisied Halicarnassus. The towns whieh composed the Tripolis of Rhodes, together with Cuid Cos, and Halicarnassus, formed the Doric league called Hexapolis, but after the separati of the latter place, Pentapolis: this leaguc met on the Triapian promontory to celebrate 1 rites of Apollo and Ceres. A colony was sent from Lindos to Telos; others from (Nisyrus and Calydna; from Argos to Carpathus, now the island of Scapanta; fr Cuidus to Syme, a town of Asia Minor; from Megara a migration took place, wh settled at Astypalca, one or the Cyelades; and others to Anaphe, Thera, Phalegandr Melos, Myndus, Mylasa, Cryassa, Symada, and Moricum in Phrygia.

The Rhodians fonnded Gagr, and Corydalla in Lycia, on the shores of Asia Mine llaselis on the confines of that country; Pamphylia; and Soli in Cilicia. According Ihucydides, about 713 years before Christ, Antiphemus led a colony from Lindas, : founded the town of Gela in Sicily.

Corinth sent out numerous colonies from Lechæum in the Creseen Gu'f, which founded raeuse about 760 years before Christ; Molycrion, Chalcis, towns of Eolia; Salicum in carnania; Ambracia and Anactorimm in Epirus; Leueadia, now the island of St. aura, which was formerly joined to the continent by a narrow isthmus; Coreyra, on the ast of Epirus; Epidamnus in Macedonia; Apollonia Potidea, with several others.
Isea, an is'and in the Adriatic, was peopled from Syracuse Meg.ra, situated between rinth and Athens on the Sinus Saroncu; after it lecame a part of the territory of the eraclida, sent colonics to Astacns in Bithynia ard Chabcedon, another city in that proace opposite to Byzantiun, Selymbria in Thrace, and Heraclea in Pontus, celebrated - its naval power.

Megara also colonised Mybla in Sisily, famous for its wild thyne and honey, which ople founded Selinus. Sparta founded 'Tarentum about 700 years before Christ, winen one time comprised thirteen tributary cities within its g vernment, and could muster 13,000 foot and 3000 horse.
From Gela, which was colonised from Lindus in the Island of Rhodes, originated rigentum, a place of eonsiderable importance at the time the Cretan Ihalaris obtained e sovereignty; indeed Crete and Ihhodes jointly may be said to be the founders of prigentum.
In following the progress of the Heraclidx along the shores of the Mediterrancan to the llars of Ilercules, we find wherever they settled those beautifil examples of construction masonry which we can never be weary of admiring and studying. 'The temples in the oric style in Sicily are of great beanty, and they may be some years anterior to those now maining in Grecce, but the difference cannot be very great: those at Syracuse and grigentum were constructed from the spoils obtained when Hiero defeated the Carthaginian neral Ilamilear at IIinera, and those at Athens were not bnilt till some time after the fuat of Xerxes; but by some of the historians it is said that both battles were fought on the ne day, that whilst II iero was obtaining lis independence, the Persians were overthrown Salamis. Some time, however, elapsed after these victories before the A thenians and other tes of Greece which had been engaged in the war recovered their prosperous condition; 1 it was not until the time of Periches, which is nearly 50 yeans after the building of the nuples at Agrigentum and Syracuse, that the restoration of the I Parthenon and other blie buildings throughont Greece was undertaken. The temples at Selinus are said to ve been built when the city was founded, 620 years before Christ, and it is asserted they re entirely destroyed when the inhabitants deserted the eity 950 years after its founion : eould this be proved, they would rank among the first erected.
The l'ropylea at Athens was built by Mnesicles in the 85th Olympiad; and a few years erwards, when l'ericles governed, Ictinus completed the Parthenon, and probably the uple of Theseus. The temples at Sunium and Phygalia were also the work of that owned arehiteet, and are deservedly ranked for their proportions and excention among most graceful productions of Greek architecture. The temple of Jupiter Panhellenius ithe Island of Egina was founded by Eacus before the Trojan war, but the ruins we IV admire no doubt may be referred to the time of Pericles.
The source of those beautiful effects which have received the almost instinctive admi1 on of every age and country can only be traced by correct measurement, and a carcful 'ervation of the proportions of the masses, which will almost irresistibly convince us that in t ples and fronts of porticoes one general law prevailed, and was applied to all tetrastyle, I astyle, and octastyle arrangements, based upon the proportion of a cube. This is found t govern most of the designs executed from the time of I'ericles to the death of Alex${ }^{5}$ er, the golden age of Greek art, when sculptors, painters, architccts, and engineers were ced forth to vie with each other in their several branches, and workmen of skill and infuity were found to embody the suggestions of their innagination; and the results would I 1 us to suppose that the acmé of perfection was attained, for since that period none of t productions either in sculpture or arehitecture have equalled those of the Greeks in the sple elegance of their design, or the excellence of their execution.
itrastyle Porticoes with four columns exhibit the simplest, and perhaps the earliest, a lication of the Doric order; the entire façade is comprised within a square, the height big divided irto thrce portions, the upper eonstituting the entablature, and the a r two-thinds being divided equally between the supports and their three intereolumniati s, making the latter a little more than a diameter. We may imagine the square divided it is height and width by 8 , naking altogether 64 compartments of equal area; the upper
8 voted to the pediment will have, when the inclined sides are set out, a diminution of onein their area, four whole squares being rejected in those parts above the pediment, the a. of the tympanum being only equal to four. The entire mass is thus reduced to the a. of 60 of these squares, which are thus disposed of; 20 are given to the supports, - 5 eubes to each column, 20 are divided between the three intercolumniations, a) the remaining 20 eonstitute the load supported; the columus are 5 diameters in 4 hit, and bear no more than their own weight, a due harmony being obtained through-
our ; the eye is satisfied that the load cannot distress its supports, and the spaees between the supporting masses are again proportioned and made equal to either, so that we have a triple division, - one, the perpendicular arrangements of the supports, another their just distribution or equal distances, and the third, the entablature proportioned to the strength that is to carry it, all of which are comprised within the boundary of a square. The tetrastyle porticoes that remain are not numerous, and none are perfect; three have been selected, which will enable us to test the idea we have attempted todefine. First, that at Elcusis, the entire width of which is 20 feet 6 inches, the height 21 feet 6 inches; and if we reject half the height of the pediment we shall have a square: the united diameter of the columns only paries 5 inches in width from those of the intercolum-

Fig. 1027. niations.

If we divide the height into three, rejecting, as already observed, half the pediment, which in this case is 1 foot $1 \frac{1}{2}$ inch, we have for the height of the square 20 feet 4 inches, whilst the entire width is 20 feet 6 inches, a difference not very great : this divided into three, and giving two-thirds to the height of the columns, would make them only 13 feet 6 incles and 8 seconds, whilst they really are 14 feet $2 \frac{1}{2}$ inches in height. In this example the cutir height, which we may call 21 feet $5 \frac{1}{2}$ inches, is divided into three, two parts of whicl constitute the height of the columns.

In the Tenple of Themis at Rhamus, the width is 20 feet 11 inches, and the heigh the same, the diameters of the columns being in excess 3 inches only above the width u the intercolumniations.

In the Doric Portico at Athens, the entire height equals nearly the width.
Hexustyle Porticoes. - The practice of the Dorian architects, in setting out a temple with six columns in front, appears sometimes to have been to divide the width into twelv parts, the height without the pediment being made equal to eight of them; thus formin: a façade within a parallelogram or a square and a half: as the ninth division in height emt the pediment in half, we have thirty-six squares for the entablature or mass supporter being the same quantity found in the six columns and the five intercolumniations; at othc times we find the entire width divided into nine parts, and six given to the height, one, which indicates the pediment, thus rising a ninth: if a circle be deseribed in the tympanun and a horizontal line drawn through the centre, cuting off a twelfth of the height, th remaining $\frac{11}{12}$ being divided into three equal parts, the upper third, or entablature, bein the part supported, the remaining $\frac{2}{3}$ are divided between the colums and their interspaces thins making the columns equal to $\frac{2}{3}$ of the height comprised between the centre of t tympanum and the platform upon which they were placed.
If we take each of these nine parts as 5 feet, we have 45 feet for the width, 30 for $t 1$ leeight, including the 5 feet for the rise of the pediment, which if we divide by the horizonit line, to obtain its true area or quantity, we shall have 2 feet 6 inches for its mean heigh and 6 feet 8 inches for that of the level entablature: for as we have observed, these th dimensions, which make 9 feet 2 inches, must be equal to half the height of the columns, the whole will not be divided into three parts; or, which is the same thing, the height fro the eentre of the pediment must be divided into three parts, and the upper division tak for the entablature. These proportions are exceedingly simple in their application; if were intended that the columns and the spaces between them should be equal, half the wic of the façade, or 22 feet 6 inches, should be distributed among the intercolunniatio and the other half divided among the columns.

The Temple of Theseus at Athens is one of the best preserved as well as the most admir and was probabily erected soon after the Parthenon; it is of Pentelican marble, adori with admirable seuiptures. The total width of its hexastyle portico is 45 feet, and its heeng mstead of 30 , is 31 feet ; the extra foot, which prevents it being an exact square and a hal given to the pedinent, which probably has undergone some change, as it rises much in than the ninth of its whole extent.

Fig. 1028.
hexastyle porticoes.

The height of the pediment is		-	-	-	-	Fert.	In. 9.75
	level cornice	-	-	-	-	1	0.45
	frieze -	-	-	-	-	2	8.55
	architrave	-	-	-	-	2	$8 \cdot 9$
	columins	-	-	-	-	18	$8 \cdot 8$
and of the entire façade			-	-	-	31	0.4
half the pediment the level entablature	-	-	-	Fect 2	$\begin{aligned} & \text { In. } \\ & 10 \cdot 875 \end{aligned}$		
	re	-	-	6	$\cdot 9$		

ig together a dimension nearly equal to half the hoight of the
ns.
efaçade of this beautiful temple is divided equally into three parts; $\frac{1}{3}$ is given to the it ature, and the other two to the columns and their intercolumniations. The outer h ins are 3 feet 4.85 inches in diameter, and all the others 3 feet 3.4 inches. The middle tt lumniation is 5 feet 3.95 inches, the next two each 5 feet 405 inches, and those π ls the angles 4 feet 6.35 inches. The diameters taken together are 20 feet, and the te lumniations 25 feet, so that the columns and their spaces are not in equal proportions: emer would have required a diameter of 3 feet 9 inches, which would have made ier learly five diameters in height, instead of what they are; they would have been heavier, is ue, but more in accordance with the early examples.
I Hexastyle Temples at Rhannus, Sunium, Egina, Eleusis, and Phygalia, are not suffien perfect to enable us to decide whether our prineiples would apply to them : but on le judgment we ean form from their remains, they appear to have been all eomprised a uare and a half, and their entablatures and pediments in the proportion of a third whole.
1 Hexastyle Temple at Segesta in Sicily is suffieiently perfect to enable us to judge of s e re proportions.

Its total length is					Feet. In.	
and height	-	-	-	-	-	76
0						

th whole façade is bounded by a square and a half.

which is exactly onc-half of 31 feet, the height of the columns; so that we have, as far a height is concerned, $\frac{1}{3}$ for the superincumbent mass or entablature, and $\frac{2}{3}$ for the colnmor and their intercolumniations.

		Feet.				
The eolumns have their united diameters	-	-	-37			
The intercolumniations ditto -	-	-	-			
-	39					

so that they are not in exact equality, although the difference is not considerable.
At Agrigentum are the remains of four Hexasty'e Temples.... That of Juno Lucina is witheu its cornice and pediment: the diamcter of the columns is 4 feet 6 inches, and the entis width is 55 feet. The united diameter of the six columns is 26 , and of the five intercolun niations 29 feet.

The Temple of Concord is in width 57 feet, and in height 38 ; or it is comprised with: square and a half.

Thus one-third of the entire height is given to the entablature or mass supported. I united diameter of the columns is 28 feet, and that of the intercolumniations 20 feet, 1 latter being a little in excess.

Temple of Hercules. - The total width is 84 feet, and height 56 , which is a square ant balf.

The united diameter of the columns is 43 feet, and that of the intercolumniations 41 f The height of the entablature and half pediment is in this ease 17 feet 9 inches, insteas 16 feet 9 inches, as it should have been to have equalled half the height of the columns.

Temple of Castor and Pollux is imperfect, but the total width is 45 feet, of which diameters of the six columns occupy 24 feet, and the intercolumniations 21 . The heigh ! the columns is about 20 fect, and that of the entablature 8 feet, as measured on the flit This temple nearly agrees in width with the temple of Theseus at Athens, but its 1 portions vary; there is not sufficient remaining to judge of its entire form.

At Selinus are the remains of five hexastyle temples. In one the total extent is 51 of which the united diameters of the columns occupy 24 , and that of the five it columniations 27 feet. The height of the entablature is about 11 fect, but that of columus and pediments has not been yet ascertained.

The second temple is in width 77 feet 6 inches, the diameters of the columns occup! 3 37 feet, and the five intercolumniations 40 feet 6 inches; the height is 50 fect 8 inche: 0 that the whole façade is included in a parallelogram, having a height not quite eqnis two-thirds its extent, or a square and a half.

which is a foot less than the required height.
In this example there is not an exact eorrespondence between the columns and what 9
support: the entablature and pediment oecupy 13, the intercolumniation 12, and ic
lumus 11 parts out of the whole number, 36 , into which the parallelogram may be supsed to be divided
The third temple is not sufficiently measured to enable us to examine into its proporns ; the total width is 79 feet, of which the united diameters of the six columns occupy feet, and the five intercolumniations 43 feet.
The fourth temple is in width 84 feet 9 inehes, and in height 56 feet 6 inehes or a squar 1 a half.

Thus the heights are in just proportion, one-third being given to the eutablature and liment, and the other two-thirds to the columns and their intermediate spaces, which if in the proportions of 44 feet 9 inches for the columns, and 40 feet for the five interlumniations.
The fifth temple is 81 feet in front, the six columns oceupying 37 feet 8 inches, and the five i reolumniations 43 feet 4 inches. The height of the column is 31 feet, and the entabla${ }_{12} 15$ feet 6 inches, or one-half the height of the column, so that, without the pediment, t entablature in this example would constitute a third; and if the pediment had only risen et 6 inches, to make the general proportion a square and a half, these columns would He had more to sustain than any other example we have yet referred to.
jctastyle Temples. - We will now apply these principles to a façade with eight columns, a endeavour to follow the same system. We have already had a square, and a square
a a half, as the form or figure within which the design was comprised; the portico of fr columns being circumscribed by the one, and that of six by the other; and as in the - style there are double the number of columns contained in the first, a double square is it ired to comprise it, that the same relative proportions may be obtained.

Fig. 1029.
OCTASTVLB PORTICOES.
er the width of the façade is determined, it is divided into sixteen parts, and ten are set out r the height to the top of the tympanum of the pediment; which generally rising a nin of the extent, two divisions will serve to denote it, and if a circle be inseribed in the ${ }^{\text {tym }}$ num, and a horizontal line drawn through the centre, we shall have a parallelogram 16 lares in width, and 9 in height.
§ squares in height will determine the under side of the entablature, which, if divided equy between the colnmns and their intercolumniations, would give 48 squares to each, Whi are precisely the proportions of the example we are about to examine.

The Parthenon or Temple of Minerva at Athens is admitted to have the most beautif proportions of all octastyle Greek examples; its entire width, measured in the front of th oolumns at the base, is 100 feet 9 inches, and its height to the centre of the tympanum, fron the level of the platform on which the columns are placed, 51 feet $2 \frac{1}{2}$ iuches, 20 inches onl beyond what it should be to accord with the rules laid down. Dividing this height int three parts, we have in round numbers 17 feet 1 inch for each: the beight of tl entablature and half pediment is 17 feet, and that of the columns 34 feet 2 inches, precisel one-third of the height bcing devoted to the entablature, the lower two-thirds being divide between these and their intercolumniations; adding all the diameters together, we has 49 feet 6 inehes; the intercolumniations being 51 feet 3 inehes, or only 1 foot 9 inches excess for the latter: hence if a parallelogram or double square be divided into $40 \frac{3}{3}$ squari and $13 \frac{1}{2}$ be given to the eolumns, the same quantities to the intercolumniations, the e tablature and its pediment, we should have the general proportions of the Parthenon, tl differenee before alluded to being too slight to produce any effect on the eye in so large a mas The height to the eentre of the pediment is 51 feet $2 \frac{1}{2}$ inches, eonsequently the width to mal It an exact double square should have been 102 feet 5 inches, instead of 100 feet 9 inche and this difference may have bcen occasioned by the difficulty of setting out the triglypl or from the idea that the width, as measured along the eorona, should have some co sideration, and a mean be established.

As we have before observed that the Parthenon is considered perfect both in its desi and execution, a more detailed account of its construction and mouldings will be the b illustration that can be offered on the subject of Greek masonry, premising that in the pr sent instance it is all of the fincst marble from Pentelicus.

The Doric Column varies considerably in its proportions, some not being more than fo diameters in height, whilst in other examples they are from that to six and a half: the we are now eonsidering are formed of twelve blocks; on the upper and lower bed of ea are deseribed two eircles, the eircumference of the outer being 9 inches from the ed whilst the imer eircle is only 20 inches in diameter. The space between these is 1 polished, but left rough as from the chisel, and a little sunk for the purpose of retaini

a fine mortar or eement. In the eentre of each block is a square hole, measuring 5_{2}^{1} in on each side, sunk 3 inches in depth; in these were inserted pieces of hard wood, 6 in in length, to steady the bloeks, and keep them from being displaeed, particularly at c time the flutes were worked, or the extcrior was undergoing the proeess of poiisi. The outer columns are 6 feet $3 \frac{6}{\pi}$ inches in diamcter at bottom, and the others 6 it $1 \frac{8}{10}$ inch, the upper diamcter of the latter being 4 feet 9_{3}^{3} inches: their total height 1^{4} feet $2 \frac{8}{10}$ inches, or nearly five diameters and a half; the diminution is not regular, t e being at a certain height a swelling or entasis, which improves the outline, and des" that meagreness which is the result of a straight line. The angular eolumn is a little e in diameter, that it may not appear less than the others, which are not so surrou d by air.
The shafts have generally twenty flutes, uniting in an arris, and not with a square ef between them, as in the other orders; they are elliptical in some examples, as at $\mathrm{P}_{\mathrm{w}} \mathrm{n}_{1}$, where thcir number is 16 and 24 ; the heads are variously finished. The eapital on is order varies in its height from $\frac{1}{3}$ to $\frac{2}{3}$ of the lower diameter of the columns, ant he
acus is sometimes more than $\frac{1}{4}$ longer than that width, all these proportions depending ore upon the height of the column than upon its lower diameter.

Under the abacus is the echinus or ovolo, which is beautifully turned, or cut like the 11 or profile of a fiat cup, under which are usually from 3 to 5 annulets. The contoun

crofile of the echinus is a portion of a curve formed by the section of a cone. Where 1 capital is placed on the column is another sinking, and sometimes three; and the true and (cate manner in which these lines are cut gives a charm that more elaborate sculpture fails i tttaining.
Che architrave of the Parthenon, which extends from the centre of one column to that the other, is in three thicknesses, showing two joints on the soffite. The frieze is admirably ' trived not to overload the architrave : the triglyphs are each in a single block, 3 feet e and 2 feet 3 inches in thickness. On each side is a perpendicular groove $1 \frac{1}{2}$ inch (ρ, into which the sculptured metopes are slipped, the clear width between the triglyphs 1 ig 4 feet 3150 inches, and the angular one 3 inches less: at the back of the metopes, and 1 ween the triglyphs, is a hollow space, from 8 to 14 inches deep. The metope is held to t back of the frieze by a metal cramp in the form of an H, 2 feet long, and attached on ${ }^{e}$ e side to the adjoining triglyph by others 17 inches in length. The cornice is in one t kness; the angular block covers two mutules, each of the others one space and a nule. For further particulars of the construction of the Parthenon, and for several d ensions omitted by Stuart, the writer must refer to some notes he added a few years a) his return from A thens to his wife's (Mrs. Cresy) translation of "The Lives of celeb ed Architects, ancient and modern, by Francesco Milizia," 2 vols. 8vo. 1826.
${ }^{2}$ the Doric Order we may trace a reason for the direction given to the several lines, wther perpendicular or horizontal ; and although there is great variety in the form of :t members, yet when examined in detail, nothing will be found to disturb the unity
of the design. The voids are nicely adjusted to the solids, and all those parts, as the columns and triglyphs, intended as supports, are striated perpendicularly, whilst those sup puited are decorated with members and mouldings running horizontally, and indicatint rest or repose. The inclined lines of the pediment are the only exception to this rule, ant they are composed of longitudinal members, placed consistently with their use, viz. that o throwing off the water from the roof: so well-combined a whole, consisting of parts a expressing their utility, deserves our admiration: even the ammulets under the cehimit of the capital indicate so many einetures to bind the tops of the perpendicular flut together, before the elegant tazza or cup-like vase is placed between the shaft and the abacu:

Ionic Proportions. - This style seems very nearly coeval with the Doric : it is supposed l some commentators to be of Achaic origin, by others of Persian; both Greeks a Persians may have contributed to its formation ; the term Ionic was applied to it by Vits vius, from its being first used by the inhabitants of Ionia; the few perfect examples r maining are of the greatest beauty, both in design and execution.

The shores of Asia Minor, in the reign of Medon, the son of Codrus, were taken ph session of by a number of Greeks, who commenced their migration about a thousand ye: before Christ; after they had passed from Λ ttica, they first mixed with the inlabitants Caria and the Leleges. Helen the son of Deucalion, who reigned in Phthia, situated 1 tween the rivers Peneus and Asopus, having left his kinglom to his eldest son, the oth sought for settlements elsewhere: Dorus established limself in the neiglibourlood Parnassus and Xuthus in Attica, where he married the daughter of Erechitheus, the sor reign of Athens, and had by her two sons Achrus and Io.

Io with a number of followers from Athens went into the Peloponnesus and establisl himself at Egialus, a place on the sea-shore lying between Elis and Sicyonia; here married the daughter of Selinuntus, king of that district, at whose death he suceeded his dominions; Io built Helice, and called the inhabitants Ionians. Some time afier was recalled to Athens to command the troops in a war against the Tliracians, over wh he obtained a victory : the Athenians in consequence designated themselves Ionians. Att was divided by Io among four tribes, the Geleontes, the Argades, the Ægieores, and Hopletes, the names of his four sons, or according to Strabo, labourers, artisans, priests, 8 guards.

When Frechtheus died, Cecrops, his eldest son, succeeded, and Xuthuc, his other : was driven out of Attica; in the country he afterwards inhabited he built four tow (Enoe, Marathon, Probalinthus, and Tricorythus, after which he died at Kgialus; his Acherus then passed into Laconia and Thessaly, when he recovered his father's dominio his two sons Archandar and Architeles went into Argos, where they married two dangh: of Danaus, one of the royal family of Argos. The Lacedæmonians and Aigeans w called after Achæus Acheans, until the return of the Heraclidx, when they were driven ' and obliged to flee to Egialus and into Attica, where the Ionians again received them account of their common origin.
Δt the death of Codrus, his youngest son Nileus embarked with all the Ionians Asia, where they occupied eight of the Ionian eities, viz. Miletus, Ephesus, Myns, T Priene, Lebedos, Erythra, and Clazomene ; the other four founded ly the Ionians n Colophon, Phocra, Samos, and Chios. The Ionians formed themselves into twelve st: because, according te Herodotus, they were previously so divided ia the Pelopcnuesus; names of the cities from whenee they were ejected were P'ellene near Sieyon, Eigira Agax, Bura, Melice, Egium, Rypre, Patra, Plare, Olenus, Dyme and Tritaa, the being an island.

The inhabitants of Athens who migrated from the Irytaneum were the most n
nong the Ionians, though all who celebrated the Aplurian festival, from whieh alone the phesian and Colophonians were excluded, were afterwards called Ionians.
The appellations Doric, Ionic, and Corinthian are derived from Yitruvius: but it apears doubtful whether these terms were current among the Greeks: that author serts that the first is the most ancient ; "for Dorus, the son of Hellen, and the nymph rseis, built the temple of Juno at Argos of this order when he reigned over the whole of chaia and Peloponnesus: that many temples afterwards erected throughout Greece were the Doric order, but by command of the Delphic oracte in a general assembly of the ifferent states of Greece, thirteen colonies were sent into Asia, who built the cities efore mentioned, and erected temples; among the first they dedicated was one to Apollo anionios, having Doric proportions, and another to Diana, in which some variatiens was ade. The first was of a masculine proportion, the other feminine, and the latter was the vention of the Ionian settlers, and afterwards ealled from them Ionic.
But if it be difficult to traee the Ionie order to its origin, we may analyse its proportions, id compare them with that order which prevailed so universally in Greeee, which will ad us to remark that a very great ehange took place when the rules that guided the oric builders were laid aside : at no other period were such material alterations made in eproportions of the masses, the columns, entablatures, and intercolumniations; to the orinthian, so universally used in later times ly the Romans, the feminine proportions ere applied which are stated by Vitruvius to have eommenced with the Ionians.
There is of course much fable in all the accounts that have reached us upon these imporut changes, but among them is one which seems to carry with it some semblance of trutil, id which is as foilows:-"when Hermogenes was employed to erect the temple of acchus at Teos, according to Vitruvius, the marble was prepared for one in the Doric yle ; but the architect changed his mind, from the idea that other proportions. afterwards Hed Ionic, were more suitable for the purpose, almost inducing the inference that Hermones was the iuventor of those delicate proportions; he appears unquestionably to have dis. ayed great skill and ingenuity in all his designs, and to have entertained the opinion that cred buildings should not be constructed with Dorie proportions, as they obliged the option of false and incongruous arrangements."
To obtain more delicate proportions, without sacrificing the great principle of making the ight supported equal to its supports, would seem at first difficult: in the example of e Doric order we have seen this practice universally adopted, and it is equally pvident the Ionic, though not exactly after the same method; the eolumns and their entablatures, what they carry, agree in quantity, but their distribution is different. The square or ure which bounds the Ionic façade is divided into four parts, one of which is given to the tablature, a seeond to the columns, and the other two, or one half, are distributed among e intercolumniations.
In the quantity of material for constructing the two varieties of temples there is a conerable difference, the Dorie requiring one-third more than the Ionic ; for example, in a ric tetrastyle portico where the area was 12 , four parts would be given to the entablature, ir to the columns, and four to the intereolumniations. In the Ionic three parts would be uired for the entablatures, and three for the columns, six being allowed for the interumniations; thus one temple would have eight, and the other six parts solid out of slve, consequently, with a given quantity of materials, two very different portieoes ght be built, without making any change in the proportions wnieh the columus r to their entablatures. Hermogenes eould construct with the same material a much rer temple in the Ionic style than in the Doric ; and supposing the dimensions already ided upon, there would be a saving of labour and material: from the imperfect e of the Ionie temples remaining, it is scarcely possible to enter into a thorough examiion of their proportions; that on the Ilissus at Athens, measured by Stuart, no longer its, but its dimensions, given by that very accurate delineator, may serve our purpose in example of a tetrastyle portico. Its entire width was 18 feet $7 \frac{3}{3}$ inches, and height he top of the level cornice in front 18 feet $4 \frac{\pi}{4}$ inehes, to whieh must be added that of tympanum of the pediment : multiplying the width ly the height of the entablature and fhe pediment, whieh togetlee is 5 feet 7 inches and 10 parts, we have for the area of portions supported 105 feet 4 inches and 9 parts: the quantity eontained in the four amns is found by multiplying their united diameters, 7 feet 1 inch and 7 parts, with r height, 14 feet 9 inches and 4 parts, giving a produet of 105 feet 4 inches and 9 parts heir area. The united intercolumniations in this example are 11 feet 6 inches and 2 Its, which multiplied by the height of the columns is 170 feet 1 inch and 9 parts for the ${ }^{3} 1$; 40 feet 7 inches and 9 parts less than it would have been had it cqualled the quantity ctained in the columns and their entablature, or been one-half the entire area of the facade. Che portico of this elegant example of Ionic was nearly a square without the pediment, the supports and supported are in exact accordance as to quantity, whilst the interImniations are about 1_{4}^{3} times the quantity eontained in the columns, instead of ble. Departing a little from the proportions before us, let us endeavour to set out a

portico, as already done for the Doric order, having the same number of columns, and the tetrastyle eustyle of Vitruvius, divide each side of the square which eircumscribe into $11 \frac{1}{2}$ parts, premising that the pediment rises a ninth and one side of the square pa through its centre. The side of the square being divided into $11 \frac{1}{2}$ parts, 1 is given to diameter of the columns, 3 parts to the middle intercolumniation, and $2 \frac{1}{4}$ to each of others; thus the sites for the columus are obtained : dividing the upright sides of square into the same number of parts, $8 \frac{1}{2}$ are given to the height of the column, and remaining 3 to the entablature and half pediment.

Multiplying $11 \frac{1}{2}$ by the same, we have for the entire area 1321, which if divided into 33 and a fraction for the columns, the same for the entablatures, and double that the intercolumniations: the columns being four in number and $8 \frac{1}{2}$ diameters in hei their area will be 34 pats; the intercolumniations being $7 \frac{1}{2}$ in their united width, multiplied by $8 \frac{1}{2}$, their height, gives $63 \frac{3}{\frac{3}{7}}$ for their area, and the entablature beng 31 and $11 \frac{1}{2}$ in width, we have for its contents $34 \frac{1}{2}$ parts, giving a result of nearly a fo 1 for the entablature as well as for the columns, and a half for the intercolumniations. making some allowance for the diminution of the columns, an exact agreement betm the quantities might be obtained; those in the intercolumniations would then be to equal to those in the cntablature and is supports, or half the entire square devoted to : 1 and the other half to voids: had the columns of the temple on the Ilissus been about I inch 8 in diameter, its proportions would have been in close accordance with those of the fig : where the 4 columns occupy 38 squares, the entablature the same number, and the is columniations 76.

Ionic Hexastyle. Temple of Erechtheus at Athens.-This highly-enriched example, exec d in the finest marble, is in height without the pediment 26 feet $6 \frac{3}{3}$ inches, and in w measured along the front of the corona, 40 feet 6 inches, so that this portion is comp within a square and a halt or nearly so : the lower diameter of the columns is 2 fer inches, and the upper 1 foot $11 \frac{0}{10}$ inches, giving a mean of 2 fect $\frac{15}{\frac{5}{5}}$ inches; their coll it diameters are 12 feet 9 inches, whilst that of the intercolumniations at the same level 3 feet $1 \frac{5}{5}$ inches, nearly double the space occupied by the columns. The height of thi tablature without the pediment is 4 feet $11 \frac{1}{3}$ inches, and its superficial content on the 190 feet, and adding 85 feet for the area of the tympanum, we have altogether $2^{-5} .5$:

1pposing the tympanum to rise a ninth of its base; the height of the columns is 21 feet inches, and their united mean diameter 12 fcet 9 inches, which being multiplicd together oduce 275 fect 8 inches, or nearly equivalent to the area of the mass they support. To stain the exact quantity of mass and void, the mean diametcrs of the columns as well of the intercolumniations should be taken; the greater the probable dclicacy of exution, the greater is the necessity for the arehitect to balance his quantities exactly. In e subject now under consideration the whole is comprised within a square and a half; the pports and the entablature are equal, and the intercolumniatiors as much as the two tother or one-half the whole. The height of the architrave is 2 feet 1_{100}^{500} inches; that the frieze 1 foot $11 \frac{3}{4}$ inches, and the level part of the cornice $10 \frac{45}{400}$ inches.
Roman Tetrastyle. Ionic Temple of Fortuna Virilis.-The width is 33 feet 6 inches, and ight, including half the pediment, 37 feet 1 inch, comprising an area of 1242 feet 4 inches, equarter of which, $\$ 13$ feet 1 inch, nearly agrees with the quantity contained in the tablature as well as in the columns which support it ; their height is 27 feet, and their ited diameters 12 feet 4 inches, which multiplied together produce 333 feet for the area of : supports. The heiglt of the entablature with half the pediment is 10 feet 1 inch : this Iltiplied by its width, 33 feet 6 inches, gives 337 feet 10 inches for the area of that supported: intercolumniations are together 21 feet 2 inches, which multiplicd by their height, 27 feet, es 571 feet 6 inches for their area, about 100 feet less than the quantity comprised in columns and entablature.
Without the pediment this façade is nearly square; its proportions rank very high in estimation of all admirers of Roman architecture ; it has, however, undergone many reations before the stucco was put upon the columns; they were lighter, as was the entabire, the upper members of the cornice being somewhat heavier than is usual in the ly examples of this order; if divested of these additions, and giving a triffe more to the i) reolumuiations, we shall obtain half the area for the columns, and a quarter for each of other divisions; at present the columns equal in quantity the mass they carry.
f it be required to draw a tetrastyle portico in exact accordance with the rules laid fon, after forming the square each side should be divided into 12 parts, or 144 squares, a inged like those of an abacus: one of these divisions on the base would become the diaer of the column, and nine their height, the other eight on the base would be devoted to t intercolumniations, and the upper three of the height to thic entablature. The columns, 9 - neters in height, would thus comprise 36 squares, the intercolumniations 72 , and the e blature and half pediment 36 ; consequently the columns and entablature would be e al in quantity, and the intercolumniations half the whole, or equal to the contents of t. supports and supported.

Roman Hexastyle. Corinthiun, Maison Carrée at Nismes. - This beautiful temple has u erg one scveral restorations; its entire width and height to the apex of the pediment is 4 eet 8 inches, from whence it has derived its same. The height of the columns, inelud-
ing base and capital, is 29 feet 6 inches, that of the entablature 6 feet 9 inches, and of the pediment 7 fect 5 inches; taking away half the height of the pediment, we have 39 feet 11 inches and 6 parts, which may be considered as 40 feet; this multiplicd by the width produces for the entire area 1746 feet 8 inches. The superficial content of pediment ane entablature, 456 feet 8 inches, is obtained by multiplying the entire width by 10 feet $5 ;$ inches, the beight of the entablature and half the pediment, which superficies is only 20 fec 2 inches more than a quarter of the whole. The united diameter of the six columns is 17 feet 6 incher, and that of the intercolumniations 26 feet 2 inehes, so that they are it the proportions to each other of 2 and 3 , the whole being 5 , one having an arca of 515 feet 9 inches, the other 772 feet; when added together they are nearly threc times the area of the part supported.

The proportion betwecn the columns and intercolumniations of the temple at A ssissi is also similar, the height of the columns is 32 feet 10 inches, and the total width of the sis 52 feet, which dimensions multiplied together produce 1707 feet 4 inches, one-fifth being 341 fect 6 inches nearly.

The area of the columns is 684 feet, and that of the intercolumniations 1023 feet 4 incles giving a proportion of two-fifths and three-fifths. The entablature, pediment, and pedestal. upon which the columns are placed seem to have undergone a change since their erection If the whole extent of an hexastyle portico be divided into 18 parts, and one be called the diameter, to obtain the same proportions as those laid down for a tetrastyle portico, the heigh up to the centre of the pediment must include 12 only of those parts, which would give : portico of a square and a half, comprising 216 squares; the 6 columns, each 9 diameter: in height, would require 54 ; the 5 intercolumniations, double that number, or 108 , and thi entablature and half pediment 54 .

Roman Octastyle. - The Pantheon at Rome, which has a portico of 8 columns, is one o the best examples that can be selected foo examination. The total wilth is 109 feet ? inches; the diameters of the eight columns 39 feet 5 inchas, and the seven intercolummia tions 70 feet 5 inches, or nearly in the proportion of 1 to 2 . The height of the columusi 46 feet 5 inches, and that of the entablature and half pediment 23 feet $2 \frac{1}{2}$ inches, togethe 69 fert $7 \frac{1}{2}$ inches, nearly a square and a half, the area of which is 7647 fect 2 inches

Fig. 1041.
octastyle portico of the pantileon.
The united diameter of the columns, 39 feet 5 inches, multiplicd by their height, gis 1829 feet 7 inches, and the collected intercolumniations multiplied by the same height " be 3268 fect 6 inches: multiplying 109 fect 10 inches by 29 feet 21 inches, we obtain $\{$ the area of the entablature and pedinent 2549 feet, which, rejecting parts of an inch, w when added to the two other calculations, make up a sum agreeing with the entire area.

The supported is		- -	$\begin{aligned} & \text { Feet. } \\ & 2549 \end{aligned}$
The area of columns	-	1829.7)	5098
of intercolumniations		$3268 \cdot 6$	5098
Togethe-			7647

A line drawn through the eentre of the pediment, another at half the height of the columns, and a third under the entablature, would divide the height into three equal portions, proving that, in this example, the Romans made the part supported onethird of the whole, and divided the other two between the columns and their intercolumniations. The shaft of each column is cut out of a single block of granite; they are not sufieiently delieate to be exactly in the proportion of half the quantity contained in the .ntercolumniations; but if allowance be made for their diminution, the difference is not very great. The whole width being 109 feet 10 inches, the third, 36 feet 7 inches and 4 rarts, is nearly a mean between the eolleeted diameters of the top and bottom of the shaft, naking the intercolumniations double the quantity contained in the supports, or equal to hat of the supports added to the mass they carry. The whole would then be divided into our, as in the previous examples of the Ionic, and two portions given to the intercolumniations.
The Pantheon Portieo is a double square without the pediment, or nearly so, the length of the level cornice, which crowns the entablature, being double the height of the order: his, no doult, was the outline of the proportions before the heavy pediment was placed tpon it, which in all probability was heightened beyond the ordinary rise of a ninth, for he purpose of concealing the wall behind it. The Roman proportions are frequently ade indcpendently of the pediment; the tetrastyle porticoes are a square, the hexastylc a quare and a half, and the octastyle, as in this instance, a double square without it.
To set out an oetastyle portico, in which half the pediment should be comprised within he double square, after dividing the width into 24 and the height into 12 , which multilied produce 288 squares, 72 are given to the column, the same to the entablature ana alf pediment, and double that, or 144. to the intercolumnations, or proportions similar to lose laid down for the tetrastyle and hexastyle porticocs. The columns in such a case ould be nine diameters in height, the entablature and half pediment three: supposing the itter to rise a ninth of the span, the remainder would be distributed among architrave, ieze, and cornice.
We have endeavoured to show the proportions refuired in a tetrastyle, hexastyle, and ctastyle portico among the Dorians, the Ionians, and their followers the Romans: the puare and a half, or the double square, were the outlines or boundary figures from whence e other proportions were deduced.
The great difference of character in the Dorie and Ionic designs arises from the distance which the columns are placed, which affects the proportions of the entablature laid on them, as well as that of the columns themselves; where these are six diametcrs in ight or consist of six eubes, they are made to carry the same quantity, whatever may be eir distance apart, and where drawn out to nine diameters, they have only their own sight to support ; but the form given to this weight, or the proportions of architrave, fricze. d cornice, vary, as the intercolumniations are of one or more diameters.
It has been too generally considered that the orders derived their proportions from the wer diameter of the columns, without reference to their application: this has produced a riety of design, but at the same time occasioned a great departure from the true principles, d led to very important errors. The Tuscan, the Dorie, the Ionic, the Corinthian, and mposite orders have been laid down in modules or measures of various kinds, which the ung architect has adopted as mere isolations, regardless of the many other considerations ich have stamped beauty on his model ; hence we have imitations, but soul is wanting.
The Doric order is treated of as so many diameters in height according to its age, and the ablature is said to be heavy or light, as it was of early or late execution; the other lers have been chronicled in a similar manner, and architecture has been fettered, and its at prineiples lost, or at least neglected : it is true that the outline which bounds the ure has undergone but few elanges, but the subordinate parts or the filling-in are sustible of interminable variety. An objcct inscribed within a circle is perhaps the st easily compassed by the eye, next that within the square, and when a building vast, and distance is neeessary to comprise a view of the whole, the double square; ond this the ancients seem scldom to have gone for the proportions of their façades, or a portico intended to be seen in front. After the masses were proportioned, their deations were more various than the buildings themselves; no two are perfectly alike, the great difference is in their ornaments and cnrichments, or in the number of diameters tained in the height of the columns.
The Parthenon and Pantheon poitieoes are both octastyle, each admitted to be as beau1 as they can be-one the perfection of sober grandeur, the other of cheerful lightitness; Greek Doric, the other Corinthian, both comprised within a double square, and having tir columns equal in quantity to the mass of entablature they support: where, then, is the erence between the two examples? It results, as we have already seen, from the matein the one occupying two-thirds, and in the other only half the cntire area. In façade of the Parthenon the eye has one-third void only to contrast with the solid ter, and in the Pantheon half, which proportions secm to have been established by the ians, and usually adopted by the Romans.

In proportioning the arehitrave, frieze, and eorniec, eare must be taken that no more is laid upon the columns than their own bulk: when the latter are one diameter apart, this quantity will be greater in height than when they are further distant; so that the greater the intercolumniation, the lighter in appearance will be the entablature, the eolumns still bearing the same weight, nor need they be inereased after it is ascertained that they are competent to their duty: to do so would be to employ material in excess, whieh it should be the aim of an architect to avoid.

If we now examine the portico of the Pantheon, we eannot fail to perceive the agreement existing between the parts supported and their supports.

which leaves little more than 100 cubical fect of difference between one and the other; and if the crown moulding returned on the flank be eomprised, the quantity contained in the entablature would equal that of tinc eight columns.

The pediment is omitted altogether in this calculation, it being in reality, though not in appearance, an additional load for the eight columns beyond their reguiar entablature, which is of marble, and weighs probably 452 tons; the granite solumns with their marble bases and eapitals are something more than that quantity, and these, including the entablature and pediment, probably eontain upwards of 1000 tons of material.

The Capitals of the Columns of the Panthem are admitted to rank among the best examples found in Rome: though not so highly and elaborately worked as those which decorate the columns of the temple of (Jupiter Stator) the Dicscuri, yet they are remarkable for the

egant arrangement of the ornaments: further details will be found in Taylor \& resy's Architectural Antiquities of Rome, whence the details here given have been selected

Fig. 1013.

Fis. 104.

Fig 1045.
Capitals of pantheon.

lthough the Romens aid not improve the arts which the Greeks had spread among ${ }^{1}$) u, by the introduction of the areh they materially altered the character of the archiWure pratised before the time of the Republic: this feature alone produced entirely
different eonstruetion, and the several ehanges it has simee undergone in form have serve 1 to establish a variety of styles, as we shall atterwards find.

Sewers, aqueduets, bridges, theatres, amphitheatres, baths and triumphal arehes, all exhibit the areh in its most useful application, and as did the halls of the baths vaulting of stupendous span; the dome of the Pantheon being 142 feet 6 inches in diameter in. ternally, eovered by a hemispherieal dome.

Symmetry, as understood by Vitruvius, seems to relate more to the proportions of the façade than to those of the detail; but he doubtless intended it to be understood that

Fig. 1048.
archifay, in the " songe de holiphile."
perfect harmony should subsist between them as well as between eaeh partieular member however subordinate; as in the well-formed human figure, all the limbs being in due pre portion, the whole when eombined produees true symmetry : and the same author insists ver strenuously on a careful study of the rules upon which this is founded, proving that thi effect desired cannot be produced by a mere effort of fancy, or what is commonly calle. taste.

A building, though entirely devoid of ornament, may be rendered beautiful by the ustness of its proportion, and the richest edifice wanting in this never can excite admiraion: façades having but height and breadth, these two dimensions must be equal to eaeh ther, if we adopt the symmetrieal proportions preseribed by Vitruvius, for he observes - the square ineludes the human figure either lying down or standing in an erect posture, he arms being stretched out." Temples, triumphal arches, and other buildings left us by he Grceks and Romans were deeidedly designed upon this prineiple, as were most of the degades of the religious structures ereeted sinee the fall of the Roman empire.
In the "Songe de Poliphile," originally published in Italian by Aldus in the year 1499, re some observations on setting out a façade, which convey some idea of the principles ddopted for the formation of a perfect and harmonious design on the revival of Roman architeeture.

- Draw a square figure, divided by thrce perpendieular and three horizontal lines, at qual distances from eaeh other, forming sixteen squares; on the top of the square add a ralf square, whieh, similarly divided, makes altogether twenty-four squares: in the lower quare draw two diagonals, crossing eight squares in the same manner; then form a lozenge bove the great square, traeing within it four lines on the four principal points that separate he four sides of the void."
After understanding this figure, I thought within myself what can modern architcets do, tho esteem themsel ves so learned without letters or prineiples? They neither know rules or dimensions, and therefore corrupt and deform all sorts of buildings, both public and rivate, despising nature, who teaehes them to do well if they would imitate her: ood workmen, besides their science, may enrieh their work either by adding to or diminishing herefrom, the better to please the cye, but the mass should remain entirc, with whieh alt hould be made to harmonise. By the mass is understood the body of the edifice, whieh, ithout any ornament, shows the knowledge and spirit of the master, for it is easy to mbelish after any invention ; the distribution and arraugement of the parts is also a matter consideration; hence we may conelude that any workmen or their apprentices know ow to ornament a work, but to invent lies only in the heads of the wise.
Taking from the square and a half, the lozenge and the diagonal lines leaves the three arpendieular and the three horizontal, except that in the middle, whieh terminates in the entre of the perpendieular, cutting it into four parts or portions; by this rule will be found vo perfect squares, one above and one below, eaeh containing fonr small squares, whieh rm the opening or doorway; now if you take the diagonal of the lower square, it will show ou what thickness must be given to the centre of the portico ; if you carry it straight, the re will serve to denote the arehitrave: and the point of the centre of the upper square itl show you the eentre of the arch or curve to be given to the door ; turning a semicirele will rest on the transverse line, whieh euts the square and a half into two equal parts; but done by any other means 1 do not esteem it perfect. This method was invented by anent and expert masons, and observed in their arches and vaults, to give them both grace d solidity; the pedestal on whieh the columns rest commences at the level of the pareent by a plinth, and the whole is a foot high, furnished with mouldings; one portion divided into arehitrave, frieze, and eorniee, the latter being something more than the hers; that is to say, if the arehitrave and frieze contained five parts, the corniee slonuld six. The whole twenty-four squares form a square and a half; then divide the upper If into six parts by five horizontal and five perpendicular lines, and draw a line from the itre of the fifth transverse to the eorner of the great perfect square, where the arehitrave nmenees; then draw it perpendicular on the key of the arehivolt, and it will show you ? height to be given to the frontispiece above, the extremities of which should unite and ate to the projection of the eymatium and its mouldings.
General Principles.-It would appear that all the principal Roman triumphal arches with gle openings were a square, either comprising or excluding their atties: that the centre in whence the arebivolt was struek was the centre of the square, or if the façade was re than a square, as the areh of Trajan at Ancona, then where the two diagonals crossed centre was fixed. The width of the opening is generally half the entire extent, someies three paris out of seven.
These triumphal arehes were generally surmounted by a group of figures, or the ear and 1 ses of the conqueror, accompanied by his companions in arms and the trophies obtained In the enemy; these, as shown on several medals, appear to be equal in height to $\frac{1}{3}$ of t entire edifice upon whieh they are placed, the attic and entablature representing. $\frac{1}{3}$, and t columns and pedestals the other $\frac{2}{3}$; and as the former are nearly equal in their height, it fows that the horse and his rider, or the car and its triumphant hero, were double the tht of the pedestal on whieh they were placed, for so we may consider the attic 5 eh eontained the inscription, the body of the arch being a perfect square, and in correct Fportion, without the attie. The depths of these arehes varied; that of Constantine at I ne is nearly the same as the widtli of the great centre opening; many of the o rs are less than that proportion; but it seems that the eube was the measure that
bounded the proportions, as shown in fig. 10;3. The several Roman examples selected differ in arrangement, but not in principle, from the description given by Poliphile: take away the pedestals on which the columns are placed, and then four squares in height include half the tympanum, and eighteen squares the entire figure, 6 of which may be considered as devoted to the arch, and the other 12 to supports: or, if we comprise the whole façade in 20 squares, and abstract the 8 which belong to the opening between the pedestals, we have 4 for each pier or support, and 4 for the en-

Fic. 1043.
arch or augustus at mimini. tablature, the supported being only $\frac{1}{2}$ the quantity contained in the two supports: resistance to the arch, or its thrust, requires a different arrangement from that of a portico, but wr nevertheless find definite proportions made use of, and a double quantity given to masse which have to bear weight as well as resist thrust.

The Arch of Augustus at Rimini has the height of its order determined by the lengt of the frieze.

The Arch of Augustus at Aosta resembles that of Titus in arrangement; it is a perfec square comprising the attic.

The Arch of Sergius at Pold is a perfect square, without attic, like that of Titus.

The Arch of Titus at Rome, raised by the senate and Roman people to eommemorate the conquest of Judxa, is one of the best examples of proportion that remain: built of white narble, it is a monument ff constrnetive art, some of the bloeks being 9 feet quare, and 2 feet thiek; the rch is eomposed of eleven onssoirs 16 feet deep. or a detailed aceount if its construetion and orament the reader is rearred to the "Arehiteetural intiquities of Rome."
The proportions are a quare, as is the opening f the archway, up to the oringing; and not a double hare, as described by ertho. The pedestals are 1 lieight nearly half the pening of the arehway, hich Palladio observes as the ordinary proportion
 ven by the ancients. The entire length of the upper member of the cornice in this ample is 48 feet, which dimension corresponds with the entire height, almost to a fraetion: a width of the opening is 17 feet 6 inches, a trifle more than one-third of the entire width : uading the façade by a parallelogram, excheding the attic, and drawing two diagonals, obtain the centre from which the arch is struek, which rule will apply to the other

Fig. 103:. ALCL OF TJTES, AT ROME.
triumphal arehes with a single opening, though varying materially from the principles laid down by Poliphile, and adopted by Serlio and other arehitects at the revival of Italiat arehiteeture. The Areh of Titus is a square comprising its entire façade; that of Poliphile a square up to the under side of the entablature; consequently, the opening of the triumphal way is in width half the height to the top of the impost upon which the arehivolt rests, while in the more aneient the entire aperture without the areh is a square.

In the Areh of Poliphile the entablature and pediments are nearly equal in quantity to each of the piers upon whiet. they are earried; and the piers themselves are in width only one quarter of the whole breadth of the façade: it will be found, however, that nearly the same proportions exist between supports and supported in both examples.

The Arch of Augustus at Susu has a single arch: proportion a square to the top of the entabla-

Fig. 1053.
arch of augustus at susa.
ture, opening a square to the springing: width divided into four, two given to the openi and one to caeh pier, whieh has a three-quarter column at the angle: attic as high as pi are wide.

In arehes with three openings, as those of Septimus Severus and Constantine, thi

Fig. 1054.
AREL OF SEPTIMES SHYERUS, AT ROME.
sury on-latf the width, and the piers the other: where the diagonals of the figure oss is the centre, from which the principal arch is struck.
The Ario if Trajan at Beneventum. - Circle struck from the eentre whieh deseribes the chivolt ; comprises all within it exeept the attie: division of width into seven, two for cact er, three for eentre ; attic half the height of the order.

Fis. 1055
arch of trajan at meneventem.
In the foregoing examples, we have attempted to show that the beauty which belongs form in architecture rests upon one principle based on the laws of nature, and that the t element in a good design is the proportion of the parts as well as the whole: nothing more inisled the eritics upon this subject, as well as architects themselves, than imcitly following the rules laid down for drawing the orders. In treating upon the ique, they have frequently been right as far as regards the letter, but essentially wrong the spirit. The laws of nature do not vary, nor do our organs of sense or pereeption, I what was apparently fit and proper in the opinions of the Greeks is equally so at the sent day: in their seulptures we never find a man represented earrying more than his in weight, and sueh laws ought to be our guide.
Ifter the destruction of the Roman empire, the charaeter impressed upon arehitecture if the Greeks was lost: other styles arose in suecession, which have been designated as zantine, Romanesque, Lombardie, Saxon, Norman, Saraeenic, and Pointed. The five It retained the semicircular arch, and only differed in the quantity of material emiyed: for examples of the three first-mentioned we must refer to a work entitled rchitecture of the Middle Ages at Pisa," by Edward Cresy and G. L. Taylor, eontainirg isurements made in 1817.

CHAP. III.

MEDIEVAL ARCHITECTURE.

Sect. I.

THE STYLE IN GENERAL.

The question that first naturally arises is, What is Gothie or Medixval architerture Although Rickman, in his essay mentioned on page 971 , gave a sketch in which he wisho to show the differences betwcen Classic and Gothie architeeture, the first real attempt defining the character of Medizval art seems to have been made by the late A. W. Pugi who, in his True Principles of Pointed or Christian Architecture, 1841, enuneiated the fo lowing principles, which have formed the keynote for the various works and lectures the subjeet since written and delivered:-

1. 'There should be no features about a building which are not necessary for convenienc construction, or propriety. 11. All ornament should consist of enrichment of the essenti construction of the building. III. The smallest detail should have a meaning or serve purpose. IV. The construction itself should vary with the material employed. V. 'I devign should be adapted to the material in which it is executed. VI. Pointed archit ture does not conceal her construction. but beautifies it. VII. Plaster, when usell any other purpose than coating walls, is a mere modern deception. VIlI. A flat rool contrary to the spirit of the style. IX. A splayed form is necessary for piers, arch basumoulds, stings, and copings. X. All mouldings of jambs are invariably sunk fr the face of the work. XI. Large stones destroy proportion. XII. The jointilly masonry should not appear to be a regular feature. XIII. A joint in traccry sho always be cut to the centre of the curve where it falls. XIV. The external and inter appearange of an edifice shonld be illustrative of, and in accordance with, the purpose which it is destined. XV . It is a de'ect to make the two sides of a design correspond if their purposes differ. XVI. The pieturesque effect of the ancient buildings rest fiom the ingenious methods by which the old builders overcame local and construs difficuities. XVIl. The elevation should be subservient to the plan. XVIII. Det are multiplied with the increased seale of the building.

These principles, with the addition of the sulject mentioned in the next paragra scan to form the creed of the most advanced foreign archæologists, such as M. Vidle Due, for the eonsideration of the spirit of the style has been neglected in favour of an vestigation of details by French and German writers on arehitecture.
" Internal altitude," writes P'ugin in the same work (p .66 .), "is a feature which wc add greatly to the effect of many of our fine English churches, and I shatl ever adro its ir troduction, as it is a characteristic of foreign pointed architecture of which we cana! ourselves without violating the principles of our own peculiar style of English Clris architecture, from which 1 would not depart in this country on any account. I once s. 1 on the very edge of a precipice in this respect, from which I was rescued by the adrice arguments of iny respected and reseed firiend Dr. Rock, to whose learned researclice 1 obsen cations on Christian antiquities I am highly ind bted and to whom I feel it a bou duty to make this puhlic acknowledgment of the great berefit I have received frons advice. Captivated by the beauties of foreign pointed architecture, 1 was on thr ic of departing from the severity of our English style, and engrafting portions of for 1 detail and arrangement. 'This I feel convinced would have been a failure; for alth the great principles of Christian architeeture were everywhere the same, each country d some peculiay manner of developing them, and we should continue working in the !e parallel lines, all contributing to the grand whole of Catholie ant, but by the very va y increasing its beauties and its interest."

This author claimed for pointed architecture the merit of its having been the only io of art in which the "prineiples" had been earried out, and is supported, with some re" itions, by Viollet le Due. Our space is too limited to discuss that assertion ; the student "10 desires to investigate the subject must refer to Pugin's publication for his argument must guard againt being captivated by the one-sided illustrations given as "cont For an assertion of the same general principles in regard of Classie and Modern archite ${ }^{\text {L }}$, the reader is referted to the chapter on Beauty in Architecture, in the present ak
r. 2492 , et seq.), written, we are inelined to consider, before the publication of Pugin's positions.
1 more strictly architectural definition of the term Gothic archifecture las becn deduecd I the writings of various investigators, as beiag that combination of art and science in Iding which followed the adoption, during the middle ages, of broken archics for vaults, nings, and ornaments, in licu of the previously existing arches of continuous lines.
term Gothe arehitccture, according to such writers, does not acknowledge as its timate productions any structures that are point vaulted and point arched, point - Ited but not arched, point arehed but not vaulted, or neither arched nor vanlted, unless Iv conform to rules approved by the builders in north-western Europe (and especially i England) during the middle ages. These regulations are, in effect, nine :-I. Dayt must not fall upon any apparently horizontal plane surfuce, however small, except ements, steps, seats, and tables. II. Every arch must be moulded within a chamfer, t least be chamfercd. III. Excry impost must follow the plan of the arch or arches ch it receives. IV. Every pillar must be an assemblage of juxtaposed shafts or mould-
V. Every pier must be polygonal, or at least circular in plan. VI. Every base must , w the plan of the pillar or pier to which it belongs, or at least be either polygonal ferahly octagoaal), or cylindrical if under :s shaft. V'lI. All decora'ion must be worked in the plane of the walling to which it belongs, except in the cases of bases, bands, ital, cornices, copings, and dripstones. VIII. Roofs of high pitch and fying buttresses, es, and pinnacles, tracery and foliation, are incidental, rather than peculiar, features. The comtinuous arch may be exceptionally employed when it, with the rest of the ding in which it occurs, exhibits submission to the preceding regulations.
hicse regulations were observed to the north of the Loire and of the Alps, which was seat of what may be designated original Gothic. South of those boundaries we have eal with what may be designated imitatire Gothir, to which, as a matter of course, ends itself one of the two divisions, Christian and Mahomedan, of Pointed art. We it for granted that the reader is already convinced that the Romanesque and Byzanperfect developments of Roman construction do not become transitional to original ritative Gothir architecture merely by the introduction of the pointed arch as a mere 1, independent of the regulations above enumerated. On the contrary, they become styles, with their own periods of transition and development; which, by those writers do not feel that the architecture of the Mahomedans has been as consistent as that of 1 western Europe, are at present considered as mere solecisms, deserving to have the lets of pointed Romanesque and pointed Byzantine given to them.
hese regulations, therefore, define the difference between Gothic and Pointed architec-
They exclude from the title of Gothic those branches of the transition from Roesque art which, in Germany, Italy, and the Spanish peninsula, were, whatever the

1 readers who are desirous of considering this subject more in detail are referred to man, Histry of Architecture, 1349, wherein Chapter I. Part II. treats upon the finition and Origin of Gothic Architecture;" and concludes with the observation: : may then define Gothic architecture as a style whose main principle is verticality, is iple suggested by the pointed arch, and carried out in its accompanying details." A r in the Archrolugical Journal, for February 1847, has expressed his notion that "it d be very possible to build a thoroughty good Gothic church, taken entirely from ancient ples, without a single pointed areh throughont;" a principle which would astonish of the talented practitioners of the present day.
1 eminent amateur has written a very studied and elaborate explanation of what he ders to constitute Gothic arehitecture. "I believe," says Mr. Ruskin, in Stomes of E.e, Vol. II. Chap. VI., after a short inquiry into the mental power or expression, t the characteristic or moral elements of Gothie are the following, placed in the order feir importance:-I. S:avageness ; II. Changefulness; III. Nataralism ; IV. Groeness; V. Rigidity; and VI. Redundance. These characters are here expressed as ging to the building. As belonging to the builder they would be thus expressed :vageness, or rudeness; II. Love of change; III. Love of nature; IV. Disturbed ination ; V. Obstinacy; and VI. Generosity. The withdrawal of any one, or any two, ot at once destroy the Gothic character of the building ; but the removal of a majority in will." He then proceeds to examine them in their order; but our limit d space nts our following him word for word, and we have found it necessary to curtail some following paragraphs.
defining its outward form, he states that the most striking feature is that it is comof pointed arches. "I shall say then, in the first place, that Gothic architecture is which uses, if possible, the pointed arch for the roof proper ;" and subsequently adds, (I definition will stand thus: Gothic architecture is that which uses the pointed arch
for the roof proper, and the gable for the roof mask. "_-"All good Gothic is nothing m than the development in various ways, and on every conceivable scale, of the group forn ly the pointed arch for the bearing line below, and the galle for the protecting line ab (fig. 1056.). The subject of the masonry of the pointed areh has been discussed in Chapter XI. of Volume I. (of his work), and the eonclusion deduced, that of all possible forms of the pointed

Flg. 1056. arch (a certain weight of material being given), that generically represented in fig. 1057. is the strongest. But the element of foliation must enter somewhere, or the style is imperfect; and our final definition of Gothic will, therefore, stand thus:- Foliated architecture, which uses the pointed arch for the roof proper, and the gable for the roof mask."

Fig. 1057.

The figure 1057, though of the outline as given by Mr. Ruskin, really exhibits the sio areh ereeted in granite aeross the chancel of the Bruen Testimonial Church at Car designed by the late J. Derick (Builder, 18.54, p. 34.). The trefoiled arch exercin a force within the building neutralising the outward thrusting force of the lancet arch, e two forces producing a state of rest.
"A few plain and praetical rules," continnes Mr. Ruskin, "will determine wheth given building be good Guthic or not, and if not Gothic, whether its architecture is ca kind which will probably reward the pains of eareful examination:- I. Look if the is rises in a steep gable, high above the walls. If it does not do this, there is sometl wrong; the buitding is not quite pure Gothie, or has been altered. II. Look if the p cipal windows and doors have pointed arches, with gables over them. If not poid arches, the building is not Gothie; if they have not any gables over them, it is either to purc or not fitst-rate. If, however, it has the steep roof, the pointed arch, and gablil united, it is nearly certain to be a Gothie building of a very fine time. III. Look if e arehes are cusped, or apertures foliated. If the building has met the first two ditions, it is sure to be foliated somewhere; but, if not everywhere, the parts which are it unfoliated are imperfect, unless they are large bearing arches, or small and sharp arche 11 groups, forming a kind of foliation by their multiplieity, and relieved by seupture d rich nouldings. If there be no foliation anywhere, the building is assuredly impe t Gothic. IV. If the building merts all the first three conditions, look if its at s in general, whether of doors and windows, or of minor ornamentation, are car il on true shafts with bases and capitals. If they are, then the building is assur y of the finest Gothic style. It may still, perhaps, be an imitation, a feeble copy, or a example, of a noble style; but the manner of it, having met all these four conditions assuredly first-rate. If its apertures have not shafts and eapitals, look if they are 11 openings in the walls, studiously simple, and unmoulded at the sides. If so, the buil in may still be of the finest Gothic, adapted to some domestie or military service. But i c sides of the window be moulded, and yet there are no capitals at the spring of the arn it is assuredly of an inferior school."
"The next tests to be applied are in order to discover whether the building be goud $" \mathrm{i}$. tecfure or not ; for it may be very impure Gothic, and yet very noble architecture; it may be very pure Gethie, and yet, if a copy, or originally raised by an ungifted bui $r_{\text {, }}$ very bad architecture :-I. Sce if it looks as if it had been built by strong men; if it is the sort of roughnes, and largeness, and nonchalance, mixed in places with the exgite tenderness, which seems always to be the sign-in anual of the broad vision and massy p of of men who can see past the work they are doing, and betray here and there something e disdain for it. If it has not this character, but is altogether accurate, minutc, and ser $1-$ lous in its workmanship, it must belong to either the very best or the very worst of scil : : the very best, in which exquisite design is wronght out with untiring and conscien is care, as in the Giottesnue Gothic; or the very worst, in which mechanism has taker te place of design. On the whole, very aecurate workmanship is to be estcemed a bad II. Observe if it be irregular, its different parts fitting themselves to different purpose in one caring what beeomes of them so that they do their work. III. Ubserve if al it traceries, capitals, and other ornaments, are of perpetually varied design. IV. Li y Read the sculpture. Preparatory to reading it, you will have to diseover whether is legible (and, if legible, it is nearly eertain to be worth reading). The criticism o et building is to be conducted precisely on the same pinciples as that of a book; and it st depend on the knowledge, feeling, and not a little on the industry and perseverance? of reader, whether, even in the case of the best works, he either perceives them to be greior feels them to be enteriaining."
"The rariety of the Gothic sehools," says Mr. Ruskin, in another portion of the ne work, " is the more healthy and beantiful, because in many eases it is entircly unstu, \downarrow, and results, not from mere love of change, but from pracical necessitics. It is one (t.e
ief virtues of the Gothic builders, that they never suffered ideas of outside symmetries 1 eonsistencies to interfere with the real use and value of what they did. If they wanted vindow they opened one; a room, they added one; a buttress, they built one; utteriy cardless of any established conventionalities of external appearance. Every suceessive hitect employed upon a great work built the pieces he added in his own way, utterly fardless of the style adopted by his predecessors. These marked variations were, howr, only permitted as part of the great system of perpetual change which ran through ry member of Gothic design, and rendered it as endless a field for the beholder's inquiry for the builder*s imagination ; change, which in the best schools is subtle and delicate, 1 rendered more delightful by intermingling of a noble monotony, in the more barbaric rools is somewhat fantastic and redundant ; but, in all, a necessary and constant condition the life of the sehool. Sometimes the varicty is in one feature, sometimes in another: may be in the capitals or crockets, in the niches or the traceries, or in all together, but some one or other of the features it will be found always. If the mouldings are constant, 3 surface sculpture will change; if the capitals are of a fixcd design, the traceries will ange; if the traceries are monotonous, the capitals will change; and if ever, as in some e schools, the early English for example, there is the slightest approximation to an varying type of monldings, capitals, and floral decoration, the variety is found in the position of the masses, and in the figure seulpture."

Sect. II.

PEHIODS OF GOTHIC AHCHITECTURE.

The divisions of Gothie arehitecture in England, as made by King, Dallaway, Mille s dothers. have been used in Book I. Chap. III.; but their subdivisions and nomenclatury ve been discarded by later investigators; and many tables have been put forward of visious and subdivisions. Tius, Britton's nomenclature (1807) was, English 1189-1272; corated English 1272-1461; highly decorated, or florid, English 1461-1509; debased nglish 1695. Millers's division (1807) was early English 1200-1300; ornamented gglish 1300-1460; and florid English 1460-1537, as adopted herein in Book I. E. arpe classifies the style as, Romanesque-Saxon period until 1066; Norman 1066-1145, othic-transitional 1145-1190; lancet 1190-1245; geometrical 1245-1315; eurvilinear 15-1360; and rectilincar 1360-1550.
The fullowing table introduced by Rickman, Attempt to Discriminate, \&.c., shows his menclature and the duration of the periods; these names have maintained themselves, consequence of their general appropriateness, from 1819 to the present time : -

Kings.	Date.		Name of Period.		Remarks.
William 1.	1066)			Prevailed little more than 124
William II.	1087			,	Prevailed little more than 124 years ; no remains really known
Henry 1.	11100	-	Norman.		to be more than a few years
stephen. Henry 11.	1154 to $\begin{aligned} & 1135 \\ & 1189\end{aligned}$			(older than the Conquest.
Richard I.	1189)		(
Johnl.	1199	,			
Henry 111.	1216	-	Early English.		Prevailed about 118 years.
Edward 1.	1272 to 1307)		(
Edward 11.	1307				
Edward III.	1227 to 1377	$\}$	Decorited English.	$\{$	later; prevailed little more than 70 years.
Richard II.	1377				
Henry IV.	1349)		(
Henry V.	1413				Prevailed abont 169 years. Few, if any, whole buildings exe-
Henry V1.	$14: 2$		Perpendicular		Few, it any, whole buildings executed in this style later than
Codward IV. W, ward V.	1461	¢	lenglish,		Henry Vill.
Richard III.	1483				This style used in additions and re-
Henry VII.	1485				buildings, but often much debased,
Heury VIII.	1509 to 1546			(as late as 1630 or 1640.

ie reign of Richard I. was the ehief period of the transition from the Norman to the rly English style; that of Edward I. for the change from the early English to the corated style (the Eleanor crosses belonging rather to the latter, than to the former, le); while in the latter part of the long reign of Edward III. the transition to the rpendicular style commenced, and was almost completed by the time of the accession of ichard II.

Similar tables of the duration of styles in foreign countries have been given in the section Pon'rel Architecture, in Book I.

Rickman, in describing the style to which be gives the name "decorated," especialh classes under that style the tracery in which "the figures such as circles, trefoils quatrefoils, \&c., are all worked with the same moulding, and do not always regularl? join each other, but touch only at points; this," he says, "may be called geometrica traceıy." The Rev. G. A. Poole, E'cclesiastical A'rchitecture, 1848, remarks that "a ver: large proportion of the buildings in which this k.nd of tracery is used, belongs t the previous period, called early English. The examples which might have been sup posed to clear up the difficulty only make it greater. Thus, in speaking of the chapter house at York, which las splendid gcometric tracery, he says, "The chapter-houst is of decorated character; " yet the chapter-house is clearly of a character which prevailec during a considerable part of that period which Rickman assigns to the early Enghist style. The general tendency has likewise been, of late, to range with the early Englis! by far the greater proportion of those examples which answer to Rickman's definition o geometrical decorated; a few of the later examples only being treated as transition fron early English to decorated. The mouldings, it is true, are generally of perfcetly earl English character, and so are the clusters of foliage, the bosses, and other ornamenta mpendages. Instances oceur in which the simple early English lancet was used durins the period of the geometrical tracery. How, then, are the two styles, if they be two, to be separated, in a system which is in part chronological? How are they to be united, in : system which is also in part fonnded on similarity of parts?
" lt is, however, perhaps the most perfect of all the stylcs; for its tracery has the com pleteness and precision of the perpendicular, without its license and exuberance; while it minor details partake of the boldness and sharpness of the early English, which need no fiar to be compared with the ornamental accessories of any subsequent style. Besides th intrinsic beauty of this style, it is important as affording the first full development of tracer and of cusping, with all their power of enriching large windows, and of bringing togethe several lights as one whole."
" In pursuing the study of mediæval architecture, it may be held as an axiom," writc Brandon, Analysis of Gothic Architecture, "that personal inspection of the old churehes England is the only means by which it can be possible now, either to appreciate the genius (our medizeral arehitects, or to sympathise with the spirit which animated them. But it probable that even experienced observers may sometimes be misled by a practice of ocea sionally assimilating work in a later style to some already cxisting portion of an incomples yeneral design. Indeed it forms a strongly marked exception to the usual practice; for was a general rule with the builders of the middle ages never to fall back upon a pa: cra of their art, even when engaged in completing structures of a bygone age." He the describes the proceedings in this respect at St. Alban's Abbey Church, at Westminstc Abbey, and at Fotheringay Church, Northamptonshire.

The early English character of Westminster Abbey Church has been so well plescrue throughout, that in many cases ic requires a elose inspection before it is possible to deter the presence of decorated or of perpendicular work. Thus the windows in the aish crected by Henry V. are very decidedly of early decorated character; the customar octagonal and moulded cap of the perpendicular period occupy the place of the corr sponding circular and foliated members, which, had the windows really been erected son hundred years carlier, would assuredly have surmounted the boltels placed in their jamb

QRg. 1058. WESTMINSTER ABEEY; TRANSEPT
Fig. 1059. westminster abrey; pillats of nave il, paste AND CHOM. EARLY ENGLISH. bAYS, DECORATED-M, KESTERN BAYS, FEHREKDICULAK.)
In the carlier plans of the nave piers four shafts stand elearly detached from the ma body of the pier, fig. 1058.; but sulbsequently the pier was worked with eight shaft fig. 1059. (L) ; and, later still, with eight shafts, fig. 1059. (M) all attached to the cents
iss, indicative of the altered fashion of the day, in which detached shafts, onec such a ourite feature, were entirely discarded. In the piers they wonked the bands of the 133 th

Fie. 1060.
WESTMNSTELA ABDEY.
 century (N) with the mouldings peculiar to the 15th (O). Figures 1060, both drawn to the same seale, show how they departed both from the outline and size of the original. In the triforia, the early English design is equally apparent in the carlier and later portions of the work; but the mouldings in cach are true to their styles. Althongh the groining is tolerably in keeping throughont, yet in the aistes and in the later portion of the vaulting, the original spring and height of the ridge rib has been preserved, while to the elegant acutely pointed lancet of the earlier groining an obtusely pointed arch has been prefurred, which, consequently, it has been necessary to stilt. Biandon gives illustrations of the early Ene linh and perpendicular arcades under the windows, a feature which, though long disused and supplanted by a system of panelling, is yet followed ont. "I am not aware," writes the Rev. J. L. Petit, "whether sufficient attention has been given to the attempts occasionally made by the mediaval architects to assimilate their work to the portions crected in an earlier style. In some instances, as in the cheirs at lily and ncoln, this is done without sacrificing any of the distinctive features of the style then in ; but in Beverley Minster, and in Whitby Abbey, the case is dillerent. In the latter, : whole of the early English arrangement of the choir, as regards its lancet windows, continued in the transept, though the ornaments with winich it is enriched show that s part clearly belongs to the decorated period. The triforium in the former is uniform oughout the whole church, for the same is continued in the decorated work, except the use of marble in the shafts."
The same system of using previous ideas, but working them out with later details, is mplified in the Sketch Book of Wilars de Honecort, an architcet of the middle of the th century. In comparing his sketches with drawings from the original works, their reme inaccuracy and contempt of detail is evident. He sketched them because he saw re was something in the general arrangement which, with alterations, might beconte ful. He therefore drew each with his own improvements to it. As to the details, Wilars I not want them, for he was perfectly consinced that those of his own time were better n anything previously executed. The reader will find reviews of this work in the ilder for 1858, with some woodeuts of the ilhustrations.
Besides this question of assimilation of style, there arises that of similurity of work in ferent buildings, resulting from the supelintendence or design of one master mind ; but ; is so extensive a sulject that in our limited space we dare not do more than name it the attention of the student or reader. Another interesting important point is that of transition from one period into another, such as the decorated into the perpendicular. surious example of this exists in the church at Edington, in Wiltshire, an account of ich, witll woodeuts, is given by Parker, in the 6th cdition of Rickman's Attempt, 1862.

Sect. III.

MOULDINGS.

t will probably surprise many of our readers that even so late as 1845 , the statement made that " but little acquaintance with mouldings is evinced in the works of most lern architects." Such was the opinion expressed by F. A. Paley, when he published 1 very uscful Manual of Gothis Mouldings. "Viewed as an inductive science," he writes, e study of Gothic mouldings is as curious and interesting in itself as it is important in esults. Any one who engages actively in it will be amply repaid, if only by the eri1; ed views he will acquire of the ancient principles of effect, arrangement, and composi-

But the curves, the shadows, and the blending forms, are really in themselves e emely beautiful, and will soon beeome the favourites of a familiar eye; thou ${ }_{1}$ gh viewed " out understanding they may secm only an unmeaning cluster of holes, nooks, and s eless excrescences. Perhaps few are aware that any group can be analysed with perfi ease and certainty; that every member is cut by rule, and arranged by certain laws of chbination. The best work on Gothic mouldings which could possibly be written will d io more than set him in the right way to obtain a knowledge of the subject by his own ryrch. The look of a moulding is so very different in scction, projected in a reduced size
on paper, from its appearance in perspective reality, that the same form scen in the our may sarcely be recognised in the other.
"Gothic architecture revelled in the use of mouldings;-and yet, mouldings are merel the ornamental adjunets, not the essentials, of architecture. Some buildings of the bee periods were quite devoid of them, whence it is evident that they are not necessary eve to a perfect design. Boldness and simplicity produce effeets, different indeed in their kine yet not less solemn and striking than richness of detail. If the uniformity in thei use had not been very strict and close, it had been a hopeless task ever to master thi snbject; indeed, if there had not been a system of moulding, there would have heen mo thing to insestigate. But so little did the medirval masons depart from the fixed col ventional forms, that we often find a capital, a base, or an arch mould of perfectly the sam profile in an abbey or a cathedral which we had copied in our note-book fron a villar church at the other end of the kingdom, so that we might almost suspect that the ver sane working drawing had been used for both."-Thus far we have quoted from Paley. 1 whose work we shall again have recourse in the further development of this section; but in condensed a form, that it should not prevent the student from himself possessing so invaluan a work, of which a third edition was issued in 1865, with an accession of illustrations.

We must now attempt to give some idea of the nomenclature of mediæval moulding "The most complete specimen," writes Professor Willis, in his Architectural Nimenclatu of the Middle Ayes, 1844, "is that preserved to us by William of Worcester, or Botone who was born in Bristol, in 1415, and is now best known by a manuscript note book 1 maining in the library of Corpus Christi College, Cambridge ; it was priuted in 17 by Nasmith. Two of its pages contain lists of technical words attached to roughly dran outhines of jamb mouldings, the one showing the north door of St. Stephen's Church, t other the west door of St. Mary's Redeliffe Church, both at Bristol. These doors are st in existence; on comparison, the former agrees perfectly with the mouldings of the sor porch of the church in question, except that two little boltels have been scraped clean The west door of Redeliffe Church has undergone a much severer skinning. Fiy. 10 represents the outline of the former door ; "the names given to the mouldings by Buto are, A, a cors wythoute; B, a casement, C, a bowtelle; D, a felet; E, a double ressau:

BT. MARY'S MEIHLIFFK; AND ST. STEPHEN'S; BRISTOL.
F, a boutel ; G, a felet; II, a ressant; I, a felet; K, a casement wyth Levys; L, a l a boutel, a felet; M, a ressant; N, a felet; O, a casment wyth trayler of Levys; felet, a boutell, a filet; Q, a casement; le a felct; S, a casement; T, a felet; U, yi myddes of the dore a boutelle." Of these terms (which display his various modes of ling) perhaps the only ones needing remark are \mathbf{K} and \mathbf{O}, which are identical, and a square leaves or flowers in them of the usinal form, set at regular intervals, forming a continuous train. "Benet le Fifemason" appears to have worked the original mould

The section of the mouldings of the west door of Redcliffe Church is shown in fig. :' to which the names were also attached, the additional terms obtained locing " A, a chat ; C, a double Ressant wyth a filet; \mathbf{O}, a Ressaut lorymer; M, a lowryng cascment; a a grete bowtelle." "I camot help pointing out," writes 'rofessor Willis, " how impe it
a nomenclature must be, which can make no stronger di-tinction betreen the combinations E and C, than by ealling one a 'double ressant.' and the other a doubse ressant with a fillet.' 'The universal monkling (0, in fig 1069, is a 'ressant lorymer.'" Fig. 1063. is an outline of the jamb mouldings as they appear at present, engraved from a drawing made expressly for us by Mr. T. S. Pope, of Bristol, and exhibits the skiming they have undergo..e.

Mouldings of an areh or jamb are said to be grouped when they are placed in combination as they are generally found; but a group is a branch of monldings or separate members, standing prominent or isolated, either on a shaft, or between two deep hollows. Au arch of two or more urders is one which is recessed by s s many successive planes or retiring arelies (see fig. 1065 \&e.), each placed b hind or bencath the next hefore it, reckoning from the outer wall line. 'The aceompanying figures exhibit both groups and orders.

We have adopted the usual architectural system of exhibiting the mouldings in the manner of a mould or pattern, and it likewise carries out the principle of this work. It is also preferred to the popular way of engraving sections, that is, by an apparently perspective representation of a stone cut ont of an arch. The several sets of figures are all drawn to seale. The examples selected are, Fountains Abbey, Yorkshre, for the transition and for the carly English period; 'Tintern Abbey, Gloucestershire, for the geometric period; Howden Chureh, Yorkshire, for the late decorated period; and Henry V1l.'s Chapel, Westminster, for the perpendicular period. For those from the three fist buildings, we have to express our grateful acknowledgment to E. Sharpe's Architecterel Parallels, 2 vols. fol. 1845-48, a work eombining technical precision, without which it would be useless to the archifect, with artistic character, by which it will recommend itself to every one intercsted in such antiquities. The illustrations of Tintern are valuable examples of the gcometric pariod. The work contains many geometrical plans, elevations, and sections of 14 buildings, with all the principal monldings to a large scale (those herein are all reduced, and therefore less useful), with an additional valuable volume of the mould. ings engraved full size. For the illustrations of the fourth period we are indebted to Cottingham's work on the Chapel, ful. 1822-29, perhaps the only perfect monograph of a arge structure yet published in England.
One reason for selecting the illustrations in this manner has been that, with the very imited space at our disposal for so extensive a subject as the detail of Gothic architecture, ve could not emulate either the very satisfactory work which now, with its useful allusrations, passes as Rickman's Attenpt to Discriminate the Styles of Architecture in Enylund, vo. 1865, 6th edit., or B:andon's Anclysis of Gothic Archilecture, which is full of examples f detail drawn to scale. Another reason was, to give the means of comparing the use of etails in similar parts of edifices of nearly the same general dimensions; otherwise we ould merely have given the prettiest selection that it had been possible to have made for ac purpose.
"During the period in which the so-called Anglo-Stxon architecture prevailed, little ecorative work was done. The very rude carvings are extremely shallow, being such as suld be worked with the hammer or pick, and ithout the chisel. In some doors and larger arches lere is a regular inpost at the springing, having rude resemblance to Roman mouldings; otherise the jambs and arch stones are merely returned uare. The tower of Sompting Church possesses rly carved work, and boltels at the angles of the indow openings, and also a very peculiar ornaented string course. The chancel arch at Witterg Chureh, Northamptonshire, is amorg the early tempts at moulding observed in this country, ing rough and coarsely chiselled members. geneHy semi-cylindrical. A square-edged reveal soon came a boltel, by first chanfering. and then reoving indefinitcly the angles. Thus, a squareged arch with its sub-arch or soffit rib, was either rrked into rounds at each angle or into pointed 11s; or some edges were chamfered, others worked to rolls, and the sub-arch cut away into a broad ini-cylindrical no.
6. The Norman architects never got much bend the plain semi-cylindrical roll (fig. 1064.

Fig. 1064. Folintans abbey; have. es not show even so much work). They raid more attention to sulface soupture
and shallow ornamental work in the arel!ivolts and solfits. Some of the early mouldings and oramments are illnstrated in fiu. 188, in Book 1 .
" The invention of the pointed boltel, contemporacously with the pointed arch, opened the way to a great momber of new forms, all more or less referable to this common orjgin, in varying the members of complex early English groupings. The lirst and hy for the most important of these is the roll and fillet, as A in fiys. 1065. and 1066 . It is the heynote of almort all the subsequint formations. The characteristics of the mouldings of this style may be d fined to be, deep undereut hollows between prominent memb.rs, which comprise a great varety of pointed and tilleted boltels, clustered, isolated, and repeated at certain intervals, a great depth or extent of monloled surfaces, and the general arrangement in rectangular faces. The hollows, giving the eflect of a series of detached arches or ribs, rising in succession, are seldom true circles (A, fiy. 1067.) ; and, like the projecting parts, they assume a great number of capricions forms. They are not always arranged in exact planis; the student must be firlly prepared to find great irregularity in this respect.
". Early English mouldings may be said to comprise the following members:-I. The plain boltel or edge roll ; 1 I . The pointed boltel ; III. The roll and tillet; IV. The scrollmoulding (rare) ; and V. Angular fomms, concist ing of claanfered ridges and intervening projections of irregular character. The other forms chiefly consist of capricions modifications of the roll and fillet. The roll and trinle fillet (of which 13, fig 1067., is a modifi(ation), is much used in the more advanced buildings of the style, and was the favourite form durg the reigns of Edwards I. mand 11 Som times only one side hasa filletattached. as at C, and others. Three pointed rolls, placed together semewhat in the shape of a fleur-de-lis, form
 a combination of very frequent occurrence (as figs. 1097. and 1104.), with many min varicties of shape. The fillet is almost always a narrow edge line. The irregular sha and the freely undulating curve of the roll and fillet monlding has been conmonly it ferred. Almost cvery conceivable modification of the plain roll, peaked, depressed, elliptic grooved at the end, throated, isolated, and combined, might be found and catalogned by careful obscrver. The scroll moulding, also called cdye monking or ressunt lurymer, as in fig. 1062 . and 1) in the alove figmes was used in advanced carly English work; it

зз callec. from its resemblance to a roll of thick paper, the outcr edge of which overlaps he side exposed to view. It was extensively used in the decorated period."
The exquisite skill, taste, and patient labour invariably evinced in the working of carly English mouldings, are truly admirable. The dee ${ }_{i}$ est hollows are all as clearly and perectly cut as the most prominent and conspicuous details; and as much so in the village :hurch as in the cathedral. Some examples (of doorways) occur at Bolton and Furness Abbeys, whose arch mouldings extend 5 to 6 feet in widel.
"The details of decorated mouldings are for the most part identical with those of the areceding style, with the addition of some new members, and several important modificaions of grouping. The latter will be found to produce an entirely different effect, thougl n description the distinction may appear very trifling. Nuch greater geometrical precision n drawing both the hollows and the projecting members prevailed. Segments of eircles, oth convex and concave, were much used, with an avoidance of strong contrasts of light and shade, which imparted a more pleasing, though much less strihing, effect. The perection of moulding, as of all architectural detail, is eonsidered by many to have been ttained in this period; yet rieh mouldings in it are of rather rare occurrence. Very iften plain chanfers are used in all the windows, doorways, and pier arches, while minor rarts, such as bases, sedilia, and the like, have fine and elaborate details.
"There appear to be three distinct kinds to which decorated monldings may be generally eferred :-I. The plain or hollow chamfer of two or more orders, which, properly speaking, sonly the step preparatory to moulding. II. Roll and fillct monldings, and fillets with oflows between each group. III. A succession of double ogecs, or double ressants, ivided by hollows of three-quarters of a circle Sometimes the mouldings of II. arc comfined with those of III. The mouldings of elass 11. are generally borne by jamb shafts, ow engaged in, and not detached, from the wall. Those of III. are almost always eoninuous, except in pier arches, where they constantly occur. Four or five of these t gether ive a very deep and rich effect to a doorway. One nember of a double ogee is often onsiderably larger than the other, or those of one order of different size from the others.
"The principal forms found in decorated work are:-I. The roll and tillet, the fillet being xtrenely broad, often as much as 3 and 4 inehes. JI. The roll and triple fillet, invariably roducing a fine effect. Its edge lines are sharp and delicate, and the profile beantifully Hieved by the deep side hollows with which it is ecessarily connected. III. The ogee. IV. The ouble ogee, or double ressant. V. The scroll oulding, or ressont loryme:. VI. The wave oulding, which may be cal'cd the undy-boliel 1 in fig. 1068.), from its gently undulating surface : arcely any method of moulding is so common in, so characteristic of, this period, as two erders of e wave moulding, with a hollow between them : 1 the varieties of this moulding appear to occur ithout any definite distinction throughont the corated and perpendicular periods; it is wider d shallower in early than in late work; the wavy e is even at times very faint. VII. The plain,
 hollow, chamfer ; and VIII. The sunken chamfer. The boltel, or three-quarter romnd, is ed very sparingly. The hollows are usnally of larger size than those of the early English; d there is this general difference in their use, that in this style they divide groups, in the rly English, individual mentiers. A few exceptional instances occur of a tongue-shaped ember projecting from the inner side of the principal roll and fillet; this is a very chacteristic detail of the elass II.
"In windows, the plane in which the mouldings of the jamb lie is seldom coincident th that on which the side of the mullion is arranged, for this would in most cases give , great thickness to the latter. The difference of inclination may be very slight, but it guires attention.

- In mouldings of the perpendicular period, a comparatively meagre save-trouble method working them is perceived. Large and ecarse members, with little of minute detail: de and shallow hollows; hard wiry edges in place of rounded softened forms, are all aspicuous characteristics. Their general arrangement on the chamfer plane (figs. $10 n 1$. 11062.), which is a marked feature of this period, gives a flatness unpleasing to the eye comparison with the rectangularly recessed grouping of the two preceding styles. ree peculiarities are so common, that their absence almost forms the exception to the reral usage. Theye are $:-\mathbf{I}$. Λ wide shallow hollow, usually occupying the eentre of group, and equal to about one third of the entire width. When the hollow is cieep I narrow, it is generally a mark of early work; of late, when wide and shatlow; and of rased, when sunken !nt little below the chamfer plane. One or both ends of the hollo:v sometimes returned in a kind of quasi-boltel (as I. fig. 1062.). The boltel is often
formed from a plane loy sinking a channel on each face; and oceasionally it stands like an exerescence on the surface of a plane (as in figs. 1061. and 1062.) ; but this is a departure from the usual practice, as well as from the prineiple of mouldings. 1I. The constant use of boltels, or beads of three-quarters of a circle, resembling small slafts. And IlI. The frequency of the doable ogee, and some varicties of it peeuliar to the period, as shown in the ligures above-named. This double ogee appears to be composed of a semi-circular hollow contimued in a boltel, All varieties may be considered distinctive criteria of the period. The doulle ressant is sometimes of a large and elumsy size. The roll and fillet was not extensively used; its form is that of B, fig. 1071.
" Rich and good perpendieular mouldings are not very common, most examples consisting but of three or four very ordinary members, offering nothing either novel or interesting to the view. The doorways are, however, often very deeply recessed, and the engaged jamb sha'ts bear isolated groups of considerable delicacy. The distinction of the orders is often completely lost is this period, white it is seldom undefinable in the previous one. The chumfer plane in many eases is either more or less than an angle of 45°. Sometimes two parallel ehamfer planes are taken for the basis of the arrangement of the mouldings."

Among the characteristies of the tertiary Freneh style, or the Flamboyant, which las been described and illustrated in pars. 546, et. seq., is that called by Professor Willis, in a most ingenious and valuable paper, read in 1840 before the Institute of British Architects, ventration or interpenetration of the different mouldings and parts. 'The french antiquarics have called the system in question moulures prismatiques. Neither ol these terms seem satisfactory, but of the two we are inclined to prefer the first as most significant. Io the paper above mentioned, he olserves that the practice is very rareiy to be seen in English buildings, but produces an instanee of it in the turrets of King's College chapel, at Cambridge (fig. 1069.), where the eornice A of the pedestal seems to pierce the plinths
of the angle buttresses, and appears at B. This is, however, by no means a capricious, but rather an indispensable arrangement, by

Fig. 1069.

Fig. 1070.
which the solidity of the octangular base was obtained withont the necessity of the multitude of re-entering angular mouldings, which would have otherwise been carried round the buttresses.

Instances of interpenctration are abundant in France. Amongst those selected by lim is one from a sereen, in the eathedral at Chartres; it is given here geometrically (fig. 1070.). Fig. 1071. is from the stone cross at Rouen, in which the interpenctration principle is displayed in many of

The parts A A, mark wh the fillet of the mullion pierces the cliamfered and moulded parts of the sill. "In ma Plamboyant examples, small knobs and projections may be observed, and on a supertic
ew might pass for mere ummeaning ornาuents, but will be found plicable upon this system of interpenetration." Fig. 1072, "is a ndow from a house near Romne, at the base of whose mullions, ohs may be observed, which really represent the Gothic base of a nare mullion on the same plinth with the hollow chamfered inullion, d interpenetrating with it." The Professor also states that, "it may rhaps be found that this character belongs to one period, or one trict, of the Flamboyant style;" but from our own observation, we : inclined to believe it to have been universal from the middle of the eenth eentury to the period when the style of the Renaissance superled it. The principles on which it is conducted certainly prevailed

Fig. 1072. Germany and in the Low Countries, as Professor Willis afterwards states. A notion what extent it procecded may be perceived by fig. 1073, taken from Möller's Denhmäler
Deutvchen Bauast, 1821, and exits on the plan a ies of interferences trived with great ;enuity and a conmmate acquaintce with practical metry. The subt is the plan of a ernacle, or canopy, h as is not unquent in churches the Continent. It sws, says Möller, Iv the simple and sere architecture of 1 13th and 14th cturies had been (ased. The square] DE is the com${ }^{1}$ acing figure.
comparison of] glish and French 1) Ildings has been nle, with illustrat s, by the Rev. J. IPetit, in his work, A hitectural Studies i. rance, 8vo. 1854,

Fig. 1073. pe 141. Of course Viollet le Duc's Diotionnaire has now become a well of information 0 this as on many other details. Some few examples are given at the end of the ensuing chter of this Book. Venetian details have been carefully elucidated by J. IRuskin, in Ses of Venire, Vol. III , 1853, wherein pp. 221-249 are devoted to the examination in st ession of the bases, doorways and jambs, capitals, archivolts, cornices, and tracery bi, of Venetian architecture. We do not, however, perceive that any scale or dimeasion is iven to the examples illustrated, the absence of which materially lessens the usefulnı of the examples. German details may be sought in Möller's work before quoted; in ing, Study Book of Medicual Architecture and Art, 1860; in Statz, Ungewitter, and R hensperger, Gothic Model Buok, 1859 ; and in Hoffstadt, Gothisches ABC buch, 1840.

Sect. IV.

PIERS AND COLUMNS

1e general plans of the piers supporting the prinoipal arches are either simple or compo d : simple, when composed of one plain member; and compound, when consisting of a e surrounded by smaller shafts, detached or engaged. Piers of the earliest period for arrying walls were square, as at the cathedral at Worms. These were relieved by en ged shafts, as in fig. 1074. In the 12 th century the shaft begins to take the fol on its plan of a Greek cross (fig. 1075.), with engaged columms in its angles as Wtas on its principal faces.
r the benefit of those making surveys of buildings, we think it useful te subjoin thullowing rccommendation from the "Remarks" of Professor Willis:-" In making
architectural notes, the plan of a pier should always be accompanied with indications of the distribution of its parts to the vaulting ribs and arches
 which it carries. 'Ihe mere plan of the pier by itself conveys but small information ; for it often happens that the identical pier may be distributed in many different ways, and that these differences constitute the only characters that distinguish the practice of one age or

Fig 1075.
country from another. Fig. 1075a. shows one way in which the plan alone may be ma to convey these particulars. The dotted lines, drawn from the respective members of t pier, mark the direction of the ribs and arches; and upon each of these, at a small distal from the pier, are placed vertical sections of these ribs, as at $\Lambda B C D . "$

Fig $10.75 a$.

Fig 1076. FOUNTAINS ABBEY; Nave.

Norman piers are, in their carlier form, mostly masses of wall, with rectangular no. containing attached shafts, as at Winchester, figs. 1267 and 1268. The circular (fig. 107, and ctagonal columns seem to have been introduced about the time of the transiti and contmued common in ordinary parish churches throughout the early English decorated periods. Complex early English piers are so varied in arrangement that sould be impossible here to do more than notice their general characteristics, which con principally in the number of smaller isolated shafts clinging to a central column, to wh they are at intervals attached, in reality as well as in appearance, by moulded bands fillets (Westminster Abbey, fig. 1278.), wherein a circular shaft is found, with four detac solonnettes (fig. 1058.), and with cight small detached shafts at Ely. Fig. 107.'
a gracefully de-

Fig, 1077. Fountains abbey; choir. signed pier. One without the colonnettes, and with broader fillets, is a very common form in the early English and decorated periods, with some varictios.

Geometric and decorated piers have their shafts engaged (figs.

FIg. 1078.
TINTELIN ABBEY; PIER. 1078. and 1079.), so that a elustered column is formed by working out the surfaces of mass in lines and hollows. The example (fig. 1059, , from Westminster Abber, has detached, and four attached, colomettes to the central shalt, but the reason for thisess. tional anangenent has bern explained. It would require a volume to set firth the fich
d extent of the great piers in cathedrals and ableys. Piers in the perpendicular period gencrally of oblong or parallelogrammic plan, the longitudinal dircetion extending from north to south (fig. 1316.). On the east and west sides half shafts are attached, which bear the innernost order or soffit mouldings of the arch; the rest, iucluding the great hollow, being usually continuous, without the interruption of any impost. The plan of the pier in Henry VII.'s Chapel is a fine example (fg .1324.) of such an arangement; and fig. 1059. shows the continued adoption of the decorated piers in the later portion of the nave of Westminster Albey. Sometimes the ground plan is a square, set angleways (as in the nave of Canterbury Cathedral, fig. 1299., and at Bath Abbey Chureb. fig. 1320.), and each angle may have an engaged shaft of a 1079. nowise cuurcs. circular or ogee form.

Sect. V.

The mouldings of capitals and bases are more definitely marked in the various pertods n any other kind of mouldings. "It is by no means.impossibte, even for an experienced , to mistake the details of a decorated for those of a perpendicular arch; but no one derately aequainted with the subject could hesitate in pronouncing the style of a capital base, provided it possessed any character at all. In the Norman period, when the shaft round, the highest and lowest members only were square, the parts immediately next t m being rounded off to suit the shape of the shaft (fig. 1266.). This is seen in the c inary form of the cushion capital. We may observe the lingering reluctance to get rid Che square plinth, in the tongue-shaped leaves or other grotesque excrescences which are c. n seen to issue from the circular mouldings of transition Norman bases." Fig. 1080. is alrious example of the square form in front (N), and the circular moulded form in rear, of t shaft, shown on plan, fig. 1076. As soon as a sub-areh was introduced the corners of the

CAPITALS.

 tals were either cut off or cut out : the former process produced the octagonal form; the shape of the shaft produced

Fig. 1 lixt: FOUNTALNS ABHEY; CHIRR.
Scale, the same as to fig. 1064.

Fig. 1082.
TiNTELiN AbBEY.

Fig. 1081. is the front face of the shaft shown in fiy. 1077, as is also fiy. 1082. of that fíy. 1078., \&c.
"Capitals may be divided into moulded and floriated. In the latter, the foliage in tl transition Norman and early English period is arranged vertically, in the decorated

 twines horizontally, or rather transverse round the capital (fig. 1083), In the pre pendicular, more frequently small leaves patera are set like studs at iutervals ron the shaft above the neck. The capital of sists of three parts, the abacus, the bell, a the neck. In the early English period 1 abacus is almost invariably undercut. In t decorated it consists of the seroll monldi with a cylindrical roll of less size below The bell, in early English caps, is sometin double, wíth a very liandsome effect, white decorated work it is seldom so deeply und cut It is also much more varied by elal rate and capricions forms, as ly a number fine edge lives; and the underpart of the ? is offen composed of a roll and fillet. 'J neeking fonns an ímpoitant detail in judg of the dates of the work. In the early E. lish it is usually of a bold annular outh or a semithexagon. The neek during the corated period is alnost always the sc moulding. but many other forms will be for to occur. Even a practised eye mav oceis ally be dececived in the date of capitals of two early periods
"The capitals in the perpendicular pe present such marked leatures that they seldom liable to be mistaken. The mie ings are large, angular, meagre and Neither abacus nor bell is clearly defi The latter is reduced to a meagre slopi though it sometimes still remains. The upper part of the abacus is usually sloped ofl a slarp edge, and the section of the moulding below resembles the letter S inverted, bei ?

re comption of the decorated scroll moulding ; above all, the capital is ortagonal, while t of the preeeding styles is round. The shalt, however, is cirentar in the perpendieular work, while octagonal eapitals most generally occur in the other stylec in the case of large single colnmms of the same shape. 'The base in the

ig. 1091.
in curvert.
ining shaft. lijhg Shaft,
MIE AISI.E.

Fig. 1022

Fif. 1095. Fís 109.

Seate, the same as to H 名. 1085 later st?le is generally cirenlar in its upper members and octagomal below. The capitals are oftern embattled. The astragal or neck is either a plain romed or a kind of debased seroli moukling with the upper edge chanfered as in the abacus. It will be fombl that a much greater license was taken in designing the monldings of this style than in any other. Fig. 109\%. is the secti n of the cipital of the shaift to the arch between the nave piers in Ilenry VII.'s Chaped, (as at C, fig. 1305.). Fi!. 1093. is the base of shaft to nave piers, as \mathbf{E}, fig. 1324. and B , in fig. 1325. Fig. 1094. the base, and capital of ineches hight, Zo the vaulting shalts in the aisles; the eapitals in the small chapel at the end of the bnilding are nearly the same in section.

Sect. Vi.
mases.
The bases of the shafts in the 11 th and 120 th eenturies are often chamfered and frequently monded in the Attie form, more or less modilied and deb:ised. In the latter period the Attic base is sometimes found alinost pure. In early work th ase eonsists of the plinth or lower step, of solid masonry, generally square (fig. 1080. se he eurious motifications of it in the plan fig. 10-6.), but in early English often octang1 r (fig. 1077. and lo81.) ; and the base mouldings, a series of annular rolls, slopes, or lin. ws. taking the form of the columm. In deeorated and perpendicular columns, the ol h is appatently omitted, and the base is dividul into heights, stages, or tables, hy gr ually spreading courses, each separated from the next by a plain, or by a moulded,

The lower part of the base is sometines octigopal or polygonal. A cavetto above arter round is a very common form in early work. A bold annular roll, quirked on the nder side, often divides the shaft from the plinth.
e early English base is very similar to the Attie form, the chief pceuliarity eonsisting in e holiow being eut downwards and extended from half to three quarters of a circle, so
the it is capable of containing water (.fiys. 1081., 1084., and 1085.). The earlier the lia is in the period, the shallower, as a general rule, is this water-holdinor loollow (fig
10:). A comonon form is obtained by omitting the hollow altogether, and thus bringing thiolls into contaet (like fig. 1088.). In very rich early Engrlish bases there are often don e hollows between filleted rolls, and below these occur other bold annular rolls, single, dob, and even triple, as at the beautiful Galilee porch at Ely, where the bases are worked outf l'urheck marble and were polished. The spread of the base in the uppermost me oers generally equals that of the eapital, or nearly so. By far the commonest decorated biss s that shown in fig. 1087. and fig. 1089 . the number of rolls being ge.erally thrce, liut ten only two. A few modifications may be pereeived, but they are seldon very con ex. The large spreading roll is worked out of the bloek, with which it usually tar; flush, and is separated by a quirk or angular nook. 'This is also observable in the pre us style. A simple form of base is shown in fig. 1091.
prevailing eharacteristie of the bases of perpiondicular columns is a large liell-shaped in the upper part, olten double, forming the contour of a double ogee in section, as fiy. 133. ; and is one of the ordiniry kind. 'The lower part is almost invariably outagonal, the per being generally romod, but also frequently oetagomal, irrespective of the shape of the ift (fyy. 1:300.). It has either one or more stages sloping off by a hollow ehamfer, it a second bell-shaped slope. The first member of the base is always an annular roll, res pling the neck of eapitals; this is often in the form of tie debased roll and fillet. Fidines searcely ever oceur. Other examples of bases are given in the last section of this rok. 'The usual distribution of the tr.ble mouldings of a late base eonsist of a plain shop F^{\prime} (fig. 1320.), reekoning upwards fiom the ground line \mathbf{C}, a Alat sumface E and a p(oj) ing moulding D. In more elaborate strictures, the monber of these hase tables
and intormediate champs or fisscia is increased, and the latter are often carved in pame Kc. Thus a second table, \mathbf{B}, is introduced above the ground line \mathbf{G}. Professor Wil applies the term "ground table, grass table, or earth table," to the slope B, and states t. to sich tables as D the term "ledgement tables" were probably applied.

Sect. VIl.
vaULTING SHAFTS AND RIBS
When the main shaft supporting the elerestory had an attached eircular shaft front. the latter was often carried up as a shaft to the roof (fig. 1266.) The μ

Fig. 1095
cllont
folintalns abbey, vadlitio shafis.

Fis 1097

Transverse and Diagonal Rih; and W'all Rif-Citoth foUNTANS ABDEY. VAULTiNg bibs
has not yet been scttled whether this shaft in some early buildings was or was so carried up to receive the cross rib of a vault, or simply to bear the beam of rooting. When vallting became more general, the purpose of the shaft was un guised (fig. 1278.) and being made correspondent with the vaulting ribs, the grom the latter were received on a colonnette or on small columns. The vaulting ribs at St. Saviour's (Southwark) Church, are given in fig. 662e. In the latter part of the 15 th century engaged colonnetes for reeeiving the vault ribs rise from corbels placed on or above the eapitals of the shafts, and sometimes the ribs themselves spring from the corbels (figs. 1274. and 1275.), and later, or in the perpendicular period,

Fig. 1099.
NAVE AND Choh,

Fig. 1200. Alsle
TIXTERN abBEY. VaUli'io sllarts. the older form was, as it were, reverted to, and the attached circular shaft was carrie Il to, and reeeived the vaulting ribs, as in figs. 1302., 1307., 1314., 1317., and 1325.

Conbels very frequently supplied the place of capitals both for the springing of arch mouldings and for vaulting. 'Ihese corbels were either moulded or carved to correspond with the capitals (fig. 1109.), or they were fashioned into a mass

Fíg. 1101.

Fig. 1102. Wall Rib.
 vave Aiv) ('ifor Transverse Ríb and Di Trans of fuliage, into leads of males and females, or of animals. Even whole figures 18 introdueed, occasionally defurmed if not purposely so carved for admission withi he

Fir 1102.
NATE.
VAlltixo sirafts.

Fig. 1105.
choir alske.

Howden chuncu.

spare. In the vaulted sacristy at Winchester College, its 'springers present an arch (07) spare. In the vaulted sacristy at Winchester College, its'springers present an an of
in benediction, a bishop, and a king, and over the door a guardim angel. Bo:
leaves and roses alternately, earved with great taste and 'subtilitè' enrich and cover vallitive mib. the junction of the tibs.-The uncouth and barbaric ineads in the corbels whith surround the principal figures contrast with their graciousness, and form that antithesis which the great masters in fine arts of the sueceeding centuries employed so abundantly. The virgin patroness presides over the western pinnacte of the chapel; the angel Michael at the other termination of the building menaces with his flaming fatchion the several demons which might approach the hall, refectory, cellar, and ${ }^{6}$ hen: the angel Llaphatel points out the entrance to the house (rayer at New College : the king and the bishop support the label

Flg. 1109 Westannstale ABHAY CHEBCLI NOHTH AlSLE OF CHOLIE. che gateways to the college at Winele:ter, and the entrance of the chapel ; and as the a winted guardians and supporters of temporat and spiritual things, they sustain alter mely the corbels or springers of the ceiling of the chapel. At the entrance of the hall a) kitchen, the recreating psaltery and bagpipes are atlixed; over the kitchen window is ' cess,' a head vomiting ; and opposite is 'frugality ' in the figure of a bursar with his ii-bound money chest. Over the master's windows are the pedagogue instructing, and a liess selolar, scarcely attentive to the book he holds in his hand. Elsewhere we recogn the soldier, the seldalar, the clergyman, \&e, as suggesting the various professions in "ch the inuates may occupy themselves in after life. The incpt substitutions for these s ificant and appropriate ornaments are amongst the most palpable evidences of the ins iciency and inaptness of our mimiery of this style, in most instanecs in the present day; a they betray great ignorance of the poetieal mind and spirit of medieval seulpture." (herell, The Wykehum Buildings.

Sect. VIII.

HOOD MOULDINGS AND STHiNg couitses.

The strings consist of projecting ledges of stones carried below windows, both within al without a building, round buttresses, and other angular projections, and to cornices, p.pets, tower stages, and other parts of editices, being used as dividing lines. Thougl sil rdinate, they are of the greatest possible importance in imparting a character to a b ding. They at once relieve naked masonry, and bind into a whote the seemingly deto ed portions of a rambling or irregular construction. In most cases, especially to w lows, a string course forms a real drip or weathering, and adapts its upper surface es cially to this end, thus becoming what is termed a hood moulding, which when used

Chomr alsles. Nave cleinestory. aisle.
in nally, cannot be said to have any real use; but they form a decorative finish of too
imprant a kind to be neglected with impninit:."
orman strin: courses are generally full of edges or hard chamfered surfaces (fig. 1110 .).
li fost cases they have some sculptured decoration of the style, as the billet, the cher ron,

thatathed or serrated moulding, or the tike (fig. 188.). Figs. 1111. and 1112. are among thimplest, heing the latest in the period. The commonest early Euglish strings are wh figs. 1114. and $111 \overline{1}$.; the under-cutting giving a bold projection is a striking, feature
of this moulding as of all otiners of the style. 'The most frequent decorated form is fiy. 11 That shown on figs. 1179. and 1 i 81 . is also very conmon. The seroll, with a hie
 ruend next below it, fi! 1115 very elaracteristic. The romis form of the upper side, or weath ing ($f i y$, 1118.), is pecular the two first styles; the ang" or cham"cred, of the last (/) 1119. and 1120.). String cou follow the principle of the absa of the eapitals, from which ind they are often continucd als the wall of the building.

Perpendieular strings and h. mouldings are gencrally mar
1台. 1121-MENKY vin's CHATEL. by the plane slope of the upper: face. The details of the p underneatli are so varied as to render it inpos here to give any aceount of them. Λ characteri ma k of the style is a small boltel in the lu part (fig. 1121.). The wall often recedes al the string, or even overhangs it. Fu, 11 ! the section of the "Angel cornice" over arches in IIenry VII.'s ehapel. as shown in elevation, fig. 1325., at 1D. Fig. 1123. is cornice and base over' it, over the pamal above the octagon windows. The scale is same as to fily. 1085

Sect. IX
BASE COULSES OR MIINTIS.
This term is applied to that series of monldings formed at the base of a wall, "h leads the ege from the upight face gradually into the ground. 'The lowest cour if them is even ealled the "earth table." The early cxan

ehamfered set-offs. They then became very similar, as in the transepts of Bever! in ster, to fig. 1126., of the geometric or decorated period, in which the tablet of pre took a eurved or ogee ontline, and was generally ouly one in number, finistied tup by a seroll moulding, with occasionaity a string above it, ats at Ewerby. The he tof

1126 is very small for so large a buikding The basement to Lichfield Cathedra! in much more aefined. Fig. 1277. is a rel er example.
The basement in the perpendicular period is one of the glories the style. 'That shown in fig. 1306. from Winchester, may considered very plain, as is also that at Bath, fig. 1819. eversed ogees and hollows, variously d'sposed, are the pinal members. Fig. 1128. being the lasement round the tside of Menry VII.'s chapel, will atford some idea of the rk bestowed mon this feature. Viluertoft Clumeh, Northuptonshire, has four rows of diagonal, square, and circular nelling, one above the olher (Lickman, page 913 ., 6th edit.). Norfolk, where flint work was used in the crection of the ilding, it was introduced in upright pantling in the lowest c, above an ogee moulding (ilid, page 214.).

Sect. X.

PARAPETS.

The Norman period may be said not to tave exhibited any rapet, the roof being finished by the tiles or lead work proting over the wall and supported by a conbel thecking.
During nearly the whole of the early English period, the rapet in many buildings was often plain, as $f_{i} ; s$. 1129. and 26.; or with a series of arches and panels; or with quatre. Is in small panels, as fig. 1277., whith is of the next pericd; plain, with a rich cornice under it.
In the decorated period it was still phain but with moulded capping d cornice, as fiys. 1130. and 1131., and with the batl Hower, as fig. 1128., lut also eloser and commected by tendrils; it is often arced in various shapes, of which quatrofoils (fig. 1277), in circles, without that enelosure, are very common; but another, consisting a waved line, is more beatutiful and less ustal; the spaces are foiled. Pierced battlements are very common, with a round or nare quatrefoil. The plain battlement most in use is one with all iutervals, and the capping monhding only horizontal.
They continted to be nsed in the perpendienlar period. The foiled panel with waved line is seen, but the dividing line is more en straight, making the divisions regutar triangles. One of the est examples of a panelled parapet, comsisting of quatrefoils in ares with shields and flowers, is that at the Beauchamp Chapel, arwiek. The pierced paripet on Hemy VII 's (hapel (fig. 1193.) is line example, with its angle pimacte. That on the choir at Winester Cathedral consists of upright panclling only (fiy. 130G.). aly period battlements friquently have quatrefoils cither for the ver compartments or on the top of the pancls of the lower, to m the higher. The later examples have often two heights of rels, or richly pierced quatrefoils in two heights, fomming an inducted
 tlement. They have generally a ruming cap, moulding carriel round the indeutati, ns.

In a few late buildings the capping is ornamented, somewhat like a cresting: and in a few instanees figures resmbling soldiers on guard have been earved on the battlements.

Plain battlements have been divided into four descriptions. I. Of nearly equal divisions, having a plain capping ruming round the outline. II. Of nearly equal intervals

Fig 1131.

Fig 1132. Howden churcu; chorr. and sometimes with large battlements and small intervals, the capping being only place on the top, and the sides cut plain. III. Like the last, but with a moulding rumin round the outline, the horizontal capping being set upon it. And IV. The most commu late battlement, with the capping broad, of several mouldings running round the outline, often narrowing the intervals (Rickman). It is seldom that the battlements will tell the age of the building, as they have been so often rebuilt. A small battlement differing to these four descriptions, is shown in fig. 1128., mader the windows of Ilenry V1I.'s chapel. A few more words may be said in the scction Towers and Sprees.

Sect. XI.

MOULDINGS $1 N$ woobwokk.

" If this kind of work be attentively examined, it will be seen that it was wrought altogether on the same principles as the corresponding sculpture in stone. We see the thoroughly conventional carly school, the naturalesque middle-pointed school, and the again conventional thirdpointed school of carvers, succceding eaeh other in exactly the same way, the main difference betwen the two being that the work in wood is ordinarily very mach more thin, flei, delicate, and sharp, than the work in stone; that it has always some limits set to its exuberanee by the nature of the framework in whieh it was wrought. In earpenter's work, it was always the rule only to mould the usefinl members, and so it was also as regards the earving. It was not nseful or convenient to put on to a piece of oak framing a mass of oak to be carved as a boss or a stopping to a label (this sort of device was reserved for the ingenuity of nincteenth eentury architects), and so it will be found that most of the old wood-carving is so contrived as to be wrought out of the same plank or thickness as that which is moulded or else is a separate piece of wood -in a spandril, for instance, enclosed within the constructional members. The spandrils in the areades behind the stalls at Winchester Cathedral are an admirable example; they are earved in thin oak, perforated in all direetions, and then set forward abont half-an-inch in advanee of the back panelling. The effect of this is, as muy be supposed, to give the

Tig, $112 z$.
HENHY VH.'S CHAIEL.

rving the most disinct relief; and it is an cffect strictly lawful, beeause it was impossible other material, and yet natural in woodwork. The same attention to the material will found exemplified sery remarkably in all old wooden mouldings. The accompanying ustrations (fiys. 1134, and 1135) will show how extraordinarily minute, delicate, and

inct lines. The finish of the wall plates in the porch at Horsemonden, and the ing of the miserere seat, so curionsly preserved in the midst of woodwork some three dred years later in date, in Henty VII.'s chapel, are fair illustrations of the goodness he earlier sculpture."
The whole of the early mouldings are sharp, delicate, minute, and quaintly undercut. 7 y are very often unlike any stone mouldings, just as many wooden traceries (e g. those - ac screen at St. Mary's hospital. at Chichester (fig. 1135.), and the stalls at Lancaster), ${ }^{2}$ quite unlike what could conveniently be executed in stom. In spite of a bad fashion Wch obtains just now," among some of the present medixval architects, "of ignoring 1) value of mouldings, I maintain that they prove conclusively the existence of a school Ourt in this country of almost unsurpassable excellence." Street, On English Whodwork i) he $13 t^{\prime}$ and $14 / \mathrm{h}$ centuries, read at the Royal Institute of British Arehitects, 2 Cth Fruary, 1865.
s an example of early work we give.figs. 1136. and 1137., from Bury, Wonduork. beinr th details of the screen in Northfleet Church, Kent. M, in the first figure, is the first mn (the details being given to a larger scale at S) in the sereen abutting upon the
centre opening, the arch of whieh is shown at N . The corresponding positions on plan are exhibited in fig. 1137. The section O, represents the face of the buttress P , while the plan Q is that of the arch mouldings at R .

Fiy 1138. is a section of the sereen on the south side of the claneel at Lavenham Church, Suffolk, wherein the details N, O, and I^{\prime}, are those belonging to the buttress Q, which even in late mediaval carpentry was not omitted, though somewhat out of accordance with the "true prineiples" altributed to derign in that style.

Fig. 1199, being the eapital and base mouidings from the sereen in Aldenham Church, Hertfordshire are of the perpendicular period. These examples ant all further illustrated in Bury's work above-mentioned, as well as figs. 1140. to 1144., showing the general style of mouldings adopted

$i+1,1+1,1,12$ Ths.
Pig. 1138 . layenham, stifole
 Chure, So Chureh, Somersetshire. Fig 1143. is the arm of the stalls at Wan tage Chureh, Berkshire; and fig. 1144. the ri: and stall mouldings at Swinbrook Church, Oworn shire. The ends of the stall even in Henry VII chapel are worked out of only 3 -inch planks, at formed into three attached shafts, similar to fiy. 11.4 O. her notices of the thickness of stull are given in pur. 2175d.

Ilaving given illustrations of the principles of eonstrueting timber roofs during t mediaval period, we now append some of their details, wifch, on comparison with i

figures just given, will tend to show the mode in which the rougher and larger timl were onamented, especially those so mueh further from the sight than sereens ind ot

ke decorative work．Fíg，1145，shows the rafters used at Pulhan Church，Norfolk fiy．7010．），L being the main，and M the common，ratters，with the boarding N smk
 Fi， $11+6$ is the purine；fig．1147．the wall piece；and fog， 1118. Sullolk（fíg．701g．），O being the scetion of the common rafter， Fig，1150．is the collar－beam with the arched truss under it； and 1＇the ridge piece；fig．1151， shows the moulded cormere abnt． ting upon the hammer－beant， fig． $1152 .$, and Q the lower purline．Fig．1153，gives the details of the roof of late work at Knapton Chureh，Norfolk （fig．TOlt，），being the section of the lower hammer－bean，fíg．
Fig．11こふ．

Fig， 1151. ENIPTOX，NOKYOLK

Fig． 1155. 1 i 54 ，the psost abutting upon it； fig．］155，the ridge picee，and Ia t purline．These will all be found to a larger seale，with the other details，in Brandon＇s dlysis，All the illustrations from figs．1145．to 1155 ．are drawn to the same seale．

Fig llijer Fig 1157．Fig． 1158.
Ligy，nins．

The following sections repre－
 south aisle of Lavenham Chureh，

Fig， 1160 ．ST，albax＇s．

Ik，from which building the sereen in fig．1138，was also derived．Fig．1156．is the cofice，fig．1157，the wall strut，and fuy．1158．the purline．Fig．1159，is the cornice in e chancel aisle．These are likewise derived from Bury，Woodwork．

Sect. XII.

WINDUWS.

In the body of the work we have, under each period of Gothic architecture, given a description in general terms of the windows prevailing at the several times. The exauphes here bronght together, are inserted merely for the purpose of showing the gradual change in their forms and combinations, which are almost infinite in number, and yet that the latter are far from exhausted, is conclusively shown by R. W. Billings, in his work on Geonetric Combinations; and by E. Sharpe, in Dicoratad Window Tracery.

The earliest windows are extremely small, always semi-circular headed, or nearly so, and without moulded archivolts. They are usually with a single lig't (fig. 1266.), except

Fig 1161.
BEAUDESERT. in belfry towers, where we often find them divided into two by a shaft with a capital. as in the tower at St . Alban's (fig. 1160). The simple plain head, however in the latter part of the early perind, was more or less ornamented with the chevron or zigzag, and other orna-
ments of the time, as in fi\% 1161 . One of the greatest and most striking change brought in by the pointed style was that of introducing, from the suddenly elongalc dimensions of its wiadows, a blaze of light into its edifices, which, from the low and narro sizes of their predecessors, were masses of gloom. From the beginning of the lit
 century we see them lengthened in a surprising mamim and terminating with a lancet-head, which sometim lecame occasionally cusped. An instance of the simp lancet-head is given in fig. 1162., from the Trinity Chay at Canterbury Cathedral. Sometimes an elegnt com bination is obtained by grouping lancet-headed windor under one hood, the centre rising above the side ones, at Salisbury Cathedral (fig. 1163.), where the spaces bu twcen the heads are ornamented, or have a sunk pancl device. These spaces are frequenitly pierced with folint: circles, or with trefoils or quatrefoils not enclused. an example at Lincoln (fig. 1164.), the height of the gro is equal, but the light of tie centre being wider thmint two side lights, the curvature of the arches of the latt is necessarily much less than that to the former, and the effect is not satisfactu There were, however, many other arrangements in deigning these lancet-head windows than the single and triple ones just mentioned Two, four, and five, ligh occasionally fo $\cdot \mathrm{m}$ the group. Of the last-named, are windows at Ithlingboroulg in Warwickshire. and at Ondle, in Northamptonshire, in which the lights on the sic sradually rise up to the centre one. In the latter part of the pericid. heads fin with trefoils; the mullions are moulded and finished, both inside and out ide, with sha or colonettes, fiom the capitals of which spring the mouldings of the subdivisions.
The finest and largest gronp of early English lancets in the kingdon is the five, eo monly called 'the five sisters,' in the north transept at York Cathedral, completed 12 They are each about 5 feet 7 inches wide. and nearly 60 feet high. and in the intel have a beauty altogether their own, not surpassed, if it be equalled, by any decorn or perpendicnlar window ill the kingdom. The rich effect of the arrangement of two stories, each having three lights. a' t^{\prime} e east end of Sonthwell Minster, is well desers of attention. Lly cathedral has internally five lights over three, while externally th more are observed over the five.
At Kilkemy Cathedral there are three huge sarly English lanects, the centre one br

62 feet high and 8 feet wide. The detarhed shafts are filleted in four rows; the mouldings over are formed into trefioil arches. In the south side of the choir of St. John's Priory, in the same city, is a continuous areade of 54 feet of lancets, the largest pier being only 9 inches wide.
These filleted bands are an interesting work, as they are found in many parts both of Ireland and England. lerhaps the most remarkable example in England is that at Walsoken Church, ncar Wisbeach, where the chancel arch has four small shafts in each , ier, all banded five or six times 1 t is aldditionally s'riking from its greater antiquity than any of the Irish examples, being, as at St. Alban's, romanesque. These banded olumns and roll mouldings find their counterpart at Margam Abhey, in Glanorganshire, he west front of which shows a fine triplet, and a doorway below banded in this peculiar nanner. Trunsactions of the Institute of British Arehitects, 1865-6if, pp. 80-86.
The filia'ions seen in windows belonging to the earlier examples of this style in England re not generally cut out of the same stonc as the head of the arch to which they belong,

Fig. 1165.
P.UNTED CHABCBET. but form the tracery, in small pieces, and these enter into the class of plate tracery, i.e. they belong to the flat soffit, and not, like bar tracery, to the outer mouldings.

By perforating the space between the heads of two adjoining lancet-headed windows, as in the old painted chamber at Westminster (fiy. 1,65), the elements of the ornmented window are obtained. To cover it, however, ornamentally, the enolosing arch must be depressed and moditied; and at Ely (fiy. 1166), we find an example for illustrating the remark. The lozenge-shaped form between the heads of the arches is converted into a circle which. as well as the heads of the lights is foliated. Instead of a single

Fig. 1166. rele inserted in the head of the window, we then have them with three foliated eireles, as

ig. 1167. MERTON COLI.EGE.

Tig. 1168 . C,ITHEDRAL, OXFORD.

Fig. 1169. ST. OVEX, ROUEN.

Lincoln, one abore and two blow; the same cathedral furnishing an example in the east udow of its upper part laving one large circle inclosing seven smaller foliated ones, be-

[^13] sides its containing similar ones in the leads of the two leading divisions below. The windows just described belong to a transitional style between the early English Gothic and the decorated; but the ornamented windows of the 14th century cxhibit in their general form and details a va-t variance from them in the easy unbroken flow of the tracery with which they abound.

In the next stage come the examples shown by fig. 1167., Meiton College Chapel, and fig. 1168., the Cathedral, both at Oxford; the latter whereof has a tendency towards the Flamboyant style, which has been before mentioned, and which, in the 14th centnry, had thoroughly established itself in Frarce, as may be seen in the windows of the church of St. Ouen, at Rouen, exhibited in frg. 1169. It may be observed that the principal lights are seldom divided by transoms; when thev, however, occur they are mostly plain, and rarely embattled. Though the ogee head is often found, the nsual form is that of the simple-pointed arch. In the clerestory, squareheaded windows are of cn seen, but more often in other parts of the edif.ce. In the preceding, as well as in this period, occturs the wind ow bounded by three equilaterally segmental curves foliated more or less as the date increases. The arrangement of the tracery of

[^14]flambognt. 'I'leir rayomant, so ealled on account of the great part the cirele plins in it, and on whose malii its leading fomms are dependent, was flomrishing thronghout the 14th ceatury in Framee. The flomboyant or tertiny pointed style followed it. We have already observed that the Contment preceded us in each style as much as half a century.

After this comes the Florid style, in which the edifices seem to consist almost entirdy al windows, and those of the most highly ormamented description. It is searcely necessily th do more than exhibit the figures for a comprehension of the nature of the change which took place; in slowt the

Fig. 1171. Nomwit. introduction of the Tudor arch alone was suflicient hint for a totally new system. In the example (fig. 1170.) of a window at 3 Cawston Chureh, Norfolk, we may obserse the commencement of the use of trinsoms, which at length were repeated

Fig. 1172. AYLSHAM.
twice and even more in the height of the window, and indeed became neensary fin aflording stays to the lengthy mullions that came into use. Fig. 1171. is an example" the square-headed window of the period, and fig. 1172. of a Tudor-headed window a Aydsham Church, Norfolk. Another example may be referred to in fig. 200, aud in the seve. ral illustrations given muder the section prinemes of proportion, at the end of this chaptes

Mulloms appear t, have been introdnced about the end of the 12tb: century as sulb stitutes for iron frames, and were at first built in courses that corresponded with the other work of the wall in whith they stood, or were in small pieces. But as early : 1235 they ware face-budided stones dowelled with iron. As the oxidation of the metit

Fig. 1173. Wisdsor proved injurions, iron was superseded, after the end of the 1 tht cem tury, by dowels made from the bones of sheep or from the horns deer. Fig, 1173, from the west windows in the tomb-honse: Windsor, temp. Henry VII, illustrates the arrangement usinall adopted in drawings to show the distance from centre to centre, at M, N and O, that is to be allowed in forming the lengith radius employed in striking the curves for the traeery. Other c゙ amples of such sections are given from the clerestory of the nave Winchester Cathedral, fig. 1303 ; Rouen Cathedral, fig. 129) King's College Chapel, fig. 1312.; St. Georce's Chapel, Wiidsor, fi 1916.; and from Amiens Cathedral, fiy. 1329.

Tle simplest mullion or monial or tra ery lar would be a plir rectangular block of stone. The next, with the edges chanfer varied ly substituting a hollow for a plain chamfer; by giving. ogce form to the chamfer; and by cutting ont a hollow in t chamfer with receding imgles instad of a receding curse; this l : - is perhaps pecoliar to the carly decorated style. The loollon chanfer is the only moulding ordinarily made to earry the ball Hower ormanent of I
 14th eentury, and it four-leaved tlower of t 15tlo century. Whan tracery becones at clab rate, the subur nation of the parts ellected by giving tu jambs and mollimss, perhaps to some of mullions only, and some ol the tiacery b. an additnonal orier mouldings. Then fillet or boltel of outer monloing (N . fis. 1173.) describes, greater lines : that ul imner mondlis:g (0) smadler lines of the cery ind the whole the cusping. In manner a third ori, often adde:l by the same means and for the san:e pmpose (as M1). Fian of the ore or
nay fe as varied as was tre first. Perhaps the most eommon form for the first is the ollowed ebamfer, and for the second and thind, the resant with a tillet. In a very few

Fig. 1176.
TINTERN ABBLIM CHOHR
Fig 1177. instances, the onter fillet becomes a sharp edge, i.e. the multion is chamfered to an arris.

- Nothing is more essential to the grood effect of windows (except where the mullions are treated as shafts moler a mass of traeery withont glazing), and nothing is so mnch neglected by modern arehiteets, as making the mullions of adequate thickness," writes Mr. Denison, in Churel Building. "The modern works are very setdom more tham $\frac{1}{6}$ th of the width of the tights; probably about 4 inches in the ordinary side windows, and sometimes less, and perhaps a few as mueh as 7 or 8 inches in ge east and west windows. In the east window of Tintern Abbey, which has dight hts (fig. 1178.), the prineipal mullion is 15 inches thiek, and the two secondary ones

Fig. 1178. tintelin abbey, east window. Fig. 1179. are 11 inches, and the four smallest very nearly 8 inehes. At Guisborough I'riory, of the geometrieal period. a window of only seven lights had two principal mullions, both as thiek as the middle one at Tintern. The great mullion of the east window at Lineoln is about 2 feet thick. Eiven the two small east window's of Guisborough, with only three lights, has 9 -inch mullions, and those at Tintern 7-ineb. Some four-light windows at Whitby have the middle mullions abont 13 inches, and the short cierestory windows of Bridlington are above a foot thick. No mullion ought to be much less than one-third of the width of the adjaeent light. The lights of the small Guisborough windows are exatet y three times the width of the inullions; the aisle windows of Selloy are about the same; we there are more lights than these, and therefore two or more elasses of mullions are red, the larger ones must be considerably more than this. In all eases the depth back to front ought to be at least twice the width or thickness from side to side. II e are a few old geometrieal windows, with 'thin'mullions, but they are exceptions, lo not look well.
'he diflereace between good and bad windows, strikingly exhibited in the same ehureh, mathe seen in the north aiste of the ehoir at Sehy, where a set of windows of no more thi three lights, and those rather short ones, having tracery of the simplest possible pat n, only three quatrefoits in the head, ate perhaps the most beatiful windows of the shat be found anywhere. Above them in the clerestory are windows of four lights and mu more elaborate traeery, and yet almost as ill-looking as any modern ones. The
rea is that the lower ones are deep set, and have thiek mullions and tracery, and high arel, whereas the others are very shallow, on aeeount of the passage in the wall; the in ms are thin, and the arches are low."

Sect. XIII.

WINNOW JAMBS AND ARCH PLANES.

The following details of window jambs and monldings, are reduced from those given the valuable publication already mentioted, namely Sharpe's Architectural Purallels. Fi 1174 . is the plan of the jambs, and fig. 1175. of the mouldings of the arch over them, to the early English choir at Fountains Abley, Yorkshire. Figs. 1176. and 1177 . are the similar portions to the geometric choir at Tintern Abbey, Monmouthshire. Thesame publication gives, amongst its numerous details, the elaborate grouping of mouldings to the magnificent east (fiys. 1178. and 1179.) and west (figs 1180. and 1181.) windows of this building, which is somewhat transitional to the decorated period, and of very great beauty. Fig. 118\%. is the jainb mouldings to the decorated east window at Howden Church, Yorkshire, showing a passage in the wall, which materially deteriorates from the grod effect of the window.

The following illustrations are from Henry VII's Chapel. Fig. 1183. is the wall jamb to the first cant of the angular windows to the aisles. Fig. 1184. is the first angle mullion of the circular or bow windows; it also shows the arrangement for the mallions or monials, and (L) the mitring

th the wall-work inside. Fig. 1185. is the jamb mouldings of the upper range, or : clerestory windows. These are all reduced from Cottingham's work on this building,
 and are, to some cxtent, shown in the interior elevation of the bay, given in fig. 1325.

The section of the jambs to the windows of the clercstory at Winchester Cathedral is given in fig. 1303. ; to the windows of King's College Clapel, Cambridge, in fig. 1312.; to those of St. George's Chapel, Windsor, in fig. 1S16.; and to those in the clerestory at Amiens Cathedral, in fig. 1329.

The arch planes worked in the same buildings, have been placed on pages 971, 972, and 973., while the scries of mouldings to the arches of Henry VII.'s Chapel will be found very poor in comparison, as may be observed in fig. 1325.

Secr. XIV.

chicular windows.

The large circular windows so frequently seen in the transepts of churches, and sometimes at the west ends of them, and going by the general name of rose windows, seem to have originated from the oculi with which the tympana of the ancient basilice e picreed, and which are still observable in monuments of the 11 th century. For the bly of this species of window the edifices of France furnish the most abundant means, ry of them being of exquisite composition, and in our opinion far surpassing any else re to be seen. Many of these, from Rouen, Beauvais, and Amiens, will be found strated in the following chapter of this work.
t is scarcely previous to the 12th century that they can be fairly called rose windows; bire that period they are more properly denominated utheel windows, the radiating n lions resembling the spokes of a wheel and being fi red of small columns regularly furnished with bases capitals, and connected at top by semicircular ales or by trefoils. By many the more decorated ciular window has been called the marigold window, ${ }^{b}$ we scarcely know why that should have been done. T rose windows are used in gables, but their dimensis are then generally smaller and they are often encl d in segmental curves whose versed sines form an er lateral triangle or a segmental square.
n early specimen of the wheel window is in Barfr on Church (fig. 180.), wherein it is manifestly later the the other parts of the front. The example from P ixbourne Churcl, Kent (fig. 1186.), is a curious ar early example of the wheel window ; herein, and
 in ed in all the minor examples, a single order of columns is disposed round the centre?

ig. 1187. Yonk. 1269. A.D.

Fig. llse. ST David's. 13io. A.D.
but in the south transept at York Cathedral we have a noble instance of this spee (fig 1187.) -a double order of eolımns being emphoyed, eonnceted by foliation above capitals of the columns; this example is of the 13 th century. As the early style came the columns would of course give place to the mullion, as in the elegant specimen fre St. David's, shown in fig. 1188. The two following examples (figs. 1189. and 1190.) frl Westminster, and Winchester Palace, Southwark, are both of the 14 th century. The fi

Fig. L189. Westminster abbey churdit.

Fig 1190. Wixchestel: pabace; southwathe
is not the oniginal window, but we have reason to believe it was accurately remade fre the original one. The latter is a most elegant arrangement flowing from the continned sid

Fig. 1101.
ST. OUEN, ROUEN. of the eentral hexagon, and consequent forming a series of equilateral triangles d corated with foliation. It was placed in t gatile of the great hall of the palace, whi hall was spanned by a timber roof of ve beautiful and ingenious construction, a fi years since destroyed by fire, after which t wall containing the window was taken dov

During the period of the three last exa ples in this eountry, the French were maki rapid strides towards that era in which th flamboyant was to be stiffed and ext guished by the introduction of the rena sance style, about which we have alres submitted some remarks, and produr some examples. In the church of St. Ou at Rouen, the circular window (fig. 119) middle of the 14 th eentury, exhibits extraordinary difference between French a English examples of the same date. Be; tifnl as many of the English examples undoubtedly are, we know of none that is equal this for the casy and elegant flow of the tracery composing it. The leading points it s be seen are dependent on the hexagon, but, those determined, it appears to branen off fr the eentie with unchecked luxuriance, preserving, nevertheless, a purity in its forms gu in eharacter with the exquisite edifice it assists to light. 'The details of this windown be advantageously studied in Pugin's Antiquities of Normandy, and in the larger wood given in the subsequent ehapter.

Besides these examples of circular windows, others will be found of varying patter forming the centre picces in the heads of large windows, as at the churches of Eas Howden, Wellingborough, and at St. Alban's Abbey.

Secr XV

TRACEKY OF WI:NDOWS.

As the perpendicularity of the style changed, at the beginning of the 13 th century, fi that which might he termed horizontal, so did the comparatively rude and clumsy form its ornament assume a lightness founded on a close observation of nature. Its seulpt, is endowed with life, and its aspiring forms are closely connected with the general outh bounding the masses. The models used for decoration are selected from the forest the meadow. Among the flowers used for the angular decorations of pinnaeles and spi
eroekets, and in similar situations, an ornament very muel resembling the Cypripolium eolus, or lady's slipper, and the iris, are of constant oecurrence. The former plant, vever, appears to be found only in the woods in the north of England, and now, at rate, it is very rare.
[hese models, however, though closely and beautifully imitated (says Ramée), are subted to reduction within sueh boundaries as brought them to a regular and geometrical n. Thus is found every coneeivable description of ornament brought within the limits cireles, squares, and triangles, as well as within the more varied forms of the manyd polygons; the latter, as in the marigold and rose windows, being again subject to eireumseribing cirele; these polygonal subdivisions laving always reference to the ulating subdivisions of the apsis, as will be further referred to in Chap. IV.
Che circle obviously presents a boundary for a very extended range of objeets in nature. the vegetable world, a flower is seareely to be found which, within it, cannot be symrically arranged. Its relations afford measures for its subdivisions into two, three,

FIg 1192. four, and six parts, and their multiples, by the diameter and radius alone; the last being an unit, upon which the equilateral triangle and hexagon are based; moreover, as the interior angles of cvery right-lined figure (Eu clid, prop. 32. b. 1.), together with four right angles, are equal to twiee as many right angles as the figure has

Fig. 1183. sil, it will be immediately seen that the interior angles in the equilateral triangle, the pragon, the hexagon, the nonagon, and the dodecagon, are divisible by the sides so as to
 eiear the result of fraetions. Thus, in the cquilateral triangle, the number of degrees subtended by the sides is 60°. In the pentagon the number is 108°; in the hexagon, 120°; in the nonagon, 140°; and in the dodecagon, 150°. (See par. 1219.). Independent, therefore, of the service of the cirele in construction, we are not to be surprised at

Fig. 1195.
ins ing so favourite a figure in architecture, from the period at whiel the art was ome truly serviceable to mankind.
1 respect of the pentagon (fig. 1194.), if lines be drawn from eaeh angle so as to conct every two of its sides, the pentalpha results; a Gige in mueh esteem in the 13 th and 14 th centuries, and jeld among the Pythagoreans as a symbol of health, cen ics and centuries before.

1. heptagon and undecagon, whose interior angles are divisible without a fraction or remainder, were rare used by the Freemasons; an instance of either does not cur to us.
A inspection of figs. 1192. to 1198. will show the mode of g rating from the several polygons the lobes of cireular dows, as also the way of obtaining the centres for the ,es in a simple and symmetrical manner. In fig.
1195 the basis of formation is the equilateral triangle, and ee lobes are the result. Those of four lobes, or quat oils (fig. 1193.), originate from the square; and

Fig. 1196.
the uciferæ, or eruciform plants, 'Tetradynania of Linnæus's system, seem to be their ype. nature.
F(ihose of five lobes, resulting from the pentagon (fig. 1194.), types are found in the
classes Pentandria, Decandria, and Icosandria, of Iinneus. They comprise the rose, : apple, cherry, and medlar blossoms; those of the strawberry, the myrtle, and many othe

For cireular windows consisting of six lobes, and based on the hexagonal formation ($/$ 1195.), the class Hexandria seems to furnish the type, under which are found alm all the bulbous-rooted Howers, pinks, \&c. These observations might be extended to

Fig. 1197. great length ; but the writer does not feel inelined to pursue the system to the extent to which it has been carried by a German author (Metzger), who bases the principles of ${ }^{-}$ all pointed architecture on the formations of the mineral and vegetable kingdoms. In fig. 1196. the octagon is the base ; in fig. 1197. the nonagon; and in fig. 1198.

Fig. 1193
the dodeeagon. Beyond the last, the subdivision is very rarely, if ever, carried. It not that all these types were selected from a mere desire of assimilating to nature the de rations of the 13 th century, but it sprung from that deep impression of the utility geometrical arrangement, which songht in the vegeta

Fig 1199. kingdom, and elsewhere, such forms as fell in with outlines adopted. Similar formations based upon arrangement of squares, triangles, and polygons, are hibited in figs. 1335. to 1339., in the latter portion this chapter, as obtained from the decorations of Ams Cathedral.

Mr. Denison comments upon a particular figure window tracery, which appears to him to be very 1 and often adopted. He calls it the "broken-bac eusp," (fig. 1199.) because it gives the feeling that : always going to break (like fig. 1205., doorway). B the cusps are made a principal instead of an accessory; the proper way being to mal sub-areh at the back of the lower pair of cusps (fig. 1 200 .), and to thicken the tr above until it looks like a piece of solid stonework, and having a real bearing on eacho and capable of resisting pressure.

Few attempts have been made to point to the origin of tracery and its ramificat As the spaces of window openings went on increasing, until at la they became gig g_{i} in several instances exceeding 40 feet, a construction of stone framework bccame absol? necessary. This framework, as we find in examples of the early decorated period, w i first unornamented-mere pillars or mullions below, with segmental curves, crossing other, to fill the arch. But by degrees these curves changed their character, and assu'd all the infinite variety we now know under the term tracery. From great windows, 16 elass of decoration descended to the minor parts of buildings; and at last we find il light, fragile, screen-work, to be the great depository of this kind of knowledgc. ld geometric forms, rather than mere fancy, as the foundation of eomposition, are ever 10 preferred as of the utmost importance to the designer, if he wishes or intends to arri" " a suceersful result.-Billings, Infinity of Geometric Design.

Our limited space warns us to refrain from the further elacidation of this subjec: : 11 before quitting it, we can refer to the many illustrations of the further devclopme al

Fig. 1201. "tracery and geometric forins," forming a portion of the ciples of proportion, treated hereafter, wherein example ie given from Westminster Abbey, Beauvais, Rouen, and cathedrals.

To aid in the formation of tracery a perfect knowleo nl practieal geometrical drawing is requisite; we therefore ${ }^{\text {al }}$ the reader to that section in Book 11. where, commenci at par. 1007., he will find other more useful problems tha assist him in his designs. We append another application, he problem "to inscribe a circle in a given triangle," as bein te of those more generally required in cireular forms, and per 58 ose above described. If a five-lobed figure be required, as tig. quicker method than those A B C from the five divisions, on a base line BC at a $t:$ it to the circle; bisect B C and join A D. Bisect the angle A B C liy a line 13 J ad
ere it crosses the line $A D$, as at F, will be the centre of the required cirele or lobe. circle with the radius $A \mathbf{F}$ being drawn, the other centres on the lines of divisicn. as G, A H, \&e., are readily found.
Another usual geometrical problem in tracery work consists in firding the centre of a cle placed in the head of an areh. This has bcen elucited by E. W. Tarn, in the Builder for 1863, p. 221. t A B C in fig. 1202. be an equilateral arch, and the dth A B be divided into three equal portions A D E B. t the arehes $D F$ and $E G$ be drawn with the same lius as those of A and B , as D H. Then it is reired to find the eentre of the cirele which shall toueh four ares. Make E I equal to $\frac{1}{6}$ th of E B, and with: centre \mathbf{A} and radius $A 1$ draw an are cutting the
 pendicular or eentre line of the window in K; then K is the required eentre, and $K L$ radius of the eircle.

Sect, XVI.

noorways.

It is almost needless to observe that through the several changes of style the doorys followed their several forms; our duty will, therefore, be to do little more than sent the representations of four or five mples to the notice of the reader. The ior's entranee at Ely (fig. 187.) is a fine cimen of a highly decorated Norman orway. The earlier Norman doorways 11 but little carving. They are, as in fig. i)3., generally plaeed within a semieircar areh, borne by eolumns recessed from t face of the wall, and the whole sur1 unted with a dripstone. In fig. 187. it il be seen that the semieircular head of 1 door is filled in level with the springing, a. sculptured with a figure of our Saviour i. sitting attitude; his right arm is raised, in his left is a book. What is termed t vesica piscis surrounds the eomposition, ch is supported by an angel on each side. I ise representations are frequently met "1 in Norman doorways. Many examples a composed of a series of reeesses, eaeh ${ }^{8}$ ined by semicireular arches springing fia square jambs, and oeeupied by insu-

Fig. 1203. wyken church, warwichshine. I. d columns; though sometimes the columns are wanting and the reeesses run down to

표N. 1204.

Fig. 1205. st. NICHCZSS, LYNM.
the plinth. The arehes are very often decorated with the eherron, zigzag, and other Nor man ornaments.

The early Eoglish doorways have the same character as the windows of the period; the smaller ones are often recessed with columns, from which a pointed areh is twined witl a eut moulding on it and a dripstone over it. The more important doors, however, ar mostly in two divisions, separated by a pier column, and with foliated heads. These ar generally grouped under one arch, springing from clustered columns on each side, ard tb space over the openings is filled in, and

lig. 1200. Tattershiall castle: decorated with a quatrefoil, as in the doorway to the chapterhouse at Lichfield (fig. 1204.). Sculpture often occurs in the arrangement. The door to the chapel of St. Nicholas, at Lymn (fig. 1205.), is a cutrious example of the latter part of the decorated period. Fig. 1206., from Tattershall Castle, Lincolncolnshire, belongs to

Fig. 1207. ST. grokaE's ch.ilat.
the Florid English or perpendicular period, whose simplest doorways usually had the depressed or 'Tudor areh, and without the square head which appears in the eximple. 'Il more ornamental ones were croeketed, and terminated with finials, as appears in the fac of the porch at King's College Chapel, Cambridge (fig. 1208.). The doorway at Si Gcorge's Chapel, Windsor (fig. 1207.), though later in date, is more simple than the last notwithstanding the exuberance of ornament and tracery which hat then very neart reached its meridian,

Sect. XVII.

PORCHES.

The porch is a distinguishing feature both in ecelesiastical and domestic archtectur throughout northern Europe during the whole of the medixval period. In the ease of t l smaller churches it was usually attached to the north and south doors. When to the north, it was generally built of stone, while the south porch was more often of timber In France the porches are usually of very grand proportions and of elaborate structure.

A Noman porch, with an upper story or parvise, a chamber which appears to ha been variously appropriated, oceurs on the north side of Southwell Minster, Nottinghan shire, and is arched (Rickman, p. 81.) ; and another at Sherborne, Dorsetshire, whic is groined. The example at Malmesbury Abbey Chureh is perhaps the finest of the fe' that exist of this period. An early English porch with a chamber remains on the north sid of St. Cross Chureh, IIampshire. The porch at Felkirk, in the West Riding of Yort shire, of late carly English or early deeorated date, has a roof formed of stone ribs I fow in breadth by 10 inches in depth, plain chamfered at the angles, placed about 18 inch apart, springing from a string or impost about 4 feet from the floor. A complete illw tration of this interesting example is given in Robson, Mason's Guide. The same simp' plan is followed in those at Barnack, Northamptonshire, and at Middeton Chency, Nort: amptonshire. The south poreh at St. Mary's Uffingdon, Berkshire, is groined. 'T! feature was extensively used in this period, as at Salistoury and Wells.

A beautiful example of a vanlted roof to a shallow poreh oceurs in the decorated elurt at Higham Ferrars, Northamptonshire (Rickman, p. 111 ., also giving a plain vault wit richly moulded door jambs at the west porch of Raunds Church, Northamptonshire Stone ribs are employed in the vestry or chapel at Willingham Church, Cambridgeshi (Rickman, p. 179., decorated); the chapel is 14 feet 1 ineh long, and 9 fect 9 inches wid as shown in Lysons' Cambridgeshive, p. 285. In this, and in the following, periods, 1 groined roof became common, and partook of all the varied enrichment exhibited in larg roofs. The porches exceed in profuseness of decoration those of the preceding style: thi were almost universally adopted. The south porch of Gloucester, and the south-wi porch of Canterbury are beautiful examples. In the former, canopicd niehes occupy ${ }^{1}$ front over the doorway, the front being erowned with an embattled parapet of picres panelling, and at the quoins are turrets embattled and finished with erocketed pinnacles.
he example here given of the slallow porel at King's College Chapel, Cambridge 1208.), is beautiful in design and in proportion. The north poreh at Beverley Minster s somewhat higher than the aisle, the upper part forming a parvise. The door lass a feathered straight-sided canopy. one of ogee form, both eroeed. It is danked with niehes, tresses, and pinnaeles; the le front is panelled and crowned i a lofty eentral pimaele, hava niehe. An idea of it will be red from the illustration given a frontispieee to the present ion. The south poreh of Leveton Chureh, Cambridgeshire, is ined, and also has earved bosses. er it is a parvise 10 fuet 1 inelı e and 14 feet 4 inelies in length. : covering (of slabs of stone?) upported by six arehed stone , placed 2 feet 1 ineh apart, and et 5 inches span; the rib is 4 res wide, 6 inclies in depth, and mfered on the lower edge. It a richly perforated stone ridge ament. The section and details given in Builder for 1848, p. 91, ch also (iii. 598.) illustrates the th poreh at North Walsham rech, Norfolk, whieh is lofiy open to the roof, it not having divided into stories. It is a amen of the mixture of flint

Fir, 1208. i stone details. The south poreh of a church near Evesham, in Woreestershire; the isty, also at Felkirk ; and the porehes at the ehurehes of Strelly, in Nottinghanshire; 11 Saints, at Stamford; and of Arundel, in Sussex, have interesting stone roofs. a the ease of domestie buildings, the poreh, as at Wingfield Manor House, Derbyshire, a story over the entrance, differing from those at Eltham, Croydon, Cowdray (which an elaburate groined stone roof), and y others, having only one story. That Porchester Cas.le hall was the whole ht of the building, having a room e the entrance to the hall, whieh was ated on a basement story, and was hed by a flight of steps oceupying the r story of the porel. At Dartington or Honse, Derbyshire, and at East Ham, Norfolk, there are two stories e the entrance, an arrangement freitly observed in similar ereetions, as at rpland Hall, Norfolk, and at Eastbury I 1 se, Essex, erected cir. $1572 . \quad$ From urhitectural prominence given to this re in domestic buildings, the designa"porch house" was often employed.
, very exeeptional is the use of brickuork ngland in mediæval work, at any rate the common brick porehes, whieh added in the 17 th century, that we

Fig. 1209. PORCH, AT LULECK. aduced to notice one of the many examples in this material exeented abroad, in Gery especially. The north poreh of Luibeck Cathedral (fig. 1209.), is deseribed by G. treet, as "a 13th century addition, of two bays in depth, with groining piers of elustered $\mathrm{h} s$ with seulptured capitals, and a.many-shafted doorway of the best eharaeter. Its n ior is probaily mainly of stone, but the exterior is all of brick. The areh way is boldly nilded, and above it is a horizontal areaded corbel table, stepped up in the centre to d the arel. The gable is boldly areaded upon shafts, and lias a stepped corbel table, vi a double line of moulded brieks above it next to the tiles. A couple of simple open
arehes are piereed in each side wall，and there are flat pilasters at the angles．In th gahle，enclosed within the arcading，are some circular openings，one of which is euspe witl small foliations formed of lirick．The moulded bricks in the main areh are of tw kinds only，one a large boltel，the other a large hollow，and these arranged alternately wit plain square－edged bricks，produce as much variety as is needful．＇The jamb of the doo way is of ptain bricks，built with square reeesses，in which detached stone slafts are plaeet The capitals thronghout are of stone，and carved with simple foliage．Perhaps no nthi example is more completely all that it should be in the use of its materials．The exterii is simple in all its details，yet suffieiently enriched by their skilful arrangement to i thoroughly effective；whilst in the interior，where more adornment was naturally require brick is frankly abandoned，and tlee richly moulded and sculptured ribs and archivolts a all of stone，though I have no doubt the vaulting and walls are，as on the outside．of bricl The only tracery which can he properly executed in brick is in fict the simplest pla trucery（and even this requires great skill and care in its execution），or that simple fring of cusping round an opening whieh occurs in the porch，and which may he executed wit case with a single pattern of moulded brick often repcated．＂Church Builder，1863，p． 5 We have somewhat altered the arched entrance as shown in Mr．Street＇s sketch，mide standing that this porch has been lately restored in this manner．

Sect．XVIIl．

TOWERS AND SPlliES．
Europe has bicen considered by J．H．Parker．Transactions of the Institute of Briti Architects，to be indebted to Caen and its neighourhood for that very interesting featur the Gothic spire of stone．He has also traced its history from the low pyramid of That Clurch．Normandy，dating abo

 the end of the 11 th century，shor in fig．1210．，whereof the stones a left rough within and overhang o another，while at the base a lar piece of timber was introdiced if to bind the whole together（ f 1211．），which has now entircly（ cayed．The apex has alsa decay or been removed．The spires Comornes near Bayeux ；Basly nt Caen，middle of 12 th century ；a Rosel，are of the sume character，a are followed by those at Hupp n ar Bayeux，which is considerably taller，but of abo the same dite；Vaucelles，near Caen；St．Loup，nt Bayeux；St．Contest，near Caen；and Bougy，which of a fine transitional character，as is that at Donvres ； small square spires at the east end of St．Steplien＇s Caen；and the elegant lofty octagonal spire with squs pinnacles at Ducy，which is a Iittle earlier than the e gant western spires of St．Stephen＇s at Cacn．On t building are altogether eight spires，varying in date fr one of about the middle of the 12 h century on a st turret；the two pairs of early Gothic work of the cho to the light western spires which possess pinnaeles of of： work at the angles and in the centre of cach face；the date aliout 1230．The fine spirc on St．Peter＇s Church． Caen，dates at the legiming of the 14 th century，and is commonly quoted as the perfect． of a spire（figs．1212．1213．）．It is octagonal，with openings pierced in the flat sid That of St．Saviour＇s is later and not so good．Nearly all the spires in this district he the surface of the stone cut to imitate shingles，a clear proof of their laving had a tim pretotype．The spires at Bayeux Cathedral were probably being built at the same ti as those at St．Stephen＇s Church，which they resemble．Secqueville Church lias one nearly the same date．
Of later date are the spires at Bretteville，Bernières，and Langrune，coming 川⿲ 丨il middle of the 13 th century．They are all of elegant design，and light construction．A these are the unfinished spires of Norrey and Audrieu，closing the century．Illus tions of several of these buildings will be found in Britton＇s Nomandy．Mr．Fergns eonsiders that the spire took its origin from the gable termination seen in some ea foreign towers．

1 chronologicai sketeh of the gradual develupment of the spire in Germany, has lately been attempted by W. II. Bremer, in the Builder for 1865, to which we can here only refer the reader, as well as for its very peentiar illustrations.

In England, during the Norman periad the west end of the larger churches sometimes bad towers terminating the aisles. Another tower rose from the intersection of the criss (the smaller churches had but this one), while it was only of suff. cient elevation to break the long line of nave, choir, and transepts, all of equal o height. The roofs of the towers were

Fig. 1214. Warmington. of but little higher pitch than the rest. The nearest approach to spires, in form if not in height, were found in the pinnacles surmounting the angle buttresses in the larger $\overbrace{\square}$ churches. During the early English period, towers rise to a greater elevation, and are very generally finished with a spire, sometimes of great height. The most frequent spire is that called a broach when it does not rise from within parapets, lut is carried up - Mr of its sides from the top of the square tower, the diagonal faces resting on squinches, - rches thrown across the corners within, and finished on the outside in a slope, as shown ir ig. 1214. of Warmington Church, Northamptonshire, which has been published in d il by W. Caveler. A great many spires consisted of wooden frames, covered with lead 0 ith shingles; and these in general, as well as stone spires in a few instances, were a rected with the tower in a different way ; the spire itself bering at first only four-sided, a) the angles being canted off a little above the base, to form the octagon. The carly E lish spre, completed in 1222, to Old St. Paul's Cathedral was the highest in Europe, bing 500 feet high, according to Stow, or 489 feet as calculated by Mr. E. B. Ferrey.
, the decorated period, Heckington Church, lincolnshire, one of the most beautiful a) perfect models in the kingdom shows, says Rickinan, "a very lofty tower and spire si ited at the west end (fig. 1215.), the four pinnacles which crown the tower are la: and pentagonal. This unusual shape has, at less cost, an effect fully equal to an oc yon, and the pinnacles are without crockets, but have rich finials; the spire is plain, w three tiers of windows on the alternate sides. The whole arrangement of this steeple is culiarly calculated for effect at a distance." The details of this work are given in Bowin and Crowther's useful publication. The claborately arranged octagon at Ely Cathedr the design of Alan de Walsingham, is of this period. The work entitled Churches of th frchdeaconry of Northamptonshire, 1849, illustrates in small pietorial views several of thine lofty west towers and spires of this and the succeeding period, erected in that lo it.
${ }^{14}$ perpendicular period is distinguished by the splendour and loftiness of its towers an ppires. That at Salisbury, for example, rises to the height of about 387 feet. That at orwich, rebuilt soon after 1361, is 318 feet high. St. Michael's spire, at Coventry, be 1379-95, is the most beautiful one in the kingdom; it does not rise, like those at Sa bury and Norwich, from the centre of a transeptal clurch, but from the ground; and its ying buttresses. and extremely taper form, give it great advantage over every spire wh h rises from within hattlements. The broach is not unfrequent in this style, and exples are ehiefly to be found in Northamptonshire. Of other remarkable spires of
this style we should name Whittlesea, in Cantridgeshire (fig. 1216): Rusholon, is Northamptonshire ; the two spires of St. Mary and St. Alkmmen, at Shrewshmy; 1angh ton-en-le-Morthen, in Yorkshire; Chester-le-Street, in Durham; and finally, Lonth in Lincolnshire, of which latter structure the building accounts are given in the Archicoleyin vol. x., showing its completion between 1501 and 1518 .

The spire of the tower of St. Nicholas Chureh, at Neweastle-npon-Tyne, from its pectu liarity of standing on arched ribs, holds a bigh place in the serics; it is the type of whic there are various initations. 'The best known are St. Giles's, at Edinburgh; the chure at Linlithgow; the college tower at Aberdeen, and its modern imitation by Sir C. Wrel at St. Dunstan's-in-the-East Church, in London. Of another class of towers of this perim that of Fotheringay Church is the type. The ordinary square tower is surmountel by a oitagonal lantern of much smaller dimensions, connected with the tower, in composition

by flying butresses from the bases of the angle pimacles. The tower of All Sain Church, at Derby, has deservedly a very high reputation (fig. 1217.). It is late in I style; as is also the fine detached campanile at Evesham. The tower of St. l'eter M_{i} (roft, at Norwich, is a good specimen of flint building with stone panels. The in remarkable of the perpendicular towers, both in itself and for its influence in the ecelv. astic al architecture of a large district, is that of Gloucester, erected about 14.55. This na' tower rises above 200 feet from the ground and about 100 feet above the roof of the chr It is surmounted by a crenellated parapet flanked by four turret-like pinnaeles, all of d . cate open work, to the very finials, of a light and graceful character almost beyond natural capacity of stonework. Among the more important imitations of it are S. Joh at Glastonbury ; St. Stephen's, at Bristol ; St. Mary, at Taunton; and that at Nu l'etherton; the two last are said to have been designed by the same architect.

Beacons were sometimes added to towers; such is the lantern of All Saints' Pavemi at York, whieh is an oetagon erected upon the tower. Hadleigh Chureh, in Essex, hi beacon in an iron framework placed on the top of an angle turret.

By far the finest west front, comprising two towers of the perpendicular period, is tha Beverley Minster. What the west front of York is to the decorated style, this is tn perpendicular, with the addition, that in this front nothing but one style is seen-8, harmonious. (Sce frontispiece, fig. 1218.) Each of the towers has four large and ci

1 pinnacles, and a very beautiful battlement. The whole front is panelled, and the resses, which have a very bold projection, are ornamented with various tiers of nichek of excellent composition and most delicate execation. We may here incidentally ce that the east front is fine, but mixed with early English, which style extends to the septs, while the nave and aisles are decorated, terminating with perpendicular, and hed with the west façade above noticed.
a concluding this portion, we camot withhold naming the most elaborate work on the ect of this section, published from drawings made by C. Wickes, in S vols. fol. 1853Its chief drawback is that the illustrations are pictorial and not geometric, which ht have been obviated by a plan and section to each. Our sketch of the varieties of ers and spires will be found filled up, in Rev. G. A. Poole's History of Ecclesiastical hitecture.
a Ireland, the Dominican Abbey, commonly called the Black Abbey, at Kilkenny, had wer plaeed on the south of the altar in a most singular way. At the Franciscan reh, the tower was placed at the east end of the rave, with a chancel at the end; the er was inuch narrower than the nave, but exactly the width of the lofty arch supportit, so that now the roof has gone, the construction appears extremely bold and hazard-
This building was one of a numerous class. Execpt the round towers, which ed to be built when the English went to Ireland, and the low Cistercian towers, the h churches up to that period were almost towerless. In a fiew instances other towers Id be named, as the fine massive one of the Trinitarian Friary, at Adare; but sudly, in the 1.5 th century, it became the practice to build to the Franciscan and Dominstructures these lofty and slender additions The nave was shut out from the choir two transverse walls placed close together and pierced each with a narrow arch ; above m rose the slender tower, standing as it were on the apex of the gables, instead of cading over the width of the nave. They were finished with a peculiar battlemented apet. There is no instance of two western towers to the medixval churches in Irelind; a mediæval spire is not known to exist in that country.
n Scotiand, the spires are chiefly of the middle pointed period, but not erected until ut the middle of the 15 th century. Short octagonal stone spires form a very common nination to towers of late date; they generally carry small pedimental headed lights er on all or on the cardinal faces, and arc for the most part plain, though, as at Corsthine, at Aberdeen, and at Crail, in Fifeslire, they are banded by two or three emled strings or corona into stages. Sometimes, as at the two former places, there are 11 pimacles at the angles; while at Corstorphine, and St Audrew's at Aberdeen, a pish semi-pyramidal abutment on the angles is extremely suggestive of the brouch.
he construction of the tower and spire is of such importance as to require much attention. ower built for the reception of bells intended to be rung, should have a solid founda, not merely four arehes nearly as wide as the tower itself, leaving four piers not much er than the thickness of the wall which they support. Bells require a tower to themes, for it is known that they will spoil the best clock ever fixed. In Sir C. Wren's rs, and others built by his imitators, the substance of the walls was concentrated at iugles, leaving a moderate sized arch on cach side, and only the same internal area as d exist in the case of four straight walls. This is sound construction, and is well ayed in the tower of Antwerp Cathedral. Such an arrangement also admits of a ease being carried up in the substance of the wall, without diminishing strength, e es, a desirable olject in some large towers, doing away with the necessity for butT2s. The tower, if thus carried up its whole height, will be more fit to support an cigular or circular spire or lantern. The mean internal area should be half the external and then, if well built and of good materials, the tower will safely bear as many bells 1 be bung on one level.
ere should be an offset to support the ringing floor and the bell floor, so that no r be run into the wall to act as battering rams. Neither should a bell be hung ou beams resting on the walls, but always in a trussed cage. As regards sound, one of bells is considered better than two tiers. It is wonderful that some of the carly or stone cones or pyramids (shown in fig. 1211.) have stood, for they were evidently n level but gathering courses, even in the 11 th century, around a light frame of timber, was either removed or left to decay. As soon as the principle of diminution upwas acknowledged, two systems of construction presented thenselves; the first is carriage of the upper storey from the basement floor; the other is a false-bearing; sight being, in either casc, thrown as much as possible upon the angles, even to the xtc upon each floor of an opening in the centre of each side, which is the weakest part fa ank tower. In the first case there are two varietics, one being the pyramidal roof que: on plan; the other being the pyramidal roof octagonal on plan. The latter, wheer completed externaily as a broach or otherwise, requires to be carried as low low the tower for support as possible; and in some cases, as at St. Léonard, in France, fagon is more judiciously placed with four angles over the centres of the sides of the
tower, than with four faces over the corners of the tower, which then require to be loaded by pinnacles. These are set diagonally more advantageously than when square with thit tower, becausc they thus have a larger base. The greater height given in the middle of the 12 th century to the spire rendered such precaution inevitable; and at the same tim it became evident that if the spire were to be no longer square on plan, it must not seem to rise abruptly out of a square.

Octagonal steeples, with octagonal spires not built through, but resting upon them, seen to be considered now as dangerous experiments in construction. Yet one at Guebwillur in France, is a central steeple of four stages, including the pendentives. At Schelestadt is another of the same kind. This plan does not seem to have been in favour after the commencement of the 13 th century.

When the French architects determined to trust their octagonal spires to the upper storeys of their steeples, they seem to have been careless about allowing the pendentives t_{t} approach points of weakness. The student will gather a good lesson on this point fron the section of the steeple at the Abbaye de la Trinité, at Vendône, given in Viollet k Duc's Dictionnaire. In the steeple of the cathedral at Chartres, the pendentives of the octagon sit upon the four pinnacles, which are thus each obliged to take a part of tho weight of the spire; the other part being thrown upon the four faces of the octagonas drum, which are weighted by heavy gables. At the bottom the spire is $31 \frac{1}{2} \mathrm{in}$. thick, ane at top $11 \frac{3}{4} \mathrm{in}$. in a length of 156 ft .8 in ., built of hard Berchère stone. The roofs of the pinnacles are $19 \frac{3}{4} \mathrm{in}$. thick. It is to be noticed that the danger of a fall, which was se imminent as to cause the destruction of the steeple at St. Denis, is attibuted in great par' to the increase of weight given to it during a course of restoration, by using the stone o St. Pierre instead of that of Vergclé. Some French spires have a very curious effect, dut to the presence of a simulated hip in the centre of their sides for the whole or part of the height : but still more extraordinary were the slits in that of St. Denis, and the slit witl two transoms in that of St. Nicaise, at Reims.

The spire of the church at Langrune, near the sea-coast, north of Caen, in Normandy has at its base in the interior, a sort of buttress of thin stone resting on the thicker wall of the tower, which runs up for a great height to each of the angles and sides of the spirc They are pierced so as to afford a free passage all round at the base of the spirc and may have been provided to assist in strengthening it on account of its exposed position It has been drawn by Rev. J. L. Pctit in his Architectural Studies.

It will be found that the stone spires of the 12 th century were high in regard to th rest of the stceple. The proportions at St. Denis were $38 \frac{1}{2}$ to 35 ; those at Chartres al 60 to 42 ; but in time these proportions were altered so much that the spires of St. Nicais at Reims (end of 13 th century), and those of the front of the cathedral in that city, al scarcely half the height of the tower instead of equal or superior to it. Murphy, in 15 account of the Batalha, remarks that no settled proportion seems to have been observe in the dimensions in general ; they varied from four times the width of the base to eigl times.

As regards the jointing of the stones of which spires are composed, their sccuil seems to be wholly the result of an accurate working of the beds and vertical joints, and th adhesion of naturally good and properly applied mortar. In modern work it is questio able whether such aids as dowelling and cramping should be altogether dispensed wit Iron must not be used, for reasons given in an earlier portion of this work. One methe used at present to steady and tie in the spire, is that of the insertion of an intermedia stage or floor of timber framing. Sir C. Wren, when rebuilding the upper portion of t (former) spire of Chichester Cathedral which had been forced out of the upright, place two intermediate stages comnected with a pendent beam of timber about 80 feet in leng attached to the finial stone; each stage was about 3 inches less in diameter than the spi at their: levels; these restored the spire if it departed from the upright. A simil pendulum, with two stages, to act in like manner, has been introduced by Gibbs in 1 spire of St. Martin's in the Fields, London. Iron rods have of later years been used effect this purpose.

When the beds of the stones are horizontal, one course of binders sceured with dot tailed dowels will perhaps be enough in the height; but when the beds are incline two or three of these courses in its height would be an effectual means of preventing spread. It has been considered that a spire is stronger when the beds are sct at rif angles to the facc, but if not well set, water gets in, and sudden frosts do much injury. is probable, however, that a large number of steeples would, were examination possible, found to have bcen well chained with timber or with metal The former material appe to have been employed in the church at Châteauneuf (Saone et Loire).

The spire, built cir. 1315, of St. Aldate's Church, Oxford, had to be taken down in 18 The tower is about 56 feet high; the spire, about the same height to the weatheren was for 10 fect down from it of solid stone, similarly to that shown in fiy. 12 The cause of its failure was that a $: \frac{1}{2}$-inch iron bar coupled at the angles and inserted
he first course of stonc 7 inches thick at the base of the spire, had rusted, in some place, ntirely through, bursting the stone inside and out. The angle pinnacles alone sustained he spire for many years.
Nearly all the spires of Normandy are said to have been executed in thin slabs of tone; they are all about 7 inches thick at the bottom, and about 4 inches thick at the op, and are almost all executed in the Creuilly stone. In Caen, especially, that stone vas employed in the stecples, though it had to be brought about 12 or 14 miles. The oints are (probably) set at right angles to the face of the stone. The spire at Batalha s about 7 inches thick, independent of the carved work, though almost a fourth part f its superficies is perforated : its stones are said to be keyed together by means of ovetailed pieccs of pinc wood (Murphy). The slender stone ribs of the octagonal pire of Freiburg Cathedral are girded together at intervals of about 15 feet by means f double horizontal ribs or bands of limestone; in the middle of each of these bands n iron cramp is inserted, so that one half of the thickness of the metal is fixed in lie under course of the stone-work, and the other half in the upper course, in order to revent all thrust. The space between the rib and the horizontal bands is filled up with erforated tracery, so that the appearance of great lightness, united with great boldness, is nparted to the whole. Plate XI. of Moller's work shows a careful representation of the ints, explaining in what manner the stones are connected together, both in the principat nembers and the ornamental parts. The spires of Strasburg and Constance Cathedrals, nd that of St. Stephen's Church at Vienna, present other examples of open work spires. The thickness of the decorated spire to the staircase in the north tower of the west front f Peterborough Cathedral, is about 11 inches at 2 feet above the wall of the tower, here the octagon commences, and is about 10 feet diameter (shown in Robson, Masons' Tuide). The methods adopted of strengthening Salisbury spire and tower, are related by Price in his work published in 1750, who states that it is 400 feet high from the paverent to the extrume top, but to the top of the capstone or ball only 387 feet as previously oticed. It is only 9 inches thick at the bottom, diminishing to 7 inches.
The outline of a tower in elevation shonld be a parabolic curve, for strength as well as ppearance, as it will not then present a top-heavy appearance. The difficulty in degning a tower and spire in the Roman or Italian style is to prevent a telescopic effcet; ad in the mediæval style the appearance of an extinguisher is too often obtained. The Itasis to the spire, and due diminution of the tower (though the former is usually held ot to have existed, some spires being formed of two and even three lines at different ggles), are desirable both for appearance and strength. They are common features in issex and Middlesex, and the absence of them may be noticed by any one going from issex into Suffolk, the round towers in which county have the entasis, but not those of ter date. The tower of All Saints' Church, Colchester, possesses it, and diminishes om 21 feet to 19 feet, having internally an offset at each floor and at the roof, so that 3 timbers run into the walls.
A mathematical method of setting out the entasis for a spirc was furnished by Mr . homas Turner, of Hampstead, to the Builder for 1848, through the late Professor ockerell, R.A. But as he states that the ordinates may be obtained very nearly true taking a thin lath and bending it to the extent required, we do not consider it necessary are to do more than to refer to the paper. In the reconstruction of the spire to St. ephen's Church, at Yienna, an iron framework was introduced to support the light stone os, until near to the summit, which was made wholly of iron.
The iron spires at Rouen, Bruxelles, and Auxerre, are the only three we have noted.

CHAP. IV.

MEDIAEVAL PROPORTION.

Sect. I.

EFFECT OR USE OF NUMBERS.

The introduction into this work of the investigation of the principles of proportion, as opounded by the late E. Cresy, renders it necessary that some preliminary details should considered, before the student passes on to those pages. These dctails will consist of e result of the use of numbers, as given by the late Mr. Gwilt and appended to the preus editions, and of the enquiry by modern investigators into the use of the triangle and the square during the mediæval period. The subject is interesting, and a very enticing
one, and we regret that om linited space will not allow us to do more than merely ente upon it. We would warn the student that should he feel inclined to devote any time 1 this subjeet himself, he must not be content with the incasurements he may usually fin in publications, but must found his theories on those taken by himself to be in any degre certain of his deduetions.

The plan on whieh the carlier Christian churches were constructed, wrote Mr. Gwil was that of a eross: lic omitted to notiee, however, the Italian basilican plan and th domical Greck plan; but lie justly observes that (in western Europe) after the 10 th ee: tury it would perhaps be difficult to find a cathedral deviating from a eruciform plan. the beginning of the 9 th century, in an inauguration (of

VİR. 1219. church) scrmon, the preacher obserses, "In dextro eorm altaris quæ in modum crucis constructa est ; " and again, " 1 medio ecclesite quax est instar crucis constructa." (Aeta S Benediet.) Round churches, as at Aix la Chapelle, in Ge many, Rieux and Merinville, in Franee, with Little Mapl stead, Cambridge, Nortlampton, and the Tcmple Churc London, in England, are not enough in number to affeet tl ?ule. It was in the 13 th century that the termination of $t l$ choir was changed from a eireular to a polygonal form. Il general ordomance of the plan was, however, not changer and scems almost to have spring from the laws and propo tions upon which surfaces and solid bodies are dependen The square and its diagonal, the cube and its sides, appea at least the latter or the side of the formor (fig. 1219.), 1 furnish the unit on which the system is based. Hence tl numbers 3,5 , and 7, become the governing numbers of t l different parts of the buitding. The unit in the Iatin eross, plaeed at the intersection , the nave, rives the developinent of a perfeet cube, according to the rules of deseriptis geometry. Here are found the number 3 , in the arms of the cross and the centre square the number 5 , in tlie whole number of squares, omitting the central one; and the numb 7 , counting them in each dircction. The foot, however, of the cross was, in time, lengtl cned to repetitions of five and six, and even more times. In monumental churches, formu on sueh a system, there necessarily arises an unity of a geometrical nature; and th geometrieal principles emanating therefrom guided not only their principal, but the secondary, detail. Even before the 13 th century there seems to have been some relatic between the number of bays into which the nave was longitudinally divided, and 11 exterior and interior divisions whereof the apsis consisted; but after the introduetion of th pointed style, this relation became so intimate, that from the number of sides of the ap: the number of bays in the nave may be always predieated, where the work has been carriout as it was originally designed. From the examination of many, indeed most, of 1 ? churches in Flanders, this circumstance had been long known to us; but for its first pu licity, the antiquary is indebted, we believe, to M. Ramée, in 1843.

The conncetion of the bays of the nave with the terminating polygon of the choir w such, that the polygon is inseribed in a circle, whose diameter is the neasuring unit of t nave, and generally of the trassepts, and forms always the side of the square intereept by them. It is most frequently octagonal (fig. 1220.), and gen
 rally formed by three sides of the octagon. When this is ust the goserning number will be found to he 8 , or some multiple it. Thns, in the Abbaye aux Hommes, at Caen (this, howev is previous to the 13 th century), the termination of the chois by a double octagon, and the number of bays in the nave is eig The same oceurs at St. Stephen's, at Vienna ; in the Churc, St. Catherine, at Oppenhein; at Liehfield Cathedral ; at Tewk. bury Abbey, and at almost every example that is known.
It may be well here to observe, that English cathedrals, partly from their great d_{s} ciency in symmetry, on aceount of their not having been finished on their original pla do not afford that clucidation of the theory that is found in those on the Continent. twenty-four instanees of them we have sixteen in which the terminations are square inst of polygonal ; when polygonal, the rule seems to have been always followed. It must noted, however, that in contradistinetion to the rest of Europe, England kept steadily a rule, to a square east end; and though at Canterbury and Tewkesbury, and a few ot noted examples, the circular form appears, yet often, as at Peterborough and Westmins the curved apse was eapped with a rectilimear addition, protesting, as it were, against foreign elcment.

An eastern termination of the ehoir in three bays may be produced from the oetagon omitting the sides in the direetion of the length of the building, as in fig. 1221. In fig. 18. the three sides will be found to be those of a hexagon; and in this ease the numbi
foverns the other parts. Examples of this arrangement are, the minster at Freiburg-inBreisgan ; the cathedral at Cologne, where the apsis is dodecagonal, and there are six bays in the nave; and the abbey at Westminster, where the eastern end is hexagonal, and there are found twelve bays in the nave. In re-
Fig. 1221. speet of a nonagonal termination,

Fig. 1222.
se most extraordinary instanee of a coineidence with the above-mentioned rules oeeurs 1 the duomo of Milan, commenerd at the end of the 14th eentury. Its apsis is formed y three sides of a nonagon, and the bays in the nave are nine in number. One third of ie are contained under the side of an equilateral triangle seems to be the governing di. rension. The number 3, submultiple of 9 , pervades the strueture. There are three bays the choir, and the like number in the transepts The vanlt of the nave is subtended by l equilateral triangle. The lower prineipal windows are each designed in three bays. he plan of the eolumns in the nave in cach quarter contains three principal subdivisions, id, in a transverse section of the nave, the voids are just one-third of the solids. These are rions points, and much more worthy of investigation than many of the unimportant tails which now-a-days so mueh oceupy the attention of archwologists. If the stem of e plant is right, the leaves and fruit will be sure to grow into their proper forms.
Figs. 1223. and 1294 . show the decagonal terminations of an apsis. In the first, a side the polygon faces the east; in the second, the angle of the polygon is on the axis of the

Fig. 1223 ehureh. The last ease is of rare oceurrence. Examples of it are, however, found in the ehureliat Morienval, and in the choir of the dom-kirche of Naumburg. The first case is illustrated hy a variety of examples-such are
 Fis. 1294. cathedrals at Rems, Rouen, Piris, Magdeburg, and Ulon, with the ehnrches of Ste. izabeth at Marburg, that at St. Quentin, \&ec., and, in this country, the eathedral at P'eterrough; all of which have either five or ten bays in the nave. The dodeeagon, as a mination, is subjeet to the same observations as the hexagon : indsed they were articied by the mention of the eathedral at Cologne. Under the firture of the heptagon must ciassed the magnifieent eathedral of Amiens, wherein seven chapels radiate round the choir h, and there are as many bays in the nave (fig. 237.). The choir at Beauvais is terminated a double heptagon; and, had the ehurch been completed, it would doubtless have hal en or fourteen bays in the nave. At Cliartres, the choir is also terminated by a double 1 tagon, and the nave contains seven bays. In the duomo at Florence, the eastern t nination is octagonal, and there are four bays in the nave; this is an example of the ciring Gothic style in Italy.
on an examination of the principal charelies on the Continent, in and after the 13th c ury, it would appear that the practiee of regulating the datails was dependent on the
n iber of sides in the apsis, or of bays in the nave. Thus, if the choir is terminated by the bays, formed on an octagonal plan, we find 3, or a multiple of it, is earried into the ${ }^{s i}$ livision of the windows. So, if the number 5 is the dominant of the apsis, that 11 her will be found transferred to the divisions of the windows; and in like inanner the rchinder is produced. 'There are two or three other matters afficting the monuments of al rected in and after the 13 th century. The aisles are usually half the width of the ne, though instances occur where the width is equal. Mary ehurches have two apsidessu are the cathedrals at Nevers, and at St. Cyr; and in Germany, St. Sebald at Nurembe ; the dom-kirehe at Mayence; the abbey church at Laach; the eathedrals of Bambe, Worms, and others. So far Mr. Gwilt.
t remains to observe," writes Professor Coekerell, in the Archeological Journal, 1845 on the mysterious numbers employed by Wykeham in the plans of his chapels at Win-

In the first, the ehapel consists of 6 of these parts, and the ante-chapel of 1 ; in
e recurrence of the number 7, "a number of perfection," is eonstant; accordingly we fin temployed in the following remarkable instances, sometimes in the nave, and sometin in the choir. In the eathedrals of York, Westminster, Exeter, Bristol, Durham, Livield, Paris, Amiens, Chartres, and Evreux; in the churches of Romsey, Waltham,
Bu lwas, St. Alban's (Norman portion), and Castle Acre ; and in St. George's Chapel, at indsor, Roslyn Chapel, and many others. See also the notice on page 1011.

Sect. 11.

garly use of geometry and of a measure.

The idea is now generally sanctioned, that the mediæval architects had some settle system of proportioning their designs either by simple geometric forms or by combination of them. It will be our endeavour to indicate the sources whence the facts on this subje can be drawn, and to notice such of the details as our space will permit.

The knowledge of geometry previous to, and in, the 12 th century has been commente upon in par. 309, et seq. The Album of Wilars de Honecort, an atchitect living in t middle of the 13 th century, exhibits the use of geometry in various ways. This mant script was published in facsimile by M. Lassus in 1858, and an English translation w: edited by Professor Willis in 1859. The sketches also show a certain mastership of figu drawing, besides many designs of portions of buildings. Some original drawings still exi of Reims Cathedral, known to be before 1270, thus of the same period as those of Wila and two of them have been published in the Annales Archéslogigues, vol. v. page 92. T| drawings were traeed with a masterly line; they only showed how the design was to arranged; and by means of axial lines only, the whole was set out as regularly as could done for the most classical building. Scarcely any of the later original drawings st existing in many continental cities show the use of geometric figures (see fig. 1073.). It on the 14 th of February, 1321, during the crection of the cathedral at Siena, five perso who had been appointed for the purpose reported that "the new work ought not to be pr ceeded with any further, because if completed as it had been begun, it would not have th measure in length, breadth, and height, which the rules for a church require." The " structure, it also appears, " was so justly proportioned, and its members so well agreed wi each other in breadth, length, and height, that if in any part an addition were nade to under the pretence of bringing it to the right measure of a church, the whole would destroyed." Della Valle, Lettere Sanesi, ii. p. 60 ; noticed in Ilawkins, Golhic Arcl tecture, 1813, p. 183. This statement would seem to prove that some system had exisit

In par. 620, we have already mentioned the disputes on the great question of prop tioning the cathedral at Milan, 1387-1392, by the foreign system of squares, or by 1 native theory of triangles. The first notice in England of this unique instance of dispute appears to have been taken by J. W. Papworth, who presented in 1854 to Institute of British Architects some extracts from the Records of the Board of Works Milan Cathedral, published by Giulini, Memorie di Milano, 4to. Milan 1776, part 2, 448-60 of the Continuazione. These notes further condensed show, that on the 1st of M 1392, fourteen of the artists employed upon the works made affidavit of their opinion on points submitted to them, on the part of the German Enrico di Gamondia, who was of the number. On the third point, thirteen declared that the said ehureh, not includ the intended cupola, should be raised non al quadrato ma fino al triangolo, that is to on the triangular proportion. The same opinion is given on the fifth point as to the ves sine of the vaulting. Eurico, who on all the points held a contrary opinion to the thirt was thereupon dismissed. Another meeting of similar character, held 26 th of March, 14 of thirteen artists employed on the building, and two amateurs, was not so nearly unt mous upon the question of the alterations proposed by the Frenchman Giovanni Migno and upon that occasion Guidolo delta Croee (one of those employed) declared that alterations were correct, and that Mignotto was a verus operarius geometra, because ratios were like those of the dismissed maestro Enrico. The dismissal of this Jean Mig 13th of October, 1401, was aceompanied by a charge for the expense of pulling down work that he had erected during two years. Although the chronicle makes the cur mistake that the magister Enricus and the magister Annex (i.e. Johann von Jiern 1391-92), also a German, had advocated the triangular system, it rightly adds that trangular system prevailed over that of the square; and the lines may be supposed to 1 heen truly given by Cesare Cesariano. The conclusion we have arrived at in the m : is that the plan was designed on the principle of the square (exhibited in fig. 1231.), ve the elevation was designed on that of the triangle (sliown in fig. 1232.).

Cesare Cesariano, the first transiator of Vitruvius, Como, 1591, terms the geom c principle of design, "Germanic symmetry," and "rule of the German architects." Ri s_{t} who translated this work (Nur. 1548), names the order resulting from the triangle as e highest and most distinguished principle of the stonemasons." One principle reste in the arrangement of the square, or of the octagon which proeeeds from it, in the same w ${ }^{\text {at }}$ that of the equilateral triangle was based upon the hexagon or dodecagon which rest d from it. On this law of the square is founded the work by M. Roriczer, On the (10 nation of Pinnacles, 1486, which was printed by Heideloff, in I)ie Bauhütte des Mittli is in Deutschland, Nuremberg, 1844; and also by Reichensperger, who translated it to
ern German, Trier, 184.\%. It was noticed in the Journal of the Archeological Institute Great Britain, 1847; and translated in a concise mamer by J. W. Papworth for the nitectural Publication Society, Detached Essay, 1848, with woodeuts. An appendix ws On the Construction of a Canopy, which was also given in Heideloff's publication. he square, or octagon system, maintained itself among the German stonemasons until commencement of the 19th century. Heideloff relates that the chef-d'wuvre of Kieskalt, last city architect of Nuremberg (1806), was founded on the rules used in Roriczer, those in tise book of instructions written 1506 by Laurenz Lecher, architect of the nt Palatine, on the art of the stonemason, nach des Choresmaass und Gerichtigheit, eording to the measure and ordination of the choir."
The system depending on the equilateral triangle for its variety of form," states E . y, Stone Church, 1840, "continued in use till the beginning of the 15 th century in iee, when it underwent a great ard important ehange by the introduction of the eles triangle and its compound the pentagon. A pupil of Berneval, the designer te Church of St. Onen at Rouen, proved that these figures could furnish novelties in gn. We can well imagine how displeasing this innovation must have been to the whole rnity of masons; their mystery was in vaded." Pommerayc, in his History of the Abbey Ouen, mentions that the master was so incensed at the clergy preferring the rose low of the northern transept (fy. 1293.) executed by his pupil, where this innovation first introduced, to that of the south (fig. 1288.), of his own execution, upon the nt triangular system, that in a fit of jealousy he killed his rival, and was himself emned to be hanged. (See page 1036.)
the year 1525, Albert Duerer published in German his Geometrical Elements, showing in clustered columns, and a few other details of Gothic architecture. In 1532 a a edition was published at Paris, entitled Albertus Durerus, Institutionum Geometrin; and in 1606 a second cdition was printed at Arnheim. It is this author who lirst is to our notice the use of a figure ealled the vesica piscis, which is explained in III. In 1589 Spenser published his Fä̈ry Queene, and in it allusion is nade to the rtion of a building in words which deserve attention (b. 2, canto 9, v. 21). In 1593 Chomas Tresham erected the curious lodge at Rushton Hall, Northamptonshire, :ly constructed on the equilateral triangle; it contains one room of an hexagonal ; the upper windows are mostly triangular openings (Builder, iii. 538. 550.).
eglitz, in Altdeutscher Baukunst, 4to. Leipzig, 1820, records the possession of a manuIreatise on Architecture, giving the rules and instructions aecording to which the nt werkmeisters and steinmetzen worked. Judging from the character of the handig, it must belong to the middle of the 17 th eentury, and this is also indicated by the ngs which exhibit the Italian style of that epoch. But the rules for the construction arches belong to a more remote period, and the author of the manuseript states that rules were never described, but were transferred in a traditional way to. and kept by, tists, who called them, like the ancients, Measure of the Choir and Justice. It to be the only written directions for a building which has come down to us. The ngs in it, which are only shaded, are finely executed by a steady and practised hand show the formation of the several cornices, mouldings, jambs for doors and windows, s , and arches, and also the formation and the arches of the vaulting. The building is I to have strict rules and an established module, according to which all the members zulated by the ensemble of the structure, and the whole is again regulated by the ars. The choir is considered as the key, and after its breadth is regulated, the thickf the enclosure-wall, and also all the dimensions for the cornices and other members tained. Thence the saying, "Measure of the Choir and Justice."
A irst, from a given circle an octagen is to be constructed, and according to it, the 1-plan and the pentagonal projection of the choir are to be deviscd. Should the ontain 20 feet in the clear, its wall would be 2 feet thick ; and if 30 feet wide, then

The pillars of the choir are commonly $2 \frac{1}{2}$ feet thick at their hase, exclusive of the table (schrägesims), and the depth is double of the thickness. The width of the ws is regulated by the space between the columns, which is divided into 5 parts: 3 are to the window in the clear, together with the mullions. If the choir be very extenad therefore the lights of the windows be too wide, in such case intermediate mullions roduced; but small windows have only one main or two subsidiary mullions. nave and aisles are regulated after the manner of the choir, being made equal to it h, yet in such a manner that the pillars, although equal in thickness to the wall of jiir, do not run in the same line of the opening, but project with three sides of their nal form. The breadth of the choir being divided into 3 equal parts, 2 are to be o each aisle, inchading the wall of the choir. The same dimension of two sueli parts ap to the pillars from one centre to the other, which shows at the same time the or the buttresses on the enelosure-wall. As, in consequence of the aisles, the mave requirss a wider vaulting than the choir, the enclosure wall of the nave ought t o
be constructed one-third thicker than that of the choir. The buttresses are the same thickness and breadth as for the choir. The windows are kept of the same width thronghe the whole structure. The transept projects as far as the breadth of the aisles, and its w has the same thickness as the wall of the choir. 'The lengtl of the church is for the in pait regulated according to the requirements of the population.

The towers, erected on both sides of the façade, are devised from the width of the in. shafts and externd pillars, which width formed into a square gives the external enclosu line of the towers. If only a single tower be constructed, it ought to be regulated af the choir, and agree with the same. The thickness of the tower-wall is regulated by height of the tower itself. Thus for every 100 teet of height, 5 leet in thickness is quired for the wall. Then, to this thickness one half more is to be given for the foum tion. But if the ground be firm and good, this thickness need only be kept as far as 1 base, and thence gradually reduced. The formation of the groining is not so clea developed by the editor, and we therefore omit it.

The outline and elevation of the choir are also calculated from its width. A ch which is 20 feet broad, ought to be one and a half or twice as high. The latter hei was called the real height. An ordinary choir requires only four tables or strings. 'I ground table (schrägesims) rises from the floor or ground to a height equal to the thickn of the counterforts. The string course (kuffsims) above is placed as high as the dista: between the pillars. The supporting string (tragesims) ought not to rise higher than capital of the pillars in the interior of the choir. The top, or roof-cornice (dachsi) ought to be placed at least half a foot higher than the vaulting. The pillar-cornice measured by tahing the thickness of the pillars twice down from the top cornice. A ch of greater lieight requires more cornices and decorations. 'The height of the nave portion fixed by taking twice the width of the choir, and this is measured from the ground-table above the top cornice. The ground floor of the tower ought to be as high as the wh tower is broad, and the upper floors to be regulated accordingly. We have only to : that the form given to the towers by the author of the MS shows the lalian style of epoch, whilst the church itself is constructed in German fashion, that is, with high poimt arched windows and buttresses, which are drawn without any mouldings.

Sect. III.

the vesica piscis.

If on the diameter of a circle (fig. 1225.), with an axis perpendicular to it, an equilat

Fig. 1225. triangle be described, whose vertical height slatl be equal to semi-diameter of such circle, and from the angles of the triangle the diameter, with a radius equal to one side of the triangle, arc circles be described cutting each other superiorly and inferiorly, figure described is that which is called the resicu piscis, or fis bladder.

The Greek word $i \chi \theta i s$, signifying a fish, seems to have been in c ages a mystical word, under which Christ was denominated, "Eó g l in hujns mortalitatis abysso, velut in aquarum profunditate, 'e peccato csse potuerit, quemadmodum nihil salsedmis a marinis aquis pisci affricatu that is, Because in the unfathomed deep of this mortal hife he could exist without sith, (1) as a fish in the depths of the sea is not affected by its saltness. The term, too, at a y early period, furnished an anagram, whose paits were expanded into the expres 'Incoús X $\rho \iota \sigma \tau \delta s$ © $\Theta \in \hat{u}$ rios $\Sigma \omega \tau \eta p$. The initials of these words were, in their turn, panded into a long acrostic (to which reference may be had, sub voce Acrostichia, and a undei the term Ichthys, in Hoffinann's incomparable Lexicon) on the Day of Judgn t, said to have been delivered, divino affutu, by the Erythrean sybil, but much more res ${ }^{-}$ bling the hard-spun verses of a learned and laborious man than the extemporaneous efifu: is of a mad woman. This acrostic is recognised by Eusebius, and by St. Augustine, Civ. \&c. There is nothing, declared Mr. Gwilt, to afford any proof of the conncetion of this 1 e nogram with the form and plan of the churches erected during the medixval period ote art. Apology, perhaps, would be due for any digression upon it, had it not heen fo a opinion in favour of its use expressed by the late Professor C. R. Cockerell, whose ta ts and learning deservedly ranked high in the eyes of the public, in his essay on the Architer al $W_{u r k s}$ of William of Wykhum, read 1845, before the Archacological Institute of 'sa Britain and Ireland. Ramée, in his Mistoire, has also gone more at length into this ject. Professor Cockerell likewise noticed that the writers of the 16 th century, Cesa 10 1521, Caporali 1536, and De Lorme 1576, recommend this figure, chiefly as that geome ai rute by which "two lines may be drawn on the ground at right angles with each oth, 11 any scale, according to the conception of Euclid's mind."

From an early time the triangle seems to have been associated with as much mystery and eration as the number 3. Without here touching on symbolism, in its use, whethe: ilateral or isosceles-we cannot but perceive, both in one and the other, a tendency to production of the pointed arch. The geometrical law for debing it is, as cuery one knows, founded on the interscction of , circles of the same radius ($f y .1226$.) The P!thagoreans ed the equilateral triangle, Tritogencia. It was, according to tarch, the symbol of justice. The subdivis'on of the ares nding an equilateral triangle by other ares of equal radius, s other modifications of the poiuted arch, and by their interions arc obtained the skel, ton lines of ornamented windows of

Fig. 1226. sarly period, which, at a later date, branched out into the most
1 iriant forms. Mrs Jameson, in Sacred and Legendary Art, 3rd edition, 1857, vol. i. 3, gives a drawing from an ancient Greek picture, wherein the upper part of the reentation of the Intant Christ is placed in a figure formed of four equilateral triangles ich produce the dodecagon). The biasd of the infant may be supposed to occupy in the ram the site of a chancel, the body in the place of a nave, and the hands, being held fi it, assume the place of the transepts.

Sect. IV.

MODERN INVESTIGATIONS.

mong the invcstigators early in the present century was C. L. Stieglitz, who putli d his Aldeutschen Baukunst, 1890 , as already mentioned. Therein he states that, "with r rd to the ground-plans of churches, it scems that two sorts have been employed. With th irst, the nave of the church was in breadth equal to that of each of the aisles. With th jecond, if, for instance, such a breadth be taken as an unit, the breadth of the nave ${ }^{w}$ Id be the diagonal line of the squarc, and the breadth of each aislc an unit. The le th of the interior of the churches of these two sorts, measurd from the entrance to th hoir, contains usually nine units The church of St. Stephen, at Vienna, is an illustratii of the first system ; and the Münster at Strassburg of the second. 'The cathedral at C. gne is a variety of the first plan. In this instance the nave is the breadth of its aisle, bisacli aisle is divided into two by a row of columns in the middle. The fore-part of th hurch has usually three diagonals of the square for its breadth, wherefrom the unit, sh dit be unknown, can casily be deduced. According to this 1 rinciple, if the whole iat breadth of the church be considered as the root of a square, the diagonal of the same wi ee equal to the whole breadth of the front on the outside.
the first sort of plan, the nave of the church is raised either to an equal height with thisles or a little higher. In the second, however, the nave is constructed far higher. Oig to the first disposition. both the nave and the aisles are brought under a single roof, as St. Stephen's at Vienna. In those of the second sort, the nave and the choir (which wa qual in breadth to the nave) had each, as well as the aisles, a separate roof. The
wa if the nave and of the choir, on account of its small thekness, comparatively with ite liei t, required some support at the sides, and this was provided for by arched counterfor or flying buttresses from the enclosure-wall of the aislcs. The cathedral at Cologne sho a similar disposition, although the nave is equal in breadth to one of the aisles, wh fore the aisles are divided into two rows by pillars, for the purpose of giving to this por n of the vanlt (when it will be finished), on account of its smaller arching, a less than the one intended for the vault of the nave and of the choir. The ground plan and therefure the enclosure-wall of the choir is connected with the pillars of the 7 by

I inner heigit of the choir is stated to be 161 feet; the height to the gable, correspoing to the entire width of the west front. is 231 feet; the (proposed) height of the tow is equal to the entire length of the building, 582 feet ; the height of the side aislcs 70 f , and so fortl. In a similar manner, at the entrances on either side, are pedestals for sen statues; in eaeh of the entrances as many spaces for statues; there are 14 corner tabe acles on the southern tower; and with attention, the same combination may be tract in all the details. Twenty years appear to have elapsed, and then Hoffstadt publishle : he Gothisches ABC Buch, Frankfort, 1840, which enters fully into the formation of detai by a gcometric system.

In ingland, the subject was not thoroughly taken up until 1840, when R. W. Billings pull ed his Attempt to Define the Geometric Propurtions, \&c. He therein considers that
during the Norman period, no intricate figures were used for regulating the proportio

Clerestory
1 square.
Tıiforium
$\frac{1}{\text { square. }}$
Arch
$\frac{1}{\text { A square. }}$
Column
square.

Fig. 1227. of the various parts of buildings. He exhibits the carly simplicity of pop, tion, in the clevation of a compartment of the Norman nave of Glouces Cathedral, as in the annexed fig. 1297. Something of the same sort of equal may be perceived at Winchester Cathedral, as shown in fig. 1266., where 1 width K L/ gives the heights I. M and M N ; the diagonal of this st ware ${ }_{g} 1$ the height L, O; and OP is a square in height ; but we are at a loss to regul: the upper part, unless the triangle be used, when $P Q$ will give the upper po at R, the centre of the head of the scmicircular window.

In the projection of the plans of the nave and choir of Carlisle Cathedral (, 1228.). the architert, says Mr. Eillings, was guided by the repetition ot a cir whose diameter in the first or Norman part was the extreme width of the bui ing; and in the second part, erceted 200 years subsequently, it was the wis between the internal walls. 'Tle distribution and even the substanee of columns was regulated by some recognisable subdivision of the circle; ane circle, or are of a circle regulated by the width of each compartment t formed, was the basis upon which the heights of the different portions the interior were framed. The woodent must suffice to show this principle as regards

Fig. 1229.
plan of cailisle cathedral. plan. The precise d sions will not probs answer in any other lou ing, but must be modili The east wall, it will perceived, is inclu within the boundary lis this is also the case at Temple Church, Lom From the result of ea lations, the seale for choir was made 8 part the radius of the prine circle, or 16 th of the meter; this sixteenth t is equal to 4 feet 6 in (or a yard and a $h h_{1}$ and the dimensions of the building may be calculated therefrom. In the nave, the 1 . ure cxactly 5 feet 8 inches, or $\frac{1}{2}$ th of the diameter, and it was this exact division, s s Mr. Billings, which induced the application of the scale of twelve parts to the diag " of that end of the building.

1g. 1229. BAT IN CHOIR; CARLISLE.

In every portion of the elevation of a compartne f the choir (fig. 1229), there is evidence of its geom o form:ation. The student must have recourse to the 3 lication itself for the further detailed development © © system in connection with this figure, but it is nece y to state that from the dimensions of the arch Mr. Bil. ${ }^{29}$ divided the width between the centres of the piers is "; parts for a scale; this gives all the remaining proports. The same scale of 6 parts of the width was applic iy Mr. Billings to a bay of the presbytery of the chi it Worcester, and finding it satisfactory, though tota' it variance in its proportions, with the exception ol 10 principal arch, it was considered as confirmatory " theory. These two examples are of nearly the period in the style.

In 1846 Mr. Billings published his Architectura ${ }^{2}$ tiquities of the County of Durham, and in collectin: measurements of its churches he was led to compare proportions. The result is given by him in two t, proving a groundwork of squares, and this he th " would at once account for the non-existence of an it working drawings, for the designer would only he. to communicate a rough diagram of his plan, bound series of equal squares, and give the dimensions o n, to be properly understood by a practical man. ist singularly, the measure is in cach ease one square yard (as above noticed). No les ant six of the chancels are 15 feet; threc others are 18 feet; and three of 21 fect At 11 ditten, the widths of the chanecl, of the transept, and the distance between the colnmms the nave, are all 15 feet."

The next investigator was the late Prof. Coekerell, R.A., who, in his essay before noticed ages 1007, 1010), considers that Cesare Ccsariano "may be said to have done to a great tent in that style what Vitruvius did in the Greek, namely, in diseovering many of its ndamental doctrines and prineiples. More espeeially does he reveal the estimation in iich Vitruvius was held during the middle ages; and the interpretations of his rules empted by the architects and commentators of that period" Tlus, the church in the astle of Nuremburg, built by Barbarossa in 1158, and the Fraucnkirche, probably of later te, in the centre of that city, are exact illustrations of the temple "in Antis" of truvius, as given by Cesariano, lib. iii. fol. 52. The use of the work of Virruvius, about 84 , is also recorded in Galiani's edition of the author, by an amusing story connceted th the building of the Castel Nuovo at Naples.
"It is needless to produce any further proofs of resemblance," writes J. S. Hawkins, in History of the Ori, in of Gothic Architecture, 1813, p. 223,"than to say that, in every thic cathedral as yet known, the extent from north to south of the two transepts, inding the width of the choir, if divided into ten. as Vitruvius directs (for Tuscan build;s, lib. iv. cap. 7), would exactly give the distribution of the whole. Three arehes form 2 north and three the south transept; the other four give the breadth from onc transept the other. One division of the four being taken for each of the side aisles of the nave, d two left for its centre walls, the complete distribution of the nave is also given. Of eproportion of one-third of the whole width as the height of the columns, the cathedral Milan is a decided instance. The two transepts together are 110 culits, the breadth of choir 28 , making together 138 ; and the height of the columns is 46 cubits."
The rules named by Cosariano occur in his Commentary, fols xiv. and xv., and he istrates them by the plan and section, of Milan Cathedral, which was commenced in 1386. e figures are entitled "ichnographia,"-" orthographia,"-" scenı-phia,"-"sacre Edis Baricephalæ, Germanieo more, a Trigono ac riquadrato perstructa," and, "secundum Germanieam symmetriam," 1 again, "per symmetrix quantitatem ordinariam ac per operis, deationem ostendere, Gerınanico more," \&c.
The first rule, "a Trigono," establishes the respective proportions the length and breadth of the cross, which are included within the , ares of 102°, constructed according to the first proposition of Euclid. e fig. 1230. has been commented upon (page 1010) as involving the

Fig. 1250. ica piscis. Mr. Cockerell continues his remarks by ${ }^{1}$ icing Mr. Kırrich's paper in the Archaologia, xix. 1/353-61, wherein that author uses the figure but © not confess his debt. In all the examples given 1 him the resica is applied to the internal length a breadth.
The second rule, "a Pariquadrato," is effected by diving the area comprehended in the vesica, into comnisurate squares or bays, on the intersections of which t. columns and luttresses are placed. The number o them will be determined by the extent of the

Fig. 1232. and San Salvatore, at Venice: in France,
in 2 cathedral at Rouen, and in others: and in Germany, in those at Prague, and others.
bitit is to be noted, continues Professor Cockerell, that another rule of distribution (not geliscovere.) is more frequent in the latter countries.
e third rule, also "a Trigono," is orthographic, and establishes the normal heights in
the elevations and seetions by equilateral triangles, aceording to Cesariano, fol. 15. " 7 'h

Fig. 1255. plan; NEW College charel oxfond. application of the first and seeond rules in New Colleg Chapel is exact; the whole and the parts are commen surate, as well in the bays or squares as in the subdiv sion of the bays of the windows; of the flanks, as als of the west end. While in All Souls' and Magdalen Chapels, the two copies of the former, the divergencesar extreme. Fig. 1233. is the plan and its subdivisions: New College Chapel, Oxford. 'l'o our author's own wor we must refer the student for the apt remarks and con parison of the three plans, merely adding that the fir: is three diameters long, while the other two are less tha three diameters, by whieh Professor Cockercll appre hends that the rule had been lost, or was disregarded, al though Chichele's ehapel was built by "the King masons." The chapel at Winchester is upon the sam principle, the number 7 including the vestibule, whic only occupies onc of the divisions instead of two, as a New College; the relation of three diameters is obtaine withont making the diagram, as in New College Chape inclusive of the walls.
"The application of the thirl, the orthographic rul is not traetd so distinctly in the elevations and interis of New College ('hapcl, though more exactly in th: of Winehester, and we also perccive the value of t principle of the extension of these squarcs laterally, for the purpose of establishing th height of the eeiling, and of the pinnaeles in the east and west fronts."

The next exponent of this instmetive subject was R . D. Chantrell, who in 1847 read paper on the Geometric system, before the Institute of British Architcets. It was printe with cuts of the two ehief keys of the system, in the Builder for the same year. 11e fir refers to Mr. Kerrich's use of the resica piscis, explaining it, as in fig. 1234. Where th

Fig. 1234

Fig. 1235.

Fig. 1236.
chanecl is separated by an areh, the plan is subdivided by taking the brealth as rad (fig. 1235.), as at Routh Church, near Beverley, the resica coming sometimes within walls and western arch, and at others extending to the western face of the arch in the na in many works of the 1 Sth century. The apse is sometimes ineluded in, and sometin excluded from, the vesico. Where the nave and chancel vary in breadth, the bise of t triangles equal the breadth of the chancel (fig. 1236.), its length being determined by t vesica, and in each of these cases the breadth of the nave is obtained by framing a simi vesica upon the remaining length.

The Anglo-Norman chureh at Arlel, in Yorkshire, is defined upon the extreme lene

Fig. 1237. internally, as shown in fig. 12:37., and subdivided by the proportions of smaller vesice and other proportions.

The equilateral triangle alone las bcen tried, but no great varicty, le considers, can be produced, as, like the former system, it is but a minor portion of the great system in which most others will be found eombined. He notices that in $1830, \mathrm{~J}$. Browne,

Fig. $12.3{ }^{3}$ of York, produeed a system on the eircle. By pacing a square or cross on the cel of the circle, dividing it into four equal parts, eentres are obtained for resicie (fig. 12 ? of different proportions to those formed by the double triangles. By striking these rav lines upon each of the four points on the cireumference, centres are prodnced in abunda for quatrefoils, crosses, and other figures applying more especially to traeery. The f vesica gives the proportions of the naves and their aisles of the eathedrals at Iurham. I Peterborough, Canterbury and Ealisbury, but no others, and cannot therefore be consid an universal system.
a 1842 Mr. Chantrell developed a system which includes that of Kerrich's. Its formais detailcd in the journal named, to which we must refer the investigator, as the essay not otherwise been published. Fig. 1 239 . will at once show the principle, and if it rawn out to a very h larger scale it not appear so com-

Besides the tries, the points are ined for many pons. The six divis, A A, B B, from semidiameter are obtained; and ght lines drawn to alternate one give Igles. On their in:ctions, as C C, if be continued to t circumference, six ares are given, D D, F. upon which, with t1 first radius A B (c)f the semi-diamestrike a second se s of segments, and rd set of 12 cent is obtained. The se 1 d centres will give tr intersecting tria1 es, completing the fi! part of the design. $\mathrm{L} n$ the 24 points of th intersecting inner a) a cirele inscribed
 w determine the inner triangles upon the centres of the first, and the diagram is perfected. F more complex forms, an additional number of centre lines may be drawn upon the reuining intersections.
he number 10 was, according to Vitruvius, Plato's perfect number; but the antiP onists, with their 6 or the radial division of the circle (A to B, fig. 1239.), could, by the $\$$ ing of their centres, without the necessity of dividing with the compasses, produce the k howing that they were the more perfect, as their system combined with all others. T examples named by Mr. Chantrell, in which "the system is clearly exhibited," are th ose window in the south transept of York Cathedral; that of Winchester Palace in So hwark (fig. 1190.), but slightly varied and almost undisguised; and the cast window of awkhurst Church, Kent. Walkington Church, near Beverley, using the entire diagram, aft ds a simple illustration; whereas Kerrich's plans are proportioned upon the second ra 1 figure produced by the division of the circle, they should be placed upon the base of th reat triangle, thus facilitating the operation of giving proportion to a plan. In the co osition of the cathedrals at Lily, Lincoln, Canterbury, Norwich, Salisbury, Worcester,
D aam, Peterborough, and Winchester, the general proportion is determined by the first
of 324 subdivisions on each side of the centre intersecting the great triangle. The $a b$ s are all produced on the intersections of the triangles and their centres, and the ${ }^{8}$ 8ul visions for the piers are found in the centre portion of the diagram, with this occasiol difference, that transversely the radial lines may either pass throngh the centres of the pire or come on the outer or inuer faces, to conceal the principle on which they were based.
Th M (fig. 1239.) is part of the plan of the nave of Boston Church, Lincolnshire, arr ged on the former principle, while \mathbf{N} is part of that of Middleton-on-the-Wolds Ch th, Yorkshire, where the lines come on the inner face of the piers.
'or the elevation, proceeding with the double spherical triangle upon the centres Inn udinally, and the variations before noticed, transversely, the various heights were obticd for the pillars; and the subdivisions by the spherical triangles יpon them gave arel , capitals, and bases, triforia, tracery, mouldings of every description, and due prortion to each feature. I have every reason to believe," concludes Mr. Chantrell,
"th this system will apply to the works of all ages that can be tested by sound geometric prirples."

1. results of the inrestigations published by E. Cresy in 1847 arc added in Scct. VI. If. Penrose, in his investigations at Lincoln Cathedral in 1848, for the Archæological
lustitute of Great Bri ain and Ircland, urges that "the tendeney towards the system designing on the stuare, with greater or less degree of approximation, is fuund to ocenr so many churches that it is a law which had great authority with, at least, the me orthodox of the middle age arehitects, although they did not seruple to modify it when th saw oceasion." Ile decides that the nave of Lincoln Cathedra] was formed on this syste on the intersection or intended intersection of the piers, and coinciding with the outs. of the main walls. The choir seems to be built upon the true system of squares, whi are of the same size as those of the nase, but the greater width of the former allows of 1 squares coinciding with the inside of the walls. "The height of the choir appears to obtained, as is so frequently the casc, from that of an eqnilateral triangle, whose base 1 within the walls. The height of the nave is obtained by a square placed within the sat limits, which, though less symbolical, is more commensurate." He thinks that if the leng of St. Hugh's choir could be recovered, the whole length from east to west was then s that it included the transepts within a resica piscis. He also conceives (for reasons states) that the architcet to the presbytery had access to the original drawings prepar for the earlier parts of the building.

The ratio of the voids to solids appears to be more romarkable than is to be found any vaulted building in Europe, at least among the larger struetures. Very eare measurements taken immediately above the plinths give voids 1056 , supports 107 , or 1 former nearly ten times the supports, including in the latter, the external buttresses a wails; and including in the voids, the clear internal area of the chureh.

Mr. Penrose gives the measurements of the heights of various parts taken by him w great exactness, and this height he divides into 26 parts, which will be found "to agree on excecdingly aceurate manner with the principal divisions of the bays. In Bours Cathedral, he states the height of the vaults agrees with that of an equilateral trian: whose base occupies the hreadth from centre to centre of the external walls. Sume of t heights may be obtained from parts of this triangle, and others from integral numbers French feet. In the cathedral at Metz, the height is 130 French feet $=1386$ lingl feet. If this he divided into 300 parts, various proportions of them determine heigh The cathedral of Ratisbon appears to be founded on the triangle taken as that at Bourg 'The ratio of its height to length is as 3 to 8 ; and is 1042 English feet high, or 1 Bavarian feet. These results are well worth further consideration, from the well-kno conscientious manner of taking measurements adopted by Mr. Penrose.

An early investigator, Mr. W. P. Griffith, published in 1847-52, numeroms ess: on this subject, as named in the list of books in the G bossairy addendum. He eahil

Fig. 12 .n.
CHukch AT LITTLE MALLESTEAD. ciubin or tuit nom. tower, and three of these triangles will include
 the adaptation of the square, set square and dias nally, one upon another (as in fig. 1073.) to church of the Holy Sepulchre at Cambridge, 1240.; and also of the triangle, for carly churehes. at Little Maplestcad, fig. 1241. Westminster Abl Chureh, and the cathedrals at Salisbury, II chester, and Rochester, are based upon a trian whose base being the width of the nave, inchod the walls, is placed upon the centre of the cent skivlcime, cambrige. length of the nave. Ely Cathedral, Redelifle Chur Bristol, and Bath Abbey Church, are proportioned in a similar manner, "We m insist," he writes, "after a primary figure of form or unit has been given, that cach 1

Ftg 1242. produced shall bear a proportion to each other, and to original unit.-Although the equilateral triangle dieta the general proportions, the square and pentagon were fn very useful in the details. The ehapter honses of W York, Salisbury, and Westminster, are proportioned by ji squares forming an octagon; and those of Lincoln, I! minster, Worecster, and others, by two conjoint pentag forming a decagon." Hc illustrates the formation of the of Salishury Cathedral, both on the square and on the trian but, as noticed respecting Milan Cathedral, although the sq' appears to suit best for the plan, the elevations appear to 1 been set out upon the triangle. Fig. 1242. shows the sy
will be as follows viz, Weaned by Mr. Griffith, in fixing the height of buildi Hercford Cathedral, 4; l'eterborongli; 91 $\frac{1}{2} ; 6$ Liehfield, $3 \frac{1}{2} ;$ Exeter, 4; Worcester, 13istol, 3. The loftiness of Westminster Abbey is attributed to the eause that e eloisters adjoining (similar to double aisles, as originally intended) being included it , 6
use of the triangle of the transuorse section, therefore the height of the abbey is re than the eathedrals. The chancel of Bristol Cathedral has no triforium, and is cordingly less in height. These buildings having been based upon the equilateral angle, that figure will alone be a key to them, and it will be futile to try the sfuare. In estminster Abbey that figure mostly abounds (in trefoils, hexafoils, dodecafoils, \& c.) ; ile Salisbury Cathedral, being based on the square, that figure and its products will be and ehicfly employed (in tetratoils, oetafoils. \&.c.). This building is 4 squares high.
Dr. Henszhnam, in his Remarlis on his alleged discovery of the constructional laws of edixval chmeh architecture, read at the Institute of British Architects, 1852, states that be architects of old did not employ much reckoning in their constructions, but used geostric forms.- In studying the chusehes, I beeame persuaded that out of a ground line or m , considered as a basis, there ean be developed, either by a geometrical or algehraical thod, between 30 and 60 sums or lines, corresponding to the size, age, and importance whe building, and there is, with very few exceptions, not a structural member, be it large small, the proportions of which are not defined by one of these lines or sums, or exeepnally by their multiples or divissons." Ile published the tirst portion of his elahorate tem in 1860 ; this, together with the extensive system put forward by D. IR. Hay, of limburgh, must be left to the reader to investigate from the books themselves.
The last of the investigators with whose system we shall trouble the student is
White, who published it in the Ecclesioloyist for 1853. He has pereeived that each hitectural period has its own appropriate order of rules, and this in minnte accordance h an intelligible system of development. Thus, in the Norman period, the general protions of the plan are reducible to the square, and the relative proportions and positions the minor parts chicfly by the equilateral triangle. As architecture progressed the are disappeared, and to the ontline and detait was applicd the triungle. In the midde he 14th century, as art declined, the triangle was forgotten, and a system of a diagonal sare was taken up. Since then mathematical proportions have been chicfly employed, Ecially that of the diagonal of the square, fig. 1243.

The figures applieable to the setting out of medieval buildings are these: 1 . the 8are; 2. the equilateral triangle ; and 3. certain ares described upon diagonals and
1.

111.

Fig. 1245.

Fig. 1246.
v.

Fig. 1247.
les of the same." Thus, in Norman work, the proportion of a square placed lozengeways fry the ends of which a vesica piscis is struck (fig. 1244.) is in common use. In first
 pointed work, the proportion is that of a square touching the head and sill (fig. 1245.). The system shown in fig. 1246. seems chiefly used in lancet windows and works of that period, the height being first determined. The proportion in fig. 1247. is used in traceried first pointed, the resica, giving the width, being obtained from the apex of an equilateral
tri fle. The proportions fiys. 1248. to 1251. predominate in middle pointed; those of II.
anc '. the same, only in the latter period the rule is applied to the determining of the lights or bays instead of the whole opening, and is applied to the centres
 of the multions and not to the sides only. All these proportions appear to have heen equally well known in all early times, but in the middle pointed period they gradually became more complicated, and are consequently more difficult to trace out. In thirs pointed they can hardly be found, and in obtuse third pointed they quite

Fig. 1254.
vill.

Fig. 1253.
disa car, the proportions shown in figs. 1243. and l252. taking their place. The equilate triangle of 60°, D E F (fig. 1253.) used to ohtain one point, is often aecompanied
by 1 angle formed of $30^{\circ}, \mathrm{E} \mathrm{F} \dot{\mathrm{G}}$, to obtain another relative point ; each equal subdivisios:

F D and F G; F G and FE, having the corresponding angles of eaels equal ; wheres: in other triangles (as fig. 1254.) this is not the ease.

We give one of his illustrations of the theory as applied to Steyning Clmreh, Sussex, a Norman building. The plan (fig. 1255.) is set out by equal squares, and also the exterior

Fig. 1256.
steyming cauleh. (fig. 1256.) to some extent. The interiur (fig. 1237.) is set out by squares and thiangles. The diagrams will explain themselves. The diameter of the columns is determined similar to c ef in Rule II. The lower window is set ont by 11 . and the upper one lyy VI.

Fig. 1265.
probes cituren
Fig. 1258. is the ground-plan, and fig. 1259. the elevation of the east end: and fig. 12 tit the elevation of part of the side, of the chureh of St. John, Wappenbury, Warwickshire. 'I'] relation of the lines one with another is well exhibited in the diagrams. At Itehor Chure Sussex, the width is diside

Fig. 1260.
WAJPENEURY CIURCLI The example is the ehureh at St. Probus, Cornwall. The windo vs S are a square s to the outer edge of the monlding, and are fixed by a square os the base of the b. 'lhe windows ' T have their points fixed mueh in the same way, bit their width is de mined by the diagonal of a square. The height of the arelies in the interior are determined by the diagonal of a square (ftg. 1261.).
" No one," writes Mr. White, "seems to have earried out upon the equilateral trial any definite theory of design, or to have redneed the applieation of it to any tang shape.- The theory is that the several parts of a perfet building must be in cer relative proportions to each others-so that all parts may be brought into an entire umistakable harmony with each other, -hence it is not a definite application of $t^{1 p}$ principles that is insisted on, but only a systematic observance of then in some wa ether.-In secular and domestic buildings, we do not look for the same amont or is
beauty, nor is the same exactnes; of proportion of equal importance as in an ecclesiastical ilding, where every line ought to be in its proper place, and every form distinctly marked convey an idea of perfection. In common dwelling-houses, where it is directly evident tl at external form is entirely dictated by certain requirements of internal arrangement, a sort natural beauty always results, and so there is not the same need to have recourse to uetness of proportion to produce some degree of good effect.
"The advantage of a mechanical process for defining proportions and forms would be mense in the mere practical carrying out of the work; for by its means we could, by ing one leading dimension, transcribe, reduce, or enlarge drawings with the greatest :uracy, and with less than half the labour of using scales and compasses. A large body men, working apart from each other, but under certain and very rigid restrictions, must duce diversity as well as similarity. Their works must all possess the same general racter, though the details and form in the application of them must valy in every tance with the circumstances of the case and the workings of the different minds."
Clis system is developed by Mr. White, on numerous plans, details, towers, \&c. taken n his own dimensions.

Sect. V.

PROIOLTLONS OF MOULDINGS.

lo enable us to decide that mouldings may have heen also designed according to a : sure, there is a very interesting notice recorded by Llaguno, Nuticia; de los Arquitectos :1ryuitectura de Lss.uña, edited by Cean-Bermudez, 1829, wherein, under the life of cual Iturriza, he states that that architect designed, $¢$ th of May, 1541, the capilla mayor the parish church at Plasencia in Guipuzcoa. While the work was in hand, complaints ie from the townspeople, voters, that he was decorating it with work that was too minute could not be seen from the floor. To this assertion he replicd, according to an entry i he archives of the town, that they might bring some persons, peritos en la gimetria, who cld give a judgment in the matter. Such skilled persons were bronght to the building
e lave given in the section Masonky an illustration (fig. 662h.) of a mode of setting the ribs for vaulting, found on an incised block of stone. Such specimens of nicdizval ic and joining it. This gives the outline of the template for the arched mould-

The jamb and hood monldings are not deseribed by Roriczer, but probably the back , the hood is obtained by the radius $\mathbf{X} \mathbf{Y}$ eutting $Z \mathrm{E}$ at a, and from a and X the san radius will give the point b, from whence the curve $X a$ is obtained. The curved line Y is obtained from X. Divide $\mathbf{X} \mathbf{Y}$ into 5 equal parts, and at 1 draw a line parallel to Z The length $a f$ will be equal to the diameter $e Y$. With a radius equal to $d e$, and th centres f and Y, deserihe ares of circles intersecting in the point g, and with the cent g and the same radius describe the are f Y. The roll moulding appears to be formed 1 the length $e \mathrm{Y}$ on the line $\mathrm{E} Y$, cutting the line $\mathbf{Y} \mathbf{X}$ at I .

The jamb moulding is probably obtaincd by dividing the line S S into 8 equal part: a radius equal to one of the parts struck from 2 and 6 will give the enrves, and the lit V W. 'Tr will be equal to half $\Gamma 4$, and the jamb is completed. For the remainder of t construetion of the canopy we must refer the reader to the publication in question.
" lt is in vain," states Cresy, Stone Church, Kent, 1840, "that we attempt to imitate the traeery or mouldings belonging to this (the 13th century) style correctly, unless we consider them to cmanate from some simple figure. However mumerous the mouldings, they never appear confused, which entirely arises from the order observed in their arrangement." This he illustrates by the mouldings forming the trefoil arches round the chancel. "The points of inter-

Fig. 1265a. Cap and base at sterning. section of the two equilateral triangles are the centres for the hullows, and the more prominent parts of the moulding are set out with the same radius at the points of the triangles; or, in other words, four circles are encircled within a eircle, and by omitting eaeh alternate one the figure is formed."

Fig. 1265. is from Mr. White's essay, and represents his system applied to a cap and base of the poreh doorway at the ehurch of St. Andrew, at Heckington, in Lincolnshire. The mouldings are redueed from full size drawings whereon the diagrams eoincide very aeeurately with the several

Fig. 1265. neckington. members, the whole being set out by subdivisions of the equilateral triangle, or angle :30 and 60° sce. (as fig. 1253.). Fig.1265a. illustrates another cap and base from Ste ing charch, previously selected as an example. The cap of the eolumns is formed on principle of Rules II. and III., and the base upon that of VI.

A remarkable circumstance connected with this subjeet is, that although the Ger. archeologists appear to have reduced the proportioning of mouldings and details 1.6 system, as illustrated and explained by Hoffstadt, Gothisches A B C Buch, Frankt, 1840, which has been translated into French by T. Aufsehlager, Irincipes du Style Gollio, Paris and Frankfort, 1847, no one has translated it into English, or prepared a co sponding publication on Eaglish work (certainly not since the well conceived but lam ably produced system by Batty Langley in 1742), not even the author of the Ana s of Gothic Architecture, from whom it might have been expected. In fact, a true sus 1 of me:lieval architecture being still unknown in England, designs are made at random, the school, in disregard of its professed principles, eontinues disunited. For the sats tion of those who may desire to subject the mouldings given in Chap. IIl. to a y^{1} we add that the plans of Fountains, Tintern, and Menry VII.'s Chapel, appear t.e designed on the system of the square; that of Howden on the triangle.

Sect. VI.

PRINCIPLES OF PROPORTION.

The following portion of the elueidation of this subjeet was originally publisha in 1847 by E. Cresy in his Encyclopadia, as referred to at page 900 of this work, who not d, while introducing it, that "our attention must not be dirceted to the decorative portio of the style, but to the eonstruction, from the study of which some valuable lessons m: be deduced."

The Saxon manaer of Building. - A division of the transept of the cathedral at Winhester has been selected as the beet authenticated example of the style in use previous to he Norman Conquest. In a paper read before the British Archaologieal Association a' their second annual congress, held at Winchenter in August, 1845, the author gave his ceasons for supposing it to be the work of $\mathbf{S t}$. Athelwohl, for which the reader is referred to ts " Transactions."
Arches upon arehes enabled the Saxons o continue their walls to a considerable height, the openings between the piers being proportioned as those of the IRoman buildngs in the time of the emperors. The olans of the piers differ from those previous to the introduction of Christianity : n Britain both the Greek eross and the ircle are applied to them.
At Winchester Cathedral the columns ff the triforium recede within the pier, and tre set round a circle, (fig. 1267.); the passuge in the walls of the clerestory is hown at the side; in another portion of the same building is a similar arrangement n less massive piers. (fig. 1268.)
The Saxon churehes were generally diided into three tiers or storiec, viz. a ower arcade, a triforium, and clere-story bove; and such was the solidity and thickesss of the walls, that buttresses were altorether omitted, the outer face of their buildngs in this particular bearing a closer esemblance to the lRoman than the Nornan, although the workmanship was rude, nd the decoration scanty.
The proportions found in Saxon buildings re the same as in the Roman, which, rithout doubt, they took for their models. The circular temple of the lantheon at iome, 142 fect 6 inehes diameter internally, ad 183 feet 8 inches externally, contains ie proportions of two-fifths wall and threcfths void; the area of the latter being 5,948 superficial feet, and of the former 6,493 superficial feet; the difference of lese areas giving 10,545 fect for the area the walls.
We have already seen that in the Colium at Rome the points of support are out one-sixth of the entire area of the an; and the proportions of hoth these uildings have been admired for nearly 2000 ars, the one vaulted, the other uncovered. Generally the walls and piers of our xon eathedrals occupy from one-third to o-fifths of the entire arca; in their sections e-third is devoted to walls and piers, and 3 remainder divided between the nave and le aisles.
The division of the eathedral at Winester exhibits very perfeetly the xon manner of building; the piers that pport the lower arehes are 10 fect wide, 1 the elear openings between them 12 feet inch. The nave and transepts retain ir original construction; in the former der the easing exccuted by Willian of ykeham, and in the latter it is seen in its 1 purity. The choir stands over the pits built by St. Athelwold, and though

K Fig. 1266. winchester cathedral.

Flg. 1267.
pier in nave at wincuester cathedral.
somewhat changed by the Normans, it yct retains the dimensions given to it by its celebrated Saxon constructor.

The small piers, one of which, in the south transept, is nearly perfect, are set out with great regularity, and measure 9 feet 8 inches from west to sast, and 8 fect 2 inches from north to south; their form is that of the Greek cross, composed of five cubes, each 2 feet 7 inches in width, with large and small columns placed around them to receive the mouldings that decorate the arches: six of these columns have their centres on the same circle: it is evident that the hexagon, or the duplication of the equilateral triangle, was applicd, and that the whole was set out by one conversant in geometry, and acquainted with the proportions of the cube. The Greek cross, which defines the solid mass, is continued through the tiforium

Fig. 1268. pier at transept at winchester cathedhal. and clerestory up to the timber
roof. The columns of the triforium, set round the inner circle, are partly cut is the lateral arms of the Greek cross, out the face of the shafts of the columns are in a
with its outer side. The eentre of the pier is preserved throughout, and so placed as lways to balance the masses around it equally. The circular shafts at Gloncester 'athedral, Tewkesbury Abbey Chureh, and several others, were probably of carlier date han pillars formed of several shafts; those in the ehureh of Saint Germain des Prez, at 'aris, are delieate examples of the former style.
That aisles, galleries, and passages, belonged to the construetion of a Saxon chureh, e have sufficient evidence in the recounts left us by contemporary historians; but the resent subject is almost conclusive on this point, there being a preparation for a wall feet 8 inches in thickness, containing the passage 2 feet in width, indicated by the plan f the pier at fig. 1267. The arrangement of the columns shows that there was no itention of vaulting the side aisles, for the two which earry the cross springers appear , have been added sume time after the original construction, as were also those in the pier, g. 1268.

Athelwold is supposed to have executed the whole of this work before the year 980 ; ie mouldings throughout are rudely cut, the eapitals of the main pillars being the only rtions which are at all enriehed by sculpture, and they are very simply carved.
The Normun manner of Building ean seareely be said to differ from the Saxon, though the asons employed after the Conquest eertainly acquired a superior knowledge in their art. he ornaments which we find in Norman buildings had all been previously used by e Saxons; hence the difheulty of distinguishing the works of one from the other: where ritten authority is not handed down to us, we ean only judge by the difference of the orkmanship; it eamot be denied that there were many very able masons among e Sasons, who were qualified to raise buildings and enrich them with sculptured nament.
The finest examples of Norman rk may be seen at Caen and its ighbourhoot, and have been ellived from measurements taken by z late Mr. l'ugin.
In Eagland the same style preled throughout our religions uctures ; there is a great similarity arrangement, and little variety of ament. The Norman style was rerally adopted after the Conquest, that named by the monkish torians the "Opus Romanum "was tinued in many of our parish irches, as well as in some larger I ldings. The Norman pillar was setimes composed of a eylinder ih four small half columns att led, as at Amiens, which is 7 feet Ω i. ees diameter.

For the Saracenic or Aralian Styles "must refer to the beautiful work rintly published by Mr. Owen J es, where the lecorative parts of t] eurious and highly ornamented

Fig. 1269.
pier at amens.
a itecture are admirably given, and proceed to the description of the principles which g led the eonstruetors of pointed architecture.
he Lancet Style succeeded the Norman, and we find it well defined in many churches
a) cathedrals as early as the year 1180; in it decoration was sparingly introduced,
at throughout every part of the design there was simple uniformity, and a display of
a asiderable knowledge of geometry : the heads of the windows and doors were formed of
is inted arch, eonstructed upon an equilateral triangle; all the mouldings which sur-
ro ded those apertures were delieately formed, and had both capitals and bases; this style
wipractised till 1230, when it was followed by another, which by some writers has been te ed
he Early English or the Geometric Style, from the manner in which the several portions of building were set out; and we find it adopted generally up to the ycar 1280 .
lisbury Cathedral, founded by Bishop Riehard Poore, in the year 1220, was fimished
in 60 . Its plan is that of a Greek or patriarchal cross, the extreme length being 480
fec that of the great transept from north to south 232 feet, and that of the lesser transept.
17 eet: the stone used for the external walls and buttresses was brought from the quar-
rie t Chelmark, which lies about 12 miles distance, westward from the city. The middle
of the wall's is filled in with rubble, and the shafts of the columns are of marble, from the Purbeck quarries. At the intersection of the nave with the great transept rises a noble stone tower and octagonal spire, the total height of which is 400 feet; the stone of the spire is in thickness about 2 feet to the height of 20 feet above the tower, after which it is only 9 inches in thickness to the summit: this spire, though braced and strengthened throughout by timbers and ironwork, has declined from the perpendicular $22 \frac{1}{2}$ inches; hint since 1681 , when the observation was made, there has been no further declination.

The walls, after they were carried up to the floor of the triforimm, appear to have beed. increased by corbelling, as if it had been doubted whether, as originally set out, there wonld be sufficient strength to carry the cross springers of the vaulted nave; the total width is exactly 100 feet. The clear width of the nave, as measured on a level with the triforium, is 33 feet 3 inches, and that of each side aisle half that dimension, or 16 feet 9 inehes: had this last been 16 feet $7 \frac{1}{2}$ inches only, the proportions shown by a section wonhd have been exactly one-third for walls and two-thirds for voids; after appropriating the third of the 100 feet to the walls, half the remainder is given to one side, and hall to the other; we also find that each of these dimensions of 16 feet 8 inches is divided into three, two parts of which are given to the outer wall and buttress, and the other to the main piltar that divides the nave and side aisles, or nearly so.

The inclination of the arched buttresses is not such as to resist the spreading of the vanlt at its base, the knowledge of their use not having then been attaned. The height of the vaulting of the nave from the pavement is 81 feet.

Wells Cathedral has some peculiarities in its construction, partienlarly in the application of its arched buttresses: they piteh against a stone corbel inserted below the springing of the

Fig. 1272.
section of wells catiledral.
middle vault, and a tangent drawn at the back of the vanlt and elongated determines inclination of the top of the flying buttress: here some improvement is shown upan t'

Salishury. The masonry of the arches is admibly construeted, and the joints all radiate to a comon eentre.
The total width of this eathedral from faee to face the buttress is 86 feet 5 inches, and that of te nave 31 feet 10 inches, instead of 28 feet $9 \frac{1}{2}$ iches, as it would have been if a third had been lopted; the side aisles are also diminisled in eonserence, being only 13 feet $7 \frac{1}{7}$ inches in the elear; "'y are, however, equal to the buttress, outer all, and main pillar adiled together, the first procting 2 feet 8 inehes, the second or outer wall ing 6 feet in thiekness, and the piers 5 feet diamer ; whilst the width of the side aisle measures 13 it $7 \frac{1}{4}$ inches, an approximation sufliciently near to ppose that the proportions of thirds was still adopted practice. The nave has been inereased at the pense of the side aisles, and its height is 68 feet inches to the top of the vaulting from the paveent.

Fíg. 1273. triporium, inside.

Chapter House at $l l s$, erected between years 1293 and 12 , is an octangular ${ }^{1}$ Ilding of great linty. A section tough the butt ses shows that t equilateral tria es crossing each 0 - r have determined t) mass and void, ${ }^{n}$) h are in the prop ion of one to two, -. re thickness of the " walls is equal to 01 lird the entire di ieter: tlie base lis of the triangle, or hiel, the supports of erypt are plaeed, chly indicates this ar: gement. Of the tw e equilateral trinill. scomprised in the pa lelogram formed ly hiting the bases of two larger, each (2u) wall and buttress occ y two, or the tivi valls and their luy isses four of the twg divisions, leay eight for the epa between thern.

Fig. 1274. division of wells cathedral.

Fig 1275. CHIPTRH-11OUGE AT WRLLS.

Where it is determined that the walls shall oeeupy one-third of the section of a buildin no figure is so well ealculated for such a distribution as the equilateral triangle ; it enabl the architect at once to limit and fix the proportions of his design; hence its univers applieation: and the mysterious qualities attaehed to it by the freemasons no doubt aro from the extraordinary facility it afforded them in setting out their several works. Wh ean be more simple or more beautiful than the distribution of this pdifice? Wirhin a eire a hexagon is set out, the perpendieular sides of whieh mark the outer faces of the buttresse the junctions of the angles, by forming a base to every two sides, produce the 11 equilateral triangles, whieh sub-divided not only enable us to arrange the other portio aeeurately, but also to measure with the greatest nieety their relative dimensions. I quantities of material employed in construetion ean be estimated by sueh means nur more easily than by measuring eaeh portion separately, eubing it, and adding the numere dimensions so obtained together; there is decidedly more simplieity in the former than the latter system: the area of one triangle being found, we at onee know that of all the m

Fig. 1276.
Chapter-house, wells flan.
or of any portion. In the subjeet before us the distanee from the middle of one butt"r to that of the other is 31 feet 6 inehes, and the dameter taken through them at this ic is 92 feet; omitting the buttresses, the outer side measures 26 feet, and the inner 2 ct 6 inehes, the respective radí of the cícles which comprise the octangular outer wall ! id the void being 38 feet and 31 feet 5 inches. Henee we find that the entire arca, he building without the buttress is

3264 feet
The area of the void - 2176 feet.
And of the walls or points of support

1088 feet.

At the level of the erypt, above the outer plinth, we have these regular proportions 50 thirds void and one-third walls.

The height of the entire building, from the pavement to the top of the parapet, is Pect 6 inches, and to the top of the pimacles 92 feet, the total height being equal to the e the diameter taken above the plinth moulding on the outside. The interior of this el ur-
house exhibits the most perfect proportions as well as appropriate decorations; the cight windows, divided into four days, have their heads filled in with eireles set out upon equilateral triangles; the vaulted stone roof rests partly upon the oetangular central pillars, 3 feet in diameter, surrounded by sixteen small columns, one at each angle and another between : the height of the pillar is 22 feet 8 inches.

Thoroughly to comprehend the expression, as well as use of the various members found in the architecture of the middle ages, we must trace the progress made in vaulting, and observe the changes it underwent, from the simple cylindrical to the more complex and difficult display of fan tracery or conoidal arches. The ridge ribs, or liernes, as they are termed, in the crypt of the Chapter-house at Wells, pass from the centre of the building to the middle of each buttress; the diagonals, or croissées, mitre into them as well as into the formerets or ribs against the outer walls.

In the vaulting of the Chapter-room, we bave evidence of greater refinement, and an

Fig. 1272.
chapter-honse at wells: section.
provenent in the decoration, by the addition of a number of intermediate ribs ninatiog against the octangular one in the middle.
At a later period we find transverse ribs made usc of, then others between; bist ; ough the design may seem complicated, yet when laid down the plan will asthe the grcatest simplicity, as shown in the division representing the groining of the fot.
When this system had been carried out to a considerable extent, the fan tracery was i oduced, and although apparcutly more difficult of exceution, it is far more scientifie in ipplication and arrargement, evincing a higher knowledge of mathematical principles ${ }^{8}$ geometry, and is another evidence of the gradual progress of the mind towarda flection in this stgle of arehitecture.

Westminster Albey, commenced in the year 1245, is in that style which for many gears prevailed in France: the fine church at St. Denys, near Paris, is exactly similar in all its detail. The windows are wide, divided by mullions, and lave their heads filled in with plain circles, the origin of the cusp, or that kind of decoration which every pointed arch afterwards received. This style, which succeeded the Lancet, is found throughout England, and many of the parish churelics exhibit fine examples of it. Stone Chureh, in Kent, of which the writer has pullished an account, may be cited as one of the best; its ornament shows the skill and taste that prevailed anong the freemasons at that period. Salisbury, Wells, and York Cathedrals abound with rich foliage and seulptures of the highest merit exccuted at the same time, and it is wonderful to obscrve to what a state of perfection the artists of this country had arrived. The effects of the chisel of the Pisan sehool were displayed upon marble, but our sculptors work ed upon an inferior material; yet the draperies of their figures, as seen in the front at Wells, and clsewhere, are quite cqual to those wrought by the pupils of Italian masters at the same time. The circle and its intersections at this period were alone employed for the plans of piers, sections of mouldinge, and the filling in of windows and drorways: from them we trace the origin of the style which immediately succeeded.

The cathedrals of Colognc, Amicns, Beauvais, the Sainte Chapelle at Paris, and numerous other examples on the continent, exhibit the same proportims and style with that of Westminster ; the lofty pointed arches, which rest upon the main cluster, are decorated with numerous small mouldings ; the triforimm, in some instances glazed, have their pointed arches filled in with trefoils, cinquefoils, or sexfoils, and the clerestory, carried up to the very apex of the vaulting, is similarly alorned. Westminster Abbey is one of the finest examples of building execnted in the thirteenth century.

Traeery and Gcomeiric Forms - To comprehend thoroughly the principles which directed the frecmasons of the middle ages in the execution of all their works would require far greater illustration than can be bestowed upon the subject in the present volume: it must be sufficient if we point out a few which influenced the design of some of their best examples, and show that it is a perfectly erroneous opinion to suppose they were executed without a thorough knowledge of certain rules, originating with themselves, and perfected by a constant study of what was not only useful, but prodective of the best effect. Those who inguire into this subject must collect the data upon which an opinion can be formed, for it is scarcely possible, without positive measurement, to arrive at any conclusion upon the matter : the admirer of the Greek, or the commentator upon Vitruvius, aloue can scarcely hope to be successfol: it is truc that in one of the early printed Italian editions of the valuable author quoted, there are several diagrans which seem to point to the subject, but the student will find only the nucleus around which the lovers of geometry in the middle ages

Fig. 1278, Westminster ahbey. arranged their varying and beautiful forms; this is the equilateral triangle, and. inclosing the plan, section, or elevation of a building within it, the several proport can be aecurately measured, and if sub-divided into a number, either of the trias would show the proportion it bore to the whole area.

In one of the tracery heads of he windows in the cloister at Westninster, the date of which is abont 348, we have two figures that reumble the plans given to clustered illars, indicating at once that the ane principles were applicd to he setting out of both windows nd points of support. When le circumference of a circle is ivided into twelve equal parts, 1e points which divide them form se termination of four equilateral iangles, and we have at their atersections, not only the centres p the circles that constitute the lling in, but also the several itres and other portions of the gure.
These rules were evidently aplied to windows, and to tracery of ery description, executed at e end of the thirtcenth and mmencement of the fourteenth aturies; also to the plans of the ain cluster of pillars in many thedrals and churches. For arly a century, eircles and their tersections formed the ornamenl portions of every kind of panel d window head; they were erwards blended into other ures, and apparently set out on different principles; but the xagon and equilateral triangles re nccessary to produce the flowlines which succceded. The unge which took place in design doubt arose from the facility ich had been attained by the ctice of this method, and if it re possible to exhibit each iety in England alone, there uld be ample evidence of the ientive power of the frcemasons, I the progressive improvement iheir school for depicting form. e quatrefoil in fig. 1279. is met th in the panels of several altar t thes, in the spandrills of the arches of doors, and it is worthy of observation that a the mitres, where the figures change their fin, are perfect for each: had these con${ }^{6}$ rations been nerrected, we should not he had the graceful flowing lines found inhese designs: no other triangles crossing a so universally applicable, or require less sil in their adoption. The student of the p cont day might occupy a life in the colk on of these subjects, and they are most c: Hent models for the application of the $r 1$; of theoretical geometry to practicc. indows of three Days or Divisions are m with, having heads of singular beauty, in sed within an equilateral triangle, and so pumerous are the designs, that it is Ia to meet with two exactly similar. In

Fig. 1279. cloistelis at westminsten abdey.

Fig. 12S0, cloisters at westminster abbey.

Fig. 1281.
the more simple of three days or lower divisions, the head is occupicd by three circles, each of which eontains a trefoil constructed upon the crossing of either three or four equilateral triangles.

A very extraordinary design, composed of intersecting cireles, is to be scen at the east end of the chancel of the church at Sutton, at Hone, in Kent; although mueh dilapidated, it still preserves many of its original fowing lnes, all struck from the same radius, througb poiats previously determined by crossing the primitive eirele by four equilateral triangles.

At half the height of the head of the window a horizontal line may be supposed to be drawn from one side to the other, on which are three eireles: the two outer touching, are crossed by the third, struck from the point of their junction; with the same radius several spherieal triangles are struck from the points of interseetions, produeing the lines, whieh unite and divide the window head into several compartinents, differing in pattern and dimension. After the circles were struck, the lines that did not play into each other were left out, and those only retained which flowed on gracefully; by these nice considerations and just applieation of principles, the masens were eertain of producing a perfect effect, without rigidly adhering to any particular form.

Windows of four Duys or Dicisions. - Among the heads of a more simple characte are those which contain owe large cirele, subdivided by three equilateral triangles, wat

Fig. 1283.

Fig. 1281.
inclosing a trefoil. Others contain, in addition to the one great equilateral trian ewo smaller, constsucted upon the points of its base, and dropping into the space compl: loesween the heads of the divisions below.

Tindows of Six Divisions are far more complicated, and, though exhibiting grcater skill geometry, are set out preciscly upon the same principle. The two equilateral triangles losed within the great circte nark out the prominent features of the design, and their uminations are the centres of as iny spherical triangles, which, therr crossing, constitute the borate filling in.
In some examples, above : two main lower divisions a circle divided by several ers, the twelve which are lieated in the figure scrving to portion the tracery of this apartment.
At the latter end of the fourthth century, these designs e so multiplicd that almost ry cathedral and church had iseculiar windows: in Amiens (redral, the chapels constructed this same time receive their It from windows, the heads of ch are filled in with tracery evedingly varicd, but the geral principles of setting out t work are prescrved; the che and the equilateral tiggle were subdivided

Fig. 1285. a st to infinity, and at no p od of the arts do t] inventive faculti $4 p$ pearso fertile as in hat we are now ca.dering. The g1 west window of Y: Cathedral is the firi: example of the in ovement made in thi mode of decoral 1 ; the geometric ful; are there so conce: 1 by the blending of e several curves, as produce contin 1 flowing lines, wh is partly shown inf 1282. : they are, hover, all set out 11 : same manner, and ie centres upon wh. they are struck are established by the assing of equilate triangles. ing the episcop. of John Grandiss from the year 132 o 1369, Exeter Cat Iral was undergroir nentire change in. architecture.

Fig. 1286.

1o 5 bishop we are indebted for the great west window, of nine days, and several smaller of f_{r} and five, in which are introduced tracery showing a great variety of design : some are nposed of equilateral triangles, each containing a trefoil, some of circles with six turn thers have four and threc; but the heads of all, varied as they are, belong to the sann thool as fig. 1285.
T great east window at Bristol Cathedral is auother fine example of nine days,
executed about the middle of the 14 th century ; the eentre of the head of the window rather the nucleus to the traeery, is an octagon, six sides of which are retained, the ot two being suppressed, to allow of a better combination with the three centre division: the lower part.

The equilateral triangle also defined the form and magnitude of the seteral mullions, as shown ly fig. 1287., construeted upon measurement of the windows of the elerestory of the nave at Winchester: a line drawn from the apex of one mullion to the other is the base of the triangle, and the space inclosed by the two is divided into ten other equilateral triangles, two of which agree in dimensions and form with each mullion. Of the twelve equilateral triangles embracing two half mullions, ten are given to the day or space to admit the light, and two, or onesisth of the whole, is comprised by the mullion; sueh appears to have been the manner of proportioning the parts of windows in the middle ages.

Flg. 1287. See nlao fig. 1303. Winchestin.

Rose Windou's in the West Transept of the Church of St. Ouen at Rouen is 29 fect 6 in in diameter, and composed of seven equal circles, one of which oecupies the centre: eac those, which surround it, are again subdivided by others; two only of the outer six are served in the figure, and form the quatrefoils, whilst the interseetions of the others serv. centres to the rest of the design.

Rose Window of the South Transept of the Cathedrul at Rouen is 29 fcet in dias ${ }^{\prime \prime}$ soeasured to the centre of the large bead, which comprises the figure. A portion of of
is beautiful example is given, for the purpose of exhibiting the principle upon which it is tout: it will be evident that the nuchus of the design is composed of two equilateral angles, and the sides of each continued, constitute the alternate divisions.

Flg. 1200.
rouen cathedral: soltt transeft.
e internal hexagon has its parallel sides prolonged, to mark the position of the four din ons that have their pointed heads attached to the small circle, which forms the eye of the attern; and the length of these prolonged lines is limited to the extent of the sides of an uilateral triangle, which is again divided regularly, the triangular spaccs between bei filled in with trefoils. The small mullions are in width $2 \frac{1}{2}$ inches, the next size 3 i, hes, and those which mark out the figure and have a bead for their termination are $4 \frac{1}{2}$ hes: another bead and bold projecting label, or rim, circumscribe the whole rose window, the ollow around which is enriched with a curved leaf. On cach side of the internal hex on an equilateral triangle is constructed, around which a circle is struek, uniting clegtly with the next, and forming the six turns which characterise the filling in of
eircles at this period; these were the prineipal decorations after the Lancet style was aban donel, and were eontinued nntil succeeded by more flowing and varied designs.

Rose Window of the Sonth Transept at Beauvais, 34 feet 4 inehes in diancter, is compluse of six large circles and their intersections.
'To set out his window the great cirele expressed by the cuter lead is divided into twelve parts, eaeh being equal to half the radius; twelve equilateral triangles are then inscribed, the prints of wheb toueh each of the divisions, and where they eross nearest to the outer circle, the twelve pointed arches that surround the figure are struck ; the other foints of intersection of the triangles are eentres, from which the other eurves are drawn. It mustatonce be evident, that in a eirele so divided, or by any other equal number of equilateral triangles, the portions eontained between the smaller angles must lee equal to each other ; the six circles around the centre have their eurves blended into the outer, and if it be required to fix centres for eaeh of these flowing lines, they can only be obtained by covering the entire rose window with lines in the manner already deseribed. The radius being equal to the side of a hexagon, and that figure being eomposed of two equilateral triangles, was probably the ehief reasori of its first preference over all others; it certainly affords the most extraordinary

Fig. 1291. bealvals catiledhal: soutil transept. powers of combination, and there is careely a moulding or form in the arehitecture of this period but is set c from it. The mullions that bound the divisions are all portions of this figure, as are mouldings, which sweep round the arches of the buildings themselves. Nothing cams pass the brilliant effect of these marigold windows when glazed with rich colours, a exposed to either a rising or setting sun; in the example now described, this effect is s further heightened by making nearly the whole end of the southern transept a entinuat of the same design, the glass descending almost to the tops of the doors which afford ate to the cathedral. The coustruction of sueh works must excite our highest admiration, it appears scarcely possible to excel the perfeet manner in which the parts are together and worked off, the exccution being in every particular worthy the deagn.

The Rose Window in the South Transelt at Amiens, 29 fect 6 inches in diameter is set out is two squares, which cross each other diagorailly.

Flg. 1292.
amiens cathedrale : south transept.
teen divisions are employed in this figure, and by crossing as many squares, we arlive method by which it is set out; cach side of the square is equal to the radius by wh the master line on the outer bead or circle is struck: where the squares cross each oth are the divisions of the pattern, and their sevcral points are the centres upon which the inted arches are struck, which surround the outer portion of the rose.
ere the lines of the squares cross, in the interior of the figure, the smaller divisions are tablished, and their points of intersection serve for centres to strike the lesser curves;
to sw this clearly the whole must be set out, and drawn to a large scale.
13 architecture of France underwent a material change after the thirteenth century; the ads of the windows were no longer filled with tracery composed of six foils, generally
thre in each window, but branched out into a more running pattern, as practised in
seve parts of England. The fourteenth century not only exhibits windows of more
diffil design, but an apparent absence of the principles by which the several parts were
prop tioned to each other. Before the Perpendicular style appeared, great progress had beel nade in the groining of the spacious vaults of the naves, as well as those of the side
aisle After the fan tracery was substituted in England, the windows had straight mul ns ascending till they intersected the arch; and we have no further display of the varit figures that everywhere prevailed before: geometry was now exercised upon the intricies which their surprising vaults exhibited. It is somewhat singular that we never find beauties of a previous era retained, and blended with that which succeeded.

F the 300 years during which the Pointed style continued to flourish, each half century Lave it a new character; hence we have seldom any difficulty in establishing its date all t se changes resulted from an improved knowledge in the art of construction. The lodg of freemasons were gradually approaching the principles which directed the efforts of threhitects of the Byzantine school, and which were found too refined and dclicate to be prused out of Italy after the cleventh century.

The Rose Window in the Northern Transept of the Church of St. Ouen at Rouen, 28 fi 6i inghes in diancter, is an example of the pentagonal setting out.

Fig. 1293.
ST. OUIN AT ROUEN.
When the sides of a pentagon are prolonged, they unite and form five isosceles triangl each having for its base a side of the original pentagon. The eqoilateral iriangle, square, and the pentagon may have been adopted by different confraternities of fremaso the first can be formed into hexagons, duodecagons and their multiples; the squares, crossing diagonally, into octagons; they may be also tripled and quadrupled; mitre of the equilateral triangle is in the direction of its centre of gravity, as is 1 of the square and the isosceles triangles; consequently to unite the mouldings arom cither, the phummet would indicate the direction of the line, when dropped from angles and suffered to cross, the point of intersection being tise centre of gras zommon to the several lines.

In the chapel of St. Cecile is the monument of Alexander Berneval, the master masol the works at St. Ouen, at the time the rose window was exceuted by his pupil, whom i reported he murdered from jeatousy: such an application of triangles was then ca the pentalpha.

The foundations of this choreh were laid by Maredargent, about 1318, by whom it built as far as the transept; bot probably the rose window of the northern traisept not inserted till many years after, for the memorial of Berneval bears the date 0 " 3 ! this mommental stone is 8 feet 6 inches in length, and 4 feet in width, and in it represented the architect and his pupil, each employed tracing with his compasses respective design; these beautiful brasses with their rich tabernack work were in lighest state of perfection when the writer was last at Rouen, and aroond the master fíz was inserabed in German letters : -
 notre Eire, bu 刃aitlage De Rouen, et be ceहte Egtibe, qui treepacisn, l'an be a ant. cecert. le y jour be Sanuier.

Mrie's Sicu pour l'ame de (uy).

The date of the pupil's death is not commemorated, which has led some to imagine of tale of his murder ontrue, and that he crected the monnment to his master with inteution of being boried by his silk.

The North Rose Wiudow at Amiens, 37 feet 8 inches in diameter, is a magrificent example the application of the pentagon, with 5 isosecles triangles around it.
This window, probably cuted in the fourtenth itury, has a great resemnceto the last described; fan tracery, of which have early specimens in - cloisters at Gloucester, aired the same knowge of geometry to perfect ir design. In 1482 clid was first printed at nice from the Greek t; butgeometry had been died in Eugland from the e that Adhelard, in 1130, introduced a transla1 of that author from Arabic versions which met with during his train Spain. In 1256 npanus of Navarre islated Euclid, who ns to lave been comted upon by several nent writers, and no bt it was the text-book he freemasons, who diligtly applied the problems i ontained to every pur. 1 : of their art. In 1486 Editio Princeps of 1 uvius appeared, and th:ommentaries of Cæsare (ariano followed in 11; the latter author 1 ished three plates of l) Cathedral at Milan, ared with equilateral trigles, which have not by described so as to be u:1l or understood.

Fig. 1294.

I compartments which
he the flat sides of the original pentagon for their base, and parallel sides throughout till th terminate in the pointed arch, have their mullions proportioned to their opening, the la r being double the size of the smaller, whilst the latter are equal to half the open space be cen them: the mullions in these examples, which divide two spaces, 6 inches in w h , are usually 3 inches in thickness, and the others are in the same proportion. The ue sized mullion is $4 \frac{1}{4}$ inches, with a bead of $1 \frac{1}{4}$ inch diameter, which runs round the whe pattern of the figure, the centre of which may be called the master line, by which alle rest are set out; the several mullions are all twice as much in depth as in width.
ptastery of Pisa. - The internal diameter of this circular building is 100 feet, and the
th. ness of its outer walls and columns 10 feet 6 inches; its external diameter is 121 fer t, thirea of which is 11,499 superficial feet, that of the interior being 7854 ; if we def from it what is occupied by the four piers and eight columns, or 188 fect. we ha 7666 feet for the void, exactily two-thirds of the entire area. To find these pro130 ons in an edifice commenced about the middle of the twelfth century in laty, is a chis corroboration of the opinions already advanced, the same rules as those described for e Chapter House at Wells being apparently followed: the conical brick dome was the wo of an after period, and may have been the prototype for that of St. Paul's at London; the ointed architecture belonging to the exterior of this cdifice, of the same character as tha rhich adorns the crosses of Queen Eleanor in England, was added in the fourteenth cen y.
scction shows how tne equilateral triangle governs the proportions of this celchrated buing; the extreme diamcter is the base, and its apex the level on which the
more recent conical sud hemispherical domes are placed: the intersection of the preat triangles fixes the diameter to be given to the internal void, around which the aisle, its walls and pillars should be formed. 'The circle which has its dhameter (. prised between the apex of the two equilaterals determines the clear width between a

Fig. 1295.
BaPIISTERY OF PISA.
outer walls. That the arehitects of those days delighted in the forms produced several intersections of the circle in combination with the equilateral triangle, tare assured by viewing the scveral designs they have left us in mosaic upon the walls the Duomo, and at the cathedrals of Florence, Sienna, and clsewhere.

Roslyn Chapel, Scotland, commenced about the year 1446, has its buttresse cll the extreme width frol ace to face of the buttresses is 48 fect 4 inches; the span of the nave is io feet 8 ies being 5 inches less than the proportion of a third; the two side aisles t bes
re 15 feet, or within a few whes of the width of the ave; consequently the walls nd piers in this beautiful xample are 17 fect 8 inches, $r 15$ inches more in extent han they would have been the proportion of one-third ad been adopted. The cight from the pavement , the under side of vault is 1 feet 10 inches.
After the examples deribed, we cannot doubt of e great proficiency that had en made in the application the rules of geometry to chitecture; every fcature, hether the simple moulding the most elaborate tracery, is set out either upon the uilateral triangle, square, pentagon, and these regufigures seem to have been osen on account of the ility by which they are odivided. From the induction of the style each y years that succecded ught with them new and proved principles, and at t very commencement of t fourteenth century, we s the clustered pillar and

Fig. 1296. Roslive cutrel.

Fig. 1298.
SELTION OF ROSLIN CHATEL.
its many monlded arehes yielding to a style that combined greater simplicity with a more thorongh knowledge of construction, which will be evident upon an examination of St. Stephen's Chapel, Westminster, (now destroyed,) begun in 1348, the nave of Caiterbury and Winchester Cathedrals, and several others. In these examples we have elegantly formed arches resting on well-proportioned piers, the mouldings of which so combine that they form a perfect figme, and show that the points of support were desigued to earry all that is placed above them ; the same contour of moulding that surrounds the pier performs its useful part in the upper portions of the building, constituting one entire whole. This style, simple as well as elegant, was exccuted by masons fully qualified to advance it to the greatest perfection, and deserves both our study and

Fig. 1209. canterbury cathedral. admiration.

Cunterbury Cutkedral exhibits every variety of style found in medieval architecture; its history has been published by Mr. Britton: to that work, to which the writer contributed some measurements in 1820, he must refer for a detailed and elaborate necount of the several changes made in the decoration of the edifice. It is only to the pillars of the nave we are desirous of drawing the attention, and that merely to show their simple form, and the manner of setting them out: four squares are so placed that their diagonals and sides are united in the centre, thus constituting a form capalle of the greatest resistance at the four points of the entire pier, where the several thrusts and pressures are received: the $O G$ mouldings of the piers run round the arehes, whilst the columnar mouldings towards the aisle and nave support the ribs of their respective vaults. Greater simplieity can hardly be obtained, and every line and indentation of the plan has its use and appropriation : there is no profusion, or member for the sole purpose of decoration; in this arrangement we have the commeneement of good taste, and the indication of a more harmonious and per-

In the Church at St. Ouen at Rouen, we have a very different arangement, and no ineans so solid a form.
Winchester Cathedral. - One division of the nave has been selected to show the peculiar le practised at the latter end of the fourteenth century, and also the skill exhibited in uging the form of a Saxon erlifice, and giving it its present character. The plat, 1903. is that of the pillar, as well as the mouldings and walls of the trium and clerestory above. When lliam of W y k ham effected the changes the nave of this cathedral, he preed all above the arches of the trifon , cutting away only the masonry of a division below that level which inened between the main pillars; he ti caused the whole to be cased with ashlar, so that the original Saxon I onry and proportions of the mass r ain within the casing. The dotted s icircular arch is the same as that in fi) 1266 ., and in the roofs above the g ining the Saxon walls are traceable, a her proof that when any alteration * made in a building by our med al masons, they did not think it atssary entirely to demolish it. We ite in this example the decorative cl teter which belongs to the architectu of the latter end of the fourtcenth ce 11 y, though somewhat heavy in its pr artions, which arises from the mass co ituting the original fabric being pr red, or having undergone so little ch. ;e. The thickness of these pillars fro north to south is 10 feet 8 inches, ank om east to west 10 feet, whilst the wif of the opening from east to west is c, 14 feet.
we examine the area of one severy of nave, as left by Wykeham, and cald ate the points of support, we shall
sce at the proportions are not those fual in the nave at Canterbury, or tis er cotemporary buildings; compris: the space between the buttresses, he ire area of the parallelogram contain between lines drawn through the inid of the piers from north to south is 2: feet; while the points of support with that area are .557 feet, or onequar of the whole.

O he section, shown at fig. 1304., the butt ses on the north side project 6 lee the north wall is 5 feet 6 inehes in il kness, the half piers attaehed proje internally 2 feet 1 ineh; the nortl isle is in width 13 feet 1 ineh, the 1 - 10 feet 8 inches; the clear widtr f the nave 32 feet 5 inches; the 1 : 10 feet 8 inches; the south asie feet 1 inch, the half-pier which projer from the south wall 2 feet 1 inch, and tl thickness of the south wall 7 feet 2 incl ; there are no buttresses, as the cloistr now removed, served their purpose. The width from east to west, measu 1 from the centres of the piers, being f feet 1 inch, and the width of

Fig. 130\%. nave of winchester cathebral.
buttresses outside 3 feet 2 inches. The eathedral or duono at Pisa presents a very different result; the total width of the nave is 113 feet 6 inehes, and the width of a severy 17 feet 1 incli, the area of which is nearly 1930 feet, the poit.ts of support being only a twelfth of that quantity on the plan, and one-sixth as regarded upon the section. Hence we see the necessity of ascertaining the proportions of mass and void in a building, before we ean accurately iudge of its merits as a style, eaeh baving its peeuliar quantity, vhieh marks its eharacter.

The scetion or rather plan of the walls, on the level with the gallery of the triforium, shows the method adopted to proportion the openings to the mass. The thiekness of the clerestory walls is included within the cight equila. teral triangles, and where their sides eross, the position of the mullions is established. In fig. 1287. the circle which comprises the two that divide the window into three days shows their proportion and their size, which in this example is one-third of the opening: in a window of three days we have six triangles for space, and three for mullions: the splays at the sides of these windows, uniting them with the faces of the wall, are cut parallel with the sides of the several triangles. The main pier is set out by uniting the bases of two equilateral triangles with perpendicular lines, or forming the whole into the figure of a hexagon. By a eomparison of this plan with that of fig. 1267., the additions made by William of Wykcham to the original Saxon pillar will be readily pereeived.

The width of one of the divisions of the nave at Winehester, measured from the centres of the piers from west to east, is 22 fect 1 inch, and the same dimension taken in the nave at Canterhury is 20 feet only. In the former example the opening between the piers is 12 feet 1 inch, and in the latter 14 feet; there is consequently no eomparison, with regard to lightness, in these two

Fig. 1305. Pielz and windows of cleblestory, wiaciest works of the same period; the pier being comprised $2 \frac{2}{3}$ times in the entire division at Winchester, and $3 \frac{1}{3}$ tines a an terbury, or on the pavement the plinths around the base seem to fall within one-third the entire width. It would almost appear that in setting out the pillars of several cath als, the same system was practised as shown for the mullions of windows at fig. 1287.: t the plinths, and not the eluster of eolumns and mouldings, must be regarded as occupyi the third. Buth Abbey church is 20 fect S inehes from centre to centre of pier from
west, and the clear width between the plinths about two-thirds of that dimension, and this s the case with many examples.
The Section through the Nave of Winchester Cathedral is highly desorving of our attention : he clear width of the side aisles is 13 feet 1 inch, and that of the nave 32 feet 5 inches; the lear width of the building between the outer walls is 80 feet, the thickness of the walls 6 feet 10 inches, the projection of the buttress 6 feet, and the thickness of the piers 10 eet 8 inches, making for the entire width from north to south 102 feet 8 inches.
The width between the walls forms the base of an equilateral triangle, the apex of which etermines the height of the vaulting of the nave; a semicircle struck upon this base, with radins of 52 feet, determines the intrados of the arches of the flying buttresses on each side, thich are admirably placed to resist the thrust opposed to them.
On this section we have endeavoured to apply the principles of Cesare Cesariano, before eferred to, to the measurement of mass and void by a method far more simple than that sually adopted.
By covering the design with equilateral triangles we see the number occupied by the lids, and can draw a comparison with those that cover the voids : to prevent confusion in ie diagram a portion only of three of the triangles has been subdivided, to show with what cility the quantities of the entire figure might be measured, if the several large equiterals were subdivided throughout in a similar manner. The band which extends

rig. 2501.
section of winchester cathedial.
fry the face of the outer buttress to the centre of the section contains 36 small equilateral tr gles, six of which cover the pier ; consequently it occupies on the section one-sixth of th quantity; no further calculation is requisite to find the proportion it bears to the wh e: in like manner the other parts of the section may be compared. Such was the use of uilateral triangles in the middle ages for ascertaining quantity.
ie two equilateral triangles which occupy the nave and a portion of the piers are
co. rised within the figure called a Vesica Piscis; if the horizontal line drawn at half the
he t, uniting the base of the upper and lower triangles, be taken as a radius, and its esimities as centres, it will be evident that parts of circles may be struck, comprising the twi riangles within them. Euclid has shown that a perpendicular may be raised or let fall
tro a given line by a similar method, the space between the segments being ealled afterwards
${ }^{a} 1_{1}$ bus; and there can be no doubt that from time immemorial all builders have used
it: e bee adopts for its honied cell a figure composed of six equilateral triangles, and this proved to be the most economical method of construction; the sides of each hexagon are 1 common to two cells, and no space is lost by their junction. The nearer the but lary line of a figure approaches the circle, the more it will contain in proportion to it,
but circles could not be placed above and under each other, or side by side, witho interstices occurring, and the equilateral triangle, or a figure compounded of it, is the on form that will admit of it being so arranged.

The interior and exterior division of the choir at Winchester exhibits two styles; t latter is a fine example of the decorated elegance to which architecture had arrived at 1 commencement of the sisteenth century.

King's Colleye Chapel, Combridye, has no side aisles, but in licu of them are small hapels between the buttresses, which are not interrupted in their depth, their whole trength being requisite to maintain in quitibrio the highly wrought stonc ault; this they have hitherto perfectly one, to the admiration of all who have cudied its principles of construction. he chapel is divided in its length to twel/a cqual divisions or severics, tch of witich is formed of four quadints of a concave parabolic conoid anding on their apex, and is bounded v a main rib or arch of masonry hich has its abutments secured by the eighty buttresses added to the outer alls. The width of each severy from ntre to centre is 94 feet, the thickness the buttresses being 3 feet 7 inches, d the length of the chapel between em 20 feet 6 inches; their depth is feet 6 inches in the clear.
The transverse section slows more rticularly the proportion of mass and id, which are here equal: the total exit or width from the face of one butss to that of the other is 84 fect, 1 the clear width 42 feet; the height m the pavement to the top of the ne vault is 80 feet I inch, though this ies from the pavement being out of the el ; the thickness of the walls at top \% feet $7 \frac{1}{2}$ inches; in it is a gallery eet $1 \frac{1}{2}$ inch wide, and 7 feet high, comnicating entirely around the building. The height of the cluster column, ose capital receives the points of the i erted cones, is 59 feet 3 inches, so t; the arch, which is struck from four cres, does not rise more than 18 fi 6 inches, and the intersections tale $p \mathrm{c}$ at one quarter of the span when t| height is 15 feet 6 inches: this arch 0 tone rib is 2 feet in depth and 18 ii es in breadth, formed of twelve voussc; on each side, the joints radiating tr. he centres respectively; it abuts at.s extremities against the ponderous br resses. and remains steadfast and in ovable, dividing, as before stated, th rault into several severies.
he plan of the mair piers shows that th has been no after-thought grafted uf the original design, which, in all pr ability, was commenced soon after thryear 1446, as we find that a stone quey at Haselwode, and another at II dlestone, in Yorkshire, were granted, for 1 e works to be car-ied on here. The sto roof docs not appear to have been c_{0} renced till about 1512 , the indentur uncerning it bearing date the fourth

lig. 1307. KING"s COLLEGE CHAPER. yerpf King Henry VIII. ; in this document Thomas Larke is called the "surveyor," Jol Wastell the "master mason," and Henry Semerk one of the "wardens," the two lat1 agreeing to set up a sufficient vawte, according to a plat signed; the stone to be from the Wenn quarries: the contracting parties were also to provide "lyme, scaffoldyng, cinctores mo, ordinaunces," and "every other thyng required for the same vawting : the timbers
of two severies of the "great seaffolding" were given them for the removal of the whole and they were to havo the uses of all "gynnes, whels, eables, hobynatts, saws, Re. ; " the! were to pay for the stone, and to have 1001 . for each severy, or 12001 . for the whole, monej being advaneed for wages as the works proceeded: the "chare roff," as the vault is ealled was to be suffieiently buttressed, and the whole performed in a perfeet manner.

Fig. 1508.
section of king's cullege chapel.
The extreme width, measured from the face of one buttress to that of the other, B4 feet, and from north to south, from the eentre of one pier to that of the other, feet; thus the area eomprised in a severy, or space between two lines drawn through the cen! of the buttresses on the plan, is 2016 feet, exactly double the area of one of the severies St. George's Chapel, Windsor : the extreme width is the same, but the difference ari from the divisions in the one being double that of the other, as measured from east west.

		Feet.		
The area of the nave, $42 \times 24-$	-	-	-	-
of the ehapel on one side	-	-	-	-
ditto on the other	-	-	-	-
336				
of the walls on one side	-	-	-	-
ditto on the other	.	-	-	-
168				

Hence we have for the areas of the space or void on the plan 1680 feet, and for the w and pier 336 feet, or one-sixth of the whole 2016 feet, similar proportions to those which
all afterwards find in St. Gcorge's apel, Windsor. In King's College e nave comprises half the entire ea of a severy, and the remaining If is divided into three, one of ich is given to each of the ehapels, d the other divided between the ints of support: in this beautiful bilding, with its majestically conved roof of stone, the lightest nstruction is adopted. The caterian curve exhibits the direction of 2 thrust of the vault, which falls thin the base.
The stone roof we are now exining differs somewhat from that Henry VII.'s chapel at Westnster; the area of the points of port is only one-half of those in latter elegant example; in no tance have we so much effect proced by the mason's art, with so all a quantity of matcrial : it is dent that the gradual changes de in the architecture of the meeval period led at last to the atest perfection, beyond which cems impossible for us to advance. In selecting a style of any one iod, it may be fairly asked whether principles found in the latter, or economy adopted in the conactions of the 15 th century, might be applied to it, and the same 1.ct produced, - the section of the (pter-house at Wells, for instance, 1 tened of half its material : uncibtedly it might, for the lofty Inted arch, not having the thrust ch the latter, struck from four ctres, had, would exert less thrust, a be in favour of such a change.
But at the present day, when copies a rigidly made of the fincst exa les of each style, it would seem a 1.1 innovation to suggest such an a ption; still it might be introduced, a probably would have been, had t. freemasons continued an operative f_{1} ernity, and been required to build it he Lancet or other style, which s arseded it. The same decorati s ali 1 form of arch may be used

Fig. 1309, vaulting of king's college chapel.
ii $1 e$ later styles as in the earlier, as far as construction is concerned, and we have evidre of sufficient strength in the example before us; the principles are the same in cael, thigh they may differ in form ; there would be no more difficulty in transforming one st? to that of another, than was experienced by William of Wykeham, when he changed th Saxon nave of Winchester to the Perpendicular.
n the scction shown at fig. 1308. a line is drawn exhibiting the catenarian curve, for t1. purpose of showing that the abutment piers are set out in correspondence with its m iples; it is not contended that a knowledge of this curve guided the freemasons in 01 ortioning their piers, or that their flying buttresses were always placed within it ;
blit is singular that in those structures where their true position seems to have been de led, the catenarian passes through them.
ath Abbey section (fig. 1319.) is an example which exhibits this most perfectly; and by "nparison of its section with that at Wells ($f y .1272$.), it will be perceived that the struts ar lifferently placed, and that the earlier example is defective: fig. 1298. represents Roslye

Ctape; in which there is evidently some improvement ; but at the time of its eonstruct perfect knowledge on this subjeet had not been attained. In a catenarian chain formed links of equal length, every side is a tangent to the curve, and the direction of each link at right angles to it, acting in a direction perpendicular to the line it forms in the ca naria; and hence its useful application to the science of construction. It is quite elear tl wherever the curve passes through the section of a building, stability is obtained; a where it does not, it is doubtful: certainly the best application of flying buttresses that which can be tested by this principle.

The main arches of the roof abut against the outer buttresses, and spring from a eluster of mouldings set round a circular pier ; the situation of the small columns and hollows which decorate it being determined by the crossing of equilateral triangles. The ribs of each severy abut in the centre upon a cirele 3 feet 6 inches in diameter, formed of two stones, and indicated by No. 1.: in the middle is a mortise-hole 9 inches square; No. 2. is in width 17 inches in the widest part; No. 3 is 2 feet 2 inches; No. 4., 3 feet 8 inches; No. 5., the same; No. 6., 3 feet 3 inches; No. 7. 4 feet 3 inches; No. 8., the same; No. 9., 3 feet 2 inches, and No. 10., which abuts against the outer wall, 4 feet.

By a reference to the plan on fig. 1312., it will be understood how the several rings of voussoirs which compose the quarter of the parabolic conoid abut and are locked one into the other : the construction of this vault is somewhat similar to that adopted by Soufflout at the Church of St. Geneviève at Paris, although his manner of applying it matcrially differs.

The buttress in the present

Fig. 1511. example has an area of 56 feet, equal to that of the piers, to which it is attached; or the two piers and buttresses togeth have an area of 224 feet : it is curious to find that of the 336 feet before given to 1 points of support, one-sixth should be applied to the piers, one-sixth to the buttress and the other portion to the walls between ; for $55 \mathrm{ft} .6 \mathrm{in} . \times 6=336$ feet-the area of t points of support taken on both sides; so equally are the parts even distributed.

When the Normans first used flying buttresses, as at the Cathedral at Chartres, 1 Abbaye aux Hommes at Caen, and several other buildings, they abutted them again,t : ordinary outside wall; but it was soon discovered that a greater resistance was ncecssary oppose the thrust, and prevent the abutments from yielding. Salisbury Cathedral probably one of the earliest where flying buttresses were used; and the opinion of , Christopher Wren is worthy of quoting upon this subject, as it applies more particula to the first constructed, and not so immediately to those erected in the fourtcenth fifteenth centuries. "Almost all the eathedrals of the Gothic form are weak and defect in the poise of the vault of the aisles; as for the vaults of the nave, they are on both sit equally supported and propped up from spreading by the bowes or flying buttresses, wh rise from the outward walls of the aisles: but for the vaults of the aisles, they are ind supported on the ontside by the buttresses; but inwardly, they have no other stay but 1 pillars themselves, which, as they are usually proportioned, if they stood alonc, without weight above, could not resist the sprcading of the aisles one minute: truc, indeed, great load above of the walls and vaulting of the nave should seem to confine the pill
their perpendicular station, that there should be no need of butment inwarảs, but serience hath shown the contrary, and there is scarce any Gothic eathedral, that I have

Fig 151:.
king's college chapel : piers.
si at home or abroad, wherein I have not observed the pillars to yidd and bend inwards
fis the weight of the vault of the aisle; but this defect is the mort conspicuous upon the ainlar pillars of the cross, for there not only the valt wants butment, but also the

ançar arches that rest upon that pillar, and there.ore both conspire to thrust it inwards tow ds the centre of the cross."

King's College chapel, flying buttresses are dispensed with, and happily the kne edge of construction had arrived at such perfection, when its astonishing vault was pro ted, that we have no evidence whatever of its yielding in any part.
Inay seem extraordinary that the Pointed style made so little progress in Italy, the Byi ine being always preferred: the architects of that country were probably unwilling to r nquish a mode of construction so economical, half only of the material employed in the htest, and a quarter in the earliest of the Gothic style, being required for the basilica: for umple, where 100 rods of stonework would be used in the latter, 200 would be neel, ry for the style practised at King's College, St. George's Chapel, and Bath Abbey Che h, and 400 for that of the Chapter-house at Wells; this result would lead to the coursion, that no style is so well adapted for the wants of the present day as the Byzantioe.

St. George's Chapel, Windsor. -If we suppose a line on the plan to pass through the eentre of the buttresses and piers, and one severy of the nave to be defined, we shall have a width of 12 feet, and a length of 84 feet, the area of whieh is 1008 feet: after this we shall find the area of the walls and piers eomprised within this severy to be 168 feet, or one-sixth of the whole; sueh are the proportions of mass and void found in this chapel. The elear width of the side aisles between the eolumns is 11 feet 9 inehcs; that of the nave 34 feet 10 inehes, and between the outcr walls 69 feet 2 inches: the height of the top of the vaulting of the nave is 54 feet 2 inehes. The height up to the springing line of the great vault over the nave being equal to half the entire width, it is evident that two squares must comprise within them the entire building beneath this line; upon setting them out we find the nave and its pillars oecupy one, whilst the other is given to the side aisles, external walls, and buttresses.

The Rev. John Milner, in his admirable treatise on the Ecclesiastical Arehiteeture of England, whieh has been the text-book for all modern writers, states that "its rise, progress, and decline, oceupy little more than four centuries in the ehronolegy of the world: as its eharacteristie perfcetion consisted in the due elevation of the areh, so its deeline commenced by an undue depression of it. This took place in the latter part of the 15 th eentury, and is to be seen, amongst other instances, in parts of St.George's Chapel, Windsor, eommeneed by Edward IV. in 1482; in King's College Chapel, Cambridge, and in the Chapel of Henry VII. at Westminster. It is undoubtedly true that the arehiteets of these splendid and justly admired erections, Bishop Clocse, Sir Reginald de Bray, \&c. displayed more art and more professional seienee than their predeeessors had done; but they did this at the expense of the eharaeteristie excellence of the style itself which they built in."
" In St. George's Chapel we have the work eovered with traeery and carvings of the most exquisite design and exceution, but which fatigue the eye, and cloy the mind by their redundaney:" but we have also a building construeted with one-half the materials that would have been employed had the style practised in the ehapter-house of Wells been adopted. The admirers of the Pointed style have not sought for the true principles which mark its several ehanges; they have not examined into its constructive arrangements; had they done so, they would have perceived that, as the skill of the freemasons advaneed, and their workmanship improved, they economised material, eonstrueted more solidly, and produeed a rieber and more harmonious effeet, without sacrifieing any of the prineiples which governed their practice; the improvements they made were as grcat as those notieed when the

Fig. 1514. st. gronce's chatle, winsor.
ric proportions were changed to the Ionic. In the Dorie we had two-thirds mass, oneid void; in the Ionie half mass, half void; at Wells Chapter.house one-third mass, ر-thirds void; in St. Gcorge's Chapel, one-sixtlı mass and five-sixtlıs void.

Fig. 1315.
ST. GEOLGE'S CHAPEL, WINDSOR.
e plan of the pillars is that of a double square, or parallelogram, the diagonals of wh h latter figure become the sides of equilateral triangles that serve for the setting out

Fig. 1316.
pier of st. George's chapel, windsor.
the silys, upon which the several mouldings are eut : from cast to west these piers are 3 feet 1 iucl from north to south 3 feet 6 inches, not onomisinf in this last dimension the three
small columns on the fall towards the nave, or the single column on that towards the si aisles, the first of which projects $6 \frac{1}{2}$ inches, and the latter 4 inches.
'The mouldings around the windows and their mullions are shown at the side of t pier in their proper position.

Division of the Nave of St. George's Chapel. - The mouldings set around the plan the pier are continued up to the vaulting of the roof, without any other interrupti except where they are mitred round the arehes.

Bath Abbey Church is 89 feet 5 in . wide from face to face of the buttresses to nave: whose clear width is 29 feet 10 in ., or one-third of the whole; and each the side aisles is a trifle more than the lialf of the width of the nave, being 15 feet 8 inch the walls and piers added together are not quite equal to a third, as they amount only to feet 2 inches on each side, or together to 28 feet 4 inches, the difference being given increase the side aisles.

The section of this beautiful building presents to us all the improvements made in vaulting, and the right proportions as well as direetions to be given to the flying buttresses ; in the first application of those supports, as at Salisbury, they are evidently misapplied, but in the example oefore us we find that the constructors had arrived at a knowledge of the principles of the catenarian curve, whieh is traecable through the solid masses of the seetion : it was by slow degrees that the fremasons arrived at a knowledge of the peculiar properties of this figure; had it been known at the first commencement of the introduction of flying buttresses, we should have had a better application of them; in several instances we find them adopted where no advantage, or very little, could be derived from them.

Division in Bath Albey Church differs from all other examples of this period, by the height given to the elerestory and the omission of the triforium : the judicious and excellent arrangement of the flying buttresses permits of the greater display of glass, which in the sixteenth century had arrived at its most gorgcous state, rich in every colour, and beautiful from the drawing of the patterns, and figures with which it was covered.

Bishop King eommenced this building about the year 1500, on an entirely new site, near the old church: from the centre of one pier to that of the other is 20 feet 1 ineh; the thickness of the outer buttresses S feet, and their projection 4 feet; one severy of building contains 1650 feet, and the area of the points of support is 275 feet, or one-sixth. The pillars are square, though set diagonally, their

Fig. 1517. bath abbey енuкс. width from north to south and from east to west being 5 feet, and the opening of the arches between them 15 feet 1 inch; half their! and base is shown at fig. 1320.: the height from the pavement to the top of the capi: where the seulptured angel is placed, is 56 feet 3 inches, and to the top of the vaul 73 feet 6 inches, within 7 feet as mueh as the elear width between the outer walls.

Fig. 1321. shows the plan of the stone vaulting, whieh is perfectly geometrical in setting out ; the eloisters at Gloucester, the aisle at the east end of Peterborough eathe and St. George's Chapel, Windsor, have vaults of a similar kind.

The thickness of the stone which eomprises the vaults of fan traeery varies according its position, but in no instance is it considerable, or more than absolutely necessary to r erushing. The spire of Salisbury, 180 feet in height, of an octangular form, 10 easures f east to west internally 33 feet 2 inches, and from north to south 6 inches more; thickness of the spire at bottom is only 2 feet, or the area of its base is half that of void, the void eontaining two parts, and the solid around it one; this spire diminisle thiekness for the first 20 feet, after which it is 9 inches in thiekness throughout; at a 30 feet from the summit is a hole, by whieh an exit from the interior may be made, by means of the crockets and irons on the outside the top of the spire may be attained 1816 the writer examined the position of the vane, and the manner in which the cap store was placed, and deseended astonished at the perfeetion of the masomry, and thinness of the stone with whieh it was constructed.

Fig. 1519.
SEGion of bath abbey church.

ig. 1520. FIER.

Eig. 1321.

[^15]The ady chapel at Caudebec, near Rojen, Normandy, exhibits the manner of suspending a keysto by locking it between the voussoirs of a strong semicircular arch. The length of this
pendent stone is 17 feet 6 inches, and its thichness at the top, where locked, is 30 inches : the voussoirs are 3 feet in lepth; the small pointed arches or ribs that form the groining of the hexagonal vault spring from the side walls and the ornamental knob of the pendentive, and are perfectly independent. The abutments of the semicircuiar arch, which has a radius of 12 feet, are formed by solid walls continued for some length in the direction of its diameter. This sacristy is hexagonal ; each side internally measures 12 feet, and the height from the pavement to the springing of the ribs is 18 feet.

Henry the Seventh's Chapel, Hestminster. -The first appearance of the pointed arch was probably a little before the termination of the twelfth century; the pil-

Fig. 1325. caddebec sacmisiy.
lars and mouldings which then accompanied it were of Saxon origin: to its acute form

Fig. 1524.
Heh of henry vio's chafel.
afterwardsadded the slender Purbeck columns and simple groining, producing that unade $-d$ majesty which reigns throughout the cathedral of Salisbury. This style under n several changes, and was succeeded at the latter end of the thirteenth century by anoth in
hich the arch was struck from more than two entres: the naves of York, Canterbury, and Vinchester Cathedrals have been cited as nong the best examples. But we have now describe the principles of a style founded pon the others, and applied to all buildings Eugland from the niddle of the fifteenth the middle of the sixteenth century; it is it met with on the contincut, the Itatian revived classic architecture having there en generally introduced and preferred.
The variety exhibited in groined vaults, ogressing from simple ribs to those of an tricate and net-like arrangement, no doubt d the masons of the time to the construction the cloisters at Gloncester, King's Collcge, d Henry the Seventh's Chapel at Westminr, which works are the best evidences that a be adduced of the improvements marle in ofessional science, and which coutd only fult from a coatinued perseverance in the uly of the subject: an examination of the eral styles will prove that they must have en produced by the same school or fraternity, 1 that neither Sir Reginald Bray nor Wila of Wykcham could have become acinted with the inysteries of the craft, unless y laad been instructed by the freemasons; 1 that to them, and not to any individual, 1. to the clergy as a body, ought we to ;ibute the construction of thesc scientific : highly decorated works.
The Division of Henry the Seventh's Chapel 1 is a strong resemblance in its general pro1 tions to that of St. George's at Windsor, a ough it is rendered more ornamental by t) multitude of figures enshrined in delicate t: rnacle-work, which covers almost the entire "s. The mouldings of the main piers (fig. $1!1$.$) that separate the middle from the side$ ai s are enclosed within a circle divided in a pentagon-a form the best adapted to re ve the weight of the ribs, and the flying bi esses that were to resist their force.
ze Rev. James Dallaway, whose dis. cojes upon the architecture of England, or ed so many admirers of this interesting sul ct. observes, that "here the expiring Gr ic seems to have been exhausted by every cff . The pendentive roofs, never before att pted on so large a scale, are prodigics of t." But it is not to the profusion of sectured angels, statues, royal heraldic devic \&c., that we are desirous of drawing the tention, so much as to the extraordinary con uction that prevails throughout this ina: r-piece, in which we have the strongest wive that theory and practice went hand in nd; that the knowledge of geometry had |lvanced to its highest pitch in the constru re arts, and that not only were the prir ples of the arch thoroughly understood, but nsiderable advance made in the applicatid of the properties belonging to the cone.

I section of this beautiful chapel is 78 feet in tht the buttresses and outer walls hoge r are 6 feet 9 inches, the side aisles 11 feet. 3 ins: the piers from north to south 4 ferot.

Fig. 13s. henty vil.'s chalrel.

SECTION OF HENRY VI'S. CHAPEL.
6 inches, and the clear width of the nave 33 feet. The entire width, at the bascment or lev of the pavement of the crypt, is 79 feet : $26 \frac{1}{3}$ feet, or $\frac{1}{3}$, is devoted to points of support, a 52^{2} fcet, or $\frac{2}{3}$, to the side aisles and nave; the area of a severy shows $\frac{1}{3}$ applied to sa: and piers, and $\frac{2}{3}$ to the void, which proportions accord with the early rather than with t late examples; the great weight of the vaulting, which is 62 feet high from the paveme of the chapel, requiring additional strength, the proportions of St. Gcorge's Chape! Windsor would not have been equal to the necessary resistance. (See par. 2002w.)

Our limits will not permit a more extended inquiry into the principles of proporti the study of which is calculated to produce an important improvement in the noble for the practice of which the young architect must preparc himself by carcful measu ment, not only of the ruins of the Acropolis and of the Capitol, but of all that remains mediæval architecture : he must be a pilgrim seeking after truth, not bowing before : favourite shrine, but returning with a devotion as enlarged as his subject. The stupend works which antiquity has transmitted to us, it is hoped, may excite the attention of general reader, nor will his interest be diminished by the contemplation of the astonish development of modera industry. The writer cannot but feel the importance and vari of his subject, and, while he is conscious of his own imperfections, he must often accuse defieiency of his materials : but the results of ins labour, however inadequate to his o wishes, he finally delivers to the candour of the public.

The Figune of tue Cube has from time immemorial been selected by the architect adengineer as best suited for every varicty of edifice; and it is remarkable that the nultiplying of the cube constitutes the design of the Greek temple, the Gothic eathedial, ud the modern iron structure at Sydenham, the varicty of effect depending upen the rode of its application. Reviewing the temples of the ancients, we find that those comosed of a portico of four columns, and six intercolumniations on the flank, or sevell olumns; that the whole constituted a douthle culse, or two cubes side by side. A ube of 32 feet 4 inches in height, breadth, and length, placed behind another of the me dimensions, would represent the entire mass of the tomple of Fortuna Virilis Rome.
The temple of six columns, or the Ilexastyle, is composed of nine half cubes, or three atire, placed one behind the other, with the addition of thre half cubes against the sides the first, making altogether four cubes and a half.
The Octastyle temple is composed of nine whole cubes, or four enbes and a half in pth, repeated twice, placed side Iy sid. The Parthenon is thus formed of cubes, whose les each measure 50 feet 6 inches; two occupy the front, of 101 feet; the depth of the ur and a half cubes are a trifle more than 227 feet, the tue extent being 227 feet 7 inches. Six cubes, placed one above the other, form the design of the Campanite, at Florunce, mmenced by the celebrated Giotto in the ycar 1334; and on the breaking up of these bes into ornament, the perpendicular lines are lengthened out, whilst in the Greck mple the horizontal are made to preponderate; repose in the Jatter, and lofty aspiration the former, marks the distinction between them.
The Touer of Rochester Castle, usually supposed to be of Norman construction, rfectly resembles the far-faned Coliseum at Rome, in the manner in which the epiral ults are executed. and in the general method adopted in carrying up the massive Hhs. The cement employed was evidently manufictured on the spot, as it is emirely mposed of the materials found close at hand, and the stone such as could be brought wn the Medway, and quarried on its shores. If this enduring structure was the work Gundulph in the 12 th centuly we have the strongest evirlence that the Roman arts of istruction were continued without any change either in the art or mystury of building to that period at least.
l'he building is a cube and a half nearly, being about 74 feet square without the en ice porch, and its height to the top of the angular t.arrets is 112 feet. A square divided i, twenty-five equal squares exhibits its plan; the sixteen outer squares represent the thess of the walls, in which are galleries, rece ses, and contrivances necessary for its ftection against an enemy ; the nine inner squares of the plan are divided into two spacious r ns, one being 45 feet by 19 fiet, the other 45 feet by 21 feet; the wall that divides
$t n$ is 5 feet 6 inches in thickness. The height comprises a basement story and three
0 rs beneath its roof, which has been vaulted, and which is 90 fect to the top of the b. lement, and 112 feet to the top of the turrets.
ules adopted by the Freemasons in setting out their Buildings, from the Tenth to the F eenth Century :-
t the foregoing remarks on Proportion some general rules have been suggested as to and void, and more particularly the principles of setting out the windows and t. ry of the English and French cathedrals. On referring again to this interesting surct, the writer was led to inquire why the structures of the latter countiy should be iformly larger than those of the former, from which they differed but little in style, pr riving the same relative proportions, though differing in dimensions. Guided by the su asition that the buildings of the above period were the works of fraternities of fre asons, it seemed conclusive that they should have some standard of measurement, of their own or peculiar to each country; and, on testing the measurements with iew, it resulted that those of England were set out with the English perch of 16 feet res, and no doubt by an English lodge; while in those of France the French perch of 22 pirds du roi, equal to 23.452 English feet, was employed; the few exceptions cux, Caen, St. George Bocherville, and some others with round arches, and the it church of St. Ouen at Rouen, in the flamboyant style, are set out with the English of 16 feet 6 inches, and are universally attributed to English constructors; they ily most cariously agree in proportion and dimension with the Enelish cathedrals, have two cubes given to the nave, producing on the plan a Latin cross, instead Greek so usually fund in Fianee. It would se.m that the standard measures d to were well and wisely chosen, as if intend d to apply to all times and all es of structure; for it is singular how nearly the dimensions of the cubes of the ir palace at Sydenham, 24 feet, correspond to 23 ?eet 6 inches of the royal Freneh
illustrate this subject fully is not wihhin onr present narrow limits; a very few exar les must suffice, out of the numbers which might he adduced in support of the
rested to test the theory practieally, that while he admires their pieturesque beauties, he will examine by measurcment their plans and sections.

Of the French Cathedrals, we must be content to refer to Chartres, Reims, and Amiens as those most admired, and which serve as examples of the application of the French perch in setting out their various parts as well as the whole.

Chartres Cathedral, in which the pointed arch first appears, is a strueture of the 11 h eeatury, and one of the most remarkable, as well as beautiful, ereeted after the first introduction of the pointed style by those who had journeyed with the Crusaders, and had at opportunity of studying their craft in the East.

The proportions are simple in the extreme. A eube is devoted to the nare, two to thin transept, one to the ehoir ; in addition to whieh, at the eastern extremity, is a semicirenla termination with six polygonal ehapels attaehed, furming on the plan a Greek cross u admirable design.

The nare, eomprising six divisions of pointed arehes on each side, is in its length an width six royal perches, the distribution of which will enable the reader to eomprchend th setting out of the entire plan, which he ean refer to in several publications.

The elear width of the nave is two royal perehes between the elerestory walls; eac side aisle is one royal pereh, and the distance from the middle of one pier to that of th other, from west to cast, is also a royal perch.

The entire width of the nave from out to out, that is to say, from the faee of the exterin buttresses, is six royal perehes, four perches being given to the two side aisles and nave fin their elear widths, and the other two to the projection of the buttresses, thickness of th two outer walls, and those of the clerestory of the nave.

If the royal perch be divided into three, one part constitutes the diameter given to th pillars, and another the thiekness of each of the walls of the side aisles.

The internal height of the nave is the same as its clear internal width with side aisles so justly is all proportioned that the perch royal, and its division irto three, enables. to comprehend the dimensions of the parts, as wall as that of the entire mass of construt tion.

Reins Cathedral was similarly set out. The elear width of the nave is two my: perches, and each of the side aisles is one perch. The extreme width of the nave, comprisil the projection of the buttresses. is six royal perches; the diameter of the piers, one-thi of a royal perch, as in the example of Chartres.

It must be observed that the dimensions do not apply to the elear distances betwe the pillars but to the spaee between the walls, which in the clcrestory are peculiar fin t eontrivances of a gallery, which usually continues around the entire eathedral, and whi will he hetter understood when we treat upon Amiens Cathodral, reserved for a fuller descri tion. That the percis was the standard of measarement there can be no doubt; for in 1 smaller churches of Great Britain, as that of lRos!yn, for example, the nave is a single per in width, and the side aisles half a perch; the proportions of the parts being alo those the third of an English perch.

Salistury Cathedral, a contemporary structure with Amiens, is set out with the Engli perch, and affords the best commentary upon the two standard measures made use of the same century by the French and English freemasons.

The Nave of Amiens Cuthedral is usual:y admired for its elegant proportions, and screral eminent critics has been cited as the beau ideal of that style of architecture universally practised during the middle ages, or after the Romanesque had been disen tinued. It is one of the most simple in ite arrangement, though at first sight, remori all idea of smplicity, and appearing so complicated irom its vailety of parts, as to defy application of any ordinary rules; the numerous areades, the narrow and lofty compa ments, the vaulted divisions, the diagonal ano curved lines, blerding one into the other, a apparently without limit, it is some time before the eye can acqui. see in the idea that st an edifice can be brought monder the same laws as a Greek temple. or that the culbe con be the measire of its parts or its whole. In taking the measurements, however, of this 5 example, the dimension of 2.8 feet 6 inehes sc frequently occurred that it seemed to den a standard hy which to arrive at the length, t , eadth, and height of the whole, and that considered after the mamer of Sebastian Serlio where he descrihes Branante's plan of l'eter's, we might arrive at something like a clue to the whole design.

It is curious to note, in the work of the ahove mentioned arehitect, several allusion: the cube, in the defining the parts as well as the whole of a design, and there can be li donbt that this simple figure served as the means of measuring the quantities, of ei: solid or voil, in cvery period of the eonstructive arts; certainly none presents to the ar tect a better means of comprehending or of measuring quantity, and none is more rea sulidivided, or rendered subservient to the taste of the designer, whatever may be the ar tecture he is anxious to imitate.
Within an isometrical cube may be placed the entire nave of Amiens Cathedral; and better to understand its proportions, we must surpose each square or cube into whicl s
ivided to measure 23 fect 6 inches each side, or the isometrical figure to contan 216 uch cubes; the total height, width, and length being 141 feet, or six times the 23 feet inches. (See fig. 1327.)
On the plan are six divisions in length and width, or altogether 36 squares; each meawe 23 feet 6 inches on each of their sides. The six outer divisions of the principal figure re devoted to walls and buttresses; the adjoining six on each side show the situation

Fig. 1527.
have of amens cathedral.
of e side aisles; and the two middle divinions that of the nave. The two side aisles oc py together 12 squares, as does the nave; the remaining 12 being devoted to outcr wa and their buttresses.
e entire area, thereforc, has 24 squares to represent its interior distribution, and half thr umber its external walls; or one third walls, two-thirds void. Such are the general ars gements of its plan, and its extreme simplieity has enabled the constructors to execute the sulting of the side aisles and that of the centre nave by diagonal ribs, which in the for r extend over one square, and in the latter two, thus giving to the nave its due propor n of height, without changing the principle of its construction.
e freemasons of the iniddle ages were so perfectly acquainted wi h geometry that there
is slom any defect in their vaulting; it is evident that they laid down their plans for its
exe ion before they decided upon the form of their main piers; in their setting out,
eve part had its due function; and the column, which was intended to be connected
witi he vaulting, either of nave or side aisle, was peculiarly adapted by its position
for usc.
'] master mason Robert de Luzarche commenced the building of this nave about the yeal 220, the founder being Bishop Esrard. The pillars of the nave were raised to the heg of their capitals in 1236, but it was not till 1236 that the vaulting was competed; and out eight or nine years afterwaras the lateral chapels were added.

To the top of the battlement of the nave there is not quite so much height as the oute wall of the Colseum at Rome, which is 1.57 feet; but it is curious to obscrve that one division of this renowned building does not differ very materially in its proportions from that at Amiens; the division of the ampitheatre being seven cubes in height; the piers occupy one third of the width of a compartment, as is usual in Roman structures of the same period. The masonry of Amiens Cathedral is executed after the Roman models, consequently the pointed arch makes tho chief difference between the two styles.

To render the application of the theory of the cube to the nave of Amiens Cathedral more evident, or how the 216 cubes which the isometrical figure contains are placed, somewhat more of detail must be entered into.

The six main divisions shown in the figure, with the side aisle behind them, have their points of support at the four angles of each of the six squares; then each square, with its 23 feet 6 inches sides, shows the position of the lowest cube of the six placed one above the other, forming the entire height of each division or severy.
At the top of the second cube is the level upon which the main arches spring, and that upon which the ribs of the vaulting of the side aisles rest.

The top of the third cube indicates the level upon which the triforium is based, and consequently contains the vaulting of the side aisle.

The fourth cube is the triforium, and the fifth and the sixth the clerestory.

On examining the section, the side aisles are three cubes in height, including the vaulting, and the nave six; the entire open space of the interior has 18 cubes for each aisle, or 36 for the two side aisles, and 72 for the nave; in all 108 cubes, or exattly one lalf the entire number contained in the isonetrical cube.

It must be remarked that considerable alterations have been made since the building was constructed; between the buttresses, chapels have been formed, and the original windows, which lighted the side aisles, removed to the extent, or somewhat beyond the onter fice of buttresses, as represented. Tue interior is therefore increased mate ially in width, and its effect greatly improved, making the entire intcrual width and height more in conformity with each other, or each 141 feet.

In the elevation of the divisions the boundary of cash of the six cubes is more clearly marked. The width from centre to centre of each pillar, indicated by the seven circles ($f y$. 1:328.) is 23 fest 6 inches; to the top of the capitals from the pavement $A B$, the height is twice that dimension ; ts the bottom of the bases of the column of the triforium 13 C, the same; thence to the botom of the glass of the clerestory windows C D, the same; to the tops of the capitals or spring of the arches 1) E, the same; and above that line to the underside the vaulting E F, the same; thus, six times 23 feet 6 inches, or 141 feet, is the total height from the pavement, of the division represented in fig 1328.

As the groined vaults of the side aistes are set fig. 1528 . rlevation of yave; amiss. out upon a square, and the width from the centres of piers is the sanme as these towar .le
nave, we have three perfect cubes of 24 feet in each severy up to the bottom of the trifo rium story, and the same number from thenee to the top of the vaulting of the nave.

The main pillars are 7 feet, and 7 feet 2 inches in diameter, composed of a large cylindrical column, with others attached for the support of the vaulting. Towards the nave there are three columns which are carried up to the height of about the middle of that of the clerestory windows; on the capitals which terminate them rest the ross springers and diagonal ribs of he vaulting. The arches of each livision are 4 feet 9 inches in thick. hess, and rest on the side columns, of is inches diameter. The faint line n the plan fig. 1329. represents the ier and mullions of the division of he clerestory window.
The seven circles shown in fig. 1328. xhibit the proportion each pier bears o the opening, namely, that of twoevenths for piers, and five-sevenths or the space between them. The imensions vary a little as taken roughout the six severies, as in me instances the diameter of the ers varies as above stated.
It may be remarked that the contour the torus and scotia in the base, e not sections of eylinders or their rtions, but partakes of the elliptical. te mouldings below, are contoured lerently to those above, the eye, and sideration is given to their position,

Fig 1330
PLAN OF COLUBXS; AMIENS.
 t produce proper effect.

re base and capital of the main pillars, as here shown with their dimensions, is the ${ }^{\text {sal }}$ as the front view towards the nave, with the exception that the two 7 -inch columns at e side of that in the middle are omitted.
e piers that divide the side chapels, and the original outer buttresses, have been shred probably from their original design; they are now 8 feet wide.

The elerestory window with its piers and mullions being al eady given (fig. 1399) it remains to show the plan of the piers and mullions of the triforiun, and its gallery or passage, which has a clear width of 20 inches between the main pier and the outer wall, which is about 10 inches in thiekness (fig . 1334) The middle mullion, or that which divides the triforium into two principal arelies, is 2 feet 6 inches in width, and eomposed of seven s-rall columns, as shown attached to the main pillar, whieh has a deptl of 6 feet 8 inches.

The ordinary decoration in this eathedral is very simple, consisting of a cirele, comprising either three, four, five, six, or eight others: the centres of which and their portions may le understood by reference to the five diagrams figs. 1335. to 1339. Seulp,tured foliage os curs in the capitals and

 along the stifing mouldings; figures, however, of the most elaborate execution and desig. deeorate the exterior, and particularly around the ehiefentrances; perhaps few buildingsexce the Cathedral of Aniens in the richness of these portions, or the magnificence of itsporches In deseribing the figs. 1292. and 1294 ., an attempt was made to eonvey an idea of the geometrieal style of the tracery in the rose windows, as well as those of the side chapels.

We eannot quit this part of our subject without regretting the want of further space fo the treatment of this very interesting reference to the arts as displayed by the builders of thi period, partieularly as the prineiples upon whieh they practised are so little known. Simple a they were, their system seems to have been forgotten after the lodges of the freemason were broken up, and the new era appeared. The renaissance, or the return to the Gree' models, at onee set aside all knowledge of that grehitecture which had attained such pet feetion in Europe for four centuries.

THE BUILDING FOR THE EXHIBATION OF THE INEUSTKY OF ALL NATIONS, 1851.
This building was stated to have been suggested to the Society of Arts in June 1845 his Royal Highness Prinee Albert, and it was not long ere the plan for its adoption , developed. The public quiekly responded to an appeal ly subscribing $75,000 \mathrm{l}$, to ena the commissioners to ereet a suitable building, to be completed by the 1st of May 18. the site being granted by Her Majesty, on the south side of Hyde Park; and that was required of the exhibitors was, to deliver their various specimens of art :
manufacture at the building which would be provided for them. Mr. Paxton, after some other designs had been set anide, submitted a design composed chinfly of glass and wom wheh Messts. Fox, Henderson, \& Co. tendered to construct for 79,800 . This was immeliately carried into cflect.

tak bulding for the enhidition of all nations, 1851, comasonly called the chistal falace

The site for the buildiny contaised abmut 26 acres, being 2,300 fect in length, an 500 feet in brealth; the principal front extending from west to east. The total area of t, ground floor was 7 29,784 superficial feet, and that of the galleries 217,100 square feet The length of these galleries extended nearly a mile. The eubical eontents of the buildin were estinated at $33,000,000$ feet.

There were used in its construction 2,300 cast iron girders, 358 wrought iron truss for supporting the galleries and roof, 20 miles of gutters for carrying water to t columns which served as water-pipes, 202 miles of sash-bars, and 900,000 supericis feet of glass.

On the ground-floor, 1,106 columns of cast iron, rested on cast iron plates, based upo concrete; these columns were 8 inches in diameter, and 18 feet $5 \frac{1}{2}$ inches in height; the were cast hollow, the thickness of the metal varying from $\frac{3^{2}}{8}$ to $1 \frac{1}{8}$ in., according the weights they were destined to support. The sectional area was increased by for broad fillets or faces, $3 \frac{1}{2}$ inches in width, and a little more than a sixth of an inch thickness.

The principal entrance was in the centre of the south side ; passing through a vestilm 72 feet by 48 , the transept was entered, which was covered by a semi-cylindrical van 72 feet in diameter, springing from a height of 68 feet from the floor; and this vault iron and glass was in length 408 feet from north to south. On each side of the transel was an sisle 24 feet wide.

Standing in the middle of the transept, the vista or nave, at right angles, extended ear and west 900 feet in each direction; the total length being 1848 feot. This nave w: 72 fect wide, and 64 feet high; and on cachside was an aisle 24 feet in width; and abov at a height of 24 feet from the floor, were galleries which surrounded the whole of the nat and transept.

Beyond these side aisles and parallel with them, at a distance of 48 feet, were secon side aisles, of an equal width to those already nentioned, and also corcred with galleries a a similar level to the others. Pridges of communication were made at convenient di. tances, to allow of an unbroken promenade, and from which a view of the several cour might be obtained. These courts were roofed in, at the height of 2 stories and were feet in width. Ten double staircases 8 feet wide gave access to the several galleries.

After the transept and nave were marked out, the general arrangement consistrd of series of compartments 24 fect square, and as much in height ; these bays or cubes we each formed of 4 columns, supporting girders put together very ingeniously. Onc of the bays or gallury-floors, 24 feet square, containing 576 superfieial feet, was calculated support as many cewts, or 30 tons.
The symmetry and strength of this vast building depended upon the aeeuracy with whi the simple plan was drawn out, and much credit is due to Mr. Brounger, who supri tended this portion of the work. He had to cstablish a series of squares of 24 feet, and t was admirably effected by rods of well-seasoned pine, fitted with gun-metal cliecks.
Stakes were driven into the ground to mark the position of the eolumns, their preci eentres being afterwards found by the theodolite, and marked by a nail on the top of 1 stake or pile; and when the digging commenced for the foundations, and there was a n eessity to move the pile, a right-angled triangle was formed in deal, and previous to the 1 moval of a stake, a nail indicating the position of the column was placed at the apex of t. triangle; two other stakes were driven in, and the first withdrawn. The entire gromed pli may be considered as composed of 1,453 squares, each containing 576 superficial fect. 'T south front occupied 77 , the east and west fronts each 17 , so that the entire parallelogra eontained 1,309 of these squares; on the nerth side were 48 others, 3 divisions in dep making an additional 144, thus completing the number stated. The nave, transept, a courts were formed by the omission of the columns, where their width required to either 48 or 72 feet, and girders of sufficient strength were substituted to span the spa where such columns were omitted. Had each of the 1.387 squares of which the plan er sists hat its complement of columns to have perfected each cube, 1,502 would have lee required; but the fornation of the wider openings occasioncd only 1,106 to be emplon so that, by the omission of a third, ihe courts, nave, and transepts acquired their admil proportions. Each of the 1,387 squares was 576 superficial feet, or a total of 798, ! superficial feet. The columns being 8 inches in dianeter, the area of the section of whole 1,106 was 380 superficial feet, or the points of support were a trifle more that 2,000th of the entire area, for $7_{39012}^{2902}=2,102$.

When we eompare the Crystal Palace with one of the lightest constructed basilica ancient Rome, we are astonished at the difference in the proportions. For instance, total arca of the basilica of St. Paul without the walls of Rome, was 108,000 sujcrfic feet ; while the points of support were 12,000, or one ninth. The Crystal Palace, wh was seven times the area of the basilica of St. Paul, had it been construeted in a sim manner, would have required 84,000 superfieial feet for the points of support, insteac 80 superficial feet.

In the Saxon cathedrals, one third of the entire area was employed for walls and piers; the Pantheon at Rome, one quarter; in St. Paul's, London, one sixth ; and in most of a cathedrals constructed from the 12 th to the 15 th century, the same proportions are ectised; but we have never hitherto seen any attempt to lessen the proportions of the ports beyond a twentieth of the entire area, when the ordinary building materials, brick or stone, have been employed, whilst in this instance iron columns are found ficiently strong, when they lave the proportion of a 2,000 th part of the whole, or are \pm hundred times less in section than their points of support, estimated as a twentieth the wholc, and which we have considered as the lightest of the constructions hitherto ctised; the round Temple of Claudius at Rome being the example. Tredgold culated that an iron column of cast iron 8 inches in diameter, and 24 feet high, 1 carry nearly 50 tons, or $1,106,55,300$ tons; so that, if each of 1,387 squares hat sustain 30 tons, there would be ample strength, this not amounting to more than 10 tons.
n preparing the foundations for the columns, great care was taken to arrive at the tvel, upon which a bed of concrete was thrown; and it was cs:imated that a pressure per Eerficial foot of $2 \frac{1}{2}$ tons should be provided for. The concrete varied in depth from §s 4 feet, and was finished by covering the top with a surface of fine mortar, worked et and with a level face. On this was laid a base plate for each column, the lower part c sisting of a horizontal plate having attached to it a vertical tube of the form of the cimn it was to carry. The length of these base plates was from north to south, so t; the water brought down by the columns from the loof might run in the detion from east to west. Into the sockets, cast iron pipes 6 inches in diameter ne inserted, for the purpose of conveying the water into the cisterns and tanks provided theceive it.
t the upper portion of the base plate four holes were cast, in as many projections, Wh answered to others at the foot of the column to be placed upon it, which, when fil, was secured by nuts. Between the shaft and its base, pieces of canvas dippet in we lead were introduced before the joints were securcd, which were thus rendered watertit. The columns were 8 inches in diameter, and those on the ground floor 18 feet 5: aches in height, being cast hollow to allow of a current for the rain water; the streng!h ol hese columns was increased by four projecting ribs, and by the form of angular additions m e to receive the nuts and screws.
he Crystal Palace at Sydenham had also the simple cube as the nucleus of which this vast
 edifice was composed; and the simplieity of its form enabled the constructors, by a small variety of castings, to execute the whole. It was to this loeality that the materials of the Hyde Park building were removed and readapted to a much more extensive erection. Three cubes, plised one on the other, formed the site galleries, as seen in the section, fig. 1342 The omission of six such cubes measures the width and height of the nave to the level of the springing of the arched covering; such are the simple proportions composing this vast structure. On the ground-floor is laid boarding $1 \frac{1}{2}$ inches in thickness, $\frac{1}{2}$ an inch apart, upon joists

[^16]
CHAP. V.

SPECIAL SUBJECTS.

2861 to 2946. Mr. Gwilt wrete, in 1842, Chapter V., Public and Private Bution: The several sections were reviscd and enlarged and additional ones inserted in 1867,2 ag.tin in 1876. The progress in most of the subjects, as well as of others, has been great of late years that a volume for each might well be written, giving the li examples and principles of arrangement. As it is a convenicnt place in this work specially treating some subjects, the chapter is retained uuder a new heading. se tions Vextlation of Buldings and Warming of Buldinges are taken to Use Materials or Practical Boilding, Chapters XIII. and XIV., and most of the of sections are inserted in the Glossary. The student will find in the List of Booss mi works relating to the subjects, of which he may be in search.

Sect. I.

THEATRES.

2947. A taste for dramatic representations prevailed at a very early period among reople of antiquity, and this was not diminished by the introduction of Christianity, e when the temples were deserted aud paganism seemed extinct. The destruction of thi however, was its concluding triumph. It would be a difficult matter to fix the precised of the abolition of the pagan theatre, but it seems likely to have resulted rather from falling into decay of the old theatres than from a disinclination on the part of the per to the plcasure they receised at them. With the revival of the arts, the taste for se representations appeared with the literature on which they are dependent. In Italy find, thercfore, the drama at this period repiesented in very large enclosures, such 115 amphitheatre constructed by Bramante in the large court at the Vatican, whence taste soon spread over all the nations of Lurope.
2948. The plcasure which flowed from this renewal of an ancient art was at first tined to fcw, and those were either men of learning or select societies, who bore the expen and again raised in the country a rencwal of a theatre much resembling theso of ancients as respected the form and disposition. To prove this, we need only cilu example of the celebrated theatre at Vicenza, built by Palladio in 1583, and designem ifaitation of the ancient theatres. A full account of this building is given in $L^{\prime}(1) r$ e. dell' Academia Olympica, \&c. Opera di Ottavio Bcrtotti Scamozzi, Vicenza, 1690. dramatic represcutations this theatre is no longer used, and at present it is only n nised as a monument of the exrraordinary skill of the architect, and a memorial of dramatic buildings of its period. The theatre at Parma, l,uilt by Aleotti, is aum building belonging to the same class, and preserved, like the last-mentioned, as a curiut
2949. When, howerer, the taste for scenic amusements began to spread, the surery princes, who alone could support the expense of such cstablishments, began to maku thrnecessary part of their palaces; and the theatre, no longer a public and essential build becume whit it now is, a place which sorved for the habitual amusement of those could afford it. The drama again revived, and its history is an index to the erlifics ! rose for its representation. Decoming thus necessary for the amusement of the 1 . classes of seciety, the establishment of theatres was undertaken by individuals in alt. ercry city, and competition was the natural consequence. Then began the division the theatre into different parts, the entry to which was marked by differcut prices, the separation of the common people from those of rank and fortune.
2950. Italy does not contain so many theatres, nor of such consequence, as might predicted from the taste of its inhabitants. Among the earliest of consequence was built at Bologna in 1763 by Antonio Galli Bibiena (not to mentiou that built at liu under the direction of the celebrated Scipio Maffei by Francesco Galli Bibiena), wit noble portico in front and salons in the angles, possessing moreorer great merit io
terior distribution. In the Italian theatres there is almost invariably a certain feeling of wandeur and unity about the interior little to be expected from the exterior, which in no ay leads the spectator to the suspicion of a fino Salle de Spectacle behind it.
2951. France has the credit of having crected tho first modern theatre that can be denoinated an example in this species of monumental architecture. That to which we allude the theatre at Bordeaux, which is 325 feet in leugth, and half that measure in widh. hether we consider the exterior or interior of this edifice, everything is grand; the cessories are worthy of the whole, and tho richness of the interior decoration is only jualled ly the fine forms whereon the decorations are used. The ingress and egress are tmirable; and a splendid concert-room and magnificent staircases complete the destinaon, to which it is so suited, as to afford tho finest model of a theatre to which we can fer the student. The plans, \&c. of this work were published by its architect, V. Louis, ider the title of Salle de Spectac/c de Bordeaux, atlas folio, Paris, 1782.
2952. The principal points for the consideration of the arclitect in the composition of theatre may be classed under the heads of utility, suitableness for the purpose, and taste combining them. Under the first head must be placed the accomplishment of two main jects, those of seeing and hearing what passes on the stage. These, indeed, are iutiitely connected with eath other, and are entirely dependent on the form adopted for the an of the interior, that is, the general form given to the boxes which surround the purt fore the curtain. We are not a ware of any plan which, in this respect, is not based oa a adrangular, elliptical, or circular form.
2953. The quadrangular form, besides its want of beauty, is not well adapted for fulling the objects with which we set out. In this, the greater number of spectators or dience who occupy the side boxes are so inconveniently placed, that, to obserre what is ing on, their heads must be turned sidewise, and they are hence in a false position for o object. The actor being generally the point to which all eyes are directed, the specor opposite the prosecnium will lo k at him in a right direction ; but as the spectator nores to the extremity of the side, it is manifest that the angle in which the head must turned becomes sharper, and the position is then painful. Besides this objection, the m is known to be unfarourable to hearirg or to the propagation of sound.
2954. The truncated oval is in some measure sulject to the same inconveniences on the les as the last-mentioned figure. It removes also a large portion of the spectators to a I siderable distance from the centre of the scene, besides which, in the boxes near the 1 scenium, their seats tend in opposite directions to the actor. It has been to remedy these 3 lts that the form of the horseshoe has been adopted, which is a sort of mean between the (drangular and oval forms: and where the plot of ground is much longer than it is, wide, 1) a suitable figure, and one which affords the opportunity of increasing the number of les.
2955. When, however, the circumstances concur in allowing it, the adoption of the icircular plan is doubtless the best. It is a figure which allows each spectator to be at qual distance from the scene, that also by which the spectators in adjoining boxes less rfere with one another, that which affords the means of all seeing equally well, that in ch the sound is most equally distributed, and that whose uniformity and simplicity seem agender the best decoration. The semi-elliptic, with the transserse axis parallel to the cenium, has interior adrantages in some respects over the semicircle; but it induces t difficulty in connecting the proscenium itself with the auditory part of the honse, by increasing the width of the prosecnium, increases the perplexity in framing (as erly) the roof conveniently for the painting rooms, and securely as respects the walls. 56. Upon the destruction by firo of Drury Lane Theatre a pamphlet appeared, led Observations on the Principles of a Design for a Theatre, by Benjamin Wyatt, lon, 8 ro. 1811. These observations are so well worth the notice of the student that hall close this section by giving the substance of them. The heads for consideration, the author, are :-
2956. First. The size or capacity of the theatre, as governed by the width of the benium or stage opening; and by the pecuniary return to be made to those whose erty may be embarked in the concern. Second. The form or shape of the theatre, as ected with the primary objects of sound and vision. Third. The facility of ingrers gress, as materially affecting the convenience of those who go to every part of the \rightarrow respectively, as well as their lives, in cases of sudden accident or alarm. Fourth. If rum amongst the several orders and classes of the visitants to the theatre, as essential) e accommodation of the more respectable part of those risitants, and consequently of importance to the interests of the theatre. Fifth. Security against fire, as well in d of insurance, as with relation to the lives of individuals going to the theatre.
2957. The size or capaeity will neeessarily depend very much on the width of the enium or stage opening, inasmuch as it is from the extremities of that opening that rm of the theatre must spring. The annexcd is a statement of the width of the reconium at tho theatres named in that publication:-

A width beyond 40 feet seems to have been considered by the performers as inconvenient, h the space they would have to pass over in the business of the drama, but 50 feet appears, to be the maximum adopted. A greater width, indeed, than that stated prevents the and secure working of the scenes, fre the machinery is inereased in magnitude and wei as the heigit and treadth of the scenes increase. In mere spectacle and scenic groupit reduction in the witth of the proscenium, and depth of the stage, reduces the number extra performers, or supernumeraries as they are called, which become necessary for fil the stage. Again, every additional foot given to the stage opening increases the quan of canvas used in the scencs, as well as the framing whereon they are fixed.

2958a. In the Edinburgh New Philosophical Journal, vol. xxvii., Mr. J. S. Russell gi some elementary considerations of certain principles in the eonstruction of buildings desig. to accommodate spectators and auditors, well worth the arehitect's notiee. In every lia room, says the writer, a perfectly good seat is one in which, without uneasy elcvation of head or eye, without straining or stretching, we ean calmly and quietly take any e position, or variety of positions, which we may be disposed to assume, and yet may in of them see and hear the speaker with equal clearness and repose, so as to give him pati and undisturbed attention. The object, then, is to ascertain in what manncr the inte. (f a building for public speaking should be formed, so that throughout the whole ra whi th the voice of a man is capable of filling, each individual should see and hear with interruption from any of the rest of the audienee, with equal comfort in an casy post!!

Piz 1357.
and as clearly as if no other individual auditor or spectator were present. (Sec figs. 13 fnd 1348.) The position of the seats is first investigated. In the usual variety of stat

Fig. 1548.
han a foot and less than 18 inches, so that these may be taken as the limits; that is, over he head of the person before you there must be a clear range of 12 or 18 inches, throngh which the head may be moved upwards or downwards without interruption. In wher vords, that a straight line drawn from the speaker's head over that of the anterior speetator hall intercept the straight line which forms the back of the seat of the posterior observer, 0 as to eut off a height of 12 or 18 inches, within which the head of the spectator shall at imes be comprehended while sitting in a comfortable position. Thus let S (fig.1347.) he the peaker and XYZ be three successive ascents; then the line SX must fall below SY, so as 0 leave the space $Y x=18$ inches $=Z y$.
2959. Applying this formula to cvery individual place in the room or building, we shall ave the form required to satisfy the auditors. Let $2 \frac{1}{2}$ feet be assumed as a constant epresenting the distance of one spectator behind another, measured horizontally ; and II et as the clear space, measured on the vertical line, for the mean range of comfortable ision for each. If the level of the floor, that is, of the lowest seats, be already determined, he form of the interior aecommodation may be thus deseribed. AY (fig. 1348.), the eight of the speaker, YX the level floor. From $A y$ take $Y y=4$ feet. Draw $y x$ parallel $0 I X$. Take $A y$ to $y x$ as $1 \frac{1}{4}$ to $2 \frac{1}{2}$, that is, as h, the range of position of the spectator, to d, he distance between the seats. Trake horizontal distances $1,2,3,4, \& c .=2$! feet, prolong l. x to x^{\prime}, then the height x^{\prime} to $l=1 \frac{1}{4}$ feet. Join $A l$ and p rolong it to $x^{\prime \prime}$, and take a disence $x^{\prime \prime}$ to $m=1 \frac{1}{4}$ feet. Through m draw A m, and prolong it to $x^{\prime \prime \prime}$, and take $x^{\prime \prime \prime} n=1 \frac{1}{9}$ set. Continue the process in the same manner to $p, q, r, s, t, \& c$, and the points will be und of the successive plaees whieh the heads of the auditors should oecupy.
2960. But it is not only in receding that the back ats must rise; those too far forward may be also mpleasant. They are too low ; they also should be ised: hut this must be done so as not to interpht those who are behind. It may be accomished in a similar way; for, as formerly set off, $2,3,4,5,6, \& c .=2 \frac{1}{2}$ feet (fig. 1349.) , 1 is the first terior point. Join $\bar{A} 1$, and let it cut the vertical te through 2 in $x^{\prime \prime}$, the portion downwards $x^{\prime} l=1 \frac{1}{4}$ et ; then l is the point found. Join $A l$, make $x^{\prime \prime} k$ $!\frac{1}{7}$ feet ; join $A k$ and $x^{\prime \prime \prime \prime} i=1 \frac{1}{7}$ feet; and so on. h, i, k, l, are the places found which the heads of the ectators should occupy, and show the elevation to given to the seats successively.

Fig. 1349. 2961. If the simple process deseribed be accurately performed, the points which indicate a places of the spectators will lie in the branehes of a very beautiful curve, which may be med the iseidomal or the isacoustic curve, that is, one of equal secing or hearing: it will of the form in fig. 1850. A being the place of the speaker, and the heads of the spec-

Fig. 1350.
tirs being placed on the line Amn, continued as far as the voice will reach, X A X heing t axis of the curve, and YY its parameter. 'This eurve has two branehes on opposite sils of A, showing that if the building extend behind the speaker, or if the speetacle be le or the sound audible on every side, the same may be continued all round. By n us of this curve, the position of seats in a theatre may be satisfactorily determined.
362. For any great assemblage, where it is desirable that one individual or group of
is viduels should be seen or heard, an amphitheatre of this form might be constructed
r the surface of revolution generated by moving the curve round its axis, which would
detly accommodate 10,000 individuals.
163. Aecording to the arrangement of London audienecs, Mr. Wyatt calculates that a
the consisting of threc fourths of a circle on the plan, with a stage opening of 35 feet,
wi ontain, in boxes in four tiers, tour other boxes next the stage, a pit and two fralleries,
2.3) persons, exclusive of four boxes in the proscenium, and fourtecn immediateiy under
thi ress boxes. P'erhaps no modern theatre ean berequired to holdabose o,500 people.
2964. We have already given some general hints relative to the form ; we shall here as the author's view of this mater; and thereon he very properly says that, with reference distinct sound, the safest method is to adopt a fom known to be most capable of converi sound with facility, to constrict that form of materials that are conductors of sound, and avoid all bieaks and projections on the surface of that form, because they obstruct a impede the progress of the sound. It is well known that a circular enclosure with breaks possesses the power of conveying sounds with facility, as the whispening gallery St. Paul's Cathedral ; and that wood is an admirable conducting material for the purpo: Count Algarotti, in his treatise on the Opera, says, daily experience teaches us that it box whose walls are naked, the singer's voice is reverberated in a paricular manner; sounds crude and harsh, and by no means flattering to the ear; the accents are quite lost the box be hung with tapestry; whereas they are reflected full, sonorous, zod agrecable the ear when the boxes are only boarded, which is an obvious proof, and confinmed experience, that the best lining for the interior part of a theatre is wood, as is said to ha been the cave in Her Majesty's Theatrc, bumt in 1867.
2965. Whatever be the form of the theatre, it ought in every part to be limited in exter to such distance as the voice will distinetly reach; and the nearer that figure conforms the proportions wherein the natural voice is heard in each direction, the more equally " the sound be heard in every part of the theatre. The experiments tritd by Mr. Wya proved that the reach of the voice when moderately cxerted was in the proportion about two ninths further in a direct front line than laterally; and that being distinct audible on each side of the speaker at a distance of seventy-five feet, it will be as plain heard at a distanec of ninety-two feet in front of him, declining in strength behind him so not to be clearly heard at much more than thirty feet. "Accoraing," says Mr. Wya "to these data, it would appear that the geometrizal figure, which comes the nearest to ti extreme limits of the natural expansion of the voice, is a semicircle of 75 feet radius, or 1 : feet in diameter, continued on cach side to the extent of 17 feet, or in the proportion about two ninths of its lateral expansion (fig. 1351.) beyond the limits of the semicircle, and then converging suddenly until the two lines meet at C , behind the baek of the speaker." But though the voice may be heard at these distanees, it does not follow that a theatre of this extent should be erected; indecd, it would be absurd to do so, for the actor varies his place almost every moment; and as he removes from the centre, from which it has been ussumed he is speaking, he would become inaudible to some parts of the audience as he receded from it. It is cvident, therefore, in planing a theatre, the radius or semi-diameter must be so reduced as to bring the extreme distance at which he may in any case be placed within the space of 75 fect, that is, that when the speaker is placed at the
 extremity of either side of the stage, his voice may be heard by those seated on the opposil side of the house. In the diagram, the widest part of the theatre inscribed in the larer figure is 58 feet upon the level of the dress boxes; and allowing 9 feet 6 inches for t depth of the boxes on that floor, by means of a projection of 18 inches more than the bos above, there will be 67 feet 6 inches between the extreme part of the stage on one side an the back wall of the boxes on the opposite side: but as the speaker is in no case placed either extremity of the stage, and even if so situated, the distance between him and II oppositc side of the house would be within 8 feet of the reach of his voice in its later direction, and 25 feet within its limits in a direct line, it henec appears that the cirenl: is preferable to any other form; and if we fix a limit for the diameter of that form, we a in possession of the rules which limit the length of the theatre, or the distance from tt front line of the stage to the boxes immediately in front of that line. Taking 75 fc for the distance at which the voiee can be heard laterally, as the space between the fro line of the stage and its immediately opposite boxes may occasionally be in the later direction of the voice, the greatest distance from the front wall of the stage to the bat wall of the boxes opposite the stage should not execed 75 feet, the limit of the voice in lateral direction, because of the turns of head which he must often make for the busimss the scene, when that which was opposite might becone lateral ; and thus those perso sitting in the opposite boxes would be $92-75$ feet $=17$ feet beyond the reaeh of his voice.
2966. The use of a semicircle without modification wonld, however, involve the exte sion of the stage opening to an inconvenient width; and Mr. Wyatt very properly conside that the whole area of a theatre shosld contain little more than one third of the space or
hich the roice can reach; "the onc," he says, "being (indrpendently of tho space ,hind the back of the speaker) a superficies of 11,385 feet, and the other of 4003. ." his, he thinks, will compensate for the absorption of sound consequent on tho number the audience, tho woollen garments they wear, and the state of the atmosphere, and suld ensure a good hearing in every part of the house.
2967. According to the author's statement, he recommends that the distance from the int of the stage to the back wall of the boxes immediately opposite should bo about feet; in the old Drury Lane it was 74 feet, and in the old Covont Garden Theatre, ilt about 1730, it was 54 feet 6 inches. In the Opera House, built by Vanbrugh, it s 66 feet. At Milan it is 78 feet. At the old San Carlos, at Naples, 73 feet; and at legaa, 74 feet. The distance in the late Covent Garden Theatre was 69 feet 8 inches, nearly 16 feet more than it ought to have been. How, then, can pcople wonder at seeing and hearing in such theatres? See also the Table given in subsect. 2958.
3968. In an opera house the band as it were sustains the voice, and the spectacle of ballet is more addressed to the eye than to the understanding; but even in that tho atre is universally too large for tho pleasure of those who appreciate properly what is nsacted in the scene. It is satisfactory to know that the theatre, which in our eductory remarks was selected as a model, should coincide in the main points here in stion with Mr. Wyatt's project. We are not certain whether he had visited it, but certain that if he had he would not change his opinion.
960. In respect of vision in a theatre, there can be no question that the semicirele gives best chance for the whole of tho audience; but the objections to it are, that it requires It either the stage opening should be of inconvenient width or that the size of the house suld be too small. It is therefore, without modification, inadmissible. It is on this 8unt that the ellipse, the horseshoe, and other flat-sided forms, have in later theatres la adopted, though it is manifest that a large proportion of the audience, says our a hor, "must be placed with their backs inclining towards the scene, and that in all of In (if the house be not of extremely small dimensions) the front boxes must be at in g it distance from the stage; for in proportion as the sides shall approximate ench or the front must recede, provided the circumference be not varied." The summing uff the question on this head is thus giren by Mr. Wyatt: "There is no olject con1 ed with the formation of a theatre which, in all its bearings, is of more inportance t] that the part of the house which faces the scene should be within a moderate d: nce from the stage. Unless that be the case, it is obvious that a very large proporti of the spectators must be excluded from a clear and distinct view of that play of tif features which constitutes the principal merit of the actor in many of tho most in esting scenes." Mr. Wyatt does not beliere that the beight of the ceiling injures or af 's the sound of the roice in the lower parts of the theatre, and obserres that it must in ery theatre "be much too high to act as a reverberator or sounding board to the 10: : parts of the house." But we do not agree with him on this point, and think we co refer him to more than one theatre in the metropolis which is defective in the cel yance of the sound from this cause alone. Besides this, we do not feel quite certain thi the diagonal line drawn from the actor to the upper tier of boxes should not be the reg ating distance, instead of the horizontal one which has been mentioned above.

0 . The following include many of the late suggestions for improving a theatre for 1blic, with those named in the former edition of this work. 'The mode of securing an tree from fear, as well as from actual danger, has not been sufficiently faced; to
\qquad le against the disastrous results of a panic is a work of greater physical difficulty tha "o render a building fireproof. For a stage manager to appear every night andn the arailable means of egress, the attendant at special doors to shout "here" on named (and then to vanish for the rest of the evening), might satisfy some persons. The aramount consideration is a sufficiency of exits. Ingress and egress should be
pro

Sloping corridors have been adrocated, but these are not praticable in os localities.

2970a. Erery opening should be instantly and always practicable. All obstructi should be torbidden by law. Doorways ought not to be less than 6 feet wide, anul doors in most cases are best made sliding, or should open both ways, whether mad wood, wrought iron, cement, or terrd-cotta. Messrs. Chubb have lately inventel a ehe contrivance for dispensing with an attendant at extra exit doors, consisting of a sill imposed spring panel on the inside of the door, in which the lock is embeddel; w a slight pressure the double doors fly open outward, and it is impossille to opon il from the outside except by a key. Another invention is Walker's new safety and ese. door, consisting of an inver frame of a door which will open outwards, the usual or frame opening inwards. Present doors can be adapted to the invention.

2970b. Two stone or cement staircases to the galleries are esseutial, aithough one n only be used as an entrance. The staireases for the upper parts should be as wide as easy as possible. Staircases should never be less than 5 feet wide (some writers not more than 3 feet widr), the steps to be all straight, no winders, 12 inches in the tre and not less than $6 \frac{1}{2}$ inches rise. They should be square, and be formed along an cuel wellhole, if any; no windows should be permitted. A series of staircases almolutdy connected with each other has lately been urged; the only doors on to it leing at top and bottom; an iron hand rail on each side. It has also been suggested that " th should be an equal number of steps to eaeh flight, say thirteen for head way and space half-landing should te elliptical, every donr should open both ways, and foiding, with easy fastener. Ali these, in any case, ought to be provided in new buildings, and as in as possikle in old buldings" (W. H. White, F.S.A.) In largo thtaireases, which cont of a centre and two side flights, the central one should be equal in width to the two: thghts tegether. In calculting the width, regard should in some messure be had to number of persons which the part they serve will contain. The broad, long gnll stairs at the Italian Opera House, Corent Garden, with the door near the top, who good arrangement ; they serve a double purpose, being at once a stairs and a waiting-l) Communication with the wardrobe and the property rooms should be effected only iron spiral stairs.

2971 The "crush room" or saloon at the Italian Opera IIouse, Corent Garden situated at the top of the grand stairease, and forms an ante-roon for all those passib, the boxes. At each end of the room are refreshment bars, to which all classes can t resort, to the exclusion of none. Proper cloak roms, with lavatories and waterelow and refreshment roums or bars, are necessary adjuncts. The various rooms required the different dep.rtments will differ in every theatre, and the architect must obtain information from the manager, before he sets to work. Near the orchestra is in wail room for the musicians, with cupboards for their instruments and coats, latatorics, The music library should not be far away. A painting room orer tho ceiling of the a torium was formerly nsual, also at the back of the stage, where the artist can paint ap: the upright wall. The carpenters' shops are near to it. The property and armoury ri must be near the stage; and a very well ventilated property shop. The theatre at I saw is said to be rery complete in its wardrobes. The dressing-rooms for mennnd wo 3 should be kept apart ; the tailors' and dressinakers' shop and wardrobes just alowe t and fitted with lifts to send costumes up and down. Supernumeraries' and soldiers' dr -ing-rooms are also required. A large magazine near the stage, to keep the slo:k, 60 cloths, and wings, properly fitted with racks and grooves, to stow them a way ingorlo or Green-rooms, or waiting-rooms for men and women, so that no one should he on the +0 who is not immediately concerned in the acting. The passages to have plenty of s' doors to prevent draughts. Proper apartments for firemen, hall porter, and lrouseker kitchen and cellars; rooms for the manager, secretary, theasurer, chorus and solo tice; and lavatories, \& c., throughout the house. A box office is usually provided the chief entrance. Large and dry collarage is a desideratum, in which to stow al. properties.

2971a. With the exception of the dressings and interior ornaments of the buildi it would be possible, though perhaps somewhat inconvenient, to erect a theatre, thoug. it perhaps absolutely fireproof, yet very secure against fire. Small theatres can br structed of concrete and cement and terra-cotta, from its rude form as common lime th stair treads; all the fiushing touches would be of the erdinary materials of ti ro building. Iron should never be depended upon exeept as a stiffener, aud then har concie: Stone should be excluded. Floers to be of cement floated on cencrete, st Wilkinson's improred granite concrete, having arched under surfaco between irongir also with iron \perp joists forming a parallel landing alout 6 inches thick for landiugs ant ridors; and for paring, \&c.; steps can be formed of it singly for fixing, or formed ; with monlied or plain sofite. As a matter of prim iry importance, the cudilorium it he
aqe, with its accessory apartments, should be, as far as possible, two distinct structures, y making the wall between them of brick or concrete of sufficient thickness, and carying it considerably above the roufs ; it should have as few openings in it as possible, and il of them should be fitted with fireproof doors.
2971b. The proposed iron curtain or door to this opening, as at the Prince of Wales's heatre, has betn taken exception to, on the grounds that it is cumbersome, costly, boorbs heat rapidly, aud is slow in working. A single plated curtain may be liable to uekle and to Lecome a sheet ot red-hot metal. At several theatres Messrs. Clarke, Bunnett Co. have made a curtain of two screens of wrought iron plate $\frac{1}{8}$ th of au inch thick, taving an air space of 6 inches between them. The tramework is furned of longitudinal nd sransverse T and angle iron, with external channel iron frane perforated, so that a urreat of air is continually passing between the two screens The top portion of the urtain is riveted to double wrought iron girders, secured to the head of an hydraulic ram, which, with the cylinders, are fixod and bolted to the proscenium wall, which varies in hickness from 14 to 18 inches. The movement of the curtain occupies about 30 seconds, n ascending or in descending; it is caused by pulling a lever, and the curtain stops autonatically as it reaches the stage level. The lever can be worked from the stace or in he box-office, where it would be under the contrul of persons remote from the fire. Che new iron curtain for the Comédie Française, by M. Edoux, can be set in motion from arious parts of the theatre
2971c. A simpler form of curtain is composed of asbestos, at a less cost. At Manchester has been applied at the Qucen's Theatre, and at the Comedy Theatre. At the latter, he curtain runs in an iron groove closely fixed to each side of the brick work. Being used gghtly in place of the green curtain, it is constantly iu working order, and can be roppedinstantly. As to the curtain invented by Max Clarke, Mr. Emden considers that the licate co:ton, with which it is lined, has "no texture," and would consequently be liable to sink down and becone dense at the bottom of the curtain, while the top would te in" and inefficient. He also considered that "no curtain has been invented which, in e ordinary theatre, would readily cut off the auditorium from the stage for more than a nited time." Messrs. Jones, however, state that with " a curtain properly constructed and red with silicate cotton, the auditorium would be cut off trom the stage for any length time"-say a whole week (British Architect, March 30, 1888). A fireproof cultain put "ward by Capt. W. E. Heath is described as "to be of asbestos cloth quilted on a ong canvas, rolled on a roller over a narrow tank of water, and in unrolling it passes der another roller at the bottom of the tank, thus rising perfectly saturated." A ther description is given in the l'roceedings of the Inst. of Brit. Architects of February 1888, p. 174; and 1 n the Architect, February 17, p. xiv. of Supplement.
sufficient lias perhaps not been said in this work as to the use of silicate cotton or slag il, a pure mineral filbe, manufactured from iron slag, and quite incombustible. The I t non conductor of heat or sound yet discorered; as a non-radiator of heat or cold it i vell established; and acts well in preventing the transmission of rarefied air, and asting the spread of fire. It may be applied in a loose or natural form, as packing; v en with yarn or wire into sheets and strips; or felted in conjunction with wire " ing, and put on similarly to ordinary felt. One ton will cover 1800 square feet G one inch thickness. It has been referred to, s.r. "Pugging," par. 2217. The a intages of this useful material are well de-cribed in the British Architect, April 6, 1.3 , on the reports of W. H. Stanger, F.C.S., with the experiments on its fire-resisting q. ities.

171d. Johnson's patent fireproof wire lathing, by which any partition or ceiling is re ered practically fireproof. Metal laths, on Edwards's patent, tor use in the const etion of fire-resisting ceilings, partitions, and doors. With his dove-tailed corrugated ir. sheets (Hyatt's patent), for the same purpose, partitions are formed of Portland ce nt, concrete, and iron only two inches thick, the metal being completely protected.
Tit "fibrous plaster" slabs of Wilkinson and C_{0}., and of Hitchens, are intended for
lin walls, ceilinge, and floors for fireproof purposes, as noticed par. 2246b. Fireproof
Ho ng of various sorts are noticed par. 1903l. et seq.
71e. Wood can now be protected by various paints, for which reference can be made
wa P. Wis chapter, s v. Painting. Among them are, Asbent firoproof paint, ulso firt oof stain. Griffith's purodene firr proof paint is stated to render wood of all kinds unc brics absolutely flame-proof by being simply soaked with it, aud can be applied by ins e (par. 2273j). It was supplied to the Manchester Exhibition, 1887. Sit Seymour 13lug's fireproot paint was used (1887) at Edward Terry's new theatre in the Strand.

If The flimsiest material, as canvas, hangings, dresses, gauzes, \&c., can now, me solution, or by chemical treatment, also be rendered incapable of bursting inte lame. The chemicals now most commonly used fur this purpose are alum, phosphate of soda, sal-ammoziate, and tungstate of soda (a "fireproof starch"
prepared with it was first introduced by Donald Nicoll, ex-sheriff of London). This tungstate is considered the best, but as, if usel singly, it is ap to become insoluble and to rub off, the addition of about 3 per cent. of phosihate of soda will diminish the rikk. After the ordinary washiug the go ds should be immersed, before wringing and drying, in a solution containing 20 per cent. of tungstate, with a proportionate quantity of phosphate. Alum acts injuriously on the fabrics, especially if coloured. The others are cheap and commonly harmess.

2971 g . The electric lighting system should be used in preffrence to the common gas system. It has been put up at the Saroy and the Criter on Theatres in iondon, Any ga, burners should be properly protected, and no intlanmable substance u-ed.

2971 h . An exit for smoke is adrocated to be formed over the stage and over the prosep. nium. Firemen to be always in attendance with hose c.apable of being attached to hydrant: fixed at convenient points, the water being supp ied from a tank, and also from the watel mains. The supply of water from large reservoirs provided in the upper parts of the huilding is a precaution which should never be omitted, th a h late tire hare shown they are never in order when required. Pipes may bo laid ou fiom them to those parts, suel as the carpenters' room, scene room, and painting-room, where fires would be mus likely to break out, and where if they did break out they would probably be mus daugerous. The necessary fireman's arrangements, with tell tale clocks, \&e, must b duly provided.

2971i. The "automatic sprinkler" is adrocated by miny, to be fixed over the tii.s ank orer the roof of the audtorium. They have been imroduced at Mr. E. Terry's new theatre in the Strand. A holiow girder was advertised in 1861 by William llood fo holding water, which could be played on a fire without opening doors and windows to go at it. This was objected to for many reasons. This is now staied to have been "the ingemion insention of Jethro Robinson, who iutroduced the system to E. T. Smith, who ised it a Astley's Theatre." Sinclair's "automatic sprinkler" has found favour lately in Aneric where it was adopted in various ways in warehouses. Insurance offices are saiu' to hatr reduced the premiums in consequence of tho use of the system. The water jets leave ut a space outside the range of action. Once fixed they work of themselves when a temper. ture of 155 degrees arises where they are pla ed. All the apparatus is tested to pressure of 500 llbs . to the square inch. Hanuays patent pneumatic principle is applic for charging the tubes with air as a protection agaiust frost. Dickis Fire Qucen extin teur is portable anl self-acting; a gallon of its contents (watre super-saturated wit carbonic acid gas) is stated to be of more value than 30 gallon of water.

2971K. Mr. K. S. Ash, of Moutaco, in a letter to the Times, August 1887, suggested th each theatre should hare a fire guard room, diseonnected from the matin building. Pro it a series of water pipes should pass to those parts specially menaced with fire. response to an electric summons, the man in charge would be enabled to turn on one m"re or all the pipes. One pipe should be specially prepared to saturate the curtain, to act as a falling sheet of water if the curtain be up. People are rarely burat to dea in a fire, but are suffocated by the carbonic acid gas, the want of air, the smoke, or t intense heat. The pipes are not exposed to rust, it is stated, but unless they are us oceasionally, it is feared they will rust. The guardian, it is supposed, will not experies the feelings of panic, and so will be prepared to obey the summons, and, "if the to supply of water is working satisfactorily, water would be delivered immediarely wh needod." Tho Asphaleia Company, on whose system the new Operi House in Bu" Pesth, and the Stadt Theatre at Hallé, have been rebuilt, have sent orer a model of th system for exhibition; it was explained by Mr. Walter Emden, in his paper on Theal und Fireproof Construction, read at the Socirty of Arts, January 25, 1888.

2971l. A Modern Fireproof Theatre. Edward Terry's, in the Strand. Almost the wh of the structural portions are of incombustible materials, and the limited amount of wo work has been coated with fireproof paint. Ironwork has been thoroughly caset in? crete; tho flights of stairs are geuerally of concrete, the corridors and floors chiefl: musaic and cement, the panelling is in fibrus plaster, the gallery seats aro of coner The isolation of the auditorium from the st gec is completc. The proscenium wail: some 20 feet above the auditorium roof, and iron dours close the openings between two parts of the house, while an asbestos drop curtain, stretched on a metal framew fil's the proseenium opening, and is to be used as an ordinary green curtain. Bell this curtain, besides the fireproof nature of the materials used, all the woodwork leen coated with the fireproof solution called Pyrodene, prepared by Messrs. Grif Brothers. A thoroughly efficient systom of autumatic sprinklers and the electric 1 have been iatroduced. In both the roof* direct exhausts have been formed so as to c. off the ordinary heat, and in case of fire to draw up and extract tho smoke and of generated. An efficient hydrant service is provided all over the house. Although e theatre is only pestimated to accommodate ahout 800 persons, exits have leern provided fo in assembly of $\dot{3}, \bar{n} 00$ persons. Each part of the house has two or more exits, will two :s
of the building. The corridors and gangways generally a verage 3 feot 6 inches to 4 feet in width. Plain directions are painted over each opening out of the auditorium, which openings can be arailable for ordinary use. The doors are fitted with a specially constructed lock, invented by Messrs. Chubb and Mr. Walter Emden, the architect, which an only be opened from the outside with a key, a push from within opening it without difficulty. (British Architect for October 21, 1887, p. 295.)
2971 m . There aro now two uew theatres in London which are considered fairly fireproof, and the "Court" at Sloane Square may be a third, as regards inflammability. Is to any advance in plans and sections, there have been two plans prominently put orward this year (188.). One father d by Mr. Henry Irving and Alfred Darbyshire, rechitect, drawings of which wero published in the Daily Telegraph of Octoher 29, 1887. Inother was brought forward by R. Nevill, architect, in an extensive paper read at tho Zoyal Institute of British Architects, Dec. 9, 1887 (discussion); and reported in Proeedings of Jan. 26 following. A nother is by R. M. Roe, architect, printed in the Proceedugs of Fcb. 23. One by J. G. Buckle, architect, described in his work, and dedicated to Vilson Barrett. And lastly, by E. J. Tarver, architect, whese drawing is given in the 3ritish Archutect for March 22. "Managers who contemplate new structures will have , form their own judgmonts and sclections according to what may be the individual haracteristics of the ground and neighbourlood. The Darbyshire plan is for a house stached all round, and with one gallery only. The Buckle plan is for a place where an nderground house is needed. The Tarser plan is for a theatre above ground, adaptable any site with one side open and the pit partly or wholly sunk."
2971n. Many of the bad features of construction and arrangement in modern theatro iilding ars stated to le often due to the proprietors or managers; the architect has this entire way in the matter. The expenses of a theatre are very great, and the hount of the ground rent is an inducement to the site being made as small as pussible. y extraneous provision must necessarily entail , ost and oceupy space.

$72 a$. We have availed ourselves largely of papers read at the Royal Institute of itish Architects, in which will be found further remarks upon the lighting, ventilatio. nnd fittings required for these structures: On the Construction and Rebuilding of the
Ro.' Italian Opera House, Covent Garden, by its arenitect, Mr. E. M. Barry, Feb. 6,
$18 \epsilon^{4}$ and On the Construction of Theatres, by Mr. Warington Taylor, Dec. 19, 1864.
Thef uilder, Building News, Architect, and British Architect journals, contain descriptions
of r it of the numerous theatres erected at home and abroad of late years, and to these
pub ations the architect can resort for further views on the screrdl important points
turld upon by us herein. The Metropolitan Board of Works has issued regulations for
the oper working of theatres for the safety of the public. The Home Secretary, it is
stat (1887-88), is preparing a measure of reform in respect of theatre construction and man ement, in consequence of the late serious accidents.

Sect. Il.

hospitals.

2973. The build'ings called hospitals are devoted to the reception of those persons who may be suffering from disease or accidental injuries. To this sort of building will this section be chicfly devoted. The same name has been given to a building for the reception of travenicrs; for the temporary accommodation of the destitute; for the maintenance and edncation of youth; and for the support of meritorious and indigent persons; the hospitals of Greenwich and Chelsea are goud examples of establishments of this latter class; the former buiding, indeed, adds to its other excellencies a magnificence in the armitecture worthy the object, though not so originally intended. The Hotel des Invalides at Paris is another monument worthy of all praise; and indeed we scarcely know a quadrangle more imposing than the court of this edifice with its double tier of areades. This hoqpital contains 7,003 seterans, and has attached to it a library of 20,000 volumes. The building erected for the alleviation of incurable discases is properly an infirmary, and might be fermed an almshouse.

2973a. To the honour of most of the nations, but few cities are now unprovided with one or more hospitals. In Mitan there are so many of sheh buildings that it has been remarked that no one has need to pay for advice. The governments of lrance, Russia, Germany, and Turkey support these institutions; but in England, with theexecption of Chelsea and Greenwich Hospitals, they depend upon the claarity and fonndations of benevolent imfividuals, as at Guy's, St. Thomas's, Bartholomew's, and the many other hospitals of London. There is great reluctance often on the part of the poor to enter an hospital; and on this account we do not think that money ill bestowed which tend, to inlpart to it an agreseable and cheerful exterior. It is almost unnecessary to insiot upon the thorough warming and ventilation of the edifice: no means should be onitted to render the place wholesome, and to prevent infection spreading from one part to another, Jhe hospitals of a city should be scated in the least populous part, if the health of the city bo consulted, or in each suburb; in which latter case the establishment would be nearer the quarter it is to serve, and more accessible in a short time in the case of accidents.
2974. The plans of some of the finest (but old) hospitals in Europe are given ii Durand's Parallele d'Edifies, 1801-9. Among them is that of Milan. It was commencel b Filarete in 1457, and is of course in a half-Gothic style. The inen are placed to one sid of a central cloistered court, which is 210 fect wide and 243 feet long in the elear, in quadrangle 263 feet wide and 279 feet long, the cel's being placed in the form of a cross that size and 30 fect wide. In the intervals of the cross are four courtyards, on who remaining sides are rooms for the assistants. On the opposite side of the cloistral con are placed the women. In the middle of the narrow side of the grat cloister, opposite tl entrance, is a church, which selves for the whole establishment. The cloiters of the liry court and main body of the building are in two stories, so that they form galleries of con munication. This edifice has served for a model to many othes of an early date, but in perhaps now considered good only for the pleasant promenades supplied by the cornido. 'The hospital of La Roquctte, in the suburbs of Paris, designed by Poyet, was conceived, a magmincent scale, and was admirably plamed. In this design each room, as well tho on one side of tine establishment for the males as those on the other side for the females, appropriated to one particular disease. Each of these rooms is about 32 feet wide and 30 h 6in. high. Behind the beds (which are in two rows in each room) runs a passage abo 3 feet 4 in . wide, which removes them so much from the walls, and allows therefore of 1 necessary waiting on the invalids, and hides the wandrobe attached to each bod in window recessec. Above these passages, which are about 6 fect 6 in. high, is arranged onear side a row of windows, by which ventilation as well as light is obtained. The grou floor contains the halls and offices necessary for such an establishment. The desigus this building were made about 1788 , on the instructions drawn up, after several ye: investigation, by a number of the most skilfil and learned medical men of France, sc best to unite health and convenience i, n such an edifice. One of the conditions preserit by their programme was the complete insulation of each apartment, as well as an it communication by covered galleritss round the binilding, and these were required to his such extended dimensions that the air around should be unobstructed and circulating every part with freedom, thus affording a wholesome promenade for the paients. pran, however, was not continued.
2975. In France the hospital of St . André at Bordeaux, designed 1825-9 by J. Burf \& for 728 patients, was considered so good in its arrangements, that they were followed ir ${ }^{4}$ hôpital du Nord, afterwards Lariboisic̀re, at Paris, designed 1846-54 by M. P. Gambier r GO6 beds. This plan of making a distinction between dormitories for the compariti v healthy, and wards for the sick, and abolishing all communications by pashages and s
between wards was the important feature of such establishonents. 'This hos,ital das been the model for thuse designing later works.

2975a. 'The erection of the Victoria general military hospital at Netley, commenced in 1856 by Mr. Mennie, led to so much correspondence, investigation, and contradiction, that the student is Lest referred to the journals between 1856 and 1858 , when a plan was firally udupted, which met with the approval of Miss Night ngale. It is said to have prosised averages of $1,315,1,406$, and 1,800 cubic feet per pationt. The communication of the wards with a general corridor and with the water-closets has been alleged as its chief fault, but its plan should be compared with others regarded as models at the tine, to ohtain a notion of the great stride in the planning of these buildings. 'The controversy continued with great advantage, as it produced plans of other hospitals considered as models on various points, up to 1862 , when the military authorities issued their official plans for Lospitals.
29756. In 1865 the Société Chirurgicale de Paris issued the then rcent exposition of scientific views with regand to the reconstruction of the hotel-Dieu and of hospitals generally. It demanded a minimum of 538 square feet per bed as clear space of site outside the building; a maximun of two stonies of wards, and of 200 to 300 beds in cach hospital, considering that two small hospitals are prefirable to one equal to their united capacity, because the periodical and regular vacancy of wards las been attended with gool results. It considered that small wards of 15 to 20 beds are to be preferred to larger wards, and that the building should not conly posess a day ward for convalescents, but anothor for their moals. The wards should be separated by landings and rooms for attendants They slould be completely isolated blocks, all having the same aspect, and being exposed without any obstruction to the rays of the sun, to the effects of rain, and to the action of the wind; and they should be arranged in a single line or in parallel lines at intervals. of 260 feet or 330 feet, in order to obtain an efficient separation and a suffielent current of air. Finally it dechares that no emanation from refuse or effluvium is to be tolerated; and that no abundance of antificial ventilation compensates for an insufficient natual ventilaion. (l'he Builter juurnal, l865, vol. x siii. p. 170.)

2975c. It has been strongly recommended that ward space for each patient, approaching as near as circumstances allow to 2,000 cuhic fett, with 144 square feet of floor, should be allowed for each bed. the ventilation to be obtained on the natural sistem; yet others aein favour of artificial ventilation with an asceading current; others for a descending current, which is adopted at the hopital Lariboisiere to the cxtent of 12 to 14 cubic feet per minute; at the hôpital Beaujon 24 to 36 feet, which was incfficient; and at Guy's hospital 40 to 60 feet, which was sucessful. Fireplaces alone are considered inefficient for the purpose.

2975d. The opinions expressed by the writers in the Builder journal during 1856-6I, result in describing the cortcet plan as consisting of detached wards sepurated at least by lawns twiee as wide as the height of the buildings, each ward being enclosed by tout stparate walls, and having windows on two sides that open from the ceiling with double sashes glazed; water-closets under a separate root and divided from the wards by a cor:idur; the coridors continuous and close for 7 feet high, but open above with picrs or columns; galleries, with scats in the gardens; comfort of nurses'rooms; and care as to finish of Hoors, \&c. Besides the above publication and various parliamentary reports, the works by Husson, Etudes sur les Hópituux, 4to. Paris 1862, and liy Jactoud, Nouveau Dict. \&e., rul. xvii., とvo. Paris, 1873 , both contain plans and valuable siggestions.

2975 e. The new building of St. 'Thomas's Hospital in London, designed I $865 \cdot 71 \mathrm{by} \mathrm{Mr}$. Henry Currey, has been described by him in a lecture read at the Ruyal Institute of British Architects, January 23, 1871. It may l:e supposed to exhibit all that is reqr:isite u be provided in an hospital of a metropolis, for the accommodation of 600 patients. t is arranged on the pavilion principle, now generally admitted to be the best for hosstal purposes, and being placed in a row is specially suitable for the spate of ground II which the editice is erccted. The corridor, of two stories, with a flat roof over, conecting the ends of each of the six pavilions, is 900 feet lung; they are placed at the disance of 125 feet from each oti.er, their axis being due east and west. The watds are 28 feet a width by 120 feet in length, and 15 feet high, in which are placed twenty-eight beds n each of five Hoors, giving a cubie capacity of 1,800 feet for each patient, the beds being laced 8 feet from centre to centre: small wards for two beds, contiguous thereto, separate recial eases from the others. Adjoining the passage are placed the sisters' roon, the ward itchen, and a room for medisal ufficers. 'The staircases are wide, and have a tread of $2 \frac{1}{2}$ in., with a rise of $5 \frac{7}{8} \mathrm{~m}$. 'The well-holes are occupied by lifis and ventilating shafts. lee water-closets, lasatories, and a bath-room are attached toeach ward, and cut off frum it y intercepting lobbies, with winduws on buth sides. There also are the foul linen and dust oots communicating with the basement for external removal. Dormatories for the arses and servants are placed in the attic story. The wards have flat cei.ings, and the indow s are carried up to it, to ensure a thorough change of air in the upper part. 'The
sixth or last pavilion is designed for special diseases, and the wards are therefore smaller, The floors of the wards aro laid with wainscot as being non-absorbent, and tongu d with hoop iron, and prepared for waxing and polishing; the walls are plastered with Parian cement, with the same object, the fiuishing coat of which is tinted to a void the glare of the white. The windows are constructed in three divisious, the lower part being hong to crpen in the usual way, and the upper sash drops to the depth of the transom. They are glazed with plate glass.

2975f. The general entrance to the hospital is placed in the centre, and the hall forms the substructure of the chapel. Near to it is the kitehen department. On the first floor are the resident medieal officer's department, two operating theatres, \&c., placed between the ends of the blocks next the side public thronghfare. The administrative department is placed at the end, adjoining the bridge, in a detached building, and comprises the gorernors' hall, committee room, counting-house, c!crk and surveyor's offices, the treasurer's residence, and many other apartments necessarily required for so large an establishmeut. The training institution for nurses adjoins the matron's residence between the first and second wards, and affords accommodation for forty probationers, each having a separate bedroom.

2975g. The Warming and Vontilating Arrangements. - For the latter, the naturnl system is depended upon as much as possible, but in order to change the air during cold and boislervus weather and at night, a main extracting shaft is carried up in the well-hole of the staircase, and in this is placed the smoke flue from the boiler, consisting of a wrugght irou tube 15 in . in diameter. In the uppor part of this shaft is also placed the hot-water cistern. Shafts are carried from the ends of all the wards, both at the ceiling and floor level, and from the centre of the store hereafter meurioned, communicating with a horizontal trunk in the roof, which trunk is conneced with the heated shaft previously referred to. To replace the air thus extracted, fresh air is introduced by meaus of zine tubes laid between the "Dennctt arching" and the floor boards, eommunicating with the stures and bot-wat.r coils, the whole admitting of regulation by valves. The wards generally are warmed by three open fireplaces, aided in cold weather by an auxiliary system of hot water. These stathd in the middle of the wards, with vertical shafts, an inner one of wrought iron 15 in . diameter, and an outer case of cast iron, the space between forming a ventilating slaft, which is connected with the main trunk in the roof. The smoke tube is carried duwn to the basement, from whence it ean be swept. The ventilation of the laratories and wator closets is entirely independent of the wards, and is carried up the shaft in the river turret. That of the medical museum and school buildings, placed beyond the hospital buildings, is on the same general prineiple, the ventilating and smoke shaft being rentained in the tower at the southern end of the building. There is an hydraulic lift to each parilion.

For the numerous other details the student must be referred to the paper itself, which contains a plan and perspective view of this admirably designed building.
$2975 h$. The sixth report of the Local Gorernment Board eontains the report made ly Jr. Bristowe and Mr. Holmes on the inspectiou of all hospitals in Great Britain and Ireland.
$2975 i$. The first circular hospital erected in England was the Miller Memorial Hospital, at Greenwieh, designed loy Messrs. Keith D. Young and Henry Hall. The Burnley hospital was another, and then the Hastings, St. Leonard's, and East Sussex lospital, which was opened in September, 1887 (illustrated in British Architcot, January 28, 1887; and Builder, p. 180). The Antwerp hospital, the hospital at Hampstead, and the circular hospitals for the army deserve inspection; but this Hastings hospital is thw most typical, and probably the most complete buitding on the circular prineiple which has yet been erected in this eountry, or indeed anywhere.

2975\%. In the rectangular wari, where the nurse's room is atone end, while at the othe: is possilly placed the worst "case," that is, the patient who is most severely ill, the nurse, as the day goes on, must find the whole length of that ward a great strain upon hur pliysically. In the circular ward, the nurse can see all the beds except one-certanify eacept two-in the whole ward from any point in it; and she has to travel the shortest possible distance to get to any one paitient. who may need her services at any given time. It must not be regarded as the most perfect system of hospital eonstruction; it is one type of eonstruction suited to special cases, and one which deserves a fair and prolonged tritl. (Henry C. Burdett). Professor Mirshall and P. Gordon Smith, Circular Systcm of Hospital Wards, 8vo, 1878.

2975k. Village Hospitals.- Each village ought to have the means of accommodating instantly, or at a few hours' notice, s:ly four cases of infentious disease, in at least iwo separate $r^{\prime \prime} 0 \mathrm{~m}$, without requiring their remoral to a distance. A decent fuur-ronm or six-room cottage, at the disposal of the authorities, would answer the purpose. When such provision as this has been made, and cases of distase in excess of the accommodation
secur, the sick should not be crowded together, but temporary further provisio: be made fer them. The most rapid and the che pest way of obtaining this further accommorkion may ofteu be to hire other neighbouring cottages; or, in defalt of this, tents or hurs "'ght be erteted upon adjacent ground. The regulation bell tent is 14 fect diameter, 10 ite iu height, the area of base is 54 square feet, and cubic space 513 feet. The regulaien hospital marquée is 29 feet long, 14 teet wide, with side walls 5 feet 4 in., height o ridge 11 fect 8 in., giving a cubic capacity of a little over 3,000 feet.
Mr. Geo Buchanan's report (1888) to the Local Government Board, containing suggesdiens as to the provision of isolation hospital accommodation, with plans, is of high imrertance.

2975l. Convalescent Hospitals, crected in the country for the recovery of palients fter they have been treated for their diseases in town hospitals, and then only requiring a hert time of change and fresh air before returning to work, are now considered desirable wljunets to hospital treatment.
$2975 m$. An Inbecile asylum is prorided at the Poplar and S'epney sick asylum; lustin Bros., arehitects.

Sect. III

INFIRMARY.

2976. The word infirmary appears to hare two opposite meanings. In one it designates place for aged, blind, or impotent persons; the other, a place for the cure of wounded r diseased persons; such are hospitals, which buildings were originally called infirmaries. he infirmary proper is the place appropriated to the sick in a large establishment, such s an asylum, a prison, a workhouse or a school. Greenwich Hospital has an infirmary ttached to it.
2976a. Workhouse infirmaries were until lately greatly condemned for the want of ccemmedation; the want of classification and separation; imperfect ventilation, owing to he insufficient supply of cubic space, sometimes aggrarated ly essential defects in contruction: 500 cubic teet per bed only being provided where 1,060 feet at least is equired; insufficient washing arrangements; and other coniforts for the patients, as ell as for the nurses, and officers, neglected.
$2976 b$ The requirements of the Local Gorernment Board at Whitehall for a proincial workhouse sick ward or infirmary, comprise a separite building from the orkheuse itself. The sick should be divided into: 1. Ordinary sick of both sexes; Lying-in women, with a separate labour room adjuining the lying-in ward; 3. Itch ises of both sexes; 4. Dirty and offensive cases of both sexes; $\overline{5}$. Venereal cases of both xes; 6. Children of both sexes; and, lastly, 7. Ferer and small-pox cases ot both xes. Classes 1 to 6 may be accommodated in the infirmary; separate entrances r 3 and 5 ; a detached building with separate rooms for 7. In the case of large fectious wards, there should be a detached washouse, otherwise a shed containing copper, in which the linen may be disinfected by boiling lefore being taken to tho neral laundry. The ıength of dormitory wards should be calculated according to the Howing midimum wall-space for each bed, in addition to that cecupied by doors or replaces, viz. : for inmatrs in health, adults 4 feet; women with infants 5 feet; children, ngle beds $3 \frac{3}{4}$ feet, double beds 5 feet; and for sick, itch, and venereal cases, 6 fect; for ing-in, offensive, fever, and small-pox cases. 8 feet. The day rooms should afford cemmodation for not less than one-half of those who occupy the day and night rooms. minimum of 20 feet floor space should be allowed for tach sick person. Sick wards ould be 2 : feet wide and 10 to 12 feet in height. Infectious wards should be 20 feet de and 12 feet in height, and should have external wiudows on their opposite sides. he gangways should be in the centre of the wards; but if a sick ward hulds only one w of beds, which is not recommended, it should be at least 12 feet in width, and have θ gangway and fireplace on the side opposite to the beds. The dimensions above giren ocensidered the most economical, and at the same time the most convenient for the cious classes of wards. But where they are not so constructed, there should be

e rucm or a suite of rooms communicating by a gangway should rarely exceed 90 feet length. Such a room or suite of rooms may be connected with a similar suite in tho
same line lyy the central part of the building, in which would be placed the apartments of the nurses, and otber offices; or they may be placed in locks, parallel or otherwise, connected by a corridor. Nurses' rooms and suitable kitchens and sculleries slivula be provided. Special means of ventilation, apart from the usual means of doors, windows, and fireplaces, should le secured. Air bricks are suggested, 9 in . by 3 in. or 9 in .1 y 6 iu,, covered on tha inside with metal, haring perforations of about one-twentieth of an ind in diameter inserted about 8 feet or 10 feet apart in the upper and lower parts of the external wall. The lower set may be fitted with hit-and-miss gratings, made to lock so that they may be regulated only by the proper authorities. Ventilating fireplices aro useful. Where hot-water pipes are used, they should run round the wards, and a porlim of the fresh air pass over them. If no other system of warming be adopted, fireplares should be provided in all iuhabited rocms, say a fireplace to each 30 feet of length. The walls of all sick wards should te plastered internally.

2976c. The infirmary for the Central London Listrict Schools at Hanwell, designed 1865 by Mr. Gale, accommodates 100 children of each sex. It forms three sides of a quadrangle, and consists of ten wards, five on each floor. Each ward has a nursere rom. two fireplaces, and set of bath room, water closets, \&c.; six of the wards lave duuble sets with two entrances for the convenience of subdivision. The corridors are all provided with open fireplaces and draw-off sinks, with supply of hot anl cold water. Ineach corridor, at a central point between the rarious wards, is a lift by which provisions, de. ary sent up direct from the kitchen.

2976d. The infirmary at Blackburn, erected 1858 by Messes Smith and Turnbull, miny be described as arranged on the pavilion principle, consisting of a main corrider, on crith side of which are placed eight wards alrernating. each holling 8 beds in a ward, with their own set of bath rooms and water-closets. In the middle and separating the set it the building devoted to a chapel, the necessary offices and apartments, and the eperating room, with two wards of four beds in each.

Sect. IV.

Private buildings.

GENERAL OBSERVATIONS.

2983. Private buildings differ in their proper character from public buildings as murl as one public building differs in character from another not of the same kind. Tha ends in both, however, in common, are suitableness and utility. The means are the samu namely, the observance of convenience and economy. The same elements are used is the formation of one as of the other; hence they are subject to the same principles all the same mechanical composition. Distribution, which is usually treated distuc from decoration and construction, and very improperly so, as applied to pivate edifice: is conducted as for public buildings, that is, as wo have said, with a view to utility an economy.

2984, If the student thoroughly understand the true principles of architecture,--if bu possess the facility of combining the different elements of buildings, or, in other worl. fully comprehend the mechanism of composition, which it has in a precious part of thi Book (III.) been our object to explain, nothing will remain for him in the cumpecition private buildings, but to study the special or particular converiences required iu ext There are some quaint old aphorisms of Dr. Fuller, pretendary of Sarun, which are \& applicable to all private buildings, that wo shall not apologise for transierring them t our pages.
2985. "First," he says, " let not the common rooms be several, nor the several ronn common ; that the common rooms should not be private or retired, as the hall (which is pandochæum), galleries, \&c, which are to be open; and the chambers, closets, \&c., retirt and private, provided the whole house be not spent in paths. Light (God's eldest daupl ter) is a principal beauty in a building; yet it shines not alike from all purts of th heavens. An east window gives the infant beams of the sun, before they are of strentr to do harm, and is offensive to none but a sluggard. A south window in sumincr is chimney with a fire in it, and stands in need to be screened by a curtain. In a west wi dow the sun grows low, and over familiar towards night in summer tinue, and with mo light than delight. A north window is best for butteries and celliars, where the beer w be sour because the sun smiles upon it. Thorough lights are best for rooms of entertiai. mente, and windows on one side for dormitories."
2986. "Secondly, as to capaciousness, a house had bottor l_{θ} too little for a day than too for a year ; therefore houses ought to be proportioned to ordinary occasions, and not extraordinary. It will be easier borrowivg a brace of chambers of a neighbour for a fht, than a bag of moncy for a jear; thorefore 'tis a vanity to pruportion the receipt to extraordinary occasion, as those do who, by orerbui ding their houses, dilapidate their ids, so that their estates are pressed to death under the weight of their house."
2987. "Thirdly, as for strength, country houses must be sutistantives, able to stand of emselves, not like city buildings, supported and lanked by those of their neighbour on th side. By strength is meant such as may resist weather and time, but rot attacks; tles being out of date in England, except on the sea-coasts, \&c. As for moats round uses, 'tis questionable whether the fogs that arise from the water are not more healthful than the defence that the water gives countervails, or the fish brings profit." 2988. "Fourthly, as for beauty, let not the front look asquint upon a stranger, but ost him right at his entrauce. Uniformity and proportions are very pleasing to the ; and 'tis observible that freestone, like a fair complexion, grows old, whilst bricks ptheir beanty longest."
2989. "Fifthly, let the offices keep their due distance from the mansion-house; those too familiar which presume to be of the same pile with it. The same may be said of Ules and barns; without which a house is like a city without works, it can nerer hold long. It is not only very iuconvenient, but rather a blemish than a beauty to a build; to see the barns and stables too near the house ; because cattle, poultry, and suchlike ist be kept near them, which will be an aunoyance to a house. Gardens ought also to Id disposed in their proper places. When God planted a garden eastward, he made to !w out of the gronnd evcry tree pleasant to the sight and good for food. Sure he knew iter what wos proper for a garden than those who now-a-days only feed their eyes and ere their taste and smell." The same honest old dignitary (would we had some such hese days!) says, "Ho who alters an old house is ty'd as a translator to the original, a. is confined to the fancy of the first builder. Such a man woald be unwise to pull n a good old building, perhaps to erect a worse now one. But those who erect a new se from the ground are worthy of blame if they make it not handsome and useful, n method and confusion are both of a price to them."

Sect. V.

PRIVATE BUILDINGS IN TOWNS.

90. The common houses of the town are not those which will engage our attention. ondon, and indeed throughout the towns of England, the habits of the people lead to prefer separate houses for each family, to one large one in which several families be well lodged, or, in other words, they prefer rows of mean-looking buildings, with in the walls for windows, to the palaial appenrance which results in Paris and most o other cities in Europe, from large magnificent buildings with courts, and capable of amodating a number of different establishments. The section will be confined chiefly e arrangement of a house of the first class; and from what will be said, sufficient may be drawn for the composition of thoso in a lower class.
91. The private buildings in a town are often in their composition beset with diffies which do not occur in those of the country, where the extent of site is frecr and 3r. These, therefore, may be isolated, and receive light from every side. Their 3 may be separated from the main house, and the parts may be disposed in the est possible manner; but in cities the site is generally more or less restricted, often irregular in form, and generally bounded by party walls. Yet, with all these cles, it is necessary to provide almost as many conreniences as are required in a ry house; whence the disposition cannot be so simple in ins application as where is no retraint. All that can be done is to make it as much so as the nature of the will permit, and to produce the maximum of comfort which the site affords.
92. Nothing must be considered below the attention of an accomplished architect, ything above his powers; he ought as checrfully to undertake for the proprietor the et of the meanest cottage as of the most magnificent palace. Little will be requisite said on the common houses of London, or other cities aud towns, in which there are a more than two rooms and a closet on a floor, with an opening behind. These may ied; but the general mode is to construct them with a kitchen in a floor sunk below ound, and a room behind, serving for a variety of purposes; an area in front, with under the street, and the same often in the rear of the house. The spaco opposite
the deccend ng stairs will form a dark closet; and the privies, and winc and beer cellar: with other swall offices, are provided in the vaults. On the ground floor there is rarol more than a passage on one side, which conducts to a staircase ; and this requiring mon width than the passage itself, the best room on this floor is placed in front, and the bac is a smaller room, often opening on a sinall light closet still further in the rear. A yar is supposed behind, by which light is obtanned for the back room. On the one-pair all other floors the passage becomes necessary as an access; the drawing or front room there fore runs over it, and becomes larger, capable, in the upper floors, of subdivision f! bedrooms, or other purposes, as may be required; and the back rooms with their closit if carried up, follow the form of those on the ground floor. Though little variety may 1 the result of the restricied space to which this species of house is usually confined, 11 addition of four or five feet either way will enable an intelligent architect to throw i closets and other convenien es which are invaluable, as relieving a small house from $t \mid$ pressure which otherwise will exist in the different apartments. But this will be obsin to the practical man, unless he walks about blindfold. The houses we have just destrilit may stand upon a site of about twenty feet by thirty feet, independent of the raults i frout and rear, and the back light closet, which is an invaluable appendage to a huse this description; which is the scale of a second-rate house.
93. Of the next higher rate of house the varieties are too great to be describe bocause the extent of the largest arrives at what would be called a palace on the cont hent. But, taking a mean between that just described and that last named, wo may tak one similar to a modtrate one in Portland Place for example. In such a one must $]$ provided, on the basement or sunk story, vaults under the street for beer, coals, wor privies, and the like, the refuse or dust of the house. The body or corps de logis on thi thoor must contain housekeeper's room, servants' hall, rooms for butler and head footmia wine cellar, closets for linen, strong room for plate, with closets and other convenience for the household. The ascending staircase must also hare a space set apart for it,] the rear, under the open area behind, will be placed a kitchen, scullery, and tho lards with the other appendages of this fart of the household; an area, covered, where t.l communicat:on with the rest of the floor is made between the body of the house and 11 bitieos in question Beyond the kitchen are often vaults (though the disposition is som times otherwise), over which the stables and coachhouses are placed, opening ou 1 ground floor on to a mews parallel to the street in which the house is situate. The grou: Hoor of this disposition has usually a dining-room in front, with a good-sized hail at side, leading to a staircase which ascends in direction of the long side of the huase; a this is necessary when the rooms above are to communicate by folding doors. In sol old houses, however, the staircase ascends between the front and back rooms, and in th staircase is provided by the side of it. But more commonly this is placed beyond the $p^{\text {pr }}$ cipal stairs, to allow of throwing the drawing-rooms intoone. In rear of the dining-ror is often placed a library for the gentleman of the house; and beyond this, and further th the back stairs, when the lateral staircase is used, a waiting-room, at the rear of whicd water-closet may be placed, with a door from it to the area over the kitchen; or the may be a communication of this sort from the waiting-roon, which may serve the purp of access to the stables. On the one-pair floor the disposition will be two drawirooms, a bouduir over the waiting-room, and beyond this a water-cleset. On the two-l. floor two bed-rooms, each with a dressing-room, or three bed-rooms and one dressil room, and a bath-room and water-closet. Above this four bed-rooms and closets maly cbtained; and, if necessary, rooms in the roof in addition. For a good houso of 1 class, with the offices, the plot of ground should not be much less than 100 feet ly 31
94. Of the first-class of houses, as a model may be taken the town-house Piccadilly, of his Grace the Duke of Deronshire, which, with the officos and court-1 in front, covers an area extending about 231 feet towards the street, and 188 fer depth, whereof the house itself occupies a frontage of 163 fect and a depth of 188 and opens on to a large gatrden in the rear. On the east sido of the court-yard are posed the kitchen and other domestic offices, opposite whercto, on tho west side, it the coach-houses and stabling. The basement of the houso contains aparments fur various persons attached to such an establishment. The principal floor, to which ascent is by an external staircase, contains an entrance-hall, 35 feet by 30 feet, and \mathfrak{c} municates to an ipartment on the west side, 33 feet by 22 feet, leading to the so western corner room, which is 20 feet square. On the north of the last is a room, mal the north-west angle of the building, and this is 40 feet by 20 feet. On the cast. of this last, and facing the ?orth, is a room 33 feet by 23 feet, and in the centre of north front, corresponding with the width of the hall, is an apartment 30 feet by 23 t 6 inches. To the east of the last is a room 33 feet by 24 feet, and east of that, furi ? tho north-east angle, is a small room 2) feet square. Thus far these rooms, seve "1 number, are all ch suite, but this is in some measure interrupted by the remainder of east flank, which is filled with three smatler rooms. To that of them, however, is 16
th, which is 20 fect squaro, a passage is preservel, an 1 from that you enter another n, 23 feet by 22 feet, which once nore l,rings you back to the hali. The staircases letween the north and south rooms on oach side of the hall. Abore this floor are tho iug rooms, \&ce. The superficial area of all the reception rooms on the principal floor, :d together, amounts to 5708 feet. 1 lans and elevations are given in tho Vitruvius annicus, which contains other town houses of mportance of tho period, well worth student's attention.
95. Burlington house, Piceadilly, beforo its late partial demolition, was in some re-ts-for instance, in its beautiful semicircular colonnade in the front court-considered irior to that just described. It can he hardly necessary to add that, iu such edifices, (is must bo provided for steward, butler. housekeoper, stillroom-maid, valets, ladies' ils, servants hall of good dimensions, ©c, fur a muniment room and for plate, both thich must be fire-proof. Baths also should be provided on the chamber floor, with 1. conveniences which will occur to the ar hite t. The rooms for pictures, if possible, bid be on the nor h side of the building. The illustrated journals of the present day the great changes which have been made in the requirements, and the size and er of the apartments, of all grades of society.
95a. During the last thirty years, however, flats, or residences in flats, have been uly adopted, and the systent appears to be gaining ground in large towns for many lats of society. The paper by Mr. W. H. White, On Middle-class Houses in Paris and - al London, read Nuvember 19, 1877, at the Royal Iustitute of British Architects, is uf sted for perusal.

Suct. II.

PRIVATE BUILDINGS IN THE COUNTRY.

ted fur Lurd
lale y Rolan by descring that or herbshe, han epp ir in distribution and effect. The plans and elerations of it are to be seen in the itr ius Britannicus above mentioned. The main bod, house M (fig. 1352), is about 156 feet by 105 en angle are quadrants of eommoneation - 0 bins $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D , which are each about

Fig. 1352, by 23 feet 7 inches; a smoking parlour, 28 fert by 17 feet 9 inches; a bootonn 2 fect 6 inches by 17 feet 9 inches, besides closets, staircases, \&c., on either sile. The gg B contains the stables, a chapel, and other apartin+nts. C, sleep ng and other rom sight in number, with a stairease whith conducts to the corridor in the correquadrant. D contains the kitchen and its requisite accessuries, and a servants' his wing has also a staircase to its corresponding corridur in the quadrant, which it to the main body. On the principal story, the main body M has at the , which is iu the eentre, and approached by a noble flight of steps, a magnificent feet 3 inches by 42 feet, at the end whereof is a saloon 42 feet diameter. To the itering from the hall, is the principal stairease, beyond which, laterally, is a bed 33 feet by 22 feet, with its accessories; and on its end, towards the back front, -rooms, and towards the front the dining room, whence by the corridor is access itchen in the wing D , and from the ante-rooms above mentioned the corresponding on that side leads to a conservatory in the back front of the wing, and the upper part o he chapel. On the left-hand side of the hall, with windows in the left flank of the in: body, is the drawing-room, 44 feet by 28 feet; at the end towards the rear is a librar. which is continued in the eorridor lead:ng to the wing A , wherein is a musie galleri 36 feet l,y 18 feet, with other rooms and a stairease. On the end of the drawingrwin, wards the front, is a music room, 36 feet by 24 feet, whence the corridor leads to rsdale's bedroom, 18 feet square, with dressing rooms, and the lady's library, "hels, this floor, are in the wing C . The wing D is oceupied by the upper part of
the kitchen, a laundry, 35 fect by 18 feet, and some bedrooms, to which access is gallery over part of the kitchen. The main body and wings contain a story over has been last described, chiefly for chambers. Wo have before (in the First Book, 221,222) noticed the splendid hall and saloon, which occupy the height of the n building, and are, though somewhat fanlty in detail, very finely-conceived and proportioned apartments. The former is 40 feet ligh to the top of the cove, and latter 55 feot to the level of the eye of the dome. Though the slevations exhibit det we are not inclined to quarrel with them in a dwelling which deserves rather the J of a palace than of a country house.
2997. England abounds with country seats of this clase; among them is Holk which has already been mentioned in the First Book (511); but we know none for d sition that can claim superiority orer that which we have above described at length, which the student may derive much information on the requirements in a mansion $0^{\circ} 10$ first class. It is to be understood that we here intend modern buildings. The hous the times of Elizabeth and James are many of them magnificent structures, but the fort introluced into houses of later date leaves them, independent of their pietur: beauty, far lehind the buildings of Kent, Carr, James, and many others. Blenhe monumental in its design, and properly so, and hence does not fall within the categt this section.
2908. There are, of course, many intervening degrees between the mansion we y just described and the rilla of the reired banker or merchant: it would be impossii state them in detail. We have given the maximum in the above case, and we shall w give the minimum for the class last mentioned.
2999. The smatlest site of ground on which a villa can be well designed is, supt ing it an oblong, about 80 feet by 56 to 60 feet. This on the principal floor will admin : hall, a saloon or ante-room, which may lead to the principal apartments, a drawing- m, two secondary drawing-rooms, one whereof may be appropriated to the reception : billiard table, a good dining-room, not less than 30 feet by 20 feet, a library of al size, with other rooms, suitable to the particular taste of the proprietor, and the ill reniences and accessories which such a building requires. The ground, supposi! ha domestic offices to be under the principal floor, should be raised, so that they net iot be niuch sunk below the general level or the land. If the building be seaterd on af ground, a little more sinking may be allowed than under other circumstances, pre fed the lower story be pro+ected by dry drains all round the building, to prevent the rth lying against the walls, because drainage, the most important of all things in a bul 14 may then be obtained easily by the natural fall of the ground. But a villa need; the compelled to have its domestic offices underground; then their combination wi the apartments will test the architect's capabilities. Tho plot we have mentioned will mint of all the offices below which are necessary for the service of a good-sized famil no above, with only one story above the principal one, will afford a pretty fair allow: dormitories; but if a concealed story for servants be practised in the roof, there a fe establishments on a common scale for which, on the plot, accommodation may provided by a skilful artist. The stables ar d coach-houses and the greenhouses in stand apart. Some persons like to have th se communicating with the villa its ${ }^{\prime}$ but the practice is destructive of symmetry and very injurious (except in the rilla am irregular plan, which then rather apprcaches to the cottage orne) to the general e of the architecture.
3000. The villas at Foot's Cray and Mereworth, imitations of Palladio's Villa so often mentioned in this volume, and represented in fig. 1018, are the maxima of beyond this the rilla becomes a mansion, and must be treated as one on a scale so 10 less grand, as the means of the proprietor allow the architect to provide for hisluth. All precepts, however, on this head are valueless, because the architect is regrl much by the convenience required. He must possess himself fully of that, and, at oing to the general rules given throughout this work, but especially in this Third B : ho wall find little difficulty in fulfilling the conmission with which he is intrusted. other matters let him well inform himself of what las been done, and make madf master of the points involved in domestic economy, from the lowest to the highe rade, and he caunot, using that information, fail of giving lis employer that satisfactio fluch is the first care that should animate him.
3001. The cottage orné, as it is called, is a building subject only to rules whi 1 tho architect chooses to impose upon himself. The only point to be attended to, rin ternal comfort has been provided for, is to present picturesque effect in the exteri The student should consult the work of Professor Kerr, The English Gentleman's Ho , 8 ro, London, 3rd edition, 1871, in which will be found a selection of the best exar of house planning, with a fund of useful observations; while the illustrated journa of the present day exhibit plans and views of villas designed in the many peculia les of architecture adcpted by the rarious professors of the art.

Sect. V1I.

FARM-HOUSE.

3002. The mere building denominated a farm-honse is simple enongh in its distribution, i scarcely justifies a section here, becanse the persons engaged in agriculture have herally the best notion of the mode of suiting it to their awn particular business and the ure of the farm they ocempy. It is first to be considered whether it is expedient to ce it close to the other buildings of the farm, such as the barns, stables, and stalls for tle, \&c. If so, it should be designed in character with them, and a large space of ground enclosed for the formation of a farm-yard; which, notwithstanding the seemingly resive nature of the subject, may be made a very pieturesque composition as a wheic. e farm-house itself, though it must be sufficiently large to aceommodate the family of farmer, should be restricted in the size of its rooms and the extent of its plan by the 1guitude of the farm, it being altogether an absurdity to plant a large house on a small In, not only because of the original cost, which the rent of the land will not justify, but 1 ause of the cost of the annual repairs which a large building entails beyond those of a \&ller one. The same observation applies to the farm buildings themselves, which in bent must be regulated by the size of the farm cultivated. It is moreover to he cons red, in respect of the latter, whether the farm be grazing or arable. In the first case ${ }_{1}$ e provision of cattle sheds must be afforded; in the latter case more barns must be atted to the cultivator. These, however, are matters upon which the architect receives 1 instructions from the proprietor, and whereon, generally speaking, he is himself incomFint to form a correct judgrment.
3003. In the commonest farm-houses the external door may open to a plain passage, at t end whercof the staircase may be placed. On one side of the passage may be a comnt kitchen, and on the other side the better or larger kitehen, serving also as a parlour fithe farmer and his family. Beyond these, on one side, may be placed the pantry, and 0 he other side the dairy-room, the last being much larger than the former, and being on thside of the parlour or best kitehen, not so hable to the heat. To these, as needful, may badded more rooms on the ground floor; the upper story being divided into bedcinbers for the family, with garrets over them for the servants. The kitchens should be p ed upon arched cellars on several accounts, not the least of which is that the farmer sl ld have the means of preserving in good condition the malt liquor or cyder which is th principal beverage of his establishment. It is a sad mistake on the part of landed pirictors, though common enough, to think that such buildings are not only below the cal of an architect, but that he is too ignorant of the wants of the farmer to be eompetent tole task ; if, however, he will reflect for a moment, he must admit that the artist who ca make the most of a large plot of ground, with numberless requirements in the accomin ation, is not less able to turn to the greatest advantage for the comfort of the occupier ev a small farm-house.
3004. In the crection of a larger farm-house the choice of the sitc, as before, must dehe primary of the Ir led. It should be central to the land, and as near the road as the conditions will ad t. For such a building the prineipal door may open into a moderately wide passage, ing g therein a staircase to the upper rooms. On the right of the passage a common kil en may be provided for the family, and on the left a room somewhat larger, which in vel small farm-houses used to be called the best kitehen, but which in this may be really the parlour, where the family may sit retired from the servants. Under these, cellars, as abir mentioned, may be provided. On the ground floor we may now add a bakehouse anceullery to the pantry and dairy provided in the first scheme, as also closets and such iences for the housewife. The floor above may be extended cver the additional s just mentioned, thus giving lodging room to a larger number of persons than to contemplated in the first scheme. "In this manner," says Ware, in his Complete of Architecture, folio, London, 1756, "the young architect will very easily sce low to re or contract his plan for the building of farm-houses, according to the intended ss." . . "' They all consist of the same number of rooms, and in general of the same ler of offices; this is where the bare article of convenience for farming is concerned. e the inhabitant is grown rich, and intends to live in another mamer, he may add he pleases, whieh the architect may adopt.". .. "It is then no longer to be cond a farm-house, but as the house of some person of fortune, who intends to live as 0 independent of business do, but withal to have some farming in his cye." When the Wouse comes to this extent it trenches hard upon the condition of the villa, though not reaching it, beeause the latter includes many provisions for a refined mode of living the yeoman, the pride of England, does not require; a class which, we fear, the mauring and commercial classe's are fast ammihilating.

Sect. Vill.

COTPAGES.

3005. "Fstates," observes Kent, (Hints to Gentlemen of Landel Property, 8vo. Larl 1776, " being of no value without hands to eultivate them, the halourer is one of the , valuable members of society: withont him the richest soil is not worth owning." follows, then, that his condition should be most especially considered, and it is a duty every eountry gentleman to take eare that the labourers on his estate are so considere to be made at least comfortable. "The shattered hovels," says the same author, "wl half the poor oi this kinglom are obliged to put up with, is truly affecting to a h fraught with humanity.". . "The weather penetrates all parts of them, which " oceasion illness of various kinds, partieularly agues; which more frequently visit ehildren of eottagers than any others, and early shake their eonstitutions." . . . We carcful of our horses, nay, of our dogs, whieh are less valuable animals; we bestow s siderable attention upon our stables and kennels, but we are apt to look upon cottuge incumbrances and elogs to our property, when, in faet. those who oecupy them are very nerves and sinews of agriculture." We fear the negleet of the comfort of the coth. has given a greater impulse to poaching and other crimes than his natural propens have indueed. This, however, is not a matter for diseussion here. It is not to be supp that we mean the labourer is to be plaeed in an expensive dwelling; a difference of r r must exist ; and if the whole revenue of the country were divided annong the populit per head, it would be seen (as M. Dupin has recently shown in a most elopnent sound address delivered in Paris as respeets Franee) that the division of it per after allowing for the expenses of the most economical government that eonld lice vised, would be such as would not satisfy the lowest elass of labourer, much less the genious mechanie. This is a matter so suseeptible of proof, and so proper to be gener promulgated, that we have here gone a little out of our way lest we should be conside too urgent with respeet to the eottager.

3001 . No cottage ought to be erected whieh does not contain a warm, confurti, plain room, with an oven to bake the bread of its oeeupier; a small eloset for the beer provisions, two whoiesome lodging rooms, one whereot should be for the man and his , and the other for his children. It would be well always, if possible, that the loys girls in a cottage should be separated; but this unfortunately entails an expense, and haps is not so materially neeessary, because the boys find employment at ant carly arge. shed for fuel should be attached.

Cottages should always be placed in sheltered spots, and as near as possible to farm where the labourer is employed. The wear and tear of a man is not very d milar to that of an engine, and it tends as mueh to the interest of the farmer as it do the eomfort of the labourer that all unneeessary fatigue be avoided.
3007. In the erection of cottages it is not only more economical, but more comfort to the oceupiers, that they shoulid be built double, or in twos at least. In those provi where brick or stone ean be obtained they should never be eonstructed with tinber, tiles, if they can conveniently be had, should always supersede thatel. Further obs tion on this subjeet will be unnecessary, for we have ill delivered the principles of on if the student be not now prepared to carry out the few hints on the subject of cott. -buildings, in point of fact, of importance paramonnt to the palaee which the suver inll bits.

The following remarks are by J. C. London, and are extraeted from a "Report to Majesty's principal Secretary of State, from the Poor Law Commissionors, on an lin into the Sanitary Condition of the Labouring Population of Great Britain," 1842.
" The essential requivites of a comfortable labourer's eottage may be thins summed ne:
" 1. The cottage should be placed alongside a publie road, as being more cheerfol i: a solitary situation and in order that the cottager may enjoy the applause of the public 'tl he has his garden in good order and keeping.
" 2 . The cottage should be so placed that the sum may sline on every side of it d, k the day throughout the year, when he is visible. For this reason, the front of the co :c can only be parallel to the publie road in the ease of roads in the direction of north t, south-west, horth-west, and south-cast ; in all other eases the front must be placed oblicily to the road, whieh, as we have previously shown, is greatly preferable to having the it parallel to the road.
"3. Every eottage ought to have the floor elevated, that it may be dry; the walls de le or hollow, or battened, or not less than eighteen inehes thiek, that they may retain 1t: with a eourse of slate or flagstone, or tiles bedded in cement. six inches above the surfan to prevent the rising of damp; the roof thick or double, for the sake of warmsth; and pre 1 . ing eighteen inches or two feet at the eaves, in order to keep the walls dry, and to chee ic ratiation of heat from their exterior surfaee.
"4. In general, every cottage onght to be two stories high, so that the sleeping rombs may t be on the ground floor ; and the ground floor ought to be from six inches to one fiow se the outer surface.
-5 The minimum of aceommodation ought to be the kitchen or living room, a back chen or wash-house, and a pantry, on the gronnd-floor, with three bedrooms over; or rooms and a wash-house on the ground Goor, and two bedrooms over. $^{\text {ond }}$,
6. Every cottage, including its garden, sard, \&c., ought to occupy not less than onc th of an acre; and the garden ought to surround the cottage, or at all events to extend th before and behind. In general, there ought to be a front garden and a back yard, the er being entered from the baek kitchen, and eontaining a privy, lignid manure tank, ce for dust and ashes, and place for finel.

- 7. If practicable, every cottage ought to stand singly, and surrounded by its garden; at all events not more than two cottages ought to be joined together. Among other portant arguments in favour of this arrangement, it may be mentioned that it is the only , by which the sun can shine every day on every side of the cottage. When cottages are jhed together in a row, unless that row is in a diagonal direction with reference to a south north line, the sun will shine chiefly on one side. By having cottages singly or in I's, they may always be placed along any road in such a mamer that the sua may shine (every side of them. provided the point be given up of having the front parallel to the it a point which in our opinion ought not for a moment to be put in competition with t advantages of an equal diffusion of sunsline.

8. Every cottage ought to have an entrance porch for containing the labourer's tools, a into which, if possible, the stairs ought to open, in order that the bedrooms may be e municated with, without passing through the front or back kitchen. This, in the cense o ickness, is very desirable, and also in the case of deaths, as the remains may be carticd $\mathrm{d} n$ stairs while the family are in the front room.
9. The door to the front kitchen or best room should open from the porch, and not fr, the back kitchen, which, as it contains the cooking utensils and washing apparatus, ei never be fit for being passed through by a stranger, or even the master of a family, we proper regard is had by the mistress to eleanliness and delicacy.
10. When there is a supply of clear water from a spring adjoining the cottage, or from :00: other effieient souree, then there ought to be a well or tank, partly under the floor of thback kitchen for drawing it up for use, as hereafter described in detail. The advanta; of having the tank or well under the baek kitchen are, that it will be secure from fri and that the labour of carrying water will be avoided.
11. The privy should always be separated from the dwelling, unless it is a proper water-
deached, the privy should be over or adjoining a liquid manure tank, ill which a ht tube from the bottom of the basin ought to terminate; by which means the soil ba: may always be kept clean by pouring down the common stops of the honse. No suce being left from whieh smell ean arise, except that of the area of the pipe, the double Hap o be hereafter deseribed, will prevent the escape of the evaporation from this small sirl c, and also ensure a dry and clean seat.
12. The situation of the liquid manure tank should be as far as possible from that of water tank or elear water well. It should be covered by an ar-tight eover of Has one, and have a narrow well adjoining, into which the liquid should filter through a gra g, so as to be pumped up or taken away without grosser impurities, and in this state app d to the soil about growing erops.
"3. In general, proprietors ought not to intrust the erection of labourers' cottages on exist in the best-cultivated districts of Seotland and in Northumberland.
No landed proprictor, as we think, ought to charge more for the land on whieh cste es are built than he would receive for it fiom a farmer if let as part of a farm; and 101 le rent ought to be charged for the cost of building the cottage and enclosing the sarc than the same sum would yield if invested in land, or, at all events, not more th an obtained by government securities.
Most of these conditions are laid down on the supposition that the intended builder
cottage is actnated more by feelings of human sympathy than by a desire to make

To the firegoing fifteen essential requisites we have only to add a few observathe design ot a cottage. The plan should not be atrageling, or such as to render at of roof-lines necesary, and although its arrangement should be compact, it should cramped. Shapeless mooks and corners do not become conventent cupboards wts or hecause they are enclosed and possess a door, but raner convenent hidingor mice and dirt. 'Too many projections make a small building look smaller by
depriving it of breadth; and too great a diversity of colour gives it a vulgar appeatan and frequently destroys the effect of rally good proportions. The temptation to bui picturesquely and to try experiments with new materials and methods of eonstruction, much greater in the country than in town. Coloured bricks, bands of ornamental til. glazed patera, and other similar attractions, may give variety to elevations, but they m be adopted with considerable caution in small buildings. New inventions and piseme economical devices too often prove miserable and expensive delusions. As the details construction, \&c., which are given in the next section, are equally applicable to those in 1 country, this subject will be now dismissed.
3009. In the autumn of 1863 two premiums of 251 . each were offered through the Socis of Arts for the most approved designs for cottages, to be built singly or in pairs. at a cost ॥ execcding $100 l$ each. It was essential that each cottage should fultil the following retpin ments. On the ground floor, a living-room of about 150 feet superficial; a seullery kitchen of not less thon 70 feet superfieial ; with a ventilated pantry. On the upper flor three bedrooms, one to be not less than 100 feet superlicial ; fire-places to be provided two of the rooms. The height from the ground to the first floor to be 9 fect, and the the rooms to be 8 feet in the clear. The memorandum of the Inclosure Commissioners in respect to the substantiality of agrieultural buildings to be adhered to. In the estimis brickwork was to be taken at 81 . per rod reduced ; Countess slates at 23 s . ; and Balte tit ber at $2 s .3 d$. per foot cube. An allowance of 20 per cent. was to be made for contingene and builder's profit on the cost prices of labour and materials, with 5 per cent. for super tendence. The prime cost, therefore, of each house was not to exceed $80 l$., inchding I only the cottage, but the lixtures, water supply or well, fencing, pasing, and all the necessary addenda whieh the owner must supply.
3010. An able report was drawn up on the 1.34 designs submitted, by the three appoint judges (given in Builder, 1864, p. 359), towards the eonclusion of which they observe " 11 although good cottages may possibly be erected, under favourable circumstanews. in so parts of England tor a lower sum, we eonsider the probable average cost of a puir of c tages built with the eonveniences enumerated, would be about 280 l . to 3001 ., and that attempt to erect them at any considurable reduction upon this anount must result in so inferior hind of buildings, discreditable to the owner, and wanting in much of the necess accommodation for a labourer and his family." The premiated design is given in the 5Ω volume, p. 95\%. On p. 295 of the following volume, six builders' estimates are given erecting six cottages on the premiated plan, ranging from $397 l$. 13s. $4 d$. to $527 l$. the phe a difference somewhat accounted for by the designer in his olservations at p. 319, where states that $260 l$. the pair would be the price of some he was then erecting, with modif tions. On p. 394 is given a design estimated at 200 l ., and tendered for at 180 l the p which is deserving of eonmarison.
3011. The Central Cottage Improvement Society, London, stated in 1865, that "rep" from different parts of the country, of the actual cost of building, prove that on the aver: eaeh room eontaining 100 superficial feet, or 10 fe t square, of a cottage or block tnildings, eosts from $\subset O l$. to $25 l$., exclusive of land; this is equivalent to $3 d$. per font © In the five s.ts of plans published by the society, No. 1, of four roons, has been built 162l.; No 2. slightly larser, for 1681. ; No. 3, same as No. 1, with a scullery, for 17 and No. 4, more eommodious, for an artizan, for $220 l$ per pair. The Journal for $185 t$ the Bath and West of England Society, vol. vi., details a cottage of five roms, built 1 Exmoor, for 60l., with a living room 15 feet by 13 feet.

Sect. IX.

'TOWN DWELLINGS FOR TIE INDUSTRIAI, CLASSES.

301\%. The lading features cf construction and detailed arrangement which be considered peeuliarly applieable to dwellings intended for working men w w wages range from $19 s$. to $24 s$. per week will be described herein. Workmen of this is have been hitherto strangers not only to the conveniences which render home attrac 's, but to the barest accommodation necessary to render social life tolerably deecut. Unfi ${ }^{\circ}$ nately, the nearer an improved dwedling approaches its miscrable predeeestor in get al aspeet and charaeter, the more popular it wit] be. The diffieuly, therefore, in designing homes for the poor consists in the introduction of improvements which shall liad to ic gradual abandoment of injurious habits, and to give no sudden offence to jerikly cherished prejudices. To do this effeetively it is desirable to accertain the leading renf ments of the inhabitants of the district in which it is proposed to build.
3013. A poor man's town dwelling shoula consist of a living room and bedroon a 1 lentiful supply of water; a water-closet, sink, and lavatory, distinet but not far ren ed from his tenement; a wa-h-house, with the means of diying clothes in any weather wit if artificial heat; and, when praeticable, a play giound tor children,
3014. The living-room should be 12 feet by 10 feet clear of all obstructions or projectio..s, and 8 feet high, giving 960 eubic feet at least. The rooms should be of a square orin, as being easily kept clean and made couffortable. Fig. 1353. presents a general plan if the arrangements. The door should open nto a porch or vestibule, and be placed at the nd of the wall opposite to the window, so inat when both are open the air in the dweling may be effectively changed. The window hould be sufficiently large to hight every part f the room. It should be fitted with sashes, 0 iusure top and bottom ventilation; and its ill should not he more than 2 feet 9 inches rom the floor, to prevent high furniture being hiced under it. Tolerably large panes of flass will be found to last longer than if the lanes be small. The fire-place should be as ear the celitre of its own wall as possible,
 nd be furnished with a range containing a oiler, with a tap of the best description fixed
 aches arose the bottom, an oven; and a ccoking place at least 10 inches wide from side a side, with sliding bars, flap and catch, all of which ought to be of wrought iron. The iving-room should have a good serviceable closet the entire height of the room, the front lush with the chimney breast, to contain shelves for cooking utensils and crockery, \&c., nd a large covered box for coal; this closet should be liglited by a suall window hung Ipon centres and to be easily opened.
30.5. The bedrooms should be 12 feet by 8 feet, and 8 feet high, communicating with he living room by a door in the wall opposite to the fire-place at the end nearest to the indow, so that enough wall space may be secured for the bed. As these rooms would be ufficiently warmed from the living-room, fire-places can be dispensed with where space is mited or expense of much importance.
3016. The walls should be well-built with sound stock bricks (the partitions being alf a brick thick) and coloured with two coats of well sized distemper colour of a warm heerful tint. Such walls offer no harbour for vermin; they are uninjured when nails are riven into them; and their freshess and colour are casily renewed at a tritling expense. 'he ceilings should be plastered, not only for a clean appearance, but also as a preventive gairst the spread of fire. The floor is best made of wood, though it is apt to get dirty and derably difficult to clean. If firewood or coal be broken upon any other floor than a ooden one the concussion is injurious to it. Cile and asphalte floors are often recomended as the best; but though they have a chan appearance, they are cold to the et when uncovered by a carpet; are more liable to injury; and are more troublesome to mair. Asphalte a.d cement floors depend in a great measure upon their rigidity for their ficiency, and require iron beams and brick arches, which are expensive.
3017. As regards ventilation, beyond supplying doors that do net lit too close, windows at will open at top and bottom, and fre-places with air-cl.annels underneath the floor, it extremely difficult to know how to procecd further without detection. A ventilator ce discovered is instantly rendered useless by being pasted over. Perforated bricks tced throughont the length of the wall in which the window is set, and in that opposite it, causes the air to be so diffus:d by its passage through the narrow channels with which e bricks are provided, that the paste-brush is seldom used.
3018. The lavatory should contain a water-closet fitted with a strong galvanized iron Ive; a lead trough, for washing purposis, supplied with a high-pressure loose valve coek, d an enamelled iron basin. A smuller liad trough or waste, for the discharge of dirty ter, should have an inch service cock above it for supplying pails and kettlcs. The Ils, coloured as those of the dwelling, should be well painted to the height of 18 inches ove each trough, for frequent and easy washing. The floor is best covered with thick neh square tiles, which bear a good deal of wear and tear and slopping i. one spot thout injury. The lavatory should have two windows at least, one in the external wall the water closet and one at the furthest end of the wall at right angles to it.
30:9. 'Jo attach a laundry to an extensive range of such dwellings becomes a positive ty. A washing tub and rinsing tub are necessary, about 3 feet 3 inches long by 1 foot ches wide, with washer, plug, and chain, and a separate cold water scrvice to each. ie top of the tubs should be 3 feet 3 inches above the foot-board, or the floor, if not proled. A 10 -gallon copper, with cold water service, and a tin ladle. The flue of the per is to be carefully constructed to itsure the heat being well distributed over the es and butom, and to afford facilities for regulating it and for cleaning. Wringing chines might be provided if hydrumeters are not used; they are easily attached to the p3. Artificial neans of drying elothes, as adopted with advantage in public wash-houses,
are to be avoided in small laundries, because they eannot be maintained without eonsider able expence. Clothes are more easily and effeetively dried when protected from rain, anc suspended in strong cross currents of air.
3020. The water-cistern should be as close to the laundry as possible, in order that the piping may be short, with very few joints and bends so as to be free from the risk whieh attend a variety of levels. More attention is desirable to the dimensions of the irot piping, and the nature and position of the services, than they usually receive. Thus meaw should be provided for filling, emptying, and cleaning the cistern or tank; also for regu lating the supply during the time that iny portion of the piping is under repair. Every rising main should be furnished with at least two valves. The first is best fixed in thi junetion between the rising main and the company's strect main, so as to regulate the entir bupply of the building. The second should be fixed at the bottom of the rising main, su as to release the water whieh remains in the pipe after the eistern has been filled. In som eases an additional coek, 2 feet above each floor level, for the supply of buekets, or for the connexion of hose in case of fire, may be desirable.
3021. A few square yards of play-ground is of inestimable value for the labouring man' ehildren. One large play-ground to a block of buildings is of mueh greater use that many small yards to as many eottares, and has tended as mueh as anything to ensure th.c suecess of the large blocks of dwellings in London.
302.2. The drain-pipes should be of the best deseription, and their diancters larger thin those employed under ordinary eireumstanees, beeause their liabilities to obstruction ar very mueh greater. The main drains should be external to the building, and suppliec with examination holes at intervals for repair and eleansing, and shouid possess the mean of being regularly flushed with water. When the ground is sott, the diains, both largen anc small, should be laid upon beds of eonerete, to preserve them in their proper falls. Soi and other pipes should be ventilated by being taken above the roof of the building.
3023. The site fur a bloek of associated dwellings should be as open and in a situation as publie as possible, not only to reeeive the adva.atages of light ano ventilation, but that i may be easily found and readily aeeessible, and that its residents may have eontact with neighbours whose habits and appearanee are superior to their own. The ends of the sit should faee north and south, so that its east and west sides should have the morning ant evening sun. It should offer every facility for good drainage; the nature of the subso should be well assertained, and every nceessary preeaution taken to avoid, or to clear ou any accumulation of foul refuse that may have been carted into the vacant site. The mo: economical dimensions for a site within the jurisdiction of the Metropolitan Board, Works in London, are 108 feet long by 60 feet wide. This area will aceommodate building 108 feet long by 34 feet wide, and admit of a playground 26 feet deep in its rea The multiple of 108 by $34=3600$ in round numbers, is the area allowed by Act of l'arlii ment for a building eontaining several distinet tenements, and possessing only one entrans and stairease. The lreight of the building is best kept at 46 feet from the ground-line ! the eaves of the roof; it admits of as many stories of d wellings as can be oeenpied wit comfort to the tenants, and it requires no nnneeessary thiekness of walls. If made fit stories in height it will eontain 40 or 45 dwellings, about 16 water-closets, 8 lavatoric 8 wash tubs and eoppers.
3024. 'The following paragraphs comprise a brief description of the dwellings lately bu: or now eonstrueting. In the basment, only a small cellar need be provid.d tor dust acec to it is to be obtained by a small external stairease under its first landing, but datinc so that the dust may be removed without annoyanee. The ground, first, second, and thit floor plans may be divided throughout their entire length into two equal portions, by eorridor 4 feet 2 inehes wide, on cach side of which are arranged the dwellings (fig. 1354

In the centre is the pri

cipal entranee, which 5 feet 6 inehes wide, al furnished with external a internal folding-doors u der the immediate supo vision of the proter whit offiee adjoins it. I stairease, placed imt diately opposite to the trance, is 8 feet wide, 1 solid square stone st having a 10 -inch tre and an average risu o inches. The side furt

Fle 1364
reabody dwrllings, commercial strieet. from the corridor has arch 7 feet wide, and
:nding from the gromel-line to within a few feet of the eaves of the roof. It is separated oni the corridor by two arches, whose centre pier contains a dust shaft, traversing the titie height of the building, and communicating with the cellar abore ramed in the baseent. It is 14 inches wide within, open aboro the roof for ventilation, and is furnishod ith a hopper, which receives the dust, and closing flush with the wall at each floor lepel. 3025. The lavatories adjoin the staircase, those for tho men on ene side, for the women the other. The fourth or topmost floor contains a laundry, about 22 fect long by 12 et wide, corered with an open timber roof, the tie-beams having standards helping to pport it, and serving as clothes posts. It is lighted by a range of snall casements, aditting air sufficient to remove any unpleasantness that might arise from the laundry, and thoioughly dry the clothes. It is furnished with eight sets of wash tubs, some being parated by slate partitions, for privacy : cight 10 -gallon coppers; cight wringing maines, or a patent hydrometer; trellis framed standing boards; stools (as being better an tables) for clothes baskets; soap boxes and ladles. This floor also contains a bathom for each sex, placed over tho latatories; it is furnished with one of Rufford and nch's stoneware biths, and las a service of cold water. Hot water is supplied from the andry when required. A cistern lined with lead adjoins each bath-room, and also pplies the lavatories below it ; this position secures a direct fall to the soveral services, id avoids the necessity for frequent bends and joints.
3026. The main drains aro 12 or 9 inches in diameter; the smaller drains, kept as short possible, are 6 and 4 inches, according to their requirements. The rentilation is secured the side corridor having a window at each end of it, and by the open staircase in the ddle of its length, all which forbid stagnation and remore impurities. These very pracalobservations are mainly due to the paper by H. A. Darbishire, who has designed several ceks of dwellings in the metropolis, as given, with illustrations of those in Commercial reet, Whitechapel Road, in the Civil Engineer, \&c. for 1864.

Sect. X.

SANITARY ASPECT OF IIOUSE CONSTRUCTION

3027. This subject may usefully be referred to. Granting that a ho'ise is well drained 1 that the plumber's work is properly carried ont, there are yet other matters to be conered, so that a house may be a healthy residence. It should have plenty of light, nty of air at all times, pure and dry, or at least as much so as possible. During the iod when the number of windows and the glass in them were each taxed, large winirs were advocated; but as soon as both were taken off, a change of fashion occurred, I small windows and small panes were again introduced. As regards street architecture, is important that the houses should be erected of a height bearing a direct relation to breadth of the street in which they are situated. Perhaps the beight of the house suld not exceed two-thirds of the width. As regards the direction of a street, the best i, in nearly north and south, as the sun shines on a house on the west side from morni till mid-day in the front, and from mid-day till the evening on the back of it. In the (er case, the houses on the south side get scarcely any direct sunlight, in winter none \& 111 in front; while those on the north side get none to the back rooms. Hence, large
1 dows are necessary to compensate, by giring as much light as possible, for the direct s light which is necessary to make an apartment wholesome.
3028. Purity of air cannot be maintained in a house unless it be thoroughly dry. Set$t ;$ aside the not inconsiderable quantity of water in the atmosphere produced by those 1 ng in it, and by the combustion of gas, oil, and candles, the air in a housc is liable to
l endered moist, 1 , by absorption from the soil below it ; and 2 , from the porous material o rhich it may be built.
3029. The porosity of most building stones and bricks is remarkable. A cubic foot of ${ }^{5} 1 \mathrm{le}$ will absorb from 5 to 9 lbs . of water, or from half a gallon to nearly one gallon. 7. absorption by certain kinds of stone is so rapid that in slight showers the water is a mbibed; and if the surface be kept wet by constant rains, a large portion must find il way inwards, Freestone also allows of the passage of air or other gas by transpiraand diffusion; also bricks, unless these have been exposed to a temperature high e igh to flux the material. The quantity of air diffused into and out of a house by the wis is very considerable. If the stone be coated with oil, paint, or any silicate solution, a the absorption be prevented, the vaiuable property of diffusing air into the house is piented. Hollow walls may secure these adrantages. These may be of brick, or of ct rete, or of stone outside and brick inside. In some parts of the country the material
if id with beds slightly sloping upwards somewhat to counteract the effects of the rain, et cially when blown from the south-west; perhaps the two inches of the bed of the ${ }^{8}$ to on the outside might be bevelled, and the remainder be worked lerel.
3030. Where rubble walls aro used, the best thing to be done is perhaps to point thel with a mixturo of 1 of Portland cement to 2 of sand, and then to colour the whole wit cement wash. But this should not be done until atter one summer's sun has assisted i drying the stone, or the damp may dry inwards. It is considered that a 2 -feet stone wi not dry thoroughly, even under farourable circumstances, in less than two years.
3031. Plaster, whether on brick or lath, is exccedingly porous, and permits of a read diffusion of gases. A wall merely whitewashed or coloured is better in a sanitary poil of view than ono that is covered with oil paint, which is then practically impervions the passage of gases. Wall papers are probably not so bad in this respect as vil pair but inferior to colouring or distemper work.
3032. The foundation of a house is an important part of it. The most perfect is solid platform of concretc extending over the entiro area of the building, from 2 to foet in thickness, and coated on the top with nearly pure cement. Damp cannot pen trate this, it is considered. The joists should bo laid on sleepers, so as to obtain rem lation to the space; in case of the bursting of a water-pipe or of water getting intotl concrete bed, it should be laid sloping, so that water could be carried off by outsi gratings. This would be expensive, it is true. Another system would be, to build th walls and dwarf-walls to a certain level, and then to fill in with hard dry rubbish, al cover the whole with cement 3 inches thick, composed of 1 of cement and 2 of coar sand. Or, this might be covered with asphalte, also orer the walls, or the usual din course take its place. This damp course nust be put to main and dwarf walls.
3033. Gratings should be placed all round the building, thoroughly to ventilate $t 1$ space under the basement floor, about 10 feet apart. If a town house, then about 5 6 feet apart and each about 10 by 6 iuches. Cross walls should have goo openings in the to obtain this circulation of air. The floor may be considered cold by this ventilation if so, the floor $\mathrm{c} _$n be pugged, or the boards be grooved and tongued.
3034. In this wet climate, where occasionally half an inch of rain falls in a day, it well to cover the tops of the chimneys, in order to prevent rain from coming down 1 straight flues into the grate, or down others into the gable walls and keeping them dam preventing the smoke rising; and this cover can be combined with some means 1 preventing downdrunghts.
3035. A simple method of ventilating a room is to drill a series of smallish hol vertically through the lower frame or meeting bar of the top sash of the windo say six or eight to the sash ; the air rises through them into the room in the same mana as in a Tobin's tube. This is an old custom, and often tends to cure a smoky chimn caused in a room. Another is to have a bar of 3 or 4 inches in height to fit in betweent. frame on the sill of the lower sash, when raised for the purpose; there will then be a spi left at the meeting rails for inlet of air.
3036. At the meeting of the Sanitary Institute of Great Britain, held at Bolt Mr. R. E. Middleton, C.E , read a paper on the then proposed Sanitary Registration Buildings Bill, 1887, in which he quoled a specification where water-closets are used. is here giscn, as showing the present views, extreme or otherwise, of many sanitary officis
"1. Every drain or part of a drain inside a house and all soil pipes shall be wat tight thronghout.
" 2 . The main drain of the house shall be ventilated at its upper extremity by me. of a continuation of the soil pipe, or by a special pipe prorided for the purpose; ss ventilating pipe, whether connected with the soil pipe or otherwise, having a clear: tional area of 10 square inches throughout, and being carried to such a height that outlct shall be at least 3 feet above the eaves of the roof, and the same distance ab any window or opening in the roof, not being a chimney, and not less than 6 feet dist from any chimney or opening in the roof, whether of the house to which it belongs n! the neat adjoining house, measured in any direction. The main soil pipe shall te si larly ventilated, and if there be more than one soil pipe, then each such soil pipe w1 shall be longer between the basin of the closet and the main drain than 8 feet sha! similarly ventilated. The main drain shall be disconnected from the sewer or cesspit $/$ means of a syphon trap of approved construction, provided with means for cleaning the ${ }^{1,}$ and the portion of the drain between the trap and the sewer or cesspit; and it shal 0 ventilated by an inlet air-pipe or ventilating disconnecting manhole; and if there be no than ono outlet ventilating pipe connected with the house drain, then each such por in of drain and outlet ventilating pipe shall le provided with a suitable syphon trap anin inlet air-pipe or disconnecting manhole; as already described; and the aroa of the inlet $)^{-6}$ pipe shall in all cases be at least doublo that of the outlet rentilating pipe in the ch.
" 3. No pipe which passes through auy part of a house, not being a soil pipe or drain, shali be connected directly with the main drain.
" 4. No water-c'oset shall be situated nest to a larder or place where food is ste ! No pan-closet or D trap shall be used, and cvery water-closet shall be trapped, and \& 13 be arranged so as to prevent syphonage.
" 5 . The overfows from safss of closets and of baths, and from cisterns, shal θ
icharged into the open air in an exposed position, and shall not be connected with the Idrain or rain-water pipes, either directly or indir, etly, lint slall net as detectors.
3037. All sinks, baths, havatories, and urinals shall bo trapped with suitable traps, and the charges from them shall be caried outside the walls of the honse. and shall not be conated directly with any soil drain, nor shall they be introduced under the griting of any μ, but they shall terminate in tho open air, and not ntar any window or other opening. 7. All water-closets, urinals, and slop siuks shall be provided with suitablo shing cisterns, and the flushing pipe for any closot shall not have a less internal meter than $1 \frac{1}{4}$ iaches, and the height of the flushing cistern above the closet, urinal, slop sink shall not be less than 4 feet. It shall be impossible to draw water from y cistern used for tlushing purposes for any other purpose than that of flushing.
3038. The cisterns used for general purposes shall be easily accessible, and shall be proled with covers rentalated into the open air ontside the house by a rising pipe other an the overflow pipo, and no pipe from them shall be connected in any way with any I pipe, drain, or with any pipe receiving the dischargo from any bath, lavatory, urinal, k , or thushiug cistern.
3039. No rain-water pipe used to receive the waste from any bath, lavatory, sink, or ual shall be placed near a window or other opening; and no rain-water drain shall nect dircetly with a soil drain; and no rain-water pipe shall be used as or connected th the soil pipe, nor as a ventilating pipe.
3040. No cesspit shall bo constructed in such a manner, nor placed in such a position, to endanger the water supply; and every cesspit shall be ventilated by an inlet air e and by an outlet rentilating pipe rising to an elevation above the ground level of not s than 20 feet, and haring a ciear sectional area of not less than 10 square inches, the a of the inlet pipe keing double that of the outlet ventilating pipe."

Sect. XI.

TECHNICAL SCHOOL AND COLLEGE BUILDINGS.

3037. The remarkable mosement in favour of more efficient technical training has called an exact treatise on the peculiarities of plan and structural arrangements and fittings of ldings required for its development. Foreign nations have been beforehand with us in s matter, and have long since provided noble buildings, specially created and adminably ed up for the purpose, and well stored with singularly complete industrial and fiae art iections.
3038. Mr. E. C. Robins, F.R.I.B.A., F.S.A., has, besides the lectures delivered by 1, brought together a large amount of information on the subject of technical eduion as taught both in England and abroad, and on the adaptation of architecture to requirements of this teaching. This new volmne is entitled, A Treatise on the Design 1 Construction of Applied Science and Art Buildings, and their suitable Fittings and ittation, with a Chapter on Technical Elucation, 4to. 1887. It contains full descripis of such institutions as the Bonn, Berlin, and Munich chemical latoratories; Du s-Reymond's Physiological Institute at Berlin; the laboratories at Charlottenburg, ich, Paris, Strassburg. Most of these are accompanied with cuts and diagrams, so it their interior arrangements may be studied in miuutest detail. Descriptions of the] oratories at South Kensington, Finsbury, Leeds, Bristul, Manchester, Huddersfield, ford, Cambridge, and other English cities, are given; with chapters devoted to the f ngs of these bnildiugs, giving detailed informatiou concerning the hundred and one 1 1or things which go to make up the perfect laboratory; as the working benches, demonstion tables, drawing rooms, and so on. The heating, ventilation, and sanitation of lied science buildings are also elaborately treated and profusely illustrated. An endix gives statistics as to the technical schools in Great Britain: as particulars of t area occupied by buildings, their cubical contents, the cost of land, cost of fittings, ual expense of maintenance, number of students, and so forth. One chapter embraces t planning of schools for middle class education generally, as at South Hampstead, (wresend, Sevenoaks, Caterham, Battersea, Wapping, Harerstock Hill, Stepney, with
t. Camden School for Girls, aud the North London Collegiate School for Girls
3039. It has lately been peinted out that technical education was not meant to be a 8 stitute for apprenticeship. The olject is rather to teach boys and young men how to l in a trade rather than to teach them the trade itself. As a comparison of the views 11 by some continental states, and by England, on this suljert, it has been stated that t Finsbury College, London, cost $37,000 \mathrm{l}$. to build, and requires $6,000 \mathrm{l}$. per annum In the City Guilds for maintenance; and that the City and Guilds Central Institute ct $90,000 l$, to build, and receives $10,000 l$. per annum; while at Berlin, a building has fa erected twice the size of Buckingham Palace, which cost $690,000 l$. to build, and it r ives $37,380 l$. per annum from the state!

BOOK IV.

VAlUation of plioplrify.

CHAP. I.

The valmations in which the architect is consulted are properly onls those wherem hate ings have been or may be erected; from which if he wander, the probability is that he w create difficulty for himself, tending to exhibit him as a pretender to knowledge not with the regular course of his occupation. The general principles, therefore, on which we pre pose to touch, are confinced to the species of property above named, as distinguished tro that in which the resident valuator near the spot in the different provinces is the br adviser, from the local knowledge he possesses. The auctioneers who with unblushin effrontery pretend to a knowledge of the value of property in the metropolis, are utter. incompetent to the duties they undertake, from an ignorance of the durability and cost buildings, which can be attained by the practice and experience of the architect only.

Buildings may be so disadvantageously placed on their sites as to realise nothin, like a proper interest on the money expended in their erection; and, indced, so as aht gether to destroy even the great value of the ground on which they are built. Thus, place before the reader extreme cases, which generally best ilhustrate a subject, let hi suppose a row of hovels built in Piccadilly, and a house tike Apsley House plated Wapping High Street. In both cases the productive value of the ground is destroye there being no inhabitants for such dwellings in the respective quarters of the town.

From this it must be evident that the value of town or city property, which consis principally of buildings, is divisıble into two parts; namely, -

That arising from the value of the soil or site; and
That which arises from the value of the buildings placed upon it.
We will suppose for a house which is fairly let at a rent of 1007. per annum, matter what the situation of it be, that it could be built for 10001 , and that the propriet or builder would be content with 7 per cent. for the outlay of his money, a rate by means larger than he would be entitled to claim, sceing that the letting, after it is bilt, a matter of speculation, and that loss of tenants and other casualties may temporat deprive him of the interest of his capital. In this case, then, the rent of the mere buildi would be $70 l$. ; and as the full rent assumed is $100 l$.,

$$
100-70=30, \text { which is manifestly the value of the ground or ground rent. }
$$

Thus in the cases of valuation of freeholds, wherein the gross rent can be acc rately ascertained, there can be no difficulty in coming at the real value of the gromed N because the building rent, or that arising from the expenditure of moncy on the soil, , be immediatcly ascertained by the architect, with the rate of interest on it which it is the builder should have. The remainder of the rent is that inseparably attached to the wa of the soil, and belongs to the ground landlord.

The reason for thus separating the two rents is this: the ground rent, attached it is to the soil, is imperishablc. It is true that the value of ground is constantly fly tuating from the power of fashion over certain localities; but with this the valuator can deal. The changes are slow; and the Lord Shafteshury in the time of Charles 11. wor have little thought it possible, when he placed his residence in Aldersgate Strect, that successors would have dwelt in a house in Grosvenor Square; neitler, even five and twer years ago, did it cross the mind of the then possessor of the Grosvenor property that \mid Five Fields at Chelsea contained a mine of wealth in the ground rents of Belgrave : Eaton Squares. Such are the mutations of property, with which the prescut question not involved, unless the gift of foresight, in a degree not to be expected, be given to valuator. The other portion of the value of house property is strictly the resnlt of perishable part of it, namely, the building itself; and this is limited by the durability the building, which has great relation to the time it has already existed, and to the st stantiality with which it has been constructed. The durability, then, or the mumber years a building will continue to realise the rent, is the second ingredient in a valuat. and is a point upon which none but an experienced person can properly decide.

The rate of interest which the buyer is content to obtain in the investment of money in buildings, or, in other words, in the purehase of the perishable anmuity aris from the buitding, will necessarily vary with the value of money in the market. In compensation cases under public improvements, wherein it is obligatory on the ownels
art with his property, the 6 per cent. rate of the table is generally used, by which the "yer makes too little interest on the perishable part of the property. Few would be inined to invest money in sueh property at so low a rate, for a rent which every year, from ear and tear, becomes less valuable. Individnals understanding the subject would arcely be found to purchase, unless tiey eould make at least 8 per cent. for this part of e eapital. In the cases above mentioned, twenty-five years' purchase, that is, 4 per cent., the usual price at whieh the ground rent is taken.

Having thus prepared the student, we will present an example of a valuation conducted the principles named. Thus, suppose a building and the ground on which it stands to together worth $150 l$. per anmm, and that its durability is sueh that a purchaser may unt on reeeiving that rent during a term of fifty years. We will suppose the house to and upon a plot of ground 24 feet in frontage and 60 feet in depth; that the size of the use is 24 fect by 40 feet, and that to build a similar one would cost $1,440 l$., which, at a te of 7 per cent. upon the expenditure, would produce a building rent of $100 l$. $16 s$, per intim.

We therefore here have the impcrishable part, viz the ground, of the value of $49 / .4 s$. per annum, which, giving the purchaser 4 fer cent. interest for his money, is twenty-five years' purchase for the fee-simple by the Fourth Tahle, that is

$$
1230 \quad 0 \quad 0
$$

An annuity (from the building) of $10 \div l .16 s$., to continue for fifty years, is, by the Fourth 'Table at 5 per cent., worth $18 \cdot 256$ years' purchase, that is

$$
\begin{aligned}
& =\begin{array}{lll}
1840 \quad 011 \\
\text { y } \\
\text { y. } \\
= & 21 \quad 2 \quad 0 \\
\hline 3091 & 211 \\
\hline
\end{array}
\end{aligned}
$$

The value of the old materials at the end of the term, if taken to be pulled down and sold for $150 l$., will be that sum at the end of tifty years to be received at the present time, discounting at 4 per cent. from the Second Table 1407×150
Total value of the freehold

In the above valuation the ground estimated by its frontage would be $\frac{49 / .4 s}{24 \text { feet }}=41 \mathrm{~s}$. per t, and ground is usually let by the foot when demised for building. In the chief parts of eat cities ground is now usually sold and let at per foot superficial.

The next casc of valuation is that of a bencficial lease, in whieh the rent paid by the see is less than the actual value of the premises. The difference between them, theree, is an annuity for the term of the lease, which is so much benefit to the lessee, and is inated by the Fourth Table; thus-
Suppose the aetual value of given premises be - - \quad - $\mathfrak{f l 0 0}$
Rent reserved by the lessor $\quad-\quad$ - $\quad-\quad$ - $\quad-\quad$ - 50

Beneficial annuity belonging to the lessee - . - - $£ 50$
If the term of the lease be twenty one years, such is the length of the annuity, and the destion stands as under:-
In annuity for twenty-one years, diseounting at 5 per eent., is by the Fourth Table worth 8211 years' purchase, which multiplied by $50 l .=641 \mathrm{l} .1 \mathrm{~s}$.
t is to be observed that the annuities must be elear after the deduction of all outgoings ich may be necessary to keep it unencumbered.
et us takc another case.
man takes a lease of ground at $10 l$. per annum, and lays out $1,000 l$. on a sixty-one years'
I e, interest being 3 per cent. How much must lee ruceive as rent to replace the princi-
1 at the end of the term?
000l. at 3 per cent. $=30 l .+10 l$. ground rent $=40 l$. improved rent.
l. per annum for sixty-one years at 3 per eent. will amount to 1691 . (See Third Table.) $\frac{000}{69}=5 l .9 s_{0}=$ the sum to be laid out yearly.
nd $301 .+5 l .9 s,=35 l .9 s$., or 3.59 , is the rate of interest to secure or replace the princiP at the end of the term without consideration of repairs, loss of tenants, insurance, \&c.

We now subjoin some observations on the valuation of home property, which clain th architectural student's attention. Inwood's Tables for the Purchasing of Estater, gre hav long beea in general use; they are founded on the elaborate Tables by Baily and Smar A selies are given hereafter. W. D. Biden, Rules, Formula, and Tables for the V'alnatio of Estutes. \& 9. , with his smaller work, Pructical Ru'es forValuers, 1862, are useful, and hat furnished the outline for the following remarks.

It is generally considered that the value of a fre ehold house ranges, according to situ: tion, style. condition, \&c., from 10 to 20 years' purchase. It naturally follows that ${ }^{\prime} 14$ chasers, and some valuators indeed, imagine that house property, as a rule, pays from 5 10 per cent. interest on the purchase-money. This is a great error, as many have es perienced who have endeavoured to realise and to expend yearly 8 per cent. on the cost house property. The valuation should be made at 5 per cent. (if the purchaser wil] 1 content with that interest); and the present value of $a l l$ the costs, charges, and losses inc dent to house property should be fairly stated and deducted in the valuation, and then $t l$ purchaser will not be deluded with the idea that he is to net a very large interest, whis may be spent unconcernedly. Such is the expectation of many of those who are induced : join Building Societies, and who buy, what appears to them, a bargain, as they will 1 receiving for years double or treble the amount of interest obtainable from the funds. change of tenants, or other cause, soon shows the difference. Where, however, the buy. himself occupies the house, whether freehold or leasebold, he may make a very advanti geous investment of his money. In the latter case, that is, of a leaschold, he must bear mind the result of the occupation of the premises, namely, dilapidations, for which he wh be called strictly to account by his landlord at the expiration of his term of lease.

Compare the following valuations, made in two ways, of a freetuld house, which w last for about 80 years, the tenants paying the rates amounting to about $\mathscr{L} 7$ per anmm. () valuator may make out his calculations thus:-

Gross rent received by the landlord
\mathfrak{L} s.
$-\left\{\begin{array}{rrr}1 & 10 & 0 \\ 1 & 2 & 6 \\ 0 & 15 & 9 \\ 6 & 6 & 0 \\ - & 14 & 6\end{array}\right.$
 $63 \quad 1$
\square

148
4811
(In a leaschold raluation, the ground rent would also have to be deducted)
'To pay 8 per cent., at years' purchase ('ourth T'able)
1
Presumed value of the property, according to this rough valuation - 0
A sother valuator will make out his calculations as follows:-

But property is usually subject to various depreciating contingencies, which must be provided against by an annual reserve according to the class of bnilding, thus:-
Deduct for losses by bad tenants, say 1 year's rent in $6=10100$
And, for extra repairs and expenses contingent upon such $\begin{array}{lllllll}\text { frequent changes, say an equal sum } & - & - & -10 & 10 & 0\end{array}$
Deduct a sum for rebuilding (say about $£ 690$), which, put by each year in the funds at 3 per cent. compound interest, will produce that amount at the end of the life of the house, say 80 years, i.e., $£ 1$ per annum for 80 years (Third

Table) - - - $\quad=\begin{array}{r}2 \\ 2\end{array}$

200
$\overline{£ 612 \cdot 726}$

Clear income from the property

If the purchaser elects to have 5 per cent. for his speculation, the amount to be paid for the property will be
$£ 512 \mathrm{C}$

The value of the ground in these calculations is included in the rental; when of s e unportance, it must be valued upon its own merits, as shewn in the previous page.

But there may be a further expealiture for surneyors' charges solicitors' charges for trimsferring the property, and loss of capital by selling out of the funds, which it may be olten necessary to deduct from that amount. A matter also of consideration is whether the building is in a good state of repair, both in structure and decoration, as ready for a tenant.

When the property is liaselold, then, as soon as the clear ineome has been ascertained. it will have to be multiplied by the number of years' purchase at the rate of interest reguined for the tern (Fourth J'ible), to find the amount that the property is worth. The number of years' purchase provides for the percentage and to get back the prineipal, the annual instalments of which must be insested at the same rate of interest to produce the total sum it the end of the term (in lien of the rebuilding fund in the frechold property). Among Inwood's Tables, l6th edition, 1855, is one (p. 177), whereby to calculate " the present value of an incone for a cestain number of years, which is to pay during its continuance a fiven rate of interest on the purchase-money, and to replace the purchasc-money at the end if the same number of years at a rate of interest to be selected."
From the former method of expressing the valuation, it would appear that a purchaser nay realise 8 per cent. upon his outlay; and so indeed he may, for a few years, if everything connected with the property be very favourable; but the latter calculation shows xactly what may be expected, namely, that on capitalising a ferther sum to form a sinking und for certain repayments, then 5 per cent. per anmum may be appropriated as iucome, he remainder of the rent being set aside to supply a fund to meet exigencies of no uneomnon occurrence. The rial value of the property, moreover, is found to be much less than what the rough calculation would show it to be worth.
The deductions for losses depend entirely upon the class of house. First class houses in good situations let so readily to responsible tenants, who for their own comfort and lisplay maintain the fabric, that the sums to be deducted for the occasional want of occusants and expenses of reletting are reduced to a minimum. On the other hand, a much ower class of house, together with the present unsatisfactory mode of letting houses on hree years' agreements, and the still more ineligible arrangement by the year, throw so nuch larger amounts for repairs, decorations, and change of tenancy, upon the landlord. 1at the total of the sums to be doducted is raised to a very high estimate. Hercin the est judgment of the valuator is called into requisition, and it requires the knowledge obined by the practical architect to assist his judgment in such matters.
After the actual value bas been ascertained, another item for consideration is the additional im that a purchaser will be indueed to give for some reason-such as the property being in fashionable neighbourhood; the house possessing array gements peculiarly suited to his ishes, and so on : this amount may be called a "fancy price," and when paid had better - considered as money sunk.

For making rough calculations, according to the first instance, the value of freehold $n d$ in the country is generally considered worth from 30 to 33 years' purchase, being callated on the 3 per cent. tables. In a few very exceptional cases as much as 40 y (ars, urchase has been given; but the difference constituted a "fancy price." For town plots min 25 to 30 years' is more usual. Freehold houses and buildings, 1st and Ind class, fiom to 20 years' purchase, or 5 per cent.; 3rd and 4 th cliss, about 16 years' purchase. or 6 r cent.
For Lcaseho'd property :-
ist and 2nd class, from 15 to 16 years' purchase or 6 per cent. 2nd and 3rd 3rd and 4th 4 th and 5 th 5 th and 6th " 14

$"$	7
$"$	8
$"$	9
$"$	10

Freehold Ground-rents are valuable in proportion to the extent to which they are ered by the rack-rent and by the period of reversion. A good ground-rent ought to ${ }^{1}$ six times covered, that is, five parts are brick and mortar rent, and one part ground1t. A reversion, however, unless within forty years, is not much taken into account.
ine ground-rents in the City of London (where the ground-rent is larger in proportion)
1 e sold for $31 \frac{1}{4}$ years' purchase; those only covered by three times the rack rent, sold
$\mathrm{f} \mid 25$ years' purchase. Leasehold and freehold ground-rents can only be valued according
t ocality, circumstances, length of holding, \&c. Unsccured ground-rents are usually
'led at 25 years' purchase, but those well-secured at from 30 to 33 years' purchase.
1 roved ground-rents are not worth so much as the freehold ground-rent, in consequence
c he covenants of superior leases, danger of breaches of covenants, \&c.
I1 the valuation of leases held on lives, the operation, after bringing the rent to a clear
a uity, is conducted by means of the sixth, seventh, and eighth tables, gisen hereafter, as
t case may require.
n the valuation of warehouses, the only safe method of coming at the value of a rental
is by the quantity of goods or tonnage they will contain after leaving prozer grangway, and not overloading the foors. In corn warehouses, howerer, the grain being listributed orer the surfice of the floor, the squares of floor are taken to come at the contents. Goods warehoused are paid for to the warehouseman usually at a weekly or monthly rent; and it 1s commonly considered that the profit he shonld make onght to be one half of the rem he pays to the landlorl, so that in that two-thirds of the actual rent realised goes to the proprietor, and the other third to the warehouseman or lessec. Tables of the weight and space occupied by different goods are given in the Glossaky Abdendum.

We have noticed at the commencement of this chapter that valuations depending upon building or building land are essentially within the province of the architect, Isut as valuations for Railway and Improvement compensations ramify into one and the other, as well as into agricultural land, a portion of the subject into which we do not eonsider it desirable here to enter, we will only notice that, as regards the former, there are several itcms, beyond those already mentioned, to be taken into consideration. A man holding : property, and dispossessed against his will, has a right to be paid for his interests being so injurionsly aftected, hence an item for" compulsory sale" is allowed; this was formerly an much as 30 per cent. for house property, now it is only 10 per cent. ; while for land, frum 10 to 25 per cent. is obtained, according to circumstances. With certain exceptions, the purchase of lands compulsurily is placed under the provisions of the Statute 8 Vict. e.p. 18, "The Land Clauses Act." The assessment of the items usually consists of the following heads:--I. The value of the property taken. II. Any reversionary or prospective advantage the owner may be likely to receive at any time; to be estimated in present money. llI. Any advantage the owner may have by carrying on a trade, busisess, on profession, in a locality; whether the same would be utterly destroyed, or a portion br taken with him. IV. The cost of removing, or loss by forced sale. V. The value of the portion only of the property (if so taken), and amount of damage the remander may sustain in consequence of the severance; this is usually called consequential damatic VI. If a portion only be taken, and that portion injuriously divides the remainder of the property, the estimated amount of damage is known as severance. VII. Compensation for loss of time, trouble, and expense, in finding a new investment; loss of intcrest; th parting with property to which one is attached to and has an interest in ; and other lowse by being foreed to give up a property and seek new. This forms the item of compulsor. sule.

CHAP. II.

CIVIL AND ECCLESIASTICAL DHLAPLDATIONS.

I he architect, in the conrse of business, may be commissioned to ascertain the extent neglect on the part of an occupant in keeping premices in proper order according to th terms upon which the property is held by him. In civil cases it is not usual for the less: to exercise a power, generally reserved to him in leases, of causing his architect to inspe the premises from time to time to detect dilapidation ; but it is usual for the lessor to em such an inspection (at a reasonable period, so that the repairs may be done) before t expiration of the term : this reasonable period may vary from two to twenty-six weck more or less. After such inspection or survey, a notice to repair dilapidations aeeording its appended schedule is served upon the tenant, who way either execute the works with the term, or (unless he can compound with the lessor for a sum to he ascertained mad arbitration) take the responsibility of paying the charges of the tradesmen employ by the lessor after the premises have been surrendered, to whieh a eompensation for loss rent is naturally added; but this arrangement, if adoptel, is a very cxceptional m cedure. It will be evident that in cases where a lease expires and is not to be renew before other suitable premises can be obtaincd, the latter method of action may desirable; but generally, and especially in the case of a dwelling-house, the cheape if the most inconvenient, course is for the tenant to have a survey made for himself and get the repairs executed within the term. In ecclesiastical cases the survey previons the end of oceupancy is rarely, if ever, practicable; and a sum must be ascertained unt arbitration. According to the usual tenor of leases, the lessor expects that the premi shall be delivered, at the expiration of a term, in as good condition as the use aml u during the time will permit, and the lessee undertakes to make good any injury which premises may have suffered through acciderit, neglect, or intention; these conditions ap not only to what was originally demised, but to whatever may have been creetud dur his occupation. In ecclesiastical cases the prineiple, as will hereafter be explainel rather different. It may be noticed here that the term uear and tear is a popmar mist whith the law does not support; use and wear is legitimate, tear is dilapidation.

In civil dilapidations a tenant is bomd, according to his covenant, specific or general, ut never beyond maintaining and upholding, maless the conditions of repair are so had lat no measures shurt of reconstruction are consistent with safety, or possible from the stent of decay. His liability is not supposed to extend to such defects as only indicate fe, so long as the efficiency of the part still remains. But if the effects of use or age have rocecded so far as to destroy the part, or its efficiency in the structure, the tenant is liable, being the presumption that at the commencement of the term the tenant was satisfied lat every part was sufficiently strong to last to the close. On the same presumption the egree of liability of the tenant is regnlated by the actual condition of the premises at any me, as specified in his covenant, and adinits of no extenuation by reason of dilapidations isting at the commencement of his term, as he is presumed to have taken the proper urse to guard hims. If against the occurrence of undue liability. In extreme eases, the bility of a tenant extends to the rebuilding of a party wall condemned as unsafe, to construction after fire, \&c., unless specially excepted. In fact, under the natural and the yal favour which the lessor enjoys, the person proposing to become the lessee should iploy a professional surviyor, not only to inspect the apparent, and as far as he can the dden, state of the building, but also to check the conditions eontained in the draft of the ise, which are sometimes extravagant when applied to an old and worn-out fabric, though ey :night be reasonable as regards a new structure.
Whatever the tenant has power to remove during the term cannot be ehargeable with lapidations. Upon this point the old rule is, that whatever is fixel to the freehold eannot remored by the tenant: thus a lessee may crect barns or sheds or any building upon soden or stone or other blocks laid on the surface of the ground, and take them down, if please, without substituting anything in their place; but if the barns are fixed into the und, they immediately become the property of the iessor. There seems, however, to be exception in respect of buildings erected for the purposes of trade: hence not only pers and ovens may be taken away, but workshops and the like erected by the tenant his paticular trade. This exception seems at first to have applied only to wooden ldings; but Lord Kenyon held that a brick ehimmey would prevent a terant from noving a building, and decided that its being on a brick foundation would not do it. ough this opinion was not held by Lord Ellenborough, yet it was not because the ldings were of brick, but because they were erected for the purposes of agriculture, and 1 of trade. It is to be remembered, in all cases, that a lessee is bound to leave the 1 nises in as good condition after the removal of fixtures as though they had never (ted: thus, if a marble be substitnted for a wooden chimney-piece, when the former is roved, the latter, or one of equal value, must be replaced. If a partition be put up and t n away, all damages to the adjacent work must be repaired.
'he general rule for determining what injuries are considered dilapidations, is to ascertain v t is fair uear without dilapidation arising from accident or neglect. Injury by accic. is that which happens suddenly, and perceptibly differing from wear, which occurs by lengthened use. Thus the nosing of a step worn away is not dilapidation; but if be broken away instead of worn, it is a dilapidation. It may be said that
allent is defined here with too much latitude, inasmach as it takes account of t] which occurs without apparent reason at any particular time; but we use the term in c mon language, and may cite as an example, that if the timbers of a floor decay, the
A. will yield, even without a load upon it. When accident occurs, such alone does not
liv the extent of the dilapidation, but also suel, injuries to the building as follow in its
Thus, if the weather-boarding of a building decay from age, so long as the
co ing will keep out wet, it is no dilapidation; but if broken in any part, that is a dikapi-
da n ; and if from want of reparation any of the internal parts of the building be injured,
su injury is a dilapidation: so if timber or timbers belonging to any part of a house
mily decay, if it or they be still sufficient for the support of the house, no dilapidation ca. je chargeable; but if such timber or timbers give way, they must be replaced, an $1 l$ parts made good which suffered by their failure. Wate, in law, is insufferable, evi in freeholds which are held for lives only. Aecording to Woodiall (Landlord und I' $n t$), "waste may be done in houses by pulling them down or suffering them to be un ered, whereby the rafters and other timbers of the house become rotten; but the bare sut ing them to be uncovered, without rotting the timber, is not waste: so if a house be un. ered when the tenant cometh in, it is no waste in the tenant to suffer the same to fall do " In external covering, however, it seems that decay arising from inattention to it is dili lation, even though no aceident be the cause. It is always considered that though paing neglected is not itself a dilapidation, yet where decay arises from it, it is one. liren glass is not considered a dilapidation, unless there be more than one crack in the Some, however, contend that while the glass is sufficiently entire to exclude the win and weather, no waste is assignable. Generally it seems then to be the rule, that whit accident occurs, it is a dilapidation.

Ithe preceding laragraph the word neglect has naturally occurred; dilapidation from
neglect being very often followed by di'apidation by arcident: the latter term is still more nearly commected with the word misuse, which occupies the place here given to "accident" in the Report upon Jilapidations, published in 1844 by the Royal Institnte of British Architects. 'Clis Report does not define its meaning of the word misuse; it is clearly not the meaning in which the term is generally employed; for the Report says, "If the effects of use or age have proceeded so far as to destroy the part or its efficiency in the structure, this argues neglect or misuse." 'The student will find it advantagcous to staly the Report, and cspecially the specification contained therein.

This specification instructs the mason " in cases of broken nosings, or of the treads being worn to such an extent as to render the passing up and down dangerous," to picce as described the step; and also dircets the joiner "to put nosings to stairs where partially defective, and treads where wholly so." 'There is in appearance a contradiction between these views upon worn steps and that given in the commencement of this chapter; but thr practised surveyor will see that they are easily reconciled, and that his judgment must decide which is, and which is not, fair use and wear. It is to be regietted that the clear and discriminating section on dilapidations in Chambers and Tattersall, Laus reluting th Building, 1845, contains a sweeping condemnation of this Report, which is in no way authorised by the evidence adduced.

We have added to the usual definition of dilapidation, namely any injury throngh acci deut, misuse, or neglect, the word intention; and the propriety of the addition, as meaning some thing different from wilful waste, will be obvious. 'Tle erection of a photographer's roon on the top of a house in one street may be deemed an injury, and be elaimed as dilapida tion by a lessor, who would demand the removal of it and the restoration of the rool while in another street, and within a few yards of this dilapidation, the same le'sor migh consider the same work (if judiciously executed) an improvement which he would no allow to be removed. So also a grated iron door, instead of the common wooden one, an similar alterations, may become dilapidations of intention at the pleasure of the lessor There is another point on which surseyors have frequently differed, namely the insertion : nails and serews for the suspension of frames of pictures, \&e. This may be now consideredt be determined by the judginent in the case of Martin and another v. Roe (1857), where he liouse frames, bedded in mortar on brick walls, had been removed without damage exee what was unavoidable to the mortar. Lord Campbell said that, "in considering th question, we treat the removal by the plaintiff as having been in fact effected without is jury to the freehold. In all cases of this kind, injury to the freehold must be spoken with less than legal strictuess. A screw or a nail can scarcely be drawn withont son injuy; and when all the harm done is that which is unavoidable to the mortar laid brick walls, this is so trifling that the law, which is reasonabie, will regard it as nom Among surveyors it has been held that what is nailed belongs to the freehold, but th which can be unscrewed does not, the careful withdrawal of the screw enabling the ten: to make good the hole.

Although there is a general impression that only damage of broken glass can be claim from a yearly tenant, he is to use the building in a husbandlike manner, and is bound fair and tenantable repairs so far as to keep it wind and water tight and to prevent wal or decay.

It used to be supposed that the judgment in the case of Wise \boldsymbol{v}. Medcalf (1829) ac tained an exposition of the whole law on the subjeet of ecclesiastical dilapidation as far regarded inemmbents; and the decision, which is contained in the following words, shor be always in the mind of the surveyor:-"Upon the whole, we are of opinion incumbent was hound to maintain the parsonage (which we must assume upon this c to have been suitable in point of size and other respects to the benefice) and also chancel, and to keep them in good and substantial repair; restoring and rebuilding w necessary, according to the original form, without addition or modern improvement ; that be was not bound to supply or maintain anything in the nature of ornament, to wl painting (unless necessary to preserve exposed timbers from deeay) and whitewashing. papering belong." This decision is held to establish the principle that the exceutors deceased incumbent are bound to perform those repairs which are necessary to pre $\frac{1}{6}$ Cecay, and to use all reasonable means for preventing any finture decay. case of Mason v. Lambert (1848) showed that perpetual curates were liable as cumbents for these dilapidations. We have therefore to add, in ecclesiastical c any provision against prospective injury ; such as paint necessary to prescrve exp d wood work from decay, the insertion of ties to plates tahing the feet of rafters, the ui pioning of walls at cracks showing contimal settlement: these might be entitled dila: i' tions of precaution, and ought to include the immediate destruction of any erections, ic by a late incumbent which were suitable to his private fortune rather than to the ben e, as seems to be indicated in the judgment given in the case of Nlartin and another v, , (1857), wherein it is observed that. "as to any matter of needless expense or luxat of ornament by which the present incumbent has gratified his own taste or increased bi in
mfort, he is not only not bound, but he ought not, to transmit it to his suceessor." he principle thus stated is directly opposite to that which, as we have above observed, gulates civil cases, namely, that the occupier must keep in repair whatever may have en erested during his occupation. The judgment just cited continues in these words: If the successor may recover damages from the executor after such things have been reoved by the testator, there can be no donbt he in his turn must maintain it; and if he aintain it he must also restore, and even rebuild when decayed; so that the bencfice ight become permanently saddled with a useless burden." 'The duty to remove such ections does not, however, appear quite to have been thrown upon the estate of the ector : the same judgment says, "the case now supposed is that of an erection, which, if e deceased had left out of repair, his successor eould not have maintained any action for lapidations, which he himself thercfore would not be bound to keep in repair, which imises no burden on him, and which he may remove; for it wonld be unreasonable to hold at he might not remove, however useless or unsuitable to the living, or even inconnient to the occupation of the parsonage or glebe, that which for one of these rcasons he is not bound to keep in repair." Finally we would quote from the same judgment: with regard to an ecclesiastical benetice, the character and object of the building to iich the clattel is attached, and the mamer in which it has been so attached, scem of ry great consequence in determining whether there was any intention to separate it peranently and irrexocably from the personal estate." In this case the plaintiffs (cxccutors) re held justified in removing the framework and sashes, valued at 300l., of two hot uses, and might apparently have removed also the brickwork, repairing any waste or mage to the freehold. With respect to that damage we have already referred to this se.
The real difference between eivil and ecclesiastical dilapidations may be thus stated :e man takes certain premises, engaging to pay a rent in order to derive advantages out them, but having no interest in the treehold. The other man receives a salary to do tain services, the use of the house being a portion of that salary. In the latter case, if a man's own private convenience he lays ont a large sum on the frcebold, that expendie will seriously affect his successor, if he have to be burdened with large and expensive ctions or decorations suitable perhaps for one of an aristocratic family, but quite foreign the habits of a future rector of the village coming in as an ordinary occupant.
Such are the general principles of the law of dilapidations; these, in their application, herally impose upon the out-going occupant or his representatives the payment of a sum for ich special provision is racely made during the occupancy: the misery thus entailed is shetimes evaded in civil cases by the lessee, who parts with the remainder of a lease to , one who will give something for it ; or who (if the lessor be not careful) assigns it to fan of straw.

CIIAP. III.

CALCULATION OE INTEREST.

aterest, or the value of the use of money, is usually expressed per cent, or after tl rate per hundred on the principal lent. Thus, if we put out 500 pounds sterling at 5 r cent., it signifies that for every hundred pounds the lender is to receive five pounds plimnum during the continuance of the lom. The solution of this question, which is o: inerely of simple interest, is so obvious, that it is unnecessary further to detain the rt er upon it ; and we therefore pass on to compound interest, or interest upon interest, w h arises from the principal and interest taken together, as it becomes due at the end ot ich stated time of payment.
the resolution of this question, we are to consider that 1001 . at the end of a year
lus, by adding its twentieth part to the original principal, we have the prineipal at e end of the first year; adding to this last its twentieth, we know the amount of the
mi principal in two years, and so on. Hence the annual increases to the princiן al may be prily computcd. Suppose, for instance, the principal of 1000 . Expressing the values in cimal fraetions, it will be worth-

After I year	-	-		$\begin{aligned} & 1050 \\ & 52 \cdot 5 \end{aligned}$	One year's interest on $\ell 1050$.		
Atter 2 years	-	-		$\begin{aligned} & 1102 \cdot 5 \\ & 55 \cdot 125 \end{aligned}$		-	$1102 \cdot 5$
After 3 years	-	-		1157.625		-	1157.625
After 4 years	-	-		$\begin{array}{r} 1215.506 \\ 60.775 \end{array}$		-	$1215 \cdot 506$
After 5 ycars	-	-		1276.281			

The method above exhibited would, however, in calculations for a number of years, becous very laborious, and it may be abridged in the following manner.

Let the present principal $=a$; now, since a principal of $20 l$. will amount to 21%. al the end of a year, the principal a will amount to $\frac{21}{20} \times a$ at the end of that time. At the and of the following year the same prineipal will amount to $\frac{21^{2}}{20^{2}} \times a=\left(\frac{21}{20}\right)^{2} \times a$. This prineipal of two years will, the year after, amount to $\left(\frac{21}{20}\right)^{3} \times a$, which will therefore be the principal of three years; increasing in this manmer, at the end of four years the prineipal becones $\left(\frac{21}{21}\right)^{4} \times a$. After a century it will amount to $\left(\frac{21}{20}\right)^{100} \times a$, and in general $\left(\frac{21}{210}\right)^{n} \times a$ is the amount of the principal after n years; a formula serving to determine the anount of principal after any number of years.

The interest of 5 per cent., which has been taken in the above ealculation, determined the fraction $\frac{21}{23}$. Had the interest been reckoned at 6 per eent. the principal a would at the end of a year be (306) $\times a$; at the end of two years to $\left(\frac{106}{100}\right)^{2} \times a$; and at the end of n years to $\left(\frac{106}{100}\right)^{n} \times a$. Again, if the interest be at 4 per cent. the principal a will, after n years, be $\left(\frac{104}{100}\right)^{n} \times a$. Now all these formulx are easily resolved by logarithms; for if, according to the first supposition, the question be $\binom{21}{2,1}{ }^{n} \times a$, this will be $\mathbf{L} .\binom{21}{20}^{n}+$ L. a, and as ($\left.\frac{21}{20}\right)^{n}$ is a power, we have $L .\left(\frac{21}{20}\right)^{n}=n \mathrm{~L} . \frac{21}{20}$: so that the logarithm of the principal required is $=n \times \mathrm{L} . \frac{21}{20}+\mathrm{L} . a$, and the logarithm of the fraction $\frac{21}{20}=\mathrm{L} .21-\mathrm{L} .20$.

We shall now eonsider what the prineipal of 10001 , will amount to at compoune interest of 5 per cent. at the end of 100 years. Here $n=100$. Hence the logarithm o the principal required will be $=100 \mathrm{~L} \cdot \frac{21}{20}+\mathrm{L} .1000$, calculated as under : -
$\mathrm{L} .21=1.3222193$
Subtracting L. $20=1 \cdot 3010300$
L. $\frac{21}{20}=\overline{0.0211893}$

Multiply by 100

$$
100 \mathrm{~L} \cdot \frac{2}{2} \overline{0}=2 \cdot 1189200
$$

Add L. $1000=3 \cdot 0000000$
$5 \cdot 1189300=$ Logarithm of the princip: required, from the charaeteristic whereof the principal must be a number of six figure and by the tables it will appear to be $131,501 \%$. In the case of a principal of $3452 l$: 6 per cent. for sixty-four years, we have $a=3452$ and $n=64$. Principal at the end of th first ycar therefore $=\frac{106}{100}=\frac{53}{50}$. Hence the logarithm of the principal sought $=64 \times 1 . \frac{53}{50}$ L. 3452 , which will be found to amount to 143,7631 .

When the number of years is very great, errors of considerable magnitude ma arise from the logarithms not being sufficiently extended in the decimal places; but as ol object here is only to show the primeiple on which these caleulations are founded, wed not think it necessary further to pursue that subject.

There is another case which now requires our consideration; it is that of not onl adding the interest annually to the principal, but mereasing it every year by a new su $=b$. The original principal a would then increase in the following mamer:-

$$
\begin{aligned}
& \text { After } 1 \text { year, }{ }_{21}^{20} a+b \\
& \text { After } 2 \text { years, }\left(\frac{21}{21}\right)^{2} a+\frac{21}{2} b+b \\
& \text { After } 3 \text { years, }\left(\frac{21}{25}\right)^{3} a+\left(\frac{21}{25}\right)^{2} b+\frac{21}{21} b+b \\
& \text { After } 4 \text { years, }\left(\frac{21}{21}\right)^{4} a+\left(\frac{21}{20}\right)^{3} 3+\left(\frac{21}{20}\right)^{2} b+\frac{21}{20} b+b \\
& \text { After } n \text { years, }\left(\frac{21}{20}\right)^{n} a+\left(\frac{21}{20}\right)^{n-1} b+\left(\frac{21}{20}\right)^{n-2} b+\ldots \ldots \frac{21}{20} b+b
\end{aligned}
$$

This principal evidently consists of two parts, whereof the first $=\binom{2}{20}{ }^{n} a$, and the oth taken inversely, forms the series $b+\frac{21}{25} b+\left(\frac{21}{25}\right)^{2} b+\left(\frac{21}{20}\right)^{3} b+\ldots\left(\frac{21}{20}\right)^{n-1} b$. This last seriec evidently a geometrical progression, whose exponent $=\frac{21}{21}$. Its sum, therefore, will be fon by first multiplying the last term $\left(\frac{91}{22}\right)^{n-1} b$ by the exponent $\frac{21}{20}$, which gives $\left(\frac{21}{25}\right)^{n} b$. . . 1 tract the first term b, and we have the remainder $\left(\frac{1}{20}\right)^{n} b-b$; and lastly, dividing ly, the a
ment minus 1 , that is, by $\frac{1}{20}$, we have the sum required, $=20\left(\frac{21}{20}\right)^{n} b-20 b$. Wherefore the incipal sought is $\left(\frac{21}{20}\right)^{n} a+20\binom{21}{20}^{n} b-20 b=\binom{21}{20}^{n} \times(a+20 b)-20 b$.

To resolve this formula we must separately caleulate its first term ($\left.\frac{21}{20}\right)^{n} \times(a+20 b)$, lich is $n \mathrm{~L} . \frac{21}{2}+\mathrm{L} .(a+20 b)$, for the number which answers to this logarithm in the tables 11 be the first term, and if from this we subtract $20 b$ we have the principal sought.

Suppose a principal of $1000 l$, placed out at 5 per cent. compound interest, and to it ere be annually added 100 . besides its compound interest, and it be required to know io lat it will amount at the end of 25 years. Here $a=1000, b=100, n=25^{\circ}$ and the eration is as follows : -

$$
\mathrm{L} . \frac{21}{20}=0.021189299
$$

Multiply by 25 we have 25 L . $21.3=0.5297 .324750$
L. $(a+20 \hat{b})=3 \cdot 4771213135$

$$
=4 \cdot 0068537885
$$

e first part or number which answers to this logarithm is $10159 \cdot 11$; from whieh if we tract $20 \mathrm{~L}=2000$ we find the prineipal in question to be after 25 years $8159 \cdot 11$.

If it be required to know in how many years a prineipal of 1000 . under the above iditions would amount to $1,000,000 l$. let n be the number of years required, and sinee $=1000, b=100$, the prineipal at the end of n years will be $\left(\frac{21}{25}\right)^{n}(3000)-2000$, which sum st make $1,000,000 l$. ; whence results this equation:-

$$
3000\left(\frac{21}{2},\right)^{n}-2000=1000000
$$

Adding to both sides 2000 we have $3000\left(\frac{21}{25}\right)^{n}=1002000$
Dividing both sides by 3000 we have $\left(\frac{21}{20}\right)=334$
$\mathrm{ng} \log \mathrm{arithms}$ we have $n \mathrm{~L} \cdot \frac{21}{20}=\mathrm{L} .334$, and dividing by $\mathrm{L} . \frac{21}{20}$, we obtain $n=\frac{\mathrm{L} .334}{\mathrm{~L} . \frac{21}{20}}$. Now $34=2.5237465$ and L. $\frac{21}{20}=0.0211893$, wherefore $n={ }_{0.0211893}^{2.5237465} . \quad$ If, lastly, the two terms 0 his fraction be multiplied by 10000000 , we shall have $n=\frac{2: 5237465 \text {, }}{211 s 93}$ equal to one hun$d 1$ and nineteen years one month and seven days, which is the time wherein the princ 1 of 10001 . will be inereased to $1,000,0001$. In the ease of an annual decrease ind of increase of the capital by a certan sum, we shall have the following gradations as tivalues of a, year after year, the interest being at 5 per cent., and, representing by b the si annually abstracted from the principal,

After 1 year it would be $\frac{21}{20} a-b$

After 2 years	-	$\left(\frac{21}{20}\right)^{2} a-\frac{211}{20} b-b$
After 3 years	-	$\left(\frac{21}{21}\right)^{3} a-\left(\frac{21}{20}\right)^{2} b-\frac{21}{20} b-z$
After n years	-	$\left(\frac{21}{23}\right)^{n} a-\left(\frac{21}{21}\right)^{n-1} b-\left(\frac{21}{20}\right)^{n-9} b \ldots-\left(\frac{21}{20}\right) b-b$.

is principal evidently consists of two parts, one whereof is $\left(\frac{21}{2}\right)^{n} a$, and the other to be subtried therefrom, taking the terms inversely, forms a geometrical progression, as follows : -

$$
t+\left(\frac{21}{20}\right)^{b}+\left(\frac{21}{20}\right)^{2} b+\left(\frac{21}{20}\right)^{3} b+\cdots\left(\frac{21}{20}\right)^{n-1} b
$$

e sum of this progression has already been found $=20\left(\frac{21}{20}\right)^{n} b-20 b$; if, therefore, this be btracted from ($\left(\frac{21}{20}{ }^{n} a\right.$, we have the prineipal required after n years $=\left(\frac{21}{20}\right)^{n}(a-20 b)+20 b$.

For a less period than a year, the exponent n becomes a fraction ; for example, 1 day
2 days $=\frac{2}{655}$, and so on. It often happens that we wish to know the present value of
a s, of money payable at the end of a number of years. Thus, as 20 pounds in ready
me y amount in a twelvemonth to 21 pounds, so, reciprocally, 21 pounds payable at the
encf a year can be worth only 20 pounds. Therefore, if a be a sum payable at the end
of rear, the present value of it is $\frac{20}{21} a$. Hence, to find the present value of a prineipal a end of a year, we inust multiply by $\frac{20}{2 T}$; to find its present value at the end of two
it must be multipiied by $\left(\frac{20}{1}\right)^{2} a$; and, in general, its value n years before the time of
payent will be expressed by ($\left.\frac{20}{31}\right)^{n} a$.
Thus, suppose a rent of 100%. receivable for 5 years, reekoning interest at 5 per cen if we would know its value in present money, we have

For $£ 100$ due after 1 year, the present value is $£ 95.239$
after 2 years - $\quad 90 \cdot 704$
after 3 years - $\quad 86: 385$
after 4 years - 82.272
after 5 years - $\quad 78 \cdot 3.5 .5$
Sum of the five terms $£ 432 \cdot 955$
So $t \mathrm{t}$ in present noney, the value is 432 l .19 s .1 d .
But for a great number of years sueh a caleulation would beeome labor'ous. It
facilitated as follows: - Let the annual rent $=a$, commeneing directl) and con-
tinuing n years, it will be worth $a+\left(\frac{20}{21}\right) a+\left(\frac{20}{2 T}\right)^{2} a+\left(\frac{20}{2 T}\right)^{3} a+\left(\frac{20}{2 T}\right)^{4} a \ldots+\left(\frac{27}{21}\right)^{n} a$, whiel is a geometrical progression whose sum is to be found. We have therefore only to multip!: the last term by the exponent, the product whereof is $\left(\frac{29}{2 T}\right)^{n+1} a$, then subtract the first tern and the remainder is $\left(\frac{20}{21}\right)^{n+1} a-a$. Lastly, dividing by the exponent ininus 1 , that is, $\frac{1}{2}$ or, which is the same, multiplying by -21 , we have the sum requirt $d,=-21\left(\frac{20}{2}\right)^{n+1} a+21 c$ or $21 a-21^{n+1} a$, the value of which second term is easily calculated by logaritlims.

CIIAP. IV.

COMPOCND INTEREST AND ANNUITY TABLES.

As the architect is often called on to value property, we here add some practical obse vations on the subject, and a set of labhes for the ready calculation of such matters, whit we shall at once explain.

Tabee First contains the amount of 11 . put out to accumnlate at compound interest f_{1} miny number of years up to 100 , at the several rates of $3,4,5,6,7$, and 8 per cent. I: amount of any other sum is found by multiptying the amount of $l l$ found in the table the given rate per cent., and for the given time, by the procosed sum.

Example:-Required the amount of 7551 . in 51 years, at 5 per cent.
Amount of $1 l$. for 51 years. at 5 per cent. is - - - - 12.040769
Given sum - - - - . . . - . . 755
or 9090 . 15 s. $7 \frac{3}{10} d$.
$£ 9080 \cdot 780595$
Tabie Seconis contains the present value of $1 l$. payable at t^{\prime} e end of any number of ye up to 100 . The present value of any given sum payable at the expiration of any numb of years is found by multiplying the present value of $1 l$. for the given number of years, the proposed rate per cent., by the given sum or principal.

Example:-Required the present value of $9090 l$. payable 51 years hence, compot interest being allowed at 5 per cent.

By the table, the present value of 11 . payable at the expiration of

$$
51 \text { y cars at } 5 \text { per cent. is - }-\quad-\quad-\quad-
$$

Given proncipal
or $754 \mathrm{l} .18 \mathrm{~s} .{ }_{7}{ }_{\mathrm{I} 0}^{4} \mathrm{~d}$.
$\mathfrak{E}^{7} 54 \cdot 933590$
Table Thirn contains the amount of an annuity of $1 \boldsymbol{l}$. for any number of years, an ${ }^{3}$ thus used. Take out the amount of 17 . answering to the given time and rate of inter : this multiplied by the gisen annuity will be the required amount.

Example :-Required the amount of an annuity of $27 l$. in 21 years, at 5 per cent. c pound interest.

Annuity of $1 l$. in 21 years at 5 per cent.
Annuity given
An $964 l .8 s, ~$$\frac{7}{10} d$.
Table Fourth shows the present value of an annuity of $1 /$. for any number of yea: at $3,4,5,6,7$, and 8 per cent., and is used as follows:-

First, when the annuity commences immediately. Multiply the tabular number an ring to the given years and rate of interest by the given ammuity, and the productwill the value required. (This table provides for the percentage and to get back the principa

Example:-Required the present value of an annuity of $45 l$., which is to contint to years, at the rate of 5 per cent.

Under 5 and opposite to 48 years is (years' purchase) - . 18.07715
Annuity given
or $8131.9 \mathrm{~s} .5_{10}^{3} \mathrm{~d}$.
£S13.47206
Serond, when the annuity does not commence till after a certain number of years. tiply the difference between the tabular numbers answering to the time of commenc ent end end, at the proposed rate of interest, by the given annuity, the product wilt presint value required.

COMPOUND INTEREST.

Example.

n annuity of $40 l$. is to commence 20 years hence. and is to continuc 30 years; reguired is resent value, the rate of interest being 4 per cent.

Under 4 per cent. and opposite to 20 is - - - . . 13590.326
Under 4 per cent. and opposite to $50(20+30)$ is . - . 21.482184
$\begin{array}{lllllllll}\text { Difference } & - & - & - & - & - & - & - & 789185 \mathrm{c} \\ \text { Annuity given } & - & - & - & - & - & - & 40 \\ £ 315674320\end{array}$

ible Fifth contains the anmity which $1!$. will purchase, eompound interest being al ed. The manner of using this table is obvious, from what has been said relative to th receding tables.

Example.

hat annuity for 10 years will 50 Nl . purchase, the rate of interest being 5 per eent.?
Under 5 and opposite to 10 is - - 129504

Prineipal given
£ $64 \cdot 752000$
or 64l. 15s. $0_{10}^{3} d$.
bles Sixth, Seventh, and Eigutri are for finding the value of annuities on single and joi lives, and were construeted by Simpson, on the London bills of mortality.
find the value of an annuity for a single life, at a proposed rate of interest, within the
lim of the table, take from Table VI. the number answering to the given age and proposed
at f interest, which multiplied by the given annuity, the product will be the value requil.

Example.

at is the value of an annuity of $50 l$. upon a single life aged 40 years, neeording to the Loun bills of mortality, the rate of interest being 4 per cent. ?

I find the value of an annuity of two joint lives, mulxiply the number in Talle VII. ansv ing to the given ages, and at the proposed rate of interest, by the given annuity, and the duct will be the required value.

Example.

H. t is the value of an annuity of $60 l$. for two joint lives, the one being 30 and the other $40 y$ ss, interest at 4 per cent.?

Tc nd the value of an annuity for the longest of two given lives, proceed as directed in the c:immediately preceding, but using Table VIII., and the product will be the value.

Example.

W. is the value of an annuity of $60 l$. for the longest of two lives, the one being 30 and the 0,40 years, interest at 4 per cent.

e tabular number answering at									
nuity	4	per cent. is		-	-	-	-	15.9	
l'resent value	-	-	-	-	-	-	-	-	-

[^17]The First Table of Compouno Interest.
The Amount of One Pound in any Number of Years, \&c.

Years.	3 per Cent.	4 per Cent.	5 per Cent.	6 per Cent.	7 per Cent.	8 per Cent.
1	$1 \cdot 014889$	$1 \cdot 019803$	$1 \cdot 024695$	$1 \cdot 029563$	$1 \cdot 034408$	1.039238
1	$1 \cdot 030000$	$1 \cdot 040000$	1.050000	$1 \cdot 060000$	$1 \cdot 070000$	$1 \cdot 08000$
4	$1 \cdot 045335$	$1 \cdot 060596$	1.075929	$1 \cdot 091336$	$1 \cdot 106816$	$1 \cdot 122364$
2	$1 \cdot 060900$	$1 \cdot 081600$	$1 \cdot 102500$	$1 \cdot 123600$	$1 \cdot 144900$	$1 \cdot 16640 \times$
21	$1 \cdot 076695$	1-103019	1-129726	$1 \cdot 156817$	1-184293	1-2121.5
3	1.092727	1-124864	$1 \cdot 157625$	$1 \cdot 191016$	$1 \cdot 225043$	12.5971 ¢
31	$1 \cdot 108996$	$1 \cdot 147140$	$1 \cdot 186212$	1-226226	1-267194	$1: 09131$
4	$1 \cdot 125508$	$1 \cdot 169858$	$1 \cdot 215506$	$1 \cdot 262476$	$1 \cdot 310796$	1-36048
$4 \frac{1}{2}$	$1 \cdot 142266$	$1 \cdot 193026$	$1 \cdot 245523$	1-299799	$1 \cdot 355897$	$1 \cdot 41386$
5	1•159274	$1 \cdot 216652$	1.276281	1-338225	$1 \cdot 402551$	$1 \cdot 4 C 932$
$5 \frac{1}{2}$	$1 \cdot 176584$	1.240747	$1 \cdot 307799$	1.377787	14.50810	1:52697
6	1-194052	$1 \cdot 265319$	1-340095	1.418519	1.500730	$1 \cdot 58687$
$6{ }_{2}^{1}$	$1 \cdot 211830$	$1 \cdot 290377$	1:373189	$1 \cdot 460454$	$1 \cdot 552367$	J-64912
7	$1 \cdot 229873$	1315991	$1 \cdot 407100$	$1 \cdot 503630$	1605781	1-71982
$7 \frac{1}{2}$	$1 \cdot 248185$	1341992	$1 \cdot 441848$	$1 \cdot 548082$	$1 \cdot 661033$	$1 \cdot 78105$
8	1266770	$1 \cdot 368569$	1.477455	1.593848	1.718186	J 850993
$8 \frac{1}{2}$	$1 \cdot 285631$	$1 \cdot 395672$	1.513941	1.640967	1.777305	$1 \cdot 92354$
9	1-304773	$1 \cdot 423311$	1.551328	$1 \cdot 689478$	18838459	1.99900
$9 \frac{1}{2}$	$1 \cdot 324200$	$1 \cdot 451498$	$1 \cdot 589638$	$1 \cdot 739425$	$1 \cdot 901717$	2.0771:
10	$1 \cdot 343916$	$1 \cdot 480244$	1-628894	$1 \cdot 790847$	1967151	2.1589:
102	1.363926	$1 \cdot 509558$	$1 \cdot 669120$	1.843790	$2 \cdot 034837$	$2 \cdot 2436$
11	1.384233	$1 \cdot 539454$	$1 \cdot 710339$	1.898298	$2 \cdot 104851$	2:3316
$11 \frac{1}{2}$	$1 \cdot 404843$	$1 \cdot 569941$	1•752576	$1 \cdot 9.54417$	2-177275	$2 \cdot 4231$
12	$1 \cdot 425760$	$1 \cdot 601032$	$1 \cdot 795856$	2•012196	$2 \cdot 252191$	$2 \cdot 5181$
1212	1.446989	$1 \cdot 632738$	$1 \cdot 840205$	$2 \cdot 071683$	$2 \cdot 329685$	$2 \cdot 6169$
13	$1 \cdot 468533$	$1 \cdot 665073$	1.885649	2-132928	$2 \cdot 409845$	$2 \cdot 7196$
131 ${ }^{1}$	$1 \cdot 490398$	1.698048	$1 \cdot 932215$	$2 \cdot 195984$	$2 \cdot 492763$	$2 \cdot 826.3$
14	$1 \cdot 512589$	$1 \cdot 731676$	$1 \cdot 979931$	$2 \cdot 260903$	$2 \cdot 578534$	$2 \cdot 9371$
$14 \frac{1}{2}$	$1 \cdot 535110$	$1 \cdot 765970$	$2 \cdot 028826$	$2 \cdot 327743$	$2 \cdot 667256$	$3 \cdot 0.52$
15	$1 \cdot 557967$	$1 \cdot 800943$	$2 \cdot 078928$	$2 \cdot 396558$	$2 \cdot 759031$	3.1721
151 ${ }^{\frac{1}{2}}$	1.581164	1.836609	$2 \cdot 130267$	$2 \cdot 467407$	$2 \cdot 853964$	3-296t
16	$1 \cdot 604706$	1.872981	2-182874	$2 \cdot 540351$	$2 \cdot 952163$	3.42.5
$16 \frac{1}{2}$	$1 \cdot 628599$	$1 \cdot 910073$	$2 \cdot 236780$	$2 \cdot 615452$	$3 \cdot 053741$	$3 \cdot 560$
17	$1 \cdot 652847$	$1 \cdot 947900$	$2 \cdot 292018$	2.692772	3•158815	3.70011
171 ${ }^{\frac{1}{2}}$	$1 \cdot 677457$	$1 \cdot 986476$	$2 \cdot 348619$	$2 \cdot 772379$	$3 \cdot 267.503$	$3 \cdot 845$
18	$1 \cdot 702433$	$2 \cdot 025816$	$2 \cdot 406619$	2.854339	$3 \cdot 379932$	$3.996)$
$18 \frac{1}{2}$	$1 \cdot 727780$	$2 \cdot 065935$	$2 \cdot 466050$	$2 \cdot 938722$	3.496229	4.152
19	$1 \cdot 753506$	$2 \cdot 106849$	$2 \cdot 526950$	$3 \cdot 025599$	3.616527	$4 \cdot 3151$
1912	$1 \cdot 779614$	$2 \cdot 148573$	$2 \cdot 589353$	3.115045	3-740965	$4 \cdot 485$
20	$1 \cdot 806111$	$2 \cdot 191123$	$2 \cdot 653297$	$3 \cdot 207135$	$3 \cdot 869684$	$4 \cdot 6607$
20.1	1.833002	$2 \cdot 234515$	$2 \cdot 718821$	3:301948	$4 \cdot 002832$	4.84: 8
21	$1 \cdot 860294$	$2 \cdot 278768$	$2 \cdot 785962$	$3 \cdot 399563$	$4 \cdot 140562$	$5 \cdot 08 \div 3$
$21 \frac{1}{2}$	1.887992	$2 \cdot 323896$	$2 \cdot 854762$	3.500064	$4 \cdot 283031{ }^{\circ}$	$5 \cdot 2.313$
22	$1 \cdot 916103$	$2 \cdot 369918$	$2 \cdot 925260$	3.603537	$4 \cdot 430401$	$5 \cdot 4810$
$22 \frac{1}{2}$	$1 \cdot 944632$	$2 \cdot 416852$	$2 \cdot 997500$	3•710068	$4 \cdot 582843$	$5 \cdot 64$
23	$1 \cdot 973586$	$2 \cdot 464715$	$3 \cdot 071523$	3.819749	4.740529	$5 \cdot 87$;9
2312	$2 \cdot 002971$	$2 \cdot 513526$	$3 \cdot 147375$	$3 \cdot 932672$	$4 \cdot 903642$	$6 \cdot 1014$
24	$2 \cdot 032794$	$2 \cdot 563304$	3-225099	$4 \cdot 048934$	$5 \cdot 072366$	6.3430
241	$2 \cdot 063060$	¢.614067	3:304744	. $4 \cdot 168633$	$5 \cdot 246897$	$6 \cdot 54$
25	$2 \cdot 093777$	$2 \cdot 665836$	3:386354	$4 \cdot 291870$	$5 \cdot 427432$	6.8475

The Finst Tabie of Compuund Intenfst - continued.

The Amount of One Pound in any Number of Years, \&c.

`ars.	3 per Cent.	4 per Cent.	5 per Cent.	6 per Cent.	7 per Cent.	8 per Cent.
:51	2.124952	$2 \cdot 718630$	3.469981	$4 \cdot 418751$	5614179	7•117144
6	2•156591	$2 \cdot 772469$	$3 \cdot 555672$	$4 \cdot 549382$	$5 \cdot 807352$	$7 \cdot 396353$
$6 \frac{1}{2}$	2-188701	$2 \cdot 827375$	$3 \cdot 643480$	$4 \cdot 683876$	$6 \cdot 007172$	$7 \cdot 686515$
17^{7}	2.221289	$2 \cdot 883368$	$3 \cdot 733456$	$4 \cdot 822345$	$6 \cdot 213867$	7.988061
$7 \frac{1}{2}$	$2 \cdot 254362$	$2 \cdot 940470$	$3 \cdot 825654$	4.964909	$6 \cdot 427674$	8-301437
8	2.287927	$2 \cdot 998703$	$3 \cdot 920129$	5•111686	$6 \cdot 648838$	$8 \cdot 627106$
31	$2 \cdot 321992$	$3 \cdot 058089$	4.016937	$5 \cdot 262803$	6.877611	8.965551
9	$2 \cdot 356565$	3•118651	4•116135	$5 \cdot 418387$	7.114257	$9 \cdot 317274$
$9 \frac{1}{2}$	2:391652	3.180412	$4 \cdot 217783$	$5 \cdot 578571$	7-359044	$9 \cdot 682796$
)	$2 \cdot 427262$	3-243397	4:321942	5.743491	$7 \cdot 612255$	10.062656
J $\frac{1}{2}$	2.463402	3-307629	$4 \cdot 428673$	5•91:286	7-874177	$10 \cdot 457419$
	$2 \cdot 500080$	3-373133	$4 \cdot 538039$	6.088100	$8 \cdot 145112$	10.867669
$1 \frac{1}{2}$	2.537304	$3 \cdot 439934$	$4 \cdot 650106$	6.268083	$8 \cdot 425370$	11.294013
	$2 \cdot 575082$	$3 \cdot 508058$	$4 \cdot 764941$	$6 \cdot 453386$	$8 \cdot 715270$	11.737083
-1	$2 \cdot 613423$	$3 \cdot 577532$	4.88261 2	$6 \cdot 644168$	9.015146	12•197534
3	$2 \cdot 652335$	3.648381	$5 \cdot 003188$	6.840589	9.325:339	12.676049
$\frac{1}{2}$	$2 \cdot 691826$	3•720633	$5 \cdot 126742$	$7 \cdot 042818$	$9 \cdot 646206$	13.173337
	$2 \cdot 731905$	3794316	$5 \cdot 253347$	$7 \cdot 251025$	9.978113	$13 \cdot 690133$
$\frac{1}{2}$	$2 \cdot 772581$	3-869458	$5 \cdot 383079$	$7 \cdot 465387$	$10 \cdot 321440$	14.E27204
	2.813862	3.946088	$5 \cdot 516015$	$7 \cdot 686086$	$10 \cdot 676581$	14.785344
1	$2 \cdot 855758$	4.024236	$5 \cdot 652233$	7.913310	11.043941	15.365380
	$2 \cdot 898978$	$4 \cdot 103932$	$5 \cdot 791816$	8•147252	11.423942	$15 \cdot 968171$
	$2 \cdot 941431$	$4 \cdot 185206$	$5 \cdot 934845$	8.388109	11.817017	16.594610
	2.985226	4'268089	$6 \cdot 081406$	$8 \cdot 636087$	12.223618	17.245625
	$3 \cdot 029674$	4.352614	$6 \cdot 231587$	$8 \cdot 891395$	$12 \cdot 644208$	17-922179
	3.074783	$4 \cdot 438813$	6.385477	9•154252	$13 \cdot 079271$	$18 \cdot 625275$
	3•120564	4.526719	$6 \cdot 543167$	9•424879	13.529303	$19 \cdot 355954$
	$3 \cdot 167026$	$4 \cdot 616365$	$6 \cdot 704751$	$9 \cdot 703507$	15.994820	$20 \cdot 115297$
	$3 \cdot 214181$	4'707788	6.870325	9'990379	14.476354	$20 \cdot 904430$
	$3 \cdot 262037$	$4 \cdot 801020$	$7 \cdot 039988$	$10 \cdot 285717$	14.974457	$21 \cdot 724521$
4	3:310606	4-896099	7'213841	10.589794	$15 \cdot 489699$	22.576785
	3.359898	$4 \cdot 993061$	$7 \cdot 391988$	$10 \cdot 902861$	16.022669	23.462483
4	$3 \cdot 409924$	$5 \cdot 091943$	$7 \cdot 574533$	11.225182	16.573978	$24 \cdot 382927$
4	$3 \cdot 460695$	5•192783	$7 \cdot 761587$	$11 \cdot 557032$	17•144256	25:339481
4	3-512222	5•295621	$7 \cdot 953260$	11-898693	$17 \cdot 734157$	$26 \cdot 333.562$
4	3.564516	$5 \cdot 400495$	8-149666	$12 \cdot 250454$	18:344354	27-366640
4	3.617589	5.507446	8:350923	$12 \cdot 612615$	$18 \cdot 975548$	$28 \cdot 440247$
4	$3 \cdot 671452$	$5 \cdot 616515$	8.5.77150	$12 \cdot 985481$	19.628459	29.555971
4	$3 \cdot 726117$	$5 \cdot 727744$	$8 \cdot 768469$	13:369371	20.303836	30•715466
4.	$3 \cdot 781595$	5•841175	$8 \cdot 985007$	$13 \cdot 764610$	21.002451	31.920449
4.	3.837900	$5 \cdot 956853$	9-206893	14.171534	21.725105	33.172704
44	3.895043	$6 \cdot 074822$	$9 \cdot 434258$	14.590487	$22 \cdot 472623$	$34 \cdot 474085$
4 t	$3 \cdot 953037$	$6 \cdot 195127$	$9 \cdot 667237$	$15 \cdot 021826$	$23 \cdot 245862$	35-826520
4 ;	4.011895	6.317815	$9 \cdot 905971$	$15 \cdot 465916$	24.045707	$37 \cdot 232012$
4 4,	4.071628	$6 \cdot 442933$	10•150599	$15 \cdot 923135$	$24 \cdot 873072$	38.692642
48	$4 \cdot 132251$	$6 \cdot 570528$	10.401269	16:393871	$25 \cdot 728906$	$40 \cdot 210573$
48	4-193777	$6 \cdot 700650$	$10 \cdot 658129$	16.878524	26.614187	$41 \cdot 788053$
45	$4 \cdot 256219$	6.833349	10.921333	17.377504	$27 \cdot 529929$	$43 \cdot 427418$
45	$4 \cdot 319590$	$6 \cdot 968676$	$11 \cdot 191036$	$17 \cdot 891235$	28.477180	$45 \cdot 131097$
5 C	4383906	$7 \cdot 106683$	$11 \cdot 467399$	18.430154	$29 \cdot 457025$	$46 \cdot 901612$

The First Table of Compound Interestip - continued.
The Amount of One Pound in any Number of Years, \&c.

Years.	3 per Cent.	4 per Cent.	5 per Cent.	6 per Cent.	7 per Cent.	8 per Cerrt.
$50 \frac{1}{2}$	$4 \cdot 449178$	7×247423	11.750588	18.964709	$30 \cdot 470583$	$48 \cdot 74158$
51	4:515423	7 -390950	$12 \cdot 040769$	$19 \cdot 525363$	$31 \cdot 519016$	$50 \cdot 65974$
$51 \frac{1}{2}$	$4 \cdot 582654$	$7 \cdot 537320$	$12 \cdot 338117$	20-102592	32603524	52'64091
52	$4 \cdot 650885$	$7 \cdot 686588$	$12 \cdot 642808$	$20 \cdot 696885$	33.725347	54.70604.
521	4.7201\%3	$7 \times 8: 8813$	12.955023	$21: 308747$	$34 \cdot 885771$	56.85218
53	4.790412	$7 \cdot 994052$	13-274948	21.938698	$36 \cdot 086122$	59.0825 !
531	4.861737	$8 \cdot 152365$	$13 \cdot 602774$	$22 \cdot 587272$	$37: 327775$	$61 \cdot 40031$
54	$4 \cdot 934124$	8-313814	13.938696	23.255020	$38 \cdot 612150$	63.8091:
$54 \frac{1}{2}$	5007589	$8 \cdot 478460$	14.282913	23:942508	$39 \cdot 940719$	$66 \cdot 31234$
5.5	$5 \cdot 082148$	$8 \cdot 646366$	14-635630	$24 \cdot 650321$	$41 \cdot 315001$	68.9138:
551	$5 \cdot 157817$	$8 \cdot 817598$	14.997038	25:379059	$42 \cdot 736569$	$71 \cdot 6173$
56	$5 \cdot 234613$	8.992221	$15 \cdot 367412$	$26 \cdot 129340$	$44 \cdot 207051$	$74 \cdot 4269$
$56 \frac{1}{2}$	$5 \cdot 312552$	9-170302	$15 \cdot 746911$	$26 \cdot 901802$	$45 \cdot 728129$	77.3467
57	$5 \cdot 391651$	9:351910	$16 \cdot 135783$	$27 \cdot 697101$	$47: 301545$	80:381 ${ }^{\text {b }}$
$57 \frac{1}{2}$	$5 \cdot 471928$	$9 \cdot 537114$	16.5342 .57	$28 \cdot 515911$	$48 \cdot 929098$	83.5345
58	$5 \cdot 553400$	$9 \cdot 725986$	$16 \cdot 942572$	29:358927	50•612653	86.8116
$58 \frac{1}{2}$	$5 \cdot 636086$	$9 \cdot 918599$	$17 \cdot 360970$	30-226865	$52 \cdot 354135$	90\%2172
59	$5 \cdot 720003$	10.115026	17•789700	$31 \cdot 120463$	54-155539	93597565
$59 \frac{1}{2}$	$5 \cdot 805169$	$10 \cdot 315343$	$18 \cdot 229018$	32.040477	56.018925	97.4844
60	$5 \cdot 891603$	$10 \cdot 519627$	$18 \cdot 679185$	32'98:690	57-9464:6	101.257 C
$60 \frac{1}{2}$	$5 \cdot 979324$	$10 \cdot 727957$	19•140469	33.96:906	59.940249	105\%299
61	$6 \cdot 068351$	10940412	19.613145	$34 \cdot 966952$	$62 \cdot 002676$	109:357
$61 \frac{1}{2}$	$6 \cdot 158703$	$11 \cdot 157075$	$20 \cdot 097493$	$36 \cdot 000680$	$64 \cdot 136067$	11.5647
62	$6 \cdot 250401$	$11 \cdot 378029$	$20 \cdot 593802$	$37 \cdot 064969$	$66 \cdot 342864$	118.10f:
621	$6 \cdot 343464$	$11 \cdot 603358$	$21 \cdot 102367$	$38 \cdot 160721$	$68 \cdot 62.5592$	122.7 .9
63	$6 \cdot 437913$	$11 \cdot 833150$	$21 \cdot 623492$	39.288867	70.986864	127:554
6331	$6 \cdot 533768$	$12 \cdot 067492$	$22 \cdot 157486$	$40 \cdot 450364$	$73 \cdot 429383$	132.5.58
64	$6 \cdot 631051$	12:306476	$22 \cdot 704667$	$41 \cdot 646199$	75.95594.5	197.75!
$64 \frac{1}{2}$	$6 \cdot 729781$	$12 \cdot 550192$	$23 \cdot 265360$	$42 \cdot 877386$	$78 \cdot 569440$	143-16. !
65	$6 \cdot \times 29982$	$12 \cdot 798735$	23.839900	44.144971	$81 \cdot 272861$	148.7%
$65 \frac{1}{2}$	$5 \cdot 931675$	$13 \cdot 052200$	$24 \cdot 428628$	$45 \cdot 450030$	$84 \cdot 069301$	154814
66	$7 \cdot 034882$	$13 \cdot 310684$	$2.5 \cdot 031 \times 95$	46.793669	$86 \cdot 961961$	$160 \cdot 68.4$
$66 \frac{1}{2}$	7-139625	13.574288	$25 \cdot 6.50060$	$48 \cdot 177031$	89.954152	166.98
67	$7 \cdot 245928$	13.843112	26.283490	$49 \cdot 601290$	93•049298	$173 \cdot 53$
$67 \frac{1}{2}$	$7 \cdot 353814$	14.117259	26.932563	51.067653	$96 \cdot 250943$	140:34.
68	7-463306	14:396836	27597664	52.577367	99:562749	187418
$68 \frac{1}{2}$	$7 \cdot 574428$	$14 \cdot 681950$	$28 \cdot 279191$	$54 \cdot 131713$	102.988509	$194 \cdot 77$! 6
69	$7 \cdot 687205$	14.972\%09	28.977548	$55 \cdot 732009$	106.532142	$202 \cdot 41$
691	7-801661	$15 \cdot 269228$	$29 \cdot 693150$	57:379615	110197704	$210 \% 5$
70	$7 \cdot 917821$	15:571618	30-426425	59075930	113-989392	218.60
$70 \frac{1}{2}$	$8 \cdot 035711$	15.879997	S1-177808	60.822392	117.911544	227.18,41
71	$8 \cdot 155356$	$16 \cdot 194483$	$31 \cdot 947746$	$62 \cdot 620485$	121.968649	236.0
$71 \frac{1}{2}$	$8 \cdot 276782$	16.515197	32:736698	$64 \cdot 471736$	126.165352	245
72	$8 \cdot 400017$	16.842262	$33 \cdot 545134$	66.377715	130.50645.5	$254-9$
721	$8 \cdot 525086$	$17 \cdot 175804$	34-373533	$68 \cdot 340040$	$134 \cdot 996926$	264.9
73	$8 \cdot 652017$	17.515952	35.222390	70:360378	$139 \cdot 641906$	275:? 112
$73 \frac{1}{2}$	$8 \cdot 780839$	$17 \cdot 862837$	36.092210	$72 \cdot 440442$	144.446711	286.1447
74	8.911578	$18 \cdot 216591$	$36 \cdot 983510$	74.582000	149.416840	297. ${ }^{2020}$
741	$9 \cdot 044264$	$18 \cdot 577350$	37-896821	$76 \cdot 786869$	$154 \cdot 557981$	$\begin{aligned} & 302 \cdot(203 \\ & 391 \div 525 \end{aligned}$
75	$9 \cdot 178925$	$18 \cdot 945254$	38-832685	$79 \cdot 056920$	159.876019	

The Finst Table of Conpound Intenest - continufd.
The Amount of One Pound in any Number of Years, \&c.

ears.	3 per Cent.	4 jer Cent.	5 per Cent.	6 per Cent.	7 per Cent.	8 per Cent.
$75 \frac{1}{2}$	9.315592	19:320444	39.791662	81-394081	16.5:377040	333-805539
76	$9 \cdot 454293$	$19 \cdot 703064$	40.774320	$83 \cdot 800336$	171.067340	$346 \cdot 900892$
$76 \frac{1}{2}$	$9 \cdot 5950.59$	20.093262	$41 \cdot 781245$	$86 \cdot 277726$	$176 \cdot 953433$	360-509989
77	9737922	$20 \cdot 491187$	$42 \cdot 813036$	$88 \cdot 828356$	183.042054	$374 \cdot 6.52963$
$77 \frac{1}{2}$	9.882911	$20 \cdot 896992$	$43 \cdot 870307$	91 $\cdot 4.54390$	$189 \cdot 340173$	$389 \cdot 350781$
78	10.030059	21-310834	44.953688	580.5	998	
$78 \frac{1}{2}$	10.179399	21.732872	$46 \cdot 063822$	$6 \cdot 941653$	$202 \cdot 593985$	$420 \cdot 498844$
79	10.330961	$22 \cdot 163268$	$47 \cdot 201372$	$99 \cdot 807541$	$209 \cdot 564848$	436.995216
791	$10 \cdot 484781$	$22 \cdot 602187$	48.367013	102.758152	216.775564	$454 \cdot 138751$
30	$10 \cdot 640890$	23.049799	$49 \cdot 561441$	$105 \cdot 795993$	$224 \cdot 234387$	$471 \cdot 954834$
301	10.799324	$23 \cdot 506275$	$\cdot 785364$	23642	931-949854	$490 \cdot 469851$
81	$10 \cdot 960117$	$23 \cdot 971791$	$2 \cdot 039513$	$112 \cdot 143753$	239•930794	509.711291
$31 \frac{1}{2}$	$11 \cdot 123304$	24.446526	53.324632	$115 \cdot 4.59060$	$248 \cdot 186343$	$529 \cdot 707439$
32	$11 \cdot 288920$	24.930662	$54 \cdot 641488$	118.872378	256.725950	. $550 \cdot 488118$
$32 \frac{1}{2}$	11.457003	25.424387	$55 \cdot 990864$	$122 \cdot 386604$	26.5.559387	$572 \cdot 084035$
33	11.627588	25.927889	735	126.004720	-696766	94-527168
$33 \frac{1}{2}$	11.80071 .3	$26 \cdot 441362$	$58 \cdot 790407$	129.729800	284•148545	617-850757
34	$11 \cdot 976416$	$26 \cdot 965004$	$60 \cdot 242241$	133.565004	$293 \cdot 925540$	42.089341
$34 \frac{1}{2}$	12.1.54734	$27 \cdot 499017$	$61 \cdot 729928$	137513588	304 0:58943	667.278818
35	12:335708	$28 \cdot 043604$	$63 \cdot 254353$	141-578904	314:500328	$693 \cdot 456488$
$35 \frac{1}{2}$	12	28.598977	24	6440	291669	790.661124
6	12.705779	29•165349	$66 \cdot 417071$	$150 \cdot 073638$	336.515351	$748 \cdot 933008$
61	12.894958	$29 \cdot 742936$	$68 \cdot 057245$	$154 \cdot 510267$	248.094186	778.314013
7	13.086953	30.331 963	$69 \cdot 737924$	159.078057	$360 \cdot 071425$	808.847648
$7 \frac{1}{2}$	13.281806	30-932654	$71 \cdot 460108$	$163 \cdot 780884$	$372 \cdot 460779$	$840 \cdot 579135$
8	13.479561	31.545241	224820	-629740	8.276425	460
$8 \frac{1}{2}$	13.680261	32-169960	$75 \cdot 03311: 3$	$173 \cdot 607737$	398.533033	907•825465
9	13.883948	32-807051	76.886061	178.740104	412.245775	43.439897
$9 \frac{1}{2}$	$14 \cdot 090668$	33-456758	$78 \cdot 784769$	184.024201	$426 \cdot 430345$	$980 \cdot 451503$
0	14:300467	$34 \cdot 119333$	$80 \cdot 730365$	$189 \cdot 464511$	$441 \cdot 102979$	1018.915089
$\mathrm{O}_{\frac{1}{2}}$	14.513389	34'795029	07	195.065653	456.280470	1058
1	14.729481	35.484106	84.766883	200.832381	$471 \cdot 980188$	1100.428296
112	14.948790	$36 \cdot 186830$	86.860203	$206 \cdot 769592$	$488 \cdot 220103$	$1143 \cdot 598633$
2	15•171365	36.903470	89.005227	$212 \cdot 882324$	505.018801	$1188 \cdot 462560$
$2 \frac{1}{2}$	$15 \cdot 397254$	$37 \cdot 634303$	91-203218	$219 \cdot 175768$	$522 \cdot 395510$	$1235 \cdot 086523$
3	$15 \cdot 626506$	38-379609	. 455488	22.5655264	540.370117	1283.539564
$3 \frac{1}{2}$	15.859172	39•139675	$5 \cdot 763379$	$232 \cdot 326314$	$558 \cdot 963196$	$1333 \cdot 893445$
t	16.095301	39.914794	98-128263	$239 \cdot 194580$	578•196026	$1386 \cdot 222730$
$1 \frac{1}{2}$	16.334947	40.705262	100.551 548	$246 \cdot 265893$	$598 \cdot 090619$	1440-604921
	16.578160	41.511385	$103 \cdot 034676$	$253 \cdot 546254$	618•669747	1497-120548
	16.824995	42:333473	$105 \cdot 579125$	$261 \cdot 041846$	$639 \cdot 956963$	$1555 \cdot 853315$
	17.075505	43.171841	$108 \cdot 186410$	$268 \cdot 759030$	$661 \cdot 976630$	1616-890192
	17329745	$44 \cdot 026812$	$110 \cdot 858082$	$276 \cdot 704357$	$684 \cdot 753950$	$1680 \cdot 321580$
	$17 \cdot 587770$	$44 \cdot 898715$	$113 \cdot 595730$	$284 \cdot 884572$	708•314994	$1746 \cdot 241407$
$\frac{1}{2}$	$17 \cdot 849637$	$45 \cdot 787884$	116.400986	$293 \cdot 306618$	$732 \cdot 686727$	1814.747306
	$18 \cdot 115403$	$46 \cdot 694663$	119.275517	$301 \cdot 977646$	757-897043	1885.940720
$\frac{1}{2}$	$18 \cdot 385126$	$47 \cdot 619400$	122.221035	$310 \cdot 905016$	783.974797	1959.927091
	$18 \cdot 658866$	48.562450	125.239293	$320 \cdot 096305$	810949836	2036•815978
	18.936680	49.524176	$128 \cdot 332087$	329.559317	838-853033	$2116 \cdot 721258$
1	$19 \cdot 218631$	$50 \cdot 504948$	$131 \cdot 501257$	339:302083	867716325	$2199 \cdot 761256$

The Second Table of Compound Interest.
The present Value of One Pound payable at the End of any Number of Years, \&c.

Years.	3 per Cent.	4 per Cent.	5 per Cent.	6 per Cent.	7 per Cent.	8 per Cent.
$\frac{1}{2}$	-985329	-930580	-975900	-971285	-966736	-962250
1	-970873	-961.538	-952380	-943396	$\cdot 934579$	-92592.5
$1 \frac{1}{2}$	-956630	-942866	-929498	-916307	-903492	-890972
2	-942595	-924556	-907029	-889996	-873438	-857338
$2 \frac{1}{2}$	-928767	$\cdot 906601$	-885170	-864440	-844:38.5	-824974
3	-915141	-888996	- 863837	-839619	-816297	-79:38:32
$3 \frac{1}{2}$	-901715	-871732	-843019	-815510	$\cdot 789144$	$\cdot 763865$
4	-888487	$\cdot 8.54804$	-829702	$\cdot 792093$	-762895	$\bullet 3.35029$
$4 \frac{1}{2}$	-875452	-838204	-802875	-769349	$\cdot 737518$	-07082
5	-862608	-821927	-783526	-47258	$\cdot 712986$	-680.883
$5 \frac{1}{2}$	-849953	-805965	$\cdot 764643$	$\cdot 725801$	-689269	-6548911
6	-837484	$\cdot 790314$. 746215	$\cdot 704960$	-666342	-630169
$6 \frac{1}{2}$	-825197	$\cdot 774967$	728231	-684718	-644177	-606381
7	-813091	-759917	$\cdot 7106^{4} 1$	-665057	-622749	-58:3190
$7 \frac{1}{2}$	-80:162	$\cdot 745160$	-693553	-645960	-602034	. 561463
8	$\cdot 789409$	$\cdot 730690$	-676839	-697412	-582009	. 540268
$8 \frac{1}{2}$	$\cdot 777828$	$\cdot 716500$	$\cdot 660527$	-609396	-562649	-519873
9	$\cdot 766416$	$\cdot 702.586$	-644608	. 591898	-543933	-500348
$9 \frac{1}{2}$	$\cdot 75.172$	-688942	-629073	-574902	-525840	-481.364
10	'744093	-675564	. 513913	$\cdot 558394$	-508349	-463193
102 $\frac{1}{2}$	$\cdot 733177$	-662445	-599117	-542360	- 491439	$\cdot 44.5708$
11	-722421	-649580	$\cdot 584679$	$\cdot 5.6787$	$\cdot 475092$	-428882
$11 \frac{1}{2}$	$\cdot 711822$	-636966	$\cdot 570588$	-511661	$\bullet 459289$	-412692
12	--01379	-624597	-556837	-496969	-444011	-397119
$12 \frac{1}{2}$	-691090	$\cdot 612467$	$\cdot 543417$	-482699	-429242	-3821:2
13	-680951	-6c0574	-530321	-468839	-414954	-367697
$13 \frac{1}{2}$	-670961	588911	- 517540	-455376	-401161	$\cdot 353817$
14	-661117	$\cdot 577475$	-505067	-442300	-387817	-340461
$14 \frac{1}{2}$	-651418	-566260	$\cdot 492895$	-429t00	. 274917	-327608
15	-641861	-555264	-481017	-417265	-362446	-315241
$15 \frac{1}{2}$	-632445	$\cdot 544481$	-469444	-405283	. 3303889	
16	$\cdot 623166$	-5339908	-458111	-393646	- 338734	-29189C
$16 \frac{1}{2}$	-614024	-523540	-447071	-382343	. 327467	-280871
17	-605016	-518373	-436296	-371364	. 316574	-27026
171 $\frac{1}{2}$	-596140	-503403	$\cdot 425781$	$\cdot 360701$	-306044	-26006 5
18	-587394	-493628	-415520	-350343	-295463	-25024!
$18 \frac{1}{2}$	-578777	-484042	-405506	-540283	-286022	-24080!
19	-570286	-474642	$\cdot 395733$	-330513	-276508	23171:
$19 \frac{1}{2}$	-561919	-465425	-386196	-321022	-267310	-22295
20	-553675	-456386	376889	-311804	-258419	$21454{ }^{\prime}$
$20 \frac{1}{2}$	- 545552	-447524	$\cdot 367806$	$\cdot 302851$	-249823	-20644
21	-537549	-438833	-358942	-294155	-241513	-19865
$21 \frac{1}{2}$	-529663	-430311	-350291	-285708	-233479	- 19115
22	-521892	-421955	$\because 41849$	-277505	-225713	-18.94
$22 \frac{1}{2}$	- 514235	-413761	. 33.3611	-269536	9218205	-17699
23	$\cdot 506691$	-405726	-325571	-261797	-210946	
$23 \frac{1}{2}$	-499258	$\cdot 397847$	-317725	-254279	-203930	-16:88 $-1576{ }^{\text {a }}$
24	-491933	- 390121	-310067	$\cdot 246978$	-197146	$\cdot 1576!$
$24 \frac{1}{2}$	-484716	$\cdot 382545$	- 302595	-239886	-190588	-1460
25^{*}	-47760.7	$\cdot 375116$	-295302	$\bullet 232998$	-184249	-1460

The Seconb Table of Compound Interest-continued.
The present Value of One Pound payable at the End of any Number of Ycars, \&ce.

mars.	3 per Cent.	4 pur Cent.	5 per Cent.	6 per Cent.	7 per Cent.	8 per Cent.
$25 \frac{1}{2}$	-470598	$\cdot 367832$	-288186	-296308	-178120	-140505
36	-463694	-360689	-281240	-219810	-172195	$\cdot 135201$
$26 \frac{1}{2}$	-456891	-353684	$\cdots 274462$	-213498	$\cdot 166467$	-130097
37	450189	-346816	-267848	$\cdots 207367$	-160930	$\cdot 125186$
$27 \frac{1}{2}$	443584	$\cdot 340081$	-261393	-201413	-155577	$\cdot 120461$
28	-437076	:333477	-255093	-195630	$\cdot 150402$	-115913
281	-430564	-327001	-248945	-190012	-145399	$\cdot 111538$
29	-424346	. 320351	-242946	-184556	-140562	$\cdot 107327$
$29 \frac{1}{2}$	$\cdot 418190$:314424	-237091	$\cdot 1792.57$	$\cdot 135887$	-103275
30	411986	-308318	:231377	-174110	-131367	-099377
$30 \frac{1}{2}$	$\cdot 405912$:302331	-225801	-169110	-126997	-095625
31	:399987	-296460	-220359	-164254	-122773	-92016
$31 \frac{1}{2}$:394119	-290703	-215048	-159538	-118689	-088542
32	-388337	-285057	-209866	$\cdot 1.54957$	$\cdot 114741$	-085200
${ }^{\circ} 2 \frac{1}{2}$:382639	$\cdot 279592$	-204808	-150507	$\cdot 110924$	-081983
33	:377026	$\bullet 274094$	-199872	-146186	-107234	-078888
$33 \frac{1}{2}$	$\cdot 371495$	-268771	-19:5055	-141988	-103667	-075910
34	- 366044	-263552	-190354	-137911	-100219	-0:3045
$34 \frac{1}{2}$	-. 360674	-258434	-185767	-133951	'096885	-070287
35	-355383	-2.53415	-181290	-130105	-093662	-067634
$35 \frac{1}{2}$	350169	-248494	-176921	-126369	-0.90.347	-035081
36	$\cdot 3+5032$	-243668	-172657	-122740	$\cdot 087535$	-062624
$36 \frac{1}{2}$	- 339970	-238936	-168496	-119216	$\cdot 084623$	-060260
7	-334982	-234296	-164435	-115793	$\cdot 081808$	-0579×5
$37 \frac{1}{2}$. 330068	-229746	-160472	$\cdot 112468$	-079087	-055796
	-325226	-225285	-156605	-109238	-076456	-053690
$8 \frac{1}{2}$. 320454	-290910	-152831	-106102	-073913	-0.51663
9	-315753	-2166:0	$\cdot 149147$	-103055	-071455	-019713
$9 \frac{1}{2}$	-311121	-212413	$\cdot 14.5553$	$\cdot 100096$	-059078	-017836
0	-3,6556	-208289	$\cdot 14: 04.5$	-097222	-066780	-0-6030
$0 \frac{1}{2}$	-302059	-204244	-138622	-094430	-054559	-044293
1	-297628	-200:277	-135281	-091719	-069411	-042691
$1 \frac{1}{2}$	-93261	-195388	-132021	-099085	-060335	$\cdot 041012$
3^{2}	-288959	-192574	-128839	-086527	-058328	-039464
$2 \frac{1}{2}$	$\cdot 284719$	-188835	$\cdot 125734$	-084042	-056388	-037974
3	-280542	-185168	-122704	-081629	-054512	-036540
$3 \frac{1}{2}$	-276427	$\cdot 181579$	-119747	-079285	-052699	-035161
4	-272371	$\cdot 178046$	-116861	$\cdot 077009$	-050946	-033834
$4 \frac{1}{2}$	- 268375	$\cdot 174588$	$\cdot 114044$	$\cdot 074797$	-049251	-03こ556
5	$\cdots 64438$	-171198	-111296	.072650	-047613	. 031327
$5 \frac{1}{2}$	-260554	-167873	-108614	$\cdot 070563$	-045029	-030145
	-2567.36	-164613	-10.5996	-068537	-044798	$\cdot 029007$
3 2	-254970	-161417	-103442	-066569	-043018	-027912
	-249258	-158292	-100949	-054658	-041587	-026858
$7 \frac{1}{2}$	-245601	-155208	-098516	-062801	-040204	-025844
	-241998	-159194	-096142	-60998	-038866	-024869
i $\frac{1}{2}$	-238448	-149239	-093825	-059246	-037573	-023930
	-234950	-146341	-091563	-057545	-036324	-023026
2	-231503	$\cdot 143499$	-089357	:055893	035115	. 022157
,	-228107	-140712	$\cdot 087203$:054288	083947	.021321

The Second Table of Compound Interest - coutinued.
The present Value of One Pound payable at the End of any Number of Years, \&c.

Y ears.	3 per Cent.	4 per Cent.	5 per Cent.	6 per Cent.	7 per Cent.	8 per Cent.
501	-224760	-137980	-085102	-052729	-032818	-020516
51	-221463	-135300	-083051	-051215	-031726	-019741
$51 \frac{1}{2}$	-218214	-132673	-081049	-049744	-030671	-018996
52	-215012	-130096	-079096	-048316	-029651	-018279
521	-211858	-127570	-077190	-O46929	-028664	-017589
53	-208750	-125093	.075329	$\cdot 04.5581$	-027711	-016925
531	-205687	-122663	$\cdot 073514$	$\cdot 044272$	-026789	-016286
54	-202670	-120281	-071742	-043001	-025898	-015671
$54 \frac{1}{2}$	-199696	-117945	-070013	-041766	-025037	-015080
55	-196767	-115655	-068326	-040567	-024204	. 014510
$55 \frac{1}{2}$	-193880	-119409	-066679	-039402	-023399	-013969
56	-191036	-111207	-065072	-038271	-029620	-013435
561	-188233	-109047	-063504	-037172	-021868	-012928
57	-185471	-106930	-061974	-036104	-021140	-012440
$57 \frac{1}{2}$	-182750	-104853	-060480	-035068	-020437	. 011971
58	-180069	-102817	-059022	-034061	-019757	. 011519
$58 \frac{1}{2}$	-177428	-100820	-057600	-033083	-019100	. 011084
59	-174825	-098862	$\cdot 056212$	-032139	-018465	-010665
591	-172260	-096942	-054857	-031210	-017851	-010263
60	'169733	-095060	-053535	-030314	$\cdot 017257$	-009875
60_{2}^{1}	$\cdot 167242$	-093214	-052245	-029443	-016683	-009503
61	-164789	-091404	-050986	-028598	-016128	-009144
$61 \frac{1}{2}$	-162371	-089629	-049757	-027777	-015591	-008799
62	-159989	-087888	-048558	-026979	-015073	-008466
$62 \cdot$	-157642	-086181	-047388	-026204	-014571	-008147
63	-155329	-084508	-046246	-025452	. 014087	.007839
$63 \frac{1}{2}$	-153051	-082867	-045131	024721	-013618	-0.7543
64	-150805	-081258	-044043	-024011	-013165	. 007259
$64 \frac{1}{2}$	-148593	-079680	-042982	-023322	$\cdot 012727$	-006985
65	-146413	-078132	. 041946	-029659	-012304	. 006721
$65 \frac{1}{2}$	-144265	-076615	-040935	-022002	-011894	-006467
66	-142148	-07.5127	-039949	-021370	-011499	-006223
$66 \frac{1}{2}$	- 140063	-073668	-038986	-020756	-011116	. $00598{ }^{\text {c }}$
67	-138008	-072238	-038046	-080160	$\cdot 010746$	-005762
$67 \frac{1}{2}$	-135983	-070835	-037129	. 019581	-010389	-005544
68	-133988	-069459	-036234	-019019	-010043	-001533:
$68 \frac{1}{2}$	-132023	-068110	-035361	-018473	-009709	. 005134
69	-130086	-066788	-034509	-017943	-009386	.00494C
$69 \frac{1}{2}$	-128177	-065491	-033677	-017427	-009074	-0047.:
70	-126297	-064219	-032866	$\cdot 016927$	-008772	-004574
$7 \mathrm{O} \frac{1}{2}$	-124444	-062972	-032074	- 016441	-.008480	$\begin{aligned} & .00440 \\ & .00423 \end{aligned}$
71	-122618	-061749	-031301	- 015969	-008198	-00423:
$71 \frac{1}{2}$	-120819	-060550	-030546	$\cdot 015510$	-007926	-00407:
72	-119047	-059374	-029810	$\cdot 015065$. 007662	. 000392
721	-117300	-058221	-029092	-014632	$\cdot 007407$. 00377
73	-115579	-057090	-028391	-014212	-007161	-00368
$73 \frac{1}{2}$	-113884	-055982	-027706	-013804	-006922	-00349
74	-112213	-054895	-027039	-13408	-006692	-00336
74.	-110567	- 053828	- 26387	-013023	-006470	. 00323
75	-108945	-052783	025751	-012649	-006254	'00811

The Second Table of Compound Interest-centinuel.
The present Value of One Pound payable at the End of any Number of Years, \&c.

Years.	3 per Cent.	4 per Cent.	5 per Cent.	${ }_{6} \mathrm{p}$ per Cent.	7 per Cent.	8 per Cent.
$75 \frac{1}{2}$	-107346	-051758	-025130	$\bigcirc 12285$	-006046	. 002995
76	-105772	-050753	. 024525	-011933	-005845	.002883
$76{ }^{\frac{1}{2}}$	-104220	-049767	-023934	-011590	-005651	'00277:3
77	-102691	-048801	-0233357	-011257	-005463	-002669
$77 \frac{1}{1}$	-101184	-047853	-022794	-0109.34	-005281	-002568
78	-099700	-046924	-022245	-010620	. 005105	-002471
781	-098237	-046013	-021709	. 010315	-004935	-002378
79	-096796	-045119	-021185	-010019	-004771	-002288
$79{ }^{\frac{1}{2}}$	-095376	-044243	-020675	-009731	-004613	-002201
80	-093977	-043384	$\cdot 020176$	-009452	. 004459	.002118
801	- 092598	-042541	-0'9690	.009180	-004311	. 002038
81	-091239	-041715	-019216	-008917	-004167	-001961
$81 \frac{1}{2}$	-089901	$\cdot 040905$	$\cdot 018753$	-008661	-004029	. 001887
82	-088582	-040111	$\cdot 018301$. 008412	-003895	-001816
$82 \frac{1}{2}$	-087282	-039332	$\cdot 017860$	$\cdot 008170$	-003765	.001747
83	-086002	-038568	-017429	-007936	-003640	-091682
$83 \frac{1}{2}$	-084740	-037819	-017009	-0.7708	-003519	-001618
84	-083497	-037085	$\cdot 016599$	-007486	-003402	-001557
$84 \frac{1}{2}$	-082272	-036364	-016199	$\cdot 007272$	-003289	'OO1498
85	-081065	-035658	-015809	$\cdot 007063$	-003179	-001442
$85 \frac{1}{2}$	- 079876	'034966	-015428	-006860	$\cdot 003073$	-001397
86	-078704	-034287	-15056	-006663	-002971	-001335
$86{ }^{\frac{1}{2}}$	-077549	-033621	'014693	. 006472	-002872	-001284
87	. 076411	-032963	-O14339	-006286	$\cdot 002777$	-001236
$87 \frac{1}{2}$	$\cdot 075290$	-032:328	-013993	-005105	-002684	-001189
88	-074186	-031700	-013656	-005930	. 002595	-001144
$88{ }_{2}^{1}$	-073098	-031084	-013327	-005760	-002509	-001101
89	-072025	-030481	$\cdot 013006$	-005594	. 002425	.001059
$89 \frac{1}{2}$	-070968	-029889	-012692	-005434	-002345	$\cdot 001019$
90	-069927	029308	-012386	. 005278	-002267	'000981
$90 \frac{1}{2}$	-068901	-028739	-012088	-005126	-002191	-000944
91	-067891	-028181	$\bigcirc 011797$	-004979	-002118	.000908
$911 \frac{1}{2}$	-066895	-027634	-011512	-004836	-002048	$\cdot 000874$
92	-065913	-027097	-011235	-004697	-001980	-000841
92⿺	-064946	'026571	-010964	-004562	- 01914	-000809
93	- 063993	-026055	-010700	. 004431	-001850	-000779
$93 \frac{1}{2}$	-063054	-025549	$\cdot 010442$.004304	-001789	-000749
94	-0621 29	-025053	-010190	-004180	-001729	-000721
$94 \frac{1}{2}$	-061218	-024566	-009945	-004060	-001671	. 000694
95	-060320	.024089	-009705	-003944	-O01616	-000667
$95 \frac{1}{2}$. 059435	-023621	-009471	.003830	-001562	$\cdot 000642$
96	-058563	-023163	-009243	-003720	-001510	-000618
$96{ }_{2}^{1}$	-057704	. 022713	-009020	-003613	-001460	-000595
97	- 056857	-022272	-008803	-003510	-001411	-000572
$97 \frac{1}{2}$	-056023	-021839	-008590	-003409	'001364	-000551
98	-0,55201	-021415	-008383	-003311	-001319	$\cdot 000530$
$98{ }^{1}$	-054391	$\cdot 020999$	$\cdot 008181$	003216	-001275	-000510
99	-053593	-020592	-007984	-003124	-001233	$\cdot 000490$
$99 \frac{1}{2}$	-052807	-020192	-007792	-003034	-001192	$\cdot 000472$
00	'05203 ${ }^{2}$	-019800	-007604	$\cdot 002947$	-001152	-000454

The Thiri Table of Compound Interest,
The Amount of One Pound per Annum in any Number of Years, \&c.

Years.	3 per Cent.	4 per Cent.	5 per Cent.	6 per Cent.	${ }^{7}$ per Cent.	8 per Cent.
$\frac{1}{2}$	-496305	-495097	-493901	-492716	-491543	-490381
1	1000000	$1 \cdot 000000$	$1 \cdot 000000$	1.000000	$1 \cdot 000000$	1.000000
$1 \frac{1}{2}$	1.511194	$1 \cdot 514901$	1.518596	$1 \cdot 522279$	1-525951	$1 \cdot 529611$
2	$2 \cdot 030000$	$2 \cdot 040000$	$2 \cdot 050000$	$2 \cdot 060000$	$2 \cdot 070000$	2.080000
$2 \frac{1}{2}$	$2 \cdot 556530$	2.575497	$2 \cdot 594526$	$2 \cdot 613616$	$2 \cdot 632768$	$2 \cdot 651980$
3	$3 \cdot 090900$	$3 \cdot 121600$	$3 \cdot 152500$	3•183600	$3 \cdot 214900$	3.246400
$3{ }^{1}$	$3 \cdot 633226$	$3 \cdot 678517$	$3 \cdot 724252$	$3 \cdot 770433$	$3 \cdot 817061$	3-864138
4	4-183627	$4 \cdot 246464$	$4 \% 310125$	$4 \cdot 374616$	$4 \cdot 439943$	$4 \cdot 506112$
$4 \frac{1}{2}$	$4 \cdot 742222$	$4 \cdot 825658$	$4 \cdot 910465$	$4 \cdot 996659$	$5 \cdot 084256$	$5 \cdot 173970$
5	5:309135	$5 \cdot 416322$	$5 \cdot 525631$	$5 \cdot 637092$	5•750739	$5 \cdot 866600$
$5 \frac{1}{2}$	$5 \cdot 884489$	6.018684	$6 \cdot 155988$	$6 \cdot 296459$	$6 \cdot 440154$	6.587131
6	$6 \cdot 468409$	$6 \cdot 632975$	$6 \cdot 801912$	6.975318	$7 \cdot 153290$	$7 \cdot 335929$
$6 \frac{1}{2}$	$7 \cdot 061024$	7×259431	$7 \cdot 463788$	$7 \cdot 674246$	$7 \cdot 890964$	8-114102
7	$7 \cdot 662469$	$7 \cdot 898294$	$8 \cdot 142008$	8.393837	$8 \cdot 654021$	$8 \cdot 922803$
7!	$8 \cdot 272855$	8.549809	8-836977	$9 \cdot 134701$	$9 \cdot 443332$	$9 \cdot 7632.30$
8	8.892336	9.214226	9:549108	9-897467	10.259802	10•636627
$8 \frac{1}{2}$	$9 \cdot 521040$	$9 \cdot 891801$	$10 \cdot 278826$	$10 \cdot 682783$	$11 \cdot 104365$	$11 \cdot 544288$
9	10.159106	$10 \cdot 582795$	11.026564	11.491315	11.977988	$12 \cdot 487557$
912	$10 \cdot 806671$	$11 \cdot 287473$	11.792767	$12 \cdot 323750$	$12 \cdot 881671$	$13 \cdot 467831$
10	$11 \cdot 463879$	$12 \cdot 006107$	12.577892	13•180794	$13 \cdot 816447$	14.486562
$10 \frac{1}{2}$	$12 \cdot 130872$	12.738972	$13 \cdot 382406$	$14 \cdot 063175$	14.783388	15.545258
11	$12 \cdot 807795$	13.486351	$14 \cdot 206787$	14.971642	$15 \cdot 783599$	$16 \cdot 645487$
$11 \frac{1}{2}$	$13 \cdot 494798$	14.248531	$15 \cdot 051526$	$15 \cdot 906966$	16.818225	17-788879
12	$14 \cdot 192029$	$15 \cdot 025805$	$15 \cdot 917126$	16.869941	$17 \cdot 888451$	$18 \cdot 977126$
121	$14 \cdot 899642$	$15 \cdot 818472$	16.804102	17.861584	$18 \cdot 995501$	$20 \cdot 211989$
13	$15 \cdot 617790$	$16 \cdot 626837$	$17 \cdot 712989$	18.882137	$20 \cdot 140642$	$21 \cdot 495296$
138	$16 \cdot 346631$	$17 \cdot 451211$	$18 \cdot 644307$	19.933067	$21 \cdot 325186$	29.828948
14	$17 \cdot 086324$	$18 \cdot 291911$	19.598631	$21 \cdot 015065$	22.550487	24.214920
$14 \frac{1}{2}$	$17 \cdot 837030$	$19 \cdot 149260$	$20 \cdot 576523$	22-129051	$23 \cdot 817949$	$25 \cdot 65526.4$
15	$18 \cdot 598913$	$20 \cdot 023587$	21-578563	$23 \cdot 275969$	25-129022	$27 \cdot 152113$
151	19:372141	$20 \cdot 915230$	$22 \cdot 605349$:4.456794	$26 \cdot 485205$	$28 \cdot 707685$
16	$20 \cdot 156881$	$21 \cdot 824531$	$23 \cdot 657491$	$25 \cdot 679528$	$27 \cdot 888053$	30:32428?
$16 \frac{1}{2}$	$20 \cdot 953305$	22.751839	24.735616	$26 \cdot 924202$	29.339170	32.00430
17	$21 \cdot 761587$	$23 \cdot 697512$	25.840366	28.212879	30-840217	33.7502 .25
$17 \frac{1}{2}$	$22 \cdot 581904$	24.661913	$26 \cdot 972397$	$29: 539654$	3¢-392912	$35 \cdot 564644$
18	$23 \cdot 414435$	$23 \cdot 645412$	$28 \cdot 132384$	$30 \cdot 905652$	33.999032	:37-45024?
181 $\frac{1}{2}$	$24 \cdot 259961$	26.648389	$29 \cdot 321017$	32:312033	$35 \cdot 660416$	$39 \cdot 409816$
19	$25 \cdot 116868$	27.671229	80.535003	$33 \cdot 759991$	37-378964	41.44626
$19 \frac{1}{2}$	$25 \cdot 987142$	28.714325	$31 \cdot 787068$	35×250755	$39 \cdot 156645$	$43 \cdot 562601$
20	$26 \cdot 870374$	29.778078	$33 \cdot 065954$	$36 \cdot 785591$	40-995499	45.761964
$20 \frac{1}{2}$	27-766756	$30 \cdot 862898$	34:376421	$38 \cdot 365801$	$42 \cdot 897610$	48.04760!
21	$28 \cdot 676485$	$31 \cdot 969201$	35719451	$39 \cdot 992726$	$44 \cdot 865176$	$50.42292{ }^{\circ}$
21!	29.599759	$33 \cdot 097414$	$37 \cdot 095243$	$41 \cdot 667749$	$46 \cdot 900443$	52.89141 \%
22°	30•536780	$34 \cdot 247969$	$38 \cdot 505214$	$43: 392290$	49.005739	55.45675
221	$31 \cdot 487752$	$35 \cdot 421310$	39•950005	$45 \cdot 167814$	$51 \cdot 183474$	$58 \cdot 12273$
23	$32 \cdot 452833$	36.617488	41-430475	$46 \cdot 995827$	53.436140	60.89329.
$23 \frac{1}{2}$	33.432385	37-838163	$42 \cdot 947505$	$48 \cdot 877882$	$55 \cdot 766317$	63.7725.
24	$34 \cdot 426470$	39.082604	44.501998	50.815577	$58 \cdot 176670$	
241	$35 \cdot 435356$	$40 \cdot 3.51689$	46.094880	$52 \cdot 810555$ 54.86451%	$60 \cdot 669959$ $63 \cdot 249037$	$69 \cdot 87435$ $73 \cdot 10.593$
25	36•459264	$41 \cdot 645908$	47•727098	54.864512	$63 \cdot 249037$	$73 \cdot 10.593$

The Thim Table of Compound Intfprast - continued

The Adoant of One Pound per Annum in iny Number of Years, \&c.

Years.	3 per Cent.	4 per Cent.	5 per Cent.	6 p.r Cent.	7 per Cent.	8 per Cent.
$25 \frac{1}{2}$	$37 \cdot 498417$	42.965757	49.399624	56.979189	$65 \cdot 916856$	76.464302
26	$38 \cdot 553042$	44.311744	$51 \cdot 113453$	$59 \cdot 156382$	68.676470	$79 \cdot 954415$
$26 \frac{1}{2}$	39.623369	$45 \cdot 684387$	$52 \cdot 869605$	$61 \cdot 397940$	71-5:31036	83.581446
27	$40 \cdot 709633$	$47 \cdot 084214$	$54 \cdot 669126$	63.705765	$74 \cdot 483823$	$87 \cdot 350768$
$27 \frac{1}{2}$	$41 \cdot 812070$	48.511763	$56 \cdot 513086$	66.081817	77-538209	$91 \cdot 267962$
28	$42 \cdot 930922$	$49 \cdot 967582$	58.402582	68.528111	80.697690	95.338829
$28 \frac{1}{2}$	$44 \cdot 066433$	51.452233	$60 \cdot 338740$	$71 \cdot 046726$	$83 \cdot 965884$	$99 \cdot 569399$
29	$45 \cdot 218850$	$52 \cdot 966286$	$62 \cdot 322711$	73•639798	87:346529	$103 \cdot 965936$
291	46.388425	54.510323	$64 \cdot 355677$	$76: 309529$	$90 \cdot 843495$	108.534951
30	47:575415	$56 \cdot 084937$	66.438847	$79 \cdot 058186$	94-460786	$113 \cdot 283211$
$30 \frac{1}{2}$	$48 \cdot 780078$	$57 \cdot 690735$	$68 \cdot 573461$	$81 \cdot 888101$	98.202540	118.217747
31	$50 \cdot 002678$	$59: 328335$	70•760789	84.801677	$102 \cdot 073041$	123:345868
$31 \frac{1}{2}$	$51 \cdot 243481$	$60 \cdot 998365$	$73 \cdot 002154$	$87 \cdot 801387$	106.076718	$128 \cdot 675167$
32	52.502758	$62 \cdot 701468$	75•298829	$90 \cdot 889778$	$110 \cdot 218154$	$134 \cdot 213537$
321	$53 \cdot 780785$	$64 \cdot 438300$	$77 \cdot 652241$	94.069470	$114 \cdot 502088$	$139 \cdot 969180$
33	$55 \cdot 077841$	$66 \cdot 209527$	80.063770	97-343164	118.933425	145.950620
331	$56 \cdot 394209$	$68 \cdot 015832$	$82 \cdot 534853$	100'715639	123.517234	$152 \cdot 166715$
34	$57 \cdot 730176$	$69 \cdot 857908$	$85 \cdot 066959$	104•183754	$128 \cdot 258764$	158•626670
$34 \frac{1}{2}$	$59 \cdot 086035$	$71 \cdot 736465$	$87 \cdot 661596$	107•756457	$133 \cdot 163441$	$165 \cdot 340052$
35	60•462081	$73 \cdot 652224$	$90 \cdot 320307$	111-434779	$138 \cdot 236878$	$172 \cdot 316803$
351	$61 \cdot 858616$	$75 \cdot 605923$	$93 \cdot 044675$	$115 \% 21844$	143.484882	179.567256
36	$63 \cdot 275944$	$77 \cdot 598313$	95•836322	$119 \cdot 120866$	148.913459	187•102147
361	64.714374	$79 \cdot 630160$	98•696909	$123 \cdot 135155$	$154 \cdot 528824$	194.932637
37	$66 \cdot 174222$	$81 \cdot 702246$	$101 \cdot 628138$	127-268118	160.337402	203.070319
372	$67 \cdot 655806$	$83 \cdot 81$ 「367	104631755	:31-523264	$166 \cdot 345841$	211-527248
38	$69 \cdot 159449$	85.970336	107•709545	135.904205	$172 \cdot 561020$	220:315945
$38 \frac{1}{2}$	$70 \cdot 685480$	$88 \cdot 167982$	$110 \cdot 863342$	$140 \cdot 414660$	178.990050	$229 \cdot 449428$
39	$72 \cdot 234232$	90•409149	114.095023	145.058458	185.640291	$238 \cdot 941221$
3912	$73 \cdot 806044$	$92 \cdot 694701$	$117 \cdot 406510$	$149 \cdot 839540$	192.519354	$248 \cdot 805382$
40	$75 \cdot 401259$	$95 \cdot 025515$	120•799774	$154 \cdot 761965$	$199 \cdot 635111$	259.056518
$40 \frac{1}{2}$	$77 \cdot 020296$	97-402489	$124 \cdot 276835$	159-829912	206.995708	269•709812
11	$78 \cdot 663297$	99•826536	$127 \cdot 839762$	165.047683	214-609569	280•781040
$41 \frac{1}{2}$	80:3308.32	$102 \cdot 298588$	$131 \cdot 490677$	$170 \cdot 419707$	$222 \cdot 485408$	$292 \cdot 286597$
12	$82 \cdot 023196$	$104 \cdot 819597$	$135 \cdot 231751$	$175 \cdot 950544$	$230 \cdot 632239$	$304 \cdot 243523$
1212	$83 \cdot 740757$	107•390532	139.065211	$181 \cdot 644890$	$239 \cdot 059387$	316.669525
13	$85 \cdot 483892$	110.012381	142.933338	187.507577	$247 \cdot 776496$	$329 \cdot 583005$
$13 \frac{1}{2}$	87.252980	$112 \cdot 686153$	$147 \cdot 018471$	193.543583	$256 \cdot 793544$	343.003087
14	89.048409	$115 \cdot 412876$	$151 \cdot 143005$	$199 \cdot 758031$	$266 \cdot 120851$	356.949645
$14 \frac{1}{2}$	$90 \cdot 870570$	$118 \cdot 193599$	$155 \cdot 369395$	206•156198	$275 \cdot 769092$	$371 \cdot 443334$
15	$92 \cdot 719861$	121.029392	159•7001 55	$212 \cdot 743513$	$285 \cdot 749310$	386.505617
$15 \frac{1}{2}$	94:596687	123.921343	164•137865	219.525570	296.072928	$402 \cdot 158801$
6	96.501457	126.870567	$168 \cdot 635163$	226.508124	306.751762	$418 \cdot 426066$
61	$98 \cdot 434587$	$129 \cdot 878197$	173.344758	233-697104	317.798033	$435 \cdot 331505$
7	100.396500	$132 \cdot 945390$	178.119421	$241 \cdot 098612$	329-224385	$452 \cdot 900152$
$7 \frac{1}{2}$	$102 \cdot 387625$	$136 \cdot 073325$	183.011996	$248 \cdot 718930$	$341 \cdot 043896$	471-158026
8	$104 \cdot 408395$	$139 \cdot 263206$	$188 \cdot 025392$	256.564528	353.270093	$490 \cdot 132164$
$8 \frac{1}{2}$	$106 \cdot 459254$	142.516258	$193 \cdot 162596$	$264 \cdot 642066$	365•916969	$509 \cdot 850668$
9	$108 \cdot 540647$	145.833734	$198 \cdot 426662$	$272 \cdot 958400$	378-998999	$530 \cdot 342737$
$9 \frac{1}{2}$	110653031	149.216908	$203 \cdot 820725$	$281 \cdot 520590$	$392 \cdot 531156$	$551 \cdot 638721$
0	112.796867	$152 \cdot 667083$	209•347995	290:335904	$406 \cdot 528929$	$573 \cdot 770156$

The 'himb Table of Compound Interest-continued.

The Amount of One Pound per Annum in any Number of Years, \&c.

ears.	3 per Cent.	4 per Cent.	5 per Cent.	6 per Cent.	7 per Cent.	8 per Cent.
$50 \frac{1}{2}$	114.979622	156•18.5.285	215011762	299.411826	$421 \cdot 008337$	596.769819
51	117•180773	$159 \cdot 773767$	220-815395	$308 \cdot 756058$	$435 \cdot 985954$	620.671768
$51 \frac{1}{2}$	119.421801	$163 \cdot 433008$	226.762350	318:376535	$451 \cdot 478921$	645.51140:5
52	121.696196	$167 \cdot 164717$	$232 \cdot 856165$	$328 \cdot 281422$	467-504971	$671 \cdot 325510$
$52 \frac{1}{2}$	$124^{\prime} 004455$	$170 \cdot 970329$	$239 \cdot 100467$	$338 \cdot 479127$	$484 \cdot 082445$	698.152317
53	126:347082	174.851306	$245 \cdot 498973$	348.978307	$501 \cdot 230319$	726.031551
531	128•724589	178.809142	252.055491	$359 \cdot 787875$	$518 \cdot 968217$	755.00450 2
54	131-137494	$182 \cdot 845358$	258•773922	370.917006	$537 \cdot 316441$	78.5114075
$54!$	$133 \cdot 586326$	$186 \cdot 961507$	$265 \cdot 658265$	382:375148	$556 \cdot 295992$	816.404863
55	$136 \cdot 071619$	$191 \cdot 159173$	$272 \cdot 719618$	594•172026	$575 \cdot 928592$	848.923201
551	138.593916	$195 \cdot 439968$	279.941178	406.317657	$596 \cdot 236711$	$882 \cdot 717252$
56	$141 \cdot 153768$	$199 \cdot 805539$	$287 \cdot 348249$	$418 \cdot 822348$	617×243594	$917 \cdot 8370.57$
$56!$	143.75173.	$204 \cdot 257567$	$294 \cdot 938237$	$431 \cdot 696716$	$638 \cdot 973281$	954 '33463:
57	146.388381	208.797761	$302 \cdot 715661$	$444 \cdot 951689$	$661 \cdot 450645$	992.2640\%.
$57 \frac{1}{2}$	$149 \cdot 064286$	$213 \cdot 427869$	310-685149	$458 \cdot 598519$	$684 \cdot 701411$	$1031 \cdot 681403$
58	$151 \cdot 780032$	218.1496:2	318.851444	$472 \cdot 648790$	708.752190	1072-645143
$58 \frac{1}{2}$	$154 \cdot 536214$	$222 \cdot 964984$	327•219407	487.114430	$733 \cdot 630510$	$1115 \cdot 215915$
59	$157 \cdot 333433$	227-875658	335-794017	$502 \cdot 007717$	$759 \cdot 364844$	$1159 \cdot 45675.5$
$59{ }^{1}$	$160 \cdot 172301$	$232 \cdot 883583$	$344 \cdot 580377$	$517 \cdot 341296$	785-984645	1205-433185
60	$163 \cdot 053436$	237.990685	353583717	$533 \cdot 128180$	$813 \cdot 520383$	$1253 \cdot 21399.5$
$60 \frac{1}{2}$	$165 \cdot 977470$	$243 \cdot 198927$	$362 \cdot 809396$	381774	842.003571	$1302 \cdot 867843$
61	$168 \cdot 945039$	248.510312	$372 \cdot 262903$	$566 \cdot 115871$	$871 \cdot 466810$	1354-47035?
618	$171 \cdot 956794$	$253 \cdot 926884$	381.949866	$583 \cdot 344680$	$901 \cdot 943821$	1408.097271
62	$175 \cdot 013391$	$259 \cdot 450725$	$391-876048$	$601 \cdot 082824$	$933 \cdot 469486$	$1463 \cdot 897988$
$62 \frac{1}{2}$	$178 \cdot 115498$	$265 \cdot 083959$	$402 \cdot 047359$	619:345361	$966 \cdot 079888$	$1521 \cdot 74505^{2}$
63	181.963792	$270 \cdot 828754$	$412 \cdot 469851$	638.147793	999-812350	$1581 \cdot 934227$
$63 \frac{1}{2}$	$184 \cdot 458963$	$276 \cdot 687318$	$493 \cdot 149727$	657-506083	$1034 \cdot 705480$	1644.4846.56
64	187-701706	$282 \cdot 661904$	$434 \cdot 093343$	677-436661	1070•799215	$1709 \cdot 488965$
$64 \frac{1}{2}$	$190 \cdot 992732$	288.754810	445 307214	$697 \cdot 956448$	1108-134864	$1777 \cdot 04342 \%$,
65	194-332757	$294 \cdot 968380$	$456 \cdot 798011$	719.082860	$1146 \cdot 755160$	1847-2480192
65.	197722513	301-305003	$468 \cdot 572574$	$740 \cdot 833835$	$1186 \cdot 704304$	1920-20690:3
66	201 - 162740	$307 \cdot 767115$	$480 \cdot 637911$	$763 \cdot 227832$	1228-028021	1996.027929
661.	204•654189	314.357203	$493 \cdot 001203$	786.283865	$1270 \cdot 773606$	$2074.82315 t$,
67	$203 \cdot 197622$	$321 \cdot 077800$	$505 \cdot 669807$	810.021502	$1314 \cdot 989983$	$21.56 \cdot 710163$
$67 \frac{1}{2}$	$211 \cdot 793815$	327-931491	$518 \cdot 651$ ᄃ63	$834 \cdot 460897$	$1360 \cdot 727758$	$2241 \cdot 80933$.
68	$215 \cdot 443551$	$334 \cdot 920912$	$531 \cdot 953297$	859.622792	$1408 \cdot 039282$	$2330 \cdot 246976$
$68 \frac{1}{2}$	$219 \cdot 147629$	$342 \cdot 048751$	$545 \cdot 583826$	$885 \cdot 528550$	$1456 \cdot 978701$	2422.15407!
69	$222 \cdot 906858$	$349 \cdot 317748$	$559 \cdot 550962$	$912 \cdot 200160$	$1507 \cdot 602032$	$2517 \cdot 66673 \cdot$
692	$226 \cdot 722058$	$356 \cdot 730701$	$573 \cdot 863018$	$939 \cdot 660263$	$1559 \cdot 967211$	$2616 \cdot 92640$
70	230-594063	364-290458	$588 \cdot 528510$	$967 \cdot 932169$	$1614 \cdot 134174$	2720.08007:
$70 \frac{1}{2}$	$234 \cdot 523720$	371-999929	603.556169	997.039879	1670-164915	$28.27 \cdot 280518$
71	238-511885	379•862077	$618 \cdot 954936$	1027.008099	1728-123566	2938.68647!
$71 \frac{1}{2}$	$242 \cdot 559431$	387-879926	634-733977	1057-862272	$1788 \cdot 076459$	$3054 \cdot 46295!$
72	$246 \cdot 667242$	396.056560	650-902683	1089•628585	$1850 \cdot 092216$	$3174 \cdot 781894$
-20	$250 \cdot 836214$	404:395123	$667 \cdot 470676$	$1122 \cdot 334008$	1914.241812	3299.819994
73	$255 \cdot 067959$	$412 \cdot 898822$	$684 \cdot 447817$	$1156 \cdot 006300$	1980.598671	3429.76390
$73 \frac{1}{2}$	259:361301	$421 \cdot 570928$	701.844210	1190.674049	2049 238738	$3564 \cdot 80559$
74	$263 \cdot 719277$	$430 \cdot 414775$	$719 \cdot 670208$	1226.366679	$2120 \cdot 240578$	3705.1450\%:
$74 \frac{1}{2}$	$268 \cdot 142140$	439433765	$737 \cdot 936420$	1263•114492	$2193 \cdot 685450$	$3850 \cdot 990{ }^{\circ}$
75	$272 \cdot 630855$	$448 \cdot 631366$	$756 \cdot 653718$	$1300 \cdot 948679$	$2269 \cdot 657418$	4002.5566

Tife Third Table of Compound Interest - continued.

The Amount of One Pound per Annum in any Number of Years, \&e.

Tears.	3 per Cent.	4 per Cent.	5 per Cent.	6 per Cent.	7 per Cent.	8 per Cent.
751	277-186404	$458 \cdot 011116$	$775 \cdot 833241$	1339.901361	$2348 \cdot 243432$	$4160 \cdot 069247$
76	281-809781	467-576621	$795 \cdot 486404$	$1380 \cdot 005600$	$2429 \cdot 533437$	$4323 \cdot 761154$
$76 \frac{1}{2}$	$286 \cdot 501996$	477-331560	$815 \cdot 624903$	$1421 \cdot 295443$	2513.620472	$4493 \cdot 874786$
77	$291 \cdot 64074$	$487 \cdot 2796 \times 6$	$836 \cdot 260724$	$1463 \cdot 805936$	2600-600778	$4670 \cdot 6620 \cdot 16$
771	$296 \cdot 097056$	$497 \cdot 424823$	$857 \cdot 406149$	$1507 \cdot 573170$	2690-573905	$485+384769$
78	$301 \cdot 001996$	507-770873	879.073760	$1552 \cdot 634292$	2783•642833	$5045 \cdot 315010$
$78 \frac{1}{2}$	305-979968	$518 \cdot 321816$	$901 \cdot 276456$	$1599 \cdot 027560$	$2879 \cdot 914078$	5243-735551
79	311 '052056	$529 \cdot 081708$	924 '027448	$1646 \cdot 799350$	$2979 \cdot 497831$	$5449 \cdot 940211$
$79 \frac{1}{2}$	$316 \cdot 159367$	$540 \cdot 054688$	$947 \cdot 340279$	$1695 \cdot 969214$	$3082 \cdot 508064$	$5664 \cdot 234395$
80	$321 \cdot 363018$	$551 \cdot 244976$	971×228821	$1746 \cdot 599891$	3189.062679	$5886 \cdot 935428$
$80 \frac{1}{2}$	$326 \cdot 644148$	$562 \cdot 656876$	995•707293	1798-727367	3299-283628	$6118 \cdot 373147$
81	$332 \cdot 003909$	$574 \cdot 294775$	$1020 \cdot 790262$	$1852 \cdot 395884$	$3413 \cdot 297067$	$6358 \cdot 890262$
812	$337 \cdot 443472$	$586 \cdot 163151$	$1046 \cdot 492658$	$1907 \cdot 651009$	$3531 \cdot 233482$	$6608 \cdot 842999$
82	$342 \cdot 964026$	$598 \cdot 266566$	$1072 \cdot 829775$	$1964 \cdot 539637$	3653 -227861	$6868 \cdot 601483$
82, $\frac{1}{2}$	$348 \cdot 566776$	$610 \cdot 609677$	$1099 \cdot 817290$	$2023 \cdot 110069$	$3779 \cdot 419826$	$7138 \cdot 550438$
83	$354 \cdot 252947$	623-197229	$1127 \cdot 471264$	2083-412016	$3909 \cdot 953812$	$7419 \cdot 089602$
831	$360 \cdot 023780$	$636 \cdot 034064$	$1155 \cdot 808155$	$2145 \cdot 496673$	4044-979214	$7710 \cdot 634474$
84	$365 \cdot 880535$	$649 \cdot 125118$	$1184 \cdot 844827$	$2209 \cdot 416737$	4184 650579	$8013 \cdot 616770$
$84 \frac{1}{2}$	$371 \cdot 824493$	$662 \cdot 475427$	$1214 \cdot 598563$	$2975 \cdot 226474$	$4329 \cdot 127759$	$8328 \cdot 485232$
85	$377 \cdot 856951$	$676 \cdot 090123$	$1245 \cdot 087068$	2S42-981741	4478.576119	$8655 \cdot 706112$
$85 \frac{1}{2}$	38	$689 \cdot 974444$	$1276 \cdot 328491$	2412•740062	$4633 \cdot 166702$	8995 764050
86	$390 \cdot 192660$	704 133728	1308:341422	$2484 \cdot 560645$	$4793 \cdot 076448$	$9349 \cdot 162600$
$86 \frac{1}{2}$	396.498605	718-573422	$1341 \cdot 144916$	$2558 \cdot 504466$	49.58-488372	$9716 \cdot 425174$
87	$402 \cdot 898440$	$733 \cdot 299077$	$1374 \cdot 758493$	$2634 \cdot 634284$	$5129 \cdot 591799$	$10098 \cdot 095609$
$87 \frac{1}{2}$	$409 \cdot 393563$	$748 \cdot 316358$	$1409 \cdot 202161$	$2713 \cdot 014734$	$5306 \cdot 582558$	10494.739188
88	$415 \cdot 985393$	$763 \cdot 631040$	$1444 \cdot 496418$	$2793 \cdot 712341$	$5489 \cdot 663225$	10906 '943257
$88 \frac{1}{2}$	$422 \cdot 675370$	779.249013	$1480 \cdot 662269$	$2876 \cdot 795618$	$5679 \cdot 043337$	$11835 \cdot 318323$
89	$429 \cdot 464955$	$795 \cdot 176282$	$1517 \cdot 721238$	$2962 \cdot 335082$	$5874 \cdot 939651$	$11780 \cdot 498718$
$89 \frac{1}{2}$	$436 \cdot 355631$	811.418973	$1555 \cdot 695383$	3050-403355	$6077 \cdot 576370$	$12243 \cdot 143789$
90	443-348903	$827 \cdot 983333$	$1594 \cdot 607300$	$3141 \cdot 075187$	$6287 \cdot 185426$	12723.938615
901	$450 \cdot 446300$	844.875732	$1634 \cdot 480152$	$3234 \cdot 427556$	$6504 \cdot 006716$	13223.595292
91	$457 \cdot 649370$	$862 \cdot 102667$	$1675 \cdot 337665$	3330-539698	6728.288406	$13742 \cdot 853705$
$91 \frac{1}{2}$	$464 \cdot 959689$	$879 \cdot 670762$	$1717 \cdot 204160$	$3429 \cdot 493210$	$6960 \cdot 287186$	$14282 \cdot 482916$
92	$472 \cdot 378851$	$897 \cdot 586773$	$1760 \cdot 104549$	$3531-372080$	7200-268595	14843.982001
921	479.908480	$915 \cdot 857592$	1804.064368	36:36-262802	$7448 \cdot 507289$	$15426 \cdot 081540$
93	487-550217	$934 \cdot 490244$	$1849 \cdot 109776$	$3744 \cdot 254405$	$7705 \cdot 28: 396$	$16031 \cdot 744561$
931	495.305734	$953 \cdot 491896$	$1895 \cdot 267586$	$3855 \cdot 4.38571$	$7970 \cdot 902800$	$16661 \cdot 168073$
94	503•176723	$972 \cdot 869854$	1942.565265	$3969 \cdot 909669$	$8245 \cdot 657514$	$17315 \cdot 2841 \pm 6$
$94 \frac{1}{2}$	$511 \cdot 164906$	$992 \cdot 631572$	$1991 \cdot 030965$	$4087 \cdot 764885$	$8529 \cdot 865996$	$17995 \cdot 061519$
95	$519 \cdot 272025$	1012•784648	2040 693528	$4209 \cdot 104249$	$8823 \cdot 853540$	18701 506856
$95 \frac{1}{2}$	$527 \cdot 499853$	1033-336834	$2091 \cdot 582514$	$4334 \cdot 030778$	9127-956615	19435 '666440
96	$535 \cdot 850186$	1054-296034	$2143 \cdot 728205$	$4462 \cdot 650504$	$9442 \cdot 523288$	$20198 \cdot 627405$
$96 \frac{1}{2}$	$544 \cdot 324849$	$1075 \cdot 670308$	$2197 \cdot 161639$	$4595 \cdot 072625$	9767'913579	20991 519756
97	$552 \cdot 925692$	$1097 \cdot 467875$	$2251-914615$	$4731 \cdot 409534$	10104.499918	$21815 \cdot 517597$
97⿺ $\frac{1}{2}$	561'654594	$1119 \cdot 697120$	$2308 \cdot 019721$	$4871 \cdot 776982$	$10452 \cdot 667529$	$22671 \cdot 841336$
98	$570 \cdot 513462$	$1142 \cdot 366590$	$2365 \cdot 510346$	$5016 \cdot 294106$	$10812 \cdot 81491$	$2: 3561 \cdot 759005$
981 $\frac{1}{2}$	$579 \cdot 504939$	$1165 \cdot 485005$	$2424 \cdot 420708$	$5165 \cdot 083601$	$111185 \cdot 35425$	$24486 \cdot 588643$
99	$588 \cdot 628866$	$1189 \cdot 061254$	$2484 \cdot 785863$	5318.271753	11570•711956	$25447 \cdot 699726$
$99 \frac{1}{2}$	$597 \cdot 889359$	$1213 \cdot 104405$	$2546 \cdot 641743$	$5475 \cdot 988617$	$11969 \cdot 329054$	$26446 \cdot 515734$
00	607 $\% 87732$	$1237 \cdot 623704$	$2610 \cdot 025156$	5638 -368058	$12381 \cdot 661793$	$27484 \cdot 515704$

The Fourmi Tahle: or Componnd Intzrest.
The present Valne of One l'ound per Annum for any Number of Y'ears to come, \&c.

Years.	3 per Cent.	4 per Cent.	5 per Cent.	6 per Cont.	7 per Cent.	8 per Cent.
1	-489024	-485483	-481998	$\cdot 478568$	$\cdot 475193$	-471869
1	-970873	-961538	'952380	-943396	-934579	-925925
$1 \frac{1}{2}$	$1 \cdot 445654$	1.4283449	$1 \cdot 411427$	1:394876	$1: 378685$	$1 \cdot 362842$
2	$1 \cdot 913469$	$1 \cdot 886094$	$1 \cdot 859410$	1.833392	$1 \cdot 808018$	$1 \cdot 783264$
$2 \frac{1}{2}$	$2 \cdot 374421$	$2 \cdot 334951$	$2 \cdot 296597$	$2 \cdot 259317$	$2 \cdot 223070$	$2 \cdot 187816$
3	$2 \cdot 829611$	$2 \cdot 775091$	$2 \cdot 723248$	$2 \cdot 673011$	2.624316	$2 \cdot 577096$
31	$3 \cdot 276137$	$3 \cdot 206683$	3•139616	$3 \cdot 074827$	$3 \cdot 01 \leq 215$	$2 \cdot 951682$
4	3•717098	$3 \cdot 629895$	$3 \cdot 545950$	$3 \cdot 465105$	$3 \cdot 387211$	3:312126
$4 \frac{1}{2}$	$4 \cdot 151589$	4.044888	$3 \cdot 942491$	$3 \cdot 844177$	$3 \cdot 749733$	$3 \cdot 6.58964$
5	$4 \cdot 579707$	$4 \cdot 451822$	4.329476	4.212363	$4 \cdot 100197$	3.992710
$5 \frac{1}{2}$	$5 \cdot 001543$	$4 \cdot 850854$	4.707135	$4 \cdot 569978$	4•4:50003	$4 \cdot 313856$
6	$5 \cdot 417191$	$5 \cdot 242136$	$5 \% 75692$	$4 \cdot 917324$	$4 \cdot 766599$	4622879
$6{ }_{2}^{1}$	$5 \cdot 826741$	$5 \cdot 6 \div 5821$	$5 \cdot 435366$	$5 \cdot 254696$	$5 \cdot 083140$	$4 \cdot 920237$
7	6.230282	$6 \cdot 0020.54$	$5 \cdot 786373$	$5 \cdot 582381$	$5 \cdot 389289$	$5 \cdot 206370$
$7 \frac{1}{2}$	$6 \cdot 627904$	$6 \cdot 370981$	$6 \cdot 128920$	$5 \cdot 900657$	$5 \cdot 685215$	$5 \cdot 481701$
8	7.019692	6.732744	$6 \cdot 463212$	6.209793	5.971998	5.746638
8 雨	$7 \cdot 405732$	$7 \cdot 087482$	6.789448	$6 \cdot 510053$	$6 \cdot 247865$	$6 \cdot 001.575$
9	$7 \cdot 786108$	$7 \cdot 435331$	$7 \cdot 107821$	6.801692	$6 \cdot 515232$	6×246887
$9 \frac{1}{2}$	$8 \cdot 160905$	$7 \cdot 776425$	$7 \cdot 118529$	7.084956	6.773705	6.482940
10	8.530202	8•110895	7.721734	$7 \cdot 360087$	$7 \cdot 023581$	6.710081
10_{2}^{1}	$8 \cdot 894082$	8.438870	$8 \cdot 017640$	7627317	7.265145	6.925648
11	$9 \cdot 252624$	8•760476	8:306414	$7 \cdot 886874$	$7 \cdot 498674$	$7 \cdot 138964$
$11 \frac{1}{2}$	$9 \cdot 605905$	$9 \cdot 075837$	8.588228	$8 \cdot 138978$	$7 \cdot 724435$	$7 \cdot 341340$
12	$9 \cdot 954003$	9:385073	$8 \cdot 863251$	$8 \cdot 383843$	$7 \cdot 942686$	$7 \cdot 536078$
12!	10-296995	$9 \cdot 688305$	9•131646	$8 \cdot 621678$	$8 \cdot 153677$	$7 \cdot 723463$
13	$10 \cdot 634955$	$9 \cdot 985647$	9.393572	8.852682	8.357650	$7 \cdot 909775$
13!	$10 \cdot 967956$	$10 \cdot 277216$	$9 \cdot 649187$	$9 \cdot 077054$	$8 \cdot 55483 \%$	$8 \cdot 077281$
14	11.296073	10.563122	9.898640	$9 \cdot 294983$	$8 \cdot 745467$	$8 \cdot 244236$
$14 \frac{1}{2}$	11.619375	$10 \cdot 843477$	$10 \cdot 142082$	9-506655	$8 \cdot 929756$	$8 \cdot 404890$
15	11.937935	$11 \cdot 118387$	10:379658	$9 \cdot 712248$	9•107914	8.559478
$15 \frac{1}{2}$	12.251821	11.387958	$10 \cdot 611507$	$9 \cdot 911939$	$9 \cdot 280145$	$8 \cdot 708231$
16	12.561102	$11 \cdot 652295$	10.837769	10.105895	$9 \cdot 446648$	$8 \cdot 851369$
$16 \frac{1}{2}$	$12 \cdot 865845$	$11 \cdot 911499$	11.058578	10.294282	$9 \cdot 607612$	$8 \cdot 989103$
17	$13 \cdot 166118$	12•165668	$11 \cdot 274066$	$10 \cdot 477259$	9763222	9•121638
$17 \frac{1}{2}$	$13 \cdot 161986$	12.414902	$11 \cdot 484360$	10.654983	$9 \cdot 913656$	9-249169
18	$18 \cdot 753513$	$12 \cdot 659296$	11.689586	10.827603	10.059086	$9 \cdot 371887$
$18 \frac{1}{2}$	$14 \cdot 040763$	12.898945	11.889867	$10 \cdot 995267$	10.199679	$9 \cdot 489971$
19	14.323799	$13 \cdot 133939$	12.085320	$11 \cdot 158116$	10:335595	$9 \cdot 603599$
$19 \frac{1}{2}$	14.602682	$13 \cdot 364370$	12.276064	$11 \cdot 316289$	$10 \cdot 466990$	$9^{\text {71293 }}$
20	14.817474	$13 \cdot 590326$	12.462210	11-469921	10.594014	9.818147
$20 \frac{1}{2}$	$15 \cdot 148235$	13.811894	$12 \cdot 643870$	11.619141	$10 \cdot 716813$	9.919386
21	$15 \cdot 415024$	14.029159	12.821152	$11 \cdot 764076$	10.835527	$10 \cdot 016803$
$21 \frac{1}{2}$	$15 \cdot 677898$	14.242206	12.994162	11.904850	$10 \cdot 950292$	$10 \cdot 110542$
22	$15 \cdot 936916$	14.451115	$13 \cdot 163002$	12.041581	11.061240	10-200743
$22 \frac{1}{2}$	$16 \cdot 192134$	$14 \cdot 655967$	13:327773	$12 \cdot 174387$	11.168497	10.287539
23	16.442508	14.856841	13.488573	12:303378	11.272187	10.371058
$23 \frac{1}{2}$	$16 \cdot 691392$	15.053814	13.645498	$12 \cdot 428667$	11.372427	10.451425
24	16.935542	$15 \cdot 246963$	13.798641	$12 \cdot 550357$	11.469384	10.528758
241	$17 \cdot 176109$	$15 \cdot 436360$	$13 \cdot 948094$	$12 \cdot 668553$	11.563016	10.603171
25	$17 \cdot 413147$	$15 \cdot 622079$	14.099944	$12 \cdot 783356$	11.653583	10.67476

The Fourth Tabie of Compound Inferest - continued.
The present Value of One Pound per Annum for any Number of Years to come, \&c.

ears.	3 per Cent.	4 per Cent.	${ }^{5}$ per Cent.	${ }_{6} \mathrm{p}$ per Cent.	7 per Cent.	8 per Cent.
251	$17 \cdot 646708$	15•804192	14.236280	$12 \cdot 894862$	11.741137	10.743677
36	$17 \cdot 876842$	$15 \cdot 982769$	$14 \cdot 375185$	13.003166	11.825778	10•809977
61	18.103600	16.157877	14.510742	13•108360	11.907604	10-873775
27	18:327031	16.329585	$14 \cdot 643033$	13.210534	11.986709	$10 \cdot 935164$
$27 \frac{1}{2}$	18.547184	$16 \cdot 497959$	14.772136	13•309774	12.063182	10.994236
8	18.764108	6630	14.898127	$18 \cdot 40616$	12.1371	11.051078
$28 \frac{1}{2}$	$18 \cdot 977849$	16.824960	15.02108	13-49978	12.208581	$11 \cdot 105774$
39	19-188454	16.983714	15.141073	13:590721	12.277674	$11 \cdot 158406$
291	$19 \cdot 395970$	17-139385	15.258173	13.679044	12.344468	$11 \cdot 209050$
30	19 \%00441	$17 \cdot 292033$	15:372451	13.764831	12-409041	11.257783
$30 \frac{1}{2}$	19.801912	17.441716	15.483974	18.84815	$12 \cdot 4714$	-304676
31	20.000428	$17 \cdot 588493$	15.592810	13.929085	12.531814	$11 \cdot 349799$
$31 \frac{1}{2}$	20•196031	17.732419	$15 \cdot 699023$	14.007693	12:5901 55	11-393918
32	2038876.5	17.873551	$15 \cdot 802676$	14.084043	$12 \cdot 646555$	$11 \cdot 434999$
32121	20-578671	18.011942	$15 \cdot 903831$	14.158201	12.701079	11.475202
3,	$20 \cdot 765791$	18.147645	16.002549	14-230299	12.753790	513888
332	20.950166	18.280713	16.098887	14-300189	$12 \cdot 804747$	11.551113
34	$21 \cdot 131836$	$18 \cdot 411197$	$16 \cdot 192904$	14:368141	12.854009	11.586933
$34 \frac{1}{2}$	$21 \cdot 310841$	18.539147	16.284654	14.434141	$12 \cdot 901632$	$11 \cdot 621401$
3	$21 \cdot 487220$	18.664613	16.374194	14-498246	12.947672	$11 \cdot 654568$
$5 \frac{1}{3}$	$21 \cdot 661011$	18.787642	16.461575	14.560510	12.992180	1-686482
	$21 \cdot 832252$	18.908281	16.546851	$14 \cdot 620987$	13.035207	11.717192
$6 \frac{1}{2}$	22.000981	$19 \cdot 026578$	$16 \cdot 630072$	14.679727	13.076804	11.746743
	22.167235	$19 \cdot 142578$	16.711287	14.736780	13•117016	11.775178
$7 \frac{1}{2}$	$22 \cdot 331050$	$19 \cdot 256325$	16.790545	14.792195	13•155891	11 -802540
	22	19•567864	16.867892	14.846019	13.19347	11.828868
$8 \frac{1}{2}$	$22 \cdot 651505$	$19 \cdot 477436$	16.943376	14.898297	13.299805	11.854903
9	$22 \cdot 808215$	19.584484	17.017040	14.949074	13.264928	11.878589
$9 \frac{1}{2}$	$22 \cdot 962626$	19.689650	17.088929	14.998393	$13 \cdot 298883$	11.902040
	$23 \cdot 114771$	19•792773	17-159086	15.046296	13'331708	$11 \cdot 924613$
$3 \frac{1}{2}$	23.264685	19•893894	17.227552	15.092824	13.363442	11.946533
	$2: 3 \cdot 412399$	19.993051	17294367	$15 \cdot 138015$	$13 \cdot 394120$	11.967234
112	23.5557947	20.090283	17:359573	15.181909	$13 \cdot 423777$	11.987346
2	$23 \cdot 701359$	$20 \cdot 185626$	17-4:3207	$15 \cdot 224543$	$13 \cdot 452448$	$12 \cdot 00 \geq 698$
21	$23 \cdot 842667$	20:279118	17•485308	15.265952	$13 \cdot 480166$	12.025320
	23.981902	20:370794	17.545911	15.306172	13.506961	12.043 ¢39
$3 \frac{1}{2}$	24-119094	$20 \cdot 460690$	$17 \cdot 605055$	15-345238	$13 \cdot 532865$	12.060482
	24.254273	$20 \cdot 548841$	17662773	$15 \cdot 383182$	13.557908	$12 \cdot 077073$
${ }^{12}$	$24 \cdot 387470$	$20 \cdot 635279$	17.719100	$15 \cdot 420036$	13:582117	12.093038
;	24.518712	$20 \cdot 720039$	17.774069	$15 \cdot 455832$	13.605521	12108401
	$24 \cdot 648029$	$20 \cdot 803153$	17.827714	$15 \cdot 490600$	13.628147	12.123184
	24.775449	20.884653	17.880066	15.524369	13.650020	$12 \cdot 137408$
	24.900999	20.964570	17.931156	15:557169	13.671165	12.151096
	25.024707	21.042936	17.981015	15.589028	$13 \cdot 691607$	12.164267
$\frac{1}{2}$	$25 \cdot 146601$	21-119779	$18.0 ¢ 9673$	$15 \cdot 619971$	$13 \cdot 711369$	$12 \cdot 176941$
	$25 \cdot 266706$	21.195130	18.077157	15.650026	13.780474	12.189136
$3 \frac{1}{2}$	$25 \cdot 385049$	21.269018	18.123498	$15 \cdot 679218$	13.748943	12.200871
	25•501656	$21 \cdot 341472$	$18 \cdot 168721$	$15 \cdot 707572$	$13 \cdot 766798$	12.212163
是	$25 \cdot 616553$	$21 \cdot 412518$	18.212855	$15 \cdot 735111$	$13 \cdot 784059$	12.223029
	25•729763	$21 \cdot 482184$	18.255925	15.761860	18.800746	12.23:484

The Fourth Table of Compound Interest - continued.

'The present Value of One Pound ner Annum for any Number of Years to come, sce.

Years.	3 per Cent.	4 per Cent.	5 per Cent.	6 per Cent.	7 per Cent.	8 per Cent.
501	25.8 ± 1313	$21 \cdot 550498$	18.297957	$15 \cdot 787841$	13.816878	$12 \cdot 243545$
51	$25 \cdot 951227$	$21 \cdot 617485$	18:338976	$15 \cdot 813076$	13.832473	12.253226
511	$26 \cdot 059528$	$21 \cdot 683171$	18.379007	$15 \cdot 837586$	13.847549	12.262542
52	$26 \cdot 166239$	21.747581	$18 \cdot 418072$	$15 \cdot 861392$	13.862124	12.271506
$52 \frac{1}{2}$	26.271386	$21 \cdot 810741$	$18 \cdot 456197$	$15 \cdot 884515$	$13 \cdot 876214$	12"280131
53	26.374990	$21 \cdot 872674$	18.493402	15.906974	$13 \cdot 889835$	12.288431
$53 \frac{1}{2}$	$26 \cdot 477074$	$21 \cdot 933405$	18.529711	$15 \cdot 928788$	13.903004	12.296418
54	26:577660	21-992956	$18 \cdot 565145$	15.949975	13.915734	12:304103
$54{ }^{1}$	$26 \cdot 676771$	$22 \cdot 051351$	$18 \cdot 599725$	$15 \cdot 970.554$	13.928041	12:311498
55	$26 \cdot 774427$	$22 \cdot 108612$	$18 \cdot 633471$	15.990542	13.939938	12.318614
$55 \frac{1}{2}$	26.870651	$92 \cdot 164760$	18.666405	16.0099 .37	13.951440	12.325461
56	96.965463	$22 \cdot 219819$	18.698544	16.028814	13.962559	12.332050
$56!$	$27 \cdot 058884$	$22 \cdot 273808$	$18 \cdot 729909$	16.047129	13.973308	12.5383900
57	$27 \cdot 150935$	$22 \cdot 326749$	$18 \cdot 760518$	16.064918	13.983700	$12 \cdot 344490$
$57 \frac{1}{2}$	$27 \cdot 241635$	22-378662	18.790390	16.082197	13.993746	12.350361
58	27.33100 .5	22.429566	18.819541	16.098980	$4 \cdot 003458$	12:356010
$58 \frac{1}{2}$	$27 \cdot 419063$	22.479482	18.847990	$16 \cdot 115280$	14.012847	12.36144.5
59	27.505830	29.528429	18.875754	16.131113	14.021923	12"366675
591	$27 \cdot 591324$	22.576425	$18 \cdot 902848$	16.146491	$14 \cdot 030698$	12.371708
60	$27 \cdot 675563$	$22 \cdot 623489$	18.929289	$16 \cdot 161427$	$14 \cdot 039181$	12.376551
6012	$27 \cdot 758567$	$22 \cdot 669640$	$18 \cdot 955093$	16.175935	14.047381	12-38121!
61	$27 \cdot 840353$	22.714894	$18 \cdot 980275$	16.190026	$14 \cdot 055309$	12:385696
$61{ }_{2}^{1}$	27.920939	22.759269	$19 \cdot 004851$	16.203712	14.062973	$12 \cdot 390011$
62	$28 \cdot 000342$	22.802782	$19 \cdot 028834$	16.217005	14.070382	12:394163
621	$28 \cdot 078581$	$22 \cdot 84.5451$	$19 \cdot 052239$	$16 \cdot 229917$	14.077545	12:398158
63	-8.155672	22.887291	$19 \cdot 075080$	16.242458	14.084469	12.402002
631	$28 \cdot 231632$	22.928318	19.097970	16.254639	14.091163	$12 \cdot 40.5702$
64	28:306478	22.96:8549	19•119123	16.266470	$14 \cdot 097635$	$12 \cdot 409261$
641	$28 \cdot 380225$	23.007998	19.14035\%	16.277961	14•103>91	$12 \cdot 412687$
6.5	$28 \cdot 452891$	$23 \cdot 046681$	19.161070	$16 \cdot 289122$	$14 \cdot 109939$	12415983
$65 \frac{1}{2}$	$28 \cdot 524491$	$23 \cdot 084614$	$19 \cdot 181288$	16.299963	$14 \cdot 115786$	12.419154
66	$28 \cdot 595040$	$23 \cdot 121809$	$19 \cdot 201019$	16:310493	$14 \cdot 121438$	12.422206
$66 \frac{1}{2}$	$2 \mathrm{~S} \cdot 664554$	$23 \cdot 158282$	$19 \cdot 220274$	16.320720	$14 \cdot 126903$	$12 \cdot 425143$
67	$28 \cdot 733048$	$23 \cdot 194047$	$19 \cdot 239066$	$16 \cdot 330653$	14-132185	12.427969
$67 \frac{1}{2}$	$28 \cdot 8005 \sim 8$	$23 \cdot 229118$	$19 \cdot 257404$	16.340302	14•1:37292	$12 \cdot 430688$
68	$28 \cdot 867037$	$23 \cdot 263507$	$19 \cdot 275301$	$16 \cdot 349673$	14.142229	433304
$68{ }_{2}^{1}$	28.932561	$23 \cdot 297228$	$19 \cdot 292766$	16.358775	14.147002	12-435822
69	$28 \cdot 997123$	$23 \cdot 330295$	$19 \cdot 309810$	16.367616	$14 \cdot 151616$	2-43824.5
69.1	$29 \cdot 060739$	$23 \cdot 3627.0$	$19 \cdot 326444$	16.376203	$14 \cdot 156077$	$12 \cdot 440576$
70	$29 \cdot 123421$	$23 \cdot 394514$	19342676	16.384543	$14 \cdot 160389$	12.412819
70_{2}^{1}	$29 \cdot 185183$	$23 \cdot 425692$	19:358518	16.392644	$14 \cdot 164558$	
71	$29 \cdot 246040$	$23 \cdot 456264$	19:373977	16.400513	$14 \cdot 168588$	$12 \cdot 447055$
$71!$	$29 \cdot 306003$	$23 \cdot 486242$	19.389064	16.408155	$14 \cdot 172484$	12.449058
72	29:365087	23.515638	$19 \cdot 403788$	$16 \cdot 415578$	14.176250	$12 \cdot 450977$
$72 \frac{1}{2}$	$29 \cdot 423304$	$23 \cdot 544464$	$19 \cdot 418157$	16.422788	14.179891	$12 \cdot 452827$
73	$29 \cdot 480667$	$23 \cdot 572729$	19.432179	16.429790	$14 \cdot 183411$	$\begin{aligned} & 12 \cdot 4.54608 \\ & 1 \cdot 2 \cdot 456321 \end{aligned}$
731	29.537188	$23 \cdot 600446$	$19 \cdot 445863$ 19.459218	$16 \cdot 436592$ 16.443198	$14 \cdot 186814$ $14 \cdot 190104$	$\begin{aligned} & 12 \cdot 456321 \\ & 1245797 C \end{aligned}$
74	29.592881	$23 \cdot 627624$	$19 \cdot 459218$	$16 \cdot 443198$	14•190104	$12.45955{ }^{\circ}$
74.	$29 \cdot 647756$	$23 \cdot 654275$	$19 \cdot 472251$ $19 \cdot 484969$	$16 \cdot 449615$	$14 \cdot 193284$ $14 \cdot 196359$	12.46108 !
75	$29 \cdot 701826$	23.680408	$19 \cdot 484969$	$16 \cdot 455848$	$14 \cdot 196359$	12.46108

The Fourit Table qf Cumpound Interest - continued.
The present Valte of One Pound per Annum for any N'mber of Years to come. \&e.

Years.	3 per Cent.	4 per Cent.	5 per Cent.	6 per Cent.	7 per Cent.	8 per Cent.
$75 \frac{1}{2}$	$29 \cdot 755103$	$23 \cdot 706033$	19.497382	16.461901	$14 \cdot 199331$	$12 \cdot 462553$
76	29-807598	$23 \cdot 731161$	19-509495	$16 \cdot 467781$	14.202204	$12 \cdot 463966$
$76 \frac{1}{2}$	29.859323	$23 \cdot 755801$	19:521316	16.473492	14.204982	$12 \cdot 465326$
77	29.910289	$23 \cdot 779963$	19.532352	16.479038	14.207668	$12 \cdot 466635$
$77 \frac{1}{2}$	$29 \cdot 960508$	$23 \cdot 803655$	19:544110	$16 \cdot 484426$	14.210264	$12 \cdot 467895$
78	30.0099	$23 \cdot 826887$	$9 \cdot 555097$	$6 \cdot 489659$	4.212774	$2 \cdot 469107$
$78 \frac{1}{2}$	$30 \cdot 058745$	$23 \cdot 849668$	19.565819	$16 \cdot 494741$	14.215200	$12 \cdot 470273$
79	30-106786	23872007	$19: 576283$	16.499678	$14 \cdot 217545$	12471395
$79 \frac{1}{2}$	30•154122	23.893912	$19 \cdot 586495$	$16 \cdot 504473$	14.219813	$12 \cdot 472475$
80	30-200763	23.915391	$19 \cdot 596460$	16:509150	14.222005	$12 \cdot 473514$
$80 \frac{1}{2}$	30.246720	$\cdot 936454$	19.606185	15.513654	14.224124	$12 \cdot 474.514$
81	30-292003	$23 \cdot 957107$	19615676	16.518047	14.226173	$12 \cdot 475476$
$81 \frac{1}{2}$	30.336621	23.977359	19.624938	16.522315	14.228153	$12 \cdot 476402$
82	30.380585	$23 \cdot 997218$	$19 \cdot 633977$	$16 \cdot 526460$	14.230068	12.477292
82'	$30 \cdot 423904$	$24 \cdot 016692$	$19 \cdot 642798$	$16 \cdot 530486$	14231919	$12 \cdot 478150$
83	466588	. 035787	19.651407	$16 \cdot 534396$	14.233708	12.478974
$83 \frac{1}{2}$	$30 \cdot 508645$	24.054511	-659808	16.538194	14.23.5438	$12 \cdot 479768$
84	30.550085	24.072872	19.668007	6.541883	14.237111	$12 \cdot 480532$
$84 \frac{1}{2}$	$30 \cdot 590917$	$24 \cdot 090876$	19.676008	16.545466	14.238727	$12 \cdot 481267$
85	30.631151	24-108531	19.683816	16.548946	14:240290	$12 \cdot 481974$
$85 \frac{1}{2}$	$30 \cdot 670794$	125842	$\cdot 691436$	16.552326	241801	$12 \cdot 482654$
86	30•709855	24-142818	$19 \cdot 698872$	16.555610	14.243262	$12 \cdot 483309$
$86 \frac{1}{2}$	30.748343	$24 \cdot 159464$	$19 \cdot 706129$	16.558798	14.244674	$12 \cdot 483939$
87	30-786267	24-175786	$19 \cdot 713212$	16.561896	14.246039	$12 \cdot 484545$
$87 \frac{1}{2}$	30.823634	24-191792	19•720123	16.564904	14-247359	12.485129
88	30.860453	207487	.726868	$5678 \cup 6$	-248635	$\cdot 485690$
$88 \frac{1}{2}$	30-896732	24.222877	$19 \cdot 733451$	16:570664	14.249868	12.486230
89	30.932479	24-237968	19.739874	16.573421	14.251060	$12 \cdot 486750$
$89 \frac{1}{2}$	$30 \cdot 967701$	24-252766	19.746143	16:576098	14.252213	$12 \cdot 487950$
90°	$31 \cdot 002407$	$24 \cdot 267277$	19.752261	16.578699	14.253327	$12 \cdot 487732$
$90 \frac{1}{2}$	31.036603	281506	19.758232	16.581225	254405	$2 \cdot 488195$
91	31.070298	$24 \cdot 995459$	$19 \cdot 764058$	16.583678	14.255446	$12 \cdot 488640$
$91 \frac{1}{2}$	$31 \cdot 103498$	24-309140	19•769744	16.586061	14×56453	$12 \cdot 489069$
92	$31 \cdot 136211$	24-322556	$19 \cdot 775294$	16.588376	14.957426	$12 \cdot 489489$
92.1	Sl-1 68445	24-335712	19•780709	$16 \cdot 590624$	14.258367	$12 \cdot 489879$
93	$31 \cdot 200205$	24.348612	-785994	. 592807	-259277	$2 \cdot 490261$
$33 \frac{1}{2}$	31.231500	24:361261	19.791151	16.594928	14.260156	$12 \cdot 490628$
34	$31 \cdot 262335$	24.373665	19•796185	$16 \cdot 596988$	$4 \cdot 261006$	$2 \cdot 490982$
$34 \frac{1}{2}$	$31 \cdot 292718$	24:385828	19-801097	16:598989	14*261828	12.491323
95	$31 \cdot 322655$	$24 \cdot 397755$	19-8058.90	$16 \cdot 600932$	14-262623	$12 \cdot 491650$
$75 \frac{1}{5}$	S1-3521.54	24.409450	-810568	16.602819	263391	2491965
95	31-381219	$24 \cdot 420918$	19.815133	$16 \cdot 604653$	14.264133	$12 \cdot 492269$
$36 \frac{1}{6}$	$31 \cdot 409858$	24.432164	19.819589	$16 \cdot 606433$	14-264851	$12 \cdot 492560$
7	$31 \cdot 438077$	24.443191	19.823937	$16 \cdot 608163$	14-265545	$12 \cdot 492841$
$77 \frac{1}{2}$	$31 \cdot 465881$	24.454004	19.828180	$16 \cdot 609843$	14:2662I6	12.493111
78	31.493278	24.464606	19.832321	16.611474	14.266865	12.493379
981	$31 \cdot 520273$	24.475003	$19 \cdot 836362$	16.613059	14"267492	$12 \cdot 493622$
39	$31 \cdot 546879$	24.485198	$19 \cdot 840305$	$16 \cdot 614599$	14268098	12.493862
312	31.573081	$24 \cdot 495196$	$19 \cdot 844154$	16.616094	14268684	$12 \cdot 494094$
10	$31 \cdot 598905$	24:504998	19847910	16.617546	14.269250	12.494317
F.	33.333333	$25 \cdot 000000$	20.000000	16.666666	14.285714	12.500000

The Fifth Table of Compound Thterest.
The Annuity which One Pound will purchase for any Number of Years to come, \&c.

Years.	3 per Cent.	4 per Cent.	5 per Cent.	6 per Cent.	7 per Cent.	8 per Crnt.
1	$1 \cdot 030000$	$1 \cdot 040000$	1.050000	$1 \cdot 060000$	$1 \cdot 070000$	$1 \cdot 080000$
$1 \frac{1}{2}$	-691728	-700108	$\cdot 708502$	-716909	-725328	$\cdot 733760$
2	- 522610	$\cdot 530196$	$\cdot 537804$	-545436	-553091	-560769
21	-421155	-428274	-435426	-442611	-449828	-457076
3	- 353530	-360348	$\cdot 367208$	$\cdot 374109$	-381051	-3880:3
$3 \frac{1}{2}$	-305237	-311848	$\cdot 318510$	-325221	391981	-3. 8789
4	-269027	-275490	-282011	-288591	-295228	-301920
$4 \frac{1}{2}$	-240871	-247225	-253646	-260133	-266685	-279301
5	$\cdot 218354$	-224627	-230974	-237396	-243890	-250456
$5 \frac{1}{2}$	-199938	-206149	-212443	-218819	-225275	-231811
6	-184597	-190761	${ }^{1} 97017$	-203362	-209795	-216315
$6 \frac{1}{2}$	-171622	$\cdot 177751$	-183980	-190305	-196727	-203242
7	-160506	-166609	-172819	-179135	-185553	-192072
$7 \frac{1}{2}$	-150877	$\cdot 156961$	-163160	-169472	175894	-182425
8	$\cdot 142456$	- 148527	-154721	-161035	-167467	-174014
$8 \frac{1}{2}$	$\cdot 135030$	-141093	$\cdot 147287$	-153608	-160054	- 166622
9	-128433	-134492	-140690	-147022	-153486	-160079
$9 \frac{1}{2}$	$\cdot 122535$	-128593	-134797	-141144	-147629	-154251
10	$\cdot 117230$	$\cdot 123290$	$\cdot 129504$	$\cdot 135867$	-142377	-149029
$10 \frac{1}{2}$	-112434	-118499	-124724	-131107	-137643	-144328
11	$\cdot 108077$	$\cdot 114149$	-120388	-126792	-133356	-140076
$11 \frac{1}{2}$	$\cdot 104102$	-110182	-116438	-122865	-129459	-136214
12	-100462	$\cdot 106552$	-112825	-119277	-125901	-132695
1212	-097115	-10:3217	-109509	-115986	-122644	-129475
13	-094029	-100143	-106455	-112960	-119650	-126521
$13 \frac{1}{2}$	-091174	-097302	-103635	-110167	-116892	-123804
14	-088526	-094668	-101023	-107584	-114344	-121296
$14 \frac{1}{2}$	-086063	-092221	-098599	-105189	-111985	-118978
15	$\cdot 083766$	-089941	-096342	-102962	-109794	-11C829
$15 \frac{1}{2}$	-081620	.087812	-094237	-100888	-107756	-114833
16	-079610	-085820	-092269	-098952	-105857	-112976
$16 \frac{1}{2}$	$\cdot 077725$	-083952	-090427	-097141	-104084	-111245
17	-075952	-082198	-088699	-095444	-102425	-109629
$17 \frac{1}{2}$	-074283	-080548	$\cdot 087074$	-093852	$\cdot 100870$	-108117
18	-072708	-078993	-085546	-092356	-099412	-106702
$18 \frac{1}{2}$	-071221	$\cdot 077525$	-084105	-090948	-058042	-108: 74
19	-069813	.076138	-082745	-089620	-0967.53	-104:27
$19 \frac{1}{2}$	-068480	-074825	-081459	-088368	-095538	-102955
20	-067215	-073581	-080242	-087184	-094392	-101852
201	-066014	-072401	-079089	-086064	-093311	-100812
21	-064871	-071280	-077996	-085004	-092:89	-099832
$21 \frac{1}{2}$	-063784	$\cdot 070213$	-076957	-083999	-091321	-098906
22	$\cdot 062747$	-069198	-075970	-083045	-090405	-098032
$22 \frac{1}{2}$	-061758	. 068231	-075031	-082139	-089537	-097204
23	-060813	-067309	. 074136	-081 278	.088713	-09642:
$23 \frac{1}{1}$	-059911	-066428	-073284	.080459	.087931	-09564
24	-059047	-065586	-072470	-079679	-087189	-094971
$24 \frac{1}{2}$	-058220	-064782	$\cdot 071694$	$\cdot 078935$	-086482	-09431
$\because 5$	057427	. 064011	$\cdot 070952$	-078226	-085810	. 09967 \%

The Fifth Table of Compound Interest-continued.
The Anuaity which One Porind will purchase for any Number of Years to come, \&c.

Years.	3 per Cent.	4 per Cent.	5 per Cent.	6 per Cent.	7 per Cent.	8 per Cent.
$25 \frac{1}{2}$	- 056667	-063274	. 070243	- 077550	-085170	-093078
26	-055938	-062567	'069564	'076904	-084561	-092507
$26 \frac{1}{2}$	-055237	-061889	'068914	-076287	-083979	-091964
27	-0.54564	-061238	-068291	-075697	-083425	-091448
$27 \frac{1}{2}$	-053916	-060613	-067695	-075132	-082896	-090956
28	-053293	-060012	-067122	-074592	-082391	-090488
$28 \frac{1}{2}$	-052693	-059435	:066573	$\cdot 074075$	-081909	-090043
29	-052114	-058879	-066045	-073579	-081448	-089618
29.1	-051557	-058345	-065538	-073104	-081007	-08921.
30	-051019	-057830	-065051	-072648	-080586	-088827
$30 \frac{1}{2}$	- 050500	-057333	- 064582	-072211	-080183	-088458
31	- 049998	-056855	-064132	-071792	-079796	-088107
31 $\frac{1}{2}$	-049514	-056393	-063698	$\cdot 071389$	-079427	-087771
32	-049046	-055948	. 063280	$\cdot 071002$	-079072	-087450
$32!$	-048594	-055518	-062877	$\cdot 070630$	078733	-087144
33	-048156	. 055103	-062490	-070272	- 078408	-086851
$33 \frac{1}{2}$	-047732	-054702	-062116	-069929	-078096	-086571
34	-047321	-054314	-061755	-069598	$\cdot 077796$	-086304
$3{ }^{1}$	-046924	-053939	-061407	-069280	-077509	-086048
35	-046539	-053577	.061071	-068973	-077233	-085809
$5 \frac{1}{2}$	- 046165	-053226	$\cdot 060747$	-068678	-076969	-085568
6	-045803	-052886	'060434	-068394	-076715	-085344
$6 \frac{1}{2}$	-045452	-052558	-060132	-068121	-076471	.085129
7	. 045111	-052239	-059839	-067857	$\cdot 076236$	-084924
$7 \frac{1}{2}$. 044780	-051930	-059557	-067603	-076011	.084727
8	-044459	'051631	-059284	-067358	-075795	-084538
$3 \frac{1}{2}$	-044147	'051341	-059020	-067121	-075586	-084358
3	-043843	'051060	-058764	-066893	-075386	-084185
$7 \frac{1}{2}$	-043549	-050788	-058517	-066673	-075194	-084019
,	'043262	-050523	-058278	-066461	-075009	-083860
) $\begin{aligned} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2}\end{aligned}$	- 042983	-050266	-058046	-066256	'074831	-083707
	-042712	-050017	-057822	-066058	-074659	-083561
	-042448	-049775	-057605	-065867	-074494	-083421
	-042191	-049540	-057394	-065683	-074335	. 083286
	-041941	-049311	$\cdot 057190$	-06550.5	-074183	-083157
	-041698	-049089	-056993	-065333	- 074035	-083034
	-041460	-048874	- 056801	-065166	-073894	-082915
	-041229	-048664	-056616	-065006	$\cdot 073757$	-082801
	-041004	-048460	-056436	-064850	-073626	-082692
	-040785	-048262	-056261	-064700	-073499	-082587
	'040571	- 048069	${ }^{\circ} \mathrm{O} 66092$	-064555	-073377	-032486
	-040362	-047882	-0.55928	-064414	-073259	-082389
	-040159	-047699	-055768	-064279	-073146	-082297
	-039960	-047521	$\cdot 055614$	-064147	-073037	-082\%07
	-039766	'047348	-055464	-064090	-072932	-0821 22
	-039577	. 047180	-055318	-063897	-072830	.082040
	-039393	-047016	- 055176	-063778	$\cdot 072732$.081961
	-039213	. 046857	-055039	-063663	-072638	-081885
	-039037	. 046701	$\cdot 0.54!306$	-063552	-072547	.081812
	-038865	. 046550	$\cdot 054776$	D63444	-072459	-081742

The Fifth Table of Compound Intemest - contínued.

The Annuity which One Pound will purchase for any Number of Years to come, \&

Yeara.	3 per Cent.	4 per Cent.	5 per Cent.	6 per Cent.	7 per Cent.	8 per Cent.
$50 \frac{1}{2}$	-038697	$\bigcirc 046402$	-054650	-063339	-072375	-081675
51	-038533	$\bigcirc 046258$	-054528	-063238	-072293	. 081611
$51 \frac{1}{2}$	-038373	-046118	-054409	-063140	-072214	-081549
52	-038217	$\bigcirc 045982$	-054294	-063046	-072139	-081489
521	-038064	$\cdot 045848$. 054182	-062954	$\cdot 072065$. 0.51432
53	-037914	$\cdot 045719$	-054073	-062865	-071995	-081377
$53 \frac{1}{2}$	-037768	-045592	-053967	-062779	$\cdot 071926$	-081324
54	-037625	$\cdot 045469$	-053864	-062696	-071861	-081973
$54 \frac{1}{2}$	-037485	$\bigcirc 045348$	-053764	-062615	-071797	-081224
55^{2}	-037349	$\cdot 045931$	-053666	-062536	-071736	-081177
55!	-037215	-045116	.053572	. 062461	-071677	-081192
56	-037084	$\cdot 045004$	-053480	-062387	-071620	.081089
$56 \frac{1}{2}$	-036956	-044895	-053390	-062316	-071565	-081047
57	-036831	$\cdot 044789$	-053303	$\cdot 062247$	-071511	081007
$57 \frac{1}{2}$	-036708	-044685	-053218	-062180	-071460	-080969
58	-036588	-044584	-053136	-062115	. 071410	-080932
$58 \frac{1}{2}$	-036470	- 044485	-053056	$\cdot 062052$	-071363	-080896
59	-036355	$\cdot 044388$	-052978	-061992	-071316	-080562
$59 \frac{1}{2}$	-036243	$\bigcirc 044293$	-052902	-061932	-071272	-080829
60	-036132	-044201	-052828	-061875	-071229	-080797
$60 \frac{1}{3}$	-036024	. 044111	-052756	-061820	$\cdot 071187$	-080767
61	-035919	-044023	-052686	-061766	$\cdot 071147$	-080738
$61 \frac{1}{2}$	-035815	-043938	-052618	-061714	-071108	-080710
62	$\cdot 035713$	$\cdot 043854$	-0.52551	. 061663	$\cdot 071071$	-080683
$62 \frac{1}{2}$	-035614	. 043772	-052487	-061614	$\cdot 071035$	-080657
63	-035516	. 043692	-052424	-061567	-071000	-080632
$63 \frac{1}{2}$	-035421	-043614	-052363	-061520	. 070966	-080608
64	-035327	.043537	. 052303	-061476	-070933	-080584
$64 \frac{1}{2}$	-035235	. 043463	-052245	-061432	-070902	-08056:
65	. 035145	.043390	-052189	-061390	-070872	. 080541
$65 \frac{1}{2}$	$\cdot 03.5057$. 043318	-052184	-061349	$\cdot 070842$	-080526.
66	-034971	. 043249	-052080	-061310	-070814	-08050
$66 \frac{1}{2}$	-034886	-043181	-052028	-061271	-070786	-08018
67	-034503	. 043114	$\cdot 051977$	-061234	-070760	-08046:
$67 \frac{1}{2}$	-034721	. 043049	-05192 ${ }^{\text {d }}$	-061198	-070734	08844
68	-034641	-042985	-051879	-061163	-070710	. 08042
$68 \frac{1}{2}$	-034563	. 042923	-051832	-061129	-070686	08041
69	-034486	-042862	${ }^{\circ} 051787$	-061096	-070663	-08039
$69 \frac{1}{2}$	-034410	-042803	-051742	-061064	-070641	-0803*
70	-034336	-042745	-051699	$\cdot 061033$	-07C619	-08036
$70 \frac{1}{2}$	-034263	-042688	-0516.56	. 061002	.070598 .070578	
71	-034192	$\bigcirc 042632$	-051615	-. 060973	$\cdot 070578$.070559	-0.03 -0803 0
711	. 0344122	. 0425258	-051575	-060945	.070559 .070540	-0803.3
729	.034054 .033986	$\begin{array}{r}.042524 \\ .042472 \\ \hline\end{array}$	$\cdot 051536$.051498	.060917 .060891	.070540 .070522	-080:31
$79 \frac{1}{2}$	-033986	-042472	-051498	-060891	. 070522	
73	-033920	$\bigcirc 042421$	-051461	-060865	$\cdot 070504$	-080?
$73 \frac{1}{2}$	-09385.5	. 042372	-051424	-060839	$\cdot 070487$	-0802:
74^{2}	-0337 ${ }^{\circ}$	-042323	-051389	.060815	$\cdot 070471$	-080'-1
74.1	-033729	$\cdot 042275$. 051335	-060791	.070455	.0802 .0802
75	-033667	- 42229	$\cdot 051321$	-060768	$\cdot 070440$	

The Fifti Table of Compound Interest - continued.
The Annuity which One Pound will purchase for any Number of Years to come, \&e.

Years.	3 per Cent.	4 per Cent.	5 per Cent.	6 per Cent.	7 per Cent	8 per Cent.
$75 \frac{1}{1}$	-033607	-042183	-051288	-060746	-070495	-080240
76	-033548	-042138	-051257	-060724	.070111	-0809.31
$76 \frac{1}{2}$	-033490	-042094	-0512:'6	-060703	.070397	-080222
77	-033433	-042052	-051195	-060683	-070384	-080914
$77 \frac{1}{2}$	-033377	-042010	$\cdot 051166$	-060663	-070371	-080206
78	-033322	-041969	$\cdot 051137$	-060644	.070359	-080198
$78{ }^{5}$	-033268	-011929	$\cdot 051109$	-060625	-070347	-080190
79	-032215	-041890	-031089	-060607	-070335	-080183
$79 \frac{1}{2}$	-033il62	-011851	-0.51055	-060589	-07032 4	-080176
80	-032111	-041814	$\cdot 051029$	-060572	-070313	-080169
$80 \frac{1}{2}$	-033061	$\cdot 041777$	$\cdot 051004$	-060555	-070303	-080163
81	-033012	$\cdot 041741$	-050979	-060539	$\cdot 070292$	-080157
$81 \frac{1}{2}$	-032963	-041706	-050955	-060524	-070283	-080151
82^{2}	-032915	-041671	-050932	-060509	$\cdot 070273$	$\cdot 080145$
$82 \frac{1}{2}$	-032868	-041637	-050909	-060.494	-070264	.080140
83	-032822	-041604	-050886	.050479	-070255	-080134
$83 \frac{1}{2}$	-032777	$\cdot 041572$	-050865	-060466	-070247	-080129
84	-032783	-041540	-050843	. 060452	-070238	-080124
84.1	-032689	$\cdot 041509$	-050823	-060439	.070230	-0120
85	-032646	$\cdot 041479$	-050803	-060426	$\cdot 070293$	-080115
$8.5 \frac{1}{2}$	-032604	. 041449	-050783	-060414	-070215	.080111
86	-032562	$\cdot 041420$	-050764	-060402	-070208	-080106
$86 \frac{1}{2}$	-032522	$\cdot 041391$	$\cdot 050745$	-060390	-070201	-080102
87	-032482	-041363	-050727	-060379	-070194	-080099
$87 \frac{1}{2}$	-032442	-041336	-050709	-060368	-070188	-080095
88	-032403	-041309	-050692	-060357	-070182	-080091
$88 \frac{1}{2}$	-032365	-041283	-050675	-060347	-070176	-080083
89	. 032328	$\cdot 041257$	-050658	$\cdot 060337$	$\cdot 070170$	-080084
891 ${ }^{\frac{1}{2}}$	-032\%91	-041232	-050642	-060327	-070164	-080081
90	'032255	-041207	-050627	-060318	$\cdot 070159$	-080078
$90 \frac{1}{2}$	-032220	. 041183	-050611	-060309	-070153	-080075
91	-032185	-041159	-050596	-060300	.070148	-080072
Э1 $\frac{1}{2}$	-032150	-041136	-050582	.060291	.070143	-080070
72	-032116	-041114	-050568	-060283	$\cdot 070138$	-080067
$12 \frac{1}{2}$	-032083	. 041091	-050554	-060275	$\cdot 070194$	-080064
3	-032051	$\cdot 041070$. 050540	-060267	-070199	-080062
$13 \frac{1}{2}$	-032018	-041048	-050527	-060259	-070125	-080060
14	-031987	. 041027	-050.514	-060251	.070121	-080057
$4 \frac{1}{2}$	-031956	-041007	-050502	-060244	$\cdot 070117$	-080055
5	-031925	$\cdot 040987$	-050490	-050237	-070113	-080053
$5 \frac{1}{2}$	-031895	-040967	-050478	-060230	. 070109	-080051
6	-031 866	-040948	-050466	-060224	-070105	-080049
61	-031837	-040929	-0504.55	-060217	. 070102	-080047
7	-031808	-040911	-050444	-060211	-070098	-080045
$7 \frac{1}{2}$	-031780	-040893	-050433	-060205	. 070095	-080044
3	. 031759	-040875	-050422	-060199	-070092	-080042
$8 \frac{1}{2}$	-031725	$\cdot 040858$	-050412	-060193	-070039	-080040
9	. 031698	$\cdot 040841$	-050402	.060188	-070036	-080039
$3!$	-031672	$\cdot 040824$	-050392	-060182	-6700:33	-080037
0	-031646	. 040808	-050383	. 060177	. 070030	$\cdot 080036$
S.	-030000	. 040000	.050000	. 060000	.4700)0	-080000

Table VI. Showing the Value of an Ammity on one Life according to the Probabilitie of Lile in London.

Age.	Year's value at			Age.	Year's value at		
	3 per Cent.	4 per Cent.	5 per Cent.		3 per Cent.	4 per Cent.	5 per Cent.
6	$18 \cdot 8$	$16 \cdot 2$	$14 \cdot 1$	41	$13 \cdot 0$	11.4	$10 \cdot 2$
7	$18 \cdot 9$	16.3	14.2	42	$12 \cdot 8$	11.2	$10 \cdot 1$
8	$19 \cdot 0$	$16 \cdot 4$	14.3	43	126	$11 \cdot 1$	$10 \cdot 0$
97				44	$12 \cdot 5$	$11 \cdot 0$	9.9
and	$19 \cdot 0$	$16 \cdot 4$	$14 \cdot 3$	45	$12 \cdot 3$	$10 \cdot 8$	$9 \cdot 8$
10 J				46	$12 \cdot 1$	$10 \cdot 7$	9.7
11	$19 \cdot 0$	16.4	$14 \cdot 3$	47	11.9	$10 \cdot 5$	$9 \cdot 5$
12	$18 \cdot 9$	$16 \cdot 3$	14.2	48	11.8	$10 \cdot 4$	$9 \cdot 4$
13	$18 \cdot 7$	$16 \cdot 2$	$14 \cdot 1$	49	$11 \cdot 6$	10.2	$9 \cdot 8$
14	$18 \cdot 5$	$16 \cdot 0$	14.0	50	11.4	$10 \cdot 1$	$9 \cdot 2$
15	$18 \cdot 3$	$15 \cdot 8$	$13 \cdot 9$	51	11.2	$9 \cdot 9$	9.0
16	$18 \cdot 1$	$15 \cdot 6$	$13 \cdot 7$	52	11%	$9 \cdot 8$	$8 \cdot 9$
17	17.9	$15 \cdot 4$	$13 \cdot 5$	53	$10 \cdot 7$	$9 \cdot 6$	8.8
18	$17 \cdot 6$	$15 \cdot 2$	$13 \cdot 4$	54	$10 \cdot 5$	$9 \cdot 4$	8.6
19	$17 \cdot 4$	$15 \cdot$	$13 \cdot 2$	55	$10 \cdot 3$	$9 \cdot 3$	$8 \cdot 5$
20	17.2	$14 \cdot 8$	$13 \cdot 0$	56	10.1	$9 \cdot 1$	$8 \cdot 4$
21	17.0	$14 \cdot 7$	12.9	57	$9 \cdot 9$	$8 \cdot 9$	$8 \cdot 2$
22	$16 \cdot 8$	$14 \cdot 5$	$12 \cdot 7$	58	$9 \cdot 6$	$8 \cdot 7$	$8 \cdot 1$
23	16.5	$14 \cdot 8$	$12 \cdot 6$	59	$9 \cdot 4$	$8 \cdot 6$	8.0
24	$16 \cdot 3$	$14 \cdot 1$	$12 \cdot 4$	60	$9 \cdot 2$	$8 \cdot 4$	$7 \cdot 9$
25	$16 \cdot 1$	14.0	$12 \cdot 3$	61	$8 \cdot 9$	$8 \cdot 2$	$7 \cdot 7$
26	$15 \cdot 9$	$13 \cdot 8$	$12 \cdot 1$	62	$8 \cdot 7$	$8 \cdot 1$	76
27	$15 \cdot 6$	$13 \cdot 6$	$12 \cdot 0$	63	$8 \cdot 5$	$7 \cdot 9$	$7 \cdot 4$
28	$15 \cdot 4$	$13 \cdot 4$	11.8	64	$8 \cdot 3$	$7 \cdot 7$	7.3
29	15%	13.2	$11 \cdot 7$	65	$8 \cdot 0$	$7 \cdot 5$	$7 \cdot 1$
30	$15 \cdot 0$	$13 \cdot 1$	11.6	66	$7 \cdot 8$	$7 \cdot 3$	$6 \cdot 9$
31	$14 \cdot 8$	$12 \cdot 9$	$11 \cdot 4$	67	$7 \cdot 6$	$7 \cdot 1$	6.7
32	$14 \cdot 6$	$12 \cdot 7$	11.3	68	$7 \cdot 4$	$6 \cdot 9$	6.6
33	14.4	$12 \cdot 6$	11.2	69	$7 \cdot 1$	$6 \cdot 7$	$6 \cdot 4$
34	14.2	$12 \cdot 4$	11.0	70	$6 \cdot 9$	$6 \cdot 5$	6.2
35	$14 \cdot 1$	$12 \cdot 3$	$10 \cdot 9$	71	$6 \cdot 7$	$6 \cdot 3$	6.0
36	$13 \cdot 9$	$12 \cdot 1$	$10 \cdot 8$	72	$6 \cdot 5$	$6 \cdot 1$	$5 \cdot 9$
37	$13 \cdot 7$	11.9	$10 \cdot 6$	73	6.2	$5 \cdot 9$	$5 \cdot 6$
38	$13 \cdot 5$	11.8	$10 \cdot 5$	74	$5 \cdot 9$	$5 \cdot 6$	$5 \cdot 4$
39	$13 \cdot 3$	11.6	$10 \cdot 4$	75	$5 \cdot 6$	$5 \cdot 4$	$5 \cdot 2$
40	13.2	11:5	$10 \cdot 3$				

Table VI.a. Expectation of Life.
De Moivre's Hypothesis on the duration of human life, namely, that of 86 persons bon one dies every year till all are extinct, has led to an empirical rule of easy recollcetion f the expectation of life, namely, to subtract the age from 86 and halve the difference for : answer. In the left hand side of the subjoined table is shown the number of persons o of 10,000 who may be expeeted to die in the ycar following their attaining the age mark in the first column, according to the Hypothesis, to the Northampton and Carlisle table and to the Belgian one of Quetelet. The table on the right shows the values of annuiti on lives at 3 per cent. in years' purchase, whence it appears that in money results ! Hypothesis curiously agrees with the eelebrated Northampton tables.

Age.	$\begin{aligned} & \text { Hpo- } \\ & \text { thsis. } \end{aligned}$	Northampton.	Carlisle.	Beigium.	Age.	$\begin{aligned} & \text { Hypo- } \\ & \text { thesis. } \end{aligned}$	Northampton.	Carlisle.
10	132	92	45	88	10	$19 \cdot 9$	$20 \cdot 7$	23.5
20	152	140	71	120	20	$18 \cdot 5$	186	21.7
30	179	171	101	126	30	16.8	16.9	196
40	217	209	130	144	40	14.8	$14 \cdot 8$	$17 \cdot 1$
50	278	284	134	183	50	$12 \cdot 5$	124	$14 \cdot 3$
60	985	402	935	325	60	$9 \cdot 7$	98	10.5
70	625	649	516	680	70	$6 \cdot 4$	67	$7 \cdot 1$
80	1667	1343	1217	1425	80	$2 \cdot 3$	$3 \cdot 8$	$4 \cdot 4$

Table VII. Showing the Value of an Annuity on the jcint Continuance of two Lives, according to the Probabilities of Life in London.

Age of the		Value at			Age of the		Value at		
Younger.	Elder.	3 per Cent.	4 per Cent.	5 per Cent.	Younger.	Elder.	3 per Cent.	4 per Cent.	5 per Cent.
10	10	14.7	$13 \cdot 0$	11.6		55	$7 \cdot 9$	$7 \cdot 3$	$6 \cdot 7$
	15	14.3	$12 \cdot 7$	11.3		60	$7 \cdot 2$	$6 \cdot 7$	$6 \cdot 2$
	20	$13 \cdot 8$	$12 \cdot 2$	$10 \cdot 8$	30	65	6.5	$6 \cdot 1$	$5 \cdot 7$
	25	$13 \cdot 1$	11.6	$10 \cdot 2$		70	$5 \cdot 8$	$5 \cdot 5$	$5 \cdot 2$
	30	$12 \cdot 3$	10.9	97		75	$5 \cdot 1$	$4 \cdot 9$	$4 \cdot 7$
	35	11.5	$10 \cdot 2$	$9 \cdot 1$					
	40	$10 \cdot 7$	$9 \cdot 6$	$8 \cdot 6$		35	9-9	$8 \cdot 8$	$8 \cdot 0$
	45	$10 \cdot 0$	$9 \cdot 0$	$8 \cdot 1$		40	$9 \cdot 4$	$8 \cdot 5$	$7 \cdot 7$
	50	$9 \cdot 3$	$8 \cdot 4$	$7 \cdot 6$		45	$8 \cdot 9$	$8 \cdot 1$	$7 \cdot 4$
	55	$8 \cdot 6$	$7 \cdot 8$	$7 \cdot 1$		50	$8 \cdot 3$	$7 \cdot 6$	7.0
	60	$7 \cdot 8$	$7 \cdot 2$	6.6	35	55	$7 \cdot 7$	7-1	$6 \cdot 6$
	65	$6 \cdot 9$	$6 \cdot 5$	$6 \cdot 1$		60	$7 \cdot 1$	$6 \cdot 5$	6.1
	70	$6 \cdot 1$	$5 \cdot 8$	$5 \cdot 5$		65	$6 \cdot 4$	$6 \cdot 0$	$5 \cdot 6$
	75	$5 \cdot 3$	$5 \cdot 1$	$4 \cdot 9$		70	$5 \cdot 7$	$5 \cdot 4$	$5 \cdot 1$
15	15	$13 \cdot 9$				75	$5 \cdot 0$	$4 \cdot 8$	$4 \cdot 6$
	20	$13 \cdot 3$	11.8	$10 \cdot 5$		40	$9 \cdot 1$	$8 \cdot 1$	$7 \cdot 3$
	25	$12 \cdot 6$	11.2	$10 \cdot 1$		45	$8 \cdot 7$	$7 \cdot 8$	$7 \cdot 1$
	30	11.9	$10 \cdot 6$	$9 \cdot 5$		50	8.2	$7 \cdot 4$	6.8
	35	11.2	100	$9 \cdot 0$		55	$7 \cdot 6$	$6 \cdot 9$	6.4
	40	$10 \cdot 4$	$9 \cdot 4$	$8 \cdot 5$	40	60	$7 \cdot 0$	$6 \cdot 4$	6.0
	45	$9 \cdot 6$	$8 \cdot 8$	$8 \cdot 0$		65	$6 \cdot 4$	$5 \cdot 9$	$5 \cdot 5$
	50	$8 \cdot 9$	$8 \cdot 2$	$7 \cdot 5$		70	$5 \cdot 7$	$5 \cdot 4$	$5 \cdot 1$
	55	$8 \cdot 2$	$7 \cdot 6$	$7 \cdot 0$		75	$5 \cdot 0$	$4 \cdot 8$	46
	60	$7 \cdot 5$	$7 \cdot 0$	$6 \cdot 5$		45	$8 \cdot 3$	$7 \cdot 4$	$6 \cdot 7$
	65	$6 \cdot 8$ $6 \cdot 0$	$6 \cdot 4$ $5 \cdot 7$	6.0 5.4		50	7.9	$7 \cdot 1$	$6 \cdot 5$
	75	$5 \cdot 2$	$5 \cdot 0$	$4 \cdot 8$		55	$7 \cdot 4$	$6 \cdot 7$	$6 \cdot 2$
					45	60	$6 \cdot 8$	$6 \cdot 3$	$5 \cdot 8$
20	20	$12 \cdot 8$	11.3	$10 \cdot 1$		65	$6 \cdot 3$	$5 \cdot 8$	$5 \cdot 4$
	25	$12 \cdot 2$	$10 \cdot 8$	$9 \cdot 7$		70	$5 \cdot 6$	$5 \cdot 3$	$5 \cdot 0$
	30	$11 \cdot 6$	$10 \cdot 3$	$9 \cdot 2$		75	4.9 ${ }^{\text { }}$	$4 \cdot 7$	$4 \cdot 5$
	35 40	$10 \cdot 9$ $10 \cdot 2$	9.8 9.2	8.8 8.4		50.	$7 \cdot 6$	6.8	6.2
	45	$10 \cdot 2$ 9.5	9.2 8.6	8.4 7.9		55^{\prime}	$7 \cdot 2$	$6 \cdot 5$	6.0
	50	8.8	8.0	$7 \cdot 4$	50	60	$6 \cdot 7$	$6 \cdot 1$	$5 \cdot 7$
	55	8.1	$7 \cdot 5$	$6 \cdot 9$		65	$6 \cdot 2$	$5 \cdot 7$	$5 \cdot 3$
	60	$7 \cdot 4$	$6 \cdot 9$	$6 \cdot 4$		70	$5 \cdot 5$	$5 \cdot 2$	$4 \cdot 9$
	65	$6 \cdot 7$	$6 \cdot 3$	$5 \cdot 9$		75	$4 \cdot 8$	$4 \cdot 6$	$4 \cdot 4$
	70 75	6.0 5.2	$5 \cdot 7$ $5 \cdot 0$	$5 \cdot 4$ $4 \cdot 8$		55	$6 \cdot 9$	$6 \cdot 2$	$5 \cdot 7$
	75	$5 \cdot 2$	$5 \cdot 0$	48		60	$6 \cdot 5$	$5 \cdot 9$	$5 \cdot 5$
15	25	11.8	$10 \cdot 5$	$9 \cdot 4$	55	65	6.0	$5 \cdot 6$	$5 \cdot 2$
	30	$11 \cdot 3$	$10 \cdot 1$	$9 \cdot 0$		70	$5 \cdot 4$	$5 \cdot 1$	$4 \cdot 8$
	35	$10 \cdot 7$	$9 \cdot 6$	$8 \cdot 6$		75	$4 \cdot 7$	$4 \cdot 5$	$4 \cdot 3$
	40	$10 \cdot 0$	$9 \cdot 1$	$8 \cdot 2$		60	$6 \cdot 1$		
	45 50	$9 \cdot 4$	$8 \cdot 5$	$7 \cdot 8$ $7 \cdot 3$		65	$5 \cdot 7$	$5 \cdot 3$	$4 \cdot 9$
	55	8.7 8.0	7.9 7.4	7.3 6.8	60	70	$5 \cdot 2$	$4 \cdot 9$	$4 \cdot 6$
	60	7.3	$6 \cdot 8$	$6 \cdot 3$		75	$4 \cdot 6$	$4 \cdot 4$	$4 \cdot 2$
	65	6.6	$6 \cdot 2$	$5 \cdot 8$		65	$5 \cdot 4$	$5 \cdot 0$	$4 \cdot 7$
	70 75	$5 \cdot 9$	$5 \cdot 6$ $4 \cdot 9$	5.3	65	70	$4 \cdot 9$	$4 \cdot 6$	$4 \cdot 4$
	75	$5 \cdot 1$	$4 \cdot 9$	$4 \cdot 7$		75	$4 \cdot 4$	$4 \cdot 2$	$4 \cdot 0$
0	30	$10 \cdot 8$	$9 \cdot 6$	$8 \cdot 6$		70	$4 \cdot 6$	$4 \cdot 4$	
	35 40	$10 \cdot 3$ 9.7	9.2 8.8	$8 \cdot 3$ 8.0	70	75	$4 \cdot 2$	4.0	3.9
	45	9.1	88	8.6					
	50	$8 \cdot 5$	7.8	$7 \cdot 2$	75	75	3•8	3•7	$3 \cdot 6$

Table VIII. Showng the Value of an Amuity on the longer of two Lises.

Age of the		Value at			Age of the		Value at		
Younger.	Ebder.	3 per Cent.	4 per Cent.	5 per Cent.	Younger.	Elder.	3 per Cent.	4 per Cent.	5 per Co
10	10	$23 \cdot 4$	$19 \cdot 9$	171		55	17.4	$15 \cdot 1$	$13 \cdot 4$
	15	$22 \cdot 9$	$19 \cdot 5$	$16 \cdot 8$		60	$17 \cdot 0$	$14 \cdot 8$	18\%
	20	$22 \cdot 5$	$19 \cdot 1$	$16 \cdot 6$	30	65	16.6	$14 \cdot 5$	$12 \cdot 9$
	25	$22 \cdot 2$	$18 \cdot 8$	16.4		70	$16 \cdot 1$	$14 \cdot 1$	$12 \cdot 6$
	30	$21 \cdot 9$	$18 \cdot 6$	$16 \cdot$		75	$15 \cdot 6$	$13 \cdot 7$	12.2
	35	$21 \cdot 6$	$18 \cdot 4$	$16 \cdot 1$					
	40	21.4	18.3	16.0		35	18.3	$15 \cdot 8$	19.8
	45	21.2	18.2	$15 \cdot 9$		40	17.8	$15 \cdot 4$	13.5
	50	$20 \cdot 9$	$18 \cdot 0$	$15 \cdot 8$		45	174	$15 \cdot 1$	$13 \cdot 3$
	55	$20 \cdot 7$	17.8	$15 \cdot 7$		50	$17 \cdot 1$	$14 \cdot 8$	$13 \cdot 1$
	60	$20 \cdot 4$	$17 \cdot 6$	$15 \cdot 5$	35	55	$16 \cdot 7$	14.5	$12 \cdot 9$
	65	$20 \cdot 1$	$17 \cdot 4$	$15 \cdot 3$		60	16.3	14.2	$12 \cdot 7$
	70	$19 \cdot 8$	17%	$15 \cdot 1$		65	$15 \cdot 8$	$13 \cdot 8$	$12 \cdot 4$
	75	$19 \cdot 5$	16.9	$14 \cdot 8$		70	15.3	$13 \cdot 4$	12.0
15						75	14.8	$13 \cdot 0$	11.6
	15 20	22.8 22.3	$19 \cdot 3$ 18.9	16.7 16.4		40	17.3	15.0	1.3.3
	25	$21 \cdot 9$	18.6	16.2		45	16.8	$14 \cdot 6$	13.0
	30	$21 \cdot 6$	18.3	16.0		50	$16 \cdot 3$	14.0	$12 \cdot 7$
	35	$21 \cdot 3$	$18 \cdot 1$	$15 \cdot 9$		55	$15 \cdot 9$	$1.3 \cdot 9$	$12 \cdot 4$
	40	$21 \cdot 1$	$17 \cdot 9$	$15 \cdot 7$	40	60	$15 \cdot 4$	$13 \cdot 5$	$12 \cdot 1$
	45	$20 \cdot 9$	$17 \cdot 3$	15.6		65	14.9	$13 \cdot 1$	11.8
	50	$20 \cdot 7$	17.6	$15 \cdot 4$		70	14.5	$12 \cdot 7$	11.4
	55	$20 \cdot 4$	17.4	$15 \cdot 3$		75	14.0	12.3	11.0
	60	$20 \cdot 1$ 19.8	17.2 16.9	15.2 15%		45	16.2	14.2	12 '
	70	19.4	$16 \cdot 6$	1.17		50	15.7	13.8	$12 \cdot$
	75	18.9	163	14.4		55	$15 \cdot 2$	$13 \cdot 4$	$12 \cdot 1$
20	20	$21 \cdot 6$	18.3	1.5.8		65	$14 \cdot 1$	$12 \cdot 5$	11.
	25	$21 \cdot 1$	17.9	15.5		70	$13 \cdot 6$	12.0	11.1
	30	$20 \cdot 7$	17.6	15%		75	$13 \cdot 1$	$11 \cdot 6$	10\%
	35	$20 \cdot 4$	$17 \cdot 4$	$15 \cdot 1$					
	40	$20 \cdot 1$	$17 \cdot 2$	15.0 14.9			15.0	$13 \cdot 3$ $12 \cdot 9$	12.
	45	$19 \cdot 9$ 19.6	17.0	$14 \cdot 9$ 14.7		60	$14 \cdot 5$ 13.9	$12 \cdot 4$	11.
	50	$19 \cdot 6$	16.8	$14 \cdot 7$ 14.5	50	65	$13 \cdot 9$ $13 \cdot 3$	12.0	10 :
	55	$19 \cdot 4$ $19 \cdot 1$	16.6 16.3	14.5 14.3		65 70	$12 \cdot 8$	11.5	10 .
	60	$19 \cdot 1$ 18.7	$16 \cdot 0$	$14 \cdot 1$		75	$12 \cdot 3$	11.0	10
	70	$18 \cdot 2$	$15 \cdot 7$	$13 \cdot 8$					
	75	$17 \cdot 7$	$15 \cdot 3$	13.5		55	13.6 13.0	$12 \cdot 4$ 11.9	10
25	25	$20 \cdot 3$	$17 \cdot 4$	$15 \cdot 1$	55	65	12.4	$11 \cdot 3$	10
	30	$19 \cdot 8$	17.0	14.9		70	11.8	$10 \cdot 8$	10
	35	$19 \cdot 4$	16.7	$14 \cdot 7$		75	$11 \cdot 3$	$10 \cdot 3$	9.
	40	$19 \cdot 2$	16.5	14.5					10
	45	$18 \cdot 9$	$16 \cdot 3$	14.3		65	12.5	$10 \cdot 6$	10
	50	$18 \cdot 7$	$16 \cdot 1$	14.2	60	70	10.9	$10 \cdot 1$	9
	55	$18 \cdot 4$	$15 \cdot 9$	$14 \cdot 0$ 13.8		75	$10 \cdot 3$	9.5	9
	60	$18 \cdot 0$	$15 \cdot 6$	$13 \cdot 6$					
	65	$17 \cdot 6$	$15 \cdot 3$	$13 \cdot 6$ 13.3		65	$10 \cdot 7$	100	
	70	$17 \cdot 2$	$15 \cdot 0$ 14.6		65	70	10.0	$9 \cdot 4$	ξ
	75	$16 \cdot 7$	$14 \cdot 6$	$12 \cdot 9$		75	$9 \cdot 3$	8.7	
30	30	$19 \cdot 3$	16.6	14.5				$8 \cdot 6$	
	35	18.8	16.2	14.2	70	75	$8 \cdot 4$	7.9	
	40	$18 \cdot 4$	159	14.0					
	45	$18 \cdot 1$	$1.5 \cdot 6$	13.8	75	75	$7 \cdot 6$	72	1
	50	17.8	$15 \cdot 4$	13.6					

A BRIEF SYNOPTICAL LIST OF THE PRINCIPAL

 ARCHITECTS,ANCIENTAND MODERN, 。 WITH THEIR CHIEF WORKS,
Revised by Wyatt Papwohth

ore.-Many of the Names herein are more fully noticed in the body of this work, and some few others will be found by refercnce to its Index.

BEFORE CHRIST.

7th. Century.

1. Agamenes and Trophonius of Delphi.--Mentioned only in mythology ; temple to Apollo at Delphi ; a temple to Neptune near Mantinea.
2. Theodonus and Rhecus, of Samos-Labyrinth at Lemnos; some buildings at Sparta; the temple of Jupiter at Samos; foundations of one of the temples of Diana at Ephesus.
iI. Ifermogenes of Alabanda. -Temple of Bacchus at Teos; and that of Diana at Magnesia.

> 6th. Ceutury.
iv. Demetrius and Peronius, of Ephesus.-Continuation of one of the temples of Diana, at Ephesus, which had been begun by Chersiphson or Ctesiphon and his son Metagenes.
v. Daphnis of Miletus. - With Peonius, temple of Apollo at Miletus.
vi. Eupalinus of Mcgara.-Tunnel for the aqueduct, and some edifices at Samos.
vi. Chinosorhus of Crete.-Temple to Ceres and Proserpine; another to the Paphian Venus, and one to Apollo; all at Tegea.
viin. Mandrocles of Samos. - Bridge of boats over the Thracian Bosphorus, for King Darius.
ix. Memno of Persia. - A magnificent palace at Ecbatana for Cyrus.

> 5ih. Century.
x. Pythius of Priene.-Mausoleum at Halicarnassus; the temple of Minerva at Priene, and wrote a treatise on it. In the fomer he was assisted by Satyrus.
xi. Spintharus of Corinth.-Rebuilt the temple of Apollo at Delphi, which had been destroyed by fire.
xir. Libu of Elis.-Temple of Jupiter Olympius at Olympia.
xiar. Icrinus of Athens.- Parthenon at Athens, and wrote a treatise upon it ; perhaps the temple of Ceres and Proserpine at Eleusis; temple of Apollo Epicurias near Phigaleia.
xiv. Callickates of Athens.-Assisted Ictinus in the erection of the Parthenon.
xv. Mnesicles of Athens.-Propylea of the Acropolis at Athens.
xvi. Antistates of Athens.-A temple of Jupiter at Athens.
xin. Scopas of Paros.-One side of the Mausoleum at Halicarnassus; a column of the temple at Ephesus. Employed on temple of Minerva at Tegea.
iviri. Hippodamus of Miletus, -Laid out Munychia in the Piræus and Rhodes.
xix. Congeus and Metagenes Xypetius of Athens.-Perhaps the temple of Ceres at Eleusis.
xx. Polyciitus.-A theatre with a dome at. Epidaurus, highly praised by Pausanius.
xxr. Archias of Corinth.- Many temples and other edifices, at Syracuse.
xxif. Callins of Aradus.-Machinery.
silif. Tarchesius and Argelius.- Wrote treatises on Architecture; the furmer is supposed to bave erected the temple to Esculapius at Tralles.
xxiv. Mestues, - Pseudodipteral temple of Apollo at Magnesia.

4th. Century

xxv. Deinocrates or Dinochares of Macedonia.-Rebuilt the last temple of Diana a Ephesus; laid out the city of Alexandria, and designed many edifices there proposed to transform Monnt Athos into a colossal figure of Alexander.
xxvi. Callimaches of Corinth.-Reputed inventor of the Corinthian order. Vitruviu: b. iv. chap. 1.
xxvin. Sostratus of Cnidus.-The Pharos near Alexandria.
xxvin. Eupolemus of Argos.-Several temples and a theatre at Argos. The Herxm near Mycenæ.

3rd. Century.

xxix. Pheax of Agrigentum.-Varous buildings at Agrigentum.
xxx. Cleodamas of Byzantium.-Restored, with Athenæus, the cities destroyed b the Scythæ and others.

2nd. Century.

xxxi. Cossutius of Rome.-Additions to the temple of Jupiter Olympins at Athens, for Antiochus Epiphanus, king of Syria, and afterwards destroyed.
xxxil. Philo of Athens or of Byzantium.-Enlarged the arsenal and the Piraus Athens; erected the great theatre, rebuilt by order of Hadrian. Wrote " Architecture.
xxxifi. Hermodorus of Salamis.-Temple of Jupiter Stator in the Forum, and templ of Mars in the Circus Flaminius, at Rome.
xxxiv. Calus Mutius of Rome.-Temples to Honour and Virtue near the trophies o Marius at Rome.

1st. Century.

xxvv. Batrachus and Saurus, of Laconia.-These two architects built the templ. and enclosed by the portico of Octavia, at Rome. The name of the first (Barpaxos xxxvi. signifies a frog; and that of the latter (σ avpos), a lizard. They are cor sidered to have perpetuated their names by the representation of those animi in the eye of the volutes of the Ionic order, of which a capital has been fonid and in the churches of St. Eusebius and of St. Lorenzo fuori le Murì: Rome, are pedestals sculptured with them.
xxxin. Dexiphanes of Cyprus, or Cnidos.-A causeway; and rebuilt or repaired th Pharos at Alexandria, erected by Sostratus.
xxxvin. Valerius of Ostium.- Covered in a theatre at Rome.
xxxix. Cyrus of Rome.-Architect to Cicero and his brother.
x.. Posthumius of Rome.-Many works at Rome and Naples.
xlı. Lucius Cocceius Auetus of Rome.-Grotta della Sibella from Lacis Avernus Baiæ; a temple at Pozzuoli ; tunnel of Cumæ, near the Lacus Avernus.
xirir. Fussitius or Fufitius of Rome.-Several buildings at Rome. The first Rom who wrote copiously on architecture.
xlifi. Messinius and Philoxenus.-Formed an aqueduct near Rome fur Cicero's brother.
yliv. Numisius.-Theatre at Herculaneum; buried a.d. 79.

AFTER CIRIST.

2st. Century.

1. Marcus Vitruvius Pollio of Fano.-Basilica Justitiz at Fano. Writer on archite ture, the oldest work extant on the art.
2. Vitruvius Cendo of Verona.-Triumplial arch at Verona.
3. Celer of Rume.-Golden house of Nero, wihh Severus of Rome.
4. Rabrenus of Rome.- Palace of Domitian and works convected therewith, on Mun Palatine.
5. Mustius of Rome.-Temple to Ceres at Rome.

2nd. Century.

6. Julius Frontinus of Rome.-He has lefi a work on aqueducts.
7. Apon Lonones of Damascus. -The formm of Trajan, the column of Trajan, and ot buildings at Rone; a stone bridge over the Danube in Lower Mungary, remains of which are still vi ible.

AFTER CHRLS*。

Calus Julius Laeer of Rome-Bridge over the Tagus at Alcantara, in Spain; a temple there, now dedicated to San Giuliano.
Detrianus of Rume.-Moles Madriani and the Pons Aelins; now called the Castello and Ponte Sant' Angelo; removed the eolossal statue of Nero for Hadrian.
Antoninus, Senator, of IRome.-Pantheon at Epidaurus; baths of Esculapius, in the same city.

4th. Century.

Metrononus of Persia. - Many buildings in India, and some at Constantinople. The first known Christian architect.
Alypius of Antioch.-Einployed by Julian to lay the foundation of a new temple at Jerusalem.

5th. Century.

Cyranes, Consul, of Rome.- Λ basilica and bridge for Theodosius, carried on by Auxentius, senator, Symmachus, prefect, and Afrodisius, consul.
Sennamar of Arabia. - Sedir and Khaovarnack, two eelcbrated palaces in Arabia.
the scythian mevastations.
Alonstus of Padua or Rome. - Buildings for Theodoric; assisted Davien in the ercetion of the celebrated mausoleum at Ravenna, the cupola of which is of one stone, 36 feet diam. outside, 30 feet inside, and hollowed within.

6th. Century.

Ethervis of Constantinople.-The vestibule called Chalce in the Imperial Palaee it Constantinople, for Anastatius I ; and a wall in Thrace 54 miles long.
Animemius of Tralles. - Sta, Sophia at Constantinople; be was assisted by Isidokus of Miletus.
Chryses of Alexandria.-Constructed the embankments along the Euripus, near Dara, in Persia, to keep the river in its channel, and to keep out the sea.

7th. Century.

and 20. Isinorus of Byzantium, and Joannes of Miletus. - The city of Zenobia, on the river Euphrates, in Syria, for Justinian.

8th. Century.

Abuelrrahaman I. of Spain.-Gave the designs for the mosque at Cordova.

9th. Century.

2 Romualdus of France.-Cathedral at Rheims, the earliest example of Gothic arehitecture.
Magnus Eginhardus of Odenwald, in Germany. - Præfect of buildings to Charlemagne. The monastery at Mulinheim, now Seligenstadt; drawing of monastery for Gozpertus, abbot of St. Gall in Switzerland.
2. Trona of Spain.-Palace for King Alphonso the Chaste, at Oviedo, now the episcopal palıce; ehurches of St. Salvador (since destroyed), St. Michael, and St. Mary, and St. Julius outside the walls.

10th. Century.

2. Eberbard, abbot, of Switzerland.-Church and monastery at Einsiedlen, in Switrerland, and completed by Tietland, abbot.
2t Abdallah ben Said of Spain. - Eastern aisles of the mosque at Cordova.

11th. Century.

Busketus or Buschetro.- Church of S. Paolo at Pistoja, 1032. Duomo at Pisa, the earliest example of the Lombard style of architecture. It was built in I 063.
28) Humbert, archbishop, of Lyons. - Erected the stone bridge over the Saone at Lyons, and is recorded as the architect.
29 Pietro di Ustamber of Spain. - Crypt of the cathedral at Chartres, or by bishop Fulbert; rebuilt the church of St. Isidorus at Leon, and erected a bridge there
30 Jarilepho, bishop of Durham, of England.-Began the eathedral church of Durham, "on a plan which he had brought with him from France," where he had been abbot of St. Vincent, in Normandy.

12th, Century.

31. anfrancus of Italy.-The cathedral at Modena, 1099-1108.
32. andpridus of Normandy. - Erected the castle of Pithiviers in Normandy, and then that of Ivry; after which this "architeet" was beheaded, that he might not erect another elsewhere.
33. Gundulphus, hishop of Kochester, of England.-Considered to have designed Roche: Castle ; his house, and the abbey for nuns at Malling in Kent; White Tuwer the Tower of London, and western portion of Rochester Cathedral ; the east portion erected later by Bishop Ernulf.
34. Odo, prior of Croyland, of England. - Church of Croyland Abbey. Annozd, a brother of the abbey, was employed as mason.
35. Lalys of the Land of Canaan. - Neath Castle, Glamorganshire, and other cast monasteries, and churches; built Lalyston ; appointed architect to King Henry
36. Raymunno of Montfort, of France.-Cathedral at Lugo, in Spain, all but the bel and facade.
37. Dioti Salvi, or D. ne Petronı, of Italy.-Baptistry at Pisa, in the Lombard styl.
38. Buono of Ravenna.-Palaces and churches at Ravenna; tower of St. Mark at Vemi which is 330 feet high, and 40 feet square, built 1148-54; the Castel del Lis and the Castle Capuano, at Naples; and palazzo de' Signori at Arezzo.
39. Gruasoss of Pistoia.-Part of churches of St. Andrea and of St. Giovanni Pistoia.
40. Alvar Garcia of Estella, in Spain.--The reputed designer of the cathedral at A del Rey, in Spain.
41. Sugger, of France.-Built parts of his abbey church of St. Denis, near Paris.
42. Pietro Cozzo of Limena in Italy.-Sala della Ragione at Padua, which is about : fect lontr, 88 feet wide, and 87 feet high inside. The roof was burnt in 1420, restored by Rizzio and Piccino, of Venice; it was dismantled by a whirlwind 1756, and restored hy B. Ferracina.
43. Wilhelaus of Germany.-Campanile at Pisa, 178 feet high, with Bonano of I' Tomaso, also of lisa, completed it in the 14th century.
44. William of Eens.-Choir of Canterbury Cathedral, after the fire of 1174 ; comple by William the Euglishman.

13th. Century.

4.5. Isenbert of Xainctes,in France.-Bridges at Xainctes and Rochelle. Recommen by King John to the citizens of London as a proper person to finish London Brit begun by Peter of Colechurch, in 1176.
46. Helyas de Berham or Derman, canon of Salisbury, of England.-Overseer twenty years of the works at Salisbury Cathedral, from its foundation. He succeeded by a certain Robert. He may be the same person who is called E : the Engineer, in records of the reigns of Kings Richard I. and John, relatins the repair of the king's houses at Westminster:
47. Enwain Fitz-Ono of England.-Supposed master of the works at Westminster At Chisch for King Henry III.
48. Robert de Luzarches of France. - Cathedral of Amiens; continued by Thoma Cormont, and finished by his son Regnault, as stated in the labyrinth in the na
49. Estienne de Bonnuelle of Paris. - Church of th.e Trinity at Upsala, in Sire built after the model of Notre Dame at Paris, with ten companions and as 11 pupils.
50. Wilars de Monecort of France.-Author of a vellum sketch hook, preserveit Paris; publisbel by Lassus and Darcel in 1858, and translated by Prof Willis 1859. Church of St. Elizabeth at Cassovia, now Kaschau, in Hungary; d of St. Yved de Braine ; and one at Cambray.
51. Pierie ne Conbie of Francc.-Many churches in Picardy. and perhaps the ap chapets at Rheims Cathedral.
52. Jacopo or Lapo of Florence (there were st eral other artists of this name).-Cit b de'Monaci Cassinensi (afterwards the Vessovado, and now the cathedral) at Ari , continued by Margaritone. The piers of the ponte della Carraja at Florence.
53. Jean de Chelles of France.-Gabled fronts of the transept and first chapels of e choir at the cathedral of Notre Dame at Paris.
54. Pierie ne Montereau or de Montreuil, in France.-The first Sainte Chapel it Vincennes; the refectory, dormitory, chapter-house, and chapel of the Virgi in the monastery of St. Germain des Prés, near Paris; the Sainte Chapelle at 1 , and other churches.
55. Hues Limergiers of Rhcims, in France.- Church of St. Nicaise at Rheims, no stroyed. He was succeeded by Robert de Cougy. It is one of the carly speci $2 s$ of pure Gothic in France.
56. Sin Gonsalvo of Portugal.-A bridge and a church at Amaranto.
57. San Pietro Gonsalvo of Tui, in Portugal.-Stone bridge at Tui.
58. San Lorenzo of Portugal. - Stone bridge at Cavez.

Jacopo of Germany.-Remodelling the buildings of the monastery of St. Francisco at Assisi ; the Palazzo del Barjello; and the façade of the archbishop's palace, buth at Florence.
Nicola of Pisa.-Monastery and church of the Dominicans at Bologna; church of San Micheli; some palaces; and the octagonal campanile of the Augustins at Pisa ; church del San Antonio at Padua; church of Santa Maria at Orvieto; church de' Fratri Minori at Venice ; abbey in the plains of Tagliacozzo, near Naples, as a memorial of the victory by Charles I. over Conrad ; design for the chureh of San Giovanni at Siena, and for the church and monastery della Santissima Trimita at Florence; Dominican monastery at Arezzo, carried out by Maglione, his scholar. Repairs and alterations to the duomo at Volterra, and the Dominican monastery at Viterbo.
Henri de Narbonne of France.-Cathedral at Gerona, in Spain, which city he undertook to visit six times a year.
Jaconus de Favaris of Narbonne, in France.-Succecded him at Gerona.
Fuccio or Fucius of Italy.-Perhaps restored the church of Sunta Maria sul' Arno at Florence. The gate and towers near the river Volturno at Capua. Finished the Castel Capuano, now the Vicaria, and Castello dell' Uovo, at Naples, commenced by Buono.
Ferrante Maghione of Pisa.-Cathedral and church of San Lorenzo at Naples. Palazzo Vecchio and many churches at Naples, in conjunction with Giovamui Beniacasa. Dominican monastery at Arezzo, from the designs of Nicolo da Pisa.
Mastecto of Naples.-Completed the Castel Nuovo, and the church of Santa Maria della Nuova; designed the churches of San Domenico Magyiore and San Giovanni Maggiore; restored the cathedral of San Gennaro ; designed the Palazzo Saut' Angelo and Palazzo Colombrano; all at Naples.
Giovanni da Pisa, in Italy (son of Nicola da Pisa).-Campo Santo or public cemetery, and the tribune of the Duomo, at Pisa; Castel Nuovo, and the church of Santa Maria della Nuovo at Naples; façade of the cathedral at Siena; many buldings at Arezzo and other towns in Italy. He was the first architect in the modern style of fortification.
Erwin von Steinbach, in Germany.- The portail of the cathedral at Strasbourg, from 1277 till his death iu 1318. His son continued the work.
Stefano Masuccio of Naples.-Church of Santa Chiara at Naples. The lower part of the campanile is attributed to hin or to his pupil Giacomo de Sanctis.
Pedro Perez of Spain.-Commenced the cathedral at Toledo.

14th. Century.

Arnolfo di Cambio or Arnolfo di Lapo of Floreace. - Restoration of the ponte di Trinità ; the church of Santa Croce; the walls of the city, with the towers; the loggia of the Or San Michele; the principal ehapel of the Badia, enlarging the church and the campanile; Palazzo della Signori, now Pallazzo Vecenio ; design, model, and foundation of the cathedral of Sta Maria del Fiore, with the Loggia and the Piazza dei Priori ; all at Elorence.
IJohannes de Middelton, of Durham.-As mason erected the lower part of the dormitory of the monastery; completed by Peter Dryng in 1401.
Annrea da Pisa in Italy.-Designed the Castello dellia Scarperia at Mugello, at the foot of the Apennines ; designed the chuch of San Giovanni at Pisteja ; fort.fied and enlarged the ducal Palazzo Gualtieri at Flotence.
7. Agostino da Siena, or pa Pisa, in Italy, and his brother Angelo da Pisa.- North and west façades of the cathedral at Siena, and two gates; church and monastery of San Francisco; Palazzo de' Nove Magistrati ; grand fountain in the piazza opposite the Palazzo della Signoria; hall of the council clamiver, and Palazzo Publico ; church della Santa Maria in Piazza Manetti, all at Siena, and all built by him in conjunction with his brother; also several works at Assisi, Orvieto, and other towns.
7. William Boyden of England.-Chief arclitect (or master mason) for the chapel of the Virgin at St. Albans Abbey Church.
Heniy (Latonus, or stonemason) of Evesiam, in England.-Chapter-house, refeczory, abbot's hall, and kitchen of the monastery at Evesham.
if Waliter de Weston of England.- Clerk of the works at Westminster, kept the rulls of expenses of the erection of St. Stephen's Chapel.
if Thomas of Canterbury, in England.-Master mason, 1330, at St Stephen's Chapel, Westminster.
78. Ralmond de Temple of France.-Great staircase at the Louvre at Paris.
79. Richarin ne Farleigh of England- Master mason at Bathand Reading; at Sal bury Cathedral he worked with Robert, the mason. (See No, 46).
80. Nicolas Bonaventura of Paris.-Employed on cathedral at Milan 1388, fullow by Jean Campomosia of Normandy, and by Jein Mignot in 1399.
81. Giacomo Lanfrani of Italy.-Church of San Francesco at Imola; church of S Antonio di Castello at Venice, and some tombs at Bologna.
89. Jean Ravy or Raut of Fiance. - Finished the church of Notre Dame at Paris.
83. Hans Hists, Hiliz, or Hüırz, of Cologne. - Conductei the works, after the dea of the Steinbachs, at Strashurg Cathedral, to the four winding staircases up to t cupola. His son Hans completed the tower.
84. Jost Dotzinger of Worms.-Succeeded IIiltz; he made the font, repaired the chi and the vaulting. He had sufficient influence to canse, 1452 , the confederacy the masons' lodges in Germany, and is considered by many as thus commenci the motern Freemasonry.
8. 5 Aifonso Domingues of Libon.-Said to be the first architect engaged on the mon: tery at Batalha in Portugtl.
86. Davin Hacket, or Aquete, or Ouguet, of Ireland.-Commenced the chapel of 1 founder at the Batalha, in Portugal.
87. Whlian of Wykeham, bishop of Winchester, in England.-Supposed to have d signed New Colleg', Oxford, and the College at Winchester, both founded by hit rebuilt or cased the nave of Winchester Cathedral; and erected some portions Windsor Castle.
88. William de Wrnford, of England.-Master mason ; was employed by Wykeham many of his buildings.
89. Alan de Whlsingham, sacrist and prior at Ely, in England. - The Lantern Tow and accessory portions, and the Lady Chapel, at Ely Cathedral.
90. Wiltiam Reane, bishop of Chichester, of England.-First library at Merton Colle Oxford; Amberley Castle, Sussex; an eminent mathematician.
91. Annrea ni Cione, called Oreagna, of Florence, and his brother Jacopo mi Cione. Additions to the Gran-ducal palace, and the Loggia de' Lansi, at Florence. I brother built the tower and gate of San Piero Gattolino at Florence.
92. Gainsbonough, or Gaynisburg, of England.--Employed at Lincoln Cathedral, whe his gravestone still exists.
92a. Menky Yevele or Zeneiey, and Stephen Lote, of London.-Contracted fur stonework of the tomb of the first wife of Richard II.; and devised the form d model for raising the walls of Westminster Hall, London. .

ISth. Century.

9. Fimppo di Ser Bruneteesco dei Lapi of Florence.- Dome of the cathedral Santa Maria del Fiore at Florence. A council of artists from all parts was h in 1420, to advise on this scheme. The P:alazzo Pitti, begun and half built him, completed by Luca Fancelli; great part of the church of San Spirito; ch: ter-house and a chapel to the church of Ste. Croce; the church degl' Angeli, ne completed; the fortress of Milan, and several works about tlat city ; a model the fortress of Pesaro; the old and new cit odels at Pisa; some other works th as well as at Trento, and in other parts of ltaly; and the drainage of the cour round Mantua. He set the first example of a purer style in the arenitecture of I_{1} :
10. Michelozzo Michelazzi of Florence.-Palazzo di Medici, now Riccardi, the 1 building in Florence on modern rules; Palazzo Cafargiolo, at Mugello; Do nican monastery and church of S. Marco; Noviziata della Santa Croce ; chapt the church dei Servi ; Villa Medicea di Careggi, now Orsi ; Palazzo Tornabu now Corsi ; with scveral other buildings at Flurence. Library at the monater the Black Benedictines at Venice; Palazzo at Fiesole; some buildirgs at Trel a beautiful fountain at Assisi, the old citadel at Perugia; alterations to the pa at Milan presented by Francisco Sforza to Cosmo di Medici; and other gl works in various towns in Italy.
11. Juan Alonso or Arfonso of Spain.-Directed the construction of the castle f Mouraon in the Alemtejo ; and designed the sanctuary church of the monaster Guadalupe in Spain.
12. Giuifano da Majano, near Fiesole.-Scceeded Lapi at the Duomo at Floren : Palazzo del Poggio Reale at Naples, and many works in that city, bes fountainc. An edifice in the first Cortile in the Vaticau at Rome; palace of Marco at Rome; and restored the church. Began to cnlarge the church of Casa, at Loreto, completed by his nephew Benedetto da Majano.
13. Nouton or Mokton, of England (fellow and warden).-Restored St. Mary Redcliffe church, Bristol, after the fall of the spire in 1446.
14. John Dryell or Dayell or Druele, of England.-Surveyor at the erection of Ah Souls' College, Oxford, of which he was a fellow.
15. Roger Keyes, of England.-Fellow and warden of the college, succeeded to Dryell ; le had been master of the works of Eton college, Berkshire.
16. Whinam Horwod (frcemason) of England.-Nave, aisles, and tower of the Collegiate chapel at Fotheringay, Northamptonshire.
17. Nicholias Cloos, or Close (afterwards bishop of Lichfield) of England.-Supposed to have designed King's College chapel, Cambridge; though, according to some, his father was the architect.
18. Chrisronoulos.-Mosque of Mahommed II. on the site of the church of the Λ postles with eight schools and eight hospitals, all at Constantinople.
19. Baccio Pintelai of Florence.-Chureh and monastery of Santa Maria del Popolo; the celebrated Capella Sistina in the Vatican; the hospital of Santo Spirito in Sassia ; Ponte Sisto ; the ehurch of San Sisto; the church of St. Agostino ; the church of San Pietro in Vincola; palace for the Cardinal del Rovere in Borgo Vecchio, all at Rome. Repaired the church and monastery of San Francesco at Assisi. The palace for the Duke Federigo Feltre at Urbino is attributed to him. He first set the example of grandeur in the architecture of chapels.
Bartoromeo Suardi, Il Bramantino, of Italy.-Many works at Milan, and other parts of Italy.
Glovannt del Pozzo, of Cuenca, in Spain.-Dominican monastery, and a great bridge over the Huexar, near Cuenca.
Andrea Ciccione of Naples.-Monastery and church of Monte Oliveto, now San Carlo Borromeo; great portal of the church of San Lorenzo; ehurch of Sta. Marta; Palazzo of Bartolomeo Riceio, now Ereolense; and several other convents and palaces, all in the city of Naples.
Aristotile Alberti or Rinolfo Fioravanii of Bologna.- Restored the tower of the church of S. Biagio, at Cento, to its perpendicular position; removed the Canpanile of Santa Maria del Tempio, at Bologna, several feet; rebuilt a bridge over the Danuhe in Hungary; built the Church of the Assumption at Moscow, in wl ch city he is supposed to have built the Kromiin, and other works.
1 Willam Orchyearde of England.-Master mason of Magdalen College, Oxford.
Fuancesco di Giongio of Siena.-The ducal palace at Urbino, attributed also to Alberti, Luciano, and Ponteli.
Tomsaso Formentone of Brescia.-Palazzo Municipale or Della Loggia, at Brescia, one of the four ehief town-halls in Italy; contilued by Sansovino and completed by A. Palladio.
Luciano di Martino or L. in Lauranna. - Palazzo for the Duke Federigo Feltre at Urbino, completed by Pontelili.
1 Leone Battista Alberti of Florence.-Church of San Francisco at Rimini; churches of San Sebastiano and of San Andrea, at Mantua. The principal façade of Santa Maria Novella, at Florence, has been attributed to Alberti, but fron the circumstance of its being Gothic, it is more probably hy Bettini ; the gate and Corintlion loggie are, however, from the designs of Alberti. Palazzo Rucellai; and the cloir and tribune of the church della Nunziata, both at Florence. At Rome he altered the papal palace for Pope Nicholas V., and repaired the aqueducts of the Aqua Vergine, and decorated the fountain of Trevi. Many buildings in Italy are attributed to him, but are by his pupils.
11: Jan Keldermans of Germany.-Completed the old Hotel de Ville at Louvain, now the council chamber.
1i4 Mathieu de Layens of Louvain-Hotel de Ville at Louvain ; choir of the church of Ste. Waltrude at Mons; Tabernacle, baptitry, and altar of the Virgin in the church of S. Leonard at Léau; completed the church of S. Sulpice at Diest, begun by S. van Vorst, and erected the tower.
15 Hans Boeblinger and Matthaeus Boeblinger.-Commeneed the Frauenkirche at Esslingen, near Stuttgart, continued by his son, who bult the Katherineukirche and the Spitalkirchc. Employed on the cathedral at Frankfort-sur-Maine, and on that at Ulm.
116 Richard Beauchamp, bishop of Salisbury, in England.-Built the great hall, parlour, and chamber of the palace at Salisbury; appointed master and supervisor of the works of St George's Chapel at Windsor Castle (where he was succeeded by Sir Reginald Bray, who was comptroller of the rogal works to Henry V'II); and built a chanti y chapel in Salisbury Cathcdral.
20. John Kendale of England.-Supervisor of the king's works throughout the realin 1 Edw. IV.
21. John Ashfield of England.- Master of the new works, 1473, at Bristol Cathedral Prior John Martyn succeeded him.
22. Donato Lazzari, usually called Bramante d'Urbino, from the town near bis birth place.-The octagonal church of Sta. Maria Incoronata at Lodi; two churche and a palace at Casale; church at Canobbio. At Milan, the church and sacrisi of St. Satiro; chapel of the large lazaretto, and part of that building itself; th monastery of San Ambrogio and its cloisters, and the cupola of the church of Sti María della Grazie. Designed and commenced the building of St. Peter's : Rome; many works in the Vatican, particularly the library and the Belveder court, \&c., for Julius II.; the circular Doric chapel in the convent of San Pietr Montorio; the palaces of S. Giacomo Scossacavalli, afterwards Giraud and To: lonia, del Duca de Sora, della Cancelleria (if not due to the brothers Giamber Sangallo), dell' Nuovo dell' Imperiale; the churches of SS. Euloy de' Orfan Lorenzo, and Damaso; cloisters of the monastery della Pace. \&c.t at Rume; th. Strada Julia in that city; ducal palace at Urbino; Palazzo Publico at Brecia church of Sta. Maria del Monte, near Forli; cathedrals at Città di Cartelli Faenza, and Foligno; fortress at Civita Vecchia, and other engineering works: Milan ; marble exterior to the Santa Casa at Loreto; Villa Imperiale near I'earar churches of San Sepolcro and of Santa Maria della Campagna at Piacenz: church of the Madonna, outside Torli, in the frm of a Greek cross, in imitation lis design for St. Peter's; and many other works.
23. Ventura Vitont of Pistoja.-Church dell' Umiltà at Pistoja, after the design Bramante, whose pupil he was.
24. Martino Lombarno of Venice.-Scuola or confraternità di San Marco at Venice, at perhaps the church of S. Zaccaria in same city, but the interior is consider carlier. Other palaces there are attributed to him.
25. Simone Pollafuolo, or Il Cronaca, of Florence.-Façade and additions in t cortile to the Palazzo Strozzi, begun by Majano ; convent of the Padra Servit sacristy of Santo Spirito ; and the Council Hall, all at Florence; church of S Francisco, at S. Miniato, near Florence.
26. Novello da San Lucano of Naples.-Palace of Prince Robert Sanscverino, duke Salerno, now a church; and restored the church of San Domenico Maggio both at Naples.
27. Pietion Lombardo of Venice. -Tomb of Dante, the poet, and its chapel in church of San Francisco; the two great columns in the piazza, at Ravenna; cle tower to the church of San Marco; Palazzo Lrredano-Vendramin-Calergi ; chu of Sta. Maria de' Miracoli; works at the ducal palace ; besides many others Venice ; a cloister in the monastery of Santa Giustina at Padua; the Cathedral Cividal del Friuli.

16th. Century.

125. John Alcock (bishop of Ely) of England.-Comptroller of the royal works, teri Henry VII ; his chapel in Ely Cathedral ; supposed to have designed St. Mary's the University Church, Cambiridge; Collegiate Church of Saint Giles at Malve
126. Willam Bolfon, prior of St. Bartholomew, Sinithfield, in London.-Master of works at the chapel of King Henry VII., at Westminster, and is supposed to b designed it.
127. Gabiello d'Agnolo of Naples.--Church of S. Giuseppe; church of Santa 17:3 Egiziaca; palace of Ferdinando Or,ini, duke of Gıavina, at Naples.
128. Gian Francesco Mormando of Mormanoo.-Church of San Severimo; Palazo I marini; Palazzo Cantalupo ; the small church della Stella, at his own experse' at Naples.
129. John Cole of England.-Master mason of the spire at Louth church, Lincolnshi
130. John Hylmer and Wiliam Vertue of England. -Fremasons, erected the vaul g of the choir of St. George's Chapel, Windsor.
131. Guiliano Giamberti, called San Gallo, of Ftorence.-Part of the cloister of e monastery of Santa Maddelena de' Pazzi at Florence; cloister for the Frutri mitani di S. Agostino; the Poggio Imperiale; fortress ncar the Porto a P, and other works, at Florence; a magnificent palace at Poggio a Cajano for renzo di Medici, with a hall 163 feet by 68 feet ly 65 feet high, having a ce ${ }^{f}$ the widist then known : repaired the cupola and roofed the church della Mad a at Loreto ; restored the roof and decorations of the ceiling of the church of ${ }^{5} / 3$ Maria Maggiore; restored the church dell' Anima; Palazzo Rovere, near in Pietro in Vincola, and o:her works àt liome; church of Madonna delle Care at

AFTER CHHJST

Prato; Palazzo Rovere at Savona; an unfinished palace at Milan; fortress and Duric gate of San Marco at Lucca; works at Pisa; fortifications at Ostia.
2. Martin Chambiches or Chambiges of Cambrai, in France. - Employed to construct the portail of the cathedral at 'lroycs. Directed with Jean Vast the erection of the transepts to the cathedral at Beauvais, and was succeeded by M. Latye.
3. Pierre Gadyer of Patis. - Probably designed for Irancis I. the Châtcau de Boulogne or Madrid, near Paris, now destroyed.
4. Domenico Boccanoro, cailed Dominique de Cortonc.- Remodelled the Hôtel de Ville at Paris to an Italian de ign.
5. Tuilio Lombando of Venicc.-Assisted his father Pietro in the Cappella Maggiore in the Cathedral at Treviso. At Venice, the patazzo Corne"-Spinelli; the church of Sta. Maria de' Miracoli, and several other buildings and fine tombs. Cathedral at Belluno. The transept, if not the whole of the church of the Madonna della Grazie at 'Ireviso, completed with the help of his kin:men Giul'o and Sante.
Leonarno da Vinci, near Florence. - Aquednct of the Adda and other engineering works at Milan; varions machines, plans, and works on architecture.
Fra Giovanni Giocondo of Verona, ralled Joconde in France.--"Diviseur des batimens"; bridge of Notre Dame at Paris; fortifications at Trevico; built the Fondaco de' Tedeschi, cleansing of the Lagunes, and made a design for the Ponte Rialto, all at Venice. After the death of Bramante, he was engaged with Raffacle and G. da San Gallo in crecting St. Peter's at Rome. Several works at Vcrona are attributed to him.
Hans Holbein of Basle.-Gateway at Whitehall; ceiling of Chapel Royal at St. James's Palace ; Wilton House, Wiltshirc. Dicd 1543.
Rombaut Keinermans, of Malines.-Sraircase to Hotel de Ville at Oudenaarden: works to the lower portion of Hotel de Ville at Gand; house for Grand Conseil at Malines ; and chapel of the palace of the dukes of Brabant at Bruxelles.
Lunovico Beretta of Brescia (?).-Façade of the church of Santa Maria dei Miracoli at Brescia, in a florid cinquecento arabesque style.

- Raffatllo Sanzio of Uibino.-Continued the church of St. Peter at Rome, afier the death of Bramante, his master in architceture; engaged at the Patazzo Farnese, and sta!ling near thereto; repaired and altered the church of Santa Maria in Navicella; Palazzo Caffarelli, now Stoppani ; the gardens of the Vatican; the façade of the church of San Lorenzo, and of the Palazzo Uggoccioni, now Pandolfini, all at Florence.
4 John of Pauda in Italy.-Deviser of buildings to Kings IIenry VIII. and Edward VI. of England. Supposed to have designed Somerset House; and Sion House, Middlesex. Also attributed to J. Thorpe (175), and J. Shute (200).
Hfctor Asheley of England.-Master mason and supervisor in the ercetion of Hunsdon House, Hertfordshire.
4 Roger Amice of England.-Surveyor to King Edward VI.; Almes Knight's lodgings at Windsor Castle.
14 Andrea Contucci of Monte Sansavino, in Italy.-The cappella del Sagramento in the church of Santo Spirito at Florence ; palazzo della Canonica, and fortifications at Loreto ; church della Nunziata at Arezzo ; chapel for the monks of St. Agostino, and his own house at Sansavino; buildings at Venice; and a palace at Evora, with some other buildings in Portugal.

4. Bartolommeo Buono of Bergamo, in Italy.-Three chapels in the church of S. Rocco; bell chamber, attie and spire to the Campanile of San Marco; and superirtended the works at the Procurazie Vecclie, all at Venice.
14: Guglielmo di Bergamo, called II Bergamasco, of Italy.-Cappella Emiliana, near the Camaldolese in the island of Murano; palazzo di Calmerlenghi, near the ponte Rialto at Venice; palace at Portagruaro, at Friuli; porta di Santo Tom maso at Treviso ; porta del Portello at Padua.
48 Glovanni di Ololzago of Biscay, in Spain - Cathedral of Huesca, in Arragon.
145 Pedro de Gumiel of Alcala, in Spain.-Monastery of Sta. Engraçia at Saragossa; college of S. Ildefonso at Alcala de Henares ; and church of SS. Justo y Pastor.
IscIuan Campero of Spain.- Church and convent of S. Francis at Torrelaguna, in Spain; commenced the eathedral at Salamanca, under Gil de Hontanon; and the aqueduct. Removed a cloister at Segovia to the site of the new cathedral; and heightened the tower of the moncstery of St. Maria del Parral, in that city. ntonio Giamberti (na San Gallo) of Florence.- Churches of the Madonna at Montefiascone; the Canonicà, with a double loggia; fortifications at Civita Vecchia, Civita Castellana, Montcfiascone, Perugia, and many othcr strong places in

Italy. Al cred the tomb of Iladrim at Rome to its present fomm as the caste, S. Angelo, and its fortitications
152. Antonio Picconi (na Sin Gailo) of Mugello, near Florence. - Completed the ehure of Sta. Maria di Lorcto, near Trajan's columa at Rome; the cupola is by G d Duca. Palazzetto of the Counts of Parma. near the gate of Venice, and other palace in Rome and repared some rooms in the Vatican. Palazzo at Gradoli, and restore the fortress of Cajo di Monte near thercto. Made a design for the furtress: Caprarola. Palaces for Bart. Ferratino, and Cardinal di Santa Prassedi chureh for Cardinal Alborense ; continued the erection of St. Peter's on a new pla after the death of his mele Giutiano da San Gallo; church of the Florentine and of Santa Maria di Monferrato, all at Rome. Fortifications at Civita Veceli. Parma, Arcona, Placenza, Perugia, and Fiorence. Church of the Madonna Loreto, nearly rebuilt. At Castro he built the fortress, Palazzo l'Osteria, and th Mint. At Rome, triumphal arch of wood at the palace of S. Marco for the entr of Charles V. ; the bastions to the walls and the gate of Santos Spirito; the Cat ella Paolina; the staircase at the Sistine Chapel, and the Palazzo Farnese ne: the Campo d_{1} Fiore, are among his mumerous works.
153. Bamassare Peruzzi of Volterra.-Plan and model of the catheiral at Carpi; d signs for the façade of Sun Petronio, and for the gate of San Michcle in Buseo Bologna; fortifications at Siena. At Rome, the little paiace for Agostino Chis now called the Farnesina, in the Lungara; palazzo Massimi, near the church San Pantalco ; villa di Papa Giulio Ill, cortile of the palazzo d'Altemp casino at the palazzo Chigi ; tomb of Pope Hadrian IV. in the church do Anima; palazzo Spinosa, now the hospital degli Eretici convertiti; and assisted the crection of St. Peter's.
154. Marco di Pino of Siena.-Modernised the church della Trinità di Palazzo, and bu the church and convent of Gesù Vecehio at Na,les.
155. Piftro Berretini, or Pietro da Cortona.-Porico of the chirch of Sta. Mal della Pace at Rome; made a design fror the façade of the Lourre; palazzo S_{i} chetti at Ostia; several chapels; the façade of the church of Sta. Maria Via Lata, and the church of SS. Maria Martina and Luca Evangelista, masterpieces ; and the cupola and other parts of the church of San Ambrogio a Carlo in the Corso.
159. Andrea Bhosco, or Ricelo, of Padua. - Church of Sta. Giustina, and loggia a council house in the Piazza degli Signori, at Padua.
1.57. Glovanni Merliano of No'a, in Italy.-At Naples, Strada di Toledo; elurches of Giorgio de' Genuvesi and of S. Giaccmo degli Spagnuoli; patazzo of the Prine di Sansevcro, and palazoo of the Duca della Torre; the Castel Capuano, altered t court of law ; a fountain at the extremity of the Mole ; and triumphal archcs Naples for the entrance of Charles V.
158. Ferdinando Manlio of Naples.-Third cortile to the palazzo Reale; church hospital dellia Nunziata; Strada di Porta Nolana, and di Capua, with other stre and palaves at Naples; a bridge at Capua.
159. Juan Gil ne Hontanon of Rasines, in Spain.-" Maestro principal" at the cathee of Salamanca, erected from the designs of A. Rodrigucz and A. de Egas.
ifo. Rodrigo Gil de Hontanon of Spain.-Continued the cathedrals of Silamanca of Segovia; works at Seville ; church at Valladolid; rebuilt the dome of cathedral at Seville; and commenced the cathedral at Segovia.
161. Baccio dAgnoho of Fiorence.-Several triumphal arches for the vinit of Pope X., and of Charles V, at Florence. Campanile of San Miniato in Montc executed, and that of Santo Spirito commenced, by him; designed the entabla: and gallery round the botom of the cupola or Sta. Maria del Fiore, the great ar and choir of which was built by his son Guunano; palazzo for Giovanni Bart: i on the Piazza della Santa Trinità, and the palaces, all at Flerence.
162. Giovani Mabia Falconetto of Verona.-Logrgia of two storeys at the pal, Cornaro; and a music hall ; commenced the chureh of Sta. Maria delle Gra Doric portal to the palazzo del Capitanio; rates of S. Giovami, and of Sa arola, all at Padua ; palazzo Savorgnano at Usopo in Friuli.
163. Phetro de Ubia of Spain.-Bridge of Almaraz, over the Tagus, having two arc s, $_{\text {, }}$ one about 150 fect, and the other 119 feet
164. Alonzo ne Covarribias de Leiva of Spain.-Worked for, or was consulted in the cathedrals at Toledo, Salarranca, Piasencia, Segovia, and Seville. Archiepisc it palace at Alcala de Henares. With Luis de Vega rebuilt and enlarged the pa', at Madrid and Toledo for Charles V. With Tidana he designed the celebld

AETER CHIIST.

Hieronymite chureh and monastery of S. Miguel de los Reyes at Valencia, and commenced the eloister of it; and other works.
35. Diego Siloe of Toledo. - Cathedral and Aleazar at Granada; church and convent of S. Jerome in the same city.
36. Gerolamo Genga of Urbino.-Repaired the ducal palace at Urbino ; built another on the Monte lmperiale, near Pesaro; church of San Giovanni Battistat Pesaro; façade of the cathedral, and restored the bishop's palace at Mantua; convent de' Zoccolanti at Monte Baroccio; and the church of St. Naria delle Grazie, and the episcopal palace, at Sinigaglia. Ilis son Babtolomeo assisted him, and also practised at Pearo, Urbino, and other places.
7. Michele San Micneti of Verona.-Cathedral at Montefiascone; church of S. Domenico at Orvieto ; fortresses in the Venetian territory, in Corfu, Lombardy, and the ecelesiastical states, as at Legnani, Orzi Nuovo, and Castello; palazzo di Canossa, dell'Gran Guardia on the Bra; Pellegrini de' Verzi ; the prefecturate and façade of the palazzo Bevilaequa ; chapel Guareschi in the church of S. Bernardino; design for the campanile of the Duomo ; churches of Santa Maria in Organo de' Monaci, di Monte Oliveto, di S. Giorgio, and della Madonna della Campagna; gates Nuova, del Pallio, di S. Zeuone, del palazzo Pretorio, and del palazzo Prefettizio, all at Verona; as well as fortifications of the same city, whore triangular bastions were first introduced, that of della Madellena being erected in 15\%7.
S. Philibert me LiOgme of France-Commenced the Tuilerics; built the châteaux of St. Maur, Anct, Mcudon, and many others. Wrote on arehitecture.
9. Gaieazzo Alessi of Perugia in Italy.-Directed the works at the monastery of S. Pietro; entrance gateway of the fortress and the governor's residence; chapel del Sacramento in the cathedral, and the front of the church of Sta. Maria del Popolo, and several palazzi, all at Perugia. Works at the arsenal and the haven and mole at Genoa, wherehe executed the public granaries; loggia dei Banchi with a large hall; Palazzo Reale; cupola, choir, and other works of the duomo of S. Lorenzo; the chureh of Sta. Maria di Carignano; the Stradi nuova and nuovissima, with most of the palazzi in them, and other palaces in the Borgo di S. Pier d'Arena. At Bolorna, at Milan, and other cities, he designed many palaces and churches; later he made a design for the church del Gesù at Rome, and for the Escuial in Spain.
Sante Lombando of Venice.-Assisted his father Giulio in the Scuola di S. Rocca; palazzi Trevisani and Gradenigo ; the church of S. Georgio de' Greci with Chiona; all at Venice.
Michel Agnolo Buonarroti Simone of Florence. - Chapel and cupola of the new sacristy to the chureh of San Lorenzo ; part of the façade of the church; library of the Medici, generally called the Iaurentian Library; all at Florence. Church of San Giovanni, which he did not finish; Fortifications at Florence, and at Monte San Miniato. Monument of Julius II. in the church of San Pietro in Vincola; the Campidoglio, with the palazzo de' Conservatorj, the building in the centre, and the flight of steps; the celebrated cornice and other portions to the palazzo Farnese; and several gates, particularly the l'orta del Popolo and the Porta Pia, all at Rome. Plans for many other palaces, churches, and chapels. He was cmployed on St. Peter's, after the death of Ant. Picconi da San Gallo, making many alterations in the design, and giving the model for the great dome, which was followed out, except as to the lantern.
Giacomo BarozzI, of Vignola in Italy.--Various buildings at Bologna; Farnese palace ; church of S. Agostino; palazzo di S. Giorgio dei Scotti, all at Piscenza. Received the charge of the Acqua Vergine at Rome, and the works at the Vigna of Pope Julius III. (or his villa), and other buildings for him and bis family. Constructed the celebrated palace at Caprarola, near Viterbo, for Cardinal Alessandro Farnese. Became architect to S. Peter's after the death of Buonarroti, when he designed the lateral cupolas; and many other works in that city, including the church del Gesù up to the cornice. 'The large church of Sta. Maria degli Angeli at Assisi. Consulted on the designs for the Escurial in Spain, and made one which was highly approved.
Giulo Pippi of Rome, called Giulio lomano.-Villa Madama; Palazzo Larte at San Pietro ; church della Madonna del Orto; Palazzo Ciccia porci alla Strada di Banchi; Palazzo Cenci sulla Piazza S Eustachio, and other buildings in Rome. The celebrated Palazzo del Té at Mantua; palace at Marmiruolo near that city; modernised the ducal palaces, the Duomo, and many orher buildings in Mantua; façade of San Petronio at Bologna; and works at Vicenza.
17 Eustace Mascall or Marshail or Malcola of Eigland. - Clerk of the works at 4 D 2
the building of Christelurch Collese, Oxford ; and chief cleak of aecounts for ail the buildings of Henry VIII, within twenty miles of London
175. John Tuorpe of England. - A long list of his supposed works will be found in Book I., England.
176. Lenmex of Flanders.- Foreman at the first Royal Exehange, London, erected for sir T. Gresham, who "bargained for the whole mould and substance of his workmanship in Flanders."
177. Daman Forment or Morianes, of Valencia, in Spain.- Façade of the ehurch o Sta Engraçic, at Saragossa.
178. Mabtin de Gainza of Navarre, in Spain.-Carried out works at the Cathedrala Seville, and mate the design for the capilla real attached to it, and finished by li. In uiz
179. Alonso Bernuguere, of Paredes de Nava, in Spain. - Has given his name to tha phase of the Renaissance style, which was the fashion of the sixteenth century it Spain, also ealled the Plateresque style; but it is unknown what works le designcu other than shrines. altar-picees, and tomb:.
180. Juan Sanchez of Spain. -"Maestro mayor" of the works of the city of Scvilke, is sul] posed to have designed the Casa del Aymmaniento in it.
181. Pedro in Valdevira of Spain.-Chapel of S. Salvador, at Ubeda; palace in tha same place; hospital and chapel of S. Jago at Bacza.
182. Penro Ezgemba of Ojebar, in Spain. - Works at the cathedral at Plasencia; churs of S. Mateo at Caceres; that at Robledillo; and commenced that at Malpatida.
183. Ferdinanno Rulz of Cordova, in Spain.-Continued the capilla reai, and heightent the Torre della Giralda of the eathedral, at Seville.
184. Pedro Maehuca of Spain.-Royal Palace of the Alhambra at Granada. Succeeder by his son Luis.
185. Antonio fiorentino of Dello Cama near Florence, - Church of Santa Catterima Formello at Naples.
186. Jacopo 'Tatti, called Sansovino, of Florence. - Commenced the chuseh of S. Mal cello, and built that of S. Giovami de' Fiorentini; Loggia on the Via Flamini close to the Porto del Popolo; Palazzo Gaddi, now del Nicolini, at linmu Church of San Francesco della Vigna, finished by Palladio; continued the Scme? begun by M. Lombardo; the Zeeca or mint; Palazzo Comari on the Gran Canal; and other public buildings; besides repairing many domes of the churches San Fantino, of San Martino, of the Incurables, and of San Geminiano; all at Venic
187. Theodore Haveus or Heave, of Cleves.-Caius Court of Caius College, Canbrid! with its gateways.
188. Domingo Teotocorule of Greece.-College of the Donna Maria d'Arragma Madrid; church and convent of Dominican nuns ; also of the Ayuntamiento Toledo; church and convent of the Bernardine nuns at Sitos.
189. El. Padre Bartolomé Bustamente of Spain.--Gave the plans for the Jesmi college at Cadiz, Caravaca, Segura, Trigueros, and Murcia; and hospital of S. Juan Bautista, near Coledo.
190. Juan Baurista de Tolfoo in Spain.-Designed the Escurial completed by Juan Herrera; assisted in plaming the Strada di Toledo at Naples; church of S Giacomo degli Spagnuoli in the same city ; and palace at Posilippo.
191. Juan de Herrera, of Mobellan, in Spain.-Continued the Escurial after the dua of his master, Juan Bautista; bridge of Segovia at Madrid; palace at Aranju! south façade of the palaee at Toledo ; cathedal at Valladolid; exchange at ville. He was consulted on designs for many works in Spain and Portugal.
19\%. Plerra Leseot of Paris.-Fontaine des Innocents in the Rue St. Denis, at Pas carved by Jean Gougeon. His design for the court of the old Louvre was prefre by S. Serlio to one of his own. He executed the part showing a Corinaly order with a Composite one over it.
193. Sebastiano Serilo of Bologna.-Employed by Francis I. of Franee at Fontai bleau and at the Lourre. Was the first to publish the Ancient Edifices of It and wrote a treative on arehitecture
194. Jean Cambiche of Paris - The salle du Centaure, and the lower storey of the pe galerie at the Louvre. Master of the Masons at the hôtel fle ville at Paris.
195. Bartolommeo Ammanato, of Florence, in Italy.- Palazzi Rucellai and Matic Rome; ponte della T'rinità ; continued the Palazzo Pitıi ; church of Sin Gioval at his own expense; all at Florenee; and many works at Pisa, Lucca, and ot ciries.
196 Nicolo Arate or Nicolo na Monena. - Old chàteau of Meudon; tomb of Francis at S. Denis, both usually attributed to de l'Orme; and decorated the apartment the palaee of Fontainebleau.
97. Indrea Pallamio, of Viccnza, in Italy.-Arcades to the Sala della Ragione; crected the Olympic 'Theatre after the ancient type, and many other edifices; with the Palazzi Tienc, Chiericati, and Valmarana, all at Vicenza; Villa Capri near that city, and numerous other buildings in neighbouring towns. The church Il Redentore and other works at Venice. Published a treatise on architecture, and a book on the ancient ruins.
98. Bernardo Timante Buontaienti of Florence. - Villa of Marignolla, now Capponi; the casino behind San Marco; the corridor balf a mile long extending to the palazzo Pitti; palazzo for the Acciajuoli, now the Corsini; a façade to the Strozzi palace, and to the palazzo Ricardi; the façade of the church della Santissima 'Trinità, all at Florence; the loggia de' Banchi. ducal palace, and façade of the church of San Spirito at Pisa; the palazzo at Siena; and woaks in other parts of Italy.
99. Domenico Fontana, of Como, in Italy.-Raised, transported, and fixed, the four great obelishs in Rome, with many improvements there; the Doric arcade and loggia to the front of the church of S. Giovanni Laterano; a palazzo on one side of it for the use of the Popes; enlarged the papal palace; b:ilt the palazzo Mattei, now Albani; the library at the Vatican and other works there; and restored the cohmns of Antonine and Trajan. The Royal palace and other works at Naples.
00. John Shute of England.-A painter and architect, temp. Queen Elizabeth, Wrote the first work on architecture in England.

1. Henry Hawthorne, of England.-Surveyor of the works to Queen Elizabeth; designed the gallery now part of the library at Windsor Castle, "a fine specimen of Anglo-Italian architecture."
2. Sir Thomas Tresham of England.-Liveden House, Northamptonshire; Rushiton Lodge and the triangular lodge, in the same county, Also given to J. Thorpe (175).
3. Roberir and H. Smithson of England. - Wollaton, Nottinghamshire.
4. Louis de Foix of France.-New mourth to the river Adour ; Tour de Cordonan, the lighthouse at the mouth of the Gironde, near Bordcaux.
5. Jean Baftiste Androuet de Cerceau of Orleans, iu France.-Pont Ncuf at Paris; hôtels de Sully, de Mayenne, and des Fermes or hotel Sequier Mademore drawings for monastic buildings, churches, \&c., than any architect in France during half a century. Rebuilt church of Norre Dame at Clery; and S. Etienne du Mont at Paris.
6. Jacques Annrouet nu Cerceau of France.-Finished the works at the Louvre next the river for King Menry IV. There were four architects of the name of $d u$ Cerceau, and their works are not well separated. Wrote on architceture.
7. Vincenzo Scamozzi of Vicenza.-Additions to the library of S. Mark at Venice; finished the Olympic theatre by Palladio at Vicenza; theatre at Sabionetta; and other buildings. Wrote on architceture.
8. Jacques de Brosse of Paris.- Palais du Luxemburg at Paris and other works; château de Monceaux, near Meaux; château of Colomier, near Paris; façade of the church of SS. Geronis and Protais; and the great hall of the Palais de Justice. both at Paris.
) Carlo Manfrno, of Bissone, Largo di Como.- Altered Michael Angclo's design for S. Peter's at Rome, from a Greek to a Latin cross; began the palace of Urtan VIII., and many churches and palaces.

17th. Century.

John Warnen of England - 'lower of St. Mary's Church, Cambridge, designed by John Al.cock.
Inigo Jones of London.-Banqueting House, Whitehall, being part of his design for a noble Palace; Chapel, Lincoln's Inn; Surgeons' Hall; arcade to Covent Garden and the Church; the grand portico to old S. Paul's Cathedral; and many other important works.
Giambattista Aleotti of Ferrara.--Fortress at Ferrara; many theatres and othr public buildings at Mantau, Madena, and Venice; and the great theatre at Parma.
Pierre le Muet of France.-Grand hôtel de Luynes; hótel Laigle and Beauvilliers; finished the Church of the Val de Grâce; all at Paris.
Turbaut Metezau of Dreux, in France.-Commenced the Porte S. Antoine at Paris; and the salle des Antiques at the Louvre. Louis Metezan, the son, is supposed to have directed the construction of the first half of the great gallery of the Louvrt, as far as the third wicket.
Francesco IBormomint of Bissano, in Italy. - Worked at the Palazzo Barberini;
church and monastery of S. Carlo alle quatiro Fontane; completed the collegio della Sapienza, with its church; additions to the oratorio di S. Felipe Novi in Vallicella, and to the chureh of Sta. Agnese in the piazza Navona; several other churehes and chapels; rest red the interior of the baptistry of Constantine; and many other works; all at Rome.
216. Alessandro Algabdi of Bologna, iti Italy.-Villa Pamtili, called Belrespiro: façade of Church of S. Ignazio, at Rome.
217. Giovanni Lorenzo Bernini of Naples.- The piazza, colonnade, and staireast, mud other works at S. Peter's, with its Baldachiro; grand fountan in the Piazza Nilvona, and others; the great palazzo di Monte Citorio ; several large chapels; all at Rome. Cathedral at Terni ; porta Nuova at Ravenna; villa Rospisliosi at l'i. toja. Visited France and made a design for the completion of the Lourre. 'The front, if not all the oval church of S. Andrea al Novizito dei PP. Gesutit on the Quirinal, considered by Bernini himself as his masterpiece.
218. Bernard Jansen of England.-Built Andley End, Essex; the greater part us Northampton, afterwards Northumberland, House, London; also Charlton Ilomse Wiltshire, and Lulworth Castle, Dorsetshire; all for Thomas IIoward, earl of Suffolk.
219. Augustin Bernardino of Spain.-Collegiate Church of San Nicolas at Alicante ir Spain: he was succeeded by Martin de Mefa; it is consider.d a fine work in design and detail.
220. Pirro or Pyrbho Ligorio of Naples. - Additional buildings at the Vatican; the ewine in the wood of the Belvederc, now villa Pia; palazzo Lancooleti, at lume Additions to the villa d'Este at Tivoli; published Antichitì di Romn.
221. Giovanni da Ponte of Venice.-Restored the public edifices of the Rialto, \&e. rebuilt the college at the ducal palace; great Council Hall ; storelousc of th. arsenal; bridge of the Rialto; the prisons adjoining the Doge's pa'ace, and the Bridge of Sighs; all at Venice.
222. Françors Mansart of Paris.- Portail of the Church of the Feuillans, rue S Honoré, now destroyed, at Paris. West front in the entrance court of the Chitera at Blois; ehurch and munnery of the Val-de-Grace, continued from nine fect b Le Mercier ; château des Maisons sur Seine for the President René de Longuei gallery for antiquities, and stabling for Cardinal de Mazarin; many chateaux, is cluding that of De Fresne, near Meaux ; the portail of the chureh of the Minin in the Place Royal at Paris; with many other works.
223. Claude Perraut of Paris.-Façade of the Louvre; the Observatory; trimpli arch now destroyed; chapel of Nôtre Dame in the church of the l'etits Pères at Paris. Chapel at Sceaux. Translated Vitruvius.
294. Françols Blondel of Ribemont, in France.-Part of bridge over the Clarente Saintes; Gate of St. Denis at Paris; repaired and decorated the gate of Antoine, and rebuilt that of St. Bernard. Published a Cours d'Architecture.
225. A moine le Pautre of France.-Wings of the chatean at St. Cluud. Church of nunnery of Port Royal; and Hôtels de Gevres and de Beauvais, all at Paris. l't lished his designs and fine plates for decorations.
226. Jacques ree Mercier of Pointoise, in France.-Pulled down the Krep of the Louvre and enlarged the court, with other works. The centre of the pres west façade of the Tuilerics. The palace, and the Sorbonne, for Cardinal Kis lieu, and his châtcau in Poitou; completed the church of the Pères de lorato rue S. Honoré, begun by C. Metezau; continued the church of the abhave Val of Grace, began by F. Mansart ; church of S. Roch, completed by R. Cotte; all at Paris; many other works there and elsewherc.
227. Thomas Hole of York, in England.-Bodleian Library; Wadham Culloge; large quadrangle of the Pu'shic Schools; garden quadrangle of Merton Culls and other works; all at Oxford.
228. - Marsh, or March, of Lincolnshire, in England...Aditional buildings at 1 , over castle, in Nottinghamshire, sometines attributed to J. Smi:hson; and names are given to Nottingham Castle.
229. Sir Christopher Wren. of East Knoyle, in England. - After the Fire of Lon 1666 , he presented a plan for rebuilding the City. The Cathedral of St. In began and completed by him 1675-1710. The churches of St. Audrex, IHolb St. Bride, Fleet-street; Christ Church, Newgate-street; St. Dunstan's in the I ; ; St. James, Westminster ; St. Lawrence, Jewry ; St. Mary Aldermary, Bow l ; St. Miehael, Cornhill ; and St. Stephen, Walbrook; all masterly works, amo ${ }^{\text {a }}$ large number of other churches. College of Physicians, Warwick-lane ; Le pe Theatre at Oxford; Chelsea College; Marlborough House; part of IIan is

AFIFR CHRIST.

Court Palace ; the colomades and other portions of Greenwich Hospital; library of Trinity College, Cambridge ; the Monument of London; repairs at Wes minster Abbey; and many other buitdings.
Robert Hooke of England.--Old Bethlehem Hospital in Moorfields; Aske's Almshouscs at Hoxton; Duke of Montague's house in Bloomsbury, but Leing burnt was rebuilt by P. Puger. He gave a plan fur rebuilding the City of Londonafier the Fire of $\mathbf{1} 666$, and was appointed one of the surveyors for laying out the land.
Henry Aldrich of Wentminster, in England. -Three sides of the quadrangle of Christ's Church, called Peckwatcr->quare; ehapel of Trinity College ; and Church of All Saints, all at Oxford. Publeshed Elementa Architectura Civilis.
Jules Hardouin Mansart of Marly, in France.- D:me of the Hôtel des Invalides; Galerie du Palais Royal; the Place Louis le Grand, and that des Victoires; Royal Château de Clagny; additions to the Royal Château at Versailles; chattean de Marly ; staircase and other works at S. Cloud; Maison Royale de S. Cyr; new château at Meudon; dccoration of the choir of Notre Dame at Paris; alterations at Chambord; and many other works.
a. Carlo Fontana of Bruciato, near Como.-Completed with Bernini the eluurche; built by C. Rainaldi in the Piazza del Popolo at Rome; several chapels; aqueduct and supply of water to the Vatican, \&e., with some of the fountaius; Patazzi Grimani and Bigazzini, now 'Torlonia; all at Rome. Completion of the cathedral at Bergamo; designs for college and church of the Jesuits near Azpeitia in Spain. Baptistry chapel at S. P'eter's at Rome ; entrance, campanile, and cortile to the palazzo della Camera Apostolica; and many other works, in which he was assisted by his son, two nephews, and several pupils. He published several works.
Juan Bautista Monegho of Spain,-Archiepiscopal palace at Aleala finished by J. Goniez de Mora.
Ciement Metezau of Drenx, in France.-Made desgns for the Luxembourg; commenced the church of the Pères de l'Oratoire; bôtel de Chevreuse ; the fanous dyke at La Rochetle; Château Neuf at S. Germain en Laye, and some others. South transept of ehureh at Dreux.
John Abel of England.-Market houses of Brecon, Hereford, Wcobly with its schoolhouse, Kington, and Leominster; the timber work of the chureh at Abbeydore, Herefordshire ; appointed "carpenter" to King Charles I.
Nicodemus Valentinson Tessin of Stralsund.-Crown architect of Sweden. Palace at Drottningsholm, eompleted by his son; the Royal villa of Stromsholm ; and the mausoleum of Charles Gustavis.

18th. Century.

Niconemus Tessin (Count) of Nykoping.-Royal palace at Stockholm after the fire of 1697 ; laid out the grounds at Drottningsholm and at Ulriksdal; cathedral at Calmar; design for rebuilding palace at Copenha'en, curtailed after his death, 1728.

Johan Bernharn Fischers of Pragne, called von Ertach, and his son Josevh Emanuel Fiscaers, baron von Erlach-Designed the hunting-seat at Schön. brunn, and additions at the palace; winter palace now the mint; and palace in the S. Ulrich Vorstadt, at Vienna. The palace in the old town at Prague ; church of the Virgin at Salzburg ; church of S Carolus Borromous at Vienna; and many other buildings. His son assisted him in most of them, hesides the Hof Bitliothek at Vienna; the Reichs Kanzlei in the Burg platz; the Reit Schule; and the fient of the stables for 400 hot ses.
23. Filipro lvara, or Juvara, of Messina.- Royal palace in the rnvirons of Messina; church of the Carmelites in the Piazza di San Carlo ; chureb of the Virgin on the Monte di Superga ; church of the Virgine del Carmine ; and an interior suaircase at the palace; all at Turin. Design for the monastery and palace at Mafra in Portugal ; finished cupola of Sant' Andrea at Mantua; palazzo Birago di Borghe at Tusin, and a number of other works.
24 Sir John Vanbrugh of Eugland. - Blenheim in Oxfordshire; Castle Howard, Yorkshire ; Eastbury, Dorset; King's Westun, near Bristol ; Clarendon I'riuting Office at Oxford; the Opera House of the time; part of Greenwich Hospital, and a few other huildings.
241 Colin Campbelin of Scotland. -The front great gate and street wall of Burlirgton House. Piccadilly; Rolls House, Chancery lane, London; Hougl, ton Hall, Norfolk, finished by T. Ripley ; Goodwood, near Ctiichester; and part of Greenwich Iospital; Wanstead House, Essex; Mcreworth Castle, near Maid.ten: Compiler of the Vitrurius Britennicus, 3 vols.
242. Robert de Cotre of Paris.-Continucd Namant's works at the dome of $1 /$ Invalides; the chapel at Versailles, and the house at Triaton. Decorations at Not Dame ; new buildings at St. Denis; many hotels. Designs for foreign princes.
249. Nicholas Hawksmore of East Drayton, in England. -Assisted his master, Sir Wren, in mary of his works. The churches of St. George, Bloomsbury; Anne, Limehouse; St. Gcorge-in-the-East; St. Mary Woolnoth; and Chr Church, Spitaltields ; pari of Greenwich Hospital, \&ec. Assisted Sir J. Vanbru at Castle Howard, and at Blenheim.
244. Jean Baptiste Aiexandre ie Blonn of France--L'Hôtel de Clermont or Sessac, at Paris. Employed in Russia by l'eter the Great, on his residence; Peterhof and at Strellna. Part of the archbishop's palace at Auch. Editerl second and improved edition of D'Aviler's "Cours ;" and published works architecture.
245. Alessannio Galiler of Italy.-Façade of the church of S. Giovanni de' Fiorenti: and of that of S. Giovanni Latcrano, with the splendid capclla Corsini therein; Rome.
2 26. Jacques Gabrief of Paris.-Buildings at Bordeaux, Rennes, Paris, \&c. Complet the Pont Royal at Paris, under F. Romann; Episcopal palace at Blois; desif for the new street façades at Rennes, and the places Louis XIV. and XV.; brid over the Loire at Blois, and many other bridges. The place at Nantes; to Lall, chapel, and Hall of States at Dijon; portails of the cathedral at La Rochel and at Orleans; and commenced the great sewer at Paris, finislied by his son.
247. John James of Greenwich, in England.-St. George's Church, Hanover-squan mansion for Sir Gregory Page, Bart., at Blackheath; employed at Greenw Hospital, St. Paul's Cathedral, and Westminster Abbcy.
448. Glacomo Leon of Venice.-Dover House, Old Burlington-street; Bramliam-pa near Leeds; Moor-park, near Rickmansworth; Lathom House, Lancaslii Lyme Hall, sear Manchester; Bold Hall, near Warrington; and other coun seats in England. Published a translation of Palladio's Architecture.
249. Germain de Boffrann of Nantes, in France.-Much employed in Paris and G many ; rebuilt the Palais du Petit Bourbon; built three houses for himself, wl: he sold to noblemen; restored the Arsenal, and the Grand Chambre of the Pa de Justice; restored vaulting of the transept, and other works at Notre Day many buildings in the provinces, in Germany ; and in Lorraine, as the hotel Craon at Nancy, the château at Luneville, and the château called the l'a'ais d Malgrange, near Nancy, one of his best works; several bridges; the chapel main buildings of the Hôpital des Enfans Trouvés; new buildings for the loosp de Bicêtre, of the Salpêtrière, and at Cipion; and the château de Bossette, Melun. He published a Livre d'Architecture.
250. Michel d'Itinard of Nismes.-Rcconstructed the première abbey of St. Blaise of Benedictinc order, in the Black Forest; Hôtel Sekingen at Freibourg, in Brest Palace of Clemenshurg at Trêves; Hôtel de Miruir at Strasburg.
251. James Gibbs of Aberdeen, in Scotland.-Bartholomew Hospital, Smithfield; 1. cliffe Library at Oxford; St. Mary's, or the New Church in the Strand; tha f St. Martin's-in-the-Fields; the Fellows' Buildinge, Library, and Senate II e of King's College at Cambridge; Canons, Middlesex, for Duke of Chan ; circular colonnade at Burlington Honse, Piceadilly: and a number of 0 't edifices. Published his " Designs, \&c."
259. Willam Adam of Maryburgh, in Scotland - Designed upwards of thirty residen ; town house at Dundec ; thee hospitals at Edinburgh ; library and universsi it Glasgow ; church at Hamilton; Hoptone House ; Castle Kenmure, and Firs Castle, all in Scotland. He was assisted by lis son John, who completed rt George, and designed Dumfies House, Douglas Catte, \&c. Robert, James uil William were other sons, and architects of repute. Published Vitruvius Scolt
253. William Kent of Rotherham, in England.-Additions at Kensington Palace ; id out Hyde-park; royal residence at Kew ; modernised Rainham House, Nor: several houses in London; Library in the Green-park for Quecn Caro:: Devonshire House, Piecadilly; range of buildings in Margaret-street, Westmil r. now the Law Courts; and the Horsc Guards, St. James's paik. IIe puls. ed lnigo Jones's designs.
2.54. Thomas Ripley of England.-Houghton Hall, Norfolk; Admiralty, Whitehal

255 Charles Labelye of Vevay, in Switzerland.-Westminster Bridge, London; I ed down 1861.
256. Ferminando Galli Bibiena of Bologna.-Celebrated fur theatrical decoration ind painted architecturc. Theatre of Parma. Published L'Architecture Civile :
1711. Great hall or theatre at Prague for Charles V1. Ilis three sons, Ginseppe, Alessandro, and Autonio, practised as architects.
257. Giuseppe Galir Bibiena of Parma.-An amphitheatre at Pragne for 8,000 persons. Some large buildiugs in Silesia; works at Dresten and Berlin.
258. Alessanneo Gali,i Bibiena of Parma.--Great theatre, and the church of the Jesuits at Mannheim.
159. Antonio Galli Bibiena of Parma.-Theatrical decorations; various works in Italy, Vienna, and in Hungary. Published "Varie Opere." Theatres at Pistoja, Siena, Treviso, Pavia, and Bologna. Enlarged that of La Pergola at Florence.
60. Fuancesco Galli bibiena of Italy, brother of Ferdinando. - Theatical decorations; riding school, \&c., at Mantua ; theatres at Vienna, Nancy, Verona, and Rome.
61. Glambattista Sacchetti of Turin.-Royal Palace, Madrid.
:62. John Woon of Bath.-Large improvements at Bath-the Crescent, Circus, Queen Square, \&e. ; Prior Park for Mr. Allen; Buckland Pak for Sir John Throckmorton ; Excbange at Bristol.
65. Jean Nicholas Servandoni of France. - Façade of the church of St. Sulpice at Paris; staircase of the Hôtel du Cardinal Auvergne; round chapel of M. de Live; Rotunda with twelve Corintlian columns, for Marshal de Richelieu; parish chureli of Coulanges in Bourgogne; and many other works, besides theatres and theatrical decorations, and desigus for foreign princes.
64. George Dance, sen., of London.-Mansion House; the charches of St. Luke's, Old Street ; St. Leonard's, Shoreditch; and St. Botolph, Aldrate ; all in London.
65. Luigi Vanvitelel of Italy.-Palace at Caserta, near Naples.
66. Jacques François Blondel of Rouen, in France- Opened the first private academy of architecture; design for the Imperial Acadeny at Noscow; street and square opposite the cathedral at Rouen; otber works both there and at Strasbourg; improvements at the city of Metz, including the round church of the Royal Abhey of St. Louis, the Episcopal Palace, façade of the building occupied by the Parliament, the Hôtel de Ville, Corps de Garde, \&c. Improvenents of the city of Canbray; and many country houses in France and Germany, and in Flanders. Published "Architecture Franguise " and a "Cours d'Architecture."
37. John Brettingham of England.-Finished Holkham Hall, Norfolk; Norfolk House, St. James's Square.
68. Robert Furze Brettingham of England.-Erected the gaols at Reading, Hertford, Poole, Downpatrick, and Northampton; Winchester House, St. James's Square; No. 9, Berkeley Square; Maidenhead Bridge; and made many alterations at noblemen's mansions in the country.
9. Ferminando Fuga of Florence.-Completed the Fabbrica della Consulta on the Quirinal ; the great addition to the wing of the Pontitical Palace at the conner of the Via delle Quattro Fontane; church of Sta. Maria dell' Orazione; completed the Palazzo Petroni and the Palazzo Corsini; all at Rome. Church and nunnery of Sta. Caterina della Ruota at Aquila; restored the church of Sta. Maria Maggiore; enlarged the hospital of Sto. Spirito in Sassia; and other works at Rome. The great hospital and the public cemetery, the Palazzo Giordani, and the very large Palazzo Caramanica; commenced the Granili, to contain a granary, artillery arsenal, and storehouse; and other works at Naples.
0. M. Aug. Simonetii of Italy.-Museo Pio Clementino in the Vatican at Rome.

1. Jacques Ange Gabriel of France.-Continued his father's works. The Ecole Militaire and Champ de Mars; and Garde Meuble, all at Paris; tieatre at Versailles; clâteauat Compiegne; additions to that at Choivy; and north and west façades to the court of the Lourre.
2. Jean Rodolphe Perbonet of France.-Director of the bridges and roads of France; bridge of Neuilty, and many others.
3. Jacques Germain Souffot of Irancy, near Anxerre, in France.-Hospial, Exchange, Concert-room, and Theatre, all at Lyons; façade, nave, and towers of the church of St. Geneviève, at Paris.
4. Shi William Chanimers of Ripon, in England-Visited China, and published works on Clinese architecture and Oriental gardening. Pagoda and other buildings at Kew; villa at Roehampton for Earl of Besborough; Duddingston, near Edinburgh, for Lord Abercorn; and mansions for other noblemen; Casino near Dublin for Lord Charlemont ; Somerset House, in the Strand, Löndon. Pub. lished "The Decorative Part of Civil Architecture."
Ronert Adam of Kirkaldie, in Scotland.-Screen at the Admiralty in London; Kedlestone for Lord Scarsdale; Register Office at Edinburgh ; Intirinary at Glasgow; the Edinhurgh University ; Luton House; Lansdowne House, Berkeley

AFIER CHUIST.

Siuare; Adelphi Terrace, Portland Place, and other houses in London; Ken Whood House, Highgate; entrance screen at S.on Honse, Middlesex. His brother James assinted in most of the later works. Published " The IRuinsat Spalatro," and "Works in Architecture:"
4s. Sik Robert 'Taylor of London.-Parts of Bank of England now taken down; villa at Richmond for Sir Charles Asgill: Duke of Grafton's house, Piccadilly; mansion for Lord IIowe in Hertfordshire ; Stone Buildings, Lincoln's Inn; Liy I Louse, Dover Strect ; Lord Grimstone's at Gorhambury ; and many others, which are engraved in his "Designs."
277. Jamps Paine of London.-Mansion Honse at Doncaster; Wardour Castle; and Worksop Manor House. Designs published.
278 Vicron Lous of Paris.-Designed a palace at Warsaw ; employed at Naney and Lomeville; church at Besançon, and at Dunkirk; theatre at Bordeanx for 4,000 persons (publi,hed); Galleries at the I'alais Royal, and the Théàtre dess Viriétés, introducing faming in ison ; both at Paris; the Hôtel de la Préfecture, tie Banque, and Maison Fontrède at Bordeaus.
279 Jacques Denis Antone of Paris.-Hotel des Monnaies; new buildings at the Padais de Justice; Greek portico to the Hospice de la Charité, all at Paris; Mint at Berne, and other works.
280 Czaude Nicgas Lenoux of Dormans, in France. -Hôtels d LIalleville, d'Uzès, of the Prince de Montmorency, de Montesquieu, de Thélusson, and de Gnimard; five blocks or maisons Holstein, and many maisons, all at Paris; theatre at Marseilles; Château Benouvilte in Normandy, and other works, which with many designs are given in Krafft's Receuil, and in his own fine publication.
281 IEvry Hollann of London.-Carlton House for the Prince Regent; Claremont for Lord Clive. Large additions at Trentham, Staffordshire; Sloane Street and Ilans Place, Chelsea; portico in Whiteball; improvements at Woburn Abbey, lSedfordshire; the Albany in Piccadilly, and additions to the Assembly Roons at Glasgow; Old Drury Lane Theatre, \&c.
282 Josepin Bonomi of Rome.-Dale Park, Sussex; Gallery for the Townley collectisn in Lancashire; Church at Packington, Warwickshire, solidly vaulted throughout; additions at Langley Hall, Kent; Lastwell Honse, Kent; Mausoleum at Blickling Park, Norfolk; Longford Hall, Shropshire; additions to Lamlaton Hall, Durbam, for Earl of Durham; and an Italian mansion at Roseneath, Dumbartonshire, his most celebrated work; the portico, projecting for carrages to set down under it, is remarkable for having a central colamn.
283 Jacques Gulladme ae Geand of Paris. Théàtre Feydeau; Halle au Draj; roof to Halle au Blé (burnt) at Paris; and other works.
284 Kabl Gotthamd Langhans of Landshat, in Silesia.-Government House, Thearre, Exchange, Church, and many LIouses, all at Breslau; Great Poor Honse at Kreuzburg ; the Brandenburger-Thor; tower of St. May's Church, Hercules Bridge, National Theatre, Palate of Prince Wilnelm, all at Berlin; the Palaw Theatre at Charlsttenburg.
23.5 Rofent Mylne of Scotland.--Blackfriars Bridge, puiled down 1864; Inverary Castle, \&c.
286. Jacques Gonnon of S. Ouen sur Scine, in France. - Ecole de Médecine, Paris, amar published a description of it. The Colonne de la Grande Armée was crected in conjunction with Lepere.
28.. Ilminmich Kari, von Fischer of Jannheim, in Germany.-Theatre, Infirmary Hall of Antiquities at the Academy, and seremal mansions, all at Munich. Opro: House at Vienna
288. George Dance, Jun. of London.-Newgate Prioon; St. Luke's Huspital; Collery of Surgeons, Lincoln's Inn Fields, all in London; and many conntry mansions.
289 . James Ganbon of London. - Custom House, \&er; Exchange; Four Conrts, \&o in Dublin. Published with Woolfe, Vitruvius Britanmicus. Designs for lixchang at Dublin; aud for St. Luke's Lunatic Asyluan, London. New Docks, Stores, an Custom House ; East Portico, \&c., to Ilouses of Parlianent, now the IBank; Hi Four (Law) Courts; Screen Areade and Wings, with additions to Ilouse ' Commons, Carlisle Bridge; and luns of Court ; all at Dublin; Court Jone and Gaol at Waterford.
290. Sir John Soane of London.-Bank of England; Board of Trade; State Papu Oftice; En!rance to IIouse of Lords; and many works in London, besides l own house in Lincoln's Imn Fields, now his Museum. Published "Designs," \&c.
291. Charles Pencher of Paris. - Restorations, \&c. at the Louvre and Tuileries; (lape? Expiatoire. Pablished "Recueil de Décorations,' and otheı books of onameı with Pierre Françuis Léonard Fontane.
2. Domfnico Merlini of Brescia.-- Several apartments in the Palace at W..nsaw; and villas near that city.
3. John Kendall of Exeter. in Eugland.-" Mason and Arehitect" to the new works at Exter Cathedral, 1:05-30.
4. Thomas Cooley of Eogland -- Royal Exchange; Chapel in Phonix I'ark ; Ilibermian Marine School-; Newgate Prison; the western wing of the Four (Law) Courts; all at Dublin.
5. James Essex of England - The carliest in modern times who practised solely mediæval art; restoration of Ely and other eathedrals; alteranisas at various colleges at Cambridge and Oxford.
6. T. Thomosd of France. - The great Theatre, and the Exchange, at St. Petershury.

James Wratr of England. - The Pantheon Asembly Roons; Palace at Kew; Fonthill Abbey; Doddington Hall; Ashridge House; and many restorations.
4. Johann Aman of St. Blasien, in Baden.-Building for the reception of the Mueller Collection; interior of the Chapel of the Palace, a Theatre, Hohe Markt, Dorothea-Hof, a new Court Theatre, all at Vienna. New Theatre at Pesth; repairs to the Cathedral at Yienna; restorations, \&c., at the Palace of Schonbrum, with the Conservatories.
John Carr of Horbury, called Carr of York.-Kirby Hall near York, and the Race Stand; Harewood House near Leeds for Earl of Harewood; Tabley House, Cheshire, for Lord de Tabley: Lythan Hall nar l'reston; Constable Burton near Hull; Thoresby Lo 'ge, Notss, for Duke of Kingston; east front of Wentworth Castle for Earl of Strafford; Aston Hall, Rotherham; Basildon Park, Berkshire; Town Hall, Newark; Court House at Yoik; County Lunatic Asylum ; Crescent and perhaps the Stabl ng at Buxton Batb; Mausoleum at Wentworth; and many other buildings and houses.
Don Josef Martin de Aldehüfla of Manzaneda in Valencia.-Chueh and College of the Jesuits at Teruel ; completed Church of San Filipe Neri at Cuença; with other Churches, \&e., in that city; Aqueduct, 6 miles long, to Malaga; great Bridge at Ronda over the Tajo, and water supply. Went to Granada to design the Palace for Charles V.
Giuserfe Piermarini of Foligno.-As pupil of Vanvitelii he assisted in the Paace at Caserta ; and in the alterations at the I'alazzo Imperiale at Min.m, which latter work was transterred to him; and in which city he designed the Teatro "La Scala:" Monte di Pietà ; Teatro della Canobbiana; Porta Orientale; the extensive f.çade of the lalazzo Relgioioso; several palazzi, with many extensive im. provements.

19th. Century.

Vineenzo Brenns of Russia.-Carried out Bazhenov's design for the Palace of st. Michael, now the Sch ol for Engineer Officers; Obelisk of black granite; the Exercising House, 540 ft . by 120 ft ., at St. Petersburg. Designs publishe 1.
Henry Willam Inwood of England.-St. Pancras New Chuich; St. Martin's Chapel; Regent Square Chapel; Somers Town Chapel; all in London. I'ublished "The Ercelthieon at Athens."
Jean Nicolas Louis Durand of France.-Dublished "Recueil et Parallèe des Édifiees," and other works
Augustus Puan of Eogland.-Published "Specimens of Gothic Architecture," "Examples of Gothic Architecture;" "Antiquities of Normandy," and o:her works.
John Nash of England.-Brighton Pavilion; Haymarket Theatre; Buckingham Palace; Rugent's Park, and its terraces of dwellings; Regent Street and tho Quadrant; many residences, $\& \mathrm{c}$.
Sir Jeffry Wyatvilee of England.-Extensively rebuilding and a!tering Windsor Castle.
Whelam Wirkins of Enyland.-St. George's Hospital; London University; National Gallery; Universiry Club Hone; in London. Downing College, Cambridge. Published a translation of part of "Yitruvius." in Surrey and Sussex, \&c. Visited America, where he rendered the James riter navigable; Water Supply at Philadelphia; and Bank of Pennsylvania; completed the exterior of the nortil wing of the Capitol at Washington, added corresponding wiug, \&c.; derigneal the central portion, and the Hall of Representatives: at this buildirg Cuables Burincu succeeded him, and erected the Rotunda, \&o. Water Supply to New Orleans; Exchange and Cahedial at Bahimore; Bank of United States at Philadelphia.

AFTER CHRIST

310. Thomas Harrison of Richmond, Yorkshire.-Bridge over the river Lame at lat easter ; rebuilding of the Castle there as a Gaol ; new County and Crown Courts Bridge over the Derwent at Derby, and others: Prison, County Conrts, Armoun! \&r., at Chester, wholly of stone; Broom Hall, Fifeshire, for Eirl of Elgin Athenzum, Lyeeum, and Lihrary of the Literary Society, at Liverpool; Theat Athenæum, and Exchange, at Manchester; Grosvenor Bridge at Chester over th river Dee, 200 feet span; and many other works. Designed a Palaee for Com. Miehael Woronzow, to he built in the Ukraine on the Dnieper.
311. Il Marehese Luigi Cagnola of Milan. - Porta del Sempione or Arco delha Pace Porta di Tícino; Ca-ino de' Nobili; all at Milan. Many magnificent projects and the Palazzo for himself at Inverigo, with a central salone of 45 ft . diameter.
312. Srefano and Luigi Gasse of Naples.-Observatory; additious to Villa Reale Reale Edifizio di San Giaeomo, or Palazzi de' Ministeri ; and the Dogana; alla Naples.
313. Thomas Rickman of England.-New Court of St. John's College, Cambridge restoration of the Bishop of Carlisle's Palace, Cumberland; upwards of twenty five el:urehes in the Midland Counties; several private dwellings. Publiste "Attempt to Diseriminate the Styles of Architecture in England."
314. Carl Fbiedrich von Schinkel of Prussia,-Hauptwache, Theatre, and Museum Werder-Kirche (Gorhic); Bauschule, and Observatory, all at Berlia; Theatr at Hamburg; Schloss Krzeseowiee, Charlottenhof, and the Nieolai-Kirche : Potsdam. P'ublished his designs, many of which were not exeeuted.
315. Joseph Michael Gandy of England.-Phonix and Pelican Assuranee Offices additions to the prisons at Lancaster; buildings at Liverpool. Publi-hed "Desigus for rural buildings. Better known for his arti-tic coneeptions of architecturi restorations.
s16. Fiedrich von Gärtner of Bavatia.-Façade of the Porcelain Establishment Ludwigs-Kirche, Bibliothek, and Record Office; and many other buildings: Munieh. The Befreiungshalle at Kehlieim; Pompeian House at Aschafferbir \&e. Published his derigns.
316. Sir Richarn Morrison and Willam Vitrevius Morrison of Dublin.-Alter: tions of eathedral at Cashel; Connty Court House, Clonmel; Shelton Abbe! Kilruddery Hall ; Ballyfin; Court House, Carlow ; Longford Castle; \&c.
317. Harvey Lonspale Elmes of England.-Collegiate Institution; St. George's Hal at Liverpool.
318. Peter John Gandy-Defering of England.-Associa'ed with Wilkins in the Cla House, and University. St. Mark's Church, North Audley Street; and Fixit Hall, at London. Published "Pompeiara" with Sir W. Gell, and many Clas: Antiquities for the Society of Diletanti.
319. Jacob Gav of France.-Extensive fortified warehouse for grain at Novogeorgiess near Warsaw, and the Greek chuteh of the Alexandian colony.
320. Augustus Welby Northarere Pugin of Eigland.-His residences at Salisur and at Ramsgate with a ehapel adjoining. No less than thiry six Rom Catholic ehurches, incluting the eathedral of St. George, Southwark, and the at Killarney and Enniscorthy ; the chrreh at Cheadle; and extensive alteratio at Alton Towers. Published "Contrasts," "True Principles, \&e.," "Designs Metal and Timber," \&e.
321. Pietro Algner of Gallizia, in Austria.-Churehes of St. Alexander, and of Andrew; Observatory, said to be the finest in Europe; Guard House, Gove ment Palace completion of the Mint, University Library, Radzivill Palace a great Lazaar, all at Warsaw. Cathedral at Szuwalkaci in Lithuania; and ol: works.
322. Whinam Porden of England.-Stables at the Pavilion at Brighton, with the Ridi Hou-es, \&e. Eaton Hall, Cheshire, for the Marquis of Westminster, \&c.
323. John Havilann of Taunton, in England. - Pittsburgh Penitentiary; Eastern Pc teniary at Cherry Hill; Hall of Justice, New York; Naval Asylum, Norfo New Jersey State Penitentiary, and many others, with gaols, asylums, and cou halls, all in the United States.
324. Gullaume Abel Bloeet of Passy, in France.-Completed the Are de l'Éto works at the palace at Fontainebleau. Published "Expédition Scientifquc Morée;" supplement to Rondelet's "L'Art de Batir;" and revised the th edition of that work.
325. James Glleestie Graham of Orehil, in Scothand.-Culdees Castle, Perthshire; I Priory, Dumbartonshire; Dunse Castle, Berwickshire; and many countiy derees; Vietoria or Assembly Hall, at Edinburgh ; chapels there and at clas!.
326. Whlham Henky Playfarr of Scotland.-St. Stephen's Church; Moyal lnstitution; National Gallery; Donaldson's Ilospital; Frec Church College; Surgeons' Hall; all at Edinburyh.
327. Johs Britton of England.-Published the "Cathedral Antiquitias" 14 volumes; "Arelitectural Antiquities," 5 vols.; "Edifices of London," 2 vols.; and many others. Began the restoration of Redeliffe Church, Bristol.
328. Leigi Canina of Rome.-Pobished many works on the Llistory of, and Discoverics connceted with, Classic Architecture.
329. Lomis Tullius Joacmin Visconti of France.-Completed the Palace of the Louyre; Monument of Molicre in the Ruc Richelieu; Fountain on ste of the old Opera House, Place Loovois; Feuntain in Place St. Sulpice; façade of the angle of two streets in the Rue Neuve des I'etits Champs; tomb of the Emperor Napoleon I. at the Itivalides, all at P'aris.
330. Thomas Hamhiton of Scotland.-The High Schools; College of Physicians; and some churches ; Pavilion for the Grey Festival, 1884 ; all at Edinborgh. Monument to Burns, near Ayr.
331. Alphonse Ricarn de Montfeirand of France.-Column to the Emperor Alexander; and Cburch of St. Isaac, at St. Petersburg. Both published.
332. Sir Charles Barby of London.- The 'Travellers' Club House (published); the Reform Club Hoose; Bridgewater Hoose; the Hooses of Parliament ; Privy Council. Office; laid out Trafalgar Square; three churebes at Ball's I'ond, Clondestey Scuare, and Holtoway; all in London. The Grammar School at Birmingham. Clifdeo Hoose, near Reading. Trentham Hall, Derbyshire. S. Peter's Church at Brighton. A church, the Athenæom, and the Royal Institution, at Manchester.
. Eknst Fuedich Zwirner of Prussia.-Restoration of Cologne Cathedral. Church at Remagen.
David Hamlion of Glasgow.-Hutcheson's Hospital; Nelson Monument; Royal Exchange; Western Club House, and other buildings, all at Glangow. Castle Toward; Donlop House; Airth or Kier Castle; Hamilton Palace ; and Lentiox Castle, all in Scotand.
Robert Mills of Charleston, South Carolina, The Congregational Church at Charleston, with a dome 90 feet diam. inside, the first in that country. Scvecal edifices at Philadelphia, including the Bank (the first building in the Gothic style). and the timber bridge over the Schuylkill, about 340 feet span. The Court House and other buildings at Richmond; Monument to Washington at Baltimore, and two churches there; Lunatic Asylum at Colombia; Penitentiary at New Ortans; and buildings at Cbarleston. The Bunker Hill monument. Many works for the Government at Washington. Ihe largey intruduced a fire-proof system into the constroction of his buildings.
Leo von Klenze of Prussia. - The Glyptothek, and other public and private works at Munich. The Walhalla, near Ratisbon. Buildings at St. Petersburg. D:signs published.
James Bunstone Bunining of Eugland.-City of London School. Highgate and Nunhead Cemeteries; Bethnal Green Workhoose; Freemason's Orphan Schouls, Brixton; the Coal Exchange; City Prison, Holloway ; Billingsgate Market; Metropolitan Cattle Marker, Islington ; Alterations in Newgate Prison ; Pauper Lunatic Asylum at Stone : with many improvements in the City of London.
Ledwig Förster of Austria.--Published the Allgemeine Bauzeitung, 38 volomes (to 1873). Buildings in Vienna.
Cuaries Robert Cockfrel.l of London. - Philosophic Institution at Bristol. Hanover Chayel, Rigent Street. St. Darid's College, Lam: ${ }^{\text {eter }}$. National Monument, Calton Hill, Edinburgh. University Library and Muscum, Cambridge. Westininster Life Office, Strand. Dividend Pay Office, and the Private Drawing Office, in the Bank of England; and Branch Banks at Manchester, Bristol, and Liverpool. Son Fire Assurance Office. Tay lor and Ranoolph Galleries and Library at Oxford. Liverpool and London Insurance Buildings at Liverpool. Completion of the Fitzwiliam Museum at Canbridge, eommenced by G. Basevi ; and of St. George's Hall at Liverpool, commeneed by H. L. Elames.
Josepin Gwilt of London.-Compiler of the "Encyclopædia of Architecture,' and writer of many other works.
Lugi Canoni=a of Milan.-Anfiteatro Diurno for 30,000 spectators, for Napoleon I. ; 'Yeatro Carcano, Ré, and Fiando; the interior of Palazzo Orsino, and Casa Canonica, all at Milan. Theatres at Brescia, Mantua, and Parma.
34: Louls von Zantri of Würtemburg.-The Wilhelma near Stuttgardt, in a Moorish
style; design for a large village and its l,uildings in Lungary; published " T / l Antiquities of Sicily " with J. I. Hittorff
Sti. Sur Joseru Paxton of Milton Bryant, Bedford,hire.-Tie Conservatory fur th Victoria Regi, at Chatsworth, and other buildings there. The suggestion for th building of the Industry of All Nations 1851. Village of Edensor near Clats worth; Mentmore for Baron Mayer A. de Rothschild. Mansion at Ferric̀res ! France for Baron James de Rotlischild. Alterations at Lismore Castle, Irelanr for Duke of Devonshice. Laid out Parks at Livernool, Birkenhead, Glasyon and elsewhere.
34.5. Capt. Francls Fowke of Belfast, in Ireland.-Raglan Barracks, Devonport. Addi tions to South Kcusington Museum; Picture Galleries for the Sheepshank Vernon, and Turner collections therein. Industrial Museum, Edinburgh. Ne buildings for South Kensington Museum. National Gallery, Dublin. Desir for Gardens, Conservatory, and south arcades, Royal Horticultural Gardens; th. building for 1862 Exlibition, and entrances to the Gardens. Design for Natur: History Museum. Origiual design for the Royal Albert Hall.
333. Jacques IGnace Miftorfy of Cologne.-Practised at Paris, where, with I ecointe, h conducted several funeral pomps, and many festivities; reeonstructed th interior of the Salle Favart, and rebuilt the Theatre of the Ambigu Comiqui Published with Zanth, "Arehitecture Moderne de la Sicile," and "Architectur Antique de la Sicile ; "and with Olivier, an edition of the "Inedited Antiquitic of Athens." Designed the circular Panorama in the Champs Elysées; Gran Cirque Otympique; Cirque on the Boulevard des Filles du Caivaire; assisted i raising the Oluelisk of Luxor, and designed its pedestal; and the Fountains the Place de la Concorde: with Lepkre, the basilican chureh of St. Vincent d Paul: Mairie on the Place du Panthéon; anothor, with a suite of buildings clos to the Chureh of S. Germain l'Auxerrois; laid out part of the Bois de Bou logne; designed the circular edifices in the Place de l'Are de l'Étoile; and Te' minus of the Great Northern Railway of France.
334. Sir Robert Smrke of London.-Large additions at the Royal Mint, Londor Covent Garden Theatre; General Post Office; Penitentiary, Milliank; Britic Museum up to 1847; King's College, London ; Central Portion, alterations, \& at the Custom House; Restoration of York Minster, I828; Belgrave Chap and many churches; Wellington 'Testimonial, Dublin ; Courts of Justice at s c.ties, and other similar buildings. Lowther Castle, Cumberland, for Earl Lonsdale; Eastnor Castle, Ledbury, Merefordshire, for Earl Sorrers; Drayt Manor, fur Sir Robert Peel; and many other mansions, and additions to then Union, Carlton, and Junior United Service Clubs; several of the interions of t Dining Halls to the Inns of Court; Serjeants' Inn; Approaches to Lold Bridge.
335. J'mbip Mardwick of Lond.n. - House and Warehouses at St. Katherine's Doch New Hall of the Goldsmiths' Company ; Entrance portico, the large hall, a hotels, at the Railway Station, Euston Square; New Hall and Library for Socis of Lineoln's Imn ; all at London.
336. Chables Texier of Versailles, in France--Restored Archat Rheine. Publish "Description de l'Asie Mineure," and "L'Arménie, la Perse, et la Mésopotanis Sent to Algeria, he measured all the Roman works in that country. Publisl " Byzantine Architecture," and "Principal Ruins of Asia Minor," both " R. P. Pulian.
337. Si، James Pennethorne of Worcester.-Assisted Mr. J. Nash in carrying ont London, the improvements in the Strand; Carlton IIouse Terrace; St. Jam. Park; various improvements in the streets of the Metropolis, for the Gove ment. The St. James's Bazaar; St. Julian's, Sevenoaks, for C. J. IIerries;] lington House, Ilminster, for Mr. J. L. Lee; Swithland Hall for Mr. Bus Danvers; Christ Church, Albany Strect; and Trinity Chuleh, Gray's Irm lis Formed and laid out Victoria and Battersea Parks, and Kensington Palace (dens. Museum of Economic Geology, Piccadilly. General Record Op Chancery Lane. State Ball Room, Supper Room, and Galleries, at Buckingl Palace. Additions to Somerset House, fronting Lancaster Place. Alteration the National Gallery; and at Marlborough House for the Prince of W. University of London, Burlington Gardens; and many other works for the Gor ment.
338. Sir Thomas Deane of Monkstown, near Dublin.-Banks, with other buildings, the Court house with a fine portico, at Cork; Queen's College, Cork; lim Asylum at Killarney ; addition to Trinity College, Dublin, in the Venctianst ; Musenm at Oxford with his son Thomas and Mr. Woodward.
339. Edward Walters of Lordon,-Many large warehouses in the Renaissance style at Manchester; and numerons houses in the suburbs; Freo Trade 11al ; Manchester and Salford Bank; stations on the Midland Railway; church in Cavendish Street; Fire Insurance Office, King Street; Warriugton Public Hall, \&c.; all at Manchester. Died January 22, 1872, aged 63.
j3. Sir Wiliam Tite of Londoa.-Restored, with David Liang, the church of St. Duustan's-in-the- Cast. Designed the Scotch Chureh, Regent Square ; the Royal Exchange; London and Westmin-ter Bank, Lothbury, with C. R. Cockerell, R.A.; several railway stations; all in London. The termini and most of the stations on the Caledonian anl Scottish Central Railways; and on the line from Harre to Paris Memorial Church, Gerrard's Cross. Largely employed in the valution, purchase, and sale of the land required for the extensive railway and improvement works of his time. Died April 20, 1873, aged 75.
340. Owen Jones of London.- Designed St. James's Hall and its decoration; the decoratiou of the Ball of the Fishmongers' Company; that of Fonthill House, near Salishury, for Mr. Alfecd Morrison, and of his residence in Carlt n House Terrace ; of Preston Hall, for Mr. Henry Brassey; of the Exhibition of Industry of All Nations, 1851 ; and of the Crystal Palace, Sydenham. Designed furniture, \&c. Publishtd "Plans, \&te., with Details, of the Alhambra," in colours, fol. 1836-45; "Designs for Mosaic and Tesselated Parments," 4to. 1842; "An Apology for the Colouring of the Greek Court at the Crystal Palace," 8ro. 1854; "The Grammar of Ornament," 100 plates, fol. 1856; 112 plates, 1865. Many other works on colour and nrnament. Died May 1 (?), 1874, aged 65.
;. Alexandrr Thomson of Balfron, Scotland, called "Greek Thomson," after the style to which the bent of his studies entitled him.-Designed the Ctledonian Ruad United Presbyterian Church ; the St. Vincent Street U.P. Church; and Queen's Park U.P. Church ; the Egyptian Hall, Union Street ; two buildings on north side of Sauchiehall Street; all at Glasgow. Died March, 22, 1875, aged nearly 58.
341. Pifrte François Henri Labrotste of Paris.-With Visconti, superintended the decorations for the funcral ceremony consecrating the return of the remains of the Emperor Napoleon I. to Paris. Opened an atelier. Designtd the Library of Ste. Generière ; the enlargement of the National Library, with new reading room, \&c. Appointed general inspector of diocesan edifiees. Died Jue 24, 1875, aged 74.
342. David Bryce of Edinburgh.-Designod many public offices, bauks, \&c., in Edinłurgh, in various styles; as Fett.s College; the Sheriffs' Court; Edinburgh Royal Infirmary; Lanark Infirmary; several churches in Edinburgh, Dalkeitl, Dundee, Falkland, St. Mungo's, \&c. ln a long list of mansions, and of additions and alterations, are mentioned Panmure, fir Earl of Dalhousie ; Kinnaird Castle, for Earl of Southesk; Langton, for Marquis of Breadallane; and the mausoleum for the Duke of Hamilton. Died May 7, 1876, aged 73.
Raphafl Brandon of London.-- With his brother Arthur, who died December 18 47 , published "Parish Churches," sixty threa in number, 8ro. 1848. Then "Analysis of Gothic Architecture," seven hundred examples, 4to. 184.9; "Open Timber Roofs of the Middle Ages," thirty-five examples, 4to. 1849. Designed the church in Gor'ton Square for the members of the Catholic Apostolic Church, in conjunction with Mr. Ritchie. Church in Great Windmill Street, Haymarket; and one at Knightsbridge. Died October, 1877.
Stdney Smirke of London.-With his brother Sir Robert, designed the Oxford and Cambridge Club, Pall Mall. He restored the Temple Church, and published an account of it, 1845. A block of buildings in the Temple ; the Conservative Club, St. James's Street; Carlton Clubhouse, Pall Mall; the circular Reading Room, and other parts, at the British Musenm; the Exhibition Rooms for the Royal Academy of Arts, Burlington House. Died December 8, 1877, aged 77.
343. Sir Matthew Digby Wyatt of Devizes.--Travelled for two years, and on his returned published "The Geometric Mosaics of the Middle Ages," fol. 1849. Reported, 1849, on the Industrial Exposition at Paris. Published "Industrial Arts of the Nineteenth Century," fol. 1858 ; "Metal Work and its Artistic Design," fol. 1852. As superintendent of the Fine Arts department at the erection of the Crystal Palace, he, with Owen Jones, designed soveral of the Courts, and wrote the descriptions. He designed the Court and interior finishings of the new India Office, Whitehall; Addenbroke's Hospital, Cambridge ; the Royal Indian Civil Engineoring College at Cooper's Hill ; restored the hall of Clare College, Cambridge; designed the Crimean Memorial Arch at Chatham, for the Royal Engineers, \&c.; the manion for Louis Huth, Esq.,
at Possingworth, Sussex ; tho red brick house for Lady Marian Alford at Kensington Gore. He published his "Lectures" as Slade Professor in 187 v . Died May 21, 1877, aged 57.
344. Sir Ge rege Gilbert Scott of Gawcott, near Buckingham.-W. B. Moffatt was partner for some years ; they designed, 1841, the Martyrs' Memorial at Oxford; St. Grles's Church, Camberwell , and the Infant Orphan Asylum, Wanstead. He designed the St. Nicholas Church at Hanburg ; Cathedral at St. John's, Newfoundland 1854, the Parish Church of Doncaster, Yurkshire; from 1849, as architect to the dean and chapter of Westminster, he continued the restorations of tho church, and restored the chapter-house. Designed tho Foreign Office, including the exterior of the India Office, Whitehall ; the Memorial to the Prince Consort, Hyde Park; and the new Cathedral at Edinburgh. Restored portions of nenrly every cathedral in Fingland, and some in Wales; Tewkesbury Abbey choir, 心c., and St. Alban's Abbey. Designed the Albert Memorial Chapel, at Windsor; St. Mary Abbott's Church, Kensington ; claapel of St. John's College, Cambridgo; Glasgow University Buildings ; Leeds Infirmary ; Preston Town Hall; houses in the Broad Sanctuary, Westminster ; and very numerous new churches; also numerous rebuildings and restorations. He wrote " Gleamings from Westminster Abbey," 1861 ; "Remarks on Secular and Domestic Architecturo," 1857; "Lectures on the Rise and Development of Mediæval Architecture," 2 vols., 1879; and many papers and essays. Died March 27, 1877, aged 67.
345. Edfard Blore of Derby.-Designed, 1816, Abbotsford, for Sir Walter Scott; yas employed for many years in making drawings for antiquarian and other publicetions; and publislied "The Monumental Remains of Noble and Eminent Persons," $1824-26$; and was among the first to stimulate the revival of Gothic qrehitecture. Restorations at Peterborough, Glasgow, Ely, and Winchester Catheduals; Merton College Chapel, Oxford; Barfreston Church, Kent ; Thorney Chureh, Cambridgeshire ; Ramsey, Huntingdonshire ; and several others. Rebuilt the residence, restored the hall and chapel of Lambeth Palace. Designed the Palace of Aloupka, in the Crimea, for Prince Woronzow; Worsley Hall, Lancashire Haveringland Hall, Norfolk; Cranford Hall, Dorset; and others. Made extensive alterations at Wadham and St John's Colleges, Oxford; and at Windsol Castle. Designed the now front, \&c., to Buckingham Palace; and works 0° restoration, \&c., at Westminster Abhey for several years. Died September 4 1879, aged nearly 90 .
346. Joserh Louts Duc of Faris.-Designed, 1833-40, the Colonne de Juillet; anc after 1840, the buildings of the Palnis do Justice, including the new Salle der Pas Perdus, all at Paris. In 1869 he received the Grand Prix of 100,000 franc decreed every five years by Napoleon III. Died January, 1879.
347. Gotteried Semper of Altona, in Denmark.-Designed, 1834, the Court Theatre and the Synagogue, at Dresden; and 1847, began the new Museum. He retires to Paris, and then to London, where, 1853, he designed the Wellington funera car. After somo years he went to Zurich as Professor of Architecture; designer the large Polytechnic School ; the town hall; the railway station. The rc building of the Court Theatre, at. Dresden, was carried out by his son Manfred Designed the Exchange; new Museum; additions to the Imperial residence; and with von IIasenauer, tlio Imperial Court Theatre ; all at Vienna. Died at Rom May 15, 1879, aged 76.
348. Eucène Emmanoel Viollet-le-Duc of Paris.-In 1840 he was nominated, wit Lassus, in the restoration of the Ste. Chapelle, at Paris. He restored the Abbe Church of Vézelay; the churches of St. Pierre, Montréale; the Hôtel de Ville, Narbonne ; the church at Poissy, of St. Nazare in Carcassonne, and at Semu With Lassus, 1846, the restoration of Notre Dame, at Paris; works at tho Abbe of St. Denis; 1849, commenced the restoration of the fortifications at Careassonnc at the Cathedral at Amiens, and the Syndical Hall at Sens; Notre Dame, Châlons-sur-Marne; the Cathedral at Laon; the Château de Pierrefond Designed the Protestant Cathedral at Lausanne; and the Château d'Eu, fortl Comte de Paris. Besides the important " Dictionnaire Raisonné de l'Archite ture Française," 1853-68, he published "Essai sur l'Architecturo Militairc 1854; "Díctionnaire du Mobilier Français," 1855; "Entretiens sur l'Archite ture," 1858-68; and others. Died September 17, 1879, aged 65.
349. Edward Middleton Barry of London.-Designed, 1857, St. Sariour's Chure Haverstock Hill; the schools in Endell Street, for St. Giles's-in-the-Fields; 180 Covent Garden Theatre, for Mr. Gje, with the Floral Hall adjoining; w appointed, 1860, to complete the new Palace at Westminster, after the death

Sir C. Barry. Designed the Halifax Town Hall ; new Opera-house at Malta ; the staircase to the Royal Academy rooms at Burlington House ; the new chambers, "Temple Gardens"; the Cannon Street and the Charing Cross Hotels, with the Queen Eleanor Cross; the Hospital for Children, Great Ormond Street; the Birmingham and Midland Institute. Rebuilt Crewe Hall, Cheshire; designed the decoration of St. Stephen's Chapel, Westminster ; and the additional galleries to the National Gallery of Pictures. Died January 27, 1880, aged 49.
Jean Pirrre Cluysenaar of Liège.-Designed the Marché de la Madeleine; the Hôtel du Conservatoire ; and the Galeries St. Hubert, all at Bruxelles. He published "Bâtiments des Stations, \&c."" 4to., 1862; "Maisons de Compagne, Châteaux, \&e.," 4to., 1862. Died January (?), 1880, aged 69.
Johann Heinrich Strack of Bückeburg, in Holstein.-As a student of Schinkel's he assisted in designs for the then Crown Prince, afterwards Frederick William IV., at the new Pulace at Berlin; 1828, in the erection of the Palace of Prince Carl, and the Palace of Prince Albrecht. He completed the Palace of Babelsberg, near Potsdam, as well as the present Imperial Palace. At Berlin, he designed the Palais Raczynski, 1843; the churehes of St. Peter and St. Andrew; the National Gallery, 1866-76; the Column of Victory in the Thiergarten, 1871-75; and the Villa Borsig. He published several works, including his discovery, 1862, of the Theatre of Dionysius at Athens. He was lecturer at the Academies, and also " baumeister" from 1838 to the Emperor of Germany. Died June 13, 1880, aged 75.
Benjamin Ferrey of Christchurch, Hampshire.-Laid out the estate of Sir Geo. Gervis, and designed the Bath Hotel, with several rows of villas, at Bournemouth. Restored the nave and transepts and the Lady Chapel of Wells Cathedral ; and the Bishop's palace and chapel. Designed the Church of St. James, at Morpeth; of St. Stephen, Rochester Row, Westminster; the town halls at Dorchester and Luton; the church at Buckland St. Mary; Wyanstay, for Sir W. W. Wynn ; Bulstrode, for Duke of Somerset ; mansion for the Duke of Connaught at Bagshot Park, \&c. His invention of stamping plaster was carried out at Macelcan Church, near Ampthill; at All Saints', Blackheath : at Streatham Parish Church, and other churches. Died August 22, 1880, aged 70.
Thomas Henry Wyatt of Loughlin House, Roscommon.- He practised in London in partnership with David Brandon from 1838 to March 17, 1851, and designed the Assize Courts at Winchester, Devizes, Usk, Brecon and Cambridge. Among numerous hospitals, \&ce, those at Malta; for Norfolk and Norwich; Wiltshire Lunatic Asylum ; and the Buckingham Lunatic Asylum; the Exchange Buildings at Liverpool ; the cavalry barracks at Kuightsbridge, London ; railway station at Florence ; Adelphi Theatre, London; St. Aidan's College, Birkenhead; Oatland Park Hotel, Surrey; mansion in Park Lane, for Sir Dudley Majoribanks; with many nthers; and alterations. Among the numerous new churches, in Wiltshire, that of Wilton, near Salisbury; memorial church to George Herbert at Bemerton, \&c. ; in Dorsetshire, in London, in Cambridgeshire, \&c.; the Garrison Church at Woolwich ; also the earlier restorations at Llandaff Cathedral, and at Wimborne Minster. Died August 5, 1880, aged 73.
77 William Burges of London.-Gained, in conjunction with Mr. Clutton, the first premium for Lille Cathedral; was occupied in the decoration of the Chapter House at Salisbury; also the first premium for the Memorial Church at Constantinople ; designed Brisbane Cathedral, and the Cathedral at Cork ; restorations at Waltham Abbey; at Cardiff Castle, for the Marquis of Bute; decoration of chapel of Worcester College, Oxford; designed the Art School at Bombay; made designs for Hartford College, United States; carried out his own house in Melbury Road, Kensington ; designed Woreester College Hall ; and new churches at Stadley and Skelton, near Ripon. Died April 20, 1881, aged 53.
372 Drcimus Burton of London.-Designed, 1824-26, the Colosseum, Regent's Park, and the Hyde Park improvements, including the Ionic façade and the triumphal arch ; the Calverley Park estate at Tunbridge Wells, for Mr. John Ward; Grove House, Regent's Park; Royal Naval Club, and the Athenæum Club, Pall Mall; Holford House, St. Dunstan's Villa, and St. John's Lodge, Regent's Park; Worth Park, Sussex; Stapleton Palace, near Bristol; the new town, church, botel, lighthouse, \&c., at Fleetwood; the Union Club, United Service Club, and Junior United Service Club, London ; palm house, winter garden, \&c., at Kew; and numerous private houses. Died December 14, 1881, aged 81.
33 snthony Salvin of Sunderland Bridge, Durham.-Designed Mamhead, near Exeter; Morhy Hall; restored the hall at Brancepeth Castle ; designed Methlev Hall;

Parham Court, and many others; Peckforton Castle; restored the Beaucham Tower and Traitors' Gate at the Tower of London ; also Carnarvon Castle, wit numerous others; the Curfew Tower and other works at Windsor; Alnwic Castle, Northumberland. Desigued Keele Hall, Staffordshire; Thoresby Ha Nottinghamshire. Restored Petworth House ; Birdsall House ; Fernhurst Churc Sussex; Kilndown Church; the Church of the Holy Sepulchre, Cambridge, \&c and Dunster Castle. Died December 17, 1881, aged 82.
374. George Edmund Street of Woodford, Essex.-Designed Hadley Church, Esses others at Constantinople, Rome, Genoa, Lausanne, Vevay, Mürren, and Pari All Saints' Church, parsonage, and schools, at Boyne Hill, Berkshire ; Church St. James the Less, Garden Street, Westminter; St. Peter's Church, Bourn mouth; and the nave to Bristol Cathedral. Restored south transept and t reredos at York Minster. Designed the Courts of Justice, London; the church of St. Margaret at Liverpool ; All Saints at Clifton; St. Mary Magdalene Paddington; St. Sariour at Eastbourne ; St. John at Torquay; St. Philip and s James at Oxford ; the Theological College at Cuddesdon; Dulecht House ar Chapel. Restored Christ Church Cathedral, Dublin. He published "Brick ar Marble Architecture in Italy," 8vo., 1855 ; "Gothic Architecture in Spain," 8 v 1865; and wrote numerous papers and lectures. Died Dec. 18, 1881, aged 57
375. Conte Commendatore Vigginio Vespignani of Rome.-Architect to the Church St. Peter's at Rome. Died December 3, 1882.
376. David Rhind of London.-At Edinburgh, designed the Commercial Bank Building Life Association of Scotland; Normal School, Chambers Street; Stewar Hospital ; addition to the Assembly Hall on Castle Hill; and the Commere Bank, Glasgow. Died April 26, 1883.
377. Signor Emilio de Fabris of Florence. - Designed the new façade to the Cathed of Santa Maria, at Florence, ordered 1869. Died (on the eve of the day? pointed for uncovering this great work) June 28, 1883.
378. Helnrich Freiherr von Ferstel of Vienna.-At Vienna, the Votivkirche; t new University; the Palace of the Grand Duke Charles Ludwig Victor; a several other works therein. Died July 15, 1883, aged 55.
379. Jean Baptiste Cicéron Lesueur of Clairefontaine, near Rambeuillet, France Designed the Parish Church at Vincennes; Conservatoire de Musiqueat Genet at Paris, a great number of princely mansions; 1840, extension and complet of the Hôtel de Ville (burnt 1871), \&c. Published, with F. Callet, "Edifices P liques, \&c., de Turin et de Milan," 1855 ; "Vues Choisies des Monuments Antiq de Rome," 1827; "Chronologie des Rois d'Egypte," 4to., 1848; "Histoire Théorie de l'Architecture," 1879. Died December 25 (?), 1883, aged 89.
380. Théodore Ballu of Paris.-At Paris, he completed the Church of St. Clotilde Gau); carried out the reconstruction of the Bôtel de Ville after 1873; dcsig the churches of La Trinité and St. Ambroise ; restored the ancient Tower of Jacques de la Boucherie; and the ancient Church of St. Germain l'Ausery Died May 23, 1885, aged 68.
331. Thomas Leverton Donaldsun of London.-Designed the Church of the I Trinity, South Kensington ; the town mansion of Mr. H. T. Hope, in Piccad with M. Dusillion of Paris; mansion for Mr. H. Hippisley at Lambourn, B shire; University Hall, Gordon Square ; the library and labnratory at Univer College, Gower Street; Gordon Street Church; Scotch Church, Wonlwich; Scottish Corporation Hall, Crane Court, Fleet Street. He published "Exam of Doorways from Ancient and Modern Buildings in Italy and Sicily," 1833-36; "Lime, Mortar, Stucco, \&c.," 4to, 1840; "Architectura Numismat 4 to., 1859 ; read a vast number of papers at the Royal Institute of Br Architects, of which he was the first secretary, and one of the chief fuunder 4 1835; and was for many years Professor of Architecture at University Col on Died August 1, 1885, aged 90.
382. Théodore Labrouste of Paris.-Designed the Maison Municipale de Santé, 1 bourg St. Denis. Died November 28, 1885, aged 86.
383. James Fergussen of London.-Designed the picture gallery for Miss No paintings in Kew Gardens, illustrating his theory of lighting temples. lished " Rock-cut Temples of India," 1845 ; " True Principles of Beauty in 1849 ; "Picturesque Illustrations of Ancient Architecture of Hindostan," "Handbook of Architecture," 2 vols. 1855; "Modern Styles," 1862; "Histr of Architecture," 2 vols. 1865; "History of Indian and Eastern Architeei 1876; "Topography of Jerusalem," 1847; "Palaces of Nineveh and Yers his restored," 1851 ; "Mausoleum of Halicarnassus," 1862; "Rude Stonc I I1

AFTER CHRIST.

ments," 1873 ; "Troe and Serpent Worship," 1873 ; "Temples of the Jews," 1878 ; "Cave Temples of India," 1880, with Mr. James Burgess; "The " Parthenon. an Essay on Lighting Temples," 1885; and many lectures and papers. Died January 9, 1886, aged 78.
4. Henry Hobson Richardson of Louisiana, U.S.A.-Edacated at Harvard University, he proceeded, 1859, to Paris, where he studied; settled at New York for threo years, and then at Boston, where he designed Trinity Church and two others; 1878, Sever Hall, and 1881, Austin (Law School) Hall, both for-Harvard University ; the New York State Capitol at Albany from 1868, at an estimated cost of four million dollars, but will probably cost double that amount; in 1878, Messrs. Eidlitz, Richardson, and Olmsted were appointed joint architects, but to Richardson is due, after 1875, the south side, with a central staircase seventy feet square, and the Senate chamber, opened March 1881. He also designed, 1884, the County Buildings and the Jail at Alleghany, Pennsylvania; 1885, the Field Building or Store at Chicago, 325 feet long; the Cincinnati Chamber of Commerce, Ohio ; with several libraries, dwelling-houses (including his own), railway stations, \&c. He exercised great influence upon the architectural art of his country. Died April 27, 1886, aged 48.
3. R. Kyrye Pensun of Oswestry.-He held several appointments in Carmarthenshire and Cardiganshire, and designed a large number of churches, residences, schools, bridges, and other works, especially St. Mark's Chureh, Wrexham ; and Dynevor Castle, Llandilo, for Lord Dynevor ; with numerous restorations of churches, \&c. Died May 22, 1886, aged 70.
John Prichard of Llandaff.-Was a pupil of A. W. Pugin, and held the position of diccesan architect for nearly forty years. Superintended the restoration of many churches, as well as that of the cathedral in conjunction with Mr. J. P. Seddon, the general restoration with Mr. T. H. Wyatt, and subsequently by hirnself. He remodelled, about 1865, Eatington Hall, Warwickshire ; and designed the mausoleum of the Bute family at Cardiff Castle. Died Oct., 1886, aged 68.

- George Vulliamy of London.-A pupil of Sir C. Barry; travelled much abroad, returned in 1843. Succeeded Mr. Marrable at the Metropolitan Board of Works as superintending architect in 1861, and for whom he designed the group of buildings on the south side of Queen Victoria Street, near Bucklersbury; additional story, \&c., to the offices of the Board; several of the Fire Brigade stations, \&c. Amongst his private works are the French Protestant Church, Bloomsbury; church, \&c., at Queenhithe ; the memorial tower to the Earl of Ellesmere; Dyffry in Merionethshire; the restoration of the north transept of Rochester Cathedral; All Saints' Church, Ennismore Gardens; the pedestal and sphinxes for the Cleopatra's Needle, \&c. Died November 12, 1886, aged 69.
Grorge Goldie of York.-He was pupil, and then partner with Messrs. Hadfield and Weightman of Sheffield. He removed to London, and designed the Church of St. Wilfrid, at York; the Pro-Cathedrals at Kensington, at Durban in Natal, and at Middlesborough ; the Cathedral at Sligo ; the Church of St. John of Jerusalem, in Great Ormond Street; Upsall Castle, and Weston Manor in the Isle of Wight; and many Roman Catholic churehes, \&cc. Died March 1, 1887, aged 59.
Victor Marte Charles Ruprich-Robert of Paris.-He designed the Church of Flers; the restoration of the Château d'Amboise; the Churclı of Ste. Trinité at Caen ; the Church of Ouistreham in the Calvados diocese. Besides "Flore Monumentale," 1866, and the monograph on the Church and Munastery of Val de Grâce, 1875, he had nearly completed a great work on "Norman Architecture in Normandy and England." Died May 7, 1887, aged 67.
Sir Horace Jones of London.-Commencing practice in 1846, he designed the British and Irish Magnetic Telegraph Company's offices, Threadneedle Street; the Sovereign Assurance office, Piccadilly ; Royal Surrey Music Hall; Cardiff Town Hall ; Caversham Park, and other buildings, warehouses, residences, \&c.; and was surveyor to several estates. In February 1864 he was appointed architect to the Corporation of the City of London, which office he held for twentythree years, for whom he designed, 1868, the Central Meat Market; 1875, the Poultry and Provision Market ; 1883, the Fruit Market; 1871, the Foreign Cattle Market at Deptford; 1877, the reconstruction and enlargement of Billingsgate Market; and 1882, the rebuilding of Leadenhall Market, with large additions, \&c., to the Islington Cattle Market. He also compieted, 1864, the City Lunatic Asylum at Dartford ; designed, 1864, the new roof and other works to the Guildhall; 1872, the library and museum, and 188t, the new council chamber. Several stations for the City police; artizans' dwellings in Farringdon Road; the bascule bridge over the river Thames beyond the Tower, commenced 1885, with

AFTER CHRIST.

J. W. Barry as engineer; the Guildhall School of Music, on the Embankment and the Temple Bar Memorial, are among his later designs. In 1882-83 he wa President of the Royal Institute of British Architects. Died May 21, 1887 aged 68.
391. Daniel Ramée of France - Much occupied for the "Monuments Historiques" France. Restored tho Palais de Justice at Beauvais ; the Church of St. Vulfra at Abbeville, Notre Dame de Noyon, the Church of St. Riquier, that at Senlis and many others. He published many works, especially "Histoire Générale d l'Architecture," 8vo , 1843; 2nd edit. 1862; and others named in the list of publ: cations. Died September, 1887, aged 81.
392. Edward I'Anson of London.-President of the Royal Institute of British Archi tects at the time of his death, January 30, 1888, aged 76.
393. George Gobwin of London.-Edited "The Builder" from 1845 (vol. iii.), fic nearly forty years, retiring in October 1883.—Died January 27, 1888, aged 73.

I N D E X

TO THE LIST OF

THE PRINCIPAL ARCHITECTS.

The numbers refer to figures which precede each name in the List.

Ite, N., 196
hallah ben Said, 26
Helrrahaman, 21
t1, J., 235
A m, R., 275

- W., 252

2herius, 16
A medes, i.
A. olo, B. d', 161

- G. d', 127

Astino da Siena, 73
A ier, P., 322
Ai de Walsingham, 89
A erti, A., 107

- Leo B., 112

A ck, J., 125, 210
A huela, J. M. de, 300
A ich, H., 231
A tti, G. B., 212
A $\mathrm{si}, \mathrm{G} ., 169$
A rdi, A., 216
A sius, 15
A. so, J. de, 95
A. ius, 12
A) n, J., 298

Ai :e, R., 144
Al ianato, B., 195
A1 ea da Pisa, 72

- di Cione, 91

Ax ouet du Cerceau, J. B., 205

- J., 205

Ar lo da Siena, 73
At emius, 17
An tates, xvi
Ar ne, J. D., 279
An inimus, 10
Aplodorus, 7
Aq ee, D., 86
Arias, xxi
Aryius, xxiii
Arid, 34
Ari io di Cambio, 69
Asl y, H., 143
Ast ld, J., 118
Bac, d' Agnolo, 161
Baı i da Vignola, G., 172
Bar, Sir C., 333
liat hus, xxxy

Bazhenov, V. I., 302
Beauchamp, R., 116
Bergamasco, 11. 147
Bergamo, B., 147
Berhan, H. de, 46
Bernardino, A., 219
Bernini, G. L., 217
Berretini, P., 155
Berretta, L., 140
Berruguete, A., 179
Bibiena, F. G., 256

- G. G., 257
- A. G., 258
- A. G., 259
F. G., 260

Blond, J. B. A. le, 244
Blondel, F., 224

- J. F., 266

Blouet, G. A., 825
Boceadoro, D., 134
Bocblinger, H. and M., 115
Boffrand, G., 249
Bolton, W., 126
Bonano, 43
Bonaventura, N., 80
Bonomi, J., 282
Borromini, F., 215
Boyden, W., 74
Bramante, 119
Bramantino, 104
Bray, Sir R., 116
Brenna, V., 302
Brettingham, J., 267

- R. F., 268

Briosco, A., 156
Britton, J., 328
Brosse, J. de, 208
Brunellesco, 93
Bulfinch, C., 309
Bunning, J. B., 338
Buonarroti, M. A., 171
Buono, 38
Bu B., 146
Buontalenti, B., 198
Busketus, 27
Bustamente, B., 189
Cagnola, L., 311
Callias, xxii

Callicrates, xiv
Callimachus, $x x$ vii
Cambiche, J., 194
Campbell, C., 241
Campero, J. dc, 150
Canina, L., 329
Canonica, L., 342
Canterbury, 'T'. of, 77
Carilepho, 30
Carr, J., 299
Celer, 3
Chambers, Sir W., 274
Chambiches, M., 132
Chelles, Jean dc, 53
Chersiphron, iv
Chirosophus, vii
Chryses, 18
Ciccione, A., 106
Cione, A. di, 91
Cleodamas, xxx
Cloos or Close, N., 101
Cocceius Auctus, L., xli
Cockercll, C. R., 310,353
Cole, J., 129
Colechurch, P. of, 45
Contucci, A., 145
Cooley, T., 294
Corbie, P. de, 51
Cormont, T. de, 48
Coroebus, xix
Cortone, D. de, 134
P. da, 155

Cossutius, xxxi
Cotte, R. de, 226, 242
Coucy, R. de, 55
Covarrubias, A. de, 161
Cozzo, P., 42
Cristodoulos, 102
Cronaca, Il., 122
Ctesiphon, iv
Cyriades, 13
Cyrus, xxxix
Dance, G., 264
--Jun., G., 28 8
Daniel, 15
Daphnis, v
Deane, Sir T., 351
Demetrius, iv

Detrianus, 9
Dexiphanes, xxxvii
Dinocrates, xxv
Dioti SaIvi, 37
Domingues, A., 85
Dotzinger, Jost, 84
Dryell, J., 98
Du Cerceau, J. B., 205

- J., 206

Vurand, J. N. L., 304
Eberhard, 24
Eginhardus, M., 23
lilmes, II. L., 318
Dlyas, 46
Irlach, J. B. F. von, 238
Ernulf, 33
Erwin von Steinbach, 68
Essex, J., 295
Esticnne de Bonncuill, 49
Eupalinus, vi
Eupolcmus, xxviii
Eaguerra, P. de, 182
Falconetto, G. M., 162
Farleish, R. de, 79
Favariis, J. dc, 62
Ferracini, B., 42
Fioravanti, R., 107
Fiorentino, A., 185
Fischer, C. von, 287
Fischers, J. B., 238

- J. E., 238

Fitz-Odo, E., 47
Foix, L. de, 204
Fontana C., $232 a$

- D., 199

Forment, D., 177
Formentone, T., 110
Förster, L., 339
Francesco di Giorgio, 109
Frontinus, 6
Fowke, F., 345
Fuccio, 63
Fufitius or Fussitius, xlii
Fuga, F., 269
Fulbert, 29
Gabriel, J. A., 271

- J., 246

Gadyer, P., 133
Gaertner, F. von, 316
Gainsborough, 92
Gainza, M. de, 178
Galilei, A., 245
Galli Bibicna, 256 to 260
Gandon, J., 289
Gandy, J. M., 315
-Deering, P. J., 319
Garcia. A., 40
Gasse, S. and L., 312
Gay, J., 320
Genga, G. and B., 166
Giamberti, G., 131

- A., 151

Gibbs, J., 251
Gil de Hontanon, J., 159

- R., 160

Giocondo, 137
Giorgi, F. di, 109
Giovanni da Pisa, 66
Giulio Romano, 173
Gomez de Mora, J., 233
Gondoin, J., 286
Gonsalvo, San, 56

Graham, J. G., 326
Grand, J. G. Ie, 283
Gruamons, 39
Gunidel, P. dc, 149
Gundulphus, 33
Gwilt, J., 341
Hacket, D., 86
Hamilton, D., 335

- T., 331

Hardwick, P., 348
Ilarrison, 'T., 310
Haveus, 'T., 187
Haviland, J., 324
Hawksmore, N., 243
IIawthorne, H., 201
Heave, 'T., 187
IIcinricx, 176
ITelyas de Berham, 46
Henry Latomus, 75
ILermodorus, xxxiii
Hermogenes, iii
Herrera, J. de, 191
Hilts, Hans, 83
Hippodamus, xviii
Hittorff, J. I., 346
Holbein, Hans, 138
Holland, II., 281
IIolt, T., $22 \overline{7}$
Honccort, W. de, 60
Hooke, R, 230
Iorwod, W., 100
IIultz, II., 83
Humbert, 28
IIylmer, J., 130
Ictinus, xiii
Inwood, H. W., 303
Isenbert, 45
Isidorus of Milctus, 17

- of Byzantium, 19

Ixnard, M. d', 250
Ivara, or Juvara, F., 239
Jacopo of Florence, 52
-_ of Germany, 59
James, J., 247
Janscn, B., 218
Jean de Chelles, 53
Joannes of Miletus, 20
Johannes de Middelton, 71
John of Padua, 142
Jones, Inigo, 211
Juvara, F., 239
Keldermans, J., 113

- R., 139

Kendale, J., 117
Kendall, J., 293
Kent, W., 253
Keyes, R., 99
Klenze, L. von, 337
Labelye, C., 255
Lacer, 8
Lalye, M., 132
Lalys, 35
Landfridus, 32
Lanfrancus, 31
Lanfrani, G., 81
Langhans, K. G., 284
Lapi, F. dci, 93
Lapo, A. di, 69
Lazzari, D., 119
Latomus, Henry, 75

Latrobe, B. H.. $30 n$
Lauranna, L., 111
Layens, M. de, 114
Le Biond, J. 13. A., 244
Ledoux, C. N., 280
Le Grand, J. G., 283
Le Muct, P., 213
Leoni, G., 248
Lepère, J. B., 286, 346
Lescot, P., 192
Libergiers, Ilues, 55
Libo, xii
Ligorio, P., 220
Lombardo, M., 121

- P., 124
- Sante, 170 T., 135

Lorenzo, San, 58
L'Orme, P. de, 168
Lote, S., $92 a$
Louis, V., 278
Lucano, N. da Sar, 123
Luzarches, R. de, 48
Machuca, P., 184
Maderno, C., 209
Maglione, F., 64
Majano, G. da, 96
Malcolm, E., 174
Mandrocles, viii
Manlio, F., 158
Mansart. F., 258
——J. H., 232
Marsh, or March, 228
Marshall, E., 174
Martino, L. da, 111
Mascal, or Marshall, Ji., 17
Masuccio, 65
-Stephano, 68
Memno, ix
Menesicles, xv
Mercier, J. 1c. 222, 226
Merliano, G., 157
Mcrlini, D., 292
Messidius, xliii
Mcta, M. de, 219
Mctagenes, iv, xix
Metezau, T., 214

- C., 226, 234

Metrodorus, ii
Michael Angelo, 171
Michclozzi, M., 94
Middelton, J. de, 7 I
Mignot, J., 80
Mills, R., 336
Mnesicles, xv
Mnesthes, xxiv
Modena, N. da, 196
Monegro, J. B., 233
Montereau, P. de, 54
Montferrand, A. R. de, 332
Morlanes, D., 177
Mormando, G. F., 128
Morrison, Sir R. and W. 317
Morton, -, 97
Muet, P. lc, 213
Mustius, 5
Mutius, Cains, xxxiv
Mylne, R., 285
Narbonne, H. de, 6
Nash, J., 306
Nicola of Pisa, 60
Norton, -, 97
veilo da S. Lucano, 123
lo of Croyland, 34
olzago, G. di, 148
cagna, 91
chyearde, W., 108
me, P de l', 168
guet, D., 86
dua, J. of, 142
onias, v
ine, J., 277
lladio, A., 197
utre, A. le, 225
xton, Sir J., 344
nnethorne, Sir J., $3 \overline{0} 0$
rcier, C., 291
rez, P. 69
rrault, C., 223
rronet, J. R., 272
ruzzi, B., 153
ter of Colechurch, 45
troni, Dioti de', 37
ıax, xxix
iilo, xxxii
iloxenus, xliii
ccino, -, 42
cooni, A., 152
ermarini, G., 301
erre de Corbie, 51
etro Gonsalvo, San, 57
no, M. di 154
ntelli, B., 103
opi, G., 173
sa, A. da, 72

- G. da, 66
qufair, W. H., 327
Iajuolo, S., 122
lyclitus, $x x$
nte, G. da, 221
rden, W., 323
stumius, xl
zzo, G. del, 105
get, P., 230
gin, A., 305
-A. W. N., 321
thius, x
brius, 4 .
ffaello d'Urbino, 141
imond du Temple, 78
vy, J., 82
ymundo, 46

Reade, W., 90
Rhœcus, ii
Ricard de Montferrand, A, 332
Riccio, A., 156
Rickman, T., 313
Ripley, T., 254
Rizzio, -, 12
Robert, 46, 79
Robert de Luzarches,
Romain, F., 246
Romano, G., 172
Romualdus, 22
Ruiz, F., 183
Sacchetti, G. 261
Sanchez, J., 180
Sanctis, G. de, 68
San Gallo, A., 151, 152

- G., 131

San Lorenzo, 58
San Lucano, N. da, 123
San Micheli, M., 167
San Pietro Gonsalvo, 57
Sansarino, A., 145, 186
Sante Lombardo, 170
Sanzio, R., 141
Satyrus, \mathbf{x}
Saurus, xxxvi
Scammozzi, V., 207
Schinkel, C. F. von, 314
Scopas, xvii
Sennamar, 14
Sens, W. of, 44
Serlio, S., 193
Servandoni, J. N., 263
Severus, 3
Shute, J., 200
Siloe, D., 165
Simonetti, M. A., 270
Smirke, Sir R., 347
Smithson, R. and H., 203
Soane, Sir J., 290
Sostratus, xxvii
Soufflot, J. G., 273
Spintharus, xi
Steinbach, E. von, 68
Suardi, B., 104
Sugger, 41
Tarchesius, xxiii
Tatti, J., 186
Taylor, Sir R., 276
Teotocopuli, D., 188

Tessin, N. V., 236
-Count N., 237
Texier, C., 349
Theodorus, ii
Thomas of Canterbury, 77
Thomond, T., 296
Thorpe, J., 175
Tietland, 25
Tioda, 24
Tite, Sir W., 353
Toledo, J. B. de, 190
Tomaso, -, 43
Tresham, Sir T., 202
Trophonius, i
Uria, P. de, 163
Ustamber, P. de, 29
Valdevira, P. de, 181
Valerius, xxxviii
Vanbrugh, Sir J., 240
Vanvitelli, L., 265
Vertue, W., 131
Vinci, L. da, 136
Vignola, 172
Visconti, L. T. J., 330
Vitoni, V., 120
Vitruvius Cerdo, 2
Vitruvius Pollio, M., 1
Walsingham, A. de, 89
Walter de Weston, 76
Walters, E., 352
Warren, J., 210
Weston, W. de, 76
Wilhelmus, 43
Wilkins, W., 308
William de Wynford, 88
—— of Sens, 44
of Wykenam, 87

- the Englishman, 44

Wood, J., 262
Wren, Sir C., 229
W yatt, J., 297
W yatville, Sir J., 307
Wykeham, W. of, 87
Wynford, W. de, 88
Yevele, or Zeneley, H., 92a
Zanth, L. von, 343, 346
Zwirner, E. F., 334

ADDITIONAL LIVES (1888).
lu, T., 380
ry, E. M., 366
re, E., 362
Jindon, R., 358
ree, D., 357
ges, W., 371
ton, D., 372
fsenaar, J. P., 367
1 aldson, T. L., 381
] \because J. L., 363
1ris, E. de, 37 it
1 gusson, J., 383
1 rey, B., 369

Ferstel, H. von, 378
Godwin, G., 393
Goldie, G., 388
I'Anson, E., 302
Jones, O., 354
Jones, Sir H., 390
Labrouste, P. F. H., 356
Labrouste, T., 382
Lesueur, J. B. C., 379
Penson, R. K., 385
Prichard, J., 386
Ramée, D., 391
Rhind, D., 376
Richardson, H. H., 384

Ruprich-Robert, V. M.C., 389
Salvin, A. 373
Scott, Sir G. G., 361
Semper, G., 364
Smirke, S., 359
Strack, J. H., 368
Street, G. E., 374
Thomson, A., 355
Vespignani, V., 375
Viollet-le-Duc, E. E., 365
Vulliamy, G., 387
Wyatt, Sir M. D., 360
Wyatt, T. H., 370

A CATALOGUE

of THE PRINCIPAL AND MOST USEFUL

PUBLICATIONS RELATING TO ARCHITECTURE.

arranged under the following classes:

I. GRECIAN ARCHITECTURE PAGE
II. ROMAN ARCHITECTURE 1162
III. OTHER COUNTRIES: ANCIENTARCHITECTURE :A. Assyria, Babylonia, Persia,\&c. 1164
B. Africa, Asia, Spain . . . 1164
C. Egypt, Holy Jand, \&c. . . 1165
D. India, \&c. 1165
E. Great Britain, Russia, France,\&c. 1166
F. North and South America . 1166
IV. GOTHIC AND RENAISSANCE ARCHITECTURE:A. Great Britain and Ingland . 1166B. Other Countbies . . . 1169
V. MODERN ARCHITECTURE:
A. Great Britain and Ireland. 1172
B. France and Belgium 1174
C. Germany, \&c. 1175
D. Spain, Italy, Russiaz \&c. 1175
VI. THEATRES 1177
VII. RURAL ARCHITECTURE, GAR-
DENS, STABLING, \&c. 1178
VIII. HISTORY OF ARCHITECTURE, THEORY, \&c. 1179
IX. ELEMENTARY WORK, ORDERS, DETAILS, MOULDINGS 1180
X. MATERIALS 1181

publications relating to architecture.

I. GRECIAN ARCHITECTURE.

erdeen, Earl of. Inquiry into the Principles of Beauty in Grecian Architecture. 8 vo. kin, E. Essay on the Doric Order. Folio. 1810
[1822.
rè̀s. Théorie du Module déduite du texte de Vitrure. 8ro. Nismes, 1862.
ulé, E. L'Acropole d'Athenes. 2 rols. 8vo. Paris, 1853.
ouet, A. Expédition Scientifique en Morée. 3 vols, folio. Paris, 1826-39.
tticher, A. Olympia. 8vo. Berlin, 1883.
nina, L. L' Architettura Antica. 5 vols. 8 vo . and folio. Rome, 1834-43.
rapanos, C. Dodone et ses Ruines. 4to. Paris, 1878.
oiseul-Gouffier. Voyage Pittoresque de la Grèce. 2 vo's. folio. Paris, 1782-1809.
urke, J. T. American Explorations at Assos. 4to. Cambridge, U.S.A., 1883.
ckerell, C. R. Temple of Jupiter Olympius at Agrigentum. Folio. 1825.

- The Temple at Ægina and at Basse. Folio. 1860.
rid, F. A. Antiquités Etrusques, Grecques, et Romaines ; with explanations by Hugues d'Hancarville. 5 vols. Paris, 1787.
lagardette, C. M. Les Ruines de Pæstum, ou Posidonia. Folio. Paris, 179 9. naldson, T. L. Collection of the most approred Examples of Doorways from Ancient Buildings in Greece and Italy. 2 vols. 4to. 1833.
[8го. 1859. - Architectura Numismatica, or Architectural Medals of Classic Antiquity. Plates,

Hkener, E. Dæedalus; or, the Canse and Principles of the Excellence of Greek Sculpure. 8vo. 1860. Ephesus and the Temple of Diana. 8vo. 1862.
so Pictrasanto, D. (Duca di Serradifalco). Le Antichità della Sicilia. 5 vols. folio. Salermo, 1834-42.
gusson, J. The Parthenon ; an Essay on the Mode by which Light was introduced nto Greek and Roman Temples. 4to. 1883.
IJrtner, F. Monuments of Greece and Sicily. Folio. Munich, 1819.
lymüller, H. de. Samothrace. 8vo. Paris, 1882.
'ilt, J. Essay on Grecian Architecture, to his edition of The Decorative Part of Civil Irchitecture, by Sir W. Chambers. 8vo. 1825.
] [ris, W., and Angell. S. Metopes of the Temple at Selinus. 4to. 1826
] torff, J. İ., and Zanth, L. Architecture Antique de la Sicile. Folio. Paris, 1825-37 nd edition. Text, 4to. Plates, folio. Paris, 1870.
I r r, S. Raccolta degli Antichi Edificj di Catania. Folio Catania, 1812.
I 11, O. On the Doric Style: 24 tables by Stall. 1870.
I rouste, H. Les Temples de Pæstum. Folio. Paris, 1877.
I Roy, J.B. Les Ruines des plus beaux Monuments de la Grèce, considérées du côté de Histoire et du côté de l'Architecture. Folio. Paris, 1758.
I nes (le Duc de), and Debacq, F. J. Métapoute. 10 plates, folio. Paris, 1833.
M or, T. Ruines de Pæstum. 24 plates, folio. 1768.
3 haelis, A. Der Parthenon. Folio. Leipzig, 1870.
1 ler, K. O. Ancient Art and its Remains ; or, a Mauual of the Archæology of Art. 2nd lition, 8vo. 1852.
[Chambers. Folio. 1826.
P worth, J. B. Essay on Grecian Architecture, to his edition of the Work by Sir W.
P aethorne, J. Elements and Mathematical Principles of the Greek Architects and rtists, \&c. 8vo. 1844. The Geometry and Optics of Ancient Architecture, illusated by examples from Thebes, Athens, and Rome. Folio. 1878.
Pirose, F. C. Principles of Athenian Architecture; with reference to the Optical Reements of the Ancient Buildings at Athens. 42 plates, folio. 1851.
Pilstein, O. Das Ionische Capitell. 4to. Berlin, 1887.
Q remère de Quincy, A.C. Jupiter Olympien. Folio, plates. Paris, 1815.
-- Restitution des deux frontons du Temple de Minerve à Athènes. 4to. Paris, 1825.
emann, H. Troy and its Remains. 8ro. 1875. Mycenæ: A Narrative of Rerrches and Discoveries at Mycenæ and Tiryns. 8ro. 1878. Ilios: the City and the untry of the Trojans. 8vo. 1880. Exploration of the Bootian Orchomenus. 8 vo. 31. Troja: Results of the latest researches, \&c. 8ro. 1884. Prehistoric Palace. , 1886.
Sn h, W. Dictionary of Greek and Roman Anfiquities. 2nd edition, 8vo. 1848.
So ty of Dilettanti. Unedited Antiquities of Attica, comprising the Architectural mains of Eleusis, Rhamnus, Sunium, aud Tboricus. Edited by Wilkins, Gandyering, and Bedford. Folio. 79 plates. 1817, 1833.
[1840, and 1881.

- Antiquities of Ionia, by Chandler, Revett, and Pars. Folio, 4 vols. 1769-97,

Stanhope, J. S. Olympia; or, Topography of the ancient State of the Plain of Olympia and of the Ruins of the City of Elis. Folio. 1824.
[1842
Stewart, J. R. Ancient Monuments still existing in Lydia and Phrygia. 20 plates, folio Stuart, J., and Revett, N. Antiquities of Athens. 4 vols. folio. 1762, 1787, 1794. An a supplementary volume edited by J. Woods in 1816. A second edition, with con siderable additions; edited by W. Kinnard, with a supplement of Antiquities i: Greece, Sicily, \&c., by C. R. Cockerell, W. Kinnard, T. L. Donaldson, W. Jenkins, an others. 4 vols. folio. 1825-30. The plates in the three first volumes of this editio are from the coppers of the French edition, by J. J. Hittorff. Folio. Paris, 1808-22
Visconti, E. Q. Ouvrages de Sculpture du Parthénon. 8vo. Paris, 1818.
West, W. R. Grecian Temples, how roofed and lighted. 4to. Philadelphia, 1866.
Wilkins, W. Antiquities of Magna Græcia. Folio. Cambridge, 1807.

- Prolusiones Architectonicæ ; or, Essays on Subjects connected with Grecian anc Roman Architecture. 2nd edition, 4to. 1837.
Willi Topography and Buildings of Athens. 8ro. 1816.
Williams, H. W. Select Views in Greece, with Classical Illustrations. 4to. 1827.
Wood, J.T. Discoveries at Ephesus, including the site and remains of the Great Templ. of Diana. 8vo. 1877.

II. ROMAN ARCHITECTURE.

Adam, R. Ruins of the Palace of the Emperor Diocletian at Spalatro in Dalmatia Adler, F. Das Pantheon zu Rom. Berlin, 1872.
[Folio, 61 plates. 1764 Allason, T. Picturesque Views of the Antiquities of Pola. Folio, 14 plates. 1817.
Bartoli, P. S. Gli Antichi Sepolchri orvero Mausolei Romani ed Etruschi. Folio, 11 plates. Roma, 1727. Colonna Trajana, a P. Bellori. 128 plates.
Bellori, J. P. Vetcres Arcus Augustorum Triumphis insignes ex Reliquiis quæ Romi adhuc supersunt, per J. J. de Rubeis. Folio. Roma, 1690.
——and Causseo, M. A. Picture Antiquæ Cryptarum Romanarum et Sepulcı Nasonum delineatre. Folio. Roma, 1750.
[Eolio. Ruma, 181:
Bianchi di Lugano, P. Osservazioni sull' Arena, e sul Podio dell' Anfiteatro Flavi
Bianconi, G. L. Descrizione dei Circhi. Folio, 20 plates. Roma, 1789.
Burn, R. Rome and the Campagna. History and Topographical Description of the Sit Buildings, and Neighbourhood of Ancient Rome. 4to. 1871.
Cameron, C. Baths of the Romans explained. Folio, 75 plates. 1772.
Canina, L. Gli Edifizi di Roma Antica cogniti per alcune importanti reliquie. 6 vol folio. Roma, 1848-56.
[medesima 2 2nd edition, folio. Ruma, 184
__ Ricerche sull' Architettura, più propria dei Tempi Cristiani e applicazione del L' Architeltura Antica. 5 vols. 8 vo. and folio. Roma, 1834-43. L' Antica Etruria Marittima compresa nella Dizione Pontificia. 2 vols. foli Roma, 1846-49.
Caristie, A. Plan et Coupe d'une partie du Forum Romain et des Monuments sur Voie Sacrée. Atlas folio. Paris, 1821.
Cassas, L. F. le. Voyage Pittoresque de l'Istrie en Dalmatie. Folio. Paris, 1802.
Castell, R. Villas of the Ancients Illustrated. Large folio. 1728.
Choisy, A. L'Art de Bâtir chez les Romains. Folio. Paris, 1873.
Ciampini, J. Romæ Vetera Monumenta. Folio. Romæ, 1690-99, 1747.
Cipriani, G. B. Monumenti di Fabbriche Antiche. 4to. Roma, 1796.
Cockburn, Col. J. P., and Donaldson, T. L. Pompeii Illustrated. 2 vols. Folio, 1827
David, F. A. Antiquités Etrusques, Grecques et Romaines; with explanations Hugues d'Hancarville. 5 vols. Paris, 1787.
Davis, N. Carthage and its Remains. 8vo. 1860.
Dennis, J. The Cities and Cemeteries of Etruria. 2 vols. 8 ro. 1848.
Desgodetz, A. Edifices de Rome, dessinés et mesurés très exactement. Folio, uptraĩ of 300 plates. Paris, 1682.
Dodwell, E. Views and Descripticns of Cyclopean or Pelasgic Remains in Greece a Italy. Folio. 1833.
Donaldson, T. L. Temple à la Victoire; monument commémoratif à Messène: P] géometral et Vue avec explication historique. 4to. 1876.
Dyer, T. Pompeii ; its History, Buildings, and Antiquities. 2nd edit. 8ro. 1868.
Gell, Sir W., and Gandy, J. P. Ponipeiana; the Topography, Edifices, and Orname) of Pompeii. 2 vols. 8vo. 1824.
Geymüller, H. de. Documents Inédits sur les Thermes d'Agrippa, le Panthéon, les Thermes de Dioclétien. 4to. Lausanne, 1883.
Grangent, M. M., Durand, C., et Durant, S. Description des Monuments Antiques Midi de France. Folio, plates. Paris, 1819.
utensohn, J. G., and Knapp, J. M. Denkmale der christlichen Religion \&ce., oder Basiliken Roms. Fulio, Stuttgart, 1822-27; and folio, Roma, 1823.
audebourt, L. P. Le Laurentin; Maison de Campagne de Pline le Jeune. Plates, 8ro. Paris, 1838.
ordan, H. Tempel der Vesta. 4to. Berlin, 1886.
abacco, A. Libro d' A. L. appartenente all' Architettura nel qual si figurano a]cune notabile Antiquità di Roma. Plates, folio. Roma, 1552, $1558 . \quad$ [1829. and 1838. azois, F., and Gau, F. C. Les Ruines de Pompéi. 4 vols. folio. Paris, 1812, 1824, iddleton, J. H. Ancient Rome in 1885. 8ro. Edinburgh, 1885.
ibby, A. Del Foro Romano, della Via Sacra, dell' Anfiteatro Flario, e dei Luoghi adjacenti. 8vo. Roma, 1819. [Napoli, 1854-65. iccolini, F. and F. Le Case ed i Monumenti di Pompei. Vols. 1 and 2, \&c. Folio. lladio, A. I Quattro Libri d' Architettura: the last book treats of ancient Roman Architecture. Figures on wood blocks. First cdition, folio. Venice, 1570. Several later editions.
[Folio. Milano, 1803. - Il Tempio di Minerva in Assisi confrontato colle Tavole di Giov. Antolini. Les Thermes des Romains, dessinées par 0. B. Scamozzi, d' prés l'Exemplaire du Lord Burlington. Folio. Vicenza, 1785.
roli, P. Ruvine della Città di Pesto. Folio. Roma, 1784.
[Oxford, 1883. rrker, J. H. The Archreology of Rome. 2nd edition, revised and enlarged. 8vo. —The Twelve Egyptian Obelisks in Rome ; their History explained by translations. of the Inseriptions upon them. 2nd edition, 8ro. Oxford, 1879.
anethorne, J. The Geometry and Optics of Ancient Architecture: Thebes, Athens, and Rome. Folio. 1878.
rret, L. Catacombes de Rome. 6 vols. 327 plates, folio. Paris, 1851.
ranesi, Giov. Bapt. The works of (the son) subsequent to the death of John Baptist
Piranesi. 29 rols. imperial folio. Roma, 1756-1807. An abbreviated list of them is subjoined:-

Vol. 1. Ruins of ancient Edifices of Rome, with the Explanation, Aqueducts, Baths, the Forum, \&c. \&c.
Vol. 2. Funeral Monuments, Cippi, Vases, \&c. \&c.
Vol. 3. Ancient Bas-reliefs, Stuccoes, Mosaics, Inveriptions, \&c. \&c.
Vol. 4. The Bridges of Rome, the Ruins of the Theatres, Porticoes, \&c. \&c.
Vol. 5. The Monuments of the Scipios.
Vol. 6. Ancient Temples, the Temples of Vesta, of Honour and Virtue, Statue of the Goddess Vesta, Altar to Bacchus, the Pantheon of Rome, \&c. \&c.
Vol. 7. The Magnificence of the Ancient Roman Architecture, Pedestals of the Arches of Titus and Septimus Severus, Portico of the Capitol, \&c. \&c.
Vol. 8. Grecian, Etruscan, and Roman Architecture, Arches of Triumph, Bridges, Temples, Amphitheatres, Prisons, \&c.
Vol. 9. Fêtes and Triumphs, from the Foundation of Rome to Tiberius, Temple of Castor and Hercules, and other simple Monuments of the Ancient City of Cora, \&c. \&c.
Vol. 10. The ancient Campo Marzio, Ruins of the Theatre of Pompeii, Portico of Octavius, Reservoir of the Virgin Water, Mausoleum of Augustus, Palace of Aurelius, the Pantheon, the Cave of the Archives of the Romans, Baths and Tombs of Adrinn, Apotheosis of Antonine the Pious, Arch of Marcus Aurelius, Baths of Sailust, Plan of the Roman Senate House, \&c. \&c.
Vol. 11. Antiquities of Albano, Temple of Jupiter, Sepulchral Attributes to the Horatii, Amphitheatre of Domitian, ancient Baths, \&c.
Vol. 12. Ancient Candelabra and Vases, Urns, Lamps, \&c. \&c.
Vol. 13. Ancient Candelabra and Vases, Urns, Lamps, \&c. \&c.
Vol. 14. The Trajan and Antonine Columns.
Vol. 15. Ruins of Pæstum, Temple of Neptune, Temple of Juno, \&c. \&c.
Vol. 16. The Principal Modern Edifices of Rome, Monuments, Palaces, Fountains, Aqueducts, Bridges, Temples, Porticoes, Amphitheatres, Baths, \&c. \&c.
Vol. 17. The Principal Modern Edifices of Rome, Monuments, Palaces, Fountains, Aqueducts, Bridges, Temples, Porticoes, Amphitheatres, Baths, \&c. \&c.
Vol. 18. The Principal Ancient Statues and Busts of the Royal Museum of France, the Vatican, of the Capitol, Viila Borghese, Villa Ludovici, Farnesian Palace, the Gallery of Florence, \&c. \&c.
Vol. 19. Theatre of Herculaneum.
[kc . \&c.
Vol. 20. Egyptian, Grecian, Etruscan, and Roman Chimney Pieces, Ornaments,
Vol. 21. Forty-four Plates after Guercino, by Piranesi, Bartolozzi, \&e.
Vol. 22. Italian School of Painting.
[neum, \&c. \&c.
Vcl. 23. Twenty-four grand Subjects from Rafaelle, Volterra, Pompeii, Hercula-
Vol. 24. Twelve Paintings of Rafaelle, in the Vatican, \&c. \&c.

Vol. 25. Fourteen Paintings of Rafaelle, in the Vatican, \&c. \&c.
Vol. 26. Thirteen Paintings of Vasari, after the Designs of Michael Angelo, \&c.. \&c.
Vol. 27. The Destruction of Pompeii, its Tombs, Utensils, Ornaments, \&c. \&c.
Vol. 28. Antiquities of Pompeii, its Houses, Tombs, Vases, \&c.
Vol. 29. Antiquities of Pompeii and Herculaneum, \&c. \&c.
Pistolesi, E. Antiquities of Herculaneum and Pompeii. English, Frrnch, and Italian text. 2 vols. 4to. Naples, 1842.
Pollen, W. H. Column of Trajan. 8 ro. 1875.
Ponce, N. Description des Bains de Titus. Folio, plates. Paris, 1786.
Roller, T. S. Clément de Rome; Description de la Basilique souterraine récellment découverte. 8vo. Rome, 1873.
Rossi, De. La Roma Sotterranea. 40 plates, folio. Roma, 1865.
Rossini, L. Le Autichità Romane. 100 large plates, atlas folio. Roma, 1820, \&e.
Roux, H., Bouchet, A., et Barré, M. L. Recueil d'Herculaneum et Pompéi. 8 vols. 4to. Paris, 1837-40.
Smith, R. M., and Porcher, E. A. History of the receut Discoveries at Cyrene in 1860_ 1861. 60 plates, folio. 1864.
'Taylor, G. L., and Cresy, E. Architectural Autiquities of Rome. 2 vols. folio. 18201822. Second edition with additions, folio. 1874.

Valadier, G. Raccolta delle più insigni Fabbriche di Roma Antica e sue Adjacenze, illustrata con Osservazioni Antiq. de F. A. Visconti. Plates. Roma, 1810-26.
Vasi, G. Magnificenze di Roma Antica e Moderna. 3 vols. Roma, 1747.
Vaudoyer, A. L. T. Description du Thêâtre de Marcellus à Rome. 4to. Paris, 1812.
Wey, F. Rome ; with an Introduction by W. W. Story. 4to. 1872.
Winckelnan, J. J. Remarques sur l'Architecture des Anciens. 8vo. Paris, 1783.
-_ Histoire de l'Art chez les Auciens. 3 vols. 4to. Paris, 1790.
Monumenti Antichi Inediti. 2 vols. folio. Napoli, 1820.
Wood, R. Ruins of the Balbec and Patmyra. 2 vols. folio. 1753-57.
Zestermann, A. Die antiken und christlichen Basiliken. 4to. Leipzig, 1847.

III. OTHER COUNTRIES: Ancient Architecture.

A. Assyria, Babylonla, Persia, \&c.

Bonomi, J. Nineveh and its Palaces. 8vo. 1852.
Botta, P. E., and Flandin, E. Monuments de Ninive. 5 vols. folio. Paris, 1849-50.
Fergusson, J. The Palaces of Nineveh and Persepolis restored. 8vo. 1851.
Flandin, E., and Coste, P. Voyage en Perse. 6 vols. folio. Paris, 1851.
Layard, A. H. Researches and Discoveries in Nincveh, and an Enquiry into the Arts \&c., of the Ancient Assyrians. 4th edition, 2 vols. 8vo. 1850. Monuments c Nineveh, from drawings made on the spot. Folio. 1849. The Palace of Sennacheril Folio. 1853.
Loftus, W. K. Travels and Researches in Chaldæa and Susiana. 8vo. 1857.
Perrot, G., and Chipiez, C. Histoire de l'Art dans l'Antiquité. Chaldée et Assyrie. 8 vr Paris, 1884.
Place, V. Ninive et l'Assyrie. 8 ro. and folio. Paris, 1867-70.
Rich, C. J. Ruins of Babylon and Persepolis. 8vo. 1816.
Texier, C. Description de l'Asie Mineure. 3 vols. folio. Paris, 1839.
———Description de l'Arménie, la Perse et la Mésopotamie. 2 vols. folio. Paris, 184 and Pullan, R. P. Pyzantine Architecture : being a collection of Monuments the earliest times of Christianity in the East. Folio. 1864.
————Principal Ruins of Λ sia Minor. 63 plates. Foiio. 1865.

B. Africa, Asta, Spain

Berbrugger, L. A., and others. L'Algérie historique, pittoresque et monumental Algiers, Oran, Bona, and Constantine. 3 vols. folio. Paris, 1844.
Bourgoin, J. Les Arts Arabes; Architecture, Menuiserie, Bronzes, \&c. Folio. Par 1868-73.
Carmona, II. S. Antigüedades Árabes de Granada y Córdoba. Folio. (Madrid), 186
Girault de Prangey. Monuments Arales et Moresques de Cordoue, Séville et Grenad Folio. Paris, 1840.

Essai sur l'Architecture des Arabes et des Mores en Espagne, en Sicile et Barbarie. 8vo. Paris, 1841.
Monuments Arabes d'Égypte, de Syrie et d' Λ sie Mineure. Folio. Paris, 1846-4
Grimm, D. Monuments d'Architecture en Géorgie et en Arménie. Folio. Petersbur 1864.
ones, O., and Goury, J. Plans, \&c., of the Alhambra. 2 rols. folio. 1838-42.
© Bon, G. La Civilisation des Arabes. 4to. Paris, 1884.
lurpiny, J. Arabian Antiquities of Spain. 97 plates, folio. 1828.
alzenberg, W. Altchristlicho Baudenkmale Constantiropels vom V. bis XIII. Jahrhundert. Folio. Berlin, 1854.
panish Gorernment. Monumentos Arquitectónicos de España. French and Spanish text. 2 parts, folio. Madrid, 1859-86.
aylor. L'Alhambra. 10 coloured plates, folio. Paris, 1853.

C. Egypt, Holy Land, \&c.

elgrado, Ab. di. Architettura Egiziana. 4to. Parma, 1786.
anina, L. L'Architettura Antica; Egiziana, \&e. 5 vols. folio; text 4to. Roma, 1834-43. assas, L. F, de. Voyage Pittoresque de la Syrie, de la Phénicie, de la Palestine, et de la Basse-Egypte. 2 vols. folio. Paris, 1798.
esnola, L. P. di. Cyprus: is Ancicnt Cities, Tombs, and Temples. 8vo. 1877.
oste, P. Architecture Arabo ; ou Monuments, de Caire. Fulio. Paris, 1820-22.
enou, V. Voyage dans la Basse et la Haute-Égypte. Folio. Paris, 1802. Translated by Aikin. 4to. 1803.
[4to. 1878. argusson, J. Temples of the Jews and other Buildings in the Haram area at Jerusalem. au, F. C. Antiquités de la Nubie; ou Monuments inédits des Bords du Nil, situés entre la première et la secondo Cataracte. Folio. Paris, 1824-25.
ay. R. Illustrations of Cairo and Egypt 30 plates, folio. 18 ± 0.
psius, C. R. Denkmäler aus Aegypten und Aethiopen, \&c. New edition, 6 vols. folio, Berlin, 1849-59.

Letters from Egypt. translatod by L. and J. C. Horner. 8vo. 1853.
wg, G. Egyptian Antiquities in the British Museum, viz. monuments, obelisks, temples, sculpture, statues, pyramids, \&c. 2 vols. Svo. 1832.
ariette Pacha, F. A. F. Le Sérapéum de Memphis. Folio. Paris, 1857-63.

- Choix de Monuments et de Dessins découverts, yendant le déplacement du Sérapéum. 4to. Paris. 1856.
- Abydos; Vol. 1, Ville Antique, Temple de Séti. Folio. Paris, 1869.

Monuments divers recueillis en Egypte et en Nubie. Folio. Paris, 1872.
The Monuments of Upper Egypt. 8vo. Alexindria, 1877.
rker, J. H. The Twelve Egyptian Obelisks in Rome; their History explained by translations of the Inscriptions upon them. 2nd edition, 8vo. Oxford, 1879.
methorne, J. The Geometry and Optics of Ancient Architecture. Folio 1878.
rring, J. E., Andrews, E. J., ard Vyse, Col. The Pyramids of Gizeh, from actual survey in 1837. Folio. 1839-42.
rrot, G., and Chipiez, C. Histoire de l'Art dans l'Antiquité. L'Égypte. 8ro. Paris, 1882. Phénicie, Cypre. 8vo. 1885. Judée, Sardaigne, Syrie, Cappadoce. 8vo. 1887. sse d'Arennes. L'Art Arabo d'après les Monuments du Kaire depuis le VII ${ }^{\circ}$ Siècle à a fin du XVIII ${ }^{\text {e }}$. Folio. Paris, 1869-73.
(atremère de Quincy, A. C. L'Architecture Égyptiennc considérée. 4to. Paris, 1803. Fellini, I. I Monumenti dell' Egitto e della Nubia illustrati. New edition, 10 vols. ro., 3 tols. folio. Pisa, 1835-47.
rpe, S. History of Egypt from the Earliest Times till the Conquest by the Arabs, 40 A.d. 2 yols. 8 vo. 1859.
]nard, F. Égypte et Nubie; Sites et-Monuments. Folio. Paris (1858).
${ }^{1}$ upp, J. F. Ancient Jerusalem. History, Topography, and Plan of the City, Environs, nd Temple. 8ro. Cambridge, 1855.
3 rnefort, J. P. de. Voyage into the Levant. 2 vols. 4to. 1718.
„iǘ, M. de. Les Églises de la Terre Sainte. 4to. Paris, 1860.

- Le Temple de Jérusalem ; Monographie du Haram-ech-Cherif. Folio. Paris, 1864.

1 kinson, Sir J. G. Manners and Customs of the Ancient Egyptians. Two series. rols. 8ro. 1837-46.
Pliams, G. The Holy City: Notices of Jerusalem; with Professor Willis's Areliictural History of the Holy Sepulchre. 2nd edition, 2 vols. 8 ro. Cambridge, 1849.
'son, E. Cleopatra's Needle, with Notes on Egypt and Egyptian Obelisks. Sro. 1878. Our Egyptian Obelisk. 4th edition, 8vo. 1877.

D. India, \&c.

G, H. II. Ancient Buildings in Kashmir. .Photog. 4to. 1869.
C aingham, A. On tho Aryan Order of Architecture as exhibited in the Temples of avhmir. 8 ro. Caleutta, 1848.
D. ell, T. and W. Oriental Scenery. 9 vols. folio. 1813.
D. m, , Orissa and its Temples and Rock-cut Cares. Folio. 1860.

Fergusson, J. Illustrations of the Rock-cut Temples of India. 8ro. and folio. 1845.

1847.

Picturesque Illustrations of Anciont Architecture in Hindostan. 17 plates, folio.
Tree and Serpent Worship; or, Illustrations of Mythology and Art in India in the first and fourth centuries after Christ, from the Sculptures of the Buddhist Topes it Sanchi and Amravati. 4to. 1868.
and Burgess, J. The Cave Temples of India. 8vo. 1880.
Kaye, J. W. Simpson's India, Ancient and Modern, after his Water-colour Drawings. 2 vols. folio 1870.
Langles, L. Monuments, anciens et modernes, de l'Hindostan. 2 vols. folio. Paris. 1818.
Sewell, R. Report on the Amaravati Tope, and Excavations on its Site in 1877. 4to. 1880.

Taylor, M., and Fergusson, J. Architecture in Dharwar and Mysore. Folio. 1866.
Tennent, Sir J. E. Ceylon: an Account of the Island. 2 vols. 8vo. 1859.
Wilsen, F. C., and Brumund, J. F. G. Boro Boedoer op het Eiland Java. Dutch and French text. Plates, 4 vols. folio. Leyden, 1873-74.

E. Great Britain, Rossia, France, \&c.

Brash, R. R. Ecelesiastical Architecture of Ireland to the close of the Twelfth Century. 4to. 1875.
[Paris, 1870.
French Government. Dictionnaire Archéologique de Gaule; Epoque Celtique. Folio.
Imre, H. Monumenta Hungariæ Archæologica. 4to. Pest, 1869.
Kanitz, F. The Byzantine Monuments of Serbia. Vienna, 1862.
Maskell, A. Russian Art; for South Kensington Museum. 8vo. 1885.
Radel, P. Recherches sur les Monuments Cyclopéens, etc. 8vo. Paris, 1841.
Stephens, G. Old Northern Runic Monuments of Scandinavia and England, now fist collected. Folio. Copenhagen, 1866.
Stroganov, S., Zagoskin, M. N., Suegirev, J. M., and Veltman, A. T. The History of Architecture in Russia. Russian text. 6 vols. 4to. and folio. Moscow, 1849-in3.
Verneilh, L. de. Architecture Byzantine en France; St. Front de Périgueux et les Eglises à eoupoles de l'Aquitaine. Plates, 4to. 1851.
Waing, J. B. Stone Monuments, Tumuli, and Ornaments of Remote Ages ; Remarks on the Early Architecture of Ireland and Scotland. Folio. 1870.

F. North and South America.

Bollaert, W. Antiquarian, \&c., Researches in New Granada, Equador, Peru, and Chili, with Observations on the Monuments. 8ro. 1860.
Gualdi, P. Monumentos de Mejico, Folio. Mexico, 1841-42.
Norman, B. M. Rambles in Yucatan: a Visit to the Ruins of Chi-Chen, Kabah, Zayi and Uxmal. 8ro. New York, 1843.
Squier, E. Travels in Central America, particularly in Nicaragua. 2 vols. 8 vo. Neu York, 1853.
[ton. 1848
——and Davis, E. H. Ancient Monuments in the Mississippi Valley. 4to. Washing
Waldeck, F. de. Voyage Pittoresque et Archéologique dans la Province d'Yucatan el 1834 et 1836 . Folio. Paris, 1838.

IV. GOTHIC AND RENAISSANCE ARCHITECTURE.

A. Great Britain and Ireland.

Architectural Association Sketch Book. Folio. 1867-87.
[8vo. 1837
Bardwell, W. Temples, ancient and modern; or, Notes on Church Architesture. Larf. Bentham, J. History and Antiquities of tho Church as Ely. 4co. 1771.
-_- Essay on Gothic Architecture. 8vo.
Billings, R. W. Architectural Illustrations of Carlisle Cathedral. 4to. 1839.
\qquad Illustrations of the Architectural Antiquities of the County of Durham. 4 tn 1846.
[4 vols. 1848-52
1846. The Baronial and Ecclesiastical Antiquities of Scotland Illustrated. 240 platet

Blore, E. Monumental Remains of Noble and Eminent Persons. 8ro. 1824-26.
Bowman, H., and Crowther, J. S. The Churches of the Middle Ages. 2 vols. folic 1845-53.
Brandon, R. and J. A. Analysis of Gothic Architecture. 2 vols. 4to. 1847-49.

- Parish Churches; being Perspective Views of English Ecelesiastical Structures 8vo. 1848-51.
Britton, J. Cathedrals, comprising Canterbury, York, Salisbury, Norwich, Oxfori Winchester, Lichfield, Hereford, Wells, Exeter, Worcester, Peterborough, Gloucestei and Bristol. 4to. 1821-35.
ritton, J. Architectural Antiquities of Great Britain. 4 vols. 4to. 1807-14. Vol. 5, 1826; 2nd edition, 1835 ; containing Chronological and Historical Illustrations of the Ancient Ecclesiastical Architecture of Great Britain.

History and Antiquities of Bath Abbey. Royal 8ro. 1825.
History and Antiquities of Redclyffe Church, Bristol. 4to. 1813.
and Brayley, E. W. History of the Ancient Palace and late Houses of Parliament at Westminster. 8vo. 1836.
arter, J. Ancient Architecture of England. 2 vols. folio. 1837.
iveler, W. Select Specimens of Gothic Architecture. 4to. 80 plates. 1839.
layton, J. Ancient Half-timber Edifices of England. 26 plates, folio. 1846.
lose, S. .P. Holycross Abbey, co. Tipperary. Measured drawings. Folio. Belfast, 1868. sllie, J. Plans, \&c., of Glasgow Cathedral. 34 plates, folio. 1835.
jlling. J. K. Details of Gothic Architecture. 2 vols. 200 plates, 4to. 1851-56.
tman, J. S. Architectural Antiquities of Norfolk. Folio, 60 plates. 1818.

- Architectural Antiquities of Normandy. 2 vols. folio. 1820-21.
ottingham, L. N. Plans, \&c., and Details of Henry VII.'s Chapel, Westminster. 72 plates, 2 vols. fulio. 1822-29.
allaway, Rev. James. Observations on English Architecture. 8vo. 1806.
- Notices of Ancient Church Architecture in the Fifteenth Century. 4to. 1824.

Discourses on Architecture. 8ro. 1833.
ollman, F. T. Examples of Ancient Pulpits in England. 30 plates, 4 to. 1849.

- Examples of Ancient Domestic Architecture; illustrating the Hospitals, Bedehouses, Schools, \&c., of the Midale Ages in England. 4to. 1856-58.
- and Jobbins, J. R. An Analysis of Ancient Domestic Architceture in Great Britain. 2 vols. 4to. 1861-64.
rearel, A. C. Anglo-Norman Antiquities. Plates, folio. 1767.
rgdale, W. History of St. Paul's Cathedral in London. Folio. 1688.
stlake, C. L. History of the Gothic Revival. 4to. 1872.
linburgh Architectural Association. Sketch Book. Folio. Edinburgh, 1886-7.
rrey, E. B. South Winfield Manor House: Plans, \&c. 4to. 1870.
eeman, E. A. History of the Cathedral Church of Wells, as illustrating the History of the Cathedral Churches of the Old Foundation. 8vo. 1870.
ge, J. History and Antiquities of Hengreave in Suffolk. Royal 4to, plates. 1822.
Hggow Architectural Sketch Book. Folio. Glasgow, 1885.
ynne, S. R. Notes on the Churches of Kent. 8ro. 1877.
lugh, R. Sepulchral Monuments in Great Britain 5 vols. folio 1796.
(s e, F. Essay on Gothic Architecture. 8vo. 1800.
nston, A.P. Kelso Abbey : Plans, \&c. Folio. 1881.
bershon, M. Ancient Half-timbered Houses of England. 4to. 1836.
Idfield, J. Eccesiastical, Castellated, and Domestic Architecturc-of Essex. 1 plates, folio. 1848.
I fpenny, J. Gothic Ornaments in the Cathedral of York. 4to. 105 plates. 1795. - Fragmenta Vetusta; or, Remains of Ancient Buildings in York. Royal 4to. 4 plates. 1807.
[59 plates. 1813.

1. Sir J. Essay on the Origin, History, and Principles of Gothic Architecture. 4to.

I wkins, J. S. Origin and Establishment of Gothic Architecture. Plates, large 8ro. 1813.
II, A. Monograph of Cormac's Chapel, Cashel. 4to. Cork, 1874.

- Ardfert Cathedral, co. Kerry. 4to. Cork, 1870.
- Ancient Irish Architecture; Kilmalkedar Church, co. Kerry, and Temhlenahoe hurch, co. Kerry. 4to. Cork, 1870.
I. am, J. Memorials of Oxford. 3 vols. 4to. Oxford, 1837.

Jason, J. Outline Views of Beverley Minster. 10 plates, folio. (1845.)

- Reliques of Ancient English Architecture. 4to. 1852-53. [Derizes, (1876).
J.ss, Rev. W. H. The Saxon Church of St. Laurence, Bradford-on-Avon. 8ro.

E dall, J. Elucidation of the Principles of English Architecture usually denomina' ed othic. 8vo. 1818.
K_{x}, J. Le. Memorials of Cambridge. 2 vols. 4to. Cambridge, 1845.
K $\}$, E. Munimenta Antiqua. 4 vols. folio, plates. 1799-1805.
K ;, R. J. Handbook to the Cathedrals of England, 6 vols. 8vo. (Murray), 1831-69.

- Handbook to the Cathedrals of Wales. 8 ro. 1873.

Le b, E. B. Studies of English Domestic Architecture of the times of Henry VIII., izabeth, and James I. Folio. 1846.
Lipman, W. The Three Cathedrals of St. Paul, London. 8 ro. 1873.
Li.s, C. Les Eglises circulaires d'Angleterre: précédé de Notes sur les Temples ads de la Gréce et de l'Italie et sur l'église du St. Sepulere de Jérusalem. 2nd tion. 8vo. Paris, 1882.
Mi enzie, F. Collegiate Church of St. Stephen, Westminster. 18 plates, folio. 1841.

Mackenzie, F., and Pugin, A. Specimens of Gothic Architecture, consisting of Door: Windows, Buttresses, Pinnacles, at Oxford, 4 to. 61 plates.
Millers, G. Description of the Cathedral Church of Ely, \&c. 8ro. 1808.
Milner, J. Treatise on the Ecelesiastical Architecture of England. 8vo. 1835.
Nash, J. Mansions of England in the Olden Time. 4 serios, folio. 1839-49.
——Views of the Interior and Extcrior of Windsor Castle. Folio. 1849,
Neale, J. The Abbey Church of St. Alban, Herts. Folio. 1878.
Niven, W. Old Worcester.hire Houses. 1873. Old Warwickshire Houses. Foli 1878. Old Staffordshire Houses. Folio. 1882.

Paley, F. A. Illustrations of Baptismal Fonts. 8vo. 1844.
Gothic Mouldings. 4th edition, 8ro. 1877.
Parker, J. H., and Grosvenor, Rev. F. Mediæral Architecture of Chester. 800 . Cheste
Perry, J. T., and Henman, C., jun. Illustrations of Mediæval Autiquities of the Count of Durham. Folio. Oxford, 1867.
Petit, Rev. J. L. Remarks on the Principles of Gothic Architecture as applied to ord nary Parish Churches. 2nd edition, 2 vols. 8vo. Oxford, 1846.
Petrie, G. Eeclesiastical Architecture of Ireland; Origin and Uses of the Round Towe: of Ireland, 2nd edition, 8vo. Dublin, 1845.
Potter, J. Specimens of Ancient English Architecturc, 42 plates, 4to. 1845-48.
Pugin, A. Specimens of Gothic Architecture, selected from various Ancient Edifices England. 4to. 2 vols. 1823. Examples of Gothic Architecture. 3 vols. 4to. 183: Examples of Gothic Ornaments. 4to. 1831. Examples of Gothic Gables. 4to. 183:
Pugin, A. W. N. Treatise on Chancel Screens and Rood Lofts. 4to. 1851.
Rced, F. II. Illustrations of Tattershall Castle, Lincolnshire, from measured Drawing Folio. 1872.
Richardson, C. J. Studies from Old English Mansions; their Furniture. Plate, \& 4 series, folio. 1841-48. Architectural Remains of the Reigns of Elizaboh an James I. 2 parts, folio. 1838-40.
Robinson, G. T. Military Architecture of the Middle Ages; Kenilworth, Warwick, at Maxtoke Castles. 8vo. 1859.
Ruprich-Robert, V. M. C. L'Architecture Normande au XIe et XIIe siècles. I progress. Folio. Paris, 1884-87.
[186
Scott, G. G. Gleanings from Westminster Abbey, with appendices. 2nd editiou, 8 r
Sharpe, E. Architectural Parallels; or, the Progress of Ecclesiastical Architectu through the 12 th and 13th centuries. 121 plates, folio. 1845-48. Supplement. I plates of full-sized details, folio. 1848. The Architecture of the Cistercians, 4t 1874. Seven Periods of Church Architecture. 2nd edition, 8ro. 1871.
-...Johnson, J., and Kersey, A. H. The Churches of the Nene Valley, Northampto shire. 4to. 1880.
Shaw, H. Specimens of the Details of Elizabethan Architecture. 4to. J839.
Series of Details of Gothic Architecture, selected from various Cathedral Churches, \&c. Folio. 1823.
Simpson, F, Series of Ancient Baptismal Fonts. 8vo. 1828.
Smith, J. Specimens of Ancient Carpentry, 4 to. 36 plates.
Society of Antiquaries of London. Archæologia. 4tc. 1773-1874. It contains Essel on Gothic and English Architecture, and subjects connected with it, as well as Ancient and Modern Architecture.
_-_Vetusta Monumenta. 6 vols. large folio.
Society of Antiquaries of Scotland. Transactions. 4 vols. 4to. Edinb., 1712-18.? Proceedings. 9 vuls. 4to Edinb., 1852, \&e.
Spring Gardens Sketch Book, 7 vols. folio, 1866-78.
Stewart, D. J. The Architcetural History of Ely Cathedral. 8ro. 1868.
Stokes, M. Early Christian Architecture in Ireland. 8vo. 1578.
Stothard, C. A., and Kempe, J. A. Monumental Effigies of Great Britain. Folio. 181
Taylor, H. Old Halls in Lancashire and Cheshire. 4to. Manchester, 1884.
Turner, T. H., and Parker, J. H. Some Account of Domestic Architecture of Englan 12 th to 15 th centuries. 3 vols. in 4 vols. 8 vo. Oxford, 1851-53-59.
Wakeman, W. F. Handbcok of Irish Antiquities. 8vo. Dublin, 1848.
Walcott, M. E. C, Ancient Church of Scotland: History of all the Cathedrals, Co ventual and Collcgiate Churches, and Hospitals. 4to. 1874. Church and Conrentı. Arrangement. 8ro. 1861.
Waring, J. B. Stone Monuments, Tumuli, and Ornament of Remote Ages. 4lo. 18:
Warton, Rev. T. Essay on Gothic Architecture, 8vo. 1800.
Waterhouse, P, Pediments and Gabl-s. 4to. Oxford, 1886.
Wickes, C. Illustrations of the Spires and Towers of the Medirval Churches of Enylat 3 vols. 72 plates, folio. $1853-59$.
Wild, C. Cathedral Church of Lincoln. 4to. 1838.

1 kinson, G. Practical Gcology and Ancient Architecture o ${ }^{c}$ Ireland. 8vo. 1845. liams, R. L., and Undrrwood, M. The Village Churches of Denbighshire. 4 to. enbigh, 1872.
son, F. R. An Arclitectural Survey of the Churches in the Archdeaconry of Liodisrne, Northumberland. 4to. Newcastle, 1870.
kles, B. Cathedrals of England and Wales. 2 vols. 1836-42.
Inoth, W. Ancient Castles of England and Wales. 2 vols, 8vo. 1825.

V. GOTHIC AND RENAISSANCE ARCHITECTURE.-B. Other Countries.

r, F. Mittelalterliche Backstein-Bauwerke des Preussischen Staates. 150 plates, lio. Berlin, 1860-66.
[Truluuse, 1882. A und, L., Rolland, J., and de Rivières. La Cathédrale Ste. Cécile d'Alli. Folı. A orson, R. Examples of the Municipal, Commercial, and Street Architecture of rance and Italy, from the 12 th to the 15 th Century. 4to. 1874.
A itectural Association. The Domed Churches of Charente. 4to. (1882.)
A dadele, F. Buildings and Antiquities of Jerusalem, \&cc., with a Tour in Syria and rypt. Plates, 4to. 1838.
A del Society, The. Cathedral of Santiago de Compostclla in Spain: Sculpture of - Portico. Photog. folio. 1868. Sculptured Ornament of the Monastery of talha. Folio. 1868.
[Paris, 1877.
Buis, N., Resanoff, A., and Krakau, A. Monographie de la Cathédrale d'Orvieto. Folio.
Bl ignac, J. D. Histoire de l'Architecture Sacrée du I^{e} au Xee Siècle dans les anciens êchés de Genève, Lausanne et Sion. 2 vols. 8ro. Lausanne, 1853-5 4 .
Breseré, S. Denkmale der Baukunst vom ViIten bis zunı XIIIten Jahrhundert am eder-Rhein. 72 plates, folio. Munich, 1833.

- Vues, Plans, Coupes, et Détails de la Cathédrale de Cologne. Larye folio. Ittgardt, 1827. Text in 4to.
[1836-42.
Bëcher, C. G. W. Die Holz-Architectur des Mittelalters. 26 plates, folio. Berlin, Lea assé, J. J. Les Cathedrales de France. 4to. Tours, 1843.
- Le plus belles Églises du Monde, notice historiquc. 8vo. Tours, 1857, 1861.

Caßr, C. Noureaux Mélanges d'Archéologie, d'Histoire et de Littérature sur le Moyen -e. 4to. Paris, 1874.

- - and Martin, A. Mélanges d'Archéologic, \&c. 4 vols. 4to. Paris, 1847-56.

Ca elletti. Le Chiese d' Italia dalla loro origine sinoai giorni nostri, 8vo. Venezia, 1847. CH. o, G. Antichità di Verona. Folio. Verona, 1764.
Ca ont, A. de. L'Architecture Religieuse. 4th edition, 8vo. Paris, 1859.
Ch. y, N. M. J., aud Ramée, D. Le Moyen Âge Monumental et Arcliéologique. 2 vols. fo. Paris, 1840-44.

- La France Monumentale et Pittoresque. Folio. Paris, 1842, \&c.

Clum, H. Illustrations of the Domestic Architecture of France. Folio. 1853-56.
Cre, E., and Taylor, G. L. The Arclitecture of the Middle Ages at Pisa. 4to. 1829.
Dhin, F. de. Etude sur l'Architecture Lombarde, et sur les origines de l'Architecture
Inano-Byzantine. Text 4to.; 100 plates, folio. Paris, 1865-82.
Dir, W. G. Architectural Studies in France. Folio. 1877.
Hecux et Doury. Histoire Archéulugique, etc., de lit Sainte Chapelle du Paldis. Folio.
1 lel uérière, E. Description Historique des Maisons de Rouen. 2 vols. 8 ro. Rouen, 1841.
Lida, A. N. Annales Archéologiques. 28 vols. 4to. Paris, 1844-81.
Lassus, J. B. A., and Duval, A. Monographie de la Cathédrale de Chartres.
Tt 4to. 1835. Plates fulio. Paris, 1842.
1)re r, C. Japan: its Architecture, Arts, \&c. Folio.
1)roa, L. La Guienne Militaire. 4to. Paris, 1863.

Dutd, P. Monographie de Notre Dame de Chartres. 4to. Paris, 1881.
Ewedra, P. de la, and Villa-Amil. L'Espagne Artistique et Monumentale. French and rish text. 3 vols. folio. Paris, 1842-59.
Essefvein, A. Norddeutschlands Backsteinbau im Mittelalter. Folio. Carlsruhe, 1863.
Ficrés son, J. Essay on the Aneient Topography of Jerusalem. 8vo. 1847. [1878. Temples of the Jews, and other Buildings in the Haram area at Jerusalem. tto.
Fiorere, E. Monuments d'Architecture, de Sculpture et de Peinture de l'Allemagne,
def is l'établissement du Christianisme jusqu'aux temps modernes. 4 vols. folio.
Pt; 1859-60.
Denkmale Deutscher Kunst von Einführung des Christenthums bis auf die neueste 4tr, Leipzig, 1858-67.
[folio. 1863.
Pompis et Simoneau. Le Rhir Monumentale et Pittoresque d'après Nature. 30 riews,
Frimetti. G. Storia e Descrizione del Duomo di Milano 4to. Milan, 1821.
Lien Guvernment. Archives de la Commission des Monuments Historiques. Plates,
fol Paris, 1856-76.

Gaílbaband, J. L'Arelistecture du Moyen Age et de la Renaissance du Vo au XV Siécle et les Arts qui en dépendent. 400 plates, 4 vols. 4to. 1 vol. folio. $1850-59$ George, E. Etchings on the Mosel. 4to. 1873.
Gladbach, E. Der Schweizer Holzstyl in seinen cantonalen und constructiven Versel denheiten vergleichend dargestellt mit Holzbauten Deutschlands. Folio. Darmst: Goerz, R. Die ’eterskirche zu Mainz constructiv erläutert. Folio. Mainz, 1847. [18 Grarina, D. B. Il Duomo di Monreale. 2 vols. Folio. Palermo, 1859.
Guhl, E. Der Dom zu Köln. 4to. Stuttgart, 1851.
Guilhermy, F. de, and Lassus, J. B. A. La Sainte Chapelle de Paris, après les restau tions. Folio. Paris, 1857.
Hefner-Alteneck and Becker, C. Kunstwerke und Geräthschaften des Mittelalters der Renaissance. 3 vols. 4to. Frankfurt, 1852-63.
Heideloff, C. A. von. Nürnturg Middle Age Buildings. Folio. 1843.
\square Die Kunst des Mittelalters in Schwaben. Text by F. Müller. 8 parts, 30 pla folio and to. Stuttgart, 1855-64.
Johnson, R. J. Specimens of Early French Architecture; selected chiefly from Churches of the Isle of France. Folio. Ncweastle-on-Tyne, 1861-64.
Joliment, F. J. de, and Chapuy, N. M. J. Les Cathédrales de France. 115 pla folio. Paris, 1826-31.
Jong, S. de. Contributions to the Knowledge of the Gothic or Pointed Style in Netherlands. Folio. Amsterdam, 1847.
Jourdain, L., et Duval. Les Stalles de la Cathédrale d'Amiens. 8ro. Amiens, 1843
Kallenbach, G. G. Geschichts-Abriss der Deutsch Mittelalterlichen Baukunst. δ 86 plates entitled "Chronologie," folio. Munich, $1816 . \quad[4$ to Halle, 1850,
-_ and Schmitt, J. Die christliche Kirchenbaukunst des Abendlandes. 48 plat
King, T. H. Study Book of Medieral Architecture and Art : the Principal Monume to uniform scales. $2 c 0$ plates, 2 vols. 4to. 1859.
Knight, H. G. Saracenic and Norman Remans, to illustrate The Normans in Sic New edition, folio. 1846.

- Ecelesiastical Architecture of Italy, from the time of Constantine to the ! century. Plates. 2 rols. folio. 1842-44.
Kreutz, G. L. La Basilica di S. Marôn in Venezin. 57 plates, folio. Venice, 1843-5i
Lacroix, P. Les Apts au Moyen Âge et à l'Époque de la Renaissance. 8ro, Pa 1869; 1872, 2nd series.
[Paris, 11
Langlois, E. H. Description Historique des Maisons de Rouen. 8ro. with ${ }^{\text {lin }}$
Lassus, J. B. A., and Quilherat, J. E J. Album de Villard de Honnecourt, Archit du XIIIe Siècle: Considérations sur la Renaissance de l'Art Français au XIXe Sii 72 plates, 4 to. Paris, 1858. Translated, with notes, by Prof. R. Willis. 4to. 1
Lenorr, Λ. Architceture Monastique. 4to. Paris, 1852-56.
Lespeyres, P. Die Kirchen der Renai-sance in Mittel-Italien. Folio. Berlin, 188:
Lozano. P. Antigüedades Árabes de Espagıa. 2 vols. folio. Madrid, 1804, \&ce.
Lübke, W. Die mittelalterliche Kunst in Westfalen 8vo.; plates folio. Leipzig, 1
-_ Ecelesiastical Art in Germany during the Middle Ages, translated from German by L. A. Wheatley. 2nd edition, 8vo. Edinburgh, 1873, 1876.
Lucas, C. Architecture en Portugal, Mélanges hist. et archéologique. 8ro. Paris, 1
Lusson, A. L. Spécimen d'Architecture Gorhique ; ou Plans, Coupes, Elérations d' Chapelle du Chateau de Nenville. Folio, 17 plates. Paris, 1839.
Luynes, Le Duc de. Recherches sur les Monuments, etc., des Normands, etc., dans l'I Méridionale. Folio. Paris, 1844.
Mallay, M. Essai sur les Églises Romanes et Romano-Byzantines du Puy de D. 3. Folio. Moulins, 1838-40.
Mandelgren, N. M. Monuments Scandinares du Moyen Âge, arec les peintures quis décorent. Folio. Paris, 1862.
[Bruxelles, 1 .
Maquardt, C. Monuments d'Architceture et de Sculpture en Belgique. 2 vols. f^{\prime}).
Martin, P. Recherches sur l'Architecture du Moyen Âge et de la Renaissance a L 1 , etc. Folio. Lyon, 1863.
Milan. Nuova Descrizione del Daomo di Milano, \&c. 4to. plates. Milano, 1820.
Mithoff, II. W. H. Archiv für Niedersachsens Kunstgeschichte. Folio. Hannover, 13.
Moller, G. Denknäler der Deutschen Baukunst, herausgegeben von Hessemer. plates, 2 vols. folio. Leipzig, 1821. Vol. iii. edited by E. Gladbact. New edi u, folio. Frankfurt, 1852.
Moret, S., et Chapuy, N. M. J. Moyen Age Pittoresque. Folio. Paris, 1857 , \&ce.
Murphy, J. Plans, \&e., and Views of the Batalha in Portugal. Folio, plates. 15. 2nd edition, 1836.
Nail, E. le. Le Château de Blois; extérieur et intérieur, ensemble et dctails, c Folio. Paris, 1875.
Nesfield, W. E. Specimens of Mediæval Architecture in France and Italy. $100 \mathrm{pl}: \mathrm{s}$,
rodier, C, and Taylor, J. Voyages Pittoresques de l'Ancisune France: Haute-Normandie ; Dauphiné; Franche-Comté; Auvergne; Languedoc; Champagne; Picardie; Bretague. 14 vols. folio. Paris, 1820-46.
orwegian Government. The Cathedral at Throndheim, by P. A. Muuch and H. E. Schirmer. Folio. Christiania, 1860.
kely, W.S. Development of Christian Architecture in Italy. 8 vo. 1860.
sten, F. Bauwerke in der Lombardei vom VIIten lis zum XVIten Jahrlundert. French and German text. Folio. Darmstadt, 1846-48.
alloni, B. Chiese Antiche di Pisa. 8ro. Pisa, 1830.
unvicini, T. V. Die Renaissance-Architektur der Lombardei. Fol'o. Dresden, 1883. ellassy de 1 Ousle. Mistoire du Palais de Compiègne: Chronique du Séjour des Sourerains dans ce Pa'ais. Folio. Paris, 1862.
relle, A. Eurres Diverses: Recueil des plus bclles Vues, \&c. 2 vols. 428 engravings of cistles, \&c. Folio. Langlois, 1680, cir.
etit, Rev. J. L. Architectural Studies in France. 8ro. 1854.
sit, V. L'Architecture Pittoresque ; ou Recueil des Vieux Châteaux de France des XV° et XVLe Siècles. Folio. Paris, 1854. - Châteaux de la Vallée de la Loire, des XV ${ }^{0}$, XVIe ct XVLI ${ }^{\circ}$ Siècles. 2 rols, fol ${ }^{\circ}$. nor, R. Monographie du Cbâteau d'Anet, construit par P. de l'Orme en 1548. Folio. Paris, 1866.
llet et Roux, H. Monuments d'Architecture Grecque, Romaine, Gothique, de la Renaissance, recueillis en France; Dé orations Sculpturales. \&c. Folio. Paris, 1840-41. pp, J., aid Bülau, T. Les Trois Ages de l'Architecture Gothique a Ratisbonnc. Folio. Paris, 1840.
gin, A., and Le Keux, H. Architectural Antiquities of Normandy. 4to. London, 182 j. 2nd edition, edited by R. P. Spiers. 4to. 1874.
ttrich, L. Drnkmäler der Baukunst des Mittelalters in Sachsen. 5 vols. 387 plates, folio. Leipzig, 1835-52.
aglio, A. F. von. Denkmäler der Baukunst in Bayern.
ast, A. F. von. Die altchristlichen Bauwerke von Kavenna vom Vten bis zum ixten Jahrhundert. Folio. Berlin, 1842.
- Denkmäler der Baukunst in Preussen. Folio. Berlin, 18ă2, \&c.
mée, D., and Pfnor, R. Monographie du Château de Heidelberg. Folio. Paris, 1859. yet, O., and Thomas, A. Milet et le golf Latmique. 4to. Paris, 1880.
voil, H., Architecture Romane du Midi de la Frence. 4 vols. 4to. Paris, 1859-73.
v, G. Étude sur les Monuments de l'Architecture Militaire des Croisés en Syrie et hans l'ile de Chypre. 4to. Paris. 1871.
[Folio. 1883.
hter, J. P. Literary Works of L. da Vinci-as "Architect." By H. de Geymüllı r.
1 ault de Fleury, G. La Toscane au Moyen Âge, Architecture civile et militaiıe. 8 ru. lates, folio. 2 vols. Paris, 187 t.
- Les Monuments de Pise au Moyen Âge. 8vo. Plates, folio. Paris, 1866.
- Édifices de Pise, relevés, dessinés, et décrits. 4to. Paris, 1862 ; 1867.
- Ie Latran au Moyen Âge. Fulio. Paris, 1877.
ge, L. Der Glockenthurm des Dım zu Florenz. Folio. Berlin, 1853.
'p, L. Chiese Principali d' Europa. 11 buildings. Folio. Milan, 1824.

1. rich-Robert, V. M. C. Lifclitecture Normaude aux XI^{e} et XII ${ }^{\mathrm{e}}$ Siècles. In ogress. Folio. Paris, 188t-x7.
1 kin, J. Stones of Venice. 3 vols. 8 vo and 1 vol. folio, plates. 1851-53. 1858-67. ardo, P. La Basilica di S. Marco in Venezia. 4to. 1883.
zaro, D. Études sur les Monuments d'Ítalie Méridiocale des XIII et XIVe Siècles. Hio. Naples, 1872.
yes, A. G. R. Essai sur l'Architecture Ogivale en Belgique ; Mémoire Couronné. o. Bruzelles, 1840. Translated by H. Austin in Wtale's Quarterly Papers on chitecture. 4to. 1845.

- Histoire de l'Architecture en Belgique. 2nd edition, 4 vols. 12 mo . Bruxelles, 1853.
nidt, C. W. Baudenkmale in Trier. Folio. Treres, 1843.
itz, F., and Ennen, L. Der Dom zu Cöln. 8vo. and folio. Colngpe, 1871-77.
iber, H. Das Münster zu Strassburg. Folio. Karisruhe, 1829. Das Münster zu iburg. Folio. Karlsruhe, 1829.
tz, J. C. Danzig und seine Bauwerke. Text 4to.; plates folio. Berlin, 1872.
z, H. W. von. Denkmäler der Kunst des Mittelalters in Unter-Italien, herauseben von A. F. von Quast. 4 vols. 4to., 1 vul. folio. Dresden, 18co.
z, A. Die Renaissance in Italien. 4 vols. folio. Hamburg, $188^{\circ} 2$.
ico, P. Sull' Architettura e sulla Scultura in Venezia dal medio evo sino ai ncstri
Eni. 8ro. Venezia, 18+7.
hit R. N. Architectural Sketches from the Continent (France, Italy, and Germany). 12. London, 1858.

Silva, J. P. N. da. Dissertation artistione sur l'Architecture en Portugal depuis le X au XVIIIe Siècle. 8vo. Lisluonne, 1869.
__ Notice historique et artistique des principaux Édifices Religieux du Portue arec la Description des Plans de leurs slises. 8 vo. Lisbonne, 1873.
Simonau, C., et Fils. Principaux Eglises Gothiques de l'Europe. Texte historique] A. Voisin. Folio. Bruxelles, 1854-55.

Ntappaerts, F., and Stroobant, F. Monuments d'Architecture et de Sculpture en Belgiq 2 vols. 63 plates, folio. Bruxclles, 1854-55.
Statz, V., Ungewitter, G., and Reichensperger, A. The Gothic Model-book : a collect of Gothic Types from existing Monuments in Germany. Folio. 1859.
Stieglitz, C. L. Altdeutschen Baukunst. 34 plates, 4to. and folio. Leipzig, 1820.
Street, G. E. Brick and Marble in the Middle Ages in the North of Italy. 8ro. 18 2nd edition, 1874.
\ldots Some Account of Gothic Arehitecture in Spain. 8vo. 1865.
Terzi, A. La Chapelle du Palais-Royal de Palerme. Folio. Naples, 1871.
Truefitt. G. Architectural Sketches on the Continent. 4to. 1817.
Tschischka, F. Der St. Stephens-Dom in Wien. New edition, folio. Wien, 1844.
Ungewitter, G. G. Vorlegeblätter für Ziegel und Stein-Arbeiten. 2nd edition, fu Leipzig, 1850.
Vallardi, P. and J., and Bramati, J. and A. Il Duomo di Milano. Folio. Milan, 18
Verdier, A., et Cattois, F. Archittcture Civile et Domestique au Moyen Age et : Renaissance. 4to. Paris, 1852-57.
Verneilh, L. de. Architecture Byzantine en France; St. Front de Périgueux et Eglises ì coupoles de ľAquitaine. 4to. Paris, 1852.
Vjollet-le-Duc, E. Military Architecture of the Middle Ages. Translated from French by M. Macdermott, with Notes on English Castles, by C. A. Hartshorne. \& Oxford and London, 1860.
et Lassus, J. B. A. Moncgraphie de Notre Dame de Paris et de la Nulur Sacristie. 63 plates, \&c. folio. Paris, 1858.
Viten, L. Monographie de l'Eglise Notre Dame de Noyon. 4to. Paris.
Vogüé, Comtc M. de. Syrie Centrale: Architecture Civile et Religieuse du Ier au I Siècle. 4to. Paris, 1867.
Waring, J. B. Architectural Studies in Burgos anl its Neighbourhood. Folio. 1ε
—_ Illustrations of Architecture and Omament. Folio. 1865.

- and Macquoid, T. R. Examples of Architectural Art in Italy and Spain, chi in the XIIIth and XVIıh centuries. Folio 1850.
Welbb, B. Sketehes of Continental Ecclesiology ; or, Church Notes in Belgium, C many, and Italy. 8vo. 1848 . [Folio. Berlin, 1
Weerth, E. and M. Kunstdenkmäler des Christlichen Mittelalters in den Rheintan
Whewell, W. Architectural Notes on German Churches; with Notes on a Tour Picardy and Normandy. 3rd edition, with Notes on the Churches of the Rhine, by F. de Lassaulx. 8ro. 1852.

Whittington, G. D. Eeclesiastical Antiquities of France. Large 8vo. 1811.
Wiebcking, C. E. ron. Analyse Historique et Raisonnée des Monumens de l'Antiq des Édifices les pius remarquables du Moyen Age, etc. Text, 4 vols. 4 to. Plates, 1 Munich, 1821-26; and 1838-40.
Wild, C. Examples of Architectural Grandeur in Belgium, Germany, and France. sfries, new edition. Folio. 1846.
Winkles, B. French Cathedrals. 4to. 1837.
Woillez, E. Archéologie des Monuments Religieux de l'Ancien Beauroisis, depu ${ }^{0}$ Ve jusque vers la fin du XIIe Siècle. Folio. Paris, 1842.
Yriarte, U. Florence; Histoire, ctc. Folio. Paris, 1868. Transl. by C. B. Pict. Folio. 1882. Venise; Histoire, etc. Folio. Paris, 1878. Transl. by F. J. Sit L. 4to. 1880. F. de Rimini. efc. 4to. Paris, 1883.
Zanotto, E. Il Palazzo Ducale di Venezia. New edition, 4to. Venezia, 1846-58.

V. MODERN ARCHITECTURE.--A, Great Britain and Ireland.

Adam. W. Vitrurius Scoticus ; a Collcetion of Public and Private Buildings in Scol id. Folio, 160 plates. Edinburgh, $1720-40$, and 1810.
Adams, M. B. Artists' Homes. Folio. 1883.
Ashpitel, A., and Whichcord, J. Baths and Warhhouses. 3rd edition, 8vo. 1852.
Baly, P. P. Baths and Washhouses. 4to. 1852. A ppendix, 4 to. 1853.
Brace, H. G. Middle class House Architecture. 8vo. 1881.
Brettingham, M. Plans, \&c., of Holkham, in Norfolk. Folio. 1763.
Buräctt, H. C. Cottage Hospitals. 2nd edition, 8vo. 1880.
rn, R. S. Architecture and Building; a series of Working Drawings and Designs, vith Essays by eminent Architects. 55 plates, folio. Edinburgh, 1863-65.
mpbell, C. Vitruvius Britannicus. 5 vols, the two last being a Continuation by Noolfe and Gandon. Folio. 1715, 1725, 1731, 1767, 1771.
e, G. A. Baths and Washouses. 4to. 18504 .
imbers, Sir W. Plans, Elevations, Sections, \&c., of the Gardens and Buildings at Kew. Fulio. 1757.
rke, J. Schools and Schoolhouses. 27 plates, folio. 1852.
yton, J. Parochial Churches of Sir C. Wren. 60 plates, folio. 1849-52. [1870.
ritt, J. Church Design for Congregations; its Developments and Possibilities. 8vo.
wnes, C., and Cowper, C. The wholo Construction of the Building for the Great Exribition of 1851. 4to. 1852.
[8vo. 1850.
ellings of the Labouring Classes; their arrangement and construction; by the Society.
thake, C. L. Hints on Household Taste in Furniture, \&c. 8vo. 1872.
lteher, B. Model Houses for the Industrial Classes. 2nd edition, 8vo. 1877
liston, J. Public Buildings erected in the West of England. 4to. 1838.
, W. Baths and Washhouses. Folio. Liverpool. 1849.
1 larton, A. Granmar of House Planning. 4to. Edinburgh, 1864.
(bs, J. Book of Architecture, containing St. Martin's Church, \&c. Folio. 1728.

- Designs for the Radelyffe Library at Oxford. Folio. 1747.
(dicutt, J. Heriot's Hospital, Edinburgh, the Design of Inigo Jones. Folio. 1828.
1 rewill, A. W. Thorpe Hall. 12 plates, folio. 1852.
linicke. Bericht über Schlachthäuser und Viehmarkte. (Germany, Englaud, and rance.) Folio. Berlin, 1866.
If, J. Homes of the Working C’asses. 20 plates of the Model Villages of Akroydon, opley, West Hill Park, Halifax, \&c. 8vo. 1866.
t se Planning, Grammar of; Hints on arranging and modifying Plans, \&c. 12 mo .1864.
Jo, R. Report on the Construction and Ventilation of Pentonville Prison. 8vo. $18+4$.
J op. Baths and Washhouses. 8vo. 1853.
J Js, Inigo. Designs for Public and Private Buildings, by Kent. Folio. 1770.
Br r, R. An English Gentleman's House; being Practical Hints for its Plan and rrangement-containing descriptions of Houses adapted to various ranks and fortunes, om the Villa to the Palace, \&c. 3rd edition, revised, 8 ro. 1871.
L.g, D. Plans of Buildings executed in various parts of England, including the aston-House. Folio. 1818.
L aulx, V. de, and Elliott, J. Street Architecture; a series of Shop Fronts. 1855.
I/s, W. H. The Travellers' Club-House, by C. Barry ; with Essay on Italian Archicture. Folio. 1839.
L is, J. Original Designs in Architecture, consisting of Plans, \&c., of Public and Private rildings in England and Ireland. 2 vols. folio, 61 plates. 1780-97.
Li aries. Reports on Public Libraries. Folio. 1844.
[8vo. 1878.
M shall, J. On a Circular System of Hospital Wards; with Remarks by P. G. Smith.
Mlethwaite, J. T. Modern Parish Churches; their Plan, Design, and Furniture. o. 1874.

Mhell, R. Descriptions of Buildings erected in England and Scotland. Foiio. 1801.
M cis, F. O. The Country Seats, \&c., of Great Britain and Ireland. 5 rols. 4to. 66-80.
Mat, F. J., and Snell, H. S. Hospital Construction and Management. 2 parts, 4to. 83-84.
N.e, J. P. Views of the Seats of England, \&c. Two series. 11 vols. 4to. 1818-29.

Pie, J. Plans, Elevations, \&c., of Noblemen's and Gentlemen's Houses in various unties. Folio, 175 plates. 1783.
Parrorth, J. W. aud W. Museums, Libraries, and Picture Galleries; to which is apoded the Public Libraries Act, 1850, \&c. 8vo. 185 s 3.
[1886.
Prer, T. The Construction of Silos, aud Compression of Green Crops for Silage. 8 vo .
P_{1} ns. Report on Construction, \&c., of Convict Prisons. 8ro. 1851.
Pinn, R. P. The Architectural Designs of W. Burges. Folio. 1883 and 1887. The use of W. Burges. Folio. 1886.
Ps, W. H. Royal Residences of Windsor Castle, St. James's Palace, Carlton House, nsington Palace, Hampton Court, Buckingham Palace, and Frogmore. . 3 vols. 4to. 0 coloured plates. 1819.
Re Iyffe, C. W. Blenheim Palace. Folio. 1812.
Ri ardson, G. New Vitruvius Britannicus. 2 vols. folio. 1802; 1808.
Rerts, H. Dwellings for the Labouring Classes. 3rd edition, 8vo. 1850.

- - Description of H.R.H. Prince Albert's Model Houses for Families. 8vo. 1851.

Rcas, E. C. Technical School and College Building. 65 plates, 4 to. 1887.
kunson, J. B. Shop Fronts of a plain and elaborate character. 4to. Derby, 1870.

Eohson, E. R. School Architecture; or, the Planning, Designing, and Furnishing Schoulamses. 8 ro. 1875. 2nd edition, 8ro. 1877.
Sncll, II. S. Charitable and Parochial Establishments. 4to. 1881.
——Cireular Hospital Wards. Svo. 1885.
and Smith, W. and J. Aberdeen Royal Infirmary. 4 to. 1887.
Starforth, J. Designs for Villa Residences. 40 plates, 4to. Edinburgh, 186i.
——Desgos for Villa Residences and Farm Architecture. 102 plates, tto. Ed burgh, 18.6.
Stevenson, J. J. Housc Architecture. 2 vols. 8 ro. 1880.
Street, IV. C. Steam Laundry Buildings and Machinery. 8ro. 1879.
Taylor, A. T. The Towers and Steeples designed by Sir C. Wren. 8vo. 1881.
Truefitt, G. Designs for Country Churches. 4to. 1850.
Watts, W. Views of the Seats of the Nobility, \&c., in England. 4 to. 1779-90.
Whittock, N. Shops Fronts of London; their construction, decoration, \&c. 4to. 18 (Sec The Civil Engineer; The Builder ; The Building News; The Architect; and utl Illustrated Journals in Class XXILI.)

V. MODERN ARCHITECTURE.-B. France and Belgium.

Adam - Leviel - , and Leblan. Recueil des Maisons modernes les plus remarquab exécutées à Paris. 66 plates, folio. Paris, 1858.
Alhoy, M., et Lurine, L. Les Prisons de Paris. 8ro. Paris, 1846.
Armand, A. Plans, Coupes, et Élévations du Grand Hô̂tel construit ì Paris en 1861 Folio Paris.
Baltard, L. Paris et ses Monumens. Folio. Paris, 1803-5.
Baltard, V., et Callet, F. Monographio des Halles Centrales de Paris. Folio. Par
Barqui, F L'Architecture moderne en France. 120 plates. Folio. Paris, 1864-68.
Baudot, A. de. Églises de Bourgs et Villages. 2 rols. 4to. Paris, 1867.
Berty, A. La Renaissance Monumentale en France. Spécimens de Composition d'Ornementation Architectoniques; Charles VIII à Louis XIV. 4to. Paris, 1851
Blandot. L. Maisons et Écoles Communales de la Belgique. Folio. Paris, 1869.
Blondel, J. B. Plan, Coupe, Élévation et Détails du nouveau Marché St. Gerınain. Fol Paris, 1813.
[Folio. Paris, 18
Brogniart, A. T. Plans du Palais de la Bourse de Paris et du Cimetière Mont-Lou
Calliat, V. Parallèle des Maisons de Paris, do 1850 à 1860. Folio. Paris, 1851-64
\ldots et Leroux de Lincy. Hôtel de Ville de Paris. 44 plates, folio. Paris, 18. Détorations Intérieures. New edition, 2 vols. fulio. Paris, 1860.
—— єt Lance, A. Encyclopédie d'Archite cture. 12 vols. 4to. Paris, 1851-62.
Castermans, A. Parallèle des Maisons de Bruxelles, etc., construites depuis 1830. Fin Bruxelles, 1850-54.
[Marseille, 18
Coste, P. La Cathédrale de St. Pétersbourg. La future Cathédrale de Marseillo. 8

- Palais de la Bourse de Marseille. 8ro. Marseille, 1874.

Daly, C. L'Architecture Privée au XIXe Siécle; Maisons de Paris. 3 rols. fol Paris, 1863-65. Second series, 3 vols. folio. Paris, 1872. Third serits. Decorations. Architecture Funćraire; Spécimens de Tombeaux, Chapelles Funérail Mausolées, Sarcophages, Stèles, Croix, etc. Folio. Paris, 1871.
Dardel, R. Monographie du Palais de Commerce édifié à Lyon. Folio. Paris, 1868
Délaux. Chambre de Marie de Médicis au Palais du Luxembourg. Folio. Piris, 18
Desjardins, J. Monographie de l'Hôtel de Ville de Lyon. Folio. Paris, 1867.
Gisors, A. de. Le Palais du Luxembourg. 8vo. Paris, 1847.
Goetghebuer, J. P. Choix des NInnuments, Édifices et Maisons les plus remarquables. Pays-Bas. $\quad 150$ plates, folio. Ghent, 1827.
Gourlicr, C. Des Voies Publiques et des Habitations Particulières à Paris. 8ro. Pal
Grantham, R. B. G. Description of the Abattoirs of Paris. 8vo. 1850.
Grim, A. Recueil de Maisons de Ville et de la Campagne. 4to. Paris, 1847-53.
Heré, E. Plans, etc., de la Place Royale de Nancy. 14 plates, folio. Paris, 1703.
Isabey, L., et Leblanc, M. Villas, Maisons de Ville et de Campagne, composées smr motifs des Habitatious de Paris Moderne, des XVIe-XIXe Siécles. Folio. Pal 1864.

Jolimont, F. G. T. do. Les Mausolées Français dans Père-la-Chaise. 4to, Pat
Krafft, J. C. Recueil de Architecture Civile, contenant les Plans, Coupes, et Élérati des Châteaux, Maisons de Campagne, et Habitations Rurales, etc. Folio, 121 plat Paris, 1812.
Legrand, J. G., et Landon, C. F. Description de Paris et de ses Édifices. 2 rols. Pa
Mariette, P. J. L'Architecte Français, etc. Folio. Paris, 1727. Vol. 2. Paris, 17 Continuation by Marot, J. Paris, 1727.
Moisy, MI. Fontaines de Paris, anciennes et nourelles, par Dural. Folio, 59 plat
arjoux，F．Architecture Communale；Hôtels de Ville，Mairies，Maisons d＇École， Salles d＇Asile，etc． 3 vols．4to．Paris， $1870-81$.
ormand，A．L＇Architecturo des Nations Étrangères，Esposition Universelle de Paris， 1867．Folio．Paris， 1870.

L．M．Mon ıments Funéraires，choisis dans les Cimetières de Paris et des Prin－ cipales Villes de France． 3 parts．follio．Paris，1832－36，（1847），and $18 \mathrm{n}^{\circ} 0$.
－L．，et La Croix．Paris Moderne；ou Choix de Maisons． 3 vols． 480 plates， 4 to． Paris，1837－38－45．
aris．Les Eglises de Paris．8ro．Paris， $18+3$.
－Maisons les plus remarquables de Paris construites pendant les trois dernières années．F＇olio．Paris， 1870.
itte，P．Etudes d＇Architecture．4to．plates．Paris， 1755.
enot，A．Les Cités Ourričres de Mulhouse et du Département du Haut－Rhin．8vo． Mulh．， 1867.
for，R．Monographie du Palais de Fontainebleau．Folio．Paris， 1861 and 1866.
－Architecture，Lécoration et Ameublement de l＇époque de Louis XVI．Folio． Paris， 1864.
amée，D．，et Roguet，F．Palais de Fonさainebleau depuis les XVIe et XVII ${ }^{\text {S }}$ Siècles． Folio．Paris，1859－51．［Folio．Paris， 1858. oguet，F．Choix de Châteaux，Palais et Maisons de France du XV ${ }^{\text {o }}$ au XVIII ${ }^{\circ}$ Siécle． hault de Fleury，C．，fils．Museum d＇Ifistoiro Naturelle à Paris．Folio．Paris， 1844. add，J．B．Collection de Plans，etc．，des Principaux Monuments de la Ville de Bruges depuis le XIVe jusqu＇au XVIIe Siècle． 28 plates，folio．Bruges（1824）．
urageot，C．Palais，Châteaux，Hôtels et Maisons de France，du XVo au XVIIIe Siécle． 4 rols．plates，folio．Paris， 1867. ［1874－75． ollet－le－Duc，E．E．，and Narjoux，F．Habitations Modernes． 2 vols．folio．Paris，

V．MODERN ARCHITECTORE．－C．Germany，\＆c．

ateauneuf，A．de．Architectura Publica． 14 plates，fulio．Berlin， 1860.
itner，F．ron．Sammlung der Entwürfe ausjeführter Gebäude． 2 vols．folio．Munich， 1814－47．
ideloff，C．A．von．Architectonische Entwürfe und ausgeführte Bauten im Byzantin－ ischen und Altdeutschen Styl． 2 vols plates，folio．Nürnberg， 1851.
，hhstetter，J．Architectonische Ausführungen． 5 parts，folio．
「1866．
fffmann，Λ ．W．Chemical Laboratories in the Universities of Bonn and Berlin．4to． enze，L．von．Anweisung zur Architectur des christlichen Cultus． 36 plates，folio． München， 1837.
－Sammlung architectonischer Entwürfe． 50 plates，folio．München， 1847.
oblauch，G．，and Hollin，F．Die neue Synagogue in Berlin．Folio．Berlin， 1867.
tzger，E．Formenlehre zur Rundbogen－Architectur．Folio．München， 18 j1．
ller，G．Entwürfe ausgeführter und zur Ausführung bestimmte Gebäude． 29 plates， dio．Darmstadt，1820－31．
issian Government．Vorlegeblätter für Baumeister．4to．and folio．Berlin， 1844.
cazyski，A．Histoire de l＇Art Moderne en Allemagne． 3 rols．folio．Paris，1836－41．
\｛inkel，C．ron．Sammlung architectonischer Entwürfe．Large folio． 174 plates． 3erlin，1819－48．
\＆glitz，C．Plans et Dessins tirés de la Belle Architecture（England and France）． 113 lates，folio．Liepzig and Moscow， 1801.
\oint ler，A．Das neue Museum in Berlin．Folio．Potsdam，1850．Das neue Univer－ itäts－gebaude zu Konigsberg．Folio．Berlin，186j．Die burg Hohenzollern． olio．Berlin， 1866.
［1847．
${ }^{3}$ ？，E．Architectonische Mittheilun乌en aus der Neuzeit Berlins． 2 parts，folio．Berlin，
！yer，J．，and Voigt．Collection of Sketches of Private Houses and Municipal Buildings， rincipally executed at Munich．Folio．Munich， 1850.

V．MODERN ARCHITECTURE．－D．Spain，Italy，Russia，\＆c．

I do，J．de S．J．do．Monumento sacro da Fábrica do Real Convento de Mafra．Folio． isbna， 1751.
Rzynsk；A．Les drts en Portugal．8ro．Paris， 1846.
－Dictionnaire Historico－Artistique de Portugal，pour faire suite à l＇ouvrage ayant our titre Les Arts en Portugal．8vo．Paris， 1842.
V ian，G．Scenery of Portugal and Spain． 31 plates folio． 1839.
Whtt，Sir M．D．An Architect＇s Note Book in Spain，principally illustrating the omestic Architecture of that Country．4to． 1872.

Bonanni, P. P. Templi Vaticani Historia. Folio. Romæ, 1696.
[1808-15
Cal lerari, O. Disegni e Scritti d 'Opere di Arehitettura. 90 plates, 2 vols. folio. Vicenzia
Callet, F., et Lesueur, J. B. C. Architecture Italienne; ou Palais, Maisons, et autre: Edifices d'It, lie. Folio. Paris, 1827.
Cassina, F. Le Fabbriche più cospicue di Milano. Folio. Milan, 1840-44.
-_I' Italia Monumenta'e; Galleria delle principali Fabbriche Antiche e Mcderme d' Italia. 2nd edition. Folio. Milan, 1870.
Cicognara, L. Le Fabbriche piun cospicue di Venezia, misurate, illustrate, ed intagliate. 2 vols. large folio. Venezia, 1815
Clochar, P. Palais, Maisons, et Vues d'Italie. Folio, 102 plates, Paris, 1809.
Costit, G. Delizie del Fiume Brenta, espresse ne’ Palazzi e Casini situate sopra le sue Sponde. Folio. Venezia, 1750.
[Fulio. Parik, 1763 .
Dumont, G. M. EEuvres d'Arehitecture ; contenant les Détails de St. Pierre de Rome.
Fontana, C. Templum Vaticanum, et ipsius Origo. Folio. Romæ, 1694.
Gauthier, M. P. Les plus beaux Edifices de la Ville de Gênes et de ses Environs. Fo'io. Paris, 1824-1830.
Geymüller, H. de. Les projets primitifs pour la Basilique de S. Pierre de Rome. $4 t 0$. and folio. Paris, 1875-80.
Grandjean de Montigny, A., et Famin, A. Architecture Toscane. Folio, 73 plates. Paris 1837. New editions, 1846 ; and 1875.

Guarini, G. Arehitettura Civile. 2 vols. folio. Turin, 1737.
Guarino, C. G. Disegni d' Architettura. Folio. Turin, 1686.
Gwilt, J. Notices of the Buildings of Architects of Italy. 8vo. 1818.
[1825-39)
Hittorff, J., et Zanth, L. Arehitecture Moderne de la Sicile. Imperial folio. Paris,
Isabelle, C. E. Parallèle des Salles Rondes de l'Italie. 2nd edition, folin. Paris, 186.3
Landi, \rightarrow. Raccolta di alcune Faceiate di Palazzi e Cortili di Bologna. Folio. Bulogna.
Letarouilly P. Édifices de Rome Moderne. 3 vols. folio, text 4to. Paris, 1829-55.
__Le Vatican et la Basilique do Saint Pierre de Rome. 3 vols. fulio. Paris, 1882.
Magrini, A. Il Palazzo del Museo Civico in Vicenza. 4to. Vicenza, 1855.
__ Les Bậtimens et Desseins receuillis et illustrés, par Ottavio Bertotti Scamozzi In French and Italian. 4 vols, folio. Vicenza, 1787.
Pilladio, A. L'Arehitettura di. Folio. Venezia, 1642.
Parker, C. Villa Rustica ; selected from Buildings in the Vicinity of Rome and Florence and arranged for Lodges, Dwellings, and Schools. 3 vols. 4to. 1849.
Percier, C., et Fontaine, P. F. L. Cheix des plus célèbres Maisons de Plaiannce de Roms et de ses Environs. 75 plates, folio. Paris 1824.
[Firenze, 1830
Pieraccini, F. La Piazza del Granduca di Firenze co' suni Monumenti. Folio plates
Price, L. Interiors and Exteriors in Vence. Folio. 1843.
Ronzani, F , e Luciolli, G. San Michele; Fabbriche Civile, Eeelesiastiche e Militari 147 plates, folio. Venezia, 1832.
Rossi, G. J. Raccolta di Fontane nell' alma Città di Roma, Tivoli e Frascati. 410. Rome
Rossini, L. Scenografia degl' Interni delle più belle Chiese e Basiliche antiche di Romm Folio. Rome, 1843.

I Monumenti piú interessanti di Roma dall' X. Sec. sino al XVIII. Folio Rome, 1818.
Rupp, L. Chiese Principali d’ Europa (11 buildings). Folio. Milan, 1824.
Sacchi, A. Architettura Practica-le Abitazioni. Folio. 1874.
Sanmichele, M. Porte di Città o Fortezze, Depositi Sepolcrali, ed altre principali Fab briche pubbliche ed prirate, da F. Albertolli. Imperial folio. Milan, 1815.
Suys, F. T., et Haudebourt, L. P. Palais Massimi à Rome; Plans, Coupes, Élérationt Profiles, Voûtes, Plafonds, cte. 43 plates. Paris, 1818.
Tosi, F. M., and Becchio, A. Altars, Tabernacles, and Sepulehral Monuments of th XIVth and XVth Centuries existing at Rome. Italian, French, and English text li Mrs. S. Bartlet. Folio. Lagny, 1843.
Valentini, A. Le Quattro principali Basiliche di Roma. 2 vols. folio. Rome, 1836-46 Yriarte, C. See IV. B.

Coste, P. Monuments Modernes de Perse. Folio. Paris, 1866.
Demidoff, A. de. Excirsion Pittoresque et Archéologique en Russie, ctc., en 183 ? Folio. Paris.
Kiprianoff, V. Histoire Pittoresque de l'Architecture en Russie, etc. 8ro. Petersburt Quarenghi, G. Édifices construites à St. Pétersbourg. Folio. St. Péters., 1810.

- Fabbriche e Disegni. Folio. Milano, 1821.
[1846-4? Ricard de Montferrand, A. Cathèdrale de St. Isaac à St. Pétersbourg. Folio. Pari. liusca, L. Recueil des Dessins de différens Bàtimens construits à St. Pétersbourg, et 180 plater, large folio. St. Petersburg, 1801-10.

Denmark. Danmark Fremstillet i Billeder. 74 plates, folio. Kjobedbaven, 1860. Graffenried und Stürler, M. von. Schweizerische Architektur. French and German text. 2nd edition, folio. Berne, 1847.
Hochstetter, J. Schweizerische Architectur in perspectivischen Ansichten, etc. Folio. Carlsruhe, 1863.
Varin, A. et E. L'Architecture Pittoresque en Suisse, ou Choix de Constructions Rustiques prises dans toutes les parties de la Suisse. 4to. 1860.

3arnard, H. School Architecture, with Illustrations of the most approved Plans, 5th ellition, 8vo. Hartforà, U.S. 1854.
Strickland, W. . Public Works in the United States of America. 8vo. 1841.

VI. THEATRES.

Irnaldi, Conte E. Idea di un Teatro nelle principali sue Parti simile a' Teatri Autichi ail' Uso moderno accomodato. 4to. Vicenza, 1762.
Beccega, T. C. Sull' Architettura Greco-Romano applicata alla Costruzione del Teatro moderno Italiano e sulle Macehine Teatrali. Folio. Venezia, 1817.
jorgnis, J. A. Des Machines Imitatives et des Machines Thêâtrales. 4to. 27 plates. Paris, 1820.
;oullet. Essai sur l'Art de construire les Théâtres, leurs Machines et leurs Mouremens. 4tc. plates. Paris, 1801.
aros, A. Traité sur la Construction des Théâtres. 21 plates, 4to. Leipzig, 1849.
——Grand Théâtre de Moseou. 1860.
ontant, C., et Filippi, J. de. Parallèle des Principaux Théátres Modernes de l'Europe, et des Systèmes de Machines Théâtrales Françaises, Allemandes et Anglaises. 134 plates, 2 vols. folio. Paris, 1840-42.
aly, C., et Davioud, G. Théâtre Impérial du Châtelet. Théâtre Lyrique. Folio. Paris, 1871.
escrizione del Nuovo Sipario dell' Imperiale Regio Teatro delia Scala in Milano. Small folio. Milano, 1821.
onnot. A., et Kauffman, J. A. Architectonographie des Thêâtres de Paris ; ou Parallèle Historique et Critique de ces Élifices, considéres sous le Rapport de l'Arehitecture et de la Décoration. 2 rols. 8 ro., plates 4to. Paris, 1837.
mont. Parallèle de Plans des Salles de Spectacle d'Italie et de France, aree des Détails de Machines Théâtrales. Imperial folio, 61 plates. Paris, 1774.
ntanesi, C. F. Decorations for Theatres; or, Desigus for Scene Painters. Fulio, 24 plates. 1813.
Hliari. Décorations de Théâtre. Folio, 24 plates. Milan.
rnier, C. Le Nouvel Opéra de Paris. Text 2 vols. folio. Paris, 1878-81. Plates 3 vols. folio. Paris, 1875-80.
rgi Felice. Descrizione Istorica del Teatro di Tor di Nino. 4to. 9 plates. Rome, 1795.
sset, A. Construction des Théàtres. Folio. Paris, 1886.
mmerling, H. Das Victoria-Theater zu Berlin. Folio. Berlin, 1861.
hèz, T. Acoustique et Optique des Salles de Réunions Publiques, Théâtres et Amphihéátres, etc. 8 ro. Paris, 1818.
] hdriani, P. Osserrazioni sui Defetti prodotti nei Teatri dalla cattiva Costruzione del Palio Scenico, e su alcuue inarvertenze nel dipingere le Decorazioni. 4to. 9 plates. filano, 1815.
Ighans, C. F. Das Victoria-Theater in Berlin. 4 plates, folio. Berlin,
I is, V. Salle de Spectacle de Bourdeaux. Atlas fulio, 21 plates, containing plans of everal other theatres. Paris, 1782.
mee, A. Monographie du Théâtre du Vaudeville érigé par la Ville de Paris sous la irection de. Folio. Paris, 1871.
A-elli, C. Pianta e Spaccato del nuovo Teatro d'Imola. Folio, 19 plates. Roma, 1780. e, P. Essai sur l'A rchitecture Théâtrale. 8ro. Paris, 1782.
nders, G. Treatise on Theatres. 4to. 13 plates. 1790 . Of little value.
nkel, C. F. von. Theatre at Hamburg. 6 plates. Berlin, 1828.
per, G.: Das königliche Hoftheater zu Dresden. Folio. Brunswick, 1849.
ck, J. H. Das altgriechische Theatergebäude, nach sämmtlichen bekannten Uebersten. Folio. Potsdam, 1843.
T, E. Das neue Victoria-Theater in Berlin. 24 plates, folio. 1861.
Wee, S. Remarks on Theatres, and on the Propriety of Vaulting them with Brick and onc. 8 ro. plates. 1809.
tt, B. On the Reluilding of Drury Lane Theatre. 4to. plates. 1812.

קII. KURAL ARCHITECIURE, GABDENS, STABLING, \&c.

Alphand, A. Les Promenades de Paris, Bois de Boulogne, et de Vinceunes, ete. 2 rols. folio. Paris, 1874.
[8ro, 1852.
Audrews, G. H. Construction of Agricultural Buildings of every Description. 3 vols.
Birch, J. Examples oî Labourers' Cottages. 8vo. 1071.
Blackburne, E. L. Suburban and Rural Architecture; English and Foreign. 1865
Chateauneuf, A. de. Architectura Pomestica. Folio. 1839-40.
Dean, G. A. Construction of Farm Buildings and Labourers' Cottages. 4to. Stratiorl,
——_Series of Selected Designs for Country Residences, Lodges, \&c., crected for the Prince Consort, Earl of Leicester, \&c. 4to. 1867.
Denton, J. B. Farm Homesteads of England. 2nd edition, 75 plates, 8 ro. 1865.
Downing, A. J. Architecture of Country Houses; with Remarks on Furniture, \&e., and Warming and Ventilating. New edition 8vo. New York, $1852 . \quad$ [York, $185^{3} 3$.
——Architecture of Cottage Residences, with Additions, \&c. New editiou, 8vo. New
__Theory and Practice of Lindscape Gardening; with a view to the Improrement of Country Residences; with Remarks on Rural Architecture. 4th edition, 8 ro . New York, 1849.
Fiwkes, F. A. Horticaltural Buildings. 8vo. 1881.
Gray, W. J. Reral Architecture; Plans, \&c., of Farmhouses, Cottages, Schools, Gates, Railings, \&cc., with Specifications. 8ro. Edinburgb, 1853. [ton, 1849.
Hartshorne, C. H. Labourers' Cottages on Estates of Duke of Bedford. 8vo. Northanp
Hints on Ornamental Gardening; Designs for Garden Buildings, \&c. 8ro. 1823.
Hughes, J. A. Garden Ar hitecture and Landscape Gardening. 8ro.] 8066. [ciety. 185%.
Istac, T. W. P. Essay on Labourers' Cottages ; premiated by the Royal Agricnltural Sis
Isabey, L., and Leblauc. Villas, Maisons de Ville et de Campagne, composées sur les motifs des habitations de Paris Modernes. Folio. Paris, 1864-67.
Kemp, E. How to lay out a Garden: Plans, \&c. New edition, 8vo. 1864.
Kerr, R. A small Country House; the Planning of a Residence to cost from 2,000l. to
Knightley, T. E. Stable Architecture. Folio. $1862 . \quad[5,000 l .8$ ro. 1873.
Krafft, J. C. Plans des plus beaux Jardins Pittoresques de France, d'Angleterre, et d'Allemagne, et des Édifices, Monumens, Fabriques, etc., qui concourent à leur Embellissement, dans tous les Genres d'Architecture. 2 vols. oblong 4to. Paris, 1809. Recueil d'Architecture. Civile, contenant les Plans, Coupes, et Elévations des Châteaux, Maisons de Campagne, et Habitations Rurales. Folio. Paris, 1809.
Loudun, J. C. Encyclopedia of Cottage, Farm, and Villa Architecture. 8ro. 1839 Encyclopredia of Gardening, \&c. New edition, 8vo. 1850.
MacIltosh, C. The Book of the Garden. 2 vols, 8 ro. Edinburgh and Londou, $185^{\circ} 2$.
Major, J. Theory and Practice of Landscape Gardening. 4to. $185^{\circ} 2$.
Menzies, W. Cottages for Rural Districts. 8ro. 1885.
Miles, W. General Renıarks on Stables and Examples of Stable-Fittings. 8vo. 1860
Morton, T. C. The Prince Consort's Farms. 4to. 1863.
Normand, C. Recueil varié de Plans et de Façades, Motifs pour des Maisons de Ville e de Campagne. Folio, 53 plates. Paris, 1815.
Papworth, J. B. Rural Residences: a Series of Desigus for Cottages, Decorated Coltages small Villas, \&c. 8ro. 1832.
[8vo. $18: 23$
——Hints on Ornamental Gardening; Designs for Garden Buildings, \&c. 29 plate
Repton, H. Landscape Gardeuing, \&c. The entire works, edited by J. C. Loudon New edition, 8ro. 1842.
[bird. 3rd edition, 8ro. 185:
Rham, W. C. Dictionary of the Farm, with Supplement. Revised by W. and II. Rayn
Richardson, C. J. Englishman's House, from a Cottage to a Mansion. 8vo. 1870.
Robinson, P. F. Rural Architecture; or, a Series of Designs for Ornamental Coltarge 4to. 1823. Ornamental Villas. 4to. 1837. Village Architecture. 4to. 1837 Farm Buildings. 4to. 1837.
Robinson, W. Parks, Promenades, and Gardens of Paris, described and considered relation to wants of our own cities 8 ro. 1869.
Robson, G. Modern Domestic Building Construction. Folio. 1876.
Siebeck, R. Art of Landscape Gardening, represented in a Plan and elucidated by tl Determining Motives. Translated by R. H. Westley. 6 plates, 4to. 1862.

- Picturesque Garden Plans. 24 coloured plates, folio. 1864.

Smith, C. H. J. Parks and Pleasure Grounds ; Practical Notes on Couutry Residence Villas, \&c. $12 \mathrm{mo} . \quad 1852$.
Standish, J., and Nuble, C. Practical Hints on Planting Ornamental Trees. 8ro. 180 Starforth, J. Architecture of the Farm ; being a Series of Designs for Farmhoust Factors' Houses, Agricultural Labourers' Cottages, and Farmsteadings. 4to. 18:3.
Stephens, H., and Burn. R. S. Book of Farm Buildings : their Arrangement and Co struction. 8 ro. Edinburgh, 1861 ; and 1871.

Strickiand, C. W. Cottage Censtruction and Design. 18 plates, 8 ro. 1864.
Tattersall, u. Sporing Architecture. 4to. 1842.
Thomeon, J. Retreats: a Se. ies of Designs. 4to. 1833.
Vaux, C. Villas and Cottages: a Series of Designs prepared for Exceution in tha Uvited States. 8ro. New York and London, $1 \times 5 \pi$.
Villa and Cottage Architecture. Published by Blackie. Ato. Edinburgh, 1869, 1880.
Vincent, J. Country Cottages; Designs for Improved Dwellings tor Agricultural Labourers. 20 plates, 2nd edition, 4to. 1860.
[1846.
W.iter, T. U., and Smith, J. J Cottage and Villa Architecturo, \&c. 4 to. Philadelphia,

Wearer, II. Hints on Cottage Architecture ; Designs for Labourers' Cottages, हingly, in pairs, and in groups. 2nd cdition, folio. Bath, 18.50 .

- Hints on Vilia Architecture; Selection of Designs for Schools, Cottages, aud Parsonage Houses. 10 plates, folio.
Wickes, C. Handybook of Villa Architecture. 61 plates, 4to. 188%.
Wilkinson, W. English Country Houses; Practical Treatise on House Building. 4to. Oxford, $1870,1870$.

VIII. HISTORY OF ARCHITECTURE, THEORY, \&c.

Barry, E. M. Lectures on Architecture; with Memoir. 8vo. 1881.
Batissier, L. Histoire do l'Airt Monumental dany l'Antiquité et au Moyen Âge, suivlo d'un T'raité sur la Peiuture sur Verre. 2nd edition, revised, 8vo. Paris, 1860.
Charteau, L. Histoire et Caractères del'Archicecture en France depuis l'époque Druidique jusqu'à nos jours. 8 ro. Paris, 1864.
Cousin, J. Génie de l'Architecture. 4to. 60 plates. Paris.
Donaldson, T. L. Architestural Maxims and Theorems. 8ro. 1847.
Purand, J. N. L. Recueil et Paralléle des Édifices de tous Genres, anciens et modernes.
Folio, 90 plates, and 8 vo. text by Le Grand. Paris, 1801-9. [8vo. 1855-6\%. ergusson, J. Handbook of Architecture; a History and Description of all Styles. 3 vois.

- Historical Inquiry into the True Princeples of Beauty in Art. 8 ro. 1849.

History of Architecture in All Countries, from the Earliest Times to the Present Day. 2 vols. 8ro. 1862-67. Modern Architecture. 2ndedition, 8vo. 1874. - Rude Stone Monuments in All Countries; their Age and Uses. 8vo. 1873. reeman, E. A. History of A rehitecture. 8vo. 1849.
ailtabaud, J. Monuments anciens et modernes, cousisting of plans, \&c., of the most remarkalle edifices in the world. Fuur series, 4to. Paris. $184^{2}-52$.

L'Art dans ses Diverses Branches, on l'Architecture, la Sculpture, \&c., chez tous les Peup'es et à toutes les Époques jusqu'en 1789. 4to. Paris, 1861. arbett, E. L. Treatise on the Principles of Design in Arclaitecture. 12mo. 1850. wilt, J. Rudiments of Architecture, Practical and Theoretical. 8vo. $18 £ 6$.
enszlmann, Dr. Théorie des Proportions arpliquées dans l'Arebitecture depuis la XII ${ }^{\text {e }}$ Dynastie des Rois égyptiens jusqu’au XVI ${ }^{e}$ Siècle. Folio, text 4to. Paris, 1860. Part 1 only.
ppe, T. Historical Essay on Architecture. 3rd edition, 8vo. 1840.
alelle, C. E. Les Édifices circulaires et les Dômes. 77 plates, folio. Paris, 1843-ప̄ప. ıgler, F. Denkmäler der Kunst; by Voit, Guhl, and Caspar. Folio. Stuttgart, 1845.

- Handbuch der Kunstgeschichte. 8vo. Stuttgart, 1848.

Geschichte der Baukunst. ${ }^{\circ} 3$ vols. 8 vo. Stuttyart, 1859.
w, H. Rudiments of Civil Engineering. 12mo. 18052.
fébre. Marvels of Architecture, translated by R. Donald. 8vo. 1870.
Grand, J. G. Essai sur l'Histoire Généralo de l'Architecture 8vo. Paris, 1819. Chis is the text to Durand's "Parallele."
jueur, J. B. Histoire et Théorie de l'Architecture. 8vo. Paris, 1879.
yd, W. W. General Theory of Proportion in Architectural Design. 4to. 1863.
3ke, W. Geschichte der Architectur. 2nd edition, 8ro. Cologne, 18j8. Translated y F. E. Bunnett. 2 vols. 8vo. 1868.
1 atfauçon, B. de. L'Antiquité Expliquée et R-présentée en Figures. 5 vols. fulio. upplement, 5 vols. folio, 964 plates. Paris, 1729-33.
holson, P. Principles of Architecture. 3 rols. 8 ro. 1836.
C, H. Handbuch der Kirchlichen Kunst: Archäologie des Deutschen Mittelalters. ro. Leipzig, 180 t.
[1845.
0 in, J. Manuel d'Archéol gie Religieuse, Civile et Militaire. 2nd edition, 8 vo. Paris,
Py, F. A. Manual of Gothic Architecture. 8ro. 1846.
Pe, P. Mémoires d'Architecture. 4to. Paris, 1769.
${ }_{P}{ }^{\text {Pt, J. J. L. Remarks on Architectural Character. Folio. Oxford, } 1846 . ~}$
P. e, G. A. History of Eeclesiastical Architecture in England. 8vo. $1848 . \quad$ [1852. - Churches, their Structure, Arrangement, and Decoration. 3 rd edition, 18 mo .

Pugin, A. W. N. The True Principles of Pointed or Christian Architecture. 4to. 1841. Contrasts ; or, a. Parallel between the Edifices of the XIVth and XVth Centuries and the Prescnt Day. 13 plates, new edition, 4to. 1841.
[Paris, 1870-i2.
Raméc, D. Manuel de l'Histoire Générale de l'Arehitecture. 2nd edition, 2 rols. 12 mo .

- Histoire de l'Arehitecture en France depuis les Romains jusqu'au XVI ${ }^{\text {e }}$ Siècle. 12mo. Paris and Lcipzig, 1846.
[York, 1887.
Reber, F. von. History of Ancient Art; and History of Mediæval Art. 8vo. New
Reynaud, L. Traité de l'Architecture, contenant des Notions Générales sur les Principes de la Construction et sur l'Histoire de l'Art. 82 plates, folio. Paris, 1850.
Rickmın, T. Attempt to Discriminate the Styles of English Architecture. 6th edition, with additions by J. H. Parker. 8ro. Oxford; 1862. 7th edition, 1881. The th edition of 1835 contains the Topographical List of Buildings.
Royal Institute of British Architects. Transactions. 2 parts, 4to. 187 and 1842. Sessional Papers. 31 vols. 4to. 1853-84. New series, 4to. 3 vols. 1885-87.
Ruskin, J. Seren Lamps of Architecture. 8ro. 1849.
Scott, L. The Renaissance of At in Italy. 4to. 1883.
Scott, Sir G. G. Remarks on Secular and Domestic Architecture. 2nd edition, Sro. _-_Lectures on the Rise and Development of Mediæval Arehitecture. 2 rols. 8 ro. 1879.

Seroux, D'Agincourt. Histoire de l'Art par les Monumens. 6 vols. folio. Paris, 1823. Smith, T. R. Gothic and Renaissance. 8ro. 1884. - and Slater, J. Classic and Early Christian. 8vo. 1882.

Viollet-le-Duc, E. E. Entretiens sur l'Architecture. 2 vols. 8vo. Paris, 1863-72. Plates, folio. 1864. Translated by B. Bucknall. 8vo. 1877.
——Compositions et Dessins. Folio. 1881-84. Habitations of Man in all Ages. Transl. 8vo. 1876. Histoire d'un Hôtel de Ville et d'une Cathédrale. 8vo. Paris, 1882. [1885. White, W. H. The Past, Present, and Future of the Architectural Profession. 12 mo . —.... Architecture and Public Buildings; their Relation to School, Academy, and State, in Paris and London. 8vo. 1884.
[Munich, 1827-31.
Wiebeking, C. F. von. Architecture Civile. Text, 7 vols. 4to., and plates folio, Winckelman, J. J. Remarques sur l'Architecture des Anciens. 8 ro. Paris, 1783.
-_Histoire de l'Art chez les Anciens. 3 vols. 4to. Paris, 1790.

- Monumenti Antichi Inediti. 2 vols. folio, 18 t plates. Napoli, 1820.

Woods, J. Letters of an Architect. 2 vols. 4to. 1828.

IX. ELEMENTARY WORKS, ORDERS, DETAILS, MOULDINGS.

Alberti, Leo Bapt. Libri de Re Edificatoria. Folio, 1st edition. Florence, 1485 Numerous later editions.
———Translated into English by G. Leani. Folio. 1726-55.
Andronet du Cerceau, J. Lirre d'Architecture. Fohio, 50 plates. Paris, 1662.
Antoine, J. Traité d'Architecture. 4to plates. Treves, 1768.
A viler, C. A. d'. Cours d'Architecture. 4to. Paris, 1760.
Barozzi da Vignola, G. Eurres complètes. Folio. Paris, 1823.
—_Ordini d'Architettura Civile. 4to. 44 plates. Milano, 1814.
Blondel. J. F. Cours d'Architecture. 9 vols. 8 vo. 300 plates. Paris, 1771-1777.
Bullet, P. Architecture Pratique. 8vo. Paris, 1774. Edited by Mazois. Paris, 1824
Chambers, Sir Wiilian. The Decorative Part of Civil Architecture; with Essay o Grecian Architecture, and other Additions, by J. G wilt. 2 rols. imp. 8 vo. 66 plates. 182: Treatise on the Decoratire Part of Ciril Architecture; with Essay on Grecis Architecture, by J. B. Papworth. The original plates. Folio. 1826.
Clere, S. Le. Treatise on Architecture, translated by Chambers. 3 rols. 8ro. 1732.
Detournelle, A. Projets d'Architecture. Folio, 60 or 120 plates. Paris, 1800́-6.
Durand, J. N. L. Leçons d'Architecture. 2 tom. 4to plates. Paris, 1819.

- Partie Graphique des Cours d'Architecture. 4tn. 34 plates. Paris, 1821.

Evelyn, J. Parallel of Ancient and Modern Architecture; translated from R. Frear Folio. 1680. Folio. 1723.
Fclibien, M. Principes de l'Architceture, de la Sculpture, et de la Peinture. 4to. plate Paris, 1697.
[8ro. 18.5
Freeman, E. A. Essay on the Origin and Development of Window Tracery in Englaw
Gallaccini, T. Trattato sopra gli Errori degli Architetti. Folio. Venezia, 1767.
Goldmann, N., Architecture of, by L. C. Sturm. German text. Folio. Augsburg, 1716-5
Hoffstadt, F. Gothisches A-B-C Buch. Text 8ro.; 43 plates, folio. Frankfurt, 1843-4 1845-64. Translated into French. Folio. Paris, 1851.
Kinross, J. Details from Italian Buildings, chiefly Renaissance. Folio. Edinburg

Leeds, W. H. Rudimentary Treatise on the Orders of Archrecture. 12 mo. 1849.
L'Eveillé, C. J. Considérations sur les Firontons. 4to. Paris, 1824.
L'Orme, P. de. Envres d'Architecture. Folio, 2 vols. in 1. Paris, 1626; Ronen, 1618. The Treatise on Architecture, in 9 books, was first published in Paris, 1567. The tenth book, on Carpentry, entitled, "Nouvelles Inventions pour bien Bâtir et à petit Frais," folio, Paris, 1561-68, and 1576.
[edition, 4io. Elinburgh, 18 i6.
Mahan, D. H. Elementary Course of Civil Engineering. Edited by P. Barlow. New
Mandar. C. F. Étude d'Architecture Civile ; ou Plans, Elévations, Coupes, et Détails nécessaires pour élever, distribuer, et décorer une Maison et ses Dépendances. Imperial folio, 122 plates. Paris, 1830.
Manetti, G. A. Studio degli Ordini d'Architettura. Folio, 25 plates. Firenze, 1808.
Mauch, J. M. von. Neue systematische Darstellung der Architektonischen Ordnungen der Griechen, Römer und neuern Baumeister. 100 plates, fto. Potsdam, 1850.
Nicholson, P. Principles of Architecture. 3 vols. 8vo. 1;95-8. 1836.
Normand, C. Noureau Parallèle des Ordres d'Architecture des Grecs, des Romains et des Anteurs Modernes. Folio, 63 plates. Paris, 1819. Translated by A. Pugin. 1829.
Palladio, A. See Class II.
Perrault, C. Ordonnance des Cinq Espèces de Colonnes. Folio. Paris, 1683.
Robson, E. R. School Architecture ; being Practical Remarks on the Planning, Designing, Building, and Furnishing School Houses. 8vo. 1874.
Scamozzi, V. L' Idea dell' Architettura Universale. 2 vols. folio. Venetia, 1615.
Serlio, S. Architettura. 4to. Venetia, 1567. Later editions.
Serrure, E. Cours Classique d'Architecture. Folio. Gand, 1874. [2 vols. 8vo. 1840.
Sharpe, E. Treatise on the Rise and Progress of Decorated Window Tracery in Englanl.
——The Seven Periods of English Architecture defined and illustrated. 8vo. 18.51. The Mouldings of the Six Periods of Gothic Architecture from the Conquest to the Reformatiou. 4to. 1871.
Shute, John. The First and Chief Groundes of Architecture. Folio. 1563.
Thiollet, F. Leçons d'Architecture, Théorique et Pratique, comprenant l'Histoire des Ordres, ete. 6 rols. 4to. Paris, 1843.
Trimeu, A. One Thousand authenticated Mouldings of Mediæral Architecture, from the best examples. 53 plates, 8 vo. 1863.
isentini, A. Osservazioni sopra gli Errori degli Architetti; contin. al Trattato di T. Gallaccini. Folio. Venezia, 1771.
itruvius. De Architecturn, cum notis Variorum, a J. de Laet. Folio. Amst. 1649.
_- Architettura di, tradotta ed comentata da B. Galiani. Felio. Siena, 1790.
Trad. et coment. da Barbaro. Folio, woodeuts. Venezia, 1556.
Architecture of ; by Poleni and Stratico. 8 parts in 4 rols. Ato. Utini, 1825-30. by A. Marinio. 4 vols. folio. Rome, $1836 . \quad[3$ vols. 4to. Paris, 1837. by Perrault. Folio. Paris, 168t. Augmentée par E. Tardieu et A. Coussiu. Traduction Nouvelle, par Maufras. 2 rols. 8vo. Paris, 1847. Translated by J. Gwilt. Imperial 8vo. 1826.
Tiebeking, C. F. Architecture Civile, Théorique, et Pratique ; l'Histoire descriptire des Eidifices anciens et modernes les plus remarquables. 7 vols. 4 to.; 260 plates, folio. Munich, 1823.

X. MATERIALS.

astin, J. G. Preparation, \&c., and Application of Limes and Cements, \&c. 12mo. 1862. ile, M. P. Wood-working Machinery ; Saw Mills; Stone-working Machinery. 8vo. 1885.
agrore, G. H. Marble Decoration, and the Terminology of British and Poreign Marbles. 8ro. 1888.
[1857.
rnell, G. R. Limes, Cements, Mortars, Concretes, Matticks. and Plastering. 12 mar .
rnham, S. M. History and Uses of Limestones and Marbles. 8ro. Bostou, U.S.A., 1883. un, F. M. le. Sur l'emploi du Béton. 4to. Piris, 1843.
ignet, F. Béton Aggloméré pour Fortifications, Ponts, etc. 8ro. Paris, 1862.
vis, C. T. Practical Treatise on the Manufacture of Bricks, Tiles, and Terracotta, \&c. 8vo. Philadelphia, 1884.
[Process. 8ro. 1868. y, St. J. V. Manufacture of Malleable Iron, with special reference to the Richardsou bson, E. Treatise on the Manufacture of Bricks and Tiles. 12 mo . 1800.
ake, C. Building in Concrete. 8vo. 1874.
iji, H. Portland Cement for Users. 8ro. 1881.
[elition, 8ro. 1869.
irbairn, W. Iron ; its History, Properties, and Processes of Manufacture. 3rd craday, M. Prevention of Dry Rot in Timber. 8vo. 1836.
chat, E., Barrault, A., and Petiet, J. Traité de la Fabrication du Fer et de la Fonte, ete. 3 rols 4to. and folio. Liège, 1852.

Gilmore. Practical Treatise on Limes, Hydraulic Cements, and Mortars. 8ro. Neas Godwin, G. Nature and Properties of Concrete. 4to. 1836. [York, 1863.
Hodgkinson, E. Experimental Researches on the Strength and other Properties of Cast Iron, \&c. 8vo. 1846.
Holtzapffel, C. Descriptive Cataloguo of the Woods commonly employed for the Merhanical and Ornamental Arts. 8ro. 1843.
Innll, E. Treatiso on Buidding and Ornamental Stones of Great Britain and Foruign Countries. 8 vo. 1872.
Hutchinson, J. New Experiments in Building Materials, in reference to their Conducting Power, Dryness, and Resistance to tho Progress of Fire. 8 ro. 1843.
Ilyatt, 'T'. Experiments with Portland Cement Concrote, combincd with Iron, as a Building Material. 4to. 1877.
Keily, J. Expansion of Structures by Heat. 8vo. 1887.
Kirkaldy, D. Experimental Inquiry into tho Tensile, Strength, \&c., of Wronght Iron and Steel. New edition, 8vo. Glasgow, 1863.
——. Results of an Experimental Inquiry into the Mechanical Properties of Stec).
Laslett, T. Timber and Timber Trees. 8vo. 1875.
[4to. 1873.
Lee, A. Marble and Marble Workers. 8ro. 1888.
Lingard, J. Inquiry into the Natme and Construction of Timber, including the Causcs of Dry Rot. 2nd edition, 8ro. 1842.
Lockword, II. Concreting and Asphalting. 4to. Manchester, 1886.
Metropolitan Board of Works. Regulations for the Construction of Concrete Buildings under the Metropolitan Building Act, 1855. Folio. 1882.
Mushet, D. Papers on Iron and Steel, Practical and Experimental. 8vo. 1840.
Papworth, J. Easay on the Causes of Dry Rot in Buildings. 4te. 1803.
Pasley, C. W. On Limes, Calcareous Cements, Mortars, Stuccoes, Concrete, and Puzanolanas, \&c. 8ro. 1838. 2nd edition, Part I. only. 1847.
[Enlarged, 187\%.
Percy, J. Netallurgy ; or, the Art of Extracting Metals from their Ores. 8vo. 18j9-61.
Potter, T. Concrete; its use in Building. 8ro. (1877).
Reid, H. Practical Treatise on Concrete, and how to make it; with Observations on the uses of Limes, Cements, and Mortars. 12 mo . 1869. The Science and Art of the Manufacture of Portland Cement, with some Constructive Appliances. 8vo. 1877.
[8ro. 18:37.
Rogers, S. B. Treatise on Iron Me allurgy, up to the manufacture of Puddled Bars.
Smith, C. H. Lithology; or Observations on Stone used for Building. fto. 1845.
Stone. Report and Investigation into the Qualifications and Eitness of Stone for Building Purposes, particularly for the New IIouses of Parliament. New edition, 4to. 1845.
—_Geolegical Sursey of Great Britain. Mineral Statistics of Great Britain, \&c. By R. IIunt. Part II. for 1858. 8vo. 1860.
Timber and 'limber Duties Commissioners' Report. Folio. 1835.
Treussart, Gen., Petot, M., and Courtois, M. Essays on Hydraulie and Common Murtars, and on Lime Burning. Translated by J. G. Totten. 8 ro. New York, 1812.
Truran, W. The Iron Manufacture of Great Britain. Revised edition, 4 to. 1862.
United States. Report on the Building Stones of that country. 4to. New York, 188.3.
Unwin, W. C. Rate of Hardening of Cement and Cement Mortars. 8vo. 1886.
——Testing of Portland Cements. 12mo. Manchester, 1886.
Testing of Materials of Construction. 8vo. 1888.
Vịcat, L. J. Recherches expérimentales sur les Chaux de Construction, les Bétons, ct Mortiers ordinaires. 8 vo. Paris, 1819. Transl. by J. T. Smith. 8vo. 1837.
Whichcord, J. Kentish Ragstone as a Bnilding Matcrial. 8ro. 1846.

ZII. STATICS, STRAIN, STRENGTH, MECHANICS, TABLES, \&C.

Adamson, D. Tho Mechanical and other Properties of Iron and Mild Steel. 8vo. (1878.) Adcock, H. Engineer's Pocket Book. 8ro. 1862, \&c.
Anderson, J. Strength of Materials and Structures. Sth edition, 12mo. 1880. 12mn.
Baker, B. On the Strength of Beams, Columns, and Archcs. 8 vo. 1870.
Baker, T. Prineiples and Practice of Statics, and Dynamics.
12 mos
1851. Baker, T. Prineiples and Practice of Statics, and Dynamics. 12 mo .1851.
Barlow, P. Treafise on the Strength of Timber, Cast Iron, Malleably Iron, and other Materials, \&c. New edition. Edited by J. F. Heather. 8vo. 1851.
Beardmore, N. Hydraulic Tables. 2nd edition, 12 mo .
Bonrdais, J. Traité Pratique de la Résistance des Materiaux appliqués à la Construction des Ponts, des Bâtimens, etc. 8vo. Paris, 1859.
[18i].
Bow, R. H. Treatise on Bracing, with its Application to Bridges, \&c. 8vo. Edinburgh,
Binx, T. Practical Treatise on the Strength of Materiale, including their Elasticity, \&ic. 8ro. 1883.
runet, F. Dimens ons de Fers qui doirent former la Coupole de la Halle aux Grains. impin, F. Engineers' Pocket Renembrancer. 8vo. 1863. [Folio. Paris, 1809. rrgill, T. Strains upon Bridge Girders and Roof Trusses. 8ro. 1873.
larke, G. S. Principles of Graphic Statics. tio. 1880.
otterill, J. H. Applied Mechanies. 8ro. 1854.
ngineers', Architects', and Contractors' Porket Book. 8ro. (Weale.) 1863, \&c. airhairn, W. Application of Cast and Wrought Iron to Building Purposes, with Treatise on Wrought Iron Bridges. 4th edition; 8 ro. 1870.

Useful Information for Engineers. 4th edition, 3 vo's., 8vo. 1864-67.
nwick, S. Mechanics of Construction, including the Theories of the Strength of Materials, Roofs, Arches, and Suspension Bridges. 8vo. 1861.
raham, R. H. Graphic and Analytic Strains in Thoory and Comparison; also a chapter on Wind Pressures. 8vo. 1883.
ier, W. The Mechanic's Calculator. 4th edition, 12mo. 1841.
ogg, J. Merchant and Iron Trader's Guide, \&c. Tables of Weights and Measurement of Metals, Stone, and Timber. 12mo. 1859.
umber, W. Strains in Girders and similar Structures, ant their Strength. 12 mo . arst, J. T. Handbook of Formulæ, \&.c. 13th edition, sm. oll. 1882. [1868, 1880. wood, W. Tables for the Purchasing of Estates, Freekold, Copyhold, \&c.; Annuities, \&c. 7th edition. By F. Thoman. 12mo. 1859.
rik, Balfour, and Ward. New Zealand Timber. 8vo. Wellington, 1875.
rkaldy, D. Results of an Experimental Inquiry into the Comparative Tensile Strength, \&c., of various kinds of Wrought Iron and Steel. 8vo. 1862. Results of an Experimental Inquiry into the relative properties of Wrought Iron Plates. 4to. 1876. a, W. Tables of Strength and Deflection of Timber. 8ro. $18 \% 0$.
lipas, H. Builder's Pocket Book of Reference: Tables of Strength of Timbers, Weod, and Iron Beams, \&c. 18 mo . 1852.
lesworth, G. L. Pocket Book of Useful Formulæ and Memoranda. 21st edition, $16 \mathrm{mo} . \quad 1882$.
rin, A. J. Leçons de Mécanique Pratique. 4 vols. 1846-50. 2nd edition, 8 vo. Caris, 1855. Aide-mémoire de Mécanique Pratique. 5th edition, 8vo. Faris, 1861. Tundamental Ideas of Mechaniss, and Experimental Data. Translated, \&c., by J. 3ennett. 8ro. New York, 1860.
[edition. 8 ro. 18%
seley, H. Mechanics applied to the Arts, including Staties and Hydraulics. 3id - Mechanical Principles of Engineering and Architecture. 2nd edition, 8 rc . 185.5.
ss, N. A. Strength of Materials and Strains in Structures; treats of Girler and huspension Bridges only. 8ro. 1887.
rille, J. Hydraulic Tables, Coefficients, and Formulæ for finłing the Discharge of Nater from Orifices of all kinds. New edition, 8 vo . 1860.
nder, E. New Method of Graphic Strains applied in the Construction of Wrought ron Girders; Series of Working Drawings of Modern Type. Vul. I. Folio. 1850.
Idie, A. The Practical Measurer, or Wood Merchant's Assistant; with Tables. New dition, 8 ro. Glasgow, 1862.
1 n , S. Tables showing the Weight of different lengths of Round, Square, Flat Bar ron, \&c. 5th edition. Liverpool, 1843.
Irut, P . Pratique de la Mécanique appliquée à la Résistance des Matériaux. 8ro. aris, 1887.
Fit, J. H. Mathematical Principles of Mechanical Philosophy, and their Application Elementary Mechanics and Architecture, \&e. Sro. Cambri?ge, 1845.
II kine, W. J. M. Manual of Applied Mechanics. 3rd edition, 8 ro. Glassow, 1864.
k lards, J. Wood-working Factories and Machinery. 8vo. New York, 1873.
Reer, N. C. Elementary Graphic Statics and the Construction of Trussed Roofs. 8 vo. ew York. [1882.
R arts, J. The Pressure of Wheat stored in elongated cells or bins. 8 vo. Liverpool,
R ${ }_{\text {ortson, F. Tables for Arches. } 8 \text { ro. } 1871 . ~}^{\text {. }}$
Ii inson, H. Hydranlic Power and Machinery, for the use of Practical Engineers and
${ }^{R}$ e, E. Hydraulic Tables: Discharge of Water through Pipes, \&c. 8vo. 1852.
St On, H. C. Tables on the Strength of Timber. 8ro. Chatham, 1881.
Slds. F. W. Strains on Structures of Ironwork, with Remarks on Iron Construction. o. 1861. 2nd edition, 8 vo. 1867.

Hit, G. Stability of Arches. 8ro. 1846.
stey, B. B. Theory of the Strains in Girders and similar Structures; Tables of rength of Materials. 8ro. 1860.
Taluck, E. L. Handbook of House Property ; a Practical Guide, including the Law of lapidations, Fixtures, and Valuations, \&e. 4th edition, enlarged, 8vo. 1887.
Ta, E. W. Science of Building ; Elementary Tratise on the Principles of Construcघ. 8 vo. 1870 .

Tiate, T. Strength of Matcrials; original Formulæ, applied to Tubular Bridges, Iron Beams, \&c. 8vo. 1850.
Timmins, T. Examples of Iron Roofs, \&c. Vol. 1, 4to. 1882. Obtaining by Diagrams the Strains in, and Strength of, Riceted Gixders and Curved Roofs, Vol. 2,4to. 1882.
Tomlinson, C. Mechanics, 12 mo . 1859.
Toussaint, C. J. Traité de Géométrie et d'Architecture Théorique et Pratique simplifé. 4 vols, 4to. Paris, 1811-12.
Tredgold, T. Practical Treatiso on the Strength of Cast Iron and other Mctals. Revised, \&c., by E. Hodgkinson. 8ro. 1860.
Turnbull, A. H. Tables of Compound Interest, and Aunnities; Yearly, \&c., Payments, 8vo. Ediuburgh, 1863.
Turnbull, W. Essay on the Construction of Cast Iron Beams. 8vo. 1833.
Unwin, W, C. Formulæ for Flow of Water in Pipes. 4to. Manchester, 1886.
Warr, F. Dynamics, Construction of Machinery, Equilibrium of structures, and the Strength of Materials. 8vo. 1851.
[18.) \%
Weir, H, F, Land Measuring Tables, showing the area of any sized Plot. 8ro. Glasgow,
Whewell, W. Elementary Treatise on Mcchanies. 7th edition, 8ro Cambridge, 1347°.
Willich, C. M. Popular Tables for ascertaining the Value of Lifehold, Leasehold, and Church Property. 4th edition, 8 vo. 1859.
Woodbury, D, P. Treatise on the various Elements of Stability in the well-proportioned Arch. 8vo. New York, 18 an.

XII. PRACTICAL WORKS OF CONSTRUCTION.-SEE also Crass X.

Adams, H. Joints in Woodwork. 8ro. 1877.
Adhémar, J. Traité de Charpente. 2nd edition, 8 so. Paris, 1854.
Traité de la Coupe des Pierres. Tcst 8vo., plates folio. Yaris, 1859.
Ardant, P. Sur la Charpente à Grande Portée. Folio. Paris, 1853.
Ashpitcl, A. New Guide, or Book of Lines for Carpenters, gcometrically explained. New edition, 4to, 1857,
_-Handrails and Staircases; a Simple Method of Finding the Lines. 4to. 1851.
Bancroft, R. M. and F. J. Tall Chimney Construction. 8vo. Manchestex, 1885.
Bankes, L. Joiner's Instructor in the Construction of Staircases and Handrailing. 4 tn.
Blagrove, G. H. Shoring and its Application. 8vo. 1887.
Borgnis, J. A. Traité Élémentaire de Construction appliquée à l'Architecture Civile. 2 vols. 4to. 30 plates. Pıris, 1823. 3rd edition, 4to. Liège, 1840.
Brandon, R. and J. A, Open Timber Roofs of the Middle Ages. 4to. 1849.
Brees, S. C. Railway Practice: a Collection of Working Plans, \&c, 4 scrics, 4to. 1837, $1810,1847$.
Brown, G. Healthy Foundations for Houses. 18n:o. New York, 1885.
Brunet, F. Dimensions des Fers de Ja Coupole de la Halle au Grain. 4to. Paris, 1809.
Bruyère, L. Études relatives à l'Art des Constructions. Folio. Paris, 1823-28.
Building Construction. Notes on. 3 vols. 8vo. 1875-79.
Burn, R. S. New Guide to Carpentry, general Framing, and Joinery, theoretical and practical. 4to. 1871.
Bury, T. Remains of Eeclesiastical Woodwork. 21 plates, 4to. 1847.
Christy, W. J. Practical Treatise on the Joints made and used by Builders, 12 mo . 1892
Collings, G. Circular Work in Carpentry and Joinery : A Practical Treatise on Circula Work of Single and Duuble Curvature. 8 ro. 1887.
Dempsey, G. D. Examples of Iron Roof, spans from 20 to 153 feet. Folio. 1850.
Dobson, E. Rudimentary Treatise on Masonry and Stone-cutting. 12mo., 4to. 1845: Rudiments of the Art of Building. 12 mo . 1881. On Foundations and Concrete Wurt. 12 mo .1850.
Douliot, J. P. Traité special de Coupe des Pierres. 2 vols. 4 to. Paris, 1825.
Durand-Claye, A. Étude sur la Stabilité de la Coupole projetée par Bramante pour ! Basilique de S. Pierre de Rome. 4to. Paris, 1879.
Eck, C. L. G. Traté de l'Application du Fer, de la Fonte, et de la Tôle, dans les Cos structions Civiles, etc. Folio. 1841.
__ Mémoire sur la Construction de Nouveaux Planchers, destinés à rendre les Bât ments Incombustibles. Folio, Paris, 1841.
Émy, A, R. Traité de l'Art de la Charpenterie. 2 vols. 8 vo. 157 plates, foli Description du Nouvcau Systeme d'Ares pour les Grandes Charpentes. Foli Liège, 1852.
Fiurbairn, W. Treatise on Mills and Millwork. Part I. Principles of Mechanisu 3rd edition, 8ro. 1871. Part II. Machinery and Construction and Arraugement Mills. 2nd edition, 8 ro. 1865 .
iontenay. T. Notice on the Construction of the Tunnels of St. Cloud and Motretout; with General Observations on Subterranean Passages, and the Dimensions and Prices of Sixty-six Tunnels in France, England, and Belgium. 8 ro. Paris, 1847. ourneau, H. Art du Trait de Charpenterie. 4 vols, folio, 87 plates. Paris, 1820. ox, H. H., and Barrett, G. Construction of Public Buildings and Private DwellingHouses on a Fireproof Principle, without increase of cost. 12mo. 1849. rezier, M. Théorie et la Pratique de la Coupe des Pierres et des Bois. 3 vols. 4to. plates. Paris, 1757.
alpin, J. Joiner's Instructor: Staircasing and Handrailing. 2 rols. 4to. 1853.

- Joiner's Own Book, and Builder's New Guide, showing the Improvements upon Carpentry and Joinery since the days of the late Mr. Nicholson. 39 plates, 4 to. 1856. zuthey, E. M. Dissertation sur les Dégradations survenues aux Piliers du Dôme du Panthéon, et sur les Moyens d'y remédier. 4to. plates. Paris, 1798.
oodwyn, H. Wrought-Iron Roofing, as applicable to every description of Building, and showing the modification necessary to adapt the system to European dwellings in India, \&c. 4to. Calcutta, 1844.
assenfratz, J. H. Traité de l'Art du Charpentier. 4to. Paris, 1804.
usse, M. Ouverture de l'Art du Serrurier, Charpentier, etc. 2 vols. folio. Flèche, 1627. Le Secret d'Architecture. Folio. 1642. L'Art de Charpente. 3rd edition, folio. Paris, 170 . .
rafft, J. C. Traité sur l'Art de la Charpenterie; Plans, Coupes et Élévations, de diverses Productions. Folio. Paris, 1820.
svinges, H. et L. Cathédrale de Bayeux : Reprise en sous-œurre de la Tour Centrale ; Description des Travaux. 25 plates, 4to. Paris, 1861.
xton, H. Examples of Building Construction, being a Series of Working Drawings to a large Scale. 27 parts, folio. 1853-56.
theson, E. Works in Iron; Bridge and Roof Structures, with a Vocabulary. 8vo. 1873.
rrifield, C. W. Determination of the Form of the Dome of Uniform Stress. 8vo.
ssauge, M. Traité de Charpenterie et des Bois de toutes Espèces. 2 tom. Paris, 1753. gnard, B. R. Guide des Constructeurs; Traité. 3rd edition, by A. F. Chelly. 2 rols. 8 ro. ; 87 plates, folio. Paris, 1866.
rey, P., et Roux, H. Charpente de la Cathédrale de Messine. Folio. Paris, 1841.
aris, T. British Carpentry: History and Principles of Gothic Roofs. 8ro. 1871.
wiand, J. Carpenter's and Joiner's Assistant, \&c. 2 vols. folio. Liverpool, 1860.
hholson, P. Carpenter and Joiner's Assistant. 4to. 1815. Carpenter's New Guide.
tto. 1819. Practical Treatise on the Art of Masonry and Stone-Cutting. 8vo. 1832. ('ham. Report on the Fall of the Cotton Mill. Folio. 1845.
(permann, C. A. Nouvelles Annales de Construction. In progress, folio. Paris, 855-87.
dell, G. T. Foundations and Foundation Walls; Pile Driving; Building Stones and 3ricks. With Foundations and Isolated Piers as followed in Chicago, by F. Baumann. ro. New York, 1887.
lee, F. British Carpenter. 4to. plates. 1753.
Idle, R. Staircasing, Handrailing, Carpentry, \&c. 1860.
lerts, T. Mode of Scaring Timber. 8vo. Devonport, 1852.
Yson, G. Modern Domestic Building Construction. Folio. 1876.
Ison, R. Mason's, Bricklayer's, and Decorator's Guide; containing Examples of 'oundations, Domes, Lighthouses, Bridges, \&c. 4to. 1862.
Ife, C. Chancel Screens and Roofs. 8vo. Reading, 1876.
[1846-50.
Faberg, S. A. Die Zimmerwerk-Baukunst in allen ihren Theilen. Folio. Leipzig.
F delet, J. Traité Théorique et Pratique de l'Art de Bâtir. 5 vols. 4to. and 207 lates, folio. Continuation of G. A. Blouet. Paris, 1858. 10ih edition.
As great use was made of this work by Gwilt, we notice here that he had the edition of 1835. It was first published in 1805-10, which edition is in the library of the Institution of Civil Engineers; the second, of 1812-14, is in the library of the Institute of British Architects, and in Sir John Soane's Museum ; while the British Museum contains the edition dated 1830-2. In this one some of the plates have been re-engraved and rearranged.
[Paris, 1814. - Mémoire Historique sur le Dôme du Panthėon François. 10 plates, 4to. - Mémoire sur la Réconstruction de la Coupole de la Halle au Blé de Paris. 0.3 plates. Paris.

R, C. F. le. Traité de Stéreotomie ; à la Théorie des Ombres, la Perspective linéaire, Gnomonique, la Coupe des Pierres, et la Charpente. 2 vols. folio and 4to. Liège, 35.

St|on, H. C. Building Trades and Building Construction. 2nd edition, folio. Chatham, - Builders' Work and the Building Trades. 8ro. 1886.
[1877.

Sganzin, J. Leçons d'un Cours de Constructions, arec des applications tirées spécialement de l'Art de l'Ingénieur des Ponts et Chaussées. 5th edition, ly M. Reibell. 180 plates, folio. Text 3 vols. 4 to. Paris, 1845.
[1860. 8ro. 1877.
Simms, F. W. Practical Tumelling. Revised by W. D. Harkoll. 2ad cdition. 4to, Simonin. Traité Elémentairc de la Coupe des Pierres. 4to. Paris, 1792.
Sirr, H. English Stall Work, Canopies, and Rood Screens of the XVth century. 2 rols. 4to. 1883-85.
[1878.
Small, J. W. Scotish Woodwork of XVIth and XVIIth century, Folio. Edinlurgh,
Stock, C. II. Shoring and Underpinning. 8vo. 1882.
Tarbuck, E. L. Encyclopredia of Practical Carpentry and Joinery, \&e. 4to. 1857-69
Tarn, E. W. Elementary Prisciples of Carpentry and Joinery, from the work by Tredgold, Plates, 4 to. 8 ro. 1873. On the Construction of Roofs. 12 mo .1882.
Thierry. Recucil d'Escaliers en Picrre, Charpente, Menuiserie et Fonte. 4to. Paris, 1844.
Timmins, T. Iron Girders and Roofs. Vol. 1, 2nd edition, 4to. 1883. Vol. 2, Graphic Strains. 4to. 1882.
Tregold, T. Elementary Principles of Carpentry, by P. Barlow. 4 to. 50 plates. 1853. Revised by T. Hurst. 3rd edition, 8vo. 1880. 5th edition, revised by E. W. 'Jam. 4to. 1885.
Trendall. E. W. Examples for Roofirg. \&c., for Show-Rooms, Theatres, Warehouscs, Churcbes, Chapels, Schools, Villas, Greenhouses, \&c. New edition, ito. 1860.
Walker, T. L. Architectural Precedonts. 65 plates, 8 ro. 1841.
Walmisley, A. T. Iron Roofs. Folio. 1884.
Willcocks, G. W. Roads and Roadways. 8ro. 1879.

XIII. FIREPROOF CONSTRUCTION, \&c.

Aslopitel, A., and Whicheord J. Fireproof Houses in Flats. 8ro. $180 \check{0}$.
Rellamy, T. Fireproof Construction. Folio. 1872.
Boult, J. Structural Requirements of the Fire Prevention Acts, \&cc., in Lirerpool. Svo. Liverpool, 1869.
Braidwood, J. Fireproof Buildings. 8vo. 1850.
-- Fire Prevention and Fire Extinction. 8vo. 1865.
Fox, H. H., and Barrett, G. Construction of Public Buildings and Private Dwelling IIouses on a Fireproof Principle, without increase of cost. $\quad 12 \mathrm{mo} .1849$.
Hornblower, L. Improvements in the Construction of Fircproof Buildings ; Specifica tions, \&c. 8ro. 187 t.
Merryweather, J. C. Fire Protection of Mansions. 8vo. 1881.
Papworth, W. Notes on the Causes of Fires; or, which is the safest of the various mode of Warming Buildings. 16 mo .18 ans.

- Notes on Spontaneous Combustion. 16mo. 1855.

Shaw, E. M. Fire Surveys; or, Principles in Estimating Risk of Buildings. 8ro. 1876
Young, C. F. T. Fires, Fire-cngines, \&c.; with Remarks on Fïreproof Construction 8ro. 1866.

XIV. BRIDGES AND ARCHES.

Adhémar, J. Traité Théorique et Pratique des Ponts Biais. Folio. Paris, 1857.
Anselin, N. J. B. Expériences sur la Main dEurre des différens Travaux dépendans d Service des Ingénieurs des Ponts et Chaussées, etc. 410. Boulogne, 1810. [180 Atwood, G. Dissertation on the Construction and Properties of Arches. 4to. [18"] Aubry. Mémoire sur la Construction d'un Pont de Bois de 450 Pieds d Ouverture div seul Jet, etc. 4to. Paris, 1790.
[Bridge. 4to. 188
Baker, B. The Strength of Beams, Columns, and Arches. 8vo. 1870. The For
Bashforth, F. Practical Treatise on the Construction of Oblique Bridges with Spiral al with Equilibrated Courses. New edition, 8vo. 1855.
Bauernfeind, C. M. Vorlcgeblätter zur Brückenbaukunde. Folio. Munich, 1853-54.
Blackfriars Bridge. 7 plates of the machines used in its construction and the ceatrit of the middle arch. Oblong folio.
Rlair and Phillips. Construction of Viaducts, Bridges, \&c. 8ro. 1845,
Boistard, L. C. Recueil sur les Ponts de Nemours, \&c. 4to., 19 plates. Paris, 1822.
Bow, R.H. Treatise on Bracing; with its Application to Bridges, \&c. 8vo. Edi burgh, 1851.
Cargill, J. Strains upon Bridge Girders and Roof Trusses. 8ro. 1873.
Slark, E. Britannia and Conway Tubular Bridges, with General Inquiries on Bear 2 rols. 8 ro. 1850.

Cresy, E. Practical Treatise on Bridge Building and on the Equilibrium of Vaults and Arches. Plates, folio. 1839.
Dompsey, G. D. Maleable Iron Tubular Bridges. 4to., plates fulio. 1850.
——Brick Bridges, Sewers, and Culverts. 4to., plates folio, 18.50.
Emmery, H. C. Pont d'Ivry en Bois, sur Piles en Pierre, traversant la Seine près du confluent de la Marne. 2 vols, 4to. plates. Paris, 1832.
Etzel, C. von. Brücken und Thalübergänge Schweizerischer Eisenbahnen. Folio. Basel, 1856. Supplement, 1859.

Exchaquet, H. Dictionnaire des Ponts et Chaussées. 8 ro. 12 plates. Paris, 1787.
Fairbairn, W. Account of the Construction of the Britannia and Conway Tubular Bridges. 20 plates, 8 vo. 1849.
Gauthey, E. M. Traité de la Construction des Ponts; Mémoires sur les Canaux de Navigation, etc., publié par M. Navier. 4 vols, 4to. plates. Paris, 1816.
テ̄autier, H. Traité de la Construction des Ponts et Chaussées. 8vo. Paris, 1721-65.
foury, G. Recueil d'Observations, Mémoires et Projets concerrant la Navigation Intérieure. 2 vols. 4to., plates folio. Paris, 1827.
Iwilt, Joseph. On the Rebuilding of Londou Bridge. 8vo. with 1 plate. 1823.

- Treatise on the Equilibrium of Arches. 8vo. plates. 1826. The editions of a later date are spurious, being without additions or corrections by the author.
Uann, J., and Hosking, W. Theory, Practice, and Architecture of Bridges of Stone, Iron, Timber, Wire, and Suspension. 4 vols. 8 vo. 1843 . Supplement, by G. R. Burnell. 8vo. 1850.
[Iron. Folio. 1864.
Laskoll, W. D. Examples of Bridge and Viaduct Construction of Masonry, Timber, and faupt, H. General Theory of Bridge Construction, containing Demonstrations of the
Principles of the Art, the Scrains upon Chords, Ties, Braces, \&c. New edition, 8 ro. New York, 1853.
Iodges, J. Great Victoria Bridge at Montreal in Canada. Text 4to., plates folio. 1860. Iumber, W. Complete Treatise on Cast and Wrought Iron Bridges and Girders, as applied to Railway Structures and Buildings generally. Plates, 4 to. 1860.

Complete Treatise on Cast and Wrought Iron Rridge Construction, including Iron Foundations. 80 plates, 2 vols. 4to. 1864 and 1870.
Iutton, C. Principles of Bridges. 8 ro. 1772.
atham, J. H. Construction of Wrought Iron Bridges, embracing the Practical Application of the Principles of Mechanies to Wrought-Iron Girder Work. 8vo. Cambridge, 1858.
Sage, P. C. Recueil de divers Mémoires des Ponts et Chaussées. 2 vols. 4to. Paris, 1810. arquand, C. On the Different Constructions of Bridges, and Improrements to secure their Foundations. 4to. 1749.
aw, W. H., and Dredge, J. Modern Examples of Road and Railway Bridges. 4to. 1872.
ilne, J. Theory and Principles of Bridges and Piers. 8 ro. 36 plates. 1806.
olinos, L., et Pronnier, C. Traité Théorique et Pratique de la Construction des Ponts Métalliques. 4to., plates folio. Paris, 1858.
tvier. Mémoire sur les Ponts Suspendus. 4to. Paris, 1830.
cholson, P. Guide to Railway Masonry, containing a complete Treatise on the Oblique Arch. 3rd edition, revised by R. Cowen. 8 ro. 1860.
rronet, M. Eurres de. 4to., plates folio. Paris, 1793.
lonceau, A. R. Notice sur le nouveau Système de Ponts en Fonte, suivi dans la Construction du Pont du Carrousel. 4to. Atlas folio, plates Paris, 1839.
nt en Pierre à construire sur la Seine à Rouen. 4to. plates. Paris, 1815.
ony, M. do. Nouvelle Architecture Hydraulique. 2 vols. 4to. plates. Paris, 1790.
gemortes, M. de. Description du nouveau Pont de Pierre construit sur la Rivière
l'Allier à Moulins. Folio. Paris, 1771.
bertson, F. Tables for Arches. 8vo. 1871.
ndelet, A. Essai Historique sur le Pont de Rialto. 4to. plates. Paris, 1837.
ward, J. Obsercations on the Rebuilding of London Bridge. 8vo. plates. 1824.
ruin, A. Des Ponts en Fil de Fer. 8ro. plates. Paris, 1824.
nple, G. Treatise on Building in Water. 63 p'ates, 4to. Dublin, 1776.
unahan, M. Plans and Elerations of Bridges in France, Switzerland, Italy, and jaroy. Oblong folio. Plates only. No date.
Il, G. Stability of Arches. 8vo. 1846.
[1882.
ford, T. Reports on the Holyhead Roads, Harbour, Bridges, \&e. Folio, with plates.
I nbull, W. Mathematical Investigation of Dredge's Principle for Bridges. 8 ro. 1841.
Yat, L. J. Description du Pont Suspendu construit sur la Dordogne à Argental. 4to.
lates. Paris, 1830.
1 re, S. Treatise on the Properties of Arches, and their Abutment Piers. 1809.
beking, Le Chevalier. Architecture Hydraulique fondée sur la Théorie et la Pratique. vols. 4to. Atlas vol. of plates. Munich, 1814-24.

XV. SPECIFICATIONS, GUIDES TO TRADES, OEFICE WORK.

Bartholomew, A. Specifications for Practical Architecture, preceded hy an Essa on the Decline of Excellence in the Structure and in the Science of Modern Englis Buildings. 8vo. 1840. 2nd edition, 8vo. 1846.
Beckett-Denison, Sir E. Lectures on Church Building; with Remarks on Bells an Clocks. 2nd edition, 8vo. $18 \bar{\jmath} 6$.

- A Book on Building; including Church Restoration. 2nd edition, 12mo. 1881

Blenkarn, J. Architectural and Engineering Specifications of Works, Roads, an Sewers, with Agreements and Reports. 8vo. 1865.
Burn, R. S. Handbook of the Mechanical Arts in Building; with Hints on Rosic making and Enclosing of Land. 2nd edition, 8vo. Edinburgh, 1860.
Claudel, J. Formules, etc., ou Aide Mémoire des Ingénieurs, des Architectes, etc. 2n edition, 8ro. Paris, 1857.
Dempsey, G. D. The Builder's Guide: A Practical Manual. 8vo. 180 1.
Dobson, E. Rudiments of the Art of Building. 12 mo .1849.
-_Student's Guide. 3rd edition, with additions by E. L. Garbett. 8 ro. 1858.
Donaldson, T. L. Handbook of Specifications, \&c. ; with a Review of the Law of Cor tracts, by W. C. Glen. 2 rols. 8 ro. 1860.
Haskoll, W. D. Clcrk of the Work's and Young Architect's Guide. 12mo. 1849.
Houba, E. Code à l'usage de Propriétaires. Ingénieurs, Architectes. 8ro. Brux., 1881
Hurst, J. T. Handbook of Formulæ, Tables, and Memoranda for Architectural Su: reyors, \&c. 13th edition, sm. obl. $1882 . \quad$ [edition, 8ro. 188
Jenkins, E., and Raymond, J. A Legal Handbook for Arehitects. 8vo. 1873. 3r
Mathews, J. D. Architect's and Contractor's Handbook. 8vo. 1883, 1885.
Noble, J. Professional Practice of Architects, and that of Mcasuring Surveyors ; an Reference to Builders. 8 vo. 1836.
[W. Young. 8ro. 187
Pewtner, W. Comprehensive Specifier: a Guide to Practical Specification. Edited 1
Rankine, W. J M. Manual of Civil Engineering. 3rd edition, 8ro. Glasgow, $186 t$.
Roberts, J. B. Short Hists to the Student in Architecture on entering the Office, mal ing Drawings, \&c. 16 mo .1852.
Rogers, F. The Architect's Guide: a Text-Book of Useful Information for Architect Eugineers, Surreyors, Contractors, Clerks of the Works, \&c. 8ro. 1877.
Ryde, E. Text-Book for the constant use and reference of Architects, \&c. Land Property, ly J. Donaldson. 8vo. 1854.
[tory and Diary for 188
Sears, J. E. The Architect, Surveyor, and Engineer's Compendium, Specialist's Dire
Seddon, H. C. Notes on the Building Trades and Building Construction. 2nd editic folio. Chatham, 1877. Builder's Work and the Building Trade. 8vo. 1886.
Science and Art Department. Notes on Building Construction. 3 vols. 8vo. 1875-7\%
Spons' Architects' and Builders' Pocket Book, \&c. 14th edition, by W. Young. 32mo. 188
W:alker, T. L. Architectural Precedents; with Essay on Arelitectural Practice. 8 vn .184
Wire, W. R. Examples of Building Construction. 8vo. and 4to. Boston, U.S.A., 1877-\&
Wheeler. W. H. Construction, \&c., of Roadways. 8 ro. 1877.
Wightwick, G. Hints to Young Architects. 2nd edition, 8vo. 1860. New editic by G. H. Guillaume, 12 mo . 1880.

XVI. DESIGN, DRAWING, PERSPECTIVE.

Adhémar, J. Tiaité de Perspective. 8ro. Paris, 1838.
[tto. Paris, 18 Armengaud, C. Cours élémentaire de Dessin industriel a l'usage des Écoles premier
_- Nouveau Cours raisonné de Dessin industriel appliqué principalement à Mécanique et à l'Architecture. Folio. Paris, 1848.
Billings, R. W. The Infinity of Geometric Design Pxemplified. 4to. 1849.
—— The Power of Form applied to Geometric Tracery. 8ro. 1851.
Burchett, R. Linear Perspective. 18th edition, 8ro. 1878.
Burges, W. Arehitectural Drawings: Measured Drawings from France, England, a Italy, illustrating 13th century work. Folio. 1870.
Davidson, E. A. Projection. 12mo. (1868.) Other works on Drawing for Trades.
Edwards, M. A Guide to Modelling in Clay or Wax. Svo. 1879.
[Paris, 18
Grand, A. le. Dessin linćaire, rasé sur la Géométrie fratique et la Perspective. Io
Griffith, W.P. Ancient Gothic Churches; their Proportions, \&c. 3 parts, 4to. 1847-
Gwilt. J. Seiography; or, Examples of Shadows; with Rules, \&c. 8 vo. 24 plates. 18
Harding, J. D. Elementary Art; or, the Use of the Black-lead Pencil adrocated and plained. 28 plates, 4to., 4th edition. 1858. Lessous on Art. 2 rols. 48 plat 2nd edition, 8ro. 1854. Principles and Practice of Art; treating of Beauty of Fo: Imitatien, Composition, Light, Shade, Effect, and Colour. 4to. 1845.

Jousse, M. Secrets d'A rehitocture et des Traits Géométriques. Folio. Flèche, 1642.
Mahan, D. H. Industrial Drawing; Use of Drawing Instruments, Plane Figures, Solids, \&c. \&c. 8ro. New York, 1852.
Malton, J. Young Painter's Maulstick. 4to. 1806.
—— Practical Treatise on Perspective. 4to. 1800.
Malton, T. Complete Treatise on Perspoctire. Folio, 2 vols. 1778.
Minifie, W. Text-Book of Geometrical Drawing, for the use of Mechanics and Schools; Drawing Plans, \&c., of Buildings and Machinery, Isometrical Drawing, Linear Perspective, and Shadows. New edition, 8vo. Baltimore, 1851.
Monge, G., et Brisson, M. Géométrie Descriptive ; suivie d'une Théorie des Ombres et dela Perspective. 7th edition, 4to. Paris, 1847.
Normand, L. M., et Rebout, A. E. M. Etudes d'Ombres et de Lavis. Folio. Paris, 1845. Ogle, C. C. Tho Centrolinead. 8ro. 1873.
Pasley, C. W. Courso of Practical Geometry and Plan Drawing. 8vo. 1838.
Portlock, E. J., and others. Geometrical Drawing. 4to. 1863.
Prout, S. Hints on Light, Shadow, and Composition, \&c. 4to. 1838. [4to. 1854. Pyne, G. Rules for Drawing ; Outline, Orders, Perspective, Light and Shade, Colour. Roy, C. F. le. Traité de Géométrie Descriptive, 3rd edition, 2 vuls. 8vo. Paris, 1850.
Ruskin, J. Lectures on Architecture and Painting. 8ro. 1852.
——The Elements of Perspective. 8 ro. 1859.
Simns, F. W. Mathematical and Drawing Instruments. 12 mo .1847.
Smith, J. Projection and Artistic Drawing. 2nd edition, 8vo. 1843.
Sopwith, T. Isometrical Drawing. 2nd edition, 8vo. 1843.
Spiers, R. P. Architectural Drawing. 4to. 1887.
[1878.
Stanley, W. F. Descriptive Treatise on Mathematical Instruments. .5th edition, 8vo.
Tari, E. W. Practical Gcometry for the Architect, Engineer, Surveyor, and Mechanic. 8vo. 1871.
[Paris, 1853.
Tripon, J. B. Études progressives et complètes d'Architecture et de Lavis. Folio.
Twining, H. Nature and Application of Perspective and Foreshorteniug. 8vo. 1850.
Ware, W. R. Modern Perspective. 8vo. and 4to. B ston, U.S.A., 1883.
Warren, S. E. Shades and Shadows: General Problems formed both by Parallel and by Radial Rays. 8vo. New York, 1867.
Willson, H. Use of a Box of Colours : Composition, Light and shade. 8vo. 1842.
Wilme, B. P. Handbook for Mapping, Engineering, and Architectural Drawing. 8ro. 1846.

XVII. ORNAMENT, DECORATION, BRASSES, \&c.

Adams, L. G. Recueil de Sculptures Gothiques d'après les plus Beaux Monuments en France depuis le XIe jusqu'au XVe Siècle. 192 plates, 2 vols. 4 to. Paris, 1855.

Décorations Intérieures et Meubles des Époques de Louis XIII. et XIV., d’après les Compositions de C. de Passe, etc. 100 plates, folio. Paris, 1862-64. [1805. Albertolli, F. Corso Elementare di Ornamenti Architettonici. Folio, 28 plates. Milan, Amé, E. Les Carrelages Émaillés du Moyen Âge et de la Renaissance. 4to. Paris, 1859. Antonelli. Collezione de' Migliori Ornamenti Antichi nella Citta di Ven $_$ia. 130 plates, 4to. Venezia, 18°.
Architectural Ornaunents. A Collection of Capitals, Friezes, Roses, Entablatures, Mouldings, \&c., drawn on Stone from the Antique. 100 plates. (Ackermann), 1824.
Arundel Society. Sculptured Ornament of the Monastery of Batalha. Folio. 1868.
Asselineau, C. Meubles et Objets dirers du Moyen Âge et de la Renaissance. Folio. Paris, 1854.
Audsley, W. J. and G. A. Outlines of Ornament in the Leading Styles. Folio. 1881. , G. A., and Bowes, J. L. Keramic Art of Japan. Folio. 1875.
3aldus, E. Palais du Lourre et des Tuileries; Motifs de Décoration Intérieure et Extérieure. 2 vols. folio. Paris, 1874.
_ Recueil d'Ornements d'après les Maîtres les plus célèbres des XVe au XVIII ${ }^{\text {e }}$ Siècles. Folio. Paris, 1869.
3asoli, A. Raccolta di Diversi Ornamenti. 100 plates, folio. Bologna, 1838.

- Compartimenti di Camere. 100 plates, folio. Bologna, 1827.
leauvallet, P. N. Fragmens d'Architecture, Sculpture, et Peinture dans le Style Antique. Folio. Paris, 1804.
Hashifeld, J. M. History and Manufacture of Ancient and Modern Terra Cotta, and of its Use in Architecture. 12 mo . 1855.
hock, translated by Suckau. Les Trésors Sacrés de Cologne. 48 plates, coloured.
ordeaux, R. Serrurerie du Moyen Âge. 4to. Paris, 1853.
iorsato, G. Opera Ornamentale ; con Conni Storici dell' Ornato Decorativo Italiano di Vallardi. 60 plates, folio. Milano, 1831.

Boutell, C. Monumental Brasses of England. 8vo. 1849.
Boutowski, V. de. Histoire de l'Ornement Russe du X ${ }^{\text {e }}$ an XVI ${ }^{e}$ Siècle, d'uprès les manuscrits, 200 plates, fulio. Paris, 1870-72.
Charles, R. Decorative Designs by Robert Adams. Folio. 1883.
Choix des Monumens les plus remarquables des Anciens Egyptiens, des Persıns, des Grecs, des Volsques, des Errnsques, et des Romains, consistans en Statues, Bas-Reliefs, et Vases. 2 rols. folio, $24 \pm$ plates. Rome, 1788.
Cicognara, L. Monumenti Sepolcrali cospicui eretti alle Memorie degli Uomini Celebri in Venezia, \&c. Folio. Turin, 1858.
Clarkson, D. A. Ancient Ironwork from the 13 th century. 4 to. 1860.
Colette, J. Livre de divers Ornemens pour Plafonds, Cintres, Surbaissées, Galeries. Folio, 10 plates. Paris.
Colling, J. K. Art Foliage for Sculpture and Decoration. 72 plates, 4to. $186 \overline{5}$.
—..-Gothic Ornaments of Great Britain. 200 plates, 2 vols. 4to. 1848-56.
Examples of English Mediæval Foliage, taken from Buildings of the 12 th to 15th century. 4to. 1872
Columbani, P. Capitals, Friezes, and Cornices, \&c. 4to.
Cramer, J. O. Ornements du Moyen Âge en Italie et en Sicile, 4to. Ratisbon, 1842.
Creeny, W. F. A Book of Fac-similes of Monumental Brasses on the Continent of Europe. Folio. Norwich, 1884.
Curler, T. W. A Grammar of Japanese Ornament and Design. 65 plates, 4 to. 1880, 1887.
Cutts, E. L. Manual for the Study of Sepulchral Slabs and Crosses of the Middle Ages. 8\%o. Oxfurd, 1849.
Daly, C. Motifs Historiques d'Architecture et de Sculpture d'Ornement des Monuments Français de la Renaissance à la fin de Louis XVI. Two series, folio. Paris, 1866$68 ; 1874$. Motifs Historiques d'Architecture, etc., pour la Composition et la Décoration extérieure des Édifices publics et privés. 2 vols. folio. Paris, 1870.
Davidson, E. A. Amateur House Carpenter. 8vo. 1875.
Day, L F. The Anatomy of Pattern. 8vo. 1886.
Degen, L. Constructions en Briques. 48 plates, 4to. Paris, 1859.
Constructions en Bois; Motifs de Décoration et d'Ornement. 48 plates, 4 to.
Destailleur, H. Recueil d'Estampes relatives à l'Ornementation des Appartements aux XVI ${ }^{\circ}$-XVIII ${ }^{\circ}$ Siécles. Folio. Paris, 1865-71.
Didron, A. N. Mannel des Curres de Bronze et d'Orfévrerie du Moyen Âge ; drawn by I. Gancherel. 4to. Paris. 1859.

Dietterlein, W. Architectura ron Ausstheilnng, etc. der fünff Seulen. Folio. Nuremberg, 1593, 1598.5 Büch, 1655 . New edition, folio. Liège, 1862
Drawing-Rook of the Government School of Design. Folio. 1842-43.
Dresser, C. Modern Ornamentation. 50 plates, 4to. (1866.) Art of Decorative Designs. 8го. 1862. Japan: its Architecture, Art, \&c. 8vo. 1882.
Duchêne, Lacroix, ef Seré. Le Moyen Age et la Renaissance; Histoire des Mours, des Arts, etc., A.D. $500-1600.300$ plates, 5 vols. 4to. Paris, 1848-51.
Eastlake, E. Recneil de Meubles et d'Ornements Intérieurs de différents Styles depuis l'Époque Louis XIII. 2 vols. folio. Bruxelles.
Ebbetts, D. .T. Examples of Decorative Wrought Ironwork of XVIIth and XVIIIt] centuries. Folio. 1879.
Eggert, F. Sammlung Gothischer Verzierungen. Plates, folio, Munich.
Eisenlohr, F. Ornamentik in ihrer Anwendung auf verschiedene Gegenstände der Bangewerke. Folio. Carlsruhe and Leipzig, 1851.
—— Mittelalterliche Bauwerke im südwestlichen Deutschland und am Rhein.
__ und Feederle, F. Holzbauten des Schwarzwaldes, \&c. Foliv. Carlsruhe, 1854.
Fabre, A., and Veslay, L. de. L'Architecture au Salon; Art Antique, Moyen ge, Renaissance, etc. Folio. Paris, 1872.
Fergusson, J. Tree and Serpent Worship. 4to. 1868.
Feuchére, L. I'Art Industriel ; Recueil de Dispositions et Décorations Intérieures. 7: plates, fulio. Paris, 1839-48.
Fowler, W. Collection of Mosaic, Roman and Norman Tesselated Pavements, and ancien Stained Glass, discorered in different parts of England. Folio. Various dates, from 1798 to 1821 . Collations and Notes, 4 to. 1883 , by Lord Lindsay.
Gaucherel, L. Exemples de Décoration appliqués à l'Architecture et à la Peinture. 12! plates, 4 to. Paris, 1857.
Haines, H. A Manual of Monumental Brasses. 2 vols. 8 ro. Oxford, 1861.
Havard, H, L'Art dans la Maison. 8vo. Paris, 1884.
Heideloff, C. A. von. Art Specimens of Nuremberg, for Turners, Pottery and Porcelai Manufacturers, Jewellers and Goldsmiths, Woodearvers, Carpenters, \&c. 4 parts, 4 to Nuremberg, 1851.

Loideloff, C A. ron, nud Gorgel, C. Les Ornemonts dii Moyen $\hat{\Lambda}$ ge (Byzantine and Gothic Styles). $\quad 1 \not 14$ plates, 4 parts, 4to. Nuremberg, 1813-52.
Iessemer, F. M. Arabische und Alt-Italienische Bauverzierungen. 120 plates, large folio, Berlin, $18+2$.
Iill, A. G. Organ Cases and Organs of the Middle Ages and Renaissance, Folio. 1883.
Iinz, A. Die Schatzkammer der Marienkirche zu Dantzig. 8ro. 1871.
Lulme, F. E. Suggestions in Floral Design. Folio. 1836.
Iusson, F. L'Architecture Ferronière: Exemples de Coustruction et d'Ornementation anciennes et modernes. 4to. Paris, 1872.
acquemart. A. History of the C'ramic Λ_{r}-of all Ages and all Nations. Tramslated by Mrs. Bury Palliser. 8vo. 1873.
alembier, C. A. Principes d'Ornemens pom l'Architecture. 40 p'ates. Paris.
enkins, W., and Hosking, W. Selection of Architectural and other Ornaments, Greok, Roman, and talian. 25 plates, folio. 1829
umbert, C. A. Répertoire des Artistes; ou Recteil de Compositions d'Architecture et d'Ormemens, antiques et modernes, de toute espèse, par divers Auteurs. 2 vols. folio. Paris, 1765.
unes, Owen. Examples of Chinese Ornament. 4to. 1866; and 8ro. 1867. The True and the False in the Decorative Arts. 8ro. 1863.
ulienne, E. LOrnemaniste des Arts Industriels. Folio. Paris, 1810.
ulienne, M. E. L'Orfévrerie Française, les Bronzes et la Céramique. Folio. Paris, 1868
Cing, T. If. Orfévrerie et Ourrages en Métal du Moyen Âge. 200 plates, '2 vols, folio. Bruges, 1853-60.
inross, J. Details from Italiun Buildings, chiefly Renaissance. Folio. Eılinlurgh, 1882.
abarte, J. Histoire des Arts Industriels au Moyen Age et à l'Époque de la Renaissance, 2 vols tto, Paris, 1848-51.
achave. Nourelle Collection de Menuiserie en Bâtiments. Folio. 1864.
——Srrurerie. Recueil contenant Balcons en fer corroyé et d’autres en fonte, lits $f n$ fer, ete Folio. 1864.
aredan, B. Guide Pratique de Sirurerie Usuelle et Artistique à lousage des Architectes, etc. 3 vols 4to. Paris, 1867.
efnel. Palais du Lourre et des Tuilcries; Motifs de Décorations. Folio. Paris, 1870.
e Noir', A. Nouvelle Collection d'Arabesques propres à la Décoration des Apparteruens dessinées à Rome par I. Poussin 4to. Paris.
Pantre, A. Ceuvres d'Architecture ; contenant les Frises, Feuillages, Montans ou Pilastres, Grotesques, Moresques, Panneaux, Placarts, Trumeaux, Lambris, Amortissemens, Plafouds, et généralement tout ce qui concerne l'Ornement. 3 vols. folio. Paris, 17 ő1.
ery, E. Meubles Religieux et Civils conservés dans les Principaux Monastéres ot Musées de l'Europe du Moyen Âge et de la Renaissance. Folio. 1863.
wis, T. C. Organ Building and Bell Founding. 4to. 1878.
[Munich, 1872.
etzger, E. Ornaments designed from Flowers, for Arehitects, Decorators, \&c. Folio. oreau, C. Fragmens et Ornemens d'Architecture dessinés à Rome d'après l'Antique, formant un Supplément à l'Curre d'Architecture de Deggodetz. Large folio, 36 plates. Paris, 1802,
chols, J. G. Essay on Encaustic Tiles, with Examples. 4to. 1842-45.
ormand, C. Le Guide de l'Ornemaniste et de Décoration. New edition, folio. Liège, 1847.

- Noureau Recueil en divers Genres d'Ornemens, et antres Objets propres à la Décoration. Folio, 46 plates. Paris, 1803.
dham, T. Ancient Irish Pavement Tiles. 4to. Dublin, 1842.
nament. Collezione dei Migliori Ornamenti Antichi, sparsi nella Città di Venezia, con alcuni Frammenti di Gotica Architettura, Folio. Venezia, 1843-45.
-Cours Élémentaires de Lavis appliqué à l'Ornementation. Folio. Paris, 18 ®̄3.
pworth, J. W. and W. Specimens of Decoration in the Italian Style, selected from the Designs of Raffaello in the Vatican Palace at Rome. 14 plates, 4 to. 1844.
quenot. Architecture, Sculpture, Cheminées, Plafonds, Decorations Intérieures, d'après les Maîtres. 200 plates, 4to. Paris.
rcier, C., et Fontaine, P. F. L. Recueil de Décorations Intérioures, comprenant tout ce qui a rapport à l'Ameublement. Folio, 72 plates. Paris, 1812.
rgolesi, M. A. - Designs for Arabesques. Large folio, 30 plates. 1777-85.
cit, V. Nouveau Portefeuille de l'Ornemaniste. 50 plates, folio. Paris, 1864.
- et Bisianx. Motifs de Décoration. lst series, 50 plates, folio. Paris, 1864.
nor, R. Architecture, Décoration et Ameublement de l'Époque de Lonis XVI. Folio. Paris, 1864-65.
- Ornementation usuelle de toutes les Époques dans les Arts Industrielles et en Architecture. 2 vols. folin. Paris, 1867-68.
oli, ' Γ. Monumens Antiqnes du Musée Napoléon, 4 vols. 4to. 40 plates. Paris, 1804.

Pompeii. Gli Ornati delle Pareti ed i Pavimenti delle Stanze dell Antica Pompeia, Atlas fulio, 21 plates. Napoli, 1796.
Pugin, A. W. N. Glossary of Ecclesiastical Ornament and Costume. 3rd edition, 4io. 1868.
- Floriated Ornament. A Saries of 31 Designs. 4to. 1819.
Pullan, R. P. The Designs of William Burges. Folio. 1886.
Queverdo, F. M. Décorations Intérieures; Epoque de Louis XVI. Folio. Paris.
Ramée, D. Sculptures Décoratives, Motifs d'Ornementation recueillis en France, Allo. magne, Italie, et Espagne, dans les plus Beaux Monuments éle vés du XII au XV1e Siècle. 4to. Paris, 1863-64.

Meubles Religieux et Civils, conservés dans les principaux Monuments et Musées de l'Europe, pendant Moyen Age-de Louis XVI. 2 vols. folio. Paris, 1864.
Reynard, O. Ornemens des Anciens Maîtres des XV du XVLII ${ }^{\circ}$ Siècles. Folio. Paris, 1844.

Richardson, C. J. Studies of Ornamental Design. 2 vols. folio. 1849-51.
Rigollot. Histoire des Arts du Dessin, depuis l'Époque Romaine jusquà lit fin du seizième Siècle. 2 vols. 8 vo. Paris, 1861 .
Romagnesi. Recueil d'Ornemens en Sculptures. Folio. Paris, $18+3$.
Rottman, L. Ornaments from the Interiors of Celebrated Buildings of Munich. Folio. Munich, 1849.
Rouyer, E., et Darcel, A. L'Art Architectural en France depuis François Ier jusqu"ỉ Louis XIV ; Motifs de Décoration. 184 plates, 4to. Paris, 1862-65.
Runge, L. Essais sur les Constructions en Briques en Italie. Text French and Greman. 2 series, folio. Berlin, 1846-53.
Schmidt, C. W. Baudenkmale in Trier und seiner Umgebung. 5 parts, folio and 410. Treves, 1836-45.
Scott, Sir G. G. Guide to the Architectural Museum. 8vo. 1876.
Scott, W. B. The Ornamentist; Designs selected from the Works of Dietterlio, Berain, Blondel, Meissonier, Le Pautre, \&c. 4to. Edinburgh, 1845.
Sharpe E. The Ornamestation of the Transitional Period of British Architecture, 11451190. 4to. 1871.

Shaw, H. Handbook of Mediæral Alphabets and Devices. 8ro. 1853.
———Decorative Arts of the Middle Ages. 8ro. 1851.
———Specimens of Tile Pavements. 4to. 1852.
Silvestre, J. Collection d'Alphabets; Histoires et Fleuronnés tirés des Principales Bibliothéques de l'Europe. Folio. Paris, 1843.
Sommerard, A, du. Les Arts du Moyen Âge, en ce qui concerne principalement le Paldit de Paris; l'Hôtel de Cluny, etc. 11 vols. 8 vo. and folio. Paris, 1838-46.
Talbert, B. J. Gothic Forms applied to Furniture, Metal Work, Decoration, \&c. Fulio Birmingham, 1868.
Tatham, C. H. Grecian and Roman Ornaments. Folio, 101 plates. 1825.
Thiollet, F. Modèles de Serrurerie et Fonte de Fer. Folio. Paris.
Tyrwhitt, R. St. J. Christian Art and Symbolism. 8vo. 1872.
Uné, G. I'Art Décoratif; Modèles de Décoration et d'Ornementation de tous les Styles 4to. Paris, 1862.
Ungewitter, G. G. Plans, etc. Meubles du Moyen Âge, composés par G. U. 48 plates' folio. Leipzig, 1856.

Sammlung mittelalterlicher Ornamentik in Geschichtlicher. Folio. Liepzig, 1863
Vatican. Recueil d'Arabesques; contenant les Loges du Vatican, gravées d'après Kaphut et grand Nombre d'autres Compositions du même Goût dans le Style Antique. Larg folio. Paris, 1802.
Viollet-le-Duc, E. E. Dictionnaire Raisonné du Mobilier Français de l'Époque Carloris gienne à la Renaissance. 4 vols. 8ro. Paris, 1858-72.
Volpato, J. Raphael's Loggie del Vaticano. 3 vols. folio. Rome, 1772-77.
Vulliamy, L. Examples ot Ornamental Sculpture in Architecture. 40 plates, folio. 1528
Waller, J. G. and L. Monumental Brasses from Edward I. to Elizabeth. Folio.
Waring, J. B. Illustrations of Architecture and Ornament. 4to. 1868.
Stone Monuments, Tumuli, and Ornaments of Remote Ages. 4to. 1870.
Weale, J. Ornamental Iron work, Gates, Lcdges, Palisading, \&c., in the Royal Parks, \&c 4to. 1840.
Wornum, R. N. Analysis of Ornament ; Characteristics of Styles. 8ro. 1856.
Zach. Ornements d'Architecture du Moyen Âge d'Angleterre et de France. 4lc Munich, 1842.
Zahn, W. Select Ornaments for Architects and Workmen. Folio. 1844.
Zanetti, G. Studj Architettonico-Ornamentali. Folio. Venezia, 1845.

XVIII. COLOURED DECORATION, STAINED GLASS, HERALDRY, \&c,

dams, E. Polychromatic Ornament of Italy. 4to. 1847.
rrowsmith, W. and A. House Decorator's and Painter's Guide ; Designs for Decorating Apartments. 4to. 1840.
ieltord, W. K. R. The Blazon of Episcopacy. 8ro. 1858. enson, W. Manual of the Science of Colour. 8 ro. 1871.
org, A. R., and P. van der. School of Painting for the Imitation of Woods and Marbles. 36 plates, folio.
lackburne, E. L. History of the Decorative Painting applied to English Architesturo during the Middle Ages. 4to. 1847.
ourgoin, J. Les Arts Arabes. Archi ecture, Menuiseric, Bronzes, Plafonds, Marbres, Parements. Vitraux, etc., et lo trait général de l'Art Arabe. Folio. Paris, 1873.
urke, Sir B. Eucyclopædia of Heraldry or Gentral Armory. 8vo. 1842. New edition. 1878.
thier, C., et Martin, A. Vitraux Pients de Saint-Étienne de Bourges; Recherches détachées d’une Monographie de cette CaLhédrale. Verrières dı XII ${ }^{\circ}$ Siécle. $7 t$ plates, folio. Paris, 1841-44.
2 Suite aux Mélanges d'Archéologie. Ser. $1^{\text {re. }}$. Carrelages et Tissus. 8vo.

Paris 1873.

aneto, F. Saide-Marie d'Auch ; Atlas Monographique de cette Cathédrale. 60 plates of glass, folio. Paris, 1857.
2evreul, M. E. De la Loi du Contraste Simultané des Couleurs, etc. 8vo. Paris, 1829.
Plares, 4to. 1839. Translated by C. Martel. 8ro. London, 1854. Translated by J. Spanton. 8vo. 1860 and 1883.
urch, A. H. Colour: an Elementary Manual for Students. 8ro., new edition. 1887.
ly, C. Décorations Intérieures Peintres. Salons, Salles à Manger, Chambres à Coucher, etc. ete. 3rd series of L'Architecture Prisée. Folio. Paris, 1874.
ridson, E. A. House Painting, Graining, Marbling, \&c. 12 mo .1876.
scamps, H. P. V., et Le Maistre-d'Anstaing, I. Vitraux de la Cathédrale de Tournai, lessinés par Capronnier. 13 plates, folio. Paris, 1846-48.
rille, A. Histoire de l'Art de la Verrerie dans l'Antiquité. 4to. Paris, 1873.
pont-Auberville. Art Industriel. L'Ornement du Tissus, Recueil Historique et Praique de l'art Ancien, du Moyen Âge, de la Renaissance, et des XVII ${ }^{\circ}$ et XVIII ${ }^{\circ}$ ièecles. 100 plates. Folio. Paris, 1874-77.
iger, L. P. Dorische Polychromie. 4to. 1886.
ld, G. Chromatography ; or, a Treatise on Colours and Pigments, and of their Powers a Painting. 2nd edition, 8vo. 1841. Rerised by T. W. Salter. 8vo. 1869.

- Rudiments of the Painter's Art ; or, a Grammar of Colouring. 12mo. 1850.
] fler, W. Collection of Parements, \&c. (See List XVII.)
Inch, G. H. Hints on the Arrangement of Colours in Ancient Decorative Art. 2nd dition, 8 ro. Manchester, 1850.
(cherel, L. Exemples de Décoration appliqués à l'Architecture et à la Peinture depuis Antiquité jusqu'à nos jours. 4to. Paris, 1857.
G ult. de Prangey. Choix d'Ornemens Moresques de l'Alhambra. Folio. Paris, 347.

G the, J. W. von. Theory of Colours. Translated from the German by C. L. Eastlake. o. 1840 .

G aer, L. Fresco Decorations and Stuccoes of Churches and Palaces in Italy during the Yth and XVIth Centuries. Text by J. I. Hittorff. 4to. plates, folio. 1844. New ition, 1854.

- Ornamental Designs for Decorations and Manufactures. Published for the Jernment School of Design. Folio. 1848.
H. D. R. Nomenclature of Colours, Hues, Tints, and Shades. 8 ro. 「dinburgh, 1845.
- Principles of Reauty in Colouring Systematised. 8vo. Edinburgh, 1845.

Hi ins, W. M. The House Decorator, or Decorator's Companion ; a Complete Treatise the Art of House Painting, Graining, Marbling, \&c. 4to.
III rff, J. I., et Zanth, L. von. L'Architecture Polychrome chez les Grecs. Folio. is, 1852.
He, W. H. The Present System of obtaining Materials in use by Artist Painters, as ! ppared with that of the Old Masters ; read before the Society of Arts, \&c. Journal, 6.

Jor, 0. Attempt to define the Principles which should regulate the Employment of (our in Decorative Arts. 8vo. 1852.
--Grammar of Ornament. Folio. 1857. 4to. edition, 1865-66.

Langlois, E. H. Essai Historique Descriptif sur la Peinture sur Verre, Ancicune o Moderne, et sur les Vitraux les plus Remarquables. 8ro. Rouen, 183%.
Latilla, E. Fresco, Encaustic, and Tempera Painting. 8vo. $18+2$.
Lery, E., et Capronuier, J. B. Histoire de la Peinture sur Verre en Europe. 37 plates folio. Bruxelles, 1860 . Paris, 1865.
Liaton, W. Aacient and Modern Culours; with their Chemical and Artistical Properties 8 ro, 1852.
Magne. L. L'©uure des Peintures Verriers Français. 8 yo. 1887.
Mandelgren, N. M. Notes sur IExécution technique de not vieilles Peintures d'Églist et sur le Moyen de les Restaurer. 8ro. Stockholm, 1873.
Merrifield, Mrs. M. P. Art of Tresco Painting, as practised by the old Italian ant Spanish Masters. 8ro. 1816.
Miller, F. Interior Decoration: Surface Decoration, with Notes on Colour, Stencilling and Panel Painting. 8vo. 1887.
Moore, G. B. Principles of Celour applied to Decorative Art. 8vo. 18.31.
Morton, H. History of Paperhangings; with a Resiew of other Modes of Mur: Docoration. Sro, Liverpool, 1875.
Papworth, J. W., and Morant, A. An Alphabetical Dictionary of Coats of Arns bel,ng ing to Fumilies in Great Britain and Ireland; or, Ordinary of British Armorials. 8 si 1874.

Racinet, A. L'Ornement Polychrome; Recueil Ilistorique et Pratique- 17 th and 181 Centuries. 100 plates, folio. Paris, 1870-72.
Rossi, G. B. de. Musaici Christiani e Sagri dci Pavimenci delle Chiese di Remamar riore al Secolo XV. Folio. Roma, 1872.
Science and Art Department, South Keasington. A List of Buildings in England harius Marble or other Painted Decorations, of dates previous to the middle of the $16 t$ century. By R. H. Sinith. 8vo. 1872. 3rd cdition, 8ro.: 1883.
——Report on Mosaic Pictures for Wall-decurations, and Notes of Objects in Ital suitable for reproduction by various methods. 8vo. 1872.
Seré, F., et Louandre C. Les Arts Somptuaires; Histoire du Costume et de l'Ameubh ment en Europe, et des Arts et Industries qui s'y rattachent. 4 vols. 4to. Jari 1852-58.
Standage, H. C. The Artist's Manual of Pigmerts, showing their Compositio Conditions of Permanency, non-Permanency, Adulteration, \&e., Tests of Purity: 80 1887.

Texier, C. Histoire de la Peinture sur Verre en Limousin. 8ro. Paris, 1817.
Vaeher, S. Fifteenth Century Italian Ornament. Folio. 1886.
W aring, J. B. Arts eonnected with Architecture; Stained Glass, Fresco Ornamen Inlay, \&c., during 13th to 15 the century in Central Italy. 41 plates, folio. 1888.
Warrington, W. History of Stained Glass from the Earliest Period. Folio. 18:18.
Weale, J. Divers Works of Early Masters in Stained and Painted Glass. 2 vois. foll 1846.

Westwood, J. O. Distinetive Character of the various Styles of Grnamentation empl y by the Early British, Anglo-Sixon, and Irish Artists. 8vo. 1854.

Faesimiles of Miniatures and Ornaments of Anglo-Saxon and Irish M Folio. 1868.
Whitaker, II. Materials for a new Style of Ornamontation, eonsisting of Betanical Su jects and Compositions drawn from Nature. 4to. 1849.
Willement, T. Royal ILeraldry. 4to. 1821.
Wilme, B. P. Nannal of Wriling and Printing Clarasters, both Anciont and Node 4to. 1845.
W(inston), C. Inquiry into the Difference of Style in Ancient Glass Paintings, expecin in England; with Hints on Glass Painting. 2 vols. 8vo. Oxford, 1847.
-_Introduction to the Study of Painted Glass, with Remarks on Modern Gil Painting. 8ro. 1849.
Memoirs Illustrative of the Art of Glass Painting. 8vo. 1860.
Wyatt, M. D. Metalwork and its Artistic Design. Folio. 1852.
-. Geometrical Mosaics of the Middle Ages. Folio. 1858.
Zahu, W. Die schönsten Ornamente und merkwiur ligsten Gemälde aus Pompeji, Her lanum und Stabix. 3 series, 250 plates, folio. Berlin, 1829-54.
___Ornamente aller klassischen Kunst-Epochen. 100 plates, 2 vols. folio. Ber 1838-42, 1843-48, 1849-63.

XIX. SURVEYING; MENSURATION; LEVELLING; QUANTITIES; PRICES; ESTIMATING.

nslie, J. Comprehensive Treatise on Land Surveying. New edition, ly W. Galbraith. Sro. and 4to. Ediuburgh, 1849.
ker, T. Land and Eugineering Surreying. 12mo. 1883.
Mensuration. 12 mo . 1850.
stle, II. J. Treatise on Lamd Surreying and Levelling. 8ro. 1845.
, bson, E. Student's Guide to Measuring and Valuing Artificers' Work. Enlarged by E. L. Garbett. $8 \mathrm{vo} . \quad 1853$. New edition, by E. W. Tarn. 8vo. 1871.
techer, B. Quantities; a Text-Book for Surveyors. 4th edition, 8ro. 1884.
aning, J. Quantity Surveying. 8ro. 1880. 2nd edition, 1886.
rell, J. R. Enclid Simplified in Method and Language. 16 mo . 1875
sbit, A. Practical Mensuration, with Key. New edition, 12 mo . 1852. Practical Cand Surveying. 10th edition, revised by T. Baker. 8ro. 1855.
:holson, P. Principles of Architceture. 3 vols. 8vo. 183 3.
id, J. Young Surveyor's Preceptor: Art of Architectural Mensuration. 2nd edition, to. 1859.
(phenson, G. Estimating: a Method of Pricing Builders' Quantities. 8ro. 1883.
ims, F. W. Principles and Practice of Levelling. 3rd edition, 8vo. 1850. 8 vo. 1875. 'ns' Architects' and Builders' Pocket-book of Prices, \&c., for 1887. Edited by J. Young. 14th edition, 32 mo . 1887.
ang. J. R. Mensuration in Theory and Practice. 8ro. 1853.
ir, H. F. Land Measuring Tables, showing the Area of any sized Plot. 8 vo. Glasgow, 857.

X. LAW ; DILAFIDATIONS ; FIXTURES ; LIGHT AND AIR ; ESTATES, \&e.

ison, C. G. Traatise on the Law of Contracts, and Rights and Liablities ex conactu. 5th etition, 8vo. 1862.
A ${ }^{\text {ss, A., and Ferard, J. Treatise on the Law of Fixtures. 8vo. } 1847 .}$
1 Idon, J. S. Art of Valuing Rents and Tillages, and Claims of Tenants upon quitting arms. 8th edition, by J. C. Morton. 8ro. 1862.
Bion, E. G. Ecclesiastical Dilapidations. 2nd edition, 12mo. Oxford, 1865.

- Handybook on the Ecclesiastical Dilapidations Act, 1871, with the Amendment ct, 1872. 2nd edition, 8vo. 1873.
C nbers, T., and Tattersall, G. Law relating to Buildings, Fixtures, Ir surance, Actions Builders' Bills, Dilapidations. 12 mo . 1840.
C Ly, J. Treatise on the Law of Contracts. 6th edition, by J. A. Russell, 8vo. 1857.
C. H. Law and Science of Ancient Lights. 8ro. 1869.
G. A. Enfranchisement and Commutation of Copyhold Property considered with o Copyhold Enfranchisement Bill. 8ro. 1851.
- The Lınd Steward; Hints on Choice of Landed Estates, Principles of Drainage, igation, arrangement of Farm Buildings, Walls, Roads, \&c. 8vo. 1851,
Di jidations. Report of Select Committee of Royal Inst. of Brit. Architects. 8vo. 1844.
Esiastical Dilapidations Act. Report of the Select Conmittee. Folio. 1886.
E1 s, J. On Dilapidations. 8 ro . 1829.
- - Practical Treatise on Architectural Jurisprudence. 8ro. 1827.

Er n, A. The Law relating to Builaing, Building Leases, and Building Contracts. 1882, 1885.
-- Metropolis Managemont and Building Acts Amendment Act, 1882. 8vo. 1882.
Fle aer, B. Dilapidations. 3rd edition, 8ro. 1883. Compensations. 8 ro. 1874.
ht and Air. Revised, 2nd edition, 8vo. 1886. Metropolitan Building Acts, \&c. ${ }_{2}$
1.5-82. 8vo. 1882. Arbitrations. 8vo, 1875.

Gil on, D. Law of Fixtures. 8ro. 1836.

- Law of Dilapidations and Nuisances. New edition, 8ro. 1849.
- Law of Contracts for Works and Services. 12mo. 1857.
(ioc ird, J. L. Treatise on the Law of Easements. 2nd edition, 8vo. 1877.
Gol raw, W. Manual of the Building Regulations in foree in Liverpool. 8ro. Liver-
p. 1882.

Gra, S. G. The Law of Fixtures ; Law of Dilapidations. 3rd edition, 8vo. 1876.
Hol 1 , J. Easements and Rights of Light. 8vo. Manchester, 1885.
Hud n, lk. Land Valuer's Best Assistant; being Tables on a very much improved plan
fo aldeulating the Value of Estates, \&c., for laying out Plots of Land. 8vo. (1859.)

Ingram, T. D. Compensation to Land and House Owners. 12 mo. 1864.
Jackson, C. The Practical Arbitrator. 8ro. 1879.
Jenkins, E., and Raymond, J. A Legal Handwook for Architects. 3rd edition, 8 1880. Building Contracts. 8ro. 1873.

Kerr, R. On Ancient Lights, and the Evidence of Surveyors thereon. 8ro. 18f The Consulting Architect. 8ro. 1886.
Lanktree, J. Elements of Land Valuation, aud Instructions as to the Qualifications a Duties of Valuators. 8vo. Dublie, 1853.
Lathom, F. G. Law of Window Lights, 12mo. 1867.
Law, T. J. Acts for Building Churches. 8ro. 1847.
Lewin, T. A Practical Treatise on the Law of Trusts. 7 th edicion, by F. A. Lew 8vo. 1879.
Low, D. Landed Property and the Economy of Estates. 8vo. 1856.
Lumley, W. G. Nuisances Removal and Diseases Presention Act. 1848 ; with Notesa the Amending Act: and ditto of 1855 . 2nd edition, 12 mo .1860.
-_ Law of Parochial Assessments. 4th edition, 12 mo . 1858.
Lyon, G. Compendium of the Law of Landlord and Tenant, as applicable both to Ag cultural Leases and to those of Urban Tenements. 8ro. Edinburgh, 1848.
Macdorald, D. G. F. Estate Management. 8vo. 18 i0.
McGovern, J. H. Liverpool Compensations. 8 \%o. Liverpool, 1882.
Marwick, T. P. Valuation of Heritable and Landed Estate. 8vo. Edinburgh, 1887
Morris, T. Clue to Railway Compensation, Value of Estates, and Parochial Assessmes \&c. 2nd edition, 12 mo .1866.
Morton, J. L. The Resources of Estates; the Agricultural Inpropfment and Genc Management of Landed Property. 8vo.
Price, R. On Reversionary Payments and Annuities; by Morgan. 6th edition, 2 ri 8vo. 1803.
Roscoo, E. S. Digest of Building Cases. 2nd edition, 8vo. 1883. Digest of Lan Light. 1881. 2nd edition, 8 ro. 1886.
Rouse, R. The Iractical Man; or, Pocket Companion for Solicitors, Valuers, and Ow of Property. 4th edition, 8 ro. 1841.
Russell, F. The Power and Duty of an Arbitrator. 8vo. 1878.
St. Leonard, Lord. Handybook on Property Law. 7th edition, 8ro. 1866.
Scratchley, A. Copyhold, Lifo Leasehold, and Church Property. 4th fdition, 8 ro. I:
Scriven, J. Law of Copyhold, Customary, Freehold, and Ancient Demesne Tenure. edition, 2 vols. 8 vo. 1849.
Smith, J. W. Law of Contracts. 8ro. 1855. Law of Landlord and Tenant. 8ro. 1
Smith, T. R. The Practice of an Architect. 8vo. 1880.
Tarbuck, E. L. Handbook of House Property ; Guide to the Purchase, Mortgage, ancy, and Compulsory Sale of Houses and Land, \&c. $12 \mathrm{mo} 1875.$.

- Handbook of House Property. 2nd edition, 12 mo .1880.

Watson, W. H. Law of Arbitration and Awards. 8vo. 1846.
Wily, W. Law of Dilapidation in Ireland. 8vo. Dublin, 1850.
Woodfall, W. Law of Landlord and Tenant. 8ro. 1856.
Woolrych, H. W. Law of Party Walls and Fences, with Building Act. 8vo. 184
——Treatise of the Law of Ancient and Modern Window Lights. 12mo. 1864.
__- The Metropolis Local Management Acts. 8vo. 1880.
Yool, G. W. Waste, Nuisance, and Trespass. 8ro. 1863.
——Compensation to Landowners. 8vo. 1864.

XXI. SCIENTIFIC SUBJECTS.

Anderson, R. Lightning Conductors ; their History, Nature, and Mode of Applies n° 3rd edition, revised, \&c. 8 vo. 1887.
Ansted, D. T. Elementary Course of Geology, \&c. 2nd edition, 12mo. 1856.
Arnott, N. Elements of Physics. 8ro. 1828.
Beardnoore, N. Manual of Hydrology. 8vo. 1862.
Brande, W. T. Manual of Chemistry. 4th edition, 8vo. 1836.
Dalemagne, L. La Silicatisation appliquée à la Conservation des Monuments, \&c. to. Paris, 1867.
Donkin, W. F. Acoustics. Part I. Theoretical. 8vo. Oxford, 1870.
Edwards, F. On Smoky Chimneys, their Cure and Prevention. 4th edition, 8vo. 36.
Electric Light: Phœnix Fire Office Rules for Electric Light Installations. 7th oi m_{l} 8ro. 1887.
Fownes, G. Manual of Elementary Chemistry, Theoretical and Practical. 9th el ar, 8 ro. 1863.
fanot, A. Elementary Treatise on Physics. Translated by E. Atkinson. 9th edition, 8vo. 1863.
lynn, J. Construction of Crancs and Machinery for Raising Heary Bodies. 12mo. 1849.
oslin, S. B. A Review of Fits and Records in connection with Kitchen Boiler Explosions, \&c 8vo. 1881.
cedges, K. Useful Information on Elcetric Lighting. 8vo. 1882. Precautions to be adopted on introducing the Electric Light, \&c. 8ro. 1886.
ughes, S. Treatise on Gas Works and Practice of Manufacturing Coal Gas, \&c. 8 ro. 1853.
umble, W. Dictionary of Geology and Mineralogy. 3rd edition, 8ro. 1840.
eily, J. Expansion of Struetures by Heat. 8vo. 1887.
ightning-Rod Conference-Report. 8 ro. 1882.
yell, Sir C. Elements of Geology. 5th edition, 8vo. 1855. Supplement, 1857.
age, D. Introductory Text-Book of Geology. 11th edirion, 8vo. Edinburgh, 1877.

- Advanced Text-Book of Geology ; Descriptive and Industrial. 5th cdition, 8 vo. Edinburgh, 1876.
arnell, A. The Action of Lightning, and the Means of Defending Life and Property from its Effects. 12mo. 1882.
nnethorne, J. The Geometry and Optics of Ancient Architecture; illustrated ly examples from Thebes, Athens, and Rome. Folio. 1878.
schel, C. F. Elements of Physics. Translated by E. West. 2nd edition, 3 rols. 8 ro . 1854.
scoe, H. E. Elementary Chemistry : Inorganic and Organic. 12 mo .1869.
i'h, T. R. Acoustics of Public Buildings. 12 mo .1861.
mlinson, C. Introduction to the Study of Natural Philosophy. 12mo. 1859.
ndall, J. Sound; eight Lectures. 8 ro. 1869. Heat as a Mode of Motion. 6th edition, 8ro. 1880. Light; six Lectures. 1873. 2nd edition, 8ro. 1875.
quhart, J. W., and Webb, F. C. Electric Light; its Production and Use. 8ro. 1880.
bster, A. W. On the Principles of Sound; their Application in the Construction of
Public Buildings. 8 ro. 1840.
bster, T. Principles of Hydrostatics; or, Law of Fluids. 3rd edition. 8 ro. 1847.
Ikinson, G. Practical Geology and Ancient Architecture of Ireland. 8ro. 1845.
${ }^{7}$ lliamson, A. W. Chemistry for Students. 8vo. Oxford, 1868.
Ison, G. Chemistry. 12 mo . Edinburgh, 1860.
Tight, M. R. Sound, Light, and Heat. 8vo. 1888.

XXII. SANITARY; VENTILATION; WARMING.

Ihs and Washhouses. See Class IV.
Eaan, W. History and Art of Warming and Ventilating Rooms and Buildings. rols. 8 ro. 1846.
Bjdel et Ser, L. Rapport sur les Hôpitaux Civils de la Ville de Londres. 4to. Paris, 36.

B lnois, H. P. The Municipal and Sanitary Engineer's Handbook. 8vo. 1883.
B Fn , G. Water Closets. 12 mo . New York, 1884.
-- Experiments in Trap Siphonage. 8vo. Washington, 1886.
B ban, W.P. A Text-Book to the Practice of the Art and Craft of the Plumber. 76. 4th edition, 8 ro. 1883.

B iton, C. M. Our Dwellings, Healthy and Unhealthy. 8ro. 1885.
$\mathrm{Cr} \mathrm{ns}, \mathrm{H} . \mathrm{H}$. Hints on Home Sanitation. 8vo 1881.
Celd, W. H. The Laws of Health. 5th edition, revised, 12mo. 1887.

- Water Supply, Sewerage, and Sewage Utilisation. Folio. Chatham, 1874.
(rywell, C. E. Ventilation of Sewers and Drains. Folio. 1884.
Dies, P. J. Standard Practical Plumbing; a complete Cyclopædia. 8vo. vol. 1. 1887.
Depsey, G. D. On the Drainage of Towns and Buildings. 12 mo .1849.
De on, J. B. The Sewage Question; explaining the sereral Processes that hare been ${ }^{6}$ ppted for the Treatment and Utilisation of Sewage. 8 ro. 1871.
- Sanitary Engineering. Svo. 1877.
- E. F. B. Handbook of House Sanitation. New edition, 8vo. 1882.

Dr, lale, J., and Hayкard, J. H. Health and Comfort in House Building ; or, Ventila${ }^{\mathrm{t}} 1$ with Warm Air l.y Self acting Suction Power. 8ro. 1872.
Eas9, W. Healthy Houses: a Handbook to Defects and Remedies of Drainage, Vent tion, Warming, and kindred subjects. 12mo. 1872.8 ro. 1876.
Edjrds, F., jun. The Ventilation of Dwelling Houses, and the Utilization of Waste I thom Open Fireplaces. 2nd edition, revised, 8vo. 1881.

Ellice-Clarke, E. B. Further Remarks on Ventilation of Sewers. Sro. Lirerpool, 18; Gatliff, C. Improred Drellings, and their Effect on Health and Mrals. Sro. 18.5 Galton, D. On the General Principles to be observed in the Construction of Hospital Sro. 1869.
Grantham, R. F. The S-parate Srstem of Sewerage. Sro. 1886.
Hellrer, S. S. The Plumber and Sanitary Houses. Sro. 2nd edition. 1880.

- Lectures on the Science and Art of Saritary Plumbing. Sro. 1892.

Hennicke. Bericht über Schlachthäuser und Viehnäarkte. Folio. Berlin, 1866.
Hood, C. Practical Treatise on Warming Buildings by Hot Water; and Laws Radiant and Condneted Heat. 1850. Jth edition, Sro. 1879.
Hosking, W. Healthy Homes; Guide to the Proper Regulation of Buildings, Streei Drains, and Semers. Jew edition, 8ro. 1849.
Hnsson, A. Étude sur les Hôpitaus, considérés ser le rapport de lenr Constructio etc. fto. Paris, 1562.
Inman, W. On Tentilation, Warming, and Transmission of Sonnd. Sro. 1336.
Isaacs, I. H. Practical Treatise on Sewerage and Drainage. 8ro. 1859.
Jacob, A. On the Designing and Construction of Storage Reserroirs. Sro. 186\%.
Judge, M. H. Sanitary Arrangements of Dwelling Houses. 2ad edition. Sro. 185^{4}.
Knight's Annotated Model Bye-Lams; Local Gorernment Board. 8ro. $18 \$ 3$.
Frepp, F. C. The Serrage Question; being a general Review of all Systems ar Methods for I)raining Cities and ['tilizing Semage. fto. 1867.
Ianchester, H. J. Hom to make an House Healthy and Comfortable. Sro. 1873.
Lathanz. B. Sanitary Engineering; a Guide to the Construction of Works of Seners. and House Drainage: with Tables. Sro. 18i3. 2nd edition, Sro. 187 - .
Iaw. H., and Clark, D. K. The Construction of Roads and Etreets. 12mo. 18\%.
Morris, T. Hydrosthetics of the Cistern, Drain, and Sewer. Sro. isis.
Nemtun, H. R. Serrering and Purification of Serrage. Sro. 1857.
Nightingale, F. Notes on Hespitals; with Plans. 3rd edition, 4to, 1863.
Oppert, E. Hospitals, Infirmaries, and Dispensaries; their Constrnetion, Arrangemet and Management. Sro. 186π.
Parkes, E. A. Nannal of Fractical Hygiene. Edited by Ir. de Chaumont. 6th editi Sго. 1883.
Péclet, E. Traité de lı Chaleur considérée dans ses Applications. 3rd edition. Par 1860-61. Folio. Liège, 1845.
Perkics, A. M. Apparatns for Warming and Ventilating Buidings. Sro. $18 t 0$.
Ramlinson, R. Designs for Tall Chimner Shafts, Tentilating Towers, \&c. Fulio. 18.
Reid, A. Theory and Practice of Tentilation; with Remarks on Warming, Lightu and the Communication of Sound. Sro. IS44.
Ritchie, R. A. Sanitary Arrangements of Factories; with Remarlis on the Pres Wethod of Warming and Tentilation. Sro. 1844.
Schmidt, E. W. C. F. Hca Not to Build a House, \&e. Sro. Eastbotirue, 185 t.
Shone, J. Main Drainage of the Honses of Parliament. Sro. 188%.
Smyth, P. Yethod of Cooling the Air of Rooms in Tropical Climates. 4to. 183s.
Snell, H. S. Charitable and Parochial Establishments. 4to. 1881.
Tanner, E. Tentilation in India. Sro. Loodiana, 1869.
Tattersill, W. Hints to Honst holders. Sro. 18.... Tentilation of Factorits \& Workshops. Sro. 1887.
Teale, T. P. Dangers to Health: a Pictorial Guide to Domestic Sanitary Defer 2nd edition, 8ro. 1879.
Tomlinson, C. Warming and Tentilation. Sth editien, 12 mo . 18 :8.
Trélat, E. Inflnence exercée par la Porosité des Jurs snr la Salnbrité des Habitaric Sro. Generà, 1883.
Turner, E. The Sanitary Work of an Architect. Sro. 1881.
Taudoyer, L. Instructions sur les Mojens de prérenir on de faire cesser les Effet: l'Humidité dans les Bâtiments. 4tư. Paris. 1844.
Tentilation and Warming of the Honses of Parliament: Report of the Select C mittee. Folio. 1835.
Westgarth Prize Essays on Reconstruction of Central London. By W. Westg W. Woodward, H. H. Bridgman, and J. Corbett. Society of Arts. 8ro. 1886.

Workhouses in Ireland. Report on Inquiry into Fxecution of Contracts for cer Enion Workhouses. Folio. 1844.
Worthington, T. Hospital Construction; the Chorlton Union Hospital, near 1 chester. 4to. 1867.
Wrman, Ir. Practical Treatise on Yentilation. New edition, Sro. Netw York, 185

XXIII. DICTIONARY; BICGRAPHY; JOURNAL.

rchitect, The. A weekly magazine. In progress. 4to. 1868-87.
rehitectural Publication Society. Detached Essays, with Illustrations. Folio. 1849-0.3. Dictionary of Arclitecture, A-S. In progress. Folio. 1853-8\%.
ndsles, W. J., and G. A. Popular Dictionary of Architecture and the Allied Arts. Vols. 1 to 3 , 8 ro. 1881-2.
atissier, L. Eléments d'Archéologie Nationale. 8ro. Paris, 1843.
loxam, M. H. Principles of Gothic Ecclesiastical Architecture Flucidated; with Explanation of Terms. llth edition, 3 rols. 12 mo . 1882.
osc, E. Dictionnaire Raisondé d'Architecture et des Sciences et Arts qui s'y raltachent. 4 rols. 8 ro. Paris, 18:7 - 80.
rees, S. C. Illustrated Glossary of Practical Architecture and Cisil Engineering. 2nd edition, 8 ro. 1853.
citish Architect, The. A weekly magazine. In progress. 4to. 18i4-87.
fitten, J. Dictionary of the Architecture and Archæology of the Middle Ages.
Sro. 1838.
rilder, The. A week'y magazine. In progress. 4to. 1843-8\%.
iiiding News, The. A wreekly magazine. In progress. 4to. $180 \overline{0} 6-87$.
11 iat, V., and Lance, A. Encyclopédie d'Architecture, 12 rols. 4to. Paris, 1851-62
Continued as Gazette des Architectes et du Bátiment. 1863-71. Again as Encyc.
d'Arch., 2nl series, 1872. In progress.
umont, A. de. Albécédaire, ou Rudiments d'Archéologie. 3 vols. 8 ro. Paris, 1851-62.
abat, P. Dictionnaire des Termes employés dans la Constrnction, ete. 2 rols. $8 \mathrm{r} \%$ Paris, 1875075.
il Engineer and Architect's Journal, The. 29 Tols. 4to. 183T-74.
esy, E. Encrelopædia of Ciril Engineering; with Supplement. 8ro. 1861.
1r., C. Rerue Générale de l'Architecture, etc. 4to. Paris, 1840-4⿹\zh26; 184; ; 1849 ; 8j1-87. In progress.
tionary of Terms used in Architecture (Weale). Sro. 1849-50. New edition, by 3. Hunt. 12 mo .1873.

1-ster, L. Allgemeine Bauzeitung. Text 4to. and plates folio. Hamburgh, 183i-87. n progress.
(-dissal and Tolhausen. Technological Diet:onary in French, English, and German. rols. 8ro.
müller, H. de. L. da Vinci as Architect ; in J. P. Richter, Literary Works. Folio. 83.
-- Raffiello Sanzio come Architetto. Folio. Milan, 1884.

- - Les Du Cercean, leur Vie et leur Curre. 4to. Paris, 188 i.

Gesary of Terms used in Grecian. Roman, Italian, and Gothic Architectures. th edition, 3 rols. 8 ro. Oxford, 1862.
G π in, H. The English Arcbæolog st's Handbook. 8 ro. 1867
L puno 5 Amirola, E., and Caen Bermudez, J. A. Noticias de los Arquitectos y rquitectura de España. 4 rols. 4to. Madrid, 1829.
L 1on, J. C. Architectural Mragazine. 亏̄ rols. Sro. 1838.
14 geant, M. Journal de Menuiserie spécialement destiné aux Architectes, aux énaisiers, etc. 4 to. Paris, 1863- 22.
UKia, F. Memorie degli Architetti antichi e moderni. 2 rols. 8 ro. Bassano, 1780. h edition, translated by Mrs. E. Cresy. 2 rols. Sro. 1826.
hell, T. Rudimentary Manual of Architecture, with Glossary. 8ro. $18 \% 0$.
Olson, P. Architectural Dictionary. Edited by Lomax. 2 rols. 4to. 18 ธ̄3.
orth, W. The Renaissance and Italian Styles of Architecture in Great Britain, ed examples, 1450 to 1700 . 8ro. 1883.
Pbips, L. B. Dictionary of Biographical Reference. 8ro. $18 / 1$.
PJ ber and Decorator, and Journal of Gas and Sanitary Engineering. 4to. 1879-87.
Qutemére de Quincy, A. C. Dictionnaire historique de listhitecture. 2 vols. 4to. ris, 1832.

- Histoire de la Tie et des Ourrages des plus célébres Architectes. 2 rols. 4to.

Fis, 1830 .
Tarnski, A. Dictionnaire d'Artistes, pour searsir à l'Histcire de l'Art mederne en magne. 8vo. Berlin, 1812.
Raio, D. Dict. Gén. des Termes d'Architecture. Fonr Languages. Ero. Paris, 1868 .
Ric A. The Illustrated Companion to the Latin Dictionary and Greek Lexicon, \&ic:
8. 1849. A Dictionary, \&c., 1860 ; 3rd edition, $18 ; 3$.
snij, W., and Cheetham, 8.. Dictionary of Christian Antiquities. 2 rols. 8 ro. 187 T.

Stephens, L. Dictionary of National Biography, A-D. 15 vols. In progress. 8ro. 1835
Surveyor, Engineer, and Architect. Edited by Mudie. 4 vols. 4 to. $1840-42$.
Vasari, G. Vite de' più eccellenti Pittori, Scaltori ed Architetti. . 3 rols. Bologna 1647. 13 vols. 8 vo., Firenze, 1822. 12 vols. 12mo., Firenze, 1846-56. Translite. by Mrs. J. Foster. 5 vols. 8vo. 1850.
Viollet-le-Duc, E. E. Dictionnaire Raisonné de l'Architecture Française du Onzième al Seizième Siècle. 10 vols. 8vo. Paris, 1853-68.
_._Dictionnaire Raisonné du Mobilier Français de l"époque Carloringienne à l_{i} Renaissance. 6 vols. 8 vo. Paris, 1872-75.
Viollet-le-Duc, fils, et Corroyer. Gazette des Architectes et du Bâtiment. 4 series, 4 to Paris, 1862.
Virloys, C. F. R. le. Dictionnaire d'Architecture Civile, etc. 3 vols. 4to. Paris. 1770
Walcott, M. E. C. Sacred Archæology: a Popular Dictionary of Ecclesiastical Ar and Institutions, from Primitive to Modern Times. 8vo. 1868.
Walpole, H. Anecdotes of Painting, \&c. New edition, by R. N. Wornum. 3 vols, 8 vo 1862.

Weale, J. Quarterly Papers on Architecture. 4 rols. 4 to. 1843-45.
Westropp, H. M. Handbook of Archæology ; Egyptian, Greek, Etruscan, Roman. 8ro 1867.

Willis, R. Architectural Nomenclature of the Middle Ages. \&to. Cambridge, 1844.

GLOSSARY OF TERMS

USED IN

ARCHITECTURE AND IN BUILDING.

Note.-Further explanations, illustrations, \&c., of many of the terms herein will be ained in the Encyclopedia by reference to the Index ; and many publications on the jects described will be found in the list prefixed hereto.]

A.

scrscus. A word sometimes used as synonymons with abacus, but more corrcetly pplied to a square compartment enclosing a part or the entire pattern or design of a Husaic parement.
iccs. (Gr. ABag, a slab.) The upper member of the capital of a column, and serving is a crewning both to the capital and to the whole column. It is otherwise defined by oms as a square table, list, or plinth in the upper part of the capitals of columns, specially of those of the Corinthian order, serving instead of a drip or corona to the apital, and supporting the nether face of the architrave, and the whole trabeation. In to Tuscan, Doric, and ancient Ionic orders, it is a flat square member, well enough esembling the original title; whence it is called by the French tailloir, that is, a trencher, nd by the Italians credenza. In the richer orders it parts with its original form, the our sides or faces ot it being arched or cut inwards, and ornamented in the middle of ach face with a rose or other flower, a fish's tail, \&c. ; and in the Corintlian and Comosite orders it is composed of an orolo, a fillet, and a cavetto. The word is used by camezzi to signify a concave moulding in the capital of the Tusean pedestal.
\&ton. (Gr. Aßatov, an inaccessible place). A building at Rhodes, mentioned by itruvius, lib. ii., entrance to which was forbidden to all persons, because it contained a ophy and two bronze statutes erected by Artemisia iu memory of her triumph in surrising the city.
A Troir. (Fr. Abattre, to knock down.) A building appropriated to the slaughtering cattle. All private slaughtering-houses, in large towns at least, should be abolished, id public ones, under proper supervision, established, as lately effected at Edinburgh, anchester, and a few other towns.
A ex. (Fr. Abbaïe.) Properly the building adjoining to or near a convent or monasry, for the residence of the head of the house (abbot or abbess). It is often used for e church attached to the establishment, as also for the buildings composing the whole tablishment. In such e-tablishments the church was usually grand, and splendidly corated. They had a refectory, which was a large hall in which the monks or nuns d their meals; a guest hall, for the reception and eutertainment of visitors; a parlour locutory, where the brothers or sisters met for conversation; a dormitory, an almonry, Ierefrom the alms of the abbey were distributed; a library and museum; a prisose t the refractory, and cells for penance. The sanctuary was rather a precinct than a ilding, in which offenders were, under conditions, safe from the operation of the law. anges, or farm buildings, and abbatial residences. Schools were usually attached for 0 education of youth, with separate accommodations for the scholars; a singing school. common room, with a fire in it, for the brothers or sisters to warm themselves, no ler fire being allowed, except in the apartments of the higher officers. A mint for ning, and a room called an exchequer. The abbey was always provided with a urchyard, a garden, and a bakehouse. The sacristy contained the garments of the ests, and the ressels, \&c.; vestiaria or wardrobes being assigned for the monks. ny of the ordinary duties of these persons were performed in the cloisters where the 7 irered their lectures.

Abrevroir. (Fr.) In masonry, the joint between two stones, or the interstice to be fil up with mortar or cement, when either are to be used.
Absciss, or Abscissa. A geometrical term, denoting a segment cut off from a straig line by an ordinate to a curve.
Aesis. See Apsis.
Absorption. The penetration of a gas or liquid into any substance; or the taking ur moisture by capillary attraction. A principle seriously affecting the durability of building materials. The rapidity of absorption is not a criterion as to durability, ! the comparative durability of stones of the same kind may be tested by the smallness the weight of water which a given weight of stone is capable of absorbing. The act absorption of water by bricks of various qualitics has thus been stated:-Malm pl brick, 62 ouncas of water; white Surrey, 58 oz ; white seconds, 52 oz ; red facin 51 oz ; pickings, 50 oz ; ; stocks, 27 oz .; Workman's waterproofed, 2 oz . The followi table of the absorbent powers of certain stones, when saturated under the exhaus receiver of an air-pump is given in the Report of the Commissioners on Building Stow 1839:-

Sandstones.		Oolites.			Magnesian Limestones.		Limestones.		
Craigleith	. 0.143	Ancaster		- 0.180	Bolsover	. $0 \cdot 182$	Barnack		. $0 \cdot 2$
Heddon .	. $0 \cdot 156$	Bath Box		. $0 \cdot 312$	Huddlestone	. 0.239	Chilmark		. $0 \cdot 0$ it
Kenton	. 0.143	Portland		- 0.206	Roach Abbey	- $0 \cdot 248$	Hanı-Hill		. 011
Mansfield, red	. $0 \cdot 151$	Ketton		- $0 \cdot 244$	Park Nook.	- 0×249			

The granites, though closely granulated, take up much more than tie grauwaeke, 1 less than the sandstones; while the grazwacke resists the water four times that granite, and thirty-six times that of Yorkshire sandstones.
Abstract. A term in general use among artificers, surveyors, \&c. to signify the colle ing together and arranging under a few distinct heads the various small quantities different articles which have been employed in any work, and the affixing of a price determinate portions of each, as per square, per foot, per pound, \&c. for the purpose more expeditiously and conveniently ascertaining the amount.
Abuse. A term applied to those practices in architecture which, arising from a des of innoration, and often authorised by custom, tend to unfix the most establis! principles, and to corrupt the best forms, by the vicious way in which they are us Palladio has given a chapter on them in his work. He reduces them to four princi ones: the first whereof is tho introduction of brackets or modillions for supportin weight; the second, the practice of breaking pediments so as to leave the centre f open; third, the great projection of cornices; and, fourth, the practice of rusticat columns. Had Palladio lived to a later day, he might have greatly increased his of abuses, as l'errault has done in the following list:- - the first is that of allow columns and pilasters to penetrate one another, or be conjoined at the angles of building. The second that of coupling columns, which Perrault himself in the Lou has made almost excusable ; the third, that of enlarging the metopr iu the Doric ort for the purpose of accommodating them to the intercolumniations; the fourth, that leaving out the inferior part of the tailloir in tho modern Ionic capital ; the fifth, t. of running up an order through two or three stories, instead of decorating each st with its own orler; the sixth, that of joining, contrary to the practice of the ancie the plinth of the column to the cornice of the pedestal, by means of an inrerted care the seventh, the use of architrave cornices; the eighth, that of breaking the entablat of an order over a column, \&c., \&c.
Аbutment. The solid part of a pier from which an arch immediately springs. A1ments are artificial or natural : the former are usually formed of masonry or brickw. and the latter are the rock or other solid materials on the bauks of the river, in the ${ }^{3}$ of a bridge, which receive the foot of the arch. It is obvious that they should $\mathrm{b} \cdot \mathrm{f}$ sufficient solidity and strength to resist the thrust of the arch.
Abottals. The buttings or boundings of land.
Acanthus. (Acavoos, a spine.) A spiny herbaceous plant found in various parts of Levant. Its leaf is said by Vitruvius to have been the model on which the Grea arehitects formed the leaves of the Corinthian capital.
Acer. A genus of trees comprehending the maple and sycamore, the wood of which is t of much value. That of the acer campestre furnishes the cabinet makers with it they call bird's eeye maple.
Access. See Passage; also Adit.
Accidental Pons. In perspective, the point in which a straight line drawn from a ere parallel to another straight line cuts the perspective plane. It is the point when the representations of all straight lines parallel to the original straight line cor s
when proluced. Its name is adopted to distinguish it from the principal point or point of riew.
Acoustics. (Gr. Akova, to hear.) The doctrine or theory of sounds, as applicable to buildings. Sce Theathes, book iii., chap. r., and Cheleness in tho same book. The subject is one preseuting great difficulty. The statcments of various professors, and is comparison of buildings themselves, have been collected in a work by Mr. T. R. Smith. It was stated by Professor Lewis, at a lecture given in 1861-65, that in consulting one of the most eminent Scottish philosophers respecting tho plan for a church, the reply was, that in his opiuion the principle alopted would most probably answer; but he added that ho had studied acousties probably as much as any man, and the conclusion he arrived at was that in applying theory to actual practice he knew nothing about it, and he believed nobody else kuew more.
Acropolis. (Gr. Akpos and חodis, city.) The npper town or citadel of a Grecian city, usually the sito of the original settlement, and chosen by the colonists for its natural

Fig. 1361. The Acropolis at Athens.
strength. The most celebrated were those at Athens, Corinth, and Ithome; the two latter were called the horns of the Peloponnesus, as though their possession could secure the submission of the whole peninsula.
Acroteria. (Gr. Ak $\rho \boldsymbol{\omega} \boldsymbol{\tau} \eta \rho / o \nu$, the extremity of anything.) The pedestals, often without base or cornice, placed on the centre and sides of pediments for the reception of figures. Vitruvius says that the lateral acroteria ought to be half the height of the tympanum, and the apex acroterium should be an eighth part more. No regular proportion, however, is observable in Grecian buildirgs.

The word acrotcrium is applied to the ridge of a building; it has also been nsed to signify the statues on the pedestals; but it is only to these latter that it is strictly applicable. The word has, moreover, been given to the small pieces of wall in balustrades, between the pedestal and the balusters, and again to the pinnacles or other ornaments which stand in ranges on the horizontal copings or parapets of buildiugs.
Acute Angle. A term used in geometry to denote an angle less than 90°, that is, less than a right angle.
Acute-angled Trisngle. A triangle having all its angles acute. Esery triangle hals at least two acute angles.
Adhision. (Lat. Adhæreo.) A term in physics denoting the force with which different bodies remain attached to each other when brought into contact. It must not be confounded with cohesion, which is the force that unites the particles of a homogeneons body with each other. The following is an account of some experiments recorded in the Techaical Repository for 1824:--The insertion of a nail is accomplished by destroying the cohesion of the wood, its extraction by overcoming the force of adhesion and friction. We will consider it here solely as a case of adhesion. Fine sprigs, of which 4560 weighed one pound, $\frac{44}{100}$ of an inch long, forced four-tenths of an inch into dry Christiania deals at right augles to the fibre, required a force of 22 lbs . to extract then. The same description of nail having 3200 in the pound, $\frac{53}{100}$ of an inch long, and foreed $\frac{4 t}{100}$ of au inch into the same kind of wood, required 37 lbs. to extract it. Threepenny brads, 618 to the pound weight, one and a quarter inch long, forced half an inch inte the wood, required a force of 58 lbs . to draw them out. Fivepenny nails, 139 to the pound wright, two inches long, and forced one inch and a half into the wood, required is foree of 320 lbs . to extract them. Sixpenny nails, 73 to the pound, two inches and a half long, and forced one inch into the wood, required 187 lbs. to extract them. The same kind of nail foreed one inch and a half into the wood required 327 lbs . to draw it
out; and one forced two inches into the wood required 530 lbs . to extract it. In thi last experiment the nail was forced into the wood by a hammer of cast-iron weighin, 6.275 lbs. falling from a height of twelve inches, four blows of which were necessary t furce the nail an inch and a half into the wood. It required a pressure of 400 lbs . t force the nail to the same depth. A sixpenny nail driven one inch into dry elm acros the grain or fibres required 327 lbs. to draw it out by direct force; driven endwise int dry elm, or parallel with the grain, it required only 257 lbs. to extract it. The sam sort of nail drisen into dry Christiania deal was extracted by a force equal to $257 \mathrm{ll}:$ and by one of 87 lbs . from a depth of an inch. The adhesion, therefore, of a nail drite into elm across the grain, or at right angles to the fibres of the wood, is greater tha when it is driven with the grain, or parallel with the fibros, in the proportion of $100 t$ 78, or 4 to 3 . And under the same circumstances. in dry Christiania deal, as 100 to 41 or nearly 2 to 1 . The comparative adhesion of nails in elm and deal is between 2 ans 3 to 1 . To extract a sixpenny nail drisen one inch into green sycamore required 312 lbs from dry oak, 507 lbs . ; and from dry beech, 667 lbs . A common serew of one-fifth c an inch had an adhesion about three times as great as that of a sixpenny nail. common sixpenny nail driven two inches in dry oak would require more than half a to: to extract it by pressure.'
Adit (Lat. Adeo), or Aditus. The approach or entrance to a building, \&c. Amon the ancients the aditus theatri, or adits of a theatre, were doorways opening on to th stairs, by which persons entered the theatre from the outer portico, and thence descende into the seats. Upon the same principlo were tho adits of a circus.
Adjacent Angle, in geometry, is an angle immediately contiguous to another, so that on side is common to both angles. This expression is more particularly applied to denot that the two angles have not only one side in common, but likewise that the other it sides form one straight line.
Anytom. (Gr. Afutov, a recess.) The secret dark chamber in a temple to which ron but tho priests had access, and from which the oracles were delivered. Seneca, in hi tragedy of Thyestes says -

> "Hinc orantibus
> Responsa dantur certa, dum ingenti sono Laxantur adyto fata."

Among the Egyptians the secos was the same tling, and is described by Strabo. Th only well-preserved ancient adytum that has come to our knowledge is in the litt temple at Pompeii; it is raised some steps above the level of the temple itself, and without light.
Adze or Addice. An edged tool used to chip surfaces in a horizontal direction, tl axe being employed to chop materials in vortical positions. The blade, which is iron, forms a small portion of a cylindric surface, in both its sides, and has a wood handle fixed into a socket at one of its extremities, in a radial direction, while the oth extremity, parallel to the axis of the cylinder, and thercfore at right angles to the hand is edged with steel, and ground sharp from the concare side. The adze is chiedy el ployed for taking off thin chips from timber or boards, and for paring away irregular ties at which the axe camot come. It is also ussd in most joinings of carpentr particularly when notched one upon another, scarfings, thicknosses of flooring boar opposite to the joists, \&c.
Aerial Perspective. The relative apparent recession of objects from the foregroun owing to the quantity of air interposed between them and the spectator. It accompanis the recession of the perspective lines.
Esthetics. (Gr. Aıfөŋtıos, having the power of perception by means of the senses.) is in the fine arts that science which derives the first principles from the effect whit certain combinations have on the mind as conuected with nature and right reason. S pp. 795 and 922.
Atiaiol. (Gr. Actos, an eagle.) The name given by the Greek architects to the slat forming the face of the tympanum of a pediment. This word occurs in the Athemi: inscription now in the British Museum, brought to England by Dr. Chandler, ar relating to the surrey of some temple at Athens.
Etoma, or Etos. (Gr. Aetos.) A name given by the Greek architects to the tympanı: of a pediment. It seems derived from the custom of decorating the apex or ridge of t : roof with figures of eagles, and that the name thenco first given to the ridge was afte wards transferred to the pediment itself.
Air Drains, or Dry Areas. Cavities between the external walls of a building protect by a wall towards the earth, which is thus prevented from lying against the said wa and creating damp. Thoy may be made with the walls battering against the ground, al covered over with paving stones, or with their walls nearly perpendicular, and arels on the top. This covering should be above the ground, and sloped to throw off t ' wet. The bottoms should be pared, and the areas should be well ventilated.

Air Holss. Holes made for admitting air to rentilate apartments : also for introducing it among the timbers of floors and roofs for the prevention or destruction of the dry rot.
Air Trap. A trap formed so as to provent foul air from rising from sewers or drains into the atmosphere. There are various sorts, all dopending upon a certain amount of water in them.
Aisle, or Aile. (Lat. Ala.) A tcrm chiefly used by the English architect to signify the side subdivisions in a church, usually separated from the nare or centre division by pillars or columns. Among different nations, as applied to architecture, it bears different significations. Strabo states that anong the Egyptians the ale of the temple were the two walls that enclosed the two sides of the pronatos, and of the same height as the temple itsclf. The walls, he observes, from above ground, were a little further apart than the foundations of the temple, but as they rose, were built with an inclination to cach other. The passage, however, is not clearly to be understood.

In Gothic, as well as in many modern, churches, the breadth of the church is divided into three or five parts, by two or by four rows of pillars running parallel to the sides; and as one or other is the case, the church is said to be a thrceaisled or five-aisled fabric. The middle aisle is called the nave or chief aisle, and the penthouse, which joins to each side of the main structure containing the aisles, is called a wing. St. Mary's, Taunton; Chichester Cathedral; St. Helen's, Abingdon; and Elgin Cathedral, perhaps comprise all the fire-aisled churches in Great Britain, except a building at the west end of the cathedral at Durham. On the Continent there are many such buildings, among which is the cathedral at Milan. It is somewhat remarkable that in Westminster Abbey and in Redcliff Church at Bristol the aisles are continued on each side of the transept, and in Salisbury Cathedral on onc side only, a circumstance not met with in any other churches in this country.
Asetagr. (Fr.) Part of the apparatus of an artificial fountain, being a sort of jet d'eau, or kind of tube fitted to the mouth or aperture of a ressel, through which the water is to be played, and by it determined into the form to be giren to it.
Alabaster. A white semi-transparent variety of gypsum or sulphate of lime, a mineral of common occurrence, and used for ormamental purposes, as screen work, and for sculpture. It was much used formerly for monuments in churches and the like, and has boen re-introduced of late years for similar purposes.
Albariva Opus. (Lat.) In ancient Roman architecture a term imagined by some to have been nothing more than a species of whitewash applied to walls, but, as we think, incorrectly. In the passage of the tenth chapter of the fifth book of Vitruvius, where he recommends the use of the albarium opus for the ceilings of baths, he allows tectorium opus as a substitute; so perhaps it was a species of stucco. Its employment at the baths of Agrippa, seems to prove it to have been superior to the other, and it is by no means improbable that it was susceptible of a high polish.
Alcove. A wide and deep recess in a room. That part of a sleeping chamber wherein the bed is placed. The use of alcores, though not by that name, is ancient. They were frequently designed in the form of a niche; such, for instance, as those that Winkelman notices at Hadrian's villa at Tivoli, of which sort are some at Pompeii. They were often formed by enclosures or balustrades, of various heights, and by means of draperies the alcove was separated from the large chamber of which it was a part. Some idea may be formed of it from many of the ancient bassi relieci, especially from the celebrated one known by the name of the Nozze Aldobrandini. In modern works this part of a room differs according to the rank and taste of the proprietor. In England it is rarely introduced, but in France and Italy it often forms a beautiful feature in the sleoping apartments of palaces and large houses.
Alder. (Ang. Sax. Ellarn.) A tree belonging to the order Betulaceæ. It is used for piling and any similar work under water.
Aimatorid.m. In ancient Roman architecture, a room in which games at dice wero played.
Alipterion. In ancient Roman architecture, a room used by the bathers for anointing themselves.
Alkoranes. In Eastern architecture, high slender towers attached to mnsques, and surrounded with balconies, in which the priests recite aloud at stated times prayers from the Koran, and announce the hours of devotion to worshippers. They nuch embellish the mosques, and are often very fantastical in form. They are also called Minarets.
Alley. (Fr. Allée.) An aisle, or any part of a church left open for access to another part. In towns, a passage narrower than a lane. An enclosed walk in a gardon.
Almiry or Aumbiye. A recess or cupboard far holding the sacred ressels, \&c., used in the mass. An example, dating circa 1200, is scen in Lincoln Cathedral.

Almonry. Properly a closet or repository for the reception of broken rictuals set apart as alms for the poor. It is more generally used to denote a house near the ehurch in abbeys, or at their gates, provided with rarious offices for distributing the alus of the convent, and for tho dwelling of the almoner.
Alashouse. A house devoted to the reception and support of poor persons, and generally endowed for a particular description of persons.
Arfar. The name given to a flat stone found in Celtic erections.
Alicar. (Lat. Altare.) A sort of pedestal whereon sacrifico was offered. According to Servius there was among the ancients a difference between the ara and allare, the latter being raised upon a substruction, and used only in the service of the celestial and superior divinities, whereas the former was merely on the gromnd, and appropriated to the service of the terrestrial gods. Altars to the infernal gods we:9 made by excaration, and termed scrobiculi. Some authors have maintained that the ara was the altar before which prayers were uttered, and that the altare was used for sacrifices only. There is, however, from ancient authors no appearance of such distinctions, but that the words were used indiscriminately. The earliest altars were square polished stones, on which were placed the offerings to the gods. Whilst the sacrifice consisted only of libations, perfumes, and offerings of that nature, the altar was small, and even portable; when man, however, began to eonsider he was honouring the divinity by an offering of blood, the altar necessarily expanded in dimensions. Different forms of it were adopted, according to the nature of the sacrifice, and on it the throat of the victim was cut and the flesh burnt. Of this sort is the circular altar of the Villa Pamphili at Rome, one of tho largest and most elcgant of the class. On it appears the carity for holding the fire, and the grooves for earrying off the blood. The varietics of altars were suitable in form, ornament, and situation to the service to which they were appropriated: some, as we have already observed, being for sterifices of blood, others for receiving offerings and the sacred ressels; some for buraing incense, otbers for receiving libations. Many were set up as mere monuments of the piety of a derotee, whilst others were raised to perpetuate some great event. They served for adjuration as well as for an asylum to the unfortunate and evil doer. In form they varied from square to oblong, and from tri ngular to circular. Those of metal were eommonly tripodial. When of brick or stone their plan is generally square. According to Pausanias they were occasionally made of wood. They do not appear to bave been of any regular standard height, for they are sometimes fuud on bassi relievi reaching but little above a man's knee, whereas in others they appear to reach his middle; but it seens that in proportion to its diameter the circular altar was generally the highest. Vitruvius says that they should not be so ligh as to intercept the statues of the gods, and he gives the relative heights of those used for different dirinities. Thus, he says, those of Jupiter and the celestial gods are to be the highest; next, those of Vesta and the terrestrial gods; those of the sea gods are to be a little lower, and so on. On festivals they were decorated with such flowers and leares as were sacred to the particular divinity. But besides this casual decoration, the ancient altars furnish us with some of the most elegant bassi relievi and foliage ornaments that are known. Aceording to Vitruvius, their fronts were directed towards the east, though very frequently but little regard was paid to their position, as they were occasionally placed under the peristyle of a temple, and not unfrequently in the open air. In the larger temples were often three different altars. The first was in the most sacred part, in front of the statue of the god; the second before the door of the temple; and the third (called anclabris) was portable, and on it the offerings and sacred vessels were placed.

The altars of the Catholic church are either attached or isolated. The former generally stand against a wall, and are so decorated as to appear quite independent of it. The decorations are either of painting or sculpture, or both. The isolated altar las nc sort of comection with any part either of the building or of its decorations. The ligh altar is always isolated, whether placed at the end of the chureh or in its centre, as in the well-known example in St. Peter's at Rome. Whatever the situation of the high altar, it should be grand and simple, and raised on a platform with steps on every side. The holy table of the Protestant churches of England was gencrally of wood, but some of stone (but not affixed) have been put up of late years; they are usually covered with a cloth more or less decorated. Above it is the Reredos.

The altars of the Greek church, though in other respects the religion vies in splendour with the Romish church, are destitute of painted or sculptured ornament. In Calvinistic churches the name as well as the uses of an altar are unknown either as an appendage or a decoration.
Altar Piece. The entire decorations of an altar. See Reredos.
Altar Screen. The back of an altar, or the partition by which the choir is scparated from the presbytery and Lady chapel. The date of its introduction into English clurches we beliere to have been about the close of the thirteentl century. It is generally of
stone, and conposed of the richest talernacle work, of niches, finials, and pete:tals, supporting statues of the tutelary saints. Those to the high altars of Wibelicster Cathediall, of St. Allau's Abley, and of New College at Oxford, aro fino examples. Many were destroyed at tho Reformation, or filled up with plaster and covered with, wainscot. In many altar-screens a door was placed on each side of the altar for tho officiating priests, whose restmonts wero deposited in an apartment behind tho screen.
Aitar Tomb. A tomb of a square box-like form, raised some 3 ,to 6 feet in height alove the ground. On it is usually seen a sculptured recombent re presentation of the deceased. These effigies aro often placed uuder an arch, sometimes richly canopied.
Alfo Relefo. See Relievo.
Aıure. A gutter, passage, or gallery, as on the top of a wall or building, being ono in which a person coeld walk. Lydgate used tho word for covered walks in the strects.
Ambitus. A space which surrounded a tomb, and was held sacred. In descriptions of subterranean tombs, it denoted a small niche made in the wall for tho reception of an urn or boly. When the corpse was placed in it, to the month of the niche a slatb was fixed, so fitted and cemented as to prevent noisome oflluvia. The slabs wero sometimes inscribed with the namo and quality of the party. If they received an urn, either upon that or over the niche the inscription was placed. Much decoration was occasionally used in the recesses themselves.
Anвo. (Gr. A $\mu \beta \omega v$. .) The elevated place or pulpit in the early Christian churches, which, according to Ciampini, fell into disuse about the beginning of the fourteenth century. The last erected ambo in Romo is supposed to have been that of S. Pancrazio, on which appears the date of 1240 . It was an oblong cnclosure, with steps usually at the two ends. Two ambones are described ly Eustace in tho cathedral at Salerno. They are phaced ou each side of the nave bcfore the steps of the elhaucel, and are both of marble, the largest being covered with mosaic work and supported by twelve Corinthian granite columns.
Ambrey. See Aumbrye.
Ambelatio. (Lat.) See Preroma.
Ambulatory. (Lat.) A sheltered place for exerciso in walking ; a cloister; a gallery.
dapmprostrie. (Gr. A $\mu \phi$, , both or double, $\pi \rho o$, before, $\sigma \tau u \lambda o s$, a column.) A term applied to a temple having a portico or porch in the rear as well as in the front. but without columns at the sides. This species of temple never exceeded the use of four columns in the front and four in the rear. It differed from the temple in antis, in having columns instead of antre at the angles of the portico. Such was the temple of Nike Apteros at Athens. See Temple.
Amfhitheatre. (Gr. A $\mu \phi \ell$, alout, and $\theta \in a \tau \rho o v$, a theatre.) An edifice formed by the junction of two theatres at the proscenium, so as to have seats all round the periphery, a contrivance by which all the spectators being ranged about on seats rising the one above the other, saw equally well what passed on the arena or space enclosed by the lowest range of seats, whose wall towards the arena was called the pedium. The origin of the amphitheatre seems to have been among the Etruscans, to whom also are attributed the first exhibitions of gladiatorial fights. It was from this people that the Romans acquired a taste for such shows, which they communicated to every nation which became subject to their dominion. Athenæus says, "Romani ubi primum ludos facere ceeperunt, huic asciti artifices al Etruscis civitatilus fuerunt, sero autem ludi omnes qui nunc a Romanis celebrari solent sunt instituti." Lib. iv. e. 17. The most extraordinary edifice remaining in Rome, we may indeed say in the world, is the amphitheatre gencraily called the Coliseum. It was commenced by Vespasian, and completed by Titus his son. Words are inadequate to convey a satisfactory idea of its stupendous and gigantic dimensions. Ammianus says that it was painful to the eye to scan its summit; "ad cujus summitatem ægrè visio humana conscendit." Martial, in one of his epigrams says,
"Omnis Cæsareo cedat labor amphitbeatro, Unum pro cunctis fama loquatur opus."

The greater axis of the ellipsis on which it is planned is about 627 feet, and the lesser 520 feet, the height of the outer wall about 166 feet, such wall being decorated by the Doric, Ionic, and Corinthian Orders, and pierced with arcades between the columns. Covering five English acres and a quarter, it was capable of containing the vast number of 87,000 persons. It has suffered much from having been used actually as a quarry for many of the modern edifices of the city; but in the present day its preservation is strictly attended to by the papal government. A description of this building has been given in p. 94 et seq. Besides the Coliseum, there were three other amphitheatres in Rome: the Amphitheatrum Castrense, on the Esquiline, built probably by Tiberius; that of Statilius Thaurus, and that built by Trajan in the Campius Martius. The other principal amphitheatres were those of Otricoli; on the Garigliano, of brick;

Puzzuoli, Capua, Verona, at the foot of Monte Casino, Pæstum, Syracuso, Agrigentum Catanea, Argos, Corinth, Pola in Istria (see fig. 1362.), Hipella iu Spain, Nismes, Arles Frejus, Saintes, and Antun. This last has four stories, in that respect liko the Colsseum. That which remains in the most perfect condition is at Verona; its age has not been acenrately determined, some placing it in the age of Augustus, and ot hers in that of Maximian; of these, Maffei thinks the first date too early, and the latter too late. The

Fig. 1362. Amphitheatre at Pola. silonce of Pliny upon it, seems to place it after the time of his writing. In the reign oi Gallienus, it was not only built, but began to suffer from dilapidation, for many of the stones bolonging to it are found in the walls of Verona, whieh walls wero erected in the time of that emperor Many of these wero keystones, and the numbers cut upon then still remain. From the silence of authors that it was tho work of any of the emperors, it seems probable that, like that at Capua, it was erected at the expense of the citizuns. The length is about 514 feet, and the breadth about 410 ; the long diameter of the arena 242 feet, the short diameter 147 feet. The audience part or visorium contained fortyseven tiers of seats, and the building was eapable of contaiuing about 22,000 seated spectators. In the profile of the walls of this amphitheatre the diminution in thickness upwards is made on the inside, which is also the case in that at Pola. In the Coliseun the diminution is on the outside. The amphitheatre at Nismes eontained about 17,000 persons, and was about 400 feet iu length and 320 feet in breadth.

The first amphithoatres, as we learn from Pliny, were constructed of wood, and usually placed in the Campus Martius, or in somo place out of the city. Accidents occurrive from their insecurity, they were abandoned for the more substantial species of fabric of which we have been speaking.' The first person who is said to have erected an amphi theatre in Rome was Caius Scribonius Curio, on the occasion of the games he gave to the people at the funeral obsequies of his father. Determined to surpass all that had hitherto been seen, he constructed two theatres of wood, back to baek, which, after the theatrical representations had been finished, wero turned round with the spectators in them, leaving the stages and seenery belind. By their opposite junction, they forne a perfect amphitheatre, in which the people were gratified with a show of gladiators.
The part iu which the gladiators fought was ealled the arena, from being usually eovered with sand to absorb the blood spilt in the conflicts, for which it was used. I was eneompassed by a wall ealled the podium, fifteen or sixteen feet high, immediatel? round which sat the senators and ambassadors. As in the theatres, the seats rose at the lack of each other; fourteen rows back from the podium all round being allotted t the equites, and tho remainder to the publie generally, who sat on the bare stonc cushions being provided for the senators and equites. Though at most times opent the sky, there were eontrivances for eovering tho whole space with an awning. Th avenues by which the people entered and retired were many in number, and were calle vomitoria.
Anamorehosis. (Gr. Ava, backward, aud $\mu \sigma \rho \phi \eta$ form.) A term employed in perspective to denoto a drawing exeeuted in sueh a manner that when riewed in the common way it preseats a eonfused and distorted image of the thing represented, or an image of some thing entirely different; but whon riewed from a particular point, or as reflected liy eurved mirror, or through a polyhedron, it recovers its proportions and presents distinct representation of the object.
Avchor. In decoration. an ornament shaped similarly to an anehor or arrow head. I is used with the egg ornament to decorate or enrieh mouldings. By some it is called. tongue, from its supposed resemblanee to the forked tongue of a serpent. It is used i all the orders, but only applied to the moulding ealled the eehinus or quarter round.
Ancones. (Gr. Ayccur, the joint of the elbow.) The trusses or consoles sometimes em ployed in the dressings or antepagmenta of apertures, serving as an apparent support t the eornice of them at the flanks. In ancient doors the ancones were sometimes broade at the top than at the bottom, and were not in contact with the flanks of the architrave but situated a small distance from them. The term is also used to signify tho corner or quoins of walls, cross beams, or rafters.
Andron. (Gr. A $\uparrow \boldsymbol{r} \rho$.) In ancieut architecture, the apartment appropriated to the reception
of the male branches of the establishment, and always in the lower part of the house ; the gynocia, or women's apartments, being in the upper part.
Avale. (Lat. Angulus.) The mutual inclination of two lines meeting in a point, callecl indifferently the angular point, vertex, or point of concoursc: the two lines are called legs.
Avgle Bar. In joinery, the upright bar at the angle of a polygonal window.
Avgle Bead, or Staff Bead. A vertical bead, commonly of wood, fixed to an exterior angle and flush with the intended surface of the plaster on both sides, for the purpose of securing the anglo against accident, serving also as a guide fur floating the plaster. The section of these beads is about three-quarters of a circle, with a projecting part from the other quarter, by means whereof they are made fast to the wood bricks, plugging, or bond timbers. Angle beads of wood round the intradosses of circular arches are difficult to bend without cutting or steaming them. The former has a very unsightly appearance, and the latter method is at once inconrenient and troublesome. The plaster itself is the best material in this case, and at the height generally placed will be out of the reach of accident. In good finishings, corner beads which are unsightly should not be used, but the plaster should be well gauged and brought to an arris.
Angle Brace. In carpentry, a piece of timber fixed to the two extremities of a piece of quadrangular framing, making it partake of the form of an octagon. This piece is also called an angle tie and a diagonal tie. By the use of this piece wall plates are frequently braced. In constructing a well hole of a circular section through a roof or floor for a skylight \&c. the framing is first made in a quadrangular form; braces are then fixed opposite to cach angle, and the aperture becomes of an octagonal form ; finally, pieccs are fixed at each angle of the octagon, meeting each other in the middle of its sides, so as to transform the section of the aperture into a circle, or oval.
Avale Bracket. A bracket placed in the vertex of an angle, and not at right angles with the sides. See Bracketivg.
Avgle Capital. In ancient Greek architecture, the Ionic capitals used to the flank columns which have oue of their volutes placed at an angle of 135° with the planes of the front and returning frieze. As an example may be cited the angle capitals of the temple of Minerva Polias at Athens. This term is also applied to the modern Ionic capital, in which the whole of the four volutes have an angular direction.
Angle Chimeser. A chimney placed in the angle of a room.
angle Iron. A plate of iron rolled into an L shape, and used for the purpose of securing two iron plates together by rivets, as $\mathrm{Y} Y$ in the beam of the plate girder, fig. 1363, and the box-beam, fig. 1364.
Angle Modmion. A medillion placed in a direction parallel to a diagonal drawn through a cornice at its mitring. It is an abuse seen only in the buildings erected during the decline of Roman architecture, as in the ruins of Balbec and Palmyra, and in the palace of the Emperor Dioclesian at Spalatro.
Angle of Vision. In perspective, that angle under which Fig. 1363.

Fig. 1364. an object or objects are seen, and upon which their apparent magnitudes depend. In practical perspective it should not exceed sixty degrees. ligle of a Wall. The angle contained by the vertical planes of two walls which form the angle of the building. The term is sometimes used to denote the line in which the two sides of the angle meet, which by workmen is commonly called the arris: the arris, however, is not the angle, but the line of concourse formed by the two sides ir planes which contain the angle.
wale Rafter. The piece of timber in a hipped roof placed in the line of concourse of the two inclined planes forming the hip. It is more often called a hip rafter.
Nale Rib. A piece of timber of a curred form placed between those two parts of a cored or arched ceiling or vault which form an angle with each other so as to range with the common ribs on each side or return part.
vgle Staff. See Angle Bead.
ngle Stones. A term used by some authors to denote quoins.
ngle Tie. See Avgle Brace.
nglo-Saxon Architecture. Bede mentions one Benedict called Biscop, as the first person who introduced builders of stone edifices and makers of glass into England, a.d. 672. The principal characteristics of the style is a debased imitation of the Roman works, long and short masonry, absence of buttresses, semi-circular and triangular arches, rude balusters, hammer-dressings, and unchiselled sculptures.
ngular Capital. See Capital.
nnelar Mocidings. Generally those having vertical sides and horizental cireular sections.
anclar Yault. A rault springing from two walls each circular on the plan; such as that in the temple of Bacchus at Rome.

Annolated Colems. Slender shafts clustered together or joined by bands of stone, sometrmes of metal, to a central picr or to a jamb. They were much employed in Eirly Enghsh Gothic architecture, and were very often of Purbeck marble.
Annolet. (Lat. Annulus.) A small fillet whoso horizontal soction is circular. The neck or under side of the Doric capital is decorated with these thin fillets, listels, or bands, whose number varies in different examples. Thus in the Doric of the theatre of Marcellus there are three, whilst in the great temple at Pæstum they are four in number and in other cases as many as five are used.
Ants, es plur. (Lat. Anta.) The jambs or square posts supporting the lintels of doors The term antze we think only applicable to pilasters or pillirs attached to a wall, though some authors, as Perrault, have thought otherwise. Vitruvius calls square pilasters when insulated parastate. There are three kinds of antre: those of porches or jamb ornaments; angulur ante, being such as show two faces on the walls of a temple; and those on the longitudinal walls of its cell. Ante are only found in temples as wings to the ends of the walls of the pronaos to give a finish to the terminations the ends of the walls would otherwise present. It might have been this view which led the Greeks to treat them rather as distinct objects than to assimilate their fimishings to thoso of columns. The pilasters in Roman architecture differ only from the column in being square instead of round. A rule in the use of antre was, that their projection should always be equal to that at least of the mouldings used on them. Some beautiful examples of antre capitals exist in the temple of Minerva Polias, and the temple of Apollo Didymæus, in Ionia.
Ante-chamber or Ante-room. An apartment through which access is obtained to another chamber or room. One in which servants wait and strangers are detained till the person to be spoken with is at leisure. In the distribution of many houses the peculiarity of the plan forces upon the architect the introduction of ante-rooms: in most cases, indeed, they add both elegance and dignity to a design.
Ante-cour. A Freach term, sometimes, however, used by English authors. It is the approach to the principal court of a house, and very frequently serves for communicition with the kitchen, cellar, stables, \&c.
Antefixs. (Lat. Anti and Figo.) The ornaments of lions' and other heads belew the caves of a temple, through perforations in which, usually at the mouth, the water is cast away from the eaves. By some this term is used to denote the upright ormaments above the eaves in ancient architecture, which concealed the ends of the harni or joint tiles.
Antepagmenta. (Lat.) In ancient architecture, the jambs or moulded architraves of a door. The lintel returning at the ends with similar mouldings down upon the antepagmenta was called supercilium.
Antependium. The frontal hangings of the altar.
Anterides. In ancient architecture, buttresses or counterforts for the support of a wall The Italians call them speroni (spurs).
Anthemion. (Gr. A $\nu \theta \epsilon \mu \mathrm{e} \nu \mathrm{y}$.) It is considered to mean the honeysuckle, palmette, or fleuron ornament in the necking of some columns of the Ionic order.
Anticum. (Lat.) A porch to a front door, as distinguished from posticum, which is the porch to a door in the rear of a building. It was the space also between the fromb columns of the portico and the wall of the cella. The word has been semetimes impro perly used for anta.
Antiquarium. Among the ancients an apartment or cabinet in which they kept theit ancient books and vases.
Antique. A term applied to picces of art worked by the Greeks and Romans of the clas sical ago.
Apartment. (Lat. Partimentum.) A space enclosed by walls and a ceiling, which latte distinguishes it from a court or area.
Aperture. (Lat. Aperio.) An opening through any body. In a wall it has usually thro straight sides, two whereof are perpendicular to the horizon, and the third parallel to it connecting the lower ends of the vertical sides. The materials forming the vertica sides are called jambs, and the lower level side is called the sill, and the upper part th head. This last is either a curved or flat arch. Apertures are made for entrance light, or ornament. In Greek and Egyptian architecture, but especially in the latter the jambs incline towards each other. Sometimes apertures are made circular, elip tical, or portions of those figures. "Apertures," says Sir Henry Wotton, "are inlcts fo air and light; they should be as few in number, and as moderate in dimensions, a may possibly consist with other due respects; for, in a word, all openings ar weakenings. They should not approach too near the angles of the walls; for ${ }^{i}$ were indeed a most essential solecism to weaken that part which must strengthet all the rest."
Aprary. (Lat, Apis.) A place for keeping bechives. Sometimes this is a small hous
with openings for the bees in front, and a door behind, which is kept locked for seenrity. Sometimes it is an area wherein each particular beehive is chained down to a post and padlocked.
APodyteriom. ('Atoס ancient baths, or in the Palæestra, where a porson took off his dress, whether for hathing or gymnastic exercises. In the baths of Nero, these apartmonts were small, but in those of Caracalla the apodyterium was a magnificent room with columns and oth \mathbf{r} decorations.
Apophrge. (Gr., signifying flight.) That part of a column between the upper fillet or annulet on the base and the cylindrical part of the shatt of a column, usually moulded into a hollow or cavetto, out of which the column seems as it were to fly or escape upwards. The Freuch call it congé, as it were, leave to go.
Aportheca. (Gr.) A storehouse or cellar in which the ancient Greeks deposited their oil, wine, and the like.
Approsch. A curved or graduated road leading to a building situated some distance within tho grounds.
traon, or Pitching Price. A horizontal pieco of timber, in wooden double-flighted stairs, for supporting tho carriage pioces or rough strings and joistings in tho half spaces or landings. The apron pieces should be firmly wedged into the wall.
Apsis, or Absis. (Gr., signifying an arch.) A term in ecclesiastical architecture, denoting that part of the church wherein the clergy was seated or the altar placed. It was so called from being usually domed or vaulted, and not, as Isidorus imagines, from being the lightest part (apta). The apsis was cither circular or polygonal, and domed orer; it consisted of two parts, the altar and the presbytery or sanctuary. At, the middle of the semi-circle was the throve of the bishop, and at the centro of the diameter was placed the altar, towards the nave, from which it was separated by an open balustrale or railing. On the altar was placed the eiborium and cup. The throne of the bishop having been anciently called by this name, some have thought that thence this part of the edifice derived its nane ; but the converse is the fact. The apsis gradata implied more particularly the bishop's throne heing raised by steps above the ordinary stalls. This was sometimes called exhedra, and in later times trilune.
teoarrum. A case to contain sea or fresh water, in which to preserre living objects of natural history. From a small glass case for a drawing-room, they lave increased in size until buildings are erected to contain a number of crystal tanks for the purpose of exhibition-such are those at Brighton, and at the Crystal Palace, in England; and at Hamburgh. London, Liverpool, and other cities are now seeking to establish them. The torm is also used for the tanks formed for growing the Victoria Regia and other plants, as at Syon, Kew, Botanic Gardeus in the Regent's Park, and elsewhere.
Queducr. (Lat. Aquæ ductus.) A conduit or chamel for conreying water from one place to another, more particularly applied to structures for the purpose of conveying the water of distant springs across valleys, for the supply of large eities. The largest and most magnificent aqueducts with the existence of which we are acquainted, were constructed by the Romans, and many of their ruins in Italy and other countries of Europe still attest the power and industry of that extraordinary nation. The most ancient was that of Appius Claudius, which was erected in the 442 nd year of the city, and conreyed the Aqua Appia to Rome, from a distance of 11,190 Roman paces (a pace being 58.219 English inches), and was carried along the ground, or by subterranean lines, about 11,000 paces, about 190 of which were erected on arches. The next, in order of time, was the Anio Vetus, begun by M. Curius Dentatus, about the year of Rome 481. The water was collected from the springs about Tivoli; it was about 43,000 paces in length. In the 608th year of the city, the works of the Anio Vetus and Aqua Appia had fallen into decay, and much of the water had been fraudulently abstracted by individuals, the pretor Martius was therefore empowered to take measures for increasing the supply. The result of this was the Aqua Martia, the most wholesome water with which Rome was supplied. It was brought from the neighbourhood of Subiaco, twenty miles above Tivoli, and was 6.1,710 Roman paces (about 61 miles), whereof 7,463 paces were above ground, and the remainder under ground. A length of 463 paces, where it crossed brook and valleys, was supported on arches. To supply this in dry seasons, was conducted into it another stream of equal goodness by an aqueduct 800 paces long. About nineteen years after this was completed, the Aqua Tepula was orought in, supplied also from the Anio; but not more than 2,000 paces in length. In the reign of Augustus, Agrippa collested some more springs into the Aqua Tepula, but the latter water flowing in a separate channel, it preserved its name. This was 10,426 pices long, 7,000 above ground, and the remainder of the length on arcades. To this was given by Agrippa the name of Aqua Julia. In the year 719 of the city, Agrippa restored the dilapidated aqueducts of Appius, of Martius, and of the Auio Vetus, at his own expeuse, besides erecting fountains in the city. The Aqua Virgo, which receives
its name from a girl having pointed out to some soldiers the sources of the stream fron which it was collected, was brought to Rome by an aqueduct 14,105 paces in length 12,865 of which were under ground, and 700 on arches, the remainder being abuv ground. The Aqua Alsietina, called also Augusta, was 22,172 paces from its sumuee t the city, and 358 paces of it were on arcades. The seven aqueducts above mentioner being found, in the time of Caligula, unequal to the supply of the city, this empcror, it the second year of his reign, began two others, which were finished by Claudius, an opened in tho year of the city 803 . The first was called Aqua Clandia, and the secon Anio Novus, to distinguish it from one heretofore mentioned. The first was 46,40 (Roman paces, of which 10,176 were on arcades, and the rest subterranean. The Anic Novus was 58,700 paces in length, 9,400 whereof were above ground, 6,491 on archees and the rest subterranean. Some of the arches of these are 100 Roman feet high. Al the aqueducts we have mentioned wero on different levels, and distributed accordingly to those parts of the city which suited their respective elevations. The following is the order of their heights, the highest being the Anio Novus, 159 feet above level of Tiber Aqua Claudia, 149 feet; Aqua Julia, 129 feet; Aqua Tepula, Aqua Martia, 125 feet Anio Vetus, Aqua Virgo, 34 feet; Aqua Appia, 27 feet ; and the Aqua Alsietina on the lowest level. The Tiber at Rome being $91^{\circ} 5$ feet above the level of the Meditermanean the mean fall of these aqueducts has been ascertained to be about 0.132 English inches for each Romau pace (58.219 English inches), or 1 in 441. Vitruvius directs a fall of 1 in 200, but Scamozzi says the practice of the Romans was 1 iu 500 . The quantity of water furnished by six of the aqueducts, as given by Frontinus from a measurement at the head of each aqueduct, is as follows :-

* Anio Vetus	4,398 quin.	Aqua Virgo	2,524 quin,	Aqua Clandia		4,607 quin.
\dagger Aqua Martia -	4,690 "	Aqua Julia	- 1,368	*Anio Novus		4,738

The whole supply is given as 14,018 quinariæ, after much fraudulent diversion of the Water by individuals ; but the diminished quantity is supposed to have been $27,743,10 c$ English cubic feet, or, estimatirg the population of Rome at one million of inhabitants 27.74 cubic feet per diem for each inhabitant, or about 170 gallons English. * Thes were used for the street and sewer flushings, the baths, and scenic representations \dagger This was used for drinking purposes, and is still so used.

Parker, Aqueducts of Rome, says 24,805 quin. was the exact quantity of water dail, poured into Rome in Trajan's time, equal to a stream 20 feet wide by 6 feet dee] constantly running in, at a fall six times as rapid as that of the river Thames. H calculated that when the Trajan and the Aurelian aqueducts were finished, the dail supply was quite $332 \frac{1}{4}$ millions of gallons, or at least 332 gallons per head.

There are remains of Ronsan aqueducts in other parts of Europe even more magnificen than those we have mentioned. One, or the ruins of one, still exists at Metz, and anothe at Segovia in Spain, with two rows of arcades, one above the other. This last i about 100 feet high, and passes over the greater part of the houses of the city Th Romans do not appear to have been aware of the fact of water rising at a distance t its level at the fountain head.
Aramesque. The term is commonly used to denote that sort of ornament in Saracen. architecturo consisting of iutricate rectilinear and curvilinear compartments and mosai which adorn the walls, pavements, and ceilings of Arabian and Saracenic buildings. I is capricious, fantastic, and imaginative, consisting of fruits, flowers, and other objects, the exclusion in pure arabesques of the figures of animals, which the religion forbad This sort of ornament, lowever, did not originate with the Arabians ; it was understoo and practised by the ancients at a very early period. Foliage aud griffins, with orin: ments not very dissimilar to those of the Arabians, were frequently employed on + l friezes of temples, and on many of the ancient Greek vases, on tho walls of the batt of Titus, at Pompeii, and at many other places. To Raffaele, in more modern time we are indebted for the most elaborate and beautiful examples of a style of decoratit called Arabesque, which he even dignified, and left nothing to be desired in it. Sin the time of that master it has been practised with varying and inferior degrees merit, especially by the French in the time of Louis XVI. Arabesques lose their ch racter when applied to large objects, neither should they be employed where gravity the style is to be preserved.

Arabian Architecrure. See Saracenic Architecture.

Arabo-Tedesco. A term used chiefly by the Italians. An example of this style may quoted in the baptistery at Pisz (fig. 152), erected by Dioti Salvi in 1152. It is circular edifice, with an arcade in the second order composed of columns with Corinthi: capitals and plain round arches. Between each arch rises a Gothic pinnacle, and abo it is finished by sharp pediments enriched with foliage, terminating in a trefoil.
Aneostyle. (Gr. Apatos, wide, and $\sigma \tau v \lambda o s$, a column.) One of the five proportions usedl
the ancients for regulating the intercolumniations or intervals between the colnmes in porticoes and colonnades. Vitruvius does not determine precisely its measuro in terms of the diametor of the columu. His commentators have tried to supply the deficiency; and, following the progression observable in tho intercolumniations he does describe, each of which increases by a semidiamoter, the arzeostyle would be three diameters and a half. Perrault, in his translation of Vitruvius, proposes that the interval be made equal to four diameters, which is the interval now usually assigned to it. It is only, or rather ought only to be, used with the Tuscan order.
Areosystyde. (Gr. Apa.os, wide, $\sigma v \nu$, with, σ tudos, a column.) A term used by the French architects to denote the method of proportioning the intervals betweel columns conpled or ranged in pairs, as invented by Perrault, and introduced in the principal façade of the Louvre. It was also adoptel by Sir Christopher Wren in the west front of St. Paul's.
Arc. In geometry, a portion of a circle or other curve line. The arc of a circle is the measure of the angle formed by two straight lines drawn from its extremities to the centre of the circle.
irc-boutant. (Fr.) An arcli-formed buttress, much employed in sacred edifices built in the Pointed style, as also in other edifices, and commonly called a flying buttress, whose object is to counteract the thrust of the main ranlt of the edifice; it is also called arched buttress and arched butment. It was used in the Baths of Diocletian.
Arc Doubleau. (Fr.) An arch forming a projection before the sofite of a main arch or rault, in the same manner as a pilaster breaks befure the face of a wall.
Arcade. (Fr.) A series of apertures or recesses with arched ceilings or sofites. But tho word is often raguely and indefinitely used. Some so designate a single-arched aperture or enclosure, which is more properly a vault; others use it for the space covered by a continued vault or arch supported on piers or columns; and, besides these, other false meanings are given to it instead of that which we have assigned. Behind the areade is generally a walk or ambulatory, as in Covent Garden, where the term piazza is ignorantly applied to the walks under the arcade instead of to the whole place (Ital. piazza) or square.

The piers of arcades may be decorated with columns, pilasters, niches, and apertures of different forms. The arches themselves are sometimes turned with rock-worked, and at other times with plain rustic, arch stones or voussoirs, or with a monlded archivolt, springing from an impost or platband; and sometimes, though a practice not to be recommended, from columns. The keystones are generally curred in the form of a console, or sculptured with some device. Scamozzi made the size of his piers less, and varied his imposts or archivolts, in proportion to the delicacy of the orders he employed; but Vignola made his piers always of the same proportion.
rcade. In mediæral architecture, an ornamental dressing to a wall, consisting of colonnettes supporting moulded arches. Sometimes they stand sufficiently forward to admit of a passage behind them.
rce. In ancient Roman architecture, the gutters of the cavedium ; arca signifying a beam of wood with a groove or channel in it.
reflla. (Lat.) In mediæval architecture, a cheese room.
RCH. A mechanical arrangement of blocks of any hard material disposed in the line of some curve, and supporting one another by their mutual pressure. The areh itself is formed of voussoirs or arch stones cut in the shape of a truncated wedge, the uppermost whereof is called the keystone. The seams or planes, in which two adjacent roussoirs are united, are called the joints. The solid extremities on or against which the arch rests are called the abutments. The lower or under line of each arch-stone is called the intrados, and the superior or upper line the extrados. The distance between the piers or abutments is the span of the arch, and that from the level line of the springing to the intrados its height, or versed sine. The forms of arches employed in tho different styles and periods of architecture will be found described under the sereral heads.
rchitect. (Gr. Ap oos and $\tau \epsilon \kappa \tau \omega \nu$, chief of the works.) A person competent to design and superintend the execution of any building. The knowledge he ought to pcssess forms the subject of this work; whatever more he may acquire will be for the adrantage of his employers; and when we say that the whole of the elements which this work contains should be well known and understood by him, we mean it as a minimum of his qualifications. To this we may add, that with the possessions indicated, devotedness, faithfulness, and integrity towards his employer, with kindness and urbanity to those whose lot it is to execute his projects, not however without resolution to check the dishonesty of a builder, should he meet with such, will tend to insure a brilliant and happy career in his profession.
r.CHTECTURE. The art of building according to certain proportions and rules determined and regulated by nature and taste.
rchitrave. (Gr. ApXeiv to govern, and Lat. Trabs, a beam.) The lower of the three
principal members of the entablature of an Order, being. as its name imports, the chis beam employed in it, and resting immediately on the columns. It is called in Grecia architecture, Epistylium, from $\epsilon \pi 1$, upon, and $\sigma \tau \nu \lambda o s$, a column. The height of $\mathrm{t} \mid$ architrave varied in the different Orders, as also in different examples of the same Orde
Architrave Cornice. An entablature consisting of an architrave and cornice onl: without the interposition of a frieze. It is never used with columns or pilasters, unlc: through want of height. It is, however, allowable.
Arcmitrate of a Door or Window. A collection of members and mouldings roun either, used for the decoration of the aperture. The upper part, or lintel, is called t1 traverse, and the sides the jambs. See Antepagmenta.
Anchivolt. (Lat. Arcus volutus.) The ornamental band of mouldings round the voussoir or arch-stones of an arch, which terminates horizontally upon the impost. It is decr rated, as to the members, analogously with the architrave, which, in arcades, it may L said to represent. It differs in the differeut Orders.
Archivoltung. In mediæval architecture, an arched receptacle for filth. A cesspool common sewer.
Arch Mouldings. The series of mouldings forming the decoration of an arch as usc in mediæval architecture. The illustration of the Early English period, is from St. Mary's Church, Lincoln.
Archway. An aperture in a building covered with a vault. Usually an arched passage or gate wide enough for carriages to pass.
Arcus Ecclesies. In mediæval architecture, the arch dividing the nave of the church from the choir or chancel,
Arcus Prespyterif. In medieval architectare, the arch orer the tribune marking tho boundaries of its recess.
Arcus Toralis. In medieval architecture, the lattice separatiug the choir from the nave in a basilica.
Area. In Architecture, a small court or place, often sunk below the gene:al surface of the ground, before windows in the basement story. It is also used to denote a small count or yard, even when level with the ground.
Area. In Geometry, the superficial content of any figure.

Fig. 1365. The "area" of every building shall be deemed to be the superficies of a horizontal section of such building made at the point of its greater surface, including the external walls and such portion of t party wall= as beloug to the building, but excluding any attached building the heig of which does not exceed the height of the ground story. Metropolitan Buildi Act, 1855.
Arena. The central space in a Roman amphitheatre, wherein the gladiators fought. Armoury. An apartment destined for the reception of instruments of war.
Aronade. Embattled; a junction of several lines forming indentations like the upwa boundary of an embattled wall, except that the middle of every raised part is th minated by a convex arch, which arch does not exteud to the length of that part.
Arrierre Voussure. A secondary arch. An arch placed within an opening to form larger one, and sometimes serving as a sort of discharging arch.
Arris (probably abbreviated from the Ital. a risega, at the projection, or from the Sa apifan, to rise). The intersection or line on which two surfaces of a body forming exterior angle meet each other. It is a term much used by all workmen concerned building, as the arris of a stone, of a piece of wood, or any other body. Though, common language, the edge of a body implies the same as arris, yet, in luilding, t word edge is restrained to those two surfaces of a rectangular parallelopipedal body which the length and thickness may be measured, as in boards, planks, doors, shutte) and other framed joinery.
Arris Ficlet. A slight piece of timber of a triangular section, used in raising the slat against chimnoy shafts, or against a wall that cuts obliquely across the roof, and forming gutters at tho upper ends and sides of those kinds of skylights of which t planes coincide with those of the roof. When the arris fillet is used to raise the slat at the eares of a building, it is then called the caves' board, eaves' lath, or eaves catch.
Arris Gutter. A woolen gutter of this V form fixed to the eaves of a building.
Arsenal. A public establishment for the depositiou of arms and warlike stores.
Artificer. (Lat. Ars and Facio.) A person who works with his hands in the manufactl. of anything. He is a person of intellectual acquirements, indepondent of mere oper tion by hand, which place him above tho artisan, whose knowledge is limited to 1 general rules of his trade.
Artificial Stone. A material produced by the use of cement and other substances, su. as Austin's artificial stone, which is not burnt.

Asarotum. In ancient architecture, a species of painted parement used by the Romane before the invention of Mosaic work.
Ashlar or Ashler. (It:ll. Asciare, to chip.) Common or free-stones as brought from the quarry of different lengths and thicknesses.

Also the facing given to squared stones on the front of a building. When the work is smoothed or rubbed so as to take out the marks of the tools by which the stones were cut, it is called plain ashlar. Tooled ashlar is understood to be that of which the surface is wrought in a regular manner, like parallel flutes, and placed perpendicularly in the luilding. But wnen the surfaces of the stones are cut with a broad tool without care or regularity, the work is said to be random-tooled. When wrought with a narrow tool, it is said to le chiselled or boasted, and when the surface is cut with a rery narrow tool, the ashlar is said to be pointed. When the stones project from the joints, the ashlar is said to be rusticked, in which the faces may have a smooth or broken surface. In superior work, neilher pointed, chiselled, nor rindom-tooled work are employed. In some parts of the country herring-bone ashlar and herring-bone random-tooled ashlar are used.
Asmlaming. In carpentry, tho short upright quartering fixed in garrets about two feet six inches or three feet high from the floor, being between the rafters and the floor, in order to cut off the acute angle formed $\mathrm{l} y$ the rafters. The upright quarterings seen in some open timber roofs between the inner wall plate and the rafters, is also so called.
Aspuct. (Lat. Aspicio.) The quarter of the heavens which the frout of a building faces. Thus a front to the north is said to bave a north aspect.
Asphalte. A lituminous sulbstance found in various places. When used for floors or roadways, it is either poured on in a liquid state, forming when set a hard substance, impervious to dump; or it is placed on the ground in powder, in a hot state, and press d down by hot iron rammers.
Assemblage. The joining or uniting several pieces together, or the union of them when so joined. Carpenters and joiners have many modes of accomplishing this, as by framing, murtise and tenon, dovetailing, \&c.
Assemblage of the Orders. The placing of columns upou one another in the several ranges.
Assyrian Architecture. Little more is known of the buildings of Assyria and Babylonia than the thick walls forming halls and chambers lined with carvings, and having carved stone pavements. The roofing is supposed to have been formed with wood pilars supporting the framework of the roof, the spaces between the pilars allowing the entry of light and of fresh air.
Astragal. (Gr. A $\sigma \tau \rho a \gamma a \lambda o s$, a die or huckle bone.) A small moulding of a semicircular profile. Some have said that the French call it talon, and the Italians tondino; but this a mistake, for the term is properly applied only to the ring separating the capital from the column. The astragal is occasionally cut into representations of heads and lerries. A similar sort of moulding, though not developed in its profile as is the astragal, is used to separate the faces of the architrave.
1 strlar. A design made without the introduction of columns or pilasters is termed an astylar composition.
Itkinson's Cement. A quick-setting cement similar to Parker's or Roman cement, formerly obtained from nodules found near Whitby in Yorkshire.
itlantes or Atlantides. Figures of males used instead of columns for the support of an entablature. In some modern works figures resembling Persians have been introduced, and hence that name has been applied to them. Caryatides.
trivm. In ancient Roman architecture, a court surrounded by porticoes in the interior part of Roman houses. According to Scaliger it is derired from the Greek azepos exposed to the air. By some it has been considered the same apartmeut as the vestibule, and Aulus Gellius intimates that in his time the two words were confuunded.
tric, or Attic Order. It is employed to decorate the façade of a story of small hoight, terminating the upper part of a building; and it doubtless derives its uame from its resemblance in proportional height and concealed roof to some of the buildings of Greece. Pliny thus describes it after speaking of the other orders: "Præter has sunt quæ vocantur Atticæ eolumnæ quaternis angulis pari laterum intervallo." We, however, find no examples of square pillars in the remains of ancient art, though almost all the triumphal arches exhibit specimens of pilastral attics, having no capitals save the cornice breaking round them. In modern architecture the proportions of the attic order have never been subject to fixed rules, and their good effect is entirely dopendent on the taste and feeling of the architect. The attic is usually decorated with antæ or small pilasters.
rich Base. The base of a column consisting of an upper and lower torus, a scotia and fillets between them. It is thus described by Vitruvius, "It must be so subdivided that the upper part be onc-third of the thickuess of the column, and that the remainder be
assigned for the height of the plinth. Excluding the plinth, divide the height into four parts, one of which is to be giren to tho upper torus; then divide the remaining three parts into two equal parts; one will be the height of the lower torus, and the other the leight of the scotia with its fillets. See figure s. v. Base of a Columin.
Attic Srory. A term frequently applied to the upper story of a bouse when the ceiling is square with the sides, to distinguisl it from garrets.
Atrpibdtes, in decorativo architecture, are certain symbols given to figures, or dis posod as ornaments on a building, to indicate a distinguishing character; as a lyre bow, or arrow to Apollo; a club to Hercules; a trident to Neptune ; a spear to Pallas, \&ec For attributes given to Saints and others in mediæval architecture, see Symbols.
Avger. A carpenter's and joiner's tool for boring large holes. It consists of a wonder handle terminated at the bottom with steel. The more modern augers are pointed aus sharpened like a centre-bit, the extremity of one of the edges being made to out th wond clean at the circumference, and the other to cut and take away the core, the whol length of the radius.
Aula. (Lat.) In ancient Roman architecture, a court or hall.
Aumbrye. A recess in the wall of the chancel for the preservation of the sacred vessels Aviary. (Lat. Avis.) A house or apartment, set apart for keeping and breeding birds.
Awning. (Fr. Aulne.) Any covering intended as a screen from the sun, or protectio from the rain.
Axs. (Sax. Eax.) A tool with a long wooden handle and a cutting edge situate in plane passing longitudinally through the handle. It is used for hewing timber 1 : cutting it vertically, the edge being employed in forming horizontal surfaces. The ax differs from the joiner's hatchet by being nuch larger, and by its being used with onl. one hand. Axes of various sizes, depending upon the quality of the material, are usei by stone-cutters and bricklayers. The adze is used to horizontal surfaces.
Axis. The spindle or centre of any rotative motion. In a sphere a line passing throug the centre is the axis.

B

Babylonian Architecture. See Assyrian Architgcture.
Back. The side opposite to the face or breast of any pieco of architecture. In a reces upon a quadrangular plane, the face is that surface which has the two adjacent plane called the sides, elbows, or gables. When a piece of timber is fixed in a horizontal c in an inclined position, the upper side is called the back, and the lower tho breas Thus the upper side of tho handrail of a staircase is properly called the back. Tr same is to be understood with regard to the curved ribs of ceilings and the rafters of roof, whose upper edges are always called the backs.
Back of a Chimney. The recessed face of it towards the apartment, \&c. See Chmer
Back of a Hand-ral. The upper side of it.
Back of a Hip or other Rafter. The upper side or sides of it in the sloping plane the side of the roof.
Back Fillet. The return to the face of the wall, of the margin of a projecting quoil as in a plain architrave to an opening.
Back Lining of a Sash Frame. That parallel to the pulley piece and next to tho jain on either side.
Back Putrying. The cleaning off of the putty in the rebate of a sash bar on t] inside after the glass has been put in, and the outer putty left a while to harden.
Back Shutters. Those folds of a shutter which do not appear on the face being folde within the boxing.
Back of a Stone. The side opposite to the face. It is generally rough.
Back of a Wall. The inner face of it.
Back of a Winvow. The piece of wooden framing in the space between the lower pa of tho sash frame and the floor of the apartments, and bounded at its extremities rig. and left by the ellows of the window. The number of panels into which it is framed dependent on what may be necessary for carrying out the design; it rarely, howerc consists of more than one.
Backing of a Rafter or Rib. The formation of the upper or outer surface of either such a manner as to range with the edges of the rafters or ribs on either side of it. T formation of the inner edges of the ribs for a lath and plaster ceiling is somotim called backing, but improperly, since contrary to the true meaning of the word.
Backivg of a Wall. The filling in and berilding which forms tho inner face of the wo: In this sense it is opposed to facing, which is the outside of the wall. In stone wa the backing is unfortunately too often mere rubble, while the face is ashlar.
Pamigeon. A mixture of plaster and freestone sifted and ground together, used by st tuaries to repair defects in their work. The joiner applies this term to a mixture sawdust and strong glue, with which he fills up the defects of the wood after it has be
wrought. A mixture for the same purpose is made of whiting and glue, and sometimes with putty and chalk. When the first of these is used it is allowed to remaia until quite hard, after which it may bo submitted to the operation of planing and smoothing. Without this precaution it may shrink below the surface of the work.
bagro. (It.) An Jtalian term for a bath, usually applied by the English to an establishment having conveniences for bathing, sweating, and otherwise cleansing the body : and now called a Turkish bath. The torm is applied by the Turks to the prisons where their slaves are confined, in which it is customary to have baths.
3aguetre. (Fr.) A small moulding of the astragal speeies. It is occasionally cut with pearls, ribands, laurels, \&cc. According to M. Le Clere, the baguette is called a chaplet when ornaments are cut on it.
3alley. See Castle.
3akehouse. An apartment provided with kneading troughs and an oven for baking.
3alaneia. A Greek term for a bath.
saccony. (It. Balcone.) A projection from the external wall of a house, borne by celumns or consoles, and usually placed before windows or openings, and protected on the extremity of the projection by a railing of balusters or ironwork. In the French theatre, the bahon is a circular row of seats projecting beyond the tier of boses immediately abore the pit.
axdachino. (It.) A canopy supported by columns, generally placed over an altar in Roman Catholic places of worship. Sometimes the baldachino is suspended from tho reof, as in the church of St. Sulpice at Paris. It succeeded to the ancient ciborium, which was a cupola supported on four columns, still to be seen in many of the churches of Rome. The merit of its invention seems to belong to Bernini. That erected by him in St. Peter's is 128 feet high, and being of bronze weighs near 90 tons. It was built by order of the Pope Barberini, from the robbery of the Pantheon, and occasioncd the bitter observation, "Quod non fecerint Barbari fecerunt Barberini." The decision of the Arches Court against issuing a faculty for the erection of a baldachino in St. Barnabas Church, Pimlieo, is given in the journals of the early part of 1874.
alyction or Bolecion Mouldings. Mouldings which project beyond the surface of a piece of framing.
alistraria. An opening, sometimes in the form of a cross, in the wall of a Gothic castle or turret, through which archers could discharge their missiles without being perceived. They were usually in the form of a cross, the vertical slit or opening being made longer than the horizontal one which crossed it in the middle. Sometimes the ends were formed circular instead of square.
alks or Baulks. (Dutch.) Pieces of whole fir, being the trunks of small trees of that species, rough-squared for building purposes. In the metropolis the term is applied to short lengths, from eighteen to iwenty-five feet, mostly under ten inehes square, tapering considerably, and with the angles so le:t that the piece is not exactly square.
ill flower. An ornament resembling a ball inclosed in a flower of a circular shape, the three petals of which from a cup round it. It is usually placed in a hollow moulding, and is considered one of the chief characteristics of the Decerated period of Gothicarchitecture. llium. In the architecture of the middle ages, the open space or court of a fortified castle. This has acquired

tig. 1366.
in English the appellation Bailey; thus s. Peter's in the Bailey at Oxford, and the Old Bailey in London, are so naned from their ancient connection with the sites of rastles.
lloon. A round ball or globe placed on a column or pier, by way of crowning it. Tho same name is giren to the balls on the tops of cathedrals, as at St. Peter's, whieh is 8 Cet in diameter, and at St. Paul's in London.
lteus. (Lat. a girdle.) The wide step in theatres and amphitheatres, which afforded ${ }^{1}$ passage round them without disturbance to the sitters. No one sat on it ; it served merely as a lauding-place. In the Greek and Roman theatres, erery eighth step was a aalteus. Vitruvius gives the rules. in the third ehapter of his fifth book, for properly setting it out:
Theterm balteus is also used by Vitrurius to denote the strap which seems to bind up he coussinet, cushion, or pillow of the Ionic capital.
luster. A species of emall column belonging to a balustrade. See Cormmellz. This erm is also used to denote the lateral part of the volute of the Ionic capital. Vitruvius alls it pulvinata, on account of its resemblance to a pillow.

Baluster Shaft. A small shaft or pillar in the shape of a baluster dividing an opening seen in the window of belfrics in the Romanesque towersiu England. They have generall an elliptical or pear-shaped entasis or swelling in the lower half. The illustration is from Wykham Church, Derbyshire.
Balustrade. A parapet or protecting fence formed of balusters, sometimes employed for real use, and sometimes merely for ornament.
Band. (Fr. Bande.) A flat meniber or moulding, smaller than a fascia. The face of a band is in a vertical plane, as is also that of the fascia; the word, however, is applied to narrow members somewhat wider than fillets; and the word fascia to broader members. The cinctures sometimes used round the shafts of rusticked columns are called bands. In this case the column is called a banded column.
Bandages. A term applied to the rings or chains of iron inserted in the corners of a stone wall, or round the circumference of a tower, at the springing of a dome, \&c., which act as a tie on the walls to keep them together.
Banlelet, or Bandlet. A small band encompissing a column like a ring.
Banding Plane. A plane intended for cotting out grooves and inlaying striugs ant bands in straight and circular work.
Banister. A vulgar terin for baluster, which see.
Banker. A bench, on which masons prepare, cut, and square their work.
Banquet. (Fr.) The footway of a brilge when raised above the carriage-way.
Baptistery. (Gr. $\beta a \pi \tau \iota \zeta \omega$.) A detached building, or a portion of a church, destine for administration of the rite of baptism. It has been contended by some that th baptistery was at first placed in the interior vestibules of the early churches, as are i many churches the baptismal fonts. This, howerer, was not the case. The baptister was quite separate from the basilica, and even placed at some distance from it. Unt the end of the sixth century, it was, beyond doubt, a distinct building; but after tha period the font gradually found its way into the vestibule of the church, and the prac tice became geueral, except in a few churches, as at Florence, Ravenna, of S. Giovanr Laterano at Rome, and in those of all the episcopal cities of Tuscany, and some fe other places. The Roman example is perhaps the most ancient remaining. There wa a baptistery at Constantinople, of such dimensions that, on one occasion, it held very numerous council. That at Florence is nearly ninety feet in diameter, octagona and corered with a dome. It is enclosed by the celebrated bronze doors by Lorenz Ghiberti. which Michel Angelo said were fit to be the gates of Paradise. The baptister of Pisa, designed by Dioti Salvi, was finished about 1160. The plan is octagonal, abol 129 feet in diameter and 179 feet high.
Bar. In a court of justice, an enclosure, three or four feet high, in which the couns have their places to plead causes. The same name is giren to the enclosure, or rathe bar before it, at which prisoners are placed to take their trials for criminal offences.
Bar. A piece of wood or iron used for fastening doors, window shutters, \&c.
Bar or Barred door. The term used in Scotland fur a ledged door.
Bar of a Sash. The light pieces of wood or metal which divide a window sash int compartments for the glass. The angle bars of a sash are those standing at the inter section of two vertical planes.
Bar Iron. Iron mado of the cast metal after it comes from the furnace. The sows an pigs, as the shapes of the metal are technically termed, pass through the forges an chaufery, whero, having undergone five successive heats, they are formed into bars.
Bar-posts. Posts driven into the ground for forming the sides of a field gate. They at mortisel, to admit of horizontal bars being put in or taken out at pleasure.
Bar-tracrry. A name given to the completely developed form of Gothic tracery, frot its fancied resemblance to bars of iron wrought and bent into the various forms exhibite
Barbacan. A watch-tower for descrying an enemy; also the outer work or defence of castle, or the fort at the entrance of a bridge. Apertures in the walls of a fortress, f firing through upon the enemy, are sometimes called by this name. The etymology, the word has been variously assigned to French, Italian, Spanish, Saxon, and Arabrid origin. See Castle.
Baror Boards. The inclined projecting boards placed at the gable of a building, ald liding the horizontal timbers of a roof. They are frequently carved with trefoil quatrefoils, flowers, and other ornaments and foliage.

Bange Coupiss. (Sax. Bjnan. $\mathrm{t}_{\text {u }}$ bar.) Two boams mortised and tenoned together for the purpose of increasing the strength of a building.
Barge Course. The part of the tiling which projects over the gable of a building, and which is made good below with mortar.
Barn, (Sax. Benn.) A covered farm-building for laying upgran, hay, straw, \&e. The situation of a barn should be dry and elevated. . It is usually placed on the north or worth-east side of a farm-yard. The barns, outhouses, and stables should not be far distant from each other. They are most frequently constructed with wooden framing of quarters, \&c., and eovered with weather boarding; sometimes, in superior farms, they are built of stone and brick. The roofs are usually thatched or tiled, as the matcrials for the purposo are at hand; but as the grain should of all things be kept dry, to prevent it from moulding, the gable ends should be constructed of brick, and apertures left in the walls for the free admission of air. The bays, as they are called, aro formod by two pairs of folding doors, exactly opposite to each other, and, as well as for thashing, afford the convenience of carrying in and out a cart or waggon load of corn in sheaves, or any sort of bulky produce. The doors in question must be of the same breadth as the threshing-floor, to affork light to the threshers, and air for winnowing the grain. It is a good practice to make an extensive penthouse over the great doors sufficiently large to corer a load of corn or hay, in case of the weather not permitting it to be im. mediately housed.
Babrack. A buikling orected for the housing of soldiers.
Barrack-room, A name giren to a lohg room in some houscs in the country, andintended for the sleeping place of a number of men who may have to stay a night or two, the house not affording a room for each.
3arrel Drain. One in the form of a hollow cylinder.
3arrel Vault. A cylindrical vault, presenting a uniform concave surface not groined or ribled.
arrow. In Celtic antiquities a sepulchral mound, and called by different names according to the shape of it.
artisan. A turret on the summit of a tower, castle, or house. whereon was generally hoisted the standard or flag preper to the place.

3. 1368. Temple on the Ilyssus. Fig. 1369. Teuple at Priene.

Fig. 1370, Early English Period.
ryyce or Barycephales. (Gr. Bapus, low or flat, and кєфа η, head.) The Greek nana for an aræustyle temple.
s.S. (Gr. Baбts.) In geometry, the lower part of a figure or body. The base of a solid is the surface on which it rests.
se of Δ Columin. The purt between the shaft and the parement or pedestal, if there be any to the order. Each column of the Romans has its particular base, for which see Fig. 1371. For the Attic base, see also under that word. Tho Grecian Doric orler did not have a base, the shaft standing on the pavement. Two examples of Greek Ionic bases are given in Figs. 1368 and 1369.

Tuscan, Doric, Ionic, Corinthian, Composite, Attic, Fig. 1371.

Roman bases.

Bases aro also used to the shafts in meinieral architecture, of which Fig. 1370 illusrates an example.
se of a Roon. The lower projecting part. It consists of two parts, the lower of which is a plain board adooining the floor, called the plinth, and the upper of one or more mouldings, which, taken collectively, are called the base-mouldings. In better sort of work the plinth is tongued juto a groove in the floor, by which means the liminution of breadth created by the shrinking never causes any aperture or chasm between its under edge and the floor, and the upper edge of the plinth is rebated upon he base. Bedrooms, lolibies, passages, and staireases are often finished without a dado
and surbase, and indeed the fashion has extended the practice to rooms of the higher class, as drawing-rooms, \&c.
Basement. The lowest story of a building, whether abovo or below the ground.
Basil. Among carpenters and joiners the angle to which the edge of an iron tool it ground so as to bring it to a cutting edge. If the angle be very thin the tool will cu more freely, but the more obtuse it is the stronger and fitter it is for service.
Basilica. (Gr. Baбi入єus, a king.) Properly the palace of a king; but it afterwards came to signify an a partment usually provided in the houses of persons of importance where assemblies were held for dispensing justice. Thus in the magnificent villa o the Gordian family on the Via Prenestina there were three basilica, each more than one hundred feet long. A basilica was generally attached to every forum, for th summary adjustment of the disputes that arose. It was surrounded in most case: with shops and other conveniences for traders. The difference between the Grecial and Roman basilica is given by Vitruvius in the fifth chapter of his first book.

The term basilica is also applied by Palladio to those buildings in the cities of Ital similar in use to our town halls.
Basis. See Base.
Basket. A term often applied to the vase of the Corinthian capital, with its foliage, \&c Basket-handle Arch. (Fr. Anse de panier.) An arch whose vertical height is less that half its horizontal diameter, such as an elliptic arch.
Bass. A trough containing mortar, used in tiling, \&c.
Basse Cour. (Fr.) A court destined in a house of importance for the stables, coach houses, and servants attached to that part of the establishment. In country houses i is often used to denote the yard appropriated to the cattle, fowls, \&c.
Basso-reliefo. See Reifevo.
Bastard Stucco or Trowelled Stecco. Fine stuff mized with sand to form a surfae in plastering to receive p int.
Bat. In bricklayer's work, a piece of a brick less than one lialf of its length.
Batardeau. (Fr.) The same as Coffer Dam.
Batement Light. A window having upright sides, but the bottom of which is not leve?
Bath. (From the Saxon, Bao,) An apartment or series of apartments for bathing. Amon the ancients the public baths were of amazing extent and magnificence, and contained vast number of apartments. These extraordinary monuments of Roman magnificenc seem to have had their origin in many respects from the gymnasia of the Greeks, bot being instituted for the exercise and health of the public. Tho word therme (hot bathe was by the Romans used to denominate the establishment, although it contained in th. same building both hot and cold baths. In later times a house was incomplete unles provided with hot and cold baths; and, indeed, it was not till the time of Augustus tha public baths assumed the grandeur which their remains indicate. Different authol reckon nearly eight hundred baths in Rome, of which the most celebrated were those 4 Agrippa, Antoninus, Caracalla. Diocletian, Domitian, Nero, and Titus. It appear from good authority, that the baths of Diocletian could accommodate no less than eigl hundred bathers. These stupendous edifices are indicative of the magnificence, no le: ih.in the luxury, of th.e age in which they were erected. The pavements were mosal the ceilings raulted and richly decorated, and the walls encrusted with the rarest marble From these edifices many of the nost valuable examples of Greek sculpture have bet restored to the world; and it was from their recesses that the restorers of the art dre their knowledge, and that Rafaelle learnt to decorate the walls of the Vatican. See p. 9
Batren. (Probably from the Fr. Baton, from its small width.) A scantling or piece stuff from two to six inches broad, and from five-eighths of an inch to two inches thic Battens are used in the boarding of floors and also upon walls, in order to receise t laths upon which the plaster is laid. Soe Boarded Floor.
Battening. The fixing of battens to walls for the reception of the laths on which tit plaster is to be laid. It a'so signifies the battens in the state of being fixed for th purp se. The battens employed are usually about two inches brad and three-fourt' of an inch thick; the thicknesses. however, may be varied according to the distancesth the several fixed points are from each other. Their distance in the clear is from elev inches to one foot. To fix the battens, equidistant bond timbers were formerly built the wall: the wall is now plugged at equal distances, and the plugs cut off flush wi its surface, or the battens are spiked into the wall. Tho plugs are generally placed twel or fourteen inches from centre to centre in the length of the batten. Battens up external walls, the ceiling and bridging joists of a naked floor, also the common jois for supporting the boarding of a floor, are fixed at the same distance, viz. from elev to twelve inches in tho clear. When battens are fixed against flues, iron holdfasts a of course employed instead of bond-timbers or plugs. When they are attached to a w: thoy are gencrally fixed in vertical lines, and when fixed to the surface of a stone hrick vault, whose intrados is generated by a plane rorolving about an axis, they oug to be placed in plimes tending to the axis; as in this position they hare only to be fix
in straight lines, in case the intrados is straight towards the axis, which will te the case when it is a portion of a cone or cyhuter; and when the intrados is curved towards the axis they will bend the casiest possible. Great care should be taken to regulate the fans of the battens, so as to be as nearly as possible equidistant from the intended surface of the plaster. Every piece of masonry or brickwork, if not thoroughly dry, shonkd be battened for lath and plaster, particularly if excented in a wet season. When windows are boarded, and the walls of tho room not sufficiently thick to contain the shutters, the surface of the plastering is brought ont so as to give the architrave a proper projuction, and quart rings are nsed for supporting the lath and flaster in liou of battens. This is also practised when the breast of a chimney projects into the room, in order to corer tho recesses and make the wholo side flush, or all in the same surface with the breast.
Batter. (Probably from the Fr. Battre.) A term used by artiticers to signify that a body does not stand upright, but inclines from a person standing before it; when, on the contrary, it leans towards a person, its inclination is described by saying it overhangs.
Batrliment. An indented parapet on the top of a wall. They were first used in ancient fortifications, and subsequently applied to other buildings as mere ornament. Their outline is generally a conjunction of straight lines at right angles to each other, each indentation having two interior right angles, and each raised part two exterior right angles. The solid parts are called merlons and cops; the intervals crenelles or embrasures. In Irish architectnre a battlement occurs very frequently, tho merlons being graduated in height.
Battle-fmbatteed. A term applied to the top of a wall which has a donble row of lattlenents formed by a conjunction of straight lines at right angles to each other, both embrasures and rising parts being double, the lower part of overy embrasure less than the upper, and therefore the lower part of each riser broader than the upper.
Batlk. See Balk.
Batle Roofing. Roofing in which the framing is constructed of baulk timber.
Bay. (Dutch, Baye.) The division of a barn or other building, generally from fifteen to twenty feet in length or breadth. For the bay of a nave or choir of a mediæral church, see Nate.
Bay. In plasterer's work, the space between the screeds prepared for regulating and working the floating rule. See Screfe.
Bay of Joists. The joisting between two binding joists, or between two girders when binding joists are not used.
Bay of Roofing. Thesmall rafters and their supporting purlins wet ween two principal rafters.
Bay Window. A window placed in a bay or projection in a room. It is also called an oriel window. See Bow Window.
Bay of a Window. See Day.
Bazar. A species of mart or exchange for the sale of divers articles of merchandize. The word is Arabic, signifying the sale or exchange of goods or merchandize. Some of the Fastern bazars are open, like the market-places of Europe, and serve for the same uses, more particularly for the sale of more bulky and less valuable commodities. Others are covered with lofty ceilings and even domes, which are picreed for the admission of light. It is in these that the jewellers, goldsmiths, and other dealers in rich wares have their shops. The bazar or meidan of Ispahan is one of the finest in Persia.
Beacon Turret. The turret of an angle of a tower, sometimes in Border counties used for containing the apparatus for kindling at the shortest possible notice the need-fire.
3ead. (Sax. Beave.) A moulding whose section is circular. It is frequently used on the edge of each fascia of an architrave, as also in the mouldings of doors, shutters, skirtings, imposts, aud cornices. When the bead is flush with the surface it is called a quirk bead, and when raised it is called a cock-bead.
3rad and Butt Work. Framing in which the panels are flush, having beads stuck or run upon the two edges; the grain of the wood being in the direction of them.
3ead, Butt, and Square Work. Framing with bead and butt on one side, and square on the other, chiefly used in doors. This sort of framing is put together square, and the bead is stuck on the edges of the rising side of the pannel.
mad and Fiush Work. A piece of framed work with beads run on each edge of the included panrel.
ean, Flush, and Square Work. Framing with bead and flush on one side, and square on the other, used chiefly in doors.
mad and Quirk. A bead stuck on the edge of a piece of stuff, flush with its surface, with only one quirk or without being returned on the other surface. Bead and double quirk occurs when the bead appears on the face and edge of a piece of stuff in the same manner, thus forming a double quirk.
eak. A little pendent fillet left on the edge of the larmier, forming a canal bohind to prevent the water from running down the lower bed of the cornice. The beak is sometimes formed by a groore or channel recessed on the soffite of the larmier upwards.

Beak-imead. An ornament often used in Norman mouldings, resembling the beak of a bir Reak Moulding. See Buid's-beak Moulding.
Beam. (Sax. Beam, a tie.) A piece of timber, or sometimes of metal, for supporting a weigh or counteracting two opposite and equal forces, either drawing it or compressing it i the direction of its length. A beam employed as a lintel supports a weight; if en ployed as a tie beam, it is drawn or extended; if as a collar beam, it is compressed. Th word is usually employed with some other word used adjectively or in opposition, whic word implies the use, situation, or form of the beam; as tie beam, hamner beam, drago beam, straining beam, camber beam, binding beam, girding beam, truss beam, summer bean \&c. Some of these are, however, used simply, as collar for collar beam, lintel for lint beam, \&c. That which is now called the collar beam was by old writers called win. beam, and strut or strutting beam. A beam is lengthened either by building it i thicknesses, or by lapping or splicing the ends upon each other and bolting them through which is called scarfing. See Collar Beam.
Bfam Compasses. An instrument for describing large circles, and made either of woo or metal with sliding sockets, earrying steel or pencil points. It is used only when th circle to be described is beyond the reach of common compasses.
Bean Filling. The brick work or masonry brought up from the level of the under to the up per sides of the boams. It is also used to denote the filling up of the space from the topo the wall plate between the rafters to the under side of the slating, board, or other covering
Bearer. That which supports any body in its place, as a wall, a post, a strut, \&c. I I_{1} gutters they are the short pieces of timber which support the boarding.
Bearing. The distance or length which the ends of a piece of timber lie upon or an inserted into the wails or piers; thus joists are usually carried into the walls at least nine inches, or are said to have a nine-inch bearing. Lintels of an aperture should ir like manner have a similar bearing. the object being to prevent any sagging of the piece acting on the inner horizontal quoins of the wall.
Bearing of a Timber. The unsupported distance betwcen its points of support without any intervening assistance. A piece of timber having any number of supports, ont being placed at each extremity, will hare as many bearings, wanting one, as there are supports. Thus a piece of timber extended lengthwise, as a joist orer two rooms, wil have three supports and two bearings, the bearers being the two outside walls and the partition in the midst between them.
Bearing Walx or Partition. A wall or partition built from the solid for the purpose of supporting another wall or partition, either in the same or in a transverse direction When the latter is built in the same direction as the supporting wall, it is said to have a solid bearing; but when built in a transverse direction, or unsupported throughout its whole length is said to have a false bearing, or as many false bearings are there art intervals below the wall or partition.
Beater. Animplement used by plasterers and bricklayers for beating, and thereby temper ing or incorporating together the lime, sand, and other ingredients of a cement or plaster.
Beaufet. See Buffet.
Bed. (Sax. Bed.) The horizontal surface on which the stones, bricks, or other matter: in building lie. The under surface of a stone or brick is called its under brd, and the upper surface its upper bed. In general language the beds of a stone are the surfaces where the stones or bricks meet. It is almost needless to inculcate the necessity of every stone being worked quite straight, and not dished or hollowed out, which masons are very apt to do for the purpose of making a fine joint. Stones thus worked are very liable to flush and break off at the angles.
Bed Chamber. The apartment destined to the reception of a bed. Its fiuishings a. course depend on the rank of the party who is to occupy it.
Bed-modidings. The mouldings under a projection, as the corona of a cornice.
Bed of a Slate. The under side of a slate, or that part in contiguity with the boarding or rafters.
Beds of a Srone, in cylindrical vaulting, are the two surfaces intersecting the intrados of the rault in lines parallel to the axis of the cylinder. In conic vaulting, where the axis is horizontal, they are those two surfaces which, if produced, would intersect the axis of the cone. In arching the beds are called summerings by the workmen.
Beding of Timbers. The placing them properly in mortar on the walls.
Beech. One of the forest trees, but not ofton usod in building.
Beetle. (Sax. Bẏzel.) A large wooden hammer or mallet with one, two, or thre handles for as many persons. With it piles, stakes, wedges, \&c., are driven.
Brlection Moulding. See Balection Mouming.
Belfry. The upper part of the steeple of a church for the reception of the bells. It it the cimpanile of the Italians. though amongst them a building often altogethe unconnected with the body of tho church. It is sometimes used more especially it respect of the timber framing by which the bells are supported.

Bum.. The naked vase or corbeille of the Corinthian aud Composite capitals round which the foliago and volutes are arranged. Its horizontal section is everywhere a circle.
Bell Roof. One whereof tho vertical section, perpendicular to the wall or to its springing line, is a curve of contriry flexure, being concare at the bottom and convex at the top. It is often called an ogre reof from its form.
Bril Torret. A small tower formed specially for loslding a bell. A "bell-gable" is a gable-like wall perlorated to hold a beell.
Bear. In masonry, a course of stones projecting from the naked, either moulded, plaia, fluted, or enriched with pateras at regular intervils.
Balvedere (It.) A raised turret or a lantern for the enjoyment of a prospect; also a small edifiec in gardens, not uncommon in France and Italy.
Bexatora. Tho holy water ressel placed at the entrance of clurches, generally on the right hand of the outer, or inner, porch door, or botl. The sprinkler, originally made of the herb hyssop, is called aspergillum.
bench. A horizontal surface or table abont two feet eight inches high, on which joiners prepare their work.
Bexch Hook. A pin affixed to a bencli for preventing the stuff in working from sliding out of its place.
Bent Timber Roof. A roof of large span, in which the principals are formed of timber bent to the required form, and secured by bolts or bands.
Beton. (Fr.) Conerete made according to the French system.
Bevel. (Lat. livium.) An instrument used by artificers, one leg whereof is frequently curved according to tho sweep of an arch or rault. It is moveable upon a pivot or centre, so as to render it capable of being set to any angle. The make and ase of it are much the same as those of the common square and miter, except that those are fixed, the first at an anglo of ninety degrees and the second at forty-tive; whereas the bevel being moveable, it may in some measure supply the cffico of both, and yet supply the deficiency of both, which is, indeed, its principal use, inasmuch as it serves to set off or transfer angles either greater or less than ninety or forty-five.

Any angle that is not square is called a bevel angle, whether it be more obtuse or more acute than a right angle; but if it be one half as much as a right angle, viz. forty-five degrees, the worknan calls it a miter. They hare also a term half miter, which is an angle one quarter of a quadrant or square, that is, an angle of twenty-two degrees and a half.
3ier. A portable carriage for the dead. Hearse or Herce.
Blllet Moulding. (Fr. Billet.) A moulding used in Norman architecture, in string courses and the archivolts of openings. It consists of short, small, cylindrical pieces, two or three inches long, placed in hollow mouldings at intervals equal to alout the length of the billet. Sec fig. 1372.
3nnding Jorsts. Those beams in a floor which, in a transrerse direction, support the bridging joists above, and the ceiling joists below. When they are placed parallel to that side of a room on

Fig. 1372. Billet Moulding.
which the chimney stands, the extreme one on that side ought never to be placed close to the breast, but at a distance equal to the breadth of the slab, in order to allow for the throwing over the brick trimmer to support the hearth.
unding Rafters. The same as purlins.
hinn for Wine. The open suldivision in a cellar for the reception of wine in bottles. The arerage dameter allowed for green bottles is 3.56 inches. Thus a binn 6 ft . $2 \frac{3}{4} \mathrm{in}$. long will take twenty-one bottles. If they are laid in double tiers the depth should be 32 inches.
hrd's-eeak Mouiding. A moulding which in section forms an ovolo or ogee with or without a fillet under it, followed by a hollow. It is usual in Greek work, especially in the cap of the anta of the Doric order.
ird's-eye Maple Wood. The wood of the acer macrophyllum, or broad-leaved maple.
It is scarcelv inferior in grain to the finest satin wood. It is largely used in cabinet work.
ird's-eye Perspective. A representation of any place or building taken from a great height. The lines can only be found geometrically. It differs from the ordinary perspective representations only in that the horizontal line is very much above the object to be shown.
mbs Mouth. An interior angle cut on the end of a piece of timber, for the purpose of obtaining a firm rest upon the exterior angle of another piece.
I2. An instrument for boring holes in wood or any other substance, so constructed as th qdmit of being inserted or taken out of a spring. The handle is divided into live
parts, all in the same plane; the middle and the two extreme parts being parallel. The two extreme parts are in the same straight line, one of them having a brass end with a socket for containing the bit, which. when fixed, falls into the same straight line with the other end of the stock; the further end has a knob attached, so as to remain stationary, while all the other parts of the apparatus may be turned round by means of the projecting part of the handle.

There are various kinds of bits; as shell bit, used for boring wood, and having an interior cylindric concavity for containing the core; cutre bit, used to form a large cylindric hoie or excavation ; countersink bit, for widening the upper part of a hole in wood or iron, to take in the head of a screw or pin, so that it may not appear above the surface of the wood; rimer bit, for widening a hole; and taper shell bit, used also fur the last-named purpose.
Bitumen. A mineral pitch used in former ages instead of mortar. The bricks of the walls of Babylon are said to have been cemented together with it.
Blade. (Sax. Blæo.) A name sometimes given to the principal rafter of a roof.
Blade of a Cinshe. The iron or steel part of it as distinguished from the wooden handle.
Blade of a Saw. The thin steel part on the edge of which the teeth are cut. The chief properties of a good saw are, that it should be stiff and yet bend cqually into a regular curve, well tempered, equally thick on the cutting edge, and thinner towards the back edgc.
Blank Door. A door either shut to prevent a passage, or one placed in the back of a recess, where there is no entrance, having, nevertheless, the appearance of a real door.
Blank Window. One which has the appearance of a rcal window, but is merely formed in the recess of the wall. When it is necessary to introluce blank windows for the sake of uniformity, it is much better to build the apertures like the other and real windows, provided no flues or funnels interfcre; and instead of representing the sashes by painting, real sashes should be introduced with the panes of glass painted black on the back.
Bunn. The ordinary white linen material for draw-down blinds, now also made buff, blue, or red in colour. Also quadrangular forms of wood or metal, covercd with an opaque substance, stretched between the framing, so as to cover either the whole or part of the sashes of a window. They are used for the purpose of diminishing the intense effects of the sun's rays, or of preventing persons from seeing into the in terior of an apartment. Helioscene. Venetiaí.
Block (Teutonic) or Wood. A piece of wood cut into some prescribed form for a particular purpose.
Block of Stone or Marble. A piece rough from the quarry before it has received any form from the hand of the workman.
Blocking or Blocking Course. In masonry, a course of stones placed on the top of a cornice and forming the crown of a wall.
Blockings. Small pieces of wood fitted in and glued to the interior angle of two boards, or other pieces, for the purpose of giving additional strength to the joint. In gluing up columns the staves are glued up successively and strengthened by blockings; as als, the risers and treads of stairs and all other joints that demand more strength than their, own joints afford. Blockings are always concealed from the eye.
Board. (Sax. Bont.) A piece of timber of undefined length, more than four inches in breadth, and not more than two inches and a half in thickness. When boards are of a trapezoidal section, that is, thinner on onc edge than the other, they are called featheredged boards. Boards when wider than nine inches are called planks. The fir boards called deal (because they are dealt or divided out in thicknesses) are generally imported into England ready sawn, being thus prepared cheaper by saw mills abroad than they can be here. Fir boards of this sort, one inch and a quarter thick, are called whole deal, and those a full half inch thick, slit deal. See Batten.
Board for Valleys or Valley Board. A board fixed on the ralley rafters, or a piefe for the leaden gutter of the valley to rest on.
Boarded Floor. A floor covered with floor-boards. The laying of floors usually commences when the windows are in and the plaster dry. The boards should be planed on their best face and set up to season, till the natural sap is expelled. They are then to be planed smooth, shot, and squared on the edge. The opposite edges are brought to n breadth by drawing, with a flooring gauge, a line on the face parallel to the other edge After this they are gauged to a thickne 's, and rebated down on the back to the lines drawn by the gauge. The next thing is to try whether the joists be level, and if not either the boards must be cut on the under side to meet the inequality, or the joiste must be furred up by pieces to bring the boards, when laid, to a level. The boards em ployed in flooring are either battens or deals of greater breadth. The quality of battens is dirided into three sorts. The best is that free from knots, shakes, sap wood, or croos
grained stuff, well matched, and selected with the greatest carc. The sceond best is that in which only small but sound knots are permitted, but it is to be free fronı sapword and shakes. The most inferior kind is that left from the selection of the other two.
Boarding Joist. In naked floori gs the joist to which the boards are to be fixed.
boarding for Lead flats and (iutters. That which immediately receives the leud, rarely less than one inch and an eighth, or one inch and a quarter thick. It is usually laid merely with rough joints.
Boarding for Pugging or Drafening, also called Sound Boarding. Short boards dis. posed transversely between the joists of floors to hold some substance iutended to prevent sound being transmitted from one story to another. These boards are supported by fillets fixed to the sides of the joists, about three-quarters of an inch thick and an inch wide. The substance, often plaster, placed between them to prevent the transmission of the sound, is called the pagying.
Boarding for Slating. That nailed to the rafters, in place of laths, for the reception of the slates, usually $\frac{3}{4}$ to $\frac{7}{8}$ of an inch in thickness; the sides commonly rough; the edges either rough, shot, ploughed and tongued, or rebated and sometimes sprung, so as to prevent the rain from passing through the joints. The boarding for slating may be so arranged as to diminish the lateral pressure or thrust against the walls by disposing the boards diagonally on the rifters. On the lower edge of the boarding is fixed tho caves board, as also against all walls either at right angles to or forming an acute angle with the ridge, or a right or obtuse angle with the wall plate. The eaves board is tor raising the lower ends of the lower row of slates that form the eares. Those placed against walls are for raising the slates to make the water ruu off from the wall. The boarding for slates should be of yellow deal without sap.
Buarding for lining Walls. The boards used for this parpose are usually from fiveeighths to three-quarters of an inch thick, and are ploughed and tongued together.
Boaster. A tool used by masons to make the surface of the work ncarly smooth. It is two inches wide in the cutting part.
Boasting in Masonry. The act of paring the stone with a broad chisel and mallet, but not in uniform lines.

In Carving, it is the rough cutting round the ornaments, to reduce them to their contours and profiles, before the incisions are made for forming the raffels or minuter parts. See Ashlar.
Body of a Niche. That part of it whose superficies is vertical. If the lower part be cylindrical and the upper part spherical, the lower part is the body of the niche, and the upper part is termed the hend.
Body of a Room. That which forms the main part of the apartment, independent of any reccsses on the ends or sides.
Body Range of a Groin. The wider of two vaults which intersect and form a groin.
Bolection Moulding. See Balection Moulding.
Bolster or Plllow. The baluster part of the Ionic capital on the return side. See Baluster.
Bolt. (Gr. Boxis, a dart.) In joincry, a metal fastening for a door, and mored by the hand, catching in a staple or notcly which receires it. Bolts are of various sorts, of which plate spring and fush bolts are for fastening doors and windows.

This name is also given to large cylindrical iron or other metal pins, having a round head at one end and a slit at the other. Through the slit a pin or forelock is passed, whereby the bar of a door, window shutter, or the like is made fast. These are usually called round or window bolts.

The bolt of a lock is the iron part that enters into a staple or jamb when the key is turned to fasten the door. Of these the two sorts are, one which shuts of itself when the door is shut to, called a spring bolt ; the cther, which is only acted upon by applying the key, is called the dormant bolt.

In earpentry, a bolt is usually a square or cylindrical pifce of iron, with a knob at one end and a screw at the other, passing through holes for its reception in two or more pieces of timber, for the purpose of fastening them together, by means of a nut screwed on the end opposite to the knob. The bolt of carpentry should be proportioned to the size and stress of the timbers it connects.
Boltel. See Boultine.
Bond. (Sax.) Generally the method of connecting two or more bodies. Used in the plural number, it signifies the timbers disposed in the walls of a house, such asbond timb rs, lintels, and wall plates. The term chain bond is sometimes applied to the bond timbers formerly placed in one or more ticrs in the walls of each story of a building, and serving not only to tie the walls together during their settlement, but afterwards for nailing the finishings thereto. These bond timbers are now not allowed to be used in buildings in the metropolis.

In masonry or brickwork, is that disposition of stones or bricks which prevents
the vertical joints falling over one another. Heart bond is that bond which occurs when two stones being placed in a longitudinal position extending the exact thickness of the wall, another stone is put orer the joints in the centre of the wall.
Bond Masonry. See Buund Masonry.
Bond Stones. Those whose longest horizontal direction is placed in the thickness of tho work.
Boneing, or Buning. (Etym. doubtful.) The act of judging of, or making, a plane surface or line by the eye. It is also performed by joiners with two straight edges, by which it is seen whether the work is out of winding, that is, whether the surface be plane or twisted.
Booti. (British, Buth.) A stall or standing in a fair or market. The term is also applied to any temporary structure for shade and shelter, as also for wooden buildings for itinerant players and pedlars.
Border. (Fr. Bord.) A piece of wood put round the upper edges of any thing, either for use or ornament. Such aro the three pieces of wood, to which the term is more usually applied in architecture, which are mitred together round tho slab of a chimney.
Boring. The art of perforating any solid. For wood, the various sorts of bits are described under Bıt.
Boss. (Fr.) A projecting mass or prominency of material, to be afterwards cut or earved. It is placed at the intersection of the ribs in groined vaulting. The bossos in the later mediæval styles were beautifully carved with foliage and figures. See Orn.
Boss. Among bricklayers, a wooden ressel used by the labourers for the mortar used in tiling. It has an iron hook, by which it hangs on the laths or on the rounds of a ladder.
Bossage (Fr.) Projecting stones laid rough in building to be afterwards cut into mouldings or carved into ornaments. The term is also used to signify rustic work, which seems to advance before the naked of a building, by reason of indentures or channcls left at the joints. The cavities or indentures at the joints are sometimes berelled or chamfered, and sometimes circular.
Buodoir. A Fremeh term used in England to designate a room in a large mansion especially appropriated to the mistress of the house as her sitting-room.
Botlder Wacls. Such as are built of round flints or pebbles laid in strong mortar. This construction is used where there is a beach cast up by the sea, or where therc is anabundanco of flints in the neighbourhood.
Bouldine or Bohtel. A name some:ines given by workmen to a convex moulding, such as an ovolo. See Powtel.
Bound or Bonn Masonry. That wherein the stones of each succeeding course are laid so that the joint which mounts and separates two stones always falls directly orer the middle of the stone below.
Bow. (Sax. Busen.) The part of any building which projects from a straight wall. It is sometimes circular and sometimes polygonal on the plan, or rather formed by two exterior ubtuse angles. Bows on polygonal plans are called canted bous.
low. Among draughtsmen, denotes a beam of wood or brass, with three long screws that direct a lath of wood or steel to an arch. It is used in drawing flat arches of lamy radius.
3ow Compasses. Instruments for describing small circles
Bow Room. A room liaving a bow on one or more sides of it.
Bow Saw. One for cutting the thin edges of wool into curves.
Bow Window. A semicivcular or polygonal projection from a building, and containing a window. The supports are either carried up from the ground, or in the ease of an upper story, they are formed of projected suites of mouldings springing from a corbel. They are most frequently seen in tho later modioval and the Italian styles.
Bowlers ce Bolders. See Pavement.
Bownel or Boltel. The mediæval term for a plain moulding or shaft of a circular shane. See Boultine.
Box, (Sax.) Generally, a case for holding anything.
Box for Mitering. A trough for cutting miters. It has three sides, and is open at the ends, with cuts on the vertical sides at angles of forty-fire degrees with them.
lox of a Rib Saw. Two thin iron plates fixed to a handle, in one of which plates an opening ls made for the rcception of a wedgo, by which it is fixed to the saw.
hox of a Theatre. One of the subdivisions in the tiers round the circle.
Boxed Shutters. See Boxings of a Window.
Buxings of a Window. The cases opposite each other on each side of a window, into which the shutters are folded or fall back. The shutters of principal rooms are usually in two divisions or halves, each subdivided into others, so that they may be receired within tho boxings. Tho subdivisions are seldom more in number than three, and are so contrived that the subdivision whose face is visible, which is called the front shutter,
is of the exact breadth of the boxing, and also flush with it; the next, hidden in the boxing, is somewhat less in breadth than that last mentioned, and the third still less. Suppose, for instanco, a wirdow four feet wide, standing in a two-brick or eighteen-inch Will; wo may thus find the number of leaves each of the halves must have, as follows:To the thickness of the wall add that of the plastering, say 2 inches, and we have 20 inches. Now tho sash framo $=6$ inches in thickness, being added to the reveal or distance $=4 \frac{1}{2}$ inches of the sash frame from the face of the wall $=10 \frac{1}{2}$ inches, which, subtracted from 20, tho thickness of the wall and plaster, leaves $9 \frac{1}{2}$ inches. This wil! give three leaves, or subdivisions, and as it is usual to make the back flaps, or those foldeu. within the boxings, less than the front shutter, whose face is visible and flush with and of the exact breadth of the boxings, the arrangement may be as follows:-Front shutter $9 \frac{1}{2}$ inches, the next 8 inches, and the third $6 \frac{1}{2}$ inches; in all, 24 inches, the half of the opening of the window. It will be perceived that no allowanec has been made for the shutters being rebated into each other, as is usually the case ; and for this half an inch more must be allowed for the two rebates of the three leares, and one-eighth of an inch for the rebate at tho meeting of the two principal divisions in the middle of the window, making, with the breadth of the three subdivisions, $24+\frac{5}{8}$; the flips, therefore, may be thus disposed:-Front leaf $9 \frac{1}{2}$ inches, second leaf $8 \frac{1}{2}$ inches, and the third leaf $6 \frac{5}{8}$ inches; in all $24 \frac{5}{8}$ inches, being fully the width of each principal division. To find the depth to be given to the boxings, to the thickness of each of the leaves add onesixteenth of an inch, and if there be a back lining add also the thickness of that. The sccond and third flaps are almost always thinner than the front leaf; thus, say front leaf $1 \frac{1}{2}$ inch, second leaf $1 \frac{1}{4}$ inch, and third leaf $1 \frac{1}{4}$ inch; to which add $\frac{3}{16}$ for the three leaves, and tho amount will stand thus: $-1 \frac{1}{2}+1 \frac{1}{4}+1 \frac{1}{4}+\frac{3}{16}=4 \frac{3}{16}$ inches for the depth of the boxings. If the walls are only a brick and a half thick, or the window rery wide, the architrave is made to project before the faco of the plaster, for the purpose of obtaining width for the boxings, or the plaster is brought out from the internal face of the wall by means of battening.
brace. (Fr. Embrasser.) An inclined piece of timber used in trussed partitions and in framed roo's, in order to form a triangle, by which the assemblage of pieces composing the framing are stiffened. When a brace is used to support a rafter, it is called a strut. When braces are used in roofs and in partitions, they shonld be disposed in pairs, and introduced in opposite directions. See Angle Brace.
racket. (Lat. Brachium.) A supporting piece for a shelf. When the shelf is broad the brackets are small trusses, which consist of a vertical piece, a horizontal piece, and a strut; but when narrow the brackets are generally solid pieces of board, usually finished with an ogee figure on their outer side.
racket for Stair. It is sometimes usedunder the eads of wooden steps next to the well-hole, for the sake of ornament only, for it gives only the appearance of a support.
backeting to a Cornice. The wooden ribs nailed to the ceiling, joists, and battening for supporting the cornices of rooms when too large for security, by the mere dependence on the adhesive power of plaster to the ceiling. It consists of vertical ribs whose rough outline is that of the cornice, and to which the laths are nailed for sustaining the plaster in which the mouldings are run. The bracketing for cores is only an enlargement of the scale which occurs in ordinary cornices, the operation being that of obtaining a set of ribs to which the laths may be nailed for the reception of the plastering. The ribs in question are usually cut out of deals, whose thickness must necessarily vary with the weight of plaster they have to support.
rad. (Etym. uncertain.). A thin nail used in joinery without the spreading head which other nuils have, the projection of the head being ouly on one side. There are various sorts of brads, such as joiners' brads for hard woods; tatten brads, for softer woods; and bill, or quarter brads, used for a hastily laid floor. When brads are used they are generally driven below the surface of the wood through the medium of a punch, and the hole is filled $u p$ with putty to prevent an appearance of the nailing.
anches. The ribs of a Gothic varlt, rising upwards from the tops of the pillars to the apex. They appear to support the ceiling or vault.
andering. Covering the underside of joists with battens about an inch square and from twelve to fourteen inches apart, to whieh to nail laths, in order to secure a better \&ey for the plastering of the ceiling.
andrith. A fence or rail round the opening of a well.
Ass. A metal much used in building. It is an alloy of copper and zinc, whose proportions vary aceording to the required colour. Four parts of copper and one of zinc form a good brass. The common process for making it is by heating copper plates in a mixture of native oxide of zinc, or calamine and charcoal.
dss. A sepulchral metal plate. generally sunk into a grave-stoue; sometimes with a nero inscription, but rery frequently with effigies, armorial bearings, and other devices sugraved upon it.

Brattishing. An ornamental cresting. The carved open work over a sinine.
Brazing. The union of pieces of copper by heating and hammering them. See Sonpure ing and Welding.
Breadtif. The greatest extension of a body at right angles to its length.
Break. The recess or projection of any part within or beyond the general face of the work. In either case it is to be considered a break.
Break in. In carpentry, it is the cuiting or breaking a hole in brickwork with the ripping chisel for the purpose of inserting timber, or to receive plugs, the end of a beam, or the like.
Breaking down. Sawing a baulk of timber into boards.
Breaking Joint. In masonry or brickwork, it is the placing a stone or brick over the courso below, in such a mauner that the joint above shall not fall rertically immediately above those below it.
Breast of a Chinney. The projecting or facing portion of a chimney front towards a room which projects into it. or which, from other construction, may not hare a break. It is, in fact, the wall carried up over the front of a fireplace, whether projecting or not. See Chimex.
Breast of a Window. The masonry or brickwork forming the back of the recess or parapet under the window sill.
Brefze. Small ashes and cinders used instead of coal in the burning of lricks.
Bressummer or Breast Summer. That is, a summer or beam placed breastwiso for the support of a superincumbent wall, performing in fact the office of a lintel. It is prineipally used over shop windows to carry the upper part of the front and supported by iron or timber posts, though sometimes by stonc. Is. the interior of a building the picces into which the girders are framed are often called summers.
Brewhouse. An establishment for the manufactory of malt liquors. A hrewhouse is generally provided as an appendage to dwelling-houses in the country, for brewng the beer used by the family.
Brick. (Dutch, Bricke.) A sort of fictitious stone, composed of an argillaceous earth, tempered and formed in moulds, dried in the sun, and finally burnt to a proper degree of hardness in a clamp or kiln. The method pursued by the ancients in making unburnt bricks is described by Vitruvius, book ii., chap. iii. That author describes the three different sorts in use:-Didoron ($\delta \delta \delta \omega \rho o \nu$), being one foot long and half a foot wide; the other two sorts are called Pentadoron and Tetradoron. By the word Doron the Greeks mean a palm, because the word $\delta \omega \rho o \nu$ signifies a gift which can be borne in the palm of the hand. That sort, therefore, which is five palms each way is called Pentadoron; that of four palms Tetradoron. The former of these two sorts is used in public buildings; the latter in private. Each sort has half-bricks made to suit it, Towarls the decline of the Republic, the Romans made great use of bricks as a building material. According to Pliny, those most in use were a foot and a half long, and a foot broad. This agrees nearly with the Roman brieks used in England, whieh are generally found to be about seventeen inches in length, by eleven inches in breadth. Ancient bricks are generally very thin, being often no more than one inch and a half thick, and are often called tiles. From the article in the Encyc. Méthodique, it appears that in the researehes made among the buildings at Rome, bricks of the following sizes were found. The least were $7 \frac{1}{2}$ inches (French) square and $1 \frac{1}{2}$ inch thick ; the medium one $16 \frac{1}{2}$ inches square and from 18 to 20 lines in thickness. The larger ones were 22 inches square by 21 or 20 lines thick. The smaller ones were used to face walls of rublle work; and for making better bond with the wall, they were cat diagonally into two triangles, the longer side being placed on the outside, and the point towards the interior of the work. To make the tie more effectual between the rubble and the facing, there were placed at intervals of four feet in height, one or two courses of large square bricks. The larger bricks were also used for the arches of openings to discharge the superincumbent weight.
Bricklayef's Work. The art of bricklaying.
Brickwork. Any work performed with bricks as the solid material.
Bridge. (Sax. basse.) A structure for the purpose of conneeting the opposite bynks of a river, gorge, valley. \&c., by means of certain materials, forming a roadway from one side to the other. It may be made of stone, briek, iron, timber, suspended chains or ropes, or the roadway may be obtained by means of boats moored in the stream. In the bridges of the ancients the arches were semicircular ; in those erected durig the mediæral period the arches were obviously made pointed, and generally of small tpans, although there are a few good exceptions; while in those of modern date they have been segmental or semi-elliptical. The last two forms are very much mone suitable, because of the freer passage for the stream, especially in the case of floods. We would refer the student to the brick railway bridge at Maidenhead, over the rives Thames, carried out in 1835, by Sir I. Brunel, as a daring effort of work; the two largest arches, elliptical in form, are each 128 feet spin, with a rise of 24 feet 3 in.
ouly; to the elliptical stone bridge over the Arno at Florence, 1567-70, by Bart. Ammanaato, for its acknowledged beauty, the largest arch of which is 95 feet 10 in., with a rise of 15 feet 2 in .; and to the Grosvenor bridge at Chester, over the Dee, executcd 1825-27, by Thomas Harrison, arehitect, forits design and good construction, as well as for belug the largest span of any bridge yet erected in Great Britain, and almost in the world, consisting of only one segmental arch of 200 feet span, with a rise of 42 feer. In the brick bridge at Pavia, over the Ticino, which is of an early period, and also a covered bridge (a practice uselcss perhaps, but not uncommon in Italy and other parts of the Continent), the arches, 70 feet in span, are Pointed; a ferm very favourable in every respect and most especially so in rivers subject to sudden inundations, but unfavourable certainly in cases where the span of the arch (here having a rise of $6 t$ feet) is required to have a large width in proportion to its height.
There are two rules respecting l,ridges which ought not to be neglected : the principal one is, that their direction must, if possible, be at right angles to the stream ; the other that they must be placed in the line of the streets which they connect on the apposite banks of the stream. From a want of regard to these points many unfurtunate blunders hare been committed, which a prodigal expendture will not afierwards rectify. The pusition of a bridge should be neither in a narrow part nor in one liable te swell with tides or floeds, because the contraction of the waterway increases the depth and velocity of the current, and may thus endanger the navigation as well as the brilge itself.
It is the common practice to construct a bridge with an odd number of arches, for the reason, among many others, that the stream being usually strongest in the middle, egress is there better provided by a central arch. If the bridge be not perfectly horizontal, symmetry results by the sides rising towards the middle, and the roadway may be made one continued curve. When the roadway of a bridge is horizontal, the saviug of centering for the arches is considerable, bceause two sets of centres will perhaps be sufficient for turning all the arches. If, however, the bridge be higher in the middle than at the extremities, the arches on each side of that in the centre must diminish sinilarly, so that they may be respectively symmetrical on each side of the middle. From this disposition beauty necessarily results, and the centering for one of the sides equally suits the other. A bridge should be constructed with as few arches as possible, for the purpose of allowing a free passage for the water, as well as for the vessels; if the bridge can be constructed with a single arch not more should be allowed. The piers should be of sufficient solidity to resist the thrust of the arch, independent of the counter thrust from the other arches; in which case the centering may be struck without the impendent danger of overturning the pier left naked. The piers shovld also be spread on their bases as much as possible, and should diminish gradually upwards from their foundations. In brick bridges of small plan, an inserted arch is often formed between the piers, to form a support, as well as to prevent any ill effects to the piers or abutments from a scour.

The method nsually employed for forming the foundations is by means of coffer-dams. When, howerer, the ground is loose, this method cannot so well be used; and then caissons hare been employed. On this system the piers of old Westminster and old Blackfriars bridges were constructed; both bridges have been reluilt. It is now universally admitted to be defective and inefficient, principally from the liability of the piers being undermined by increased scour. Waterloo, Southwork, and London bridges were all built with the coffer-dam, laying the foundation dry. At new Westminster bridge another plan was adopted, aroiding the expense of coffer-dams. The principal bearing is on elm piles, cut off below low water. These are surrounded by iron piles with cast iron plates driven between the piles, thus forming a complete casing which surrounds and includes the elm bearing piles, and the interstices are filled in with concrete, makirg the whole solid. The next system of foundation is that of iron cylinders upen at bottom and sunk into the bed of the river by excavating first inside by divers; aud afterwards, when watertight trata are reached, by pumping out and working dry; the interior, when a sufficient depth has been reached, being filled solid with concrete or brickwurk. Some other examples of bridges are nuticed in this work.
rider Board, otherwise called Notch Board. A board into which the ends of the steps of wooden stairs are fastened.
radge-over. A term used when several parallel timbers occur, and another piece is fixed tra"sversely over them; such piece is then said to bridge-over the parallel pieces. Thus in framed roofing, the common rafters bridge-over the purlins; so, in framed floering, the upper joists, to which the flooring is fixed, bridge-over the beams or bindingjoists, 3nd for this reason they are called bridging-joists.

Bridge Srove. A stonc laid from the pavement to the entrance door of a honse over a sunk area and supported by an areh.
Bridged Gotrer. One made with boards supported by bearers and covered above with lead or zinc.
Bridging or Bridging Pieces, also callel Strutting or Straining Pieces. Pieces placed between two opposite beams to prevent their nearcr approach, as rafters, braces, struts, \&c. When a strutting-piece also serves as a sill, it is called a straining sill.
Bridgiva Floors. Those in which bridging-joists are employed.
Brapging Jorsts. Those which are sustained by transverse beams below, called binding joists; also those joists which are nailed or fixed to the flooring-boards.
Bridging to Floors. In some parts of England and in Irelaud this term is applied to what is usually called Herring-bone Stretting, or Herring boning between the joists of a floor.
Bringing-Forward. Priming and painting new work mixed with old, so that the whole shall have the same appcarance when finished.
Bringing-Up or Carrying-Up. A term used by workmen to denote building-up. Thus bringing-up a wall four feet means building it up.
Broach. An old English term for a spire, and still so employed. Sometimes it is used to designate a spire rising from the tower without any parapet, as in the Early English period.
Broached Work. See Droved and Broached.
Broad Stone. The same as Free Stone.
Broken-jolnt Flooring. The sims as floor-boar'sls laid folding. See Floor.
Beontedm. (Gr.) In ancient Greek Architecture, that part of the theatre under the fluor in which brazen vessels with stones in them were placed to imitate the sound of thunder.
Bronze. A compound metal applied to various useful and ornamental purposes. The composition consists of 6 to 12 parts of tin and 100 parts of copper. This alloy is lieavier and more tenacious than copper; it is also much more fusible, and less liable to be altered by exposure to the air.
Bodget. A small pocket used by tilers for holding the aails in lathing for tiling.
Boffet. (Fr.) A cabinet or cupboard for plate, glass, or china. Some years back it was the practice to make these small recesses very ornamental, in the form of niches, and left open in the front to display the contents. At present, when used, they aro generally closed with a door.
1uril Work. Formerly called Boule work from the name of its inventor. It consists of one or more metals inlaid upon a ground of tortoise shell, slone or with coloured woods, or of these last-named materials inlaid upon grounds of metal. The process is as follows:-Two pieces of veneer are placed together, with paper between them, each being glued to the paper. Upon the surface of the upper one is placed the drawing of the pattern to be cut, and then the outlines of it are cut through by means of a very fine watch-spring saw. The parts are then separated, that which is taken from the darker wood is let into the lighter wood and vice versâ. See R\%ignier Work.
Builder. A person who contracts for performing the whole of the different artificers' works in a building.
Building. Used as a substantive is the mass of materials shaped into an edifice. As a participle, it is the constructing and raising an edifice suited to the purposes for which it is erected; the knowledge requisite for the design and construction of buildings being the sulject of this work, in which it is treated under its various heads. A "new building" is the re-erecting of any building pulled down to or below the ground floor or of any frame luilding of which only the framework is left down to the ground floor or the conversion into a dwelling house of any building not originally constructed for human habitation, or the conversion into more than one dweling house of a building originaily constructed as one dwelling house only. Public Health Act, 1875.
Buiding Act. An Act passed for regulating the construc ion and use of buildings in any town or city.
Building of Beams. The same as Ecarfing. A "built-beam" is a beam or girder formed of several pieces of timber fitted and bolted or strapped together, in order to obtain one of a greater strength than usually obtaiuable in one balk of timber.
Bulker. A term used in Lincolnshire to signify a beam or rafter.
Bullen Nails. Such as have round heads with short shazks lurned and lacquered. They are principally used in the hangings of rooms.
Bull's Eye. Any small circular aperture for the admission of light or air. The name is also applied to the knob in a pane of common glass, left in its manufacture, which was formerly used fur cheapurss, and lately as a sort of ornament or for the sake of obscurity.
Buli's Nose. The exterual or of her angle of a polygon, or of any two lines meeting at an obtuse angle.

Bullock Sheds. Houses or sheds for feeding bullocks, in which the main points to le observed are good ventilation, facility in feeding and cleaning the animais, perfect drainage, and a gnod aspect. They ought not to be less than ninetoen feet wide.
Bund. A Persian term for a dam or dyke.
Bundle Prllar. In Gothic architecture, a column consisting of a number of small pillars round its circumference.
Bungalow. The Hindoo name for a thatched house ; or gencrally fur a house.
llutment. The sume as Abutment, which see.
Butaent Cheers. The two solid sides of a mortise. The thickness of each cheek is usually equal to tho thickness of the mortise, but it happens thar circumstaLces arise to vary this thickness.
Butt-end of Δ piece of Timber. That which was nearest the ront of a tree.
Buttery. A store-room for provisions; it should be on the north side of a building.
Butt-hinges or Butrs. Those employed in the hanging of doors, shutters, casements, \&c. They are placed on the edges with the knuckle projecting on the side in which the closure is to open, an l the other edges stopping against a small piece of wond left in the thickness of the closure so as to keep the arris entire. Workmen generally sink the thickness of the hinges flush with the surface of the edge of the closure, ald the tail part one-half into the $\mathrm{j}-\mathrm{mb}$. Stop butt-hinges permit the closure to open orly to a right angle, without breaking the hinges; rising butt-hinges, which are those that turn upon a screw, cause the door to rise as it opens, so as to clear the carpet in the apartment ; slip off butt-hinges are ased where a door or window-blin.d is required to be taken off oceasionally
Brting Joint. That furmed by the surfaces of two pieces of wood, whereof ono is perpendicular to the fibres, and the other in their direction. or making an oblique angle with them, as, fur example, the joints made by tho struts and braces with the truss posts.
Borton A small piece of wood or metal, mado to turn al out a centre, for fistening a door, drawer, or any other kind of closure. The centre is generally formed ly a screw.
Bettress. (Fr. Aboutir, to lie out.) A mass of lurickwork or masonry to support the side of a wall of ereat height, or pressed on the opposite side by a bank of earch or body of water. Buttressis are employed against the piers of Gothic buildings to resist the thrust of the vailting. See Arc Boutant, or flying buttress. The buttress called the pillared buttress is formed by vertical planes attached to the walls themselves. These sometimes form the upright terminations of flying buttresses.
3yzantine. The style of architecture and art established under the Eistern division of the Roman Empire. It contains moro of the Greek element than Romanfsque Art, which was dereloped in the Western division.
amin. (lrit. Chabin.) A term applied to the huts and cottages of ponr pople and to those of persons in a savage state of life.
abinet. (Fr.) A retired room in an edifice stt apart for writing, study, or the preservation of anything curious or paluable. The term is also applied to an apartment at the end of a gallery in which pictures are hung, or small pieces of sculpture, medals, bronzes, and other curiosities are arranged.
arle Moulding. A convex circular moulding used in Norman Arehitecture, as in fig. 1373. abling. A monlding of a convex circular section, rising from the back or concare surfare of a flute of a column, so that its most prominent. part may lee in the same continued circular surface as the fillet on each side of the flute. Thus the surface of a flute is that of a concave cylinder, and that of the cable is the surface of a eunvex cylindor. with the axps of the cylinders parallel to each other. The cable seems to represent a rope or staff laid in the flute, at the

Fig. 1373. lower part of which it is placed about one third of tha way up. Cabling of flutes was not frequently used in the works of antiquity. At the arch of Constantine the cables rise to about one thirl of the height of the shaft. In modern times an occasional abuse has been practisedof calling without fluting, as in the church della Supienza at Rome.
er. A term in British antiquity, which, like the Saxon term Chister, denotes a castle, and is generally prefixed to the names of places fortified by the Romans.
GE. In carpentry, is an outer work of timber sarrounding another. Thus the cage of istair is the wooden inclosure that encircles it.

Carrn. A pyramidal pile of stones heaped up by the ancient races, for monumental or memorial purposes.
Caisson. (Fr.) A large and strong chest of timber, water-tight, used in large and rapid rivers for building the pier of a bridge. The bottom consists of a grating of timber, contrived in such a manner that the sides, when necessary, may be detached from it. The ground under the intended pier is first levelled by divers, or other means, or piles driven in whereon the caisson may lodge; the caisson is then launched and floated into its proper position, and the pier built therein; it sinks, and the work is continued as high as the level of the water, or nearly so. The sides are then detached. The objection to the system is that a perfectly level. bed cannot be obtained, and the caisson rests on limited portions; increased weight and time may no doubt produee a more even bearing, but settlement is involved to some extent. Old Westminster and old Blackfriars Bridges were so constructed. The tonnage of each of the caissons used at Westminster Bridge was equal to that of a forty-gun ship.
Caisson. A sunken panel in ceiliugs, vaults, and cupo'as. See Coffer.
Calcareous Eartr. A specics of earth which becomes friable by burning, and is afterwards reduced to an impalpable powder by mixing it with water. It also effervesces with acids. It is frequently met with in a friable or compact state in the form of chalk.
Caldarium. (Lat.) In ancient architecture a close vaulted room, in which persons were brought into a state of profuse perspiration, by hot water or heated air. It was one of the apartments attached to ancient baths.
Calfpen. A place for nourishing calves. It is generally a small apartment within the cowhouse; but the practice is not to be recommended, as it keeps the cow in a restless and agitated state, and prevents her from feeding well and giving that quantity of milk she would otherwise furnish.
Caliber. (Spanish.) The greatest extent or diameter of a round body.
Caliber Compasses. Those made with bent legs for taking the diameter of a convex or concave body in any part. See Mould.
Caliducts. (íat.) Pipes or channels disposed along the walls of houses and apartments. They were used by the ancients to convey heat to the remote parts of the house from one common furnace.
Caliper. See Caliber.
Calotte. (Fr.) A concavity in the form of a cup or niche, lathed and plastered, serving to diminish the height of a chapel, alcove, or cabinet, which otherwise would appear tno high for the breadth.
('anarosis. (Gr.) An elevation terminated with an arched or vaulted bead.
Camber. (Gr.) Au areh on the top of an aperture or on the top of a beam. Hence camber windows.
Camber Beam. That which forms a curved line on each side from the middle of its length. All beams should, to some degree, if possible, bo cambered; but the cambered beam is used in flats and church platforms, wher rin, after being covered with boards, these are corered with lead, for the purpose of discharging the rain-water.
Camerated. (Gr.) The same as arched.
Cames. Small slender rods of cast lead iu glazing, twelve or fourteen inches long. of which when drawn separately through a species of viee, forming a groove on each side of the lead, the glaziers make the patterns for receiving the glass of casements, and for stained glacs windows.
Camp Cembng. A ceiling whose form is convex in wardly.
Campaniles. (It.) A tower for the recepticn of bells, usually, in Italy, separated from the church. Many of the campaniles of Italy are lofty and magnificent structures, That at Cremona is much celebrated, being 295 feet high. It consists of a square tower, rising 262 feet, surmounted by two octagonal open siorios, ornamented with columns ; a conical shaft and cross terminate the elevation. The campanile of Florence, from the designs of Giotto, clains admiration for its riehness a ud workmanship. It is 267 feet high, and 45 feet square. The most remarkable of the campaniles in the country mentioned is that at Pisa, commonly called the "Leaning Tower." It is cylindrieal in general form, and surrounded by eight stories of columns, placed over one another, each having its entablature. The height is about 150 feet to the platform, whence a plumb line lowered falls on the leaning side nearly 13 feet begond the base 0 : the building.
Camp-sheeting or Camp-shot. The sill or cap of a wharf wall.
Canal. (It. Canale.) A duct for the conveyance of a fluid; thus the canal of an aqueduc: is the part tlrough which the water flows.
Canal. A term sometimes used for tile flutings of a column or pilaster. Tho canal ol the volute is the spiral channel, or sinking on its face, commencing at the eyo, ant following in the revolutions of the rolute. The canal of the larmier is the rhannel 0
groove sunk on its soffite to throw off the rain, and present it from running down the bed mould of the cornice.
ancelsi. (Lat.) Latticed windows, or those made with cross bars of wood or iron. The balusters or rails which close in the bar of a court of justice, and those round the altar of a church, are also so called; hance the word chancel.
andelabrum. (Lat. Candcla.) A stand or support on which tho ancients placed a lamp. Candelabra varied in form, and wero highly decorated with the stems and leares of plants, parts of animals, flowers, and the like. The etymology of the word would seem to assimilate tho candelabrum to our candlestick; it is, however, certain that the word candela was but a lamp, of which the candelabrum was the support. In the works of Piranesi some of the finest specimens are to be found. The most curious, however, as respects form, use, and workmanship, are those excarated at Herculaneum and Pumpeii. They aro all of bronze, slender in their proportions, and perfectly portable as they rarely in height oxceed fivo fect. On none of the candelabra hitherto found is there any appoarance of a socket or pipe at top, from which an inference as to the use of candles could be milde.
anephors. (Gr. Kavךфopos, bearing a basket.) Figures of young persons, of either sex, bearing on their heads baskets containing materials for sacrifice. They are frequently confounded with caryatides, from their resemblance in point of attitude and the modern abuse of their application.
anopy. (Gr. Kavertiov.) An ornamented covering over a seat of state; and in its extended signification any covering which affurds protection from above. It is also the label or projecting roof that surrounds the arches and heads of Gothic niches.
ant. An external angle or quoin of a building. Among carpenters it is used as a verb, to signify the turning of a piece of timber which has been brought in the wrong way for their work.
int Moulding. One with one cr more bevelled, instead of curred, surfaces. The cant moulding was used at an early period of the art.
intalever or Cantilever. (Probably from Canterii labrum, the lip of the rafter.) Blocks inserted into the wall of a building for supporting a balcony, the upper members of a cornice, or the eaves of a house, and the like. They answer the same purpose as modilions, mutules, blocks, brackets, \&c., although not so regularly applied. They are, in modern use, not unfrequently made of timber or cast iron, and project considerably, as to the roof of the church of St. Paul, Covent Garden, which projects one quarter of the height of the column.
aten Colemn. One whose horizontal sections are polygors. In the works of the incients it is rarely met with. The examples immediately occurring to us are the olumns of the portico of Philip of Macedon and of the temple at Cora.
ntharus. A fountain or basin of water in the centre of the atrium before the ancient thurchics, wherein persons washed their faces and hands before they entered. Among he Romans the canthirus of a fountain was the part out of which the water issued.
sthers or Canteril. In ancient carpentry the common rafters of a roof, whose ends, ay some, the mutules of the Doric order represent.
trise. The cutting away of a part of an angular body at one of its angles, so that its orizontal section becomes thereby the portion of a polygon of a greater number of sides vhose edges are parallel from the intersection of the adjoining planes.
(rtined Building. One whose angles are decorated with columns, pilasters, rustic uoins, or anything projecting beyond the naked of the wall.
(ivass. The names and sizes of the usual canvasses prepared for the use of painters the width of the frame is a matter of taste) are as fullows:-

Id size	- 24 by 20 inches	Half-length size . . 50 by 40 inches
7 ee quarters do.	- 30 by 25	Bishop's half-length do. . 56 by 44 "
1 -cat do.	- 36 by 28	Whole length do. . . 94 by 58
\& 11 l half-length do.	- 44 by 34	Bishop's whole length do. 106 by 70

[^18]Capital of a Lantern. The covering by which it is terminated; it may bo of a bell form, that of a dome, spire, or other regular figure.

Fig. 1374. St. Peter's, Northampton.

Fig. 1275. York.

Fig. 1377. York Minster.

Fig. 1376. North Doorway, Westninster.
Capital of a Trialyph. The square band which projects over it. In the Roman Dorin it has a greater projection than in the Grecian.
Capitol. The Acropolis of ancient Rome.
Capheoli. (Lat.) In ancient carpentry, the joints or braces of a trussed roof.
Caracol. A term sometimes applied to a staircase in the form of a lelix or spiral.
Caravanserai. Among the Eastern nations a large public building or inn appropriate to the reception and lodgment of travellers by caravans in the desert. Though the caril vanserai serves the purpose of an inn, there is this essential difference between the twe that in the former the traveller finds nothing either for the use of himself or his cattle but must carry all his provisions and necessaries with him. Caravanserais are also nu merous in cities, where they serve, not only as inns, but as shops, warehouses, and ere: exchanges.
Carbolic Acid. This fuid has lately been oltained from creosote by distillation. By th. use of a solution of Mc Dougall's patent prepared carbolic acid, sewage is rendered im putrescible, all smell being remored, and no further decomposition possible. A solutio of it (about a pint to a cartload) has lately been mixed with the water sprinkled o roads by watering carts, by which a disinfecting action takes place on the dropping of horses, decomposing dust, \&c. The powder may be used in dust-bins, water-closet. in whitewashing the walls of hospitals, \&c. Formed into a soap, it can be employed i washing painted work and floors, or linen. Mixed carefully with oil of vitriol, sulphur ous acid gas is liberated for fumigating an apartment. It is not poisonous.
Carcass. The naked building of a house before it is lathed and plastered or the for boards laid, \&c.
Carcass Flooring. That which supports the boarding, or floor boards, above, and th ceiling below, being a grated frame of timber, varying in many particulars.
Carcass Roofing. The grated frame of timber work which spans the building, an carries the boarding and other covering.
Cardinales Scapi. In ancient Roman joinery, the stiles of doors.
Carolitic Column. One with a foliated shaft.
Carpenter. (Fr. Charpentier.) An artificer who practises the science of framing al fitting to each other the rarious pieces and assemblages of timber used in the constru tion of buildings.
Carpenters' Rule. .The instrument by which carpenters take their dimensions, and by ti aid of a brass slide, which makes it a sliding rule, they are enabled to make calculatio in multiplication and division, besides other operations.

Carpenter's Square. An instrument whose stock and blade consists of an iron plate of ono piece. One leg is cightecn inches long, and numbered on the outer cdge from tho exterior angle with the lower part of the figures adjacent to the iuterior cdgo. The other leg is twelvo inches long, and numbered from the extremity towards the angle; the figures being read from the internal angle, as on the other side. Each of the legs is about an inch broad. This iustrument is not only used as a square, but also as a level and measuring rule.
Carphatry. (Lat. Carpentum, carved wood.) An assemblage of pieces of timbor connected by framing, or letting them iuto each other, as are the picces of a roof, floor, centre, \&e. It is distinguished from joinery by being put together, withont the use of any other edge tools than the axe, arzo, saw, and chisel, whereas joinery requires the uso of the plane. The leading points that requiro attention in sound carpentry are, 1. the quality of the timber used; 2. the disposition of the pitces of timber, so that each may be in such direction, with reforence to the fibres of the wood, as to be most capable of performing its offico properly; 3. tho forms and dimensions of the piects; 4. the manner of framing the pieces into each other, or otherwise uniting them by means of iron, or other metal.
Carrara Marble. The name of a species of white marble obtained at the quarries near the town bearing that name, in the Tuscan States. It was called marmor lunense and ligustrum by the ancients, and differs from the Parian marble by being harder in texture, and less bright in colour.
Carriage. The timber framework on which the steps of a wooden stairease are supported.
Carry up. See Bring up.
Cartouch. (Fr.) A name given to the modillion of a cornice used internally.
It is also used to denote a scroll of paper, usually in the form of a tablet, for the reception of an inscription. In Egyptian architecture, it is applied to the form enclosing hieroglyphs, as in the annexed cut.
Carrer. An artificer who cuts wood into various forms and devices. Carving, generally, is the art of cutting a body by recession, in order to proluce the representation of an object, either in relief, or recessed within the general surface. In this snse it cqually applies to the making of infaglios as to that of making cameos.
Caryatides. Figures of females used instead of columns for the support of an entablature. They were used at the temple of Erechrheus, at Athens, as shown in the illustration, fig. 1378. See Canephores. Atlantes.
Case. The outsido corering of anything, or that in which it may be caclosed. It is also a term used to denote the carcass of a house.
Case Bays. The joists framed between a pair of girders in naked flooring. When the flooring joists are framed with one of their ends let into a girder, and the opposite ends let into a wall, they are called tail bays. The extent of the case-bays should not exceed ten feet.
Case of a Door. The woolen frame in which a door is hung.
Jase of a Stair. The wall surrounding a staircase. Sased. A term signifying that the outside of a building is faced or corered with materials of a better quality.
 Thus, a brick wall is said to be cased with stone,

Fig. 1378. or with a brick superior in quality to that used in the inner part of the wall.
asfd Sash Frames. Those which have their interior vertical sides hollow, to adrnit the weights which balance the sashes hung between them.
ase-hardening. The process by which the suifaces of soft iron are conrerted into in species of imperfect steel, sufficiently hard to resist the action of an ordinary file. Hodgkinson has proved the fallacy of the assertion that if the hard skin at the outside of a cast iron bar be removed, its strength comparatively with its dimensions will be much reduced. Bars planed down on all sides to an inch square, bore a breaking-weight quite equal to those of bars cast exactly an inch square.
asemate. A hollow moulding, such as the cavetto.
Asement. A glazed frame or sash, opening on hinges affixed to the vertical sides of the frame into which it is fitted.
asing. See Lining.
ssino. (It.) A term applied to a small country house, and to a sort of lodge in a park; but formerly to one capable ni affording defence on a small scale against an attacking foree. Assinoid. An elliptic curve wherein the product of any two lines, drawn from the foci
to a point in the curve, shall be equal to the reetangle under the semi-transverse and semi-conjugate diameters.
Castella. In ancient Roman architecture, reservoirs in which the waters of an aqneduct were collected, and whence the water was conducted through leadeu pipes to tho several parts of a city.
Castallaten House. One with battlements and turrets, in imitation of an ancient castle.
Casting. In carpentry and joinery, a term synonymons with warping. It means tho bending of the surfaces of a piece of wood from their original state, caused either by tho gravity of the material, by its being subjected to unequal temperature, to moisture, or to the want of uniform texture of tho material.
Cast Iron. It is the product of the process of smelting iron ores. Different sorts of pig iron are produced from the same ore in the same furuace undor different circumstances as to temperature and quantities of fuel. Intense cold makes cast iron brittle, and suclden changes of temperature sometimes causo large pieces of it to split. The proof strength is about one third of the breaking load.
Castle. (Lat. Castellum, or Sax. Cajzel.) A building fortified for military defence; also a house with towers, usually encompassed with walls and moats, aud having a donjon or keep in the centre. The principal castles of England at present are those of the Tower of London, of Dover, Windsor, Norwich, \&c. At one time those of Harwood, Spofforth, Kenilworth, Warwick, Arundel, and others, might have vied with these in importance. The characteristies of a castle are its valla (embankments) and fosse (ditches) ; from the former whereof the walls rise usually crowned with battlements, and flanked by circular or polygonal bastions at the angles formed by the walls. These were pierced for gates, with fixed or draw-bridges, and towers on each side. The gates of considerable strongth were further guarded by descending gratings, called portcullises. All the apertures were made as small as they could be, consistent with internal lighting.

The component parts of the castle were-the fosse or moat, with its bridgo; the barbacan, which was in advance of the castlo. being a raised mound or tower, whose outur walls had terraces towards the castle, with their bastions, as above mentioned; the gatehouse, flanked by towers, and crowned with projections called machicolations, through which heary materials, or molten lead, were dropped on the assailants entering the gatoway; the outer ballium, or bailey, or area within the castle, which was separated from the inner ballium by an embattled wall with a gatehouse, and in which the stables and other offices were usually seated; and the inner ballium, for the residence of the owner or governor, and his retinue; this, at one corner, or in the centre, had a donjon or keep tower, which was the stronghold of the place, and contained a state apartment, a well, and is chapel ; the former usually, and the latter frequently, are found in aucient castles.
Catabasion. (Gr. Kataßalva.) A place in the Greek chureh, under the altar, in which relics are deposited.
Catacomb. (Gr. Kata, against, and Koueos, a hollow place.) A subterraneous place for burying the dead. The hypngæa, exypta. and cimeteria of the ancients were used for the same purpose. In some cities the excavations for catacombs were of vast extent, and were used for other purposes than those of sepulture; at Syracuse, for instance, the same careru served for a prison as well as a public cemetery. It has been said, that in the early ages of Clnistianity they served as placts of public worship or devotion. Tho most celebrated for their extent are those of Rome, Naples, Syracuse, \&c.; and the more modern ones of Paris, which have been formed by quarrying for the stone of which a great part of the city bas been built.
Catafalco. (lt. a scaffold.) A temporary structure of carpentry, decorated with painting and sculyture, representing a tomb or cenotaph, and used in funeral ceremoniss. That used at the final interment of Michel Angelo, at Florence, was of a rery magnificent description; and, for the art employed on it, perhaps unequalled by any oilet lefore or since its employment.
Catch Drain. A drain used on the side of a larger open one, or of a canal, to receive the surplus water of the principal conduit.
Catenary Curfe. The mechanical curve formed by a heary flexible cord or chain of uniform density, hanging freely from the two extremities. Galileo first noticed it, and proposed it as the proper figure for an arch of equilibrium. He, however, imagined that it was the same as the parabola. It was James Bernouilli who first investigated its natare. and its properties were thereafter pointed out by John Bernouilli, Huygens, and Leib. nitz. From the first of these mathematicians, the following geometrical method of de termining the relations between the parts of a catenary is translated. The catenareal curve is of two kinds, the common, which is formed by a chain equally thick or equally heary in all its points; or uncommon, which is formed by a thread unequally thick, tha is, which in all its points is unequally heary, and in some ratio of the ordinatos of : given curve. To draw the common catenary mechanically, suspend on a vertical plan
a chain of similar and equal links of homogeneous matters, as flexible as possible, from any two points not in a perpendicular line, nor so distant from each other as the length of the chain. Prick the plane through the links as nearly as possible in the middle of the chain, and through the points draw the catenary (fig. 1379.) Let the chord FBD or Fbd be given, and the abscissid B. or $b \mathrm{~A}$ intersecting it (fig. 1379) in B or bat a given angle. Draw the vertical line BA and FBD or Fbd at the given angle on the plane. Fix one end of the chain at F , and from the point D or d, with another part of the chain, raise or lower the chain until the lower part coincides with A, and through points, made as before, draw the curve.
To draw a tangent to the catenary: let DBF be a horizontal line, and at right angles to BA

Fig. 1379. from A draw AR equal to the curve DA, obtained as before, and draw BR, which bisect in o. At right angles to BR draw $o \mathbf{C}$ intersecting BA continued in C. Draw CR, and make the angle BDT equal to the angle ACR. DT is the tangent required, and BC equals CR ; CA is the tension at the point A, or the horizontal draft, which, in a catenary, is in every point the same, and is therefore a constaut quantity; as DB: BT:: $\mathrm{CA}: \mathrm{AR}$: or as $\mathrm{DB}: \mathrm{BT}::$ the constant quantity $\mathrm{CA}: \mathrm{AR}$, equal to the length of the chain AD.
If CH be drawn through C at right angles to BC it is called the directrix, and DII drawn parallel to BC , intersecting the directrix at H , is the tension at the point D , being always equal to the sum of the abscissa awd constant quantity. With the ceutre C and radius $=$ the tension DH at $\mathrm{D}=\mathrm{CB}$, cut the tangent at the vertex A in R , then $A R$ is the length of the chain $A D$.

AC is the semi-axis of an equilateral hyperbola, and also the radius of curvature of a circle equicurved with it and the catenary.

In the triangle CAR, when CA is the radius, then the tension equals CR , the secant of the angle $\mathrm{ACR}(=\mathrm{BDC})$. The chain AD equals AR , the tangent of the same angle and the absciss AB equals $\mathrm{CR}-\mathrm{CA}=\mathrm{SR}$. Hence, ACR being a right-angled triangle, it is manifest that when two of the five quantities, viz. the angle, the absciss, the length of the chain between the vertex and points of suspension, the constant quantity or tension at the vertex, and the tension at the points of suspension, are known, the other three may be obtained geometrically, or from a table of tangents and secants.
athedrad. (Gr. Ka $\theta \in \delta \rho a$, a seat or throne.) The principal church of a province or diocese, wherein the throne of archbishop or bishop is placed. It was origivally applied to the seats in which the bishop and presbyters sat in their assemblies. In after times, the bishop's throne was, however, placed in the centre of the apsis, on each side whereof were inferior seats for the presbyters. In the present day the bishop's throne is placed on one side of the choir, usually on that towards the south.
therine Wheel Window also called Marigold Window. In mediæval buildings a window or ompartment of a window of a circular form with radiating divisions or spokes. Examples rre seen at Patrixbourne, York, St. Davids, of a mall size; while at Westminster (fig. 1380) euth transepts of St. Ouen at Rouen, and of

Fig. 1380. Westminster Abbey. Imiens cathedral, and at the cathedral of Strasbourg, they are of larger size. See Rose Nindow.
(-нитts. (Gr. Kafecos, let down.) A perpendicular line passing through the centre of cylindrical body as a baluster or a column. It is also a line falling perpendieularly, nd passing through the centre or eye of the volute of the Ionic capital.
(fte Shed, or Cattle House. In agricuitural buildings, an erection for containing attle while feeding, or otherwise. The cattle shed is, of course, most economically contructed when built against walls or other buildings. If cattle sheds are built in isoted situations, the expense of a double shed will be much less than that of a single ae, to contain the same number of cattle. Buildings of this description should be well entilated, and be so constructed as to require the least possible labour in supplying the od, and clearing away the dung. The stalls should be placed so as to keep the cattle
dry and claan, the floor level and with sufficient drains to receive the ordure, and to be readily fluslied. There should be good provision of air holes in the roof; and, if the building hare gables, a window should be placed in each as high as possible with movable luffer-boards, which may be easily opened and shut. A cubical space is required of not less than 1000 feet for each animal, whether there are inhabited rooms over the shed or not. The cattle plague first broke out in the central districts of London, where the space allotted did not exceed 450 cubic feet. Many of the model farms and stockbree ers now use iron cow-stalls, to assist in preventing the spread of rinderpest. A bullock averages 7 feet 6 inches in length, 5 feet in height, and 2 feet 6 inches in width. The stall should be 5 feet wide for each milch cow, or 6 feet if kept indoors all the year, the building being 16 feet wide; the top of the manger not more than frum 12 to 18 inches abore the floor, 18 inches broad, and 12 inches deep, with three divisions, for moist and dry food and water, See Bullock Shed.

The infectious effluvia from the private slaughter-houses often causing contagious maladies in their neighbourhood, the French government in 1811 removed all such buildings from the heart of their capital. For this purpose five open airy spots were selected in the outskirts of the city; those at Ménilmontant and Montmartre are the most considerable and extensive. These five establishments were later merged into one large abattoir. Happe was the architect of the former ; and the cost was something above $120,000 l$.

The Metropolitan Cattle Market was designed by the late Mr. J. B. Bunning, City Architect, and opened in 1855. Several additious have since been made by the late Sir Horace Jones, City Architect. A market and abattoir was designed 1870-71, at Ieptford, by the same architect, for the City of London, where foreign cattle are landed, inspected, sold, and slanghtured. The cost of the market, iucluding $95,000 l$. paid for the site of 22 acres, was 210,0001 .

Of late years several such buildings hare been erected, as at Glasgow, Edinburgh, and Bradford; and a carcase market with butchers' slaughter-houses adjoining, at Manchester. A description of this building, erected from the designs of Mr. A Darbyshire, was read by him at the Royal Institute of British Architects, Feb. 1, 1875; and as it is considered a well-arranged structure for its purposes, a few details will be given. It is in the shape of the letter L. In the long side fronting Winter Street are the entrances, and the carcase market, 418 feet long and 55 feet 6 inches wide, paved with asphalte. Behind this are the wholcsale slanghter-houses, twenty-one in numbor, each being 24 feet by 17 feet 6 inches inside, with a lair attached in rear, 22 feet by 17 feet 6 inches. Botio of these are open to the roof, but entirely separated, and the formor well lighted by rows of glass slates, which light is superior to side windows for the several operations necessary. The former has a glazed enamelled brick dido, 5 feet high, and a plentiful supply of water. They are pared with Yorkshire stone. In rear of part of the above are placed nineteen retail slaughter-lieuses similar to the abore. In rear of these latter is the condemned meat department, consisting of a lair, slaughterhouse, meat store, and boiling-house. The blood department consists of a storingroom, drawing-off room, and drying-room. The pig slaughtering department is adjacent, and contains a large pig slaughter-house, open yard, and piggeries. The two lodges at the gates (through which all cattle must enter the abattoir) contain residences for the porter and the inspector, with rooms for the convenience of the markets committee. The site also contains a large general lair for cattle, a manure pit, and a common room for drovers and others; suitable conveniences at various points; and a stable and gig-house for the inspector. The total cost was somewhat over $30,000 l$. Space prevents us from following the author through his explanation in detail of the uses to which the various buildings are applied, but one very important feature remains to be noticed. A simple and effectual apparatus has been provided by the engineer, Mr. John Meiklejohn, of Dalkeith, by which the carcase when ready is placed on a hoist, and mored alng rails across the roadway into the market, or placed into the carts; this apparatus also allows the seller to detach any particular carcase from the others, and deposit it in the cart of the buyer, without in any way disturbing the other carcases hanging on the beams. A considerable amount of manual labour is saved; and, in addition, the meat, intended fur human food receives as little liandling as possible after being dressed, and is not transferred at any time to the dirty and greasy backs and shoulders of the slaughterers. The private slaughter-houses have the same loisting apparatus, but the carcase is placed at once in carts and removed to the butcher's shop. At the Edinburgh abattoir a central crane and semicircular hanging beam is in operation; while at Bradford an hydraulic lifting power is in use.

A rery interesting discussion followed the reading of the poper, in reference to private slaughter-houses; the best mode of lighting; the paving; the use of a tripery at the abattoir; blood stores; a place for salting hides; and other apparatuses. An important fact was stated, tending to the greater introduction of killing animals in
the country and sending the carcases up to tho "dead meat" markets in cities and towns:-thint it has been proved that if an animal le slaughtered in Edinburgh, near where it was fed, and another be taken from tho same herd and sent as carefully as possible to London by railway, and slaughtered there, tho latter loses at least three stones in weight as compared with the former, and this represents a sovereign.
artus. A moveable shed usually fixed on wheels.
jacl. An implement used hot in veneering to keep the glue moist, while at the samo time it presses down the veneer until it cools.
adicole or Caulucoli. (Lat. Caulis, a stalk.) The eight lesser branches or stalks in the Corinthian capital springing out from the four greater or principal caules or stalks. The eight volutes of the capital of the order in question are sustained by four caules or leaves, from which these caulicolee or lesser foliage arise. They have been sometimes confounded with the kelices in the middle, and by others with the principal stalks whence they arise.
ailiking or Cocking. The mode of fixing the tie-beams of a roof or the binding joists of a floor dowu to the wall-plates. Formerly this was performed by dovetailing in the following manner:-A small part of the depth of the beam at the end of the under side was cut in the form of a dovetail, and to receive it a corresponding notch was formed in the upper side of the wall-plate, across its breadth, making, of course, the wide part of the dovetail towards the extcrior part of the wall, so that the beams, when laid in their notches, and the roof finished, would greatly tend to prevent the walls scparating, though strained by inward pressure, or even if they should have a tendency to spread, through accidents or bad workmanship. But beams so fixed have been found liable to be drawn to a certain degree out of the notches in the wall-plates from the shrinking of the timber. A more secure mode is that of forming a sort of pin out of the upper side of the plate, with a notch in the beam, which obriates all hazard of one being drawn out of the other.
iustic Curve. (Gr. Katw, to burn.) The name given to a curre, to which the rays of light, reflected or refracted by another curve, are tangents. The curve is of two kinds, the catacaustic and the dia^austic; the former being caused by reflection, and the latter by refraction.
ivedium. (Lat.) In ancient architecture an open quadrangle or court within a house. The carædia described by Vitruvius are of five species:-Tuscanicum, Corinthium, Tetrastylon (with four columns), Displuviatum (uncovered), and Testudinatum (vaulted). Some authors have made the cavædium the same as the atrium and vestibulum, but they were essentially different.
ve. (Lat. Cavum.) A hollow place.
Ivee. (Lat.) In aucicnt architecture the subterranean cells in an amphitheatre, wherein the wild beasts were confined in readiness for the fights of the arena. In the end the amphitheatre itself (by synecdoche) was called carea, in which sense it is employed by Ammianus Marcellinus, lib. xxix. cap. i.
IVETTO. (Lat. Cavus.) A hollowed moulding, whose profile is the quadrant of a circle. It is principally used in cornices.
dar. (Gr. Keठ́pos.) The pinus cedrus of Linnæus, a forest tree little used in this country, except for cabinet work.
hing. (Lat. Cœlum.) The upper horizontal or curved surface of an apartment opposite the floor, usually finished with plastered work.
iling Joists. Small beams, which are either mortised into the sides of the binding joists, or notched upon and nailed up to the under sides of those joists. The last mode diminishes the height of the room, but is more easily executed, and is by some thought aot so liable to break the plaster as when the ends of the ceiling-joists are inserted into pulley mortises.
LL. (Lat. Cella.) In ancient architecture the part of a temple within the walls. It vas also called the naos, whence the word nave in a church. The part of a temple in ront of the cell was called the pronaos, and that in the rear the posticum. See Vimana of the Hindoos. It is also the chamber in which a prisoner is confined.
t.Lar. (Fr. Cellier.) The lower story of a building, wholly or partly under the lerel ,f the ground, and not adapted for habitation, but merely for lumber, storage purposes, oals, wine, and such like : and having openings into the outer air for ventilation nly. Coal cellars in the metropolis are arched vaults under the street paving.
lular Brams. Beams made of wrought iron plates, rivetted together, and whose trength depends upon the system of cells placed at the top of the web or over he cell, which takes the place of it in a larger beam or girder. In very large nes, cells are also placed under it.
(ric Erections. The manner of building adopted by the early inhabitants of the Torthern part of Europe, comprising chiefly the erection of large stones in a variety of orms, and of tumuli in which are found chisels and adzes of bronze or hard stone,
henee the name of colts derived from celteb, the ancient Latin word for a chisel. Thes are discovered in great quantities in England, Ireland, and France.
Cement. (Lat. Cementum.) The medium through which stones, bricks, or any othe materials are made to adhere to each other. Sce Mortar.
Cemetery. (Gr. Koud́a, to sleep.) An edifice or area where the dead are interred. Thi most celebrated public cemeteries of Europo are those of Napl-s, that in the vicinity o Bologna, of Pisa, and the more modern ones of Paris, whereof that of Pere-la-Chaist is the principal. That of Pisa is particularly distinguished by the beanty of its form and architecture, which is of early Italian Gothic. It is 490 fvet long, 170 feet wide and 60 feet high, eloistered round the four sides.
(Genotaph. (Gr. Kevds, empty, and Táфos, a sepulchre.) A monument erected to the memory of a person buried in another place.
Centrring. The temporary woodwork or framing, whereon any vaulted work is constructed, and sometimes called a centre.
Centre. (Lat. Centrum.) In a general sense denotes a point cqually remote from the extremes of a line, superficies, or body, or it is the middle of a line or plane by which a figure or body is divided into two equal parts; or the middle point so diriding a line plane, or solid, that some certain effects are equal on all its sides. For example, in a circle the centre is everywhere at equal distance from the circumference; in a sphert the centre is a point at the same distance from evtry point in the surface.
Centres of a Doir. The two pivots on which the door revolves.
Centrolinead. An instrumeut for drawing lines converging to a point at any required distance, whether accessible or inaccessible. It is used for making drawings in perspective.
Ceroma. (Gr.) An apartment in the Gymnasia and baths of the ancients, whero the bathers and wrestlers werc anointed with oil thickened by wax, as the name imports.
Cesspool, or Sesspool. A small well sunk below the mouth of a drain to receive the sediment which might otherwise choke up its passage, in its course to its outfall.

A cesspool is also a well sunk to receive the soil from a water-closet, or kitchen sink, drain hole to a path, \&c. It is sometimes built dry so that the water percolates through the joints of the stone or brickwork into the surrounding soil; or it is built ir mortar, and a drain formed to carry off the surplus water from near the top of it. Wher found to be full, the cesspool is emptied and the contents carted away, or used for garden manure, \&c.
Chain Moulding. An ornament of the Norman period, carred in imitation of a chain.
Chain Timber. See Bond.
Chair Rath. A piece of wood fastened to a wall, to prevent the backs of the chairs in juring the plastering when placed against it. This result is often bettor effcected by fixing a fillet of sufficient projection on the floor, next the skirting, for the fert of the chair to strike against, similar to that frequertly put to cover the nails securing the carpet.
Chartya Cave. The name given to a class of rock-cut Buddhist temples in India Chaitya meaning an object of worship, whether an image, a tree, an edifice, or mountain They resemble in almost all partieulars, both of form, size, and purpose, the choirs 0 Gothic churches of the elerenth or twelfth centuries: the dagoba occupying the place of the altar, and being like it, simply a relic shrine. They are seen at Karli, Ajunti and other places.
Chalcidicum. (Lat.) In ancient architecture, a term used by Vitruvins to denote a larg building appropriated to the purpose of administoring justice, but applied sometimes ti the tribunal itself.
Chalk. (Germ. Kalk.) Earthy carbonate of lime, found in abundance in Great Britain and, indeed, in most parts of the world. It is insoluble in water, but decomposed is heat, and sometimes used in building for the same purposes as limestone.
Chamber. (Fr. Chambre.) Properly a room vaulted or arched, but the word is now generally used in a more restricted sense to signify an apartment appropriated to lolf ing. With the French the word has a much more extensive meaning; but with us thi almost only use of it, beyond what is above stated, is as applied in a palace to the roon in which the sovereign receives the subject, which room is called the Presence Chamber
Chamber of a Lock. In canals the space between the gates in which the vessels ris and sink from one level to another, in order to pass the lock.
Chamber Story. That story of a house appropriated for bed-rooms.
Chambranle. (Fr.) An ornamental bordering on the sides and tops of doors, window. and fireplaces. This ornament is generally taken from the architrave of the orde of the building. In window frames the sill is also ornamental, forming a fourt side. The top of a three-sided chambranle is called the transverse, and the side ascendants.
Chamfer. (Fr. Chamfrein.) The arris of anything originally right-angled, cut aslope, o berel, so that the plane it then forms is inclined less than a right angle to the othe
plancs with which it intersects. If it is not carricd the whole extent of the picce, it is returned and then is said to be 'stop chamfered.'
Champain Line. In ornamental carved work formed of excavations is the line parallel to the continuous line, cither ascending or descending.
Chancel. That part of the eastern end of a church in which the altar is placed. Sce Cancelli. This is the strict meaning; but in many cases the chancel extends much farther into the church, the original divisions having been removed for accommodating a larger staff of clergy. The word is also used to denote a separate division of the ancient basilica, latticed off to separate the judges and council from the audience part of the place.

The chancel of a Protestant church is now raised two or three steps above the parement of the nave, and provided on each side with two rows of benches or stalls for choristers; on the north side in a sort of chapel or recess is placed the organ, and behind which is sometimes the choristers' vestry, attached to the restry for the clergy. Beyond, is the part called the sacrarium, railed off, with a stcp for the conmmunicants, and inside which is the altar or communion table placed on a platform raised two or three steps. In a large chancel, the space will allow of two or three chairs or perhaps sedilia for the clergy on the sonth side, with an aumbry for the church utensils, and a credence table or shelf for the bread and wine before being placed on the table.
Chandry. An apartment in a palace or royal dwelling for depositing candles and other lights.
Channel of the Larmier, and of the Volute. See Canal of the Larmier, and of the Volute.
Channel. (Fr. Canal.) A long gutter sunk helow the surface of a body, as in a strcet, and serving to collect and run off the rain water with a current.
Chaori. A great porch or hall, as used in India, usually attached to the IVimana with its mantapa and antarala, all three forming the temple properly speaking. This porch in lower India is called a maha mantapa, and is gencrally used for marriage ceremonics and religious ceremonies performed in public.
Chantlate. A piece of wood fastencd at the end of rafters, and projecting beyond the wall, to support several rows of slates or tiles, being so placed as to throw off the rainwater from the face of the wall.
Chantry, (Lat. Cantaria.) A little chapel in ancient churches with an endowment for one or more priests to say mass for the release of souls out of purgatory. In the fourteenth year of Edward VI., all the chantries in England were dissolved: at this period there were no less than forty-seven attached to St. Paul's Cathedral.
Chaper. (Lat. Capella.) A building for religious worship, erected separately from a church, and served by a chaplain. In Catholic churehes, and in cathedrals and abbey churches, ehapels are usually annexed in the recesses on the sides of the aisles. These are also called chantries. It is also the name of the building erected for worship by the dissenters and others.
Chapiter. The same as Capital.
Chaplet. (Fr. Chapelet.) A moulding carved into beads, olives, and the like. See Baguette.
hapter House. In ecclesiastical architecture the apartment (usually attached) of it cathedral or collegiate church in which the heads of the church or the chapter mect to transact business. These council chambers dato back in England as far as the time of Archbishop Cuthbert at Canterbury. On the Continent the chapter houses, for the most part, are square or oblong rooms with timler roofs. In the ninth century, the east alley of the cloister was used as a chapter house, but in the tenth. a distinct building was formed for it at Fontenelle. In the eleventh century king Edward the Confessor erected a round and vaulted chapter house at Westminster. It is a remarkable fuct that the Benedictine monks almost invariably built polygonal, while the Seculars erected rectangular, chapter houses. The two exceptions to the rule are those of Worcester and Westminster. From the commencement of the thirteenth century a polygonal shape was adopted; a decagon as at Hereford, St. Paul's at London, Bridlington, Liehfield, and Lincoln, and at Worcester though it is a circle internally; an octagon at Wells, York, Salisbury, and Westminster. At Westminster, Wells, and St. Panl's, it was built over a crept.

	Dates.	Diameter.		Dates.	Diameter.
Lincoln	$1186-1203$	60 ft.	Worcester	$1263-1372$	$48 \mathrm{ft}$.
York completed about 1350	57 ft.	Salisbury	$1263-1270$	$58 \mathrm{ft}$.	
Wells	$1293-1302$	$55 \mathrm{ft}$. by 42 ft.	Westminster	1250	58 ft.
Lichfield	about 1240	$44 \mathrm{ft}$. by 26 ft.			

haptrel. (Fr.) The same as Impost.
marcosl. Bones or vegetable matter decomposed by heat without the free access of air. Its sanitary properties consist in its power of absorbing gases, which is most efficient
when the charcoal is powdered. Animil charcoal is better than that of wood, cr of peat, for the purposes of disinfection. When cleansing cessponls, the charcoal should be mixed with the so:l. When used to destroy ioul air, the charcoal requires to be exposed in thin films, presenting the greatest possible surface. It is essentially necessary to the proper filtration of water. It is a bad conductor of heat, but conducts electricity:
Ciaraed. A term used to denote that one member of a picce of architecture is sustained by another. A frieze is said to be charged with the ornament cut on it.
Chalinel House, A place where the bones of the dead are deposited.
Cifartophylacium. A recess or apartment in an ancient building, for the preservation of records or valuable writings.
Cirase. An upright indent cut in a wall for the joining another to it. It aiso means an indent cut in a wall, into which a pipe or some such article is placed.
Chase Mortise, or Pulley Mortise. A long mortise cut lengthwisein one of a pair of parallel timbers, for the insertion of one end of a transverse timber, by making the latter revolse round a centre at the other end, which is fixed in the other parallel timber. This may be exemplified in ceiling joists where the binding joists are the parallel timbers first fixed, and the ceiling are the transverse joists.
Chateau. The modern French form of the word castle, and used for a castle, fort: or country mansion.
Cherks. Two upright, equal, and similar parts of any piece of timber-work. Such, for instance, as the sides of a dormer window.
Cheeks of a Mortise are the two solid parts upon the sides of the mortise. The thickness of each cheek should not be less than the thickncss of the mortise, except mouldings ou the stiles absolutely require it to be otherwise.
Cheese Roor. A room set apart for the reception of choeses after they are made. The walls should be lined, and fitted up with shelves with one or more stages, according to the sizo of the room, and proper grangways for commodious passage. In places where much cheese is manufactured, the dairy-room may be placod below, the shelfroom directly above, and lofts may be built over the shelf-room, with trap-doors through each floor. This will save much carriage, and will be found advantageous for drying the cheeses.
Chequers. In masonry, are stones in the facings of walls, which have all their thin joints continued in straight lines, without interrmption or breaking joints. Walls built in this manner are of the very worst description ; particularly when the joints are made horizontal and vertical. Those which consist of diagonal joints, or joints inclined to the horizon, were used by the Romans.
Chesnot or Cilestnut. The fagus castanea. A large tree chicfly grown in England in ornamental grounds. It has often been stated that its timber has been used in building, Lut no satisfactory proof has been adduced. Where wide planks can be procured without a fault, they have perhaps been used for panels and carring, as the wood is very similar to wainscot, but is without the flower.
Chest. The same as Caisson.
Cnever. A term used by Frencl architects and antiquaries to denote the surrounding aisles to the choir of a cathedral, from their resemblance on the plan to the form of a bolster.
Chevron Moulding. A zigzag ornament used in the archivolts of Saxon and Norman arches, similar to fig. 1381.
Chimara. A monster of the Grecian mythology, described as haring a lion's head, a goat's body, and the tail of a dragon. Out of the back grows the head and neck of a goat. One such piece of sculpture, brought to England by Sir Charles Fellowes

Fig. 1381. from Asia Minor, is now in the British Museum.
Cimmey. (Fr. Cheminée.) The place in a room whero a fire is burnt, and from which the smoke is carried away by means of a conduit, called a funnel or a flue. Where the walls are sufficiently thick, the chimneys are formed in the substance of them, but they are usually made by a projection from a wall and a recess in the same from the floor ascending within the limits of the projection and the recess. That part of the opening which faces the room is properly called the fircplace, the stone, marble, or metal, under which is called the hearth. That on a level with and in front of it is the slab, though often called the hearth. The vertical sides of the opening are called jambs. The head of the fore-plate resting on the jambs is called the mantei. The tube or cavity from the fireplace upwards is called the funnel or flue. The part of the funnel which contracts as it ascends is termed the gathering, by some the gathering of the wings. The part between the gathering and the flue is called the throat. The part of the wall facing the room, and forming one side of the funnel parallel thereto, or the part of the wall
forming the sides of the funnels where there are more than one, is the briast. In external walls, that side of the funnel opposite the breast is called the back. When there is more than one chimney in the same breast, the solid parts that divide them are called withs or withes: and when soveral chimneys are collected iuto one mass, it is called a stack of chimneys. The part which riscs above the roof, for discharging the smoke into the air, is called a chimeney shaft, whose horizontal upper surface is termed the chim-ney-top; on this is placed the chimncy-pot, or contrivanee for dissipating the smoke, or for creating a draught.
The covings were formerly placed at right angles to the face of the wall, and the chimney was finished in that manner; but Count Rumfurd showed that more heat is obtained from the fire by reflection when the covings are placed in an oblique position. He likewise directed that the fire itself should be kept as near to the hearth as possible, and that the throat of the chimney should be constructed mueh narrower than had been praetised, with the view of preventing the escape of so much hoated air as happened with wide throats. If the throat be too near the fire, the draught will bo too strong, and the fuel will be wasted; if it be too high up, the draught will be too languid, and there will be danger of the smoke being occasionally beaten back into the room. The chimney of large furnaces and for boilers is called a stalk, and built very tall in order to creato sufficient draught for the fire.
minney Pirce. The assemblage of architectural dressings around the open recess constituting the fireplace in a room, and within which the fuel is burnt, eilher immediately upon the hearth itself, or iu a raised grate, or open stove. Formerly fireplaces were prorided only in the principal rooms of a house; those in public rooms, as town halls, became fine pieces of architecturo.
unise Architecture. In the tent is to be found the type of this architecture. A elairacteristic quality is gaiety of effect. The coloured roofs, porches diapered with variegated tints, the varnish with which the woodwork is covered, the light forme of the buildings, all unite in producing a style very different to that seen in other countries. The towers called pagodas, and the arches, aro two of the peculiar erections of that country.
ur. A piece of any material cut by an acute-angled instrument.
asseL. An instrument used in masonry, carpentry, and joinery, and also by carvers and statuaries, for cutting either by pressure or by impulse from the blows oî a mallet or lammer. There are various kinds of chisels; the principal ones used in carpentry and joinery are the formicr, the paring chisel, the gouge, the mortise chisel, the socket chisel, and the ripping chiscl.
aseled Work. In masonry, the state of stones whose surface is formed by the chisel. ar. An instrument used for cleaving laths.
orr. (Gr. Xopos.) The part of a chureh in which the choristers sing divine service. In former times it was raised separate from the altar, with a pulpit on each side, in which the epistles and gospels were recited, as is still the case in several churches on the Continent. It was separated from the nave in the time of Constantine. In nuneerics, the choir is a large apartment, separated by a grate from the body of the chureh, where the nuns chaunt the service. In churches in Italy, the cors is moveable, and is held sometimes in one pirt of the church, and sometimes in another. See Chancri. oir Screes or Rood Screen. An ornamental open screen of wood or stone, dividing the thoir or chancel from the nave, yet so as not to obstruct sight or sound. The modern hoir screcn at Hereford Cathedral has been formed of wrought iron and decorated. joe Jubé.
cragic Monument. (Gr. Xopos.) In Grecian architecture, a monnment erected in lonour of the choragus who gained the prize by the exhibition of the best musical or heatrical entertainment at the festivals of Bacchus. The choragi were the heads of he ten tribes at Athens, who orerlooked and arranged the games at their own expense. The prize was usually a tripod, which the rictor was bound publicly to exhibit, for which purpose a building or column was usually erected. The remains of two very fine nonuments of this sort, viz. of Lysicrates and Thrasyllus, are still to be seen at Athens. ORD. In geometry the straight line which joins the two extremities of the arc of a urve; so called from the resemblance which the arc and chord together have to a bow nd its string, the chord representing the string.
oultry (proper'y Chaturam). A Tatar term for a post honse, lodge, or hall for cavellers. It is only used in the Madras Presidency. There are various sorts, from a nere shed (chauvadi), one in which images are sometimes placed (mandapam), to the rue choultry, built expressly as an inn or caravanserai.
(zismatory. A recess resembling a piscina, near the spot where the font originally ood, to contain the chrism, or holy oil, with which, after baptism, infants were anointed. (TRCA. (Gr. Kvpıarov, from Kupıos, Lord.) A building dedicated to the performance Christian worship. The basilicæ were the first buildings used for the assembly of
the early Christians. Among the first of the churches was that of St. Peter at Rome about the year 326, ntarly on the site of the present church; and it is supposed thal the first church of St. Sophia at Constantinople was built somewhat on ats model That which was afterwards erecterl by Justinian seems, in its turn, to have afforded the model of St. Mark's, at Veuice, which was the first in Italy constructed with pendentives and a dome, the former affording the means of covering a square plan with a hemispherical vault. The four most celebrated churches in Europe erected since the reviral of the arts are, St. Peter's at Rome, which stands on a area of 227,060 feet superficial Sta Maria del Fiore at Florence, standing on 84,802 fet ; St. Paul's, London, whicl stands on 84,025 feet, and St. Generiève at Paris, 60,287 feet. The churches on the Continent are usually ranged under seven classes; pontifical, as St. Petrr's, where the pope occasionally officiates; putriaichal, where the government is in a patriareh; metropolitan, where an archlishop is the head; cathedral, where a bishop presides; collcguatc, when attached to a college; parochial, attached to a parish; and conventual when belcnging to a convent. In this country the churches are cathedral, abbey, and parochial, and those le'onging to the numerous classes of dissenters, which until late years were called chapels, and by sume denominations are still so called. A list of large churches in England 1 s given in the Builder journal, 1865, page 123, and 1867, page 701. The designs of the temples of the alcients are given in this cilossary.

The early Christian worship, attended by latge congregations, required for its exercise edifices whose interiors were of great extent and well lighted. Nothing was so well adapted for this purpese as the basilicæ, which, bearing the name from their resemblance to the ancient courts of justice, were raised for the purpose. Such was that of St. Paal without the walls of Rome (figs. 141, and 142.). That of St. Gioranni Laterano was divided by tour ranks of columns, which supported the walls, carrying the roofs of five aisles formed by the ranks of columns, the middle one or nave being wider and higher than the others. Each aisle being lower than that adjoining it, allowed windows to be introduced in the several walls. The direction of the length of the nave and aisles was from east to west, and was crossed by a transverse nave, called a transept, from north to south. In front was an ample porch or portico. The use of the modern church being the same as that of the first Christian basilice, it may be doubted whether for extremely large assemblies a better di-position could be chosen. Bramante imitated the Temple of Peace in the design for the new church of St. Peter. The desire of gatherirg into a single edifice the beauties of several, irduced the architect to crown the edifice imitated from the Temple of Peace with another, imitited from the Pantheon. The obstraction to steing and hearing caused ly the large piers of the later churches is a great defect when compared with the little obstruction that the columns of the basilice present. The cost of the Italian churehes is another serious objection to them, especially in the construction of the domes, which are, with their tambours, buildings deticient in real solidity, from the large portion of false bearing they must involve; creating a very different sensation to that experienced in riewing the lantern, as at Peterborough and Ely Cathedrals.

The smaller parish church, with its nave and an aisle on each side, is not only the most economical, but the best form of plan. It was that which best pleased Sir Christopher Wren, whose churches are generally so planned; and we shall here give a short account of one of his best of this form, that of St. James's, Westminster, whose interior is worthy of all praise. It is an excellent example of Wren's love of harmony in proportions; the breauth being half the sum of its height and length, its height half its l-ngth, and its breadth the sesquialtera of its height: the numbers are $8 t, 63$, and 42 feet. The church is divided transiersely into three unequal parts, by a range of six columns on each side of the nave, forming aisles which are each one-fitth of the whole breadth, the remaining three-fifihs being given to the breadth of the nave. The roof is carried on these columns, and is as great a proof of the consummate skill of the architect as any portion of the fabric of St. Yaul's, on account of its extreme economy and durability. It is not further necessary to describe the building; but the observations of its architect with regard to it are of the utmost value, emanating from such a man. "I can hardly think it possible," says the architect, " to make a single room so capacious, with pews and galleries, as to hold above two thousand persons, and all to hear the service, and both to hear distinctly and see the preacher. I endeavoured to effect this in building the parish chur h of St. James's, Westminster, which, I presume, is the most capacious, with these qualifications, that hath yet been built; and yet at a solemntime, when the church was much crowded, I could not discern from a gallery that two thousand were present. In this church I mention, though very broad, and the middle nare arched up, yet as there are no walls of a secoud order, nor lanterns, nor buttresses, but the whole roof rests upon the pillars, as do also the gallerits, I think it may be found beautiful and conrenient, and, as such, the cheapest of any form I could invent." On the place of the pulpit in a church of this class, the same architect continues: "Con-
cerning the placing of the pulpit, I shali observe, a moderate roice may be heard fifty feet distant before the preacher, thir y feet on each side, and twenty behind the pulpit; and not this, unless the pronunciation be distinct and equal, without losing the mice at the last word of the sentence, which is commonly emphatical, and if obscured spoils the whole sense. A Frenchman is heard farther than an English preacher, because he raises his voice, and not sinks his last words." Speaking of the dimensions of a church, Wren, a'ter stating that a proposel church may be 60 feet broad, and 90 feet long, "besides a chancel at one end, and the belfry and portico at the other," says: "These proportions may le raried: but to build more room than that every person may conveniently hear and sce, is to create noise and corfusicn. A church should not be so filled with pews but that the poor may have room enough to stand and sit in the alleys, for to them cqually is the gospel preached. It were to be wished here were to be no pews but benches; but there is no stemming the tide of profit, and he adrantage of pewkeepers; especially, too, sinse by pews in the chapels of ease the ninister is chiefly supported."-"As to the siruation of the churches, I should proonse they le brought as forward as possible into the larger and more open streets, not n obscure lanes, nor where soaches will be much obstructed in the passage. Nor are we, I think, too nicely to observe east or west in the position, unless it falls out oroperly: such frouts as shall' happen to lie most npen in riew should be adorned with porticoes, both for beauty and conrenience ; which, tngether with handsome spires or lanterns, rising in good proportion above the neighbouring houses (of which I bare giren several examples in the city, of different forms), may be of sufficient ornameut to the town, withont a great expense for enriching the cutward walls of the churches, in which plainness and duration ought principally, if not wholly, to be studied."
Churches are usually constructed on the plan of a Greck cross, which is that wherein he length of the transverse part, or transept, is equal to that of the nare; of a Latin ross, wherein the nave is longer than the transept; of a Lorraine cooss, where here is a transept given to the long choir, as in a cathedral; in rotondo, where the olan is a circle; simple, where the church has only a nave and choir; with aisles, when a ubdivision occurs ou each side of the nare; and those with aisles may hare more than ne of such aisles on each side of the nare.
The church being a building in which to do work, the work to be done in one is to arry out the distinctive worship of the body to which it belongs. Hence the church f every commumion, if true to its nature, must rary as the worship of that comaunion raries. As the English Reformation involved no breach of continuity, the ncient churches of this land have in the main served well for present use. But the im of that Reformation was to reduce the many services of the older ritual into an rder at once simple and congregational, and the modern English church ought therere to be simple in its f lan and congregational in its working arrangements, absorbing s many of the people into the more active work of worship as possible. Therefore with great town congregation the luilding should be broad and high, as well as long, and , lid and dignified in every part. It must be broad in proportion to the number for lich it is intended, for if the nave be rarrow many will not see or hear sufficiently. light not the nave be sometimes polygonal or circular, as at the Temple Church, and re deeagon of St. Gereon at Cologne? -cr a wide nave with proportionately narrow sles, serving rather as passages than omitted altogether? Chairs or benches are both od in their respective ways. The bap'istery should be emphasized. The choir or ancel proper ought not to be much elerated abore the nave; practically the raising ill be found inconvenient, and artistically many steps at the chancel arch can seldom 3 successfully managed. The great rise might be between the chancel and the sanctuary ading up to the table. The eleration compensates for the necessary distance, and places θ table in full sight of the whole church. The chnir or chancel screen is claimed as distinctly and emphatically Anglican." A low screen of stone or with metal rails is equently introduced in place of it. The Ecclesiologist journal, 1845, p. 135, contains e elaborate paper on the dirision of a church into nare, chancel, and sacrarium.
The chancel sh uld also be broad; usually one or perhaps two rows of seats or ulls on each side are provided; but might not three, and four rows even, be approiately introduced for the necessary choir, and made without encroaching on the ngway in the middle? A useful paper on the Choral Arrangements of Churches is read at the Northampton Architectural Scciety, in Oct. 1870. In a large town urch the usual three sedilia sometimes provided may be found too few; a stone bench either side may suit better. An apse or a square end to the chancel must depend on o circumstances of the case. It is now the fashion to place the "organ chamber" the north or south side of the chancel, hiding away the instrument and muffing the und. With a large choir and a lofty chancel, it might with adrantage project over o stalls on ne or both sides. It has been proposed to place the Litany desk, ule capable of containing two or three clerks, in a space left free of sittings at the sternmost bay of the nave, or in the central crossing where there are transepts. The
lectern, whore the church is small, may well be placed in the chancel ; but where the church is intended for a large congregation, and the choir must have ample room, then the lessons had best be read at the extreme end of the nave; thus the Litany desk in the middle and the pulpit on the other side, as suggested by Mr. Beresford Hope ri Brighton, in 1874, most of whose remarks are used by us herein; and who adrccated the construction of a triforium where it was essentially necessary to have galleries. The experiment of such an arrangement has been tried in a new Roman Catholic church at Amsterdam, with, he said, a telling effect; and one has bern adopted in the memorial church at Cawnpore. In such a case the table must be well raised, and the chancel screen just so high that those below may be under its tracery, and those aloft, above it.

Complaints are often made as to "the difficulty of seeing and hearing in some of our new churches." Exeter Hall has been greatly improved by substituting a gently cursed wooden ceiling for the original ceiling intersected by wide spaces; and "ons of the best churches for facility ot hearing is that of St. Pancras in Euston Square, which accommodates 2,500 persons: it has a flat ceiling, and no massive arcles and columns to intercept the sond, which travels freely round the walls of the spacious building." Mr. Spurgeon's Tabernacle at Newington, is also praised.

The sulject of Church arrangement during the mediæval period has been elucidatel by Mr. W. H. Dykes, architect, in a paper read before the Yorkshire Architectural Society, in 185^{2}; and the Rev. M. E. C. Walcott, On Church and Conventual Arrangemont, 1861, 8 ro., describes the conventual plans adopted by the various religious crders.
Ciborium. (Kißopion.) An insulated erection open on each side with arches, and haring a dome of ogee form, like the bowl of a reversed cup, carried or supported by four columns, the whole covering the altar. In later times the name was transferred to a tabernacle, coffer, or cuse, in which the host was deposited; whence the covering was thence called urbraculum or baldacchino. The earliest known instance of a ciborium appears to have been one in tho church of St. Gtorge at Thessalonica, and supposed to lare been in use about a.d. 325. It is also the name for the versel in which the bread is placed at the Communion, instead of on a paten when many persons are present at it. Cilery. The drapery or fuliage carsed on the heads of columns.
Cill. (Sax. Cill.) The timber or stone at the foot of a door, \&c. Ground cills are the timbers on the ground which suprort the pests and superstructure of a timber building. The term also applies to the bottom piece which supports quarter partitions.
Cimbia. A fillet string, list, or cornice.
Cimeliarch. The apartment in old churches where the plate and vestments were deposited. Cincture. The ring, list, or fillet at tho top and bottom of a column, which divides the shatt of the column frem its capital and base.
Cinque-Cento Architecture. Literally 500 , but used as a contraction for 1500 , the century in which the rerival of ancient architecture took place in Italy. The ternis applied to distinguish the style of architecture which then arose in tlat country. Is France the style as introduced there is called Style François premicr, and Renaissance and in England the Revival, and Elizabethan.
Cinqueforl. An ornament used in the Pointed style of architecture; it consists of flre cuspidated divisions or cursed pendents inscribed in a pointed arch, or in a circular ring applied to windows and panels. The cinquefoil, when inscribed in a circle, forms a rosette of five equal leares haring an open space in the middle, the leaves being formed by the open spaces, and not by the solids or cusps.
Cippes. A small low column, sometimes without a base or capital, and most frequently bearing an inscription. Among the ancients the cippus was used for various purposes when placed on a road it indicated the distance of places; on other occasions eipp? were employed as memorials of remarkable events, as landmarks, and for bearing sepulchral epitaphs.
Circla. (Lat. Circulus.) A figure contained under one line called the circumference to which all lines drawn from a certain point within it, called the centre, are equal It is the most capacious of all plain figures.
Circle. Tlie name given to one of the megalithic remains, as at Stonehenge, Avebury and other places.
Circular Buildings. Such as are built on a circular plan. When the interior also it circular, the building is called a rotunda.
Circular-Circular, or Cylindro-cylindric Work. A term applied to any work whicl is formed by the intersection of two cylinders whose axes are not in the same direction The line formed by the intersection of the surfaces is termed, by mathematicians, a iin of double curvature.
Circular Winding Stairs. Such as have a cylindric case or walled enclosure, with the planes of the risers of the steps ending towards the axis of the cylinder.
Circular Work. A term applied any work with cylindiric faces, as roofs, \&cc.
Circumference. The boundary line of a circular body.

Circumvolutions. The turns in the spiral of the Ionic capital, which are usually threo, but there are four in the capitals of the temple of Minerva Polias.
Circus. (Lat.) In ancient architecture, a straight, long, narrow building, whose length to its breadth was generally as 5 to 1 . It was divided down the centre by an ornamented barrier called the spina, and was used by the Romans for the exhibition of pullic spectacles and chariot races. Several existed at Rome, whereof the most celebrated was the Circus Maximus. Julius Ciesar improved and altered the Circus Maximus, and that it might serve for the purpose of a naumachia, supplied it with water. Augustus added to it the celebrated obelisk now standing in the Piazzo del Popolo. Of this circus no vestiges remain. Besides these at Rome were the circi of Flaminius, near the Pantheon; Agonalis, occupying the site of what is now called the Piazza Navona; of Nero, on a portion whereof St. Peter's stands; of Antoninus and Aurelian, of which no portion whatever exists ; and of Caracalla, whieh was 738 feet in length, and is at the present time sufficiently perfect to exhibit its plan and distribution in the most satisfactory nanner. The spectacles of the circus were called the Circensian Games, and consisted of chariot and horse races, of both where of the Romans were passionately fond, but particularly of the former, which in the times of the cmperors excited so great, an interest as to divide the whole population of the city into factions, distinguished by the colours worn by the different charioteers. The disputes of these factions often led to serions disturbances.
Cissold. In geometry, a curved line invented by Diocles. Its name is derired from
 the trunk of a tree. The curve consists of two infinite branches above and below the diameter of a circle, at one of whose ends a tangent being drawn, the curve approaches the tangent without ever meeting it. The curve was invented by its author with a view to the solution of the famous problem of the duplication of the cube, or the inscrtion of two mean proportionals between two given straight lines. Its mechanical construction may be found in Newton's Arithmetica Universalis.
Cist. (Gr. Kı $\sigma \tau \eta$, a chest.) A term used to denominate the mystic laskets used in processions connected with the Eleusinian mysteries. It was originally formed of wicker work, and when afterwards made of metal, the form and texture were preserved in imitation of the original material. When sculptured on ancient monuments, it indicates seme connection with the mysteries of Ccres and Bacehus.
Cist, or Cistraen. In Celtic or Druidical buildings, the chamber formed of laterally recumbent blocks of stone.
Cistern. (Gr. Kıovך.) A reserroir for water, whether sunk below or formed of planks of wood above ground. In the construction of an earthen cistern, a well-tempered stratum of clay must be laid as a foundation for a brick flooring, and the bricks laid in terms mertar or Parker's cement. "The sides must be built with the same materials; and if in a cellar or other place near a wall a space must be filled with clay, from the foundation to the top of the eistern contiguous to the wall, by which means it aill be preserved from injury. Cisterns above ground are usually formed of wooden planks lined with lead or zinc, and carried by bearers; but the cistern formed of slates, now much used, is the best for adoption.
Civic Crown. A garland of oak leaves and acorns, often used as an architectural ornament. Ivil Architectura. The art of erecting every species of edifice destined for the use of man, the several matters necessary to the knowledge whereof forms the subject of the Encyclopædia.
lamp. In brick-making, a large mass of crude bricks generally piled quadringular on the plan, and six, seren, or eight feet high, arranged in the brick field for burning, which is effected by flues prepared in stocking the clamp, and breeze or cinders laid between each course of bricks.
Lamp. . In carpentry and joinery, is a piece of wood fixed to another with a mortise and tenon, or a groove and tongue, so that the fibres of the piece thus fixed cross those of the other; and thereby prevent it from easting or warping.
lamp and Clase Nails. See Nails.
lassic Architecture. The term applied in a broad sense to the works of the ancient Greeks and Romans. The term classic is applied sometimes to a style, but none such exists. The Greek and Roman styles of architeet ure being so different in principle, they cannot correctly be described under one name. Of late years the term has constantly been misapplied to the modern Italian schools of architecture.
LATHRI. : In ancient Roman architecture, were bars of iron or wood which were used to secure doors or windows.
ray. In ordinary language, any eartl which possesses sufficient ductility to admit of being kneaded with water. Common clays may be dirided into three classes, viz. unctwous, meagre, and calcareous. Of these the first is chiefly used in pottery, and the second and third are employed in the manufacture of bricks and tiles.

Claping. The operation of spreading two or three coats of clay and incorporating thom, for the purpose of keeping water in a vessel. This operation is also called puddling.
Cleam. A term used in some places with the same signification as to stick or to glue.
Clear. The nett distance between two bodics, where no other intervenes, or between their nearest surfaces.
Clear Story or Clere Story. The upper vertical divisions of tho nave, chor, and transepts of a church. It is clear above the roof of the aisles, whence it may have taken its name; but some have derived the name from the clair or light admitted through its tier of windows. Nearly all the cathedrals and large churches have clear storics, either as tiers of arcades, or of windows over the triforia. There is no tritorium in the priory church of Bath, but a series of large and lofty windows constitute the clear story. The choir at Bristol Cathedral has neither triforium nor clear story. Examples are given in figs. 1416 to 1426.
Cleats. Small wooden projections in tackle to which to fasten the ropes.
Cliaving. The act of forcibly separating one part of a piece of wood or other matter from another in the direction of the fibres, either by pressure or by percussion with some wedge-formed instrument.
Ceffr. The open crack or fissure which appears in wood which has been wrought too green. The carpenter usually fills up these cracks with a misture of gum and sawdust, but the neatest way is to snak both sides well with the fat of beef broth, and then dip pieces of sponge into the broth, and fill up the cracks with them; they swell out so as to fill the whole crack, and so neatly as to be scarcely distinguishable.
Cfepsydra. (Gr. from $\mathrm{K} \lambda \epsilon \pi \tau$ ' , to conceal, and 'r $\delta \omega \rho$, water). A water clock, or vessel for measuring time by the running out of a certain quantity of water, or sometimes of sand, through an orifice of a determinate magnitude. Clepsydras were first used in Egypt under the Ptolemies; they seem to have been common in Rome, though they were chiefly employed in winter. In the summer season sundials were used.
Cunching. The act of binding and driving backward with a hammer the pointod end of a mail after its penetration through a piece of wood.
Cenners. Bricks mpregnated with nitre, and more thoroughly burnt by being nearer the fire in the kiln.
Closaca. The name given to the common sewer of ancient Rome for carrying off into the Tiber the filth of the city. The chief of these, called the cloaca maxima, was built ly the first Tarquin of huge blocks of stone placed together without cement. The top was arched, and consisted of three rows of stones one abore another. It began in the Forum Romanum, was 300 paces long, and entered the Tiber between the temple of Vesta and the Pons Senatorius. Thero were as many principal sewers as there wero hills in the city.
Cloak-pins and Rall. A piece of wood attached to a wall, furnished with projecting pegs on which to hang hats, great-coats, \&c. The pegs are called cloak pins, and the board into which they are fixed, and which is fastened to the wall, is called the rail.
Clock Tower. A tower specially designed to hold a clock with its quarter and hour bells. Bells which are to be rung should properly be placed in a distinct erection, as the vibration injures the clock.
Cloister. (Lat. Claustrum.) The square space attached to a regular monastery or largo church with a peristyle or ambulatory ronnd, usually with a range of building orer it. The cloister is perhaps, ex vi termini, the central square shut in or closed by the surrounding buildings. Cloisters are usually square on the plan, haring a plain wall on one side, a series of windows between the piers or columns on the opposite side, and arched over with a vaulted or ribbed ceiling. It mostly forms part of the passage of communication from the church to the chapter house, refectory, and other parts of the establishment. In England all the cathedrals, and most of the collegiate churches and abbeys, were provided with cloisters. On the Continent they are commonly appended to large monasteries, and aro often decorated with paintings, and contain tombs.
A common appendage to a cloister was a lavatory, or stone trough for water, at which the mouks washed their hands previous to entering the refectory.
Close String. In dog-legged stairs, a staircase without an open newel.
Closer. The last stone in the horizontal length of a wall, which is of less dimensions than the rest, to close the row. Closers in brickwork, or pieces of bricks (or bats), luss or greater than half a brick. that are used to close ir the end of a course of brickwork. In English as well as Flemish bond, the length of a brick being but nine inches, and its width four inches and a half, in order that the vertical joints may be broken at the end of the first stretcher, a quirter brick (or bat) must be interposed to preservo the continuity of the bond, this is called a queen-closer. A similar preservation of the bond may be obtained by inscrting a three-quarter bat at the angle in the stretching course; this is called a king-closer. In both cases an horizontal lap of two inches and a quartor is left for the next header.
Clasist. A small ipartment frequently made to communicate with a bed-chamber, and
ued as a dressing room. Sometimes a closet is made for the rcception of stores, and is then called a store closet.
Clovoh or Cloysn. The same as paddle, shuttle, sluice, or penstock. A contrivance for retaining or letting out the water of a canal, pond, \&c.
Clocgh Arches or Padnle-holes. Crooked archos by which the water is eonreyed from the upper pond into the chamber of the lock of a canal on drawing up the clough. Zlout Nail. See Nails.
ylustered. The combination of screral members of an Order penetrating each other.
Justered Pillar. Several slender pillars or shafts attached to oach other so as to form one. In Roman architecture the term is used to denote two or four columns which appear to intersect each other, at the angle of a building, or of an apartment to answer to each return.
yarse Strff. In plastering, a mixture of lime and hair used in the first coat and floating of plastering. In floating, more hair is used than in the first coat.
oat. A thickness or covering of plaster, paint, or other work done at one time.
ob-wales. Such as are formed of mud mixed with straw, not uncommon in some districts of England, but the best are to bo found in Somersetshire. ocking or Cogging. See Cauliking.
'ockle Stairs. A term sometimes used te denote a winding staircaso.
ondmas. A Scotch term for the base or footings on which chimney jambs are set in the ground floor of a building.
cenaculum. (Lat.) In ancient Roman architecture, an eating or supper room. In the early period of their history, when the houses rarely consisted of more than two storits, it denoted generally the upper story. The word also signified lodgings to let out for hire. Also the upper stories of the eirci, which wero divided into small shops or rooms.
enatio. An apartment in the lower part of the Roman houses, or in a garden, to sup or eat in. From Suetonius it would appear that it denoted a banqueting and summer house. In the Laurentine Villa a large cœnatio is described by the younger Pliny, and it seems, from the description, that it was placed in the upper part of a lofty tower.
offer. (Sax. Corne.) A sunk panel in raults and domes, and also in the soffite or under side of the Corinthian and Compnsite cornices, and usually decorated in the centre with a flower. But the application of the term is general to any sunk panel in a ceiling or soffite. See Carsson.
ffer Dam. A case of piling, water-tight, fixed in the bed of a river, for the purpose of excluding the water while any work, such as a wharf wall, or the pier of a bridge, is carried up. A coffer dam is variously formed, either by a single enclosure or by a double one, with clay, chalk, bricks, or other materials between, so as effectually to exclude the water. The coffer dam is also made with piles only driven close together, and sometimes notched or dore-tailed into one another. If the water be not very deep, piles may be driven at a distance of fire or six feet from each other, and greoved in the sides with boards let down between them in the grooves. For building in coffer dams, a gool natural bottom of gravel or clay is requisite, for though the sides be made sufficiently water-tight, if the bed of the river be loose, the water will ooze up through t in too great quantities to permit the operations to be carried on. It is almost inneccssary to inculcate the necessity of the sides being very strong and well-hraced on the inside to resist the pressure of the water.
C ging. See Caulking.
(isfion. See Resistance.
C. (Fr.) The same as quoin. The angle formed by two surfaces of a stone or brick ailding, whether external or internal, as the corner formed by two walls, or of an arch id wall, the corner made by the two adjacent sides of a room, \&c.
Cel, Cockle, or Coakel. A furnace made of very thick iron for generating heated r of great intensity, the iron often being made recl-bot.
C seum. The name giren to the amphitheatre built (a.d. 72) by Vespasian.
Car or Colarino. (It.) A ring or cincture; it is another name for the astragal of it lumn. It is sometimes called the neck, gorgerin, or hypotrachelium.
C car Beam. A beam used in the construction of a roof above the lower ends of the fters or base of the roof. The tie beam is always in a state of extension, but the llar beam may be cither in a state of compression or extension as the principal raf'ers c with or without tie beams. In trussed roofs, collar beams are framed into queen sts ; in common roofs, into the rafters themselves.
In general, trusses have no more than one collar beam; yet, in very large roufs, they y have two or three collar beams besides the tie beam. The collar beam supports or ${ }^{\text {lsses up }}$ up the sides of the rafters, so as to keep them from sagging without any other pport, but then the tie beam would be supported only at its extremities. In common rlin roofing, the purlins are laid in the acute angles between the rafters and the upper ges of the collar beams.

College. An establishment properly so termed for the education of youth in the higher branches of study. It generally consists in this country of one or more courts or quadrangles, round which are disposed the rooms for the students, with the chapel, library, and eating-hall; apartments for the head of the establishment and for the fellows aud students; a combination room, which is a spacious apartment wherein the latte assemble after dinner; kitchen, buttery, and other domestic offices, latrines, gardens \&c. On the Continent the college differs very materially.

At Rome, the college, formerly that of the Jesuits, now the Roman college, is a rery large edifice, simple in character, as this species of building seems to demand. It length is 328 feet, and its height, without the attic, 87 feet. The other buildings it Rome which pass under the name of colleges are not to be considered as establishment: for education, being destined to the study of theology and other sciences; such are the Propaganda and the Sapienza: the latter is one of the finest buildings of that city. At Genoa is a magnificent college, which was formerly the palace of the Balbi family by whom it was given to the Jesuits for a place of education. Of the many colleges in Paris hardly one, says the author of the article "Collége" in the Encyclopédie Méthodique, deserves notice. The same writer says that in England alone are found examples of what a college ought to be.

The universities of Oxford and Cambridge form good examples; many are irregular in plan, but are convenient in disposition, and highly picturesque. Merton College, ai Oxford, erected for secular priests, 1270-77, was the carliest in England; only a snal. portion of it remains, such as the stone treasury, and the chancel, an exquisite specimen, and one of the earliest, of the Decorated period. Several colleges were founder both in Oxford and Cambridge within a few years afterwards; but no other collegiate buildings were erected in either university until near the end of the fourteenth century, when the magnificent foundation of William of Wykeham arose, emphatically termed New College, bccause it was to a great extent on a new system; he also erected the college at Winchester, both founded between 1380 and 1390 , and although belong ing more to the monastic than to the strictly domestic character, they yet affor valuable examples of the style of building of their period.

In Oxford the most regular college in plan is Queen's College, commenced a: late as 1710 , and in the Italian style. The accommodation afforded is for about 171 persons, including the provost and fellows, whose apartments, of course, occupy a con siderable portion of the space. A bed and sitting room, both of moderate dimensions are as much as can be afforded to the students. Nicholas Hawksmore, the architect completed the first quadrangle and library in 1759. Of the colleges in Oxford, Christ church is past question the most magnificent. Its extent, towards the street, is 40° feet. What is callod Christchurch Meadow, attached, affords delightful walks for th exerciso and recreation of the members, being bounded on the east by the Cherwell, o the south by the Isis, and on the west by a branch of the same river. The whol establishment is worthy of the princely founder. Such a magnificent foundation car not elsewhere be referred to. Keble College, by W. Butterfield, 1867-7C, do not appear to have been yet illustrated; it encloses the greater part of a quadrang 243 feet by 220 feet. The chapel (1875) has been erected at a cost of about 82,000 in a decorated style, with mosaic work, stained glass, marbles, \&c.

In Cambridge, the library and court of Trinity College, the former one of the fine works of Wren; and the extraordinary and beautiful chapel of King's Coilege, are il principal features of this university. The chapel is, inside, 289 feet long, 42 feet broit and 80 feet high to apex of the vaulting.

Besides the modern Queen's colleges in Ireland, Trinity College, Dublin, is the on one requiring notice. It was first designed by Sir William Chambers, and carried o! by G. Meyers. The front is 300 feet in length, with a total depth of 600 feet, whit encloces two quadrangles; it was erceted 1759-80. The campanile, in the middi 95 feet higb, was erected 1853 , by Sir C. Lanyon. The number of students is upwar of 500 . Near to the library is another court, erected 1818, with the anatomy hous 1824. Beyond these are the n $\in \mathbf{w}$ museum buildings, 1852-5, designed by J. MacCurd with Messrs. Deane, Son, and Wgodward.

In Scotland, among the latest buildings of this sort, is the extensive one erect, 1864-1870 for the unirersity of Glasgow, at a cost of about 420,000l, from t' rlesigns of Sir G. G. Scott, R.A. The plan is given in the Builder journal, xxvi 1870, to which work the student is referred for a description of it. This publicati also gives, xxiii., 1865, the Malvern Proprietary College, by C. F. Hansom; xxy 1868, the College of St. Nicholas at Lancing, by R. C. Carpenter, with its char by Messrs. Slater and Carpenter ; and xxix., 1871, Owens Cullege at Mauchester, 1 scientific purposes, by Alfred Waterhouse.
In this class there have sprung up a number of buildings specially designed for t purposes of technical education, having lecture rooms and work rooms fitted with t requisite apparatus for working scientifically or according to trades. These are
numerous and special that the student is at once referred to the work by Mr. E. C. Robins, on Technical Schools and College Buildings, 1887.
Colonelli. (It.) The Italian name for the posts employed in any truss framing.
Culonnade. (It. Colonnata.) A range of columns. If the columns are four in number, it is called tetrastyle; if six in number, hexastyle; when there are cight, oetastyle; when ten, deeastyle; and so on, according to the Gretk numerals. When a colonnade is in front of a building it is called a portico, when surrounding a building a peristyle, and whell double or more polystyle. The colonnade is moreover designated according to the nature of the intercolumniations introduced as follows: pyenostyle, whon the space between the columns is one diameter and a half of the column ; systyle, when it is of two diameters; custyle, when of two diametcrs and a quarter; diastyle, when three; and areostyle when four.
Columbarium. (Lat.) A pigeon-house. The plural of the word (columbaria) was applied to designate tho apertures formed in walls for the reception of cinerary urns in the anciont Roman cemeteries.
Colemelle. A name sometimes used for balusters.
Jolumen. The ridge piece of a roof.
Colemn. (Lat. Columna.) Geuerally any body which supports another in a vertical direction. Sce Pier, Pillar, and Shaft. Thero are various species of columns, as twisted, spiral, and rustieked. Cabled or rudented columns are such as have their flutings filled with cables or astragals to about one third of the height. Carolitie columns have their shafts foliated. Columns were occasionally used as monuments. The following list comprises the best known ones; the heights in feet are to the top of the abacus:-

By the sido of the Halle au Blé at Paris there is a gnomonie column for showing the time, erected by Catharine di Medicis.

The Columna Belliea at Rome was near the temple of Janus, and at it the consul proclaimed war by throwing a javelin towards the enemies' country. The ehronologieal column was rather historical, bearing an inseription to record an event. The eruciferab column is one bearing a cross; the funereal one, an urn; the zoophoric, an animal; and the itinerary one pointed out the various roads diverging from its site. There was among the Romans what wus called a lacteal column, which stood in the vegetable market, and contained on its pedestal a receptacle for infants abandoned by their parents. (Jurenal, Sat. vi.) On the legal column were engraved the laws; the boundary or limitative column marked tho boundary of a province ; the manudial column was for the reception of trophies or spoils; and the rostral column, decorated with prows of ships, was for the purpose of recording a naral engagement. The triumphal column was erected in commemoration of a triumph, and the sepulehral one was erected on a tomb. The milliarium aureum, or milliary column of the Romans, was originally it column of white marble, erected by Augustus in the Forum, near the temple of Saturn. From it the distances from the city were measured. It is a short column with a Tusean capital, having a ball of bronze (formerly gilt) for its finish at top, and is still preserved in the Capitol.
bluanlation. The employment of columns in a design.
mitiom. (Lat.) A building which stood in the Roman Forum, wherein assemblies of the people were held. It occupied the whole space between the Palatine Hill, the Capitol, and the Via Sacra.
mmssure. (Lat.) The joint between two stones, or the application of the surface of one stone to the surface of another.
manon Centring. Such as is constructed without trusses, but haring a tie beam at its onds. Also that employed in straight vaults.
amon Joist. One in single nakerl flooring to which the boards are fixed. Such joists tre also called boarding joists, and should not exceed one foot apart.
monon Rafter. One in a rouf to which the boarding or lathing is attached.
mon loofing. That which ecnsists of common rafters only, which bridge over the burlins in a strongly framed roof.
(reartel. (Fr. Compartir, to divide.) That which is divided into several parts is said - be comparted.
lupartition. The distribution of the ground plot of an edifice into the rarious assages and apartments.
(urartment. A subdivisional part, for ornament, of a larger division. To this alone ; the term properly applicable.
(ifartment Celling. One divided into panels, which are usually surrounded ly souldings.

Compartmint Tiles. An arrangement of varnished red and white tiles on a roof.
Compasses. (Fr. Compas.) A nathematical instrument for drawing circles and mansuring distances betweon two points. Common compasses have two legs, moreable on a joint. Triangular compasses have two legs similar to common compasses, and a third leg fixed to the bulb by a projection, with a joint so as to be moveable in every direction. Beam compasses are used for describing large circles. Proportional compasses have two pair of points moveable on a shilting centre, which slides in a groore and thereby regulates the proportion that the opening at one end bears to that of the other. They are useful in enlarging or diminishing drawings.
Compass Saw. One for dividing boards into curved pieces; it is very narrow and without a back.
Compass Window. An old English term for a projecting window of a circular plan.
Complement. The number of degrees which any angle wants of a right angle. The complement of a parallelogram is two lesser parallelograms, made by drawing two right lines parallel to the sides of the greater through a given point in the diagonal.
Compluvicm. (Lat.) An area in the centre of the ancient Roman houses, so constructed that it might receive the waters from the roofs. It is also used to denote the gutter or eave of a roof.
Cumpo. A name often given to Parker's ecment, or the so-called Roman cement. It is also the name of the material used for making imitation carved-work for frames, \&c. and made of glue and whiting: it is the short for "composition."
Cunposite Arch. The same as the pointed or lancet arch, but better appropriated to al arch of four centres.
Confosite Numbers. Such as can be dividod by some other namber greater than unity whereas prime numbers admit of no such divisor.
Cumposite Order. The fifth order used in Roman and Italian architecture, and beins of a more docorative character than the Corinthian order. The capital is somewh similar to the Corinthian ; the volutes are larger, but not so large as those in the Ioni capital. The base is shown in fig. 1368.
Composition in Architecture. The student will find that in most cases a good distri bation of plan will lead to good sections and elerations. Upon the adaptation of th different fronts of the building to sort with the internal convenience, the greatest car should be bestowed; and then the decoration of such an edifice becomes a secondnr and comparatively easy work, though requiring, of course, the early cultiration of th taste of the architect, and an intimate acquaintance with the parts of the design. Fr the thorough comprehension of a projected edifice, a plan, section, and elevation ar required; these comprise the whole elementary part of the mechanical process necessat for making a design or composition. To carry out such a design, working drawing may be required showing the parts at large. See Design.
Composition of Forces. The combination or union of several forces for determining th result of the whole.
Compound Pier. A term sometimes given to a clustered column.
Compressiblity. The quality of bodies which permits of their being reduced to small. dimensions. All bodies, in consequence of the porosity of matter, are compressibl but liquids resist compression with immense force.
Concamerata Sudatio. An apartment in the ancient gymnasium, between the laconich or stove, and the warm bath. To this room the racers and wrestlers retired to wipe the sweat from their bodies. See Caldarium.
Concamerate. (Lat.) To arch over.
Soncavity. (Lat. Concavus, hollow.) Of a curve line is the side between the two poin of the curve next its chord or diameter. The concarity of a solid is such a curred st face, that if any two points in it be taken, the straight line between then is in a ra space, or will coincide in only one direction with the surface.
Concentric. (Lat.) Ifaving a common centre, as are the radii of a circle.
Conchoid of Nicomedes. A name given to a curve invented by that mathematician solving the two famous problems of antiquity--the duplication of the cube, and the t section of an angle. It continually approaches a straight line without meeting though ever so far produced.
Concrete. (Lat. Concrescerc.) To coalesce in one mass. A mass composed of stc clippings, or ballast, cemented together through the medium of sand and lime, or cement, and usually employed in making foundations where the soil is of itself too lis or boggy, or otherwise insufficient for the reception of the walls. It is likewise n. to cover the ground under a building to keep damp from rising. Also to form a back to a wharf wall, or ono at the side of a railway cutting, for extra strength. Of 1 years it has been used in licu of bricks or stone wherewith to build houses; for inc bustible flooring; and a church has been built of it near Paris. Large concrete ble are used for the interior work of piers to harbours, and similar extensire erectuns.
Condúit. (Fr.) A long narrow walled passage underground, for secret communia
between different apartments. It is a torm also used to denote a canal or pipe for the eonveyance of water, and is also applied to tho structure to which it is conveyed for delivery to the public.
Condr's Pathnt Fluin. Called, from its mole of action and cffectirencss, "Nature's Disinfuctant;" it purifies, deodorises, and disinfects, by the agency of nascent or ozonic oxygen, its active principle. It combines powerful puifying propertios with a wholesomo nature.
Cone. (Gr. Kwvos). A solid body, haring a circlo for its baso, and terminatong in a point called its vertex; so that a straight line drawn from any point in the circunference of tho base to the vortox will coincido with the convex surface. If the axis or straight line drawn from the centro of the base to tho vertex be perpendicular to the base, it is termed a right cone; it not, it is an oblique cone.
Confessional. (Lat.) In Catholic churehes the small cell wherein the priest sits to hear the confession of, and give absolution to, the penitent. It is usnally constructed of wood and in three divisions, the central one whereof has a seat for the couvenicuce of the priest.
Configuration. The exterior form or superficies of any body.
Cingé. (Fr.) The samo as Aporhyge.
Conic Sections. The figures formed by the intersections of a plane with a cone. They are fire in number: a triangle, a circle, an ellipse, a parabola, and an byperbola; the three last, however, are those to which the term is usually applied.
Conical Roof. Ono whose exterior surfice is shaped like a cone.
Conisterium. (Gr. Koviatmpion.) In ancient architecture a room in the gymnasium and palæstra, wherein the wrestlers, having boen anointod with oil, were sprinkled over with dust, that they might lay firmer hold on one another.
Conjugate Dameters. The diameters in an ellipsis or hyperbola parallel to tangents at each other's extromities.
Conold. (Gr. Kovoei $\delta \eta s$.) Partaking of the figure of a cone. A figure generated by the revolution of a conic section ronnd one of its axes. Thore are three kinds of conoids, the elliptical, the hyperbolical, and the parabolical. which are sometimes otherwise denominated by the terms ellipsoid or spheroid, hyperboloid, and paraboloid.
Consertatory. A building for prescrving curions and rare exotie plants. It is made with beds of the finest eomposts, into whieh the trees and plants, on being remored from the greenhouse, and taken from the tubs and pots, are regularly planted.

With respect to its construction, it is very similar to the greenhouse, but it must be more spacions, loftier, and finished in a superior style. The sides, ends, and roofs should be of glass for the free admission of light, and for protection of tho plants. It should be, moreover, seated on a dry spot, and so as to receive during the day as much of the sun's heat as possible. It is to be provided with flnes, or hot-water pipes, to raise the temperature when necessary ; there must also be contrivances for introducing fresh air when required. In summer time the glass roofs are taken off, and the plante exposed to the open air ; but these are restored always, if taken off, on the slightest indication of frost. The chief point in which conservatories differ from greenhouses is, that in the latter, the plants and trees stand in pots placed upon stages, whereas, in the former, they aro planted in beds of earth surrounded with borders. See Greenhouse. Oonsole. The same as Ancones.
Jonstructron. Literally, the building up from the architect's designs; but amongst architects it is more particularly used to denote the art of distributing the different forces and strains of the parts and materials of a building in so scientifie a manner as to avoid failure and insure durability. The second book of the Encyclopredia is deroted to the subjects involved in the seience of construction.
ontact. (Lat. Contactus.) In geometry, the touching any figure by a line or plane which may be produced either way without cutting it.
ontent. (Lat. Contentus.) The area or superficial quantity contained in any figure.
ontexture. (Lat. Contextus.) The inter-disposition, with respect to each other, of the different parts of a body.
ontignatio. In Roman carpentry, the same as that now called naked flooring.
ontinued. A term used to express anything uninterrupted. Thus, an attic is said to be
continued when not broken by pilasters ; a pedestal is continued when, with its mouldings and dado or die, it is not broken under the columns; so of a secle, \&c.
ontoorr. (It. Contorno.) The external lines which bound and terminate a figure.
ntract. An agreement, attached to a specification for the performance of certain works in accordance therewith, and with the drawings accompanying it, if any.
invent. (Lat. Conventus.) A building for the reception of a society of religious persons, but more properly applied to one for the habitation of nuns.
aneatual Church. Onc attached or belonging to a convent.

Contrbgent Lines. Such as, if produced, will meet.
Confex. (Lat. Convexus.) A form which swells or rounds itself externally. A convex rectiliuear surface is a curved surface, in which a point being taken, a right line passing through it can only be drawn in one direction.
Copina. (Dutch, Cop, the head.) The highest and covering course of masonry or brickwork in a wall. Coping equally thick throughout is called parallel coping, and ought to be used only on inclined surfaces, as on a gable, for example, or in situations sheltered from the rain, as on the top of a level wall, which it is intended to cover by a roof. Coping thimer on one edge than on the other serves to throw off the water on one side of the wall, and is called feather-edged coping. Coping thicker iu the middle than at the edges is called saddle-backed coping. This, of course, delivers each way the water that falls upon it. It is commonly used on the walls of a sunk area, on dwarf walls earrying an iron railing, and in the best constructed fence walls. In Gothic architecture, coping is either inclined upon the faces or plumb; in the former case the sides of the vertical section are those of an equilateral triangle with an horizontal base. It is sometimes in one inclined plane, terminated at top by an astragal, and at others in two inclined planes parallel to each other, tho upper one being terminated at top by an astragal and projecting before the lower, which, like that on one inclined plane, changes its direction at the boltom into a narrow verical plane projecting before the level sofite before the parapet. The inclined coping is occasionally used without the astragal. The sofite of a projection is said to cope over when it slants downwards from the wall.
Corper. (Cuprum, a corruption of Cyprium, having becn originally brought from the island of Cyprus.) One of the metals used in building, but not now to the extent to which it was employed a few years back.
Conemi.. (Lat. Corbis, a basket.) A carved basket, with sculptured flowers and fruit, used as the finishing of some ornament. The name is given to the basket placed on the heads of Caryatides, under the sofite of the architrave coruice. The term is also applied to the bell of the Corinthian capital.
Corbel. A range of stones projecting from a wall for the purpose of supporting a parapet or the superior projecting part of the wall. Their fronts are variously moulded or carved. They perform the same office as the modillions of an order, but the term is cliefly confined to Pointed arehitecture.

The word corbel is sometimes used to denote a projection from a wall to carrya statue or bust. It also signifies a horizontal range of stones or timber fixed in a wall or in the side of a vault, serving to sustain the timbers of a floor or of a vault: In old buildings many of the timber floors or contignations were thus supported.
Corbel Table. A series of small arches for carrying a battlement, parapet, or cornice, and resting on corbels. Also any projection borne by corbels, as figs. 1382 to 1384.

Fig. 1382. Nebuly Corbel Table.

Fig. 1383. Wayy Corbel Table.

Fig. 1084. Corbel Table,

Cordie Steps. Steps in the gables of old buildings, especially as used in Scotland.
Cordon. The edge of a stone on the outside of a building.
Core. The interior part of anything. In walls of masonry there should be thorough stones at regular intervals, for strengthening the core, which is commonly composed of rabble stones, or, when they are not procurable, two bond stones lapped upon each other may be used, one from each face of the wall. Instead of each thorough stone two stones may be laid level on the upper bed, and one large stone in the core lapped upon both, observing that the tails of the two lower stones be right-angled; by this means the two sides of the wall will be completely tied together.

The core of a column is a strong post of some material inserted in its central carity when of wood.
Bricks or tiles brought out for the formation of cement cornices or other projections. It is also the interior part of a lump of lime, which has not been sufficiently burnt In slakiug lump lime these "cores" will not disintegrate, consequently thoy can be removed; but when lime is ground, these lumps are ground up with it; the result is an inferior mortar.
Corintinan Order. The fourth order used in Roman and Italian architecture. It is richer than the Ionic order; and its capital is composed of a bell-shaped vase, surrounded
with leafage, and having small rolutes projecting at each angle of it. The base is shown in fig. 1368. The two following capitals, figs. $138 \mathbf{5}$ and 1386, are those to which our knowledge is confined of the use of this order in Grecce. The first one can, however, scarcely be considered Corinthian, and the sccond one not very strictly so: the monument was erected about 330 b.c. See Choragic Monument.

Fig. 1385. I'emp'e of the Winds at Athens.

Fig. 1386.
Choragic Monument of Lysicrates at Δ thens.

Cornices. (Fr. Corniche.) Any moulded projection which crowns or finishes the part to which it is affixed; as the cornice of an order, of a pedestal, of a pier, door, window, house, \&c. The cornice of an order is a secondary member of the order itself, being the upper subdivision of the entablature.
Corona. (Lat.) A member of the cornice, with a broad vertical face, and us:ally of considerable projection. The solid, out of which it is formed, is commonly recessed upwards from its sofite, and this part by the English workmen is called the drip, because it facilitates the fall of the rain from its edge, by which the parts below it are sheltered. The situation of the corona is between the cymatium above, and the bed-moulding below.
Corona Lucis. A crown or circlet suspended from the roof or vaulting of a church, to hold tapers or gas jets.
Corridor. (It. Corridore.) A gallery or passage round a quadrangle leading to the various apartments. Also, any gallery of communication to them.
Corsa. (Lat.) In ancient arclitecture, the name given by Vitruvius to any platband or square fascia whose height is greater than its projection.
Cortife. (It.) A small court or area, quadrangular or curved, in a dwelling-house, which is surrounded by the buildings of the house itself.
Cottage. (Sax. Cor.) A small house or dwelling for a poor person.
Cottage Ornée. A small villa erected in the country, emulating the houses of a rural character, and not affecting to display exteriorly any particular style. They were very fashionable at the beginning of the nineteenth century.
Counter Drain. A drain parallel te a canal or embanked water-course, for collecting the soakage water by the side of the canal or embankment to a culvert or arched drain under the canal, by which it is conveyed to a lower level.
Counterfort. (Fr.) A buttress or pier built against and at right angles to a wall to strengthen it.
Counter Gajge. In carpentry, the measure of the joints by transferring, as, for instance, the breadth of a mortise to the place on the other timber, where the tenon is to be made to adapt them to each other.
Counter Tatith. One placed between every couple of gauged ones.
Counterparts of a Bumding. The similar and equal parts of the design on each side of the middle of the edifice.
Cuunter Sink. The sinking a cavity in a piece of timber or other material to receive a projection on the piece which is connected with it, as for the reception of a plate of iron, or the head of a screw or bolt.
Coupled Columns. Those arranged in pairs half a diameter apart.
Couples. A term used in the North to signify rafters framed together in pairs with a tie fixed abore their feet. The main couples answer to the trusses.
Course. (Lat. Cursus.) A continued lerel range of stones or bricks of the same height throughout the face or faces of a building. Coursed masonry is that therefore wherein the stones are laid in courses. The course of the face of an arch is the face of the arch stones, whose joints radiate to the centre. The course of a plinth is its continuity in the face of the wall. A bcesd course is that whose stones are inserted into the wall far-
ther than either of the adjacent courses, for the purpose of binding the wall together. A coursing joint is the joint between two courses.
Covit. (Fr. Cour.) An uneovered area before or behind the house, or in the centre of it, in which latter case it is often surrounded by buildings on its four sides, and is more often called a quadrangle, as at Somerset Huaso in the Strand.
Cuurt of Justice, Law Coukt, Assize Court. The apartment arranged for a trial. It is also sometimes applied to the building contanning it and the uecessary accommodation for the persons privileged to attond in it at the trial. Thus the designs must: provide apartments and accommolation for the robing, and occasional refreshment, of the judges, the bar, and the different officers attached to the court, also suitable accommodation for the jury, fur the witnesses, for the attorneys whose instructions to counsel are from instant to instant necessary for the proper conduct of a case, and though last, not least, ample space for the public, who have an undoubted right to be present; also refreshment and waiting rooms for them. The architect must be careful to supply such accommodation as shall render the office of all parties engaged a pleasing duty rather than an irksome task. To every court of law should be attached a vestibule or saloon, sufficiently large to afford a promenade for those of all classes engaged in the courts. In Westminster, bad as the courts were, this was well provided in the magnificent saloon called Westminster Hall. In courts for the trial of felons it may be necessary, if the prison has nor communication with the court, to add accommodation for the police and other officers, as likewise some cells for criminals.

In these, as in cther buildings where there is often congregated a great number of persons, the entrances, and at the same time outlets, should be increased in number as much as convenience and the situation will permit; and another indispensable requisite is, thint the court itself should be so placed in the design that no noise created on the outside of the building may be heard in the interior, so as to interfere with the attention of those engaged on the business before them.
The assize or law courts at Manchester, erected 1859-64 by Mr. Alfred Waterhouse, architect, in the Pointed style of architecture, have received the highest approbation for the accommodation provided, not only for all those immediately interested in the administration of justice, but for the public. This edifice has been dessribed by its architect in the Sessional papers of the Royal Institute of British Architects, $1864-5$, p. 165, from which we gather that the cost, limited to $70,000 \mathrm{l}$, , did not exceed $110,000 l$., or nearly $9 d$. per foot cube ; the furniture was about 10,0002 . more. It consists of two almost distinct parts, the inner structure containing the courts, public offices, and arrangements for business. This is separated by a courtyard in front, but connected by a corridor at back, from the judges' residence or "lodgings."
In the basement of the main building, which is 256 feet long by 166 feet deep, and three stories or about 60 feet in height, are cells for the prisoners under trial, chambers for heating and ventilating, kitchens, refreshment rooms, \&c. On the principal floor, which is about 17 feet above the level of the street, and close to the entrance, is the central hall, 100 feet long, 48 feet 6 in . wide, and 75 feet high; beyond it aro the assize courts, and the sheriffs' or additional court at one end; also the various rooms for the accommodation of the bench, the bar, the different officers of the court, witnesses, and jurors. The crown and civil courts are each 59 feet by $4 \overline{5}$ feet and 39 feet 6 in . high, being among the largest courts in the kingdom. In them the bar is placed as usual opposite the bench, the jury is on the judge's left hand, the witness-box on his right and brought close to the bench. To each of the courts there are eight entrances, and also two to the ladies' gallery above. All these are approached from the corridor:, 10 feet wide, which, dirorging from the central hall, run round the building, and return to the hall again. The barristers' corridor at the rear of the courts is 184 feet long, and shut off so as to keep it for the excliosive use of the bar. Opposite the main entrance, but quite in the rear, is a door leading from this corridor into the library, 60 feet by 25 feet, another into the roling room, beyond which are the lavatories, placed round a ventilating shaft. The rooms for the prothonotary, clerk of the crown, and indictment office, all also open into this corridor. Other rooms on this floor are deroted to the witncsses, who are classified as much as possible, to jurors, attorneys, and barristers' clerks, to the various officars of the assizes, and to purposes of consultation. On the upper floor are situared the Chancery court for the County Palatine of Lancaster, 41 feet by 23 feet; the grand jury room, 40 feet by 25 feet; the magistrates' board room; and the barristers' mess room, 55 feet by 22 feet.

The article Town Hall gives references to many similar buildings of modern ereotion, and of various sizes, but the above is probably still the best of its class.
The Courts of Justice in London; the foundations were commenced in 1871, and the
building was nearly completed in 1881, at the death of the architect, George Edmund Street, R.A. They were formally handed over to the First Commissioner of Public Works in October, 1882, on their completion by his son, Mr. A. E. Street, with Mr. A. Blomfield. The journals since that period have illustrated many portions of this large work.
Cuussinet (Fr.) or Cusirion. A stone placed upon the impust of a pier for receiving the first stone of an arch. Its bed is level below, and its surface above is inclined for receiviug the next voussoir of the arch.

The word is also used for the part of the Ionic capital between the abacus and quarter round, which serves to form the volute, and it is in the capital thus called because its appearance is that of a cushiun or pillow seemingly collapsed by the weight over it, and has a band called baltous. Baluster is the side of the volute.
Core. Any kind of concave moulding or rault; but the term in its usual acceptation is the quadrantal profile between the ceiling of a room and its cornice.
Cove Bracketing. The wooden skeleton for the lathing of any cove; but the term is usually applied to that of the quadrantal core, which is placed between the flat ceiling and the wall.
Cover. That part of a slate which is hidden or corered. See Gauge.
Cover Way. In roofing the recess or internal angle left in a piece of masonry or brickwork to receive the roofing.
Coving. In old buildiugs, the projection of the upper story over the lower ones.
Coving of a Fire-place. See Chiminey.
Cow-house. See Cattle-shed.
Cowl. See Windguard.
Crab. A species of crane much used by masons for raising large stones; it is a wheel and axle mounted on a pair of sloping legs, three or four feet apart, the legs being inserted into a frame at the base, whereon, opposite to the weight to be raised, a load may be placed for gaining so great an anount of leverage as to overcome the weight to be raised. The rope for the tackle works round the axle, which is turned by pinion wheels to gain power.
Cradle. A name sometimes given to a centering of ribs and lattice for turning culverts.
Cradle Vault. A term used, but improperly, to denote a cylindric vault.
Crading. The timber ribs and piecesfor sustaining the lathing and plastering of vaulted ceilings. The same term is applied to the wooden bracketiug for carrying the entablature of a shop front.
Cramp. An iron instrument about four feet long, having a screw at one end, and a moveable shoulder at the other, employed by carpenters and joiners for forcing mortise and tenon work together.
Crampern or Cramp Iron, usually called for shortness cramp. A piece of metal bent at both extremities towards the same side, for fastening stones tegether. When stones are to be connected with a greater strength than that of mortar, a chain or bar of iron with different connecting knobs is inserted in a cavity, cut on the upper side of a course of stones across the joints, instead of single cramps across the joints of each two stones. Cramps are commonly employed in works requiring great solidity; but in common works they are applied chiefly to the stones of copings and cornices, and generally in any external work upon the upper surface or between the beds of the stone. All extornal work, liable to the injuries which weather inflicts, should be cramped. The most sccure mode of fixing cramps is to let them into the stone their whole thickncss, and to run them with lead; but in slight works it is sufficieut to bed them in plaster, as is practised in chimney-pieces. In moderr buildings iron is chiefly used for the cramp. The practice is bad, from the liability of iron to rust and exfoliate; hence cast-iron is better than wrought, and should be of somewhat larger size than when wroughti iron is employed. Copper cramps are also used in best works. The Romans wisely used cramps of bronze, a material far better than either cast or wrought iron.
rampoons. Hooked pieces of iron, something like double calipers, for raising timber or stones.
rane. (Sax. C Cian.) A machine for raising heavy weights, and depositing them at some distance from their original place. The crane may be constructed of immense power, and worked by human strength or by steam power.
rapaudine Doors. Those which turn on pirots at top and bottom.
reasing or Tlle Creasing. Two rows of plain tiles placed horizontally under the coping of a wall, and projecting about an inch and a half on each side to throw off the rain water.
redences. (It. Credenza, a buttery or pantry.) The slab whereon, in the sacrifice of the mass, or before the Communion Service, the elements are deposited previcus to the oblation. Sometimes a plain recess, sometimes a slab on a bracket; it is in all cases placed on the south side of the altar.
aENBLLe. In Gothic architecture, the opening in an embattled parapet.

Crenellated Moulding. A moulding used in Norman architecture, carved into a resemblance of battlements, notchings, or indentations.
Crepido. (Lat.) The projecting members of a cornice, or other projecting ornament.
Crescent. A building, or rather a series of buildings, which on the plan is disposed in the are of a circle.
Crest Tile. That on the ridge of a house. In Gothic architecture, crest tiles are those which, decorated with leaves, run up the sides of a gable or ornamented canopy.
Crib. The rack of a stable; sometimes applied to the manger. It is used also to express any small habitation; and moreover the stall or cabin of an ox.
Crocket. (Fr. Croc, a hook.) One of the small ornaments placed on the inclined sides of pinnacles, pediments, canopies, \&c. in Gothic architecture, and most commonly disposed at equal distances from each other. The crockot seems to have had for type the buds and boughs of trees in the spring season, from the great resemblance it bears to those periodical productions: examples, moreover, of the same ornament have great resemblance to the first stage of the leaves when the buds begin to open; sometimes, however, animals aro substituted in the place of leaves.
Chomech. A mass of large flat stones lad across others in an upright position. Examples of cromlechs are found in the southern districts of England, in Brittany, and in many other parts of the world.
Cross. (Lat. Crux.) A figure consisting of four branches at right angles to each other, or a geometrical one, consisting of five rectangles, each side of one rectangle being common with one side of cach of the other four. It is a figure more particularly used for the plans of churches than for those of other edifices. In Ecclesiastical arehitecture, there are two kinds of plans having the form of a cross. The first is that wherein all the five rectangles are equal, or wherein each of the four wings is equal to the middle part formed by the intersection: this form is called a Greek cross, as fig. 1387. The second has only the two opposite wings equal, the other two are unequal, and the three rectangles in the direction of the unequal parts are of greater length than the three parts in the direction of the equal parts; this is the Latin cross, as fig. 1388. The middle part in each direction is common.

The cross, the symbol of Christianity, has rery naturally been extensively used in the monuments of the Middle Ages. It is unnecessary to give the ornamental and profusely decorated examples which the student everywhere finds, therefore the simplo forms by which crosses are distinguished will only here be noticed. When the two branches of the cross are equal in length, as in fig. 1387, the cross is called a Greek cross, and when the stem is longer than the arms, as in fig. 1388, it is a Koman or Latin cross. When the figure has two arms, one longer than the other, as in fig. 1389 (the upper one meant as a representation of the inscription which was placed over the head of Christ), it is known by the name of the Lorraine cross, and has received that name from its being a bearing in the arms of the Dukes of Lorraine. By our own heralds this is called a patriarchal cross. The next cross, whose arms ane triple, as fig. 1390, is the papal cross, and is one of the emblems of the papacy, signifying, perhaps, like the triple crown or tiara, the triple sovereignty over the universal Church, the suffering Church, and the triumphant Church. The great majority of the western churches, with transepts, are constructed in the form of a Latin cross, those in the form of the Greek cross being very rare. Those in the form of the Lorraine cross
are still rarcr, and yet rarer are those construeted with triple transepts. There is another form called the truncated or tan cross, as fig. 1391, having the form of that letter, on which, as a plan, a few churches have been built. Considered as respects the contour, the cross in blason las been variously shaped and named. Thus, fig. 1392, in which the extremities widen as they recede from the centre, is called a cross patec. This is mot with more frequently than any of the others. It is seen in

Fig. 1396. the nimbus, on tombs, on shields, upon coins, ete.; and is the usual form of the dedication cross found in religious structures. Fig. 1393 is by the French called ancrec, the extremities forming hooks, but by our own heralds it is called a cross moline. Crosses flory are those in which the onds aro formed into trefoils, as is scen in fig. 1390, the papal cross above mentioned. Fig. 1394, is a cross potent, and fig. 1385 is the cross elichée, as respects the outer lines of its form; when it is voided, as shown by the immer lines, tho ground or field is seen on which it lies. Fig. 1396 is the cross of the Russian Greek Church.
Cross. In Gothic architecture, an erection of various kinds, which may bo classed as follows:- those used for marking boundaries, those which were memorials of remarkable events, monumental or sepulchral, as that at Waltham, and others of that nature; for preaching, as the ancient St. Paul's Cross; and market crosses, as at Winchester, Leighton Buzzard, etc.
Cross-bandeb. A term applied to handrailing, which is said to be cross-banded when a veneer is laid upon its upper side, with the grain of the wood crossing that of the rail, and the cxtension of the veneer in the direction of its fibres is less than the breadth of the rail.
Cross Beam. A large beam going from wall to wall, or a girler that holds the sides of the house together.
Crossettes. (Fr.) The same as anconcs. In architectural construction the term is applied to the small projecting pieces aa the adjacent stones.
Cross Garnets. Hinges having a long strap fixed close to the aperture, and also a cross part on the other side of the kuuckle, which is fastened to the joint. See Garnet.
Cluss-orained Stuff. Wood which has its fibres in a contrary direction to the surface, and which consequently cannot be perfectly smoothed by the operation of the plane, without turning either the plane or the stuff. This defect arises from a twisted disposition of fibres while in the act of growing.
Cross Springers. The ribs in the Pointed style that spring from the diagonals of the pillars or piers.
Cruss Vaulting. That formed by the intersection of two or more simple vaults. When each of the simple raults rises from the same level to equal heights, the cross vaulting is denominated a groin; but when one of the simple vaults is below the other, the intersection is called an arch of that particular species which expresses botb the simple arches. For example, if one cylinder pierce another of greater altitude, the arch so formed is termed a cylindro-cylindric arch; and if a portion of a cylinder pieree a sphere of greater altitude than the cylinder, the arch is called a sphero-cylindric arch, and thus for any species of arch whatever, the part of the qualifying word which ends in o denotes the simple vault having the greater altitude, and the succeeding word the other of less altitude.
Crow. A bar of iron used in bricklaying, masonry, and quarrying, and serving usually as a lever in its employment.
Crowde, Croude, or Croft. The old term for the crypt of a church.
Crown. (Lat. Corona.) The uppermost member of any part. Thus, the upper portion of a cornice, including the corona and the members above it, is so called.
Crown of an Arch. The most elerated line or point that can be assumed in its surface; it is also called the extrados.
Crown or Joggle Post. The same as a king post, being the truss post that sustains the tiebeam and rafters of a roof.
Crown Grass. A common sort of window glass cut from a sheet blown into a disk form having a bull's eye in the centre of it.
Jrowning. The part that terminates upwards any piece of architecture, as a cornice, pediment, etc.
rypt. (Gr. K $\rho v_{\pi \tau} \omega$, I hide.) The under or hidden part of a building. It is used also to signify that part of the ancient churches and abbeys below the floor, appropriated to monumental purposes, and sometimes formed into chapels. There are only four apsidal crypts in England; Winchester, 1079; Worcester, 1084; Gloucester, 1089 ; and Canterbury, 1096. In all these the side aisles run completely round the apse. See Crowde.
bypto-Porticus. In ancient architecture a concealed portico, also one that for coolness
is enclosed on every side. Some of them were sunk some way into the ground. It also is a term applied to subterranean or dark passages and galleries in the Roman villas, often used as cool sitting rooms.
Cube. (Gr. Kußos, a die.) A solid bounded by six square sides. It is also, from its six sides, called hexahedron.
Cubic feet (as the quantity necessary to be allowed for health under varying circumstances). From 60 to 100 feet superficial is recommended for each bed. It is stated that a healthy man respires about twenty times in a minute, and inhales in that period about 700 cubic inches of air. Fresh air contains rather more than 23 per cent. of cxygen, and about $1 \frac{1}{2}$ per cent. of carbonic acid; by the process of respiration the oxygen is reduced, in round numbers, to 11 per eent., and the carbonie acid is increased to rather more than 8 per cent. Now, $3 \frac{1}{2}$ per cent. of this gas renders air unfit to support life; so that a man, in respiring 700 cubic inches in a minute, vitiates about 1630 cubic inches, without taking iuto account the effect produced by the exhalation from the skin.

Cubic Fect.
Fever Hospital, Islington, allows
Camp at Aldershot
General Hospital, Bristol : $\quad .1090$
Lariboisière Hospital at Paris 1700 to 1860
Vincennes Hospital . . 1200 to 1334
Borough Hospital, Birkenhead . 1430
Soldiers' Hospital, Netley 1315, $1406^{\circ}, 1800$
Herbert Hospital, Woolwich . . 1400
Recently prescrince for Military Hospitals by the English Barrack and Hospital Commissioners-in Great Britain

$$
1200
$$

Ditto, in hot climates $\quad . \quad .1500$
Ditto, in wooden hospitals, tents, and in permanent barracks . 400 to 600
Minimum allowance for health in a sitting-room
A Mecting of Medical Officers had decided was sufficient in dwelling houses
London Hospital, smallest allowed
\qquad

- 800 per bed.

Westminster Hospital. i . . 1100 "
University College Hospital
Middlesex Hospital
St. Bartholomew's Hospital
London Howital.
Guy's Ho pital

- \quad.
- 1800 to 2000

King's College Hospital - 1800 to 2068
Workhouse hospitals in London, for
ordinary sick 850
800
800
800
100
,

Ditto, special or offensive cases . . 1200
Ditto, ordinary wards for the iufirm, \&c. -

500
Ward space, as near as may be to 2000 with 144 square fect of floor.
Present requirements:-
Vagrant wards, cells, ordinary, 36 fect of fioor space, and $\quad 360$

Cubic Feet.

Cclls, for a woman with children, 54 feet ditio

540 per bed Ordinary dormitories, 36 ditto : 360 sick wards, 60 ditto . . . 600 Lying-in, Offensive, or Infectious wards, 80 ditto

960
Dormito ies ; wall space for each bed, in addition to that occupied by doors or firc-places:-
mmates in health ; adults 4 fcet women with infants $\cdot{ }^{5}$ " children $\left\{\begin{array}{l}\text { single beds } \\ \text { double beds }\end{array} \int_{5}^{3}\right.$, Sick; ordinary, itch, and vencrcal 6 ", Ditto, lying-in, offensive, fever and small-pox cases . . 8 "
In registcred Lodging Houses of London, Dnblin, \&c. - . 240 to 300 In modern Gaols : . 900 to 1000 Surrey County Prison, eacb cell . 819
"
" Knutsford House of Correction, ditto 910 Manchester City Prison, ditto . . 844

$$
"
$$ Lunatic Asylums in Scotland, gal.

$$
"
$$ leries

Ditto, singlc rooms 10%

$$
"
$$

Ditto, in some crowded asylums 2 in 900

$$
\begin{aligned}
& " \\
& " \\
& "
\end{aligned}
$$

Ditto, Devon, bedrooms . . . 470
Ditto, Commissioners recommended . 5.50
" Ditto, Lanark 800
" Ditto, private in Scotland. 200 to 300
" Cow Sheds, Holborn Board of Health $\{1000$
p"
The Cattle Plaguc broke out in Sheds
allowing but
450
It has been lately calculated that the average space allowed to each person in London is 1220 sqnare fcet, while in Paris it is only 500 ditto.

Subiculum. (Lat.) A chamber. A distinction is made by Pliny between the cubiculum and the dormitorium. The name was also applied to the royal pavilion or tent which was built in the circus or amphitheatre for the reception of the emperors.
Cubit. A linear measure, in ancient architecture, equal to the length of the arm from the elbow to the extremity of the middle finger, usually considered about eighteen English inchos. The geometrical cubit of Vitruvius was equal to six ordinary culits. Mr. Perring, in 1843, calculated the Egyptian cubit at 1.713 English feet, divided into four palms each of seven digits. The cubit, in the survey, etc., of the Holy Land, was assumed (1875) at 21 inches. See Measure.
Cul de Four. (Fr.) A low vault spherically formed on a circular or oval plan. An oven-shaped vault.
Culmen. In ancient Roman architecture, the ridge-piece of the roof.
Culver't. An arched channel of masonry or brickwork built beneath the bed of a canal for the purpose of conducting water under it. If the water to be conveyed has nearly the same level as the caual, the culvert is built in the form of an inverted siphon, and acts on the principle of a water-pipe. The word also signifies any arched channel for water under ground.
Culver-tail. The same as Dove-tail.
Cineevs. (Lat.) That part of the Roman theatre where the spectators sat.
Cupboard. A receptacle whether a recess in a wall or otherwise, and fitted with shelves, for small articles. See Closer.

Corora. (It. from Cupo, hollow.) A term, preperly speaking, which is confined to the underside or ceiling part of a dome. See Done.
Corb for Brick Steps. A timber nosing, generally of oak, used not only to prevent the steps from wearing, but also from being dislocated or put out of their places. When the steps arc made to return, the curb also returns, but when they profile against a wall, the ends of the curb or nosing pieces house at cachend into the wall.
Corb Plate. A circular continued plate, either scarfed together or made in two or more thicknesses. The wall plate of a circularly or elliptically ribbed dome is called a cuerlplate, as likewise the horizontal rib at the top, on which the rertical ribs terminate. The plate of a skylight, or a circular frame for a well, is also called a curb-plate. The name is moreover given to a picce of timber supported in a curb roof by the upper ends of the lower rafters for rcceiving the feet of the upper rafters, which are thence called curb-rafters.
Curb Roof. One formed of four contiguous planes externally inclined to each other, the ridge being in the line of concourse of the two middle p'anes and the highest of the three lines of concourse. A roof of this construction is frequently termed a Mansard roof, from the name of its supposed inventor. Its principal advantage orer other roofing arises from its giving more space in the garrets, which becone attics.
Curb Stone. The stone in the foot-paring of a street, which divides it from the carriageparing, alove which they are, or ought to be, raised.
Curia. (Gr.) A Roman council house. The city and empire contained many curiæ. The curia municipalis, or domus curialis, secms to hare, in destination, resembled our Guildhall. The curia dominicalis was a sort of manor house.
Curling Stuff. That which is affected from the winding or coiling of the fibres round the boughs of the tree where they begin to shoot out of the trunk. The double iron plane is the best for working it.
Curkent. The necessary slope of a piece of ground or parement for carrying off the water from its surface.
Corsor. (Lat.) The puint of a beam compass that slides backwards and forwards. Also the part of a proportional compass by which the points are set to any given ratio.
Certail Step. The first or bottom step by which stairs are ascended, ending at the furthest point from the wall, in which it is placed in a scroll; perhaps taking its name from the step curling round like a cur's tail.
Curvature. See Radius of Curvature.
Corve. (Lat. Curvus.) A line that may be cut by a straight line in more points than one.
Corvilinear. Formed of curved or flowing lines. Thus a curvilinear roof is one erected on a curved plan, circular, clliptical, or otherwise. Tracery in the later Mcdiæral styles is so called.
Cushion of an Ionic capital. See Coussinet.
Cushion Captral. A capital used in Romanesque and early Medixval architecture, resembling a cushion pressed down ly a weight. It is also a cap consisting of a cube rounded off at its lower angles, largely used in the Norman period of architecture. Fig. 1397.
Ceshon Rafter. See Princtpal Brace.
Cusp. (Lat. Cuspis.) One of the pendents of a pointed arch, or of the arched head of a compartment of such an arch, or one of the several pendents forming what may be termed a polyfoil. Two cusps form a trefoil, three a quatrefoil, and so on.
Custon House. A custom house is an establishment for receiring the duties, or, as they are called, customs, levied on merchandiso imported into a country, as

Fig. 1397. well as of regulating the bounty or drawhack on goods exported. According, therefore, to the importance and wealth of a city, the building to receive it is of considerable consequence. The first point that immediately presents itself is, that it should be provided with spacious warehouses for holding the merchandise which arrives, and in which it is, as it were, impounded till the duties are paid; aud next, that there must be provided ample acconmodation for the officers who are to supervise the levying of the imposts. The general principles in design are contained in the two maxims, of ample rapaciousness for the merchandise to be received into the warehouses. and a panoptical view, on the part of the proper officers, of that which passes in the establishment. Security against fire must be strictly attended to. The warehouses and covered places for examining and stowing the goods should therefore be arched in hrick or stone, and should, moreover, be as much as possille on the ground floor. The offices
for the public and heads of the establishment may be over them on the first. Both of these are, of course, to be regulated in size by the extent of trade in the place Tho general character should be that of simplicity ; decoration is unsuited, and should be very sparingly employed. The species of composition most suitable seems to be pointed out in arcades and arched openings. The site should be as near as may be to the river or port, so that the merchandise may be landed and housed with as little labour as possible. The Custom house at Dublin, designed by James Gandon, is a good work.

The following is a general view of the apartments and offices of the London Custom House. The long room, which is the principal public room for the entries, \&c., is 185 feet long and 66 fcet wide. This, as well as the rooms next enumerated, are on the first or principal floor, viz. a pay office for duties, treasury, bench officers' or commissioners' rooms, secretary's room, rooms for the inspector-general, surveyor of shipping, registrar of shipping, surveyor of acts of navigation, strong rooms, comptrollers, outward and inward, surveyor of works; Trinity light office, bond office, board room, chairman's room, eommittee-room and plantation clerk's office. On the ground floor are the following offices: for minute clerks, clerk of papers, petitions, messengers, landing surveyors, wood farm office, tide waiters, tide surveyors, inspectors of river, gaugers, landing waiters, coast waiters, coast office " long" room, coast bond office, coffie office, housekeeper, searchers, merchants' and brokers' room, comptrolling searchers, appointers of the weighers, and office for the plantation department. Besides these apartments there are warehouses for the merchandise.

The above long list will give a notion of what would be wanted on a smaller scale; but on such matters the special instructions on each case must be the guide to the architect in making his design. Many of the above offices would, of course, be unnecessary in a small port, neither would the dimensions be so large as the examples quoted. The staircases, corridors, and halls must be spacious in all cases, the building being one for the service of the public.
Cur. In inland navigation, the same as canal, arm, or branch.
Cut Brackets. Those moulded on the edge.
Cut Roof. One that is truncated. That is, one that appears as if the part above the collar beams was cut away; a good example is that over the chapel at Greenwich Hospital.
Cut Splaf. The term for the oblique cutting of the corners of bricks in walling; as to reveals of doors, and other openings.
Cut Standards. The upright side pieces, or cheeks, supporting the ends of the shelves placed above a dresser table, or to a bookcase. The front edge is usually cut into is curved outline.
Cut Stone. Hewn stone, or that which is brought into shape by the mallet and chisel.
Cut String Stairs. Stairs which have the outer string cut to the profile of the steps. The nosings are mitred and returned; and the riser is mitred to the string. "Close string stairs" are where the steps and risers are housed into the strings. See String Board.
Cutters. The finest marl or malm bricks, chiefly used for arches of openings, quoins, \&c., and which from their evenness of texture allow of being cut.
Cutting Plane. A plane dividing or cutting a solid into two parts in any direction.
Cyclograph. (Gr. Kuк入os and Грaфш.) In practical geometry, an instrument for describing the arc of a circle to any chord and versed sine, but chiefly used in flat segments, or those whose curvatures approach to straight lines.
Cycloid. (Gr. Kuк $\lambda o \in ⿺ \delta \eta s$.) A figure described by rolling a circle upon a plane along a straight edge, until the point on the circle which touches the straight edge return again to it after a revolution. The point traces the curve called the cycloid or trochoid.
Cyclopean Masonry. Works constructed of large rude stones arranged without mortar are called by this name ; also Megalithic, and Pelasgic. It is considered there were four distinct periods, illustrating the changes from the rude constructions to more refined masonry. 1. Vast misshapen masses piled one upon another without order, the iuterstices filled up with pebbles and small stones. 2. Poljgonal hewn blocks cut to fit each other ; some interstices filled in with pebbles. 3. Courses of stone trapezoidal in appearance, but brokon, as two courses equal in height to one adjoining; joints not always vertical, and the stones of irregular size. 4. Continuous coursed trapezoidal arrangement, the beds continued horizontally throughout, but the joints rarely vertical.
Cylinder. (Gr. K $\nu \lambda \iota \nu \delta \rho o \nu$.$) A solid whose base is a circle, and whose curved surface is$ evelywhere at an equal distance from the axis or line supposed to pass through its middle. Its formation may be conceived to be generated by the revolution of a rectangu-
lar parallclogram about one of its sides. The cone, sphere, and cylinder have a remarkable relation to each other, first discovered by Arehimedes, namely, that the cone is one third the cylinder having the same base and altitude; and the inscribed sphere two thirds of the cylinder ; or the cone, sphere, and cylinder are to each other as the numbers 1, 2, 3. It is termed a right cylinder. when the axis is at right angles to the base, but if at an oblique angle the cylinder is said to be oblique.

Table of the areas of cylinders from 9 to 15 inches diameter:-

Diameter of Cylinder.	Area of Cylisder.	Diameter of Cylinder.	Area of Cylinder.	Diameter of Cylinder.	Areu or Cylinder.
Inches.	Square Inehes.	Inches.	Square Inches.	Inches.	Square Inches.
9	63.58	$11 \frac{1}{2}$	$103 \cdot 84$	13.1	143.02
10	78.5	12	$113 \cdot 07$	14	153.96
$10 \frac{1}{2}$	86.56	12.1	$122 \cdot 65$	$14 \frac{1}{2}$	165.04
11	$95 \cdot 01$	13	$132 \cdot 66$	15	17662

Nore.-The areas of eylinders are as the squares of their diameters.
Cylindrical Celung or Vavliting. Vulgarly called a waggon-head and cradle. One in the shape of the scgment of a cyliuder. This form appears to have been first used by the Romans. It adnits of beiug pierced by lunettes for the admission of light, which form cylindro-cylindric arches, and is usually formed into panels or coffers.
Cylindrical Work. Any kind of work which partakes of the shape of a cylinder, of whatever material it be formed.
Cymandoid. A solid which differs from a cylinder in having ellipses instead of circles for its ends or bases.
Crma. (Gr. Kyua, a wave.) A moulding taking its name from its contour resembling that of a wave, being hollow in its upper part and swelling below. Of this moulding there are two sorts, the cyma recta Thus, just described, and the cyma reversa $_{\text {L }}$ thus, whereiu the upper part swells, whilst the lower is hollow. By workmen, each is called an ogee.
Crmation. (Gr.) The name commonly applied to the upper moulding of a cornice or capping.
Cymbia. The same as Fillet.
Cypress. (Lat. Cupressus.) The wood of the cypress was valued for its hardness and durability by the ancient architects.
yzicenvs. In ancient architecture, a large hall decorated with sculpture. See GlyptoTHECA.
)abbing, Daubing, or Pitching. Working the face of a stone after it has been broached and draughted, with a pick-shaped tool or the patent axe, so as to form a scries of minute holes.
$\Delta \mathrm{Do}$. The die, or that part of the pedestal of a column between the base and the cornice. It is of a cubic form, whence the name of die. Large rooms are sometimes decorated with a base, dado, and cornice, representing a pedestal, and the term dado is often applied to the whole. See Base.
aghoba or Dagoba. The Eastern topes or tumuli mostly contained relics, the worship of these objects being one of the principal characteristics of Budhism. These were designated dagobas, of which the word "pagoda" appears to be a corruption. In a Budhist temple, the dagoba is a structure which occupies the place of an altar in a Christian church. It consists of a low circular basement or drum surmounted by a hemispherical or elliptical dome that supports a square block covered by a roof called a tee.
AlRy. An apartment in a house, or a separate building, for the preservation of milk, and the manufacture of it into butter, cheese, or other dairy produce. When ou a small scale, where the milk is only used for butter, the dairy may be a room on the north side of the dwelling, or form one of the officcs connected with the kitchen court. The temperature of a dairy should be within the range of forty-eight to fifty-five degrees of Fahrenheit, with sufficient rentilation to discharge all smells and impurities of the air. A dairy on a large scale should be a detached building, iu which case it should contain a nilk-room, a churning-room, and a dairy scullery or place for scalding the utensils.

If cheese be to be made, a room is required for the cheose-press, and another for drying and storing the cheeses.
Dais. (Fr.) The platform or raised floor at the upper end of a dining-hall, where the high table stood; also the seat with a canopy over it, for the chiof guests who sat at the high table.
Dam. See Coffer Dam.
Damp Course. In order to prevent the damp rising up the walls from the soil on which a house is built, a course of some impermeable material is laid on the foundation walls a short distance (about a foot) above the level of the outside soil. This damp course, as it is called, is formed of a layer of powdered charcoal mixed with pitch or resin and powdered pitcoal ; or of two eourses of slates set in coment; of asphalte; or of the stoneware hollow tile manufactured for this purpose.
Dampness. A moisture generally attendant on buildings finished hastily on account of the materials not being dry ; or the walls not being made of good well-burnt bricks; or with bad mortar; or the joints not flushed up, and allowing wet to come through.
Dancerte. The ehevron, or zigzag moulding, in Norman architecture. See fig. 1381.
Day or Bay. Ia Gothic arehitecture, the compartment in windows formed by the transoms or horizontal pieces and mullions or vertical pieces.
Dead Shore. A piece of timber worked up in brickwork to support a superincumbent mass until the brickwork which is to carry it has set or become hard.
Deafening Sound-boarding. The pugging used to prevent the passage of sound through wooden partitions. See Boarding.
Deal. (Sax. Delan, to divide.) Properly the small thiekness of timber into which a piece of any sort is eut up; but the term is now, thourh improperly, restricted in its signification to the wood of the fir tree cut up into thickncsses in the countries whence deals are imported, viz. Christiania, Dantzic. \&c. Their usual thickness is three inches, and their width nine. They are purchased by the hundred, which contains 120 deals. be their thickness what it may, reduced by calculation to a standard thickness of one inch and a half and to a length of twelve feet. Whole deal is that which is one inch and a quarter thick, and slit deal is half that thickness. Clean deal refers to pieked of selected deal, which is always used for stair treads for good work. See Board.
Decagon. (Gr. $\Delta \epsilon \kappa \alpha$, ten, and $\Gamma \omega \nu \downarrow$, an angle.) A geometrical figure having ten sides and ten angles. If the sides and angles are all equal, the figure is a regular decagon, and capable of being inscribed in a circle.
Decastyle. See Colonnade.
Decinal. (Lat.) A term applied to a system of arithmetic in which the scale of numbers proceeds by tens.

Dechal Eqeivalents of Inches, Feet, and Yards; and of a Shiling.

Decimal Parts of a Pound.

d.	Decimal.	d.	Decimal.	d.	Decimal.		d.	Decimal.
1	-00208	6	-02500	$11 \frac{1}{2}$	$\cdot 04791$	10	0	-5000
1	-00416	$6!$	-02708	s. d.		11	0	-5500
12	-00625	7	-02916	10	-0500	12	0	-6000
2	-00833	71	-03125	20	-1000	13	0	-6500
$2 \frac{1}{2}$	-01041	8	-03333	30	-1500	14	0	-7000
3	-01250	$8!$	-03541	40	-2000	15	0	$\cdot 7500$
$3{ }_{2}^{1}$	-01458	9	-037.50	50	-2500	16	0	-8000
4	-01666	91	-03958	60	3000	17	0	-8500
$4 \frac{1}{2}$	-01875	10	-04166	70	-3500	18	0	-9000
5	-02083	10.	-04375	80	$\cdot 4000$	19	0	-9500
$5 \frac{1}{2}$	-02291	11	$\cdot 04583$	90	- 400	20	0	1:0000

mbcoraten Period. A term applied to the Mediæval architecture in England prevailing during the reigns of the three first Edwards, wherein the decorative features grew out of, or became embodiel in, and formed part of, the construction. It succeeded to the Early English period.
ecoration. The combination of ornamental objects which the desire for rarying a form or forms brings together in many ways for embellishing those subjects which are th, objects of art.
iedication Cross. See Cross, fig. 1392.
eliquis. (Lat.) A term used by Vitruvius to designate the rafters which formed the ridge of the roof and threw the water on each side.
besity. (Lat. Densus, thick.) A term used in physics to denote the qu:antity of matter which a body contains under a given or determinate surface; for example, a cubic foot. The quantity of matter in a body is called its mass, and is measured by the weight of the body, to which it is always proportional ; hence the density of a boly is great in proportion as its weight. is great and its volume small; or the density of bodies is directly as their masses, and inversely as their volumes.
entils or Dentels. (Lat. Dentes, teeth.) The small square blocks or projections in the bed mouldings of cornices in the Ionic, Corinthian, Composite, and occasionally Doric orders; their breadth should be half their height; and. as Vitruxius teaches, the interval (Метосне) betwcen them two thirds of their breadth. In the Grecian orders they are not used under modillions.
sodorisation and Disinfrction. The Summary of the "Hastings Prize Essay, 1865," on these subjects, states that:-I. For the sick room, free ventilation, when it can be sccured, together with an even temperature, is all that can be required. II. For rapid deodorisation and disinfection, chlorine is the most effective agent known. III. For steady and continuous effect, ozone is the best agent known. IV. In the absence of zzone, iodine exposed in the solid form to the air, is the best. V. For that of fluid and semi-fluid substances undergoing decomposition, iodine is the best. VI. For the leodorisation and disinfection of solid bodies that cannot be destroyed, a mixture of powdered chloride of zinc or powdered sulphate of zinc, with sawdust, is the best. Ifter this, a mixture of carbolic acid and sawdust, ranks nest in order; and following in that, wood ashes. VII. For that of infected articles of clothing, etc., exposure to eat at 212° Fahr. is the only true method. And, VIII. For the deodorisation and isinfection of substances that may be destroyed, heat to destruction is the true method. Carbolic acid, Condy's fluid, Burnett's fluid, and Charcoal are among the materials I2nufactured for this purpose.
iby or Darby. A two-handed float used in plasterers' work.
I crtption of a Building. The same as Specification.
i criptive Geometry. That which consists in the application of geometrical rules to 10 representation of the figures, and the various relations of the forms of bodies, cording to certain conventional forms. It differs from perspective, on account of the presentation being made in such a manner that the exact distance between the different oints of the boly represented can always be found, and consequently all the matheratical relations resulting from the form and position of the body may be deduced from 9 representation.
0 rgs. (Lat. Designo.) The idea formed in the mind of an artist on any particular subct, which he transfers by some medium, for the purpose of making it known to others. very work of design is to be considered either in relation to the art that produced it, the nature of its adaptation to the end sought, or to the nature of the end it is desned to serve; hence its beauty is dependent on the wisdom or excellence displayed in
the design, on the fitness or propriety of the adaptation, and upon the utility for the end. See Composition.
Details. A term usually applied to the drawings on a large scale for the use of builders, and generally called working drauings.
Determining Linf. In the conte sections, a line parallel to the base of the cone; in the hyperbola this line is within the base; in the parabolic sections it forms a tangent to the base, in the elliptic it falls without it. In the intersecting line of a circle, the determining line will never meet the plan of the base to which it is parallel.
Diaconicum. A place contiguous to the ancient churches, wherein were preserved the sacred vestments, vessels, lelics, and ornaments of the altar. In modern language, the sacristy. The sacristy is now also called the vestry.
Diagonal. (Gr. $\Delta i a$, throngh, and $\Gamma \omega \nu \iota a$, angle.) A straight line drawn through a figure joining two opposite angles. The term in geometry, is used in speaking of four-sided figures, but it is nevertheless properly applied with reference to all polygons wherenf the number of sides is not less than four. The term diameter is used by Euclid in the same sense : but modern geometers use the term diametcr only in speaking of curve lines, and diagonal when speaking of angular figures.
Diagonal Scale. A compound scale formed by vertical and horizontal subdivisions with diagonals drawn across them, whereby very small parts can be measured off by means of equidistant parallels crossing others of the same kind.
Diagram. (Gr. $\Delta \iota a \gamma \rho a \mu \mu a$, from $\Delta \iota a$, through, and Г $\rho \alpha \phi \omega$, I writo.) The figure or scheme for the illustration of a mathematical or other proposition.
Diameter. (Gr. $\Delta l a$, through, and Metpov, a measure.) A straight line passing through the centre of a geometrical figure, as that of a circle, ellipse, or hyperbola. The terin is architecturally used to express the measure across the lower part of the shaft of a column, and is usually divided into sixty parts called minutes, which form the scale for the measurement of all the parts of an order. See Diagonal.
Diamicton. The Roman method of building a wall, with regular ashlar work on the outsides and filled in with rubble between. It is similar to Emplecton, but without the diatoni or binding stones which go through the thickness of the walls, showing ou both sides. See Masoniry.
Damond Pavement. One disposed in squares arranged diagonally.
Diaper Work. The face of stone worked into squares or lozenges, with a leaf therein; as over arclies aud between bands. It is generally done only in interior work for decorating a plain surface. The illustration (fig. 1398) is from Canterbury Cathedral, and of the Perpendicular period.
Diastyle. (Gr.aıa and Zivu入os, a column.) That distance between columns which consists of three diameters, or, according to somo, of four diameters. The term is sometimes used adjectively, to signify that the building is arranged with those intervals between the colunins.
Diatoni. (Gr. sia and Tonos, an extension.) In Greck architecture, the stones of a wall wrought on two faces, which, from stretching beyond the stones above and below them, that is, going throug the wall, made a good bond or tie to the work.
Diazoma. (Gr. $\Delta \iota \alpha$ through, and $Z \omega \mu \alpha$, a cincture.). In ancient architecture, the landing or resting places which, at different heights, encircled the amphitheatre like so mat bands or cinctures, whence the name.
Dicasteriom. (Gr. Aık \boldsymbol{y}, justice.) In ancient architecture, the name of a tribunal or hat of justice.
 worked in courses, like the mesles of a net. Also open lattice-work, for admittit light and air.

Didoron. (Gr.) See Brick.
Die of a Pmestac. That part included between the base and the cornice. Seo Dado.
Droging. In soft ground, one man with a spade will throw up, per hour, a cubic yard of twenty-scven feet. If a mattock must be used, the same quantity will require two men, and in a strong gravel, three. It will require three men to wheel thirty cubic yards of gravel in a day to the distanea of twenty yards.
DiglypiI. (Gr. $\Delta t s$, twice, and $\Gamma \lambda u \phi \omega$, l carve.) A projecting face or femur, with two panels or channels called glyphs, sunk thereon. See Triglyph.
Dinapidation. The state of neglect into which a building has been permitted to fall.
Dimpission. (Lat. Dimetior.) In gcometry is either length, breadth, or thickness. Thus a line has one dimension, as of length ; a superficies has two, length and breadth; a solid has three dimensions, length, breadth, and thickness.
Diminished Arcif. One lower or less than a semicircle, called by the French voute surbaissée. See Surbased Aucir.
Dhminimen Bar of a Sasif. One thinner on the edge towards the reom than on that towards the glass of the window.
Diminisied Coldmen. A column whereof the upper diameter is less than the lower.
Diminising Rule. A boarl cut with a concave edge, so as to ascertain the swell of a enlumn, and to try its curvature.
Diminishing Scale. A scale of gradation used in finding the different points for drawing the spiral curve of the Ionic volute, by describing the are of a circle through every three preceding points, the extreme point of the last are bcing one of the next three. Each point through which the curve passes is regulated so as to be in a line drawn to the centre of the rolute and the lincs at equal angles with each other.
Diminution of a Column. The continued contraction of the diameter of the column as it rises. Most of the modern authors make the diminution to commence from one-third the height of the column; but in all the ancient examples the diminution commences from the bottom of the shaft. See Extasis. In Gothic architecture neither swell nor diminution is used, all the horizontal sections being similar and equal.
oining or Dinner Room. Generally one of the lirgest rooms in a dwelling-housc. In large buildings it extends to forty or fifty feet in length, and the breadth is from half te three-fourths the length. In middle-sized houses, dining-rooms run from twenty-four down to eighteen feet in length by eighteen to sixteen feet in width, and thirteen or fourteen feet in height.
hocletian Window. Usually called a Vevetian Window.
ifteral. (Gr. aıtitpos, double-winged.) In ancient arehitecture, a temple having a double range of columns on each of its flanks. See Temple.
irect Radial. In perspective, a right line from the eye perpendicular to the picture.
irecting Line. In perspective, the line in which an original plane would eut the directing plane.
irecting Plane. In perspective, a plane passing through the point of sight, or the eye, parallel to the picture.
irectiva Ponst. In perspect:ve, that in which any original line produced cuts the directing plane.
trector of an Oriminal Line. In perspective, the straight line passing through the directing point and the eye of a spectator.
rrector of the Eye. In perspective, the intersection of the plane with the directing plane perpendicular to the original plane and that of the picture, and hence also perpendicular to the directing and ranishing planes, since each of the two latter is parallel to eade of the two former.
rectrix. Iu geometry, the name given to a certain straight line perpendicular to the axis of a conic section. One of the properties of these eurres is that the distance of any point of the curve from the directrix is to the distance of the same point from the foens in a constant ratio. The name is sometimes applied gencrally to any straight or curved line required for the description of any eurve.
scharge. (Fr. Décharger.) The relief given to a beam, or any other piece of timber, too much loaded by an incumbent weight of building. When the rulief is given, the weight is said to be diselarged.
scharging Arch. An arch built over a wood lintel, wherely the bearing upon it s taken off. The chords of discharging arches are not mueh longer than the lintel, eing the segments of very large circles. A temporary arch is frequently introduced, ind remeved on completing the building. Sometimes the arches are built without any intel under them.
hing Oct. The same as Cradling.
pluviaten. (Lat.) In ancient arehitecture, a place from which the rain is conveyed way in two channels. Aceording to Vitruvius, a cavedium displuviatum was an open ourt exposed to the rain.

Disposition. (Lat.) One of the essentials of architecture. It is the arrangement of the whole design by means of ichnography (plan), orthography (section and elevation), and scenography (perspective view). It differs from distribution, which signifies the particular arrangements of the internal parts of a building.
Distance of the Eye. In perspective, the distance of the cye from the picture in a line perpendicular to the plan thereof.
Distance, Point of. In perspective, the distance of the picture tiansferred upon the ranishing line from the centre, or from the point where the principal ray meets it; and thus it is generally understood to be on the vanishing line of the horizon.
Distance of a Vanishing Line. The length of a perpendicular falling from the eye perpendicular to the ranishing plane.
Distemper. (Fr. Detemper.) In house gaining, whiting mixed with size and water, with which ceilings are generally done; plastered walls when not painted or papered are also so corered, and are called coloured when a tint is used in it.
Distribution. (Lat.) The arrangement of the various apartments of a building.
Dodecagon. (Gr. $\Delta \omega \delta \in \kappa \alpha$ and $\Gamma \omega v i a$, an angle.) A regular polygon of twelre equal sides.
Dodecahenron. (Gr. $\Delta \omega \delta e \kappa \alpha$ and 'Ejpa, a seat.) One of the fire platonic kodies, or regular solids, its surface being composed of twelve equal and regular pentagons.
Dodecastyle. A colonuade or portico consisting of twelre columns.
Dog-legged Stalrs. Such as are solid between the upper flights, or such as have no well-hole, and in which the rail and balusters of beth progressive and retrogressire flight fall in the same vertical plane. The steps are fixed to strings, newels, and carriages; and the ends of the steps in the inferior kind only terminate on the side of the string without any housing.
Dog-tooth Ornament. This ornament (fig. 1399 is a common representation of it), so greatly used in First Pointed or Early English work, appears in the abacus of one of the capitals in the cloister at Monreale, in Sicily, 1182-94; and it is noted by J. G. Wigley as occurring in the jambs of the little church of the Cœnaculum at Jerusalem, now known as the mosque of the tomb of David, erceted early in the fourteenth century.

Fig. 1399. He assigns the origin of the ornament, as well as of the "ball flower," to the Holy Land, the types being obtained from tho cyclamen or gazelle's horn, aud the red anemone. The use of it in Western architecture, 1090-1187, curiously corresponds with the period of the first Ciusades.
Dolmen. The French name fur a Cromilech.
Dume. (Lat. Domus.) The spherical, or otherwise formed, convex roof orer a circular or polygonal building. A surbased or diminished dome is one that is segmental on its vertical section, a surmounted dome is one that is higher than the radius of its bass. There is great variety in the forms of domes, both in plan and section. In the former, they are circular and polygonal; in the latter, we find them semicircular, semi-elliptical, segmental, pointed, sometimes in curres of contrary flexure, bell-shaped, \&c. The oldest dome on record is that of the Pantheon at Rome, which was erected under Augustus, and is still perfect. Below is a list of the principal domes.

Domus Conversorum. The day-room and dormitory of the conversi of a Cistercian monatstery. They performed all the agrarian, artificers', and menial work incidental to the cultivation of the land, and the clothing and daily service of the whole community, taking part oniy occasionally in the daily service of the Chureh.

Donson. (Fr.) The massive tower within ancient castles to which the garrsolu mirht retreat in case of necossity. It was centrally placed, and frequently raised on an artificial elevation.
Dook. (Scotch.) The same as Wooden Brick.
Door. (Sax. Do ${ }^{1}$, Gr. ©upa.) The gate or entrance of a house or other building, or of an apartment in a house. It must be proportioned to the situation und use fur which it is intended. Thus, for an ordinary dwellingr-house, a door should not be less than seven to eight feet high, and three to four feet broad; but to churches and public buildings the entrance doors should be much wider, to alluw of a multitude passing out. So in stately mansions, the doors must be from six to twelre fect in width, and of proportionate height.
Door Frame or Case. The wooden-frame enclosing a door.
Duor Plank. The plane between the door proper, and the larger opening within which it may be placed. It is often richly orramented.
Door Stup. The slip of wood against which a door shuts in its frame. See Rebate.
Doormay. The framework of an opening for a door. the shape of which is determined by the style of architecture of the building. The Greek doorway was always square-headed, and generally less in width at top than at hottom. The Roman and the Romanesque doorways are sometimes ruund-arched ; the Medieval ones are pointed in shape.
Doric Order. The first of the orlers used in Grecian architecture, and the second as used in Roman and Italian architceture. Its capital is composed of straight lines and mouldings. In the frieze is used the triglyph, with mutules in the cornice and corresponding to them.
Durmant Tree or Sumaer. The lintel of a dour, window beam, \&e. A beim tenoned into a girder to support the ends of joists on both sides of it. Summer, in some localities, is the common term for a girder. See Bressumarpr.
Dommpr. A window placed on the inclined plane of the roof of a honse, the frame being placed vertically on the rafters.
Dormiory. (Lat. Dormio, I sleep.) A large sleeping-room, capable of containing many beds. A range of cells fir slocping in.
Doron. The Greek for a palin. See Brick.
Dossel. See Reredos.
Double Cong Moulding. A moulding used in the arches of the Norman period. (Fig. 1400.)
Duebla Corvature. The curvature of a curve, wherenf no part can le brought into a plane, such as the cylindro-cylindric curve, \&c.
Double Floor. One constructed of linding and

Fig. 1400. bridging joists.
Oouble-hung Sashes. A window opening with two sashes, one for lifting up, the other for drawing down, fitted into the sash frame of a window opening.
Dueble Vaults. Two vaults of brick or stone carrit up separately with a carity between them.
Joubles. A sized slate used iu roofing.
Joubling. A term used in Seotland to denote eaves' boards.
Doucine. The French term for the cyma recta.
Oove-hoosse, or Dove-cot. A building for keeping tame pigeons, the only essential difference between which and a common poultry house is that the entrance for the birds must be placed at a considerable height from the ground, because of the flight of pigeons being so much higher than other birds.
love-tail. A joint, so called from its being formed spreading like a pigeon's tail, used by carpenters and joiners in connecting two pieces of wood, by letting one into the other. lt is the strongest method of joining masses, because the tenon or picce of wood wideus as it extends, so that it cannot be drawn out, because the tongue is larger than the cavity through which it would have to be drawn. The French call this method queue d' hironde, or swallow's tail.
ove-tail Moulding. An ornament formed of running bands, as Example 3, fig. 188. It is sometimes called a triangular fret.
owec. A pin of wood or iron usel at the edges of boards in laying floors to aroid the appearance of the nails on the surface. Floors thus laid are called dowelled floors. The drums of columns were steadied by the insertion of dowels of wood, cube in shape, as found in the remains of Greek and Egyptian architecture. Slate dowels are now often used in preference to iron, on account of the latter material tending to split the stone with rust.
rarl. (Verb.) A term applied to anything bearing down or rubbing on another. Thus, a door is said to drag when its hinges liecome so loosened that the lower odge rubs upon the flor.

DuagGing. The operation of completing the surface of soft stone by means of an instrument called a drag, which is a thin plate of steel with fine tecth on one edge, moved backwards and forwards by the workman.
Dragon Beam or Pifce. In carpentry, a short beam or piece of timber lying diagonally with the wall-plates at the angles of a roof for receiring the heel or foot of the hip rafter. It is fixcd at right angles with another piece called the angle tie, which is supported by each returning wall plate, on which it is cocked down. It may be a corruption of "dragging."
Drain. A subterrancous or other channel for waste water.
Draught or Drawing. The representation of a building on paper, explanatory of the varions parts of the interior aud exterior, by means of plans, elevations, and sections, drawn to a scale, by which all the parts are exhibited in the same proportion as the parts of the edifice intended to be represented. Working drawings show the parts in detail, or servo as directions to the artificers.
Draught. In masonry, a part of the surface of the stone, hewn to the breadth of the chisel on the margin of the stone according to the curved or straight line to which the surface is to be brought. When the draughts are framed round the different sides of the stone, the intermediate part is wrought to the surface by applying a straight edge or templet. In very large stones, when the substance needs much reduction, it is usval to make several intcrmediate parallel draughts, and thus the intermediate parts may bo hewn down nearly by the eye, withont much application of the straight edge or templet.

In carpentry, when a temon is to be secured in a mortise by a pin, and the hole in the tenon is made nearer the shoulder than to the cheeks of the mortise, the insertion of the pin draws the shoulder of the tenon close to tho cheeks of the mortise, and it is said to have a draught. See Draw Bore Pins.
Iraught Compasses. Those with moveahle points.
Draw Bore. (Verb.) The pinning a mortise and tenon, by piercing the hole throngh the tenon nearer to the shoulder than the holes throngh the cheeks from the abutiacit in which the shonlder is to come in contact.
Draw Bore Pins. Pieces of steel in the shape of a frustrum of a cone, rather taper, and inserted in handles with the greatest diameter next to the handle, for driving throngh the draw bores of a mortise and tenon in order to bring the shoulder of the rail close home to the abutment on the cdge of the style. When this is effected, the draw bore pins, when more than one are used, are taken out singly, and the holes immediately filled up with wooden pegs.
Drawbridge. One made with long and heavy levers to be raised or let down, at pleasure.
Drawing. See Draught.
Drawing Knife. An edge tool used to make an incision on the surface of wool along which the saw is to follow. It prevents the teeth of the saw tearing the surface.
Drawing Room, perhaps more properly Withdrawing Room. The apartment to which the company withdraw after dinner.
Dressed. A term in masonry which expresses the operation a stone has undergone before building it in the wall, whether by the hammer only or by the mallet and chisel, and then rubbing the face smooth. In Scotland the term is used to signify hammer dressing only.
Dresser. A long table placed against a wall in a kitchen, nsnally with drawers, and having shelves over it for plates, stopped by a Cut Standard. At the edges of the shelves hooks are driven to carry jugs and cups. Under the drawers is a shelf raised a few inches above the floor, and called a pot board, for holding pots used in cooking.
Dressing Room. A room generally adjoining to and communicating with the sleeping room, used, as the namo implies, for dressing in. It should have a separate door to open on the lobby or passage of communication.
Dressings. All kinds of monldings beyond the naked walls or ceilings are called by the gencral name of dressings. In joinery it is a term applied to the architraves or other appendages of apertures.
Drift. (Sax. Dpiran.) The horizontal force which an arch exerts with a tendency to overset the piers from which it springs.
Drip. See Corona.
Dripstone. The monlding in Gothic architecture placed over an opening to throw of water. It is also called a weather moulding, or more properly hood mould; and labei when it is returned square.
Dripfing Eaves. The lower edges of a roof from which the rain drips or drops to the ground.
Droog. A Sanserit term for a hill fort, a term used in Hindostan.

Drop or Obsuse Arcir. A pointed arch of less height than that formed by an equilateral triangle, similar to Fig. 1401.
Drops. (sax. Droffan.) The frusta of cones in the Doric Order, used under the triglyphs in the architrave below the tania. They are also employed in the under part of the mutuli or modillions of the orler. In the Greek examples they are sometimes curved a little inwards on the profile, and were ealled Gutrse.
Droted Ashlar. A term used in Scotland for chisclled or random-tooled ashlar. It is the most inferior kind of hewn work in building. What is in that eountry called hroached work is sometimes done without being droved; but in good broached work the face of the stone should be previously droved, and then broached.
Droved and Broached. A term used in Seotland to signify work that has been roughed and then tooled elean.
Droved and Striped. Work that is first droved and then

Fig. 1401. striped. The stripes are shallow grooves done with a half or three-quarter inch chisel, about an eighth of an inch deep, having the droved interstices prominent. This and the two preceding sorts of work are not much used in the seuthern part of England.
Druidical Architecture. The Celtic erections were formerly so called.
Drun. (Dan. Tromme.) The upright part under or abovo a cupola. The same term is sometimes applied to the solid part or vaso of the Corinthian and Composite eapitals; as well as to the block of stone composing part of the shaft of a column.
Druxy. Timber having decayed spots or streaks of a whitish colour in it.
Dry Rot. A disease of timber which destroys the cohesion of its parts; it is usually ascribed to the attacks of fungi, such as the Polyporns destructor and Merulius lacrymans, whose spawn appears upon the surface oversprcading it like a tough thick skin of white leather ; and there is no doubt of its being often eonnceted with the appearance of such fungi. Dry rot is, however, in some cases to be identified with the presence of fungi of a more simple kind than those just mentioned, such as those of the genus Sporotrichum.
Debing out. A term used by plasterers to signify the bringing of an uneven surfaco in a wall to a plane, by pieces of tile, slate, or the like, bcfore it is plastered over.
Duchesses. A sized slite used in roofing.
Dwang. A term used in Scotland to denote the short pieces of timber employed in strutting a fluor.
Dwarf Wainscoting. Such as does not reach the whole height of a room, being usually $^{\text {a }}$ three, four, five, or six feet high. Sometimes called a Dado.
Dwarf Walls. Low walls of less height than the story of a building; sometimes the joists of a ground floor rest upon dwarf walls. The enclosurcs of courts are frequently formed by them with a railing of iron on the top; and indeed any low wall used as a fence is a dwarf wall. See Fender.
0 welling House. See House.
Drnamics. (Gr. surauis, force or power.) As generally understood, the seience which trats on the motion of bodies, because it is only known to us by the motion it produces in the body on which it acts. It is however usually restricted to those circumstances of motion in which the moving bodies are at liberty to obey the impulses communicated to them; the opposite cases, or those in which the bodies, whether by external eircumstances or by their connection with one another, are not at liberty to obey the impulses given, being within the science of mechanies.

E

Agle. See Etiaiol.
darly English Period. The name given to the first, or Lanect period of medieval architecture in England. It succeeded that of the Norman towards the end of the twelfth century. The accompanying illustration, fig. 1402, is a fine example of the work of that period.
ars. The same as Crossetres.
arth Closet. A convenience for the use of the occupants of a house, in lieu of a water closet, lately suggested by Rev. H. Moule, of Dorchester. Though adaptable to every dwelling, it is more appropriate to a country hahitation. Two tuls are required, ono being the store for dry common garden mould; the other, the receptacle fur the deposits, over each of which is to be placed half a spadeful of the mould; this prevents any smell arising. When the tub is full, it may either be set aside for about a week or fortnight to dry, when the mould is then tit to be re-used, or employed for gardon
purposes. Liquid sewnge will require to be disposed of separately, as it saturates a large quantity of earth.
Earth Table or Gnound Tablf, and Grass Tame. The plin'li of a wall (usually in Gothic work), or lowest course of prijeeting stones immediately abore the ground. See Foot-spall.
Fisster, or Holy, Sepelchre. A recess for the reception of the holy elements consecrated on the Cena Domini or Maunday 'Thursday, till high mass on Easter-day. The few examples in England remaining are generally shallow, under an arch of obtuse or broad ogee form, rising about three feet from the slab, and are placed on the north side of the church.
Eates. (Probably Fr. Eaux.) The lowest edges of the inclined sides of a roof which project beyond the face of the walls, so as to throw the water off therefrom, that being their office.
Hiaves' Board, Eaves' Lath, Eaves' Catch. See Arris Filekt.
Ebony. The wood of a natural order of shrubby or arborescent exogens, chiefly inhabiting the tropics. Some species are remarkable for the hardness and blackness of their wood, which is principally used for furniture.

Fig. 1402. West Front and Towers of Ripon Cathedral, 1215-55.

Eccentricity. The difference of centre from another circle. The distance between the foci of an ellipse.
Echea. (Gr. H $\chi \in \omega$, I sound.) In ancient architecture, sonorons vessels of metal or earth, in the form of a bell, used in the construction of theatres for the purpose of reverberating the sound of the performer's roice. They were distributed between the seats, and are described in the fifth book of Titrurius, who states that Mummius introduced them in Rome, after the taking of Corinth, where he found this expedient used in the theatre.
bichinus. (Gr. Exivos.) The same as the ovolo or quarter round, though the mouiding is only properly so called when carved with eggs and anchors. (See Anchor.) It is the shell or husk of the chesnut, thougt the urnament does not seem to bear much resemblance to it.
Ecphord. (Gr. Eк, out, $\phi \hat{\rho} \rho \omega$, I bear.) A word used by Vitruvius (lib. iii. cap. 3.) to signify the projecture of a member or moulding of a column, that is, the distance of its extremity from the naked of the column, or, according to others, from the axis.
Ectype. (Gr. Eктutov.) An object in relievo, or embos ed.
Edge. (Sax. Eege.) The intersection of two planes or surfaces of a solid, which therefore is either straight or curred according to the direction of the surfices. See Arris. It is also that side of a rectangular prismatic body which contains the length and thick ness; but in this sense of the term, the body to which it applies is generally under stood to be very thin ; thus we say "the edge of a door," " the edge of a board," meaning the narrow side. The edge of a tool is the meeting of the surfaces when ground to a very acute angle.
Edie Tools. Those which clip or shave in the operation of working.
Edging. In carpentry, the reducing of the edges of ribs or rafters, whether externally or internally, so as to range in a plane or in any curred surface required. Backing is a particular use of edging, and only applies to the outer edges of ribs or rafters; but edging or ranging is a general term, and applies either to the backing or intermal sur face. See Backing.
Eprice. (Lat. Edificium.) A word synonymous with fabric, building, erection; the word is, however, more usually employed to denote architectural ereetions distinguished for grandeur, dignity, and importance.
Effect. (Lat. Efficio.) That quality in works of art whose naturo is to give particular efficacy to other qualitics, so as to bring them out and astract the eye of the spectator.

Ega and Tongof. Ornaments nsel iu the echinus, supposed by Quatremere de Quincy to hare had their origin in the head of Isis, and, as he imagines, representing a mystical collar or necklace of the mundane egg and the tongue of the serpent of immortality; but as we think, in the representation of much more simple objects, those of nature herself. Sec Echinus.
Egiptian Architecturg. In analysing the architecture of Egypt, three points offer themselves for consideration; construction, form, and decoration. If solidity be a merit, no nation has equalled the Egyptian. Uniformity of plan characterises all their works; they never deriated from the straight line and square. The decorations of the buildings were chiefly incised, or painted on plaster. The pyramids, temples, obelisks, statues, and rock-cut tombs, all attest the duration of a style doomed to becomr eterual.
Egipptian Hall. See Ecus.
Elemothesium. (Gr. Enatov, oil.) In ancient architecture, an apartment in the baths wherein, after leaving the bath, the bathers anointed themselves.
Elastic Curve. In mechanics, the figure assumed by an elastie body, one end of which is fixed horizontally in a rertical plane, and the other loaded with a weight which, by its gravity, tends to bend it.
 sessed by certain bodies of recovering their form and dinensions after the external foree which has dilated or compressed them is withdrawn. It is only perfect when the body recovers exactly its primitive furm after the foree to which it has been subjected has been remored, and that in the same time as was required for the force to produce the alteration. This is however a quality not strictly found in nature.
Elbow. The upright side which flanks any panelled work, as in windows below the shutters, \&c.
Elevation. (Lat. Eleratio.) A geometrical projection drawn on a plane perpendicular to the horizon.
Elizabethan Architecture. The name given to the mixed or debased, yet picturesque, style of architecture prevailing during the reign of queen Elizabeth of England, caused by the partial introduction of Italian art and its mixture with mediæval details, with the requirements of greater cirilization, leading to the purer examples displayed by Inigo Jones.
Elupse or Eluipsts. (Gr. Eג入ei4ts, defect.) One of the conic sections produced by cutting a cone entirely through the curred surface, neither parallel to the base, nor making a subcoutrary section; so that the ellipsis, like the circle, is a curve that returns into itself and completely encloses a space.
Eluipsograph. An instrument for describiug an ellipsis by continued motion.
Ellipsoid. See Conoid.
Elupric Arch. A portion of the curre of an ellipsis employed as an arch.
Eluptic Compasses. The same as Ellipsograph.
Eluiptic winding Stairs. Such as are cased in and wind round an elliptic newel.
Elu. (Lat. Ulmus.) A forest tree occasionally used in building, principally for weatherboarding to barns, and such-like sheds.
Embankment. A term signifying any large mound of earth on the sides of a passage for water or other purposes; also for protection against the action of the sea. It is usually constructed of earth, and, when necessary to resist much force, cased with brick or stone.
Ambatced. A wall indented with notehes in the form of embrasures on the top of a wall, parapet, or other buildıng. It is sometimes called crenellated.
Cmbattled Aronade. See Aronade.
inbattled-battled Live. A straight line bent into right angles, so that if there be three sets of parts, one set may be parallel to those of the other two.
imbattled Beildings. Those with embrasures in the parapets, resembling a castle or fortified place.
inbossivg or Enbossed Work. (Fr. Bosse, a protuberance.). The raising or forming in reliero any sort of figure, whether performed with the chisel or otherwise. It is a kind of sculpture, in which the figures rise from the plane on which they tre formed, and as they are more or less prominent they are said to be in alto, mezzo, or basso relievo.
mbrastre. An opening made in the wall or parapet of a fortified place; it is also called a crenel. The term is also applied to an enlargement within the sides of a window, in which seuse it is the same as Splay.
mprecron. (Gr. E $\mu \pi \lambda \epsilon \kappa \omega$, I entangle.) Among the ancients, a méthod of constructing walls, in which, according to Vitruvius, the front stones were wrought fair and the interior left rough and filled in with stones of various sizes.
rcarpos. (Gr. Ev and kaptos.) The festoons on a frieze, consisting of fruit, flowers, leares, \&c.
xcaustic Work. An ancient mode of painting, in which the execution was acconplished by the application of heat. It would appear as if one process consisted in
mixing the tints in hot wax, which were then applied on the wall; and another, to coat the wall with wax after the tint had been given to the wall, rubling in well the wax with hot cloths.
Encaustic Tiles. Tiles of earthenware used as paring. They are coloured and glazed, and formed to any shapes for patterns.
End of a Stone, Brick, \&c. The two parallel sides which form the vertical joints.
Expbecagon. (Gr. Ev $\delta=\kappa \alpha$, eleven, and $\Gamma \omega \nu a$, an angle.) A plain geometrical figure bounded by eleven sides.
Engaged Columns. Those attached to walls, by which a portion of them is concealed. They never stand less than half their diameter out of the wall to which they are attached.
English Bond. In brickwork, the laying one course of bricks all headers, and the next course all stretchers, when for a one-brick wall.
Ensemble. (Fr.) A term denoting the masses and details considered with relation to each other.
Entablature. (Fr. Entablement.) In Greek, Roman, and Italian architecture; the whole of the parts of an order above a columu. The assemblage is divided into three parts: the architrave, which rests immediately on the column; the frieze, next over the architrave, being the middle member; and the cornice, which is the uppermost part. All three vary according to the different Orders. The entablature has sometimes been used as an archivolt, as in the specimen here given, from a building by the elder Dance, who followed the example of Wren and other eminent professors. This use of it has been highly reprobated as a false principle of construction, as it conveysa false idea of the real use of the entablature; see fig. 1403. In the early Rennaissance architecture, the arch sprang from the capital of the column.
Entall or Entayle. The more delicate and elaborate portions of carved medieval decoration.
Extasis. (Gr. Eviafis.) A delicate and almost imperceptible swelling of the shaft of a column, to be found in almost all the Grecian examples. It seems to have been adoptel to prevent the crude appearance which the frusta of cones would hare presented. This refinement is alluded to in the second chapter of the third book of Vitruvius, and was first in modern times olserved in execution in 1814 by Mr. Allason. It has been adopted in the lines of a spire.

Fig. 1403. Church of St. Leonard, Shoreditch.

Enter. (Verb.) In carpentry and joinery, the act of inserting the end of a tenon in ile mouth of a mortise previous to its being driven home to the shoulder.
Enterclose. A passage between two rooms.
Entresol. (Fr.) A low story over another one, both coming within a story equal in height to both. See Mezzanine.
Envelope. (Terl.) The covering of a portion of the surface of a solid with a thin sulstauce or wrapper, which in all points or parts comes in contact with the surface of such surface. To develop the surface of a solid is to find the envelopes that will cover its different parts.
Eopyla. (Gr.) A church with an ansis at the eastern end.
Eotrila. (Gr.) A church with an apsis at the western end.
Ephebeiom. (Gr.) A building, in ancient architecture, for the exercise and wrestling of the gouth.
Epicianitis. (Gr.) A name given by the Greeks to the tiles forming the cyma or upper member of the cornice of their temples.
Epicycloid. (Gr. Emikun入os, and Eidos, form.) In geometry, a curve line generated by the revolution of a point in the circumference of a circle, which rolls on the circumference of another circle, either externally or internally.
 the scene in a theatre.
Epistyliem. (Gr. Etı, upon, Etudos, column.) The same as Architrave.
Epitithedes. (Gr. Emı, upon, TiAnu, I place.) The crown or upper mouldings of an entablature.
Equiangolar. Having equal angles.
Equidistant. At equal distances.
Equilateral. Having equal sides.

Equilatrral Arch. An arch formed of two segments of circles whose centres are at the spring of the arch on each side, and if united with the point of intersection or apex of the arcl form an equilatoral triangle, as shown in fig. 1404.
Equilibriva. In mechan'es, an equality of forces in opposite directions, so as mutually to balance each other. For the ardh of equilibrium, see Catenary Curve.
Eremacausis. Slow eombustion, which takes place in timber, and is the cause of its decay.
Ergastolim. In ancient architecture, a name given by the Rumans to a prison or house of cerrection, where slaves, by the sole authority of their masters, were confined for their offences and subjected to lard labour. By the Greeks these luildings were called sophronisteria.
Escape. That part of the shaft of a column where it springs out of the base moulding. It is also called the apophyge, and in French, congé.

Fig. 1404.

Escutcheon. A shicld for armorial bearings, a mode of decoration extensively used in Gothic architecture. It is also a plate for protecting the keyhole of a door : or one to which the haudle of a door is attached.
Estimate. The computed cost of works betore they are commenced.
Estrade. An even or level space; a public road.
Etroscan Boildings. The inhabitants of Etruria, a country of Italy, and now called Tuscany, are supposed to have been a eolony from Greece. Great solidity of construction is the prominent feature, enormous blocks of stone forming the high walls of fortified places. - Their other works are tombs, in which are found works of art of high merit, especially the vases of red ware with black figures and ornamentation.
Evritimy. (Gr. Evputula, justness of proportion.). The regular, just, and symmetrical measures resulting from harmony in the proportions of a building or order. Vitruvius makes it one of his six essentials.
Eustyle. (Gr. Eu, well, and Ituגos, column.) See Colonnade.
Evaporation. (Lat.) The conversion of substances into vapour, during which prucess a cousiderable quantity of sensible heat passes into the latent or insensible state. The circumstances which principally influence the process of evaporation, are extent of surface, and the state of the air in respect of temperature, dryness, stillness, and density.
Evolute. (Lat. Evolro.) In the theory of curve lines, is a curve from which any given curve may be supposed to be formed by the evolution or unlapping of a thread from a surface having the same currature as the first curve. The curve thus generated is cailed the involute curve.
Excafation. (Lat.) The digging out or hollowing the ground for the foundations of a wail or of a building, or of a floor below the level of the ground.
Exchange. A place of meeting and resort for the merchants of a city to transact the affairs relating to their trading. There is every reason to believe that the ancient basilica served at the same time for the accommodation of the officers of the law and fur the assembling of the merchants. All modern cities with any pretension to commerce have some place appropriated to the recep ion of the merchant, to which at a certain hour he resorts. Somctimes it is a place surrounded with porticoes and planted with trees. Often it is a building, including sereral porticoes, surrounded by offices for the bankers and money-changers, which latter use has given among us the name of exchange to the building.

The exchange is, perhaps, next in importance to the town hall, and should be commensurate in appearance and accommodation with the wealth atd consequence of the city; it should, moreover, if possible, be placed in the most central part.

The Exchange at Ansterdam seems for a long time to have prevalled as the model for all others. It was commeneed in 1608, and finished in 1613, and its arehitect was Cornelius Dankers de Ry. It is about 271 feet long, and about 152 feet wide.
The Bourse at Paris has always been considered an admirable model, both in distribution and design. The edifice was begun in 1808, from the designs of Brongniart, and completed by Labarre at a much protracted period. The general form on the plan is a parallelogram of 212 feet by 126 feet. It is surruunded by an unbroken peristyle of sixty-six Corinthian columns, supporting an entablature and attic. The peristyle forms a covered gallery, to which the aseent is by a flight of steps extending the whole width of the western front. In the centre of the parallelogram is the Salle, or great hall, 116 feet long and 76 fect broad. It eonveniently eontains 2,000 persons. At its eastern end is a cireular space railed off for the convenience of the agens de change: these only are admitted within it, and to it there
is a communication from their hall of business. On the right are rooms for the committee and syndicate of the agens de change, for the courtiers de commerce, and a hall of meeting for the latter. From the gallery, as on the ground floor, a corridor extends round the Salle, communicating with the Chamber of Commerce, the Court of Bankruptey, and other public offices. The cost of this elegaut building was about $326,000 \%$.

The Royal Exchange in London was erected from the design of the late Sir William Tite, and opened October 1844, at a total cost of about $150,000 \mathrm{l}$. It is 308 feet long, and 119 feet wide at the west end, but 175 fect at the eant end. The central area, which is uncovered as above noticed, is 111 feet by 53 feet, aud with the arcades (21 feet wide) surrounding it, 170 teet by 112 feet. This was originally left uncovert d, but a fine glazed root was put over it in 1886 by Chırles Barry. The subscribers' ruom of Lloyd's is 100 feet long by 48 feet wide; the commercial room on the north side is 86 feet long and 40 fett wiit. The ambulatory was highly painted and decorated in encaustic by Fred. Sing.

The Stock Exchange was rebuilt in 1854 by Thonas Allason, jun, but in 1885-7 it was enlarged to about double the size, with uumerous additions, by John J. C le. It is somewhat in the form of a Greek cross, having a dome of timber with skylights, 39 feet in diameter. It will hold about 1,200 members, but it is seldom all are present. Fireproof strong rooms with lockers are provided for the custody of securities. Besides the "house" or large reading and refreshment rooms, there are offices for brokers in the houses communicating.

The Coal Exchange was robuilt in 1849, by the late Mr. J. B. Bunning, City architect. It consists of offices on several floors around a e ntral hall 60 feet diameter, and 74 feet high to the top of the dome; it is formed principally of iron, and is decorated with representations of nature found in the coal measures, \&c.

Tbe Exchange Buildings at Liverpool, formerly one of its grandest buildings, erected in 1801, by Mr. Foster, seu., has been lately rebuilt by Mr. Thos. H. Wyatt, of London, on a much larger scale. The area of the Corn Exchange there is 100 feet by 98 feet, divided into three aisles by two rows of iron columus, the centre having curved iruu ribs supporting the roof. There are 170 stands for the merchants. The architect was Mr. J. A. Picton, and it was erected 1851-53, at a cost of $11,000 l$.

Corn exchanges, or corn markets as they are usually called, are now to be seen in every important town. In 1856, when that at Cosentry was built, it was stated to be " the largest hall of the sort," being 110 feet long, 55 feet wide, and 46 feet high; across the galleries it was about 74 feet wide. The Corn Exchange, in Mark Lane, is the greatest corn market in the world. Though the first site had been increased in area, additional space was acquired, and in 1878 a new exchange whs in course of construction from the designs of the architect, the late Edward I'Anson. It is about 100 feet wide; the front part is 40 feet deep, and in rear is a nave of 60 feet with aisles on three sides of 20 feet each, the centre having a semicircular roof of iron, the aisles arched in iron.
Exhedra. (Gr. E ξ, out of, and 'E $\delta \rho a$, a chair.) In ancient architecture, a small room in the baths and other buildings appropriated for conversations. See Apsis.
Exostra. (Gr.) In ancient architecture, a machine for representing the interior part of a building as connected with the scene in a theatre.
Expansion. One of tbe ordinary effects of heat, which enlarges the bulk of all matter, Though the expansion of solids is by increase of temperature comparatively small, it may be rendered sensible by carefully measuring the dimensions of any substance when cold and again when heated. Thus an iron bar fitted to a gauge, showing its length and breadth, will when heated no longer pass through the apertures. The metals are most expansible by heat and cold. The following exhib ts the change which some of them undergo when heated from the freezing to the boiling point of water:-

	Expansion in line dimension.	$\underset{32^{\circ}}{\text { Tempe }^{2}}$	ure. 212°
Platinum		120000	120104
Steel	- $\cdot 0011$	-	120147
Iron	-0012	-	120151
Copper	- $\cdot 0017$	-	120204
Brass..	-002	120000	120230
''in	- 00021	-	120290

	$\underset{\substack{\text { Expansio } \\ \text { dim }}}{ }$	n in linear ension.	Temperature.$32^{\circ} \quad 212^{\circ}$	
Lead		$\cdot 0028$	--	120340
Zine	-	-0029	-	120360
Granito	-0008	-0069	-	-
Marble	$\cdot(00065$.0011	-	
Sandstone	-0009	$\cdot 0012$	-	
Slate	-00104	-	-	

(Rankine, Manual of Civil Eng., 1864).
Extension. (Lat.) One of the g neral properties of matter, being the quantity of space which a budy occupies, its extremities in evary direction limiting or circumseribing tho matter of that body. It is the magnitude, size, or bulk of a body.
External or Exterior. A term of relation applied to whatever is on the surface or outside of a body, as opposed to interual or interior. Exiernal Wall, sec Wall.

Extranos. The axterior curve of an arch. The t-rm is generally used to denote the upper elrve of the voussoirs ur stones. See Intrados.
Ers. A general term signifying the centre of any part: thus the eye of a pediment is a cireular window in its centre. The eye of a dome is the horizental aperture on its summit. The eye of a volute is the circle at the eentre, from whose eircumference the spiral line commences. See Bull's Exr.
Eyebrow. A name sometimes giren to the fillet.

F

Fanric. (Lat.) A gencral term applied to a large and important building.
F'açade. (Fr.) The face or front of any lmilding towards a street, court, garden, or other place; a term, however, more commonly used to siguify the principal front.
Face Mould. The name applied by workmen to the pattern for marking the plank or board out of which ornamental hand-railings are to be cut for stairs or other works.
Face of a Stone. The surface intended for the front or outward side of the work. The back is usually left rough. Stones should be faced in the opposite direction of their splitting grain.
Facetris. (Fr.) Flat projections between the flutes of columns.
Facla or Fascia. (Lat.) A flat member of an orler or of a building, like a flat band or broad fillet. The architrave, when subdivided for instance, has three bands called fascice, whereof the lower is called the first fascia, the middle one the second, and the upper one the third.
Facing. That part in the work of a building seen by a spectator; but the term is usually cmployed to signify a better sort of material, which masks the inferior one used internally.

Thactabing. The same as Coping.

Faldstool. A moveable reading desk provided with a kneeling shelf at the foot thereof.
Fall of Land. A measure used in Scotland. equal to 36 square yards.
Falling Moulds. The two moulds applied to the rertical illes of the railpiece, one to the convex, the other to the concave side, in order to form the back and uuder surface of the rail and finish the squaring.
False Atmic. An attic withont pilasters, casements, or balustrades, used for crowning a building, as at the gates of St. Denis and of St. Martin, at Paris,
False Bearing. See Braring Wall.
lialse Roof. That part between the ceiling of the upper floor and the covering of the roof. lian Tracery or Vaulting. A system of vaulting used in the l'erpendicular period, in which the ribs spring from slencler shafts or corbels at the side, and then diverge and

Fig. 1405. Torg Church, Shrophire.
spread themselves over the vaulting, presenting an appearance similar to the framework of a fan. This fan sometimes also springs from a pendent in the vaulting meetng the uther fan mork, as in fig. 1405. See Pbndent.

Fang. The narrow part of the cutting icon of any tool which passes into the stock.
Fanum. (Lat.) A place consecrated to religion, including the building and ground belonging to it. Those temples erected to the memory of distinguished persons were called fana by the ancients.
Farraitia. Sce Granary.
Fascla. See Facia.
Fastigium. (Lat.) See Pediment.
Fathom. (Sax.) A measure of six fect, taken from the extent of both arms when stretched out in a right line. It is chiefly used in measuring the depth of water, quarries, wells, or pits.
Feathez-edged. A term applied to any thin body whose section is trapezoidal; that is, thicker on one edge than on the other. Sce Board ; Coping.
Fratherings. The cusps, plain or decorated, at the ends of a foil in tracery.
lizeder. A cut or channel by which a stream or supply of water is brought into a canal. Sometimes the supply itself of the water is so called.
Ireening Ilouse or Siled. A farm-building for stalling and fattening neat cattle. It should be in a dry warm situation, capable of free ventilation, and supplied with proper conreniences for food and water.
Felt Grain. That position of splitting timber which is cloven towards the centre of the tree, or transversely to the annular rings or plates. The transverse position, or ratier that which is in the direction of the annular plates, is called the quarter grain.
Felting. The act of splitting timber by the felt grain.
Femur. See Triglyph.
Fence. (Lat. Defensio.) Any sort of construction for the purpose of enclosing land, as a bank of earth, a ditch, liedge, wall, railing, paling, \&c.
Fender. A dwarf wall in the basement of a house, built up to carry the frout hearth of a fireplace.
Fender Piles. Those driven to protect work, cither on land or in water, from the con cussion of a moring body.
Ffenestration. A design in which the windows are arranged to form the principal feature.
Frstoon. (Tir.) A sculptured representation of flowers, drapery, ard foliage, looped or suspended at intersals on walls. The festoon was much used on friezes, altars, tallets, also over or under niches, as well as in many other situations.
Figure. In a general sense the terminating extremes or surface of a body. No body can exist without figure, or it would be infirite, and all space solid matter. Figure, in geometry, is any plane surface comprehended within a certain line or lines.
Fillet. (Fr. Filet.) A narrow flat band, listel, or annulet, used for the separation of one moulding from another, and to give breadth and firmness to the upper edge of a crowning moulding, as in a cornice. The small bands between the flutes of a column are called fillets. See Annulet, Band, and Facette.
Fillet. In carpentry or joinery, is any small timber scantling equal to or less than battens. Fillets are used for supporting the ends of boards by nailing them to joists or quarters, \&c., as in sound boarding, and in supporting the ends of shelves.
Fillet Gutter. A :loping gutter, with a lcarboard and fillet thereon, to dirert the water.
Filling in Pieces. In carpentry. short timbers, less than the full length, fitted against the hips of roofs, groins, braces of partitions, which interrupt tho whole length.
Fine Ser. When the sole of a plane iron only projects sufficiently to take off a very thin sharing of wood.
Fine Sturf. Plaster used in common ceilings and walls for the reception of paper or colour. It is composed of lime slaked and sifted through a fine sieve, then mixed with a due quantity of hair aud tine sand.
Finial. In Gothic architecture, the top or finishing of a pinnacle or gable, as it is now generally un lerstood; but in ancient documents the term was used to denote an entire pinnacle. The carved tops of bench ends are also called finials.
Iinishing. A term frequently applied to the termination of a building; but more especially to the interior in the plasterer's work for the last coat, and often to the joiner's work, as the architrares, bases, surbases, \&c.
Fir. A forest tree, extensirely used in building, both for beams and for deals.
Fir Poles. Small trunks of fir trees, from ten to sixteen feet long, used in rnstic buildings and outhouses.
liar in Bond. A technical expression to denote lintels, bond timbers, wall plates, and all timbers built in walls. Sfe Bond.
fir framed. Rough timber framed, but which has not undergone the action of planing. lír wrought. That planed on the edges and sides.
Fir wrought and framed. That which is both planel and framed.
Fir wrought, frambd, and rebated. That which is planed, framed, and rebated.

Fir wrougut, framed, meibathi, and beaned. The same as the preceding article, with the addition of beading.
Fir no Lanour. Rough timber empliyed in walls, without planing or framing.
Fire-plack. See Chimney.
Fire-stone. That which resists tho ation of the fire. A species of it is used in joinery for rulbing away tho ridges made ly the entting-edge of the plane.
Firmer Tooc. 4 chisel used by joiners with a mallet, by which the sides of mortises are formed.
Firring. See Furring.
First Coat. In plastering, the laying the plaster on the laths, or the rendering, as it is called, on brickwork, when only two coats are used. When three are used, it is called pricking-up when upon laths, and roughing-in when upon bricks.
First Floor. Generally the floor over the ground floor. Where there is a basement to a building as in a country mansion, the floor over is often called the "principal floor."
Fisir. (Verb.) To secure a picce of wood by fastening another piece above or below it. and sometimes both to strengthen it.
Finied Beam. A long beam furmed of two short beams placed end to end, and covered by a long piece of wood placed over and under the joint, the whole being secured togethor by holts. Sometimes these latter picces are indented to the beams as a further security. Scarfing is a somewhat similar operation.
Fistuca. (Lat.) A pile-driving instrument with two handles raised by pulleys, and guided in its descent to fall on the head of a pile so as to drive it into the ground, being what is by tho workmen called (but improperly so) a monkey.
Fixture. A term applied to all articles of a personal nature affixed to land. This annexation must be by the article being let into or uuited with the land, or with some substance previously comected therewith.
lilags. Thin stones used for paring, from onc and a half to three inches thick, and of various lengths and breadths, according to the nature of the quarry. See Laning.
Eiake White. In painting, lead corroded by the pressing of grapes, or a ceruse prepared ly the acid of grapes. It is of Italian manufacture, and for the purity of its white far surpasses the white lead of this country.
Fiamborant Period. The term applied to a period of medixal architecture in France, in which the mullions and traeery terminate in waved lines of contrary flexure in flamelike forms. Examples of it occur about the beginning of the 15th century, and continue down to the middle of the 16 th, being coincident nearly with the latter part of the period of our Ornamental English, and the whole period of the Florid English, or Tudor, style.
Flange. A projection round the edge of a pipe or other article of metal, to admit of its being fastened to a similar projection by screws, rivets, or bolts. The L-shaped pieces of wrought iron, used in girder work, are also called "flanges," and are employed for seeuring iron plates at right angles to each other, and for suspending one piece of work to another.
lank. (Fr. Flanc.) That part of a return body which joins the front. In town houses the party-walls are the flank walls. Same as End.
lashing. (Probably from Fr. Flaque, a splash.) Pieces of lead or other metal let into the joints of brickwork so as to lap over the metal of gutters, or along the slating of a rouf, and thus prevent the rain getting access behind the latter, and so injuring the iuterior works.
lat. That part of the covering of a building laid horizontal, or sufficiently sloping to throw off the water, and fuished with lead or other material, perhaps to be walked upon. matring. In house painting, a mode of painting in oil, in which the surface is left, when finished, without any gloss. The material or paint is prepared with a mixture of oil of turpentine. which sccures the eolours, and when used in the finishing, leaves the paint quite dead. The process is of use where it is desirable that the surface painted should retain the colour. It is only used for inside work and in the best apartments. Nut oil and poppy oil may be used for the purpose, both of which are good media for the colour.
remish Bond. In brickwork, the laying of each course of bricks as headers and stretchers, one course broaking joint with that over and under it.
cemish Bricks. A species of brieks used for paring, whereof seventy-two will pare a square yard; they were originally imported from Flanders, are of a yellowish colour, and harder than common bricks.
sur-de-mis. An ornament like a lily, and often used as a finial ; it is a farourite form in decoration.
sxibility. (Lat. Flecto.) That property of bodies which admits of their bending. It is opposed to stiffness on the one hand, and brittleness on the other; stiff bodies being such as resist bending, and brittle kodies those which cannot be bent without a disrnption of their paits.

Flexure. The bending or curve of a line or surface. The point of contrary fexare is that point of a curve where the curvature alters from convex to concave, or the reverse, as respects the first direction of the curve.
Fught of Sters. In a staircase is the series of steps from one landing place to another. Thus, the same staircase between one floor and another may consist of more than one flight of steps; the flight being reckoned from landing to landing. See Floor.
Fint. A material used in building walls where chalk abounds. Common fints are nearly pure silica. They usually occur in irregular nodules in chalk. Their origin is stall an unsolred geological problem.
Float. In plastering, a long rule with a straight edge, by which the work is reduced to a plane surface.
Floated Latif and Plaster. Plastcring of three coats, whereof the first is pricking-up, the second, foating or floated work; and the last, of tine stuff.
Floatrd Work. Plastering rendered perfectly plane by means of a Float.
Floatina Screeds. Strips of plaster prepiously set out on the work, at convenient. intervals, for the range of the floating-rule or float.
Fl.oor. (Sax. Flope.) The pavement or boarded lower horizontal surface of an apartment. It is constructed of earth, brick, stone, wood, or other materials. Carpenters include in the term the framed timber work on which the boarding is laid, as well as the boarls themselves. In carpentry, it denotes the timbers which support the boarding, called also naked flooring and carcass flooring.

The term floor is, moreover, applied to the storics of a building, as basement floor, ground floor, \&c. When there is no sunk story, the ground story becomes the basement floor, and the next floor the principal floor, containing the principal rooms; in many country houses they are on the gromad floor, but in those of the town mostly on the one pair floor. The expressions, one pair, two pair, \&c., imply .a story above the first flight of stairs from the ground, and so on.
Floor. Folding or Folded. One in which the floor boards are so laid that their joints do not appear continuous throughout the whole length of the floor, but in bays or folds of three, four, five, or more boards each.
Floor. Straight Jonft. That in which the floor boards are so laid that their joints or edges form a continued line throughout the direction of their leugth; in opposition to folding floor, wherein the joiuts end in folds.
Floor Cloth. Stout canras covered with coarse oil paint, and then printed with a pattern, more or less elaborate. It should be thoroughly dry before being used, else it soon wears out. Kamptulicon, a preparation of caoutchouc and ground cork; aud Linoleum, produced from oxydised linseed oil mixed with ground cork, and rolled on to stroug canvas, are late and good substitutes for the common floor cloth. Corticine, and Cork Carpet are other similar materials; while Boulinikon, or buffalo hide floor-cloth, is a late candidate for public favour.
Floor Joists. The joists supporting the boards of the floor ; but when the floor consists of binding joists, which are secured into the girders, and bridging joists, the bridgings are never called floor joists.
Floriateo. Carved in imitation of flowers or leaves, either conventional or natural, and generally applied to decorated capitals, corbels, and bosses.
Fiorid period of English mediæral architecture is the same as the Perpendicular perion, and is also called the Tud re style.
Froce. The long open tube of a chimney from the fire-place to the top of the shaft, for voidance of the smoke. Sec Chimney.
Fluing. The sime as Splayed.
Flush. (Lat. Fluxus.) A termused by workmen to signify a contimity of surface in two bodies joined together. Thus, in joinery, the style, rails, and muntins are usually nate flush; that is, the wood of one piece on one side of the joint does not project or rocede from that on the other.
Flush. In masonry or brick-work, the aptitude of two brittle bodies to splinter at the joints where the stones or bricks come in contact when contiguous in a wall.
Flusif. (Verb.) A term to denote the complete bedding of masonry or brick-work, in the mortar or cement used for the counection of the stones or bricks, so as to leare no vacant space where the stones or bricks do not nicely fit in their places.
Flush molt. A bolt of iron or brass let into the woodwork so that it does not project beyoad the face of it. The bolt has to be worked by the thumb or a finger.
Fletrs or Flutings. Upright channels on the shafts of columns, usually ending hemispherically at top and bottom. Their plan or horizontal section is sometimes circular or segmental, and sometimes, as in the Grecian examples, elliptical. The Doric column has twenty round its circumfcrence ; the Ionic. Corinthian, and Composite have twentyfour. The Tuscan column is iever flated. Flutes are occasionally cabled. See Cables. Flyers. Steps in a flight of stairs that are parallel to each other. See Winder.

Fining Buttriss. A buttress in the form of an arch, springing from a solid mass of masonry, and abutting against the springing of another arch which rises from the upper points of abutment of the first. It is employed in most of the cathedrals, and its office is to act as a counterpoise against the vaulting of the naro. If flying buttresses were built solid from the ground, it is obvious that they would interfere with the vista alon,s the aisles of the church; hence the project of centinuing a resistance by means of arches. Their stability depends on the resistance afforded by the weight of the vertical buttresa. whence they spring. See Arc-boutant and Buttress.
Focus. In geometry and the conic sections, a point on the concavo sido of a curve, to which the rays are reflected from all points of such curve.
Fodder or Fothen. A weight among the plumbers of London of $19 \frac{1}{2}$ cwt.
Fernilia. (Lat.) See Giranary.
Forl. The small ares in the tracery of Gothic windows or panelling. See Cusp.
Formed Floon. See Floor.
Folming Doors Such as are made to meet each other from the opposite jambs to which they are hung; and when they ure rebated together, their edges meet folding orer each other, with a beal at the joint, to give the appearance of one entire door.
Eolding Joint. A joint made like a rule-joint or the joint of a hinge.
Eoliage. A sculptured group of the leaves of plants and flowers, so arranged as to form architectural ornaments, as in friezes, panels, \&c., and in the capitals of the Corinthian and Composite orders.
oliation. The use of small ares or foils in forming tracery.
Tont. A vessel, generally of stone or metal, for containing the water of baptism in the Christian Church. The body of the font is usually a large block of stone hollowed out, and supported by a short column, single or clustered, and elevated on a base; sometimes two or three steps lead to the platform on which the font may be fixed. Ancient examples occur where they are made of metal. Some of the early fonts are extremely beautiful, and wrought with great richness of decoration. The singular inscription frequentlv found on the walls of baptisteries occurs also occasionally on ancient fonts : NIWON ANOMHMATA MH MONAN OYIN, which, reading equally well both ways, admonishes the reader to cleanse himself from sin, not less than to use the outward cerenony of baptism.
оот. (Germ. Fuss.) A measure of lengtl, but used also in a sense which expresses surface and solidity. Thus we say, a foot superficial and a foot cubc. As this term is used in almost all languages as a linear measure, it has doubtless been derived from the length of the human foot. It seems in all other countries, as in England, to be divided into twelve equal parts, or inches. See Measures.

The English standard foot (31 Edw, 1.) is = 12 lineal English inches $=36$ barleycorns $=16$ digits $=4$ palms $=3$ hands $=5 \frac{1}{3}$ nails $=1 \frac{1}{3}$ spans $=1.5151$ Gunter's links $=$ 938306 ft . of France $=-30+7$ met. of France. The foot is dirided by geometricians into 10 digits, and each digit into 10 lines, \&c. The French, as the English, divide the fuot into 12 inches, and the inch into 12 lines. The foot square or superficial is a foot each way, and contains, therefore, $12 \times 12=144$ superficial inches $=2.295684$ square links. The glazier's foot in Scotland $=64$ square Scotch inches. The Scotch foot is to the English foot as 1066 to $1 \cdot 000$, being in fact the French foot.

The length of the foot varies in different countrics. The Paris royal foot exceeds hat of England by $9 \frac{1}{2}$ lines. The ancient Roman foot of the Capitol consisted of 4 jaims $=11 \frac{7}{10}$ English inches. The Khinland or Leyden foot, used by the northern lations of Europe, is to the Roman foot as 950 to 1000 . The following table exhibits he length of the foot in the principal places of the Continent, the English foot being irided into 1000 parts, or 12 inches:-

									Parts.	Ft.	In.	Li	
ondon	-	-	-	-	-	-	-	-	1000	0	12	0	
Imsterdam	-	-	-	-	-	-	-	-	942	0	11	2	
intwerp	-	-	-	-	-	-	-	-	946	0	11	3	
iolngna	-	-	-	-	-	-	-	-	1 204	1	2	4	
remen	-	-	-	-	-	-	-	-	964	0	11	6	
ologne	-	-	-	-	-	-	-	-	954	0	11	4	
'penhagen	-	-	-	-	-	-	-	-	965	0	11	6	
antzig	-	-	-	-	-	-	-	-	944	0	11	3	
ort -	\bullet	-	*	-	-	-	-		1184	1	2	2	
rankfort-on-the-Maine				-	-	-	-	.	948	0	11	4	
prrain	-	-	-	-	-	-	-	.	9.88	0		5	
antua	-	-	-	-	-	-	-	-	1369	1	6	8	

Mr. Raper (Philos. Trans. vol. li.), from rarious anthorities, determines the mean o the Roman foot to be nearly 968 parts of the London foot; and he considers that befor the reign of Titus the Roman foot exceeded $\frac{970}{1000}$ of the London foot, and afterwards in the reigns of Severus and Diocletian, it fell short of 965. Cagnazzi, from examina tion of the monuments of antiquity in Herculaneum and Pompeii, letermines the Roma foot at 29624 metre, which, the metre being $3 \cdot 2808992$ English feet, would make th old Roman foot $\frac{972}{1000}$ of the English foot.
list of feet of all cecuntries as drawn up by Dr. Thomas Young from Hutton, Caralle Howard, Vega, and others:-

Altdorff foot -		English Feet.	
	- -		Hutton.
Amsterdam fout	- -	$\left\{\begin{array}{r} 927 \\ 930 \end{array}\right.$	H. Cavallo.
		(-931	Howard.
Amsterdam ell	. -	2-233	C.
Ancona foot	- \cdot	1-282	H.
Antwerp foot -	- -	. 940	H.
Aquileir foot	-	1-128	H.
Arles foot	- -	-888	H.
Augsburg foot	- -	$\cdot 972$	II.
Avignon=Arles.			
Barcelona foot	- -	$\cdot 992$	H.
Basle foot	-	$\cdot 944$	H.
Bavarian font -	- -	-968	Beigel.
Bergamo foot -	- .	$1 \cdot 431$	H.
Berlin foot	- -	-992	H.
Berne foot	-	'962	Howe.
Besançon foot -	- -	$1 \cdot 015$	H.
Bologna foot	- -		H. Cavallo.
Bonrg en Bresse fo	t	$1 \cdot 030$	H.
Brabant ell, in Ger	many -	2.268	Yega.
Bremen foot -	- -	-953	1.
Brescia foot	-	- 1.560	H.
Brescian braccio	- -	$2 \cdot 092$	C.
Breslau foot	- -	1-125	H.
Bruges foot	-	$\cdot 749$	11.
Brussels foot	- -	- $\left\{\begin{array}{l}\cdot 902 \\ 954\end{array}\right.$	$\stackrel{\mathrm{H}}{\mathrm{V}}$
Brussels, greater el		- $2 \cdot 278$	V
Brussels, lesser ell	- -	- $2 \cdot 245$	V.
Castilian vara -	- -	$2 \cdot 746$	C.
Chambery foot	\cdots	$1 \cdot 107$	II.
Cbina matbematic	foot	- 1.127	II.
China imperial foot			$\underset{\mathrm{V}}{\mathrm{H}}$
Chinesc 1 l	- .	- 606.000	C.
Cologne foot	-	-903	H.
Constar.tilople	-		H.

Maestricht foot	English Fect. -916 H.	Roman braccio dei mercanti (4	English Feet. 2.2876 F .
Malta palm	.915 H.	palms) - - - .)	2.856 C .
Mantua brasso	$1.521 \quad \mathrm{H}$.	Roman braccio di tessitor di	$2 \cdot 0868 \mathrm{~F}$.
Mantuan braccio $=$ Brescia	C.	tela - - - - -	2.0808 F .
Marseilles foot	-814 H.	Roman braccio di architettura	$2 \cdot 5 \mathrm{6l} \mathrm{C}$.
Mecblin foot	$\cdot 753 \mathrm{H}$.	Rouen = Paris -	H.
Mentz foot	-988 H.	Russian arschine	$\{2.3625$ C.
Milan decimal foot -	-855 H.	Russian arschine	2.3333 Pbil Mag.
Milan aliprand foot.	1.426 H.	Rnssian verechok(1-16th arsch.)	-1458
Milanese braccio	1.725 C .	Russian foot= to the English.	
Modena foot	2.081 H.	Suvoy = Chambery	H.
Monaco foot	-71 H.	Seville = Barcelona	H.
Montpellier pan	.777 H.	Seville vara	$2 \cdot 60 \mathrm{C}$.
Moravian foot -	-971 V.	Siena foot	1.239 H .
Moravian ell	2.594 V.	Stellin foot	1.224 H.
Moscow foot	-928 H.	Stackholn foot	1.073 H.
Mranich foor	-947 H.	Stockholn foot	-974 Celsius.
Naples palm	$\mathrm{f}^{8661} \mathrm{H}$.	Strasbourg town foot	. 056 H.
Naples palm	- 859 C .	Strasbourg country foot	$\cdot 967$ H.
Naples canna -	6.908 C.	Toledo = Mad.id	H.
Nurcmburg town foot	$\begin{cases}.996 \\ .907\end{cases}$	Trent foot - -	1.201 H.
Nuremburg country font	. 9.907 H.	Trieste cll for wnollens	$2 \cdot 220$ $2 \cdot 107$
Nuremburg artillery foot	-961 V.	Turin foot	1.676 H.
Nuremburg ell -	$2 \cdot 166 \mathrm{~V}$.	Turin foot	1.681 C.
Padua foot	$1 \cdot 406 \mathrm{H}$	Turin ras	1.958 C.
Palernio foot	$\cdot 747 \mathrm{H}$.	Turin trabuco.	10.085 C .
Paris foot	1.066 1/.	Tyrol foot	1.096 V .
Paris metre	3.2808992	Tyrol ell -	2.639 V .
Parma foot	1.869 H.	Valladolid foot	.908 H.
Parmesan b-accio	$2 \cdot 242 \mathrm{C}$.		(1.137 H.
?avia foot -	1.540 H.	Venice foot	\{ 1.140 How.
Pacentia = Parma	C.		(1167 C.
	$\left\{\begin{array}{l}.987 \\ .97 .\end{array}\right.$	Venice braccio of silk	2.108 C .
rague foot	1.972 V .	Velnice ell - -	2.089 V.
rague ell	1.918 V .	Venice braccio of cloth	$2 \cdot 250$ C.
roveuce $=$ Marseillcs.		Verona foot	1.117 H.
	11.023 H	Vicenza foot	J.136 H.
	- 1.030 Eytelwein.	Vienna foot	! 1.036 H
iga $=$ Hambirgh.		Henna foot	1-037 How.
oman palm -	- $733 \mathrm{H}$.	Vienna ell	2.557 V .
oman foot - -	-956 Folkes.	Vienna post milc	24.888 V .
oman deto, 1-16th foot	-0604 F.	Vienne in Daupliné foot	1.058 H .
oman oncia, 1-12th foot	-0805 F.	Ulm foot -	-826 H.
jman palmo - - -	- 2515 F .	Urbino foot	$1 \cdot 162$ H.
Jman palmo di architettura	-7325 F.	Utrecht foot	- 741 H.
man canna di architettura -	7.325 F .	Warsaw foot	$1 \cdot 169$ H.
man staiolo - -	4.212 F.	Wesel = Dordresht	H.
man canna dei mercanti (8)	65965 F .	Zurich foot -	$\left\{\begin{array}{l}\text { :979 } \\ =981 \\ \text { Hhi }\end{array}\right.$

or of the Efb Director. In perspective, that point in the directing line made by a rertical plane passing through the eye and the centre of the picture.
ot of a vertical Lise. In perspective, that point in the intersecting line which is made by a rertical plane passing through the eye and the centre of the picture.
or Pace or Half Pace That part of a stairease whereon, after the flight of a few steps, a broad place is arrived at, on which two or three paces may be taken before oming to another step. If it occur at the angle turns of the stairs, it is called a uatter pace.
liting Beam. The naine given, in some of the provinces, to the tie-beam of a oof.
I tings of a Wall. The projecting courses at the base of a wall to spread it, and thus ive security to the wall.
F r-stall. The base or plinth of a building. See Earth Table.
F CE. In mechanics, the course of motion in a body when it begins to more, or when it langes its direction from the course in which it was previously moring. While a body mains in the same state, whether of rest or of uniform and rectilinear motion, the use of its so remaining is in the nature of the body, which principle has receired the me of inertia.
Frcerr. In mechanics, a solid piston applied to pumps for the purpose of producing a astant stream, or of raising water to a greater height than it can be raised by the essure of the atmosphere.
Fc: Fronr. The principal or entrauce front of a building.
Fis Prane. In carpentry and joinery, the first plane used after the saw or axe.
Fc shorten. In perspective, the diminution which the representation of the side or ct of a body has, in one of its dimensions, compared with the other, occasioned by obliquity of the corresponding side or part of the original body to the plane of jection.

Form. The external appearance or disposition of the surfaces of a body, in which sense it is synonymous with Figure.
Formeret. The arch rib, which in Gothic groining lics next the wall, and is consequently less than the other ribs which divide the valulting.
Forum. (Lat.) In ancient architecture, a public market; also a place where the common courts were held, and law pleadings carried on. The fora of the Romans were large open squares surrounded by porticoes, parts whereof answered fur market-places, other parts for public meetings of the inhabitants, and other parts for courts of justice ; the forum was also occisionally used for shows of gladiators. There were in Rome serenteen; of these fourteen were for the sale of goods, provisions, and merchandise, and called Fora Venalia ; the other three were for civil and judicial proceedings, and called Fora Civilia et Judicialia. Of the latter sort was the furum of Trajan, of which the Trajan column formed the principal ornament.
Foundation. The ground prepared for the footings of a wall to be placed thereon. The concrete and footings of a wall are sometimes called the "foundations."
Foundry. A building in which various metals are cast into moulds or shapes.
Fountain. (Lat. Fons.) Any natural or artificial apparatus by means whereof water springs up. In natural fountains the ascensional effect is produced by the hydrostatic pressure of che water itself; in artificial fountains, by the same sort of pressure, or by that of compressed air, and sometimes by machinery.
Fox-tail Wedging. A method of fixing a tenon in a mortise by splitting the end of the tenon and inserting a projecting wedge, then entering the tenon into the mortise, anc driving it home. The bottom of the mortise resists the wedge, and forces it fartherintc the tenon, which will expand in width, so as not only to fill the cavity at the bottom but be firmly compressed by the sides of the mortise.
Frame and Framing. (Sax. Fnamman, to form.) The rough timber work of a house including floors, roofs, partitions, ceilings, and beams. Generally, any pieces of woor fitted together with mortises and tenons are said to be framed, as doors, sashes, \&c.
Franking. A term used by the mak-rs of window-sashes, and applied to the modeo forming the joint where the cross-pieces of the frame intersect each other, no more woo being cut away than is sufficient to show a mitre.
Freeing Beads. The beads formed on the elbows of the boxings of a window, to allor of the shutters rising high enough to come on to the bead of the window sill.
Free Stone. It is an old term that has no very distinctive meaning, but one which commonly employed when speaking of any stone, whether it be a sandstone or a limi stone, that is capable of being easily tooled, quite irrespective of its chemical compc sition, such as Portland stone, Bath stone, Yorkshire stoue, some Seotch stone. \&ce.
Frevch Casements. Windows turning upon tro vertical edges attached to the jamb and, when shut, lap together like folding doors upon the other two parallel edge and are fastened by means of a long bolt called an Espagnolette bolt, extending the whole height. French casements are made in the form of the old English windor the two meeting styles, which lap together, forming a munnion about four inches breadth. The lower part only of the window is moreable, the upper being fixed, ar having a corresponding munnion ; the lower rail of the fixed part and the upper ri: of the moveable part forming a transom. The upper part is now sometimes made open on centre pivots at the sides, to allow of ventilation to the apartments whilst t casement is closed.
Fresco Painting. (It. Fresco, fresh.) A system of wall or ceiling decoration in which painting is executed by incorporating the colours on the plaster before it is dry, which it becomes very permanent.
Frette or Fret. A species of ornament consisting of one or more small fillets meeti

Fig. 1406.
in vertical and horizontal directions. (See fig. 1406.) The sections of the chann between the fillets is rectangular.
Fret-work. Ornamental decoration raised in protuberances.
Friction. (Lat. Frico, I rub.) The resistance pruduced by the rubbing of the surfa. of two solid bodies agrainst each other.
Frieze, Freeze or Frize. (Ital. Frepio, adorned.). That member in the entablature an order between the architrave and coruice. It is always plain in the Tuscan: or mented with triglyphs and sculpture in the Doric (See Metopa); in the modern Italian Ionic it is often swelled, in which case it is said to be pulvinated or cushion. and in the Corinthian and Composite it is rariously decorated with figures and folis
according to the taste of the architect. The illustration is from the western end of the Parthenon at Athens. presenting a portion of the Panatheiac frieze. It is one of the fine specimens of Grecian art of the Elgin collection in the British Museum. (Fig. 1407.)
Hheze of the Capitai. The same as the Ilypotrachehium.
Frieze Panel. The upper panel of a six-panelled door.
Frieze Rail. The upper rail but one of a six-panelled door.
Frigidarium. In ancient architecture, the apartment in which the cold bath was placed. The word is sometimes used to denote the

Fig. 1407. cold bath itself.
liront. (Lat. Frons.) Any side or face of a building, but more commonly used to denote the entrance side.
Frontal. The cloth hung in front of the altar, also called antependium.
Frontispiece. (Lat. Frons and Inspicio.) The face or fore-front of a house, but the term is more usualiy applied to the decorated entrance of a building.
ironton. The French term for a pediment.
Trostrd. A species of rustic-work, imitative of ice, formed by irregular drops of water. rumey Tlaber. Such as works freely to the plane withont tcaring, whose grain therefore is in the stme direction.
rostum. (Lat.) In geometry, the part of a solid next the base, formed by cutting of the top, or it is the part of any solid, as a cone, a pyramid, \&c., between two planes, which may be eithor parallel or inclined to each other.
olcrum. (Lat.) In mechanics, the fixed point about which a lever mores.
unner. (Lat. Infundibulum.) That part of a chimney contained between the fire-place and the summit of the shaft. See Chinney.
ornitore, (Fr. Fournir, to furnish.) The visible brass work of locks, knobs to doors, window-shutters, and the like.
urrang. (Fr. Fourrer, to thrust in.) The fixing of thin scantlings or laths upon the edges of any number of timbers in a range, when such timbers are out of the surface they were intended to form, either from their gravity, or in consequence of an original deficiency of the timbers in their depth. Thus the timbers of a floor, though level at first, oftentimes require to be furred; the same operation is frequently necessary in the reparation of old roofs, and the same work is required sometimes in new as well as old floors.
rrings or Firrings. Pieces of wood used to bring a surface to a level with ochers.
sarole. (It.) A member whose section is that of a semicircle carved into beads. It is generally placed under the echinus, or quarter round of columns in the Doric, Ionic, and Corinthian orders.
sr. (Fr. Fût.) An old term for the shaft of a column or trunk of a pilaster. It is ilso a term used in Devonshire, and, perhaps, in some other countics, to signify the idge of a house.

G
(ble. (Brit. Gavel.) The vertical triangular piece of wall at the end of a roof, from he level of the eaves to the summit
(β LEET. A small gable, or gable-shaped decoration, as intro luced on buttresses, \&c.
(ie. See Gavge.
(N . . In carpentry, the bavelled shoulder of a binding joist, for the purpose of giving ditional resistance to the tenon below.
C. .imes. A porch usually built near the west end of abbey churches. The galilees of purham and Ely are found in the sitaation here described. The last mentioned is still sed as the principal entrance to the church. The porch. south-west of the great ansept, at Lincoln Cathedral is also sometimes called a galilee. The word has been equently used, but improperly, to designate the nave of a church. Many conjectures
have been made on the origin of this term, but the most commonly receired of,nion, founded on a passage in the writings of St. Gerrase of Canterbury, is, that when a female applied to see a monk, she was directed to the porch of the church, and answered in the words of Scripture, "He goeth before you into Galilee, there shall you see him."
Gallery. (Fr. allée couverte.) The name given to one of the structures called Celtic and Megalithic, and formed of upright stones covered with flat ones.
Gallery. (Fr. Galerie.) An apartment of a house, for different purposes. A common passage to several rooms in any upper story is called a gallery. A long room for the reception of pictures is called a picture gallery. A platform on piers, or projecting from the wall of a church and open in front to the central space is also called a gallery. The Whispering Gallery at St. Paul's is another example of the various uses of the word. The whole or a portion of the uppermost story of a theatre is likewise called a gallery.
Gallet. See Garreting.
Gaol. A prison, or place of legal confinement.
Garden Sueds. Erections for containing gardon implements, flower-pots, hot-bed frames, and glass sashes, \&c.; also for working in during bad weather. They are best placed on the back wall of the greenhouse, and thus hold the furnaces, fuel, and other articles.
Gargoullee, or Gurgoyle. The carped representations of men, monsters, \&e., on the exterior of a church, and especially at the angles of the tower, serving as waterspouts, being connected with the gutters for the discharge of the water from the roof.
Garlands. (Fr.) Ornaments of flowers, fruit, and leaves anciently used at the gates of temples where feasts or solemn rejoicings were held.
Garnets, Cross A species of hinge used in the most common works, formed in the shape of the letter T turned thus - , the vertical part being fastened to the style or jamb of the doorcase, and the horizontal part to the door or shutter.
Garret. The upper story of a house taken either partially or wholly from the space within the roof. It is also an epithet applied to rotten wood.
Garreting, or Galleting. Inserting small splinters or chips of stone or fint, called gallets, in the mortar joints of rubble work, after the walls are built.
Gate. (Sax. Heac). A large door, generally framed of wood. The width of gates should be from eight and a half to nine feet, and the height from five to eight feet. 'The materials of gates should be well seasoned previous to use, otherwise they will be soon injured by the sun and wind. The parts should be also very correctly put together. For durability, oak is the best; but some of the lighter woods, as deal, willow, and alder, are, on account of their lightness, occasionally used. These, however, aro more for field-bar gates than close gates.
Gateway. A passage or opening formed through an enclosure wall or fence. It is also given to a building placed at the entrance of a property, and through which access is obtained, and guarded by a gate, or formerly by a portcullis drawbridge.
$G_{\text {athering of the Wings. See Chimetey. }}$
Gauge, or Gage. In earpentry or joinery, an instrument for drawing one or more lines on any side of a piece of stuff parallel to one of the arrisses of that side. Of this tool there are four sorts; the common gauge and the flooring gauge (which are both applied to the drawing of a line parallel to an arris), the internal gauge, and the mortise and tenon gauge.

This term is also used to signify the length of a slate or tile below the lap; also the measure to which any substance is confined.
Gavged Arch. One having the bricks or stones formed radiating to a centre. The bricks have to be cut, and, in very good work, they are also rubbed, to get a fine joint.
Gajged Stuff. In plasterer's work, stuff composed of three parts of lime putty and one part of plaster of Paris, to set quicker. In bricklayer's work, it is the same proportion. of mortar and Roman or Portland cement, used for filletings and in setting chimncypots.
Gavel. The same as Gable.
Gemmels. A niediæval term for hinges. See Gimbals.
Generating Curve. See Evolute.
Generating Line or Plane. In Geometry, a line or plane which moves according wa gisen law, either round one of its extremities as a fixed point or axis, or parallel to itself, in order to generate a plane figurc, or solid, formed by the space it has gone over.
Genesis. (Gr.) In geometry, the formation of a line, plane, or solid, by the motion of a point, line, or plane. See Generating Ling.
Geometric Proportion. A building designed by geometrical figures, as the squaro, the triangle, \&c.
Geometrical. That which has a relation to geometry.

Geumetrical Decoratein. The period of nediæval architecture in whieh the tracery and other ornamentation consisted entirely of distinct geometrical forms, and in which the principle of verticality and unity by a subordination of parts was fully developed.
Grometrical Starcase. That in which the flight of stone stairs is supported by the wall at only one end of the steps
Geometry. (Gr. $\Gamma \eta$, the earth, and $M \in \tau \rho \omega$. I measure.) That science which treats of tlie objects of figured space. Its etymology implies the object of measuring land. The invention of the science has been referred to a very remote period: by some, to the Babylonians and Chaldeans; ly others to the Egyptians, who are said to have used it for determining the boundaries of their several lands after the inundations of the Nile. Cassiodorus says that the Egyptians either derived the art from the Babylonians, or invented it after it was known to them It is supposed that Thales, who died 548 b.c., and Pythagoras of Samos, who thourished about 520 b.c., introduced it from Egypt into Greece. Whatever the origin, however, of the term, the occasions on which it is necessary to compare things with one another in respect of their forms aud magnitudes are so numerous in every stage of society, that a geometry more or less perfect must have existed from the first periods of civilisation.
Geometry, bescriptivf. The art of representing a definite body upon two planes at right angles with each other, by lines falling perpendicularly to the planes from all the points of concourse of every two contiguous sides of the body, and from all points of its contour, and, vice versâ, from a given representation to aseertain the parts of the original objects.
Gaometry, practical. The method of working problems in geometry.
Chaut. A Hindoo term for a landing place, steps on the banks of a river, a pass between mountains, and the mountains themselves, especially the eastern and western ranges, which cut off from the upper or table land the narrow strips of low coast that intervene between them and the sea.
flblea Cheque, Giblet Cheek or Check. A term used by Scotch masons to denote the cutting away of the right angle formed by the front and returns of the aperture of a stone door-case, in the form of a rebate or reveal, so as to make the outer side of the door or closure flush with the face of the wall.
illding. The practice of laying gold leaf on any surface.
imbals, Gimbols, or Gimbles. (Lat. Gemellus.) A piece of mechanism consisting of two brass hoops or rings which move within one another, each perpendicularly to its plane, about two axes at right angles to each other. A body suspended in this manner, having a free motion in two directions at right angles, assumes a constantly vertical position. See Gemmels.
imlet, or perhaps more properly Gimblet. (Fr. Guimbelet.) A piece of steel of a semi-cylindrical form, hollow on one side, having a cross handle at one end and a worm or screw at the other. Its use is to bore a hole in a piece of wood. The screw draws the instrument into the wood when turned by the handle, and the excavated part, forming a sharp angle with the exterior, cuts the fibres across, and contains the core of the wood cut out. It is used for boring holes larger than is effected by the bradawl.
IRDER. (Sax. Fintan, to enclose.) The principal beam in a floor, for supporting the linding or other joists, whereby the bearing or length is lessened. Perhaps so, called because the ends of the joists are enclosed by it. An iron or timber girder carries a wall or assists to carry a floor. See Bressumer.
rdle. A circular band or fillet surrounding a part of a column.
RT. The length of the circumference of an object, whether rectilinear or currilinear, on its horizontal section. In timber measuring, according to some, it is taken at one-fourth of the circumference of the tree, and is so taken for the side of a square equal in area to the section of the tree cut through, where the perimeter is taken in order to oltain the girt.
Ass. (Germ.) A transparent, impermeable, and brittle sulustance, of which there are lifferent sorts used in building. The "Times" paper of February 6th, and others in May, 1875, stated that a Frenchman had discovered that glass heated to redness, and then cooled or annealed in oil, greatly increased its toughness, while its transparency remained he same. Thus a plate of glass supported at the ends would resist a weight falling wo feet, but when treated as abore it would resist the same weight falling six or eight eet. See Crown Glass, Sheet Glass, Plate Glass.
iass Painting. A decoration frequently used in buildings. It is the method of painting n glass in such a manner as to produce the cffect of the drawing, which has to be preared by an artist for it. A French painter of Marseilles is said to have been the first rho instructed the Italians in this art, during the pontificate of Julius II. It was, owever, practised to a considerable extent by Lucas of Leyden and Albert Durer. See tained Glass and Pot Metal.
(izier. An artisan whose employment is that of fitting and fixing glass.

Glue. (From the Lat. Gluten.) A tenacious viscid matter made of ties skins and hoofs of animals, for cementing two bodies together. Glue is bought in cakes, and is better the older the skin of the animal from which it is made. That which swells without dissolving when steeped in water is the best. Tu prepare glue it should be iruken into small fragments and then steeped in water about twelve hours. It should be then heated in a leaden or copper vessel till the whole is dissolved, stirring it frequently with a stick. After this it is put into a wonden vessel and remains for use. A watertight joint in wood can be obtained by grinding glue and white lead in equal proportions, boiled in linseed oil, so as to make the liquid of a whitish colour, and strong but not thick. It is also useful for external work. "Marine glue" is a very strong liquid matter, the material often giving way before the joint.
Glyph. (Gr. Г $\lambda \nu \phi \omega$, I carve.) A sunken channel, the term beng usually employed in reference to a vertical one. From therr number, those in the frieze of the Doric order are called triglyphs.
Glyptotheca. (Gr. Г $\lambda \nu \phi \omega$, and $\Theta \eta \kappa \eta$, deposit.) A building or room for the preservation of works of sculpture. See Cyzicenvs.
Gnerss. A species of granite which, from excess of mica, is generally of a lamellar or slaty texture. It is a term used by the miners of Germany.
Gnomon. (Gr. Г $\nu \omega \mu \omega \nu$.) An instrument for measuring sladows, and thereby determining the sun's height. In dialling, it is the style of the dial, and its shadow marks the hour. It is placed so that its straight edge is parallel to the axis of the earth's rotation. In geometry, a gnomon is that part of a parallelogram which remains when one of the parallel, grams about its diagonal is removed; or the portion of the parallelogram composed of the two complements and one of the parallelograms about the diagonal. Tho term is found in Euclid, but is now rarely used.
Gobrets. Blocks of stone; and also squared blocks of stone.
Goccholatoio. (It.) The same as Corona.
Godown. The Bengalese term for a warehousc or cellar.
Godroon, or Gadroon. An ornamented moulding, consisting of beadings or cablings.
Gola, or Gula. (It.) The same as Cyma.
Goniometer. (Gr. Г $\omega \nu / a$, an angle, and $\operatorname{Me\tau } \rho \omega$, I measure.) Án instrument for measuring solid angles.
Goprra. The Indian name for a gate-tower in the wall enclosing the space of ground in which are the cell and porch forming a temple in the south of Hindostan. In eleration it is pyramidal like a pagoda; but instead of being square like the temple in plan, the gopura is merely a pylon, sometimes 130 feet wide by 100 feet deep, pierced in the middle of the longer sides by a gateway which occupies a sceenth or even a fourth of the width of the tower. The pile is covered by a crested roof, resembling a boat with the keel uppermost. Among the finest examples are those at Seringam, at Combaconum, and at Chillambaram, dating about 990-1004.
Gorge. The same as Caveito. The gorgerin is a diminutive of the term.
Gorgonela. (Gr.) Key-stones carved with Gorgons' heads.
Gothic Archutecture. The name given about the end of the seventeenth century to the Pointed architecture of the mediæval period, and now called Medieval Architrcture.
Goufing Foundations. A Scotch term, signifying a mode of securing unsound walls by driving wedges or pins under their footings.
Gouoe. A chisel whose section is of a semicircular form.
Gradetti. (It.) The same as Annulets.
Gradient. Good lists are given in Builder, 1863, p. 818 ; and xvii. p. 214.
Grecostasis. A hall or portico adjoining the Roman comitia, in which foreign ambassadors waited before entering the senate, and also whilst waiting the answer that was to be given to them.
Grain. The line of direction in which some materials can be split transversely.
Graining. The imitation of the grains or texture of certain ornamental woods, by means of paint worked over by a comb and other implements required to represent the various sorts. It is also called "combing."
Granary. (Lat. Granum.) A building for storing corn, especially that intended to be kept for a considerable time. Vitruvins calls those buildings intended for the preservation of grain granaria, those for hay fonilia, and those for straw farraria. The term horreum was used by the Romans for denoting buildings not only for the preservation of corn, but for various other effects.
Grand. A term used in the fine arts, generally to express that quality by which th highest degree of majesty and dignity is imparted to a work of art. Its source is, in form, freed from ordinary and common bounds, and to be properly appreciated requires an investigation of the different qualities by which great and extraordinary objecte produce impressions on the mind.
Grange. A farm-yard or farmery, consisting of a farm-house and a court of offices fol the different animals and implements used in farming, as also of barns, feeding houses poultry houses, \&c.

Granite. This word is apparently a corruption of the Latin word geranites, used by Pliny to denote a particular species of stoue. Tournefort, in the account of his Toyage to the Levant in 1699, is the first of moderu writers who uses the name. The eonstitucnt parts of true granite are conertious of felspar, quartz, and mica, intimately joinel together, but without any basis or ground. They are rarialle in quantity. Granites vary in colour, as the white, red, pink, blue, \&c. Sec Geveiss.
Grass Tanle. See Earth Table.
Graticulation. The division of a design or draught into squares, fur the purpose of reducing it to smaller dimensions.
Gravel. A term applied to a well-knowu material of small stones, varying in size from a pea to a walnut, or something larger. It is often intermixed with other substances, as sand, clay, loam, flints, pebbles, irou ore, \&c. It is used for roads and for eoncrete.
Grate-stone. A flat stone placed orer the grase of a deceased person, on which the name, dates, \&c., are engraved.
Gravity. See Specific Gratity.
Grecian Architecture. The refined works of the ancient Greeks, as exhibited in the buildings at Athens and numerous other cities of Greece, Asia Miuor, Sicily, \&c. The ehief principle of construction was the entablature and columns.
Greco-Roman Styce. The style of architecture adopted by many architects in England at the end of the last century, in which the severity of the ancient Greek style is modified by the richness and elaborate details of that of the Roman, together with the introduction of features such as the arch, adapted to the requirements of the style and of the present era.
Gree, Grees, Grese, or Gryse. An old word, signifying a step, steps, or degrecs.
Greek Cross. See Cross, fig. 1387.
Grefr Masonry. The manner of bonding walls among the Grecians. See Masonry.
Grienhocse. A building for sheltering in pots plants which are too tender to endure the open air the greater part of the year. It is constructed with a roof and one or more sides of glass, and being ereeted for luxury should not be far away from the dwelling-house, so that the greatest enjoyment may be had from it. At the same time it should, if possible, be near the flower garden, as being of similar character in use. The length and breadth can only be determined by the wealth and objects of the proprietor. The best aspects are sonth and south-east, but any aspeet may, in case of necessity, be taken, if the roof be entirely of glass, and plenty of artificial heat be supplied. In those greenhouses, however, which face the north, the tender plants do not in winter sncceed so well, and a greater quantity of artificial heat must then be supplied, and the plants should, in such case, be chiefly evergreens, and others that come into flower in the summer season, and grow and flower but little during the winter. The plants in greenhouses are kept in pots or boxes on stages or shelves, so as to be near and follow the slope of the roof, and thus made more susceptible of the action of the sun's rays immediately on passing through the glass.

An orangery, from being construeted with a ceiled roof, differs from a greenhouse; it is. moreover, chiefly deroted to plants producing their shoots and flowers in the summer season, and in the open air; the use of the orangery being merely to preserve them during the winter. The structure is more properly ealled a conservatory, though this term is now applied to buildings with glass roofs, wherein the plants are not kept in pots, but planted in the free soil, and wherein some are so reared as to grow and flower in the winter months.
Grey Stocks. Bricks of the third quality of the best or malm bricks.
Grinding. The act of taking off the redundant parts of a body, and forming it to its destined surface.
Jimpstone. A cylindrical stone, mounted on a spindle through its axis, with a winchhandle for turning it, to grind edge-tools.
irit Stone. One of various degrees of hardness; mostly of a grey, sometimes of a yellowish colour. It is composed of a siliceous and micaceous sand, closely compacted by an argillaceous cement. It gives some sparks with steel, is indissoluble, or nearly so, in acids, and vitrifiable in a strong fire. It is used for millstones more than for building. Iroin. (Sax. Cinopen, to grow.) The line formed ly the intersection of two arches, which cross each other at any angle. See Cross Vauiting.
iroined Ceiling. One formed by three or more curved surfaces, so that every two may form a groin, all the groins terminating at one extremity in a common point.
roined Vaulting. A vault which is formed by groins springing from rarious points and intersecting. The varieties are described in Book II. Chap. 1, p. 388; and Chap. 3. p. 608.
roove. (Sax. E.lafan, to dig.) A sunken rectangular ehannel. It is usually employed to connect two pieces of wood together, the piece not groored having on its edge a projection or tongue, whose section corresponds to and fits the groore.

Grotesque. (Fr.) A term applied to capricious ornaments which, as a whole, have n type in nature, consisting of figures, animals, leaves, flowers, fruits, and the like, all connected together.
Ground Floor. The floor of a building level, or ncarly so, with the surface of the chief thoroughfare or the land around it. It is not always the lowest floor, the basement being frequently beneath it. A floor, if on such a level, as in some country mansions, becomes a ground floor, though geuerally called a basement.
Ground Glass. The white effect given to glass by grinding it with emery powder, and thus obscuring it, so that it cannot be seen through.
Ground Joists. Those which rest upon sleepers laid upon the ground, or on bricks, prop stones, or dwarf walls; they are only used in basement and ground floors.
Ground Line. In perspective, the intersection of the ficture with the ground plane. See Ground Plane.
Ground Niche. One whose base or seat is on a level with tho ground floor.
Ground Plan. The plan of the stury of a house level with the surface of the ground, or near to it.
Ground Plane. In perspective, the situation of the original plane in the supposed level of our horizon. It differs from the horizontal plane, which is said of any plane parallel to the horizon; whereas the ground plane is a tangent plane to the surface of the earth, and is supposed to contain the objects to be represented. The term ground plane is used in a more confined sense than that of original plane, which raay be any plane, whether horizontal or inclined.
Ground Plate or Ground Sill. The lowest horizontal timber on which the exterior walls of a building are erected. It chiefly occurs in timber buildings, or in buildings whose outside walls are formed of brick pancls with timber framings.
Ground Plot. The plan of the walls of a building where they first commence above the foundation, though more properly it is the piece of ground selected to receire the building. For dwellings, its chief requisites are a healtby situation, a convenient supply of water, good drainage, a pleasant aspect, \&c. If fer tride or manufacture, it should be conveniently placed for receiving the raw material, and for exporting the articles manufactured.
Grounds. In joinery, certain pieces of wood attached to a wall, to which the finisbingsare fastened. Their surface is flush with the plastering. Narrow grounds are those wherete the bases and surbases of rooms are fastened. Grounds are used over apertures, as well for securing the architraves as for strengthening the plaster. That the plaster may be kept firm, should the wood shrink, a groove is sometimes rum on the edge of the gronnd next to the plaster, or the cdge of the ground is rebated on the side next, to the wall, n tbat in the act of plastering the stuff is received into the groove or rebate, which prevents it from shifting when it becomes dry. Wide grounds are framed.
Grovped Columns or Pilasters. A term used to denote three or more columns placed upon the same pedestal. When two only are placed t.ogether they are said to be couplend.
Groot. (Sax. Gnur.) A semi-liquid mortar, composed of quicklime and fine sand, poured into the joints of masonry, and those of large masses of brickwork at every four courses or so, in order to fill up the joints well, which process is called grouting. It is not required when the joints are properly flushed up.
Growing Shore. See Dead Shore.
Gungeon. The axle of a wheel, on which it turns and is supported. To diminish friction gudgeons are made as small as possible in diameter, consistent with their weight. They are often made of cast iron, on account of its cheapness, but wrought iron of the same dimensions is stronger, and will support a greater load.
Guilloche. (Fr.) An ornament in the form of two or more bands or strings twisting over each other, so as to repeat the same figure, in a continued series, by the spiral returning of the bands. The term is applied, but improperly so, to a Fret.
Gula, or Gula, or Gueule. (It.) Synonymous with Cymaticm,
Gunter's Chats. One used for measuring land, and taking its name from its reputed inventor. It is 66 feet, or 4 poles, long, and divided into 100 links, each whereof is joined to the adjacent one by three rings; the length of each link, including the adjacent rings, is therefore 7.92 inchcs. The advantage of the measure is in the facility it affords to numerical calculation. Thus the English acre, containing 4, 840 yards, and Gunter's chain being 22 yards long, it follows that a square chain is exactly the tenth part of an acre, consequently the contents of a field being cast up in square links, it is only necessary to divide by 100,000 , or to cut off the last five figures, to obtain the contents expressed in acres.
Grrgotle. See Gargoyle.
Grtte. See Drops.
Guterer and Guttering. A canal to the roofs of houses, to receive and carry off rainwater. Gutters are made of metal or of tiles, which are either plain or concave ; these
last are called gutter tiles, and so adapted to each other as to be laid with great pase. The Romans had gutters of terra-cotta along the root's of their houses, and the rainwater from them ran out through the heads of animals and other devices plated in the angles and in consenient parts. Zine is often used for gutters, but slould ouly be fixed to temporary erections. An Arris Gutter is formod of wool. The chanmels on each side or in the middle of a road way to carry off water, are called gutters.
Gymnasium. (Gr. 「uavafov, from 「uplos, naked.) Originally a space measured out and covered with sand for the evercise of athletic games, the gymnasia in the end beeame spacious buildings, or institutions, for the mental as well as corporcal instruction of youth. They were first erected at Lacedæmon, whence they spread through the rest of Greece, into Italy. They did not consist of single edifices, but comprised several buildings and porticoes for study and discourse, for baths, anointing rooms, palæstris, in which the exercises took place, and for other purposes. It is also a building for the praetico of physical games, and instruction in gymnastie exercises; and in Russia and Germany it is the school below the academy or university, where the scholar receives a superior education and learns its application in life.
Gyneceum. (Gr. Cuvaketov.) In ancient architecture, that portion of the Grecian house set apart for the oecupation of the female part of the family
Gypsum. (Probably froin $\Gamma \eta$, earth, and E $\psi \omega$, I eoucoct.) Crystals of native sulphate of lime. Being subjeeted to a moderate heat to expel the water of erystallisition, it forms plaster of Paris, and when water is applied to it, it immediately assumes a solid form. Of the numerous species, alabaster is, perhaps, the most abundant.

Hamitable Rooms. These are required by the Metropolis Local Management Act, 1855, c. 120 , to be not less than 7 feet high. When placed in the roof they must be of that height at least, throughout not less than one half of the area of such room. When underground, they must be of that height at least, 1 foot of which must be above the surface of the footway of the street. They must have, for their entire frontage, an open area from 6 inches below the level of the floor to the surface of the footway and 3 feet wide in every part; they must be effectually drained; have a fire-place with a proper chimney or flue; and an external glazed window of at least 9 superficial reet in area, clear of the frame, and made to open in an approved manner. There must be appurtenant to such room or cellar a water-closet or priry, and an ashpit furnished with proper doors and corerings.
Hack. In brickmaking, the row in which crude bricks are laid to dry after being moulded, and before being placed in the clamps or kilns to be burnt.
Hacking. In walling, denotes the interruption of a course of stones, by the introduction of another on a different level, for want of stones to complete the thickness. Thus making two courses at the end of a wall of the same height as one at the other. The last stone laid is often notched to receire the first stone of the other where the two heights commence. Hacking is never permitted in good work. The term is used more in Scotland than in England. Taking down old plastering from a wall or ceiling, is called "hacking off."
Hacking-out Knife. An implement used in cutting old putty out of the rebates of a bar of a light, before inserting a new pane of glass. As this operation injures the burs, a liquid preparation is now often used for softening the putty.
Hagioscope. (Gr. äloss, holy, and $\sigma \kappa o \pi d s, ~ m a r k) ~ A n ~ a p e r t u r e ~ m a d e ~ i n ~ t h e ~ i n t e r i o. r ~_{\text {a }}$ walls or partitions of a church, generally in the sides of the chancel arch, to enable persons in the aisles, or side chapels, to see the elevation of the host. They are technically called squints, and sometımes elevation apertures; and now written Agios:ope.
Half-pace. See Foot Pace.
Hale Round. A semieircular moulding which may be a bead or torus.
Half-timber Building. A structure formed of studding, with sills, lintels, struts, and braces, sometimes filled in with brickwork, and plastered over on both sides. Cottages were vsually lathed and plastered on the outside only, the upright timber work showing on the inside. The outside woodwork was sometimes painted black.
Hall. (Sax. Hal.) A name applied indifferently to the first large apartment on entering a house, to the public room of a corporate body, a court of justice, or to a manor house.

Vitruvius mentions three sorts of halls; the Tetrastyle, whick has four columns supporting the ceiling; the Corinthian, which has columns all round, and is vaulted; and the Egyptian, which has a peristyle of Corinthian columns, bearing a second order with a ceiling. These were called oci. In magnificent edifices, where the hall is larger and loftier than ordinary, and is placed in the middle of the house, it is called a salonn ; and a royal apartment consists of a hall or chamber of guards, a chamber, an antechamber, a cabinet ehamber, and a gallery.

Halving. A method of joining timbers by letting them into cach other. It is preferable to mortising, even where the timbers do not pass each other, as they are less liable to be displaced by shrinking.
Han. (Sax.) Properly a house or dwelling place; also a street or village, whence it has become the final syllable to many of our towns, as Nottingham, Buckingham, \&c.; hene; too, hamlet, the diminutive of ham, is a small street or village.
Ilammer Beam. A bcam acting as a tie at the feet of a pair of principal rafters, but not extending so as to connect the opposite sides. Hammer beams are used chiefly in roofs constructed after the Gothic style, the end which hangs over being frequently supported by a concare rib springing from the wall, as a tangent from a curve, and in its turn supporting anotherrib, forming an arch. The ends of hammer beams are often decorated with beads and other devices. The finest example of surh a roof is at Westminster Hall.
Hance. Tho small arch which often joins a straight lintel to a jamb. Hence the term Hance arch.
IIand-rail of a Stair. A rail raised upon slender posts, called balusters, to prevent persons falling down the well hole, as also to assist them in ascending and descending.
Handspike. A lever for raising a weight, usually of wood, and applied to the holes in a capstan head.
Ilana over. (Verb.) A term used to denote tho condition of a wall when the top projects beyond the bottom.
IIangings. Linings for rooms of arras, tapestry, paper, or the like. Paper hangings were introduced early in the seventeenth century.
Hanging Stile of a Door. That to which the hinges are attached.
Hardware. Ironmongery is so called.
Harmonic Proportion. That which, in a series of quantities, any three adjoining terms being taken, the difference between the first and second is to the differenee between the second and third, as the first is to the third.
Harmus. (Gr. 'Apmos.) In ancient architecture, a tile used for corcring the joint between two common tiles.
Harness Room. A room wherein harness is deposited. It is absolutcly requisite that it be dry and kept clean. Its situation should be near the stable it is destined to serve.
IIasp. The fastening to a common casement. See Snacket and Staple.
Hassack. The provincial name for Kentish rag stone.
Hatcher. (Fr. Hachette.) A small axe used by joiners for $\mathbf{r}+$ ducing the edges of boards.
Maunches of an Arch. The parts between the crown and the springing.
Hawk. A small quadrangular tool with a handle, used by a plasterer, on which the stuff required by him is served, for his proceeding with the work in progress. He has always a boy attendant on him, by whom he is supplied with the material. The boy in question is called a Hawk boy.
Head. See Aperture.
IIead and Foot Stones. The upright stones placed to the grave of a deceascd person, and on which the name, dates, \&c., can be engraved.
Header. In masonry and brickwork, the stone extending over the thickness of a wall. Hence the term Heuding c urse.
Heading Joint. In joinery, the joint of two or more boards at right angles to the fibres, or in handrailing at right angles to the back; this is so disposed with a view of contimuing the length of the board when too short. In good work the heading joints are ploughed and tongued, and in dadocs are, moreover, connected with glue.
Heantay of Stairs. The clear distance, measured perpendicularly, from a given landingplace or stair to the ceiling above, whether of the stairs or landing.
Heart Bond. In masonry, that in which two stones of a wall forming its breadth, hare one stone of the whole breadth placed over them. See Bond.
Hearth. See Chimney. See Slab.
IIeather Roof. A covering used in Scotland, by some considered snperior to straw.
Hecatompedon. (Gr.) A temple one hundred feet in front. A term applied to the Parthenon. Fig. 1458, 90 and 100.

Mr. Penrose's measurement gives the length of top of upper step as $101 \cdot 241$ English fcet $=100$ Attic feet. Length of the same 228•141 English feet.
Heek. The same as Rack.
Ilebl. A term used by workmen to denote a cyma rcversa.
Heel of a Rafter. The end or foot that rests on the wall plate.
Heigirs. The perpendicular distance of the most remote part of a body from the plane on which it rests.
Helght of an Arcir. A line drawn from the middle of the ehord or span to the intrados. It is also called the versed sine.
Helical Line of a Handrail. The spiral line twisting round the cylinder, representing the form of the handrail before it is moulded.

Hemocamincs. (Gr. 'Hasos, the sun, and Kamivos, a furnace.) A chamber in the Roman houses which depended on the rays of the sun for warming it.
Heloscene. An outside blind invented of late years, formed like the leurres of a rentilator, which keeps out the rays of the sun, cnsures rentilation, and permits a clear riew from the inside of the room to the window of which it is applied.
II elix. (Gr. "HA\&, a kind of isy whose stalk curls.) A small volute or twist un!er the abacus of the Corinthian capital, in which there are, in every perfect capital, sixteen, called also urille; viz., two at cach angle, and two meeting under the middle of the abacns, branching out of the caulicoli or stalks, which rise from between the leaves.
Hem. The spiral projecting part of the Ionic capital.
Hemicycle. A semicircle; the tern is used architecturally to denote vaults of the cradle form, and arches or sweeps of vaults, constituting a semicircle.
Hemisphere. In geometry, the half of a globe or sphere, when divided by a plane passing through its centre.
IIemitraglyph. A half triglyph.
lleptagon. (Gr.) A geometrical figure of seven sides and argles.
Hermitage. A small hut or dwelling in an unfrequented place, occupied by a hermit. Imitation buildings in a park, as a resting place, are so called.
Ilerring Bone Work. In paving, a disposition of bricks or stones laid diagonally (see diagram in the margin), each length receiring the end of the adjoining loriek or stone. In walling, courses of stone or bricks laid angularly in the face of a wall, in a similar manner. Sometimes there is a hovizontal
 course of stones or bricks laid between each angular course. See Ashlar.
Uemn Stone. That which is reduced to a given form by the use of the mallet and chisel.
Heagon. ('e ξ and revia, angle.) In geometry, a plain figure bounded by six straight lines, which, when equal, constitute the figure a regular hexagon.
Hexahedron or Cube. (Gr ${ }^{\text {'E }} \xi$ six, and ${ }^{\text {'E } \delta \rho a, ~ s e a t .) ~ O n e ~ o f ~ t h e ~ f i v e ~ r e g u l a r ~ s o l i d s, ~ s o ~}$ called from its having six faces or sealts.
Hexastyfe. (Gr. 'E ξ and Erudos, column.) That speeies of tenıple or building having six columns in front. (Fig. 1408.) See Colonvade.
Hick-joint Pointing. That species of pointing in whieh, after the joints are raked out, a portion of superior mortar is inserted between the courses, and made perfectly smooth with the surface. See Puinting.
Hieroglyphics. ('iepos, sacred, and $\Gamma \lambda \nu \phi \omega$, I engrave.) Sculpture or pic-ture-writing, which has obtained the name from
 being most commonly found on sacred buildings. They consist in the expression of a series of ideas by representations of visible objects. The name, js, however, more particularly applied to a species of writing used by the ancient Egyptians, of three different varieties of characters:-1. The hieroglyphic, properly so called, wherein the representation of the object conveys the idea of the objeet itself. 2. That in which the characters represent ideas by images of risible objects used as symbols. 3. That consisting of phonetic characters, in which the sign does not represent an object but a sound.
Hindoo Architecture. See Indian Architecture.
Hinges (from Hang.) The metal joints upon which any body turns, such as doors, shutters, \&c. There are many species of them, as described under the names.
Hir. A piece of timber placed between every two adjaeent inclined sides of a hip roof, for the purpose of receiving what are called the jack rafters.
Hip Knos. A finial, placed at the end of the ridge piece of a roof, or apex of a gable, and against which abuts the barge board of a gable; it is often finished with a pendant.
Hip Mould. A term used by some workmen to denote the back of the hip; by others it is used to signify the form or pattern by which the hip is set out.
Hip or Hipped Roof. A roof whose return at the end of a building rises immediattly
from the wall plate with the same inclination as the adjacent sides. The back of a hip is the angle made on its upper edge, to range with the two sides or planes of the roof, between which it is placed. The jack rafters are those short rafters which are shorter than the full-sized oncs to fill in against the hips.
Hip or Cornfr Tiles are those used at the hips of roofs; they are ten inches long, and of appropriate breadth and thickness, and bent on a mould before burning.
Hippodrome. (Gr. 'Itтоs, a horse, and $\Delta \rho o \mu o s$, a course.) In ancient architecture a place appropriated by the Greeks to equestrian exercises, and one in which the prizes were contended for. The most celebrated of these was at Olympia. It was four stadia (each 625 feet) long, and one stadium in breadth.
Hoard. (Sax. Ho ro, to kcep.) A timber enclosure round a building, in the course of erection or under repair.
Hod. A utensil employed by labourers for carrying mortar or bricks.
Hogelng. That curse upwards or convexity which is given to the middle of a long line, as the ridge of a roof, to prevent it appearing to have sunk in that part of it. It is carrying out the scamilli impares recommended by Vitrurius for the same purpose.
Hondfast. A long nail, with a flat short head for securing objects to a wall.
Hollow. A concave moulding, whose section is about the quadrant of a circle; called, sometimes, by the workmen a casement.
Hollow Newel. An opening in the midlle of a staircase. The term is used in contradistinction to solid newel, into which the ends of the steps are built. In the hollow newel, or well hole, the steps are only supported at one end by the surrounding wall of the staircase, the ends next the hollow being unsupported.
Hollow Quons. Piers of brick or stone made behind the lock gates of canals.
Hollow Wall. One built in two thicknesses leaving a cavity between them, for the purpose of preventing rain being drifted through the brickwork into the apartment, or for preserving a uniform temperature therein. They are tied together at intervals by iron ties, square slate, \&c. A lining of slate in the cavity has lately been added.
Homestall and Homestead. A mansion, or seat in the country.
Homologous. In geometry, the corresponding sides of similar figures. The areas and solid contents of such figures are likewise homologous.
Hood Mould. The projecting moulding forming a drip to protect the other mouldings to a door or window. See Label.
Hook. (Sax. Hoce.) A bent piece of iron, used to fasten bodies together, or whereon to hang any article. They are of rarious kinds.
Ilook Pis. The same as Draw-bore Pin.
Horizontal Cornice. The level part of the cornice of a pediment under the two inclined cornices.
Horizontal Line. In perspective, the ranishing line of planes parallel to the horizon.
Horizontal Plane. A plane passing through the eye parallcl to the horizon, and producing the ranishing line of all level planes.
Horizontal Projection. The projection made on a plane parallel to the horizon. This may be understood perspectively, or orthographically, according as the projecting rays are directed to a given point, or perpendicular to a given point.
Horn. A name sometimes giren to the Ionic volute.
Horretm. See Granary.
ILorse Block. A square framo of strong boards, used by excavators to elevate the ends of their wheeling planks.
Horse Run. A contrivance for drawing up loaded wheelbarrows of soil from the deep euttings of foundations, canals, docks, \&c.., by the help of a horse, which goes backwards and forwards instead of round, as in a horse gin.
Horseshoe Arch. An arch which, being higher than a semicircle, the radius is continued down on to the capital. It is chiefly used in Saracenic architecture
Hospital. A building erected for the care of sick persons. It is also given to one for infirm persons, as Greenwich Hospital, but that is properly an infirmary.
Hostel or Hotra. (Fr. Hôtel.) This word is used to denote a large inn, or place of public entertainment; but on the Continent it is applied to a large house, either of a private or public nature. One of the most interesting of the former class in Paris, is that of the ce'ebrated Hôtel de Cluny (fig. 1409), now containing a museum of medirval antiquities. It was erected at the end of the 15th century, the works being resumed in 1490, after some interruption, l, y Jacques d'Amboise, Abbé of Cluny. (See page 239.)
Hor Houss. A general term for the glass buildings used in gardening, and including stoves, greenhouses, orangeries, and conservatories. Pits and frames are mere garden structures, with glass roofs, the sides and ends being of brick, stone, or wood, but so low as to prevent entrance into them; they cannot therefore be considered as hothouses.
Hocsfr. (Germ. Haws) A human labitation or place of abode of a family. Among the
nations of the cast and of the sonth, honses are flat on the top, to which ascent is general on the outside. As we proceed northward, a declivity of the roof becomes requisite to throw off the rain and snow, which are of greater continuance in ligher latitudes. Amongst the ancient Greeks, Romans, and Jews, the houses usually enclosed a quadrangular area or court, open to the sky. This part of the house was by the Romans called the impluviam or caradium, and was prorided with channels to carry off the waters into the sewers. Both the Roman and Greek house is described by Vitruvius, to whose work we must refer the reader for further information on these heads. The word house is used in various ways; as in the phra*e, "a religious house," either the luyldings of a monastery, or the community of persons inhabiting them may be designated. In the middle ages, when a family retired to the lodge connected with the mansion, or to their country seat, it was called " keeping their secret house." Every gradation of building for habitation, from the cottage to the palace, is embraced by the word house, so that to give a fuil aceount of the requisites of each would occupy more space than can be devoted to the subject in this place.
Housing. The space taken

Fig. 1409. Hôtel de Cluny, Paris. out of one solid for the insertion of the extremity of another, for the purpose of connecting them. Thus the string board of a stair is most frequently notched out for the reception of the steps.
Iovel. An open shed for sheltering cattle, for protecting produce or materials of different kinds from the weather, or for performing various country operations during heavy rains, falls of snow, or severe frosts.
Iovelinas. A mode of preveating chimneys from smoking, by carrying up two sides higher than those less liable to reeeive strong currents of air; or apertures are left on all the sides, so that when the wind blows over the top, the smoke may escape below.
lue. In painting, any degree of strength of colour, from its deepest to its weakest tint.
lundred of Lime. A denomination of measure which, in some places, is equal to thirty-
five, in others to twenty-five, heaped bushels or bags, the latter being the quantity about London, that is, one hundred pecks. The hundred is also used for mumbering, thus deals are sold by the long hundred, or six score. Pales and laths are sold at five score to the hundred if five feet long, and six score if only three feet long. The hundred weight is 112 lbs . avoirdupois; the long hundred weight is 120 lbs ; so that the former is to the latter as 93333 to 1 .
ung, double and singer. A term applied to sashes; the first when both the upper and lower sash are balanced by weights, for raising and depressing ; and the last when only one, usually tbe lower one, is balanced over the pulleys.
urricane. A violent storm of wind, calculated at a velocity of from 80 to 100 miles per hour ; and to excreise a force of from $31 \frac{1}{2}$ to 49 lbs . per superficial foot. In places
where buildings are sulject to destructive hurricanes, the precautions to be observed have been described in the Papers, \&c., of the Cores of Royal Engineers, new series, 1851, vol. j. The whole of the roof should be fixed down to the wall-plate, and the wall-plate to the wall; the wall being made strong enough to resist the powerful current of air rushing against it. Where buildings are of wood, the framework should be tied into the ground, or into stone piers fixed in the ground. During the hurrieane at Barbadoes, on the 11th August, 1831, buildings having substantial partitions at slort intervals, withstood the blast, whilst others without them were blown down. Inside buttresses would answer the purpose. Shutters should be made to open on pirots at top and lottom. Joists used in galleries and verandahs, when let into the wall, tend to upset it. All brickwork should be English bond well grouted throcghout, the bricks having first been well saturated with water, and the mortar made of four parts of sand earefully selected, mixed with one of eoral lime; this mixture sets very strong. In the hurricane mentioned, a small building arched like a gunpowder magazine was uninjured; and a hospital building, well tied with iron, also withstood the storm. Roofs when reconstructed had diagonal bracing inserted to stiffen the rafters; parapet walls were found to protect roofs. Flat roofs, such as those used in the Mauritius, are perhaps the best to use.
Het. A small cottage or hovel, generally constructed of earthy materials:
Hydraulics. (Gr. 'ro $\omega \rho$ and Au入os, a pipe.) That branch of natural philosophy which treats of the motion of liquids, the laws by which they are regulated, and the effeets which they produce. By some authors the term hydrodynamics is used to express the science of the motion of fluids gen:erally, whilst the term hydraulics is more particularly applied to the art of conducting, raising, and confining water, and to the construction and performance of waterworks.
Hydrostatics. (Gr. 'r $\delta \omega \rho$ and $\Sigma \tau \alpha \omega$, I stand.) The scienee which explains the properties of the equilibrium and pressure of liquids. It is the applieation of statics to the peculiar constitution of water, or other bodies, existing in the perfectly liquid form. The following is the fundamental law whereon the whole doctrine of the equilibrium and pressure of liquids is founded: when a liquid mass is in equililrium under the aetion of forces of any kind, every molecule of the mass sustains an equal pressure in all directions.
Hypathral. (Gr. ' $\Upsilon \pi \pi$, under. and $\mathrm{A} e \mathrm{e} \eta \rho$, the air.) A building or temple open to the air. The temples of this class are arranged by Vitruvius under the seventh order, which had ten eolumns on each front, and surrounded by a doulle portico as in dipteral temples. The cell was open, whence the name, but it generally had round it a portico of two ranges of columns, one above the other. See 'Temple.
Ilyperbota. (Gr. ' $\gamma \pi \in \rho$, over, and Ba $\lambda \lambda \omega$, I throw.) One of the eonie sections, heing that made by a plane cutting the opporite side of the eone produced abore the rertex, or by a plane which makes a greater angle with the base than the opposite side of the cone makes.
Hyperbolic Conetb, or Hyperboloid. A solid formed by the revolution of an hyperbola about its axis. See Cusomp.
Hyperbolic Cylindroid. A solid formed by the revolution of an hypcrbola about its eonjugate axis or line through the centre, perpendicular to the transverse axis.

Ifypncaustum. (Gr. 'r π o, under, and Kalw, I burn.) In ancient arehitecture, a vaulted apartment, from which the licat of the fire was distributed to the rooms above by means of earthen tubes. This eontrivance, first used in baths, was afterwards adopted in private houses, and is supposed to have diffused an agreeable and equal temperature throughout the different rooms.
Hyrog Aiom. (©r.) A term applied among the ancients to thoso parts of a building which were below the level of the ground.
Hyporoniem. A footstool used in the ancient baths.
Hyposcenium. In ancient arehitecture, the front wall of the theatre, facing the orchestra from the stage.
Hypostyle. (Gir.) Worksupported by eolumns; a covered colonnade, or a pillared hall.
Hyputrachflium. (Gr. ' $\Upsilon \pi \sigma$, under, and Tpax $\eta \lambda o s$, the neek.) The slenderest part of the shaft of a column, being that immediately below the neek of a capital.

Ice House. Λ subterranean depôt for preserving iee during the winter. The most important advice that ean be given to the builder of an ice house is, that it be so thoroughly eapable of drainage, from the lowest point of its floor, as to permit no water ever to eollect upon it; this accomplished, no difficulty will, with common precaution, prevent the preservation of the ice. The :spect of such a building should be towards the south-
east, that the morning sun may expel the damp air which is more prejudicial than warmth. If possiblo it should be placed on a declivity for the facility of drainage. At the end of the drain which is to carry away the wator arising from the melted ice, a perfect air trap should be placed, to prevent all communication between the external and internal air, from which trap the water should be carried off without the possibility of obstruction. With respect to the dimensions and form of the ice house, the former may bo of a medium diameter, from fifteen to twenty feet; a moderate size would be from eight to fifteon feet. The best form is the frustum of an inverted cone, ten to twenty fort deep, bricked round, and with double walls, a carity of four inches being left between them. The ice is sustainod on a grated floor, through which the water is rapidly carried off by the drainage first mentioned. The ice is best collceted during the severest part of the frost, and should bo pounded as laid in the ice house, besides being well rammed down as it is putin. Snow however, hard rammed, will answer when ice cannot bo oltainod. The ontrance may be at tho top by double flaps well covered orer with straw ; or near the top at the side by a lobby with a door at each end, and filled with trusses of straw to keep out the air.
Ichnograpiry. (Gr. I χ vos, a model, and $\Gamma \rho a \phi \omega$, I draw.) The representation of the ground plot of a building. In perspectivo, it is its representation, intersceted by an horizontal plane at its base or groundfloor.
Icosahedron. (Gr. Eikoбt, twenty, and 'E $\delta \rho \alpha$, seat.) One of the five regular or platonic bodies, bounded by twenty equilateral and equal triangles. It may be regarded as consisting of twenty equal and similar triangular pyramids, whose vertices all meet in the same point; and hence the content of one of these pyramids, multiplied by twenty, gives tho whole content of the icosahedron.
Image. In perspective, the scenographic or perspective representation of an object.
(mbow. (Verb.) To arch over or to rault.
fmbmcated Tracery. A pattern formed like the tiles on a roof.
[mpages. A term used by Vitruvius (lib. iv. c. 6.), which has usually been considered as moaning the rails of a door.
mperial. (Fr.) A species of dome, whose profile is pointed towards the top, and widens towards the base, thus forming a curvo of contrary flexure.
mperials. A sized slate used in roofing.
mpetus. (Lar.) In mechanies, the same with momentum or force.
mpluviom. (Lat.) In ancient architecture, the uncorered court of a house. In the summer time it was the practice to stretch an awning over it. The torm is also applied to the sinking in the floor to receive the water.
ypost. (Lat. Impono, I lay on.) The capital of a pier or pilaster which receives an arch. It varies in the different orders; sometimes the whole of the entablature serves as the impost to an arch. The term is applicable to any supporting piece. An impost is said to be mutilated when its projection is diminished, so that it does not exceed that of the adjoining pilaster which it accompanies.
ibond Jambstone. A bondstone laid in the joint of an aperture.
icertum. (Lat.) A term used by Vitrurius to designate a mode of building which consisted of small rough stones and mortar, and whose face exhibited irregularly furmed masonry, not laid in horizontal courses. See Masonry.
ch. A measure of length, being the twelfth part of a foot, and is usually subdivided into eighths and sixteenths. See Foot.
cised Slab. A memorial to a deceased person, sometimes plainly lettered, and occasionally ornamented with brasses; they usually formed the parement of ancient churches. See Mural Slab.
clination. (Lat.) The approach of one line, which if continued will meet another or the same of two planes.
lined Plane. One of the five simple mechanical powers, whose theory is deducel rom the decomposition of forces.
rostation. (Lat.) Anything, such as mosaic, scagliola, \&c., applied by some conlecting medium to another body.
] efinite. (Lat.) Anything which has only one extreme, whenco it may be produced nfinitely as it is produced from such extreme.
3 evten. (Lat.) Toothed together, that is, with a projection fitted to a recess.
Ihan Architecture. The Buddhist and Mahometan buildings of Hindostan are omprised under this title. Rock-cut temples, temples, pillars, monumental tombs, alls, tanks, \&c., show the energy and skill of these people, many of the works being rofusely covered with sculpture and carvings, the earlier works chiefly having reference their religion.
I oration. (Lat.) A term applied to the firmer consistence which a body acquires from trious canses.
I3 ims. (Lat. Incrs.) A term appliod to that law of the material world which is known
to predicate that all bodies arc absolutely passive or indifferent to a state of rest or motion, and would continue in those states unless disturbed by the action of some extrinsic force. Inertia is one of the inherent properties of matter.
Infintre. (Lat. Infinitus, boundless.) In geometry, that which is greater than any assignable magnitude ; and as no such quantities exist in nature, the idea of an infinite quantity can only, and that most imperfectly, exist in the mind by excluding all notions of boundary or space.
Infirmary. A public building for the roception of infirm persons; but the term is more generally used to denote a sick ward attached to some public establislument.
Inlaid Work. Work in which the surface of a matcrial is cut away to allow of the substitution of metal, stone, cement, wood, ivory, tortoiseshell, mother-of-pearl, or other substance, with a flush surface. Such is Buhl Work, Marqcetry, \&c. Mosaic Work in stone is also inlaid work. The inlaying of metal on metal is called damaseening. Veneering is also a species of inlaying.
Inner Plate. The wall plato, in a doublc-plated roof, which lies nearest the centre of the rouf; the side of the other wall plate, called the outer plate, being nearer the outer surface of the wall.
Inner Square. Tho edges forming the internal right angle of the instrument called a square.
Inserted Column. One that is engaged in a wall.
Instrenents, Mathenatical. Thoso used for describing mathematical diagrams and drawings of every description, when the figures or elementary parts of them are composed of straight lines, circles, or portions of them. The indispensable instruments for such operations are a drawing pen, a pair of plain compass s, commonly called dividers, a pair of drawing compasses, a port crayon and pencil foot, a pair of bow, of trianguldur, and of proportional compasses, a protractor in the form of a semicircle or rectangle, and graduated on the edges, a plain scale, and a parallel rule.
Insular, or Insulated Building. Such as stands entirely detached from any other.
Insulated Column. One detached from a wall, so that the whole of its surface may be seen.
Intagio. (It.) Sculpture in which the subject is hollowed out, as for a seal, so that the impression from it would present the appearance of a bas-relief.
Intavolata. The same as Cyma.
Intercepted Axis. In conic sections, that part of the diameter of a curve comprehendet betweon the vertex and the ordinate. It is also called the abscissa, and forms an arel of a peculiar kind.
Intercolominition. (Lat. Inter, between, and Columna, a column.) The distance betweel two columns measured at the lower part of thicir shafts. It is one of the most importin elements in architecture, and on it depeuds the effect of the columns themselves, thei pleasing proportion, and the harmony of an edifice. Intercolumniations are of fir species, pyenostylos, systylos, diastylos, areostylos, and eustylos, which sce.
Interdenters. The space between two dentels. From a comparison of various example it seems that the Greeks placed their dentels wider apart than the Romans. In th temple of Bacchus at Teos, the interdentel is two-thirds the breadth of the dentel, and i that of Minerva Polias at Priene, t'e interdentel is nearly threc-fourths. In the templ of Jupiter Stator at Rome, the interdentels are equal to half the breadth of the dente
Interduce. The same as Intertie.
Interior Angle. An angle formed within any figure by two straight lined parts of th perimeter or boundary of the figure, the exterior angle being that which is formed i producing a side of the perimeter of the figure. The term is also applied to the th angles formed by two parallel lines, when cut on each side of the intcrsecting line.
Interior and Opposite Angles. An expression applied to the two angles formed by line cutting two parallels.
Interlacing Arches. Semicircular aches as in an arcade, the mouldings of whic intersect each other, as frequently seen in Norman architecture. Niiner suppose the Pointed style to have lad its origin from them.
Interval Angle. See Interior Angle.
Interties. Short pieces of timber used in roofing to bind upright posts together, roofs, in partitions, in lath and plaster work, and in walls with timber framework.
In ronaco. (It.) The term often applied to the whole coating of plastering upon wall or ceiling ; but properly it means the finishing coat only.
Intrados. The interior and lower liuo or curvo of an arch. The exterior or upper cur is called the cxtrados. See Arcir.
Invention. (Lat. Invenio, I find.) In the fine arts, the choice and production of su objects as are proper to enter into the composition of a work of art. "Strictly spea ing," says Sir Joshua Reynolds, "invention is little more than a new combination those images which hare been previously gathered and deposited in the nemor
nothing can come of nothing; he who has laid up no materials can produce no combinations." Though there be nothing new under tho sun, yet novolty in art will be attainable till all the combinations of the same things aro exhuusted, a circumstance that can never come to pass.
Inverted Arci. An areh turned with its back and keystone downwards. It is used in foundations, to distribute the weight of particular points over the whole extent of the foundation, and hence its employment is frequently of the first impurtance in construotive architecture. Such an arch has been used in some of the English eathedrals to form a buttress between tho piers of the central tower when they appeared to be giving way from the weight abovo.
Involute. See Evolute.
Intirard Angle. The re-entrant anglo of a solid. See Interior Angee.
Ionic Order. The second of those employed by tho Greeks, and the third used by the Romans and in Italian architecture. The capital is known by the volutes. Dentels are used in the cornice. The proto-Ionic is considered to be found in the capital of the columns at Persepolis. The Authemion is an ornament peculiar to this order.
Irus. One of the chief metals. The metallic products of the irou manufacture are of three kinds: malleable or wronght iron, being pure or nearly pure iron; east iron; and stecl, being certain compounds of iron with carbon. In all cases cast iron is best for exterior, and wrought iron for interior purposes-as the former is not acted upon so greatly by atmospheric influences.
Ironid-in. Ashlar work, when acted upon by water, is sometimes set in hydraulic cement, the joints being filled and rubbed up so as to make the stuff curl out, which is then to be neatly struck off and ironed-in to secure a good water-tight joint.
Inonmongery. The articles in iron and other ware, required by the builder during the execution of his works; such as bolts, locks, and other fastenings, hinges, nails, spikes, screws, and such-like.
Irregelar Figure. One whose sides, and consequently angles, are unequal to each other.
Isagon. (Gr. I $\sigma o s$, equal, and $\Gamma \omega \nu(a$, an angle.) A figure with equal angles.
Isle or Ile. The old way of writing aisle or aile.
Isodonum. (Gr.) One of the methods of building walls practised by the Greeks. It was executed in courses of equal thickness, and with stones of equal lengths. The other method was called pseudisodomum, in which the heights, thicknesses, and lengths of the stone were different. There was yet another mode called Emplecron.
Isometrical Projection. A system of drawing objects similarly to a bird's-eye view, excepting that parallel lines are not uade to radiate to vanishing points as in that and in the usual perspective. It was matured about 1823 by Professor Farish, who explained it in the Transactions of the Cambridge Philosophical Society, vol. 1. The figures $590 f$ and $590 p$ are drawn by this method of representation.
Isosceles Triangle. One in which two of the sides are of equal length
Italian Archircecture. That adaptation of ancient Roman architecture which commenced at the period of the Remaissance of Art in Italy.

J

tack Arch. One whose thickuess is onily of one brick.
ack Plang. A plane about eighteen inches long, used in taking off the rough surface left by the saw or that of the axe, and for taking off large protuberant parts, to prepare the stuff for the trying plane.
ack Rafter. See Hip Roof.
ack Ribs. Those in a groin, or in a polygonally-domed ceiling, that are fixed upon the hips.
ack 'Timber. Any one interrupted in its length, or cut short.
amb Linings. The two vertical linings of a doorway which are usually of wood.
amb Posts. Those introduced on the side of a door, to which the jamb linings are fixed. They are particularly used when partitions are of wood.
imb Stones. In stone walls, those which are employed in building the sides of apertures, in which every alternate stone should go entirely through the thickness of tho wall.
amps. (Fr.) The sides of an aperture which connect the two sides of a wall. See Aperture and Chimney.
rigin Head. The end of a roof not hipped down to the level of the opposite adjoining walls, the gable being carried higher than the level of those walls.
try. The projecting part of a building, as an upper story beyond a lower one.
wish or Hebreit Architecture. Very little beyond the references in the Seriptures is known of the works of these ancient people. The excarations lately made at Jerusalem have not led to any discoverics of ralue relating thereto.
$y_{\text {Is }}$ Door. A door so constructed as to have the same continuity of surface with that of the partition or wall in which it stands. Its use is to preserve an unbroken surface in an apartment where one door only is wanted nearer to one end of a room than another, and generally for the purpose of preserving uniformity.
Jiblet Cheek. See Giblet Check.
Joggle. The joint of two bodies so constructed as to prevent them sliding past each other, by the application of a force in a direction perpendicular to the two pressures by which they are held together. Thus the struts of a roof are joggled into the truss posts and into the rafters. When confined by mortise and tenon, the pressure which keeps them together is that of the rafter and the reaction of the truss-post. The term is also used in masonry to signify the indentation made in one stone to receive the projuction in another, so as to prevent all sliding on the joints. This may be also accomplished by means of independent pieces of material let into the adjacent stones. See Cramp; Dowel.
Joggle Piecte. The truss post in a roof when formed to receive a brace or strut with a joggle.
Jonner. The artisan who joins wood by glue, framing, or nails, for the finishings of a building.
Joinerx. The practice of framing or joining wood for the internal and external finishings of houses; thus the covering and lining of rough walls, the covering of rough timbers, the manufacture of doors, shutters, sashes, stairs, and the like are classed under this head.
Joint. The surface of separation between two bodies brought into contact and held firmly together, either by some cementing medium, or by the weight of one body lying on another. A joint, however, is not mercly the contact of two surfaces, though the nearer they approach the more perfect the joint. In masonry, the distances of the planes intended to form the joint is comparatively considerable, bocause of the coarseness of the particles which enter into the composition of the cement.
Jointer. In joinery is the largest plane used by the joiner in straightening the face of the edge of the stuff to be prepared. In bricklaying, it is a crooked piece of iron forning two curves of contrary flexure by its edges on each side, and is used for drawing, by the aid of the jointing rule, the coursing and vertical joints of the work.
Jointing Rule. A straight edge used by bricklayers for the regulation of the direction and course of the jointer in the horizontal and rertical joints of brickwork.
Joist. (Fr. Joindre.) The timber whereto the boards of a floor or the laths for a ceiling are nailed. Joists rest on the walls or on girders; sometimes on both. When only one tier of joists is used, the assemblage is called single-flooring; when two, double-flooring.
Jubé. (Fr.) The rood loft or sereen at the entrance to the choirs of French cathedrals, In England it is usually called the chancel screen. It is also the stand (often onding upwards in an eagle with expanded wings) on which the Gospel is placed to be read, receiving its name from the words "Jube Domne benedicere," used by the deacon when the missal is presented to him by the officiating priest at mass, previous to the reading of the Gospel. See Choir Screen and Rood Loft.
Joffers. An obsolete term for pieces of timber four or five inches square.
Jump. An abrupt rise in a level course of brickwork or masonry to accommodate the work to the inequality of the ground. Also in quarrying, one among the various names given to the dislocations of the strata in quarries.
Jumper. A long iron chisel used by masons aud miners.

K

Kamptolicon. An elastic covering for floors. See Floorcloth.
Fieblay, or Kiblef. The point in a mosque designating the direction of the temple e the Mahometans at Mecca.
Keel. The fillet, raised edge, or sharp arris, formed on roll mouldings, by which the heaviness of the large ones was relieved, and diversity gained without loss of mass.
Keep, or Keep Tower. A term almost synonymous with donjon. See Castle.
Kerb. See Kiri.
Kerf. The way made by a saw through a piece of timber, by displacing the wood witl the teeth of the saw.
Kernel, or Kernelle. See Crenflle.
Key. (Sax. Cæ弓e.) An instrument for driring back the bolt of a lock. The key of floor is the board last laid down. In joinery generally, a key is a piece of wood let int the back of another in the contrary direction of the grain, to preserve the last fror warping.
Key Stone. The highest or central stonc of an arch. Sce Arch. In Gothic vaultiug see Pendent and Boss.

Keten Dado. That which has bars of wood grooved into it across the grain at the back to present it warping.
Kexs. In naked flooring aro picces of timber fixed in between the joists by mortise and tenon. When these are fastened with their ends projecting against the sides of the joists, they are called strutting-pieces.
Kiln. A building for the accumulation and retention of heat in order to dry or burn certain materials deposited within them.
King Post. The centre post in a trussed roof. Sce Crown Post.
Kirb Plate, Roof, and Stone. See Curn Plate; Curn Roof; and Curb Stone.
Krichen. (Fr.Cuisine.) The apartment or office of a house wherein the operations of cookery aro carried on.
Knee. A part of the back of a handrailing, of a convex form, being the reverse of a ramp, which is also the back of a landrail, but is concave. The term knee is also given to any small piece of timber of a bent or angular form.
Kaee Piece, or Knee Rafter. An angular piece of timber, to which other pieces in the roof are fastened.
Knobring. Knocking oft the rough protuberances of hard rock stone at the quarry. It is called also skiffling.
Knocker. A movable sort of hammer, more or less of an ornamental character, hinged to the face of a door or gate by which attendance is claimed to the demands of those requiring admittance. The knob which is struck upon is sometimes called a door-nai/.
Knot, or Knob. A bunch of leaves or flowers, as the bosses at the ends of a label; at the intersection of ribs; and in capitals.
Knotting. The preliminary procoss in painting, to prevent the knots appearing, by envering them with a coat composed of red read, then white lead and oil, and lastly, a coat of gold size. Sometimes leaf silver is used. Also a knotting size.
Kncecke. The joint of a cylindrical form, with a pin as an axis, by which the straps of a hinge are fastened together.
Inclung. A moulding nearly flat, and similar in character to a bead and reel ornament. It is chiefly used in cabinet work.
Toss. A measure of length used in India, which varios in different prorinces; generally about two mil-s.
zurb Stone. See Curb Stonk.

L

Abel. In Gothic architecture, the drip or hood moulding over an aperture when it is returned square.
abour. (Lat.) A term in masonry employed to denote the value of a piece of work in consideration of the time bestowed upon it.
anyrintr. (Gr. ^abupı θ os.) Literally a place, usually subterraneous, full of inextricable windings. The four celebrated labyrintlis of antiquity were the Cretan, Egyptian, Lemnian, and Italian. The first has the reputation of being the work of Dædalus to secure the Minotaur; the second is said to have been constructed under the command of Psammeticus, king of Egypt; the third was on the island of Lemnos, and was supported by columns of great beauty; the fourth is reported to have been designed by Porsenna, king of Etruria, as a tomb for himself and his successors.
byrinth Fret. A fret, with many turnings, in the form of a labyrinth. See Fret. conicum. (Lat.) One of the apartments in the ancient baths, so called from its having been first used in Laconia.
cQUER. A yellow varnish, consisting of a solution of shell-lac in alcohol, coloured by gamboge, saffron, annotto, or other yellow, orange, or red colouring matters. The use of lacquer is chiefly for varnishing brass, and some other metals, in order to give them a golden colour and preserve their lustre.
ctariom. (Lat.) Strictly a dairy-house. In ancient architecture, it was a place in he Roman herb market, indicated by a column, called the Columna Lactaria, where foundlings were fed and nourished.
cunar. (Lat.) The ceiling or under surface of the member of an order. Also the inder side of the larmier or corona of a cornice. The under side also of that part of hie architrave between the capitals of columns. The ceiling of any part in archiecture receives the name of lacunar only when it consists of compartments sunk or roliowed, without spaces or bands, between the panels; if it is with bands, it is called aquear.
Jor. A sized slate used in roofing.
Joy Chaper. The name giren to a chapel dedicated to the Virgin, generally, in ncient cathedrals, placed behind the high altar.

Lagging, or Laggins. The planks laid on the ribs forming the centreing of an arch, to carry the stone or brickwork.
Lancet Arch. One whose head is shaped like the point of a lancet, and generally applied to long narrow windows. Fig. 1410.
Landing. The terminating floor of a flight of stairs, either above or below it.
Lantern. (Fr. Lanterne.) A structure either square, circular, elliptical, or polygonal, on the top of a dome. It is also the upright windows placed over the ceiling of an apartment, to give light. The internally polygonal tower over the intersection of the nave with the transepts of a church, as at Ely Cathedral ; St. Helen's, York, \&c., is also so called.
Lap. The part of one body which lies on and covers another.
Laquear. See Lacunar.
Lararium. (Lat.) In ancient architecture, the apartment in which the lares or household gods were drposited. It frequently contained also statues of the proprietor's

Fig. 1410. Lancet Arch. ancestors.
Larider. The place in which undressed meat is kept for the use of a family.
Larmier. (Fr.) The same as Corona.
Lit, or Lath. The Sanserit term for a pillar.
Latch. The catch by which a door is held fast.
Latent Heat. That which is insensible to the thermometer, upon which the liquid and aeriform states of bodies depend, and which becomes sensible during the conversion of vipours into liquids and of liquids into solids.
Lateral Strength, The resistance which a body will afford at right angles to its grain.
Iateral Thrust. The weight, or rather pressure, of materials sideways, as in an arch.
Lath. (Sax. Lreza.) A thin piece of wood used in slating, tiling, and plastering For the latter, thero are two sorts, double and single, the former being about three eighths of an inch thick, and the latter barely a quarter of an inch. Laths for slatet and for pantiles are pieces of fir, about three inches by one inch thick, to which the former are nailed, and on to which the latter are hung.
Lath Brick. A species made in some parts of England. They are twenty-two inches long and six jnches broad.
Latif fioated and set fair. Three-coat plasterers' work; the first is called prickine up; the second floating; the third, or fimishing, done with fine stuff, is the setting coai
Lath laid and set. Two-coat plasterers' work, except that the first is called laying and is execnted without scratching, unless with a broom. When used on walls, this sort of work is generally coloured; when on ceilings, it is whited.
Iath plasterkd, set, and coloured. The same as lath laid, set, and coloured.
Iath pricked up, floated, and set for Paper. The same as lath floated and set fair
Ieattice. (Fr. Lattis.) A reticulated window, made of laths of wood, strips of iron, 0 other materials, and only used where air, rather than light, is to be admitted, as i cellars and dairies.
Laundry. It should be spacious and well supplied with erery convenience for washing drying, mangling, and ironing the linen of a family or of an establishment. Horses, 0 frames of wood, should be provided for hanging the linen upon to dry, which shoult be suspended to the timbers of the ceiling by pulleys, by which they may be raise and lowered, unless a drying closet heated by a stove or hot water be provided; thi is fitted up with horses running on iron rails backwards and forwards.
Iavatory. (Lat.) Besides the reference to the monks' lavatories, as noticed es. Cloister, this term is now employed to designate a closet or small room fitted 1 with basins and other apparatus for washing hands; it sometimes includes urinals an watcr-closets. or communicates with another room fitted up with them.
Law Courts. See Court of Justice.
layer. In brickwork and masonry it is synonymous with Course.
Layer Boazding. The same as Gutter Boarding; the boards being fixed to th bearers to carry the leadwork of a gutter to a roof.
Laying. In plastering, the first coat on lath of two-coat work, the surface whereof roughed by sweeping with a broom. The difference between laying and rendering bein that the latter is the first coat upon brick.
Lazariofse, or Lazaretto. (Ital.) A hospital for the reception of the poor and tho afflicted with contagious diseases. There are many in the southern states of Eurol for the performance of quarantine, into which those only are admitted who arrive fro countries infected by the plague, or suspected of being so. An account of the princip lazarettes of Europe was published by the celebrated Howard.

Lead. (Sax. Lax.) The hearirst metal next to gold, platina, and mercury, being eleven times heavier than its owu bulk of water.
Lesf. One side of a door, upright slab of stone, \&c.
Leanto. A building whose rafters pitch against or lean on to another building or wall.
Lara board. The plank fastencd on the feet of the rafters to carry the side piece of tho lead of a guiter under the bottom rows of the slating or tiling.
Leaves. (Sax. Lear.) Ornaments imitated from natural loaves, whereof the ancieuts used two sorts, natural and imaginary. The former were those of the lanrel, palm, acanthus, and olive; but they took great liberties in the representatious of all of them.
Lectern. The reading desk placed in the choir of medixval churches. It was made in the shape of a pillar, with a stab for the book, and was usually of brass, sometimes elaborately carved. It was suporseded by the reading desk after the Reformation.
Lectonium. The ancient name for the place where the epistle was read in a chureh; hence lectern and lettern for the desk itself. The lectorium in the German churches is now of rare occurrence, but one is to be seen in Mcissen Cathedral.
Lecture Hall. A building erectod for the special purpose of affording good accommodation for a lecturer and his audience. It is sometimes a large room ecmbined with others; thns, in a village or small town, a building containing a lecture hall about fity feet by thirty feet, might have a reading room about twenty feet by eighteen feet, a class-room, with a restibule and the usual necessaries.
Ladge. A surface serving to support a body either in motion or at rest. Ledges of doors are the narrow surfices wrought upon the jambs and sofites parallel to the wall to stop the door, so that when it is shut the ledges coincide with the surface of the door. A ledge, therefore, is one of the sides of a rebate, each rebate being formed of two sides. In temporary work the ledges of doors are formed by fillets, likewise called a stop. Also the horizontal planks in common doors, to which the vertical planks are nailed.
Ledaement. The development of a surface, or the surface of a body stretchod out on a plane, so that tho dinensions of tho different sides may be easily ascertained.
A string course or horizontal moulding. Ledgement table is applied to any of the projections of a plinth in Gothic architecture, excopt the lowest or earth table.
Ledgers. In scaffolding for brick buildings are horizontal pieces of timber parallel to the walls. They are fastened to the standards, or upright poles, by cords, to support the put-logs, which lie at right angles to and on the walls as they are brought up, and receive the boards for working on.
liegs of an Hyprrbola. The two parts on each side the vertex.
Ligs of a Triangle. The sides which inclose the base.
Lengtir. (Sax. Lens.) The greatest extension of a body. In a right prism the length is the distance between the ends; in a right pyramid or cone, the length is the distance between the vertex and the base.
Lesche. (Gr.) A publie building among the Greeks, consisting of open courts with porticoes, the walls covered with paintings. It was used principally as a lounging place. The nearest modern approach to it appears to be the Ruhmeshalle, or mercantile exchange, at Munich. Ancient writers state that these public meeting-places were so much in request that there were no less than 360 in Athens alone.
Lettern, or Lectern. A desk in a church from which the lessons are read. See Ambo in the ancient church. An eagle with wings displayed, that bird being symbelical of S. John the Evangelist and his Gospel, was often used as a book board in the Middle Ages; and is also seen in the cathedrals and in some large churches in England.
Ledcomb. See Lookum.
Level. (Sax. Lœerel.) A line or surface which inclines to neither side. The term is used substantively to denote an instrument which shows the direction of a straight line parallel to the plane of the horizon. The plane of the sensible horizon is indicated in two ways: by the direction of the plummet, or plumb line, to which it is perpendicular; and by the surface of a fluid at rest. Accordingly, levels are formed either by means of the plumb line, or by the agency of a fluid applied in some particular manner. They all depend, however, upon the same priaciple, namely, the action of terrestrial gravity.

The carpenter's level consists of a long rule, straight on its lower edge, about ten or twelve feet in length, with an upright fixed to its upper edge, perpendicular to and in the middle of the length, having its sides in the same plane with those of the rule, and a straight line drawn on one of its sides perpendicular to the straight edge of the jule. The mason's level is formed of three pieces of wood, joined in the form of an isosceles triangle, haring a plummet suspended from the vertex over a mark in the centre of the base.
Leveling. The art or act of finding a line parallel to the horizon, at one or more stations, in order to determine the height of one place with respect to another, for laying
ground; even, regulating descents, draining morasses, conducting waters for the irrigation of land, etc.

In the practice of levelling, it is evident that the level line, carried on by means of a spirit level or other instrument used for the purpose, is a tangent to the earth : it is therefore necessary to make an allowance for the difference betwcen the true level B C and the apparent level B D. This difference is, of course, equal to the excess D C of the secant of the arch of distance above the radius of the earth. Hence, from station to station, acconlingly, allowance must be made. The subjoined Table exhibits the corrections or
 values of the length C D.

Distance or BC.	Diff. of Lev. or CD.	Distance or BC.	Diff. of Lev. or CD.	Distance or BC.	$\begin{aligned} & \text { Diff. of Lev. } \\ & \text { or CD. } \end{aligned}$	Distance or BC.	$\begin{aligned} & \text { Liff. of Lev. } \\ & \text { or CD. } \end{aligned}$
Yards.	Inches.	Yards.	Inches.	Miles.	Feet. In.	Miles.	Feet. In.
100	$0 \cdot 026$	900	2.081	$\frac{1}{4}$	$0 \quad 0 \frac{1}{2}$	6	2311
200	$0 \cdot 123$	1000	2.570	$\frac{1}{2}$	02	7	326
300	$0 \cdot 231$	1100	$3 \cdot 110$	$\frac{3}{4}$	0 4, ${ }^{1}$	8	426
400	$0 \cdot 411$	1200	3.701	$1{ }^{4}$	08	9	53.9
500	$0 \cdot 643$	1300	$4 \cdot 34 t$	2	28	10	664
600	0.925	1400	$5 \cdot 038$	3	60	11	803
700	$1 \cdot 260$	1500	$5 \cdot 781$	4	107	12	$95 \quad 7$
800	$1 \cdot 64.5$	1600	6.580	5	$16 \quad 7$	13	1122

Lever. In mechanics an inflexible rod, moveable about a fulcrum, or prop, and hayng forces applied to two or more points in it. The lever is one of the mechanical powers, and being the simplest of them all, was the first attempted to be explained.
Lever Boards. A set of boards so fastened that they may be turned at any angle to admit more or less light, or to lap upon each other so as to exclude all air or light through apertures. See Louvre Boards.
Lemis, or Lemisson. An instrument used by builders to raise stones of more than ordinary weight to the upper part of a building. It was revived by a French artisan in the reign of Lcuis XIV., and is now generally employed. It operates by the pieces forming its doretail end being held in their corresponding places in a hole sunk in the stone, by a middle straight piece, kept in its situation by a pin passing through it and the doretail pieces at top, and the comcination of the whele is effected with a large ring, which is attached to the rope or chain, and the stone lifted to its place.
Lias. A provincial name adopted by geologists for an argillaceous limestone, which, together with its associated bed, is characterised by peculiar fossils.
Library. An edifice or apartment for the reception of a collection of books. The most ancient and celebrated library in existence is that of the Vatican : in the latter respect, as well on account of its size as of the number of valuable manuscripis it contains. It occupies in the suite of its apartments one of the sides of the Vatican 900 feet in length. In the architecture or arrangement there is nothing particularly to admire, and indeed it was not originally intended for the purpose to which it has been appropriated.

The Medicean library at Florence, the work of Michael Angelo, has grand proportions, but the details are as capricious as that great man could possibly have invented. Tho library of St. Mark at Venice has already been described in the First Book. Sansavino had to encounter many difficulties in respect of its site and connection with otber buildings, but Palladio considered the success of its design to have been so great as to have mave it worthy of any age.

Although a public library would seem to require a grave and simple style of treatment, it is, nevertheless, properly susceptible of much richness, if the funds adnit, and it comports with the surrounding buildings to use muc. decoration. Security againet fire is the first important consideration in its construction; and the next is to ensure the perfect quiet necessary for study. There can scarcely te too much light, because there are always modes of excluding the excess in the brightest days of summer. The light should not be placed high up for the purpose of obtaining more room for the presses which are to receive the books, because evell a greater space may be obtained, as in the magnificent library at Trinity College, Cambridge, by Wren, by making the presses stand against the piers at right angles with the longitudinal walls, and placing the windows between them. Moreover, the presses, when placed longitudinally against the walls, the windows being above, have the titles of the books they contain indistinct, from being too much in shadow. The library just mencioned is in every respect one of the finest works of Sir Christopher Wren; it is 190 feet long, 40 feet
wide, and 38 feet ligh, floorel with marble, and deconaterl with pilasters and an entablature of the Corinthian order. This library is adduced as a perfect model of the mode of distribution, which might be carried in principle to any extent. If the readers be very numerous, a separate reading-roon becomos a neerssary addition, which should be placed as centrally as may be to the whols mass of building, so that the labour of the attendants may be lessened, and the readers at the same time more readily served with the books wanted. The bost mode of warming the apartments is by hot water in pipes carried round the apartments, ö pumped up through the floor. Efficient means of afforling ventilation to the room or rooms is also necessary.

At Paris the Bibliotheque Nationale is, though of immense extent, little more than a warehouse for holding the books. The library of St. Genevieve, in tho same city, is a well-conceived and well-designed building, and particularly suited to its destination. This ornamental edifice was designed by M. Lalbrouste in 1843.

Perhaps one of the most absurd distributions of plan for the bnildings under consideration is to bo seen in the Radeliffe Library, at Oxford. It is circular on the plan, and hence vast loss of room is experienced, but nevertheless it is a noble building.

In London the only library of any size to which reference can be mado is that of the British Museum. With so many clubs and institutions, each possessing its own library, it may probably be many years before an edifice, similar to the Free Library and Museum at Liverpool, is erected in London; especially as the parishes have not yet had sufficiont courage to tax themselres for the establishment of free libraries, which the Act of Parliament has for some years past enabled them to do. The king's library at the British Museum is situated in the east wing, and was erected, 1825-28, by Sir R. Smirke, R.A. The chief room is 300 feet long, 40 feet wide, and 30 feet high. Little was done for the aecommodation of the readers, largely increasing in numbers, until 1857, when the ncw reading-room was opened, affording desks for three hundred readers, which are very often fully occupied, who have free access to about 20,000 volumes ranged around it. The room is $1+0$ feet diameter and 106 feet high, having a central light of 40 feet diameter in the dome, with tall side lights in the springing of the dome. It was designed by Mr. Sydney Smirke, R.A. The arrangements for economising the space around it for holding the annual accession of new books in narrow and well-lighted corridors, are admirably managed. The Builder journal, xr. p. 229, and the Building Neus journal, iii. 157, 449-55, contain full details of these fine additions to the national establishment.

The library attached to the London University, Gower Street, designed by Professor T. L. Donaldson, is 91 feet long by 21 feet 6 inches wide, 45 feet through the recesses, and 45 feet high in the centre. It is a good example of such a room, planned as a nare and aisles, with cases projecting from the outer walls up to the piers. The library erected by the Corporation of the City of London, and attached to the Guildhall, is 98 feet by 65 feet, and museum, with reading room 54 feet by 20 feet, is a well-designed edifice, by Sir Horace Jones, the City architect.
Lierna Rib. A short rib in vaulting.
Lift, or Hoist. A machine introduced into warehouses, to raise goods from the lower to the ligher floors of the building, and worked either by manual or hy hydraulie power. Lately it has been placed in large houses and in hotels, for the purpose of raising fuel, luggage, \&c., to each floor; in some instances the platform has been formed into a room for the accommodation of persons while being hoisted to an upper, or lowered to an under floor, without the fatigue of walking up and down long fights of steps. For lifting stones, see Lewis.
Cight, Diffusion of. Light passing into a room through obscured glass or a blind, by means of which the intensity of the light is broken. If the glass be placed flush with the outside of the wall, the obscured side being placed outside, the effect is very great in diffuising light.
ight, Obstruction of. The raising a building opposite a neighbour's windows, wherehy he is deprived of a certain amount of light. It used to be held that all persons building on old foundations in the City of London could carry their buildings to any hcight they pleased; that the intervention of a street or public way justifies the raising of a building to any extent; that a building may be raised providing the raising is not to a height beyond a line drawn at an angle of 45 degrees from the window opening or openings, the light of which is affected by the raising of an adjoining building; that skylights or horizontal roof lights are not subject to the same law as ordinary vertical windows; but these are all fallacious notions. However distant the obstruction, or howerer brought about, if an ancient light which has existed twenty years is injuriously affected by reason of the works of an adjoining owner, there is a cause for action.

Light, Reflected. Light thrown by means of a light and polished surface into the windows opposite to it. This may be effected in some degree by limewhiting the wall; also by building it of white glazed bricks; also by white tiles being affixed to the wall. "Reflectors" are also provided for this purpose, made of a white metal, fixed in a frame and covered with glass, which is suspended and fixed at an angle which will throw the light to the point required.
Lighthouse. A lofty building, on the top whereof artificial lights are placed to guide ships at sea. The lighthouse dates from the earliest period, and appears to have consisted of a tower of masonry, sometimes of a circular form, but usually square, and consisting of various apartments, as the establishment was greater or less, wherein was \& raised altar upon which the beacon was established. Fire-cowers or lighthouses were cammon on the shores of the Mcditerranean, the Archipelago, the Bosphorns, and Red Bea. Among the most celebrated of these was the Pharos of Alexandria. It was accounted one of the seven wonders of the world.

In England, the Eddystone lighthouse, by the celebrated Smeaton, was not only an object of beauty, but of that soundness of construction which is the most essential requisite in works of this kind. The general form is scen in fig. 1411. This is a fine illustration of fitness producing beauty. The resistance it afforded against the waves arose from the beautiful curved line which leads them up it instoad of being broken against it. Indeed, in stormy weather, the waves actually rolled up the side, and fell in a contrary curve over the top of the lighthouse. The beds of the masonry were so laid and dovetailed and joggled as to become a part of the rock on which it was erected, between June 12, 1757, and October 16, 1759. A narrative of the work was published by Mr. Smeaton. This elegant structure was pnlled down and a new lighthouse built between August 19, 1879, and June 1, 1881, when the first and last stones were laid. The old lighthouse was re-erected on land.

The most architectural of modern lighthouses is that of Corduan on the coast of France, which stands on a large rock, or rather on a low island, about three miles from land, at the entrance of the river Garonne. Founded about the ycar 1584, in the reign of Henry II. king of France, it was carried on under the reigns of three successive monarchs, arriving at its completion in 1610, in the reign of Henry IV. It stands upon a platform of solid masonry, and is surrounded by a parapet abont 145 feet in diameter, which is equal to the height. The lightkeepers' apartments and store rooms are not in the main

Fig. 1411. tower, but form a detached range of buildings on the great platform, the interior of the tower itself being finished in a style of magnificence too splendid for the use of common persons. Orer the fuel cellar, which is formed in the solid masonry of the platform, is the great hall, twenty-two feet square, twenty feet high, with an arched cciling. On this floor are two wardrobes and other conveniences. Above the last-mentioued room is the king's room, twenty-ore feet square and twenty high, with an elliptical ceiling. There are on this floor a vestibnle, two wardrobes, and other conveniences. On the third floor is placed the chapel, for a priest who occasionally says mass is attached to the establishment, and this is twenty-one feet in diameter, domed, and forty feet high, and lighted by eight windows. There is an eye in the dome through which is seen the ornamental roof of the room above, and that is fourteen feet diameter and twenty-seveu fect high. This is used by the lightkeepers as a watch room. Over it rises an apartment, which is immediately under the light room, used for holding sufficient fuel for one night's consumption, and capable itself of being convertel into a place for the exhibition of a light in case of repairs being required to any extent in the main light room, which, as we have said, is immediately over it, and is surrounded by a balcony and circular stone parapet. The height from the floor to the top of the cupola of the original lantern or light room was 17 feet, and being unglazed, the smoke was carried out on either side iu the direction of the wind. The roof, moreover, formed a kind of chimncy in the form of a spire, terminatigg with a ball. The height
of the light room, which was entirely of stone, was thirty-one feet from the light room floor to the ball on the top of the spire. The fuel first used for the light was oak, after which pit coal was introduced; but in modern times lamps and reflectors have succeeded the last, and the light is now seen at a proper distance.

The attempt to make lighthouses resemble columns is intolerable; they should possess, according to the different situations, a character peculiar to themselves: heace the application of a column for the purpose is the worst of abuses. The North Foreland lighthouse, whose plan is polygonal, would be a good example had the details been properly attended to in the design.
liglitino. The quantity of daylight admitted by windows and skylights into an apartment. The superficial area of light may be cqual to one-half the area of one wall of the room, if the room is lighted on one side only, and does not exceed more than one and one-half times its height in depth. A room more than twice its height in depth, i.e. in distance back from the side from which it receives the light, cannot be etficiently lighted from one side only. The aspect of a window makes very considerable difference in the amount of light, as also the presence of buildings or trees in the vicinity. It should be remembered that the higher the top of the window is in the room the better will be the light at the back of the room. A line at an angle with the wall of 60° from the top of the window to the floor will cut off all the depth than can be freely lighted. The quantity of light admitted by a skylight is considered to be equal to about thirty times that by a window-thus, if one foot souare of vertical light placed centrally be sufficient for 100 cubic feet of room, one foot of horizontal light will suffice for upwards of 3,000 cubic feet, as prored by the Pantheon at Rone; sce sect. 2747.
Lightnino Conductor. A metal rod fixed to the highest part of a building, carried down the face of $i t$, and into the earth, for the purpose of attracting the fork of lishtning, and carrying it away from the other metal-work of the structure. Newall supplies copper rope of $\frac{3}{8}, \frac{1}{2}$, and $\frac{5}{8}$ inch diameter, with copper points and fittings. A conductor requires fixing with proper isolators and attachments, to prevent the interruption of the electric current. Hart and Son supply a sort of wire chain under Spratt's patent.
Lights. A term sometimes used to denote the openings whether of doors, gates, or windows, or unenclosed places, and through which air and light haro passage.
Like Arcs. In the projection of the sphere, the parts of lesser circles containing an equal number of degrees with the corresponding ares of greater circles.
Like Figures. In geometry, such as have their angles equal, and the sides about the equal angles proportional.
Like Solids. Those which are contained under like planes.
Limf., (Germ. Leim, glue.) A most useful earth, obtained by exposing chalk, and other kinds of limestones or carbonates of lime, to a red heat, an operation generally conducted in kilns constructed for the purpose, by which the carbonic acid is expelled, and lime, more or less pure, according to the original quality of the limestone, remains, in which state it is called quicklime.
Limekiln. One for the purpose of burning lime. They are constructed in a variety of ways, to save expense, or to answer to the particular nature of the fuel.
Limestone. A generic term for those varieties of stone containing carbonate of lime, which are neither crystallised nor earthy, the former being calcareous spar, the latter chalk. When burned they yield quicklime.
Line. (Lat. Linea.) In geometry, a magnitude having only one dimension, and defined by Euclid to be that which has length without breadth. The term is aiso used to denote a measure of length used formerly in France, namely, the twelfth part of an iuch, or $\frac{1}{1+4}$ of a foot.
Line or Direction. In mechanics, the line in which motion is communicated.
Line of Station. The intersection of a plane passing though the eye, perpendicular to the picture, and to the geometrical or primary plane with the plane itself.
$\mathrm{Line}_{\text {ine }}$ Gbometrical. In perspective, any straight line in the geometrical or primary line.
Line, Horizontal. A line parallel to the horizon. In perspective it is the vanishing line of horizontal planes.
Line, Vertical. The intersection of a vertical plane with the picture passing along the station line.
Line, Visual. A ray of light reflected from the object to the eye.
Lines of Light and Shade. Those in which the light and shade of a body are separated. Thus, on a curred surface, it is the line determined by a tangent to the surface in the direction of the rays of light.
Living. The covering of the surface of any body with another thin substance. Thus the lining of a wall is a wooden boarding, whose edges are either rebated or grooved and tongued. Lining is distinguished from casing, the first being a covering in the interier of a building, whilst the latter is the covering of the exterior part of a building.
Linino out Stuff. (Participle.) The drawing lines on a piece of board or plink so as to cut it into thinner pieces.

Linings of Boxings. The pieces of framework of a window into which the winduw shutters aro foded back.
Linings of a Door. Those of tho sides of apertures of doors called the jambs or jamblinings, that which covers the top or head being the soffite.
Lintel. (Span.) A horizontal piece of timber or stone over a door, window, or other opening to discharge the superincumbent weight. If a wall be very thick, more than one lintel picce will be required, unless scantling of sufficient width be found. In some old books on carpentry, lintels are classed under wall plates, but the word is now never used in this sense, unless the joisting or tie beams rest upon it, in which case it is both a lintel and a wall plate.
Last, or Listel. The same as Fillet.
Listred Boards. Such as are reduced in their width by taking off the sap from the sides. They are also explained as boards, sorted and matched, so as to make the flour appear all of one colour.
Listing. (Participle.) Cutting the sap wood out from both edges of a board.
Loam. A soil in which clay prevails. It is called heavy or light as the clay may be more or less abundant.
Lonsy. (Germ. Laube.) An cnclosed space surrounding or communicating with one or more apartments, such as the boxes of a theatre, for iustance. By it also is understood a small hall or waiting room, or the entrance into a principal apartment where there is a considerable space between it, and a portico or vestibule; but the dimensions, especially as regards the width, will not allow of its being called a vestibule or ante-room.
Lock. (Sax. Loc.) A well-known instrument, consisting of springs and bolts, for fasten-
ing doors, drawers, chests, \&c. A good lock is a masterpiece in smithery, requiring much art and delicacy to contrive and vary the wards, springs, bolts, and other parts whereof it is composed, so as to adjust them to the places where they are serviceable, and to the various purposes of their use. The structure of locks is so varied, aud the number of inventions of their different sorts so extended, that we cannot attempt to enumerate them.
Those placed on outer doors are called stock-locks, those on chamber doors spring locks, and rim locks, and such as are hidden in the thickness of the doors to which they are applied, mortise locks. The padlock is too well-knowu to need description here.
Lockrall. The middle horizontal rail of a door.
Locutory. An apartment in a monastery in which the mouks were allowed to converse when silence was enjoined elsewhere.
Lodge. A small house, situated in a park or domain, subordinate to the mansion. Also the coltage placed at the gate leading to the mansion.
Loft. An upper platform, as in Scotland. It has beell applied to the gallery in a church. In modern usage it is limited to the place immediately under the rafters, as cockloft in a house, hay-loft iu a stahle, \&c. See Solar.
Logan. See Rocking Stone.
Lodarithos. Artificial numbers used to facilitato arithmetical calculations.
Logila. (It.) In its strict meaning a lodge; but usually signifying a gallery open to the air, and used for shelter, or from which to obtain a prospect.
Log-house. A hut constructed of the trunks of trecs.
Logistic Spiral. One whose radii are in continued proportion, and in which the radii are at equal angles; or, in other words, a spiral line whose radii everywhere make equal angles with the tan sents.

Fig. 1412. Tower of Earl's Barton Church.

Lombard Architectore. The class of Romancsque architecture which prevailed in the Northern parts of Italy.
Long and Short Work. A rough sort of building, consisting of quoin stones placed tat and upright alternately. Many writers consider such masonry as a mark of the wur's of the 11th century, or previous to it, and call it Saxon work. See fig. 1412.

Longimetry. A term uscd to denote the operation of trigonometry for measuring lengths, whether accessible or inaccessible.
Lookum, or Leucomb. A word used for the projection on the upper floor of a warehouse or mill, to cover a wheel and fall, or a crane, and has a trap-lloor to it. It may, probably, be derived from the French term lucarne.
Loop. (Fr.) A small narrow window. A loophole is a term applied to the vertical series of doors in a warehouse, through which the goods in craning are delivered.
Loophole. A narrow aperture formed in walls, and sometimes in the merlon of a battlemeut, through whieh the defenders discharged their bows or firearms. See Balistraraa.
Lotus. A plant of the water-lily species much used in the architectural ornaments of the early nations, and especially in the capitals of Egyptian columns. See fig. 54.
Louvie. A turret or lantern over a hall or other apartment with openings for ventilation and to allow the escape of smoke or steam.
Louvre, Luffir, or Lever Boakding. (Fr. Louvre.) Boarding, with intervals between the boards, nailed horizontally in an inclined direction, on the sides of buildings or lanterns, so as to admit a free current of air, and at the same time to exclude the rain. They are used for air-drying lofts. Each set, if required, is made to open and shut by the action of a lever.
Low Side Window. A small opening like a window, usually placed in the south chancel wall, and lower than the other windows, for what purpose is not strictly known. It has been called a Lychnoscope.
Lozenge. A quadrilateral figure of four equal sides, with oblique angles.
Lozenge Mociding. An ornament used in Norman arehitecture, presenting the appearance of diamond-shaped lozenges laid in the hollow of the moulding.
Lucarne. The same as Dormer.
Lumber. Timber sawn ready for use. It is a term used chiefly in America.
Lune or Lunola. The space between two equal arcs of a circle.
Lonette. (Fr.) A cylindric, cylindroidic, or spherical apcrture in a ceiling. As an example of the tern, we may refer to the upper lights in the nave of St. Paul's Cathedral.
Lothern. The same as Dormer.
Ifch-Gate, or Corpse-Gate (from the Anglo-Saxon Lcich, a dead body). A gate at the entrance of a churchyard, where the coffin was set down for a few minutes before burial. It is generally of wood, and often thatched. Lych-gates are not of frequent occurrence in England. In Wales many of them may be seen.
Lychnoscope. See Low Side Window.
Lying Panels. Those wherein the fibres of the wood, or the grain of it, lie in a horizontal direction.
Lysis. (Gr.) A plinth or step above the cornice of the podium of ancient temples, which surrounded or embraced the stylobate; an example of it may be seen in the temple of Fortuna Virilis at Rome.

M

M Roor. A roof formed by the junction of two common roofs with a ralley between them. The letter Λ inverted represeuts this species of covering.
Machicolations. (Fr. Machicoulis.) In castellated architecture are, according to Grose, the projections, supported by brackets or corbels, through which melted lead and stones were dropped on the heads of assailants. They were not probably, however, projecting works, but sometimes were considered as the series of square holes in the vaultings of the portals used for the same purpose.
Machine. (Gr. Maұapy.) In a general sense, anything which serves to increase or regulate the effect of a given force. Machines are simpie or compound. The former are the simple mechanical powers, six in number; viz. the lever, the wheel and axle, the pulley, the wedge, the screw, and the funicular machine. The latter are formed by the comlination of two or more simple machines, and are classed according to the forces by which they are put in motion, as hydraulic machines, pneumatic machincs, electric machines, \&c., or the purposes they are intended to serve, as miltary machines, architectural machines, \& cc .
Mafnhir, or Menhir. A long upright stone in Celtic works, called by the Norman writers peulvan, and by country people hoarstone.
Hagnesian Limestone. An extensive series of beds lying in geological position immediately above the coal measures; so called because the limestone, which is the principal member of the series, contains magnesia.
Magnituds. (Lat.) A term by which size, extent, or quantity is designated. It was originally applied to the space occupied by any figure; or, in other words, it was applied to objects strictly termed geometrical, and of three dimensions, length, breadth, and thickness, but it has gradually become enlarged in its signification, so as to be giren to
every kind of quantity that admits of mensuration, or of which greater or less can be predicated; in which sense it was used by Euclid.
Mahogany. A wood used for doors, window-sashes, and ornamental work, especially cabinet work. The Jamaica mahogany is the hardest and most beautiful, und is distinguished from that of Honduras by the chalky appearance of its fibres. The latter has very little flower.
Main Couple. See Cotple.
Malleablity. (Lat. Malleus, a hammer.) The property of being susceptible of extensior under the blows of a hammer. It is a characteristic of some of the metals, most particularly in gold. Common gold-leaf is not more than a two-hundred-thousandtla part of an inch in thickness. Five grains may be beaten out so as to cover a surface of more than two hundred and seventy square inches.
Malleable Iron. The same as pure Wrought Iron, being iron that can be worked ly the hammer and tongs. The name has also lately been given to a soft quality of iron more easily workcd for ornamental purposes.
Maliet. (Lat.) A large kind of wooden hammer much used by artificers who work with a chisel, as masons, stonecutters, carpenters, joiners, \&c.
Maltua. (Gr.) A native bitumen used by the ancients for plastering the walls of their dwellings, \&c. An artificial kind was made of pitch, wax. plastor. and grease; another sort was composed of lime slaked with wine, and incorporated with melted pitch and fresh figs.
Manger. The trough in the stall of a stable wherein is placed the corn or other short food given to live stock, and more especially to horses.
Manhole. An opening formed over a sewer, or by tho side of it, large enough to admit a man to enter to do repairs, \&c., when requisite It is also formed on the top of large boilers, to give access to clean out the interior; and also over a cesspool tor the same purpose. A manhole has usually a close-fitting cover, well set to prevent tho escape of steam, foul air, \&c.
Mansard Roof. (So called from the name of its supposed inventor, the French architect, Françis Mansart.) The same as Curb Roof.
Mansion. A large house; a term more usually applied to one in the country. The origin of the word and its application is supposed t.o be derived from the mansiones, or stationary camps of the Roman soldiers.
Mantapa. The Hindoo term for the porch attached to most vimanas or temples beyond the antarala. It is a square building, having a door on each of its four sides; the roof is generally pyramidal. If there should be two porches, the outer one is called the maha mantapa.
Mantel Plece. The horizontal decoration in stone or marble in front of the mantel tree, and supported by the jambs or boxings of a chimncy-piece.
Mantel Shelf. The slab lying on the mantel piece, and secured at the back into the plastering of the wall.
Mantel Tree. The wood lintel or brick arch to the openings of a fire-place.
Marble. (Gr. Mapuaipe, to gleam, to sparkle.) A term limited by mineralogists and geologists to the several varieties of carbonate of lime, having more or less of a granular and crystalline texture. Among sculptors, the word is used to denote several compact or granular kinds of stone susceptible of a very fine polish; the rarieties of it are very mumerous. Ancient Marbles:-The most valuable sort, and the grandest quarry of the Greek white marbles, was the Pertelican, obtained from mount Penteles, in Attica. It was used in the Parthenon and other buildings in Athens, and was in great repute with the sculptors. This marble is overlaid in the quarries with large figured red and green Cipollino. The base rock of the Acropolis at Athens, a mass of richly coloured marble--rose, reds, browns and greys-was discarded by the Greeks. The Parian was obtained from the island of Paros. Mount Marpesus yielded the best, which was called Marpessian; it was also termed Lychneus, because of its use for candelabra, and Lygdineum, from the promontory of Lygdos. It consists almost entirely of carbonate of lime; and Dr. Clarke states it has lasted better than the Pentelican, which has veins of extraneous substances intersecting the quarries, and which appear, more or less, in all works executed in this sort of narble. The Parian has a waxy appearance when polished, and hardens by exposure to the air; the statues of the Venus di Medici, the Diana Venatrix, the collossal Minerra Pallas of Vellctri, and the Capitoline Juno, were carsed in this material, and the tomb of Mausolus was built of it, the remains of which are now in the British Museum.

Other white marbles were of mount Hymettus, in Attica, of Thasus and Lesbos, in great repute; of Lunar, in Etruria, of a white even whiter than that of Paros; the Phellense, from mount Phellens; the Coraliticum, found near the river Coralios in Phrygia, which was also termed Sangarium, from another name of the same river;

Cyzicum, from Cyzicus in Asia Minor, one of the three marbles of which the temple at Ephesus was to be built; also called Proconnesian marble.

Chernites was another sort of marble, which resembled ivory in its colour. The Phengitcs of Capadocia was white with yellow spots.

The black marbles were: Tcenarus, highly esteemed; one from the island of Lesbos; Lybicum or Numidian, called also Luculleum; Chium, from Mount Pelineus. in the island of Chio, of a transparent chequered black colour; Obsidianum, from Ethiopia; Synnadicum, or Marmor Phrygium, from near Synnas, in Phrygia, having small circles in its black ground; Africano, from the island of Scio, so called from its dark colour by Pliny, who was wrong.

The rose Africano, from Porta Santa, in the island of Scio, a grand quarry, yielding six or more different kinds (Brindley) ; the old quarries of Rosso antico were discorcred at Laconia ; quantities were obtained from Egypt.

Taygetum supplied the green porphyry, or serpentine, of the Italians. Carystus, in Eubæa, gare the green Cipollino, one of the marbles most appreciated by the Romans, of which in Rome alone 500 columns still remain; it was a mingled dark green; Memphites and Ophites, resembling the skin of a serpent, and from the city in Egypt, near where it was found; it is the Serpentino antico of the Italians; Laconicum, from Mount Taygetes, the well-known Verd antique of the antiquaries; the green Tiberian and Augustan marbles were obtained from Egypt.

Yellow marble was found at Corinth; the Rhodian marble was marked with spots resembling gold; that of Melos was excarated in Mount Acynthus.

Atracium, from Mount Atrax, in Thessaly, was a mixture of white, green, blue, and black.
The Romans seem to have introduced coloured marhles in monumental works after their conquest of Egypt, whence they derived their first ideas of monolith columns. Their early buildings contained few varieties of coloured marbles, the number increasing as the colomes matured. The monoliths in St. Peter's and St. Sebastian were cut from the quarry of Porta Santa, in tho island of Scio, as was also the basin, 15 fect diameter and 4 feet thick, discovered by Mr J. T. Wood, at Ephesus. The ancient quarry in Tunis supplied the Giallo antico, and varieties of rose and orange Breccias; this marble was reserved for Rome, where 172 columns of it are still extant. Most of the parement in the Basilica Julia, and the columns in St. John Lateran, the Pantheon, the Arch of Titus, are of this marble; as well as the wall-lining, half an ineh thick, in the palaces of the Cæsars.

The first paper read by Mr. Brindley names forty-six of the principal quarries of various countries worked in the time of the Romans; the second one refers to the stones and marbles fonnd in Egypt. Transactions of the Royal Institute of British Architects, 1887-88 and 1888-89. The building and decorative stones of Egypt, including limestone, sandstone, granite, porphyry, opus Alexandrinum. verde Augustus, Oriental alabaster, Breccia verde, gem stones, \&c., are described by Mr. Brindley, 1887, Nor. 24. See Porphyry and Syenite.

The Numidian marble of the Romans, obtained from North Africa, is coloured marble of various shades and tints, but does not include white marbles or shades of white, of which there are numerous quarries in North Africa. : Marmor Numidicum appears to be a misnomer, for the only known quarry in the ancient province of Numidia is at Filfilla, near Philippoville. The only yet discorered quarries are those at Chemtou in Tunisia (Simittu Culonia in Africa Provincia of the Romans), and at Kleber in Algeria, north-east of Oran (in the ancient kingd,m of Mauretania). The former quarries are much in the condition in which they were left by the Romans. The quarries at Kleber corer an area of orer 1,500 acres. Breccias, from dark brown to blood red; Giallu antico of different hues, designated as Canarino, Avorio, and Pavonazzo; Cipollino rosso, and more than one quality of white marble. Specimens of some of these are now to bo seen in the new mausoleum room of the British Museum. Great and beautiful varieties are to be seen in the prayer chamber of the great mosque at Kairouan, and other mosques (Alex. Graham, in Procecdings Royal Institute of British Architects, 1886-87).

A useful list of ancient and modern marbles, with references to works of art, is contained in the work by the Count de Clarac, and translated in the Civil Engineer, sc., Journal for 1839, pages 367, 434, and 452. It also gives numerous references to writers on the subject.

The onyx marbles of Algeria, Mexico, and California, are of the same nature as the Oriental alabasters.

Almost every mountainous district of the world produces this mineral, but the finest and most valuable is from Italy. The material is brought to an even face by rubbing wilh free-stone, afterwards with pumice-stone, and lastly with emery of sereral colours;
but white marble is finished with calcined tin. The Italians polish with lead and emery. The sawing of marble, preparatory to polishing, is by a saw of soft iron, with a continued supply of the sharpest sand and water. The Belgian marble chimneypieces, toilet-table top;, and such like articles, are finished with a liquid which gives a polished appearance; but it is not lasting.

The varieties of marble used in modern times are very numerous, and a classification of them would occupy a larger space than can be here given. Except the finest specimens of white marble, they are mostly opaque. Some extremely fine specimens of white marble are to be seen in the Borghese Palace at Rome, which, on being suspended by the centre on a hard body, bend very considerably. It is found that statuary marble exposed to the sun acquires, in time, this property, thus indicating a less degree of adhesion of its parts than it naturally possessed. Two books have becn written on the subject: Marble and Marble Workers, by Arthur Lee, and Marble Decoration, by G. H. Blagrove, both dated 1888.

Margin. That part of the upper side of a course of slates which appears uncovered by the next superior course.
Marigold Window. The name given to a circular window in which radiating mullions prevail. See Catherine-wheed Window; Rose Window.
Market Cross. A cross set up in a market-place. The primitive form was a long shaft with a cross stone, set upon a number of steps. Subsequently it was constructed in an elaborate manner ; and later, a sort of arched structure was erected around the central pillar. In Scotland many were finished with a crowning work.
Marmoratum Opus. (Lat.) A fine stuff used by the ancients, formed of calcined gypsum with pulverised stone, or for finest work with pounded marble, well beaten together, and rubbed to a fine marble-like surface, examples of which still exist at Girgenti, formerly Agrigen'um.
Marquetry. (It. Intarsiatura. Fr. Marquetrie.) Inlaid work, consisting of thin plates of irory, or of various coloured woods, glued on to a ground, usually of oak or fir well dried and seasoned, which, to prevent casting and warping, is composed of several thicknesses. It was used by the early Italian builders in cabinet work, and represented by its means figurcs and landscapes. See Buhl Work; Inlaid Work; Pabeuetry.
Mason. An artificer who practises the science of cutting and setting stones in building walls. Formerly the workman who worked the stone was called a free-stone mason, hence the term freemason; while the man that set the stone was called a rough mason.

The term " master mason" was during the mediæral period equivalent to the more modern term "architect." He designed and carried out the monastic, cathedral, or regal buildings. Later, the designer taking the name of surveyor, the master mason became the head of his trade.
Masonry. (Fr.) The science of combining and joining stenes for the formation of walls and other parts in constructing buildings. When applied in the construction of domes, groins, and circular arches, it is difficult and complicated, and is dependent on a thorough knowledge of descriptive geometry.

Among the ancients, several sorts of masonry were in use, which are described by Vitruvius as follows, in the eighth chapter of his second book:-"'The different species of walls," he observes, "are the reticuldutuon (net-like) (fg. 1413 A), a method now in general use, and the incertum (B), which is the ancient mode. The reticulatum is very beautiful, but liable to split, from the beds of the stones being unstable, and its deficiency in respect of bond. The incertum, on the contrary, course over course, and the

Fig. 1413.
whole bonded together, docs not present so beautiful an appcarance, though strongor than the reticulatum. Both species should be built of the smallest sized stones, that the walls, by sucking up and attaching themselves to the mortar, may last tho longor: for as the stones are of a soft and porous nature, they absorb, in dry-
ing, the moisture of the mortar; and this, if used plentifully, will consequently exercise a greater cementing power; because from their containing a large portion of moisture, the wall will not, of course, dry so soon as otherwise; and as soon as the moisture is absorbed by the pores of the stones from the mortar, the lime, losing its porter, leaves the sand, so that the stones no longer adhere to it, and in a short time the work becomes unsound. We may see this in several monuments about the city (Rome) which hare been built of marble, or of stones squared externally, that is, on one face, but filled up with rubble run with mortar. Time in these has taken up the moisture of the mortar, and destroyed its efficacy by the porosity of the surface on which it acted. All cohesion is thus ruined, and the walls fall to decay. He who is desirous that this may not happen to his work should build his two-face walls two feet thick, either of red stone, or of bricks, or of common flint, binding them together with iron cramps run with lead, and duly preserving the middle space or cavity. The materials in this case not being thrown in at random, but the work well brought up on the beds, the upright joints properly arranged, aud the face-walls, moreover, regularly tied together, they are not liable to bulge, nor be otherwise disfigured. In these respects one cannot refrain from admiriug the walls of the Greeks. They make no use of soft stone in their buildings; when, howerer, they do not employ squared stones, they use either flint or hard stone, and, as though building with brick, they cross or break the upright joints, and thus produce the most durable work. There are two sorts of this species of work, one called isodomum (CC), the other pseudisodomum (DD). The first is so called, because in it all the courses are of an equal height; the latter received its name from the uneqnal heights of the courses. Both these methods make sound work; first, because the stones are hard and solid, and therefore unable to absorb the moisture of the mortar, which is thus preserved to the longest period; secondly, because the beds being smooth and lerel, the mortar does not escape; and the wall, moreover, bonded throughout its whole thickness, becomes eternal. There is still another method, which is called $\epsilon \mu \pi \lambda \epsilon \kappa \tau o \nu$ (emplecton) (E), in use even among onr country workmen. In this species the faces are wrought. The other stones are, without working, deposited in the carity between the two faces, and bedded in mortar as the wall is carried up. But the workmen, for the sake of despatch, carry up these casing walls, and then tumble in the rubble between them, so that there are thus three distinct thicknesses, namely, the two sides or facings, and the filling in. The Greeks, howerer, pursue a different course, layiug the stones flat, and breaking the rertical joints; neither do they fill in the middle at random, but, by means ot bond stones, nake the wall solid, and of one thickness or piece. They, moreover, cross the wall from one face to the other, with bond stones of a single piece, which they call δ tarovoı (diatoni) (F), tendiug greatly to strengthen the work." (G) is supposed to show the solid masonry of a wall properly bonded in the courses.
Mass. (Germ. Masse.) The quantity of matter whereof any body is composed. The mass of a body is directly as the product of its rolume into its density. Multiplied into the constant force of gravity, the mass constitutes the weight; hence the mass of a body is properly estimated by its weight.
Iastic. (Gr. Maбтıкך, a species of gum.) A cement employed for plastering outside walls. It is used with a considerable portion of linseed oil, and sets hard in a few datys. From this latter circumstance, and from its being fit for the reception of paint in a reny short period, it is extremely useful in works where expedition is necessary, but it must be constantly painted; when the oil has dried out, it has proved to be worthless. Asphalte mixed with coal tar or limestone, ready for use in paring, is termed "mastic." aterlals. Things composed of matter, or possessing its fundamental properties.
athematics. (Gr. Ma0nots, learning.) The science which in restigates the consequences logically deducible from any given or admitted relations between magnitude or numbers. It has usually been divided into two parts, pure and mixed. The first is that in which geometrical magnitude or numbers are the subjects of investigation; the last that in which the deductions so made are from relations obtained by observation and experiment from the phenomena of material nature. This is sometimes called physics, or physical science. Mathematics, as respects what is necessary for the architect, comprises Abithmetic, Algebra, and Geonetry.
iusolecir. A terin used to denote a sepulchral building, and so cailed from a rery eelebrated one erected to the memory of Mausolus, king of Caria, by his wife Artemisia, alout 353 b.c. From its extraordinary magnificence, it was in allelent times esteemed he geventh wonder of the world. Many statnes and other portions of it are now in the 3ritish Muscum.
ax. In mathematics, that quantity which has an intermediate value between sereral thrrs, furmed according to any assigned law of succession. Thus, an arithmetical means f sereral quantities is merely the average, found by dividing the sum of all the quantities y their number. A geometrical mean bet ween two quantities, or a mean proportional, is he middle term of a duplicate ratio, or continued proportion of three terms; that is,
that the first given term is to the quantity sought as that quantity is to the other given term. In arithmetic, it is the square root of the product of the two given terms. The harmonical mean is a number such that, the first and third terms being given, the first is to the third as the difference of the first and second is to the difference of the second and third.
Measure. (Lat. Mensura.) In geometry, strictly a magnitude or quantity taken as a unit, by which other magnitudes or quantities are measured. It is defined by Euclid as that which, by repetition, becomes equal to the quantity measured. Thus, in arithmetic, the measure of a number is some other number which divides it without a remainder, though, perhaps, such a definition rather intimates the notion of aliquot parts. But that meaning on which this article is submitted is the unit or standard by which extension is to be measured. We have measures of length, of superficies, and of volume or capacity. But the two latter are always deducible from the former; whence it is only necessary to establish one unit, namely, a standard of length. The choice of such a standard, definite and invariable, though beset with many and great difficulties, modern science has accomplished. The rude measures of our ancestors, such as the fuot, the cubit, the span, the fathom, the barlycorn, the hair's breadth, are not now to be mentioned in matters of science, much more precise standards having been found, and not susceptible of casual variation. Nature affords two or three elements, which, with the aid of science, may be made subservient to the acquisition of the knowledge required. The earth being a solid of revolution, its form and magnitude may be assumed to remain the same in all ages. If this be so, the distance between the pole and the equator may be taken as an invariable quantity; and any part, say a degree, which is a ninetieth part of it, will be constant, and furnish an unalterable standard of measure. So, again, the force of gravity at the earth's surface being constant at any given place, and nearly the sanie at places under the same parallel of latitude, and at the same height above the level of the sea, the length of a pendulum making the same number of oscillutions in a day is constant at the same place, and inny be determined on any assumed scale. Thus we have two elements, the length of a degree of the meridian, and the length of a pendulum beating seconds, which nature furnishes for the basis of a system of measures. Others have been suggested, such as the height through which a heavy body falls in a second of time, determined, like the length of the pendulum, by the force of gravity, or the perpendicular height through which a barometer must be raised till the mercurial column sinks a determinate part; for instance, one thirtieth of its own length; but these are not so capable of accurately determining the standard as the terrestrial degree, or the length of the pendalum.

In the English system of linear measures, the unit has been for many years the yard, which is subdirided into 3 feet, and each of those feet into 12 inches. Of the yard, the multiples are, the pole or perch, the furlong, and the mile; $5 \frac{1}{2}$ yards being 1 pole, 40 poles being 1 furlong, and 8 furlongs 1 mile. The pole and furlong, however, are now much disused, distance being usually measured in miles and yards. The English pace is $1 \frac{2}{3}$ yards $=5$ t'eet. See Perch and Mile.

Under the word Foor will be found the length of that measure in the principal places of Europe.
The following table exhibits the relations of the different denominations mentioned:-

Inches.	Feet.	Yards.	Poles.	Furlongs.	Miles.
1	0.083	0.028	0.00505	0.00012626	0.0000157828
12	1.	0.333	0.06060	0.00151515	0.00018939
36	3.	1.	0.1818	$0.00454 \overline{5}$	0.00056818
198	16.5	$5 \cdot 5$	$1 \cdot$	0.025	0.003125
7920	660°	$220 \cdot$	40°	$1 \cdot$	0.125
63360	5280°	1760°	320°	8.	1.

The measures of superficies are the square yard, foot, inch, \&c., as under:-

In which it will be seen that the multiples of the yard are the pole, rood, and acre. Very large surfaces, as of countries, are expressed in square miles. . See Mile.

The relations of square measure are given in the following table:-

Square Fect.	Square Yards.	Square Poles.	Square Roods.	Square Acres.
1.	0.1111	0.00367309	0.000091827	0.000022957
9.	1.	0.0330579	0.000826418	0.000206612
$272^{\circ} 25$	$30^{\circ} 25$	$1 \cdot$	0.025	0.00625
10890°	1210°	40°	0°	4.25
43560°	4840°	160°	0°	

The measures of solids are cubic yards, feet, and inches, 1728 cubic inches being equal to a cubic foot, and 27 cubic feet to one cubic yard. By the act of 1824 , the standard measure for all sorts of liquids, corn, and other dry goods, is declared to be the Imperial gallon. According to the act in question, the imperial standard gallon contains ten pounds avoirdupois of distilled water, weighed in air at the temperature of 62° Fabrenheit's thermometer, the barometer being at 30 inches. The pound avoirdupois contains 7000 troy grains, and it is declared that a cubic inch of distilled water (temperature 62°, barometer 30 inches) weighs $252 \cdot 458$ grains. Hence the imperial gallon contains $277 \cdot 274$ cubic inches. The gallon is subdivided into quarts and pints, 2 pints being cne quart, and 4 quarts one gallon. Its multiples are the peck, which is 2 gallons, the bushel, which is 4 pecks, and the quarter, which is 8 bushels. The relations of measures of volume are given in the subjoined table:-

Pints.	Quarts.	Gallons.	Pecks.	Bushels.	Quarters.
1	0.5	0.195	0.0625	$0 \cdot 015625$	0.001953125
2	1.	$0 \cdot 25$	$0 \cdot 125$	0.03125	0.00390625
8	$4 \cdot$	1.	$0 \cdot 5$	(0.105	0.015625
16	8.	$2 \cdot$	1 -	$0 \cdot 25$	$0 \cdot 03125$
64	32.	8.	4 -	1.	$0 \cdot 125$
512	256°	64.	$32 \cdot$	8.	1.

The old wine gallon $\mathrm{c}-\mathrm{n}$ tained 231 cubic inches, the old corn gallon 268.8 cubic inches, and the old ale gallon 28 2 cubic inches.

Subjoined are a few of the principal ancient measures of France:-
1 toise, French $=6$ French feet $\quad=6.394665$ English feet.
1 foot, do. $=12$ French inches $=12.78936$ English inches.
1 inch, do. $=12$ French lines $=1.06578$ English inches.
1 line, do. $=6$ French points $=0.088815$ English inches.
1 point, do. $=. \quad . \quad . \quad=000148025$ English inches.
According to General Roy, an English fathom : a French toise :: 1000 : 1065.75.
In the new French system the metre, which is the unit of linear measure, is the tenmillionth part of the quadrant of the meridian $=3 \cdot 2808992$ English feet (but lately ascertained by Capt. Henry Kater, to be more correctly $3 \cdot 280916$ English feet); and, as its multiples and subdivisions are decimally arranged and named by prefixing Greek numerals, the following table exhibits each :-

Denomination.				English Feet.
Myriametre	-	- 10000 metr		2808.991667
Kilometre	-	1000	=	$3280 \cdot 8992$
Hectometre	-	100	=	328.08992
Decametre	-	10	$=$	$32 \cdot 808992$
Metre (the unit)		- \quad]	$=$	$3 \cdot 2808992$
Decimetre	-	$0 \cdot 1$	$=$	$0 \cdot 32808992$
Centimetre	-	0.01	$=$	0.032808992
Millimetre		0.001	$=$	0.0032808092

The metre, therefore, is equal to $30 \cdot 37079$ English inches.
The unit of superficial measure, in the French system, is the are, which is a surface 10 metres each way, or 100 square metres. The centiare is 1 metre equare.

Denomination.		English Square Yards.		
Hectare	-	- 10000		960-33
Are (the unit)		100	=	119.6033
Centiare		1		1•19603326

he are, therefore, is equal to $1076 \cdot 4297$ English square feet.

The unit of meas ures of capacity, in the French system, is the litre, a ressel containing a cube of a tent' part of the metre, and equivalent to $0 \cdot 22009668$. British imperial gallon. Its multiples and subdivisions are as follow:-

Denomin				Eng. Imp. Gallo
Kilolitre	-	- -	- 1000 litres $=$	$=220.0966767$
Hectolitre	-	- -	100	$22 \cdot 009668$
Decalitre	-	- -	10	$2 \cdot 2009668$
Litre (the unit)	or Cubic	Decimetre -	- 1 =	$0 \cdot 22009668$
Decilitre	-	- -	$0 \cdot 1$	$0 \cdot 022009668$

The unit of eolid measure, or the stere, is equal to 35.31658 English cubic feet ; therefore,
English Cubic Feet.

There is much uncertainty respecting the ancient measures; the tables before printed being the usually received notions are continued, but subjoined are some of the dimensions given in Dr. W. Smith's Dictionary of Antiquities :-

Scriptire Long Meastre. (See Cubit.)

Greciay Long Measure.
(See Hecatompedon.)
Taces English Paces
of 5 ft. \quad Ft. $\quad \mathrm{In}$.
$=\begin{array}{lll}0 & 0 & 0.75 \overline{5} 4\end{array}$
1 dactylus, or digit -
4 dactyli $=1$ doron, dochme, or palestia $2 \frac{1}{2}$ palesta or 2
$1 \frac{1}{10}$ lichas or $1 \frac{3}{8}$

Roman Lofa Measure.

Mechanical Carpentry. That branch of carpentry which relates to the disposition of the timbers of it building in respect of their relative strength and the strains to which they are subjected.
Mechanical Powers. See Machine.
Mechanics. (Gr. M $\eta \chi a \nu \eta$, machine.) That science in natural philosophy treating of forces and powers, and their action on bodies, either directly or by the intervention of machinery. The theory of mechanics is founded on an axiom or principle, called the law of inertia, namely, that a body must remain for ever in a state of rest, or in a state of uniform or rectilineal motion, if undisturbed by the action of an external cause. Theoretical mechanics consists, therefore, of two parts:- Statics, which treats of the equilibrium of forces; and dynamics, or the science of accelerating or retarling forces, and the actions they produce. When the bodies under consideration are in a fluid state, these equilibria become respectively hydrostatics and hydrod, namis.
Medallon. A square, or more properly, a circular, tablet, on which are embossed figures, busts, and the like.
Medlefal Architecture. The architecture of England and the Continent during the Middle Ages. It is also chiefly called Gormic and Polnted.
Megalithic. A term which has lately been applied to those works usually called Celtic and Druidical.
Menrab. A niche in a mosque of the Mahomedans which marks the direction of the Kebla or temple at Mecca, to which their religion directs them to bow their face in praying.
Member. (Lat.) Any part of an edifice; or any moulding in a collection of mouldings, as of those in a coruice, capital, base, \&c.
Menagerie. (Fr.) A building for the housing and preservation of rare and foreign animals. The ancient Romans of opulence usually had private menageries, a sort of suaill park attached to their villa, and in them various kinds of animals were placed.
Menhir. See Maenhir.
Mensa. The slab, top, or table of the altar of the Roman Catholic Church.
Mensuration. (Lat.) The science which teaches the method of estimating the megnitudes of lines, superficies, and bodies.
Meridian Line. A line traced on the surface of the earth coinciding with the intersection of the meridian of the place with the sensible horizon. It is therefore a line which lies due north and south. In Italy these lines have been laid in large churches, as at Sant a Maria del Fiore at Florence, the Duomo at Bologna, \&c. They are traced on brass rods let into the pavement of the church, and marked with the signs, and otherwise graduated. A hole in the roof permits the sun's rays to fall on them at his culmination, thus marking noon as well as its height each day in the heavens.
Merlox. The plain parts of an embattled parapet, between the crenelles or embrasures.
Meros. (Gr.) The plane face between the channels in a triglyph. See Triglyph.
Mesaule. (Gr.) Described by Vitruvius as itinera or passages; they were, however, smaller courts. Apollonius Rhodius, in describing the reception of the Argonauts at the palace of Æetes, conducts them first into the vestibule, then through the folding gates into the mesaula, which had thalami here and there, and a portico (aıəovaa) on every side.
Meta. (Lat.) A mark or goal in the Roman circus to which the chariots, \&c., ran.
Metal. (Gr. Mєтa入лov.) A firm, heary, and hard substance, opaque, fusible by fire, and concreting again when cold into a solid body such as it was before; generally malleable under the hammer, and of a bright glossy and glittering substance where newly cut or broken. The metals conduct electricity and heat, and have not been resolved into other forms of matter, so that they are regarded as simple or elementary substances. They also reflect, when polished, both light and heat. Modern chemists have carried the number of metals to over forty-two, only seven whereof were known to the ancients; namcly,-1. Gold; whose symbol is thus marked \odot; 2. Silver, D; 3. Iron, उ; 4. Copper, 申; 5. Mercury, ४̧; 6. Lead, ұ; 7. Tin, 4.
Metatome. (Gr. Meta, and $T \in \mu \nu \omega$, I cut.) The space or interval between two dentels.
Metoche. (Probably from MetєX ω, I divide.) In ancient architecture a term used by Vitruvius to denote the interval or space between the dentels of the Ionic, or triglyphs of the Doric order. Baldus observes that in an ancient MS. copy of that author, the word metatome is used instead of metoche. This made Daviler suspect that the common test of Vitruvius is corrupt, and that the word should not be metoche but metatome, as it were section.
Metopa. (Gr. Mє $\tau \alpha$, between, and Oт η, a hole.) The square space in the frieze between the triglyphs of the Doric order: it is left either plain or decorated, according to the taste of the architect. In very ansient examples of this order the metopa was left quite open. Figs. i 414 and 1415 represent two sculptures from the Parthenon at, Athens.
Letre. The French unit of length (see Measurf), from whenre is derived thrir metrical system now followed by many other nations.

Mexican Architecture. The buildings of the ancient penple inhabiting Mexico and Yucatan in America-Teocalli or pyramids, with walls of ruined cities, various carvings

Fig. 1414.

Fig. 1415.
on the face of the stones, and sculpture of hideous shape, comprise nearly all that is as yet known of their works.
Mezzanine. (Ital. Mezzano, middle.) A story of small height introduced between two higher ones. See Entresol.
Mezzo Relievo. See Rrlievo.
Middle Post. In a roof, the same as Kina Post.
Middle Quarters of Columns. A name given to the four quarters of a column divided by horizontal sections, forming angles of forty-five degrees on the plan.
Middle Raic. The rail of a door, on or in which the lock is usually fixed.
Mile. (Lat. Mille passuum, a thousand paces.) A mcasure of length in England equal to 1,760 yards. The Roman pace was 5 fect; and a Roman foot being equal to 11.62 modern inches. it follows that the aucient Roman mile was equivalent to 1,614 English yards, or very nearly eleven-twelfths of an English statute mile. The measure of the English mile is incidentally defined by an Act of Parliament passed in the 35th of Elizabeth, restricting persons from erecting new buildings within three miles of London, in which Act the mile is declared to be 8 furlongs of 40 perches each, and each perch equal to $16 \frac{1}{2}$ feet.
Min Room. See Dairy.
Millstone Grit. A coarse grained quartzose sandstone. It is extracted from the group of strata which occur between the mountain limestone and the superincumbent coal formations.
Minaret. (Arab. Menarah, a lantern.) A slender lofty turret, rising by differont stages or stories, surrounded by one or more projecting balconies, common in Mohammedan countries, being used by the pricsts for summoning (from the baleonies) the people to prayers at stated periods of the day. They are also called alkoranes.
Mindra. The name for the cella containing the statue of a Hindoo temple, from whence rises the sikr or spire; the pronaos is the munduf, and the portico is in front, which is the châori or pillared hall.
Minion. An iron ore, which mixed with a proper quantity of lime makes an excellent water cement.
Minster. A church to which an ecclesiastical fraternity has been or is attached. The name has been also used freely to distinguish collegiate or conventual churches from parish churches.
Minute. (Lat.) See Module.
Mischia. See Scagliola.
Miserere. A hinged seat attached on an horizontal axis to a stall in a church or cathedral. It was so contrived that if, during the performance of religious ceremonies, the occupier of it slept, he would fall on (perchance) the floor. Hence the name. The corbel under the seat, which formed the resting place, is usually carred with foliage, or with figures sometimes of a ludicrous design. The earliest examples are in Exeter Cathedral, dating 1240-56.
Mitciel. A name giren by workmen to Purbeck stones of twenty-four inches by fifteen when squared for building.
Miter, sometimes written Mirre. See Bevel.
Mitar Box. See Box for Mitur

Mitan Arch. A French name for a peliment arch similar to fiy. 1íl6. Examples are found in early Greek and in Celtic structures as well as in the early Norman work in Eugland.
Mixbd Angle. An angle of which one side is a curve and the other a straight line.
Mixed Figure. One composed of straight lines and curves, being neither entirely the sector nor the segment of a circle, nor the sector nor segment of an ellipsis, nor a paraboli, nor an hyperbola.
Moat. A wide ditch surrounding a house, castle, or town, and always full of water, or capable of being filled when requisite.
Movel. (Lat.) An original or pattern proposed for anyone to copy or imitate. Thus St. Paul's may be, though not strictly so, said to be built after the model of St. Peter's at Rome.

The word is also used to signify an artificial pattern made of wood, stone, plaster, or other material, with all its parts and proportions, for the satisfaction of the proprietor, or for the guide of the artificers in the execution of any great work. In designing large build-

Fig. 1416. Recess at Barnack Church ings a good method of proceeding is to make a model, and not to trust entirely to drawings.
Modillion. (Fr.) A projection under the corona of the richer orders resembling a bracket. In the Grecian Ionic there are no modillions, and they are seldom found in the Roman Ionic. Those in the frontispiece of Nero at Rome cousist of two plain faces separated by a small cyma reversa, and crowned with an ovolo and bead. In the frieze of the fourth order of the Coliseum, the modillions are cut in the form of a cyma reversia.
Modelar Proportion. That which is regulated by a inodule. See Module.
Modolation. (Lat.) The proportion of the different parts of an order.
Lisule. (Lat.) A measure which may be taken at pleasure to regulate the proportions of an order, or the dispasition of the whole building. The diameter or semi-diameter of the column at the bottom of the shaft has usually been selected by architects as their module; aud this they subdivide into parts or minutes. Vignola has divided his module, which is a semi-diameter, into 12 parts for the Tuscan and Doric, and into 18 for the other orders. The module of Palladio, Cambrai, Desgodetz, Le Clerc, and others, is dirided into 30 parts or minutes in all the orders. Sume have divided the whole height of the column into 20 parts for the Doric, $22 \frac{1}{2}$ for the Ionic, 25 for the Corinthian, \&c., one whereof is taken for the module by which the other parts are to be regulated.

Vitruvius baving lessened his module in the Doric order, which in the other orders is the diameter of the lower part of the columu, and having reduced the great module to a mean one, which is a semi-diameter, Perrault reduces the module to a third part for a similar reason, namely that of determining the different measurements without a fraction. Thus, in the Doric order, besides that the height of the base, as in the other orders, is determined by one of these mean modules, that same module furnishes the height of the capital, architrave, triglyphs, and metopa. But the smaller module obtained from a third of the diameter of the lower part of the column has uses considerably more extensive, inasmuch as by it the heights of pedestals, of columns, and eutablatures in all the orders may be obtained without a fraction.
odolus of Eiasticity. A term in relation to elastic bodies, which expresses the weight of themselves continued, which would draw them to a certain length without destroying their elastic power.
ole. (Sax.) A pier of stone for the shelter of ships from the action of the wares. Amongst the Romans the term was applied, as in the case of the mole of Hadrian (now the castle of St. Augelo at Rome), to a kind of circular mausoleum.
omentum. (Lat.) The impetus, force, or quantity of motion in a moving body. The word is sometimes used simply for the motion itself.
onastery. A house for the reception of religious derotees, but more properly applied tn one for the habitation of monks.
onlal. An old way of writing Mulenon, and still used by some writers.
onkey. In piling operations. Sce Fistoca.
onochrome. A system of decoration of one colour only.
onolith. (Gr. Movos one, Aifos, a stone.) A monument, obelisk, or columir of a single stone. Such works are found in many parts of the world. In Egypt and India temples have been formed out of the rock or of single blocks of stone. Many circles of stones, as at Abury and elsewhere, consist of monoliths.

Monopteral. (Gr.) A species of temple of a round form, which had neither walls nop cella, but only a enpola sustained by columns. See Temple.
Monotriglyph. (Gr.) A term applied to an intercolumniation in which only one triglyph and two metopæ are introduced.
Monstrance. A transparent pyx for processions of the Church, or when the Host is exhibited; a casket for the exhibition of the Sacrament.
Montant. The intermediate style in a piece of framing, which is tenoned into the rails. It is als called a muntin.
Munument, (Lat. Moneo.) An edifice of importance in the history of art, and which was raised to perpetuate the memory of somo eminent person, or to serve as a durable token of some extraordinary event. Sce Mausnleum. The pyramids may also coma noder this class, although they were tombs. The word monument is too generally applied to mere tombs.
Moorstone. A species of granite found in Cornwall and some other parts of England, and very serviceable in the coarser parts of a building. Its colours are chiefly black and white, and it is very coarse. In some parts of Iroland immense beds of it are found,
Moresque Arcuitecture. The style of building peculiar to the Moors and Arabs. It is also called Saracenic.

The word Moresque is also applied to a kind of painting in that style used by the Moors. It consists in many grotesque pieces and compartments, promiscuously, to appearance, put together, but without any perfect figure of man or animal. The style is sometimes called Arabesque.
Mortar. The materal used to bind stone, bricks, \&c., togetber; it is compounded of burnt limestone and sand. Hydraulic mortar is made of hydraulic lime and sand,
Mortice, or Mortise. (Fr. Mortoise, probably from the Latin Mordeo, to bite.) In carpontry and joinery, a recessed cutting within the surface of a piece of timber, to receive a projecting pifce called a tenon left on the end of another piece of timber, in order to fix the two together at a given angle. The sides of the mortice are generally four planes at right angles to each other and to the surface, whence the excaration is made.
Mortice Lock. A lock made so as to fit into a mortice cut in the lock rail of a door to receive it. It is thus shut out from sight.
Mosaic. (It. Mosaico.) A mode of representing objects by the inlaying of small cubes of glass, stone, marble. shells, wood, \&c. It was a species of work much in repute among the ancients, as may be gathered from the numerous remains of it. It is supposed to have originated in the east, and to have beon brought from Phœnicia to Greece, and thence carried to Rome. The term Mosaic work is distinguished from marquetry and parquetry by being only applied properly to works of stone, metal, or glass. The art coutinues to be practised in Italy at the present day with great success.
Mosque. (Turk. Moschet.) A Mohaminedan temple or place of worship. The earliest Arabian mosques were decorated with ranges of a vast number of colimns, often belonging originally to other lbuildings. Those of the Turks, on the other hand, are more distinguished for the size aud elevation of their principal cupolas. Each mosque is provided with a minaret, and commonly with a fountain of water, with numerous basins for ablutions.
Mould. A term used to signify a pattern or contour by which any work is to be wrought. The glazier's moulds are of two sorts, one of which is used for casting the lead into long rods or cames, fit for drawing through the vice in which the grooves are formed. This they sometimes call the ingot mould. The other is for moulding the small picces of lead, a lino thick and two lines broad, which are fastened to the iron bars of casements.

The mason's mould, also called caliber, is a piece of hard wood or iron, hollowed on the edge, answering to the contours of the mouldings or cornices to be formed. The ends or heading joints being formed as in a cornice by means of the mould, the intermediate parts are wrought down by straight edges, or circular templets, as the work is straight or circular on the plan. When the intended surface is required to be very exact, a reverse mould is used, in order to prove the work, by applying the mould in it trausverse direction of the arrises.
Mould. Tho prepared form on which plumbers cast their sheets of lead; it is simply called a table. They have others for casting pipes without soldering.
Mould Stone. One of the stones of a moulded jamb.
Mouldings. The ormamental contours or forms applied to the edges of the projecting or receding members of an order. Grecian muuldings are formed by some conic section, as a portion of an-cllipse or hyperbola. The Roman mouldings are formed by ares of circlos, the same moulding having the same curvature throughont. The mouldings used in Pointed architecture are chiefly formed by portions of circles.
Mullion, Munnion, or Monial. In Pointed architecture, the rertical post or bar which divides a window into two or more lights.
Multifoil. An areh with such numerous foliations that it is thought unnecessary particularly to specify the number.

Municipal Archtecture. The term applied to buildings erected for civil and municipal purposes, such as town halls, guild halls, \&c. No particular style is inferred, as the buildings partook of the style prevailing at the time of their erection, and in the present day it depends on the decision of the persons for whom the edifice is designed.
Muniment Room. A strong, properly fire-proof, apartment in public or private buildings, for the kceping and preservation of evidences, charters, seals, \&c., called muniments.
Munnion. See Mullion.
Muntin. See Montant.
Mural. (Lat) Belonging to a wall. Thus, an upright monumental slab attached to a wall is called a mural monument; sometimes a mural slab or tablet; an arch iuserted into or attached to a wall is called a mural arch; and columns placed within or :gainst a wall are called mural columns.
Museum. (Gr. Movatov.) A museum is a building destined to the reception of natural, literary, or scientific curiosities, and for that of the works of learned men and artists. The term was first applied to that part of the palace at Alexandria appropriated solely to the purpose of affurding an asylum for learned men; it contained buildings aud groves of consilerable magnificence, and a temple wher win was a golden coffin containing the body of Alexander. Men of learning were here lodged and accommodated with large halls for literary convrrsations, and porticoes and shady walks, where, supplied with every necessary, they devoted themselves entirely to stady. The establishment is supposed to have been founded ly Ptolemy Philadelphus, who here placed his library. It was divided into colleges or companies of professors of the sereral sciences, and to each of such professors was allotted a suitable revenue.
Museums, in the modern sense of the word, legan to be established about the sisteenth century, when collections were formed by most of the learned men who studied natural history. On a small scale, they are becoming more common in the principal towns of this country. Where economy requires it, and the collection in each department be not too largc, the whole may be properly and conveniently comprised within one building. In respect of security against fire, and quietness of the situation, the same precautions will be necessary as have been indicated for libraries, and must always be observed.

In the composition of museums, decoration must not be exuberant. It must be kept in the interior so far subordinate as not to interfere with the objects to be exhibited, which are the principal features of the place. With this caution we do not preclude the requisite degree of richness which the architecture itself requires. Great skill is necessary in introducing the light properly on the objects, inasmuch as the mode of properly lighting up objects of Natural History is very different indeed from that which is required for Pictures, and this, again, from what Sculpture requires. Specimens illustrating Natural History, Sculpture, Vases, and the like, should have high lights. Algarotti states that the museum which Rubens built for himse f at Antwerp was circular, with a single light in the roof. The museum at Scarborough, desigued by Mr. R. H. Sharp, is 32 feet in diameter iuside, with a skylight of 9 feet. It has also seven windows round the lower portion of the row. There are subjects, nevertheless, in all these classes (in mineralogy, for example), for which strong side lights are essential to an advantageous exhibition of them. In such cases small recesses may be practised for the purpose. At the Hôtel des Monnaies, at Paris, the presses which contain the collection of Mineralogy form a circle which encloses a small lecture theatre, and thus become doubly serviceable. The student is thus made aware how room is to be gained when the area of a site is restricted. The collection of Sculpture is not so well lighted as are the models and other objects, Paintings excepted, in the Vieux Lourre, which are exhibited to perfection.

Where the same museum is to contain several classes of objects, the suites of rooms for the different departments should be accessible from some central one common to all; this may be circular or polygonal, as may best suit the arrangement and means; and, if possible frum the site, the building should not consist of more than one story above the ground; on no account of more than two.

For the objects it contains we question whether the British Museum is surpassed, as a whole, in Europe; and those of the Vatican, of the Uffizj at Florence, of Portici, and of Paris, are none of them of sufficient architectural importance to detain the reader by description; neither would they, if so deseribed, be useful to the student as models. At Munich the Glyptotheca for sculpture, and the Pinacotheca for pictnres, by the Baron von Klenze, are in some respects well suited to the exlibition of the objects deposited in them, better, indeed, than is the museum at Berlin. As specimens of architecture they have been highly praised and as sevorely censured.

Sir John Soane's Museum, in Lincoln's Inn Fields, should be visited by any amateur contemplating the formation of a collection of works of art, to understand how much may be got into a small space, with well-lighted, warmed, and ventilated apartments.

The Museum of Economie Geology, in Jermyn Street, was designed 1837-4S, by the late Sir James Pennethorne. It is well adapted for the speeial purpose. The hall or museum is 95 feet long, 55 feet wide, and 32 feet high to the springing of the iron rouf, and 42 feet 9 inches to its crown. It is also a good sprecimen of well-selected Anston stone. and cost about 30,000 l. The Fitzwilliam Museum, at Cambridge, was commenced in 1837 by George Basevi, and partially completed after his death in 1845 by C. R. Coekerell. R.A.; but it has since received several additions and alterations for the increased culeetions. The South Kensington Mustum, as it is called, combining works of art and manufacture of modern date, has many portions to be highly cummended. The Art Museums at Dublin, Edinburgh, in ihe castle at Nottingham, Minehe-ter, and numerous other towns, afford oxamples for the future designer of sach useful edifices for general purposes. The Natural History Museum at Sunth Kensington, designed 1873-81 by Mr. Alfred Witerhouse, R.A., affords one of the latest examples of a building for a special purpose. It is probably the largest moderu building in which territcotta has been exclusively used for external and internal surfaces, including architectural and decorative features, except ceilings and floors. It is 670 feet long and 290 feet deep.
The public museum and library erected at Hâvre, by M. L. Fortuné Brunet Debaines, about 1848, is exceedingly meriorious. It consists of a central hall for scu!pture; on either sido, and separated from it by an open arcade, by means of which the hall is lig ted, is a gallery and museum, the floor of which is six or eight feet above the floor of the hall, so as to afford rooms for attendants, \&c., beneath. Access to theso galleries is had from the hall by a flight of steps on each side of the entrance in front. A long flight of steps from the centre of the back of the hall, with other flights right and left, conduct to a picture gallery over the hall, and to a library, containing 20,000 volumes, over the side galleries. It is a square of about 100 feet, not including the principal staircase. The bullding, without tho fittings, cost about 40,000l. It is of stone.
Mushaebeexeh. The Arabic term for a projecting balcony enclosed with lattiee work, in which the occupicrs of a house can sit without being sten from the street and enjoy the air.
Mussid. The Arabic for a mosque; the jumma musidd is the chief mosque of a city.
Mutilated Cornice and Pediment. One that is broken or discontinued. Such works were much used during the worst period of the Renaissance, and may still be seen occasionally introduced in modern buildings.
Mutlation. (Lat.) The defacing or cutting away of any regular body. The word is applied to statues and buildings where any part is wanting.
Murule. (Lat.) A projecting ornament of the Doric cornice, which occupies tho place of the modillion in the other orders, and is supposed to represent the ends of rafters. The mutule has always been assumed as an imitation of the end of a wooden rafter; hence, say the adrocates for a timber type, they are properly represented with a declination towards the front of the coronas.

N

Nall. (Sax. Næzel.) A small metal spike for fastening one piece of timber to another. 'The sorts of nails are very numerous. Those of most common use in building are known by the names of ten-penny, twenty-penny, and two-shilling nails. Rose nails are drawn square in the shank. Brads are long and slender nails without heads, used for thin deal work to avoid splitting. Tacks, tho smallest sort of whieh serve to fasten linen or paper to wood; the middling for medium work; the larger size are much used ly upholsterers. Cut nails, or nails cut by machinery instoad of being wrought liy hand as formerly, are now much used, espeeially for securing flooring boards to the timbers. See Adhesion.
Nall-head Moulding. One used in Norman buildings, and sol called from being formed by a series of projections resembling the heads of nails or square knobs.
Naked. A term applied either to a column or wall to denote the face or plain surface from which the projeetions rise.
Nakel Floonino. The assemblage of timbers for the floor of a building, whereof there are three sorts, viz., single flooring, double flooring, and double-framed flooring.
Naked of a Wall. The remote face whence the projections take their rise. It is generally a plain surface, and when the plan is circular the naked is the surface of a cylinder with its axis perpendicular to the horizon.
Naus. (Gr.) See Cell.

Narthex. An inclosed space in the ancient basilica when used as a Christian church; and also of an ante-temple or restibule outside the church; it is thus used as synonymous with porch and portioo. Some modern churches have a narthex with a lean-to roof, s) as to form a kind of large porch the whole width of the building, or of the nare only.

Na cural Bud of a Stone. The surface from which the laminæ were scparated. In all masonry it is important to its duration that the laminæ should be placed perpendicular to the face of the work, and parallel to the horizon, inasinuch as the connecting substance of these laminæ is more friable than the laminæ themselves, and therefore apt to scale off in large flakes, and thus in !uce a rapid decay of the work.
Naumachia. (Gr. from Naus, a ship, and Max η, a battle.) In ancient architecture, a place for the show of mock sea engagements, litule different from the circus and amphitheatre, since this species of exhilition was often displayed in those buildings. One was erected at Milan under the orders of Napoleon I.
Nate. (Gr. Naos.) The body of a church reaching from the rail or partition of the choir to the principal entrance. See Cuurch. By far the mest important feature of Romanesque architecture is the greater elevation oltained for the interior of churches beyond the mere walls of previous times. This resulted in the triple range of Pier arsh, dividing the nave from the aisles, es 1 in fig. 1417 ; the Triforium, containing sometimes a gallery orer the aisles, as 2; and the Clerestury, or row of windows admitting light to the neve, as 3. The string courses are unbroken, and give the appearance of the building being divided into layers or stages; the arches also do not harmonise, and the whole presents the characteristics of the horizontality of ancient types. The first stage of transition to the verticality of Pointed architecture

Fig. 1419.

Fig. 1420.

Fig. 1421.

Fig. 1 122.
was the use of shafts of small diameter running up in front of the piers and diriding the
 triforium and clerestory into compartments, as in fig. 1418. The style advanced, as is shown in fig. 1419, being an example if the treatment of a bay of a nave or choir in the Early English or Lencet period; fig. 1420 in that of the Geometrical Decorated; fig. 1421 in that of the Flowing or Late Decorated; and fig. 1422 in that of the earlier part of
the Rectilinear or Perpendicular period. In the later portion may be noticed the flatten ing of the arches, the four-centred arch being that most frequently used. The ogee arch (fig. 1427) was also much used at the same period. The above representations (figs. 1424 to 1427) of a bay of a nave or choir, exhibit the additions of a Perpendicular clerestory on a lower portion of earlier character ; and the extinction of the triforium as a gallery, it being transformed into a wall decorated with panels. The priory church at Bath has not a triforium, but a lofty clerestory, like fig. 1426; while the choir at Bristol has neither triforium nor clerestory.
Nebule Moulding. (Lat. Nebula.) An ornament in Norman architecture, whose edge ìrms an undulating or wary line, and introduced in corbel tables and archivolts. Fig. 1382.
Neck of a Capital. The space, in the Doric order, between the astragal on the shaft and the annulet of the capital. Some of the Grecian Ionic capitals are with necks below them, as in the examples of Minerva Polias and Erechtheus, at Athens. But the Ionic order has rarely a neck to the capital.
Nebdle. A horizontal piece of timber serving as a temporary support to some superincumbent weight, as a pier of brickwork, and resting upon posts or shores, while the lower part of a wall, pier, or building is being underpinned or repaired,
Nervures. A name given by French architects to the ribs bonnding the sides of a groined compartment of a vaulted roof, as distinguished from the ribs which diagonally cross the compartment.
Net Measure. That in which no allowance is made for finishing, and in the work of artificers, when no allowance is made for the waste of materials.
Neutral Axis. That plane in a beam in which theoretically the tensile and compressive forces terminate, and in which the stress is therefore nothing.
Newei. The upright cylinder or pillar, round which, in a winding staircase, the steps turn, and are supported from the bottom to the top. In stairs, geometrical for instance, where the steps are pinned into the wall, and there is no central pillar, the staircase is said to have an open nowel.
Niche. (Fr. probably from N $\epsilon o \sigma \sigma t a$, a nest.) A cavity or hollow place in the thickness of a wall for the reception of a statue, rase, \&c.
Nidged Ashlar. A species of ashlar used in Aberdeen. It is brought to the square by means of a cavil or hammer with a sharp point, which reduces the roughness of the stone to a degree of smoothness according to the time employed. When stone is so hard as to resist the chisel and mallet, the method described is the only way in which it can be dressed.
Nog. The same as a Wood Brick.
Nogging. A species of brickwork carried up in panels between quarters or studs, and in which manner partitions called "brick-nog partitions" are made.
Nogging-piece. A horizontal board laid in brick-nogging, and nailed to the quarters for strengthening the brickwork. They arc disposed at equal altitudes in the briekwork.
Nonagon. (Gr.) A geometrical figure having nine sides and nine angles.
Normal Line. In geometry, one which stands at right angles to another line.
Norman Architreture. This term comprises the architecture of the Normans as seen in Sicily and adjoining countries; and is applied to the round arch style which was carried out chiefly in Normandy, and thence taken over into England soon after Edward the Confessor's time, and more prominently in the reign of William I. It is a variation of Romanesque architecture. See figs. 1417 and 1418.
Nosing of a Step. The projecting part of the tread-board or cover which stands before the riser. The nosing is generally rounded, so as to have a semicircular section; and in the better sort of staircases a fillet and hollow is placed under the nosing.
Notation. In the early periods of the Roman notation, four was written IIII., this has been changed into IV.; nine was written VIIII., now IX. ; forty was written XXXX., now XL. Five hundred was originally written I_{D}., now D. ; a ihousand CI_{O}, now M , The number $I_{\rho}=500$, is increased in value ten times for every ρ annexed. Thus $I_{0 \rho}=$ 5,$000 ; \mathrm{I}_{\mathrm{OOO}}=50,000$, and so on. The number $\mathrm{CI}_{\mathrm{O}}=1,000$ is increased in value the times for every C and ρ prefixed or annexed to it. Thus $\mathrm{CCI}_{\mathrm{OD}}=10,000$, \&c. This notation is not now in use, but will be fonnd in works of the 17 th century.
notation, Architectural. The method adopted of placing signs to figures when marking dimensions on drawings. Thus, in lieu of writing feet, inches, and parts of an inch, certain dashes are used, 'for feet, " for inches, and " $"$ for parts; or ${ }^{\circ}$ for feet, ' for inches, and "for parts. There is no settled method for using these marks.
Notcu-board. A board which is grooved or notehed for the reception and suppori of the ends of steps in a staircase.
Notching. A hollow cut from one of the faces of a piece of timber, generally made rectangular in section.
Nuclevs. (Lat.) In ancient architecture, the internal part of a floor, which consisted of a strong cement, over which the pavement was laid with mortar.
Nugger, or Nagar. The Sanscrit name for a city; as Almednugger, properly Almadnagar, the city of Ahmad.

Nuraghe. The name of a species of rery ancient structure in Sardinia, resembling and used for a similar purpose as the cromlechs or demmens. They are supposed by some writers to be the work of the ancient Phœenicians.
Nympifeum. (Gr.) A name used by the ancients to denote a picturesque grotto in a rocky or woody place, suppostd to be dedicated to, and frequented by, the mymphs. The Romans often made artificial nymphe in their gardens. In Attici, the remains of a nymphæun are still to be seen decorated with inseriptions and bassi-rilievi, from the rude workmanship of which it may be presumed that the groto is of very ancient date.

Oak. (Sax. Ac, Æe.) A forest tree, whoe timber is, from ity strength, hardiness, and durability, the most useful of all in building.
ObeLlsk. (Probably from ò $\beta \in \lambda \dot{d}$ s, a spit, brooch, or spindle, or a long javelin.) A lofty pillar of a rectengular form, diminishing towards the top, those of Egept often having inscriptions and hieroglyphics. The upper part finishes generally with a low pyramid, called a pyramidion. The proportion of the thickness to the height is nearly the same in all obelisks; that is, between one ninth and one tenth, and their thickness at top is never less than half, nor greater than three fourthr, of that at bottom. The following table exhibits a list of the principal obelisks; and with the dimensions must be taken with some reservation. Builder, 1877, xxxr., 1076, gives a plate of eleven.

Situation, \&c., of the Obelisk.	Height.	Thickness.		
		At top.	Bulow.	
Two, mentioned by Diodorus Siculus * - - - *	$\begin{gathered} \text { Kug. Fert. } \\ 158 \cdot 2 \end{gathered}$	$\begin{gathered} \text { ling ten } \\ 7.9 \end{gathered}$	$\begin{gathered} \text { Eug. Frect. } \\ 11.8 \end{gathered}$	
Two, of Nuncoreus, son of Sesostris, according to Herodotus, Diodozus				
Siculus, and Pliny - - - - - - - - - - - - - - - - - -	121.8	6.6	$10 \cdot 5$	
Of Nectanabis, erected uear the tomb of Arsinöe by Ptolemy Phila-				
Attributed to Sothis, mentioncd by Pliny - -	63%	$4 \cdot 5$	$5 \cdot 1$	
Karnak; Thebes : two in the ruins, raised on a block	$72.8 \& 90 \cdot 0$	$5 \cdot 0$	$7 \cdot 5$	
" , two in the ruius, raised on a block	$63 \cdot 3$ \& 70.0	$4 \cdot 5$	$5 \cdot 1$	
	$105 \cdot 0$			
Rome : Piazza del Laterano; taken to Alexand ria by Constantiue, aud to Rome by Constantius, where it was placed in the Circus				
Maximus; broken in three pieces, repaired and raised, 1588, by	$105 \cdot 5$	$6 \cdot 2$	$9 \cdot 0 \& 98 \frac{1}{2}$	
Rome: Piazza del Popolo ; Seti and his son Rameses II.; brought				
from Heliopolis by Augustas, B.c. 10, and placed in Circus Maxi-	$78 \cdot 2$	$4 \cdot 5$	$7 \cdot 4$	
Rome: Piazza di Monte Citorio ; Psammeticus II., B.r. 594-588;				
brougbt from Heliopolis by Augustus to act as a gaomou; removed 1792	71.9	$4 \cdot 9$	$7 \cdot 9$	
Rome: Piazza of St. Peter ; Manephthah ; from Heliopolis, b.c. 1400. by Caius Caligula ; erceted about 1590 (plain)	$82 \cdot 4$	$5 \cdot 8$	9-4	
Rome: Piazza Navona; cut for Domitiau; placed in CircusCaraca la or Maximus; raised 1651 by Betuini; also called Pamphiiau obelisk	$54 \cdot 9$	$2 \cdot 9$:	5	
Rome: Piazza Sta Maria Maggiore; cut by Claudius; formerly in front of tbe mausoleum of Augustus ; (made about B.c. 2000?); raised 1587 by Fontana (plain)	$48 \cdot 3$	$2 \cdot 9$	$4 \cdot 3$	
Rome : Quirinal Hill ; also cut by Clandius, and set up by Augustus,				
Rome : Trinita de' Monti; brought by Hadrian ; set np 1789.	$43 \cdot 6$			
* in front of the Pantbeon; from Circus Maximus ; stt up 1711	$20 \cdot 1$	$2 \cdot 1$	$2 \cdot 4$	
" Villa Mattei, on tbe Cceliun - . - - -	26.4	$2 \cdot 2$	$2 \cdot 7$	
" on the Pincian (called the Aurelian) ; raised for Pins VII. -	$29 \%)$	\sim		
" Piazza della Minerva ; by Pharaob Hephra, Br. 888-69:	$17 \cdot 6$	$2 \cdot 0$	$2 \cdot 6$	
" Villa Medici - - - - -	$16^{\circ} 1$	1.9	$2 \cdot 4$	
" the Barberini - - - - .	30.0	$2 \cdot 2$	$3 \cdot 9$	
" from Thebes : by Thothmes III. or IV. - - - -	-		-	
Ieliopolis: only one now remaius cut of three pairs; it is the oldest,				
ondon: Tbotbmes III., B.c. 1600 ; it was origiually on a block of granite $5 \cdot 2$ feet higb, on three steps 6 it .6 in., pieds de Paris; removed B.C, 23 to Alexandria ; removed 1878 to London, ard raised				
for E. Wilson, by Jobn Dixon, C.E. ; called Cleopatra's Needle -	$68 \cdot 5 \frac{1}{2}$	$40 \& 50$	$7 \cdot 5 \& 7 \cdot 10 \frac{1}{2}$	
rles : found buried there in 1389, and raised 1675	$50 \cdot 1$	4.5	$7 \cdot 4$	
aris: from Luxor; removed and raised 1831-36 by Lebas	$76^{\circ} 6$			
uxor: still there - . - - - - -	$79 \cdot 1$	$5 \cdot 3$	$8 \cdot 0$	
onstantinople : in the At-Meidau; moved by Emperor Tbeodosius	$59.7 \& 500$	$4 \cdot 5$	72	
", smaller one, according to Gyllius	$34^{\prime 2}$	3.9	$5 \cdot 9$	
xum, Abyssinia, about - -	$60 \cdot 0$	-		
ardens of Sallust : according to Mercati - - . -	$48 \cdot 3$	$2 \cdot 9$	$4 \cdot 3$	
ijije, near Meednet-el-Fayoum, iu Egy pt : Qsirtesen I.; unequal $\{$	$42 \cdot 9$	$2 \cdot 6$	$4 \cdot 2$	
sides - - - - - . - - -	$43 \cdot 0$ 41.6	$4 \cdot 9$ $4 \cdot 9$	${ }_{5 \cdot 10}^{6 \cdot 98}$	
	$67 \cdot 2$ \& 69•1	-		

Oblique Angie. One that is greater or less than a right angle.
Oblique-angled Triangle. One that has no right angle.
Oblique Arches. Such as cross an opening obliquely to the front face of them.
Oblique Live. One which stands, in respect to another, at a greater angle than ninety degrees.
Oblong. A rectangle of unequal dimensions.
Observatory. (Fr.) A building for the reception of instruments and other matters for observing the heavenly bodies. The observatory at Paris, from the designs of Perrault, is a noble building, but, we believe, is universally admitted to be very ill suited to the purposes for which it was built. A regular observatory is one where instruments are fixed in the meridian, whereby, with the assistance of astronomical clocks, the right

Fig. 1428.
nsecnsions and declinations of the heavenly bodies are determined, and thus motion, time, and space are converted into measures of each other. On the observations and determinations made in such establishments they are therefore, to maritime states, of vital importance, and ought to be liberally endowed by their governments. As the subject will be better understood by a plan, wo subjoin, in fig. 1428, a plan and eleration of the observatory at Edinburgh. The general form of the plan, as will be therein seen, is a Greek cross, 62 feet long, terminated at its feet by projecting hexastyle porticoes, which are 28 feet in front, and surmounted by pediments. The intersecting limbs of the cross at their intersection are covered by a dome 13 feet diameter, which traverses round horizontally, and under its centre a pier of solid masonry is brought up of a
conical form 6 feet in diamcter at the base, and 19 feet high. This is intended either for an astronomical circle or for an equatorial instrument for observations of the heavenly bodies made out of the meridian. In the castern foot of the cross ($b b$) are stone piers for the reception of the transit instrument; c is the stone pier to which the trausit clock is attached; and d is a stone piece on which an artificidl horizon may be placed, when olservations are taken by reflection: this is covered by a floor board when not in use, being just under the level of the floor ; a a are the slits or chases running through the walls and roof, but closeable by means of shutters when the observation is completed. On the western side ($e e$) are chases as in the transit room; f a large stone pier for the reception of a mural circle; g the clock pier; h the pier for an artificial horizon as before; i is the conical pier above mentioned, over which the moveable dome is placed, having an opening (l) in the elevation for the purpose of observation; k is the observer's room; and m the front entrance.

It is to be especially observed that the piers for the reception of the instruments must not be in any way connected with the walls of the building; they should stand on the firmest possible foundation, which, if at all doubtful, must be formed with concrete, and the piers should, if possible, be out of a single block of stone ; but if that cannot be obtained, the beds must be kept extremely thin ; partial settlement being ruinous to the micety of the instruments as well as to the observer's business. The observation applies also to the clock piers, all vibration and settlement being injurious also to them. A dry situation should be chosen for the site, for, except in the computing rooms, no fire heat can be allowed; and it is important that the brass whereof the instruments are made should not be corroded by the action of moisture. In large public observatories there should be the readiest access from one part to another, and rooms for a library and computers independent of the chief astronomer's room. The Orwell Park observatory, as described by its architect. Mr. Macricar Anderson, is published in the Sessional papers of the Royal Institute of British Architects, Nov. 16, 1874. The observatory at Warsaw by Pietro Aigner is said to be one of the finest in Europe; that at Armagh is very good. A descriptive account of public and private observatories in England is given in the Pictorial Handbook of London, 8vo., London, 1851, published by J. Weale.
Obtuse. (Lat.) Anything that is blunt.
Obtuse-angled Triangle. One which has an obtuse angle.
Obtuse Arch. See Drop Arch.
Obtuse Sbction of a Cone. Among the ancient geometriciaus a name given to the hyperbola.
Ociragon. (Gr. 'Oкт ω aud $\mathbf{\Gamma} \omega r i x$, angle.) A figure having eight equal sides and eight equal angles.
Octahedron. (Gr.) One of the five regular bodies bounded by eight equal and equilateral triangles.
Octastyle. (Gr. 'OKTw and ミrv^os.) That species of temple or building having eight columns in front. See Colonnade.
) devm . (Gr.) Among the Greeks, a species of theatre wherein the poets and musicians rehearsed their compositions previous to the public production of them.
eecus. See Hall.
Iffices. The apartments wherein the domestics discharge the several dutics attached to the service of a house ; as kitchens, pantries, brewhouses, and the like.
Frser. The horizontal projection from the faces of the different parts of a wall where it increases in thickness.
gre, A moulding, the same as the Cyma reversa.
gee Arch. A pointed arch, the sides of which are each formed with a double curve. (See fig. 1429.) It frequently appears in the Decorated period of Gothic architecture, and occasionally in that of the Perpendicular ; chiefly in small ornamental work, as shrines and canopies; its inflected curves weaken it too much for supporting great weights. In some late work, this arch is also made to curve forward.
rve. A term used by French architects to denote the Gothic arch, with its ribs and cross springers, \&c. The word is used by them to denote the pointed arch.
clests, or Oyletts. Small openings or eyelet holes seen in medieval military buildings, through whieh missiles could be disharged without exposing the soldier.

Fig. 1429.
(E fatr of Statrs. An expression signifying the first story or floor above that floor evel with, or raised only by a few steps, above the ground, which latter is thence called the ground floor.
(ix Marble See Marble.

Opas. (Gr. Oлп.) The beds of the beams of a floor or roof as in a Grecian temple, the space between which are called the Metops.
Open Newel Stairs. See Newhl.
Opening. (Sax.) That part of the walls of a building which is unflled, for admitting light, ingress, egress, \&c. See Aperture.
Opisthodomus. (Gr.) The same as the Roman posticum, being the enclosed space in the rear of the cell of a tenmple.
Opposite Angles. Those formed by two straight lines crossing each other, but not two adjacent angles.
Opposite Cones. Those to which a straight line can be applied on the surfaces of both cunes.
Opposite Sections. The sections made by a plane cutting two opposite cones.
Optic Pyranid. In perspective, that formed by the optic rays to every point of an object. Optic Rays. Those which diverge from the eye to erery part of an original object.
Orangery. A gallery or building in a garden or parterve opposite to the south. Seo Grefniouse. The most magnificent orangery in Europe is that of Versailles, which is of the Tuscau order, and with wings.
Oratory. (Lat.) A small apartment in a house, furnished with a small altar, crucifix, \&c., for private devotion. The ancient oratories were small chapels attached to monasteries, in which the monks offered up their prayers. Towards the sixth and seventh centuries the oratory was a small church, built frequently in a burial-place, without either baptistery or attached priest, the service being performed by one occasionally sent for that purpose by the bishop.
Orb. (Lat. Orbis.) A knot or foliage of flowers placed at the intersection of the ribs of a Gothic ceiling or vault to conceal the mitres of the ribs. See Boss.
Orchestra. (Gr. Op $\chi \in \rho \mu a$.) In ancient architecture, the place in the theatie where the chorus danced. In modern theatres it is the enclosed part of a theatre, or of a music room, wherein the instrumental and vocal performers are seated.
Order. (Lat.) In Grecian, Roman, and Italian architecture, an assemblage of parts, consisting of a base, shaft, capital, architrave, fricze, and cornice, whose several services requiring some distinction in strength, have been contrived in five several speeies-Tuscan, Doric, Ionic, Corinthian, and Composite; each of these has its ornaments, as well as its general fabric, proportioned to its strength and use. These are the fire orders of architecture, the proper understanding aud application of which constitute the foundation of all excellence in the art.
Ordinate. In geometry and conics, a line drawn from any point of the circumference of an ellipsis or other conie section perpendicular to, and across the axis, to the other side.
Ordonnance. (Fr. from the Lat.) The perfect arrangement and composition of any architectural work. It applies to no particular class, but the term is general to all species in which there has existed anything like conventional law.
Organical Description of a Curve. The method of describing one upon a plane by continued motion.
Orifl, or Oriel Windew. (Etym. uncertain.) A large bay or recessed window in a hall, chapel, or other apartment. It ordinarily projects from the outer face of the wall either in a semi-octagonal or diagonal plan, and is of varied kinds and sizes. In large halls its usual height is from the floor to the ceiling intermally, and it rises from the ground to the parapet on the outside; sometimes it consists only of one smaller window supported by corbels, or by masonry projecting gradually from the wall to the sill of the window. A bow window projects circularly, and was formerly called a compass or embowed window; whilst the projection of the oriel is made up of angles and straight lines forming generally the half of a hexagon, octagon, or decagon, and was better known by the name of bay window, shot window, or outcast window, a distinction, however, not generally observed.
Orimatation. (Lat. Oriens.) The deviation of a church from due east, it being supposed that the chancel points to that part of the east in which the sun rises on the day of the patron saint. This point, however, has not been fully investigated.
Original Line, Plane, or Point. In perspective, a line, plane, or point referred to the object itself.
Orle. (Ital.) A fillet under the ovolo or quarter round of a capital. When the fillet is at the top or bottom of the shaft of a column it is called a cincture. Palladio uses the word orle to express the plinth of the bases of the columns and pedestal.
Ornament. The smaller and detailed part of the work, not essential to it, but serving to enrich it ; it is generally founded upon some imitation of the works of nature.
Ornamented English Architecture. That phase of mediæval architecture in England which is generally called the Decorated period; it was comprised chiefly in tho reighs of the three first Edwards.

Ortingrapily. (Gr. Opөos, right, and $\Gamma \rho a \phi \omega$, I deseribe.) The elevation of a building showing all the pats in their proper proportions; it is either external or internal. The first is the representation of the external part or front of a building showing the face of the principal wall, with its apertures, root of the building, projections, decurations, and all other matters as seen by the eye of the spectitur, placed at an infuite distance from it. The second, commonly called the section of a building, shows it as if the external wall were removed and separated from it.

In geometry, orthography is the art of representing the plan or side of any object, and of the elevation also of the principal parts: the art is so denominatel from its etymology, because it determines things by perpendicular right lines falling on the geometrical plan, or becauss all the horizontal lines are straight and parallel, and not, as in perspective, oblique.
Ortnostyle. A columnar arrangement, the columns being placed in a straight line.
Osculating Circle. That, the radius of whose curve, at any particular point of another curv, is of the same length as that of the curve in question at that particular point.
Hence it is the kissing circle, and that so closely that there is no difference in the curvature of the two curves at that particular point.
Oundy, or Undy Moulding. A moulding with a wavelike outline. See fg. 1383.
Out and In Bond. A Scotch term for alternate header and stretcher in quoins, and in window and door jambs.
Outer Duors. Those common to both the exterior and interior sides of a building.
Outer Plate. See Inner Plate.
Outline. The line which bounds the contour of any object.
Out of Winding. A term used by artificers to signify that the surface of a body is that of a perfect plane; thus when two straight edges in every direction are in the same plane they are said to be out of winding.
Oot to Out. An expression used of any dimension when measured to the utmost bounds of a body or figure.
Potward Angle. The external or salient angle of any figure.
Jra. (Lat.) Ornaments in the shape of an egg, into which the echinus or ovolo is often carved.
)val. A geometrical figure, whose boundary is a curve line returning into itself; it includes the ellipsis or mathematical oval, and all figures resembling it, though with diffi rent properties.
jverhang. See Batter.
${ }^{\prime}$ veristory. The clear- or clero-story of a building.
voln. (Ital.) A convex moulding whose lower extremity recedes from a perpendicular line drawn from the upper extremity.
xidafion. The corrosion of iron by the atmosphere. Paint is one of the best preservatives, renewed as necessary. Lime-whiting is another; and lat+ly it has been urged to pickle the wrought iron in dilute sulphuric acid, so as to remove the scaly oxide before painting.

P
CE A portion of a floor slightly raised above the general level : a dais. It is also applied to a landing in a staircase; its prefix, half or quarter, determines the size of ir. See also Measure.
cking. Small stones imbedded in mortar, used to fill up the interstices between the arger stones in rubble work.
JodLe. A small sluice, similar to that whereby water is let into or out of a canal lock.
$]_{\text {3oDa. }}$ A name given to the tall pyramidal structure of several stones, forming one of be peculiar features of Chinese architecture. It is said to be derived from the Hindoo vord dagoba.
I nted Glass. Glass painted with ornaments or pictorial representations, and then put ato a kiln and the paint burnt in. See Stained Glass, with which it is sometimes used 1 painted windows.
EATER. An artificer who combines the knowledge of colours and the application of them , decorative purposes.
F ster's Work. The work of painting, with different coats of oil colour and turpentine, po parts of a building usually so treated.
$P_{\text {t. }}$ As one-pair, two-pair, \&c., story. See Floor, and One-Patr.
P sce. (Lat. Palatium.) In this country, a name given to the dwelling of a king or leen, a prince, and a bishop. On the Continent, it is a term in more general use, most all large dwellings of the higher nobility and government offices being so nominated. A palace is properly an edifice destined not only for the residence of the vercign or prince, but for the reception also of persons who have the privilege of public or
private audience. It being impossible for the whole of the parties to be present together, there must be, besides the apartments which are occupied by the soverrign and his or her family, ample room and accommodation for the attendants in waiting of every degree, and the consequent accessories. A palace should be disposed with porticues, vestibules, galleries, halls of waiting suited to every season, wherein those to be admitted may wait with convenience and comfort till their turn of admission arrives. It is evident that, from the uature of such an edifice, much magnificence should be displayed in it. The site on which a palace is to be seated must be open and free in every respect, so that a large expanse of gardens should be attached to it for the use of the public as well as the sovereign, in which respect the palaces of the Tuileries and Versailles are unparalleled. All should have a royal bearing, parsimony being inadmissible in works of this nature.

The palaces of the Escurial, Versailles, and the Tuileries are, though extremely spacious and imposing, but ill-disposed and imperfect examples of a palace. Perhaps the most perfect in Europe is that at Caserta, near Naples, commenced in 1752, which is described by Milizia as iollows :-" The plan of this palace is a vast rectangle, 731 feet long from east to west, 569 from north to south, and 106 fert in height. The interior is divided into four courts, 162 feet by 244 . The depth of building that surrounds these courts, in which are the apartments, passages, \&c., is 80 feet, iucluding the thickness of the walls, which are in some instances 15 feet. The two principal façades have five stories besides that below the ground, and each contains thirty-seven windows. There are three entrances, one in the centre, and the others at equal distances between it and the extreme angles, where, as well as in the centre, the building breaks forward a little, is carried up to the leight of 60 feet, and formed into pavilions by columns 42 feet high. Thus the whole height of the building is 102 feet from the foundation to the top of the pavilion, at the angles 162 feet, and in the centre 190 feet. The basement, which is rusticated, comprises the lower offices, the ground floor, and its mezzanine. Abve is placed an Ionic order of columns and pilasters, which contains the two ranges of state apartments ; the lower windows are ornamented with pediments; in the frieze are introduced the windows of the upper mezzanine. The centre entrance leads to a superb portico, which traverses the building from north to south, and is sufficiently spacious to allow carriages to pass under from either façade to the centre of the building, where is a large octangular vestibule, which unites the arms of the cross produced by dividing the plau into four courts: two sides of the octagon are open to the portico, four to the four courts, one to the grand staircase, and the eighth is oceupied by a statue of Hereules crowned by Virtue.
" The grand stairease, which is on the right, is lighted by twenty-four windows, and decorated in a beautiful style. At the first landing it is dirided into two flights; the hundred steps of which it is composed are 18 feet long, and each of one piece of marble; it is lighted also from the top by a double skylight. The upper vestibule is also octangular, and surrounded ly twenty-four cohumns of yellow marble 18 feet high. Four dours lend from thence to the apartments: the one opposite the landing to the chapel, that to the right to the apartments of the king, which comprehend the south-west angle of the building, overlouking the sea and the plains of Naples and Capua. To the left are the apartments of the queen, occupying the north-west angle, the remainder of these floors being secupied by the princes. The chambers throughout are vaulted, and admirably arranged; the apartments of the king and queen are separated ly a gallery 138 feet long, 42 wide, and 52 high. The palace contains a small elegant theatre, on a circular plan, disiled iuto nine compartments, with four tiers of boxes. The chapel is rectangular in its plan, with the end termmated semicircularly, and decorated with isolated Corinthian columus on pedestals, with an entablature, in which the cornice is not omitted. The marbles and sculptures throughout are of the richest kind; the apartments gencrally well arrunged and distributed, of magnificent dimensions, and of rarious forms. The whole is a rare assemblage of vastness, regularity, symmetry, richness, ease, and elegance. The multiplicity of windows may certainly be a little at variance with propriety.
"But the most wonderful part of this grand work has not as yet been deseibed. There are ranges of aqueducts of a great height, and of sufficient length to unite the two Tifati mountaius near the Furche Caudinc. The waters on the mountain are collected into a canal for the purpose of supplying these acqueducts, and conducted to various lakus and fountains of every description. To the embellishments," adds Milizia, "of this royal residence are added a convenience and solidity that throw into shade all that has been done before or since." The plans, \&c. of this palace are given in Durand's Paralléle des Elifices, and also in the work by Vanvitelli, its architect.
The palace at Whitehall projected by Inigo Jones, and published in Kent's Designs (see fig. 207. supra), consisted of six courts, with greater beauties of composition; and had the edifice, of which the "banqueting-house" is not the huudredth part, bern carricd to conpletion, it woald have eclipsed the one at Caserta, which contains the
leading, and, indeed, governing priuciples upon which the palace fur a sovereign should be constructed.
Many useful remarks on this subject will be obtained in perusing Brewer's Descriptive and Historical Account of the various Palaces and Public Buildings, English and Fortign, 4 to., London, 1821. We regret that in this country no model of a palace can be offered for the student. Windsor Castle, with all its beautics, which consist, however, more in site and scenery than in the disposition of a palace, is not to be commended; St. Jamev's Palace is said to be planned with many advantages for holding courts, but the exterior is far foom what a palace should be.
Palestia. (Gr. חaлait, I wrestle.) A part of the Grecian gymnasium, particularly appropriated to wrestling and other gymast:c exercises; it was some imes used to denote the whole building. It contained baths which were open for the use of the public. According to the authority of Vitruvius no palestra existed in Rome.
Pale. A small pointed stake or piece of wood, used for making landmarks, and enclosures, placel vertically.
Pale Fencing, or Pale Fence. That constructed with pales.
Palisade. A fence of pales or stakes driven into the gruund, set up for an enclosure, or for the protection of property.
Palladian School of Architecture. A manner of designing, taking its name from its introducer, the celetrated architect Andrea Palladio. It is a sort of mediurn between that vigorous severity which some exclusive minds abuse in the endeavour to imitate the Classic style, and the licentious anarchy of those who refuse to recognise rules, wh ch rules allow of exceptions. In the conception and execution of the edifices by Palladio there is always a clear intuition, a simple method, a sufficiently perceptiblo accord between need and pleasure, and such harmony in this accord that it would be difficult to say which gave the law to the other. His manner offers to all countries a model easy of imitation. The talent of the author of it is doubtless the principle whence this facility emanates, but this facility of adapting itself to everything and being adopted by all, is what distinguishes his talert and generalises its influence. In fact, it may be said with truth, that Palladio has become the most uni versally followed master in all Europe, and in some sort the chief of the moderu schoil in civil buildings. This school has bepn reproduced in Engliand with the greatest success, as in the case of Inigo Jones and others. Quatremère de Quincy, Dict. Arch. See also Gwilt's criticism in Book I.
Palar. A measure of length. See Measure (Ancient), and Fuot.
Pampre. (Fr.) An ornament composed of vine leares and bunches of grapes wherewith the hollow of the circumrolutions of twisted columrs are sometimes decorated.
Pan. A square of framing in half-timbered houses, the uprights being filled in with work. It is called post and pan, or post and petrail work, in the north of Er gland.
Pancarpi. (Gr.) Garlands and festoons of fruit, flowers, and leaves, for the ornament of altars, doors, vestibules, \&c.
Pane. A term applied to the side of any object, as a square, octagon, \&c., which would be said to have four, eight, \&c., sides.
Panel. (From the low Latin panellum.) A board whose edges are inserted into the groore of a thicker surrounding frame, as in a door.
A pancl in masonry is one of the faces of a hewn stone.
Panier. (Fr.) An upright corbel fixed against a pilaster and under a beam to break the angle so formed.
'antameter. A graduated bevel.
'antile. The curred tile ussd for roofing.
antograph. An instrument for copy ing, diminishing, or enlarging drawings.
APER. A substance made by the maceration of linen rags in water and spreading them by hand or machinery into thin sheets; on this the drawings of the architect are usually made ; its usual sizes, as made by Whatman, being:-

Demy	-	-	-	-	-	-		nch	15	inch
Medium	-	-	-	-	-	-				
Royal	-	-	-	-	-	-	24	-	19	
Super-royal	-	-	-	-	-	-	27	-	19	-
Imperial -	-	-	-	-	-	-	30	-	22	-
Culombier	-	-	-	-	-	-	34	-	23	
Atlas	-	-	-	-	-	-	33	-	27	
Double Elephant	-	-	-	-	-		40	-	27	-
Antiquarian	-	-	-	-	-	-	33	-	31	
Fxtra Antiquar:an	-	-	-	-	-	-		-	38	
Emperor - -	-		-	-	-	-	68	-	48	

"Cartridge" is a stronger sort for working drawings. For rough sketching, a thin paper, the "lining paper" of the paperhangers, is much used, and is obtainod in a roll of twelve yards in leugth. Continuous cartoon paper is 3 ft .4 in ., 4 ft ., and 5 ft . wide. Tinted papers cau also be so obtained. For mapping or such work a strong continuous paper is made, and ready mounted on holland for extra strength. See Tracing Pafer.
Paperhangings. The paper prepared, either plain or with a pattern printed upon it, for covering the walls of rooms. The varieties are very numerous. The better scrt are still printed from wood-blocks, but the inferior kind are pristed by machinery.
Fapyrus Capital. A species of capital seen in some of the temples of Egypt. See fig. 59.
Parabola. (Gr. Hapa, through, and Baj $\alpha \omega$, I throw.) In geometry, a curved line formed by the common intersection of a conic surface, and a plane cutting it parallel to another plane touching the conic surface.
Parabolic Asoymptote. In geometry, a line continually approaching the curve, but which, though infinitely produced, will never meet it.
Parabolic Curve. The curved boundary of a parabola, and terminating its area, except at the double ordinate.
Parabolic Spinal, or Helicold. A curve arising from the supposition of the axis of the common parabola bent into the periphery of a circle, the ordinates being portions of the radii next the circumference.
Paranoloid. See Conoin.
Parallel. (Gr. Пapa $\lambda \lambda \eta \lambda o s$.$) In geometry, a term applied to lines, surfaces, \&c., that$ are in every part equidistant from each other.
Parallel Coping. See Coping.
Parallelogram. (Gr.) Any four-sided rectilineal figure, whose opposito sides are parallel.
Parallelopiped. In geometry, one of the regular bodies or solids comprehended under six faces, each parallel to its opposite face, and all the faces parallelograms.
Parameter. (Gr. Mapa, through, and Mef $\rho \omega$, 1 measure.) In conic sections a constant right line in each of the three sections, called also latus rectum.
Parapet. (Ital. Parapetto, brcast high.) A small wall of any material for protection on the sides of bridges, quays, or high buildings.
Parascenium. Another name for the postocenium in the ancient theatre.
Parastate. See Antee.
Parclose. The screen which separates chapels (especially at the east end of the aisles) from the body of the church. They are usually of wood, but are also sometines of stone.
Parget. A name given to the rough plaster used for lining chimney flues, and formed of lime and cow's dung.
Parge Wurk; Pargetting. A particular sort of plaster work, haring patterns and ornaments raised upon it or indented; much used in interior decorations, and often on the exterior of half-timber houses, during the Elizabethan period.
Parker's Cement, also called Roman Cement in 1796. It is manufactured principally from nodules found in the Isle of Sheppey and at Harwich, being septaria from the London clay. When burnt, it is ground into powder, and mixed with sand, and water being applied to it, it sets fast and very hard, and is impervious to water.
Parlour. (Fr.) A room for conversation, which in the old mocasteries adjoined the buttery and pantry at the lower end of the hall. At the present day it is used to denote the room in a house where visitors are commonly received, and often serves as a dining-room.
Parados. (Gr.) The grand entrance of the scene of an ancient theatre that conducted on to the stage and orchestra.
Pakpein. See Perpeyn-Wall.
Parquetry. Inlaid work, made of thin plates or veneers of hard coloured woods, and secured to a framing of deal, well-dried and seasoned, to form the flooring of an apartment. They are arranged in patterns. Of late years solid, and thick, parquetry has been introduced. The floor may be left plain, but is more frequently polished. There is also a thin substance, about $\frac{3}{8}$ this of an inch thick, which is secured to the old floor by a patent cenient, or by brads. The old method of covering a floor by a carpet, which collects the dust and covers the furniture with it when swept, is now abandoned in many houses, and parquetry substituted, with rugs, or square carpets, or Indian matting, so as to be easily removable for cleansing A "parquetry border" has also taken tho place of the common, but still useful, stained and varnished border, around a square carpet. Sce Marqcetry.
Parisonage House. A building, usually near the ehureh, occupied by the incumbent of
the living; in former times this sort of building was often embattled and fortified, and had various appendages, including sometimes a small chapel or oratory.
Parting Bead. The beaded slip inserted at the centre of the pulley style of a sash wiudow, to keep the two sashes in their places when being raised or lowered.
Partition. (Lat.) A wall of stone, brick, or timber, difiding one room from another. When a partition has no support from below, it should not be suffered to bear on the floor with any considerable weight, and in such cases it should have a truss formed within it, in which case it is called a trussed partition. See Truss.
Party Wall. Such as is formed between buildings to separate them from each other and prevent the spreading of fire. Erery wall nsed or built in order to be used as a separation of any building from any other building, with a view to the same being occupied by different persons. The regulations prescribed for them form a large portion of the Metropolitan Buildings Act, and of local Acts passed fur similar purposes.
Pahty Fence Wall. A wall separating the open ground in one occupation from that in another; each owner having a right up to the contre of such wall.
Party Strecture. This term includes party walls, and also partitions, arches, floors, and other struetures separating buildings, stories, or rooms which belong to different owners, or which are approached by distinct staireases or separate entrances from without.
Partise. A porch, portico, or large entrance to a church. It seems also to have signified a room over the church porch, where schools used to be held.
Parvise Turret. The small tower which encloses the staircase to the parvise.
Passage. The avenue leading to the various divisions and apartments of a building. When there is only one series of rooms in breadth, the passage must run along one side of the building, and may be lighted by apertures through the exterior walls. If there be more than one room in breadth, it must run in the middle, and be lighted from above or at one or both ends.
Patera. (Lat.) A vessel used in the Roman sacrifices, wherein the blood of the victims was received. It was generally shallow, fiat, and eircular. Its representation has been introduced as an ornament in friezes and fasciæ, accompanied with festoons of flowers or husks, and other accessories.
Paternosters. A species of ornament in the shape of beads, either round or oval, used in baguettes, astragals, \&c.
Pavement. (Lat. Pavimentum.) A path or road laid or beaten in with stones or other materials. According to the information of Isidorus, the first people who paved their streets with stones were the Carthaginians. Appius Claudius, the founder of the Appian Way, appears to have introduced the practice into Rome, after which the Roman roads were universally paved, remains of them having been found in every part of the empire.
In the interior of the Roman houses, the parement was often laid upon timber framing ; and the assemblages so constructed wore called contignata pavimenta. The parement called coassatio was made of oaken planks of the quercus asculus, which was least liable to warp. The Roman parements were also frequently of mosaic work, that is, of square pieces of terra cotta or stone, called tesseræ, in various patterns and figures, many of which remain in Britain to the present day.
The various sorts of paving are as follows:-1. Pebble paving, of stones collected from the sea-beach, mostly obtained from Guernsey or Jersey. This is very durable if well laid. The stones vary in size, but those from six to nine inches deep are the best, those of three inches in depth are called bolders or bowlers, and are used for paring courtyards and those places wherever heavy weights do not pass. 2. Rag paving: inferior to the last, and usually from the vicinity of Maidstone, in Kent, whence it bears the name of Kentish rag-stone. It is sometimes squared, and then used for paving coach tracks and footways. 3. Purbeck pitchers, which are squared stones, used in footways, brought from the island of Purbeck. They are useful in courtyards; the pieces running about five inches thick, and from six to ten inches square. 4. Squared paving, by some called Scotch paving, of a clear close stone, called blue wynn. This is now, however, quite out of use. 5. Granite, of the material which its name imports. 6. Guernsey paving, which, for street work, is the best in use. It is broken with iron hammers, and squared to any required dimensions, of a prismoidal figure, with a smaller base downwards. It is commonly bedded in small gravel. 7. Purbeck paving, used for footways, of which the blue sort is the best, is obtained in pretty large surfaces, of about two inches and a half thick. 8. Forkshire paving: a very good material, and procurable of very large dimensions. 9. Ryegate, or fire-stone paving, used for hearths, stoves, ovens, and other places subject to great heat, by which this stone, if kept dry, is not affected. 10. Newcastle flags, useful for the paring of offices. They run about one and a half to two inches thick, and about two feet square, and bear considerable resemblance
to the Yorkshire. 11. Porlland paving may be had from the island of Portland, of almost any required dimensions. The squares are sometimes ornamented by cutting away their angles, and inserting small black marble squares, set diagonally. 12. Sweedland paring: a black slate, dug in Leicestershire, useful for paving halls or for particoloured paring. 13. Marble paving, of as many sorts almost as there are species of marble. It is sometimes inlaid after the manner of mosaic work. 14. Hlat brick paving, executed with bricks laid flat in sand, mortar, or grout, when liquid lime is poured into the joints. 15. Brick-on-edge paving, executed in the manner of the last, except that the bricks are laid on edge. 16. Herring-bone paving: bricks laid diagonally to each other. See Herring-bone Work. 17. Brieks laid endwise in s?nd, mortar, or grout. 18. Paving bricks are made especially for the purpose, and are better than stocks. 19. Ten-inch tile paving. 20. F'oot tile paving. 21. Clinker paving. 22. Diamond tile paving. 23. Coloured tiles, and tessellated or mosaic pavements, now form a large trade.

The pavements of churches are often in patterns of several colours, of which, to show the great variety that may be obtained from a few colours, M. Truchet (Mém. Acad. Fran.) has proved that two square stones, dirided diagozally into two coluurs, may be joined together chequerwise in sixty-four different ways.
Pavilon. (Ital. Padiglione.) A turret or small building, generally insulated and comprised under a single roof. The term is also applied to the projecting parts in the front of a building. They are usually higher than the rest of the building.
Pavilion Roof. A roof sloping or hipped equally on all sides.
Paving Srabs. Experiments made ly George Rennie upon slabs 12 inches long, $2 \frac{1}{2}$ inches wide, and 1 inch thick, laid flat on bearings 10 inches apart, the weight being suspended from the middle of each, gave the following results:

Buchanan tried specimens of stones, the weights being piled on :-
Breaking Weight.

Pecky. Timber in which the first symptoms of decay appear. An American term.
Pedestal. (Compound, apparently, of Hous, a foot, and इ iudos, a column.) The lowest division in an order of columns, called also in Greck, stylobate and stercobate. It consists of three principal parts: the die, the cornice, and the base.
Pediment. The triangular crowning part of a portico, which terminates vertically the

Fig. 1430. Temple at Egina.
sloping parts of the roof. See Temple. It is sometimes placed over an opening as part of the decoration of the dressings; it should never be used under cover. In Gothic architecture this triangular piece is much higher in proportion to its width, and is denominated a Gable. The illustration (fig. 1430) exhibits the centre portion of the sculpture in the pediment of the temple at Egina, which is among the earliest examples of Grecian art. See fig. 1457, which shows the elevation of the temple.

Pemiment Arcif. Sce Mitre Arcif.
Pelasgic Bollong. Walls of cities and houses formed of huge stones searecly mora than piled together, without tho connecting medium of mortar or cement. It is also called Cyclopean building.
Prilet Motlding. A flat band on which are circul.ar flat d sks forming an ornament, used in Norman architecture. See fig. 1431.
Pembent. (Lat.) An ornament suspended from the summit of Gothic vaulting, very often claborately decorated. The mode in which stune pendents are constructed will be immediatcly

Fig. 1431. understond by a consideration of the annexed figure (fig. 1432). used very frequently to timber-framed roofs, as in that of Crosly Hall, which has a series of pendents along the centre of it. Peudents are also attached to the ends of the hammer beams in Gothic timber roofs.
Pexdentive. The entire body of a vanlt suspended ont of the perpendicular of the walls, and bearing against the arch boutants, or supporters. It is defined by Daviler to be the portion of a vault between the arches of a dome, commonly enriched with sculpture. Felibien defines it as the plane of the vault contained betwcen the double arches, the forming

The pendent was also

Fig. 1432. arches, and the ogives.
Pendentive Bracketing, or Cave Bracketing. That springing from the rectangular walls of an apartment upwards to the ceiling, and forming the horizontal part of the ceiling into a circle or ellipsis.
Pendentive Cramling. The timber work for sustaining the lath and plaster in vaulted ceilings.
Penetrale. (Lat.) The most sacred part of the temple, which generally containcd an altar to Jupiter Herceus, which appellation, according to Festus, was derived from £́кos, an enclosure, and supposed him the protector of its sanctity.
Penetralia. (Lat.) Small chapels dedicated to the Penates, in the innermost part of the Roman houses. In these it was the custom to deposit what the family considered most valuable.
Penitentiary. In monastic establishments was a small square building, in which a penitent confined himself. The term was also applied to that part of a cluceh to which penitents were admitted during divine service. The word, as used in the present time, implies a place for the reception of criminals whose crimes are not so heinous es to deserve punishment beyond that of solitary confinement and hard labour, and where means are used to reclaim as much as possible those who have become subject to the laws by transgressing them.
Penstock. A small paddle, working up and down vertically in a grooved frame, for penning back water.
?entacle. A figure whose basis is a double triangle ; it is not unfrequent in early ornamental art.
mentadoron. (Gr.) A species of brick used in ancient architecture, which was five palms long. Pentagon. (Gr. Mevic, five, and $\Gamma \omega \nu i a$, an angle.) In geometry, a figure of fire sides and five angles. When the fire sides are equal, the angles are so too, and the figure is called a regular pentagon.
'entagraph. See Pantograph.
'entalpha. A figure formed by a continuous line, making a five-pointed star, not unfrequent in mediæral decoration and window tracery. See fig. 1293.
'entastyle. A portico or colonnade having five columns in front.
ent-house. A shed having a lean-to roof.
eppercorn Rent. A rent for land, being one of the smallest possible value. A rose is sometimes named; also a flag or banner. A farm in St. Saviour's, Southwark, was let at the price of 17 lbs . of pepper at $2 s$. per pound. Also an acre of land at Lamberh "for $2 s$. for the price of one pound of pepper by the year beyond all rents resolute."
erch. A measure for brickwork used in Ireland in plece of the Rod in England. It is 21 feet in length, by 1 foot high, and 1 foot thick. It equals $15 \frac{3}{4}$ cube feet. One thousand bricks, a quarter cart of sand, and one and a quarter hogshead of linee, will serve for four and a half perches. It is also there used for masonry, as well as in some counties in England.
eriacti. (Gr. Mepiá $\gamma \in i \nu$, to revolve.) The revolring scenes in an ancient theatre, called by the Romans scence versatiles.
aribolus. (Gr.) The wall bounding an enclosure. It has become applied to the enclosure itself, more particularly around a temple. It was frequently ornamented
with statues, altars, and monuments, and sometimes had smaller temples or a grore. The peribolus of the temple of Jupiter Olympius, at Athens, was four stadia in circumference.
Peridrume. (Gr. $\boldsymbol{\Pi} \epsilon \rho l$, about, $\Delta \rho o \mu o s$, a course.) The space, in ancient architecture, between the columns of a temple and the walls enclosing the cell.
Perimeter. (Gr.) The boundary of a figure.
Pfriphery. (Gr. Пє $\rho \phi \rho \epsilon \omega$, I surround.) The circumference of a circle, ellipsis, parabola, or other regular cursilinear figure.
Peripteral. (Gir.) A building encompassed by columns. See Temple.
Pehiptery. (Gr.) The range of insulated columns round the cell of a temple.
Peristylium. (Gr.) In Greek and Roman buildings, a court, square or cloister, which sometimes had a colonnade on three sides only, and therefore in that case improperly so called. Some peristylia had a colonnade on each of the four sides; that on the south being sometimes higher than the rest, in which case it was called a Rhodian peristylium. The range of columns itself was called the peristyle. See Colonnade.
Pbolthyridey. The same as Ancones.
Peritrochiun. (Gr.) A term in mechanies applied to a wheel or circle concentric with the buse of a cylinder, and together with it moveable about an axis.
Perpen Ashlar. A provincial term, being probably a corruption of perpendicular, as the stone in the form of $4,6,8$, or 10 inches thick, in 10,12 , or 14 inch courses, and from 30 inches to 54 inches long, is placed on edge, and must of course be set very plumb or perpendicular; the edge or bed also must be truly square with the upright face.
Perpendicular. In geometry, a term applied to a right line falling directly on another line, so as to make equal angles on cach side, called also a normal line. The same definition will hold of planes standing the one on the other. A perpendicular to a curve is a right line cutting the curve in a point where another right line to which it is perpendicular makes a tangent with the curve.
Perfendicular Period. The last period into which the Gothic style in England has been divided. Its name is derived from the predominance of vertical or rectilinear lines. Fig. 1433 is a fine example of the style.
Pripend Stone, or Perpender. A long stone reaching through the thickness of the wall, so as to be risible on both sides, and therefore wrought and smoothed at the ends.
Perpete wall: A kind of pier or buttress projecting from a wall.
Perron. (Fr.) A stairease, lying open or outside the buildng; or more properly the steps in the front of a building which lead into the first story, when it is raised a little above the level of the ground.

Fig. 1433. Wrington Charcl, Somersetshire.

Pebsian or Persepclitan Architecture. The ancient style presents many features similar to the Assyrian remains; they are chiefly seen at the ruins at Persepolis. The modern buildings much resemble those of other Mahommedan countries.
Persians. See Atlantes.
Perspective. (Lat. Perspicio.) The science which teaches the art of representing objects on a definite surface, so as from a certain position to affect the eye in the sanie manner as would the objects themselves. See Brad's-kye Perspective; Isometrical Projection.
Pest Hodse. A lazaretto or infirmary where persons, goods, \&c., infected with the plague or other contagious disease, or suspected so to be, are lodged to prevent sommunication with others, and the consequent spread of the contagion.
Pellitan. See Maesimir stone.

Pew. (Fr. Piou.) An enclosed seat in a church. Pews were in use long before the Reformation in England.
Phalanof (Gr.) A namo applied by Vitruvius to a species of wooden rollers, used to transpurt heary masses from one spot to another.
Pifarus. (Gr. from $\Phi \omega s, a$ light, and $O \rho a \omega$, I see.) See Lighthotse.
Pheasantry. A building or place for the purpose of brecding, rearing, and keeping pheasants.
Phonics. The doctrine of sounds, which has not yet been so reduced in its application to architecture as to justify more than its definition. Seo dcuustics.
Photo-Lithograpiry. A process of reproducing line engravings and drawings, either copied, enlarged, or reduced, not exceeding one-sixth, and in some cases one-tenth, of the expense ly other processes.
Photombter. (Gr.) An instrument for measuring the different intensities of light.
Piazza. (Ital.) A square open space surrounded by buildings. The term is very frequently and very ignorantly used to denote a walk under an areade.
Picture Gallery. A room or rooms for the exhibition of pictures, drawings, and engravings, and designed to suit either the wealth of the nation or the means of a private person.

The arrangement of the collcetion has to be first decided by the proprietor or curator of the gallery. Thus: Whether in one or more rooms-MiscellaneouslyGrouped according to the class of objects-Divided according to the different schools of painting - The largest size of any picture to enter the collection-The admission of water-colour pictures, chalk drawings, aud of prints-The arrangements as to the admission of the public-The amount and nature of accommodation for students, and any other rooms required for the keeper, for the cleaner, packing, and other similar occupations. The miscellaneous arrangement of a collection is certainly the nost common, as well as the most gratifying to the public. The amateur and artist would prefer the division of pictures by schools, which obtains on the Continent, particularly iu Germany. The Munich Gallery affords information as to the proportion of space which was allotted to each of the groups into which the collection is disided.

In the Pinwotheca at Munich the paintings are grouped according to schools, perhaps more perfectly effected than at Berlin, and a corridor runs the whole length, $4 \geqslant 0$ feet, of the building. The large pictures are placed in very large rooms, 42 ft . wide and 31 feet 6 inches ligh to the cornice. Some of the large rooms are 93 feet long. The smaller pictures are placed in lesser rooms, formed on the other side of the larger ones, and with a side light from the north, which is admitted to be the best light for all pictures and for painting-rooms. The museum and picture gallery at Berlin, by Herr Schinkel, is formed on three sides of a central restibule; all the rooms are 39 feet 9 ins. wide and 26 feet high, with a flat ceiling, and the light throughout is admitted by cummon windows down to the dado on the side. Screens about 16 feet high by 20 feet long divide the galleries into rooms about 30 feet by 18 feet, for grouping the paintings.

The number of lineal feet of wall in the great pictare galleries is as follows:Munich, 1600 ; Lourre, 1300 ; Berliu, 1116 ; London (on the principal floor), 670, but of late years increased to more than double that quantity; and Dresden, which as much exceeds the extent of Munich or of Berlin as did these th, tof London.

It has been urged by the Messrs. Papworth, in their work on Museums, Libraries, and Picture Galleries, 8 vo. London, 1853, that a skylight to a room, with dirisions or presses projecting from the wall, is the most economical mode of arranging a building to receive au unfermed collection of works of art. They also direct the picture gallery to be on the first floor; the ground floor being devoted to ohjects of art, not in relief.

Galleries for oil paintings, large or of a moderate size, mast be lighted from abore. But when they are of the small cabinet size, a side light, being a suitable side light, is well adapted to their display. In the first case, the lights were formerly plactd in square or polygonal tambours, whose sashes were rertical or slightly inclinedinwards, their forms following the plan of the rooms; as at the Dulwich Gallery, by Sir John Soane, R.A. Of late jears, for large rooms, a long skylight haring obscured glass ia it has been preferred, with a coved ceiling under to prevent shadows falling on the pictures. This is occasionally hidden by a flat skylight having groand or obscured glass, the upper skylight having clear glass, but the necessary framework causes some shadows. It will be in the memory of many how miserably lighted, for exbibiting the pictures, is the loug gallery of the Louvre at Paris, which of late years has had some dormer windows formed to admit more light. The walls should be boar'ed throughout for facility in hanging the pictures. Many galleries fail of success from being over-lighted. A roof all glass would be as bad for the pictures as open air. The glare of light, as it is termed, would be too great.

The Fitzwilliam Museum at Cambridge, a library, picture, and statue gallery, affords an example of the mode of lighting for pictures, as also the effect of seulpture as
scen by a low side light oltained from one side only. This is also to be found at the galleries in Dublin; in both cases not with the happiest results.

Professor Magnus, of Berlin, proposed a gallery for small paintings, to be lighted by windows on loth sides, and not opposite one another, reaching nearly to the ceiling, and about 5 feet from the floor, tach about a fourth of the breadth of the room. Between these were to be placed screens at an angle of 62 degrees with the wall. As the pictures required to be removed 5 or 6 feet from the wall, the useless space served for doorways from one compartment to another. The professor proposel a circular building for such an arrangement, perbaps somewhat similar to that deseribed under Musecms, but where the iuner space was formed by a double circular staircase, to lead to several storits, and where the upper room might have the advantage of a skylight.

A principle of lighting a picture gallery, namely, that the window or source of light by which a picture is scen, and the picture itself, ought not both to come within the range of vision at the same time, was exemplified in the gallery built cir. 1825 by sir Benjamin West. P.R.A., expr. ssly for the purpose of exhibiting his paintings. Another on the same principle was designed at Clapham, by the late Mr. J. B. Papworth, and with an equally successful result. It consists in forming a side light opposite to the picture wall ard alove the ceiling; thus all the light is thrown upon the painting, and the source of the light is quite invisible to the spectator. This system is perhaps becter adapted for a private than for a public gallery, on account of the difficulty attending the construction of the roof.

The peculiar arrangements of the small picture gallery in Sir John Soanc's museum should be seen and studied. The grand gallery at the National Gallery, by the late Sir James Pennethorne (a perspective view of which is given in the Builder fur 1861); the new galleries for the sime national structure, erected 1875-76, from the designs of E. M. Barry, R.A., with the new entrance and suite of galleries beyond, erected 1886-87, from the desigas of John Taylor, principal surveyor of H.M. Works and Public Buildings; the Art courts and the picture galleries at the South Kensington Museum ; the picture galleries crected for the Exhibition of Industry, 1862; the exhibition rooms of the Royal Academy at Burlington House, may all be referred to for the latest improvements.
Piece-work. Work done and paid for by measure of quantity, i.e. so much for the piece or job; in contradistinction to work done and paid for by the measure of time, i.c. by day work.
Piedroit. (Fr.) A pier or small pillar, partly hid within a wall. It differs from a pilaster in having neither base nor capital.
Piend. An arris; a salient angle; a hip. It is a northern appellation.
Piend Check. The rebate formed on the pirmd or angle at the bottom of the riser of a stone step of a stair, to catch upon the angle formed at the top of the under step.
Pier. (Fr.) A solid between the doors or windows of a building. The square or other formed mass or post to which a gate is hung. Also the solid support from which an arch springs. In a bridge, the pier next the shore is usually called an abutment pies:
Pier Arch. An arch springing from a pier, as large shafts are usually termed in mediæral architecture. Sre figs. 1417 to 1427.
Pierced Stone, Tolmen or holed stone. One of the consecrated stones of the Celtic people
Pilaster. (Fr.) A sort of square column, sometimes insulated, but more commonly eugaged in a wall, and projeceing only a fourth or fifth of its thickness. See Anta.
Pile. (Lat.) A large timber driven iuto the earth, upon whose head is laid the foundition of a building in marshy and lo se soils. Amsterdam and some other cities are built wholly upon piles. The stoppage of Dagenham Breach was effected by piles mortised into one another by dovetail jcints. They are best and most firmly driven by repeated strokes; and for the saving of time, a pile engine is generally used, in appearance and cffect very much like a guil!otine; this raises the hammer to a certain heiglt, which, pressing the clasps or monkey that carry it up, suddenly drops down on the pile to be driven.
Pillar. (F'r. Pilier.) A column of irregular form, always disengaged, and always deviating from the proportion of the orders, whence the distinction between a column and a pillar. In any other sense it is improperly used.
Pin. In carpentry, a cylindrical piece of wood driven to connect pieces of framing together, It is also called a trenail.
Pinacotheca. (Gr.) An edifice for the preservation of pictures. A picture gallery.
Pinnacle. (Low Lat. Pinnaculum.) A summit or apex. In mediæval architecture, the crown of a buttress or vertical abutment, more or less ornamental, terminating in a cone or pyramid. It was intended to assure the stability of a vertical abutment by its weight; it arrests the sliding of the coping stones of gables; it serves as an attacliment to the balustrade ; and also, by a well-composed outline, it helps to give to buiki-
ings a particular elegance. Pinnacles should hare a bold and aspiring outline, and should receive the parapets and copings against their plinths (as fig. 1216), and not, as often done, against their shafts. Good examples are to be seen at St. Nicbolas, Great Yarmouth; Magdalen College, Oxford; and St. Sepulchre's, London. A Hip кnou to a gable is a sort of pinnacle.
?inney. Also called "green beds" of the Chilmark quarry; they are situate below the tro gh beds. They are small but very durable.
?inning ur. In underpining, the driving the wedges under the upper work so as to bring it fully to bear upon the work below. The term pinning is used to denote the ffstening of tiles with pins of iron or of heart of oak in roofs.
Pipe. A conreyance for water or soil from any part of a building, usually of lead or iron. When for the supply of water to a building it is called a service pipe; when for carrying off water, a waste pipe; and when for carrying off soil, a soil pipe; and those whici carry away the rain from a building are called rain-water pipes. When a cistern or reservoir is supplied in such a way that those who labour to fill it should be made aware that it is full, the pipe which disebarges the orerflow is called a warning pipe. Also for the conveyance of gas, when it is usually of iron, or of a soltish white metal. ealicd composition. A pipe through which the voice is sent to communieate with a distant apartment, is called a " speaking tube."
Pipe. The following rule has been given to ascertain the strength requsite to be given to a pipe of the metals named. Let $d=$ interual diameter ; $t=$ thickness of metal loth in inches; $h=$ head of water in feet required to burst the pipe; $c=$ constant, wrought iron, 200 ; cast iron, 73 ; copper, 87 ; brass, 83 ; and lead 10 . Then $c \frac{t}{d}=h$; and $\frac{d h}{c}=t$. In practice, the thickness of cast-iron water pipes is taken as $=\frac{1}{5} \sqrt{\text { diametcr. }}$. Hurst, Surreyors' Hand Book.
Piscina. (Lat.) Among the Romans this term was applied to a fish-pond; to a shallow reservoir for practising swimming; and to a place for watering horses and washing clothes. The piscina in ecelesiastical architecture was a shallow bowl for water, generally in a niche in the soutl wall of the chancel, wherein the priest laved his hands before the performance of the sacred ritss, and for rinsing the chalice at the time of the celebration of the mass. A hole at the bottom allowed for the est ape of the water, so as not to be reused. The variety of their form is great; some are quite plain, others very richly decorated; and they often occur in pairs.
Pisé. A speeies of walling, of latter years used in the south of France, made of stiff earth or clay rammed in between moulds as it is carried up. This method of walling was, however, in very e:rrly use. (Plin. lib. xxxiv. chap. 14.)
Р1т. A place from whence chalk, gravel, and such like are obtained. See Quarry.
it of a Theatri. Formerly the part on the ground-floor between the lower range of boxes and the stage ; but it is now much reduced for the stalls and reserved pit seats. itci. See Tar.
'1тсн. A term generally applied to the vertical angles formed by the inclined sides of a roof. Roofing.
Itch of an Arch. The versed sine, or height from the springing line up to the underside of it .
itching Piece. See Apron Piece, which is at the bottom, as the pitching piece is at the top, of a flight of steps, to carry the rough strings.
เvot. (Fr.) The sharpened point upon which a wheel whose axis is perpendicular or inclined performs its revolutions.
lace Bricks. The commonest sort of bricks, being those near the outside of the clamp and therefore not much burnt.
lafond or Platfond. (Fr.) The ceiling of a rcom, whether flat or arched; also the underside of the projection of the larmier of the cornice ; generally any sofite.
lain or Plane Angie. One contained under two lines and surfaces, so called to distinguish it from a solid angle.
lain Tiles, properly Plane Tiles. Those whose surfaces are planes. They are used for roofing purposes; forming copings, tiles in cement flats, etc. See Weather-tiling. as. (Fr.) The representation of the horizontal section of a building, showing its distribution, the form aud extent of its varions parts. In the plans made by the arehitect, it is customary to distinguish the massive parts, such as walls, by a dark eolour, so as to separate them from the voids or open spaces. In a geometrical plan, which is that above mentioned, the parts are represented in their natural proportions. A perspective plan is drawn according to the rules of perspective.
anceer. The same as the sofite or under-surface of the corona; the word is, however, very often used generally to mean any sofite. See Plafond.
ane. (Lat. Planus.) A tool used by artificers that work in wood for the purpose of producing thereon a flat eren surface. There are various sorts of planes.

Plane. In geometry, a surface that coincides in every direction with a straight line.
Plane, geometrical. In perspective, a plane parallel to the horizon, whereon the olject to be delineated is supposed to be placed. It is usually at right angles with the perspective plane.
Plane, horizontal. In perspective, a plane passing through the spectator's eye, parallel to the horizon, and cutting the per-pective plane in a straight line, called the horizontal line.
Plane, inclined. One that makes an ohlique angle with a horizontal plane.
Plane, objective. Any plane, face, or side of an original object to be delineated on the ptrspective plane.
Plane, perspective. That interposed between the original objects and the eye of the spectator, and whereon the objects are to be delineated.
Plane Trigonometry. That branch of mathematies whose object is the inrestigation and calculation of the sides and angles of plane triangles. It is of the greatest importance to the architect.
Planimetry. That branch of gcometry which treats of lines and surfaces only, without reference to their height or depth.
Plank. (Fr.) A name given generally to all timber, except fir, which is less than four inches thick and thicker than one inch and a half. See Board.
Plank Roof. A roof, the trusses of which are formed principally of planks cut to a curved shape, as in de Lorme's systom; or bont to the shape required, as in Emy's system.
Planted. When a moulding is wrought on a separate piece of stuff, and is fastened in its place, as around a panel, it is said to be planted (on tho stuff).
Plaster. Lime properly prepared for the plastcrer.
Plasterers' Wohk. The laying of ceilings; the finishing to walls to give a fair face; the making and fixing of ornamental work; and cementing to walls.
Plaster of Paris. A preparation of gypsum, originally procured in the vicinity of Mont Martre, near Paris. The plaster stone, or alabaster, is, however, found in many parts of England, as at Chelaston near Derby, and Beacon Hill near Newark. The former pits yicld about 800 tons a year. It is ground aud frequently used for manure, or rather as a stimulant for grass. It is calcined inte the plaster used by the modeller, plasterer, \&c. When diluted with water into a thin paste, plaster of Paris sets rapidly, and at the instant of setting, its bulk is incroased. Mr. Boyle found by experiment that a glass vessel filled with this paste, and close stopped, bursts while the mixture sets, a quantity of water sometimos issuing through the cracks; hence this material becones valuable for filling cavities, \&ce., when other earths would shrink. The gypsum is preparsd either by burning or boiling, and loses from four to six cwt. in a ton. After lurning, it is ground into powder in a mill.
Plat or Plot. A late mediæral term for a design or drawing.
Platband. Any flat and squaro mouldiug whose projection is much less than its height, such are tho fascie of an architrave, the list between flutings, \&c. The platband of a door or window is tho lintel, when it is made square and not much arched.
Plate. A general term applied to those horizontal pieces of timber lying mostly on walls for tho reception of another assemblage of timbers. Thus, a wall plate is laid round the wails of a building to receive the timbering of a floor and roof ; a gutter plate under the guttor of a building, \&c.
Plate Glass. Glass cast in sheets or plates, and polished. Plate glass is superior in quality and colour to both "crown" and "sheet" glass. The best kind may bo tested by its perfect freedom from colour, blemishes, specks, and strix of every sort. It is not subject to dampness or "sweating." That which is tinged is of inferior quality, and cannot be used where it is intended to exhibit coloured articles behind it. The usual thickness is one quarter of an inch. The better sort of plate glass is used for lookiug-glasses, and is charged a higher price than for glazing purposes. There is also an inferior sort of plate glass, called "patent plate," which consists of blown glass of an extra thickness, which is then opened and polished. For large sizes the price is about the same as plate glass.
Plate Rack. A fixture over the sink in a scullery for the reception of dinner plates and dishes after washing.
Plate Tracery. The earliest form of tracery, used at the commencement of the Early English period of medixval architecture, as Fig. 1434; it consists of tho openings being formed or cut in the stonework, and showing no

Fig. 1434. projecting mouldings.
Platrorm. An assemblage of timbers for carrying a flat covering of a house, or the
flat covering itself. A terrace or open walk at the top of a building. The raised dais on which the altar stands, atod also that on whieh the font stinds.
Peintr. (Gr. חi»»өos, a brick.) The lower square membor of a base of a column or pedestal. In a wall the term plinth is applied to two or more rows of bricks at the base of it, which projeet from the face.
Plotting. The art of laying down on paper the angles and lines of a plot of land by any instrument used in surveying.
Plodgh. A joiner's grooving plane.
Plough and Tongued. This is a continued mortise and tenon along the cdges of two boards, the one having a greove cut in it, and the other formed into a projection; such work is used to linings and floors. Sometimes both edges are grooved, and a thin pieee of wood or of hoop iron let into both, while being fixed up or laid. See Heading Joint.
Plug. A piece of timber driven perpendicularly into a wall with the projecting part sawn away, so as to be flush with the face.
Plug and Feather, or Key and Festifir. A namo given to a method of diriding hagel stones ly means of a long tapering wedge called the key, and wedge-shaped pieces of iron called fcathers, which are driven into holes previously drilled iuto the rock for the purpose, and thus foreibly split it.
Plumbing. (Lat. Plumbus.) The art of casting and working in lead and usi.g it in build:ng. Plumb Rule, Plumb Line, or Plumaet. An instrument used by masons, carpenters, \&c., to draw perpendiculars or verticals, for ascertaining whether their work be upright, horizontal, and so on. The instrument is little more than a piece of lead or phommet at the cad of a string, sometimes descending along a wooden or metal ruler raised perpendicularly on another, and then it is called a level. See Level.
Plumbre. The artificer who works in lead and zinc. The fittings for water-closcts, cisterns, pumps, gutters, \&c., come under his care.
Pocket. The space in the pulley style of a sashed window. It is also a space closed up, or nearly so, formed out of a larger space. Pockets are often found in the flucs of old houses, and form one of the great causes of fires, byaccumulating the soot, which at last heats and ignites adjoining woodwork.
Podium. (Lat.) A continued pedestal. A projection which surrounded the arena of the aneient amphitheatre, Sce Amphitheatre.
?oint. (Lat. Punetum.) In geometry, according to Euclid, that which has neither length, breadth, nor thickness.
Point, accidental. In perspective, a term used by the old writers on the science to signify the vanishing point.
?onst of Distance. In perspective, the distance of the picture transferred upon the vanishing line from the centre, or from the point where the principal ray meets it, whence it is generally understood to be on the vanishing line of the horizon. See Distance.
'onst, obsective. A point on a geometrical plane whose representation is required on the perspective plaue.
'oint of Sight. The place of the eye whence the pieture is viewed, according to Dr. Brook Taylor, but, according to the old writers on perspective, is what is now called the centre of the picture. It is also called the point of view.
ointed or Lancet Arch. An arch formed by a radius equal to the span of the opening, and struck from both sides of it on the springing line. A lancet arch of a higher pitch is formed by the radius being struck as much beyond the opening as may be desired. See Tierce Point. ointed Architecture. The mediæval styles of architecture in which the pointed arch is adopted as a principle of construction. ointing. The raking out the mortar from between the joints of brick work, and replacing the same with new mortar. ole Plate. A plate fixed to the lower ends of a truss of a roof, to receive the ends of the common rafters, as B in Fig. 688.

Fig. $143 \overline{0}$. olshung. The act of imparting to fancy woods, as wainscot, mahogany, bird's-eye maple, \&c., a brilliant surface to slow off their flower to adrantage. This is done ly rubbing on them a spirit rarnish with great care. Varnish, wax, and a common polish are rubbed or laid on with a brush for cheapness. See Marble.
jel.ard. A tree which has been frequently lopped or polled of its head and branches, a practice very injurious to good timber.
mychrony. The decoration of exteriors and interiors of buildings, with colours and tints. When executed in a single colour, it is called monochrome painting.
xygon. (Gr. hodus, many, and 「 $\omega \nu$ ia, an angle.) A multilateral figure, or one whose perimeter consists of more than four sides and angles. If the sides and angles be equal the figure is called a regular polygon. Polygons are distinguished according to the number of the sides; thus those of five sides are called pentagons, those of six
hexagons, those of seven heptagnos, and so on. The subjoined is a table of the aras and perpendiculars of polygons, the side being $=1$. ; and of the longths of sides of polygous to Radius 1. See also par. 1219.

Number of sites.	Names of Polygons.		Area.	Perpendiculars,	Circumscribed.	Inscribed.
3	Trigon	-	-433013	-2886751	$3 \cdot 4641$	$1 \cdot 7321$
4	Tetragon	-	$1 \cdot 00000$	-5000000	$2 \cdot 0000$	1.4142
5	Pentagon	-	1.720477	-6881910	$1 \cdot 4530$	1-1756
6	Hexayon	-	2.598076	-8660254	$1 \cdot 1548$	$1 \cdot 0000$
7	Heptagon	-	$3 \cdot 633912$	1.0382617	0.9630	$0 \cdot 8677$
8	Oetagon	-	$4 \cdot 895427$	$1 \cdot 2071068$	$0 \cdot 8284$	$0 \cdot 7651$
9	Enneagon	-	6-181824	$1 \cdot 3737387$	$0 \cdot 7278$	0.6840
10	Deragon	-	$7 \cdot 694209$	1.5388418	0.6498	0.6180
11	Endecagon	-	$9 \cdot 36.5640$	1.7028437	$0 \cdot 5872$	$0 \cdot 5634$
12	Dodreagon	-	$11 \cdot 196152$	$1 \cdot 86602.54$	05358	0.5176

From the above, to find the area of a regular polygon, multiply one of the sides of the polygon by the perpendicular from the centre on that side, and multiply half the product by the number of sides; or, multiply the square of the given side of the polygon by the number opposite to its name under the word Area.
Polygram. (Gr.) A figure consisting of many lines.
Polfhedron. (Gr.) A solid coutained under many sides or planes. If the sides of a polyhædron be regular polygons, all similar and equal, it becomes a regular body, and may be ioscribed in a sphere, that is, a sphere may be drawn round it, so that its surface shall touch all the solid angles of the body.
Polystyle. (Gr. Mo入os and इru入os.) Of many columns. See Colonnade.
Pomel. (Lat. Pomum.) A globular protuberance termiuating a pinnacle, \&c.
Poplar. (Lat. Pupulus.) a tree sometimes used for rafters in common buildings.
Poppy Heads, or Poppies. The termination of the ends of open seats, often carved as heads, foliage, \&c.
Porch. (Fr.) An exterior appendage to a building, forming a covered approach to one of its principal doorways.
Porphyif. (Gr.) A very hard stone, partaking of the nature of granite. It is not so fine as many of the ordinary marbles, but far exceeds them in hardness, and will take a very fine polish. It is generally of a high purple, which varies, however, from claret colour to violet. Its variatious are rarely disposed in grains. The purple porphyry was obtained by the Romans in Egypt, the quarries of which were only discovered, between the River Nile and the Red Sea, about 1885-87, by Burton, Schweinfurth, and lastly by Brindley. Culumns of it wrought 1900 years since still retain the freshness of colour. It had been obtained of very large sizes, for tombs, \&c. It must not be confounded with the Syenite of Egypt.

The red-lead coloured porphyry, which abounds in Minorea, is variegated with black white, and green, and is a beautiful and valuable material. The pale and red porphyry variegated with black, white and green is found in Arabia Petrea and Upper Egypt, and in separate nodules in Germany, England, and Ireland. The sorts best known are what the Italianscall the porfido rosso (red), which is of a deep red with oblong white spots; thelatter are of $f_{t l d}$ spath, which resembles schorl. There are two varieties of black porphyry, the porfido nero, or black porphyry, and that called the serpentino nero antico. The first has a ground entirely black, sp itted with oblong white spots like the red porphyry; the other has also a black ground, with great white spots, oblong, or rather in the form of a parallelopipedon, nearly resembling in colour what the French call serpentin vert antique. The brown porphyry has a lrown ground with large oblong greenish spots. There are several sorts of green porphyry, which the Italians princinally distinguish by the names of serpentino antico verde, found in great abundance and in large blocks in the neighbourhood of the ancient Ostia, of a green ground with oblong spots of a lighter shade of the same colour; and the porfido verde, which is of a ground of very dark green, almost approaching to black, with lighter shades of a fine grass greeu.
Purtal. (Lat. Porta.) The arch over a door or gate; the framework of the gate; the lesser gate, when there are two of different dimensions at one entrance. The Fr. portail is given to the entrance façade of a building. This term was formerly applied to a small square corner in a room separated from the rest of the apartment by wainscoting. Portcullis. (Fr.) A strong grated framing of timber, resembling a harrow, the vertical pieces whereof were pointed with iron at the bottom, for the purpose of striking into the ground when it was dropped, and also to break and destroy that upon which it fell, it
was made to slide up and down in a grove of solid stone-work within the arch of the portals of old castles. It was introduced into the carly Nurman eastles.
Purtico. (Lat. Porticus.) See Colonname.
Portland Cemenf. A quiek-setting cement made from limestone and clay. It is caleined at a very great heat; will take a larger quantity of sind than Roman cement; and is much lighter in colour, rendering it more agreeable for dccorative purposes.
Portland Stone. A dull white species of stone brought from the island of Portland. It stands the action of the London atmosphere better than any other stone.
Pompuguese Architecture. See Spanish Architecture.
Position. In geometry, the situation of one thing in regard to another. Speaking architeeturally, it is the situation of a building in respect of the four eardinal points of the horizon.
Post. (Fr.) An upright pieco of timber set in the earth. Any piece of timber whose office is to support or sustain in a vertical direction, as the king and queen posts in a rouf, is so ealled.
Pust anid Paling. A close wooden fence eonstructed with posts fixed in the ground and pales nailed between them. This kind of fence is sometimes called post and railing, though this latter is rather a kinl of open wooden fence, used for the protection of young quickset hedges, consisting of posts and rails, \&c.
Pustern. A side door or gate usually employed in castellated architecture.
Pasticum. (Lat.) See Cell.
Postscenium or Parascenium. (Lat.) In ancient architecture, the back part of the theatre, where the machinery was deposited, and where the actors retired to robe themselves.

Put Metal. See Stained Glass.

Putltry Hovse. A building for the shelter and rearing of poultry, of which, perhaps, the finest example is that at Winnington in Cheshire. The front is one hundred and forty feet in length, with a parilion at each end, united to the centre by a colonnade of small cast-iron pillars, supporting a slated roof, which shelters a paved walk. In the centre of the front are four strong eolumns, and as many pilasters, supporting a slated roof, with an iron gate between them, from which a large semicircular court is entered, with a colonnade round it, and places for the poultry. On one side of the gate is a small parlour, and at the other end of the colonnade a kitchen.
Power. In mechanics, a forco which, applied to a machine, tends to produce motion. If it actually produce it, it is called a moving power, if not, it is called a sustaining power. The term is also used in respect of the six simple machines, riz. the lever, the balance, the scriw, the axis in peritrochio, the wedge, and the pulley, which are called the mechanical powers.
Poynteli.. A pavement consisting of small lozenge-shaped tiles, or square tiles laid diagonally.
Pozziolana. See Puzzuolana.
Precinctio (Lat.) or Balteos. A wide seat, or rather step, round the audience part of the ancient theatres and amphitheatres. It was termed δ oa $\omega_{\mu \mu a}$ by the Greeks.
Preaching Cross. A cross erected in the highway, at which the monks and others preached to the public.
Preceptory. A manor or estate of the Knights Templars, on which a church was erected for religious service, and a convenient house for habitation, and generally plaeed under one of the more eminent members of the fraternity, ealled the preceptores templi, to have care of the lands and rents of the place. The preceptories were nothing more than cells to the Temple, or prineipal house of the knights in London.
Presbytery. That part of the ehurch reserved for the officiating priests, comprising the choir and other eastern parts of the edifice.
Pricking up Coat. The first coat of plaster in three-coat work on lathing.
Prick Post. The same as a Queen Pust of a roof. Also the posts in a wooden building placed between the principal posts at the corners. Also the posts framed into the breastsummer, between the principal posts, for strengthening tho carcass of a house.
Prime. (Lat.) A figure in geometry that eannot be divided into any other figures more simple than itself, as a triangle in plane figures, and a pyramid in solids.

A prime number is one that cannot be divided by another number without a remainder.
Parming. In painter's work, the first eolouring of the work, which forms a ground for the sueceeding coats.
Principal Brace. One immediately under the principal rafters, or parallel to them, in a state of compression, assisting, with the principals, to support the timbers of a roof.
Erincipal Point. In perspective, a point in the perspeetive plane upon which a line will fall drawn from the eye perpendicular to that plane. It is, in fact, the intersection of the horizontal and vertical planes, or the point of sight or of the eye.

Principal Rafter. One whose size is larger than that of a common rafter, and is framod in snch a manner, as in a truss, as to bear the principal weight of tho latter.
Principal Ray. In perspective, the line passing from the eye to the principal point on the perspective plane.
Priory. A monastery, the head of which was called a prior or prioress.
Prism. (Gr. Прı $\sigma \mu \alpha$.) In geometry an oblong or solid body contained under more than four planes, whose bases are equal, parallel, and similarly situate.
Prismold. A solid figure, having for its two ends any dissimilar parallel plane figure of the same number of sides, and all the upright sides of the solid trapezoids. If the ends of the prismoid be bounded by dissimilar curves, it is sometimes called a cylindroid.
Prison. A building erected for the confinement, or safe custody, of those who have transgressed the laws of their country, until, in due course of time, they aro discharged.

In considerable cities and towns, humanity, and in leed justico, demands that the same building which confines the conricted felon should not enclose the debtor and tho untried prisoner, as well as him whose offence is not of an aggravated nature. In small towns, where thero may be only one, perhaps small, prison, the separation of the prisoners is more difficult to accomplish. The separation of the sex is indispensable, For whatever class of prisoners a building is erected, salubrity and ventilation are as essential as the security of those coufined. It is now unnecessary to reprint the whole of the requisites which the celebrated Howard specified for prisons: modern rules have necessitated great alterations since his time.

Prison discipline is a problem the wisest of our legislators have not yet been abie to solve. When Pentonville Prison was erected it was thought that complete sepalation, by its severity, would lessen crime. Tho result, however, has scarcely justitied the belief. The Government have had ample opportunity of forming an opinion upon the merits of the separate system, consequently about 1851 some relaxation was made, and about ten per cent. were placed in association. The City authorities adopted a middle course, and they hare tho means of confining the vicious in separate cells; and have sufficient number of workrooms for classified assoriation.

One of the prisons erected for the metropolis is the Model or Pentonvillo Prison in the Caledonian Road, erected 1840-42 by Major R. Jebb for 1,000 prisoners, and to which additions have been made. A ficport was published at the time giving all the details of the colls, which are 13 feet by 7 feet by 9 feet high, and intended for solitary confinement. Another, the new City Prison, in the Camden Road, erected 1849-52, by the City architect, Mr. J. B. Bunning, has 418 cells. It is constructed on tho radiating principle, having four wings diverging from the centre, with two others in front of the former. Each is twelve cells in length, or about 100 feet long, and three stonies high. The corridors are 16 feet wide, and are open up to the arched ceiling, with gallcries leading to the upper cells. One of the latest prisons erected is that at Edinburgh. It is described in the British Architect for October 14, 1887, p. 291.
Problem (Gr.) In geometry, a proposition in which some operation or construction is required, as to divide a line, to make an angle, to draw a circle through three points not in a right line, \&c. A problem consists of three parts: the proposition, which states what is required to be done; the resolution or solution, wherein are rehearsed the step or steps by which it is done; and the demonstration, wherein it is shorn that by doing the seseral things prescribed in the resolution the thing required is oltained.
Prodonus. In ancient architecture, the portico before the entrance to the cell of a temple. See Cell.
Producing. In geometry, the continuing a right line to any required length.
Profile. The vertical section of n body. It is principally used in its architectural sense to signify the contour of architectural members, as of bases, cornices, \&c. The profile of an order is in fact the outline of the whole and its parts, the drawing whereof is technically called profiling the order.
Prolection. The art of representing a body on a plane by drawing straight lines through a given point, or parallel from the contour and from the intermediate lines of the body, if any, so as to cut the plane. When the projection is made by drawing straight lines from a point, it is called a perspective representation; but if formed by parallel lines, it is called an orthographical representation.
Prosecture. An out-jetting or prominence beyond the naked of a wall, column, \&c. By the Greeks projectures were called éкфорa, by the Italians sporti, by the French saillies; our workmen called them sailings over.
Prolate. (Lat.) An epithet applied to a spheroid when generated by the reolution of a semi-ellipsis about its longer diameter.
ronaos. See Cell.
ror. A support, or that on whieh anything rests. See Rance and Shorm.
roportion. The just magnitude of each part, and of eaeh part to another, so as to be suitable to the end in view. See Harmonic, and Geometric, Proportion.
proportional Compassfes. See Compasses.
'ropylzum. (Gr. Про, befure, and Пu入 η, a portal.) Any court or vestibule before a building, or before its prineipal part; but more particularly the eutranee to sueh court or vestibule.
roscenium. (Gr.) That part in the ancient theatre whereon the aetors performed in front of the seene, being what we eall the stage. The Romans ealled this part the pulpitum.
${ }_{\text {rostyle. }}$ (Gr. $\Pi \rho 0$, and $\Sigma \tau u \lambda o s$, a eolumn.) A portico in whieh the eolumns stand in advance of the building to whieh they belong.
rothesls, Table of. See Credence.
Rothyms. (Gr.) A word used in aneient arehitecture to signify a cross beam or overthwart rafter, as likewise a quoin or eourse of a wall. See Console.
Rothyrum. (Gr.) A poreh at the outer door cf a house ; a portal.
rotractor. (Lat. Protractus.) An instrıment for laying down au angle in drawing or plotting.
'sédisodomum. See Isodomun.
sectoodipteral or False Dipteral. A disposition in the temples of antiquity wherein there were eight eolumns in front and only one range round the cell. It is called false or imperfeet, because the eell only oceupying the width of four columns, the sides from the eolumns to the walls of the cell have no columns therein, though the front and rear present a column in the middle of the void. See Temple.
secdoprripteral or Imperffct Peripteral. A disposition in the aneient temples, in which the columns on the sides were engaged in the wall, and wherein there was no portico except to the facade in front; sueh are the Maison Carrée at Nismes, and the temple of Fortuna Virilis at Rome.
TERA. In Greeian arehitecture, is the colonnade which surrounded the cell of the temple, the monoptercs temple being the only speeies which had eolumns without a wall behind them. The peripteral had one tier of columns round the eell, the dipteral two, and the pseudo or false dipteral, invented by Hermogenes, was that in which the ptera was single, but ocenpied the same space on the sides of the eell as the dipteral, though one of the tiers of columns was left out. Thus, by metaphor, the columns were called the wings of the temple. See Temple.
teroma. (Gr. Mтepov, a wing.) The space between the wall of the cell of a temple and the eolumns of the peristyle. ealled also ambulatio.
ubic Buldding. Erery building used as a ehureh, chapel, or other plaee of public worship; also every building used for purposes of public instruetion; also as a eollege, public hall, hospital, theatre, public eoneert room, public ball room, publie lecture room, public exhibition room, or any other public purposes. Metropolitan Building Aet, 1885.
mdong. The filling behind a wall, filling up a eavity, or banking up with clay tempered with water, and earefully rammed down with the repeated strokes of beaters or beetles, in order to make it solid. See Claying.
gging. A coarse kind of mortar laid upon rough boarding plaeed between joists, to prevent the transmission of sound from the apartment above to that below.
 machinery to roll round as a wheel and also in and round an iron pan, for the purpose of grinding up clay for briekmaking, and also the lime and bricks in making mortar. c-piling. The same as dovetailed piling, or pile planking.
lley. (Fr.) One of the fire mechanical powers, consisting of a wheel or rundle, laving a channel around it and turning on an axis, serving, by means of a rope which noves in its ehannel, for the raising of weights.
]cley Mortise. The same as Chase Mortise.

1) CPIT. (Ital. Pulpito.) An elevated place, an enelosed stage or platform for a preacher n a church. The ancient ambo served the same purpose.
$]$ lpilum. (Lat.) See Prosceniom.
1. vinaria. (Lat.) Cushions in the ancient temples whereon the statues of the gods ere sometimes laid.
I:vinata. (Lat.) A pillow; as applied to the volute of the Ionic order.
I vinated. Soe Frieze.
Ifr. A maehine for raising water; there are many varieties of them.
Itcheon. (Fr. Poinçon.) A nane eommon to iron instruments used in different trades r cutting, inciding, or piercing a body. In carpentry, it is a piece of timber placed
upright between two posts whose bearing is too great, scrving, together with them, to sustain some heary weight. The term is also applied to a piece of timber raised upright under the ridge of a building, and in which are jointed the small timbers. Also to the arbor or principal part of a machine on which it turns vertically, as that of a crane.
Purbeck Stone. A species of stone obtained from the island of Purbeck in Dorsetshire, of a very hard texture, and used for paving. See Pafluext.
Purfled. (Fr. Pourfiler.) Ornamented work in stone, or other material, representing embroidery, drapery, or lace work.
Purlin. A horizontal piece of timber lying generally on the principal rafters of a roof to lessen the bearings of the common rafters. Locally called side timbers, and side wavers.
Puteal. The marginal stone of a well. The celebrated one of Scribonius Libo was erected by order of the senate to mark the spot where a thunderbolt had fallen near the statues of Marsyas and Janus by the Comitia.
Putlog. See Ledger.
Putty. A sort of paste consisting of whiting, with or without a small portion of white lead, and linseed oil, beaten together until it assumes a kind of tough consistency like, dough. In this state it is used by glaziers fur fixing in the squares of glass to sish windows, etc., and also by house-painters to stop up holes and carities in woodwork lefore painting.
Puzzulana. A grey-coloured earth deriving its name from Puzzuoli, whence it was originally brought. It is a voleanic matter found in many other parts of Italy, and generally in the neighbourhood of volcanoes active or extinct, from which it bas been thrown out in the form of ashes. It immediately hardens when mixed with one-third of its weight of lime and water, forming an admirable water cement.
Pycyostile. (Gr. Mukyos, close, Stu入os, column.) See Colonnade.
Pylon. The mass of building on either side of the cntrance to an Egyptian temple. It is pyramidal in form and sometimes as mueh as 100 feet in length and 32 feet in width.
Pyramd. (Gr. Mup, fire.) A solid standing on a square, triangular, or polygonal basis, and terminating at top in a point; or a body whose base is a regular rectilinear figure and whose sides are plain triangles, their several verticles meeting together in one point. It is defined by Euclid as a solid figure consisting of several triangles whose bases are all in the same plane and have one conmon vertex.

The principal properties of pyramids are as follow:-1. All pyramids and cones standing on the same base ent having the same altitude are equal. 2. A triangular pyramid is the third part of a prism, standing on the same base and of the same altitude. 3. Hence, since every multangular may be divided into triangulars, erery pyramid is the third part of a prism standing on the same base and of the same altitude. 4. If a pyramid be cut by a plane parallel to its base, the sections will be similar to the base. 5. All pyramids, prisms, cylinders, etc., are in a ratio compounded of their bases and altitudes; the bases thereforo being equal they are in proportion to their altitudes, and the altitudes being equal, they are in proportion to their bases. 6. Similar pyramids, prisms, cylinders, cones, etc., are in a triplicate ratio of their homologous sides. 7. Equal pyramids, etc., reciprocate their bases and altitudes, i.e. the altitude of one is to that of the other, as the base of the one is to the base of the other. 8. A sphere is equal to a pyramid whose base is equal to the surface, and its height to the radius of the sphere. Soe Frustum.

The name of the structure erected over a tomb, as commonly seen in Egypt.
Prammdion. The small flat pyramid which terninates the top of an obelisk.
Q
Quadra. (Ital.) A square border or frame round a basso-relievo, panel, etc.; the term is not strictly applicable to any circular border. The term is also applied to the bands or tillets of the Ionic base on each side of the seotia; and also to the plinth or lower memler of the podium.
Quadrangle. Any figure with four angles and four sides. This term is in arehitecture in England applied to the inner square or rectangular court of a building, as in the college courts of Oxford, etc.
Quadrant. (Lat.) The quarter of a circle, or an are of it containing ninety degrecs within its enclosed angle.
Quadrature. (Lat.) The determination of the area of a figure in a square, or even any other rectilincar form.
Quadrel. An artificial stone perfectly square, whence its name, much used formerly ly the Italian architects. Quadreis were made of a chalky or whitish and pliablo earth, and dried in the shade for at least two years.
Quadriforbs. (Lat.) In ancient architecture, folding doors whose height was divided into two parts. When they opened in one height: they were termed forcs valuata or calue.
Quadrilatimal. In geometry, a figure whose perimeter consists of four right lines making four angles, whence it is also called a quadrangular figure.

Quarrel, vulgarly called Quariry. (Fr. Carré.) A square or lozenge-shaped picce of glass used in lead casoments.
Quarry. (lrish, Carrig.) A place whence marbles, stones, or slates are procured.
Quarmping. The operation of extracting the produce of a quarry is one which requires mueh practical knowledge to render it bencficial to its owner; but in respect of the details they are not required to be noticed in this work.
Quarter Grain. See Felt Grain.
Quarter Pace, See Foot Pace.
Qualeter Partition. One consisting of quarters, or upright pieces of timber receiving the lath and plaster work.
Quarter Round. The same as Ovolo and Echinus, being a moulling whose profile is the quadrant of a circle.
Quarters. Small vertical timber posts, rarely exceeding four ly three inches, used to form a partition instead of walls for the separation or boundary of apartments. They are placed, or ought to be, abont twelve inches apart, and are usually lathed and plastered in the internal apartments, l, if if used for exterual purposes are commonly boarded. A series of such posts is called Quartering.
Quartz. (Germ.) A mineral production bettcr known by the name of rock crystal. It includes a variety of stones with which we have nothing here to do, and the only motive for mentioning it is its occurrence in the granites, wherein it is immediately rccognised, from its glass-like appearance.
Quatrefoll, (Fr. Quatrefeuille.) A modern term denoting a form disposed in four scgments of circles, and so called from it, imagined resemblance to an expanded flower of fonr petals. It is only found in the windows, panels, etc., of Gothic architecture.
Quay. (Fr.) A bank formed towards the sea or on the side of a river for free passage, or for the purpose of unloading merchandise.
Queen-fost. A suspending post where there are two in a trussed roof.
Queen. A size slate used in roofing.
Quicklime. Lime in lump or iu powder, ready for water to be added to it. See Lime.
Quirk. A piece taken out of any regular ground-plot or floor; thus, if the ground plan were square or oblong, and a piece were taken out of the corner, such piece is called a quirk. See Re-entering angle.
Quirk Modlding. One whose sharp and sudden return from its extreme projection to the re-entrant angle seems rather to partake of a straight line on the profile than of the curve. Of this class are a great number of the ancient Greek mouldings.
Quorns. (Fr. Coin.) A term applied to any external angle but more especially applied to the angular courses of stone raised from the naked of the wall at the corner of a building, and ealled rustic quoins. See Rústic Quons.

R

Rambet. See Rebate.
Rack. The case, enelosed by bars, over the manger in a stable, wherein the hay is placed for the horses.
Rad and Dab, A substitute for brick nogging in partitions, consisting of $c o b$ or a mixture of clay and chopped straw filled in between laths of split oak or hazel. It is also ealled wattle and dab.
Radiac Curyes. In geometry, those of the spiral kind whose ordinates all terminate in the centre of the including circle, and appear like so many radii of such circle
Radius. In geometry, the semidiameter of a circle, or a right line drawn from the centre to the cireumference.
Radus of Curfature. The radius of the osculatory circle at any peint in a curre. See Osculatory Circle.
Raffle Leaf. A leaf in ornamental foliage formed of small indentations at the edge. The acanthus leaf is so called.
Rafters. (Quasi, Roof-trees.) The inclined timbers of a roef, whose edges are in the same plane which is parallel to the covering.
Rag Slate. A slate obtained from Wales, and sold by the ton, which will cover about one square and a half of roofing.
Rail. (Ger. Riegel.) A term applied in various ways, but more particularly to those pieces of timber or wood lying horizontally, whether between the panels of wainscoting, or of doors, or under or over the compartments of balustrades, \&c.; to pieces, in framing, that lie from post to post in fences; in short, to all pieces lying in a horizontal di.ection which separate one compartment from another.
Zainfall. To calculate the quantity of water that will accumulate over a given area, multiply the inches of rainfall by $2,323,200$, which will equal the cube feet per square mile. If by $14 \frac{1}{2}$, it will equal millions of gallons per acre, If by 3,630 , it will equal cube feet per acre. (Molesworth.)

Raly-trater Pipe. One asually placed against the exterior of a honse to carry off the raill-water from the roof.
Raising Piece. Ono which lies under a beam and over the posts or puncheons. The term is chiefly used in respect of luilaings eonstructed of timber framework.
Raising Weights. See Lewis.
Rake. A slopo or inclination, as of a roof.
Raking. A term applied to any member whose arisses lie inclined to the horizon.
Ramp. (Fr.) In handrails, a concavity on the upper side formed ovor risers, or over a half or quartwr pace, by a sudden rise of the steps above, which frequently occasions a knee above tho ramp. The term is also applied to any concare form, as in coping, \&c., where a higher is to le joined by a continued line to a lower body.
Rampant Arcif. One whose abutments or springings are not on the same level.
Rance. A prop or shore; a term used in Scotland.
Rannom Tooling. In Scotland called droving, is a mode of hewing the face of a stone either as preparatory to some other process, or as a finishing operation. A chisel two to four inches broad at the cutting edge, is adranced along the stone at abont $\frac{1}{8}$ inch per stroke, the result being a series of indentations on the surface of the whole stono-The excellence of the work depends upon the regularity of these fintings and the absence of ridges between the draughts.
Range, or Ranging. (Fr.) A term applied to the edges of a number of bodies when standing in a given plane. Thus, if the edges of the ribs of a groin were placed in a cylindric surface, they wonld be said to range. It is also used in respect of a work that runs straight without lreaking into angles.
Rank Set. When the sole of a plane iron projects greatly below the plane.
liay, Principal. In perspective, the perpendicular distance between the eye and the perspective plane.
Rayonnant. (Fr. Radiating.) A term applied in France to a periud in Gothie architecture, wherein the mullions and tracery turminate in forms founded on the divergence of rays from certain centres. It prevailed from the latter end of the thirteenth until near the end of the forrteenth century.
Renate. (Fr. Rebattre.) A channel or small recess cut in a piece of wood, longitndinally, to receivo the edge of a body, or tho ends of a number of bodies that are to be secured to it. The dopth of the channel is equal to the thickness of the body; so that when the end of the latter is let into the rebato, it is in the same face with tho outside of the piece. Sue Door-stor.
Ranate Plane. One used for sinking rebates.
Recbss. (Lat. Recedo.) A cavity left in a wall, sometimes for use, as to receive a sideboard, bed, \&c., or to add to the quantity of floor room, and sometimes for ornament, as when formed into a niche, \&c.
Reciprocals. A term in mathematics, mostly applied to the fraction made by inverting another fraction; thus $\frac{3}{7}$ is the reeiprocal of $\frac{7}{3}$ and $\frac{1}{7}$ of $\frac{7}{1}$.
Rectangle. In geometry, a figure whose angles are all right angles. Solids are called rectangular with respect to their position, as a cone, cylinder, \&c., when perpendicular to the plane of the horizon. A parabola was anciently called a rectangnlar section of a cone.
Rechification. In geometry, the finding of a right line that shall be equal to a given curre, or simply finding the length of a curre.
Rectilinear. A figure whose boundaries are right lines.
Liectilinear Perion. A name given by some writers to the Perpendicular period of mediæval architecture in England, from the predominance of rectangular or straight lines.
Reduct. A quirk or small piece taken out of a larger to make it more uniform and regular.
Reduction of a figure, design, or dranght. The copying it on a smaller scale than the original. preserving the same form and proportions. For this purpose a pair of proportional compassos are generally used, by which the labour is much lessencd.
Reed Moul ding. A moulding formed by three or more leads worked side by side.
Re-entering angle. An angle returned (A), in contradistinction to a square or solid angle (B), by the former of which much space is often lost in small honses, it being sometimes adopted from its picturesque qualities. See Quirk.

A

Reflecory. (Lat.) A room for taking refreshments. See Abbey.
Reflector. A polished surface so placed at an angle that it will reflect light towards any required position. See Light, Reflected.
Reflex. The light reflected from a surface in light to one in shade.
Refuge. The name giren to a building prepared for the reception of destitute people, where they are boarded and clothed and have to work, or if younr are taught some tradc, such as the "Boys' Refugo Farm School and Country Home," at Bisley, ncar Woking, in Surrey.
Reglet. (Fr.) A flat narrow moulding, used chiefly to separate the parts or members of compartments or panels from each other, or to form knots, frets, and other omaments.

Regrating. In masonry, the process of removing the outer surface of an old hewn stone, so as to give it a fresh appearance.
leacula. (Lat.) A band Lelow the tenia in the Doric architrave.
Regular. An epithet applied to a figuro when it is equilateral and equiangular. A body is said to be regular when it is bounded by regular and equal plaues, and has all its solid angles equal.
Regulan Architectore. That which has its parts symmetrical or disposed in counterparts.
Reqular Curves. The perimeters of conie sections, which are always curved after the same geometrical manner.
Reignier Work. Ornamental figures or patterns inlaid in wood in the manner of buid work, with le.ives \&e. of different colours.
Reins of a Vault. The sides or walls that sustain the arch.
Rejointing. The filling up the joints of stones of old buildings when the mortar has been dislodged ly age and the action of the weather.
Relation. The direct conformity to each other, and to the whole, of the parts of a building. Relievo (It.) or Reliff. The projecture from its ground of any architectural ornament. Among sculptors there are three degrees of relievo ; namely, alto relievo, when the figure stends quite out from its ground; mezzo relievo, when one half of the figure projects; and basso relicvo, when the figures aro raised from the ground in a small degree.
Relieving Arcif. See Discharging Arcif.
Remder. To plaster on walls, slates or tiles, without the intervention of laths.
Renaissance Architecture. The name given to the style which studied to revire the forms and ornaments of Roman art and partly of the Grecian. It was commeneed under the best efforts of the artists of the sixteenth and serenteenth centuries. The style is called "Cinque Cento" in Italy ; and tho "Revival" or "Elizabethan" in Great Britain.
Rendiring. The act of laying the first coat of plaster on brickwork.
Replum. (Lat.) In ancient architecture, the panel of a framed door. See Impages.
Reredos. A screen placed behind an altar in medieval architecture, and decorated with niches, statucs, paintings, or other work, in accordance with the period of the style employed. See Altar Scrben.
Reservorr. (Fr.) An artificial pond, basin, or eistern for the collection and supply of water.
Resistance. That power which, acting in opposition to another, tends to destroy or diminish its effect. There are several sorts of resistance, arising from the various natures and properties of the resisting bodies, as the resistance of solits, fluids, air, \&e.
The following is a synopsis of the most important results that have been drawn by different writers on the sulject, both practical and theoretical :

1. The resistance of a beam or bar to a fracture by a force acting laterally is as the solid made by a section of the beam in the place where the force is applied, into the distance of its centre of grarity from the point or line where the breach will end.
2. In square beams the lateral strengths are as the cubes of their breadths and depths.
3. In cylindric beams, the resistances of streugths are as the cubes of the diametcrs.
4. In rectangular beams the lateral strengths are conjoiutly as the breadths and squares of the depths.
5. The lateral resistances of any beams whose sections are similar figures and alike placed are as the eubes of the like dimensions of those figures.
6. The lateral strength of a beam, with its narrower face upwards, is to its strength with the broader face upwards, as the breadth of the broader face to the breadth of the narrower.
7. The lateral strengths of prismatie beams, of the same materials, are as the areas of the sections and the distance of their centre of gravity directly, aud as their lengths and weights reciprocally.
8. When the beam is fixed at both ends, the same property has place, except that in this case we must consider the beam as only half the length of the former.
9. Cylinders and square prisms have their lateral strengths proportioual to the eubes of their diameters or depths direetly, and their lengths and woights inversely.
10. Similar prisms and cylinders hare their streugth inversely proportional to their linear dimensions.

The relative resistance of wood and other bodics is shown in the following table:-

The following table shows the cohesive force of a square inch of different substances, from the experiments of Professor Rolinson:--

Responds. Half-piers at the east or west end of the nave, transepts, or choir. They are sometimes formed in the shape of corbels.
Ressaul. (Fr.) The recess or projection of a member from or before another, so as to be out of tho line or range with it.
Retable. A shelf, temporary or otherwise, between the altar and the east wall. A series of receding shelves or retables, behind and separate from the altar, is thought convenient for placing thereon vases of flowers and candlesticks.
Retaning Wall. Such as is built to retain a bank of earth from sliding down. It is is also called a revetment, or revêtement, wall. The term is usually restricted to a wall built to retain an artificial bank. One erected to sustain the force of solid ground is called a breast wall.
Reticulated. Like the meshes of a net. The reticulatum opus of the ancients is described under the article Masonry.
Retorn. The continuation of a moulding, projection, \&e., in an opposite dircetion. A side or part which falls away from the front of a straight work.
Retern Bead. See Bead and Double Qubre.
Reveal. (Lat. Revello.) The vertical side of an aperture between the front of the wall aid of the window, or door, frame.
Revoldtion. In geometry, the motion of a point or line about a centre. Thus, a rightangled triangle, revolving round one of its legs as an axis, gererates a cone in its revolution.
Rhenish Archirecture. The species of Romanesque practised in the Rhine countries, differing only in subordinate features from that of other parts of Germany. Fig. 1436.
Rhombond. (Gr.) A quadrilateral figure whose opposite sides and angles are equal.
Rhombus. (Gr.) A quadrilateral figure, whose sides are all equal, and whose opposite angles are respectively equal, two being obtuse and two acute.
Rib. (Sax.) An arch-formed piece of timber for supporting the lath and plaster work of a vault.
Ribbing. An assemblage of ribs for a vault or coved ceiling.
Ridge. (Sax.) The highest part of a roof. The term is moro particularly applied to the piece of timber against which the upper eads of the rafters pitch.
Ridge Tile. A convex tile made for covering the ridge of a roof. Slate ridging and terra cotta ridging are often employed.
Rght Angle. One containing ninety degrees. A ready node of obtaining a right angle in setting out buildings and for other purposes, is: make the vertical line equal to six divisions, the base line equal to eight similar divisions, then the distance between

Fig. 1436. Church at Andernach. each point should be equal to ten such divisions, to make the angle to be obtained a right angle.

Right Circie. A circle drawn at right angles with the phane of projection.
Rigut Line. A line perfectly straight.
Riser. The upright face of a step, from tread to tread.
Rising IIngr. A hinge so formed as to raise the door as it opens, that it may pass over a carpet or mat; and thus having an inclination causing the door to close of itself. See Saddle.
Rivet. Riveting. A small bolt of metal forged with a head. When required for use in joining plates together, or a plate with an angle iron as in a girder, the bolt is made red hot, placed into the holes propared for it, and maintained there ly one person, whilst another hammers at the opposite end until its superabundant length has been driven flat against the plate. Such work is called riveted. See Angle Iron.
Road Rolling machine. Two steam locomotives, iuvented respectively by Lemoine and Ballaison, the latter having been approved as the better of the two, have been lately employed in Paris to crush and consolidate the broken granite laid on the roadways in that city. This machine has two rollers, the engine being placed between, and the boiler on one of them. With fuel and water, the weight of the Ballaison steam roller is $13 \frac{1}{2}$ tons with springs ; and an iron framework $15 \frac{1}{\frac{1}{2}}$ tons. Its strength is 10 horsepower, and its consumption of coal about 16 lb . per horse. It does its work in half the time and at hallf the cost that would be required were the work done by rollers drawn ly horses, besides that it is performed more rapidly and completcly. Over the Pont Lioyal, the roadway was covered with granite at ten oclock in the evening, the rolling continued all night, and the roadway opened for traffic in the morning.
Roadwar. In rulation to any road, pissage, (r way, the word shall mean the whole space open for traffic, whet her carriage traffic an 1 foot traffic, or foot traffic only. Metropolis Management and Building Acts Amendment Act, 1878. Street.
Rocking Stone, or Logsn. A large rough stone so placed on a small part of its bed that it can be moved to and fro with a slight force. It is classed in the Celtic period.
Rococo. A debased variety of the Louis XV. style of ornament. It is also applied to anything bad or tasteless in decoration.
Rod. A measure of length equal to $16 \frac{1}{2}$ feet. A square rod is the usual measure of brickwork, and is equal to $272 \frac{1}{2}$ square fect, and in London is calculated at $1 \frac{1}{2}$ bricks in thickness.
Roe Stone or Oolite. A kind of limestone, found under chalk in various parts of England.
Ronc. A piece of wood prepared for the plumber to turn the lead over it, where the sheets join, so as to protect the flat roof or edge from the admission of water.
Roll Modlding. A moulding in the shape of a cylinder. It occurs chiefly in the Early English and Decorated periods of Gothic arehitecture. When it has it slight edge at one part, it is a scroll or edge moulding, or a ressant lorymer. When there is is fillet, it is a roll and fillet moulding ; this is seen in the Decorated period. See Kerl.
Rolls or Rollers. Among workmen are plain cylinders of wood, seren or eight inches diameter and three or four feet long, used for the purpose of moving large stones, leams, and other heavy weights. They are placed successively under the fore part of the masses to be removed, and at the same time aro pushed forward by levers applied behind. When blocks of marble, or other very heary weights, are to le moved, they use what are called endless rolls. Those, to give them the greater force and prevent their bursting, are made of wood joined together by cross-quarters, double the length and thickness of the common rollers, and girt with iron hoops at each end. At a foot from the ends are two mortises pierced through and through, into which are put the ends of long levers, which the workmen draw by ropes fastenew to the ends, still changing the mortise as the roll has made a quarter of a turn.
Roman Architecture. The style adopted by the ancient Romans from that of the Gretks. It was based upon the principle of the round arch.
Roman Cement. The common name for Parker's cement. It is now very often called " brown cement," to distinguish it from Portland or "white cement."
Roman Order. The same as Composite Order.
Romanesque Architecture. The style which was based upon a Roman form, and which led on to the Pointed or medirval styles. There are nany varieties of Romanesque, as Lombard, Rhenish, French, and English Norman, \&c., cach having its own independent derelopments.
Rood. (Sax. Rove.) A cross, crucifix, or figure of Christ on the cross placed in a church. The holy rood was one, generally as large as life, elcvated at the junction of the nave and choir, and facing to the western entrance of the church. The rood loft was the gallery on which the rood and its appendages were placed. This loft, or gallery, was commonly placed over the chancel screen in parish churches. In Protestant cathedrals the organ used to occupy the original place of the rood loft, but is now almost always placed on the North side of the chancel. The rood tower or streple was that which stood orer the intersection of the nare with the transepts.

Rood. A measure equal to 36 square yards, by which rubble masonry is valued in Scotland. Rubble walls at and below 18 inches thick are reduced to one foot; and above 18 inches thick, to 2 feet. It is also a measure of land. Sce Measure.
Roof. The covering to a building.
Roofing. The assemblage of timbers, and covering of a roof whose pitch in this climate, for different coverings, is shown in the following table:-(See table 2040b.)

> Species of Covering. Inclination to the Horizon. Height of Roof in Part of the Span.

Copper or lead	-	-	3°	50	-	-	one furty-eighth
Large slates	-	-	22	0	-	-	one-fifth.
Common slates	-	-	26	33	-	-	one-quarter.
Stone slates -	-	-	29	41	-	-	two-sevenths.
Plain tiles	-	-	-	29	41	-	-
two-sevenths.							
Pan tiles	-	-	24	0	-	-	two-ninths.
Thatch	-	-	-	45	0	-	-
one-half.							

Room. (Sax. Rum.) An interior space or division of a house, separated from the remainder of it by walls or partitions, and entered by a doorway. Habitable Roon.
Rose or Rosetre. An ornament of frequent use in architectural decorations. The centre of the face of the abacus in the Corinthian capital is decorated with what is called a rose.
Rose Window. A circular window with compartments of tracery not branching from a centre. The illustration (fig. 1437) is an outline from Lincoln Cathedral. Other examples may be seen at St . Ouen at Rouen, and at Beauvais in the south transept. See Book III., Chap. III., Sect. 14.
Rostrum. (Lat.) Literally, the beak of a bird; also the beak or fore-part of a ship. The elevated platform in the Forum of ancient Rome, whence the orators addressed the people, so called from its basement being decorated with the prows of ships. The term is now used generally to signify a platform or elevated spot from which a speaker addresses his audience.
Rot. Seo Dry Rot.
Rotunda or Rotondo. (Ital.) A building circular on the interior and exterior, such as the Pantheon at Rome. See Circular Buildings.
Rough-cast. A species of plastering used on external walls,consisting of a mixture of lime, small shells or pebbles, occasionally fragments of glass and similar

Fig. 1437. materials. This is usually applied to cottages.
Round Church or Bulding. See Circular Builingas.
Rubbing or Polishing. Erasing the tool marks (after boasting or scablling) on the fice of a stone, by the ageney of a piece of Yorkshire, or grit, stone, used as a rulber, first with sand and water, and then with water only, by which a smooth surface is obtained, rendering the stone less liable to be affected by the atmosphere.
Rubble Work. Walls built of rag or rubble stones, in coursed or uncoursed work. In the former, the stones are roughly dressed, and laid in courses of equal height; in the latter they are used as they occur, small and large stones together as they may fit in. This last is more applicable to Gothic than to Italian architecture. See Masonry.
Rudenture. (Lat. Rudis, a rope.) The same as Cabling.
Ruderation. (Lat. Ruderatio.) A method of laying pavements, mentioned by Vitruvius, and according to some, of building walls with rough pebbles and mortar. The mortar called statumen by Vitruvius was made of lime and sand.
Role. An instrument for measuring short lengths. Of rules there are various sorts, each adapted to the class of artificers for whose use they are made. Thus, there are stenecutters' rules, masons' rules, carpenters' rules, sliding rules, parallel rules, \&c. The sliding rule is, however, of more general use, as it solves by inspection a number of questions from the change of the position of the slider, and therefore of much importance to the less educated artisan.
Rural Arcuitectore. A style of architecture suited for country places, and not strictly conforming to any rules but that, perhaps, of the pieturesque.

Russras Architectere. The ancient buildings are designed after the Byzantine school of art ; the modern ones after the German, French, and Italiau masters.
Rossian Cross of the Greek Church. See Cross.
Rustic Order. A speeies of work where the fices of the stones are hatehed or picked with the point of a hammer.
Rustic Quoins or Coins. The stones placed on the external angles of a building projecting beyond the naked of the wall. The edges are bevelled, or more or less moulled, or the margins recessed in a plane parallel to the face or plane of the wall.
Rustic Work. A mode of building masonry wherein the faces of the stones are left rough, the sides only being wrought smooth where the union of the stones takes place. It was a method much practised at an early period, and re-introduced by Brunelleschi at the revival of the arts. The most common sorts of rustic work are the frosted, which has the margins of the stones reduced to a plane parallel to that of the wall, the interwediate parts having an irregular surface; vermiculated rustic work, wherein the intermediate parts present the appearance of having been worm-eaten; chamferd rustic work, in which the face of the stones being smoothed and made parallel to the surface of the wall, and the angles bevelled to an angle of one hundred and thirty-five degrees, with the face of the stone, where they are set in the wall, the bevcl of the two adjacent stoues forms an internal right angle.
Mrbat. The Scottish term for a Reveal.

Saceilum. (Lat.) In ancient Roman architecture, a small inclosed space without a ronf. Small sacella, too, were used among the Egyptiaus, attached frequently to the larger temples. In old chureh architecture, the term signifies a monumental chapel within a church, also a small chapel in a village.
Sacrarium. (Lat.) A small sacred apartment in a Roman house, deroted to a particular deity ; also the cella, penetrale or adytum of a temple. The name is now given to the place in a chancel enclosed by the altar rails: also called "Sanetuary."
Sacristy. A restry attached to a church, in which the restments, plate, and other furniture used in divine worship are kept. It was anciently called Diaconicum.
Saddle. A thin board of wood, placed on the floor in the opening of a doorway, the width of the jambs. The door being made to shut upon this piece of wood passes clear over the carpet, and does not therefore require rising hinges, used for achiering the same object.
Saddle-backed Coping. Sce Coping.
Saddle-back Roof. A tower haring a top in the form of a common roof-gable. This form appears on a few old English towers (as at Brookthorpe Church, Northamptonshire, eir. 1260), and in many Continental churches.
Sag or Sagaing. The bending of a body by its own weight when resting inclined or horizontally on its ends.
Sagitra. (Lat. an arrow.) A name sometimes applied to the keyotone of an arch. In geometry, it is often employed to signify the abscissa of a curve; and in trigonometry it is the versed sine of an arc, which, as it were, stands like a dart upou the chord.

Sall ofer. See Projecture.

Saint. See Symbols of Saints.
Saliant. (Fr.) A term used in respect of a projection of any part or member.
SAlly. A projecture. The end of a piece of timber cut with an interior angle formed by tro plaues across the fibres. Thus the feet of common rafters, and the inelined pieces which support the flying steps of a wooden stair, are frequently cut; as are, likewise, the lower ends of all inclined timbers which rest upon plates or beams.
Salon, or Saloon. (Fr.) A lofty and spacious apartment, frequently vaulted at top, and usually comprehending the height of two floors with two tiers of windows. Its place is commonly in the middle of a building, when it is sometimes lit from the top; or at the head of a gallery, ctc. In palaces it is the state room.
Sanatary measures. Precautions taken for curing diseases.
Sancte-bell Cot. A small erection at the east end of the nave for the reception of the bell that gives notice of the Sanctus being commenced, and also to warn the people of the approaching elevation of the Host.
Sanctuary. The extreme eastern part of the ehancel, containing the communion table, seats for the clergy, \&c. See Sacrarium.
Sanitory measures. Precautions taken for preserving the health.
SAND. There are three sorts, river, sea, and pit sand. They are mixed with lime and cement in varying proportions. When they can be only procured mixed with earthy and clayey particles, they must bo repeatedly washed until the sand becomes bright in colour and fecls gritty under the fingers. Sea sand must be very well washed in fresh
water, and it is doubted by some practitioners whether it can ever be freed from particles of salt, which would prevent the plaster or cement drying.
Sandstone. In mineralogy, a stone principally composed of grains, or particles of sand, either united with other mineral substances or adhering without any visible cement. The grains or particles of sandstone are generally quartz, sometimes intermixed with feldspar or particles of slate. When lime is the cementing matter the stone is ealled calcareous sandstone. The cementing mattor is not unfrequently oxido of iron intermixed with alumine. The particles of sand in these stones are of various sizes, some being so small as to be scarcely visible.
SAP. The juice or pitio of trees that rises from the earth and ascends into the arms, lranches, and leaves, to foed and nourish them. Also that part of the stem or wood of the body of a tree that is soft, white, etc. The term is used also as a verb, to denote the undermining a wall by digging a trench under it.
Saracenic Architectidre. See Mohesque Architecture.
Sancophagus. (Sap, , flesh, and $\phi a \gamma \omega$, to eat.) A tomb or coffin made of one stone. From Pliny it appears to have been originally applied as the name of a stone found in the Troad, which, from its powerful caustic qualities, was selected for the construction of tombs. From its frequent application to this purpose the name became at length used for tho tomb itself. Sarcophagi were made of stone, marble, alabaster, porphyry, etc. The Greeks sometimes made them of hard wood, as oak, cedar, or cypross, which resisted moisture; sometimes of terra cotta, and even of metal. The form was usually a long square, the angle being rounded. The lid varied both in shapo and ornament. Those of the primitive Christians often enclosed several corpses, and were ornamented with sereral sets of bassi relievi. Those of higher antiquity were frequently sculptured with great taste and beauty of design, the figures being those of the deceased, or parties connected with them, allegorical or mythological. The Egyptian sarcophagi are seulptured with hicroglyplics. Those of the Greeks and Romans sometimes represent Sleep and Death with their legs crossed, one hand supporting the hoad and the other holding an inverted torch; sometimes Mercury is represented conducting the Souls, and Charon ferrying them over in his barque. Occasionally groups of bacehanals and bacchic seenes aro found upon them.
Sarking. Thin boards for lining, cte. Boarding for slating is so called in Scotland.
Sash. (Fr. Cbassis, a frame; more probably the Dutch Sas, a gate.) A frame for holding the glass of windows, and so formed as to be raised and depressed by means of pulleys. Sashes are single or double hung; the casement is hung with hinges.
Sash Frame. The frame in which the sashes are fitted for the convenience of sliding up and down. See Casement.
Sasfr lines. The rope by which a sash is suspended in its frame. They are often madf of common cord, which soon untwists and breaks; the "imperial patent flax sash lines" are made in four qualities. The sash lines made of jute have neither strength nor durability. The modern brass chains are liable to break with sudden jerks.
Saw. (Dutch, Sawe.) A tool made of a thin plate of steel, formed on the edge into regular teeth for cutting wood, stone, ctc. Saws are of various kinds.
Saw-pit. A pit excavated for sawing timber. The sawing is performed by two persons called sawyers, one standing above and the other below. Much of tho labour, however, is saved by the use of a saw-mill, or machine moring a circular saw, which by its revolutions and keoping the timber close up, performs the work quicker and better than can be done by tho labour just described.
Saxon Architecture. The term used to designate the early architccture used in England before the introduction of the Romanesque or Norman. The long and short work is considered the mode of building of that period. See fig 1412.
Scabellum. (Lat.) A species of pedestal anciently used to support busts or statues. It was high in proportion to its breadth, ending in a kind of sheath, or in tho manner of a baluster.
Scaffold. (Fr. Echaufaud.) An assemblage of planks or boards sustained by pieces of wood called putlogs or putlocks placed on others called Ledgers, which aro made fast to vertical poles called standards, by means of which workmen carry up a building of brick, or plasterers complete their work in the interior of houses. Stone-faced buildings have an inner and outer series of standards and ledgers, so that the work shall not bo injured. Framed scaffolding is much used in large works, which is formed of square timbers, and on these a trim is placed for a moveablo platform, or a steam cranc. Suspended scaffolds are useful in repairing or painting a front. They are formed of a sort of open trough for the workmen to stand in, who raise and lower it by means of ropes attached to pulleys fixed at the end of beams secured out of upper windows or to the roof.
Scagliola. (Ital.) A species of plaster or stucco invented at Carpi, in the stato of Modena, by Guido Sassi, betwoen 1600 and 1649 . It is sometimes called mischia, from
the mixture of colours introduced in it. It was not, howerer, till the middle of the eighteenth century that the art of making scagiola was bronglit to perfection. It is used to decorate the walls of a staircase, and for columns and pilasters to a room. When well done it resembles marbles of great beauty, and to great perfection, and the best can be obtained at a less cost than the real marble.
Scale. (Sax.) A line divided into a certain number of equal parts, usually on wood, ivory, or metal, for laying down dimensions in mathematical and architectural drawing. There are various sorts of scales; as, the p'ane scale, Gunter's scale, diagonal scale, \&c.
Scalene Triantile. ($\Sigma k a \lambda \eta \nu o s$, oblique.) In geometry, one whose sides are all unequal.
Scale Paper. Paper having woven in it divisions at certain distances; or it is so prepared by printing the divisions upon it. It can be used for writing, squaring dimensions, or even for drawing in proportionate parts, or axial lines, a system of designing used by Bramante and other carly Italian artists.
Scallage or Scallenge. A term used in Herefordshire and the west of Eogland for a lychgate.
Scalpturatem, Opes. According to Pliny it resembled inlaid work, the pattern being chiselled out of the solid ground, and filled up with thin leaves of coloured marble. A beautiful example was found at Pompeii ; it was first introduced into Italy after the beginning of the third Punic war, b.c. 147-103.
Scamilli mpares. A term used by Vitruvius, which has puzzled all the commentators until the investigations of Mr. Penrose, when he found that the horizontal lines of the Parthenon were inclined almost imperceptilly from the ends to the centre. These slight risings are held to explain the term. See Hogeng. The term was formerly supposed to mean a small plinth below the bases of the Ionic and Corinthean columns.
Scandoles. (Lat) In early buildings of the Romans, shingles or flat pieces of wood used for covering instead of tiles. According to Cornelius Nepoo, this was the only covering used in Rome till the war with Pyrrhus in the 4;0th year of the city.
Scantle. A gauge for regulating the proper length of slates.
Scantling. (Fr.) The dimensions of a piece of timber in breadth and thickness. It is also a term used to denote a piece of timber, as of quartering in a partition, when under fire inches square, or the rafter, purlin, or pole plate of a roof. In masonry, scantling is the length, breadth, and thickness of a stone.
Scape or Scapus. (Gr.) The shaft of a column; also the little hollow, above or below, which connects the shaft with the base, or with the fillet under the astragal.
Scapling or Scabbling. A method of tooling the faee of a stone.
Scarfing. The joining of two pieces of timber transversely together, so that the two appear but one. Large timbers are likewise bolted together.
Scene. (Gr. ミ̌ $\kappa \eta \nu \eta$.) Strictly an alley or rural portico for shade or shelter, wherein, according to Cassiolorus, theatrical pieces were first represented. When first applied to a theatre, it signified the wall forming the back of the stage, but afterwards came to mean the whole stage, and is now restricted to the representation of the place in which the drama represents the action. According to Vitruvius, the Greek scene was occupied in the middle by a great door, called the royal door, because decorated as the gate of a palace. At the sides were smaller doors, called hospitalia, because representing the entrances to habitations destined for strangers, which the Greeks commonly placed on the two sides of their houses.
Scenozraphy. (Gr.) The method of representing solids in perspective.
Schldule of Prices. A document forming part of a contract, and intended to be used for ascertaining (after execution) the sum to be paid for works performed, whether by measurement or by daywork. Where a " bill of quantities" has not been prepared, or where the extent of work cannot be exactly settled beforehand, a schedule is usually adoped. For certain works a schedule is fully priced out, and tenders inrited at a percentage above or below such prices, either over the whole, or on or off each particular trade.
Scheme or Skene Arce. One which is a segment of a cirele.
Schene. (Gr.) The representation of any design or geometrical figure by lines so as to make it comprehensible.
Scholicm. In mathematics, a remark after the demonstration of a proposition, showing how it may be done some other way, or giring some adrice or precaution to prevent mistakes, or adding some particular use or application thereof.
School of Art. See College and Museum.
S̃crool. A building for elementary, practical, general, or special education, and preliminary to university institutions. In Germany, compulsory education is a fact, and absentees are fined. The schools are so arranged that a child can pursue a course of training which will most fit him for his future career. There are Elementary schools;
next the Burgher schools, at whieh children of the lower middle classes are educated; the Realschulen, consisting of three kinds of instruction; the Practical school, in which scientific subjects are taught; then the Gymnasium, which forms a stepping-stone to the University or the Polytechnic school, to qualify for any business or profession.
Sciagraphy or Sclography. (Gr. Eraa, a shadow, and 「paфo, I describe.) The doctrine of projecting shadows as they fall in nature.
Sconcmeon. (Fr, Écoinçon,) The portion of the side of an aperture, from the back of the jamb or reveal, to the intcrior of the wall.
Scotia. (Gr. 乏кotia, darkness.) The hollow moulding in the base of a column between the fillets of the tori. It receives the name from being so much in shadow. The seotia was, from its resemblance to a pulley, called also $\tau \rho 0 \chi$ t $\lambda o s$. It is most frequently formed by the junction of ares of different radii, but it ouglt rather to be profiled as a portion of an ellipsis.
Scratcif Work. (It. Sgraffata.) A coloured plaster being laid on the face of the building, it is covered with a white one, which being scratched through to any design with an iron bodkin, the coloured work appears through and makes the contrast. It is an Italian method of decorating a plain surface, and is now being mueh carried out in England.
Screed. In plastering or cementing largo spaces, a ledge of about 4 inches and of the proper thickness is carefully formed, every 4,5 , or 6 feet apart, to form a gauge for the remainder of the work, which is then applied in the panel, a long flost being worked over it, forcing off the supcrluous plaster, and a clear and even face is obtained.
Screen. (Lat. Excerno.) An instrument used in making mortar, consisting of three wooden ledges joined to a rectangular frame at the bottom, the upper part of which frame is filled with wire-work for sifting the sand or lime. This term is used in ecelesiastical architecture to denote a partition of wood, stone, or metal, usually so placed in a church as to shut out an aisle from the choir, a private chapel from a transept, the nave from the choir, the high altar from the east end of the building, or an altar tomb from a public passage of the church. In the form and ornamental detail of sercens, the ancient artists appear to have almost exhausted fancy, ingenuity, and taste.
Screw. (Dutch, Suroeve.) One of the six mechanical powers, chiefly used in pressing or squeezing bodies close, though sometimes also in raising weights, as a screw-jack.
Scribing. Fitting tho edge of a board to a surface not accurately plane, as the skirting of a room to a floor. In joinery, it is the fitting one piece to another, so that their fibres may be perpendicular to each other, the two edges being cut to an angle to join.
Scroll. A convolved or spiral ornament variously introduced. Also the volutes of the Ionic and Corinthian capital. The subjoined woodent is called a Vitruvian scroll.
Scollery. The apartment for washing up dishes and utensils
 wherein the scullion works.
Scul.pture. (Lat. Sculpo, to carve.) The art of imitating forms by chiselling and working away solid substances. It is also used to denote tho carved work itself. Properiy, the word includes works in clay, wax, wood, metal, and stone; but it is generally restricted to those of the last material, the terms modelling, casting, and carving being applied to the others. See Frieze, Pediment, and Metopas.
Sealivg. The fixing a piece of wood or iron on a wall with plaster, mortar, cement, lead or other binding, for staples, hinges, joints, \&c.
Seasoned Timber. Timber that has undergone a proper process of air or hot air drying so as to render it fit to be used in building.
Secant. (Lat.) A line that cuts another. In trigonometry, the secant is a line drawn to the centre from some point in the tangent, which consequently cuts the circle.
Eicos. (Gr.) See Adypum.
Section of a Bullding. A geometrical representation of it as divided or separated into two parts by a vertical plane, to show and explain the construction of the interior. The section not only includes the parts that are separated, but also the elevation of the receding parts, and ought to be so taken as to show the greatest number of parts, and those of the most difficult construction. Of every building at least two sections should Le made at right angles to one another, and parallel to the sides. A section of the flues should also be made, in order to aroid placing timbers near them.
Section of Δ Solid. The plane of separation dividing one part from the other. It is understood to be always a plane surface.
Sector. An instrument for measuring or laying off angles, and dividing lines and circles into cqual parts.
Sector of a Circle. The space comprehended between two radii and the are terminated by them.
Sedilia. (Lat.) Seats recessed in the south wall of the sanctuary of a church, and formerly provided for the clergy in the sacrifice of the mass, during that part of the office in which the "Gloria" and "Credo" are sung. They aro now also provided in

Protestant churches for the officiating clergy, usually threc-pricst, deacon and subdeacon.
Segmest of a Splere, A portion cut off by a plane in any part except the centre, so that the base of such segment must be always a circle, and its surface a part of the sphere.
Sfgment. (Lat.) A part cut off from anything. Thus, fig. 1438 shows a segmental arch. The area contained by the are of a cirele and a chord. In the segment of a circle the chord of the are is called the base of the segment, and the height of the are the height of the segment.
Sell. See Cill and Apertcre.
Semirircle. The half of a circle containel by the diameter and circuniference.
Semicirctlar Arches. Those whose ares are semieireular, as in fig. $1+39$.
Sepclchre. (Lat. Sepelire, to bury.) A grave, tomb, or place of interment. The cenotoph was an empty sepulchre raised in honour of a person who had had no burial. Sce Easter, or Holy Sepulchre; and Matsolecm.
Seraglio. (Pers. Serai.) A large hall or house. The patace of an Eastern prince, but more particularly tlat in which the females are lodged.

Fig. 1438.

Serpentine. See Purphyry.
Sesquialteral. In the proportion of one and a half.
Sesspool. See Cesspogl.
Sett. In piling, a piece placed temporarily on the head of a pile which cannot be reached by the monkey or weight frem some intersening matter.
Sertisg. 'The hardening of mortars and cements. The term is also used in masonry for fixing stones

Fig. 1439. in wal's or vaults, in which the greatest care should be taken that the stones rest firmly on their beds, and that their faces be ranged in the proper surface of the work.
Setring-oct Rod. One used by joiners for setting-ont frames, as of windows, doors, \&c.
Settlements. Those parts in which failures by sinking in a building lave occurred.
Setr-orf. The projecting part between the upper and lower portion of a wall where it diminishes in thickness.
Setery. A compartment or division of scaffolding. It is also a separate portion or dirision of a building corresponding with the modern term compartment, being as it were severel or dirided.
Srwer. A large drain or conduit for carrying off soil or water from any plice.
Sexagesimal. The division of a line, first into sisty pirts, then each of these again into sixtr, and so on. ás long as division can be made. It is principally used in dividing the circumference of a circle.
Sgraffitu (Ttal.) See Scratch Work.
Shadows and Shadomivg. In drawing, the art of correctly casting the shades of objects and representing their degrees of shade.
Syaft. The crlindrical part, or rather bodr, of a column, between the base and the capital. It is. properly, the frustum of a conoid. and is also called the fust, trumk, or body of the column. The term is also applied to the pier supporting arches in mediæral architecture, as in the nave of a church.
Shaft of a Chimer. See Chmify.
Shaft of a King Post. The part between the joggles.
Shate. A fissure or rent in timber by its being dried too snddenly. or exposed to too great heat. Any timber, when naturally full of slits or clefts, is said to to be shaky.
Shamble. The old name for a place for slanghtering cattle. now called abatioir.
Shask. (Sax.) The space between two channels of the Doric triglyph, sometimes called the leg of the triglyph. The Romans called the shank, femur.
Shearing. The action of cutting short off, as a pair of scissors acts upon paper. It is applied to a plate of metal acting upon a bolt or riret.
Sheet Glass. Glass blown into a "'muff," which is slit on one side, and opened ont flat. A superior sort of sheet glass is "flattened" by a rubbing whilst it is in the annealing kiln, and hence its name.
Sheet Lrad. Lead cast into a sheet, in contradistinction to lead rolled out by a mill.
Shrlf. (Sax.) a board fixed against a wall. the upper side beiug horizontal, for receiring whaterer mar be placed upon it. A shelf is usually supported by brackets, or by pieces at the end, called standards. See Suse Shelf.
Simf. Slate broken into small pieces, as employed for mending roads in Cornmall.

Suingies. (Germ. Schindel.) Loose stones sifted from gravel for making concrete. Alss the small slab of oak bark or split pieces of wood, used instead of tiles in former times, and still usually so employed in the backwoods of America and other eountries. They are about eight to twelre inches long, and about four inches broad, thicker on one edge than the other. The process of making a roof of this kind is called shingling.
Shoe. The inclined piece at the Lottom of a rain-water pipe for turning the course of the water, and dischargiug it from the wall of a building.
Shooting. Planing the edge of a board straight, and out of winding.
Shooting Boards. Two boards joined together, with their sides lapped upon each other, so as to form a rebate for making short joints.
Shore, or Shoar. (Sax.) A prop or oolique timber acting as a brace on the side of a building, the upper end resting agaibst that part of the wall upon which the floor is supported, and both ends received by plates or beams. A dead shore is an upright piece built up in a wall that has been cut or broken through for the purpose of making some alterations in the building. The terms " needie," "tossle," "joggle," and "stud" are used among workmen to denote the piece of wood inserted in a wall above the head of a raking shore. A "waling" is a pieee of timber placed borizontally against the side of a treneh and strutted aeross it; a " settirg" is a reetangu'ar frame holding all four sides of an excavation." "Cleadings" used with "settings " serve the same purpose as " poling boards" in connection with walings.
Shoclder of a Tenon. The plane transverse to the length of a pieee of timber from which the tenon projects. It should be at right angles to the length, though it djes not always lie in the plane as here defined, but sometimos in different planes.
Shocidming. In slating, a fillet of haired lime laid upon the apper edge of the smaller and thieker kinds of slates, to raise them and prevent their bring open at the lap; it also makes the joint weathertight. Sometimes the whole surface under the heads of any sized slates is so done, to prevent the slates cracking when stepped on.
Siread Head. The same as Jerkin Head.
Sureddings or Furrings. In old buil-tings, short slight pieces of timber fixed as bearers below the roof, forming a straight line with the upper side of the rafters. Tiling fillet.
Surine. (Sax. Schin.) A desk or cabinet; a case or box, particularly one in which suered things are deposited : henee applied to a reliquary and to the tomb of a canonised person. Tho altar is sometimes called a shrine.
Sifinging. The contraetion of a piece of timber in its breadth by drying. The length does not ehange. Hence in unseasoned timber mitred together, such as the architraves of doors and windows, the mitres are always close on the outside and open to the door, forming a wedge-like hollow on eaeh side of the frame. Narrow boards called batlens are used in floors, as the shrinking, if any, is less.
Shetrers. The framed boards which shut up the aperture of a window, or of a light.
Side Posts. Truss posts placed in pairs, disposed at the same distance from the middle of the truss. Their use is not only to support the principal rafters, \&c., but to suspend the tie beam below In extended roofs two or three pair of side posts are used.
Side Timbers or Side Wavers. The samo as purlins, the first term being used in Somersetshire and the last in Lincolnshire.
Silicate Cotton or Slag Wool. A pure mineral fibre made from blast furnace slig. It is white and like spun glass. It is extremely light, a cube foot weighs only from 16 to 18 lbs., and one ton eovers about 1800 to 2,400 square feet one inch thick. It is a good non-conductor of heat and sound.
Sill. See Cill and Aperture.
Suls. The muddy deposit of stauding water.
Sima. See Cyma.
Similar Figures. Those whose several angles are respectively equal, and the sides about the equal angles proportional.
Sise. A right line drawn from one end of an arch perpendieular upon the diameter, or it is half the chord of twice the arch. The sine of the eomplement of an arch is the sine of what the arch wants of ninety degrees. The versed sine is that part of the diameter comprehended between the are and the sine.
Single Frame, Single Joist, and Naked, Fioor. One with only one tier of joists.
Singie. Hung. An arrangement in a pair of window sashes, in which one only is morable.
Single Measure. A term applied to a door that is square on both sides. Double measure is when the door is moulded on both sides. When doors are moulded on one side, and are square on the other, they are aecounted measure and a half.
Single, Span Church. A church having a very wide nave. Such is the chureh of the Dominicans at Ghent, $1240-75$, with a nave of 53 feet between the piers slightly projecting from the wall, eorered by a wooden vaulting on curves of 60 feet radius. (See par. 557.) The reader is referred to the Buider journal, for 1867 , pp. 661, 687, 700 716, for many notices of such strustures.

Slte.: (Lat. Situs.) The situation of a buildiug ; the plot of ground on which it stands.
Skew. The sloping top of a buttress where it slants off into a wall, or the coping of a gablc. Skew Back. In a straight or curred areh, that part of it which recedes beyoud tho springing from the rertical line of the opening.
Sket Corbfl. See Sumarer Stone.
Skiffling. See Knubbling.
Skirting or Skirtlug Board. The narrow board placed round the margin of a floor which, where there is a dado, forms a plinth for its base; otherwise, it is a plinth for the room itself. Skirting is either scribed close to the floor or let into it by a groore; in the former case a fillet is put at the back of the skirting to keep it firm.
Skirts. Several superficies in a plane, which would cover a body when turned up or down without overlapping.
Skirts of a Roof. The projection of the eares.
Skreen. See Screen.
Skyilght. A frame consisting of one or more inclined planes of glass, placed in a roof to light passages or rooms below. See Lantern light; Lightleg.
Slar. An outside plank or board sawed from the sides of a timber tree, and frequently of very unequal thickness. The word is also used to express a thin piece of marble, consisting of right angles and plane surfaces.
Sisb. The front hearth of a fireplace. The Metropolitan Buildings Act, 1855, requires that "There shall be laid, level with the floor of every story, before the opening of every chimney. a slab of stone, slate, or other incombustible substance, at the least twelve inches longer than the width of such opening, and at the least eighteeu inches wide in front of the breast therecf:-That on every floor, except the lowest ficor, such slab shall be laid wholly upon stone or iron bearers, or upon brick trimmers; but on the lowest floor it may be bedded on the solid ground :-and That the hearth or slab of every chimney shall be bedded wholly on brick, stone, or other incombustible substance, and shall be solid for a thickness of seven inches at the least leneath the upper surface of such hearth or slab." Such precautions are too frequently neglected in country houses, to their ultimate destruction by fire. No timbers should be placed under the hearihs on any account. See Timbers.
Scate. A species of argillaceous stone, an abundant and rery useful material. It can be sawn to a rery large size or split into than plates, of any required thickness; being nonabsorbent it is used for roofing, and for water cisterns. There are varieties of blue, red, and green in colour.
Slatris' Work. Laying slates on roofs; forming water cisterns; and a few other matters connected therewith, constitute this artificer's work. See Shotinerivg.
Sleepers. Horizontal timbers disposed in a building next to the ground transversely under walls, gronud joists, or the boarding of a floor. When used on piles they are laid upon them, and planked over to support the superincumbent walls. Underground foists either lie upon the solid earth. or are supported at rarious parts by props of brickwork or stones. When in the former position, having no rows of timber below, these ground joists are themselves called sleepers. Old writers on practical architecture call those rafters lying in the ralley of a roof, sleepcrs; but in this sense the word is now obsolete.
Sliding Rule. One constructed with logarithmic lines, so that by means of another scale sliding on it, various arithraetical operations are performed merely by inspection.
Slit Deal. See Board.
Slope of a Ruof. See Ronfing; and Pitch. Of a Road, see Gradient.
Slucte. A stop against water for the drainage or supply with water of a place. It is hung with hinges from the top edge when used merely as a stop against the water of a river: but when made for supply as well, it moves vertically iu the groore of its frame by means of a winch, and is thon called a penstock.
Smithery. The art of uniting several lumps of iron into one lump or mass, and forming them into any desired shape. The Foundry is a branch of it.
Smoothing Plave. The plane last used by the joiner to give the utmost degree of smoothness to the surface of the wood, and is chiefly for cleaning off finished work. It is $7 \frac{1}{2}$ inches long, 3 inches broad, and $2 \frac{3}{4}$ inches in breadth.
Svacket. A prorincial term for the hasp of a casement.
Svipe's Bill Plave. One with a sharp arris for getting out the quirks of mouldings.
Socket Chisel. A strong tool used by carpeutcrs for mortising, and worked with a mallet.
Socle or Zocle. (It .) A square member of less height than its horizontal dimension, serving to raise pedestals, or to support rases, \&c. The socle is sometimes continued round a building, aud is then called a continucd socle. It has neither base nor cornice.
Soffita, Suffit, or Sofite. (Ital.) A ceiling; the lower surface of a vault or arch. A

- term denoting the under horizontal face of the architrave botween columns; the under surface of the corona of a cornice.
Sons. The same as ground and earth : it is also used to denote the deposit in a cessp ol from a water-closet or privy.

Sonss. A provincial term, chiefly, however, used in the north, signifying the principal rafters of a roof.
Solar, or Sollar. A mediæval term for an upper chamber : a loft.
Boldrer. A soft metallic composition used iu joining together or soldering metals. See Brazing and Welding.
Solid. (Lat.) In geometry, a body which has length, breadth, and thickness : that is, it is terminated or contained under one or more plane surfaces as a surface is under one or more lines. Regular solids are such as are terminated by equal and similar plancs, so that the apex of their solid angles may be inscribed in a sphere.
Solid Angles. An angle formed by three or more angles in a point, and of which the sum of all the plane angles is less than three hundred and sixty degrces otherwise they would constitute the plane of a circle and not of a solid.
Solid Shoot. See Water-Shoot.
Sommering. See Summering.
Sortant Angle. The same as Salient Angle.
Sound-board. The canopy or type fixed over a pulpit, to reverberate the voice of the speaker.
Sound-boarming. In floors, consists of short boards placed transversely between the joists, and supported by fillets fixed to the sides of the latterfor holding pugging, which is any substance that will prevent the transmission of sound from one story to another, such as a mixture of mortar and chopped straw, or sawdust. The narrower the sound-boards the better; the fillets on which they rest may be three-quarters of an inch thick and about an inch wide, nailed to the joists at intervals of a foot. It las been suggested to put an india-rubber washer of about the same width as the joist, between the ceiling joist and the joist, having a thickness of halï au inch when properly serewed up, to effect the same object. See Boarding for Pugqing.
Suuse, (Fr.) or Source. A support or under prop.
Spalls. Stone broken up into shapeless lumps. "Spawled masonry" in Treland, consists of these lumps, about 6 to 14 inches, worked up in a wall, the joints of each stone matching those of the others around it ; the faces of the stones are usually rough dressed with the hammer. It is the "uncoursed rubble work" of England. See Spawled.
Sran. An imaginary line across the opening of an arch or roof, by which its extent is measured. The width of a vault or arch between the springing.
Gpan Church. See Single Span Cherch.
Span Roof. One consisting of two inclined sides, in contradistinction to a shed or lean-fu roof. It may be with simple rafters, with or without a collar beam, or when of increased span it may be trussed, the term only applying to the external part.
Spandrel. The irregular triangular space between the outer curve or extrados of an arch, a horizontal line from its apex, and a perpendicular line from its springing. In medieval architecture they are often filled with figures, medallions, shields, as at York cathedral, or diaper work as at Westminster Abbey. In the Italian style, they are often filled with figures, or compositions relating to the purposes for which the building is erected.
Spandrel Pracketing. A cradling of braekets fixed between one or more curves, eachs in a vertical plane, and in the circumference of a circle whose plane is horizontal.
Spanish Architecture. The styles adopted were those introduced by the ancient Romans, the Moors, by French and German mediæval practitioners, and by the Italian masters brought into the country by the monarchs and others.
Spar-piece. A name given in some places to the collar beam of a roof.
Spars. The common rafters of a roof for the support of the tiling or slating.
Spawled. A block of stone after the chips or spawls have been knocked off. See Sparls. Specification. A description at length of the materials and workmanship to be used and employed in the erection of any building.
Specific Gravity. A gravity or weight of crery solid or fluid compared with the weight of the same magnitude of rain water, which is chosen as the standard of comparison, on account of its being subject to less variation in different circumstances of time, place, \&c., than any other solid or fluid. By a fortunate coincidence, at least to the English philosopher, it happens that a cubic foot of rain water weighs 1,000 ounces avoirdupois; consequently, assuming this as the specific gravity of rain water, and comparing all other bodies with this, the same numbers that express the specific gravity of bodies will at the same time express the weight of a cubic foot of each in aroirdupois ounces, which affords great facility to ummerical computations. Hence are readily deduced the following laws of the specific gravity of bodies:-

1. In bodies of equal magnitudes the specific gravities are directly as the weights or as their densitics. 2. In bodies of the same specific gravities the weights will be as the magnitudes. 3. In bodies of equal weights the specific gravities are inversely as tho magnitudes. 4. The weights of different bodies are to each other in the compound ratio of their magnitudes and spccific gravities.

Thus, it is obvious, that if of tho magnitude, weight, and specific gravity of a body any two be given, the third may be found; and we may thus arrive at the magnitude of bodies which are too irregular to admit of the common rules of mensuration; or, by knowing the specific gravity and magnitude, we may find the weight of bodies which are too ponderous to be sulmitted to the action of the balance or steel yard; or, lastly, the magnitude and weight being given, we may ascertain their specific gravities.
Srecus. (Lat.) In ancient architecture, the canal in which the water flowed in aqueducts raised above the surface of the ground, and constructed of hewn stones or bricks. It was covered with a vault to preserve the water from the sun, and from being mixed with rain water. The specus was sometimes covered with flat stones, laid horizontally, as in the Aqna Martia, part of the Aqua Claudia, and the aqueduct of Segovia. Sometimes the same arcade carried several of these canals one above the other.
Speroni. See Anterides.
Spheristeridm. A building for the exercise of the ball; a tennis court. The ancier ts generally placed sphæristeria among the apartments of their baths and gymnasia. They were also placed in large villas, as in those of Pliny the younger.
Spuere. (Gr. ミфaipu.) A solid, whose surface is at every point equally distant from a certain point within the solid, which point is called the centre of the sphere. Every sphere is equal to two-thirds of its circumscribing cylinder, that is, it is equal to a cylinder whose ends are circles, equal to a great circle of the sphere, and whose height is equal to the diameter of the same.
Spherical. Bracketing. That so formed that the surface of the plastering which it is to receive forms a spherical surface.
Spheroid. See Conold.
Spheroidal Bracketing. That formed to receive the plastering of a spheroid.
Spina. See Circus.
Spiral. A curve which makes one or more revolutions round a fixed point, and does not return to itself. See Volute.
Spire. (Gr. 之iaxpa, a twisting.) In ancient architecture, the base of a column, and sometimes the astragal or torus. The termination of the tower of a church, generally diminishing, and either pyramidally or conically. See Steeple.

A spire which is octagonal, the sides facing the cardinal points being continned to the oaves which project over the lower work, and the diagonal faces being intercepted at the bottom by semipyramidal projections whose edges are carried from the angles of the tower upwards, terminating in points on the corresponding oblique faces of the spire, is called a broach (Fr. Broche, a spit).

The following table gives the heighte of many of the chief Towers and Spires, but it is liable to correction, for it is very difficult to obtain accurate dimensions of any structure or parts of one.

	feet.			feet.
Strasburg	468	Grantham	- -	274
Salisbury	- 400 or 404	Lichfield -	- -	252
St. Paul's, London	$343,365,356$ or 404	Wakefield	- -	247
Milan -	400	Boston	- -	268
Amiens	422	Lincoln -	- -	262
Coventry	320	Canterbury	- -	229
Norwich	- 309 or 313	Gloucester	- -	22.
Louth -	294	Westminster	- -	22.5
Chiclester was	27	Ely and Durham	- -	215

Splay. A slanting or bevelling in the sides of an opening to a wall for a window or docr, so that the outside profile of the window is larger than that of the inside; it is done for the purpose of facilitating the admission of light. It is a term applied to whatever has one side making an oblique angle with the other: thus, the heading joists of a boarded floor are frequently splayed in their thickness. The word fluing is sometimes applied to an aperture, in the same sense as splayed.
Jpring Bevel of a Rail. The angle made by the top of the plank, with a rertical plane touching the ends of the rail piece, which terminates the concave side.
ipringed or Sprung. In boarding a roof, the setting the boards together with bevel joints, for the purpose of keeping out the rain. See Boarding for Slating.
pingaer. The impost or place where the vertical support to an arch terminates, and the curve of the arch begins; the term is sometimes used for the rib of a groined roof.
pringing Codrse. The horizontal course of stones, from which an arch springs or rises; or that row of stones upon which the first arch stones are laid.
powds and Rings. A method adopted in Ireland of securing the posts of a door, in a bascment story, by a ring of iron into which the post is placed, with a projection or spud for insertioniuto a corresponding bole in the sill or step.

Spub. Carred timberwork at the doorway of old houses, to support a projecting upper story; some fine examples of the fourteenth century exist in York and other old towns.
Square. (Lat. Quadra.) A figure of four equal sides, and as many equal angles. An area of such form surrouuded by houses, and ornamented in the centre with a lawn, shrubs, trees, \&c. In joinery, a work is said to be square framed, or framed square, when the framing has all the angles of its styles, rails, and muntins square without being moulded. The word is also applied to an instrument for setting out angles square. See Carpenter's Square. It is alsu a measure used in building, of 100 superticial feet.
Square Shoot. A wooden trough for discharging water from a building.
Square Staff. A piece of wood placed at the external angle of a projection in a room, to secure the angle, which if of plaster would be liable to be broken, and at the same time to allow a good finish for the papering.
Squaring a handrale. The method of cutting a plank to the form of a rail for a staircase, so that all the vertical sections may be right angles.
Squaring a piece of stuff. The act of trying it by the square, to make the angles right angles.
Squinch. A small arch, or set of arches, formed across an angle, as in a tower, to form a base for an octagon construction above it.
Squint. See Hagloscope.
Stable. Lat.) A building for the accommodation of horses.
Stack of Cumneys. See Chimner.
Stadium. (Gr.) In ancient architecture, an open space whereiu the athletz or wrestlers exercised ruuning, and in which they contested the prizes. It signifies also the place itself where the public games were celebrated, which often formed a part of the gymnasia. The word also denotes a measure of length among the Grecians, of 125 paces.
Staff Bead. Sec Angle-Bead; Square Staff.
Stage. A floor or story. In a theatre, the floor on which the performers act. The stage of a buttress is, in ecelesiastical architecture, the part between one splayed projection and the next.
Stanen Grass. Glass stained throughout its thickness during its manufacture is known as "pot inetal" glass. White glass is sometimes coloured on the surface only, whence it is called "flashed" glass. Both sorts are used for decorating windows in patterns, as in churches. See Painted Glass.
Starcase. That part or subdivision in a building containing the stairs, which enable persons to ascend or descend from one floor to another.
Stairs. (Sax. Seæzen, to step.) Stones, or other material forming steps, ranged one above and beyond another, by which a pcrson can ascend a height. A series of steps er stairs for ascending from the lower to the upper part of a building, when enclosed, is c.illed a strircase.

Stalk. (Sax.) An ornament in the Corinthian capital, which is sometines fluted, and rescmbles the stalk of a plant; from it spring the volutes and helices.
Stall. (Sax) A place or divisiou in a stable wherein oue horse is placed for feeding and sleeping. According to their number in a stable it is called a one-stall, two-stall, \&ce., stable. This word is also used to denote the elevated seats in the choir or chancel of a church appropriated to ecclesiastics. The precentor's stall is the first return stall on the left on entering the choir. The dean's stall is the first return stall on the right.
Stanchion. (Fr. Estançon.) A prop or support. The upright iron bars of a window or open screen. Also a Puncheon.
Standards. The upright pieces in a plate rack; or above a dresser to support the shelving. When the edges of standards are cut into mouldings, according to the widths of the shelves, and across the fibres of the wood, they are called cut standards.
Staple. A small piece of iron pointed at each end, and bent round, so that the two ends may be parallel to each other, and of equal lengths, to be driveninto wood or into a wail. thus forming a loop for fastening a hasp or bolt.
Star Moulding. One of the usual decorations of a surface in Norman architecture. Fig. 1440.
Starlings or Sterdings, sometimes called Stilts. An assemblage of piles driven round the piers of a bridge to give it support.
Statics. See Mechanics.

Fig. 1440.

Statuary Marble. The pure white marble, such as is obrained from Carrara, and used by sculptors and carvers for their best works.
Srarumen. A mortar of lime and sand used by the Romans for pavements, as stated hy Vitruvius, vii. 1. See Ruderation.
Staves. Small upright cylinders, sometimes called round 9 , for forming a rack to contain the hay in a stable for the supply of it to the horse.

Stay. A picce performing the office of a brace, to prevent the swerving of the picce to which it is applied. The term is general, and rpplies to all materials.
Steec. (Sax. Szal.) Iron which possessed the properties of hardening and tempering, those properties depending essentially on the presence of carbon with the iron. Steel now, however, generally includes many varieties of materials, which can be no more tempered or hardened than many qualities of wrought iron. The only difference between cast iron and steel was the proportion of carbon ; pure iron container no carbon. The steel generally used for girder-work and plates contained perhaps $\frac{2}{10}$ per cent. of carbon, and directly it got to 1 and $1 \frac{1}{2}$ per cent. it became cast iron. It is also cheaply made, for great masses, loy abstracting carbon from cast iron. The process for converting iron into steel was known to the ancients.
Steening. The brickwork laid dry (that is, without mortar), for forming the cylindrical shaft of a well or cesspool, to prevent the irruption of the surrounding soil.
Sreeple. (Sax. Stenel.) A lofty erection attached to a church, chiefly intended to contain its bells. The word is a general term, and applics to every appendage of this nature, whether tower or spire, or a combination of the two.
Srep. A block of any material, and of such a height as is within a modcrate lift of a person's foot, say, seven inches at most. A series of stcps form stairs.
Stereobata. See Pedestal.
Semeorraphic Probection. That projection of the sphere wherein the eye is supposed to be placed on the surface.
Stereography. (Gr. $\Sigma \tau \epsilon \rho \epsilon o s$, solid, and $\Gamma \rho a \phi \omega$, I describe.) That branch of solid geometry which demonstrates the properties and shows the construction of all regularly defined solids; it explains the methods for constructing the surfaces on planes, so as to form the entire body itself, or to cover its surface; or, when the solid is bounded by plane surfaces, the inclination of the planes.
Stereotomy. The science of catting solids to suit the conditions required for their forms.
Sticking. The operation of forming mouldings by a plane, in contradistinction to forming them by hand. When done they are said to be stuck.
Stile. (Sax.) The vertical part of a piece of framing into which, in joinery, the ends of the rails are fixed by mortiscs and tenons.
Stillicidiom. Dripping cares to Doric buildings; but in the propylæum at Eleusis, the sima or upper moulding of the pediment cornice, is continued along the flanks, and a chanmel hollowed in it to collect the rain falling on to the roof.
Stime Room. A room in a large mansion, wherein the housekeeper and her assistant prepare tea and coffee for thie family and risitors, and make preserves, cakes, and biscuits, and so on. It was formerly the work-room of the lady of the house when engaged in making household cordials. In a smatler class of residence, this room frequently relieves the kitchen of all the lesser cooking, and of pastry making. It should adjoin the store and housekeeper's rooms.
Stilt. See Starling.
Stileted Arch. One in which the spring of the arch begins not immediately from the imposts, but from a vertical piece of masonry or brickwork resting on them, so as to give to the arch an appearance of being on stilts (fig. 1441). In describing the cave temples at Elephanta, Freeman, History of Architecture, p. 56, notes, " the stilt or dé above the capital of the piers, and the manner in which it spreads into the roof; this would seem to be the rudest and most primitive form of the bracket capital, though it has less projection, and extends only in two directions." And in the Addenda, he says "for this very expressive word stilt I am under an obligation to a paper by Professor Orlebar. It expresses a portion of masonry above the regularcolubin, which isconstructively part of the pier, but in the direction assumes the form either of a portion of the arch or of a distinct member." The first confirmed use of the stilt occurs in the Arabian buildings at Cairo,

Fig. 1441. where it may have been suggested by the dé of the anterior Egyptian style. In p. $2 \pi 2$ he further says, "stilted arches cannut be always aroided where openings of different breadth are required to be of the same height."
na. (Gr.) In Grecian architecture, a term corresponding with the Latin porticus, and the Italian portico.
ock. The part of a tool for boring wood with a crank whose end rests against the breast of the workman, while with one hand he holds the boring end steady, and with the other turns the crank; the steel borers are called bits, and the whole instrument is zalled a stock and bit.

Stone. (Siax.) A natural indurated substance found beneath and on the surface of the earth in almost every part of the world, and which for its strength and durability hass been universally employed for building purposes.
Stoneware. A prepared clay, burnt and glazed to prevent watcr soaking through it; and used for jars, bottles, drain pipes, \&c.
Stoul. The namo given to the bench whereon the brick-monlder moulds his bricks.
Stouthing. A provincial term which signifies the battening of walls. See Toothing
Stop-cuck. A cock used in plumbery to turn off the supply to a reservoir or tank.
Stopping. Making good cracks or defects in plastering, wood, \&c.
Story. (Lat. or Sax. Scon.) One of the vertical divisions of a building; a series of apartments on the same levcl.
Srory Pusts. Upright timbers disposed in the story of a building for supporting the superincumbent part of the exterior wall through the medium of a beam over them; they are chiefly used in sheds and workshops, and should have either a solid wail below or stand upon a strong wooden sill upon inverted arches, or upon large stoney with their ends let iuto sockets. They also form the posts at the ends of a trussed partition.
Story Rod One used in setting up a staircase, equal in length to the height of the story, and divided into as many parts as there are intended to be steps in the staircase, su that they may be measured and distributed with accuracy.
Stoup. See Piscina.
Sture. An enclosed fire grate for the purpose of obtaining a large amount of heat. A chamber prepared specially for drying articles by heated air is often called a Stove.
Straight Arch. A lintel formed of separate pieces or voussoirs on the principle of the arch.
Straight Joint Floor. See Floor.
Strain. (Sax. Scneng.) The force exerted on any material tending to disarrange or destroy the cohesion of its component parts.
Straining Piece or Strotting Piece. A bcam placed betwcen two opposite beams to prerent their near approach, as rafters, braces, struts, \&c. It such a piece serves also the office of a sill, it is called a strainng sill.
Strap. (Dutch, Stroppe.) An iron plate for the connection of two or more timbers, into which it is screwed by bolts.
Street. A public way for general traffic. The Metropolitan Board of Works, under the "Metropolis Local Management Act, 1885," sect. 202, has power to compel notice of laying out new streets, and requires a width of 40 feet at least for carriage traffic, and 20 feet for foot tratfic, exclusive of gardens, areas, \&c. A street shall have at the least two entrances of the full width of such street, and shall be open from the ground upward. A definition of the word "strect" is given. The consent of the Board is required by sect. 75 of the Metropolis Management Act Amendment Act, 1862, to those erecting buildings or structures beyond the general line of buildings in any street, place, or row of houses within 50 feet. Rules are also given for measuring the width, the curve of the carriage way, the height of the kerb to the foot-paths, and the slope of the footpath. By the same Act, sects. 98 and 99, further legislation is extended, and by scet. 112 any mews is included. The following are the widths of a few of the new streets:-Cannon Street, by St. Paul's, between kerbs, is 30 feet 6 inches ; that of Cheapside, opposite Bow Church, is 31 feet; that of Queen Victoria Street, $1872-5$, is 80 feet ; that of Victoria Street, Westminster, is 80 feet; and of Northumberland Avenue, $1870^{\circ}-6$, is 80 feet.
Stretched out. A term applied to a surface that will just cover a body so extended that all its parts are in a plane, or may be made to coincide with a plane.
Stretcher. A brick or stone laid with its longer face in the surface of the wall.
Stretching Course. In walling, a course of stoncs or bricks laid with their longer dimensions in a horizontal line parallel to the face of the wall; it is exactly the contrary of a heading course, in which the breadths of the stones or bricks are Jaid in a straight line parallcl to the face of the wall.
Strif. (Lat.) The lists or fillets between the flutes of columns.
Striated. Chamfered or channeled.
Striges. The chamnels of a fluted column.
Striking. A term used to denote the dratught of lines on the surface of a body; the term is also used to denote the drawing of lines on the face of a piece of stuff for mortises and cutting the shoulders of tenons. Another application of the word occurs in the practice of joinery, to denote the act of running a moulding with a plane. The striking of a centre is the removal of the timber framing upon which an arch is built, after its completion.
Sting or Stuing Piece. That part of a flight of stairs which forms its ceiling or sofite. Seo Carriage.

String Bard. In wrooden stairs, the board next the well-hole which receives the ends of the steps; its face follows the direction of the well-hole, whatever the form; when curved, it is frequently formed in thicknesses glued together, though sometimes it is got out of the solid, like a hand-rail. See Cut Stmino.
Sthing Course. A projecting horizontal course of stone, continued nlong the face of a building, frequently under windows, to form a tie or bonding course. It is either plane or moulded.
Strix. (Lat.) A channel in a flited column. Fiute.
Struck. A term used to denote the removal of any temporary support.
Strut. See Brace.
Struttino Beam or Piece, also Strut Beam. A term used by old writers in carpentry, for what is now called a strainina piecc or collar beam. See also Bridgino and Key.
Stocco. (Fr. Stue.) A term indefinitely applied to calcarcous cements of various descriptions. Rough stucco is that finished with stucco floated and brushed. Bastard stucco is three-coat work in plastering: 1, the render coat; 2, Hoating, as to trowelled stucco; and, 3, finishing, lime with a little hair and a little sand. This last is termed "setting" when used with fine stuff for papering, and is well finished.
Stumo. An apartment especially adapted for a persou to write or work in. It is generally presumed to be for art purposes.
Stuls. (Sax.) The quarters or posts in partitions. See Quarters.
Stoff. (Ditch.) A general tern for the wood used by joiners.
Stomp Tracery. The later or after Gothic of Germany has tracery in which the ribs are made to pass througl each other, and are then abruptly cut oft. This may be called stamp tracory, according to Professor Willis.
Style. The different varieties of architecture. See Stide.
Stylobata. See Pedestal.
Subnormal. The distance between the foot of tho ordinate and a perpendicular to the curve (or its tangent) upon the axis.
Seb-plinth. A second and lower plinth placed under the principal one in columns and pedestals.
Sub-principals. The same as auxiliary rafters or principal braces.
Subway. An underground passige. It now more especially refers to the arched vaults formed under a street for the purpose of containing the sewer, and gas, water and other pipes, with a bench or footway for access to the former or tor making repairs to the latter. The subway requires a trap with ladder for access. and ventilating shafts. The Builder journal, xviii. 640, illustrates a subway formed in London.
Sudatio and Sudatorivm. (Lat.) The same as Caliarrium. See Concamfrata Sedatio.
Summpr. (Perhaps from Ital. Soma.) The lintel of a door, window, ctc. A beam tenoned into a girder to support the ends of joists on both sides of it. It is frequently used as a synonyme for a girder. Also a large stone laid over columns and pilasters in the commencement of a cross vault. It is, moreover, used in the same sense as Bressummer.
Sumarrr Stone. The lowest stone at the end of a gahle, st pping the caves of the tiling or slating. The first piece of the tabling is worked in the solid of the summer stone, and so becomes an abutment and support for tho rest. It is also called a skcw corbel.
Summer Tree. See Dormant Tree.
Summerino. See Beds of a Stone.
Sun Light. A new method of lighting large rooms from the ceiling, by a number of gas jets placed under a reflector, with tubes through the ceiling and perhaps roof for carrying off the products of combustion and for ventilation. A valve to prevent down draughts is introduced near the top of the tube.
Sonk Shelves. Such as are formed with a groove in their upper surface, to prevent plates, dishes, or other materials sliding off when placod upright on them, as in a dresser.
Stper-altar. A shelf or ledge let into the cast wall just over the altar or communion table, on which are placed the altar cross, altar lights, and flower vases not allowed by law on the table itself.
Superciliom. (Lat.) The lintel of a door. See Antepagmenta.
Superintendance. The architect's duty leing to see that the quality of the materials used, and of the workmanship are equal to those specified, and that the building is being erected in accordance with the drawings and specifications, his visits to the building will be regulated by his own judgment, the extent of his practice, the magmtude of the works, the distance they may be away, whether a clerk of the works be employed or not, and the reputation of the builder, and lastly the expectations of his client. The young practitioner will soon learn which are the best occasions for visiting the works, after having seen to the setting out, to the drains, foundations, the footings commenced, etc.
Superstructure. (Lat.) Work built on the foundation of a building. The upper part.
Suppokt. See Points of Scpport.
Surisase. The series of mouldings forming a eapping to the dado of a room.
Surbased. An arch, rault, or dome of less hight than half its span.

Sunmounted. An arch, vault, or dome rising higher than a semicircle.
Swatlow-tall. See Duve-tait,
Syenite. A stone which consists of feldspar and hornblende, of various colours, as reddish, dull grcen, \&c., as the feldspar or hornblende may predominate. It obtained the name from its abundance of syene, and according to Pliny was at first named pyropocilos. It is, in fact, a species of granite, and is used in Pompey's Pillar at Alexandria. It is not the Egyptian porphyry, though often mistaken for it.
Symbol. An attribute or sign accompanying a statue, or a picture of a personage, in allusion to some passage in the life of the person represented, and hence often used as a figurative representation of the figure itself. The symbols connected with the metala are delineated herein s. v. Metals. From the constant occurrence of symbols in tha edifices of the Middle Ages it may be useful to insert a list of them, as attached to the Apostles and Saints, most commonly found. The Cross has been received as a symbol of Christianity, and the crescent of Mahommedanism.

HOLY APOSTLES.

St. Peter.-Bears a key, or two keys with different wards.
St. Andreu.-Leans on a cross, so called from him; ealled by heralds the "saltire."
St. John Evangelist. - With a chaliee, in which is a winged serpent. Wben this symbol is used, the cagle, another symbol of him, is nover given.
St. Bartholomew. - With a flaying knife.
St. Jantes the Less.-A fuller's staff, bearing a small square banner.
St. James the Greater.-A pilgrim's staff, hat, and escalop shell.
St. Thomes.-An arrow, or with a long staff.
St. Simon.-A long saw.
St. Jule.-A club.
St. Matthites.-A hatchet.
St. Philip.-L ans on a spear; or has a long cross in the sbape of a T.
St. Difathew.-A knife or dagger,
$S t$. Mark.-A winged lion.
St. Lukp.-A bull.
St. Juhn.-An eaglo.
St. l'aul.-An elevated sword, or two swords in saltire.
St. John Baptist.-An Agnus Dei.
St. Stephen.-With stones in his lap.

SAINTS.

St. Agatha.-Hor breast torn by pincors.
St. Agnes.-A lamb at ber feet.
st. Aidan.-A stag eroueling at his feet.
St. Alphege.-His chasublc full of stones.
St. Anagradesma.-Covered with leprosy.
St. Anne.-Teaching the Blessed Virgin to read.
Her finger usually pointing to the words Radix
Jesse Floruit.
St. Antony, Eremite.-Devil appears to bim in the shape of a goat.
St. Authony of Padua.-Aecompanied by a pig.
St. Apollonia.-With a tooth.
St. Barbara. - With a tower in her hands.
St. Blaise.-With a woolcomb.
St. Boniface.-Hewing down an oak.
St. Britius.-With a child in his arms.
St. Canute.-Lying at the foot of the oltar.
St. Catharine.-With a wbeel and sword.
St. Cecilia.-With an organ.
St. Christopher.-A giant carrying the Infant Saviour on his shoulder across a stream. A monk, or female figure, with a lantern on the farther side.
St. Clement.-With an anclior.
St. David.-Preaehing on a hill.
St. Denis.-With his head in his hands.
St. Dorothy. - Bears a nosegay in one hand and a sword in the other.
St. Dunstan.-Bears a harp.
St. Edith.-Washing a beggar's feet.
St. Edmund.-Fastened to a tree and pierced with arrows.
St. Edward.-Bearing in his hand the Gospel of St. John.

St. Eumuchus.-A dove lighting on h's head.
St. Etheldreda, Abless.-Asleep, a young tree blos. soming over her head.
St. Eustachius, or St. Hubert.-A stag appearing to him, with a eross between its horus.
St. Fubran.-Kuecting at the block with a triple crown at his side.
St. Faith.-With a bundle of rods.
St. George.-With the Dragon.
St. Gertrude, Abbess.- With a loaf.
St. Giles, Abbot.-A hind with an arrow piercing
her neek, stauding on her hind legs, and resting her feet in his lap.
St. Gudula.-With a lantern.
St. Hilary.-With three books.
St. Hippolytus.-Torn by wild horses.
St. Hugh.-With a Jantern.
St. Januarius.-Lighting a fire.
St. Jotachim.-With a staif, and two doves in a basket.
St. Lawrence.-With a gridiron.
St. Magnus.-Restoring sight to a blind man.
St. Margaret.-Trampling on a dragon, a crosier in her hands.
St Martin.-Giving halif his cloak to a hegrar.
St. Nicholas.-With three naked children in a tub, in the end whereof rests his pastoral staff.
St. Odilo, Abbot.-With two gobl ts.
St. Pancras.-Trampling on a Saracen, a palm branch in his rigbt hand.
St. Richard.-A chalice at his feet.
St. Rosaly. - With a rock in her arms.
St. Sebastian. - As St. Edmund, but without a crown.
St. Uresula.-Surrounded with virgins much less in size than herself.
St. Vincent.-On the raek.
St. Walburga.-Oil distilling from her hand.
St. Waltheof. - Kneeling at the block, the sum risitg.
St. Winifred, Abbess, - With her head in her arms.
St. Wulfstan. - Striking his pastoral staff on a tomb.

The Blessed Virgin is usually representel-

1. At the Annunciation, with an almond treo fourishiag in a fiower-pot.
2. At her Purification with a pair of turtlo doves.
3. In her Agony, with a sword piereing ber heart.
4. In her "Repose" (death).
5. In her Assumption.
6. With the blessed Saviour in her lap.
7. In her Ecstasy, kneeling at a faldstool, which faces the Temple, the Holy Dove desceuding on her.

Mfartyrs hold palmo; Virgins, lamps, or, if also Martyrs, lilies and rcses; Confessors, lilies; Γa triarchs, wheels.
Glories round beads are cireular, except when living prelates eminent for holiness are repre sented, when they are square.

Husenbeth, F. C. Emblems of Saints. 2nd edition, 12 mv . London 1860. Twining, L Symbols an l Emblens of Early and Medicual Christian Art. 93 plates, 4to. Lond. 1852.

Symbolism. Mr. Gwilt's remarks on this subject, written for insertion in his Appendix, are suljoiued. "I Iuvested with much of the character of chivalry and somance, the medieval period has been often stated to hare expressed in matter its spiritual impressions. The aspiring vertical lines of its monuments have by some been considered types of aspiration after the Divinity. This may or may not have been the case, but there can not be other than an indisposition to believe in symbolism, when there are so many forms in nature whose imitation, or the study thereof, would lead to the same results. Holding symbolism in churches as an idle conceit, not much will be said on that subject; but a few specimens of the nonsense it induces may as well be set down. The veneruble Bude, for instance, says that the walls of a ehurch are a symbol of the Christian worshippers that frequent the edifice. 'Omnes parietes templi per circuitum omnes sauctæ ecclesiæ populi sunt, quibus super fundamentum Christi locatis, ambitum orbis replevit.' The renerable scribe, be itobserved, is speaking of Solomon's temple. Again, in rerpect of doors, we have 'Ostium autem templi Dominus est, quia nemo venit ad Patrem nisi per illum,' \&c. As to the windows, they are symbols of the saints and spiritual worshippers; ' Fenestre templi sunt sancti et spirituales.' To come, howerer, to recent symbolisms, we find that the moderns have discovered that the principal entrance of a church is a symbol of our entrance into physical and moral life; that the tympanum, or gable-like form, over the great western porch (whose origin is the Greek pediment, but raised to conform with the character of the style), is a symbol of the Holy Trinity; the great rose window at the western end of a church is, from its circular form, accounted a symbol of Divine Providence! At Amiens, the four rose windows have been considered symbolical of the four elements! In respect of the towers, that on the left is said to represent the ecclesiastical and spiritual hierarchy, and that to the right, order, that is, the civil or temporal power! and generally, where four horizontal divisions occur, the lower one is symbolical of the cure, the next upwards of the dean or archdeacon, the third of the bishop, and the fourth of the archbishop. Should a fifth horizontal division occur, the primate is the type. So in the right hand tower, the lowest compartment represents the mayor, and in succession upwarls appear a count, a duke, a king; and if the tower be covered with a spire, no less than an emperor appears. One is almost surprised that there is no symbol to represent the suisse of the continental, nor the beadle of our churches in this country. The interior of a church, according to the symbolists, affords some further curious features of mystieism. The principal entrance is at the foot of the Cross, because, by the use of the feet (i.e. travelling) the Gospel was preached! What is called canting heraldry surely does not equal this. The nare is said to represent the body of the faithful! The ceiling over the altar is accounted a symbol of heaven, and the chapels round the altar are said to represent the aureola round the head of Christ! But it is scarcely worth while to waste more time on the conside ration of such absurdity, whero the things have been ingeniously fitted to the types, instead of the converse. There is, however, one other point connected with the subjeet, which has been recently rerived, and a few words must be expended in notice of it." This is the vesica piscis.
Symmetry. (Gr. Euv, with, and Met $\rho \omega$, I measure.) A system of proportion in a building, from which results from one part the measurement of all the rest. It also conveys the meaning of uniformity as regards the answering of one part to another.
Systyle. (Gr.) A colonnade or portico, in which the inter-columniation is equal to two diameters of the column.

T
Tabern. A provincial term for a cellar.
Tabernacie. (Lat.) In Catholic churches, the name given to a small representation of an edifice placed on the altar for eontaining consecrated vessels, \&c.
Table. In perspective, the same as the plane of the picture, being the paper or canvas on which a perspective drawing is made, and usually perpendieular to the horizon. In the theory of perfpective, it is supposed to be transparent for simplifying the theory. In glass works and among glaziers, it is a circular plate of "crown" glass. being its original form before it is cut or divided into squares. Twenty-four tables make a case.
Table or Tablet. (Lat. Tabula.) A flat surface generally charged with some ornamental figure. The outline is generally rectangular, and when raised from the naked of the wall, is called a projecting or raised table. When not perpendicular to the horizon, it is ealled a raking table. When the surface is rough, frosted, or vermiculated, from being broken with the hammer, it is called a rusticated table.
Tablet. The same as Table; but is applied usually to a wall slab or monumental tablet.
Tabling. A term used by the Scotch builders to denote the coping of the walls of rery common houses.

Tablinum. (Lat.) In Roman architecture, an apartment situated iu the narrow part of the atrium, as is supposel, fronting the entrance. Its exact position is not now known, and indeed the situation of it may, under circumstances, have varied; its true place therefore must be a matter of doubt.
Tabulatem. (Lat.) A term used by the Romans not only in respect to the floers, wainscottings, ceilings, \&c., which were constructed of wood, but also to balconics aud other projecting parts, which latter Vitruvius calls projectiones.
Tace. The name in Scotland for a Saliy.
Tacks. Small nails used for various purposes, but principally for stretching cloth upon a board.
Trant. (Gr.) The fillet which separates the Dorie frieze from the architrave.
Tail. (Verb.) A term deuoting the hold of any bearing piece on that which supperts it, as where the end of a timber lies or tails upon the walls. The expression is sinilar to what in joinery is callcd housing, with this difference, that housing expresses the complete surrounding of the cavity of the piece which is let in.
Tail Bay. See Case Bay.
Tail Trimabr. One next the wall, into which the ends of joists are fastened in order to avoid flues.
Tailing. That part of a projecting stone or brick not inserted in a wall.
Talliolr. (Fr.) The name which the French give to the abacus.
Talon. (Fr.) The name given by the French to the ogee.
Tambour. (Fr. a drum.) A term denoting the naked ground on which the leaves of the Corinthian and Composite capitals are placed. It signifies also the wall of a circular temple surrounded with columns; and further the circular vertical part below a cupola ns well as above it.
Tangent, (Lat. Tango.) A line drawn perpendicular to the extremity of the diameter of a eircle, and therefore touching it only at one point. In trigonemetry, it is a line drawn perpendicularly from the extremity of the diameter, at one end of the arc, and bounded by a straight line drawn from the centre through the other.
Tank. A receptacle, generally formed under ground, for liquids, as a water tank, liquil manure tank, \&c.
Tapering. A term expressive of the gradual approach, as they rise, of the sides of a body to each other, so that if continued they would terminate in a point.
Tar. A product of the valuable family of the coniferous trees, and chiefly from the species of pine known as the Scotch fir. It is stored up in the roots, from which it is extractel by heat. When tar is subjected to heat a volatile spirit is distilled from it, learing a black solid mass which is termed pitch. Both have the property of resisting moisture.
Tarras. A strong cement, useful formerly in water-works.
Tassal, Tassel, Torsel, or Tossex. The plate of timber for the end of a beam or of a joist to rest on, as formerly in a chimuey, where the mantel tree rested on it at each end.
Tavern. A house open to the public where wine is sold.
Taxis. (Gr.) A term used by Vitruvius to signify that disposition which assigns to every part of a building its just dimensious. Modern architects have called it ordonnance.
Teaze Tenon. A tenon on the top of a post, with a double shoulder and tenon from each for supporting two level pieces of timber at right angles to each other.
Tectorium Opes. (Lat.) A name in ancient architecture given to a species of plastering used on the walls of their apartments.
Telamones. (Gr. T $\lambda \alpha \omega$, to support.) Figures of men used in the same manner as Caryatides. They are sometimes called atlantes.
Temenos. (Gr.) The same as the Latin Templum. See Temple.
Tempered. An epithet applied to bricks which may be eut and reduced with ease to a requirod form. The term is also apphed to mortar and cement, which has been well beaten and mixed together.
Templa. (Lat.) Timbers in the roof of the Roman temples, which rested on the cantherii, or principal rafters, similar to the purlins in a modern roof.
Template. An improper orthography for Templet.
Tempes. (Lat.) Generally an edifice erected for the public exercise of religious worship. Herein is described the different species of temples mentioned by Vitruvius, in Book 3 of his work.-A temple is said to be in antis when it has anter or pilasters in front of the walls, which enclose the cells, with two columns between the antæ. See Fig. 1442. It was crowned with a pediment, and was not dissimilar to the prostylos temple, to which we shall preseutly come. In the figure, A is the cell, a a the ante, and if in front of them the columns $\langle b b b$ were placed, it would be a prostyle temple ; C is the door of the cell, and B the pronans. The appearance in front of this species is the same as the amphiprostyle temple, which is given in fig. 143, and wherein columns are also placed
in front of the antr. Of the prostyle temple, an example, that of the temple of Jupiter and Faunus, existed on the island of the Tiber at Rome. In fig. 1443, the amphiprostyle temple, A is the cell, B the pronos, C the posticus, D the door of the cell, and $a a$ are

Fig. 1442.

Fig. 1443.
the antæ. It will be immediately seen that the same eleration will apply (fig. 1444)

Fig. 1444.
to both the plansjust given. The amphiprostyle temple, be it ouserved (fig. 1443), than

Fig. 1445.
columns in the rear as well as in the front, and is distinguished by that from the pro-
etylns (fig. 1442), wherein the columns $b b b b$ would make that prostylos which, but for them, would be mercly a temple in antis. Tho amphiprostylos then only differs fro n the prostylos by having columns in the rear, repeated similarly to those in the front. The fig. 1444 applies on double the scale of the plans to both figs. 1442 and 1443 , and is a diastyle tetrastyle temple, that is, ono whose intercolumniations (see Colonnade) are of three diameters, and the number of whose columns is four.

A peripteral temple had six columns in front and rear, and eleven on the flanks, counting the two columus on the angles (see fig. 1445), and these were so placed that their

Fig. 1446.
distance from the wall was equal to an intercolumniation or space between the columns all round, and thus it formed a walk around the cell. In fig. 1446 is the elevation of the species, which is hexastyle and eustyle, that is, with six columns in front, whose

Fig. 1447.

Fig. 1448.
intercolumniation is eustyle, or of two diameters and a quarter. (See Colonsadra) In this figure, which is to a double scale of the plan, $a a a$ are acroteria.

The pseudo-dipteral temple was constructed with eight eolumns in front and rear

Fig. 1449.
and with fifteen on the sides, including those at the angles, see fg. 1447. The walls of

Fig. 1450.
the cell are opposite to the four middle columns of the front and of the rear. Hence,

Fig. 1451.
from the walls to the front of the lower part of the columns, there will be an interral
eq al to two intercolumniations and the thickness of a column all round. No example existed of such a temple at Rome; but there was one to Diana, built by Hermogenes of Alabanda, in Magnesia, and that of Apollo by Menesthcs. The dipteral temple (fig. 1448) is octastylos like the former, and with a pronaos and posticum, but all round the cell are two ranks of columns: such was the temple of Diana at Ephesus, built by Ctesiphon. The elevation (fig. 1449) is the same in the dipteral and pseudodipteral temple, and in the figure is with the systyle intercolumniation.

The hypothral temple, or that uncovered in the centre, is decastylos in the pronas and posticum; it is in other respects (see fig. 1450) similar to the dipteral, except

Fig. 1452.
that in the inside it has two stories of columns all round, at some distance from the walls, after the manner of the peristylia of porticoes as drawn in fig. 1451, in which one half is the elevation and the other half the presumed section of such a temple.

The peripteral temple has been described, but there is still another connected with that species, though distinct, and that is the pseudo-peripteral, or false peripteral, in which there is no passage round the walls of the cell, but an appearance of surrounding columns (see fig. 1452).

By this arrangement more room was given to the space of the cell. The elevation of this is given in fig. 1453.

Sig. 1453.
Vitruvius thus describes, as follows, the proportions of the Tuscan temple :-
The length of the site of the temple intended (see fig. 1454.) must be divided into six farts, whence, by subtracting one part, the wilth thereof is obtained. The length is then divided into two parts, of which the furthest is assigned to the cell, that next the front to the reception of the colnmns.

The above width is to be divided into ten parts, of which threa to the right and three to the left are for the smaller cells, or for the alæ, if such are required; the remaining four are to be given to the central part. The space before the cells in the pronaos is to have
its columns 80 arrangod that those at tho angles are to correspond with the antre of tho extomal walls: the two central ones opposite the walls botwoen the antie and tho middle of the temple are to be so disposed, that between the

Fig. 14\%4. antre and the above columns, and in that direction, uthers may be placed.

Their thickness below is to be one-seventh of their height, their height one-third of the width of tho temple, and their thickness at top is to be one-fourtl less than their thickness at bottom. Their bases aro to be half a diameter in height. The plinths, which are to be circular, are half the height of the baso, with a torus and fillet on them as high as the plinth. The height of the capital is to be half a diameter, and the width of the abocus equal to the lower diameter of the column. The neight of the capital must be divided into three parts, whereof one is assigned to the plinth or abacus, another to the echinus, the third to the hypotrachelium, with its apophyge.

Orer the columns coupled beams are laid of such height as the magnitude of the work may require. Their with must be equal to that of the hypotrachelium at the top of the column, and they are to be so coupled together with dovetailed dowels as to leave a space of two iaches between them. A bove the beams and walls the mutuli project one-fourth of the height of the columns. In front of these members are fixed. and over them, the tympauum of the pediment, either of masonry or timber.
Of circular temples there aro two speeies; the monopteral (fig. l4ō5) haring columns without a cell, and tho peripteral with a cell (fig. 1456). In this last the elear diameter of tho cell within the walls is to be equal to the height of the columns above the

Fig. 1455.
Fig. 1456.
pedestal. Of this speeies was the celebrated temple at Tivoli, in the admiration of which in) dissentient from its allowed beauty has hitherto been recorded. With it situation has doubtless much to do.

Having thus related the description of Roman temples as known to Vitruvius, we give an elevation of two Grecian temples as restored, to contrast with the above descriptious of similar works. Fig. 1457 is the temple of Pallas, or of Jupiter Panhellenius at Egina, in the gulf of Athens. The ruins were cxplared in 1811 by Messrs. Cockerell, Fostor, Haller and Lynck, with very remarkable success, in elucidation of every desired architectural detail, and of the then unascertained style of the Eginetan school of

Fig. 1457. Temple at Agina.
sculpture, constantly mentioned by ancient writers as of the first merit and of universal estimation. The temple is hexastyle peripteral, but has twelve columns only in the flanks. The top step measures 44 feet 10 inches by 93 feet 1 inch; the height to the point of the pediment is 35 feet. The pediments and arroteria were adorned with not less than thirty-four Parian statues representing the two Trojan wars, in which the Æacidæ werc engaged more especially. These sculptures are now at Berlin, but casts of them, placed in models of the pediments, are erected in the British Museum. Fig. 1430 shows tbe centre group of cne of the pediments to a larger scale. The date of this work is supposed to be not later than the sixth century b.c.

Fig. 1458. The Parthenon at Athens.
Fig. 1458 is a representation of the west front of the temple of Minerva, commonly called the Parthenon, at Athens. It is an example of the rare arrangement of the octastyle periptcral, the sides have seventecn columns. The top step measures $101 \cdot 336$ English feet by 228.15 fect; the height to the apex of the pediment is 59.27 feet. A capital of one of the columns and many of the sculptures of the pediments, metopx, and frieze around the cella, furmed a series of the gems of Lord Elgin's collection, and are now in the British Museum. Ictinus and Callicrates were the architects, and Phidias
the director of the sculpture, intrusted by Pericles with its crection. It is supposed that ten or fifteen years were so occupied, and that the temple was completcd b.c. 438.
Templet. A mould used iu masonry and brickwork for the purpose of cutting or setting cut the work. When particular accuracy is required, two templets should be used, one for moulding the end of the work, and its reverse for trying the face. Whea many stones or bricks are required to be wrought with the same mould, the templets ought to be made of some metal.
The term is also used to denote a short picce of timber sometimes laid under a girder, particularly in brick buildings.
Tenis. The fillet or band at the top of the fricze in the Doric order.
Tenant. The occupier of a house and holding a lease or agreement from the landlord or other person. "Tenants in common" are such as hold by several and distinct titles, but by unity of possession. "Joint tenants" are such as have equal rights in lands or tenements by virtue of one title.
Tenon. (Fr. Tenir.) A projecting rectangular prism formed on the end of a piece of timber to be inserted into a mortisc of the same form.
Tenon Saw. One with a brass or steel back for cutting tenons.
Tension. The stretching or degree of stretching to which a piece of timber or other matcrial is strained by drawing it in the direction of its length.
Tencalla. The house of God or temple of ancient Mesico. It is a pyramid formed in terraces with flat tops, and always surmounted by a chamber or cell, which is the temple itself, where the ccremonies were exhibited to the pcople. One at Cholulu is 1440 feet square, and 177 feet high, having four stories. The teocalla of Yucatim rises at an angle of about 45 degrees to the level of the platform on which the temple stood; an unbroken flight of steps leads from the base to the summit. That at Palenque is the finest yet discovered.
Tepidarium. (Lat.) A name given to one of the apartments of a Roman bath.
Teram. The scroll at the end cf a step.
Tercento. The style of art prevailing in Italy during what is usually called the fourteenth century.
Term or Terminal. A sort of trunk. pillar, or pedestal, often in the form of the frustum of an inverted obclisk with the bust of a man, woman, or satyr on the top. See Vagina.
Turminus. The populiur word for the station at cach end of a railway.
Terra-Cotta. (It.) Baked earth. In the time of Palsanias there were in many temples statues of the deities made of this material. Bassi-rilievi of terra-cotta were frequently employed to orament the friezes of temples. In modern times it has also been much used for architectural decoration, weing modelled, or cast, or made up of pipe or potter's clay with fine sand and flint, and afterwards fired to a stony hardness, hardly to be scratched with a steel point. The manufacture is greatly used in a variety of ways for ornamental and useful purpuses. "Many early producticns, even of less durability than those now made, are found in ruins of stone, in which the latter material has been steadily disintegrating for thousands of years, but leaving the terra cotta as perfect, in many cases, as if receutly produced. In faithfully made and ritrified terra-cotta we have the great and lasting triumph of man orer natu ral productions; for timber will rot; stone, even granite, will disintegrate; iron will oxidise; all other metals will succumb to the action of fire, and to other destroying influences of the elements. Properly made and thoroughly burned terra-cotta will pass through centuries, and be the last to yield to those influences to which all natural productions must give way. In all architectural employments it is pract cally time-proof and indestructible. Very many important transactions recorded in this material have been found in a good state of preservation in the ruins of Babylon." (Davis, in Builder, xlvii. 479.)
Terrace, An area raised before a building above the level of the ground to serve as a waik. The word is sometimes, but improperly, used to denote a balcony or gallery.
Tesselated Pavement. A rich pavement of mosaie work made of small squares of marbles, bricks, tiles, or pebbles, and called tessele or tessera.
Tessera. (Gr.) A cube or die. This name was applied to a composition used some years ago fur corering fiat roofs, but now abandoned.
Testodo. (Lat.) A name given by the ancients to a light surbased vault with which they ceiled the grand halls in baths and mansions. Generally, any arched roof.
Tetraduron. (Gr) A spec'es of brick four palms in length. See Brick.
Tetragon. (Gr.) A figure which has four sides and as many angles.
ieiraspastos. (Gr. Te $\tau \rho \alpha_{0}$ four, and $\Sigma \pi \alpha \sigma \sigma \omega$, to draw.) A machine working with four pulleys.
Tetrastrle. (Gr. Tefpa, and İunos, a column.) See Colonnade.
Thatch. The covering of straw or reeds used on the roofs of cottages, barns, and such buildings ; and sometimes the cottage orné is so finished for a picturesque effect.

Theatre. (Gr. ©eaoual, to see.) A place appropriated to the represcntation of dramatic spectacles.
Theodolite. Au instrument used in surveying for taking angles in vertical or horizontal planes.
Theorem. A proposition which is the sulject of demonstration.
Therme. See Bath.
Thorough Framing. The framing of doors and windows, a term almost obsolete.
Thorovgh Lighted Room. A room having windows on opposite sides.
Threshold of a Door. The sill of the door frame.
Throat. See Gorge and Cimmey.
Ihrodgh or Thorofgh Stone. A bond stone; a heading stone going through the wall.
Throst. The force exerted by any body or system of bodies against another. Thus the thrust of an arch is the power of the arch stones considered as a combination of wedges to overturn the abutments or walls from which the arch springs.
Tie. (Sax. Tian, to bind.) A timber-string, chain, or iron rod connecting two bodies together, which hare a tendency to diverge from each other, such as tie-beams, diagonal ties, truss-posts, etc. Braces may act either as ties or straining pieces. Straining pieces are preferable to ties, for these cannot be so well secured at the joints as straining pieces. See Angle Brace.
Tie Beam. The beam which connects the bottom of a pair of principal rafters, and prevents them from thrusting out the wall. Fig. 1459 is an illustration of a late mediæval example of a species of such a roof.

Fig. 1459. St. Mary's Church, Leicester.
rie Ron. The iron rod securing the feet of the principal rafters in the manner, and in lieu, of the tie-beam.
Tifrce Point. The vertex of an equilateral triangle. Arches or vaults of the third point, which are called by the Italians di terzo acuto, are such as cousist of two ares of a circle intersecting at the top. See Pointed Arch.
Tigna. The tie beam of an ancient timber roof.
Tile. (Sax. Tigel.) A thin piece or plate of baked clay or other material used for the external coraring of a roof. A thicker sort serves for paving. The flat tiles are called plain tiles, the curved ones are pan-tiles; these latter, if made with a double currature, are called Bridgewater tiles.

Fig. 1460.

In ancient buildings two forms of tilcs were used. The imbrex, placed in regular rows to receivo the shower, and the tegula, which covered and prevented the rain from penetrating the joints. The latter were fixed at the eaves with upright ornamental pieces called antefixe, which werc also repeated along the ridge at the junction of the tiles. The present common tiles of Italy are on this principle, and are shown by fig. 1460. Similar tilcs have of late years been manufactured in England, but the joints require to be set in mortar to prevent wet and snow drifting into the roof.
Tile Creasing. See Creasing.
Tiling. The act of putting tiles on to reofs of buildings. The work itself is also so called.
Tiling Fillet. A chamfered fillet laid under slating or tiling, to raise it where it joins the wall, and prevent water from entering the joint. See Sifreamina, Furieng.
Thmber. (Sax, Timbnan, to build.) Properly denotes all such wood, either growing or cut down, as is suited to the purposes of building. A single piece of wood similanly employed is so ealled, as one of the timbers of a floor, roof, etc.
Tmabrs. It is advisable, as dirceted lyy the Metropolitan Buildings Act 1855, that no timber or woodwork be placed in any wall or chimmey breast, nearer than 12 inches to the inside of any flue or chimney opening:-Under any chimney opening within 18 inches from the upper surface of the hearth of surh chimney opening:-Within two inches from the face of the brickwork or stonework about any chimney or flue, whers the substance of such brickwork or stonework is less than $8 \frac{1}{2}$ inches thick, unless the fice of such brickwork or stonework is rendered :-and that no wooden plugs be driven nearer than 6 inches (not enough) to the inside of any ehimney opening.
Tip (verl.) To discharge a barrow or waggon load of anything by turning it on end or on ono side.
Tolmen, or Holed Stone. One of the many stones attributed to the Celtic inhalitants.
Tomis. (Gr. Tu β Bos.) A grave or place for the interment of a human body, including also any commenorative monument raised over such a place. The word embraces every variety of sepulchral memorial, from the meancst grave to the most sumptuous masoleum.
Thingute. See Groove.
Toor.s. (Sax.) Instruments used by artificers for the reduction of any material to its iutended form, and with which they are assisted in fixing and ornameuting it.
Twoth. The iron or steel point in a gauge which marks the stuff in its passage, or draws a line parallel to the arris of the piece of wood.
Toothing. A projecting piece of material which is to be received into an adjoining piece. A tongue or series of tongues. See Stoothing.
Top Beam. The same as Cullar Beam.
Top Raw. The uppermost rail of a piece of framing or wainscoting, as its name imports.
Tope. A Buddhist monument in a temple for preserving relics. Also the large mound enclosed and having gateways, as the celebrated Sanchi tope, dating about 800 b.c.
Tonsel. The same as Tassal.
Torsion. The twisting strain on any material.
Tonvs. (Lat.) A large moulding whose section is semicircular, used in the bases of columus. The only difference between it and the astragal is in the size, the astragai being much smaller.
Touch Stone. A smooth black stone like marble. It was much used for tombs in the 16th and 17 th centuries, as in that of Henry VII.
Tower. (Sax.) A lofty building of several stories, round or polygonal. See Sterple.
Town Hale. (Fr. Hôtel de ville. Ger. Stadthaus and Rathhaus.) A building in which the affairs of a town are transacted. It will necessarily wary with its extent and opulence. In towns of small extent it should stand in the market-place; in many of the towns of this country the ground floor has usually columns or piers, and forms the corn market, the upper floor being generally sufficiently spacious for transacting municipal business. Where the sessions and assizes, as in eities, are held at the town hall, it is necessary to provide two courts, one for the civil and the other for the criminal trials. In cities where much munieipal bnsiness oceurs, the number of apartments must of course be increased to meet the exigencies of the particular case; and, if pussible, a large hall should be provided for the meetings of the corporation. On the ground floor of the first class of town halls, courts, porticoes, or arcades, or spacious staircases, should prepare for and lead to the large apartments and courts of law. Every means should be employed in providing ample egress and ingress to the persons assembling. Fire-proof muniment rooms should be provided for the records and accounts. Court of Law.

For the disposition of these buildings the student may turn with proft to the examples abroad in wlich, generally, apartments are prorided for every branch of the
government of the eity. 1)urand, in his Peralléle des Ed!fices, has given several examples. We have chosen the Belgian examples, as most splendid, to remark upon; but it is not to be understood that fine specimensare only to be found in that eountry. France and Germany (see Builder for 1866) abound with sueh edifices, and a very voluminous work might be produced on the subject.

On the four principal hôtels de ville, that of Bruges is the earliest. Its
date is 1377, and it is chiefly remarkable for the origmal wooden roof to the great hall. The Hotel de Ville of Brussels is, as an edifice, the first of the class, whether considered by itself, or as the dominant feature of a place surrounded by build. ings of the most unique and varied appearance, the most interesting that we recollect anywhere to have contemplated. It appears to have been completed in 1445 . Fig. 1460a. is a view of the east façade. An ancient building which occupied this site, has not been entirely removed; for in the northern

Fig. 1460a.
HOTEL DE VILLE; RUUSSELS.
side from the tower, the piers of the loggia, which on the basement extends along the front, consist, at least three of them, of columns whose date is evidently a century earlier, and whieh it is probable were left when the main front of the building was earried up. Indeed, it seems highly probable that when the architect Jean van Ruysbroeck undertook the tower, his part of the work, the hotel was in cxistence as high as the one-pair floor. The whole of the tower seems rather later than the date above given, which aceords well enough with the northern wing. The authorities we have looked into scarcely, however, admit us to doubt its correctness. As the building stands executed, taking one of the bays on the northern side as a measuring unit, there are three measuring the central space for the tower, ten for the north wing, and eleven for the south wing; the height, to the top of the parapet, nine; to the ridge of the roof, thirteen; to the top of the spire, thirtythrec. The tracery on the spire is very elegant, and is pierced throughout. It is 364 feet ligh, and erowned with a copper gilt colossal statue of St. Michael, the patron of the city, 18 feet high, which is so well balanced upon the pivot on which it stands that it is susceptible of motion with a very gentle wind. The interior of the edifice has a quadrangular court, with two modern fountains, statues of river gods with reeds and vases, as usual in
sueh eases. Besides the Grande Sulle, there are mary interesting apartments, some whercof possess ceilings of great beauty. This fine monument is perhaps the most admirable example of the adaptation of the style to sceular arehitceture that ean be quoted.

Snaller in plan, but more beautiful and symmetrical, is the hotel de ville of Louvain. It is the most perfect, in every respect, of this elass of buildings in Europe. Nothing ean surpass the riehness and delicaey of the tracery upon it. Like that at Brussels, it consists of three stories, but has no tower. Commeneed in 1448 , it was not completed till 1463 by De Layens. It stands on a site of about 85 feet by 42 feet ; so that it derives little adrantage from its absolute magnitude, and perhaps appears less than it really is, from the great height of the roof, which is picreed by four tiers of dormers or lucarnes. The angles are flanked by turrets, of which some notion may be formed by reference to fig. 1460h. and the ridge of the roof is received at each end by another turret corbelled over from the gables. The façade towards the Place extends rather more than the height, and is pierced with twenty-eight windows and two doorways, being ten openings in each story, the spaces between the windows being decorated with eanopies, and groups of small figures from the Old Testament, some whereof are rather licentious. This charming edifice, which in its delicate rich tracery had suffered much from time and the elements, has, at the joint expense of the town and government,
 undergone a complete renovation. This has, stone by stonc, been effected with great carc and artistic skill by M. Goyers. The new work being executed in very soft stone, which, however, hardens with exposure to the air, it has been saturated with oil.

In form, though not in features, totally different from the hótels de ville we have just left, is that at Ghent, never completed, but exhihiting, in what was executed of the design, a choice example of the last days of the flamboyant period. It was begun in 1481; in it are all those indieations of ehange in the sofites and curves, as well as in the lines of the foliage and tracery, that eventually proved its downfall; and the style is now out of claracter with the habits of the age, from which alone a real style of architecture ean ever spring. The suldivision of the building as to height is into two stories as to effeet, though in
reality there are more; and the transoms, which abound in the apertures, seem to rcign in accordance with the horizortal arrangement of lines which was so soon to superede the flaming curves that had prevailed for nearly half a century. The elegant turret or tribune at the corner, with the part adjoining, in the richest flamboyant Gothic, is by Eustace Pollest, 1527-60; the other façade, 1600-20, has columns of three different orders superposed.

The most celebrated of town halls in Enrope was that of Amsterdam, erected during the first half of the 17 th century by Van Campen. The design is given in Durand's Parallèle, and it also forms the subject of a volume, in folio, published in Holland, in 1661-64. The town halls at Antwerp and at Maestricht may be also referred to, but these have now been surpassed by modern structures; amongst them may be mentioned the town hall at Berlin, 1881. The Hôtel de Ville at Paris was commenced 1533, and contimued from 1549 or 1559 on the designs of Domenico Boccadoro, called by the French Dominique do Cortone, in what is now termed the style of the Renaissance. The additions which became necessary in consequence of the extended business of the city were executed in the same stylc, and the building presented one of the finest and most picturesque features of the city, until 1870-71, when it was destroyed by fire ; its reconstruction was carried out by Théodore Ballu.

St. George's Hall, at Liverpool, with the town halls at Lceds, Halifax, Manchester, and other towns, large aud small, are modern examples. Such a building, for a moderate-sized market town (as referred to previously), might require, on the ground floor, a wide entrance vestibule, out of which would be a room for the police, with four or five cells for prisoners; an office for the board of health, witnesses' room, magistrates' room, with a staircuse to the first floor, to consist of a common hall, at one end of which, or in the middle of one side, would be arranged the courts for any local purposes, as a county court perhaps, with a retiring room for its chief. This hall would require a staircase for the public, entering at once from the main thoroughfare. Apartments for the resident policeman, and the usual conseniences, will also be necessary.
Trabeation. Another term for Entablature.
Trabs. The Latin term for a wall-plate.
Tracery. In Gothic architecture, the intersection, in various ways, of the mullions in the head of a window, the subdirisions of groined raults, \&c. See Window Tracery.
Tracheliom. (Lat.) The neck or space immediately below the capital in the Romau orders.
Tracing Cloth. A fine white cloth, prepared in a similar way to paper for rendering it transparent. Haring a very greasy surface it is not so easy to work upon it; and as it shrinks much if wetted, no large washes of colour can be put on it; even many small tints are detrimental to accuracy. Lines made in error can be erased by gettly using a brush damped with some soapy water. The cloth renders this paper much stronger than tracing paper, and it is now constantly used for working drawings.
Tracing Paper. A tissue paper made transparent by a preparation of turpentine and wax, slightly washed over it and then allowed to dry. Formerly resin and oil were used, as may be seen in the old sketch books, where the paper has turned a dark brown colour, and sometimes sticks to the leares. In England it is made in sizes of 60 in . by $40 \mathrm{in} . ; 40 \mathrm{in}$. by $30 \mathrm{in} . ;$ and 30 in . by 20 in . The last-named size is also made of a thicker paper. The following are the sizes of modern French-made tracing paper. It is also made 40 in . wide, and $21 \frac{1}{2} \mathrm{yds}$. in length :-

Besides this, J. Poore and Co. make a ferro-prussiate paper, which gives white lines on a blue ground, and supplied in rolls thirty and forty inches wide, of thin, thick, and extra thick paper. This not haring been considered a very satisfactory process, a "black-line process," by Bemrose and Sons, of Derby, has lately been brought out (1888), by which copies of the original drawings can he produced; they can also be coloured and treated as ordinary drawings. It is called "Perfection Brand Sensitized Paper" (black-line process).
Tracings. An aniline process of photographic printing was patented a few years since by Mr. Willis, whereby fac-simile copies of tracings are obtained, of the same
size as the originals, however largo their dimensions, and copies ean be supplied in a few hours. Delicate tinting as well as the black outlines are faitlifully reproduced. Dy this process no cost is incurred for drawing, engraving, or lithographing. Drawing on thin drawing paper and on parchment can also be copied by this process.
Trammpl. An instrument for deseribing an ellipsis by continued motion.
Transept (quasi Transseptum). The transverse portion of a cruciform church; that part which is placed between and extends beyond those divisious of the building containing the nave and choir. It is one of the arms projecting each way on the side of tho stem of tho cross.
Transition. A term used to denote the passing from one period of a style to another, exhibiting features peculiar to both, somo of which have not quite been given up, and some of which were beginning to be introduced.
Transom. A beam or beams across a window to divide it into two or more lights in height. A window having no transom was formerly called a clear-story window.
Transtra. (Lat.) Tho horizontal timbers in the roofs of ancient Roman buildings.
Transverse. Lying in a cross dircetion. Tho transverse strain of a piece of timbor is that sidewise, by which it is more easily bent or broken than when compressed or drawn as a tie in the direction ot its length.
Trap. In drainage and water escape, an article formed in any material to prevent the escape of foul air; such as a bell trap, syphon trap, D trap, \&c.
Trapezicm. (Gr.) Ingeometry, a quadrilateral figure, whose opposite sides are not paraliel.
Trapezow. (Gr.) A quadrilateral figure having one pair of opposite sides parallel.
Traverse. A gallery or loft of communication in a churcb or other large luilding
Tread. The horizontal part of the step of a stair. It can bo greatly protected whero there is much traffic, by squares of hard wood inscrted grain upwards into a light castiron frame, which is then seenred to the original tread.
Trefoll. In Gothic architecture, an ornament consisting of three cusps in a curcle.
Treance. A reticulated framing mado of thin bars of wood; it is used as a screen to windows where air is required for the apartment, \&c.
Trenail. A large cylindrical wooden pin, used in roof work and framing.
Tressel or Trossfe. Props for the support of anything the under surface of which is horizontal. Each tressel consists of three or four legs attached to a horizontal part. When the tressels are high the legs are sometimes braced. Tressels are much used in building for the support of scaffolding; and by carpenters and joiners while ripping and cross-cutting timber, and for many other purposes.
Triangle. (Lat.) A plane rectilineal figure of three sides, and consequently of three angles. In measuring, all rectilineal figures must be rednced to triangles, and in constructions for carpentry all frames of more than three sides must be reduced to triangles to prevent a revolution round the angles.
Triangular Compasses. Such as have three legs or feet by which any triangle or any three points may be taken off at once.
Tribune. See Apsis.
Tricunirm. (Lat.) The room in the Roman house wherein the company was received, and seats placed for their accommodation. It was raised two steps from the peristyle, and had therein a large window, which looked upon the garden. The aspect of winter triclinia was to the west, and of summer triclinia to the east.
Triforidm. (Lat.) The gallery or open space between the raulting and the roof of the aisles of a church, generally lighted by windows in the external wall of the building, and opening to the nave, choir, or transept orer the main arches. It occurs only in large churches, and is varied in the arrangement and decoration of its openings in cach succeeding period of architecture. See figs. 1417 to 1422. There is no triforium in Bath abbey church, nor to the choir at Bristol cathedral.
Triglyph. (Gr. T $\rho \in i s$, and $\Gamma \lambda u ф \eta$, a channel.). The vertical tablets in the Doric frieze chamfered on the two vertical edges, and haring two channels in the middle, which are double channels to those at the angles. In the Grecian Doric, the triglyph is placed upon the augle; but in the Roman, the triglyph nearcst the angle is placed centrally over the column. The space between the channels was called a femur and meros. Fig. 1461 is an example of a triglyph with the metope decoratedwith a bull's skulland garlands, as used in Italian architecture, by Sir William

Fig. 1461. Chambers and others. See Shank.

Ditriglyph is the arrangement by which two triglyphs are obtained in the frieze between those which stand over the columns.

Tritriglyphs is where there are three so placed,

Trigonometry. (Gr. Tpeis, thrce, Г ω via, an angle, and Met $\rho \omega$, I mcasure.) The science of detormining the uuknown parts of a triangle from certain parts that are given. It is either plane or spherical ; the first relates to triangles composed of three right lines, and the second to triangles formed upon the surface of a sphere by three circular ares. This latter is of less importance to tho architect than the former.
Thellateral. (Lat.) Having three sides.
Thilithon. Two upright stones linked together by a third on the top like a lintel; many such are seen at Stonehonge.
Tum. (Verb.) To fit to anything; thus, to trim up, is to fit up.
Trimmed. A piece of workmanship flited between others preriously executed, which is then said to be trimmed in between them. Thus, a partition wall is said to be trimmed up between the floor and the ceiling; a post between two beams; a trimmer between two joists.
Trimened out. A term applied to the trimmers of stairs when brought forward to receive the rough strings.
Trimmer. A small beam, into which are framed the onds of several joists. The two joists, into which each end of the trimmer is framed, are called trimming joists. This arrangement takes place where a well-hole is to be left for stairs, or to avoid bringing joists near chimneys, cte.
Thine Dimensions. Those of a solid, including length, breadth, and thickness; the same as threefold dimensions.
Tripon. (Gr. Tpets, and novs, a foot.) A table or seat with three legs. In architectural ornament its forms are extremely varied, many of those of the ancients are renarkable for their elegance and beauty of form.
Triptych. A picture witl folding doors, the inside of which is either also painted, or else decorated with diapers, etc. When the picture has only one door, it is called a diptych.
Trisection. The division of anything into three equal parts.
Triumphax Arch. A building of one arch erected first by the Roman people in memory of the victor, his trophies being placed on the top. Subsequently they became enriched and loaded with ornaments, and later were penetrated by three apertures, a central and two smaller ones. The arch of Trajan at Ancona, and that of Titus at Rome, have one arch; an arch at Verona has two openings; while those of Constantine, Septimius Severus (fig. 1462 as restored) and others, have three. There are numerous modern examples, such as the are de l'etoile at Paris; the arco dalle pace at Milan; the marble arch at London, ete.

Fig. 1462. Septimius Severus, as restored.

Trochmus. (Gr. T $\rho \circ \chi_{1} \lambda o s$, a pulley.) An annular moulding whose section is concare, like the edge of a pulley. It is more commonly called a scotia, and its place is between the two tori of the base of a column.
Trochoid. (Gr. Tpo⿱os, a wheel, and Eioos, shape.) A figure described by rolling a circle upon a straight line, such circle having a pin or fixed point in its circumference upon a fixed plane, in or parallel to the plane of the moring eircle. It is also called a cycloid.
Trophy. (Gr. Tpotaiov.) An ornament representing the trunk of a troo charged with various spoils of war.
Trovgh. (Sax. Thoh.) A vessel in the form of a rectangular prism, open on the top for holding water.
Trovgh Getter. A gutter in the form of a trough, placed below the dripping eaves of a house, in order to convey the water from the roof to the vertical trunk or pipe by which it is to be discharged. It is only used in common buildings and outhouses.
Truncated. (Lat. Trunco, I cut short.) A term employed to signify that the upper portion of some solid, as a cone, pyramid, sphere, etc. has been cut off. The part which remains is called a frustum.
Tronk. That part of a pilaster which is contained between the base and the capital. Also a vessel open at each end for the discharge of water, rain, etc.
Truss. (Fr. Trousse.) A combination of timber framing, so arranged that if suspended at two given points, and charged with one or more weights in certain others, no timber would press transversely upon another except by strains exerting equal and opposite forces.
Truss Partition. One containing a truss within it, generally consisting of a quadrangular frame, two braces, and two queen posts, with a straining post between them, opposite to the top of the braces.
Truss Roof. A roof formed of a tiebeam, principal rafters, king post or queen post, and other necessary timbers to carry the purlins and comnion rafters, etc.
Trussed Bean. One in which tho combination of a truss is inserted between and let into the two pieces whereof it is composed.

Trussing Pieces. Those timbers in a roof that are in a state of compression.
Try. (Verb.) To plane a piece of stuff by the rule and square only.
Tube. (Lat.) A substance perforated longitudinally ; generally quite through its length.
Tuck Pointing. In old brickwork, after it has been well washed and the mortar raked out, the joints are filled with new mortar; the face of the work is then coloured yellow or red, as desired. Lines to mark the joints are made by putting on a ridge of lime putty with the point of the trowel over the new mortar, and cutting it straight and to the required width by means of a straight edge and knife.
Tydor Style. A name given to the late portion of the Perpendicular Gothic, from the line of sorcreigns in England who reigned during its prevalence. The arch is of a four-pointed obtuse shape.
Tufa. A mass of volcanic earth, consolidated. Tufo is a mass of agglomerated sand without rolcanic character. Tufaceous, mixed with tufo.
Tumbled in. The same as trimmed in. See Trimmed.
Tumulus. A barrow or artificial carth mound. Among the Celtic works the former was sepulchral, and the latter perhaps erected for beacons or for a memorial purpose.
Tunnel. (Fr.) A subterranean channcl for carrying a stream of water under a road, hill, ete., or through which a road or railway is run.
Tun of Water. See Water, Weight of.
Torning Piece. A board with a circular face for turning a thin brick arch upon.
Turpentine. Turpentine is obtained by exudation and hardening of the juice flowing from incisions into pine trees. To obtain the oil of turpentine, the juice is distilled iu an apparatus like the common still, and water is introduced with the turpentine.
Torret. (Lat. Turris.) A small tower often crowning the angle of a wall, etc.
Tuscan Order. The first of the five orders used in Roman and Italian architecture. See fig. 1454.
Tusk. A bevel shoulder made above a tenon, and let into a girder to give strength to the tenon.
Tympanum. (Gr.) The naked face of a pediment (see Pediment) included between the level and raking mouldings. See Ætialoi and Ætoma. The word also signifies the die of a pedestal, and the panel of a door.
Type. (Gr. Tumos.) A word expressing by general acceptation, and consequently applicable to, many of the varieties involved in the terms model, matrix, impression, \&c. It is, in architecture, that primitive model, whatever it may have been. that has been the foundation of erery style, and which has guided, or is supposed to have guided, the forms and details of each. What it was in each style is still only conjecture.
Type. The canopy over a pulpit, also called a sound board.

U

Undercroft. A vault under a church or chapel. See Crypt, Croft, and Shrowds.
Underpinning. Bringing a wall up to the ground sill. The term is also used to denote the temporary support of a wall, whose lower part or foundations are defective, and the bringing up new solid work whereon it is in future to rest. See Godring.
Underpitch Groin. See Weich Groin.
Ungula. The portion of a cylinder or cone comprised by part of the curved surface, the segment of a circle, which is part of the base, and another plane.
University. An assemblage of colleges under the supervision of a senate, etc.
Uphers. Fir poles, from four to seven inches in diameter, and from twenty to forty feet in length. They are often hewn on the sides, but not entirely, to reduce them square. They are chiefly used for scaffolding and ladders, and are also employed in slight and common roofs, for which they are split.
Upriget. The elevation of a building; a torm rarely used.
Urila, Soe Helix.
Urn. (Lat.) A vase of a circular form, destined among the ancients to receive and preserve the ashes of the dead. With the vase, it often forms a decoration to the pedestal of a balustrade on a terrace, top of a wall, etc.
$V_{\text {sains. }}$ (Lat.) The lower part of a terminal in which a statue is apparently inserted.
Valley. (Lat.) The internal meeting of the two inclined sides of a roof. The rafter which supports the valley is called the valley rafter or valley piece, and the board fixed upon it for the leaden gutter to rest upon is called the valley board. The old writers called the valley rafters sleepers.
$V_{\text {alve. (Lat.) Anything which opens on hinges or pivots as a door. }}$
Vane. A plate of metal shaped like a banner fixed on the summit of a tower or steeple, to show the direction of the wind.

Vanishing Line. In perspective, the intersection of the parallel of any original plane aud the picture is called the ranishing line of such plane. The vanishing point is that to which all parallel lines in the same plane tend in the representation.
Vaforarium. (Lat.) The same as Caldarium.
Variation of Curvature. The change in a curve by which it becomes quicker or flatter in its different parts. Thus, the curvature of the quarter of an ellipsis terminated by the two axes is continually quicker from the extremity of the greater axis to that of the lesser. There is uo variation of curvature in the circle.
Varnish. A glossy coat on painting or the surface of any matter. It consists of different resius in a state of solution, whercof the most common are mastic, sandarac, lac, benzoin, cupal, amber, aud asphaltum. The menstrua are either expressed, or essential cils, or alcohol.
Vase. (Lat. Vas.) A term applied to a vessel of various forms, and chiefly used as als ornament. It is also used to denote the bell, or naked form, to which the foliage and volutes of the Corinthian and Composite capitals are applied. The vases of a theatre 11 ancieut architecture were bell-shaped vessels placed under the seats to produce reverberation of the sound. See Echea.
Vault. (It. Volto.) An arched roof over an apartment, concave towards the void, whose section may be that of any curve in the same direction. Thus a cylindric vault has its surface part of a cylinder. A full-contred vault is formed by a semi-cylinder. When a rault is greater in height thau half its span, it is said to be surmounted; when less, surbascd. A rampant vault spriugs from planes not parallel to the horizon. The double vault occurs in the case of one being above another. A conic vault is formed of part of the surface of a cone, as a spherical vauit consists of part of the surface of a sphere. The plane of an annular vault is contained between two concentric circles. A rault is said to be simple when formed by the surface of some regular solid round one axis, and compound when formed of more than one surface of the same solid or of two different sulids. A cylindro-cylindric vault is formed of the surfaces of two unequal cylinders; and a groined vault is a compound one rising to the same height in its surfaces as that of two equal cylinders, or a cylinder with a cylindroid. The reins of a vault are the sides or walls that sustain the areh. See Fan Vaulting.

The following table gives the clear breadths and heights in English feet, of the most remarkable raulted avenues, as given by Mr. Garbett in his "Principles of Design in Architecture":-

Date.	Name.	Breadth.	Height.	Proportion.
Tarquin I,	Cloaca Maxima -	16	26	1:1.625
1 st cent.	Temple of Peace, Rome -	83	121	1: 1-46
2nd or 3rd	Second Temple at Baulbec	63	93	$1: 1.47$
11 th	Cathedral at Speyer -	45	107	1:2.35
13th	- Salishury - -	35	84	1:2.3
	___ Amiens - -	42	147	$1: 35$
	-_- Cologne.	$41 \frac{1}{2}$	145	1:3.5
	Westminster Abley - - -	33	99	1:3
14th	Cathedral at York (not vaulted)	46	92	1:2
	- Milan - - -	55	165	1:3
	Choir at Beauvais Cathedral - Chapel of King's College, Cambridge	48	167	1:35
15 th		40	80	1:2
$16 \mathrm{th}_{1}$	Cathedral at Florence - - .	55	140	1:2.54
17th	-_- of St. Peter's, Rome -	84	147	$1: 1 \cdot 74$
	-_- St. Paul's, London -	41	82	$1: 2$

Thus St. Peters has the same external height as Amiens but gives twice the breadth; yet both are considered well proportioned arenues in their respective styles.
Vaulted Celling. A ceiling buile of stone, bricks, or blocks of wood, supporting itself on the principle of the arch.
Vauling Shaft. A pillar, sometimes rising from the floor, or only from the capital of a pier, or even only from a corbel, from the top of which spring the vaulting ribs of the groining.
Velaricm. (Lat.) The great awning, which by means of tackle was hoisted over the Roman theatre and amphitheatre to protect the spectators from the rain or the sun's rays.
Veliar Cupola. A term used by Alberti to denote a dome or spherical surface terminated by four or more walls, frequently used over large staircases and salons, and other lofty apartments.

Teneer. Λ fery thin leaf of wood of a superior quality, for covering furniture, cte, made of an inferior wood. Wafers of wool thirty-t wo inches wide were made about 1824.
Venmtan Dose. A door having side lights on each side of its frame.
Venetian Stym, That style of modern Italian architecture formed by the arehitects of the Venetian states in the fifteenth to the early part of tho seventeonth centurios.
Vemetian Whemow. One formed with three aperturos spparated by slender piers from each other, whoreof the centre one is nuch larger tham those on the sides.
Vexr. The flue or funnel of a chimuey; also any conduit for carrying off that which is offensive.
Ventinuct. A passage or pipe for the introduction of fresh air to an apartment.
Vemtiontion, The continual clange of air to an apartment, or portion of an edifice, \&e. The arelitect has to provide means for letting off or taking away the foul air, gencrully byapertures at the uppor part of the room, ete., to which the hot air will ascend, as well as to provide for the almission of fresh air in sufficient quantities to take its place or to forco it out without any appreciable current.
Verandaif. An open gallory laving a roof supported by light pillars, and placed over the windows of the principal rooms of a honse to shelter them from the rays of the sun, and under which persons can promenade for fresh air. It is sometimes onclosed with glass screens to form a conservatory.
Verge Buards. See Barge Boards.
Yermictlated Work. (Leit.) A term applied to rustic-work which is so wrought as to have the appearance of having been eaten into by worms.
Vertex. (Lat, the top.) A term generally applied to the termination of anything finishing in a point, as the vertex of a cone, ete.
Visrtical. Anoiks. The opposite ones made by two straight lines cutting each other.
Vertical Prane. One whose surface is perpendieular to the horizon.
Yresca Piscis. (Lat. a fish's bladder.) A worm which may be proluced in the endavour to gain two lines at right angles with each other. Ares of circles inclosing two equilateral triangles drawn on the same base line will also produce it. It was a monogratu, which has been supposed to be connected with the plan and form of churehes erected during the mediæval period. Many medireval seats of ecclesiastical and other communities were designed on the same form, and have been imitatel of late fur those of some archrological societies. See Symbolism.
Vestibule. (Lat. Vestibulum.) An apartment which serses as the medium of communication to another room or series of reoms. In the Roman houses it appears to have been the place before the entrance where the clients of the master of the house, or those wishing to pay their court to him, waited befure introluction. It was not considered as forming a part of the house. The entrance from the vestibulum led immediately into the atrium, or into the cavedium.
Vestry. (Lat. Vestiarium.) An apartment in, or attached to, a church for the preseriation of the sacred restments and utensils. A sacristy; see Daconicum.
Vibrition. A motion or combination of motions. The theory of the vibrations of the particles of an elastic fluid is the key to what is known of the phenomena of sound and light: and it is supposed that the causes of the sensible phenomena of heat, electricity, and magnetism will be found in the vibrations of matter of some hind. It is stated that iron kept constantly in a state of vibration oxidates less rapidly than that which is at rest, as exemplified in railway rails. It is recorded that the greatest ribration on the timber temporary bridge over the river Thames at Blackfriars was produced by empty four-wheel cabs. The vibration on the top platform, though it appeared considerable, was in fact only a quarter of an inch.
Vice or Vis. (Fr.) An old term applied to a spiral or winding staircase. In meehanics, a machine serving to hold fast anything worked upon, whether the purpose be filing, bending, riveting, etc.
Vilra. A country-house for the residence of an opulent person. Among the Romans there were three descriptions of villa, each haring its particular destination, namely, the Villa urbana, which was the residence of the proprietor, and contained all the conveniences of a mansion in the city. The lilla rustica, which contained not only all that was essential to rural economy, such as barns, stables, etc., but comprised lodging apartments for all those who ministered in the operations of the farming establishment. The Villa fructuaria was appropriated to the preservation of the different productions of the estate, and contained the granaries, magazines for the oil, cellars for the wine, etc.
Village Hospitas. A class of building lately recommended to be formed in small localities fur tho purpose of preventing the spread of fevers, \&c., by at once placing the sick under proper treatment.
Vimana. The name for the temple of the Hindoos, in front of which is the mantapa or poreh, and again the gopura or pyramidal entrance gateway.
Vinery. A house for the cultivation of vines. See Conservatory.

Visorium. (Lat.) See Ampintheatre.
Visdal Point. In perspective a point in the horizontal line in which the visual rays unite.
Visual Ray. A line of light supposed to come from a point of the object to the eye.
Vitruvian Scroll. See Scroll.
Vitrification. The hardening of argillaceous stones by heat. See Brice ; Terra Cotta.
Vivo. (Ital.) The shaft of a column.
Volute. A spiral scroll which forms the principal fcature of the capital of the Ionic order in Greek and Roman architecture. The capital of the Corinthian order has one smaller in size (Helix), which is enlarged in that of the Composite order. Several methods have been put forward of describing the spiral lines of the Ionic volute. The returns or sides are called pulvinata or pillows. Balteus is the outer fillet on the side of the volute.
Vomiforium. (Lat.) See Amphitheatre.
Vodssoir. (Fr.) A wedge-like stone or other matter forming one of the pieces of an arch. See Arch. The centre voussoir is called a keystone:-
Vulcanised India Robber. A material perhaps only brought into requisition by the architect for the purpose of excluding draughts from doors and the entry of dust into closets or cases. As a tube, with or without a spiral wire in it, it is greatly used for movable gas-lights.

W

Waggon-hraded Ceiling. The same as cylindrical ceiling. See Vault.
Wainscot. (Dutch, Wayschot.) A term usually applied to the oak or deal lining of walls in panels. The wood originally used for this purpose was a foreign oak, and called wainscot, hence the name of the material became attached to the work itself.
Wall. A body of material for the enclosure of a building and the support of its varions parts. "External wall" shall apply to every outer wall or vertical enclosure of any building, not being a party wall (Metropolitan Building Act, 1855.) "Cross wall" shall apply to every wall used or built in order to be used as a separation of one part of any building from another part of the same building, such building being wholly in one occupation. (Idem.) See Party wall.
Walings. See Shoring.
Walls of the Ancients. See Masonhy.
Walls, Cased. Those faced up anew round a building, in order to cover an inferior material, or old work gone to decay.
Walnet. A forest tree used in cabinet work.
Wasuer. A flat piece of iron, or other metal, pierced with a hole for the passage of a screw, between whose nut and the timber it is placed, to prevent compression on a small surface of the timber. Also the perforated metal plate of a sink or drain, which can be removed for letting off the waste water, and thus more easily cleansing it.
Wasting. Splitting off the surplus stone from a block, with a point or a pick, reducing it to nearly a plane surface. In Scotland it is called clouring.
Water. See Weight.
Water Joint. A joint between two stones in the paring of a terrace, where each side of the joint for about an inch is made level and then rounded off into a sinking of the stones, to prevent water lodging in the joint, especially if occasionally covered with it, as a river landing-place.
Water Joint Hinge. A hinge made into a sort of loop at the turning part, whereby it is less likely to stiffen by rusting, as it is generally used in out-door work.
Water Shoot. See Square Shuot.
Water Supply. See Plumbery. See Aquednct.
Water Table. An inclined plane where a wall sets off to a larger projection, for the purpose of throwing off any water that may fall upon that plane, and is principally used to buttresses and other similar parts of mediæval buildings: but in all styles it is an efficient way of attaining the above desirable object. Where a stone entablature occurs, the top is often covered with lead to prevent water soaking through.
Waves. In many engineering works, the weight of the stone to be cmployed is of the utmost importance, espccially for low buildings occasionally under water, where there is a rapid current, or where they are subject to the influence of powerful waves. Such circumstances will require a heavier stone to be used than may at first have been considered necessary, because all bodies immersed are reduced in weight by so much as is equal to that of the bulk of water which they displace. The force of the waves at Skerryvore lighthouse was found to be $4,335 \mathrm{lb}$. per square foot ; that at Bell Rnek
lighthouse was $3,013 \mathrm{lbs}$. The highest force observod was $6,000 \mathrm{lbs}$. For weight of water, see Weight.
Weather Boarding. Boards nailed with a lap on each other, to prevent the penetration of the rain and snow. The boards for this purpose aro generally made thinner on one edge than on the other, especially in good permanent work. The feather edged board is, therefore, used in such cases, the thick edge of the upper board being laid on the thin edge of that below, lapping about an inch or an inch and a balf, and the nails being driven through the lap.
Weather Moulding. A moulded string course. The projecting monlding of an arch, having a weatherod or sloped snrface at top, serving to throw off the rain, and to protect the other mouldings. See Hood Modid.
Weather Tiling and Slating. The covering an upright wall with tiles, or with slates. Wedge. (Dan. Wegge.) An instrument used for splitting wood or other substances; it is usually classed among the mechanical powers.
Weight. (Sax. Wihr.) In mechanics, a quantity determined by the balance ; a mass by which other bodies are examined. It denotes anything to be raised, sustained, or moved by a machine as distinguished from the power, or that by which the machine is put in motion.
$W_{\text {EIGHT, }}$ in commerce. A body of given dimensions, used as a standard of comparison for all others. By an act of parliament passed in June, 1824, all weights were to remain as they then were, that act only declaring that the imperial standard pound troy shall be the unit or only standard measure of weight from which all other weights shall be derived and computed; that this troy pound is equal to the weight of 22.815 cubic inches of distilled water weighed in air at the temperature of 62° of Fabrenheit's thermometer, the barometer being at 30 inches, and that there being 5760 such grains in a troy pound, there will be 7,000 grains in a pound avoirdupois.

Troy Weight.
24 grains $=1$ pennyweight.
480 . . = 20 = 1 ounce.
$5760 \ldots=240 \ldots=12 \ldots=1$ pound.

Avoirdopois Weight.

The avoirdupois pound: pound troy::175:144, or ::11:9 nearly; and an aroirdupois pound is equal to 1 lb .2 oz .11 dwts. 16 grains troy. A troy ounce $=1 \mathrm{oz}, 1 \cdot 55 \mathrm{dr}$. avoirdupois.

The following is a table of weights according to the French system.

The following table exhibits the proportion of weights in the principal places of Europe to 100 lbs . English avoirdupois.
100 lbs. English $=91 \mathrm{lbs} .8$ ozs. for the pound of Amsterdam, Paris (old), \&c.

-	$=96$	8	-	Antwerp or Brabant.
	$=88$	0	-	Rouen (the Viscounty weight).
	$=106$	0	-	Lyons (the city weight).
	$=90$	9		Rochelle.
	$=107$	11	-	Toulouse and Upper Languedoc.
	$=113$	0	-	Marseilles or Provence.
	$=81$	7	-	Geneva.
	= 93	5		Hamburgh.
	$=89$	7	-	Frankfort, \&c.

Antwerp or Brabant.
Rouen (the Viscounty weight).
100 lbs . English

100 lbs . English $=96 \mathrm{lbs} 1$ ozs. for the pound of Leipsic, \&cc.

-	$=137$	4	-	Genoa.
-	$=132$	1	-	Leghorn.
-	$=153$	11	-	Milan.
-	$=152$	0	-	Venice.
--	$=15 \mathrm{t}$	10	-	Naples.
-	$=97$	0	-	Serille, Cadiz, \&c.
-	$=104$	13	-	Portugal.
-	$=96$	5	-	Liege.
-	$=112$	$0 \frac{2}{3}$	-	Russia.
-	$=107$	$0 \frac{1}{24}$	-	Sweden.
-	$=89$	- $0 \frac{1}{2}$	-	Denmark.

The Paris pound (poids de mare of Charlemagne) contained 9216 Paris grains; it was divided into 16 ounces, each ounce into 8 gros, and each gros into 72 grains. It is equal to 7561 English troy grains.

The English troy pound of 12 ounces contains 5760 troy grains $=7021$ Paris grains. The English avoirdupois pound of 16 ounces contains 7000 English troy grains, and is equal to 8538 Paris grains.

$$
\left.\left.\begin{array}{ll}
\text { To reduce Paris grains to English troy grains, divide by } \\
\text { Or, to reduce English troy grains to Paris grains, multiply by } \\
\text { To reduce Paris ounces to English troy, divide by } \\
\text { To reduce English troy ounces to Paris, multiply by }
\end{array}\right\} \begin{array}{l}
\text { l.2189 } \\
\end{array}\right\} 1.01573 \pm
$$

Weigit of Man. As guidance in providing. sufficient strength in a floor loaded with human beings, the following weights are subjoined :-
Mean weight of a Belgian

- $140 \cdot 49 \mathrm{lbs}$. Mean height,

", \quad| Frenchman |
| :--- |
| Englishman |

- 136.89
- 150.98 " "
$\begin{array}{llll}5 & \prime & 4 & \prime \prime \\ 5 & " & 9_{2}^{1} & "\end{array}$
The weight in travelling carriages usually taken is 165 lbs .
Supposing, therefore, each individual in standing to occupy $2 \cdot 5$ superficial feet, which would be close to one another, and indeed closer than pleasant, on a square of flooring there would be $\frac{10.0}{2 \cdot 5}=40$ persons, and $40 \times 150.98 \mathrm{lbs} .=2 \cdot 96$ tons. The average surface of a man's body is usually considered about 15 superficial feet, which would give a cubic content of 3.95 feet, and a consequent specific gravity of 612 .
Weight of Materials. As, in the construction of warehouses, it is essential for the architect to know the probable weight of merchandise which his client may probably put upon the respective floors, the following tables may be found useful. The second one is taken from the Papers of the Corps of Royal Engineers, 1832, iii. 192, contributed by Major Harry D. Joues.

Articles。	Weight of $\underset{\text { a cuic }}{ }$	Cubic feet $=$ one ton.	Articles.	$\left\lvert\, \begin{gathered} \text { Weight of } \\ \text { a culbic fi. } \\ \text { los. } \end{gathered}\right.$	Cubic feet $=$ one ton.
Ashes- -	37	60.5	Hay, well pressed	8	
Brimstone -		19.8	Indyo ${ }^{\text {Inon, cast }}$	450	46.6 5
Chalk, from	140	15.5	-wrought -	487	45
- to - -	166	13.75	Lime, stone	53	$42 \frac{1}{4}$
Clay, from -	120	18.66	-chalk -	44	51
- to -	135	${ }_{26}^{17}$	Marl - - -	120	18
Coal, Cannel	54	26.66	Mortar, from (old)	88	$25 \frac{1}{2}$
- Welch -	58	39	-to (new) -	119	19
- Newcastle	50	45	Nightsoil - -		18
- Navy allowance		48	Sand, from - -	90	$23 \frac{1}{2}$ to 25
Coals, avcrage -		$45 \cdot 3$	- river - -	118	
- solid - -	80		Shingle - -	89	251
Coke -	47	48	Slate - - .	180	$12 \frac{1}{26}$
Cork -		149.34	Straw - - -	$3 \frac{1}{3}$	Truss=36 ibs.
Concrete -	120	$18 \cdot 66$	- well presscd - -	$5 \frac{1}{3}$	
Earth, from	95	23.5	Sugar. - - -		69.0
- to - -	126	${ }_{65 \cdot 16}^{18}$	- hogshead 3.11 in		
Fir Flint	164	6.16 13.66	$\underset{\text { Tallow }}{\text { mides }}=15 \frac{1}{2}$ cwt.		38.0
Glass, crown	157	14.25	Thames ballast -		$20^{\circ} 0$
- Flint -	187	12	Tiles, average -	112	20
- Plate	184	$12 \cdot 166$	Oil of Turpentino	54	41
Gravel	112	$12 \cdot 75$	- Linsecd - -	$58 \frac{8}{4}$	38
- Coarso .	120	$18 \cdot 66$	- Whale - -	573	38.8

Aiticles.	Destription.	Weight or Number.	Articles.	Description.	Weight or Number.
Ashes -	Barrel	$6=1$ ton	Linen, clotlı	Box -	$6=1$ ton
13leaching powders	Cask	23 to 7 cwt .	fatn	Balc -	10 cwt .
Bracou - - -	Barrel	$6=1$ ton	Linceil meal	Cosk	10 cwt .
	Balc-	$2 \frac{1}{2} \mathrm{cwt}$.	Machinery	Package	$3 \frac{1}{2} \mathrm{cwt}$.
Barley -	Suck	20 stone	Muriatic acia	Carboy	60 lbs .
	Quarter	$4=1$ ton	Oatmeal	Bag.	2 cwt.
Barm -	Cask	8 cwt.	Oats -	Sack	24 stone
Beans -	Hogshead -	$5 \frac{1}{4}$ cwt.		Quarter -	by 6 for tons
" - -	Quarter -	$4=1$ ton	Oil	Cask	8 cwt.
Beer or Ale -	Barrel	$3 \frac{1}{4}$ cwt.	Oxon	Number	$5 \frac{1}{2}$ cwt.
Buef	Hogshead	$5 \frac{1}{4}$ cwt.	P	Number \div	by 3 for ton
cf	Barrel	3 cwt. 7 lbs	Paper -	Bale -	20 lbs.
Books -	Case -	1 to 5 cwt.	Peas	Bag -	2 ewt.
Bran	Sack	1 cwt .	Pork	'lieree, Cask	$4 \frac{1}{2}$ to 5 cwt .
Bread	Bag -	1 cw	Pigs - -	-	${ }_{6}^{4}$ ewt. or 80 lbs .
Butter -	Cask	90 lbs .	, 1st class	-	${ }^{6} 5=1$ ton
Coudles	Firkin	4 cwt.	2nd class	-	$7=1$ ton
Candles	Box -	20 to 401	3rd class	- -	$15=1$ ton
Cattle, 1st class		$1 \frac{1}{2}=1$ tou	4 th class	- -	$23=1$ ton
" 2nd class		$2=1$ ton	Poultry	Crate	2 cwt.
" 3rd class	-	$3:=1$ ton	Quills -	13al:-	wt.
c", 4th class		$4=1$ ton	Rags -	Bag -	2 cwt.
Coal -	Ton		R11m	Hogshcad	56 to 58 gals.
Coffee - -	Bartcl	$2 \frac{1}{2} \mathrm{cw}$ t.	, - -	Gatlon -	by 224 fot tous
Cotton, manfetrd.	1'ackage -	$3 \frac{2}{2} \mathrm{cwt}$.	" -	Cask	8 to 32 gills.
-	Yards \div by	6,000 for tons	Runnet	Cask	1 cwt.
Drugs - -	Fuckage -	2 cwt.	Sillt	Bushel	6 lbs
Earchenware	" -	$3 \frac{1}{2}$ cwt.	Silk	Bale-	12 cwt.
Liggs	Box - -	$10=1$ ton	" manufactu	Yard \div	6,000 for tons
"	Number -6.	28,000 fur tons	Sheep	Number -	$60 \mathrm{lhs}$.
	Cr			\bigcirc	by 33 for tons
Flax	Bale-	10 cwt a 48 l jug. 1 gr .	$\begin{aligned} & \text { Sugar - I } \\ & \text { Tallow, Irish } \end{aligned}$	Hogshead -	10 ewt.
Flax seed	Bushel Cask	3 31	Tallow, Irish	Cask	10 cw
Fcathers	Big -	2 cwt .	Tanners' waste	T'ackage	$3 \mathrm{cwt} \text {. }$
Fish	Barrel	$3 \frac{1}{2}$ cwt.	Timber -	\{ Log, 40 to \}	
Glass	Cask			$\{120$ fcet $\}$	1 to 3 tons
Glue	Hogshead	10 ewt.	Tinncd phates	Box - -	$3 \frac{1}{2} \mathrm{cwt}$
Haberdashery	Package	$3 \frac{1}{2}$ cwt.	Tongues	Firkin	wt.
Hair	Bale	3 cwt	'Tow	Bale -	cwt.
Hams -	Barrel	$3 \frac{1}{2} \mathrm{cwt}$.	Vetches	Suck	cwt.
	Cask	12 cwt .	Vinezar	Cask	8 cw
Hardwares	Pawkage	$3 \frac{1}{2}$ cwt.	Vitriol	Carboy	(6) 1bs.
Hides, untamed	Number	$40=1$ ton	Wine	Cask	12 cwt .
, - - -	Bundle	70 lbs .	Wheat	Barrel	20 stone
Honey -	Cask	$\frac{1}{2}$ cw't.	W". -	Quarter -	4 ewt.
Horses -	Number	10 cwt	Whiskey	1mucheon -	$10 \frac{1}{2}$ to 12 cwt .
Horn tops	Mogshead -	8 cwt.	Wool	Bale	to 10 ewt .
Iron, wrought	Package	$3 \frac{1}{2}$ cwt.	W.ool	Bate	aver. G cwt.
Leatner -	Package	5 cw	, - -	Package	3 cwt.
Linen -	Box - *	$3 \frac{1}{2}$ cwt.	Wcollon moos	Bag - -	$2 \frac{1}{2}$ to 9 crit.
"	Yard \div by	6,000 for tons	Whollen goods	Yard \div by	6,000 for tous

A heaped Bushel of Wheat $=60 \mathrm{lbs}$. per foot cube, and 48.13 cube feet in a ton. A ditto of Barley=47 to 50 lbs . A ditto of Oats $=38$ to 40 !bs. A ditto of Coal= 88 to 94 lbs .

Weight of Watur :-

$$
\begin{array}{ll}
1 \text { quart of water } & =69 \cdot 3185 \text { cabic inches }=2 \frac{1}{2} \text { lbs. weight. } \\
4 \text { quarts }=1 \text { gallon } & =277 \cdot 274 \text { cubic inches }=10 \mathrm{lbs} . \text { weight. } \\
2 \text { gallons }=1 \text { peck } & =554 \cdot 548 \text { cubic inchcs }=20 \text { lbs. weight. } \\
4 \text { ditto } & =1 \text { bushcl }=2218 \cdot 192 \text { cubic inches }=80 \text { lbs. weight. }
\end{array}
$$

Sea water, 1 cubie foot $=64 \mathrm{lbs} ; 35$ cubic fect $=1 \mathrm{ton}$.
A cubic metre of water is equal in volume to $35.317 \pm$ feet English or to 220.0967 imp . gallons. As it is nearly equivalent to the old English tun of four hogsheads holding 35.248 cubic fect, and as it has been for some time in use on the Continent for measuring sewage and water supply, it is now employed for tbe same purpose in England.
Weights of a Sasi. Two weights, one on each side of a sash, by which the sash is suspended and kept in the situation to which it is raised by means of cords passing over pulleys. The vertical sides of the sash frames are generally made hollow in order to receive the weights, which, by this means, are entirely concealed. Thus, to keep the sash in suspension, each weight must be half the weight of the sash. The cords should be of the bestquality, or they soon fret to pieces. Wire sash line, leather sash line, and copper sash chains, are late inventions to supersede the hempen cords.

Welch Groin. A groin formed by the intersection of two cylindrical vaults, one of which is of less height than the other. Also called an underpitch groin.
Welding. The union of two pieces of iron by heating and hammering them. It requires great care that the joint shall be of the same strength as the remainder of the metal. Malleable cast iron does not weld. In all but the very thinnest castings, although the surface has been converted into a malleable form, there remains an inner core which at the temperature required for welding falls to pieses immediately the object is struck with the hammer. Good specimens may be bent double when cold, although they will probably break if bent back again. The metal can also be forged to a limited extent ai a moderate red heat, although if heated above this point it falls to pieces under the hammer. It may be burnt together at a temperature approaching fusion, or may be brazed with hard solder to either ircn or steel. See Soldering and Brazing.

The cheapening of oxygen by Brin's process of manufacture caused Mr. Thos. Fletcher, of Warrington, to mako some experiments with the compressed oxygen and coal gas, whereby with a half-inch gas supply a joint could be brazed in a 2 -ineh wrought iron pipe in about one minute, the heat being very short, the redness not extcading over one inch on each side of the joints. Welding is not possible with ordinary coal gas and air, owing to magnetic oxide on the surfaces. As a good weld was obtained on an iron wire $\frac{1}{8}$ inch diameter, with an air jet about $\frac{1}{32}$ inch diameter, the matter should be taken up and tried further (January 1888).
Wrel. A deep circular pit, or sort of shaft, sunk by digging down through the different strata or beds of earthy or other materials of the soil, so as to form an excavation for the purpose of containing the water of some spring or internal reservoir, by which it may be supplied.
Well-hole. In a flight of stairs, the space left in the middle beyond the ends of the steps.
Wheel. (Sax.) In mechanics, an engine consisting of a circular body turning on an axis, for enabling a given power to move or overcome a given weight or resistance. This machine may be referred to the lever.
Wheerbarrow. An implement for carrying bricks, soil, \&c. from one place to another, which has a wheel attached in front of a box-like carriage, to which two handles are affixed behind; by these the man raises the box, pushing it forward on the wheel.
Whael Window. See Catherine Whfel Window.
Whetstone. A stonc of fine quality by which tools for cutting wood are brought to a fine edge, after being ground upon a gritstone, or grinding-stone, to a rough edge.
Wininstone. The name by which the marl of the lower greensand is distinguished in Western Sussex ; probably of Saxon origin, remarks Dr. Mantell.
White Lead. A material forming the basis of most colours in house-painting. The common method of making it is by rolling up thin leaden plates spirally, so as to leave the space of about an inch between each coil. These are placed vertically in earthen pots, at the bottom of which is some good vinegar. The pots are corered, and exposed for a length of time to a gentle heat in a sandbath, or by bedding them in dung. The vapour of the vinegar, assisted by the tendency of lead to combine with the oxygen which is present, corrodes the lead, and converts the external portion into a white substance which comes off in flakes. These are washed and dried in stoves in lumps, and form the white lead of the painters. It is much improved in quality by keeping.
Wicket. A small door made in a gate.
Wind-beam. An obsolete name for a Collar-Beam. The term is now applied to a piece of wood laid diagonally under the rafters of a long roof, from the foot of one truss to the head of another to strut them, so as to prevent the roof racking with the wind.
Windras. The steps in a stircase which radiate from a centre, and are therefore narrower at one end than another.
Wind-Guary. One of the many names given to inventions professing to cure a down draught or a smoky chimney. Amongst these are reckoned Boyle's patent chimney cowl, " a most effectual cure" for either a sluggish chimney or a blow-down. Milhurn's patent noiseless chimney cowl has all the fittings made of copper and brass, and will last for a long time, is easily swept, and the oil box only requires refilling every six years. Banner advertises a "Wessex chimney cowl" as most efficient. "Day's Windguard," and the "Prince" chimney pot for preventing down-blow, are manulactured by Ewart and Son. Hammond's patent glazed stoneware chimney terminal is reasonable, and stated to ensure "a perfect cure"
Winding. The same as casting or warping.

Windlass or Windiace. A machine for mising wcights, in which a rope or chain is wound about a cylindrical body moved by levers; also a handle by which anything is turned.
Window. An aperture in a wall for the transmission of light. Soe Bull's-eye; Skyheht; Lantere heht; Venetian Window.
Whoow Tracery. 'The ornamental stonework in the hoads of windows in mediceval architecture. The earlier windows during the cirly English or First Pointed period of medizral arehitecture, were as a rule very narrow (fig. 1463) and without a dripstone. Later on, however, a dripstone, or perhaps more correctly, a hood mould, was used, which was often continucd on from window to window (fig. 1465).

Fig. 1463.

Tig. 146.4.

Fig. 1465.

$F_{\text {ig. }}$ 1.166.

As the style advanced, these narrow pointed openings were placed in couplets or triplets, the centre one being highest (fig. 1466); and the first approach to window tracery was developed by the piercing of the wall above the couplets with a circular or lozenge shaped opening (fig. 1467).

Fig. 1467.

Fig. 1468.

Fig. 1469.

Fig. 1470.

Fig. 1471.

The next step in the development of the tracericd window was the grouping together of two or three of these lancet windows and enclosing them under a label or arch (fig. 1468).
The triplet window, however, contributed much less to the development of Gothis tracery than the couplet, as there was no necessity for the circular opening to fill up the spaces between the tops of the windows and the enclosing arch, as that space was already occupied by the central liglit (fig. 1469), which was much taller than the others. The combination of couplets with a circular opening between the tops is therefore the fundamental principle of a Gothic window, and the result produced thereby was the earliest form of Plate tracery (fig. 1470). The east window of Lincoln Cathedral (shown in the illustration fig. 1472), which is perhaps the largest one in existence belonging to this style, consists of two large pointed compartments, each of which is divided into four smaller compartments or lights, called bays or days, placed in couplets with foliated circles between their heads. These couplcts have also larger foliated circles between their heads, and in the spandril between the heads of the two large compartments is a large circle enclosing seven smaller foliated circles, one being in the centre and six surrounding it. The mullions or divisions between the

Fig. 1472. Outline of East Window, Lincoln.

Fig. 1473.

Fig. 1474.

In the perfect form of tracery which was dereloped during the Dccorated period, the slips of wall between the narrow windows became reduced into mullions or upright bars of stone dividing the lights, while the tracery of the upper part of the window, of the same thickness as the mullions, consists of perfect geometrical forms resting upon the arches of the lights, the spandrils between which are pierced, and all combined or enclosed
under one arch. A common form in earher exampies consists of threa lights of equal height (fig. 1473), the head of the window containing three circles placed pyramidally, the insites of which are trefoiled. But as already seen, the form which served most to develope

Fig. 1475.

Fig. 1476.

Fig. 1477. the traceried window was the couplet with a circle above, combinatious of which are shown in the accompanying diagrams (figs. 1474, 1475). The windows of the nave of Fxeter Cathedral are for the most part pure specimens of this style; although they are all perfectly uniform with each other, no two are alike on the same side.

Fig. 1478.

The ogival forms introduced into the tracery, in the next period, instead of circles, trefoils, etc., eaused the mullions instead of terminating with the arch of the lights, to be continued upwards in intermingling, wary, or flowing lines to the top of the window (figs. 1476, 1477), melting as it were finally into the mouldings of the window arch, and fcrming by their intersections elongated and pear-shaped apertures, which are usually foliated or cusped.

The introduction of the ogee arch (fig. 1477) formed a new principle identical with the Flamboyant period in France, of which there are many examples in England. The Perpendicular or Rectilinear period succeeded, as it was found that the extension upwards could be effected by vertical lines as well as by flowing or curved ones, and with much greater ease (fig. 1478). The mullions are continued upwards to the head of the windows so as to form perperdicular divisions, which are again divided into compartments by horizontal transoms, and are trefoiled or cinquefoiled at top. These transoms were necessary to prevent the tall mullions from being pressed out of their verticality by the weight of the masonry above. They at last presented the appearance of being at huge screen of open panelled stonework. (See figs. s. v. nave.) The Pointed arch became flatter, and at last, in the case of small windows, became quite straight, the tracery finishing against the head.
Wine Celcar. The apartment, generally placed on the basement story, between front and back rooms, or else furmed underground, for stowing wine. The most important point in its construction is its being kept at a cool equal temperature at all times of the year. See Binn.
Wings of a Boilding. The side portions of a façade which are subordinate to the principal and central divisions. A small building attached to the centre or main portion ly an arcade or passage, is also called a wing.
Wire. A small flexible bar of any sort of metal, elongated by means of a machine called a draw-beuch. Wove iron wire is used for the floor of malt kilns; and the size of four meshes to the inch is useful to place before openings in a building to prevent the access of flames from a fire opposite.
Wire Gavges, Birminginam. These are a scale of numbers extensively employed, both in this country and abroad, to designate a set of arbitrary sizes of wire, varying from about half an inch down to the smallest size usually drawn. There is no authorised standard in existence, and a great number of gauges have come into practical use, differing materially from each other. It is a mode of measuring to a great nicety very small thickuesses of metal. The usual marks are 00000 for half an inch, 1 stands for $\frac{5}{16}, 3-4$ for $\frac{1}{4}, 11$ for $\frac{1}{8}, 16$ for $\frac{1}{16}, 31$ for $\frac{1}{128}$, and so up to 36 .
Wire Cloth. A very fine lattice work of wire used for blinds.
Withe. (Sax.) The partition between two chimney flues in the same stack.
Woud. (Sax.) A fibrous material much used in building, and formed into shape by edge tools. It is timber cut up for use by the different trades. See Timber.

Woon Berek. A block of wool ent to the form and size of a brick, and inserted in a wall to which to fasten the works in joincry.
Working Drawings. Drawings of a design showing the details, and serving as instruetions to the sereral artificers.
Wreathed Colems. That which is twisted in the form of a screw, also very appropriatoly called a contorted column.
Wreatied String. The circular portion of a string to a stair where there is a hollow newel.
Wrought or Malleable Iron. Iron in its perfect condition, a simply pure iron. Its strength is in general greater or less according to the greater or less purity of the ore or fuel employed in its manufacture. It is distinguished by the property of weldirg. The proof strength of wrought iron is almost exactly one third of the breaking load.
Wyatt's patent Slating. A mode of slating with thin squared slates, laid on rafters of less eleration than usual and with the breadth of the laps much less; Imperial slates were used by the architect, James Wyatt, and having their lower edges sawn smouth, the roofing so done has consequently a much neater appearance than common roofing.
Wyatt Window. The form so designated in Ireland, is the square-headed Venetian window, or a wide opening divided into three lights.

X

Xenodochiom. (Gr. Etvos, a guest, and $\Delta \in \chi o \mu \alpha t$, to receive.) A name given by the ancients to a building for the reception of strangers.
Xrstos. (Gr.) In ancient architecture, a spacious portico wherein the athletæe exercised themselves during winter. The Romans called, on the contrary, their hypathral walks xysti, which walks were by the Greeks called $\pi \epsilon \rho i \delta \rho \rho \mu \quad \delta \epsilon s$.

Y

Yard. A well-known measure of three feet. The term is also applied to a pared aren, generally placed at the back of a house. It is also used for the ground belongiug to a workshop, as a "builder's yard," cte. A long piece of timber was formerly so called. See Mibasure.
Yellow Pine or Deal. The produce of the Pinus sylvestris, or Scotch fir. This is a better and more lasting wood than white deal, which is the produce of the Abies excelsa, or communis, or Norway spruce.

Z

Zax. A slater's axe, corrupted into zax. An instrument for cutting slates.
Zigzag Moulding. An ornament used in mediæral architecture of the Norman period. It is the same as cherron and dancette. See fig. 1381. It is also to be seen in the architecture of Diocletian's palace at Spalato.
Zinc. A metal now much used in building.
Zinc White. A paint preferred by some as keeping its colour longer, and being less detrimental to the workmen's health. But there is difficulty in working it, and a coat or two more than is usual with white lead paint are required to produce a good surface.
Zocco, Zoccolo, and Zocle. (Ital.) The same as Socle.
Zophorus. (Gr. Zwoфopos.) The same as Frieze.
Zoтнгса. A small room or alcore, which might be added to, or separated from, the room which it adjoined.

INDEX.

** The buildings generally are placed under the fowns in whieh they are situated; lut the cdifices in Loudon are placed under their names. The fiymes refer to the several paragraphs, except where the letter p. occurs, when they refer to the paye. It will be noticed that occasionally the numbers to the paragraphs are interrupted.

ABA

ABACUS stone in vaulting $2002 q$ Abbeville; St. Wulfran Church, 547 Ahbreviation, method of ; in architectural composition, 2857
Aherdeen, lord; On the pointed arch, 300
Aberdecn ; spires, p. 1002, p. 1003
Aherthaw lime, $1843 b$
Aberystwith, Cardiganshire ; castle, 402
Abicll, Guillermo ; architect, 593
Abousimhel, or Ipsambiool; temple, 71, 92, 166
Abrantes; church of San Francisco, 603
Absorption, 1667 w
Ahury ; circles of stones, $16,17,40$
Abyssinian well, 2218 h
Acme ventilation, $2278 u$
Acoustics. See "Isacoustic curve," and "Theatre"
Acts of Parliament for Building, \&c., 2280i
Adam, Robert ; architect, 517, 518
Adamant cement, 2250c
Adnmantine clinker, 1839a, 1905c
Adams, Bernard ; architect, 442
Adans, Rohert ; architect, 441
Adare ; friary ; tower, p. 1003
Adel, Yorkshire ; proportion of church, p. 1014
A delard, monk, ot Bath, 309b, p. 1037
Adelphi, in the Strand, 517
Adhesive power of mortar, \&c. 1494 et seq.
Adi, temple of ; at Ellora, $\overline{5} 6$
Admiralty, London, 507
Adrian I., pope ; arts under, 281
Adze ; carpenter's, 2003
Æolus water spray ventilator, $22: 8 t$
Ararium, the ; at Rome, 213
Aerschot; church, 558,560
Esthetics in architecture, 2493
Afflighem; ahhey church, 554
Africano marble, $2002 b b$
Agnelli, Gulielmo; architect, 613
Ayopat, or Fora, of the Greeks, 173
Agram ; cathedral, 570
Agrieola ; architecture under ; in Britain, 381
Agrigentum ; founded, p. 943. Temples of
Peace and Concord, 148, p. 946; of Hercules,
ib. Columns worked,1925a. See "Girgr.nti"
Aguero, De Campo ; architect, 367
Air brick, $1886 e$; in spec., $2286 a$
——drain, 1750, 1886, 1886a. Paving to, in spec., 22 $84 c$

AMA

Air, foul state of, $2278 e, 2287 v$. Velocity of, or wind, $1592 a$ -grating, in spec., 2286a

- required for cach person, $2278 z$
——See "Vcntilation"
- syphon ; Chowne's, $2278 f$
——trap to drains ; in spec., $2286 a$
- vesscl in pumps, $2218 f$

Aisle or lean-to roofs, $2052 \mathrm{~m}, 2052 p, 2052 v$
Aisles; width of, p. 1007. Of equal height, 558
Aix-la-Chapelle; cathedral and palace, 283, 572. liound chureh, p. 1006

Alabaster; use, $2002 e e$. In windows, 615
Ala of a Roman house, 249, 253
Alan de Walsingham ; architect, 319
Alatrium ; cyclopean remains, 32
Alava, Juan de ; architect, 596, 598
Alba; amphitheatre, $2 \because 8$
Alberti, Leone Battista, 324. His book, De Re Adificatoria, 325
Albissima paint, 2273 g
Alho-carhon gas light, 2264e
Alby ; cathedral, 532
Alcala ; church and college of the Jesuits, 367, 371, 598. Palace, 368
Alcantara; bridge, 193, 222. Church, 607
Alcazars of Segovia and Seville, 128
Alcinous, louse of; illustrative of Greek architecture, 138
Alcobaça; monastery and church, 601, C02, 607
Aldenham, Hertfordshire ; church, p. 986
Alder, 1719
Aldrich, dean ; architect, 490
Aleotti, G. B.; architect, 2948
Alcxandr:num opus, 2002cc
Altred, king ; his care of huildings, 386
Algarotti, count; On the opera, 2964
Alhambra; ornamental detail, 120. When
founded, and description, 127. Court of the Lions, 127
Aljuharrota; battle of, 604
Allemagne; st-ne quarries, 1666 l
Almeida; castle, 603
Almeirim ; royal chateau, 607
Alonso, Juan ; architect, 594
Altenburg ; abbey, 56 z
Altitude, internal, p. 964
Amalt; campanile, 625

AMA

Amarante; Dominican monastery, 607
Amati, Carlo ; architect, 620
Amberlcy, Sussex ; castle, 413
Ambresbury, Wiltshire ; house, 465
American cooking stoves, $2279 e$. System of warming, 2279 g
Amicable Life Assurance Office, $1666 d$
Amiens; cathedral, 310, 314, 315, 541, 542. Apse, p. 1007. Doorway, 539. Piers, p. 1023. Plan copied at Cologne, 567. Proportion of, p. 1058 et seq. Window, p. 990 , p. 993. Kose windows, p. 1035, p. 1037

Ammanato, Bartolommeo; architect, 331. His work La Città, ib.
A moros, N.; architect, 594
Amphitheatres described, 228 et seq. First used by the Etruscans, 232
Ampthill. Bedfordshire, 423, 426. Drawings of Old house, 440
A nalysis of sixteen stones, 1666
Anastasius II., emperor ; architecture under, 271
Ancaster stone $1666 n$; analysis, specific gravity, and cohesive power, 1666
Ancona; arch of Trajan, p. 959. Church of San Agostino, 624
Anderlicht, upper church, 559
Andria; castle, 625
Angers; vaulting of hospital, 1499 gg
Angle irons, 1629b. Strength of, $1650 r$. Weight, 2254
of vision, in perspective, how to select, 2444 et seq.
——ribs for square domes, 2064. Tie, 2009
Anglesca marble, 1681
Anglo-Saxon architecture, 383-397. Mouldings, p. 981
Angoulême ; church, 535
Ani, Armenia ; cathedral, 305
Anjou; vaulting at, 1499 gg
Annaberg; chureh of St. Anne, 583
Annex, Giovanni, of Freiburg ; architect, 365. See "Fernach"
Annuities. See "Compound Interest"
-_on lives; tables relatiug thereto, p. 1104 et seq.
Annulet moulding, 2532
Anson, lord; house in St. James's Squarc, 516
Anspach, chureh, 583
Anston stouc, $1666 d, 1666 k, 1667 w$
Antre, 2671
Antefixe, in a Roman house, 247
Anthracite coal, 2279 g
Anticorrosion paint, $2273 a$
Antoine column, 486, 2603
Antoine, Jacques Denis ; architect, 360
Antoninus and Faustina; Corinthian temple at Rome, 211
Antwerp, 564. St. Jacques, 557, 559. Church of the Dominicans, $i b$. Notre Dame, 559. Its tower, p. 1003
Austa ; arch of Augustus, p. 959
Apodyterium of the lioman baths, 235
Apollo Didymaus; temple near Miletus, 153

- Epicurius; temple in Arcadia, 150

Apotheca of a Roman house, 253
Appehnans, Jan; architect, 559
Apron ; piece in stairs, 2026 ; of Lead, in spec., 2288
Apsis; polygonal and square, p. 1006 ; double, p. 1007

Aqueducts, earliest; of Rome, 223 et seq. Cubic feet of water supplied to Rome, ib.

ARC
Injured, 238. Of the Greeks, 174. At Constantinople, 306. At Solmone, 625
Aqucous, \&c., Rock Boring Co., $2218 i$
Arabian architecture, 118, 128. Domestie architecture at Algiers, 130
Areostyle intercolumniation, 2605, 2608 2609, 2613
A randia, Juan de ; architect, 598
Aranjuez ; royal pleasure house, 371,372
Arc ; complement of, 1037. Supplement of, 1038. Sine of, 1039. Versed sine of, 1040 . Tangent of, 1041. Co-sine of, 1042. Cotangent of, 1043. Co-secant of, 1044
Arc doubleau, $1499 v$
Arcades, 2618, 2619, 2626. Tuscan, 2621, 2622, 2628. Doric, 2618, 2623, 2629. Ionic, 2618, 2624, 2630. Corinthian, 2618, 26 $\overline{5} 5$, 2631. Imposts and archivolts of, 2632. Columns used in, 2635. Their internal decorations, ib.
Arcades and arches, 2617 et seq.

- above arcades, 2653 et seq. Best mode of disposing, according to Chambers, 2654 et seq. According to Scan.ozzi, 2655. Balustrades of, 2657. Doric above Tuscan, 2658, 2659. Ionic above Doric, 2660, 2661. Corinthian above Ionic, 2662. Confincd by the ancients to theatres and amphitheatres, 2664
Arcadius, emperor; architecture under, 271
Arch, its introduction effected great change in the art, 266. In pointed architecture, p . 1054. No trace of, in the ruins of Babylon, 45. In Egypt, at Saccara, 75. Unknown in Grecian architecture, 134. Arabian, species most employed, 129. At Bussorah, 131
- of Augustus at Rimini, p. 960; at Aosta, ib. p. 962. Of Claudius Drusus, niches, 2776 . Of Constantine, 262, $2 \overline{5} 47$, p. 959 , p. 962 . Of the Goldsmiths at Rome, 195. Of Janus, niches, 2775. Of Sergius at Pola, p. 961. From Poliphilus, p. 948. Proportions of, p. $9 \overline{5}$ et seq. Of Severus at Rome, 264, 2547, p. 962. Of Titus, 264, 2547, p. 961. Of Trajan at Ancona, p. 959 ; at Susa, p. 962 ; at Beneventum, p. 963
- elliptical ; to draw and find the joints, 1934-1937. Flat ; in masonry, to draw the joints, without the centre, 1932. Proper form for one, $1583 f$. Of various points, $1943 b$ et seq. Rampant, pointed; to draw ard find the joints, 1943
- planes in Gothic, p. 971, p. 992 et seq.

Archer, Thomas; architect, 498
Arche:, equilibrium of ; History, 1353-1663. Olservations on friction, \&ce., 1364-1389. The way in which arch stones support each other, 1590-1397. Geometrical application of foregoing, 1398, 1399. Su:mounted arches, 1400 . Application of the principles to the Pointed arch, 1401. The same to a surmounted Catenarean arch, 1402-1406. Application of the principlew te surbased arches, 1407. Thrusts of arches; cassinoid, cyeloid, and ellipsis, 1408-1412. Raking arches, 1413-1416. Level extrados, 1417-1421. Different application of principles in the last case, 1422, 1431. Voussoirs increase towar ds the springing, 14321441. Mode in which an ach fails, 1442. Compound vauling, 1443. Groined vaulting, $1444-1458$. Application of principles

ARC

of groined vanlting, 1459-1.163. To a Coved vault, 1461-1477. To Spherical vaulting, 147ヶ-1493
Arelics; Working drawinge for, and m.oulds of voussors, 1959-1566. Elliptical, euttins throush a wall ohiducly to bevels and noulds of, 1967-1970. In sloping walls, 1971, 1972. An abridged inethod of doing the last, 1973, 1974. Oblique where the front slopes and rear are perpeudicnlar to the axis, 1976-1979. Semicircuhar-headed, in a mass of masonry battering on an oblique plane, 1980-1983. Un the quoin of a sloping wall to find the moul $: s, 1981-$ 1987. In round towers or circular walls, 1988-1990. Oblique in a romb sloping tower interseeting a semicircular arch within it, 1991-1994. Freuch terms for, 546
Arelies; iuverted; in fouudation ${ }^{2}, 1885$
-_relicving ; in spec., $22 *^{2} 2 a, 2,293 b$
Architeet, 312,319, 326. Of France; aitached to Venetian in preference to Roman Sehool, 3.5

Architects; ancient and modern, list of, p. 1129 et seq.
Architectural design; maxims in, 2502. Bounding lines of buildings not sources of beanty, considered geometrically, 2503
Architecture; not a tine art until founded on rules of proportion, 1. Not contined to a single type, ib. As a fine art, dependent on expressiou, 2492. Its end, ib. Genius in, ib. Taste in, ib. Asthetics in, 2493. Considered in respect of rules of art, 2494. Fitness is the basis of proportion, 2496, 2502. Bounding lines of buildings, 2503 . Interiors of buildings, beauty of, 2504. Types in, 2507. Styles in ; all dependent on fitness, 2508. Unity and harmony in, 2509. Symmetry in, ib. Culour in, 2511 . Polyehromatic, 2512. Decoration of, 25132522
Architecture in 11 th eentury not a liberal art, 309a
Architrave, to form ; in ioinery, 2196. Method of supporting, 1925 h . Moulded, in spee., 2285 g
Archivolts of arcades, 2632
Ardbracean, near Navan; house, 527
Arden lime, 1843c
Area of Buildings, 1583 et seq.

- given; method of enclosing in any regular polygon, 1518-152t
- gratings, 2255 ; in spee., $2286 a$

Arena; of an amphithcatre, 228, 230, 231. Of the Roman cireus, 240
Arezzo; eathedral, 613. San Domenico, ib. San Franceseo, ib.
Argos; gate and chief tower, 29
Argyle, duke of; house for, 525
Arleri, Pietro; architect, 581
Arles; amphitheatre, 228. St. Trophime, 547
Armarium of a Roman house, 253
Arnott ventilator. $2278 f$, $2278 p$. Smoke consuming grate, $2279 d$. Stove, $2279 e$
Arpino; gateway, 304
Arrayolos; castle, 603
Arriaga, Luis; architeet, 368
Arris of a piece of stuff, 2124. Gutter; in spec., $2285 \mathrm{~s} h$
Arroyo, Giuseppe; architect, 368
Artitieial hydraulic limes, 1857

- stone, 1667 o et seq., 1903 e, 1903 n et seq.

Arts iu England have never thoroughly taken
root, 437. Flourished while in the hands of the clergy, ib.
Arundel, Suscex ; eastle, 394, 398. Clrurch porch, p. 999
Aruns; tomb uf, 255
Asbestus board, 2247. Paint, 2273j, 297le Curtain, 2971c
Asgill, Sir Cliarles; villa at Richmond, 515
Ash, 1723
Aslies mortar, 1859t, 1859 d
Ashlar ; walls, 1918. Facing, 1918 et seq. Rafter, 2052f
A shlaring ; in spec., 2284, $2281 b$
Aslridge, Buckinghamshire; house, 528
Asinelti tower, at Bologna, 2500
Asphaleia Theatre Company, $2971 k$
Asphalte, 1867 d . In damp course. 1886 c . Paving, 1905̈h, 22510. Roofing felt, 2210d Assimilating work, p. 968, $\Gamma .969$
Assisi ; church of San Francesco, 318, 612. Sta Chiara, 612. Temple at, p. 912
Assos; gateway, 304
Assouan, 39
Assyrian architceture, 50 et seq.
Asti ; cathedral, 616. San Secondo, ib.
Astorga; cathedral, 596°
Astragal; bead, or baguette, 2532
Ath; loouses at, 564
Athelwold's work at Winchester, p. 1021, p. 1023
A thenrum Club house ; seagliola floors, 2250 h
Athenians; early superiority in the arts, 136
Athens; early buildings of earth and clay, 136. Temples, p. 943 et seq., p. 948. Parthenon, or temple of Minerva, 141, 150, 258, 2570, p. 943, p. 948. Columns worked, 1925a. Proportion of, p. 1057. Temple on the Ilissus, p. 951 . Of Erechtheus, p. 952. Of Theseus, 150 , p. 944. Portico of Augustu $=151$. Propylæum, 150
Atkinson's eement, 1864. Use of, 2251a. In bloeks, 1903 dd
Atlantes, 2682
Atmosphere; weight of, $1592 a$
Atreus, treasury of ; at Mycenx, 35
Atrium ; of a Roman house, 181, 246. Different species of, \&e., 247. In a house at Pompeii, 253
Attic base; Gothie, p. 979
Atties and basements, 2665 et seq. Examples of, 2668
Attleborough, Norfolk ; ehureh, 408, 421
Attributes; in decoration, 2519, 2520
Aubiguy stone, $1666 h h, 1667 w$
Audenaerde ; ehurch of Sie. Pamele, 553,555. Ste. Walburge, 559
Audley End, Essex ; designs for, 440, 442, $445,451,452$
Audritu ; church spire, p. 1000
Augsburg, 580. St. Uhric and St. Afra, 579, 583
Augustins, royal convent of ; at Mạdrid, 371
Augustus; areh at Rimini, p. 1010; at Aosta, p. 960 ; at Susa, p. 962 ; Portico at Athens, 15.1

Au-tin's artificial stone, $1667 p$. Artificial cement paving, $1963 e$
Autum ; amphitheatre, 228. Doorway, 539 .
Auxerre ; cathedral, 540. Iron spire, p. 1005. Roof of préfecturé, $2052 h$
Avallon; doorway, 539. St. Pierre, 540
Averlino, Antonio, called Filarete; arehitect, 2974
Avignon ; cathedral, 307. Bridge of St. Esprit, 313. Chureh of the Celestins, 527.

St. Pierre 547. St. Martin, ib. Chureh of the Deminicans, 5\%. St. Didier, ib. I'alace, ib.
Avila; cathedral, $587 . \quad$ S. Vicente, ib., 591 Aviugton, Berkshire ; church, 389
Axe; carp ntcr's, 2003
Axed face in masonry, 1915a
Axial lines in drawings, p. 1008
Aylsham, church, Nurfolk; window. p. 990
AyotSt.Lawrence, Hertfordshire; churcle, $5: 6$ Az'ce architeeture, $110-116$

BAALBEC; struetures at, 196. First de-
() scribed by Maundrel, ib. Niches, $27 \overline{0}$

BabyIon, ruins of, deseribed by lich, 38-41. Citadel. 43. Tunnel under the Euphrates, 43. Dimension, its character, rather than art, 44
Barchus; temple, at Rome, 2547. At Teos, 153, p. 951
Back flans of shutters, 2147

- linings of sash-frame, 2147. In spec., 2285 c
- of a slate, 2210

Badajoz ; cathedri:l, 589, 598
, Giovanni di ; arelitect, 367
Raeza ; S. Andres, now La Colegiata, 598
Bagdad ; foundations laid by Almanser, 119. I s walls, 131
Bagnall, Sir John ; house for, 440
Baguette, 2532
Baker, Henry A.; architect, 526
Balagucr, Pedro; architect, 594
Balcony; traceried at Venice, 6:0. In spec.. $228+b$
Ballast ; burnt clay, 1833d et seq., 1861. In spec., 2281
Balleock to a cistern, 2223b. Valves, 2223 s
Balleso, Giovanni ; arehiteet, 567
Balium of a castle, 394
Balusters, 2695 et seq. Not used by ancients, 2696. Their measures, 2697. For Tuscan order and table of proportions, 2699, 2702. For Doric and Ionic orders, 2700. For Crrinthián and Composite orders, 2701. Double-bellied, 2703. For Doric order, 2704. For Ionic order, 2705. For Corinthian erder, 270G. Intervals between, 2708. Bulbs or bellies of, 2711. Of glass, 223ia. Iron, in spee., 2286. And Newels, in spee., 2285d
Balustrades, 2695 et seq. Rules for setting out, 2697. Height of, 2698. Scroll and Guiloehc, 2707. Intervals in, 2708. Pedestals of, 2708, 2709. Applicd to staireases. 2710. Statues used on, 2712. Vases used on, 2713. Of arcades, 2657 . In spec., 2281a
Bamberg; cathedral, two apsides, p. 1007. St. Mary, 567
Bamborough, Northumberiand; castle, 394, 398
Dand saw blades, $2124 b$
Bangor slates, 1802
Bank of England; Rotunda dome, $1903 i$
Banker; bricklayer's, 1890
Banqueting house. See "Whitchall"
Baptistery; under choir at Siena, 613. At
.. Yistoia, 616. At Pisa, p. 1037. Doors at Florence, 2735
Bar; use of the word, 1628c. Running loads on, 1628 u

- irom, 1764a, $1764 f$. Weight of a foot of square, round, and fiat. 2254 . Of flat, 2254u. Ut flat close hammered, il.

Bar tracery, p. 989
Barbaean of a castle, 394
larcells; bridge, c00
Barcelona; Casa consistorial, 594. Casa de 1n Diputacion, E95. Pointed arch, 306. Cathedral, 588, 295. S. Justo and S. P'astor, 542. Sta Maria de los lieyes, or Sta Maria del Pino, 593. Sta Maria del Mar, ib. Collegiate church of Sta Anna, ib. Crypt of Sta Eulalia, $i b$.
Barff's patent stone, 1667x. Coating of iron work, 17806
Barfreston, Kent; church, 389. Window, p 993
Barhan's rendering plaster, 2250b
Barnack, Northamptonshire ; chureh porch, p. 928. Stone, its amalysis, specific gravity, and colesive power, 1666
Barozzi da Vignola, Giacomo; arehiteet, 371. Door by, at larnese palace, 2741. Profiles of orders, 358
Barracks and hospitals, ventilation, $2278 w$
Barrel bolt, $22 \overline{5} 9$
Parrington cement, 1864j
Bars, rolld dirm, 1629r. Strength of. $1630 r$

- with latelets, 2263

Bartholonew's hospital, London, 563
Base; Course or plintlls; Gothic, p. 982 , t siq. Of columns, 135. Mode of gluing up in wood, 226.2 . Gohic, p. $978, \mathrm{p} .979$ et se.f.
Basements and atics, $266 \overline{\text { et }}$ seq. Generally decorated with rinsties, 2666. Conrses of, how disposed, 2667. Rockwork in, 2670
Basemouldings ; in spec., 2284a
Basilica of Antoninus. 2547. Of Cunstantinc, 217, 2547. Of San Paolo fuori le Murà, $2 \overline{5}$. Ancient ; of Rome, 273-275
Basing house, IIanpshire, 449
Basly church; spire, p. ${ }^{1000}$
Bastard stueco, 2236-2242
Bastille, at Paris, 311
Bat, of a brick, 1896
Batalha; Dominican monastery and clurch, $601,604$. Spire, p. 1004, p. 1005
Bath, Somerset-hire, 51\%. Abbey church, p. 1047, p. 1052 et seq. Founders and dimensions, p. 196. Proportion of, p. 1016. Base coursc, p. 983. Pier, p. 977. Vaulting, $2002 x$. Design for baths at, 525
Bath stone; in lintels, $1052 p$. Analysis, speeific gravity, and cohesive power, 1666. Quarries, \&c., $1666 j, 1667 v, 1667 w$. Iu spec., 2284
Baths; supply to, 2223t. Material f. r, 2223u. Of copper, in spec., 2288a. Of slate, 2211 q. Marlite, in spec., 2284 c . Woud framing, in ditto, 228:g. Fittings, \&c., complete, iu spee., $2288 a$. For industrial dwellings, 3025. Heating, $2223 t$
-; number of, at Rome; those of Caracalla, 234, 235. Of Titus, Diocletian, Agrippa, Nero, and Domitian, ib. Highly decorated with painting and sculpture, $23 \overline{7}$. Those of Agrippa, ib. None erected after the removal of the empire, 238. Of Titus, paintings in, 239. Of Caracalla, 241, 282. Of Diocletian, 264, 2547. Of Nero, 240
Battening of walls; in spec., 22850 . How measured, 2338
Battens in slating, 22106
Battista, Giovanni ; architect, 370
Battlcments, p. 983, p. 984
liancr, Johann ; architect, 579, 580
Bay window, 427

BAY

Bayeux ; cathedral, 540, 545. Set out with the perch, p. 1057. New works at cathedral, 1666%. lorch, 534 . Spires p. 1000
Beacons to towers, p. 100^{2}
Brad and butt, 2131. And double quirk, 2127. Aud thash, 2131. In cement, 2207

Beaded briek for garden walls, 1831 c
Bead or baguette, 2532
Beam, use of the word, 1628c. Best proportion of, $1628 v$. Supporting two weights, $1629 z$. To obtain bread hand depth, $1630 a$, 16306. Cut in to various depths, strength of, 1630 d

- filling to roofs, 2211 m . In spec., 2282a
beams and pillars, 1503-1682a. Woods nsed for, $1593-1595$. Weights of wood in the same tree, 1597. Timber, experiments on, 1598 et seq. Cohesive force of timber iu direction of its l-ngth, 1598. Strength of wood in an upright positiou, 1600-1602. Horizontal pieces of timber, 1603-1608. Strength of timbers in an inclined position, 1628. For classes of buildings, $16 \div 8 d$. Strains, 1628e. Transverse strain, 1628g. Shapes, $1628 p$. Various laws, 1628 s. Transverse sections, 1628 . Condition of Breaking weight, 1629 g . Tension, $1630 c$. Neutral axis, ib. Deflection, 1630e. Modulus of elasticity, 163 Ci . Impact or Collision, 1630 . Tensile Strength, $1630 p$. Cohesive power, $1630 r$. Compression, $1630 w$. Pillars, 1630w. Stancheons and Struts, 1631i. Detrusion or Shearing, $1631 n$. Torsion, 1631x. Working strength of materials, 1632. Table of strength of various timbers, $1632 a$.
Bearers ; in spec., 22856
Reart's pierced bricks, $1831 f$
Beaulieu palace, Hampshire, 426
Beaumaris, Isle of Anglesey ; castle, 402
Jeaumont's heating system, 2:79e
13 eauprè, Gloucestershire ; castle, 452
Beauty in architecture; partly from suitable forms, 2495 . Source of, 2492 et seq. In mediæval architecture, p. 964 et seq.
Beauvais ; cathedral, 541,549. Apse, p. 1007. Rose window of south transept, p. 1034. Clurch of St. Etienne, lintel to north door, 19:5h
Bec, Nurmandy ; abbey, 310
Reckford, William ; house for, 528
Bed; of a slate, 2210 . Of a stone, 1922
Jedding; stones in brickwork, 1890. Of stones, 1667a. Slates in mortar, 2210. Timbers, in spec., 228:a
Beddington, Surrey ; hall roof, 2052ℓ
Bedford, Bedfordshire ; castle, $39 t$
- duke of ; house for, 440, 524

Bedroom for a poor man, 3014
Beech, 1701
Beejapore, $14990,1499 p$
Beer stone, 1666
Beeston, Cheshire ; castle, 391, 398
Beffroi ; of Belgium, 561 . At Tournai, ib. Ghent, ib. Ypres, ib. Bruges, ib. Lierre, ib. Nieuport, ib. Alost, ib.
Beja ; castle, 601
Belem; fort of San Vicente, and monastic buildings, 607
Belfry at Zaragoza, 598
Belgian sheet glass, 1874
Belgium ; Pointed architecture in, 553 et seq. Beffioi of, 561. Marbles of, 1679

BIR
Bell ; iutrodnced, 390. Common and electric, 2262a. Mctal, 1791
—— Rock lighthouse, $1671 e$
——towers, 1. 1001 et seq.
——trap, 2220g et seq.
__ of a cap; Gothic, p. 978
Bellhanger's work; in spec., 2292. Lilectric and pneumatic, in spec., 2292
Belmont, viscount ; house tor, 528
Belus ; tower of, 38,41
Belvedere Garden, Rome ; arcade, 2638
-, Kent ; house, 516
Bench, joiner's, and parts of, 2102. Planes, ib.
Benches ; in churches, $2192 a$. Wood nouldings to, p. 986. Sizes of, 2192 6 . In spec., 228.3 h .

Benedictine monastery at Leça do Balio, 603
Benet, the freemason, p. 970
Benevento ; church, 587 . Arch of Trajan, p. 963

Beni-hassan ; tomb, 133
Bennett's improved granitic stone, 1905c
Bent timber in roofs, $2052 b$
herchère stone, p. 1004
Bergamo, San Agostino, 624. Colleone chapel, ib. Sta Maria Maggiore, ib.
Bergen, in Prussia ; church of papier-nâché, $2: 51$
Berkelev, Gloucestershire ; castle, 394, 398, 414
Berlin; Brandenburg gate, 366. Theatre, 2972
Bernburg ; church of St. Mary, 567
Berneval, Alexandre de ; architect, p. 1609, p. 1036

Bernières; church spire, p. 1000
Jernini, Lorenzo ; architect, 347, 349. Staircase by, 2801
Berruguette, Alonzo; architect, 368
Berwig quarries, 1666aa
Bessemer's prucess ; in iron, 1774. Strength of, 1630
Bethel and Bothel mentioned, 13. That set up by Jacob, ib. Object of idolatrous worship where the Canaanites appeared, ib.
Bethell's patent for preparing timber, 1667 m , $1752 a$
Bethersden marble, 1681 I
Bethlehem hospital, London ; desizns for, 526
Béton, 1861, 1862e. Aggloméré, :862f, 1903 dd
Beudeghem, Loys van ; architect, 563
Bevel; bricklayer's, 1890
Beverley, Yorkshire; conventual church, 407, 421. West front restored to perpendicularity 449 . West front and towers, p. 1002. See Frontispiece. Pinths, p. 982 . Porch, p. 999. Assimilating work, p. 969

Bevignate, Fra; architect, 616
Bib cock, $2223 s$
Biban el Melook ; subterranean chambers, 63
Bibiena, Antonio Galli ; architect, 2950
Bibliotheca of a Roman house, 252
Bickerstaffe, Norfolk ; church roof, $2052 u$
Bidborough, Kent ; church door, $2 \mathrm{i} 4 \overline{\mathrm{j}}$ a
Bideford and mineral paiut, 2273 c
Bilian, or iron wood of Borneo, 1728 d
Billet ornament: 397
Billiard table ; of slate, 2211 q
Billings, W. R.; architect, on proportion, p. 1011

Bincho, A. de; architect, 555
Bindin ${ }^{r}$ juists, $2010-2022$
Birch timber, 1725

BIR
Birkenhead ; arched brick floors at, 1903 c
Birmingham ; church of St. Philip, 428
Birs Nemrond, near Babylon; as described by Rich, 40. The ruins, 40, 41
Biscop, Benedict; bishop, founder of the abbey of Wearmouth, 385, 386
Biscuit, 1859g
Bismuth, strength of, $1630 r$
Bituminous cements, 1867 et seq., 22510 et seq.
Black bricks, 1831d
Blackburn Infirmary, $2976 b$
Blackfriags bridge, London, 522. Mode of repairing defective stones in arches, $1925 f^{\circ}$
Blackman air propeller, $2278 i$
Blaine's fireprof paint, 2273j, 297 le .
Blank arcade, 554
Blankenbyl, H. ; master mason, 577
Blast irons; qualities of, 2265c
Blenbeim, Oxfordshire ; housc. 493
Betchingden marble, $1681 h$
Blickling park, Norfolk; mausoleum, 52j
Blister steel, 1771
Blocking course ; in spec., $228 \pm a$
Blois, château de, 548
Blondel and Ser, MM.; repert on London hospitals, 2278q, 2278z
Blondel, François and Jacqucs ; architects, 366
Blue bricks, $1831 b$
Blue lias lime, 1843a et seq., 1859\%. Mortar, 1859a. Warwick stone, $1666 e$
Board ; slater's, 2209
Boarding; to Slating, 2210. In spec., $2285 a$. Of roofs, how measured, 2342. To under side of open roofs, 2211n. For floors, $2023 a$ et seq.. 2173a. How measured, 2352, 2362. For ceilings, 2023c, 2023g
Boards; cutting of, for covering domes, groins, \&.c., 2068-2078
Boaster ; mason's, 1910
Boccadoro, Domenico ; architect, 2892
Bodmer's compressed stone bricks, 1903ce
Boeblinger, Johann and Matthaeus; architects, 581,583
Boffiy, Guillermo ; architect, 595
Boffrand, Germain de ; architect, 366
Bo:ler plates; quality, 1630s, 1764e. In shcets, plates, and slabs, $2255 b$
Boilers for hot-water heating, 2279 h
Bois-le-Duc ; church of St. Jean, 558, 560
Boisserie or panel work, 418, 428
Bolection mouldings, 2129, 2145
Bologna ; church of San Petronio, its proportion, p. 1013. Foro de' Mercanti, 613. Theatre, 2950. Garisendi tower, 2500
Bolsover, Derbyshire ; house, 452. Additional buildings, 466

- stone, 1666d, 1666e. Analysis, specific gravity and adhesive power, 1606
Bolt, 1631v. In carpentry, 2012, 2254a. Various sorts, 2259. And nuts ; weight of, 2254
Boltel, or Bowtel, moulding, p. 970 et seq.
Bolton, Lancashire ; conventual church, 398. Doorway, p. 973
Bombay granite, $1672 a$
Bonaventure, Nicolas ; architect, 619
Bond ; in bricklaying, 1891. See "English bond," "Ficmish bond." In spec., 2282a. Of a slate, 2210
stones, 1920 et seq. Timber, 1899. In spsc., 228 Ј̆
Bonding bricks, 1902 c
Bonneveil, Etienne de ; architect, $303 a$

BRA

Bonomi, Joseph, A.R.A.; architect, 525
Book boards to benches, $2192 a$
Boorde or Bordc, Andrew; his Dietorie quated and directions for building a mansion, 427, 438
Bordeaux ; cathedral, 540. Porte de Cailhau, 548. Theatre, 2951, 2958. Hospital, 2075

Boring Company, $2: 218 i$
Borneo wood, 1728d
Borromino, Francesco ; architect, 336, 359, 342. His style, 347

Boss stone in vaulting, 2002s et seq., 2278a
Bosse ; tilcr's, 1908
Bossing ; in plunber's work, $2215 a$
Boston furnace, 2279g
Boston, Lincolnshire; church, 408, 421. Proportions, p. 1015. Groined ceiling, $2023 g$
Botoncr, William ; writer of the 15 th century, p. 970

Bott, Johann von ; architect, 365
Bottom panels of a door, 2130. Rails of a door, ib.
Boncherie ; at Diest, 561. At Ypres, ib. At Antwerp, ib.
Boughton quarries, $1666 t$
Bougy church ; spire, p. 1000
Boumann, George F.; architect, 366
Bourges ; cathedral, $5 \not 10$. Proportion of, p. 1016
Bousfield's patent stone, $1667 x$
Bowden house, Wiltshire, 528
Bower ; nuy lady's, or parlour, 4!5
Bow latch, 2262
Bowtel, or Boltel, moulding, p. 970 et seg.
Boxbeam, 162ya, $1629 n$
Boxings for shutters, 2446, 2147. Of a window, $2148 a$. In spec., $2285 d$
Boyd, Sir' Joln ; house for, at Shootcr's Hill, 515
Boyd's patent flue plates, 22 2 8 f
Boyle system of ventilation, 22787
Boynton American furnace, 2279 g
Bracciano palace, at Rome; window, 2768
-, houses at, 614. Castle, 624
Braced roufs, 2052m, $2052 r$
Braces in carpentry, 2010
Bracketing and cradling, in spec., $2285 b$
Brackets and bracketing, 2079 et seq. For cornices, to make similar to one given, $2(80$. Angle to support plastering, 2081, 2082. For coves, 2083. Angle brackets for coves, 2084, 2085, 2086. In external and internal angles, 2087. For moulded cornices, 2088. For a shclf, 2263
Bracket staircase ; mode of forming, 2183
Bradawl ; joiner's, 2110
Bradding hammer; glazier's, 2227
Brads, 2257a, 2257.

- for floors ; weight of, 2257

Bradshaw, Lawrence ; architcet, 442
Bragerio, Bertolino ; architect, 613
Braine, near Soissons ; church, 524,566
Bramante or Lazzari, Donato ; architect, 335, 371, 2917
Bramshill house, Hants, 45?
Brandenburg ; church of Ste. Catherine, 579
Brandenburg, Paul yon; architect, 581
Brandon, Suffolk, flint quarries, $1666 v$
Brandon, Raphael; architect, writer on architecture, p. 968 . His Analysis, \&c., p. 971
Brannon, Philip; fireproof construction, 1903w
Brass, $1790,2224 \mathrm{~m}$. Weight of a plate, 2221 m . Strength of, 1630 . Prazing, $2263 b$

BRA
Brass points : glazicr's, 22:6
Braybrooke, lord ; house for, 440
Braza; cathedral, 607
Breaking weight; limits of, $1628 f$. In the middle of a beam, 1620 g et seq. Of metals and timbers, $1630 r, 1630 \mathrm{~s}$. Ot timber, 1622
Break joints, $1916 a$
Breant's process for repairing timber, 1752
Breeze, coke ; 18:3e
Brescia; broletto, 613
Breslau; clurch of Ste. Elizabeth, 579
Bretteville; church spire, p. 1000
Brewery at Villers abber, 555
Brick, 181 1-1833. Deseription of, and antiquity, 1811. Species used, accordint to Vitruvius, 1812. lmproper bricks used by the moderns, 1813 . Eartlifor, 1814. Manufacture, 1815. Clamps, 1816. Kilus for burning, 1819. Species of bricks, 1820. South Staffordshire, 1830. Stocks, 1820-1822. Place, 1823. Burrs and clinkers, 1824. Red, 1825. Fire, 1827. Windsor, ib. Welsh lumps, ib. Paving, 1828. Dutch clinkers, 1833a, and Flemisli, 1829. Compass, 1825. Concave or Hollow, 1×2. Blue bricks, 1830. Wood, for fixing, in spec., 2280. Red, 1831c. Suffolk aud other bricks, 1831a. Pierced, 1831c. Black, 1831d. Glazed white and other colours, 1831e. Sizes of, 1832. Beart's patent, 1831b. Strengtl of, 1833. Weight of, 1833b. Should be well saturated in summer, $1932 a$. Number for a siven quantity of work, 2317

- employed in Egyptian architecturc, 72. Varieties of; in spec., 2282. Much used in England, 416. Crushing weight of, $1500,1502 k$
——paving, $1908 b, 2300$; in spec., $2282 b$. Axe, 1890. Cornices, cut and moulded, 1904. Moulded, in spec., 2282

Brickdust mortar, 1859 c
Bricklayer, 1901
Bricklaver's work, in spec., 2282. Estimating, 2500. Tools, 1890

Bricklaying and tiling, 1889-1908
Brickmaking, 1814 et seq. Machines, 1832
Bricknogged partitions, 1902,2024 . In spec. 2282b. How measured, 2313
Brickwork; crushing weight of a cubic foot, 1833. Expansion of, 1833 c . Measuring and estimating, 2300, 2306 et seq. Table of number of bricks in a wall, 2317. Table of number of reduced fect in quantities of different thicknesses, 2318 et seq. Mediæval ; in Belgium, 554. In Spanish churches, 585. In Italy, 616. Gothic, p. 991. Moulded, ib. Strensth of, 1502l, 1502 m . Weight, 1901. In spec., 2282. Coloured, 3008. Table of rod of brickwork, 2320

Bridewell, or Blackfriars' Palace, London, 526
Bridge ; Croyland, Lincolnshire, 419. Della Santissima Trinità, Florence, 331 . Larliest in Rome, 222. At Narni, ib. Of Trajan over the Danube, ib. At Alcantara, ib. At Avignon, 313 . Of St. Esprit, $i b$. At Barcello, 600. Of Coimbra, 607. Du Broel at Courtrai, 564. Des Trous at Tournai, ib. Del Obispo at Baeza, 598. At Orense, 589. Architecture of, 419. Of Whinstone, 1922h. Building of ; considered an art of piety, 310. Of China, 108. Those of timber, 2095 et seq. Over the Brenta by Palladio, 2096; and over

BUO
the Cismonc. 2096 ; and another, 2097. Method of, by Price, 2098, 2099
Bridgenorth church, Somersetshire; bench end, p. 986
Bridgewater double roll tile, 1838
——, carl of ; house for, $5: 8$
Briduing joists, 201!, 2022
Bridlington, Yorkshire ; priory chureh, mullions, p. 991
Brightou, Sussex ; the pavilion, 52.4
Brinkbourn, Northumberland; conventual church, 398, 407
Brioude, church of St. Julien, 534
Bristol, Somersetshire; cathedr: I, 398, 421. Fonnders and dimensions, 434. Proportion, p. 1017. West window, p. 1031. l'arochial church of St. Mary Redclifle, 421, 1. 9 - 0 . Proportion, p. 1016. Chureh of St. Stephen, 421, p. 970 . Tower, p. 1002
Britain; architecture of, 379 et seq. Under Claulius, 381. Under Agricola, ib. In time of Constantius abounded with good artificers, 381 . Roman works in, ruins of, 282
British isles; marbles of, 1681. Granite, 1671a

- muscum, London, formerly Montague house, 466. Granite columns, 1671 e
Britons; ignorant of architecture before final departure of Romans, 381, 382. Early houses and architecture of, 379,380 . How lodged under the Normans, 393
Brizi, - ; architect, 612
13roach; of a tower, p. 1001
Broaching ; in masonry, 1914
Broad tool ; macon's, 1910
Broletto; at Como, 611. At Monza, 613 At Brescia, ib.
Bronguiart, Alexandre ; architect, 2943
Brontxum of the Greek theatre, 172
Bronze, 1791. Monuments, \&c., $2255 b$. Castings, 2266
Brosse, Jacques de ; architect, 358
Brou; chureh, 549
Browne, J.; writer on proportion, p. 1014
Bruges; chapelle du Saint Sang, 554. Notre Dame, 557, 560. St. Sauveur, 5.54
Brunellesco, Filippo ; architect, 323, 327, 436, 620
Brunet Debaines, M. L. F., architect. 2919
Brunsbergh, IIeiurich ; architect, 579, 581
Bruxelles; Notre Dame des Victoires, 557. Notre Dame du Sablon, 559, 564. Ste. Gudule, $553,555,557,558,560$. Maison du roi, 563 . Iron spire, p. 1005. Notre Dame de la Chapelle, 553, 555,557
Buckhurst house, Sussex, 440, 446
Buckingham house, London, 465. Palace, 166600
Buckingham, duke of ; house for, 440,465
- John ; scond earl of, 525

Buckwell's granitic Breccia stone, 1903cc
Bucozzo; architect, 323
Builder's fire ; the, $2279 d$
Building stones of England, 1636 et seq. Of Normandy, 1666k et seq
Buildings, covering of ; as to comparative weights. See "Covering of Buildings"

- public and private; general observations on, 2983 et seq.
Bullant, Jean ; architect, 357, 358, 549
Bunnett's fireproof tloor, 1903 r
Buonarroti, Michel Angelo; arclitect, 335, 336, 345. Door by, 2740
Buontalenti, Bernardo ; architect, windows by, 2759

BUR

Burgh, Suffolls; castle, 391
Burghleigh, or Burghley, near Stamford, Lincolnshire, 440, 446
Burgos ; cathedral, 588, 591, 595, 596. Dominican church of S. Pablo, ${ }^{2} 90$. Nunnery de las Huelgas, near, 587
Burquet, J.; architect, 2975
Burley-on-the-Hill, Nortbamptonshire, 440
Burlington, earl of; amateur architect, 464, 509.510. His liberality to W. Kent, 511

Burlington house, London, 2995. Colonnade, 509. Pilasters, or half-columns, condemned, 2615. Gateway, view and of house, 2670

Burner for gas, $2 \geqslant 93$
Burnett's patent for preparing timber, 1752
Burnt clay ballast, $1833 \mathrm{~d}, 1833 \mathrm{e}$
Burr ugh, Sir James; amateur architeet, 490
Burrs and elinkers, 1824
Bury Saint Edmunds, Suffolk; Conventual eliurch, 398. Chureh of St. Mary, 408, 421
Buschetto of Dulichio, architect, 286
Bustamente, Bartolomeo di ; arehiteet, 370
Butt linges, 2258
Butting ; in carrentry, 2009
Buttress; strength of , p. 1047 et seq.
Byland, Yorkshire ; conventual church. 398
Byzantine arehiteeture, 270 et seq. Continued till introduction of Pointed stylo, 283. The style adapted to the wants of the present day, p. 1049

C^{A}AABA of Mecea, spared in 1803, by the Wababees, 118
Cable, ornament, 397
Cablings, 2588
Cadmians; Bryaut's thoughts on the, 27, 136
Caen ; fine examples of Norman work, p. 1023. Buildings set out with the perch, p. 1097. Chureh of St. Stephon, 290. Spires, p. 1000. St. Peter's spire, ib. Holy 'Tinity, 290. St. Saviou's, spire, p. 1000. St. Jean, 47. Châ'eau de la Gendarmerie, 548. Abbaye aux llommes, ehoir, p. 1006; buttresses, p. 1048

Stone, $1666 / h$ et seq., $1667 v, 1667 w$
——Wood, Middlesex; house for Lord Mansfield, 517
Caernarvon, Caernarvonshire ; castle, 402, 403
Caerphilly, Glanturganshire ; castle, 398,404 , 419
Cahors ; cathedral, 535
Cairn, or Carn, 24
Cairo, founded by Akbalı, 120. Mosque of Amrou, 306
Caissons; in eylindrieal vaulting, how to regulate, 2002α. In hemispherical vaulting, $2002 c$.
Calcarium, 2274a
Caldarium of the Roman baths, 235
Caldogno villa; cornice, 2725
Calmar ; eathedral, 567
Ualorifere stove, $2279 e$
Calverley stone, 1667 m
Camalodunum ; first Roman eolony in Britain, 381
Camber ; of a beam, 16290
Camber slip; bricklayer's, 1890
Cambio da Colle, Arnolfo di ; architeet, 323
Cambridge, church of Holy Sepulchre; proportion of, p. 1016. King's College, 2907. Chapel, $1499 h, 1499$ cc, p. 1045 , P. 1046 Vaulting, 2002x. Porch, p. 999. Buttresses, p. 1049. Stalls, 2192a. Window, p 990 , p. 993. Doorway, p. 998. Turrets, p. 974

CAR
Came; in glaziug, 2228
Caminha; church, 63 -
Campbell, Colin ; arehitect, 504. Window by, 2771
Campbell's tomb at Geezeb, 304
Campden, Gloucestershire; ehurch, 421. House, 445,451
Campello, Filippo da ; architeet, 612
Camperio, Giacomo de ; arehitect, 613
Campero, Jean de ; architect, 593
Campionc, Matteo da ; architect, 618
--Marco and Jacopo da ; arelitects, 619
Campo Aquero, Franeisco de ; architect, 367

- Vaccino, Rome ; columns of, 2547. See "Forum" at Rome
Canárah, in lsand of Salsette, near Bombay; excavations, 57
Cancelleria, palazzo della, at Rome, $355 d$. Doorway, 2739
Cinons, Mildlesex; house for Duke of Chandos, 440,505
Canopy ; to set ont moulding? p. 1019
Canterbury ; castle. 394, 398. Cathedral, $307 a, 3$ i2, $396,398.421$. Founders and dimensions, 434. Pier, p. 977 . Central tower, 2002x. Vaulting, 1499x. Pillars of nave, p. 1040. South-west porch, n. 998. Trinity chapel window, p. 988. Deans' chapel, vaulting, 2002.
Canvas; prepared for roufs, $1908 a$
Capel St. Mary's, Suff lk; ehureh roof, $2352 t$. Roof mouldings, p. 987
Capillary attraction, 18866
Capitals of co umns; origin of, 135. Mode of gluing up, 2203, 2204. Gothic, p. 977 et seq. Of pilasters, 2677 et scq. Tuscan and Dorie, ib. Lonic, 2678. Corinthian and Composite, 2679. And Bases, in spee., $2284 b$
Caprarola ; areade, 2687. Doorway, 2737
Capri, villa; near Vieenza, 353, 2813
Capua; amplitheatre, 193,228
Carbolineum Arenarius, $1752 d$
Carbon paint; for iron, $2273 b$
Carcass ; seasoniner, 1751. Measuring, 2341
Curcassonne ; St. Nazaire, 534, 540. Church, 307
Careeres of the Roman Circus, 240
Cardiff, Glamorganshive; eastle, 208
Carisbrook, Isle of Wight ; castle, 398
Carità, La ; convent of Venice, 354
Carlisle, Cumberland; eathedral, 406. Founders and limensions, 434. Proportion of, p. 101%. Wintow, 1502c

Carlow, in lreland; Bruen Testimonial ehurch, p. 966

Carlton house, London, 524
Carnac, Brittany; remains of Druidiea! monument, 14, 40
Carnak, Egypt ; temple, 73, 77, 81
Carpenter's boast, 2041. Tools of the ear penter, 2003
Carpenter's work ; in spec., 2285. Wages, 315. Measurement of, 2330-2365

Carpentry, 2003 et seq. System in use among the Chinese, 102
Carpintero, Macias ; architeet, 597
Carr, John ; architect, 514
Carrara marble, 1666i, 1677-1677c, 2002hh
Carreno, Fermando de; arehitect, 596
Carriage of stairs, 2026
Carron grate, 2279 d
Carrying up work, $1223,1925 a$
Carson's anti-corrosion paint, 2273a
Cart, Pieter; architeet, 365

CAR

Carter，EIwarl；architect，319， 461
Carthusian numnery at Mirallores， 596
Cartmell，Lancashire ；chonv， 398
Carton pierre ；enrichments， 22.1
Carving；in Italy，C0y．W＇ond earving， $212 \cdot \mathrm{c}$
Caryatides，8．5．Aecount of their origin，165． Used in other than the classic styles of architecture，166．Probable origin， 168
Caryatides and Perians， 2682 et seq．Iy Jean Gougeon，2683，2693．＇1＇hose designed for Whitehall，2685．By Michel Angelo， 2687，2688， 2691 Ry Biffi，at Milan， 2689. ISy Quellinus，at Anstertam，2690．At the Lonvre，2693．From the arch of the Gold－ smiths at Rome， 2691
Case hardening， 1751
Cascment；monlding，2532，p． 970
－frames；in spee．， 228 jod
in leadwork，2227．Wrought iron， $225 \bar{\partial}$ ．Hopper，in spec， 2286 a
Casing，to protect stone dressings ；in spec．， 2285. For pipes，in spec．， 2285%

Cast iron，1764， 1765 et seq．Strength， $1630 r$ ． lixperiments on， 1628 m ．breaking weight in the midale， $1629 i$ ．To fracture it， 22253 ． Column $=22$ 2ัa．
Cast lead， 178×3 et seq．Steel， 1773
Castel San Angelo，Lome， 25 b
Cantella，of aqueducts， 225
Cast llamare castle， 625
Castings；in iron， $2265 e$ ，2265g．Testing， 2265月
Castle Coote，in Ireland， 528
－Rushen，Isle of Man， 1681
Abbey，Northamptonshire， 425
Howard，Yorkshire， 494
Rising，Nerfolk；church，398．Castle，ib．
Ca－tles encouraged by William I．，393．By Willian II．ib．Description and list， 39 亡． Gateway，416．Of Benevento，Penafiel，and Tordesillas，128．At Beja，601．At Freixo， ib．At Almeida，603．At Ourem，ib． Obides，ib．At Bracciano，624．At Andria， Castellamare and Teano，625．At Arrayolos， 603．At Estremos，ib．
Castletown，Derbysline ；eastle， 391
Castor，Norfolk；castle， 391
Castor and Pollux；temple at Agrigentum， P． 946 ；at Rome，208， 262
Catalonian forge， 1762
Catenarian curve，contained in walls of Gothic buildings，1583f，p． 1047
Cathedrals，English；Publications on， 434. Having parts of Norman crection， 396. Devoid of symmetry，p．1006．Proportion， p．1013－p． 1015
Catledge，Cambridgeshire ；house， 446
Caudebec，Normandy；houses，539．Saeristy of chnreh，546．Lady ehapel， $1499 b \dot{b}$ ， $2002 u, 2002 u$ ，p． 1053
Caumont，M．de；his division of French styles． 537
Caverlium of a Roman house， 246
Caves；of Ellora，56．Of Indra Subba，ib．
Cavetto，Mouth，or Hollow ；ornament， 2532. In Norman architecture， 397
Cavil or stone axe， 1913
Cawston，Norfolk；church window， 990
Cecil，William，Lord Burleigh；house for， 440
－Sir Thomas；house at W＇imbledon， 440
Cedar， 1705 ；or deal deors， $2145 c$ ．From Florida， 1727 d

CH．

Ccilin：juists，2019－2022
Ceilings；2815 et seq．Timber fiaming tho type for frming pancls in，2816．Coves to， ib．Examples of ornaments fir，ib．Exam－ ples of sublivisions， 2817,2818 ．Cornices to，propertions of，2819．Of wood in medi－ aval period， $2023 a$ ．And decorated，ib． Finislings to；in spec．，22si，2290．Iu pasterinч，how set，2ed6．Libbed；how neasured， 2339 ．Divided in wood，in spec．， $2 \downarrow 6$ 戸゙e
Celle domestice et familiarica of a Roman house， 2.3
Cellar，arch；in spece，2282a．Doors；in spee， 22×4 d
Celorico；chureh of San l＇edra， 601
Cement， 1863 et seq．Conerete， 186 ± 9 ．Foı Mosaic work，223ili．For flasterer s work， 2251 a et seq．In spec．，2287．（quantity to cover surface， 22.48
Cementation of iron， 1771
Cementing ；to brickwork，1813．Toglass in leadwork，2229
Cendre，de Tournai， 1859
Centering：how measured，2332．In spec．， 2285
Centre－bits ；plumber＇s，2212
Centic of motion，1241．Of gravity，12」2， 1266－1292．See＂Meclanics and Staties＂
Cesarianus，Casar ；architect，p．1008，p． 1013. Work by，1．1037， 435
Cesspools；lad substitutes for sewers， 1887. In spee， $2282 b$
Clain plates；in footings，1882．Riveting， $1631 q$
Chains and tics，1495．Mctal or timber，p． 1001
Chaldaa；architecture of， 9
Chalk lime，1849，1859h
Chalons sur－Saône ；eathedral， 540
Chamalieres．in France；gates，2l4se
Chambers，Sir Willinm；architect， 518. Treatise on Architecture， 521
Chamfer ；monlding，p． 983 ．Plane in arehes， ib．In spee．， 228 ． 4
Chancel ；at west end， 569
Chantlates；at eaves， 2211 m
Chartrell，Robert D．；architeet，on propor－ tion，p． 1014 ct seq．
Chapter house；at Batallia，605．At Wells p．1025，p．1026．Iu England，vaulting of， 1499bb．Pruportion of，P． 1016
Chare roff，p． 1046
Charente stone；1666pp
Charing Cross lotel， 1681 c
Charité sur Loire，la；church， 289
Charlemagne，emperor ；architectural cra of， 283， 289
Charles V．，king of Spain；patron of archi－ tecture， 368

V．and VI．，kings of France ；archi－ tecture under， 311

VII！．，ling of France；aequainted with the arts of Italy， 358
Charlton，Kent ；house， 452
Charlton，Wilts；house， $445,451,452$
－white， $2273 g$
Charola，or apse， 602
Chartres；Notre Dame，289，534，541， 547. Propertion of，p．1008．Reofed with copper， 2224．Steeple，p．1004．Apse，p．1007．But－ tresses，p．1048．Screen，p． 974
Chased mortises， 2019
Château de Madrid；near Paris，440．At Sichem，564．At Terheyden，ib．

CHA

Châteauneuf; church, p. 1C04
Chateaux ; of France, 548. Talle of classiincation for dates, 537
Chaucer, Geoffrey; poet, clerk of the works, 319
Cheeks to dormers, in spec., 228.a
Chel-Minar, or Persepolis; ruins of, 46-49
Chelsea, near London ; hospital, 29703a
Chemical analysis of stones, 1666
Chenies, John; honse fur, 440
Chepstow, Monmouthshire ; castle, 402
Cherence stone, 16660
Cherson; church of St. Basil, 370
Chester; cathedral, 398 ; Founders and dimensions, 434. Conventual Church of St. Jolın, 398
Chester-le Street, Durham ; church tower, p. 1002

Chesterfield house, May Fair, 525
Chesterford, Essex ; castle, 391
Chestnut; 1696
Cheret, 553
Cherron ornament, 397
Chez-lui paint, $2273 g$
Chiehester, Sussex; cathedral, 398, 421. Founders and dimensions, 434. Spire to steady, p. 1004. St. Mary's lospital, p. 985
Chillambaram, on the Coromandel coast; pagoda, 58
Clilling iron, 17656,1779
Chilmark stone, p. 1023 Analysis, \&c., 1666, $1666 q$
Chimney bars, 2255 . In spce., 2286

- openings, how proportioned; by Morris, 2792. By Chambers, ib. Angular funnels of, 2793
- pieces, 2788 ct seq. Method of proportioning dressings of, 2789 . Materials $\mathrm{cm}-$ ployed in, 2794. Of slate, 2211r. In spec. $2284 d$
pots; in spec., 2287
- shaft, 2795. As a ventilator, 2278f. One for all fireplaees of a house, $2279 c$. Uf bricks, in spec., $2282 a$. Of stone, in spec., $2284 b$
China ; architecture of, 9. Tent, the type of, 93. Does not seem to have improved, 94. Principles of, 95 . Quality of, 96 . Its ornaments, 97 . Timber, chief material used in, 98. Brick also employed, ib. Regulations in building, ib. Grauite, $1672 a$.
- houses; described generally, 101. Palaces, 103. That at Pekin, $10{ }^{\circ}$
- wall ; description of, 108

Chisel; a carpenter's tool, 2003. A mason's tool, 1909. The firmer, the paring, 2111; the mortise, 2112
Chiswick; villa for Lord Burlington, 509
Choir ; termination of, p. 1006. In fixed stalls in nave of Spanish cathedrals, 888
Cholula; great pyramid, 112
Chopping block ; bricklayer's, 1890
Choultry, 61
Chowne's patent air syphon, $2278 f$
Chrismas, Gerard; architect or sculptor, 442
Christchurch, IIampshire ; church, 398
Oxford; eollege, 426. Quadrangle, 490
Christian architecture, p. 964
Christiania deals, ctc., 1729 d
Church ; with fourteen sides, 535 . Round, p. 1006. Ancient rules for the planning of, p. 1009 et seq. Plan of early Christian, p. 1004. With single naves, 557
fittings, in spee., 2285 m . Floors, in spec., $2285 b$

CLI

Church. glazing, in spec., 2289
——'laster to inside walls, in spec., 2287 Sinith's werk for, in spec., $2286 a$ 'Tinbers for, in spec., $2285 h$

- 'Tower and spire, in spec., 2284b. Steps to chancel, in spec., 2284 . Passage. ib.
Churches, new ; commissioners for building, 5211
- From 9th to 12th century, and later, general forms of sections, 290. Of Greek religion. distribution of, 375
- W arming of, $2279 q$

Churton Mendip, Sumersetshire; church, 421
Cicero's Formian and Tusculan villas, 243
Cigoli or Cardi, Lodovico ; arehitect, door by, 2742
Cimn recta, 2129. Reversa, ib., 2532
Cinders in mortar, 1859 d
Cintra; Hieronymite monastery of La Pena, 607
Circle; in geometry, 903-928. Segments of; table of areas when the dianeter is unity, 1225. To describe independent of a centre, 2074
Circles of Stone, 16. Used by the Israelites, 15. One set up by Joshua, ib. Remains of, in counties of Derby, Devon, Dorset, Somerset, and Westmoreland, 16
Circular ; rils of timber. 2052 et seq. Saw, 2124a. Windows, p. 993 et seq.
Cireus of the Greeks and Romans, 240. Maximus, at Rome, 240
Cistern for water, $1785 a, 2223 \alpha-2228$. Of lead, zinc, and late, 2223α. Of slate, $2211 q$. Of deal, in spec., 228 g. Of lead, in spec., 2288. Of zinc, in spec., 2294

- in a gutter, 2214

Cistercian ; abbey, 587. Monastery at Tarouca, 660. Alcobaça, 602. Near Vi'lavieiosa, 589. Nunnery, 603
Citta del Castello; chureh of Sta Maria Magsiore, 624
Città del Pieve, 624
Civil and Ecclesiastical dilapidations, p. 1098
Civray ; church, 534
Clamond gas light, $2264 e$
Clamps of brieks, 1816, 1817
Clapboard, 1689
Clapham, Beds. ; tower, 389
Clare hall chapel, Cambridge, 490
Claremont house, near Esher, 524
Clarke, Dr. ; amateur architect, 490
Claudius ; architecture under, in Britain, 381. Temple of, at Camalodunum, 381. At Rome, p. 1065
Clay for bricks, 1814 et seq., 1831 f. For terra cotta, $1839 i$
Cleaning paint and varnish, 2276c. Down Bath stone, $1667 n$
Clear eolcing, 2273
Clerestory, 602. At Amiens cathedral, p. 1061. At Winchester cathedral, p. 1042. At Wells, p. 1024. At Winchester, p. 1032. Windows, p. 990, p. 991
Clerk of the Works, 312,319 . And his office, in spec., $2280 k$
Clermont ; fountain, 548
Clermont-Ferrand ; cathedral, 545
Cliefden bouse, Buckinghamshire, 465
Cliff Wood quarry, $1666 y$
Clifton, Sir J. ; house for, 440
Climates of Europe, 1030
Clinkers, 1824. Dutch, 1830

CLI

Clips; glazier's, 2229
Clive, lord; house for, 52.1
Cloisonné work, $2277 i$
Cloister, 560. Great, at Batalha, 605
Close boarding ; in spee., 2285 a
Close picked ; to granite, $1915 \bar{c}$
Closet knols, 2263. Pan; stoneware, 2218. Valve to cistern, 2223g. Earth, 2218a. Arm joint, 2:2:3n
Closets, dwarf; in spec., 2285g. Sce "Cupboard"
Cluny; abbey of, 289. Lôtcl de, at laris, 548
Coach-house door and gate; in spec., 2:8je
Coal Exchange; timber dried, $1749 a, 291:^{\circ} \neq$ plates, 2255 ; in spec., 228ice. Tar, 1867ad
Coap, Sir Walter ; house for. 440,452
Coarse stuff; plasterer's, 2235
Coated glass, $2231 b$
Conting eomposition for iron, $2273 b$
Cobarrubias, 4 lonso ; architect, 367, 368
Coblentz ; St. Mary, 579. St. Gcorge, 583
Coccaglio ; villarc, 622
Cockerell, Charles Robert, R.A.; architect, on proportion, p. 1013
Cockermouth, Cumberland; castle, 398
Coffermaker, Thicrri de ; architect, 559
Cohesive power of stone, $1502 r$. Of metals, 1630 r . Of timber, 1630 s . Of materials, $1628 e$
Coignct's béton aggloméré, 1867f, 1903dd
Coimbra; Santa Cruz, 607. University, ib. Bridge, ib. Chapel of Santa Caterina and the palace, $i b$. Cburch, $i b$.
Coke, Sir Anthony ; house for, 440
Coke breeze, $1833 e$
Cokels, 2279f
Colchester, Lissex ; All Saints' church, p. 1005. Castle, 34't. Monastery, 389
Cold blast, 1757, 1758. Iron; strengtly of, $1628 l$ et seq., 1630 . Short iron, 1764
Coleshill housc, Berkshire, 462
Colisenm, or Flavian amphitheatre, at Rome, 192, 228, 229, 2547. Drainage, 231. P'roportion of, p. 1021. Height of, p. 1060
Collar beam, 2031, 2034. Gothic, p. 987

- roof, 2041, 2052q

Collegria Fabrorum, 310
Collinge's hinges, $2258 e$
Collision or impact, 1628 e, 16300
Cologne ; cathedral, 567, 573. Proportion, 1011. Vaulting, 2002 g . Apse, p. 1007. Masons' marks, $322 b$. Manner of glazing, 2229 d. Church of the Apostles, 555. Church of the Minorites, 566. Honse in Almarktplatz, 582
Colonia, Juan and Simon de ; architects, 595, 596
Colonna, Francesco; writer, author of the Poliphili Hypnerotomachia, 326, p. 9:8
Colonnettes, 1922o, p. 976. Strength of, $1502 f$
Colonred bricks; in spec., 2282a. Glass, $2231 b$. Coursed stone work, $1666 c$
Colour in architcciure, 2511
Colouring in drawing, 23836 . Cement work, 2277 . In spec., 2287
Column; in Place Yendome at Paris, 363, 2603. Duke of York, $1671 e, 167 \%$. Of Antonine, 486, 2603. Of Trajan, 193, 2603
Columns; Chinese mode of forming, 10 . Origin of, 135. Heights and diameters of
ancient Roman, 2547. Diminution of, aceorling to beight, 2548. Height and diminution of, 2513 et seq. Vignola's method of diminishing, 2515. Blondel's methool, 2546. Dimination in ancient exanples, 2517. Grouping of, 2614. In apartments, how arranged, 28.49-2851
Culumns ; stone, mode "f working, 1921. Of brick, in spec., $2282 b$. Of stı ne, in spee., $2: 8.1 a, 22936$. Gluing up, in joincry, 2201. Should not penctrate cach other, 2681. And pilaster, deal, in spec., 2285 g . Of mat crials, in testing, $1502 d$

- Cast iron, 225.5. Strength of, p. 106\%. Compression of, $1630 y$ et seq.

Gothic, p. 975 et seq. At Amiens eathedral, p. $106 t$.
Combe ables", Warwickshire, 465
Combination of parts of a builling, 2825 et seq. 1lorizontal and vertical, 2838 . Of parts in leading forms, 2850. Lxamp'es of, 2856 . Method of abbreriation in composition, 2857. Desisn procecded with, 2858. Examples, 2859, 2860

Combination water closet, $2 \geqslant 2(1)$.
Combing or graining, 2276
Combustion of gas, 2264 e.
Common joists and their scantlings, 2014, 2015
Common rafters, in a roof, 2035 a . Scantling, 2040 : to calcnlate for strength, 2040a
Como; cathedral, 623. Broletto, 611
Comornes church ; spire, 958
Companies' halls; at Gheut, 563
Compass bricks, 1829
Compasses ; bricklayer's, 1890
Compiegne; church of St. Antoine, 517. St. Jacques, 545
Complement of an arc, 1037
Compluvium of a Roman house, 247, 253
Compositc order, table of examples, 264. General proportion, 265, 2591 et seq. Vignola's profile of, 2592. Table of parts of, $i b$. Parts to a larger scale, 2593. Mode of profiling capital, $2 \overline{5} 94$. I'rofile by Vitruvius, 2595 . By Palladio, 2596. By Serlio, 2597. By Scamozzi, 2598. Arrangements of modillions, 2614
Composition curichments, 2251, 2252
Composition; general principles of, 2485 et seq. Ornament a non-essential, 2486. Façades should depend on internal distribution, 2487. What compositions please, 2488. Method of the Gothic architects as to windurs, 2489. Talent of an architect, how to be jndged of, ib. Drawings necessary in, 2490a. Method of abbreviation in, 2857
Compound intcrest and annuity, p. 1101 et seq. Tables, p. 1105 et seq.
Compression, $1628 e, 1628 n, 1630 w$. Of stone, etc., 1500 et seq. Of a cast iron bar as pillar, $1630 y$
Comptroller of the works, 319
Concamerata snyatio of the Roman baths, 236
Concave or hollow bricks, 1829

- surfaces, in joinery, to form, 2199

Conchy ; Notre Dame, and church, 534
Concord; temple (now of Saturn) at Rome, 213, 260, 2547. At Agrigentnm, p. 947.
Concrete, 1667o, 1861 et seq. In fonndations, 1881. When to use, 1882 . Layer of, in bascment, $1886 f$. In spec., 2282. Floors,
$1903 r$ et se.. And ecment blocks, 1903 ata et seq. In walls, in spec., 22936
Concrete building and building appliances, $1864 h, 1903 v$ et seq.

- ; stress on cubes of concrete, 1903 ff .

Conduction of heat, 2279
Cone; sections of 1056-1109. Of brickwork, 1499. Construction of, $1499 u$
Confraternité des Pcats; founded by St. Benezet, 310, 313
Conic sections, 1056-1109. Definitions, 1057. Ellipsis, 1058-1082. Hyperbola, 10831094. Parabola, 1095-1109

Conic sulfaces; to form in joit.ery, 2206 , 2207
Conisburgh, Yorkshire ; castle, 394
Conisterium of the Greek gymmasium, 175. Of the Roman baths, 235
Constance cathedral ; spire, p. 1005
Constant supply of water ; system, 2223 ct seq.
Constantine, emperor; unsuccessful in rcstoring the art, 199. His attempt towards it, 200. His timmphal arch, 201. His basilica at Rome, formerly called the Temple of Peace, 217, 2547. A type of the basilica of the carly Christians, 217. Niches at, 2775
Constantinople; works at, by Thcodosius, Anastasius, and Justinian, 271. Aqueducts, 306. Church of Sta Sophia, 271. Served as a model after the conquest of the city, 300. Church of the Holy Aposiles, 271

Constantius, emperor ; exhibited little desire to restore the art, 202
Contractor, in spec., $2280 k$
Convalescent hospital, $2975 l$
Conventual architecture, 434
Conversion of timber, 2125 a et seq.
Conway, Caernarvonshire ; castle, 402-405
Cooley, Thomas; a chitect, 526
Cope, sir Walter; house for, 440,452
Coping stone ; in spec., $2284 a$
, cast iron ; in spec., $2286 a$
Copper, 1787 ct seq., 2224 et seq. A metal early employed, 1787. Weight, 1787. Ore in England, where found, how smelted, 1788. Shect copper, 1789. Alloyed with zinc, for furniture, 1790. With zinc, for bell metal, 1791. In spee., 2286a. Sulphate of, 1752 et seq. Thickness of sheet, 2224a. Round and square ditto, 2224%. Weight, 2224c. Strength, $1630 r$
Copper cords, 2260. Cramps, in spec., 2284 ; 2286. Nails, in slating, in spec., 2283

Copper, fur water, in spec., 228:2b, 2286a
Coppin, Sir George ; desion for, 440
Copt hall, Essex; for Sir Thos. IIeneage, 440
Copying works, 562
Copyism in German churches, 567. Sce "Assimilating work"
Cora, ncar Velletri ; walls of, 179. Cyelopean remains at, 32
Corbel ; Gothie, p. 980. Stone for girders, and of brick, in spee., 2284c. Tablc; ornament, 397
Cord for sashes, 2260
Cordova, mosque of ; commenced by Abderhaman, 126
Core, $1843 b, 1848,1859 h, 1862 f$
of a lead; in glazing, 2229a
Corfe castle, Dorsetshire, 591,394 . Quarrics, $1681 g$
Coria; cathedral, 586

Coriuthian order, 2582 et seq, p. 953 et seq. Vignola's profile, 2583. Table of parts, ib. Parts to a larger scalc, 2584. Mude of drawing capital, 2585 . Volutes, 258 i . Parts of the eapital, ib. Profile ; by Vitruvius, 2587. By Palladio, 2588. By Serlio, 2589. By Scamozzi, 2590. Lixpedients relative to modillions, 2614. Best manner of proceeding, ib. In Grcece, 161 et seq. Of the Lomans, 262. Table of t xamples, ib. General proportions of, $2 \cdot 3$
-_ arcade, 2625. With pedestal, 2 C31. Capital, origin of, according to Vitruvius, 140
Corinthians ; colonies of, p. 943
Cormont, Thomas and Regneult de; architects, 542
Corncockle quarry, 166fo
Corneto ; houses, 614. Palazzo Vitelleschi,624
Cornice; crowning buildings, 2724 et seq. Proportion it should bear to total height of building, 2725. That of Farnese palace, ib. Of the Spanocchi palace, at Sicna, ib. Of the Piccolomini palace, at Siena, ib. Of the Pojana palace, by Palladio, ib. Of the Strozzi palace, at Florence, ib. Of the Pandolfini palace, at Florence, $i b$. Of the Villa Monteccio, by Palladio, ib. Of the Villa Caldogno, by Palladio, ib. Of another villa for same fanily, $i b$. Of the Farnese palace, ib. Of the ciordi family, at Florence, ib. Entablature by Viguola, 2726. Of the Florentine palaces, 327,329

- of rooms; proportions, 2819. Br"ck, 1904. Block, 2727,2728 . Dcal ; in spec., $22 \$ 5 a$. Gothie wood, p. 987. Plaster, 2250. In spec., 2287. To form in cement; in spec., 2282a
Cornwall granite, 1669
Corrosion ; of copper, 1789. Of iron, 1779 ct seq. Of galvanized iron, 1796 b . Of lead, 1785. Of metal, $2224,2224 f$.

Corrosive sublimate, 1752
Corrugated iron; use of, 2255c. Shutters, 2148́a
Cors, in Gothic architecture, p. 970
Corsehill stone, $1666 z$
Corsi collection of marbles, $1678 a$
Corstorphiae church ; spire, p. 1003
Cortona; walls of, 179
Co-secant of an arc, 1044
Co-sine of an arc, 1042
Cosy gratc, 2279 d
Co-tangent of an arc, 1043
Cottagc, ornée, 3001
Cottages, 3005 et seq. Loudon's observations on, 3007. Approved designs for, 3009
Cotte, Iobort de ; architect, 166
Cottingham, Lew is Nockalls; architect, author of Henry VII. Chapel, \&c., p. 939
Coucy, château de, 322
Coucy le Châ eau; church, 534
Comnterforts, 1592
Countersinks, 2108
Courled eolumns, 267
Course of brickwork, 1894
Courtrai, 562. Church of St. Marlin, 559
Coutances ; cathedral, 540
Coved vanlting, 1464-1477
Covent Garden; square of, 462 . Old theatre, 1855, 2958, 2967.
Coventry ; parochial church of St. Michael, 408, 421. Spire, 1. 1001
Covered glass, $2231 b$

DEC

('overing bonds of domes, groins, $\& c ., 2068$ -2078
—— of buildings; compurative woights of diflerent materials, 20106 . 'Temporary, $1907 c$
Covert, Sir Wralter ; honse in shsex for, 440 Coves of ceilinise ; leinht of, 2816
Cowdriny, Sussex; mausion, 426. Porrh, 1. 999

Cowl for chimners; in spac., 2.191
Cowley bricks, 1831
Cradle roof's 2052 g et seq.
Cradles of iron; in spece., 2286
Cradling and bracketingr; in ρ pec., 228° a, $2285 b, 228$ ic. To chimmevs, 225.5
Craigleith stone ; analysis, \&.e., $16 \mathrm{E}_{\mathrm{g}} \mathrm{G}$
Crail church, Fiteshire, p. 1003.
Cramps and dowels, $1495,1857,2221,225.5$. In spec., $2281 d, 2286$. For hollow walls, $1902 c$. To ashlar work, 19% \% . Iu a spirc, p. 1004

Crate of glass, 1871 a
Creasotc, or wil of tar, $1752 a, 1752 c$
Creesing ; in sjec., 2:8:" u
Cremona; catlicdral, 613
Crennels ; of a castle, 394
Cresting; to thatehed roofs, 2211 s
Cresy, Edward ; architect, on proportion, p. 1015
Creuilly stone, $1666 \mathrm{~m}, \mathbf{1 6 6 6 o \text { . In spires, p, } 1 0 0 5}$
Crewe hall, Cheshire ; seasliola floor $3,2250 \mathrm{~h}$
Croce, Francesco ; architect, 621
Croisée d'Ogive, $1499 v$
Cromlechs, 23. On the Malabar coast, $i b$.
Cross; church designce on that form, 2876 , p. 1006. Sce "Church"

Cross garnct hinge, 2258 a
Crossettes or joggles, 1925e ct seq.
Crow, iron ; bricklayer's, 1890
Crown Assurance Company's office, 1 C66e
Crown glass, 1868a, 1870a, 1871. Steeples, p. 1002. Or plain tiles, 1835

Croxton ; church roof, $2052 l$
Croydon, Surrey; palace hall roof, 20521. Railway station roof, 2043
Croyland, Lincolnshire ; monastery, $312,319$. Expeuses for building; how raised, 392. Conventual chureh, 421. Bridgc, 419
Cruciform plan ; for a church, p. 1006
Crusades of the twelfth century, 310
Crushing weight of several materials, 1500 ,
1502. Of timber pillars, $1630 w$ et seq. Or iron pillars, $1630 y$
Crystal Palace, 1851, at London; proportion of, p. 1062 et seq. At Sydenham ; proportion of, $1671 b, 1728 d$, p. $10 \overline{5} 7$, p. 1065
Ciystal white sheet glass, 1874
Ctesiphon ; palace, 305
Cube; in proportion, p. 1006, p. 1057
Cubes, \&c.; Tables of, $2297 g$, 2297h. Of materials ; in testing, $1502 \mathrm{~d}, 1502 \mathrm{~m}$
Cubic feet of air in wards, $2970^{\circ} c$. In rooms, 3032. See Glossary

Cubiculum of a Roman house, 253
Cubing dimensions, $2297 e$, $2297 f$. Tables of, p. $780-787$

Cuença ; cathedral, 368. Dominican church of S. Pablo, 598
Cues; hospital church, 579
Cuise ; chureh of St. Martin, 534
Cul de Four, 1995
Cundy's ventilating stoves, $22.9 d$
Cunci of the Roman theatre, 2,26
Cuci or Cunco ; chureh of San Francesco, 613
('uploard fronts ; in spee., 228.)g. Lock, 2261
(npola; iu Belaime 5.55. See "1)ome"
Curb for circular windows, to form, 2065.
For story posts, in sjec., $2: 81 c$. For sliylight, in spec., $2285 e^{\circ}$

- or Mansard roof, 203.5
('urrent : in plumbery, 2.23
C'urres, IIenry ; arclitect, 2975e
Curtail step, 2186, 21:90-2192
('urtain ; ut theatres, $2971 b$
Gurved libs; in spec, 2285 a
Cuslion capital, p. 97%
(Gsp) ; broken-backed, p. 996
Cusped ogec arch; to draw, 19132
Cutters; species of bricks, 1821
Cutting knives; plamber's, 2212
Cyanite paint, 2273j
C'relopean buildings ; four eras of, according to Mr. Mamilton, 32
Cyelopes, the seven ; Bryant's opinion on 31
Cylinders; deflection of, $16: 0 \%$. Strength of, $1630 y$. In fonndations, 1885 a
Cyliudrical tubes for beams, $1629 a$
Cosurfaces ; to form in joinery, 2198,2205
Cyma, Cyma recta, or Cymatium, 2129,2532

DADO; in spec., 2285\%. How measured, 2356
Daines's process, 1667 m
Dairy and fittings ; in spec., $2281 c$
Dais, 891
Dallaway, Rev. James; writer on architec. ture, 1 1055
Damascus; houses, how built, 131. Mosque, 306
Damp : cause of decay in timber, $1746,17.00$
_ IValls, $2251 g$. Paiut for, 2233 g . Drying, $2250 i$
Damp-proof courses, $1886 b$ et seq. In spec., $2282,2 \div 81$
Dance, George, sen. ; architect, 313,521
——Gcorgc, K A., jun. : architect, 523
Danckers de Ry, Cornelis; architect, 5910
Dantzic timber, $1729 f$
Danvers, Sir John ; house for, 440
Darbishire, H. A.; architcct; model dwellings by, $30 \div 6$
Darby, litdy ; a London house for, 440
Darley Daje stone ; analysis, \&c., 1666
Darmstadt ; theatre, $29 \mathbf{7}^{\circ} 2$
Dartington, Derbyshire ; Manor house, porch, P. 999

David I., king of Scotland ; his zeal in crecting religious buildings, 392
Davison and Symington's process of drying timber, 1749a. Furnace, 2279f
Dawnay's fireproof floor, $1903 n$
Day, length of; jongest in different countries of Europe, 1030
Day work; materials and labour, how charged in, 2322-23:9. Bricklayer's, 1901
Dead lock, $2: 21$
Dcal, 1710. Sizes of, 2125c. Standard of, 1729. How to reduce, 2363. Table of values of, 2364-2365. Battens, 2362. Left plain, in spec., 2290
Decagon; to form, 1021
Decay of stone, $1640,1666 k, 1667$ et seq. Of timber, 1745 et seq.
Decomposition of granite, $1670 a$
Decorated Gothic ; or ornamented English architecture, 410, p. 967. Charncteristics of, 420. Proportion in, p. 1017. Mouldings,

DEC

p. 973. Piers, p. 976 Capitals, p. 978. Pase, p. 979 , Ribs, p. 980 . Ioodmoulds, p. 982. Plinths, p. 982. Parapet, p. 983. Wood mouldngs, p. 985. Windows, p . 989 . W ${ }^{r}$ indow jambs, p. 982. Doorways, p. 997. Porches, p. 998. Towers, p. 1001
Decoration, 2513. Arises from desire of variety, 2515. Analogy in, 2517, 2518. Allegory in, 2520. Example:, 2521, 2522. Gothic, p. 994. Or sculpiure at Amiens catnedra', p. 1062
Decorative work in tints, $2251 l$

- appliances, $2277 i$

Deflection ; of a beam, $1628 e, 1630 e$. Of pillars, $16: 8 e, 1630 w$. Correction of formula, $1630 n$
Delhi ; mosque of Kootub, 306
Dclorme, P'nilibert ; architect, 357, 858. His work translated into linglish, 438. His mode of framing domes, 2052
Delphi ; temple of, 136
Delta metal, 1791a
Denbigh castle, Denbighshire, 398
Denderal, 71
Denham, Sir John; architect, 319
Denmark; buildings erected by Inigo Jones, 456
Dennstt arch, 1903d
Dentils, centres of, 2612
Derby; All Saints' church, p. 1002. Lunatic asylum, $2278 y$

- lady ; house for, 440
plasterer's, described, 2242
Derbwshire marbles, 1681a et seq.
Derick, John ; architect, p. 966
Desachy's fibrous plaster, 2251
Descriptive geometry, 1110-1211
Design ; see "Architectaral Design." Method in proceeding to make one, " $2490 b$
Detrusion, i628e, 1631n. Of stone, 16020
Devisor. 312, 319
Devonshire granite, 1669. Marbles, 1502g, $168 \mathrm{I} c$
- house, Piceadilly, 2994

Diaganuâtha; temple at Ellora, 56
Diagoual braced roof, 2052d, 2052g

- of a square ; system of proportion, p. 1017

Diamond; glazier's, 2226
Diaper work ; in plaster, 585. To walls, 302
Diaphragm ventilator, 2278 r
Diarbekr ; palace of Tigranes, 305
Diastyle intercolummiation, 2605, 2609, 2611
Dickenson, Barnard ; louse for, 528
Die of a pedestal, 2603
Dieppe ; chureh of St. Jacques, 547
Die-t; church of the Béguinage, 558. Of St. Sulpice, 558
Dig out; in spec., 2281
Dijon ; cathedral, 510 . Church of St. Benigne, 289. Palace, 548

Dilapidations, p. 1098
Dimensions; squaring and cubing, 2297
Diminution of columns, 2543 et seq. Vignola's method, 2545. Blondel's method, 2546. In ancient examples, 2547. According to their height, 2548
Dinant; church of Notre Dame, 567
Dinkelsbuehl ; ehurch of St. George, 580
Diocletian, emperor; desirous of reviving the art, 198. His palace at Spalatro or Spalato, ib.
Dionysiaca of the Greeks, 172
Dioscuri ; temple of, at Rome, 208, 262
Director, 312, 319
Discharge of air through a tube, 2278c, 2278p

DOR

Disconnector to drains, $2220 i$
Dishing out the beds, 1925a
Dispersion of mankind from a central spot $11-14,21$
Distemper, 2274 et seq. Painting, 2274d. In spce., 2290
Distribution of plan, 2489
Ditriglyph, 2611
Djenonasia, temple of ; at Ellora, 56
Dockyards; graving docks, 16716
Dodecagon ; to form, 1022
Dog-legged staircasc, and mode of forming, 2182
Dome ; pointed, 533. Construction of, 1499 g . Not an arch, $1499 p$. Stability of, $1499 q$. Mode of framing, by Delome, 2052. Circular and polygonal, to determine ribs of, 2064. To cover with boards, 2070-2073. Construction of, in timber, 2089. How to regılate caissons in, 2837. Lead to ; in spec., 2288. Vaulting, in masonry, 1956 et seq.
of Pantheon, p. 958. Of St, Paul's, Lendon, 2049
Domestic architccture, 539, 545. Of the Romans, 242-255. Gothic, 2489. Of the Tudor period, 423-425. In Belgium, 564. In Germany, 582. In Spain, 585 . In Italy, 613. In Sicily, 626. At San Gimignano, 622, At Venice, ib. At Aqnila, Popoli, and Solmone, 625. Purch in, p. 999
Domical covering, 535
Domingues, Alonso; architect, 604
Dominican church, 545. At Burgos, 595. At Valladolid, 596. At Salamanea, 598. At Cuença, 598. At Monza, 624. At Ratisbon, 569. At Palma, 586. At Ghent, 557. At Louvain, ib. At Antwerp, ib., 560 - monastery at Guimaracns, 603. At Batallia, 604. At Amarante, 607
Domma, temple of ; at Ellora, 56
Doncaster, Yorkshire ; parochial church, 421
Door eases, ctc. ; in spec., 2280̈c. Linings, in spec., 2285c

- clains and barrels, 2263

Doors ; descrived as variously moulded, 2130 -2144. In spec., 2285 e, 22丈5f et seq., 2293 c. Of the medireval period, $2145 a$.

- and frames of wrought iron; sizes of, 2255e. In spec., 2286. Fireproof, 2970a, $2971 b$
Doorways; profiles of, 2729 et seq. Conlsidered in respect of musses and voids, 2730 . Dimensious, 2731. Places and numbers, 2732. Decorations, 2733. Gates and piers, 2734. Of St. Peter's Baptistery at Florence, and San Giovanni Laterano, 2735. Manufacture of, 2736. Examples of doorways, 2737-2739. At the Cancellaria, 2739. By Michacl Angelo, 2740. By Vignola, 2741. By Cigoli, 2742. By Inigo Jones, 2743. By Serlio, 2744. Gothic, p. 997 et seq. Divided by a post, 553
Dorbay, François ; architcet, 357
Dorian architecturc, p. 912
Doric arcade, 2623 . With pedestal, 2629
- order, Grecian. Relative antiquity of examples determined from intervals between the columns, \&e., 140. Dorus, imagined inventor of, $140-142$. Table of examples of, 142. First used in Paris by Antoine, 360. Used in Germany by Langhans, 366 . In the Parthenon, 25-0. Table of its parts, ib. Principal buildings of, 2572. Proportions, p. 948 et seq.

DOR
Doric order; Roman, 258. Of the theatre of Marcellus, $i b$. At baths of Dioclesim, $i b$.

- order; of the Italian architects, 258. Vignola's commended by Daviler, 2651. Mutular Doric on larger scale, 2562. 'Table of heights and projections, ib. Difficulties in arranging entablature, 2563. How emJloyed by the aucients, 2564. Denticular Doric, and parts of, on larger seale, 2565. Table of heights and projections, ib. Vitruvius's profile, 2566. Palladio's profile, 2567. Scrlio's profile, 2568. Scanozzi's profile, 2569. Intercolumniations, 2605
-- temples; general proportions of plan examined, 152. At Corinth, early specimens, 146. At Sclinuntum, p. 943 et seq.

Dorking liue, 1843
Dormers ; in spec., 2285 a. Lead to ; in spec., 2288
Dormitory ; of an infirmary, $2976 b$
Dorrell, Sir Thomas; house for, 440
Dorsett and Blythe's patent for preparing timber, $1752 b$
Dortmund ; church of St. Reinold, 579
Dotzinger, Iodoque ; master of the works at Strassburg, $32 \div a$
Double bead, 2128

- floor, 2019. Framed flooring, 2013, 2020, 2021
__ glazing to partitions, 2231. Windows, 3037
Doulton's smoke and air flue, 2278f. Joint for pipe drain, 1888 a. Fireproof floor, $1903 q$
Douvres ; church spire, p. 1000
Dover castle, Kent, 391, 393, 394
Dovetailed backing to grouuds, 2166
Dowel, 1495, p. 990 . Of wood in columns, 1925a. In spec.. 2284d
Dowelled floors, 2171-2173
Dowelling in a spire, p. 1004
Dozen of paper, $2277 e$
Drag ; mason's tool, 1915a
Dragon beam, 2009
Drainage; of foundations, 1887. Of land, 1888e. Of dwellings, 3022, 3026 . In spec., 2282a
Drains, 1887, 1888a et seq. Combined and separate systems, 1888f. Special recommendations, $1888 \mathrm{r}, 1888 \mathrm{~s}$
Drake \& Co.'s concrete construction, 1903x
Drammen deals, \&c., 1729d
Drawback lock, 2261
Drawer handles, 2263
Drawing; in general, 2381. As applied to landscapes, 2404. Methods of teaching, 2383 et seq. Method of Dupuis, 2385. Ancient method, 2387 et seq.
- knife; joiner's, 2114

Drawings, 2491. Necessary in composition, $2490 a$ et seq. In making a design, how to proceed, 1490b. Ought not to be coloured nor highly finished in shadow, 2490 c. Of caissons in vaulting, 2002a. Of horizontal and vertical combinations, 2839 et seq. By interaxal divisions, 2842. Prevention of false bearings, 2843. Working, 2491, p. 1008
Dresd n ; theatre, 2972
Dresser ; in spec., 2285 g . Top, in spec., 2285 g
Dressing and flatting tool; plumber's, 22 L 2
Dressings to doors and windows, in spec., $2284 b$
Driers, and drying oil, 2275
Drilling loles for rivets, $1631 t$

Drips ; in flats and gutters, 2214
Droving; is masonry, 1914
Druidical and Celtic building; introduced into Britain by the Canaanites of Tyre and Sidon, 14
Druids of the British Isles; a colony of the first race of pcople, 11
Drums of columns; to work, 1925a
Drury Lane theatre, London, 524, 2958. Wyatt's principles in constructing, 2957. Drury Lane in olden times, 2967. O!d roof, 2048
Dry area or drain, 1886a. In spec., $2282 a$
Dryburgh ; abbey, 431
Drying oil, 2274. Tinber, 1749a. Damp walls, 22 250i
Dry rot ; cure of. 1753

- soil closet, 2218 a

Dublin; custom house, \&.c., 526. Houses of P'arliament, ib. Four courts, ib. Carlisle Bridge, ib. Inns of Court, ib. Royal Exchange, $i b$.
Du Cerceau, Jacques Androuet ; architect, 357
Ducy; church spire, p. 1000
Dunifries stone, $1666 z$
Dung pit ; in spec., 2282c. Iron coping to, in spec., $2286 a$
Dungreon of a castle, 394
Đuodecimals ; to use, 2297a et seq.
Durand's Parallè'e des Edifices, noticed in sevcral pages
Duresco, 227tc
Durham; castle, 394, 398, 414. Cathedral, 406. Founders and dimensions of, 434 . Vaulting, 1499x. Kitchen, 1499bb. Proportion of churches in county, p. 1012
Dust bin, 1907 d. In spec., $2282 c$

- destructor, $1907 e$

Duster ; glazier's, 2226
Dutch clinker, 1828, 1905c. Terras, $1859 e$
Dwarf closets; in spec., 2285 g
Dwellings for industrial classes, 3012

If ARL'S Barton, Northamptonshire ; tower 1 at, 398
Early English architecture, 399 et seq., p. 967 , Characteristics of, in arches, trefoil and cinquefoil heads, columns, windows, roofs, walls, ornaments, and plans, 405. Examples, 406. Proportion in, p. 1017, p. 1023. Mouldings, p. 972. Piers, p. 976. Capitals, p. 977. Base, p. 979 . Ribs, p. 980 . Hood moukds, p. 981. Plinths, p. 982 . Parapet, p. 983. Wood mouldings, p. 985. Windows, p. 988. Window jambs, p. 992. Doorways, p. 997. Purches, p. 998. Towers, p. 1001

Earth closet, 2222

- slope of, 1585
- table, p. 980

Earthenware ; glazed, 1839g. Pipes 1888a
East Barsham hall, Norfolk; porch, p. 999

- end ; forms of, p. 1006
- India house, Leadenhall strect, 524

Eastbury house, Essex ; porch, 1908a, p. 999
——house, Dorsetshire, 495
Eastwell house, Kent, 525
Eaves gutter; of wood, in spec., 2286a. Of
lead, in spec., 2287 . Of zinc, in spec., 2294
Ecclesiastical dilapidations, p. 1098
Echinus, or quarter round, 2532
Ecole de Médécine, Paris, 363: Des Beaux Arts, at Bruges, 063

ECO

Economiser gratc, 2279 d
Eeouen ; château, 357. Church, 549
Edfoo, near Thebes; temple at, 77
Ederar the Peaceable, king; his eare of the Anglo-Saxon buildings, 386
Edge roll moulding, 1499gg, p. 972
Edinburgh ; St. Giles's church spire, p. 1002. High church, 485
Edlingham, Northumberland; castle, joggled works at, 1925 e
Edmundsbury. See "Bury St. Edmunds"
Ecrken, Jan ver der; arcliteet, 559
Efflorescence, $1667 \mathrm{c}, 1667 \mathrm{~m}$
Egas, Henrique de ; arclitect, 598
Egina; temple, p. 943 , p. 945
Egrl, Andrcas ; architect, 576
Egypt : architecture of,9. Earlier than Greek architceture, 10. Its analysis and development, 70 et seq. Considered in respect of stylc, taste, and character, 76 et seq., 84 et seq. Temples and tombs; t e principal works in it, 67. Form and disposition of temple, 76. M onotonous, 88. Physieal causes which affect it. 63 et seq. No circular temple in it, 69. Principal edifiees and map of the Nile, 91
Elentherinm; of the Greck gymmasic:m, 175. Of the Roman batlis, 255
Elasticity ; modulus of, $1628 e, 1630$. Of timber, 1610
Elbeuf; tower of St. Jean, 547
Eleanor erosses, p. 1037
Electrie appliances, $2264 l$ et seq. Danger of. $2264 m$. Systems, 2264n, 2264o. Bells, 2264 q et seq.
Electro process to iron, $2224 g$
ELephanta, near Bombay ; excavated temple, 57
Eleusis; temple, p. 944 , p. 945
Elcvation, 2490a
Elevator. See "Lift"
Elgin; parochial cburch of, 2043
Elizabeth, queen; did not patronise architeeture, 438
Elizabethan architecture, 45436 et seq. Practised till the days of Inigo Jones, $44 \overline{0}$. List of palatial houses, 446. Character of, 449. Sepulchral monuments, ilu.

Elli 1 sis, 1058-1082
Elliptical arch; to draw, in masonry, and find the joints, 1984-1937. At Modain, 305
Ellora; tomples at, 26, 55, 56
Elm, 1720
Elsden, W.; architect, 602
Elten ; chureh, $56{ }^{\prime \prime}{ }^{\circ}$
Eltham ; palace, hall roof, $2052 t$
II 1., Cambridgeshire; monastery, 319. Cathedral, 406. Founders and dimensions, 434. Proportion of, p. 1016. Galilee porch, p..979. Prior's entrance, 397, 398, p. 997. Chapel of St. Mary, 421. Lantern, p. 1001, Window, p. 989. Last windows. p. 988. Capitals, 390. Arch, ill.
Ely house, Dover Street, 515
Embossed glass, 2231c
Fmere, Gareia d'; architeet, 370
Emerson's patent for preparing timber, 1752
Fmery eloth, $2276 d$
Emmerich ; chureh of St. Algund, 567
Emy's system of roofing, 2052b
linamelled glass; varieties, 2231c. Iron, 1780b. Slate $2211 r$. Water pipes, 2223η
Enamels ; coloured, $2231 f$. Gold and silver, $2231 g$

EXE ${ }^{*}$
Encaustic tiles, $1839 b, 1908 c$
Endon stone, 1666u
Engaged columns or pilasters, at Burlington house, $261 \overline{9}$
Engelberger, Burkhard ; architect, 581
Eigland; architceture of, from James I. to Anne, 451 et seq. Under George l., 499 et seq. Under George II., 506 et seq. Under Gerrge III., 514 et seq. Saxon churches of. 290. Periods of Gothie architecture in. p. 967

English architecture, see "Druidical and Celtie building;"" Norman;" "Early English;" "Deeorated;" "Perpendicular ;" "Elizabethan;" \&e.
——bond, 1892 ct seq. In spee., 2282

- builders in France, p. 1057
- granites, 1671 et seq.

Enrichments; in plastering, 2250
En'ablature; height of, $2 \overline{0} 23$ et seq., 2542 , 2544. Subdivision of, 2549. Deal; in spec., 2285.9

Entasis, or swelling of columns, 2545. First verified by T. Allason, 144 . 'To a spire, p. 100.5

Eon ventilators, \&c., $2278 u$
Eosander, Johann Friedrich ; architect, 365
Ephebeum; of i.be Greek gymnasiuu, 175. Of the Roman baths, 235
Ephesus ; ehurch of St. Jolin. 271. 'Temple of Diana, 141, $2581 a$
Episcenium; of the Greek theatre, 172
Equilateral triangle applicd to buildings, p. 1008 et seq.

Equilibrated dome, 1499h
Equilibrium ; svstem of, in Gothie buildings. not linown, $1583 c$

- curve of, 1107. Necessary for fitness, 2500
Ercehtheus; Ionic temple at Athens, 155, p. 952

Erwin von Steinbach ; architect, 305, $322 a$
Escobado, Giovanni, Alonso, and Fra Giovanni d' ; architeets, 367
Escurial, near Madrid, 370, 371
Escller. Nicholaus and Son; architeets, 580
Esher, Surrey ; palace, 426
Esnch; ruins at, 91
Espagnolette bolt, 2165d, 2259
Esslingen ; elureh of St. Katherine, 583; of St. Mary, il., 597
Estates, purehase of, p. 1096
Estimating, 2235 et seq.
Lstremos; castle, 603
Eton, Buckiughamshire ; collegc ehapel, 421. Weeks and Co.'s ventilation, \&c., $2 \cdot 278 u$
Etrusean architecture, 178. Marked by great solidity of construetion. 179
Etruscans first used amphitheatres. 232
Euelid's Elements ; early used, 309b. Work translated, p. 1037
Eureka Concrete Company, $1903 x$
Eustyle intercolumniation, $2605-2611$
Evesham, Worcestershire; detached campanile, p. 1002
Evora; church of Sin Francisco, 607

- Fernando d' ; architect, 605

Evireux ; eathedral. 547
Ewerby, Lincolnshire ; ehureh, proportion of, p. 1018

Excavatious, 1884
Exeavator's work ; in spee., 2281. Estimating, 2298
Exetcr, Devonshire; cathedral founders and dimensions of, 434: West window p. 1031.

EXH

Towers, groined ceiliug, 2023g. Castle
gateway, gateway, 391
Exhaustion; system: of ventilation, $2278 x$
Exhedra; of the Greek gymnasium, 175. Of the Roman baths, 235. Of a Roman housc, 2,253
Exhibition of the Industry of All Nations, 1851 , p. 1062 et seq. Building of, 1862,2052 Expansion; of brickwork, 1833 e. Of concrete, $1862 a$. Of hot-water pipes, 3059 Exterior cements, 2251a et seq.

FABRE, Jayme ; architect, 592
Face work; in medizval mateconry
Facing wo in medirval masonry, 1915a
Facing block of stone, 1902 e .
spec., 2282 , in spec., $2282 a$. Bricks, in Faggoted iron, 1764a
Faija's concrete, 1903 x
Fair Oak house, Isle of Wight ; warming, $\&$ e., $2279 c$
Fairbairn's beams and girders, $1629 a, 1629 n$
Falaise ; quarries near, 1666 k
Fall for a drain, 1888 g
Falling nould of stairs, 2188
False gable at Tarragona, 587
Fan system; for extracting foul air, 2278 g For driving in air, $2278 h$
Fan tracery, p. 1027 . In cloisters at Gloucester, p.' 1037 . Vaulting, $1499 e e, 2002 w$,
$2002 x$
Faneelli, Luca, architect, 323
Faney eolours, in painting, 2272d
Fanlight frames; in spee., 22850
Fano; forum, 218
Faraday's ventilation to gas lights, $2278 v$
Farm-houses, 3002 et seq. Distributiou of, 3003. On large scale, $200 t$

Fascia, brick, in spec., $2282,2282 a$
Fastenings; iron to joints, $1631 p$
Fauces; of a Ronan house, 250, 253
Faustina, temple at Rome, 2547
Ftather or rib; on a cast-iron beam, to be avoided, $1629 d$
ans, to pay ; in spec., $2280 k$
Fees, to pay; in spec., $2280 k$
Felber, Johann ; architect. 580
Felkirk, Yorkshire ; chureh porch, p. 998. Sacristy, p. 999
Felspar ; in granite, 1669
Felt; under slating, 2210d, 2210e, 2211n. For roofing, $2210 f$.' For temporary roofs,
$1907 e, 2210 e$ 1907e, $2210 e$
Felt grain; in wainscot, $2125 b$
Fence walls; in spec., $2282 b, 2282 c$
Fencing, oak; in spec., 2285 h
Fernach, Johanues Petrus; architect, p. 1008 Fernandez, Matheos and Son; architects, 605 Ferrey's stamped plastering, $2245 a$
Fez, nncient Arabian city; described gene-
rally, 132 rally, 132
Fibres; of iron, $1764 b$ et seq.
Fibrous plaster, $2246 b, 2251$.
Asphalte or $\mathrm{flab}, ~ i b ., ~$
felt
Asphalte or felt, 2210d
Fiesole ; walls of, 179
Figueras, near Gerona; parochial church,
589
Figures ; in decoration, 2519, 2521. Similar,
Filarete. See "Averlino, Ant."
filippo, Maestro ; architect, 367
Moulded to roofs, $2173 a$,

Filleting; to a roof, 2211k. To slates, in spec., $2283 a$
Filter; beds for purifying water, 2222c, 2222g. Of porous sandstone, $2222 i$. Oi siliceous stone, ib. Household, it.
Fine stuff; plasterer's, 2236
Faxcd, to granite, 1915 c
Finger-plates, 2261
Finishings; iuterior, timber for, 1729 f
Fir, 1706 et seq. Wellingtonia, 1726 . Strength
of, $i b$. Fire clay lumps, 1820.

Lump grates 22ヶ9d Stolaees, in spec.. 2284d. See "Chimney." Stone, 1666aa. Brick, 1823, 1826. Terra-
cotta, 1908 s
Firtincteurs, 2971i
Fireproof; doors, 2255e, 2971a. Plaster, 2246b. Wire lathing, 2246e. Iron columns, 2255. Paints, 2273j, 2971d. At theatres, 2971a ${ }^{\text {et }}$ seq. Curtain, 2971l. Lathing, 2971c. 29711. Rooms, 2889 , c., $2971 f$. Theatre, et seq.
Fires; causes of, in buildings, 2279p. Precautions against, ib., 297la. From gas lights, 22796 . Open, in heating, $2279 b$.
Close, $2: 279 b$
First pointed work ; proportion in, p. 1017
Fischers, Carl ; architcet, 365 in, p. 1017
Fishmongers' hall ; columns, $1671 e$
Fish's bladder. See "Vesica Piscis"
Fitness; the basis of proportion, 2496, 2497. Dependent on cquilibrium, 2500. Maxims
relating to, 2502 relating to, 2502
Fitwilliams, Mr. W.; house for, 440
Five-sisled
Five-aisled church, $557,558,559,560$. At
Kuttenburg, 567
Fixing blocks, $2166,1903 \mathrm{r}, 2173 e$. In spec.,
$2285,2285 u$ 2285, 2285 u
Flachat, E.; architect, 1666 k
Flambard, bishop; as builder, 321
Flamboyant period in Franee, 546, p. 990. At Ghent, 2896c. Tracery, in Spain, 591.
Mouldings, p. 974.
Flanders; proportion of churches, p. 1006
Flange ; for box in slate cistern, $2223 g$. To plate girder, $1629 p$
Flanged beams, $1628 q$
Flashed glass, $2231 b$
Flashings ; in plumbery, 2213. In spec., 2288. To slate, $2211 k, 2214$
Flat; arch, proportion for, 1925h. Floors arched, $1903 b$ et seq. Tile roofs in India, $1903 g$. Of concrete, $1903 \mathrm{u} \mathrm{et} \mathrm{seq}. \mathrm{Tile}$, spec., 2282a. Of zinc, in spec., 2294. Iron, rolled for flitches, 1629 u . In spec., $2285 a$, Of lead, in spec., 2288. Wetterstedt metal
for, 2224 . for, $2224 e$
Flattened sheet glass, 1872 et seq.
Flatting , in thens, 1872
Flatting ; in spec., 2290
Flemish bond, 1892 et seq. In spec., 2282.
Bricks, Bricks, 1828. Tiles, 1838
Fletcher's warming and cooking, 2279g
Flicrs ; in stairs, 2186
Flint work $1666 f f, 1922 k$ et seq, p. 983 . In
spec., $2284 d$
Flitch ; of wrought iron, 2255a. Beams, 1629u
Flitcroft, Ilenry; architect, 512
Float stone; bricklayer's, 1890
Floated work; plastercr's, 2242. Quantity,
2248
2248
Floor; under oven or stove, $2279 p$
Floor or floor boards
measured, 2352, 2361. Laying, 2168. Nailing, 21733 . Varieties, in spec., 2285b
Flooreloth ; injurious to a floor, 1747
Flooring ; 2013 et seq. How measured, 2231. Single, 2014 et seq. Double, 2019. Doubleframed, 2020. Framed, 2022. Constructed with short pieces of timber, 2023. Timber for, $1729 f$. In spcc., 2285 b . Loads and weight ; placed on, 1628rl. "See Boarding"
Floors; arched, in brickwork, $1903 b$ et seq. Fireproof, 19037 et seq. Of cement, 190うs. Of conerete, $1093 r$ et seq. Plain tiles, in cement, 1903e. Of scagliola, 2250k. Of Parian cement, 2251h. Other cements, 2251 m et seq. Wood blecks, 2173c. In mediæval period, 2023a. 'Their ornamentation, ib. et seq. Of churches, in spec., 22856. For industrial dwelliugs, 3016.

Florence; church of Sta Maria del Fiore, 323, 327, 477, 616 ; dome, $1499 p$; apse, p. 1007. Proportion of eampanile, p. 1057. Church of Sta Maria Novella, 616. Of Sta Croce, ib. Choir of church of the Annunziata, 325. Pal. Gondi, eornice, 2725. Pal. Pitti, 325, 329, 331. Pal. Riceardi, 327. Palaces, 358. Pal. Pandolfini, 329, 2725, 2767. l'al. Strozzi, 327, 329 ; cornicc, 2725. Brilge, 313. Walls; at eburch of Sta Spirito, 1535, 1551, 1554; at San Lorenzo, 1535, 1550, 1554
Florentine school of architccture, 329. Prineiples of, 330. Prineiple churches of, ib. Byzantine architecture traced in works of, 332. Period and princibal masters of, 333

Florid English or Tudor style; its ara, \&e., 422 et seq. Examples in Scotland, 431. Iu Eugland, 432
Flowers ; used in dceoration, p. 994, p. 995
Flue; 190 $a, 1905 b, 2793$. In spee., $2282 a$. See "Chimney "
Fluo-silicic acid, $1667 y$
Flush rings, 2263. Bolt, 2259
Flushing; 1887b, 1888h. Tank, 2220p. See "Water waste preventer"
Fluted sheet glass, $1872 d$
Flutes of colnmns; their nature and probable origin, 145, p. 948
Flying buttresses, p. 1024, p. 1047, p. 1048
Foix, Luigi de ; architeet, 371
Folded floor, 2168
Folding doors, 2130. In spee., 2285f
Foliation ; in windows, p. 989
Fontaine le IIenri, near Caen ; châtean, 548. Stone, 1666kh
Fontana, Carlo ; architect, 36 万

- Domenico ; arclitect, 336, 344

Fonthill, Wiltshire ; abbey, 528
Footings; of a wall, 1882 et seq., 1916a. Stone, in spee., 22846
Foots Cray, Kent ; villa, 3000
Force of the wind, 1592a et seq., 166 $f f$
Forest of Dean ; stone, 1666e
Fork ; thateher's, 2211 s
Formation of bodies by glue in joinery, 2193 -2208
Formeret, $1499 v$
Fortified houses ; in Spain, 586
Fortuna Virilis, at Rome; temple, 212, 261, p. 953, p. 1057

Forum; of the Romans, deseribed, 218. Civilia and Yenalia, ib. Of Pompei, 212
Fotheringay, Northanptonshire ; church, assimilating work, p. 968. Spire, p. 1002
Foul air in rooms, 3032

Foundations, 1881 et seq., 19164, 3032. Vitruvius's advire on, 1881. Best soils for, 1882, 1883. Their depth, 1884. Spread of, 1581. Use of inverted arches in, 1885 . Cylinders in, 1885 a. Whalls above, should be liept diy, 1886. Drainage of, 1887. Insufficient, $1502 c$. In spec., 2281, 2293a. For iron columms, p. 1065
Foundery, 2265 et seq. Work; in spec., 2286. Estimating, 2374
Fountain at Bataha, 605. At Romen, 548. At Clermont, ib. At Viterbo, 614
Fountains, Yorkshire ; convcutual eliurch, 398, 497, p. 971 et seq.
Fractures ; in an arch, 1496, 1497
Framed flooring; weight of, 2022
roofs ; single, $2052 \mathrm{~m}, 2052 q$. Double, 2052 s
Frames ; for windows, in spcc., $2285 f$
Framing ; of joinery, 2174-2175a. Timber for, $1729 f, 2125 c$. Angles in joinery, $21 \overline{7} 4$ et seq.
Franc, Juan ; arelitect, 594
France; oldest buildings in, 289. Marbles of, 1679. Pointed architeeture in, 530 et seq.
Francis I., of France ; patron of arts, 358
Frankenberg ; church of St. Mary, 567
Franking sash bars, 2165
Franklin's calorifere stove, 2279 c
Frascati ; houses, 614
Fratres pontis, 310, 313
Freeholds ; valuation of, p. 1094
Freeman, Edward A.; writer on architecturc, p. 965

Freemasons; Company of, 308 et seq., 401, p. 1055, p. 1057

Freemasons' hall, London, 1681c
Frecmasonry; histories of, 316, 2629
Free seats ; in sp c., 2285 h
Freiberg ; cathedral, 567,579. Spire, p. 1005
Freiburg an der Unstrut ; church, 579
Freiburg-im-Breisgau; münster, 570, 579. Apse, p. 1007
Freideberg ; church, 572
Freixo d'Espada a Cinta; walls, towers, castle and ehurch, 601
French architects; attached to Venctian in preference to Roman schools, 358. The first in Europe, 360
French ; building stones, 1666 hh et seq. Cascment, $2165 b$ et seq., 2278 m ; in spec., 2285 d . Mouldings and details, p. 1035. Polishing; in spec., 2290a. Sashes, 2164, 2165b. School of architecture, 357 et seq., p. 1035. Slates, $2211 h$
Fresco painting; not treated, $2273 h$
Frette-embattled ornament, 397
Frette-triangular ornament, 397
Fietwork ; in glazier's work, 2229a
Freudenstadt; church, 583
Fribourg ; mason's mark at, 322
Friction, $1331-1341$. Observations on, 1364 -1389
Frieze ; to eorniee, in spec., 2285e. Pancls of a door, 2130. Rails of a door, ib.
Frigidarium ; of the Greek gymnasium, 175 Of the Roman batis, $£ 35$
Frisone, Mareo da; architect, 619
Frit; in glass-making, 1868
Frobel, F.; "zimmerman," 579
Frog, or hollow of a brick, $1502 /$
Frogmore; mausoleum, 1671a, 1671b, 1671f, 1671h, 1680

Frost ; cffect of, on slate, 1808. On a building, 2:50h
Fryer's refnse destructor, $1907 e$
Fuller, bishop; his aphorisms relating to private buildings, 2985-2989
Funnels; of chimneys, 2793
Furnes, Belgium ; church of Ste. Walburge, 557
Furness, Lancashire; conventual church, 398. Masons' marks, 3226 . Doorway, p. 973
Furniture ; inlaying, 2173c. For locks, 2261. For doors, in spec., $2285 f$
Furring joints of floors, 2169
$G \begin{gathered}\text { ABRIEL, Jacques Ange; architect, } 360 \\ \text { Gaddi, Taddeo; architect, } 323\end{gathered}$
Giters ; thatcher's architcct, 323
Gaiters; thateher's, $2211 s$
Galatino; monastery of Sta Catherina, 625 Galera; houses, 614
Gallego, Juan; architect, 596
Gallery; height of, 2822. In Elizabethan houses, 440. In nave of church, 601
Galli-Bıbiena, Antonio ; architect, 2950
Gallo, Tommaso ; abbot, 611
Gallot, gallet, or garret ; stone chipping,
Galton ventilating stove, 2279 d
Galvanic aetion; in metal roofs, 2224, 2224 f^{*}
Galvanizing iron, $1780 \mathrm{c}, 1796$ et seq.
Galway marble, 1683 c
Gamondia, Enrico di; architect, p. 1008
Gandon, James ; architect, 504, 526
Gankoffen, Joerg ; architect, 579
Garcia, Pedro; architect, 595
Gargoyle, 553
Garigliano; amphitheatre on banks of, 228
Garret or gallet; see "Gallot"
Gas; governors, 2264. Lighting buildings, $2264 f$. Leakage, 2264j. Fires, 22796 . Burners, 2264c. Danger of, 2264h. Ventilation of, $2264 j$
-- fitter, 2264 et seq. In spec., 2293.
2264. pipe, 2223q, 2264a, 2264h. Flexible, 2264. Delivery per hour through pipes, 2264a. Mode of fixing, 22646
——stoves, 2264i. $2279 e$
G *ses, noxious; diffusion of, 3032
Gates; and coachhouse doors in spec., 2285 e. And piers, 2734
Gateway at Arpino, \&c. 304. At Bruxelles and Louvain, 564. At Mycenæ, 34
Gauge ; joiner's tool, 2120. Bare or margin of a slate, 2210. Of tilting, 1835. For zinc, 2224h. Stuff, 2237, 2246. For filleting, 2211
Gauged arches, 1925e. How measured, 2311. In spec., 2282
Gault clar, $1831 f$
Gauthier, M. P.; architect, 2975
Gayfere, Thomas; mason, 528
Geber ; architect, 368
Gcezeh; pyramids, 74, 301
General joiner ; machine, $2124 b$
Genève, Simon de ; priest and architect, 561
Genius in architecture, 2492
Genoa; church of San Lorenzo, 319
Genoese Gothic, 608
Geometric forms; in tracery, p. 995 , p. 1028
Gepiers, 976
Geometrical drawings, 2490c
—— principles of proportion, p. 1006
591 tracery in England, p. 968. In Spain,

GLA
Geometrical staircasc, 1927 et seq. In joinery,
mode of forming, 2184
Geoumetry 874 Geometry, 874 et seq. Definitions, 875. Right lines and rectilineal figures, $876-907$. Cir cles, 908-928. Surfaces, 929-934. Proportion, $935-957$. Similar figures, $958-$ 9i8. Planes, 969-978. Solids, 979-995. Iractical, 996-1032. Descriptive, 11101211. Use of in proportion, p. 1008 et seq. S udicd in England, p. 1037
Gerbert; monk and pope Sylvester II., 309
Gerbicr, Sir Balthazar ; architect, 465
German architecture, 365 et seq. Details and mouldings of Gothic arcbitecture, p. 975 Gothic in Italy, 608. Spires, p. 100 L
German sheet glass, 1874
Germanic symmetry, p. 1008
Germany; early architects of, 365. Employed in other countries, ib. Italian architects employed in, ib. Two different styles in its ancient churches, 283. Pointed architecture in, 565 et seq., p. 975
Gerona; cathedral, 586, 592, 595 . Baths, 306
Gerwiu of We=el ; architect, 577
Ghent ; church of St. Nicolas, 554, 559. St. Jacques, ib. St. Bavon, 555. 557, 559, 560. Of the Dominicans, 557 . Of St. Michel, ib., 559. Hospital of La Byloque, 557.

Giallo Antico marble, 2002bb
Gibbs, Jaucs; architect, 501—503
Giddea hall, Essex, 440
Gil de Hontanon, Juan and Rodrigo ; architects, $367,597,598,699$
Gilding, 2277a, 2379
Gilt mouldiugs; iu spec., 22291
Gimlet, 2110
Giotto or l Sondone ; architcc!, 323, 616, p.
1057 1057
Giraida ; bell tower at Seville, 320, 368
Girder; use of the word, $1628 c$

- of cast iron; shapes of, 2286 1628x. In

Method of trussing, Scantlings for, 2021.
Method of trussing, 202ia. Tinber for,
$1729 f$. How measured, 2335
Girgenti, 148. Houses at, 626. See "Agri-
gentum "
Gisborne priory, Iorkshire; conventual church, 421
Gisborough castle, Yorkshire, 398
Gizeh ; see " Geezeh"
Glaetzel, Conrad ; architect, 579
Glasgow ; works at, 167 lg
Glass, 1868 et seq. Pliny's account of discovery of, 1869. Crown glass, 1870a. Knobglass, ib., 1871a. Sheet, 1872. Patent plate, 1872b. German sheet, 1874. Plate, 1875. Rouglı plate, 1877. Quarries, 1879. Broken, in dilapidations, p. 1'95. To remove from 2231a. Comp For ornamental purposes, 2231a. Compressive strength, $2231 d$. In
spec., 2289. See "Glazing,' spec., 2289. See "Glazing"

- used in Anglo-Sanon buildings, 385,386

Glastonbury 2276 d
389,435 . St. John's
Chapel of St. Joseph, 398 clurch tower, p. 1002.
Glazed bricks ; white 398
1831e. Earthenware, $1839 g$. Tiles; colours, 1839x
Glazier, 318. Work, in spec., 2289. Estimating, 2378
Glazier's vice, 2228. Knife, 2226

GUT

tory and proportion of, p. 942. Orders, 2570 et seq. Style for houses, 525
Grecian temple ; origin of, 139
Grecians, early buildings of ; were palaces of princes, 137. Described, ib.
Greco-Roman style, 524
Greek churches; distribution of, described, 375-377. Cross, for a plan for', p. 1006
-- inarbles, 1676

- mouldings, 268, 2532

Green ; arsenical, 2278
Greenheart timber, 1728 c
Grecn marble or serpentine, $1683 c$
Greenwich, Kent; church, 505. Hospital, $2973 a$; interior of chapel, by Stuart, 516 ; roof of chapel, 2047. Palace, 423. Qucen's house, 462
Grégoire, Mons. ; architect, 550
Gregory III., pope ; arts under, 281
Greville, Sir Fulke; house for 440
Grey cast iron, 1765b. Stone limes, 1843
Griffith, W. P.; architect, on proportion, p. 1016

Grimsthorpe, Lincolnshire ; palace, 426
Grinding stone ; bricklayer's, 1890
Gritstone ; thatcher's, $2211 s$
Groined arches in brickwork, 1903
-. ceilings of timber, 2023 g et seq.
_- vaulting, $1444-1446$. Keady method of equilibrating, 1457, 1458. Applied to churches with naves and aisles, 14591463. In pointed architecture, $1499 v$

Groins, in masonry ; various, 1945 et seq. To describe parts where the arches are of unequal and of cqual heights, $2059,2060$. Ribs for, 2058-2077
Groove, 2023, 2104, 2171
Ground; glass, $2 \because$ an $1 c$. Rents; valuation of, p. 1095, p. 1096, p. 1097. Table, p. 980
Grounds; in joinery, 2166, 2167. In spec., $2285 c$
Group ; of mouldings, p. 971
Grout ; or liquid nortar, 1860
Grouting ; a cause of decay in timber, 1746. In spec., 2282
Grozing irons ; plumber's, 2212
Gruenberg ; church, 567
Grundy's warm air grate, 2279d. Warming apparatus, $2279 e$
Guadalajara ; palace of Mendoza, 597
Guadalupe ; Hieronymite monastery, now a barrack and parish church, 594
Guards to windows, in spec., $2286 a$
Guarini, Camillo; architect, 365
Guebwiller church ; octagon steeple, p. 1004
Guildford, Surrey ; castle, 394, 398
Guildhall, London, 414, 523
Guild of masons, 313 et seq.
Guiloches, 2817
Guimaraens ; Dominican cloisters, 603. Nossa Senhora da Oliveira, ib.
Guisborough priory, Yorkshire; mullions, p. 991
Gully traps, 2220k
Gumiel, Pedro ; architect, 367, 598
Gundulph, bishop, 321. Introduced ornament into Norman architecture, 395
Gun metal ; strength of, $1630 r$
Gutta-percha, 2223r. Experiments on pipes, ib.
Gutter ; tiles, 1837. In filleting, $2211 l$
—— boards, in spec., $2285 a$
Gutters, 2255. In spec., 2285a, 2286a, 2293f. Of zinc, in spec., 2294 . Arris of deal, in
spec., 2285h. Lead, in spcc., 2288. Of copper, 2224, 2224a
Guy's hospital ; ventilation, $2278 y$
Gyddyc hall, Esscx, 440
Gymnasia of the Grceks; parts of them and plan, 176
Gypum, 1866c. Used for walls in Paris, 2249 et seg.

Hand HL hinges, 2258a

Hack, in brickmakiug, 1815
Hacket or Ouguet, David ; architect, 604,605
Hacking knifc : glazier's, 2226
Haddon hall, Derbyshire, 426
Maden and Co.'s system of veutilation and warming, 2:78!.
Hadlcigh, Essex ; church beacon, p. 1002
Hadrian`s villa; walls at, 1535
Hal, or Ilalle ; church of Notre Dame, 559. Of St. Maurice, 567
Halberstadt; cathedral, 569
Half paces, in stone stairs, 1929
Halkin mountain lime, $1843 c$
Hall: at Westminster ; Guildhall, London; Goodrich; Chester; Bristol; Woodstock; Eltham; Kenilworth; Darlington ; Crosby, in London; Durham; Conway; Raby; Swansea (2); Castle hall, in Lcicester ; Spofforih; Caerphilly; Warwick; Mayfield ; Berkeler, 414
Halle, or hall of companies; at Ypres, 561. Bruges, ib. Louvain, ib. Diest, ib. Ghent, ib. Mala at Barcelona, 595
Halle an der Saale ; church of St. Mary, 583
Halle aux bleds, at Paris ; roof, 2051
Hallmann, Anton; architect, 3‘7
Halnacre, Suffolk, 428
Ham IIill stone ; its analysis, \&c., 1666
Hamelin's cement, 1865
Hamilton palace, Scotland, 1683
Hammer ; bricklayer's, 1890. Plumber's, 2212. Slater's, 2209
_beam roofs ; Gothic, p. 987, 2052f, 2052l, $2052 \mathrm{~m}, 205 \% \mathrm{~s}$. In spec., 2285α

- blocked, to granite, 1915 c

Hampton Court, Herefordshire, 423
Hamp,ton Court, Middlesex; palace, 426, 1683, $1908 a$. Roof, 2052t. Gateway, 427
Handlinch house, Wiltshire; portico, 516
Handpick ; slater's, 2209
Handrail, 2176,2187 et seq. In spec., $2285 d$. Of glass, 2231a
Hanging sashes, 2165a. Tiles, 1907b
Hanwell, District scbools infirmary, 2976c
Hardening stccl, 1776
Hardwick, Philip, R.A.; architect, $1666 d$
Hardwick haIl, Derbyshire, 446
Hare, A.; architect, 561
Hare-hill stone, $1667 w$
Harewood, lord; house for, 514
Harlaxton hall, Lincolnshire, 426
Harlech castle, Merioneth shire, 402
Harmony in architecture, 2509
Hart, Sir Percival ; house for, 440
Hart's ventilator, 22780
Harwich cement, 1863
Haselwode stone, p. 1045
Haseridge, Sir William; house for, 440
Hassock; in ragstone, $1666 t, 1922 c$
Hatched ornament, 397
Hatchet ; joiner's, 2117
Hatfield, Hertfordshire ; honse, 445, 451, 452
Hatfield lodge ; plan for, 440

HIP

Hratton, Liord Chanccllor ; house for, 440
IIauuch of an arch ; to fill up, 1497
Hawarden cast'c, Flintshire, 398
Hawk; plasterer's, 2234
Hawkhurst ch treh, Kent ; east window, p. 1015
Hawkins, John S. ; amatcur writcr, p. 1012
Llawksley's patent treads, 2180
Hawksmoor, Nicholas ; architect, 499
Hay and moss for setting tiles, 1906
Hayrack ; in spec., 2285 h
Head of iron; in casting, $2265 h$
Header ; bricks, 1894. Slates, $2211 e$
Health: cubic fcet allowed; for hospitals, $2975 a$ et seq. For infirmaries, 2976a et seq. Generally, p. 1226. Couditions of a house, 3027 et seq.
Heart wood; densest and stronge t, 1628 :
Hearths; in spec, 2282a. Back, in spec., $2284 d$
IIeating, 2279 et seq. Insecurity of apparatus; $2279 p$. In spec., $2282 b$
Hecke, Van ; ventilation, $2278 h, 2278 z$
Ilcekington, Lincolnshire; church, 421, Tower and spirc, p. 1001. Mouldings of doorway, 1020
Heckler, Johann Georg ; architect, 570
Heddon stone ; its analysis, 1666
Hedgerlcy bricks, 1826
lledingham castle, Essex, 394, 398
Hegge marble, 2002ii
Height of columns, 2543 et seq. Of buildings, use of square and triangles, p. 1015, p. 1016
ILeilbronn ; church of St. Kilian, 583
Heinzelmann, Conrad ; architect, 579,580
Hempstead Marshall, Berkshire ; house at, 465
IHeneage, Sir Thomas; house for, 440
Hengrave hall, Suffolk, 426
IIenry III.; many religious buildings founded in his reign, 401
Heuszlmann, Dr. E. ; architect, on proportion, p. 1017

Heraclida; colonies of, p. 943
Herbert, Henry, earl of Pembroke ; amatcur architect, 508
Hercules ; temple at Agrigentum, p. 946
Hereford; cathedral, 398, 421. Founders and dimensions of, 431
Hermogenes; architect, p. 951
IIerodes Atticus : his munificence in architectural expenditure, 193
Herrera, Giovanni de; architect, 371
Hever cas: le, Kent, 425
Hexastyle ; temples, 2528 et seq. Porticoes, p. 944 et seq.

Hexham, Northumberland; cathedral, 385
Hexpartite vaulting, $1499 / f$
Hieroglyphics; in Egyptian architecture, 86
Hieronynite monastery; at Lupiana, 592. At Guadalupe, 594. Segovia, 596. Of La Pena at Cintra, 607
Higham Ferrar*, Northamptonshire ; church, 408, 421. Roof, 20520. Porch, p. 998
Highgate, Middlesex ; house at, 440
High-pitched roof; adopted from vaulting, $205: 2 f$
High-pressure water supply, 2218k et seq.
Hill hall, Essex, 426
Hingeing. 2149 et seq.
Hinges, different sorts, 2258 et seq. In spec., $2285 f$ and $g, 2286 a$
Hiorne, Francis; architect, 514
Hip rafter, 2009, 2035a. Tiles, 1836

HYD

IIips, to find back of, 2054. Lead, in spec., 2288
Ilitchin's fibrous slab, 22463
Hoarding ; in spec., $2284 e$
Hud and Board; slater's, 2209. Bricklayer's, 1890
Hodgkinson's form of girder, $1628 y, 1629 k$
Hoeflich, Clans: architect, 580
Hoffmann, Nikolaus ; architect, 583
Hoffstadt, F.; architect, on proportion, p. 1020
IJolbeach, Lincolnshire ; church, 2145 b
Holbein, Hans ; painter and architect, 427
Holdenby, Northamptonshire; banqueting house, 440
Holkham, Norfolk ; house, 511, 2822, 2997
Holland, Henry ; architect, 524
Holland house, Kensington; for Sir Walter Coap or Cope, 440, 452
Hollingtou stone, 1666o
Hollow bricks, 1830, 1831c. In mortar, 1900b. In partitions and arches, $1902 b$, $1903 i$

- cement blocks, 1902 d
- moulding, 2532, p. 970 , p. 973
-_walls, $1902 c$ et síq., 3029. In spec., $2282 c$
Holt, Sir Thomas ; ground-plau for, 440
- 'Thomas ; architect, 443

Holyrood chapel, Edinburgh, 431
Hloman and Rodgers' fireproof floor, 19030
Homan's quartz, de. paving, 190je
Homogencous metal, 17\%3. Strength of, $1630{ }^{\circ}$
Hone, Kent; church windows, p. 1050
Honecort, Wilars de; architect of 13 th century, p. 969, 1008
Honeyman's diaphragm ventilator, 2278 r
Honfleur ; Church of Ste. Catherine, 547
Hontanon. See "Gil de Hontanon"
Hood mouldings, p. 981 et seq.
Iloogstraeten ; brick chureh, 560
IIoop-iron; weight of, 2254. Bond, 1899a. Cramps for hollow walls, $1902 e$
IIope, H. T. ; house of, in Piccadilly, $1666 r$
Ilopper casements; in spec., 2286a. Waterclosets, $2220 c$. Yentilator, $2278 n$
Hopton Wood stone, 1666i, $1677 b$
Horizontal courses to vaults, 1925d, 2c02f, 2838
Hornblende ; granite, 1669, 1671j
Horse Guards, London, 511
Horseheath house, Cambridgeshire, 465
Horsemonden, Kent ; church porch, p. 985
Horse-power, 1346.
Horticultural Society, London ; roofs, 2052
Hospital church at Cues, 579

- of La Byloque at Ghent, 557. At Santiago, 598. Of San Giovanni Battista, near Toledo, 370. At Vercelli, 611. At Angers, vaultiug, $1499 g g$
Hospitals, 2973 et seq. Examples at Milan, 2974. Of Greenwich and Chelsea, 2973a. La Roquette at Paris, 2974. At Bordeaux, 2975. Lariboisière at Paris, ib., 2278z. At Netley, 2975a. Hôtel Dieu at Paris, and o thers, $2975 b$.
size of wards, 2975 c . Ventilation of, il. New French hospitals, 2278h. London, $2278 q$. Separation of wards, $2975 d$. St. 'rhomas's bospital, London, 2975e; its warming and ventilating arrangements, 2975 g . St. George's hospital, 2278k. Circular, 2975k. For villages, 2975h. Convalescent, 2975 . Imbecile, 2975 m

Hospitium of a Roman house, 251
Hot-air flues or channels, 2279e. In America, $2279 g$. In spec., $2282 b$.
Hot blast, 1758. Iron, strength of, 16281 et seq., $1630 r$
Ilot water; low-pressure system, $2279 b$, 2279h. IIigh pressure, 2279i. Cistern, $2223 q$
Ifôtel ; des Ambassadeurs at Dijon, 548. De Bourgtheronlde, at Rouen, 550, 551, 552. De Cluny, Paris, 548. Du Franc, Bruges, 563. Des Invalides, Paris, 359

Ilôtel de Ville; St. Quentin, 548, 550. Compiègne, 549. Orleans, 548. St. Omer, 515. Alost, 562. Bruges, ib. Bruxelles, ib. Louvain, ib. Mons, ib. Ghent, ib. Audenacrde, ib. Courtrai, ib. Leau, ib. Casa de Ayuntamiento at Palencia, 596. Valladolid, ib.
Hou, of the Chinese, 100
Houghton, Durham ; church, proportion of, p. 1012

- hall, Norfolk; water-house, 508

House ; of the Forest of Lebanon, 53
House of Commons; Reid's system of ventilation, 2278 g
Houses, first; according to Vitruvius, 5. First, of the Egyptians, Peruvians, il. Present, of the Abyssimians, ib. In the East, consisting of more than a single story, 140. Terrace on the tops of them, ib. Designed by John Thorpe, 440 . Private, 2994. Supply of water to, 2223i. Sanitary aspect of construction, 3027 et seq. of Parliament; London, 527. River wall, $1671 b$. Roofs, 1796 . Stones used in building, 1660. In Dublin, 526
Household of the King, 319
Housing; of principal rafters, 2033. Of steps, in spec., 2285c
Howard: Henry, earl of Northampton ; house built for, 442
Howarth's screw ventilator, 2278 g
Howden, Yorkshire ; conventnal church, 407, 421, p. 97.1 et seq.
IIubbuck's zine white, $2272 c$
Huddlestone stone, 1681c, p. 1045. Analysis, 1666
Huerta, Juan de ; scnlptor, 548
Huesca ; cathedral, 598. Doors, 2145c. Church, 591
Hugo de Goldclif ; master mason, 312
Hull, Yorkshire ; bricks used early at, 416
Hiiltz or Hiltz, John, senior and junior ; architects, 305,570
Human figure; proportions of, 2394. Actions of, 2396 et seq. Centre of gravity of, ib. Motion of, 2397. In running, 2398. In preparing to strike, 2899. In bearing a weight, 2400 . In leaping, 2401. In leaning, 2402. In flying and falling, 2403. Drawing, 2383d
Hundred of lime, 2303
Hunsdon house, Hertfordshire, 426, 446
Huppeau; church spire, p. 1000
Hurlers, the ; circle of stoncs in Cornwall, 16
Hurstmonceaux, Sussex ; house, 423
Hurwood's window, 22780
Hutchinson's process for preserving stone, 1667 m
Huy ; church of Notre Dame, 558
Hyatt's patent sheets for floors, $1903 r$
Hydraulic; concrete, 1862d. Lift, 2223v. Limes, $1843 d$. Mortar, 1859i. Ram, 2219

HYG

Hygeian rock composition, 1886
Hypacthral temple, at Pastum, 149
Hyperbola, 1083-1094
Hypnerotomachia; or Songe de Poliphile, a work so called, by F. Colonma, 326
Hypo-nitro kali, 2276 c
Hythe church, Kcit; columns, 1681h.

IBARRA, Pedro de ; architect, 597
Ichnographia, of Vitruvius, p. 971
Ictinus; arclitect, p. 901
Jffley, Oxfordshire; parochial churcl, 398
llissus; Ionic temple on the, 153, p. 951
Illeseas ; church and monastery of Situ 1)ominico di Silos, 369 . Palace of San Ildcfonso, 372
Imbecile asylum, 2975 m
Imitation in German churches, 568
Imitations in painting, 2276
Imitative Gothic, p. 965
Impact or collision, $1628 e, 1630 o$. To bcams, 1628e, 1630o. To stone, $1502 p$
Impluvium of a Romau house, 247
Impost level, $2002 d$
Imposts and archivolts of arcadez, 2632
Impulse of the wind, $1592 a$ et seq., $1667 f$
Inch tool ; mason's, 1910
Incisel plaster work, 2245 at
Inclination of roofs in variuus climates, 2027 -2030
Inclined; tower, 598. Planc, 1293-1306. Timbers. 1622. Beam, $16^{\circ} 28 t, 1629 y$.
Indestructiblc paint, $2273 i$
Indian architecture; similarity of, to Persepolitan, 55. Sir W. Jones's opinion on, ib.
Induction; system of ventilation, 2278 w
Induration ; of stonc, $1667 n, 166 \overline{7} r$
Industrial classes; town dwellings for, 3012 et seq.
Infirmaries ; definition, 2076. Workhouse, 2976a. Requirements of Local Board, $2976 b$. Of the schools, at Hanwell, 2976c. At Blackburn, $2976 d$
Ingegneri ; in Italy, 619, 620
Ingelramnie ; architect, 516
Ingeniator, 312, 319
Ingoldstadt ; church of St. Mary, 579
Ingot copper, 1788 a
Inlaying of furniture, $2173 c$
Inlet brackets for ventilation, 2278 s
Insecurity of heating apparatuses, $2279 p$
Inside bead of sash frames, 2147. Linings of sash frames, 2147
Inspection clamber to drains, 18881.
Insula; in Roman architecture, 253
Interaxal divisions; in a design, 2852. Prevent false bearings, 2843. Applied to the Villa Capra, ib. Great use in, 2844. Used by Gothic architects, 2845. Obligations to Durand for introduction of, 2846. Number of, in different apartments, 2848. Columns of, how arranged in apartments, 2849. Applied iu designing churches, 2875
Interceptor to drain, 18881, 2220 i
Intercolumniation; different species of, 2605. Of the Doric order, ib. Of the Tuscan order, 2606. Of the Ionic order, 2607. Of the Coriuthian order, 2608. Vignola's practice, 2610. Cases of wide, 2613. To be of equal width, 2614-2616

Interest ; calculation of, p. 1101 et seq. Solution of problems in, p. 1102
Interior cements, 2251 det seq.

ISA

Interiors of buildings, beauty of, 2504, 2505
Intcrpenetration, 578. Of mouldings, p. 974
Intertic of a partition, 2025
Intrados ; of a Gothic arel, 1920 d
Inverted arch ; in foundations, $\mathbf{1 8 8 5}$. In spec., $2 \div 82 c$
Jona marbles, 1682
Ionia; colonies in, p. 950
Ionic order; origin of, according to Vitruvius, 140. Of the Greeks; height of its columns, 154. Entablature, ib. Bases, 150. Volute, 157. Proportions, p. 950 et seq. Principal examples, 2581. In the temple on the llissus, ib.; Table of its parts, ib.

- order of the Romans, 260. Table of examples, ib. General proportion, 261. F'roportions, p. 950 et seq.
- of the Italians, $25 \overline{4} 3$ et seq. Vignola's profile of, 2574. Table of parts of, ib. Parts of, to a larger scale, 2575 . Volutes of, described, 2576. Profile of, by Vitruvius, 257. By Palladio, 2578. By Serlio. 2579. By Scamozzi, 2580 . Intercolumniations of, 2607. Arcade, 2624. With pedestal, 2630
Ipsambool, 02, 166. Temple, 71
Ipswich, Suffolk ; college, 426
Irish ; a colony of the first race of people, 11
—— granites, $1671 j$ et seq. Marbles, 1683 et seq. Slates, 1806. Towers, p. 1003
Iron, 1754 et seq. Species of ore, 1755. Mode of smelting, 1756-1759. Bar iron. 1760, 1761. Nalleable iron, 1725 et seq. Observations on iron, 1764-1766. Fibrous and crystalline irons, 17646 . Plate iron, $1764 f$. Cast iron, 1764 et seq. Security for supporting weight, 1768. Soft gre:, best sort, 1760. Test of goodness of cast, 1767. Corrosion, 1759 . Galvanizing, $1780 b$
- Weinht of 1 foot cube of bar iron, 2254 ; of wrought iron, ih. ; of cast iron, $i b_{.}$; of 1 foot in length of square iron, $i b$.; of round iron, ib.; of close hammered flat bar iron, $i b$. ; and of flat cast iron, $i b$. In stonework ; decay of, p. 1004
——bark wood, $1728 d$
cast and wrought; strains on beams, girders, and pillars, 1628 et seq. Crushing weight, 1630 . Qualities of, for castings, $2265 a$. Weights of varieties, $2254 a, 226 \stackrel{\rightharpoonup}{2} d$
- construction in rear of warehouse for light, $2255 d$
- drains, $1888 n$
joists and girders, $1628 x$ et seq. Special lengths, \&c., $1629 . f$
, sulphate of, 1752. Oxide of, ib. Pyrolignite, $1752 a$. Paiuts for, $2273 b$ et seq. Minium paint, $2273 d$
Iron spire, p .1005 ; and roof, at Cologne, 574 - stairs, 2255. Doors, 225 e. Columns, 2255. Shop fronts, 2255 f . Wine bins, 2255 g ties in Italian Gothic, 609
wire, 1779 d . Cords, 2260
Ironmonger, $2265 r$; in spec., 2286. To joiner's work, in spec., $2285 f$
Irons; use of the word, 1628 c
Ironwork; how preserved from action of moisture, 1779, $2263 a, 2273 b$ et seq. Treated decoratively, $2355 h$, 2264. Fixing, in spec., $2293 f$
Irthlingborough, Warwickshire ; church window, p. 988
Isacoustie curve ; for a lecture room, 25982062

KIR

Jupiter Panhclleniss ; temple at Egina, 146, p. 943

Stator (now the temple of the Dioscuri) ; temple at Rome, 208, 262

- 'linans (now the temple of Vespasian) ; $t \in$ mple at Rome, 209, 262
Justin, emperor; architecture under, 272
Ju-tinian, emperor ; architecture under, 272. His architects, Anthemius and Itidorus, ih. Restored Byzantine palace, ib. Fortifications in Europe and Asia, ib.
Juvara, or Ivara, Filippo ; architect, 372, 623

KAILAC 1 ; temple of, at Ellora, 56 Kanlin or China clay, $1670 a, 167 \mathrm{~J} a$
Kallkolith stain, $2276 f$
Kaschau; church of St. Elizabeth, 572
Kedlestone house, Derbyshire, 517, 2996
Keene's cement, 1866. Use of, $2251 e$. In spec., 2287
Keep ; of a castle, 394
Keeper; of the Fabric, 312, 319. Of the works, ib.
Keldermens. See "Mansdale"
Kelso abbev, Roxburghshire, 431
Kelston house, Somersetshire, 446
Kenilworth castle, Warwickshire, 398, 414, $423,438,446$
Kerninghall, Norfolk; mansion. 426
Lennington, Surrey ; palace, 423
Kenon disconnecting trap, 225b
Kensington, Middlesex ; p lace, 1683
lient, William ; architect, 511,$1 ; 2 \pi 6$. Window by, 27.2
Kentish rag stona, 1663 s et seq., $1922 c$ ct seq. ln spec., 2284
Kenton stone, znalysis, 1666
Kєrb; see "Curb"
Kerby, Northamptonshire ; house, 440
Kerr, Robert, architect; his work, The English Geutleman's House, 3001
Kerrich, Mr.; on proportion, p. 1013, p. 1014
Ketton stone, $1666 s$. Analy
Kew, Middlesex ; palace, 527
Keyham dock yard, granite used at, 1671a
Keys and wedges, $1631 u$

- to bib-corks, 2223s

Keystone; diminution of arch, 1498. In vaulting, 2002 s
Kiddington, Oxfordshire ; church, roof of south chapel, 20520
Kief; church built at, in the time of Vladimir, 375. Convent of Petchorsky, ib. Of St. George and St. Irene, ib.
Kilkenny ; cathedra!, windows, p.988. Black ahbev, tower, p. 1003. Franciscan church, ib Ronnd tower, 1499 w
Killing knots; in painting, 2268. In spec., 2290
Kiln-burnt bricks, 1817
Kilns; in brick-burning, 1817, 1819. In limeburning, 1846
Kimbolton, Ifuntingdonshire ; palace, 426
King, bishop; at Bath, p. 1052
King closer; in brickwork, 1896

- post, 2031. Roof, 2035a, 2052d

King's College, chapel. See "Cambridge"
King's College, London, 520
King's Langley, Herts; palace, 426
Kirby or Kerby, house, 440
Kirchheim-im-Rıes; church, 572
Kirkaldy testing machinery, $2266 h$
Kirkham, Yorkshire ; conventual church, 421

Kirkstall, Yorkshire; conventual church, 421
Kitchen ; at Alcobaça, 602. Vaulting, $1499 b b$

- gas in, $2264 i$

Kitchener, in spec., 2286a
Kit's Coty house, near Rochester, 28
Knapton, Norfolk; church, $2052 t$. mouldings, p. 987
Knife ; thatcher's, $2211 s$
Knob glass, $18 \overline{1} 1$
Knobbled ; in mason's work, $1922 d$
Knocker, in spec., 2286
Knots; in painting, to kill, 2268. In spec., 2290

Roof

Knowle house, Kent, 446
Kounov, or cavea; of the Greek theatre, 172
Kowrie wood, $1728 d$
Kreglinger, W.; architect, 580
Kuemelke, Johann and Matthias; architcets,
Kühlmann's process for preserving stone,
$1667 k$ $1667 k$
uttenberg ; church, 567
Kyan's process for preparing timber, 1742,
Kylas or Kailaca, at Ellora, 56

L.AACH; abbey church, two apsidcs, p.
Labour and materials, 2343
Labourers' dwellings, 3012
Labra; of the Roman baths, 235
Lacing courses; in flint work, 1922n
Laconicum ; of the Roman baths, 235,236
Ladles; plumber's, 2212
Lake Albano; niches in buildings at, 2775

- Lady ; hocise for, 440

La Maladrerie quarrets, 1666
Lambton hall, Durham, 520
Lamego; cathedral, 603
Laminated ribs; in roof, $2052 b$
Lancaster ; castle, 398. John of Gaunt's gateway at, 416. Stalls, p. 985
Lancet-headed windows, p. 988
Lancet style; origin of the term, 405. Proportion of, p. 1023
Landau ; church, 580
Landings; in stone stairs, 1929. Of slate, 2211q. In wood stairs, in spec., 2285 d
Lanercost, Cumberland; conventual church, 407
Langeberg, Johann von ; architect, 577
Langhans, Carl Gotthard ; architect, 366
Langrune; church spire, p. 1000 , p. $100 t$
Lansdowne house, Berkeley square, 517
Lantern ; at Ely, p. 1001
Laon; cathedral, 540 . Church of St. Martin,
Lap; of a slate, 2210
Lapo or Jacopo ; architect, $303 a, 365$
Lapo, Arnolfo di; architect, 323
Lararium ; of a Roman house, 253
Larch, 1717
Larder fittings ; in spec., $2285 h$
Larke, T.; surveyor, p. 1035
Lascelles' concrete construction, 1903
LeAssant ; church of St. Pierre, 534
Lastringham, Yorkshire ; capital, 390
Latches; different sorts, 2262
Lath; for tiling, 2301, 2302. Plasterer's; difftrent sorts, 2238 . In spec., 2287. In
slating, $2210 b$. ${ }_{2301}$ slating, 2210b. Quantity per square, 2248,

LIC
Lathing, 2238. Tuinside of roof, in spec., 2287.
Wirc lathing, $2971 d$.

- hammer ; tiler's 1908 Staff; iler's, ib.

Lath laycd or plastered and staff; iler's, iU.
Latin cross ; for a plan, p. 1006
Latomus; a mason, 312
Latterkin; glazier's, 2228
Laughton-en-le-Mortheo, Yorkshire; church tower, p. 1002
Launceston, Cornwall ; castie, 398
Laundry ; in industrial dwellings, 3019, 3025.
Fittings, in spec., 228.5 h
Lavatio, frigida et calida; of the Greck gym-
nasium, 175 nasiuml, 170
Lavatories, $2223 t$. In industrial dwellings,
3018,3025
Laven, 3025
Screen, pe 986 . purfolk; parochial church, 421.
Laves's girder, $1630 c$, $2021 d$ mouldings, $\rho .987$
Lavoûte Cuil, $1630 c, 2021 d$
Layens, Matthew in France ; gates, 214 ăc
Layer Marney E , architect, 562
Layers in tiey, Essex ; hall, 426, 1908a
Lai ing ; in plasterer's words strength, $1628 w$
Lazing ; in plasterer's work, 2239
Lazzari, Donato. See "Bramante"
Lead, 1781 et seq. Specific gravity, \&c., 1781. Not altered by exp sure to air and water, 1782. Cast and milled, 1783, 1781. Danger of using water with it, 1785. Marine metal, 1786. Nee "Plumbery." Strength, 1630 . Sheet ; thickness of. $221 \overline{0} \alpha$. In spec., 2288 . Weight of, $2215 a, 2215 b$. For cramps, in spec., $2284 d$. Old or waste, 2216. Pipes, 2223g. Traps in pipes, 221とb

- colours, $2272 d$
- covering, 2216

Leads used in glazing, 2228, 2229a
Leadwork ; in glazing, 2227
2217 to roof; in spec., 2288. Ornamental,
Leaf of a lead, $2229 a$
Lean-to roofs, $2052 m, 2052 p, 2052 v, 614$
Lear boards, 2es
Leaseholds; valuation of, p. 1097
Leases held on lives ; valuation of, p. 1097
Leau ; church of St. Léonard, 557
Lebrun, M. ; his analysis of loads and weights of an order, 2524. Theory as respects ar-
cades, 2618, 2619
Leca do Balio ; fortified tower and church,
603
Ledgement tables, p. 980
Lee priory, Kent, 528
Leicester ; Roman wall
Martin ; roof, $2052 n$ wall, 382 . Church of St.
Le Mercier, Jacques; architect, 359
Leo the Isaurian ; destroys statues, 272
Leon ; cathedral, $588,589,2002 k$
Leou; in Chinese architecture, described, 100
Lerida; cathedral, 588
Le Roulet ; church, 53 ă
Lescot, Pierre ; architect, 357, 358
Lethicium, 2276c
Letters; glass, 2231a. On parapets, 442
Le Veau, Louis ; architect, 357, 359
Level ; bricklayer's, 1890
Levtr; properties of, 1265-1269
Leverington, Cambridgeshire ; church porch,
Lias, blue, 1843
Lichfield, Staffordshire ; cathedral, 421. Foun-
ders and dimensions, 434. Choir, p. 1006.
D. 983
p. 9 chapter house, p. 998 . Base course,

Liége ; cathedral of St. Paul, 557, 500 . St. Croix, 558. St. Jacqucs, 060 . St. Martin's, ib. St. Barihćlemi, ib. St. Jcan-en-I:le, ib. Episcopal patace, 63
Lierne ribs in vaulting, 2002 w
Lierre ; church of St. Gommaire, 559
Life; annuity tables, p. 1126 et siq. Expectation of, ib.
Lift; worked by hydraulic, gas, steam, and hand power, 2223 y
Lifting shutters, 2148a
Light; curve for reflection, 1107. Quantity of, 2747 . In hospitals, 29i5e

- diminution 0^{\prime}, through glass, 2226e

Lighting; by gas, 2264 et seq. Cumparison of materials, 2264 g . In spec., 2293 . By c.ectricity 22042
Lightning conductor; 2264k. Cords for, 2260. In spec., 22862
Lights; leadwork for, 2227
Lisorio, Pirro ; architect, 345
Lily ; in decoration, 87
Lime; 1840. Varicties of limestone, 18111842. Working and Merstham, 1843. Lias formation, $1843 a$. Hydraulic, $1843 d$. Brown most cstccmed, 1844. Measures of, 2305 . Effect on iron, 1780a. Bost, that which heats most in slaking, 1848. Use of fresh, 1849. Forming mortar, 1854 et seq. Examined by Smeaton, 1850.
——putty joints, 1900 a. Water, $18^{-3} 3$
Limehouse, London ; church of St. Anne, 499
Limestone, 1841, 1842. How to analyse 1845. Kilns for burning, 1846, 1847
Limewhiting, 2273q. In spec., 2287
Limoges; cathedral, 547
Lincoln; earthenware tile pipes found at, 2223p. Cathedral, 396, 406, 421. Founders and dimensions of, 431. Proportion of nave, J. 1016. Window, p. 988. East window, p. 991. Purbcek columns, 1681/h. Cloister, groined ceiling, 2023ig. Chapter-house, 1499bb. Castle, 394, 398
Lincoln's Inn ; new hall aud lihrary, $1666 d$.
Lincrusta Walton, 227 h
Lindisfarne, Durham ; church, 388
Lindsay \& Co.'s fireproof floor, $1903 p$
Line pins ; bricklayer's 1890
Linings ; to doors, in spec., 2285c. To damp walls, of slate, $2211 q$
Linlithgow ; church spire, p. 1002
Lintel, or heam of stone, \&c., 10020 . Strength of, 1864 . Ot concrete, $1908 x$. Methods of joggling, 192: h. To relieve weight over, 1925 f. Of wood, in spec., 2285 ; of stone, 1925 h
Lisbon: capture from the Moors, 600. Cathedral, 603
Lisieux; cathedral, 540. Church of St. Pierre, it.
Lisscweghe ; church, 55 ă
Listel, or Annulet, 2532
Little Casterton stone, $1666 p$
Little Maplestead, Essex; round church, p. 976. Proportion, p. 1016

Liverpool, Lancashire ; cathedral church, p. 197. Acme system of ventilation at pulilic huilding:, $2278 u$. St. George’s Hall, 227:g. Vault, 1903i. Reid's system of veutilation, 2278 g . Concert roou, lighting, $2264 f$. Docks, $167!h, 1671 i$
Lives; tables of annuity on, p. 1127
Living room ; for a poor man, 3014
Llanphey court, Pembrokeshire; palace, 413

LOU

Llanthony, Monmouthshire ; chureh 398
Lloyd's list of timuers, $1728 f^{\circ}$
Load of fir timber, 2344
Loads and supports in an order; equality of, 2524. Principles of proportion for the orders, 2525 et scq. In tetrastyle, hexastyle, and octastyle temples, 2528 . Concordance with the laws given by Vitruvius, 2529. Ancient examples of, 2531 . I'rineiples applied to points of support, ib.
Loam ; at cuds of timber, 1746 . For moulding, $226 \overline{ }$ c
Lobes, in Belgium ; destroved church, 558
Lobes of circular windows, to form, p. 995
Lobmar, G. von ; master mason, 577
Locher, Lorenz ; architcet, p. 1009
Loches; castle chapel, 307. Church, 535
Lock; different sor'ts, 2261. Furniture, 2261a
Lock rails of a door, 2130
Lodge or workshop, 317, $322 a$
Logan or rocking stones, 25
Aoyecov ; of the Greek theatre, 172
Lomazzo, G. P.; painter, translation of his work, 438
Lombard; Gothic, 608. Style, 623
Lombardi, the ; architects, 1. 1013
Lombards; overruu Italy, their civilisation and works, 280
London; commission temp. James I. to prevent buitling on new foundations, 457. Building stoncs used in, 1666c. Bridge, 1671e. Universily college library, $2192 a$
; St. Paul's old catbedral, 396 ; founders and dimensions, 434 ; repaired, 457 ; spire, p. 1001. New cathedral, 339, 14997, 2828; designs for, 467 ; ruins removed, 468 ; fir-t and last stones laid, 469; description of, 470-474; cost. 475 ; dimensions compard with St. Peter's, ib. ; size compared with three other principal churches of Europe, 476 ; defect in section in comparison, 477; poin's of support and mechanical skill, 478 ; its defects and abuses, 479 ; failures in, ib. ; fine vi , w of, 2503 ; points of support of, 1581 ; timbering of dome, 2049 ; proportion of, p. 1065 ; steps, 1681 ; mosaic work, $2231 h$
churches; Christ church, Spitalfelds, 499. St. Dunstan's-in-the-East, 485 ; spire, p. 1002. St. Gcorge's, Buomsbury, 499. St. Gcorge's, Hanover Square, 499. St. Giles'-in-the-Fields, 512 . St. James', Westminster, 875, 2875. St. John's, Westminster, 498. St. Martin's-in-the-Ficlds, 502 ; roof of do., 2046 ; spire, p. 1004 . St. Lake's, OId Street, 523. St. Leonard's, Shoreditch, ib. St. Mary-le-Bow, 484. St. Mary-le Strand, 508. St. Mary WooInoth, 499. St. Stephen Walbrook, 483. St. Olave, 512. Temple church, p. 1006; proportion of, 1012. See "Southwark"

- Sce under names herein.

Londonderry ; docks, 1671/h
Longford castle, Wiltshire ; 440, 452
Longford hall, Shropshire ; 525
Longleat house, Wiltshire; 446
Long Meg and her daughters ; circle of, in Cumberland, 16
Lonker's ventilator, 22780
Loriot's cement, 1859k, 1865
Lorme, De ; Nee "Delorme"
Lorsch; convent, 283
Louis, V. ; architect, 2951

LOU
Louis XII., king of France; acquainted with the arts of ltaly, 358
——XIV., king ; extravagances of style under his reign reprobated, 2604. Works of architects under, 359
Louth, Lincola-hire; parochial churc'?, 421. Tower, p. 1002
Louvain ; church of the Dominicans, 557. Of the Grand Béguinage. 558. Ot Sc. Pierre, 559. Hôtel de Ville, 562

Louvre or Luffer ventilators, 2231a. Boarding, in spec., $2285 b$
Louvres; Môtel Dieu, 540
Lovelace marble, $1681 /$
Lozenge ; ornament, 397. And pattern slating, $2210 g$
Lubeck; cathedral, north porch, p. 999
Lucarne windows, 550
Lucea; cathedral, 616. Honses, 614
Lucchino da Milano; architcet, 623
Ludlow, Shropshire; castle, 394, 398. Parochial church, 408, 421
Lucdinghausen; church, 583
Luffer. See "Louvre boarding"
Lugo; cathedral, 587
Lullingstone, Kcut ; design for, 440
Luna, Krancisco de ; architect, 598
Luncttes, 1905
Lunghi, Onorio ; architect, 312
Lupiana; Hicronymite monastery of San Bartolomé, 592, 596
Luxor ; temple at, $8:$
Lezarche, Robert de; master mason at Amiens, $303 a, 542$, p. 1059
J.ynn, Norfolk; church of St. Nicholas ; doorway, p. 998
Lyon; cathedral, 540 ; Bourbon chapcl therein, 547. Church of St. Nizier, 545

Lysicrates; choragic monument of, 163
Lyveden, Northamptonshire; design for house, 440

MACADAM ; for paving, 1672 Machinery; in joincrs' trade, $2124 a$
Machuca, Pedro; architect, 368
McKinnel ventilator, $2278 q$
Macleod's metallic concrete, 1905 c
Maderno, Carlo ; arehitect, 336, 338, 341
Madrid ; pulace, 368, 371
Madurah ; choultry or inn, and temple, 61
Maess, Heinrich ; architect, 577
Maestricht ; church of St. Servais, 560
Magdeburg ; cathedral apse, p. 1007
Magister Operum, 319
Maglione, Ferrante ; architect, 613
Magnetic oxide of iron paint, 2273 g
Mahadeo ; temple at Ellora, 56
Mahogany, 1727 et seq. Spani-h, ib. Honduras, $1727 a, 1749 a$. African, $1727 d$. Doors, in spec., 2285 F
Maidstone, Kent ; parish church, 408, 421
Mainz, J. von ; architect, 577
Maitani, L. ; architect, 615
Malines, 564. Cathedral, 557. Church of Notre Dame, ib., 559
Malleable iron, 1762,1764 et seq. Cast iron, 2235 B
Mallet ; mason's, 1909. Plumbet's, 2212
Mallett's buckled iron plates, $1903 f$
Malm or marl stock, 1820, 1821
Malmesbury, Wiltshire ; abbey church, porch, p. 998. Masons' n. arks, $32 \ddot{2} 6$

Man's power, 1242

M $A S$
Manchester, Lancashire ; college, 421. Cathedral, dates, and founders, 434
Manchester sratc, 2279 d
Manders's distemper, $227 \pm b$. Stains, $2275 f$
Manger; in spec., 2285 h
Manorial houses ; of timber, 439
Manresa; collegiate church of Stı Maria de la Sco, 586, 594 Sta Maria del Carmen, ib.
Mans ; church of St. Julien, 640
Mansard, Jules IIardouin ; architect, 359
Mansard roof; lescribed, 2035
Mansdaele, A. D. and R. van ; architcets, 563
Mansficld Woodhouse stone, 1666r, 1666e. Red Mansfield, analysis, $1666,1666 z$
Mansion house, London, 523
Mansions ; of the Tudor age, 429
Mantua ; clurch of Sta Maria della Grazie, near, 624
Marble, 1673 et seq. External characters and constituent paris, 1674. Burnt into quicklime, 1675. Different varieties, modern, $16 \overline{6} 6$ et seq. For Ancient marblez, see Glossary. Weights, 1683 d . Crushing weight, $1500,1502 \mathrm{~g}$. White Marble at Milan, 621. Hopion Wood stone, 1666i. Use of, 2002 aa et seq. Mculdings for marble work, $2002 l l$
_- chimney-picce; in spec., $2284 d$
——mantles and beams, $1502 q$
_- paper ; in spee., 2291

- tar pavement, $1908 d$
——arch, London, $1677 b$
- hill, Twickenham, Middlescx, 508

Marbling, $2276 a$
Marburg, church of St. Elizabeth, 566, 567; apse of, p. 1007. Church, 567
Marcellus ; theatre at Rome, 226,258
Marchione of Arezzo ; architect, 613
Marco da Campiore ; architect, 619
— da Frisone; architect, 619
Marezzo initation marble, 2250 m
Margam abbey, Glamorganshire ; bands to shafts, p. 989
Margaritone, of Arezzo ; architect, 613
Margary's patent for preparing timber, 1752
Margins of the xystus, 175
Marigold window, p. 993
Marl stocks, 1820, 1821
Marlborough grate, $2279 d$
Marlborongh house, London, 1683
Marmorarins, 312
Marquetry, 2173 g
Mars Ultor ; temple at Rome, 210
Marseilles ; church of St. Victor, 540, 545
Marsh, - ; architect, 466
Martinelli, Domenico ; architert, 365
Martinez, Alfonso; architect, 595

- Diego ; architect, 592

Martin's cement, 1866. Use of, $2251 b, 2251 d$. In spec., 2287
Mason, 312 et seq. In spec., 2284
Masonry, 1909 et seq. Tools used in, 1909, 1910. Scientific operations of stone-cutting, 1930 et seq. Done vaulting, 1956 et seq.

- at Amiens, after Roman models, p. 1060

Masons' marks on stone, 316,322
Mason's work; in spec., 2284. How measured, 2371
Masques; by Inigo Jones, 46J
Mass and void; neeasurement of, p. 1043
Misses; proportioning of, p. 942
Master mason, 312,317 et seq., p. 1045
——of the works, 312, 319

MAS

Mastic asphalte, 1867, 186äa
Material; ecouomy of, 1049
Mathematical proportions, p. 1017

- tiles, 1839a

Mausolcum of King Jolın, at Batalha, 605
Mayence ; cathedral, 287, 288. Two apsides, p. 1007. Theatre, 29.2

Mayfield hall, Essex, 414
Meare, Somersetshire; fish house, 2211 s
Measure; use of a, in proportion, p. 1C08 et seq., p. 1057. Of the choir and justicc, p. 1008
Measmre's patent floor, $1903 r$
Measuring and estimating, 2295 et seq.
Measuring rule; plumber's, 2212. Rods, 2296
Meath, bislop of ; honse for, 527
Mecca; lıouses, how bnilt, 131
Mechanical arts; not absolntely necessary to progress of architecture, 9
Mechanics and statics; genoral observations and definition, 1240-1243. Parallelogram of forces, 124.1-1259. Of the lever, 12601265. Centre of gravity, 1266-1268. Centre of gravity of lines, 1269-1274. Centre of gravity of surfaces, $1275-1280$. Centre of gravity of solids, 1281-1290. Centre of gravity of irregular solids, 1221,1292 . Of the inclined plane, 1293-1306. Of the wheel and axle, 1307-1314. Of the pulley, 1315-1320. Of the wedge, 1321-1323. Ot the screw, 1324-1330. Of friction, 1331-1341. Valnes of moving powers, 1342-1352
Medallions, 493
Mediæval architecture, p. $96 t$ et seq. See "Pointed Architccture." Proportion, p. 1005 et seq.

- artificers, 308

Medina del Campo; Ćastillo de la mota, 596
Mcillant, châtcau de, 548
Meissen ; church of St. Afra, 566. Choir. 567, 569, 572
Melbourne, now Dover, house, Whitchall, 524
Mells church, Somersetshire ; lead of glass, $2229 a$
Melrosc, Roxbmrghshire; abbey, 431
Melton, Suffolk ; parochial church, 398
Melton Mowbray, Lcicestershire ; parochial church, 421
Mcmbers, of mouldings, 2129
Memel ; deals, \&c., 1729 d . Timber, 1729 g
Memnonium ; statues described, 85
Mende; bell tower, 532
Menilmontant; abattoir at Paris, 2935
Mennie - ; architect, $2975 a$
Mensuration, 1212-1237, 2295 et seq.
Merab, in Arabia ; reservoir of, 1 I8
Mercury ; bichloride of, 1752
Mcreworth, Kent ; villa, 504, 3000
Merinville; round church, p. 1006
Meroë ; pyramids, 304
Merscburg ; cathedral, 583
Merton college chapel, Oxford, 42 I. Ceiling of library, 2023a. Window, p. 989
Messina; cathedral, boarding to roof, $2173 a$. Houses, 626
Meta of the Roman circus, 240
Metal work ; wrought, 2255 h et seq.
Metallie canvas, 1786 . Sand, 1852c. Concrete, 1905 c
Metals; transverse strength of, $1628 l$
Metopæ ; origin of, 185

MON
Metz ; cathedral, 545. Proportion of, 1. 1016. Aqueduct, 223
Mews, Charing Cross; arcade at, 2635
Mexico; architecture of, 109 et seq. (ity of, described, 117. Pyramids of, 111, 112
Miao, or idol temples in ['ekin, 104
Mica; in granitc, 1669
Michelozzi, Michelozzo ; architect, 323
Middle class houses iu P'uris and London, 299 Ca
panels, rails, aud stiles; of a door, 2130

- pointed work ; proportion in, p. 975

Middleburg, Yorkshire ; eastlc, 42:3
Middleham, Yorkshire ; castle, 398
Middlesex hospital, London; Parian cement used iu, $2255 / k$. Ventilation of, 2278 m , 22780
Middleton Cheney, Northamptonshire ; church porch, p. 998
Middleton, lord; house for, 440
Mildetou-on-the-Wolds, Yorkshire; proportion of church, p. 1015
Mignot, or Mignotto, J. ; architect, p. 1008
Milan ; cathedral, $365,586,619$; moportion of, p. 1008, p. 1013, p. 10I6, p. 11337 ; apse, p. 1007; marble used in building, 16ita. Church of Sta Minia della Grazie, 624. LIospital, 297\%. Theatre, 2958

Military architecturc in England, 382, 391, $394,402,413$
Mill bar iron, 1760
Milled lead, 1883 et seq. In spec., $2288 a$
Milner, John; writer on pointed arehitecture, p. 1050

Milton abbey, Dorset ; church, 407
Minaret; introduced by Alwalid II., 119
Minera firestone, 1666au
Minerva; temple at Athens, or Parthenon, 150. p. 943, p. 949 . At Suminul, 150

- Medica; temple, at Rome, 214

I'ohas; temple, at Athens, 153. At Prienc, 153
Ming Tombs; the, 108
Ministers; English, care little abont the arta, 361
Miuorites ; church of the, at Cologne, 566
Mint ; at Paris, 360 . At Venice, 351
Minyas, king of Orchomenos ; treasury, 37
Niraflores; Carthusian nunnery, 596
Miramichi deals, \&c., 1729e
Miranda do Douro ; cathedral, 607
Miserere seat, Menry V II.'s chapel, p. 985
Missolonghi ; gateway near, 304
Mitla, Mexico ; palace of, 115
Mitre; box in joinery, 2124a. Joint, 2I75b. square, 2124
Modain ; palace, 305
Model dwellings, 1902b. Commercial Street, 3012 et seq.
Modilliens ; centres of, 2612-2614
Module, 2550
Modulus of clasticity, $1628 e, 1630 i$
Mœnianum; of an amphitheatre, 228
Moer, Theodorich ; master mason or archilapicida, 577
Moissac ; clureh, 307
Mona marble, 1681
Mondragone, ncar Frascati ; arcade, 2640
Monial or mullion, p. 990
Mons ; church of Ste. Wandru, 559
Mont St. Michel ; salle des chevaliers, 547
Montague bouse, Bloomslbury, now the British
Museum, 446

NEW
Mouth, or hollow, 2532
Mozat ; church, 534
Mud architeeture, $1903 y$
Muenster; church of St. Lambert, 572. Hou e, 582
Muff ; of glass, $1870 a$
Muir's ventilater, 22789
Majelibe, BabyIon, 39, 41
Mulgrave cement blocks, $19036 b$
Mullions, p. 975 , p. 990 et seq. Sirength of stone, 1502c. Fixing glass in, $2227 a$. of clerestory at Winchester, p. 1032. St. Genrge's chapel, Windsor, p. 1051
Munich; Glyptotheca and Pinacotheca, 29:8, 2923; Brick cathedral, 579
Muntz's metal for coating iron, $2224 f$
Muraline, 2277 h
Muralis, $2277 h$
Murcia; cathedral, 59 t
Musgrave stove, 2279 d
Mycena; Cyclcpean walls, 28, 30, 33, 178. Treasury, 36. Tomb, 304. Gate, 31 Mylne, Röbert ; archi. ect, 522
$\mathrm{N}^{\text {AIL head ; ornament, 397. In Gothic }}$ joinery, $2175 c$
Nails; varieties of, 2257a and b. Forslating, 2210 ; in spee., 2283 . Decay of, 2224 . In spec, , $2288 a$
Naked flooring, 2013. How measured, 2334
Nancy ; palace, 581
Nantes; cathedral, 540
Naples; good Gothie fragment ${ }^{7}$, 625 . Palazzi,
ib. Building of Castel Nuovo, p. 1013,
Walls at San Filippo Neri, 1ō35, 1552 .
Theatre of San Carlos, 2967
Narboune ; cathedral, 540, 545
Narmi ; bridge, 222
Narrow grounds, 2166
National Provineial Bank of England, 1681 e
Naumann ; architect, 366
Nauml urg; cathedral, 567. Apse, p. 1007
Nave ; single, in a church, 557 . Great width of, in Spain, 586 . Bays of, dependent ou apsis, p. 1006 et seq.

- and aisles of uniform heiglt, 566
- stone groined, Spain, 590

583. Brandenlurght; at Luedinghausen, 583. Brandenburg, 579. Ingoldstadt, ib. 583
Nebuchadnezzar's rrison; same as Birs Nem-
roud, 40
Ncbule; ornament, 397
Needle ; thatcher's, 22 H 1 s
Neplect points ; in sp ec., 2291
Neglect ; in dilaridations, p. 1100
Nelson's column, London, 16716
Nero; facade of, at Rome, 262
Nerta Chabei, temple at Chillambaram, 58
Netley, Hampshire; conventual church, 407.
Hospital, $297 \overline{5} a$
Neumann; architect, 365
Neutral axis; of a beam, 1628e, 1628z, $1630 c$
Nevers; cathedral, 540 . Two apsides, p. $100 \overline{4}$
Nevile, Sir Henry; house for, 440
New Grange, near Drogheda, in Ireland, 35
New Shorehan, Sussex ; parish church, 398
Newall's eopper cords, 2260
Newark-npon-Trent, Nuttinghamshire; parochial church, 421
Neweastle duke of; house for, in Lincoln's
Inn Fields, 665
Inn Fields, 465

NETV
Neweastle-upon-Tyne, Norllumberland; parechial church of St. Nicholas, 485 ; tower, p. 1002. Cathedral church, p. 197. Castle, 394. 398

Newel of stone stairs; open and solid, 1926. Of wood, in spec., $2285 d$
Newgate prison, London, 523
Newman system of iron drains, $1888 n$
Newton's process for preserving stone, 1667 m
Nice; amphitheatre, 228
Niche; in brickwork, 1905. In joinery, 2197. In carpentry, 2066, 2067
Niches, 2773 et seq. Not found in early Greek works, 2774. At the Maison Carrée, and other places, 2775. Their decorations, 2776. Rules for proportioning, 2777. Tiers of, in stories, 278. Chambers's rules for, 2779. Depth of, 2780. Examples of, 2781-2787
Nidging ; in masonry, 1915
Nienburg an der Saalc ; ct urch, 567
Niesenberger, Johann ; architect, 579
Nilometer ; in Egypt, 91
Nimroud; drains, 304
Nineveh, 44, $51 a$
Nismes; amphitheatre, 228, 283. Maison Carrée, 211, p. 953 . Niches in, 2775
Nitrification, $1667 \mathrm{c}, 1667 \mathrm{~m}$
Noerdlingen; ehurch of St. George, 580
Noirlae ; ehurch, 584
Nomenclature ; of Ge thic mouldings, p. 970. Of classic mouldings, 2532
of Gothic architecture ; English, p. 967.
French, 536. Belgian, 553. German, $56 \bar{\square}$ in vaulting, $1499 v$
Non-compressibility of water, $2223 w$
Non-conducting felt, 2210 d
Nonsuch, Surrey ; palace, 426
Norba; Cyclopean remains, 32
Norfolk latch, 2262
Norman, Juan ; architect, 595
Norman and Saxon styles; difference between them, 397

- architecture, 383, 392 et seq. Characteristies of, 397. In England, p. 967. Examples of, 398. Cathedrals, 396. Churches, 290. Columns, 397. Arches, ib. Arches ot entrance, ib. Windows, ib., p. 988. Ceilings, 397. Walls, ib. Ornaments, ib. Plans, ib. Mouldings, 397, p. 971, p. 972 . Piers, p. 676. Capitals, p. 977. Base, p. 879. Ribs, p. 980. Hood moulds, p. 981. Plinths, p. 982. Parapet, p. 983. Doorways, p. 997. Porches, p. 998. Towers, p. 1000
bishops, and their works, 396
work, syst m of proportion, p. 1017. Manner of building, p. 1023
Normandy ; spires of, p. 100 o
Norrey church ; spire, p. 995
Northampton ; parochial church of St. Peter, 398. Ronnl church, p. 1006

North Anston stone, $1666 d, 1667 w$
North Petherton, Somersetshire; church tower, p. 1002
North Walsham ehurch, Norfolk; roof, $2052 p$
Northfleet church, Kent ; roof, 20520. Screen, p. 985

Northumberland house, Strand, 442
Norwegian timber, $1729 f$. Used in houses at Antwerp and Ypres, 564
Norwich, Norfolk; eathedral, 398, 421. Founders and dimensions, 434. Spire, p. 1001. Church of St. Margaret, 421. Of St. Peter Mancroft, 408, 421. Tower, p. 1002. Castle, 393, 394

Norwich stove, 2279 d
Nosing of stairs, 2180. In dilapidations, p. 1096
Notation, 2297a
Notices; to give, in spec., 2280 k
Notre Danse de l'Epine; church, 547
Notre Dame le Puy; churches of St. Martin and St. Giles ; doors, 2145 r
Nottingham; castle, 423. County hall and prison, 5 E 6
Noyon ; cathedral, 534, 545. Hotel de Ville, 550
Nubia; temples and remains of, 92
Numbers; use of, in proportion, p. 1005 et seq., p. 1015. At Cologne, p. 1011

Nuremberg ; church in castle, p. 1013. Church of St. Lawrence, 579, 580. St. Mary, 572. St. Sebald, two apsides, p. 1007
Nymphæa Lotus, or water lily ; souree of Egyptian ornament, 87
Nymphæum, 214, 2775

0AK timber, 1685 ; euting, 2125a. Fencing, in spcc., 2285 h
Oare, Joäo ; architect, 603
Obelisk; of grey granite, 1571i. See Gloss.iliy

Obidos ; castle, 603
Obscured sheet glass, $1872 d$
Obscurity of Statues, 558
Observatory at Paris, 359. See Glossary
Octagon ; to form, 1016
Octastyle temples, 2528 et seq., p. 947 , p. 954
Odilo, abbot ; cathedral at Chartres, 289
Odivellas; Cistercian nunnery, 603
Odoacer; annihilation of the arts on invasion of, 276-278
Ecus; of a Roman house, 252. Several species of, $i b$. That called Cyzicene, ib.
Eillet holes; at Caernarvon castle, 402
Ogce ; moulding, p. 973, 2129. Arches, to draw, 1943d et seq. Arch in Venice, 610
Ogive; its derivation, 538
Oils; in painting, 2271a et seq. Deterioration of, $2271 e$
Olite ; ehurch of S. Pedro, 589
Oliva; nave and refectory, 583
Olotzaga, Juan de ; arehitect, 3€7, 591
Olympia ; temple of Jupiter, 141
Oinodeo, Giovanni Antonio ; architect, 365, 620
Onyx marble, $2002 g g$
Open fires, $2279 b$

- Mediæval roofs, 2052d, 2211n
——_work spires, p. 1005
Opera bousc, at Buda-Pesth, 2971h. See "Theatre"
Opere Francigeno, 569
Oporto; cathedral, 600. Sari Francisco, 601
Oppenheim ; church of St. Catherine, 322, ธ67, 569 . Choir, p. 1006
Opus Grecanicum, 2231e
Orcagna, Andrea; architect, 323
Orchestra; of a Roman theatre, 226. Of a Greek theatre, 172
Otchomenos ; treasury at, 37
Order. See "Tuscan," "Doric," \&c.
- of an arch and mouldings, 1922o, p. 971, p. 974, p. 940

Orders; character of the different, 2538 et seq. Doric, Ionic, and Corinthian, 2539. Sir Henry Wotton's description of them, 2510. Invention of new ones, 2541. En-

ORD
tablatures, height of, in, 2542. Mode of measuring them, 2550. Application of, 2552
Orders of architecture, 2523 et seq . Consist of cssential and subservicnt parts, 2523. Are five in number, $i b$. Mode of profiling an order, ib. Lebrun's analysis of loads and supports in an order, 2524. Principles of proportion as to loads and supports, 2525 et seq. Systyle interculumniation produced by such principles, 2527. Principles of load and supports carried into tetrastyle, hexastyle, and octastyle temples, 2528 et seq. Concordance thereof with the laws given by Vitruvius, 2529. Ancient examples of different orders in verification of the theory, 2531. Principles applied to points of sup port, ib. Tuscan, 2553. Doric, 2560. Ionic, 2573. Corinthian, 2582. Composite, 2591

Orders above orders, 2642 et seq. Vitruvius thereon, 2643. Scamozzi's rule, 2644. Laws of solidity respecting, 2645 . Axes of upper and lower columns, how placed, 2646. Disposition of, according to Chambers, 2647 et seq. Doric above Tuscan, 2648. Ionic above Doric, 2649. Corinthian above Ionic, 2650. Composite above Corinthian, 2651. Eligible intercolumniations, 2652

Orford castle, Suffolk, 398
Orgagna, Andrea; architect, 327
Oriel window, 415
Orleans; cathedral, 549. Church of Notre Dame de bounes nouvelles, 289
Orme, Philibert de L'; architect. See "Delorme"
Ornament; a non-essential in architecture, 2486. Gothic, p. 995. Drawing of, $2383 c$

Ornamental wrought iron werk, 2255 h et seq.
Ornamented English architecture, 409 et seq. Characteristics of, in arches, columns, windows, roofs, or ceilings, and ornaments, 420
Ornaments of mouldings; how to arrande, 2535. How to be cut, 2536 . Degree of relief they should have, 2537. Of the Grecian edifices suitable to their destination, 164. In stone ${ }_{\text {, }}$ in spec., $2284 b$
Orsenigo, simone da; arclitect, 619
Orthographia; of Vitruvius, p. 1013
Orvieto ; cathedral, 615
Osmaston manor, Derby ; warming and ventilating, $2279 c$
Osterley house, Middlesex, 446, 447
Ostiarius ; of a Roman house, 246
O.ymandyas ; tomb of, 85

Otricoli ; amphitheatre, 228
Ouguet, David; architect, 604, 605
Oundle, Northamptonshire ; church window, p. 988

Ourem ; castle, 603
Ourscamp ; church, 540
Out of winding, 2123
Outline; the fundamental principle of drawing, 2382
Outside linings; of a sash frame, 2147. Stiles of a door, 2130
Oven; how measured, 2314. Of brick or iron, in spec., $2282 b$
Oversecr, 312, 319
Ovolo, 2129. Echinus or quarter round, 2532
Oxford ; Christ Church cath. Chapter-lıouse, 460. Founders and dimensions, 434. Window, p. $989 . \quad$ Church of St. Aldate, p. 1004. Of St. Mary, 421. Of St. Peter, 398. New

PAN

Collcge Chapel, 1377. Worcester College Library, 490. -St. John's Collegc, 4i\%, 1681h. Pcckwater quadrangle, at Christchurch, 490. Magdalen College Chapel, 421, p. 1014. All Souls' Collere, 490, p. 1014. Castlc, 394, 398. Palace, 423. Public schools, 444
Oxidation of metal. See "Corrosion"
Oxide of iron paint, $2273 b$

PACE, convent deila; at Fiome, 335 Packing ; in masorry, 1921
Packington, Warwickshire ; church, 525
Padua; clurch of San Antonio, $285,61 \%$. Sta
Maris dell' Arena, 616
Padua, John of ; architect, 319 ; and his followers, 425
Prstum; hypæthral templc, 149
Page, Sir Gregory; house at Blackheath, 505
Pagodas, or Chinese towers; that of Nankin, 105. That of Honang, at Canton, 104

Paine, James ; architect, 514
Paint; varieties of, 2273 et seq Effect of, on wood, 1747. To remove old, 2270 . Fireproof, $2273 j$
Painted glass, $2231 b$
Painter's; tools, 2268. Work, in spec., 2 โ90. Estimating, 2379
Painting, 2267 et seq. Iron work, 1780a. Stonework $1667 i$. On cement, $2273 h$

- and scu!pture; intimately connected with architecture, 68. Much used in Oruitmented English architecture, 412. 111 Egyptian architecture, 86. On walls, as decorations, 2519, 2522
Palace ; at Westminster, 423. At Oxfor 1, $i b$. At Woodstork, ib. At Kennyngton, it.
Palæstra; of the Greek gymnasium, 175
Palamlino marble, 2002cc
Palatial houses ; list of Elizabethan, 446
Paleing or soldering, 2223 f
Palencia ; casa del Ayuntamiento, 596
Palermo ; cathedral, 319. Walls at San Giuseppe, 1535. At San Dominico, ib. Houses at, 626. Sta Maria della Catena, ib. Palazzo Reale, door, $2145 c$
Paley, F: A. ; writer on mouldings, p. 969
Paling, park; in spec., $22 \times$ ă b
Palladian school of architecture, 464
Palladio, Andrea ; architect, $352-354$. Win-
dows by, 2761, 2765, 2766. Theatre, 2948 .
Palm-tren leaf; in Egrptian ornament. 87
Palma; church of the Dominicans, 586
Palmyra ; extraordinary structures, 196, 197. Niches, 2775
Pamplona; cathedral. 594
Pandoo Koolies ; of Hindostan, 12
Panel; of a door, 2130, 2145b. Of slate, 221' q Paneling ; timber for, $1729 f, 2125 c$
Pantlieon; at Rome, 215, $216,262,2547,1499 n$, $1499 p$, p. 954 . Lighted from a very sm . 1 l aperiure, 2747. Niches, 2775, 2779, 9787 , Capitfals, p. 90̄6, p. 9.77. P'roportion, p. 1021. p. 1065
p of the Escurial; the sepulchres of the kings of Spain. 371. See "Parıs"
- the tre; in Oxforl Strect, 527,2089

Pantiles, 1838. Gauge, 1906, 1907, 1!07a. Table of the number required for a givin quantity of work, 2321
Pantiling, 2302
l'anton, Mr. ; a house designed for, 440

PAP

Papantla ; pyramid of, 113
Paperhanger's paste, 2277g. Work, in epec., 2291. Estimating, 2380

Paperbanging, 2277c
Papier-mâché, 2251 ; in spec., 2287
Papworth, J. W. ; on domes, 1499o. On Milan cathedral, p. 1008
Parabola, 1095-1109. Curve, many uses of, in architecture, 1107
Parapets; in spec., 2282a. Gothic, p. 983 et seg
Parascenium of the Greek theatre, 172
Parastatze, 2671
Parget, 1905b. To face work, 2245a. To chimney, in spec., $2282 a$
Parian ; cement, 1866 . Use of, $2251 f$ et seq. In spec., 2287a. Polished, 225li. Marble, 1676
Parigi, Alfonso and Giulio ; architects, 331
P'ariquadrato proportion, p. 1013
Paris; cathedral, $539,541,570$; doorway, 539; apse, p. 1007. Ste. Chapelie, 540. Decoration copicd at Cologne, 567. Church of St. Eustache, 549 . St. Etienue du Mont, 549, $2002 x$. St. Sulpice, 362. St. Généviève, or the Panthéon, $269,361,476,477$, p. 1048 ; dome, 1499 m ; points of support, 1581. St. Germain des Prèz, 289 ; shafts, p. 1023. St. Germain l'Auxerrois, 547
; abbey of St. Antoine; near, 310
-; street architecture, 364. Houses in Rue de la Victoire, casement in, 2165 f. Faubourg St. Gernain, 440
; Napoleon column, 2603. Hospitals, $2278 z, 2974$. Invalides, 1581. The Louvre, façade of, 359,2613 ; windows, 2760 . Observatory, 359. (iarde-mcuble and mint. 360 . Théâtre du Chatelet, mode ot lighting, $2264 f$. Théâtres Italien and Français, 2958. New Opera house, 2972. Halle aux bleds, 2051
Park Nook stone; analysis, 1666
Park Spring stone, 1667 w
Parker's eement. See "Roman cement"
Parliamcut hinges, 2258a
Parma; theatre, 2948, 2958
Parocona; temple at Ellora, 56
Parquetry, 2173 e. In spec., $2285 b$
Parthenon. See "Minerva, temple to"
Parting bead of a sash frame, 2147. Strip in a sash frame, 2165
Partitions; in carpentry, 2024, 2025. How measured, 2336. Weight of, 16286. Bricknog, 1902 ; in spec., 22826 . Half brick, 1902a. Stone slab, ib. Tiles, $i b$. Hollow brick, $1902 b$. Glazed, 2231. Quartered, in spec., 2285a. Timber for, 1729f. Of deal, in spec., 2285b. Gaspipes should not be enclosed in, $2264 b$
Parts of an order, 2523
Parvise over porch, p. 998 et seg.
Pasley, Col. ; on domes, $1499 l$
Paste for paperlangers, 2278 g
Pateley Bridge stone, $1666 x$
Patent axe ; mason's tool, 1915b, 1915c
\longrightarrow plate glass, 18726,18 an. Rough plate glass, 1878. Slating, 2210h
Paths, in spec., 2281
Patrixbourne, Kent; circular window in church, p. 993
Pattern-making, $2265 f$
Pavements, 1666i, 19030. Ornamental, 1839l, 1908c. In spec., 2284c

- lights, 2255

PER
Pavia; church of the Certosa, 619 ; terracotta, 1908j. Chureh of St. Michael, 280
Paving, 1905c et seq. How measured, 2300, 2372. Granite, $1671 c, 1672$. Brick, 1827 , 1831b. 1n spec., $2282 b$. Tile, 1839 a et seq. In spec., 22826 . With cements, 2251 m . Makiug good, in spec., 2284c. Black and white marble, 2002 cc . Tar, 1905h
Pavodilos floor, 21736
Pavonazzetto marble, 2002bb, $2002 g g$
Paxton, Sir Joseph, p. 1063
Pay-leou, or triumphal arches of the Chinese, 107
Payne's patent for preparing timber, 1752
Peabody dwellings, Commercial Street, 3014 ; described, 3024 et seq.
Peace, temple of; at liome, 217, 2547, 2775. See "Constantine, basilica of"
Peckings, 1823
Pede, Henry van ; architect, 562, 563
Pedestals, 2599 et seq: Table showiug their leights, ancient aud modern, 2601. Parts 2602. Die: 2603. Employment of, 2604

Pedinent; origin of, 135. Observatiou bs Cicero on, ib. Inclination, Roman, 269. Of varied forms, 2716. How they should be used, 2717, 2718. Vitruvius's rule respecting, 2719. Different sizes in same façade to be avoided, 2720. Mode of connecting the horizontal and raking parts, 2721. Heiehts of ; liow regulated, 2722 . Face of tympanum ; how disposed, 2723. Working of; in spec., 2284b.
Peel ; cathedral, 1681
Pegmata ; of the amphitheatre, 230
Pekin, palace, 103
Pelasgic buildings, 27
Pelican Office, Lombard Street, 515
Pellegrini, Pellegrino ; architect, 621
Pellet ornament, 397
Pembroke; Plilip, earl of, 461
Penaria ; of a Roman house, 253
Pendentives, 2090. Conical, for covers to ceilings of square rooms, 2091. To tind springing lines, 2092. Method of coving a square room with spherical, 2093. To find intersections of ribs in, 2094. In dome stone vaulting, 1999 et seq., $2002 u, 2402 x$. At Caudebec, p. 1053. In towers, p. 1003, p. 1004. In carpentry, 2090 et seq.

Penetration of mouldings, 578, p. 974
Pennethorne, James; architect, 520 , 1666d
Penrose, F. C.; architect, on proportion, p. 1015
Penshurst house, Kent, 446
Pentagon form, p. 1036
Pentagonal church, 572
Pentalpha form, p. 1036
Pentelic marble, 1676
Penthouse roofs ; in Italy, 614
Peon or poon wood, 1728 d
Perch, a measure of length; used in setting out a building, p. 1057, p. 1058
Perforated glass, 1879. Ventilator, 2231a, 3037. Zine, 2224l

Pergula; of a Roman house, 253
Pericles; architecture of Greece under, 141
Peridromedes ; of a Greek gymnasium, 175
Périgutux ; church of St. Front, 307 ; and St. Etienne de la Cité, 535
Periods of Gothic architecture, p. 967
Peristylium ; of a Greek gymnasium, 175. Of a Roman house, 245, 252, 253

PER

Pcrkins' system of leating by hot water, $2275 i$
Pcrnes; church, 307
Perpendicular period of Gothic architecture in England, p. 967. Work, proportion in, p. 1017. Mouldings, p. 973. Piers, p. 977. Capitals, p. 978. Bases, p. 979. Ribs, p. 980. Hcod moulds, p. 982. 1linths, p. 982 . Parapet, p. 983. Wood mouldings, p. 985. Windows, p. 990. Window jambs, p. 992. Doorway's, p. 997. Porches, p. 999. Towers, p. 1002

Perpignan ; cathedral, 545. Church, 586
Perrault, Claude ; architect, 359,360
Persepolis, or ruins of Chel-Minar, 46-49. Architectural details compared with those of Egypt and Pcrsia, 50
Persia ; present architecture of, 51
Persians, 2682, 2684
Persieune bliuds, $2165 f$
Perspcetive, 2405 et seq. Temp. 1565, 440
Perugia; Madonna di Moute Luce, 624. San Ercolano, 616. Sita Giuliana, ib.
Pestagalli, P.; architect, 620
Petchorsky ; convent of, at Kiev, 375
Peterborough, Northamptonshire; cathedral, 396, 398. Founders and dimcusions, 434. Spire of staircase, p. 1005. Apse, p. 1007. Lantern, groined (eiling, 2023g
Petcrsburg deals, \&c. 1729e. See "St. Petersburg "
Petersham house, for Lord IIarrington, 510
Petra; ruins of, 3
Petworth narble, $166 \mathrm{k}, 1681 \mathrm{~g}$
levensey castle, Susscx, 391
Pew hingrs, $2258 b$
Pewing, 944. In spec., $2285 h$
Philip of Macedon; portico of, in Delos, 151
'hillip's rolled iron girder, $1629 f$
Ploenician architecture, 9, 54
Phygalia; temple, p. 943, p. 945
Pickart, Jan ; architect, 558
Picked, to granite, 1915c
Piece ; of paper, 2278
Pied du roi ; a measure of length, p. 1057
Pier; on a column, 1925d. Gates and piers, 2734. Rules for finding proper stability, 1563-1582. To windows, 2754. Of medixval buildings, p. 975 et seq. Circular, p. 1023. At Amicne cathedral, p. 1061. Canterbury cathedral, p. 1040. St. Ouen, at Rouen, ib. St. George's chapel, Windsor, p. 1051. Henry VII's chapel, p. 1054. In basement, in spec., 2"82a. See "Pillars"
Pierced bricks, $1831 f$
Pierrefonds ; church of St. Etiẹnne, 534
Pig; of iron, 1765. Of lead, 1782
Pilaster, : 671 et seq. At Trevi, 2672. Projection of, 2673. When used with columns, 2674. Pilaster capitals, 2675,2677 et seq. supposed to represent columns, 2676. To be avoided at inward angles, 2680. Engaged, 2615. Stone, in spec., 2284a. Of wood, in spec., 22850
Piles, how measured, 2331
Pillar or column ; centre, 1500
Pillars, see" Beains aud Pillars." Of materials in testing, 1502e. Compression of, $1630 y$ et seq. Carrying up, 1923. In a church, mode of strengthening, 557. Of Westminster Abbey, p. 968 ; bands of shafts, p. 969. See "Picrs"
Pinacotheca; of a Roman louse, 252, 253
Pine wood, 1712

Pinnacles : ordination of, p. 1008. Mode of setting out, p. 1019
Pins, keys, and wedges, $1631 u$
Pintelli, Baccio ; architect, 612
Pipe casings ; iu spec., $2285 h$
Pipe trap; cast lead, 2218b
Piper, - ; architect, 583
Pipes for drains, $1888 a$ et seq. Of earthenware, $2223 p$. Of stone, ib. Of irou, $2223 q$. Of gutta-percha, $2223 r, 2264 b$. Of lead, manufacture, $2223 /$ Of lead, in spec, 2288. Weight of, $2223 n$
for gas, $2264 a$ et seq.
-_ main service and supply, $2223 g, 2223 n$

- hot water; for heating, 2279m. Expansion of, ib. Quantity for a buildiug, $2279 n$
Pirna; church, 583
lisa; Duomo, 286, p. 1042. Baptistery, 291, 292, p. 1087. Sta Catcrina, 613. San Francesco, ih. San Martino, 616. House, 614. Campo Santo, 291, 293. Campanile, ib. Casement adopted there, 2165 c
Pisano, Niccolo; architect, 613
Piscina; of the Roman baths, 235
Pisè work, $19036 b$
Pistora ; San Salvatorc, 613. San Domenico, ib. San Francesco, ib., 616. La Quarquonia, 614. Baptistery of San Glovanni Rotundo, 616. Palazzo della comunità, 618. Palazzo pretorio, ib.
Pit sand, 1851, 18526
Pitch or slope of a roof, 1906, 2040b, 2052n
Pitching; for paving, 167\%. Piece in stairs, 206
Place brick, 1817, 1823
Placentia palace, at Greenwich, 423
Plain tiles, 1830. Table of the number required for a given quantity of work, 2301, 2321. Gauge, 1906. Setting in mortar, and dry, ib.
Plan, 2490a. Distribution of, 2489
Plane trigonometry, 1033-1055
Planes, in geometry, 969-978
——, in carpentry; Jack, trying, long, jointer, smoothing, 2102 ; compass, forkstaff, straight block, 2103 ; rebate, moving, tillister, sash fillister, plough, 2104 ; mouldin or, 2105 ; bead, and snipe bill, 2106
Planing machine, $2124 a, 2124 c$
Plank, 1710. How ineasured, 2331
Planking ; to doors, 2140a
Planted work ; in Gothic joinery, 2175c
Plasencia; cathedral, 596. Parochial church p. 10 i 9

Plaster; adhesive power of, 1494. Fireproof, 2246b. Fibrous plaster slab, 22466. Slate gronnd for, 2246d. Quantity to cover a surface, 2248. New inventions, 2250 a ct seq.
— of Paris, 1866c. Used in walling, 2249a
Plasterer's work ; in spec.. 2287. Estimating, 2376. Work, in Dublin, 2246a

Plastering, 2232 et seq. Quantity of different materials in a given number of yards, 2248 . Porous, 3031
Plate girder, 1629 a et seq., $1629 p$
-_ glass, $1870 a, 18726,1875$. Patent, $1872 b$. Rough, 18:7
iron, $1764 f$. Strength of, $1630 r, 1630 v$.
Weight per foot, 2254
rack ; in spec., 2285 g
tracery, p. 989, p. 999

PLA

Plateresque of Spain, 599
Plates of metal to doors, 2145c
Play-ground in industrial dwellings, 3021
Plenum system of ventilation, $2278 b$
Plinths, p. 977. And base mouldings; in spec., $2284 a, 2284 b$. Got liic, p. 982 et seq.
Ploughed and tongued, 2171
Plugging with lead, in tpec., $2284 a$ et seq.
Plinmb rnle, 1890
Plumber and his boy, 318, 319
Plumber's work ; in spec., 2288. Estimating, 2377. Weighed and fixed, 2215

Plumbery, 2212 et seq.
Plymouth ; naval hospital, 1670
Podium ; of an amphitheatre, 228
Point or division, $1943 b$

- ; mason's, 1910

Pointed arch; theories respecting, 294 et seq. Rev. Mr. Whittington's and Sir Christopher Wren's opinions, 300. Ancients acquainted with, ib. Countries in which it appeared, 301. Prevailed in the E:rst, ib. lts origin probably there, ib. Moller's opinions of, 302. Appearance immediately after first crusade, ib. Mr. Kerrich's opinion of origin, ib. Difference of writers' opinions, 303. Michelet's opinion, 308a. J. Fergusson's, 304 et seq. Combated by E. Sharp, 307b. Ignored in Italy, ib. ; in England, 597, 400. In Italy, 318. In France, 536. In Venice, 610

- vaulting, $1490 v$
- or Christian architecture, 530 et seq., p. 964 et seq. In Spain, 584. In Portngal, 600. In Italy, 608. - In Sicily, 626. Proportion, p. 1023
Points of support, 1563, 1581-1583, 2531. Table of, in principal brildings of Europe, 1583. Table of, in Gothic buildings, $1583 a$. Of apartments, 2848 et seq.
Poitiers; Notre Dame, 534. Masons' marks, $322 b$
Pojana; villa, cornice, 2725
Pola; amphitheatre, 228 . Arch of Sergius, p. 961

Pole plate, 2035, 2035a
Poliphilus, Hypuerotomachia; account of the work, 326, p. 958. See "Colonna"
Polishing marble, 2002nn
Polleyt, Eustarhe; architect, $562,2890 c$
Polychromatic architecture, 171, 2511-2514
Polygonal figures; used with the triangle, p. 1017. With the square, ib., p. 1018. Subdivisions in tracery, p. 995
Polygons ; table of, 1219
Polytechnic lnstitution, 1786. Ventilation at, 22781
Pompeii ; forum, 212. Theatre, 1227. House of Pansa, 253
Ponte, Giovanni da; architect, 35 G
Pontigny ; abbey church, 602
Poole, Sir George St. ; house for, 440
Poon wood, 1728d
Pope, Alexander, poct ; his ignorance of art, 491, 507
Poplar, 1718
Porch house, p. 999

- ; not known in Italy, 609. Gothic, p. 998 et seq.
Porchester, Hampsire ; castle, 391, 394, 398. Castle hall, porch, p. 999
Porosity of stones, $1667 f, 1667 \mathrm{w}$. Of materials, 3029
Porta, Jacopo della; architect, 336

PRI
Porta Santa marble, $20026 b$
Port crayon; its uses in drawing and in comparing proportions, 2391 et seq. As applied to the whole figure, 2393
Portcullis ; of a castle, 394
Portico ; of Septimius, 2547. Of Philip of Macedon, 151. Doric, at Athens, p. 944. Brick, in spec., 2282b. Columns of, 22826 . Stone, in spec., $2281 b$. To admit carriages, carliest, 525

- proportion of Doric, tetrastyle, p. 943. Hexastyle, p. 944. Octastyle, p. 947. Roman tetrastyle, p. 953 . Hexastyle, $i b$. Octastyle, p. 954 . lonic tetrastyle, p. 952. Ionic hexastyle, ib. Those of the l'arthenon and Pantheon contrasted, p. 955.
Porticus; of the Greek gymnasium, 17\%. Of the Roman house, 244, 253
Portland cement, 1864 a et seq. Use of, 2251a, $2251 b$. In spec., 2287a. Concrete, $1862 d$ Safe load, $1864 e$
Portland stone ; its qualities, $1666 f, 1667 w$. Strength, $1667 v$. Crushing weight, 1502a, $1502 b, 1502 g$. In lintels, $1502 p$. Analysis, 1666
Port Philip granite, $1672 a$
Portsmouth ; docks, 1671 e
Portugal ; architecture of, 367 et seq. Pointed architecture of, 600
Post office, London ; ventilation, 2278h
Posts in warehouses ; in spec., $2285 b$
Pot metal glass, $2231 b$
Potash ; to soften putty and paint, $2226 a$
Potassi, J. ; architect, 607
Pots and jars ; in arched work, $1903 i$
Potter's bar ; house at, 440. Whiel, $1839 f$
Power of a number, $2297 / 2$
Poyct, - ; architect, 2974
Poynter, Ambrose ; architect, table of French
and English architecture, $\overline{0} 87$
Pozzo, Andrea; architect, 365
Pozzuoli, amphitheatre, 228
Practical building, 1881 et seq. Carpentry, 2003 et seq. Geometry, 999 et seq.
Præcinctio; of the Roman theatre, 226. Of the amphitheatre, $2: 8$
Prague; cathedral, 567, 572. Proportion of, p. 1013

Prato ; cathedral, 616, 626
Prebendal houve, Westminster; staircase, 2797
Preuzlan ; church of St. Mary, 572
Presence or privy chamber, 415
Prescrvation of stone, $1667 \mathrm{~h}, 1739$ et seq., 1779 et seq., 2273i. Of lron, 22736. Of timber, 1730 et seq., 1748 et seq.
Pressure ; liers, vaults and arches, 1351 it seq. Walls and piers, 1500 et seq. Earth against walls, 1584 et seq. Wind agrainst walls, $1592 a$. See 'Crushing," "Compression," \& c.
Priam's palace had fifty chambers, 140
Pricking-11p ; plasterer's, 2240
Priene ; temp!e, 153
Priests; ridicule of, 311
Primary Gothic, 537
Priming coat, 2268, 2273h, $2276 f$
Principal rafters in a roof, $2035 a$
Princip'es of composition, 2825
Prior park, near Bath, 513
Prisons; Newgate, 523. The steen at Antwerp, 563
Private buildings ; general observations on, 2983 et seq. In towns, 2990 et seq. Common houses of London, 2992. Of a grade higher,

PRI
2993. First class of, 2994. Duke of Devonshire. P'iccadilty, ib. Burlington house, 2995. In the country, 2996. Keddlestone, ib. Holkham, 2997. Villa, smallest size of, 2999. At Foot's Cray and Mereworth, 3000
Private houses of the Romans, 242. Earliest, only one story, ib. Later houscs, 243. Splendonr of them, ib. Parts of which they consisted, 244-20̄5. Parts of, reserved for the family, 245
Prohus, Cornwall; proportion of church, p. 1018
Procceton ; of a Roman house, 252
Protiling an order, 2523, 2551
Projection ; in geometry, 1130 et seq.
Property ; valuation of, p. 1094 et seq.
Propigneum of the Greck gymnasium, 175
Iroportion (Grecian and Roman) ; principles of, $282{ }^{\circ}$ et seq.; by E. Cresy, p 9 ± 2. (Mediaryal), p. 1005 et seq.; by E. Cresy, 1 . 1020 et seq.
-_- in geometry, 935-937. In arcliitecture, based upon fitness, 2456-2499. Of the orders deduced from the loads and supports, 2524 et seq. Of rooms, 28.9 et seq. Of monldings, 26:29, p. 1019 et seq.
Propyleum ; at Athens, 150
Proscenium ; of the lioman theatre, 226. Of the Greck theatre, 172. Modern, 2958
Protecting or preserving stoncwork, $1667 n$
Prothyrum ; of a Roman house, 246, 253
Provisions in spec.; for bricklayer's work, 2282 c. For mason's, $2284 b$ and e. For carpenter's, $228 \overline{0}$. For smith's, etc., 2286. For plumber's, 2288a
Prudham quarry, 1666w
Public and private buildings, 2861 et seq.
-.way ; arch over and under, $1903 a$
Puddled steel, 1775. Strength of, $1630 r$
Puddling furnace, 1760
Pugging.; to floors, 2247, 2971c. In spec., 22855b, 2287
Pugin, Augnstus Welby ; architect, on Pointed architecture, p. 96 t
Pugmill; for mortai, 1854
Pugwash deals, \&c., 1729c
Pulbam, Norfolk; church roof, 2052p, $2052 r$. Roof mouldings, p. 986, p. 487
Pullcy, 1315-1320, 2260 .

- mortises, 2019, 2020

Pulpit; in spec., $2285 i$
Pulpitum; of a Roman theatre, 226. Of the Greek theatre, 172
Pulsometer, 2219 h
Pump; various sorts, 2219-2224. In spec., $2 z \times 8 a$
Pumping out, in spec., 2281a
Punch; mason's tool, 1914
Punching holes for rivets, $1631 t$
Purbeck marble, $1666 k, 1681 \mathrm{~g}$ et seq. p 979
Purimachos cement, 18663
Purlin, 2035, 2035a. Scantling, 2040. Gothic, p. 986
pafters, 2043, 2210a. In spec., 2285a
Purveyor of the works, 319
Putty; glazier's, 2226a. Painter's, 2275a. To remove, $2226 b$
Puy ; cathedral, 535
Puzzuolana, $18009 f$
Puzzuoli; amphitheatre, 228
Pycnostyle intercolumniation, 2605-2609
Pyramids ; of Ktoube el Meuschich, of brick, 72. Of Chcops, and Chepheren, and Myceri-
nus at Saccara, 74. Gencrally, 83. Of
Mexico, 111 ; of Cholula, 112 ; of Papautla, 113. At Meroc̈ and Geezeh, 304

Pyrodene paint, 2273j, 2971e
Pyrographic woodwork. $2173 b$

Q^{2}
CADRIPARTITE vaulting, $1499 w, 1499 f f$ Quantities, 2280d
Quarter pace in stone stairs, 1929
——round, 2129.2532
Quartered partitions, 2024, 2025. In spec., 228 āc. How measured, 2313
Quarry glass, 1879
Quarrying stone, $73,1666 j$
Quartz in granite, 1669
Quebec deals, \&c., 1729a
Queen closer, 1896

- post roof, 2042. Posts, 2034

Quellinus, Artus; sculptor, 2690
Quirk, 2106
Quirked bead, 2126
Quoin stones; in spec., 2284a

RADIATION of heat, 2279
1 Ratnor, Earl of; house for, 440
Rars, Georges ; architect, 561
Rafters, 2033, 2035r. Common, 2035. Hip, ib. Jack, ib. Gothic, p. 986
Raglan castle, Monmouthshire, 426
Ragstone, $1922 c$ et seq.
Railing ; ornamental, in spec., $2236 a$
Rails of a door, 2130
Railway compensation, p. 1094
Rainfal1, $22: 2 e, 2223$
Rain water, 2223 c. Pipes, hcads, \&c., 2255. In spec., 2286a, 2288. Of lead. in spec., 2288. Of zinc, in spec., 2294. Formed in columns, p. $106 \overline{0}$
Rake; plasterer's 2233. Thatcher's, $2211 s$
Raker; bricklayer's 1890
Raking arches, 1413-1416
Raleigh, Sir Walter ; house for, 440
Ramée, Daniel; writer on proportion, p. 1006
Ramichouer ; temple at Ellora, 56
Rammer; bricklayer's, 1890
Rampant pointed arch; to draw and find the joints, 1943
Random walling ; in spec., 2284
Ranger's artificial stone, $1903 b b$
Panging lath; in glazing, 2226
Ransome's ; prucess, $1667 i, 1667 \mathrm{~m}$. Siliceous stone, 1667 q . Concrete stonc, $1667 \mathrm{r}, 1667 \mathrm{~s}$. Experiments on, $1667 t-1667 w$
Ranville stone, $1666 \mathrm{~m}, 16660,1666 q$
Ratisbon ; cathedral, 569, 576. Proportion of, p. 1016. Dominican clurch, 569. Church, 309
Raunds church, Northamptonshire; roof, 2052o. Porch p. 998
Ravaccione marble, 1667 et seq.
Ravenna, 272. Church of San Apollinaris, 278. Of San Vitalis, 282. Joggled arch at, 1925e
Rayonnant period in France, p. 990
Reading, Perkshire ; abbey, 430
Reading abbey concrete stone, 19030
Rebated boards, 2173a
Red; bricks, 1825. Cedar from Australia, 1728d. Granite, 1915c. Marble of the Apennine, 615

- short iron, 1764

Redmund's hinges, 2258b

Reed thatching, 2211s
Recdham, Norfolk; church, $2052 q$
Reeds; moulding, 2129
Retinery furnace, 1761
Reform club house; scagliola at, 2250 g . Lighting, 2264 f : Veutilatiou of, $2278 h$ Refuse destructor, 1907e
Reid, 1)r. ; system of ventilation, 2278 g
Reigate tirestonc, $1666 t$
Reims; cathedral, 541, 570. Proportion of, p. 1058. Apse. p. 1007. Original drawings, p. 1008. St. Remi, 534, 547. St. Nicaise, spire, p 1004
Reinhard, Johann ; architeet, 579
Relief to be givin to ornaments, 2537
Retieving arch, $1925 f$. In spee., $2282 a, 2281 b$
Removal of cloisters, 598
Rennissance style, 323-329. And flamboyant styles, mixture of, 2002x. In Spain, 597, 599
Rendering ; plaster, 2250b. ln plasterer's work, 2238. To underside of slates, 22106 . Iu spce., $2: 87$
Reredos, 415
Rese voir ; at Merab, 118
Resilience or toughness of bodies, 1630 i
Resin box ; glazier's, 2229
Resistance; of beams, 2021c. Of mortars, 1858 r
Ressaunt, double ; a moulding, p. 970, p. 974.

- Lorymer, p. 970

Reveley, Willey; architect, 525
Reversed tee irons, $1629 t$
Revett, Nicholas, archit+ct, 516
Revolving shutters, $2148 a, 2255$ f. Of wood; in spec., 2285 e
Rhamnus ; temple of Themis, p. 944, p. 945
Rheims. See "Reims"
Rhodez; cathedral, 532
Rhodian colonies, p. 942
Kiano, Diego de ; architect, 595, 599
Liib or web of a plate girder, $1629 c$

- vaulting, $2002 e$, p. 980 et seq., 1499 v , 2002d. Setting out, p. 1019. Moulded, 2002n. To porches, p. 998. In King's College Chapel, p. 1005
for groins in carpentry, 2058 et seq. Curved, tor roofs; iu spee., $2285 a$
Ricchini, Francesco; arehitect, 621
Richard of Cornwall, Emperor of Germany, 569
Richborough, Kent ; castle, 391
Richmond, Yorkshire ; castle, 394, 398
-_Surrey; entertainment at, by Heury VII., 428
- house, Whitehall, 510
_ park; new lodge in, 508. Old lodge, design for, 440
Rickel, l'aul de ; architect, 560
Rickets's ventilating globe light, $2278 v$
Lickman, Thomas, arehitect, writer of Attempt to discriminate the Styles, \&c., p. 967, p. 971

Ridge; crestings, 2255h. Piece, 2035, 2035a. Roof and hip tiles, 1836. In spee., $2283 a$, 2293e. Of lead ; in spee., 2288
Riding house ; at Moscow, 2050
Rieux; round church, p. 1006
Ricux-Mérinville ; church, 535
Riga timber, $1729 f$
Right lines and rectilineal figures, 876-907
Rim lock, 2261
Rimer, 2108
Rimini ; church of San Francesco, 325. Arch of Augustus, p. 959

ROMI

Riuging floor of a bell tower. p. 1003
Ripley, Thomss ; architect, 507
Ripon minster, Yorkshire, 407. Dates and founders, 484
Riser ; of stairs, 2180
Risinghan, Norfolk; Roman altars, mark on, $3: 2 b$
Rising hinges, 2258, $2258 b$
Rivaulx, Yorkshire ; ronventual church, 407
liveted plate girder, $1629 e$
Riveting plates, 1631 p
Rivets, 1631r. Iron for ; streng h of. I609v
Road scrapings, $1839 i$, 18526 . Miakıug, $1839 h$.
Drains; in spee., 2286 a
Roadway; in spec., 2281
Roanue, housc near ; window, p. 97.)
Robert the Pions, king of Frauce; arehitecture under, 289
Robin Hood stone, $1666 t$
Robins, E. C. ; arehiteet, on technical schools, 3038
Roche Abbey stone ; analysis, 1666
Roche lime, $2250 f$
Rochester, Kent; cathedral, 306, 406. Founders and dimensions, 434. Proportion of, p. 1016. Joggled work at, 1925e. Castle, keep, 304, p. 1057
Rock eoncrete tubes for scwers, 1887 a
Rocking stones. See "Logan stones"
Koek-worked rustics, 2669, 2670
Rud of brickwork; decimal parts of, 2320. How to ascertain value of, 2314 . Table of value of, at different prices, 2819
_-bolts, 2259. Of iron, stretching and breaking, $1630 n$
Rodario, T. ; architect, 623
Rodrigo, Alonzo; architect, 595
Rodriguez, Juan ; architect, 595
lioelandt, - ; architect, 2981
Rolbrich, Oxfordshire ; circle of ston's, 16
Roll and fillet ; moulding, p. 972 ; and triple fillet moulding, ib.

- ribbing ; slates, 2211 i
liollcd irons or bars, $1629 r$
Kollers ; brass, 2263
Rolls ; in plumbery, 2213
Rolls chapel, 1908a
Roman architecture ; character of, and observations on, 258. Not an original specics, 182. Its succinct history to 309 b.C., ib. Tine of Appius Claudius, 183. Under Cæsar, 186. Augustus, 187. Tiberius to Claudius, 191. Galba to Vitellius, 192. Vespasian and Titus, ib. Domitian to Nerva, ib. Trajan, 193. Hadrian, ib. The Antonines, 194. Decline, 195 et seq. Under Diocletian, 198 et seq. Revived but little under Valentinian II., 204. Honorius raised or repaired some basilica at Rome, 204. Roman empire in the West ended in 476 A.d., 205. Destruction of Rouan ellpire, p. 963
- brickwork ; ancient, 1895
cement, 1863. Use of, 2251a. In spec., 2287
- mosaie, 2231e
- school; its character, 3®4. Period of, 346. Principal masters of, ib.
temples, p. 963 et seq. Of the quadrangular species, 208 et seq. Of the circular species, 214 et seq., 217. Houses, 245
Romanesque or Byzantine architecture, 270 et seq. In France, 539. In Germany, 568, 570, 584. In Spain, 581, 587

ROM
Rome; cathedral of St. Pcter, 335:-341. Doors of, 2735. Nave of, 2779. Niches and statues in, 2779 . Points of support of, 1581. Windows at, 2757

- church cf San Carlo alle quattro fontane, 342. Uf San Carlo on the Corso, 342 . Walls at San Chrysogono, 1535. Of San Lorenzo fuori le Mura, 281. Sta Maria Maggiore, niches at, 2779 ; walls at, 1535 , 1549. Sta Maria sopra Mincrva, 616. Sta Maria in Trastevere; walls at, 1535 . San Paolo fuori le Murà, 281, 153 1 -1546, 1553; points of suppr rt of, 1581 ; roof of 2051. Walls at San Pietro in Vincold, 1535. Walls at Sta Sabina, 1535, 1548, 1551. Chapel of San Pietro in Montorio, 335. San Stefano Rotondo, 1528. See "Pantheon"

Temple of Peace, 217, 2547. For other temples, see the names

Palaces, 343, 344, 2735. Bracciano palace, window, 2768. Theatres, 226, 258. Farnese palace, cornice, 2725; door, 2744; window, 2763 . Massimi palace, arcade, 2632 . Mattei palace, windows, 2758. Argentino theatre, 2958. Villa Pia, near, 345. See "Arch"

- taken by Totila, und again united to Eastern empire, 279
Romsey, Hampshire ; church, 396
Roof; examination of strains in, 2031. Names of parts, ib. Scantlings of timbers for differcnt spans, $2035-2040$. Mode of framing for different spans, 2042-2045. Mode of forming, in the medixval period, $2052 d$ et seq. Mouldings of, p. 986 et seq. Lincs for framing, 2053. Hip, to find the back of, 2054. Lines of, to find, 2053-2057. Inclination of ; in various climates, 2027-2030. Heights of roof in parts of span, $2040 b$ - glazing for skylights, \&c., 2226c. In spec., 2289
-; of stone, p. 998, p. 999. Of zinc, 2224h. Exposed to wind, $1592 d$ et seq. Weights of materials used for coverings, $2040 b$. In spec., 2283, 2285a, 2285h
Rooting; how measured, 2337. Of Athens and Kome, 176
Rooms ; proportions of, 2820 et seq. Hcight of, 2821. Height of galleries, 2822 . Yalladio's rules, 2823,2824
Rope and cables; breaking weight of, 1630 s
- yarn in thatching, $2 \% 11 \mathrm{~s}$

Roriczer, Mathias; architect, his work on Pinnacles, p. 1008, p. 1019
Roritzer, Conrad; architect, 579,580
Rose ; of lead, to cistern in gutter, 2214. In spec., 2288

- window, p. 993 et seq. At York cathedral, p. 1015. At Ypres, 557, 558. At St. Ouen, p. 1032, p. 1036. At Rouen cathedral, p. 1033. At Beauvais cathedral, p. 1034. At Amiens cathedral, p. 1035, p. 1037, p. 1062
Rosel church ; spire, p. 1000
Rosellini, Bernardo ; arehiteet, 335
Roseueath, Dumbartonshire ; house, 525
Roslyn chapel, near Edinburgh, 431, p. 1038. Width, p. 1058
Rostock; church of St. Mary, 567
Rot ; in timber, 1746 et seq.
Rothenburg, 580
Rouen; its secular and ecclesiastical architecture, 552. Many churches, 549
—, cathedral, 541, 549. Apse, p. 1007.

SAI
Clerestory window, p. 990. Rose windows, p. 1032, p. 1033. Iron spire, 1005

Reuen, St. Ouen, 544, 545 ; designed, p. 1009. Sct cut with the perch, p. 1057; Nave and transepts, 547 ; Picrs of nave, p. 1040 ; Window, p. 989; Rose windows, p. 994, p.1009, p. 1032, p. 1036. Church of St. Nicaisc, 550. St. Vincent, 547. St. Maclou, 544. Palais de Justice, 5 á 0 ; roof, 2052 i. Fontaine de la Croix, 548. Stone cross, p. 974. Hôtel de Bonrgtheroulde, 550
Rough cast, 2249. In spec., 2287
Rough plate glass, 1877, 1878. In spec., 2280
Round churches, p. 1006

- towers of lreland, $1499 w$, p. 1003

Routh, Yorkshire ; proportion of church, p. 1014
Royal exchange, London, 1855. Granite at, $1671 a$. Steps at, $1671 b$

- Polytechnic institution, London, 2278l, 1786
Rozier, - ; architect, 579
Rubbed returns, 1890
Rubbing stone; bricklayer's, 1890
Rubble; masonry, $1666 t$. In footings, 1886 c . Work, 1922a et seq., 3030. In Spanish churches, 585
Rudstone pillar, Yorkshire, 14
Ruesga, Juan de ; architect, 596
Ruffiden, Sir William ; house for, 440
Ruiz, Ferdinando; architect, 368
Rule; glazier's, 2226. Plumb, 1890. For castings, 2265f
Rules; adopted by Freemasons; in proportion, p. 1057. Of proportion, p. 1013

Rumford grates, $2 * 79 d$
Rumsey, Hampshire ; church, 396
Running loads over bars, 1628 u
Ruprecht, George and Fitz ; architects, 572
Ruremonde; Notre Dame, $\overline{5} 55$
Rushdon, Northauptonshire ; church tower, p. 1002

Rusliton hall, Northamptonshire; lodge at, p. 1009

Ruskin, John; writer, describes Gothic, p. 965

Russell, John S.; his principles in the constructiou of buildings for seeing and hearing in, 2958 a et seq.
Russian architecture, 374 et seq. Churches built in the eleventh century, 375 ; type of, 377
Rustic work ; in spec., 2284a
Rustics to joints of columns, 1925a
Ruysbroek, Jan van; architect, 562

S^{A}ABICUE wood, $1728 d$
Sacchetti, Giambattista ; architect, 372
Sackville, Thomas, Earl of Dorset; house for, 440
Sacrificial stones, 22
Sacristy ; Felkirk church, p. 999
Saddle bar; in glazing, 2227, 2229b. In spec., 2286 a
Safe Ioads, 1618
Safety brick, 1905c
Saffron Walden, Essex ; church, 421
Sagging, 2021a, 2031, 2052h. Prevented, 2031
Sagres; Villa do Infante, $\mathbf{6 0 7}$
Saint Alban's, Hertfordshire ; cathedral, 312, 398,407 . Founders and dimensions, p. 196. Assimilating work, p. 968 . Cciling of nave and east end, 2023a. Ceiling of choir and
lady chapel, 2023 g . Window, p. 987 , p. 988

Saint Amand; church, 534. Château de Mcillant, 548
Saint Contest ; church spire, p. 1000
Saint Cross, Hampshire, 396. Ceiling in tower, 2023a. Porch, p. 998
Saint Cyr ; two apsid s, p. 10017
Saint David's, Pembrokcshire ; cathedral, cir(ular window, p. 993, p. 994
Saint Denis; abbev, 539. Doorway, 539. Church. 540, p. 1028. Steeple, fill of, p. 1004
Saint Edmundsbury. Bee "Bury Saint Edmunds"
Saiut George ; convent in Russia, 373
Saint George Bocherville; set out with the Eaglish perch, p. 1057
Saint George's hall, Liverpool, $1671 e$
Saint Gcorge's hospital ; ventilation, 2278k
Saint Germain de 131ancherbe ; quarrics, 1666l
Saint Germain's, Corrwall ; monastery, 389
Saint Germain's, near Paris, 440
Saint llonorine granite, 1669
Saint IIubert ; church, 559, 560
Saint James's liall ; lighting, 2254 f
Saint James's palace, Westminster, 426
Siment Jean aux Bois; church, 540
Saint Johu's deals, \&c., 17296
Saint Léonard ; church tower, p. 1003
Saint Louis, king; great number of ecclesiastical buildings erected under, 310
Saint Loup ; church spire, 1000
Stint Luke's hospital, Oid Strect, 523
Saint Maximin ; church, 540
Saint Petersburg; founded, 378. Palaces of, ib. Church of Our Lady of Kazan, ib.
Saint l'ierre Canivet ; quarries, 1666 h
Saint Pierre-lez-Bitry ; church, 534
Saint Poole, Sir George ; designs for, 440
Saint Quentin ; church, 547. Apse. p. 1007. Hôtel de Ville, 548, 550
Saint Riquier ; church, 547
Saint Rombaut ; cathedral, 558, 559
Saint Thomas's hospital, 2975 e et seq.
Saint Trond ; church of St. Martin, 50.4
Sainte Kadigonde ; masons' marks in church, $3: 26$
Saintes; amphitheatre, 228
Sakkarah, pyramids, 74, 75
Sulamanca ; cathedral, 587, 597, 599. Dominican church of S. Esteban, 598. Colegio mayor de Santiago el Zebedeo or del arzobispo, 597. University, 595
Salisbury, Wiltshire ; cathedral, 542. Founders and dimensions of, 434 ; Proportion of, p. 1616, p. 1023, p. 1058. Vaulting, 2002g, 2002 m . Buttresses, p. 1048. Window, p. 988. Spire, p. 1001 ; strengthened, p, 1005. Chapter-house, $14096 b$
Saloons, 549
Salsette, excavation of ; near Bombay, 57
Saltpetring, $1667 \mathrm{c}, 1667 \mathrm{~m}$
Salzburg; cathedral, 355
Salzdorf, Johann von; architect, 580
San Beroardino; chapel at, 350
Sand; measures, 2304. Kiver, 1851. Pit, 1852. Sca, 1852a. Metallic, 1852c. For moulding, $2265 c, 2260 j$. In cement, $2251 a$. Paper, 2276 d . How measured, 2304
Sand 1 or samel bricks, 1823
Sanding in painting ; outside work, 2277
Sand,tones ; 1664. Buildings, 1665. Crushing force, $1502 i$
SangeIlo, Giuliano di ; architect, 335

Sangallo, Antonio, architect, 343
San Gimignado, 614. Houses, 622
San Miche:i, Michelc ; architect, $\mathbf{3 5 0}$
San Pelro de Rates, 600
Sanitary appliances; closets, 22206. Papers, $2277 c$, 2277h
——arrangements for a housc, 3036 et seq. aspect of house construction, 3027 et seq. - specification for a villa, 2294b.

Sansovino, Jacopo ; architect, 351 , 855
Santa Maria de Val de Dios; church, 589
Santa Maria el Real de las Inelgas, near Burgos ; cistercian nunuery, 587
Santarem; capture of, 602. San Francisco, 600. Sta Maria de Marvilla, ib., $60 \overline{7}$. The Conceiçao Velha, 607
Saracenic or Arabian architccture, 118 et seq. Decline of, 128
Saragossa ; church of Sta Engracia, 367
Sarcophagus of Duchess of Keut, $1671 f^{\circ}$
Sariñena, Juan ; architect, 598
Sarking; to a roof, 2210
Sarzana; cathedral, 618
Sarum, Old ; cathedral, 396
Sash bars; of zinc, $2224 g$. Of metal, $2255 f$. Door, 21656 ; in spec., $2285 f$.

- Frames, 2164, 2165. In spec. 2285d. Lines, 2160 a, 2260. l'ulleys, 2260. Weight', 216ãa, 2263. Mountings, 2165a. Pocket and fittings, $2165 u$. Tools; glazier's, 2226
Sashes, 2164. Removal of, 2165 a. In spec., 2285d. Cast iron, in spec. 2286
Sashwork, 2226
Saturn, temple to (now of Vespasian), at Rome, 213, 260, 2547
Saul or sâl timber, $1728 a$
Savoy, london ; palace, 423. Chapel ceiling, $2023 c$
Saw ; not known to the Greeks, 7. Carpenter's, 2003. Ripping, half ripper, hand, panel, tenon, sash, dovetailed, compass, keyhole or twining, 2115. Teeth of, 2116 . Sawing iron, 1767
Saw bench, $2124 a, 2124 b$
Saxon and Norman styles; difference between, 397
Saxons ; arrival of, in Britain, 383. Maner of building, p. 1021. Cathedrals, proportion of, p. 100.5
Scabbling hammer, 1913
Scaffolding; in spec., 2282c. Framed, in spec., 2281e
Scagliola work, 2250h et seq.
Scales of iron; in mortar, 1858, $1859 k$
Scales and weights; plumber's, 2212
Scamozzi, Vincenzo; architect, 355, 365
Scantle ; slater's, 2209
Scantlings; for joists, 2015-2022. For girders, 2021
Scappled blocked ; to granite, 1915 c
Scappling hammer, 1913
Scarborough museum, 2916
Scarting, 2007
Scena; of the Greek theatre, 172
Scenographia; of Vitruvius, p. 1013
Scheiner, Johann ; architect, 583
Schelestadt church ; octagon steeple, p. 1004
Schinkel; architect, 2923
Schnceberg ; parochial chureh, 583
Schnellmeier, Hcinrich ; architect, 579
Schomberg house, Pall Mall, 1666k
Schönbrun ; palace, 365
School, llanwell district, 2976c
Schorl; in granite, $166{ }^{j}$

Schwerin; cathedral, 567
Sciography, 2458-2484. See "Shadows"
Scorix: in mortar, 1859a
Scotch granites, 1670 . Slates, 1805
Scotgate Ash stone, $1666 x$
Scotia or Trochilus, 2532
Scotland; architecture of, in time of the Saxons, 383,388 . Stone buildings in, of high antiquity, 388. Tudor examples of style in, 431. Spires of, p. 1003. Granites of, 1671 d et seq. Marbles of, 1682
Screen; Northtleet church, p. 985 ; Lavenham chureh, p. 986. Aldenhan chureh, ib.
Screw, $1: 124-1330,1631 v$. Varieties of, 2257

- driver, 2110. Cheek, 2102

Screwdowns or valves, 2223 s
Scribe ; bricklayer's, 1890
Seroll moulding, p. 972
Sculpture ; in Gothic architecture, p. 971 et seq., p. 1028. Much used iu the early English style, 401. In Frauce; of the 14th century, $543 ; 15$ th and 16 th centuries, 546 . In France and Germany, 568. In Germany, 578
-rather than painting, allied to architecture, 2522
Sea coal mortar, $1859 a$
Sc, sand, 18 J et seq., 2222d. Inducing rot, 1746
Sea water; effect of, on iron, 1779. On cement, $1862 b$ et seq., 1864 c
Seams; in plumbery, $2: 213$
Seasoning timber, 1748, 1751
Seats ; wood mouldings, $\rho .986$. Of a church, in spec., $2285 i$
Secqueville church ; spire,'p. 1000
Section, 2490 a
Sét Z ; cathedral, 540
Sefton, Lancashire ; proportion of church, p. 1016

Segeste; temple, 149, p. 945
Segments of a circle; Table of areas when the diameter is unity, 1225
Segovia; bridge of, at Madrid, 371

- cathedral, 367, 598. New cathedral, ib., 599. Masons' nuarks, 322b. Casa de moneda, 526. Hieronymite monastery of Sta Maria del Parral, 596
Selly, Yorkshire ; conventual church, 398, 421 . Choir, groined ceiling, 2023g. Windows, p. 991
Selenitic mortar, 2250a
Self-coiling shutters, 2148a
Sclinus; founded, p. 943. City, 147. Five temples, p. 946, p. 948, p. 949
Semiramis, queen; works of architecture attributed to, 9
Semite ; of the xystus, 175
Senlis; cathedral, 540 . Church of St. Pierre, 547. Church, 534

Sens; cathedral, 540, 547
Septimus Severus; arch at Rome, 2547, p. 962
Seraglio ; reception room of the, 132
Serlio, Sebastien; architect, 2744. Mode of relieving a lintel, 1925f. On proportion, p. 1058

Scrpentine, 1681d et seq., 1683 c
Servandoni, Niccola ; architect, 362
Service ; box to cistern, 2223c. Pipes, 2223 g
Set ; produced by a straining force, $\mathbf{1 6 2 8}$, 1630 e
Sets off, 1900d

Setting board; glazier's, 2228. Knife, glazier's, ib.
Severey, 415, p. 1046
Seville; cathedral, 368, 595, 599
Sewers; their use, size and form, 1887 et seq.
Shade, as distinguished from shadow, 2159
Shadows; method of projectiug in architectural drawings, $2458-2484$. Angle usually employed for the light, 2459-2462. Exaumples, 2464 et seq. On steps, 2468 . Of modillions, 2469-2471. On triglyphs, 2472. Of consoles, 2473 . Of niches, 2175. Of pediments, 2476 . Of hases, 2480 . Of Tuscan, Ionic, and Corinthian capitals, 2480-2481
Slaft ; Gothic, p. 976. Filleted, p. 989. In vaulting, p. 980 et seq. Of stone, strength of, $1502 g$. Of coloured stone, in spec., $2284 b$. How measured, 2358
Shaftesbury house, Aldersgate Street, 462

- ventilator, $2278 q$

Shah Ablas ; caravanserai of, 51
Su-Meidan ; at Ispahan, $51{ }^{\prime}$
Sham; ceilings, 2023g. Vaulting, 149066
Shapes of beams and girders, 1628 p et seq-
Sharpe, Edmund, architect; on the pointed arch, $303,307 b$; author of Architectural Parallels, p. 971
Shawk stone, 16662
Shear stcel, 1772
Shearing or detrusion, $1631 n$ et seq. In iron, $1629 c$. Of stones, $1502 i$
Sheephouse quarrics. Drogheda, $1666 b 6$
Sheerness docks, $1671 e$
Sheet; copper, 1789. Glass, $18: 8 a, 1870 a$, 1872. Iron, weight and thickness, 2254. Lead, 1783 ; thickness of, $2215 a$
Shell lac for protecting stone, $1667 n$
Shelving ; of slate, $2211 q$
Shene, Surrey ; palace, $4: 4$
Sherborne, Dorsetshire ; minster, 398. Porch, p. 998

Sheriff Hutton, Yorkshire ; palace, 426
Sheringham's ventilator, $22 \% 8 p$
Shingles ; in rooting, 2224. Imitation of, on stone spires, p. 1000
Sbingling iron, 1757
Shoes; for shutters, 22 $2.5 f$. Of iron for timber,
1746. Of iron in roofing, 2043 et seq.

Shone's sewage ejector, $1887 \mathrm{c}, 1887 \mathrm{C}$
Shooting, 2102
Shop; fittings, in spec, 2285e. Fronts of iron, $2255 f$; in spec., $2285 d$
Shoring, 1889a. In spec., 2284e, 2285
Shorland's tubes, 2278s. Grate, $2279 d$
Short aud long work, 1922b
Shoulders; in coursed masonry, 1925g. In framing, 21\%5a
Shrewsbury ; St. Mary and St. Alkmund churches, p. 1002. Pedestal of Lord Clive, 1671a
Shute, John ; architect, 438
Shutter; bars, 2263, 2148t. Shoes, ib.
Shutters, $2146-2148$. In spec., 2285c. Boxings, in spec., 2285c. Revolving iron, $2255 f$. Of wood, in spec., 2285 e. Sliding, in spec., 2285c. Outside, in spec., 228 . c.
Sicilian Gothic architecture, 626

- marhle, 1666e, 1677 et seq., 2002hh

Sicily ;-marhles of, 1678 a. Pointed arch in, 306. Temples in, 147, p. 913

Siculo-Norman style, 626
Side ; Loards, 2102. Hook, 2121.
Siena; cathedral, 613, 615. Proportion of,

SIE
p. 1008. San Francesco, ib. IIouses, 614. Pal. Buonsignori, 614. Pal. Piccolomini, 329 ; corniee, 2725. Pal. Spanocehi ; cornice, 2725
Sicna marble, 1678
Signia ; Cyclopean remains, 32
Siguenza; cathedral, 587, 598
Silica and lime, $1859 c$
Silicate eotton, or slag wool, 2247, 2971c
Silicate of iron paint, 2273 g
Sill ; of a partition, 2025. Of a window, in spee., 22816
Siloe, Diego de ; architect, 368
Similar figures, $958-968$
Similarity of work, p. 969
Simpson, Arclibald; arcliteet, 2043
Sine of an are, 1039
Single axed; to granite, $1915 c$
Single ; flooring, 2014. Slates, 2211c. Framed roof, $2052 \mathrm{~m}, 2052 \mathrm{q}$. Stones; early practice of erecting, and of what probable emblem, 13
Sink; of stone, of earthen ware, in spec., 2284 d. Deal, in spec., $2285 g$. Lined with lead, in spec., 2288. Of slate, $2211 q$. Trap, $2220 i$
Sink stone, in spec., $2284 d$
Sion house, Middlesex, 442
Site for industrial dwellings, 3023
Sкпvi, or Scena, of the Greek theatre, 172
Skerryvore ; lighthouse, $1671 / h$
Skew back, 1890
Skiffled ; in mason's work, $1922 d$
Skimming ; in plasterer's work, $2246 a$
Skinning work, p. 970
Skirtings; in spec., 2285b. Of cement, 2287. Of slate, in spec, $2283 a$
Skirts ; of a roof, 2053
Skylights, in spee., 2285e. How measured $235 \overline{0}$
Skynners, Sir Vincent; house for, 440
Slab; of slate, 1810. Generally used, 2211p. In roofing, 2210 h
Slag ; in mortar, 1859 d
Slag wool, 2247, 2971c
Slaking lime, $1843 d, 1848,1859 h$
SJate, 1798 et seq. Descriptions of, 1798. Quarries, 1800. Properties of, 1801. Different sorts, 1802 et seq., 2211e et seq. 'l'ests of quality of, 1807 et seq. Strength of, 2211c. Use of, in Pembrokeshire, $2211 o$. Defect in constructions of it, ib. Hips and ridge, $2211 i$. Roll ribbing, ib. Slope of roofs for, 2030. Names and sizes, 2211 c. Number to eover a square, 22116. Slabs, $2211 p$. ; in spec., $2283 a$
_articles, \& .., 1804. Dowels, 1925f. Ground for plastering, $2246 d$. Uf glass, 2231. Enamelled, 2211r

Slater's work; in spec., 2282c. Ilow measured, 2370
Slatiug, 2209 ct seq. Open, 2210c. Patent, $2210 i$
Slaugham, Sussex ; house for Sir W. Covert, 440
Sleaford, Lincolnshire ; church, 398
Sleepers; timber for, $1729 f$. How measured, 2351. Walls, in spec., $2282 a$. Uak for, in spec. 2285 . Blocks of carthenware, 1886 d
Sliding of voussoirs, $1495 a$
Slope or pitch of a roof, 2040b, 2052us
Slotting a bar, 22550
Slow eombustion grates, 2279 d
Small cut brads ; glazier's, 2226
Smirke, Sir Roburt; arehitect, 520

SPH
Smirke, Sydney ; architect, $2052 u$
Smitlı, Edward ; seulptor, 526
Snithery and ironmongery, 2253 et seq.
Smith's and ironmonger's work, 2255 . In spes., 2286. Estionating, 2375.
—_ weather-tight casement fastenings, 2259, $2259 d$
Smitlison, Huntingdon ; architect, 443
—, Robert ; archilect, 440, 443
Smoke flues, 3052. Overheating, 5062
Smyina; tumulus near, 304
Soaking bricks in water, 19006
Soane, Sir John ; architeet, 523.
Sod kiln ; for lime, 1846
Sofites, in spec., $2285 c$
Softeniug water, $2223 h$
Soil pipes, $2223 \mathrm{~g}, 2223 \mathrm{k}$
Soils; best for foundations, 1882, 1883. To cover in basement, $1886 f$. In spec.. 2281
Soissons; St. Pierre, 534. St. Jean des Vignes, 545
Solar eell; of the batlis of Caraealla, 235
Solari, Chri-tofano : architect, 623
Solder; for lead work, $2223 n$. For copper, iron, brass, and pewter, $2224 d$
Soldering, 2223f; 2223h. Zinc, 1797
Solids, $979-995$. Mensuration of, 1229 et seq. See "Mensuration"
L to voids; ratio of, in vertical seetions of Gotliie buildings, $1583 e$. See "Points of Support"
Solmone; aqueduct and house, 625
Solutions, fireproof, $2971 f$
Somerset house, London, 518 et seq., 2893. Old ; ground plan of, 440 . Water front, 459
Somersetshire ; ehurelies in the forid English style, 423
Sompting, Sussex ; chureh tower, p. 971
Soufflot, Jacques G. ; architect, 3ட்1, p. 1048
Souillac ; churelı, 307, 535
Sound boarding. See "Pugging"
Sound. See "Isacoustic eurve" and "Theatre." Non-conductor of ; see "Slag wool." Wood as a eonduetor, 2964
South Wingfield, Derbyshire ; mansion, 426
South Wraxhall, Somersetshirc; lall roof, $2052 t$
Southampton ; new eliurch, 525
Southfleet, Kent; ehurch roof, 20520
Soutliwark, Surrey; ehurch of St. Mary Overies, or St. Saviour's, 421 ; vaultingr ribs, p. 980. Of St. Olave, 512

Southwell, Nottinghamshire; eollegiate church, 389 . Founders and dimensions, p. 197. East windows, p. 988. Porch, p. 998 Sow ; of lead, 1782
Spain; marbles of, 1680. Architecture of, 367 et seq., 584
Spalatro (Hoperly Spalato); joggled arehes, 1925e. Niches, 2775
Spandril ; in vaulting, 2002e
Spanish white, 2274
Spazi, L. de'; architeet, 623
Speaking tubes, $2262 a$
Special subjeets, 2861 et seq.
Specitications, 2280 et seq.
Spey, Johann voll ; architect, 579
Sphæristcrium ; of the Greek gymnasium, 175 Sphere ; surface or segment, 1237 . Solidity of $a, 1238$. Solidity of a spherical segmeut, 1239. Its resistance, $1592 d$

Spherical surfaces; to form in joinery, 2208. Vaulting. 1478-1493
Sphinx of Egypt, 74

Spiders in roofs, 557
Spikes, 2263
Spina; of the Roman circus, 240
Spiudle ; self-adjusting, 2261
Sjunkwell quarry, 1666y
Spiral stairs, 2808
Spires, p. 1000 et seq. Construction of, p. 1003. In spec., $2284 b$. Of iron, p. 1005. Of zinc, 2224 . With open tracery, p. 1005. Of wood, at Breslan, 579 . Of stone, at Thomar, 607. At Salisbury, p. 1052; thickness of stonc, ib. Lofty, in Belgium, 560 . Of brick, ib. Gothic, wrought into Italian architceture, 484
Spires, or Spever; cathedral, 287
Splays, ramps, and chases; in spec., $2282 b$
Split oak for pales, $2125 b$
Splitting slates, 2:11d
Sprinkler, automatic, $2971 i$
Square; bricklayer's, 1890. Bricklaycr's large, ib. Glazier's, 2226. Joiner's, 2118. Mitre, 2124
Squares; use of, in proportion, p. 1005 et seq., 1. 1008 et seq. And triangles, systems of, 620
Squares, \&c. Tables of, $2297 \mathrm{~g}, 2297 \mathrm{~h}$
Squaring the rail of stairs, 2187. Diuensions, 2297
Squinch, p. 1001
Stability ; of piers or points of support, 1563 ; of buildings, 1583 e et seq. In a roof, 2035a. Source of fitness, 2500. Dependent on laws of gravitation, 2501
Stable; and fittings, $2255 l$. In spec., $2282 b$, $22803 h, 2286 a$. Supply of water to, $2223 i$. Masou's work in, in spec., 2284 d
Stacking timber, 1730 et seq .
Stadium ; of the Greek gymnasium, 175
Stafford, Duke of Buekingham; his palaces, 426
Staffordshire tile, 1908c
Stages of mouldings, p. 979
Stained glass, $2231 b$
Stains for wood, $2276 e$. In spec., $2290 a$
Staircases, 2796 et seq. Designing of, important, 2797. Light in, 2798. Of the Greeks and Romans, 2790. Few remains of, at Pompeii, 2800. Of the 'Trinuà de' Monti and Araceli, 2802. Palladio's rules for forming, 2803, 2804. Various sorts, 2805. Winding or spiral, 2806. Palladio's rules for, 2806,2807 . Spiral, with solid newel, 2808. Spiral, with open newel, 2809. E1liptical, with open newel, 2810. Elliptical, with solid newel, 2811. Easiness of ascent in, 2813. Blondel's rule, 2814. How messured, 2357
Stairs; iron circular, 2255. Back and principai of stone, in spec. 2284c. Of wood, in spec., 2285 c, $228 \overline{5} d$

- stone, 1926 et seq. With solid or open newel, 1926. Geometrical, 1927-1929. Landings, half paces and quarter paces of, 1929. Thickness of steps, 1928. Rules for risers and treads, 2177-2179. Carriage, \&c. of, 2026. Deal, in spec., 2285e, 2293c
Stall board; in spec., 2285e. In stables, in spec., 2285h. Dressings, in spec., 2285 h
Stalls; in churches, 2192a. At Winchester cathedral, p. 984. At Selby, p. 985. At Lancaster, ib. In Henry VIl.'s chapel, p. 986
Stamford, Lincolnshire; partchial church, 421. All Saints church, porch, p. 999

Stamped or incised plaster, 22450

STO
Stancheons; to windows, 2229c. Strength of, 1631i et seq. In spec., 2286a
Stancliffe stone, 1666
Standard; of deals, 1729
Stanford's joint for drains, $1888 a$
Staplehurst Kent ; clurch door, 2145a
Starston, Norfolk; church, $2052 r$
Stassins, Jan ; architect, 559
Stationcs ; of the Greek gymnasium, 175
Statues, 2773 et seq. Founding of, 22efr. King William IV., 1671b. At Portsmouth Aberdeen, \&c., 167!f. See "Niches"
Steam; in warming, $22796,2279 \mathrm{~m}$
Steel, 1633-1635, 1764, 1769 et seq. Shearing of, 1631 s . Plates, strength of, 1630 . Colimms, 2255. Ornament, 2255 o
Steel decking for floors, 1903 p
Steely iron, or semi-steel, $1769 a, 1773$
Steenhoukebelde, Thiery de ; architect, 559
Steening wells, 1829 . In spec., $2282 b$
Stceple; octagonal, in Spain, 590. Of zine, 2224k. See "Spire"
Steier ; church, 567
Steinbach, Erwin and Johann von ; archi'ects, 770
Stellar form of vaulting, $1499 y$ et seq., $2002 w$
Stench trap; to drain, $2220 j$. In spec., 2288 u
Stepping ; to flashingr, $2211 k$
Steps, $2180 a$. And risers, to proportion, 2177, 2178a. Of slate, $2211 q$. Of black marble, 1683. Arches to carry, in spec., 2282a. To chancel, in spec., 2284 c
Stereotomy. See "ك Masonry"
Stevens, John ; architect, 561
Stewing stoves, in spec., $2282 b$
Stewkley, or Stukely, Buckinghamshire; church, 389
Steyning, Sussex; parochial clurch, 398. Proportion of, p. 1018. Cap and base of pier, p. 1020
Steyning or steening wells, 1829
Sticking ; in moulded work, 2105
Stickles, Robert ; architect, 440
Stieglitz, C. L.; writer, p. 1009, p. 1011
Stiffiness ; in a beam, $1628 v, 1630 h$. Of bodies, $1630 i$
Stirling, Morries; improvements in iron, 1628n
St irrup irons, in spec., $2: 86$
Stock and bit, 2107
——; bricks, 1820, 1822. Locks, 2261
Stoke-Pogis hou-e, Buckinghamshire, 446
Stone; early working of, 10. Quarried and worked with skill by the Egyptians, 73. For Cologne cathedral, 573,554 . In Spanish churches, 585. In spcc., 2284 et seq.

- 1636 et seq. Freestone, 1637. Limestones and sandstones, ib. Requisite qualities, 1639. Report on selecting stone for the ncw Houses of Parliament, 1641-1665. List of sandstone, limestone, magnesian limestone, and oolitic stone quarries in the provinces, 1664,1665 . List of buildings of sandstone, p. 462-465. List of buildings of limestone, p. 465-468. List of buildings of magnesian limestone, p. 468-470. Analysis of sixteen different sorts of stone, 1666. Crushing weights, $1500-1502,1502 h$. 1582. Table of weights, $1666 a, 1666 b$, Stones used in the metropolis, 1666c. Various stones used, $1666 d-1666 b b$. Quarrying, 1666cc. French building stones, 1666 hh . Kentish ragstone, $1666 d d$
decay of, 1610,1667 et seq. Effects of wind, sun, heat and codd, $1667 f$. Dressings,
in spec., 2284. Walling, random, in spec., 2284 . Prescrvation of, $166 \mathrm{i} h \mathrm{~h}$ et seq. Artificial, 16670 et seq. Absorption of watr, 1667ω
Stone age, 1913. Bricks, 1903o. Lime, 1849 ; 1859h. Coloured, $1666 e$. Pipe, 2223p. Iu spec., 2282a, 2293b. Cutting; see 'Masonry."
-, Kent; church, p. 1020, p. 1028
-, Nicholas ; mason, 313, 440, 462
-buildings, Lincolu's lun, 515
Stoneheage ; account of, 18. By Inigo Jones, 457-461. By Mr. Cunnington, 19, 40. Not built by the Britons, 380,388
Stoneware, 1839e, 1908a. Pipes, 1888a, 2223p. Bonding bricks, $1902 c$
Stop; to chamfers and mouldings, 217ab
Stop-cock for gas; in spec., 2293
Stopping and picking out tools; plasterer's, 2233
in painter's work, 2270 . In spec., $2290 a$
Story ; posts and curb for, in spec., 2:34c, $2285 a, 22850 . \quad$ Rod, for stairs, 2182
Stoves, $2279 d, 2279 c$. For gas, 2264i, $2279 e$
Stowting, Kent; church, lead of glass, $2229 a$
Straight-edgc, 2123. Plasterer's, 2233
Straicht-joint floor, 2168
Straining-piece, 2034
Strains ; on beams and girders, 1628e et seq. On roof framing, 2031. On inclined timbers, 1662
Strap; in carpentry, 2011. To roofs, in spec., 2286, 2286a
Strassburg; cathedral, 322, 567, 570. Proportion, p. 1011. Masons employed at, 312, 315. Spire, p. 1005. Carving at, 311

Stratford-upou-Avon, Warwickshire; parochial church, 314, 408, 421
Straw ; in thatching, 2211s
Strelly, Nottinghamshire; church porch, p. 999
Strength; of materials, 1500 et seq. In a beam, $1628 v$. Of bodies to resist deflection, 1650h. Of various timbers, $1632 a$
Strctchers, 1894
Stretching ; resistance to, $1630 i$
String courses, p. 981 et seq. Or bands to spircs, p. 1003. In spec., 228la
Strings; of stairs, 2026. In spec., $2285 d$
Striped work; in masonry, 1914
Striping; in masonry, 1914
Stripping walls before re-papering, $2277 f$. The surface, in spec., 2281
Strode \& Co's ventilator for gas, $2278 v$
Stroking; in masonry, 1910
Strong closets; in spec., $2282 b$
Strong, Thomas ; master mason, 469
Struts; in carpentry, 2009, 2021a, 2031. Strength of, $1631 i$ et seq. And braces, abutments for, 20:0
Strutt, or Belper stove, $2279 f$
Strutting pieces, 2018
Stuart, James; arclitect, 516, 525, 2047
Stuart's granolithic paving, 1905c
Stucco, 2250 et seq. Bastard. 2236 ; 2243. Painting, 2269. In Ireland, 2250g. In spec., 2287
Stuck work; in joincry, 2105. In Gothic joinery, 2175c
Stuff; size of, in Gothic work, 2175 c . Thickness, in Gothic work, $2175 d$, p. 986
Stukely, or Stewkley, Buckinghamshire ; church, 389
Stump, tracery, 578
Styles; of a door, 2130

Styles of architceture, all dependeut on fitness, 2508. Principles of, p. 1047

Sub-arch, p. 977
Subdivisions and apartments of buildings, and their points of support, 2848 . Vaults for covering, how arranued, 2849-28ว̆4
Subiaco ; monastery of Sta Scolast ca, 614
Subterranean style of Egypt ; caused by the climate, 64
Sudatio ; of the Greek gymnasium, 175. Of the Roman batlis, 235,236
Sudely, Gloucestr rshire; house, 423
Suffolk; bričks, 1820, $1831 a$. Latelı, 2262

- Lord; house for, 440

Sugar ; effect of, on iron, $1779 c$
Sully-sur-Loire; roof, 2052i, 2052 q
Sulphate of copper, 1752 c
Summer ; building in, $1832 a$
Summer hill, Kent, $45: 2$
Sun Fire office; plinth, 16716
Sunium ; temple, p. 943 , p. 945
Sun lights, 2264 e
Superticies ; mensuration of, 1212-1228. See "Mtnsuration"
Superintendeuts of English buildings in the middle ages, 312
Supervisor. 312, 319, 320
Supplement ; of an arc, 1038
Support:. See "Points"
Surfaces, 929-934
Survey of Gothic buildings; system of noting, p. 975
Surveyor, 312, 319. General, 319
Susa ; arch of Augustus, p. 962
Suspending rods ; in roofing, 2043
Sussex marble, 1681 g
Sutton Place, Surrey ; 1908a
Swansea, Glamorganshire ; castle, 413, 414
Swardestone, Norfulk; church rouf, $205.2 p$
Swedish timber, $1729 f$
Swift, dean ; his ignorance of art, 491
Swinbrook, Oxfordshize ; bench end, p. 986
Sybil ; temple of the, at Tivoli, 214, 2547
Si caunore, 1724
Sydenham, Surrey ; palace at, p. 1057
Syenite, 1669: Crushing weight of, $1202 h$
Syenitic granite, 1669, 1671 g
Sylvester's precess for protecting stone and brickwork, $1667 n$. System of ventilat on, $2278 y$. Stoves, 2279d, $2279 e$
Symmetry; in architecture, 2510, p. 958
Syphon trap, 2220g; 2223l. In spec., 2288a
-Tank, 1888 h
Syphonage, 1888d, 2220h, 2223m
Syphouic aspirator ventilation, $2278 u$
Syracuse, 626. Tcmples, p. 943 Houses, 626
Systyle intercolunniation, 2605 . Monotriglyph, ib.
Sz relmey's process for preserving stone, 1667 m

TA ; sepulchral tower of the Clinese, 106 Tabary metallic cement, 166 Tn
Tabernacle, or canopy ; plin of, p. 975
Tables, or stone courses, 1922o, p. 979
Tablinum ; of a Roman house, 248, 253
Tacks, 2257a, 2257d
Tadmor or Palmyra; extraordinary structur s, 196, 197
Tai ; of the Chinese, 106
Taking down, in spec., 2281
Talenti, Francisco ; a.chitcet, 323
Tall boy, 1905a

TAL

Tall＇s conerete construction， $1903 x$
T＇angent ；of an arc， 1041
Tanjore ；pagoda， 59
Tanks and cistcrins；of iron，2223h．For water， $1785 a, 2222 b$
Taormina ；honses， 626
Taper shell bit， 2102
Tar；as a paint，22\％3z．A sphalte，1867d， 1905h．Paving．190．5h．Oil of， $1752 a$
Tarentum ；founded，p． 943
Tarnish，of copper， $1789 a$
Tarouca；Cistercian monastery， 600
Tarpaulin， 1908 a
Tarragona；cathedral，587，592．Masons＇ marks， $322 b$
Tarring fence，in spec．， $2: 28$ 万h
Tas de charge ；in vauling，2002e
Tassels ；in a roof，205：2f
Taste；in architecture，2492．Standard of， 2506
Tattershall，Lincolnshire ；castle，423．Door－ way，p． 998
Tatti，Jacopo；architect．See＂Sansovino＂
Taunton；St．Mary＇s church，421．Tower， p． 1002
Tay＇ler，Mr．；his house at Potter＇s Bar， 440
Taylor，Sir Rohert；architect．313，515， 523
Taylor＇s new roofing tiles，1835．Damp prorf c urse，1886d．Facing hlock for walls， 1902e
Teak wood，1728．Strengtl of， $1630 w$
Teale，T．P．；grate，2279d
Te ino；castle， 625
Tearing materials asunder， 1630 i
Tebbutt＇s safety hrick，1905e
Tectorium ；for walls， 227 zh
Technical schools and college buildings， 3037 et seq．
Tee irons， 1629 s
Telekouphonon ；for speaking tube， $2262 a$
Tempering iron， $1760 a$
Temple Newsham，Yorkshire；house， 452
Tcmpe， 76 et seq．， 142 et seq．． 196 et seq．， 2547 et seq．Proportion of，p． 1057 et seq．Sec in Glossary
Templet ；bricklayer＇s，1890．Or Mould， 1890，p．1019．C＇arpenter＇s，in spec．， 2285
Tenons， 2008
Tensile strain ；in stone and marble， 15020
－s rength， $1628 e, 1628 n, 1630 p$ ．Of cast iron，1636s
Tensiun， $1628 e, 1630 c$ ．Rod to a beam， $2021 b$
Tentyra；temple at，71，78，80， 91
Teocallis；houses of gods of the Mexicans， 111， 113
Teos；temple，p． 951
Teotihuacan ；pi ramids of， 111
Teotoropoli，Domenico ；architect， 369
Tepidarimm ；of the Roman baths， 235
Terminus 2686
Terni ；church of San Francesco， 613
Terra－cotta，1667o，1839g et seq．Por，us， $1903 r$ ．
Architectural use of，1908．Colours in，1908t．
S rength（f．19080．And brick church， 624.
Work，in Spain． 585 ；and other places， 1908
Terras， $1859 c, 1859 e$
Terro－mctallic ；tiles，1835．Grooved bricks， 190うと
Tertiary French Gothic．See＂Flamboyant＂
Tesseræ，1839c
Testing；cast and wrought iron，and steel 2266a．A heam，1630f．Stone， 1500 et seq．．2266d．Bricks，1502k．Drains， $1888 p$ ． Timber， 1603 et seq．， 2266 h ．Cement， $226^{-2} e$

TIE

Testing machines，2266a et seq．，2266f et seq．
Tetbury，Gloucestershire ；church， 514
Tetrastyle temple， 2528 et seq．
Tettoje，or penthouse roof， 614
Tewkesbury，Gloucestershire；monastery， 389．Conventual church， 421 ．Shafts of， p．1023．Choir，p． 948
Thames；ballast，1861．Embankment， $1671 b$ ， 1671c
Thaon，Normandy ；church，547．Spire p． 1000
Thatching，2211s
Thaxted，Essex；parochial chnreh， 421
Theatre；in liome，185，226，258．Of Nmilins Scaurus，ib．Tnat by Curio，ib．Of Mar－ cellus， $226,258,2547$ ．That of Pompcii， 227
——of the Grecks，172．First constructed ia a temporary manner，ib．
－roof of old Drury Lane， 2048
Thcatres；modern， 2947 et seq．By Bramante， ib．Their r vival，2949．Piints for con－ sideration in，2952．Forms of，2953， 2957. W＇yatt＇s principles， 2656 ．Sizs of，and sch mes for hearing and sceing， 2957 － 2961. Use of semicircle in，2960．Distance from stage to hoxes， 2968 ．Seeing in， 2969. Foreign theatres， 2972
－Late suggestions for improving， $29 \overline{0} 0$ et seq．Ingress and egress， $2970,2971$. Cr sh romm，2970，2971．Passages．ib． Staircases，it．，2970b．Openings，2970u： Doorwars，ib．Departments， 2471 ．Firc－ proof w．rk at， $2971 a$ ．Curtain． $2971 b$. Lighting，electric and gas． 2971 g Ver－ tilation，2971h．Fire at，ib．Water for， $2971 h$ t t seq．Firepr of theatres， 2971 l et seq Reference to publications， 29 im ， 2972a
Themis；t－mple at Rhamnus，p． 944 ，p． 945
Theobalds，Hertfordshire：house， 446
Theodoric，king；architecture under， 278. His mausoleum at Ravenna，ib．His suc－ cessors， 279
Theodos＇us，emperor ；architecture under， 271
Ther dosiu＊II．，emperor ；architecture under， 271．His works at Cunstantinuple， 271
Theron；tomb，at Agrigentum， 158
Theseus；temple，at A thens， 150, p． 944
Thienen，Jacques van ；architect， 562
Thiers ；churches of St．Nectaire，St．Sim－ phorien，and St．Gı nès， 534
Third Pointed work；p－oportion in，p． 1617
Thirds；in proportion，p． 983
Thomar ；cloisters of the Templars，600．Nessa Senhora dos Olivaes，ib．Choir，601．San Joâo Battista， 607
Thornbury，Gloucestershire；palace，4こ6． Bay window at castle， $4: 8$
Thornton coll ge；for Sir Vincent Skynners， 410
Thorpe，John ；architect，his folio volume of drawings，440．Observations on hy Wal． pole，441．Desigu for his own hou－e，ib．
Therpland，Norfolk；hall porch，p． 999
Through stones， 1920
Thrust ；of an arch，1408－1412， 1496
Thuin，Jean de，and bis son；architects， 559
Thumb；screws，2263．Latch． 2262
$\Theta v \mu \epsilon \in \lambda \eta$ ，of the Greek theatre，172
＇Tie－beam，2031．Roofs， 2031 et seq．，2052m， 2052＂
——rods to a beam，1629w．And suspension bars，strength of， $1603 r$
Tit reeron；in vautting， $1499 f$

TRA
foot of ; to compute value, 2344, 2345. In spec., 2285. In circular work for roofs, 2052 et seq.
Tin ; strengtlı of, 1630r. Alloyed with copper, 1791

--saw ; bricklayer's, 1890

Tinemouth. See "Tynemouth"
Tinned iron; effect of, 1780 L . Lead pipe, $2223 m$
Tinternc, Monmcuthshire; conventual chureh, 407, p. 971 et seq.
Tiryns; walls of, 31,33
Tisbury stone, $1666 q$
Tivoli ; temple of the Sybil, 214, 2547
Toad's back rail, 2189
Tobin ventilator, 2278 s
Toddington house, Bedfordshire, 446
Toils; of a hinge, 2155
Toledo; cathedral, 588, 596. Franciscan monastery of S. Juan de los Reycs, 596. Gate of San Martino, 368
Toluncn or colossal stoncs, 26. Constantine Tolmen in Cornwall, ib.
Tombs; of the Romans, 254. Of the Horatii, now of Aruns, 255. Of Caius Cestius, at Rome, 256. That of lladrian, at Rome, ib. That of Cecilia Metella, at Rome, ib. Group of, from Pompeii, 257
of Dukes of Burgundy, Philippe leHardi, and Jean-sans-H'eur, 548. Ot King. John and Philippa, at Batalha, 60 - Of the Constable Pedro Fernandez de Velasco, 596. Of Affonso 1I. and 1II., \&c., and of Pedro I. and Ignez de Castro, at Alcobaça, 602. Of the Scaligeri, at Verona, 617

- of Elizabethan architecture, 449. Of Patcliffe, Earl of Sussex, it. Of Dudley, Earl of Leicester, ib. Of Carey, Lord Hunsdon, ib. Under James 1., 453. Of Archbishop Stratford, at Canterbury, 1499dd
Tongres; church of Notre Dame, 537, 560
Tongue ; in joinery, 2191
Tonnare; in valuation of warehouses, p. 1098

Tools for building ; used by the early Grecks, 7. See "Painters" and other trades

Toothings; of walls, 1900 c
'Top rails of a door, 2130
Torbay iron paint, 2273c
Torsion, 1628e, $1631 x$
Tortoise stove, $2279 e$
Torus, 2532. Iu Norman architeeture, 397
Tote ; of a plane, 2104
Tothill Fields prison, 1855
Totila takes Rome, 279
Toughened cast iron, $1765 b$
Toughness of bodies, 1630 i
Toulouse ; cathedral, 586. St. Sernin, 545
Toultecs; architecture of the, 110
Tournai, 564. Cathedral, 557, 558. Church of St. Quentin, 553,554 . The Madeleine, 555. Sc. Jacques, ib.

Tower of London, 394-398, 423
Towers and spires ; construction of, 961, p. 1000 et seq. In spec., 2284a, $2284 b$. Mediæval, domestic, at San Gimignano, 622. Three western, 583. Of brick, at Bruges, 557 ; at Bois-le-Duc, 560
Town drainage, $1888 f$
Town dwellings for industrial clasces, 3012 et seq.
Townley hall, Lancashire; gallery, 525
Tracery bar, p. 990

TRA

Tracery and geouctric forms, p. 1028. At Aniens, geometrical style of, p. 1062. In German Gothic, 565. In windows, p. 988, 1. 994 et seq. In spec., 22e4a, $2286 a$

Trajan's ; Column, 193, 486, 2603. Bridge over Damube, 193, 222. Forum, 193. Arch at Beneventum, p. 963
Trams; for paving, 1672
'Trani ; cathedral, 626
Transitiou ; of periods in Gothic architecture, 410, p. 969
Transparent wire-wove for glass, $2226 d$
'Transverse strain, $1628 e, 1628 g$ et seq., $1628 t$. In stone, 15020. Strength of bricks, 1833 et seq.
Trap to drains, 2218b. In spec., 2288a. To water closets, 2220a, 2220 g . Of cast iron, in spec., 2286a

- doors ; in spec., 2285a

Trass or terras, 1859_{e}
Traversing wood, 2121
'I'read, for steps, $2178 a$. Hawksley's patent, 2180
Tread; of metal, 2180. Of stoneware, 1908n. Of marble, $2002 n n$. In spec., $228 \bar{d} d$
Treasury, in London ; by W. Kent, 1:27b

- at Mycenæ, 36. At Orcliomenos, 37
'Tredgold's form of beam, 1628x, 1629i
Tresham, Sir 'Thomas; arehitect. 440
Treussart's concrete, $1862 b$
Treves or Trier ; church of St. Mary, 566; and of St. Matthias, $5 \star 3$
Trevi; temple at, 211, 2672
'Trevigi, Girolamo da; arclitect, 427
Triang!e; use of in proportion, p. 1005 et seq., p. 1008 et seq. No detinite theory of design carried out on it, p. 1018
Triclinium; of a Roman house, 252, 253
Triforium, 286, 555, 602. None to clancel of Bristol cathedral, p. 1017, p. 1028. At Wells cathedral, p. 1024. At Amiens cathedral, p. 1061
Triglyphs; origin of, 135. Regulate the disposition of Doric order, 2605
Trigon ; proportiou, p. 1013
Trigonometry; plane, 1032 et seq.
Trimmers aud trimming joists, 2017. How measured, 2340 . To hearths, in spec., $2282 a$
Trimming; of slates, 2210
Tripoli; described generally, 132
Triumphal arches; different sorts, 220. Proportion of, p. 958 et seq.
Trechilus or Scotia, 2532
Trough shape beams, $1629 t$
- closets, 22200

Trowel ; bricklayer's, 1890. Slater's, 2209. Plasterer's, 2233. Tiler's, 1908
Trowelled or bastard stucco, 2236-2244
Troyes; tloors in timber houses at, 2023d
Trunch, Norfolk ; church roof, $2052 t$
Truro, Cornwall ; parochial churel, 408, 421. Cathedral; founders and dimensions, p. 196
Truss,* 2031. System of trusses, 2032. For girders, 2021. In spec., 2285a
Trussed; partition in a roof, 2052g. Rafter roufs, 2052 m
Trussing a beam ; formula for, $1629 v, 1630 n$, 2021a
Trying up, 2102. Plane, plumber's, 2212
Tubes; ventilation by, 2278q et seq.
Tubing, welded ; for gas, $2264 / h$
Tuck pointing ; in masonry, 1900, 1915a
val
Tuddington, Bedfordshire ; house at, 440
'Tudela ; cathedral, 587, 588
Tudcla de Duero; parochial church, 598
Tudor style; examples of, in Scotland, 431. In England, 422 et seq., 432. Characteristics of, in windows, ceilings, flying buttresses, ornaments, canopics, pedestals, \&c., 430
headed windows, p. 990
Tuff ; in panels of vaults, $1499 c c, 2002 k$
Tuileries and Louvre, at Paris, 357
Tulle; cathedral, 534
Tunbridgc, Kent; castle. 394. Sandstone, $1666 t, 1567 \mathrm{~m}$. Ware, 2173 c
Tungstate of soda, $2971 f$
Turbine; for ventilation, $2278 h$
Turin; Carlo Alberto statue, 1671a
Turnbuckles. 2263
Turpentine, 2271
Tuscan Gothic architecture, 608
order; inventors of, 258 . The order, 2553 . Adnits of few ornaments, 2554 . Method of profiling, 2555. Parts of, on larger scale, ib. Table of heights and projections, ib. Whole height of, 2556. Palladio's method of profiling, 2057. Ser.io's method, 2558. Scamozzi's method, 2559 . Intercolumuiation, 2606-2609. Árcade, 2621. With pedestal, 2628

Tusculun ; aqueduct, 304, 306
Tusk; in carpentry, 2008
Tutbury church, Staffordshire ; door, 2002ee
Twisting or torsicn, $1631 x$
Tympaumи, 2715. Face of, how dispo.ed, 2723
Tynemouth, Northumberland; conventual church, 407
Types; of architecture, in three states of lite, 2 . Of the art, 258,2507

UFFINGTON, Berkshire; chancel ceiling, 2023g. Porch, p. 998
Uhm ; cathedral, 575 . Apse, p. 1007
Ulric, of Ulm ; architect, $36 \overline{5}$
Undercutting; to mouldings, p. 981
Underyinning ; in spec., 2282c. Wedges for, iu spec., 2286
Undy-boltel; moulding, p. 973
Unity; in architecture, 2509
Upholisterers and decorators; to be avoided in matters of taste, 2604
Uria, Pietro de; architect, 367
Urinals; of slate, 2221
Use and wear ; in dilapidations, p. 1094
Utenhove, M. ; architect, 559
Utrecht, lishop of ; killed by a freemason, 310

VACUUM system of ventilation, 2278b Vaison, churches, 307
Valencia; cathedral, 588, 594. Puerta de Serranos, 594. Tower El Micalete, ib.
Vale Royal, Cheshire; conventual church, 407
Valladolid; cathedral, 586. Casa del Ayuntamiento, 596. S. Benito, 598. Sta Maria Madalena, 599. Dominican ccllege of S . Gregorio, 597. College of Santa Croce, 367
Valle Crucis, Denbighshire ; conventual church, 407
Vallfagona, Bernardo de ; architect, 587
Valmarama, palazzo, balustrades, 2698

VAL

Valuation of property, p. 1094 et seq.
Valve water losets, $22 \cdot 20 \mathrm{~b}$

- to cisterns, 2223 s

Vanbrugh, Sir John; architect, herald, and dramatist, 491-497
Van Hecke's ventilation, 2278h, $2278 z$
Vanes; in spcc., $2286 a$
Variety, desire for ; cause of decoration, 2515 Varnish; in paint, 2271c
Varnishing; 2274, 2276 b . To clean, 2276 c . In spec.. $2290 a$.
V asquez, M. ; architcet, 605
Vaucelles ; church spire, p. 1000
Vault, 1499p. Of stoze, in lndia, 1903k. For covering apartments, how arranged, 2849. Its weight and thrust, 285\%. Springing of, 2849-2854. In Gothic architecture, terms employed in, 1499v. Different species of, $1499 w$ et seq. Prepared for, betore piers were set out, p. 1059
Vaulting, cylindrical ; how to regulate caissons in, 2002 et seq. Compound and groined, 1444-1456. Coved, 1464-1477. Spherical, 1478-1493. Intersecting, 1944 et seq. Roofing over, $20=2 f$

- examples of, 1499h. Solid throughout, at Packington church, 525. At King's College chapel, p. 1047, p. 1048. At Bath abbey chureh, p. 1052. In cloisters at Gloucester, $i b$. In east aisle of Peterborough cathedral, ib. At St. Gcorge's chapel, Windsor, $i b$. Thickness of stone in, $i b$. In chapter-house, at Wells, p. 1026. To porches, p. 998 , p. 999
——shafts and ribs, p. 980 et seq.
Velarium ; of the amphitheatre, 229
Velletri ; campanile, 625
Velocity; of a falling body, 16300
Vendôme ; abbaye de la Trinité, tower, p. 1004
Veneers; gluing together in joinery, 2200
Venetian; windows, 2756 . Frames, in spec, 2285d. Mosaic, 2231e, 2231h. Filters and tanks, 2223c et seq.
Gothic architecture, 608. Details, p. 975
filter, $2222 c$
- school of Italian architecture; its character, 349, 356, 463, 464
Venice; church of San Marco, 284, 307. La Caritâ, arcades at, 2655, 2656. San Fantino, and pal. Cornari, 351. San Salvadore, 355. Santi Giovanni e Paolo, 613. Madonna del Orto, ib. Sta Maria Gloriosa de’ Frari, ib. Of the Redentore, 354. San Zaccaria and San Salvature, proportion of, p. 1013. Rialto bridge, 356. St. Mark's library, 357, 2910. Sala del Consif lio of ducal palace, 618. liazza S. Marco, ${ }^{\text {s. }} 5$. Ca Contarini Fasan, 610. Pal. Grimani, 350.

Vinter; of an aqueduct, 225
Ventlated slating, $210 c, 2210 f$
Ventilation; of sewers, 1887b. Of drains, 1888i. Of hospitals, 2975 c . Of rooms, 3035. Of buildingz, 2278 et seq. Assists warming, $2279 a$. To gas burners, $2278 v$. To drains, 2220h, 2223 m . At theatres, 2971h
Ventilator ${ }^{\text {, } 2278 p}$. Of glass, 2231a. Of perforated zinc, $2224 l$ Air bricks, in sp c., 2286. Tobins, 2278s. Table of cube feet of air though a ventilator, 2278 s
Vercelli ; monastery of San Andrea, 611. Hospital, ib. Chur h, ib.

WAL
Verde Antico and Verde di Corsica marble, 2002ii
Vergelè stone, p. 1004
Verona; Church of Sta Anastasia, 624. San Bernardino, ib. San Fermo Maggiore, 616. San Pietro, door, 2143c. Amphitheatre, 228. Pal. Pompei, 350. Porta del Pallio, ib. Porta Nuova, ib. Theatre, 290
Ver:ailles; arched tioor at war office, $1903 b$
Versed sine; of an arc, 1040
Verueal; cathedral, masons' marks, $322 b$. Cistercian abbey, 587,592
Vesica Piscis; use of, p. 1007, p. 1009, p. 1010, p. 1014, p. 1643
Vesinet, near St. Germain ; church, $1903 p$
Vespacian; temple to, a t Rome, 209, 213, 260, 2 22,2547
Vesta; temple at Rome, 214, 2547
Vestibulum; of a Roman house, 244
Vézelay; clurch, o̊34. Doorway, 539
Viaduct ; at Cuença, 598
Vianden; chapel of castle, 5.56
Vibration ; afferting iron, 1779a
Vice; glazier's, 2228
Vicenza; cathedral, 624. Arcades, 2641, 2663. Balustrades at Chiericato palace, 2698. At Porti pal., ib. Pal. Thienne; window, 2769. Areades, 2656. Theatre, 2948

Victoria stone, $1667 z$
Vieille Montagne zinc works, 1792, 1795, 2224/h
Vicnna; catherral, 567. St. Stephen's, 576 ; spire, p. 1005 ; choir, p. 1005 ; proportion, p. 1011. St. Maurice, 532. Stables, ventilation, $2278 n$
Vignola. See "Barozzi"
Villa; site on which it can be designed, 2099, 3000. Those of Rome, 345 . Of the Romans, very extensive, 184. Of Cicero, 243. Of Lucullus and of Potlio, ib.

- sanitary specification for, 229 fb

Village hos|itals, 2975 k
Villaneuva, Baltasar, de ; architect, 371
Villers; abbey, ${ }^{5} 55$
Villers, St. Paul ; lintel to door, 1925h
Vincennes; castle of, 311
Vine, The, Hampshire; porlico at, 465
Vintimiglia; cathedral, 608
Viseu; tower of Don Duarte, 607
Viterbo; the palazzetto, 614. Fountain, $i b$.
Vitruvius Pollio, Mareus; architect, manuscripts of, 326 . His precepts on the Duric order, 2610 . Work appeared, p. 1037; and work cited in the midd'e ages, p. 1013
Vittoria, Alessandro; architect, 356
Volterra ; walts of, 179
Volute ; of the lonic order, 151. Method of describing, 192 $5,25 \overline{7} 6$
Vomitoria; of the amphitheatre, 229
Voussoir, or keystone, 1943c

WADE, Gcneral ; house for, 510 Wages of workmen, 315
Waghemakerc, Dominique de ; architect, 563
Waiblingen ; outer church, 580
Wainscot, 1689, 2125b. In spec., 228jb, 228ẽ f. How measurch, 2354
Waketield, Yorkshire; chapcl on the bridgc, 421. Parochial church, $i b$.

W f les; early buildings in, 387
Walker's system of hot-water blocks, 3057
Walkington, Yorkshire; church, proportion of, p. 1015

WAL
Walling, 1916 et seq. Of brick, in spec, $2282 c$, 2293b. With concrete cores, in spec., 2284. Hollow, and ties, $1902 c$
Wall plates ; framing, 2009. In spec., 2285r. How mea ured, 2833. Gothic. p. 986
Walls; at St. Filippo Neri, Naples, 1535. St. Giuseppe and St. Domenico, Palermo, 1535. Of two hundred and eighty buildings in France and Italy, 1537. In private houses, 1538. In large buildings, 1539, 1540. Rules and examples for, 1.542 - 1554 . Examples for thickness of, in houses of many storics, $1555-1560$. In ordinary houses, 1556 , 1557. In double houses, 1558 . Of the Hôtel Vendôme, 1560. Of a house for the brothers Hocenigo, 1562. Pressure of earth again-t, and rules for finding thickness, 1581-1592. Thickness of, 1900 d . Pressure or force of wind against, 1592 a et seq
of brick; mode of measuring, 23062308. Should be gradually carried up, 1891. Precepts to be observed respecting, 1898-1900
-and piers, 1500 et seq. Thickness proportioned to height, 1502. Stability and resistance, $1500-1502$. Stability of, 1503 -1517. Mode in which forces act on, 1505 -1509. Enclosing spaces of difterent forms, 1512-1517. Method of enclosing a given area in a regular polygon, 15181528. Thickness, to acquire stability, 1525 . Exteriorwall of San Stefano Rotondo, 1528. Thickness, in buildings not raulted, $15 \div 9$ 1554. Kept together by roof: 1532 - 1541 . Examp'cs of, 1585 et seq. Rules for, 1542, 1543. Examples of, 1544-1562

Walnut, 1703
Walsingham, Alan de ; architect, 319
Walsoken, Norfolk ; bands to shafts in church, p. 989

Walter, of Coventry ; architect, 395
Waltham, Essex ; abbey, 339
Wanstead house; Essex, 446, 504
Wantage, Berkshire ; bench end, p. 986
Wappenbury, Warwickslire; proportion of church, p. 1018
Ward of hospital, 2975c. Separation of, $2975 d$. Circnlar and rectangular, $2975 i$ 2975j. For dormitories of an infirmary, $2976 b$
Warden, p. 1045
Wardour stone, $1666 q$
Ware, Isaac ; architect, his Complete Body of Architecture, 525

- Saunuel ; his tract on Vaults and Bridges, $1499 x$ et seq. On Theatres, $1499 g$
Warehouse ; valuation of, p. 1097. Posts, in spec., 2285b. Floors, in spcc., $2285 b$
Warkworth, Northumberland; castle, 398
Warming, $2975 \mathrm{~g}, 2976 b$. Of buildings, 2279 et seq.
Warmington, Northamptonshire ; chureh, groined ceiling, 2023g. Tower and spire, p. 1001

Warsaw ; theatre, 2971
Warwick; Beauchamp chapel, parapet, p. 983. Castle, 414, 418, 423. Sessions house. 514
Washers, $1631 w$
Wash-out water closets, 2220 d
Waste; in dilapidations, p. 1099

- pipe to cistern, 22236

Wastes to bath, sink, \&c., $2223 l$
Water supply, 2218 et seq., 2223i. To Rome,

WES
223-228. To industrial dwellings, 3018 et seq. In spec., 2288. Waste preventers or 'waste-nots,' 2223f, 1888b. Cisterns and tanks, 2222b,
Water, qualities of, 2222f. To soften, 2222h. Supply for daily use, 2223. For mortar, 1853. Weizht of, 1592μ. Weight and quantity, $2223 i$. Condensed, in spec., 2293 g . Effect of lead on, 1785 a . Effect of copper on, 1789 b

- bar to casement, 2165〕 $2255 \mathrm{~d}, 2259$
——losets, 2220 et seq. In spec., $2285 g$ 2288. Apparatus, 2220 et seq.
-glass, $1667 h, 166 \overline{7} q$. Pipes, 1699, 2223n; of iron, $2223 q$. Trunks, in spec., 22852
joint linges ; in spec.. $2285 \mathrm{~g}, 2285 \mathrm{~m}$
——works ; concretc for, 1862 b
Wate:-lily; used in Esyptian ornament, 87
Waterloo bridge, $1671 e$
Watson's double current ventilator, $2278 q$
Wavy ornament, 397
Wax and resin paint. $2273 f$
Wear and tear ; in dilapidations, p. 1099 et seq.
Weather bar ; see "Water bar," Boarding ; in spec., 2285b. Tiles, 1907b
Weathcring conrse, p. 981
Web or rib of a plate girder, $1629 c$
Webb, Jolin ; architect, 464, 465
Wedge, $1321-1323$, $1631 u$. For underpinning, in spec., 2286
Weeks and Co.; warming and ventilatíng, $2278 u$
Weights ; of materials used in covering buildings, 2040b. Of brickwork, \&c., 2305 et seq. Of building stones, $1666 a, 1666 b$. Allowed on a floor, 1618. See the various materials. Crushing, \&c., 1500 et seq. - and measures; French, 1369

Weissenfels ; church, 579

- Peter ron ; architect, 579

Wclded wrought-iron tubes, $2225 q$
Welding; iron, 1760, 1764a. Of a flitch, 2255a. By hydraulic pressure, ib. By a gas apparatus, $2: 232$
Weldon stone, p. 1045
Well. 1829. To dig first, 1882. Sinking, $2218 a, 2218 i$. In spec., 2281, $2282 b$
Wellingham, Cambridgreshire ; church porch, p. 998

Wellingtonia, fir, 1726
Wells, Somersetshire ; cathedral, 398, 406, 421. Founders and dimensions, 434. Proportion of, p. 1024. Chapter-house, 14992b, p. 1025, p. 1026

Welsbach gas light, $2264 c$
Welsh ; groins, 2058. Lumps, 1826. Rag slates, $1802,2211 b$
Wenham gas light, $2264 e$
Wenlock, Shropshire ; choir, 398
Werfen; church of St. John, 579
West Walton church, Nortolk ; tower, 398
Westininster abbey church, 389, 406, p. 1028. Founders and dimensions, p. 195. Proportion of, p. 1016. Assimilating work, p. 968. Apse, p. 1007. Piers, p. 976. Corbel, p. 981. Windows in cloister, p. 1029 . Circular window, p. ©94. Henry VIIth's chapel, $440,528,605,1499$ h, p. 971 et seq., p. 1054 et seq. Vaulting, $2002 u$ et seq. Miserere, p. $98 \overline{0}$

Palace. Painted chamber, window p. 989. St. Stephen's chapel. 421, p. 1040

WES

Westminster hall ; section, 415 ; Window, School Roof, 2052l, 2052t. Palace, 423. $1502 c$; dormitory, 510 . Bridge, granite, $1671 a, 1671 c, 1671 h$
Westmoreland's ventilator, $2278 u$
Westwood hall, Worcestershire, 426, 446
Wetter ; church, 567
Wetterstedt's marine metal, 1786, 2224e
Weyrer, Stephan ; architect, 580
Wharncliffe stove, 2279d
Wheat straw ; in thatching, 2211 s
Wheeble's Reading abbey stone, 1903cc
Wheel windows, p. 983 ct seq.

- and axle, 1307-1314

Whinstone, 1922h. Crushing weight of, 1502h
Whippingham, Isle of Wight; church, $2245 a$ Whispering gallery, 2964
Whithy, Yorkshire ; conventual ehurch, 407. Assimilating work, p. 969. Mullions, p. 991 - stone, $1667 w$

White, William; architect, on proportion, p . 1017 et seq.
White; ant in timber, 1728d, 1744. Cast iron, 17655 . Lead, $2271 a$ et seq. Manufacture of, 2272. New process of, $2272 b$. Charlton, 2273 g . Washing, 2273 g
Whitehall; palace, 457; banqueting house, 458; window, 2762
Whitewashing, 2274
Whiting, 2274
Whittington, Rev. G. D.; writer on pointed architecture, 310, 313-315
Whittlesea, Cambridgeshire; parochial church, 421. Tower, p. 1002
Wight's fireclay tiles, 1903i. Company and inventions, 1903 r
Wilfrid; bishop of York, 383, 385, 386
Wilkes' metallic paving, 1905 c
Wilkinson and Co.'s specular granitic paving, 1905c. Fibrous slab, $2246 b$
Willesder roofing paper and canvas, 2210 g
William of Sens; architect, $307 a, 312,321$, 395
of Worcester. See "Botoner"
of Wykeham; bishop, as builder, 319. His college chapels, p. 1007
Willis, Prof. Robert; on penetration of mouldings, 578. Work on Architectural Nomenclature, p. 970 . Work on Pointed Vaulting,'1499th
Willoughby, Sir Francis; house fur, 440
Wilton house, Wiltshire, 461, 508. Works in chuich, 2200 g
Wimbledon, Surrey; house for Sir Thomas Cecil, 440, 446, 448
Wimbotsham, Norfolk ; church, 2052q
Wimmington, Bedfordshire ; church roof, 20520
Wimpfen-im-Thal ; church, 569
Winchelsea, Sussex ; narochial church, 398
Winchester, Hampshire; cathedral, 313, p. 993. Founders and dimeusions, 434. Proportions of, p. 1012, p. 1016, p. 1021. Nave, p. 1041, p. 1043. Choir, p. 1044; groined ceiling, 2023g. Piers of nave, \&c., p. 1022. Base course, p. 983. Parapet, ib. Clerestory window, p. 990. p. 1032. Stall mouldings, p. 984

- St. Mary's eollege at, chapel, p. 1007. Proportion, p. 1014. Groined ceiling, 2023y. Sacristy, corbels. p. 980
- palace, Southwark; window, p. 1015. Circular window, p. 994

WOR

Wind ; pressure or force of, $1592 a$ et seq. Effects of, on stone. $1667 f$
guard, revolving, 3034 . Slaking, $1843 a$
Winde, Captain William ; architect, 465
Winders ; in stairs, 2186
Winding ; in joinery, 2123. Stairs, 2800
Window or Ajimez; of Spain, 585

- cleaning, 2230. Bars of glass, 2231a. Backs, elbows, and soffits, in spec., 2285c. Ventilation, 22780 . Guards of iron, in spec., $2286 a$
Windows; 2745 et seq. In Egyptian buildings, 82. Blank to be avoided, 2745. Proportions of, as connected with apartments, 2746. Mode of obtaining proper quantity of light, 2747. Kule for size, by Chambers, 2748. Rules by Morris, il. Examples of rules for sizes, $2749-2752$. When there are two ranges of windows in rooms, 2753. Piers of, 2754 . In the same story should be similar, 2755 . Venetian, 2756 . Examples of Italian, 2757 et seq. Examples of Gothic, p. 988 et seq. Examples with tracery, p. 1028. Of three days, p. 1029. Of four days, p. 1030. Of six days, p. 1031. Divisions of, p. 1007. Effect of good and bad, p. 991. At Carlisle cathedral, 1502c. At Westminster hall, ib. Jamb mouldings, p. 992 et seq.
- painted and stained, 2231b. Alabaster, \& c., 615, 2002 gg
Windsor, Berkshire ; St. George's chapel, p. 1050 et seq. Vanlting, $2002 x$. Doorway, p. 998 . Clerestory windows, p. 993 . Tomb house, mullions, p. 990 ; decoration, 2231h.
- Castle, 393, 394, 398, 527, 2882
bricks, 1826
Wine bins ; of slate, 2211q. Of iron, 2255g. Cellars and fittings, in spec., $2282 b, 2284 c$
Wingtield, Derbyshire ; manor house, 423. Porch, p. 999
Winter; building brickwork in, 1832a, 1900b, 2250h
Wire; strength of, 1630r. Gauge, Birmingham, 2254. Cords, rope, and strand, 2260. Wire wove for glass, 2226d
Wirework ; in lieu of lathing, 2246c, 2971d
Wismar ; church, 567 . St. Mary's church, 572
Wituey, Oxon ; parochial church, 408
Wittering, Northamptonshire ; church, p. 971
Wittlich, J. von ; architect. 583
Woburn, Bedfordshire ; abbey, 512, 524
Wolfe, John ; architect, 504, 526
Wollaton ball, Notts, $440,443,445,452$
Wolsey, cardinal ; his buildings, 426
Wolterton hall, Norfolk, 426, 1908 a
Wood, John, of Bath ; architect, 513
Wood; earliest material employed in building, 7. Used for joincry, 2125 c . See "Timber." Affected by heat from hot-water pipes, 2279i. Good sound conductor, 2964
——block floor, 2173c. Mosaics, $1905 f$
——bricks, 2166. In spec., 2285. Mouldings,
p. 984 et seq. Tapestry, 21756
-- carpet parquetry, $2173 f$
-working machints, 2124 et seq. Carving machine, $2124 c$
Woodstock, Oxfordshire ; palace, 423
Woodwork; medixval, 2192b, 2192c. Readymade, 2124e
Worcester ; cathedral, 421. Founders and dimensions, 434. Section, 1583d. Chapter house, 1499bb. Roof over railway workshops, 2012

wor

Workhouse infirmary, 2976 a et seq.
Working drawings; principles on which they are to be made, 2491 et seq. Medieral, p. 1008
_- strain, limited, on a wrought-iron structure, 1620f
Werkmen; mediural, 3008 . Building a church, 566
Worms ; cathedral, 287. Two apsides, p. 1007. Picrs, p. 975

- sea, $1728 c$. In timber, 1742 et seq.

Wren, Sir Christopher ; architect, 319, 466489, 1499cc. Purentalia, 481-489. Work at Chichester cathedral spire, p. 1001. Opinion on buttresses, p. 1048. Foilowed certain proportions, 353
Wrexham, flintshire: parochial chureh, 421
Wrisht and Co.'s lintel, 1903x
Wright's tixing block, 2166 . Tar paving, 1905 h
W'rought iron, 1764 et seq. Columns, 2255. Casements, 2255%. Ornamental work, $2255 h$ et seq.
Wratt, James; architect, 527 . His house in Purtland Place, ib. His patent slating, $2: 210 i$

- Beniamin; architeet, work on theatres, 295 , 2965
Wrkeham. See "William"
Wriken, Warwickshire; church doorway, p. 99^{-}

W ymondham, Sorfolk; ehurch roof, 2052t

XANTEN ; church of St. Victor, 575
Nochiculco; military intrenchment of, 114
Systus ; ${ }^{\circ}$ of the Greek gymasium, 175. Of the lioman baths, 130

ITARD paring; in spec., 2อs!c Yaroslat, prince; patron of arehitecture in Rnssia, 375
Yelvertoft, Morfolk; ehureh, p. 983

ZWI
York ; cathedral, 406. Founders and dimensions, 434. Groined ceiling, 2023g. Win dows, "five sisters," p. 988. Kose window, south transept, p. 994, p. 1015. West window, p. 1usl. Chapter-house, $14996 b$. Conventual church of St. Mary, 421. St. Margarct's porch̀, 398. All Saints' Pavement church, beacon, p. 1002. Parochial church of All Saints, $4 \geqslant 1$

- Castle, 394

Duke of ; house for, 521
-_ Lodge of masons, 315

- Place, London, 426
- Stairs water gate, London, 462

Ypes, 562 . Church of St. Pierre, 501. Of St. Martin, $5555,557,559$
Ipsambool ; temple. See "Ipsambul"
Yorkshire stone, $1666 t$

7AMODIA; architect. See "Omodeo"

- Zamora ; chureh, 586, 587

Zaragoza; cathedral, 597. Chureh of Sta Engracia. 367
Zax ; slater's, 2209
Zecco or Mint, at Venice, 351
Zehra, near Cordora, 121
Zerbst ; church of St. Nicholas, 567,579
Zinc, 1792 et seq. Found everywhere 1792. Mode of extracting from ore, ib. Formed into plates and wire, 1793. Its peculiarities, $1793,1794,2224 \mathrm{~g}$ et seq. Alloyed with copper, 1\%90. Strength of, $1630 r$. Effect of, on iron, 1780b. Effect of atmosphere on, 1795b. Strips applied to copper, 2224
white; fur paint, 22 i2c
_ work, $2224 k$. In spee., 2294. Flue pipes, 17!3,
Zinked iron, 1796. Tinned iron, 179
Zodiacal signs and emblems, 539
Zopissa paint, 2273g
Zwickall ; church of St. Mary, 567
Zwirner, Ernest Friadrich ; architect, $5 \mathbf{7} 4$

[^1]:

[^2]: Sce founcled 635. The chapel of the Nine Altars was begnn about $1=30$, forming a sort of transept at thin

[^3]: Parkh church ; mado colleginte 1422 ; sec founded $18: 3$. Jady chapel 16 ft . square. St. Jolin Baptist Derby chapel, clr. $1500,40 \mathrm{ft}$, ly 26 ft , and the chapter house 22 ft . by 13 ft .6 in., having an unequal

 of Ohinm chapel, 1618 , is 15 ft . by 12 ft . The hiternal lenkth, 215 ft anll lreadth 112 ft . ; extorunlly,
 c later rentorntious have le cell curried on lyy J. S. Orowther.

[^4]: See founded 1545 . The three arches forming the west iront, 153 ft . long, are 73 ft . high in the opening and "as a portico, it is the linest and grandest in Europe:" Fergusson. There are ouly the remains of the rlonsters, 132 ft . wille. The external length 480 ft . and 203 ft . wide. The internal length is 426 lt, and the brealth 18 f ft . Paley. liemarhs on the Arch. of Peterborough Cathedral, 1859. It was under restoration by Fiward Blore from 1832 ; and from 1859 by G. G. Scost, R.A., to hi, death, 1×78. The central tower wis rebuilt by Jolın L. Pearson, R.A., 1885-6.

[^5]:

[^6]: See fom ded fit8 The west front was ariginally the work of Bishop Edingdon. The nave, which was "transformed" (Prof. Willis) by Wykeham is, with Ely and Canterbury, probably the tmagest in the world, S. Peter"s at Rome excepted. The Cloisters are 180 ft . by 174 ft . The exterior of the choir is of the finest Gothic of the fifteenth century. The choir as at Glnucester, is under the tower. The chantries of Waynflete and Beaufort are fine examples. The crypt is an interesting cxample, and more so now that the chatk, 4 ft . deep. filled in about 400 years since, has been removed, $188 \mathrm{i}-7$. There is ro chapter house. The external length is 5.57 ft .9 in . ; the internal 1 ngth is 525 ft , the breadth 208 ft . The stone screen anim the episcopal throne are by Garbett. The west front restored 1860.

[^7]:

[^8]: * The French inch, consisting of 144 lines.

[^9]: * We must take leave to question this statement; as, for instance, in St. Paul's Cathedral we find the northern front peculiarly black, whilst the south front and sonth-western angle are comparatively wite rhis we have ullways considered to have arisen from the more coustant action of the sun's rays upon them.

[^10]: 59. " 'the ehurehes of Stamford, Ketton, Colley Weston, Kettering, and other places
[^11]: 1. $22=3$. Cos. $22 \ln 28$, or 18 to 12 onnews por foot superticial, wero used furmerly coers. As the platos of coppor aro mado of a uniform size, if fout long ley 2 fieet
 $\left.\mathrm{lbs}=\frac{1}{18} ; 11\right\} \mathrm{lbs}=\frac{1}{52} ; 6 \mathrm{lby}$. if of an inch.

[^12]: *The Vicentinc foot is about $13 \cdot 6$ inches English.

[^13]: 3. 1170. Cawsto:.
[^14]: "dows has, by the French ant:quaries, been divided into two classes - rayonnant and

[^15]: ombining.

[^16]: and of the crietal palace, sydenhajf.

[^17]: Th irst five tables which follow are printed from those of Smart; the remainder are from npson.
 Thyalculations involving the valuation of annuities on lives are not very frequently inposed , the architeet, but it is absolutely necessary he should be eapable of performing them, as in 1 : case of valuations of leases upon lives, which sometimes occur to him.

[^18]: C. A term used in joinery, signifying the uppermost of an assemblage of parts. It is lso applied to the capital of a column, the cornice of a door, the capping or uppermost ember of the surbase of a room, the handrail of a staircase, \&c.
 Citst. (Lat. Caput.) The head or uppermost member of any part of a building; but werally applied in a restricted sense to that of a column. The capital of the pilaster anta of the Greeks was very different to that of the columns in front of it. The rempanying illustrations exhibit the sort of caps used in mediæval architecture. Fig. 374 is Norman ; figs. 1375 and 1376 Early English; and fig. 1377 Late Decorated.
 C tal, angelar. The modern Ionic capital, whose four sides are all alike, showing the lute placed at an angle of 135° on all the faces.
 C. tal of a Balceter. The crowning or head mouldings of it.

