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European eel populations have declined markedly in recent
decades, caused in part by in-stream barriers, such as weirs
and pumping stations, which disrupt the upstream migration
of juvenile eels, or elvers, into rivers. Eel passes, narrow
sloping channels lined with substrata that enable elvers to
ascend, are one way to mitigate against these barriers.
Currently, studded eel tiles are a popular substrate. This
study is the first to evaluate the flow fields within studded
eel tiles and to model the swimming performance of elvers
using cellular automata (CA) and individual- (or agent-)
based models. Velocities and flow depths predicted by a
computational fluid dynamics model of studded eel tiles
are first validated against published values for a single
installation angle–discharge combination. The validated model
is then used to compute three-dimensional flow fields for eel
passes at five different installation angles and three inflow
discharges. CA and individual-based models are employed to
assess upstream passage efficiency for a range of elver sizes.
The individual-based model approximates measured passage
efficiencies better than the CA model. Passage efficiency is
greatest for shallow slopes, low discharges and large elvers.
Results are synthesized into an easy-to-understand graphic to
help practitioners improve eel pass designs.
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1. Background

The European eel (Anguilla anguilla) is a catadromous species. Born in the Sargasso Sea, they are
transported as larvae along the Gulf Stream, arriving on the Atlantic coast of Europe after a nine-
month journey [1]. On arrival, larvae metamorphose into glass eels, or elvers, and migrate upriver [2]
where they can live for up to 50 years before returning to the Sargasso Sea to spawn [3]. Recruitment
of elvers to rivers across Europe has suffered a 95% reduction since the early 1980s and Anguilla
anguilla has thus become a species of high conservation concern [4–6]. This decline has been
attributed to the reduced connectivity of hydrosystems caused by a number of in-stream barriers [7,8].
In-stream barriers can be mitigated through the installation of fish passes, which facilitate the passage
of aquatic species by reducing the energy of the flow. However, due to the low swimming
performance of eels and their inability to jump out of water [9], common fish pass facilities such as
the Larinier pass or vertical slot fishway are inefficient and inappropriate [8,10].

Anguilliform-specific passage facilities have been developed and shown to be effective in enabling
the upstream passage of eels and elvers [11–13]. Eel passes comprise relatively steep ascent ramps that
provide a wetted substrate designed to facilitate eel passage through crawling and swimming in near-
boundary regions with lower flow velocities [14]. Historically, substrata were often cheap, robust items
such as rocks, aggregates, branches [10] and burlap [15] or geotextile matting [10,16], but these were
found to be too abrasive and caused passing eels to lose a considerable amount of mucus [17].
Purpose-built, synthetic substrates comprising small, more-or-less rigid, vertical cylinders or studs
attached to a modular base that can be placed beside one another to create an eel pass have recently
become available (e.g. [18–20]). These have been shown, in laboratory experiments of a model crump
weir, to increase the passage efficiency of elvers from 0% to 67% [13]. However, those experiments
were undertaken for elvers of a specific size traversing a constant, idealized, geometry and at a single
installation angle [13]; extrapolation of these findings to other crump weirs, let alone different
hydraulic structures, is therefore risky.

In response to the lack of empirical studies that quantitatively assess flow fields within, and the
passage efficiency of, eel passes, this study aims to accomplish four things. First, the near-substrate
velocity fields in a pass comprising eel tiles produced by Berry & Escott Engineering [18] are
quantified using three-dimensional computational fluid dynamics (CFD) modelling. The flow
structures within common fish passes have previously been studied both experimentally and through
the use of CFD (see [21–24]), but the hydrodynamic structure of eel passes has not yet been
quantified. Second, the performance of an example pass is assessed by repeating numerical
simulations over a range of installation angles and flow rates, and comparing the resulting velocity
fields against the known swimming capabilities of elvers of a range of sizes. Third, the passage
efficiency of each installation angle and flow rate combination is quantified further by applying, for
the first time, cellular automata (CA) and individual-based models of elver movement to fish passes.
Although individual- (or agent-) based models have become popular within the field of ecology and
have been applied to fish (e.g. [25,26]), these models represent the first attempt to simulate elver or eel
motion in an agent-based framework. Last, results are contextualized and then synthesized into
summary charts to assist practitioners to better understand the consequences of design decisions for
upstream passage efficiency.
2. Methods
This study considers a typical eel pass constructed from multiple dual density, studded, eel tiles [18]
(figure 1). These tiles feature 50 mm high studs of two different tapered diameters and centre-to-
centre spacings: 14.8 mm at the base tapering to 11.7 mm at the top, with a centre-to-centre spacing of
45.45 and 29.6 mm at the base tapering to 23.4 mm at the top, with a centre-to-centre spacing of
83.3 mm. Each tile features a roughly 2 : 1 ratio of large studs to small studs (figure 1). Vowles et al.
[13] simulated such an eel pass in a laboratory study that used a model 0.25 m high crump weir that
measured 1.25 m in the streamwise (x) direction and 0.3 m in the cross-stream (z) direction. The
downstream face of the weir was inclined at 11.5° from the horizontal, while the upstream face was
inclined at 30° from the horizontal. The approach flow depth was 0.278 m and the nominal discharge
per unit width was approximately 3.33 × 10−3 m2 s−1 [13]. This discharge has significant uncertainty
since the mean inflow velocity was reported to be 8.0 ± 6.1 mm s−1 (µ ± 1 σ) [13], which yields a
discharge per unit width of 2.22 × 10−3 ± 1.70 × 10−3 m2 s−1. Since only a shallow, 5.0 mm thick, sheet



Figure 1. Typical dual density studded eel tile [19] (Photograph by T. E. Padgett, 14 June 2017).
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of water flowed over the downstream face of the weir, the time taken for 5 ml of India ink to flow down
the weir face was used to estimate the mean velocity on the weir face. Mean velocity was estimated as
0.347 m s−1 [13]. The mean flume water temperature was 21.8 ± 0.96°C. Herein, the geometry
employed and the values reported by Vowles et al. [13] are used to parametrize and assess initial CFD
simulations. A parametric study is then undertaken using installation angles of 8°, 11°, 14°, 17° and
20° and inflow discharges per unit width of 1.67 × 10−3, 3.33 × 10−3 and 5.0 × 10−3 m2 s−1 to assess the
ability of elvers to ascend studded eel passes.

2.1. Computational fluid dynamics methodology
Since the smaller of the two stud sizes was favoured by ascending elvers [13], ANSYS Fluent v. 17.2 [27]
was used to construct a CFD model based only on the geometry of the smaller studs (figure 2).
To facilitate this, it was assumed that the discharge was distributed across the tile according to the
ratio of the centre-to-centre stud spacings, 45 : 83, and so a larger proportion of the discharge was
assumed to pass through the larger studs. Only simulating the smaller studs simplified the
computational mesh, which was simplified further by introducing symmetry boundary conditions at
one-third and two-thirds of the channel width in the spanwise (z) direction, reducing the size of the
computational domain by two-thirds. The geometry required the use of an unstructured tetrahedral
mesh featuring approximately 906 000 cells, with increased cell density at the studs and at the bed
(figure 2b). To adequately capture the boundary layer, an ‘inflation layer’ [27] was applied to the
bed and to the walls of each stud. This split the near-wall region into five layers of cells, each
of which was 1.2 times larger than the previous cell layer. Thus, cell layer thickness transitioned
smoothly from a near-wall value of approximately 0.4 mm to a value of 1.0 mm at a distance
of 3.0 mm from the wall. Simulations were performed using the unsteady, incompressible,
Reynolds-averaged Navier–Stokes (RANS) equations:
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where equation (2.1) is the mass conservation equation and equation (2.2) is the momentum conservation
equation, and u = velocity (m s−1), x = displacement (m), t = time (s), ρ = density of water (approx.
997.8 kg m−3 at 21.8°C), g = gravitational acceleration vector [−g sin θ, −g cos θ, 0], P = pressure (Pa),
ν = kinematic viscosity of water (approx. 9.6 × 10−7 m2 s at 21.8°C), the indices i and j (i, j = 1 to 3)
denote the three components of displacement (x = slope-parallel, y = slope-perpendicular, z = spanwise)
and velocity (u, v, w), overbars denote time averages and primes denote fluctuations about those
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Figure 2. (a) Isometric view of the CFD domain. Cyan/light grey denotes no-slip boundary condition, magenta/dark grey denotes
symmetry boundary condition and black denotes pressure outlet boundary condition and (b) magnified planform view highlighting
the unstructured tetrahedral mesh and grid refinement near studs and walls.
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averages. The momentum conservation equations require a turbulence closure for the Reynolds stress
term @=@xj(�ru0iu

0
j). The k–ω SST model was used [28], which combines the robust and accurate

formulation of the k–ω model in the near-wall region with the free-stream independence of the k–ε
model in the far field [29]. The k–ω shear stress transport (SST) model exhibits enhanced performance
relative to conventional k–ε and k–ω models when applied to adverse pressure gradient flows,
aerofoils and sub- to super-critical transitions [29]. The temporal gradients and the advection terms in
equations (2.2), the turbulent kinetic energy, k, and specific turbulence dissipation rate, ω, were
discretized using a second-order upwind scheme. The SIMPLE scheme [30] was used to couple the
velocities and the pressure. The free surface location was approximated using the volume of fluid
(VOF) method [31] with two Eulerian phases, water and air, and using the implicit body force
formulation. The free surface was interpolated using Fluent’s Geo-Reconstruct scheme, which fits a
piecewise-linear interface within each cell and uses that linear shape to estimate the advection of fluid
through the cell faces in a three-step procedure [27].

Water entered the domain through a velocity inlet positioned upstream of the eel pass and left the
domain through a pressure outlet located downstream of the pass (figure 2). All other boundaries were
defined as walls with a no-slip boundary condition and a roughness of zero. A gravitational
acceleration term, with components in the x and y directions to define the installation angle, was
applied to the domain. Incorporating the gravitational acceleration term in this manner permitted the
ready solution of multiple installation angles without the need to remesh. Simulations were undertaken
with a constant timestep, At, of 5.0 × 10−4 s. The convergence criterion for the non-dimensional residuals
of u, v and w, mass continuity, turbulent kinetic energy, k, and specific turbulence dissipation rate, ω,
was defined as 10−4. A maximum limit of 100 iterations per timestep was imposed.

2.2. Quantifying eel tile ‘passability’
In order to assess the ‘passability’ of eel tiles at different flow rates and inclinations, it was necessary to
compare computed three-dimensional flow fields against the swimming and/or climbing abilities of
elvers. In the absence of data detailing climbing performance, the burst swimming performance data
of Clough et al. [32] were used. These data were obtained from 417 elvers collected from the River
Severn in April (mean length 67.61 ± 0.57 mm; mean water temperature 11.1 ± 0.32°C) and in June/
July (mean length 147.76 ± 4.81 mm; mean water temperature 18.64 ± 0.12°C) [32]. Clough et al. [32]
summarized their results in the SWIMIT 3.3 model, which extracts burst swimming speeds of up to
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Figure 3. Median, 10th and 90th percentile burst swimming speed in spring, at a water temperature of 21.8°C against eel and elver
body length from the SWIMIT 3.3 model [32]. The solid line depicts the median burst swimming speed while dotted lines show the
10th and 90th percentile burst swimming speeds.
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0.08 m long elvers from lookup tables and estimates median, 10th and 90th percentile burst swimming
speeds of larger fish using equations derived from multiple regression [32]. The availability of median
(i.e. average) swimming speeds necessitated temporal averaging of the CFD-derived flow fields.
Preliminary simulations indicated that a total flow duration of 8 s was sufficient to permit incoming
fluid to exit the domain; a simulation duration of 10 s was selected to permit time-averaging of at
least 2 s of data after complete inundation of the domain. In addition, those simulations indicated that
maximum flow velocities occurred 3 mm above the floor; this height also coincided well with the
estimated mean diameter of the elvers tested by Vowles et al. [13]. Thus, for each case, velocity fields
were extracted from a plane parallel to and 3 mm above the tile bed and temporally averaged over the
2 s period between 8 and 10 s of flow time. The domain was then mirrored in the spanwise direction,
returning the domain to its original width (0.135 m). The resulting velocity fields were linearly
interpolated from their irregular grids onto a regular 0.5 × 0.5 mm grid and then classified into three
classes: ‘passable’, ‘impassable’ and ‘boundary’ using the median burst swimming speeds [32]
(figure 3). A passable grid cell was defined as one wherein the time-averaged velocity was less than
the median burst swimming speed of the length of elver being considered. An impassable grid cell
was defined as a cell wherein the velocity was greater than or equal to this threshold. A boundary
grid cell was defined as a cell without a velocity (i.e. containing no water) that an elver could never
physically pass through, such as the studs or wall. This classification process was undertaken for five
installation angles (8°, 11°, 14°, 17° and 20°), three flow discharges per unit width (1.67 × 10−3,
3.33 × 10−3 and 5.0 × 10−3 m2 s−1) and the median, 10th percentile and 90th percentile burst swimming
speeds for elvers of six different lengths (0.05, 0.06, 0.07, 0.08, 0.09 and 0.10 m), resulting in 270
classified domains (e.g. figure 4). This range of elver lengths encompasses the largest and smallest
lengths of immigrating elvers recorded at an example European coastal region [33]. The resulting
classified maps provide a useful visual indicator of the likely ‘passability’ of the eel pass at specific
inclinations and discharges, but do not provide a quantitative metric for comparison among cases nor
do they provide a metric that is readily used by practitioners.

2.3. Cellular automata and individual-based modelling
In order to provide passage efficiency values of elvers, and thus enable comparison with the results of
Vowles et al. [13] and wider literature, CA and individual-based models were developed.
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Figure 5. Sensitivity of passage efficiency of cellular automata (CA) agents to: (a) number of spawned CA agents and (b) number of
timesteps for elver of length 0.07 m ascending an eel pass installed on a 1.25 m long model crump weir inclined at 11° and with a
unit discharge of 3.33 × 10−3 m2 s−1. All simulations in (a) were performed over 10 000 timesteps, while all simulations in (b) were
performed using 1000 CA agents.
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The CA model first imported a domain with cells that had been classified as either ‘passable’,
‘impassable’ or ‘boundary’ (e.g. figure 4). Second, following sensitivity analysis (figure 5a), 1000
automata that each occupied a single cell were randomly spawned at the centroids of cells



Figure 6. Example automaton movement. Blue circles represent automata, white squares denote ‘passable’ cells, red squares with
black crosses denote ‘impassable’ cells and grey squares denote ‘boundary’ cells.
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Figure 7. The sensitivity of passage efficiency of cellular automata (CA) agents to: (a) number of timesteps before a CA agent is
classified as ‘stuck’ and (b) number of timesteps a CA agent that is classified as ‘stuck’ before it is forced to ‘fall back’ before
recommencing ascent. Both simulations performed for elver of length 0.07 m ascending an eel pass installed on a 1.25 m long
model crump weir inclined at 17° and with a unit discharge of 5.0 × 10−3 m2 s−1, using 1000 agents and 10 000 timesteps;
simulations in B performed with the number of timesteps before an agent is classified as ‘stuck’ set equal to 20.
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forming the downstream-most edge of the domain, although following the sequential nature of elver
emplacement within the Vowles et al. [13] experiments, automata did not encounter or interact with
each other. Third, a first-order Moore neighbourhood was established for each automaton in order to
define which cells were its neighbours [34]. A list of passable neighbours was then compiled, from
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which a destination neighbour was randomly selected, prioritizing upstream neighbours first, cross-
stream neighbours second and downstream neighbours third. Stochasticity was handled using the
random python package, which is based on the Mersenne Twister pseudo-random number
generator and has a periodicity of 219937− 1 [35]. Fourth, automata moved to the centroid of the
selected destination cell. Steps 3 and 4 were repeated sequentially for each automaton during each
timestep, until all automata passed or until a maximum number of timesteps (10 000 was selected
for the simulations shown herein; figure 5b for sensitivity analysis) had been reached. It is
possible for an automaton to enter a cul-de-sac, from which it can migrate no further (figure 6).
Therefore, following sensitivity analysis (figure 7a), a rule was added to assess the streamwise
distance covered by each automaton during 20 moves and if that distance was ≤2 cells, the
automaton was classified as ‘stuck’. The movement priorities of a ‘stuck’ automaton switched to
prioritize moving downstream, then cross-stream, then upstream and thus an automaton could
‘fall back’. Sensitivity analysis indicated that maximum passage efficiency occurred when
automata were forced to make 30–50 fall-back moves (figure 7b), and so to minimize run times, a
value of 30 was selected for this parameter. It was, therefore, possible for automata to make
multiple attempts to pass obstacles.

Although fall-back behaviour has been observed in eels and elvers [13,36], the CA model did not
adequately account for exhaustion: unless the maximum number of cell-to-cell moves was exceeded,
an elver continued to make passage attempts ad infinitum. Therefore, an individual-based approach
was developed to explicitly account for exhaustion. This model adopted the same overall structure as
the CA model, but with some significant differences. First, the unclassified time-averaged velocity
field at 3 mm above the floor for the selected eel pass configuration (e.g. figure 8c) was imported
rather than the classified ‘passability’ domain. Second, each individual agent was randomly
assigned a burst swimming speed using the median, 10th and 90th percentiles and the inverse
lognormal distribution that fitted those data for each length of elver [32] (figure 3). The movement
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mechanism and selection of neighbours was the same as for the CA model, except that during each

movement, the relative velocity of each agent was calculated by differencing its burst swimming
speed and the water velocity at the centroid of the destination cell. The time required for an elver
to make each move was then calculated and collated, and an elver was classified as exhausted if
the total time exceeded 20 s, which is the standard time period over which it is possible for fish to
sustain burst swimming speeds [32].

For both the CA model and the individual-based model, an automaton or agent was classified as
having successfully passed the domain once it reached the upstream-most edge of the domain. If an
automaton or agent was still within the domain either once it became exhausted or the maximum
number of timesteps was exceeded, it was classified as a failed passage.
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3. Results
3.1. Three-dimensional flow fields
Simulated flow fields are shown in figures 8a–c. Mean velocity and flow depth for the 11°, 3.33 ×
10−3 m2 s−1 case compare favourably against those reported for a similar case by Vowles et al. [13]:
0.299 m s−1 versus 0.347 m s−1 and 5.58 mm versus 5.0 mm. These simulated values yield Reynolds
numbers of 1740 or 4550 using the mean flow depth or the stud diameter as the length scale,
respectively. In other words, the flow is fully turbulent [37,38]. Indeed, flows are fully turbulent
for all simulated cases, with Reynolds numbers ranging from 660 or 2320 for the 8°, 1.67 ×
10−3 m2 s−1 case to 3070 or 5800 for the 20°, 5.0 × 10−3 m2 s−1 case using the mean flow depth or
stud diameter as the length scale, respectively. In planform, flow patterns are thus as expected for
a turbulent fluid flowing through a field of vertical cylinders: water decelerates as it approaches
each stud, with a stagnation zone at the upstream face of each stud, followed by acceleration
where flow converges between the studs and strong shedding of wakes from the downstream face
of each stud (figures 8c,9a). However, the spacing between studs is such that there is a strong
interaction between wakes and proceeding studs (e.g. [37,38]), so there is insufficient time or space
for a Kármán vortex street to develop. In the cross-stream direction, streamwise- and time-averaged
velocities increase from minima of 0.26 m s−1 in regions shielded by studs, corresponding to the
no-slip boundary condition, to maxima of approximately 0.37 m s−1 at one-quarter and three-
quarters of the width of the channel (figure 9a), corresponding to regions between studs. Conversely,
streamwise-averaged water depth decreases from maxima of approximately 6.5 mm in regions
shielded by studs to minima of approximately 4.6 mm at one-quarter and three-quarters of the width
of the channel (figures 8b and 9b).
3.2. Classified flow fields
Example classified flow fields for the 11°, 3.33 × 10−3 m2 s−1 case are shown in figure 4. Additional
classified flow fields can be found in the electronic supplementary material. It is clear that the
difference between the 10th and 50th percentile burst swimming speeds is significant and sufficient
to cause much of the pass to be impassable by elvers capable of the 10th percentile burst swimming
speeds; only the narrow region surrounding the studs is passable by elvers less than 0.08 m long.
The swimming ability of elvers improves as their length increases and thus less of the pass is
impassable and more of the pass is passable as elver length increases (figures 3 and 4). Assuming
the 10th percentile burst swimming speeds, only 34% of the area of the pass is passable for 0.05 m
long elvers, while 90% of the pass is passable for 0.10 m long eels. However, employing the
percentage of the domain that is passable in this manner does not capture the likelihood of an elver
ascending the pass. For example, 58.5% of the domain is passable by 0.07 m long elvers but, since
there is no continuous passable path from the downstream end of the pass to the upstream end of
the pass (figure 4), it is not possible for a 0.07 m long elver to ascend. Elvers longer than 0.08 m
should be able to ascend the pass, assuming that they are capable of the 10th percentile burst
swimming speed. Using the 50th or 90th percentile burst swimming speeds, it is possible for elvers
of all tested lengths to ascend the pass at an installation angle of 11° and a discharge per unit width
of 3.33 × 10−3 m2 s−1 (figure 4).
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against spanwise location for the small studs of the eel tiles used by Vowles et al. [13]. Data have been temporally averaged
between 8 and 10 s of flow time.
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3.3. Model results

3.3.1. Cellular automata model

The passage success rate of automata increases with elver size and decreases with increasing installation
angle (figure 10). Assuming that elvers are capable of the 10th percentile burst swimming speeds, only
elvers longer than 0.08 m are able to ascend the pass, irrespective of the discharge per unit width.
Assuming that elvers are capable of the 50th percentile burst swimming speeds, in addition to the
noted trends of passage success with elver size and installation angle, passage success also generally
decreases with increasing discharge. Any deviation from these trends is thought to be due to
numerical instabilities within the CFD solutions caused by the combination of very small flow depths
and fast velocities at a discharge per unit width of 1.67 × 10−3 m2 s−1 (e.g. the passage success rate at
an installation angle of 17°; figure 10). At a discharge per unit width of 3.33 × 10−3 m2 s−1 and
installation angle of 20°, 0.05 m long elvers have a passage success rate of 0%, while 0.06 m long
elvers have a passage success rate of 47.8% (figure 10). At a discharge per unit width of 5.0 × 10−3 m2 s−1

and installation angle of 20°, 0.05 and 0.06 m long elvers have passage success rates of 0%, while 0.07 m
long elvers have a passage success rate of 86.2% (figure 10). The success rate of 0.06 m long elvers
increases to 68.1% at an installation angle of 17° and to 99.6% at an installation angle of 14°, while the
success rate of 0.05 m long elvers is 0% at an installation angle of 17° but increases to 27.8% at an
installation angle of 14° (figure 10). Assuming that elvers are capable of the 90th percentile burst
swimming speeds, passage success rates are all greater than 90% (figure 10).

3.3.2. Individual-based model

The individual-based model yields results that are much less binary in nature than the CA model
(figure 10), reflecting the natural variability of burst swimming abilities within a population of elvers.
At a discharge per unit width of 1.67 × 10−3 m2 s−1 and an installation angle of 8°, passage success
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Table 1. Passage efficiency estimated using the cellular automata and individual-based models of elvers of length 0.07 m
ascending a 1.25 m long eel pass inclined at 11° and with an inflow discharge per unit width of 3.33 × 10−3 m2 s−1, compared
to the passage efficiencies reported by Vowles et al. [13].

model

percentile eel burst swimming speed

10% 50% 90%

cellular automata 0.0% 97.8% 97.8%

individual-based 75.5%

Vowles et al. [13]
total pass 66.7%

small studs only 73.8%
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rates vary from 63.4% for 0.05 m long elvers to 92.8% for 0.10 m long elvers (figure 10). At an installation
angle of 14°, success rates reduce to vary from 37% for 0.05 m long elvers to 83.4% for 0.10 m long elvers
(figure 10) and at an installation angle of 20°, success rates reduce further to vary from 11.8% for 0.05 m
long elvers to 74.8% for 0.10 m long elvers (figure 10). At larger discharges per unit width, passage
success rates are lower than at smaller discharges per unit width. For example, at a discharge per unit
width of 5.0 × 10−3 m2 s−1 and an installation angle of 8°, passage success rates vary from 30.2% for
0.05 m long elvers to 83.0% for 0.10 m long elvers (figure 10). Similarly, success rates vary from 16.9%
for 0.05 m long elvers to 77.3% for 0.10 m long elvers at an installation angle of 14° (figure 10), while
they vary from 0.2% for 0.05 m long elvers to 52.2% for 0.10 m long elvers at an installation angle of
20° (figure 10).

3.3.3. Comparison of models with Vowles et al. [13]

Within their experiments, Vowles et al. [13] performed 10, 10min long, trials where 30 elvers (length
71.73 ± 3.87 mm) were initially placed downstream of an anguilliform pass installed at an angle of
11.5° within a flume with a discharge per unit width of 3.33 × 10−3 m2 s−1 (water temperature: 21.8 ±
0.96°C). Passage efficiency, defined as the number of successes divided by the number of attempts,
where an attempt commenced when the head of an elver progressed onto the downstream-most tile,
was 67% [13]. However, they also reported that elvers found more success in ascending the small
studs (14.1 ± 4.86 attempts; 11.7 ± 2.9 successes) compared to the large studs (12.3 ± 3.47 attempts;
8.3 ± 2.6 successes). This results in individual passage efficiencies for the large and small studs of
67.5% and 83.0%, respectively. Furthermore, 3.5 ± 1.65 attempts were assigned to the ‘centre’ of the
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pass, with no corresponding successes [13]. If these attempts are evenly distributed between the large

and small studs, the individual passage efficiencies for the large and small studs become 59.1% and
73.8%, respectively. This compares to passage success rates of 0.0%, 97.8% and 97.8% predicted by the
CA model assuming 0.07 m long elvers are capable of the 10th, 50th and 90th burst swimming
speeds, respectively (table 1). In comparison, the individual-based model predicts a passage success
rate of 75.5% for this case (table 1), highlighting the effectiveness and promise of the individual-based
modelling approach.
ing.org/journal/rsos
R.Soc.open
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4. Discussion
This paper aimed to:

(1) quantify the near-substrate velocity fields in an example eel pass using CFD modelling;
(2) assess the effectiveness of that pass by repeating numerical simulations over a range of installation

angles and flow rates, and comparing the resulting velocity fields against the known swimming
capabilities of elvers of a range of sizes; and

(3) quantify the passage efficiency of each installation angle and flow rate combination by applying, for
the first time, CA and individual-based models of elver movement to fish passes.

In this discussion, we address these aims and critically assess how our findings compare and contrast
with existing literature, concluding by providing summary diagrams for practitioners to assist with
the design process of eel passes.

First, CFD shows promise in being able to simulate the flow patterns through eel tiles; mean
velocities and flow depths matched closely those observed in the experiments of Vowles et al. [13].
No previous studies have quantified the detailed flow fields within eel tiles and thus it is
challenging to validate small-scale flow features. However, previous numerical modelling studies of
the flow through analogous tube bundles suggest that two-equation turbulence closure models,
such as the k–ε model [39], the k–ω model [40] and the k–ω SST model employed herein, under-
predict turbulence quantities and recirculation lengths [37,41]. Nevertheless, the k–ε model, which
the k–ω SST model tends to away from walls, returns reasonable predictions of the mean velocities
[41] which are input into the CA and individual-based models. Note that if employed in isolation,
the k–ε model severely under-predicts the flow within separation zones [42], while the k–ω
model overcomes this problem but suffers from over-sensitivity to the free-stream boundary
condition. As alternatives to classical two-equation models, Reynolds stress models, large eddy
simulation and direct numerical simulation may produce more accurate flow fields (e.g. see
[37,41]), but they introduce increased complexity, associated convergence difficulties and significant
computational cost [42]. If eels and elvers react to and/or interact with larger-scale flow structures
(e.g. [12,43]), this level of complexity is not warranted. Furthermore, the significance of any small-
scale turbulent structures produced by these more complex turbulence models would be lessened
due to the temporal averaging that was necessary to create input datasets for the CA and
individual-based models.

Second, it is clear that the effectiveness of an eel tile in enhancing passage efficiency is a function of a
range of factors that influence the ability of eels or elvers to ascend a pass. The extensive review of
Solomon & Beach [9] highlighted many factors controlling passage efficiency, including engineering
parameters such as inflow discharge per unit width, flow depth, installation angle and pass length
and biological parameters such as water temperature, season and fish age (and hence size, swimming
and climbing ability). It is curious that this guidance was withdrawn on 12 May 2016 and is not cited
heavily in the updated UK Environment Agency eel pass manual [16], which does not mention these
crucial factors. The present study has investigated the influence of installation angle, discharge per
unit width and elver or eel life stage; in agreement with past research [9,17,32], simulations suggest
that passage efficiency increases as elver or eel length increases and as installation angle and
discharge per unit width decrease.

Third, the individual-based model employed herein compares well to the results of Vowles et al. [13]
and thus it has utility in converting maps of passable and impassable regions of a pass into passage
efficiency statistics. A comparison of the resulting passage efficiencies of all configurations of eel tile
show that this model, which captures the natural variation in the swimming performance of elvers,
gives consistently less extreme results and a much smaller range of values when compared to the



royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.7:191505
13
simpler CA model. This is reflective of the fact that the individual-based model uses heterogeneous

agents compared to the homogeneous automata used in the CA model. Homogeneous automata
polarize results, since it is likely that if one automaton can pass, all automata can pass and vice versa,
particularly if given the ability to make multiple attempts.

In comparing the CA model to the individual-based model, it is seen that passability decreases when
exhaustion is modelled. This suggests that elvers become exhausted even with relatively shallow
installation angles and a relatively short length of pass (1.25 m). This finding agrees with the
statement of Solomon & Beach [9, p. 12] that ‘…we must take account not just of maximum
swimming speed, but also of the ability to maintain certain swimming speeds for long enough to
ascend a pass that may be many metres in length’. While the exhaustion metric employed within the
individual-based model is simplistic and neglects the energy expended by eels and elvers in
overcoming the drag they experience, it has highlighted the significance of passage duration in
controlling passage efficiency. Specifically, passage duration is a function of pass length and relative
velocity, itself a function of fluid velocity and burst swimming speed. Fluid velocity is a function of
inflow discharge, pass roughness and pass installation angle.

4.1. Model limitations
A number of factors may have influenced model performance. First, although Vowles et al. [13]
reported discharge per unit width as 3.33 × 10−3 m2 s−1, our calculations estimate that discharge per
unit width was 2.22 × 10−3 ± 1.70 × 10−3 m2 s−1. Second, the experimental data of Vowles et al. [13]
was determined for marginally larger elvers (although within 0.5 standard deviations of the mean).
Third, both the CA and individual-based models assume that elvers only occupy a single cell
measuring 0.5 × 0.5 mm. This potentially allows automata and agents to move through one-cell-wide
passages that live elvers would not be able to traverse. Fourth, owing to the nature of the burst
swimming speed data presented by Clough et al. [32], the flow fields within the eel pass were
temporally averaged and thus neither account for flow unsteadiness nor the turbulence associated
with it or the studs within the eel tiles. Time-averaging simplified the models and removed the
possibility of time-dependent passage efficiencies. In the present context, flow unsteadiness means
that the computed flow fields vary through time. As water passes through a field of vertical
cylinders, a pair of counter-rotating vortices are shed at a regular frequency from each stud and
advected downstream (e.g. [37,38,41]). Incorporating unsteadiness within the CA and individual-
based model frameworks would thus introduce significant temporal sensitivity to the passage
initiation time and the time taken (or route taken) to reach each individual cell and how that
compares to the vortex shedding cycle (i.e. whether the flow is locally accelerated or decelerated by
a vortex). To achieve this, the rules that define automaton and agent behaviour would require
significant modification to enable an automaton or agent to hold station until the local velocity was
sufficiently slow. Incorporating unsteadiness and turbulence should increase the tortuosity of
passage routes and increase the time to ascend. Fifth, while it is possible that elvers would exhibit
crawling behaviour or rest within the pass, neither of which are captured by the models, Vowles
et al. [13,36] did not observe either of these behaviours in their experiments, and instead elvers
attempted to ascend the eel tiles as quickly as possible using anguilliform swimming. Conversely,
elvers and small eels less than 0.1 m long have been observed to climb sloping or even vertical
wetted surfaces, especially if they are covered in moss or algae, at temperatures greater than
12−14.5°C [9,17,44–46]. Furthermore, the model does not account for many other factors important
in successful passage such as predation within the pass, the ability for elvers to locate the pass in a
timely manner, or whether the elvers are motivated to ascend the pass. Nevertheless, despite these
limitations, the individual-based model results are both encouraging and promising; a relatively
simple individual-based model provides reasonable predictions of the passage success of elvers
through an eel pass.

4.2. Implications for eel pass design
The installation angle of an eel pass commonly reflects a trade-off between restricting water velocities to a
comfortable range for ascending elvers (i.e. shallow installation angle) and, especially at in-stream
barriers with large hydraulic heads, restricting the overall length of the pass (i.e. steep installation
angle) [9]. However, to date, installation guidance largely originates from the observations of
practitioners and the recommendations of manufacturers; there is little objective empirical or
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Figure 11. Plots of pass length against installation angle at 40%, 60% and 80% passage efficiencies of elvers of length (a) 0.05 m,
(b) 0.07 m and (c) 0.09 m for inflow discharges per unit width of 1.67 × 10−3, 3.33 × 10−3 and 5.0 × 10−3. Note that regions
denoting specific passage efficiencies can overlap. For example, for 0.05 m long elvers, a 1 m long pass installed at an angle of 8°
has a passage efficiency of 60% for a discharge per unit width between 1.67 × 10−3 and 3.33 × 10−3 m2 s−1 and a passage
efficiency of 40% for a discharge per unit width between 3.33 × 10−3 and 5.0 × 10−3 m2 s−1. Similarly, for 0.07 m long
elvers, a 2 m long pass installed at an angle of 8° has a passage efficiency of 80% for a discharge per unit width between
1.67 × 10−3 and 3.33 × 10−3 m2 s−1 and a passage efficiency of 60% for a discharge per unit width between 3.33 × 10−3

and 5.0 × 10−3 m2 s−1.
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theoretical evidence that assesses the passage efficiency of eel passes and especially the impact of
installation angle on passage efficiency. Furthermore, since the swimming ability of eels and elvers is
related to both their body size and season of migration [32], the selected installation angle of a pass
should be a function of the age of eels and elvers expected to use that pass and the distance upstream
from river mouths. Although the influence of migration season has not been investigated herein,
Clough et al. [32] presented burst swimming speeds for the spring and summer seasons: eels and
elvers are significantly more energetic in spring. It is, therefore, highly unlikely that a single pass
geometry is appropriate for all scenarios. Ultimately, an eel pass should be installed at the steepest
angle possible while not hindering the upstream passage of the eels or elvers that are most likely to
use it; there is a risk that installing eel passes at too steep an angle may cause size-selection favouring
larger elvers [46].

To assist practitioners with developing improved eel pass designs, results are summarized within
charts of pass length against installation angle for three lengths, or ages, of elver at selected passage
efficiencies of 40%, 60% and 80% (figure 11). Although the sensitivity of passage efficiency to pass
length has not been investigated in the present study, it is possible to estimate the maximum length of
pass possible for each agent to ascend using the time taken to ascend the 1.25 m long pass together
with the 20 s burst swimming duration used by Clough et al. [32] and noting that flow velocities and
depths do not vary significantly along the pass. The resulting distributions were then interrogated at
selected passage efficiencies. The plots can be used in five ways. First, for a given eel pass installation
angle and a given passage efficiency, a practitioner can select a pass length and read off the maximum
permissible discharge per unit width, q, that elvers of the target length (or age) can tolerate. This
discharge per unit width can then be inserted into a weir equation of the form q = α(yb + h)3/2, where
α is a constant for the particular weir in question, yb is the elevation of the eel pass at the crest of the
weir (m) and h is the flow depth (m) at the eel pass entrance, to compute the necessary design
elevation of the eel pass entrance. Second, for a given eel pass installation angle and a given passage
efficiency, a practitioner can select a design discharge per unit width or flow depth at the eel pass
entrance and read off the pass length that elvers of the target length (or age) can ascend. Third, for a
given eel pass installation angle and a given pass length, a practitioner can estimate the likely passage
efficiencies resulting from an imposed range of discharges per unit width or flow depths at the eel



royalsocietypublishing.org/journal/rsos
15
pass entrance. Fourth, for a given eel pass length and a given passage efficiency, a practitioner can select

the likely imposed range of discharges per unit width or flow depths at the eel pass entrance and read
off the installation angles that elvers of the target length or age can tolerate. Finally, for a given eel pass
length and a given passage efficiency, a practitioner can select a desired eel pass installation angle and
read off the maximum discharge per unit width or flow depth at the eel pass entrance that elvers of the
target length or age can tolerate. It is worth emphasizing that, since elvers can preferentially employ or
resort to climbing when it is not possible for them to swim up a pass using anguilliform swimming
alone, the passage efficiencies shown in figure 11 are conservative estimates. Conversely, it is also
worth emphasizing that the estimated passage efficiencies are for spring, when eels and elvers are
more energetic; passage efficiencies will be significantly lower during summer and autumn, when
eels and elvers are less energetic. These sources of additional complexity and, for example, agent-
to-agent interactions, may be readily incorporated within the agent-based model framework at a
later date.
R.Soc.open
sci.7:191505
5. Conclusion
This paper reports the results of the first study to quantify the three-dimensional flow fields within fish
passes composed of studded eel tiles and, furthermore, computationally assesses the upstream passage
efficiency of eel tiles for juvenile European eels (Anguilla anguilla) using CA and individual-based
models. We synthesize these unique datasets to provide, for the first time, specialists and regulatory
authorities with practical criteria to inform and optimize the design and implementation of studded
eel passes.

Flow fields were quantified using CFD, employing the unsteady, incompressible, RANS equations
discretized with a second-order upwind scheme and using the k–ω SST turbulence closure model [28].
Flow depths and time- and space-averaged velocities were validated successfully against those
reported by Vowles et al. [13]. The resulting validated model was used to compute flow fields for five
installation angles (8°, 11°, 14°, 17° and 20°) and three inflow discharges per unit width (1.67 × 10−3,
3.33 × 10−3 and 5.0 × 10−3 m2 s−1). Together with reported distributions of the burst swimming speeds
of eels and elvers of six different lengths (0.05, 0.06, 0.07, 0.08, 0.09 and 0.10 m), the resulting flow
fields were then used as input into CA and individual- (or agent-) based models to estimate the
passage efficiency of fish passes composed of studded eel tiles. Since automata were all assigned
the same burst swimming speed capability, passage efficiencies estimated by the CA model tended to
be near 0% or near 100% (i.e. all individuals either failed or passed) and did not accurately mimic
measured values. Conversely, the individual-based model, which captured the natural variation in the
swimming performance of eels and elvers, resulted in a much narrower range of passage efficiencies
and accurately mimicked measured values. Overall, results suggest that passage efficiency decreases
for increasing discharges and installation angles and increases for larger (and older) fish. This result is
expected, since the ability to successfully pass is intrinsically linked to the water velocity within the
pass, which increases with discharge and installation angle, and the speed, strength and stamina of
the fish, which are greatest in spring, increase with age and should also be related to the distance
upstream from the river mouth. Furthermore, results suggest that even the simplest agent-based
model is able to output realistic passage efficiency values and trends and therefore agent-based
modelling is well-suited to assessing the effectiveness of fish pass designs. Passage efficiencies
estimated by the agent-based model can, therefore, be used with target eel and elver lengths (or ages)
to improve eel pass design at specific locations through identifying optimal installation slopes and
permissible inflow discharges or flow depths.
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