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ABSTRACT 
* 

A study was conducted in an area off the Hellenic west coast to examine the spatial 
0 

and time variability of various oceanic parameters, with special emphasis on those ef- 

fecting ASW operations. Propagation loss runs were conducted using PE and 

RAYMODE models. The reactions of both models to different bottom morphology and 

sound speed profiles (seasons) were examined. Between the two models, the PE model 

was found to be closer to reality than RAYMODE. Results suggest that the application 

of these models can improve the understanding of sound propagation in the Hellenic 

seas. The bottom modeling program, BLUG, appears to need improvement. 

.., 
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I. INTRODUCTION 

A. GENERAL 
The Hellenic Navy (H.N.) recently established an underwater laboratory in order to 

perform tests for underwater acoustical devices. A number of areas were examined in the 

region of Eastern Mediterranean and some of them were found to comply with the 

requisite specifications for low environmental noise and a smooth shallow sea bottom. 

In the present study one of these areas was selected for examination of its acoustic 

propagation characteristics. The study area is located in the Ionian Sea , specifically the 

region north of 37" OO'K, a restriction to avoid the sea lanes in the southern Ionian Sea 

which cross the area in an east-west direction. A partition of the Ionian Sea into smaller 

sectors, each with similar characteristics, was made according to Chart No 30 published 

by the Hydrographic Service of the Hellenic Navy (H.S.H.N., 198Sa). This study covers 

only the eastern sectors close to the west coast of Hellas (Greece), namely areas Alpha, 

Bravo and Golf, names that will be used in the study hereafter. 

B. OBJECTIVES 

The principal objective of this study is to examine the spatial and temporal vari- 

ations of the oceanic factors that affect underwater sound propagation in order that an 

acoustic analysis and understanding of the sound propagation in the Ionian Sea can be 

performed. In addition, an evaluation of the acoustic computer models used by the 

United States X a w  is performed to examine their application to this unique region of 

the Ionian Sea and the Eastern Mediterranean in general. 

C. AREADESCRIPTION 

The Ionian Sea is that part of the Mediterranean Sea lying to the west of Hellas. 

The geography and partitioning of the Mediterranean Sea into regional basins is shown 

in Figure 1. This study covers that part of the southeast Ionian Sea from 37" OO'N to 

38" 3 0 3  and 19" 30'E to 21" OO'E. The total area is 20000 km2 and is bounded to the 

east by the Hellenic Peninsula (Fig. 2). The area can be separated into the coastal waters 

lying between the mainland and the offshore islands and the pelagic waters of the Ionian 

Sea. The mainland is divided into two parts, the main Hellenic Peninsula and the smaller 

Peloponnesos Peninsula. Between the two there is a sea lane of about 10 km in width 

and 165 km long which connects the Ionian Sea to the Aegean archipelagos via the 



Strait of Corinthos. Area Alpha is located in the shallow waters between the mainland 

and offshore islands of Kefallonia and Zakynthos (Fig. 3), It has an overall area of 1880 

km2 and a smooth sea floor with an average depth of around 120 m. The other two areas, 
w 

Bravo and Golf, are located west of the above islands with Bravo to the north of Golf. 

The area of Bravo is 41 16 km2 and has bottom depth which extends to 100 m over the 
* 

continental shelf and then falls sharply to 1500 m, eventually reaching depths in excess 

of 2000 m. Area Golf is 15000 km2 in extent and has bottom features similar to that 

of Bravo but has deeper depths which extend to 3000-3300 m. 



Figure 1. Local seas and basins of the Mediterranean Sea: The eastern part is 

ccmprised of the Ionian, Aegean and Levantine Seas (from Mauq 
Center for Ocean Science, 1973). 



Figure 2. The location of ASW prediction areas: According to the Hydrographic 

Service of the Hellenic Savy (from HSHN, 19SSa). 



Figure 3. Detail of coastal area Alpha: Bathymetry and location of the stations 

used in this study are shown (from NSHN, 1982). 



11. OCEANOGRAPHY 

A. WATER MASSES 

Oceanographic conditions in the study area are effected by the circulation of the 

three major water masses present in the Eastern Mediterranean Sea. These masses, 

Atlantic, Levantine and Deep Water, are separated by different depths which vary as 

they move from their places of formation towards other areas, being mixed by other 

waters along their paths. A number of authors such as Lacombe and Tchernia (195S), 

Wust (1961), Ovchinnikov (1978) and others have studied the water masses and the cir- 

culation characteristics of the Mediterranean Sea. In general, the Mediterranean can 

be divided into a western and an eastern basin, the latter being defined as the sea east- 

wards of the Straits of Sicily. Malanotte-Rizzoli and Hecht (1988) state that the physical 

mechanisms that determine the circulation patterns in the Mediterranean are still un- 

certain. They, as well as El-Gindy and El-Din (1986), have reported on a number of 

studies that have been done or are still under execution such as the POEM (Physical 

Oceanography of the Eastern Mediterranean) cooperative program (UNESCO reports 

30, 35 and 44). Part of the uncertainty is due to the complexity of the land barriers to 

the circulation 'modeling, coupled with sometimes conflicting reports which have ap- 

peared since 1945. 

The major water inflow comes from the Atlantic Ocean. This flow pattern results 

from the fact that the Mediterranean is a concentration basin wherein evaporation ex- 

ceeds precipitation and runoff. Hence, Atlantic Water (AW) flows into the 

Mediterranean in order to preserve mass conservation (Bethoux, 1979 and 1980). It 

flows eastward extending from the surface to 200 rr1 and enters the Eastern 

Mediterranean by the Straits of Sicily. In the vicinity of Gibraltar, AW has a temper- 

ature of 15°C and a salinity of 36.15 psu (Lacombe and Richez, 1982). At the entrance 

to the eastern Mediterranean the salinity has increased to 38.6 and continues to increase 

eastwards until at the coast of Israel it is 38.7. In the winter the lower evaporation rate 

and vigorous mixing destroy the upper layer quickly so the identification of AW is dif- 

ficult. Frassetto (1965) reports that in wintertime some evidence of AW was observed in 

the Straits of Sicily so the assumption that this water penetrates as far east as the Ionian 

Sea holds. Based upon geostrophic calculations (Sielsen, 1912), a cyclonic gyre is ob- 

served to the west of Crete (Fig. 4) which carries the AW northwards into the Ionian 



Sea. The identification of AW in summer is easier as the high insolation and evaporation 

rate, coupled with limited wind action, create a buoyant warm and saline layer at the 

surface which preserves the low salinity influx water found just beneath the surface. 

Beneath the AW is Levantine Intermediate Water (LIW). This water is formed in 

the Levantine basin (Wust, 1961; Bryden and Stommel, 1982) at depths between 200-600 

m and is present in the Levantine Basin throughout the year. This water flows westward 

(Wust, 1961) and upon reaching Gibraltar enters the Atlantic Ocean where it sinks to 

1,000 m. It can be traced to the east coast of the American continent by its salinity 

maximum (Lacombe and Tchernia, 1960). LIW also penetrates into the Ionian and 

Adriatic Seas. LIW is formed mostly in the winter and can be identified in the Levantine 

Basin by its salinity maximum (39.1) and a temperature of 15°C (Fig. 5). As it moves 

towards Crete, the salinity decreases to 38.9 and continues to reduce due to mixing as 

it progresses westward, The salinity of LIW at the Straits of Sicily is 38.7; upon exiting 

the Mediterranean at Gibraltar it a has value of 38.4. 

The Deep Waters in the Eastern Mediterranean are thought to be formed in the 

North Adriatic Sea (Pollack, 1951; Pickard and Emery, 1982; Roether et al., 1983), the 

latter basing their hypothesis on the results of tritium tracer studies. These waters flow 

to the bottom of the Ionian Sea and then into the Levantine Basin (Fig. 6). Some of 

these bottom waters can also be formed in the Aegean Sea but no evidence of flow into 

the Ionian via the Kythera Straits has been identified (Lacornbe et al., 1958). These 

waters are characterized by a temperature of 13.6"C and a salinity of 38.7. 

B. CURRENTS 

Observations of the currents in the Eastern ivediterranean Sea have lead to con- 

flicting results. A number of measurements and models has been published (Malanotte- 

Rizzoli and Hecht, 1988; El-Gindy and El-Din, 1986) but no coherent picture of the 

general circulation can be drawn. This is in part because the wind stress in the Eastern 

~Mediterranean exhibits such strong seasonal variability (Fig. 7). The wind driven cur- 

rents are expected to form a cyclonic gyre in the Ionian Basin which reverses in summer 

(Moslalenko, 1974), a feature which has been confirmed by numerical experiments car- 

ried out by Malanotte-Rizzoli and Bergamasso (1988). The Pilot of the Hellenic Seas 

(HSHN, 1979) describes a relatively steady northward surface flow, with no seasonal 

variability, along the coastal margin of the study area (Fig. 8). More current measure- 



Figure 4. General circu2ation of the surface ~taters in the Eastern Mediterranean 

(from Sielsen, 19 12). 

ments made by the Hellenic S a y  (HSI-IS, 1989) confirm the northward direction at the 

surface and at 200 m with no significant seasonal variations (Fig. 9). 

The Ionian Sea and its neighbor to the north, the Adriatic Sea. have relatively high 

surface evaporation rates both in winter. due to dry strong winds from Europe, and in 

summer, due to high insolation. Assunling that the deep water, formed from the excess 

evaporation flows southward, then mass conservation requires a surface replacement 

inflow from the south (Atlantic and Levantine t)-pes). Thus a txo-layer circulation pat- 

tern of opposing currents is formed. . . 
S o  frontal regions are located in the study area. The .Maltese Oceanic Frontal Zone . 

(Johannessen; Stobel and Gehin, 1971), located east of Slalta in the region between 36' 

OO'N 17" OO'E is far to the west and does not affect the study area. 

The above water masses and their circulation produce the temperature and salinity 

profiles seen in Figure 10 typical of the Ionian Sea. 



Figure 5. Transverse cross section of salinity: Both seasons, winter (top) and , 

summer (bottom), illustrate the presence of near surface Atlantic Water, 

high sniinity Levantine 1ntermedi~l.te Wiitcr at  mid depth, and Deep 

TI-ater below (from Wust, 1961). 

C. TEMPERATURE DISTRIBUTION 

The temperature profiles found in the study area exhibit a strong seasonal vari- 

ation. This variability is constrained to the surface waters as profiles below 300 In show 

negligible seasonal variability (Podesnva. 1971). The annual sea surface temperature 

(SST) distribution in the Mediterranean is shoivn in Figure 11 for four representative 

months. The SST during the winter (Fcbruarq-j is about lJ. j°C (58°F) while in summer 

(Aupust) it x x m s  to 25.5"C (7S°F). In  winter a mixed layer exists from the surface to 

about 30 m depth. The temperature slowly decreases from 15°C at the bottom of the 

mixed layer to 13°C in the deep waters (Podeszrva, 1971: El-Gindy and El-Din, 1986). 

Summer conditions are characterized by a very hot sea surface (25.5)"C where insolation 

and the absence of mixing prohibit the formation of a miscd layer. A sharp temperature 

decrease then follows to a depth of 150 m ( 15" C) followed by a slower decrease. Be- 

tween 200 and 600 m (LIW) the temperature is about 15°C; in the deep water it is close 



I 

Figure 6. The forniation areas of the Deep Waters in the Mediterranean (denoted 

by XSS) : The Adriatic Sea for the Eastern Mediterranean and off the 

coast of the French Riviera for the Western Mediterranean (from 

Pickard and Emery, 1982). 



Figure 7. IYind stress orer the hlediterrax~ean Sea: a). January mean, b). August 

mean (iiom Malanotte - Rizzoli, and Hecht, 1958). 

to isothermal at 1 3.jcC. The difference be twen  summer and winter temperature profiles 

becomes negligible for depths greater than 400 m (Fig. 10). 

The itansitions between these two seasons is observed mainly in the depth of the 

mixed lager, 10 m in spring and about 25 m in the fall. Acoustic conditions during these 

transition seasons are not examined in this study, instead preferring to concentrate on 

the two extreme seasonal conditions. 

In addition to  being influenced by the above large-scale properties of the 

Slediterrmean circulation, the local temperature and salinity profiles can be aITected by 

meso or small scale activities like eddies (Malanotre - Rizzoli and Hecht, 1988). For ex- 

ample, El-Gindg and El-Din (1986) cite the possibility of deep warm eddies in the cen- 

tral Ionian Sea. Also a sateilite image of the Ionian Sea (Fis. I?) shows the presence of 

warm eddies in the area under investigation. 



Figure S. Surface currents in the Hellenic Seas: top: winter mean, bottom: sum- 

mer mean. Both seasons have a northward direction along the west coast 

of Hellas with a speed of 0.2 to 0.5 Kts (from HSHS, 1979). 
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Figure 9. Currents at the surface and at 100 m depth: Ileccnt measurements from 

H S H S  show very little directional variability throughout the seasons 

(from HSHS, 19S9): 



WINTER 

Figure 10. Seasonal Temperature, salinity and SSP in the Ionian Sea: Both sea- 

sons show the presence of the three different water masses (AW, LIW, 

DW) in the Eastern Mediterranean (from hlaury Center for Ocean 

Science, 1974). 
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Figure 11. Distribution of sea surface temperature ( O F ) ,  (a) February, (b) May, (c) 

August and (d) Sovember (from M a u q  Center for Occan Science, 

1974). 



Figure 12. Thermal surface features of the Mediterranean Sea: The presence of 

warm eddies in the eastern Ionian Sea are shown in this plot derived 

from satellite I.R. data from Sept. 1977 to from Feb. 1979 (Robinson, 



D. SUMMARY OF OCEANOGRAPHY 

A summary of the preceding hydrographic analysis is presented below describing 

conditions present in the study area during the two principal seasons. Typical profiles 
- for the Ionian Sea are shown in Figure 10. 

1. Winter season 

q The winter season, January through March, is in general characterized by 

strong wind mixing and convection which produces a well-mixed surface layer to 200 

m (T E 14.0" C, S r 38.2). Beneath this layer and extending to 600 m is LIW which flows 

northward along the west coast of Hellas. The Deep Water from the Adriatic fills the 

depths from 600 m to the bottom (T 13.5"C, S E 38.7). The mean temperature, salinity 

and sound speed profiles of Figure 10 appear to be representative of the entire region 

of the Ionian Sea. Small variations from these profiles are expected due to local influence 

and year to year fluctuations. 

2, Summer season 

The summer season, July, August and first days of September, are characterized 

by high insolation and limited wind mixing. This produces a hot and saline lid at the 

surface(T z 25"C, S r 38.5) which overlies the low-salinity Atlantic Waters below. The 

AW is identified by its lower temperatures and salinity minimum (T r 14"C, S E 38.2) 

at a depth of 20 m to 200 m. Little or no seasonal effects are expected below this depth 

of 200 m. 



111. DATA ANALYSIS - 
A. SOURCES OF DATA 

1. Hydrographic data (Temp., Sal., SSP vs Depth) 
I 

Two sources of hydrographic station data were used; from the National 

Oceanographic Data Center (XODC) at Washington DC (1989) and from the 

Hydrographic Service of the Hellenic Navy (HSHN) at Athens, HELLAS (1988b, 1989). 

Historical sound speed profiles compiled by Podesma (1980) for the Ionian Sea were 

also used for comparison, as they include more than 6000 records in this area. From the L 

NODC data file a total of 192 observations (Nansen and CTD) were extracted. The 

majority of them (180 records) represent synoptic data collected in areas Bravo and Golf 

in November 1980 while the rest are mostly single records taken from various sources in 

the study areas between 1970 and 1983. The Hellenic Navy data included 15 CTD 

stations in the coastal area, Alpha. Additionally the Hellenic Navy provided groups of 

three to four synoptic records covering the entire area Alpha and representing all four 

seasons. These records were used for spatial investigation of each group inherently and 

for seasonal variation analysis, averaging records of the same group. The time interval 

covered by the data from all these sources starts in 1970 and ends in 1983 and the ob- 

servations are distributed over all the interested areas and seasons of the year (Fig. 13). 

Sound speed profiles were calculated from these temperature and salinity data 

using the Chen - Millero (1977) equation. In selecting a typical SSP, more attention was 

given to the upper 600 m as this was the depth range exhibiting most of the seasonal 

variability. Records having some data points lying outside the normal standard variation 

were corrected by interpolation. If the number of bad data points was significant, then 

the whole record was discarded. Plots and graphs were expanded to 350 m for the shal- 

low area (Alpha) and to 3000 m for deep ones, Bravo and Golf. The range 0-600 m is 

also used to increase the resolution of the upper water strata. 

2. Bottom Characteristics 

The bottom depth in the area of interest varies such that it can be divided into 

two regions. The coastal region is a part of the continental self with depths less than 200 

m. The Ionian Basin is significantly deeper having depths between 200 m and 3000 m 

and in some areas exceeding 3000 m. A representation of the bottom morphology can 

been seen from three transects which pass over the continental shelf into deep water 
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Figure 13. Annual and monthly distribution of used records: Only non-s~noptic 

records are shown for each year and each month from all the years 

summed. 



(Fig. 14). The continental shelf is present from the mainland to the Ionian Islands; then 

the bottom precipitately descends to the Ionian Basin. The selected study areas are dis- 

tributed such that area Alpha lies above the continental shelf while areas Bravo and 

Golf lie over the continental slope and the Ionian Basin. Based upon data from the 

HSHN (1988b and 1989) the sea bed is observed to be mostly mud with a small per- 

centage of silt (less than 4.5%). This percentage increases shoreward from 12.8% to 

29.4% depending on the bottom slope. 

Data for acoustical modeling of the sea bed were taken from the data bases 

associated with the bottom loss model BLUG and NAVOCEANO charts (H.0, 1972). 

Two HSHN small scale charts, No 22 (HSHN, 1982) and No 65 (HSHN? 1983) 

were used to extract the bathymetry along each selected transmission path for later in- 

sertion into the PE transmission model (Fig. 14 and 15). 

B. SEASONAL VARIABILITY 

1. Winter 

In the winter season (January through  march) a total of 15 records were ex- 

amined from observations taken within the study area. These observations were taken 

over a time span of nine years. As expected, wind and convective mixing produce a well 

mixed isothermal layer below the surface. This layer in shallow areas, like Alpha, extends 

throughout the entire water column. In area Alpha the winter is characterized by an 

isothermal profile of 14.5"C (Fig. 16). The mean values from these 15 records result in 

temperature, salinity and sound speed profiles as shown in Figure 17, where a low sur- 

face salinity (S = 35.0) is observed followed by a positive salinity gradient. The same 

characteristics can be seen in the deep areas, Bravo and Golf, where the surface tem- 

perature is 15.0°C and decreases slowly with depth (Fig. 18). At 300 m the temperature 

is about 14,0°C; at 1500 m it is 13S°C. The salinity gradient is also positive with surface 

values of 38.44 in the deeper offshore areas. Salinity increases with depth until at 300 

m it is about 38.75. This is true for both deep and shallow areas. AW is hence observed 

to occupy the upper 300 m, LIW the deeper waters (Fig 19). 

2. Summer 

In summer a total 5 of records from the HSHN data base were examined. The 

principal features of the temperature profile are its hot surface layer followed by a sharp 

decrease in temperature, The profiles for area Alpha (Figures 20 and 21) show the pres- 



Figure 14. Batliymetry of the Ioninn Sea (from HSHN, 19SSa): The location 

of the four transects used is also showt.n (depths in meters). 



- - -- - -  

Figure 15. Bathymetry along the seiected paths: The discrete values shown here 

were used in the PE model to simulate the actual bathymetry found in 

areas Bravo and GolK 
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Figure 16. Temperature profiles in area Alpha winter 1982: These records show 

the existance of isothermal conditions with small variations from day 

to day. 



Figure 17. Mean profiles of temperature, salinity and sound speed profiles in area 

Alpha, winter : The SSP produces a half channel propagation path. 

ence of a mixed layer to  20 m. The mixed layer is better developed in the synoptic pro- 

files acquired between 9 and 19 September 1973 (mean values only). Farther scaward in 
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Figure 18. . Winter temperature profiles in area Golf: The variation between 

these records taken over an interval of nine years is minimal. 
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Figure 19. Temperature, salinity and sound speed prof les in areas Bravo and Golf, 

winter : The presence of Atlantic, Levantine and Deep (Adriatic) 

Water can be seen by the salinity minima and maxima. 



areas Bravo and Golf the existence of limited mixing is evident as the temperature at first 

decreases slowly to 15 m, followed by a sharper gradient beneath. The salinity profile 

in shallow waters (Alpha) shows a nearly isohaline condition with a sharp increase close 

to the bottom, evidence of the presence of LIW flowing on to the shelf (Fig. 21). In the 

deep water areas, the salinity exhibits a minimum at 30-40 m (AW) and then increases 

to 38.75 between 300 and 500 m (LIW). Below the LIW it slowly decreases to values 

below 38.7 (Deep Waters) (Fig. 22). 

C. SPATIAL VARIABILITY OF DATA 

To investigate evidence of spatial variations in the study areas all the available 

synoptic data were used. For area Alpha these synoptic records covered all the seasons 

of the year; for areas Bravo and Golf the only available data were limited between 2 and 

28 Kovember 1980. 

The compilation of synoptic records from area Alpha shows that the maximum de- 

viation of each group does not exceed 0.5"C from the mean values (Figures 16 and 20) 

for both seasons, winter and summer. Hence, in area Alpha, bathythermographic con- 

ditions have negligible spatial variation for each of the seasons examined in this study. 

For deeper areas Bravo and Golf, as noted before, the spatial investigation was done 

using groups of records taken between 2 to 28 November 1980. Again the differences 

between the records do not exceed 0.5"C in temperature or 10 m in ,MLD. 

The comparison between selected groups of records taken in area Bravo on 19 KO- 

vember 1989 and in area Golf on 11 and 26 Kovember 1989 verify that area Golf is 

usually 0.5 to 1°C warmer than Bravo. The differences are in the mixed layer where 

(Figures 23, 24 and 25) records from Golf have a MLD of 30 m and a surface temper- 

ature 21.3"C on 11 Kovember. Four days later Bravo has a MLD of 30 m and a surface 

temperature 20.0°C and then Golf on 26 November has a MLD of 35 m and surface 

temperature 19.4"C. 

The above selected records indicate a negligible spatial variation across the study 

areas. In addition the examination of single records taken in winter and summer shows 

small differences between them. Records taken in these areas from the same seasons with 

a five to nine year time span seem very similar and close to those compiled by Podeszwa 

(1980). Hence, the assumption that the spatial variations of temperature and salinity in 

these areas are negligible is valid. Accordingly the SSPs in the study area do not have 

horizontal variations, at least for the time period for which an ASW prediction is re- 

quired. 
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Figure 20. Temperature profiles in area Alpha! summer: The esistence of a mixed 
layer can be verified by the data collected during September 1973 

(HSHN, 1988b). 
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Figure 21. Temperature, salinity and sound speed profiles in area Alpha, 

summer : In this season the formation of a mixed layer of 25-40 m 

is more likely depending on weather efTects. 
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Figure 22. Temperature, salinity and sound speed profiles in areas Bravo aild Golf, 

summer : The very hot surface preserves the AW being detected easily 

by its salinity minimum at 20-50 m. , 
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Figure 23. Synoptic temperature profiles in area Golf: The differences between 

four observations taken on 1 I Sovembcr 1980 are less than 03°C. The 

h1LD is a t  30 m. 
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Figure 24. Synoptic temperature profiles in area Bravo: The distance between 

. each of these observations, taken 19 Sovember 1980, is 30 to 50 km. 

The differences are negligible. 
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Figure 3. Synoptic temperature profiles in area Golfi Records taken at 0500 

(rec 011) and 16:OO (rec 115) on 26 Xovember 19SO show a daily vari- 

ation of 20 m in .MLD and O.j°C in tcmpcrature. 



IV. ACOUSTIC ANALYSIS 

A. ACOUSTIC MODELS 

In this study the examination of sound propagation was performed by using two 

acoustic models available at the Naval Postgraduate School, the PE Model and the 

RAYMODE model. These two models represent two different techniques to calculate 

the propagation loss in a given oceanographic environment. A number of runs were 

compiled using both models and relative comparison performed. 

Brief qualitative descriptions of the two models are given below and the implemen- 

tations of bottom interactions into each model is discussed, 

1. GENERAL 

The purpose of these models is to provide attenuation for sound propagation 

into the sea. Specifically they are designed to calculate or estimate a number of propa- 

gation factors, the major ones being geometric losses (spreading and convergence), 

diffraction, absorption, scattering, leakage and boundary effects (surface and bottom). 

A number of methods, mostly empirical, for estimating the effects of some of the above 

factors in underwater sound propagation have appeared in numerous tactical publica- 

tions in the years following the close of the second world war. Such methods were used 

by surface ships and submarines to estimate, for example, detection ranges of the day 

or best depth to avoid detection. 

One of the next progressive steps was the implementation of ray theory. An 

immediate result of Snell's law, raytracing is a simple and fast method for determining 

sound paths either graphically or with the assistance of a computational machine. 

Sound propagation in the sea can be expressed by the linearized, lossless and 

source free wave equation (Kinsler et al., 1984), 

Ray theory assumes that a solution to the wave equation (Kinsler et al., 1984) 

takes the form, 



where A(r,z) is the spatially dependent pressure amplitude and r is a propa- 

gation vector locally normal to the isophase pressure surface; hence VT is the local di- 

rection of propagation, 

v r  = q( cos q5r̂  + sin 42). 

where 4 is the local elevation angle of the ray path. 

This solution, when applied to the wave equation (4.1), will result in: 

The above equation can be simplified by a number of approximations to provide 

a form known as the Eikonal equation, 

where g is the refractive index, 

The assumptions and restrictions used in the derivation are that the pressure 

amplitude A is significant within a finite aperture beam and that the speed of sound 

varies little over distances compared to a wavelength, so 

and 

The applied assumptions will make this method fail in cases where the pressure 

coefficient A has to decay rapidly from the center of the ray to the edges or the SSP has 

sharp changes. Such conditions are expected in caustics, shadow zones and the boundary 

between the ocean and some type of sediments. In this theory no diffraction of the 

sound at the edges is permitted as the acoustic energy trapped within a beam may not 

leak out of it. In contrast to normal mode theory, ray theory easily accepts different 



densities in the sediment so reflection of the incident rays can be calculated. In general, 

ray theory is valid and useful when the frequency is high (short wavelength) and the SSP 

changes slowly. 

The continued improvements of passive detection in frequencies below I kHz 

resulted in new theories and techniques, followed by a number of complicated acoustic 

models as electronic computing power became more available. Normal mode theory 

provides a solution to the wave equation using the summation of an orthogonal set of 

functions, each one being a solution to the wave equation. Each of these characteristic 

functions, called normal modes, has its own attenuation factor for the given boundaries. 

The final pressure field can be calculated after these modes have been combined 

additively. This solution is formally complete but it is difficult to calculate and interpret. 

A simple approach (Kinsler et al., 1984) to normal mode theory can be per- 

formed by inserting a source term in the wave equation 

The solution for a sinusoidal wave propagating into a sound channel can be written as 

the summation: 

where : 

and 

For r > > 1 the solution will be : 



where the Hankel function has been replaced by its asymptotic form, with the use of the 

far field approximation. The value of K,, and the depth dependence of Z,,(z) can be eval- 

uated from the appropriate boundary conditions and the given c(z). 

The above values must be calculated for the whole propagation space which, 

due to the mathematical complexity, makes the use of a computer necessary except the 

most easy cases. 

An alternative method to the above solutions is an approximation using a 

parabolic approximation to the wave equation. The wave equation can be expressed also 

as: 

where 

In cylindrical coordinates and with an omnidirectional source the wave 

equation is 

Then the acoustic pressure, p, can be expressed as 

(2) P = u(r,zI% (k04 

and use of the far field approximation yields 

2 2 urr + u,, + 2ikour + ko(n -1) = 0. 

Finally, the assumption that urr<2k,ur gives the form 

which is amenable to numerical solution. 

This method was introduced by Tappert and Hardin in 1973 who used in their 

work a computational technique called the Split Step Fast Fourier Transform (SS-FFT). 

The advantages of this method are that we do not need to solve for the entire field si- 



multaneously as in the normal mode case but given initial conditions at some range r, 

(close to the source) the solutions for larger r's can be obtained by increasing r incre- 

mentally. This is equivalent to neglecting back scattering as the solution for any range 

r has no effect on any previous range. 

The disadvantages of this technique are errors introduced, if the initialization 

of the problem is not correctly selected, and if the requirement of SS-FFT for continuous 

functions of depth (z) are not met. The PE is inherently restricted to narrow spectral 

angles. A number of published techniques ease the initialization problem by using 

raytracing or a directional pseudosource (see, for example, a discussion from Coppens, 

1982) and a number of "wide angle" PE Models have been published. (see, for example, 

Lee et al., 1982). 

2. RAYMODE 
The passive RAYMODE model, U.S.Navyls standard acoustic model, uses an 

integration method developed in 1968 (Medeiros, 1985). A number of modifications and 

improvements have been added, such as mode summation and low frequency paths into 

the sediment. The model used in this study was the Passive RAYMODE, specifically the 

1987 baseline edition. This model utilizes ray and normal mode theories in an attempt 

to minimize errors and computer run time. Up to four different paths of sound propa- 

gation can be formed and the total pressure field is defined by summing the contrib- 

utions over all paths. Boundary interactions are calculated by invoking a number of 

other models, like BLUG. 

The inputs to the program are: 

Sound speed profile, 

Bottom depth and bottom type (BLUG or NAVOCEANO), 

Wind speed, 

Source depth, 

Receiver depth, 

Sonar D,'E angle and vertical beamwidth, 

Frequency, 

Range span and range step. 

The program will process these data to produce a piecewise SSP and then par- 

tition it into areas of different wave number (Medeiros, 1985). These wave number do- 

mains represent different paths such as the surface duct or the deep sonic layer or 

sediment paths (Fig. 26). 



Based on the entered data for each path the model will calculate two parameters 

: the number of cycles that exist between source and receiver, and the number of modes 

existing in each wave number interval. From these parameters there are four different 

ways that the algorithm will proceed. If the number of modes is less than 10, the normal 

mode summation technique is used. If the propagation angle exceeds a computed limit, 

then a bottom bounce integration is used. For paths employing neither of the above 

cases the original method of RAYMODE integration is used (Raytracing). Finally, if the 

frequency is more that 3 kHz, a fast integration subroutine is used (High frequency 

RAYiMODE). 

For each path absorption is calculated as well as the relative phase of each ray. 

Bottom interactions are computed using models including the Naval Oceanographic 

Office MGS algorithm (NAVOCEANO charts), the BLUG (Bottom Loss Upgrade) and 

a low frequency bottom loss model developed by G.Gustave (NUSC, 1987). The surface 

loss is calculated according to a Surface Reflection Coefficient Model. For the present 

time no range dependency is assumed, neither for the SSP nor bottom depth. 

RAYMODE at the present time uses only a flat bottom and a single SSP. 

3. PE Model 

This is a relative new model based on the parabolic equation approximation. 

It is designed to operate at relatively low frequencies as computer run time for higher 

frequencies, more than 1000 Hz, increases significantly. The PE Model is not restricted 

by depth dependency along the axis of propagation (range r) nor by horizontally 

changing sound speed profiles. It is best used whenever a duct-like transmission occurs, 

for example, in the Arctic, shallow channels, etc., or where non-homogenities in the 

water mass exist. The entered parameters in this model are: 

Sound speed profiles, 

Bottom depth (discrete depths), 

SSP and attenuation profile in the sediment or bottom loss vs grazing angle 
(BLUG output), 

Source depth, 

Receiver depth, 

Source vertical beamwidth, 

Range step (increment). 

The surface is assumed to be a pressure release boundary with reflection coeffi- 

cient -1, the bottom is assumed to be a continuation of the water mass. After the initial 

boundary conditions have been specified the program will march the solution forward 



Figure 26. Partition to  wavenumber domains (RAYMODE): The equivalence 
between duct-like paths and rays (from Medeiros, 1985) . 



in range using a split - step fast Fourier transform algorithm (SS-FFT) until the entire 

field has been calculated (Tappert and Hardin, 1973). 

4. Bottom Loss Models 

The influence of the sea bottom in sound propagation is modeled using two 

different approaches. The earlier encompares the geo-acoustic models where the sea 

bottom is assigned a number which represents the observed acoustic behavior of the 

sediment. Such a representation are NAVOCEANO curves, used by the U.S.hTavy for 

high frequency operation (> 1000 Hz). Nine different loss curves are used to characterize 

the types of existing sediment. These curves represent loss per bounce (dB1bounce) for 

only reflected rays. Type 1 is the most reflective and Type 9 the most absorbing. 

For low frequencies, where both reflection and refraction into the sediment have 

to be calculated, the Bottom Loss Upgrade (BLUG) model is used by most of the Navy's 

models. In the BLUG model a partition of the oceans is done similar to the 

KAVOCEAKO model, but instead of loss curves a total of nine geo-acoustic parameters 

has been assigned to each area. These parameters are used by the BLUG program to 

produce a compressional sound speed profile into the sediment as well as an attenuation 

profile (Fig. 27). This will permit the acoustical model to incorporate the bottom loss 

and refraction by using a continuous profile into the water and sediment. 

The B,LUG output is given in loss per bounce vs grazing angle for each fre- 

quency and it is used, in this format, in the PE Model. RAYMODE uses an internal 

subroutine for the same task. The attenuation into the sediment is calculated from the 

formula (Medeiros, 1982) : 

This first power relationship between attenuation and frequency was made after 

the work of Hamilton in his numerous reports. Hamilton (1971 and 1974) derived this 

relationship in an empirical way from the collected data over a wide but relative high 

frequency spectrum, without any theoretical basis. 

The density of the sediment is constant because any changes do not effect the 

propagation significantly. Finally a theoretical thin layer at the surface (Fig.27) is used 

to remove any discontinuities in the boundary between the water and the bottom. 

The second and later approach is the geo-physical model where reflection, re- 

fraction and attenuation into the sediment must be calculated by physical parameters for 

each area. Recently a number of authors (e.g., Kibblewhite, 1989) reported a number 



Figure 27. Simplified geo-acoustic model: The bottom SSP and attenuation pro- 

files are calculated by the given parameters for each area using internal 

(RL\Y.MODE, ASTRAL) or external (PE Model) subprograms (from 



of experiments where the more fundamental analysis from Stoll(1980), using Biot (1962) 

theory, seems to be more adequate. Stoll(1980) cites a relation of the attenuation co- 

efficient with the square of the frequency for fully saturated sediments. 

The BLUG model is undergoing reconstruction whereby the attenuation will 

be related to frequency between the fust and second power, depending on the bottom 

quality (type and depth). 

B. APPLICATION OF DATA 
1. Sound Speed Profiles 

Two different sound profiles for both shallow and deep water columns were se- 

lected to represent the summer and winter seasons. Area Alpha is represented with the 

profiles representing the averaging of the winter or summer records, respectively. The 

main characteristic in the winter is a smooth positive sound speed gradient resulting in 

a half channel propagation (Fig. 28). Hence only reflected surface reflected (RSR) and 

reflected bottom refracted (RB R) rays will propagate. Higher frequencies will attenuate 

more rapidly due to enhanced scattering from surface reflections (Urick, 1983). In the 

summer a mixed layer exists to a depth of 20 m resulting in a slight positive sound speed 

gradient, followed by a sharp decrease (Fig. 28). A weak sound channel exists with an . 
axis at 150 m but is bottom limited so that this will not be a viable propagation path. 

Using the formula, 

to determine the low-frequency cut off in the mixed layer (Kinsler et al,, 1984) we find 

a cut off frequency of 2.2 kHz, a transition range of less than 200 m, and a skip distance 

of about 3.6 km. For both deep areas, Bravo and Golf, the representative profiles for 

each season were selected from among the existing records in order to examine the most 

significant cases (Fig. 29). The selected SSPs are common for both areas as no noticeable 

spatial differences occur and are shown in Figures 29 and 30, In the winter isothermal 

conditions will create a half channel. The presence of LIW will create a small "knee" 

along the SSP between 200 and 500 m as the high salinity of LIW will increase the sound 

speed in a small amount. In contrast, summer heating changes the upper 200 m, as noted 

before (Fig. 221, and increases the sound speed. Hence in the surface the sound speed is 

about 1540 mis and a deep sound channel is formed with a height of 2000 m and an axis 

at 150 m (Fig.29). In this channel the transition range is about 8 km and the skip dis- 



tance 30 kin. For paths with more than 2200 m depth CZ propagation is expected at a 

skip distance of 29.5 km with a transition range of 8 km. The SSP used for areas Bravo 

and Golf for winter and summer can be seen in Figures 29 and 30 (upper 600 m). 

2. Bottom Paths and Parameters 

Using the appropriate data bases (BLUG and NAVOCEANO), all three areas 

in this study were found to be characterized by a fast bottom with a sound speed ratio 

along the boundary (water to sediment sound speed) of 1.091 for the continental self 

(Alpha) and 1.005 for the Eastern Ionian Basin. Area Alpha has a reflective bottom 

(Type 2 for NAVOCEANO charts) for frequencies over 1 kHz. Areas Bravo and Golf 

over the Ionian basin experience significant bottom reflection losses (Type 8, 

NAVOCEANO charts). The loss per bounce for each incident angle and frequency, as 

produced by the BLUG model, can be seen in Figure 31. 

A number of paths were selected to simulate the most likely sea sediment 

morphology in the region (Figs. 2 and 14). The first path represents shallow area Alpha 

and is assumed to:be a flat bottom with a depth of 120 m. The second path is a com- 

bined path which starts over the continental slope and continues onto the shelf in such 

way that one third is in area Bravo and the rest in Alpha. Path three is also a combined 

path which starts at a depth of 3000 m and extends from area Bravo towards the shelf 

with a sharp rise. It is the only path were the depth at the source position exceeds 2300 

m and for which convergence zone propagation exists. Finally, path four is a sloping 

bottom case which starts at a depth of 2000 m and decreases smoothly towards shore 

(100 m) into area Golf. 

3. Source, Receiver Data 

Three depths were selected for the source according to the MLD and bottom 

depth along each path. For the shallow paths (No 1 and No 2) these depths are 10 and 

60 m. For the remaining paths 10 and 150 m were selected. The source frequencies are 

defined to be 50, 250, 500 and 1000 Hz. The receiver depths were also set to 10 and 60 

m. These definitions of source and receiver depth were made in order to consider all the 

available depth configurations with respect to MLD and DSC axis. A standard Figure 

of Merit (FOM) of 80 dB was selected to produce relative results between seasons. 
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Figure 25. Sound Speed Profiles for area Alpha: Summer, fall and winter pro- 

files are shown for comparison. 



Figure 29. ' Sound Speed Profiles for areas Bravo and Golf: Both summer and 

winter proliles are shown for comparison. 
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Figure 30. Sound Speed Profiles in areas Braro and Golf (Detail): The differ- 

ences between the two seasons (~vinter-summer) seems to occur in the 

upper 200 m. 
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Figure 31. BLUG output for shdlow and deep areas: Deep areas Bravo and Golf 
have significantly more absorbing sediment than shallow area Alpha for 

low to moderate grazing angles. 



C. ANALYSIS OF RESULTS 
1. BLUG Output 

The calculated attenuation for each selected frequency and grazing angle shows 

a critical angle of about 24" for the continental shelf (Fig. 3 1). This is in accordance with 

the water sediment sound speed ratio in the boundary (1.091). Rays less than this 

critical angle suffer a loss less than 2 dB per bounce while those greater than this angle 

experience a loss exceeding 6 dB. Similarly for the deep area the critical angle is about 

6" which is also consistent with the 1.005 speed ratio as above. Because no other sources 

are available to verify these sea sediment parameters, these data were used as input to 

the two models. The BLUG uses standard values for this ratio, cJc,, with no seasonal 

variation. In shallow areas, where the seasonal variation can penetrate the whole water 

column, this ratio changes and some errors are expected as the sound speed in the 

sediment will be less affected. For the most cases in this study the seasonal changes in 

sound speeds in the water close to the bottom are small (Fig. 28) and errors due to the 

ratio cJc, are negligible. This remark is only for the PE Model as the RAYlMODE model 

calculates the ratio from the data given from the BLUG database directly (Medeiros, 

1985). 

2. Path No 1: PE Model and RAYMODE 

This path, a flat shallow area, is used in order to examine both models simul- 

taneously in a shallow waveguide case. (RAYMODE always uses a flat bottom). The 

results from both RAY,MODE and PE Model (Figures 32 to 34) in the winter show the 

losses are in agreement within 3 dB for all the same combinations of receiver and source 

depths. The big difference occurs in summer where the PE Model shows a sharp loss of 

10 dB,'km and then a number of refracted / reflected rays decreasing along the path (less 

echo) (Figures 35 and 36). In contrast, RAYAMODE shows a slowly increasing trans- 

mission loss of about 1 dB/km (Figures 37 and 38). Also for the cases where the source 

and receiver are at the same depth, the RAYMODE model predicts a decrease in the loss 

from 5 to 10 dB (stronger echo). The PE Model shows no difference for this case in the 

direct path but the group of RBR rays is more discrete. By neglecting the bottom inter- 

actions (fully absorbing), the PE Model calculated a loss similar to the previous runs for 

ranges close to source (<  5 km), which is the direct path source-receiver (Fig. 39). A 

number of selected runs is included in Appendix A. 

3. Path No 2: PE Model 

In this relative shallow channel with anomalous morphology the PE Model for 

both seasons shows a loss 80 dB in less than 5 km for the direct path at 50 Hz. A number 
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Figure 32. Path 1, PE lModel at 1000 Hz winter. 
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Figure 33. Path 1, PE Model at 1000 Hz winter same depth TX-ItY. 



Figure 34. Path 1, RAYMODE at 1000 Hz winter. 



Figure 35. Path 1, PE Model at 1000 Hz summer. 
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Figure 36. Path 1, PE iModel at 1000 Hz summer same depth TX-RX. 



Figure 37. Path 1, RAYhlODE at 1000 Hz, summer and receiver at 60 m. 



Figure 38. Path 1, RAYMODE at 1000 Hz, summer and receiver at 10 m. 



Figure 39. Path 1, PE Model with fuIIy absorbing bottom. 



I 

i of bottom refractions occur at intervals of about 10 km. Increasing (manually) the losses 

into the bottom, yields more attenuation of the bottom refracted energy and hence more 

loss in general. Also, higher frequency gives lower propagation losses in the winter for 

1 the direct path. In the summer the lkHz frequency wave attenuates more than 105 dB 

at 2 km and then caustics occur from the bottom reflections which occur at intervals of 

12 km. Selected runs for path 2 are also shown in Appendix A. 

4. Path No 3. PE Model 

Results for path 3 are similar to those experienced for path 2. Increasing the 

depth of both source and receiver increases the propagation loss. Bottom bounce rays 

can be detected converging every 30 km at 50 Hz for both seasons as well as refracted 

energy from the bottom. Increasing the frequency produces lower propagation losses in 

the winter. In the summer all frequencies attenuate rapidly and refraction occurs every 

12 km. The higher the frequency the lower the refracted energy, due to the increased 

attenuation with increasing frequency (Appendix A). 

5. Path No 4. PE Model and RAYMODE 

The results for the PE Model are identical to path 3 for the direct path (Ap- 

pendix A)  as the SSP is the same and the depth below the source is the same. The first 

bottom return is now at 13 km (Fig. 40 to 42), about half of the path 3 range. The same 

SSP and a flat bottom at 3000 m used to run the RAYiMODE model. The output (Fig. 

43 and 44) shows a similar high loss for the direct path as PE but after that the loss is 

almost steady at 85 dB (bottom refracted) and at 38 km the convergence zone appears 

with an expected gain of 6 to 9 dB depending on the frequency used. 



Figure 40. Path 4, PE hlodel at 250 Hz. 
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Figure 41. Path 4, PE Model at 1 H z .  



Figure 42. Path 4, PE lModel at 1 kHz. 



Figure 43. Path 4, RAYMODE at 1 kHz winter. 



Figure 44. Path 4, RAYMODE at 1 kHz summer. 



V. CONCLUSIONS 

A. OCEANOGRAPHY 
The oceanographic parameters in the Ionian Sea affecting sound propagation in the 

sea were examined. The results show that the study area is characterized by a seasonal 

thermocline of 300 m with small spatial and annual variations. In winter a half 

channel-type SSP exists. In summer high insolation prevents the creation of a mixed 

layer so a deep sound channel is created with an axial depth of 150 m. In areas where 

bottom depths permit, convergence zone propagation is possible and detection at long 

ranges can be achieved. 

The sea sediment is highly reflective in the coastal regions and highly absorbing in 

the deeper regions. The bottom morphology and the presence of land masses prevent 

long range propagation at all the frequencies examined. 

B. UNDERWATER SOUND 
The modeling of acoustic propagation results in the general observations for the 

area studied. Between the two models examined, RAYMODE and PE, the former is 

adequate in presenting the loss for areas where the bottom is smooth, flat and deep with 

respect to the acoustic wavelength. It will fail in coastal areas with anomalous 

bathymetry, a situation common to the study area and to the Hellenic seas in general. 

The PE model is better fitted for coastal areas because it can treat a variable depth 

morphology but the implementation by the Split Step Fourrier transform will create re- 

strictions at sea sediment boundaries, especially in areas with sharp changes in sound 

speed in the sediment. 

Both the models calculate propagation loss in a vertical only plane. In coastal areas 

like the Ionian Sea this will not permit interactions from nearby land masses. This can 

be solved by three dimensional programs and by the implementation of better algo- 

rithms. 

The sea sediment models need improvement and a theoretical basis but the dficul- 

ties in collecting data from the bottom on a global basis will postpone the appearance 

of such a model in the immediate future. 

In the study area propagation at frequencies between 50 and 1000 Hz is dominated 

by bottom reflection and refraction. Both seasons show relatively short direct path 

ranges. 



Due to the number of parameters that can not be defined or measured with accuracy 

as well as the techniques used by the models, the results of such acoustic models must 

be treated qualitatively only. 



. . APPENDIX A 
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SOURCE DEPTH 60.00 M, RECEIVER DEPTH 60.00 M, FREOUENCY 1000.00 HZ 
DEPTH 120.00 M, RRNGE INCR. 0.056 KM, ATTENUATION COEF 7.771 +IO-~DB/M 
EAM W IPTH 10.000 OEG, REFERENCE SOUND SPEED 1513.7 10 M/SEC 

FIGURE A-4 TRANSMISSION LOSS ALONG PATH 1 IN SUMMER 
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SOURCE DEPTH 10.00 M, RECEIVER DEPTH 150.00 M, FREOUENCY 50.00 HZ 
WilTER DEPTH 3000.00 M, RRNGE INCR.  0.093 KM, RTTENURTI0I.I COCF 1. ~ ~ ~ x ~ o - ' D B / M  
HALF BERM WIDTH 10.000 DEG, REFERENCE SOUND SPEED 1512.420 M/SEC 

FIGURE A-12 TRRNSMISSION LOSS ALONG PRTH 3 I N  SUMMER 
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SOURCE DEPTH 10.00 M, RECEIVER DEPTH 10.00 M, FREOUENCY 50.00 HZ 
WRTER DEPTH 3000.00 M, RANGE I NCR . 0.093 KM, ATTENUATION COEF 1 , 9 4 3 ~  ~O-'DB/M 
HALF BERM WIDTH 10.000 BEG, REFERENCE SOUND SPEED 1512.420 WSEC 

FIGURE A-19 TRRNSMISSlON LOSS ALONG.PRTH 4 I N  SUMMER 
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