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ABSTRACT

A study was conducted in an area off the Hellenic west coast to examine the spatial
and time variability of various oceanic parameters, with special emphasis on those ef-
fecting ASW operations. Propagation loss runs were conducted using PE and
RAYMODE models. The reactions of both models to different bottom morphology and
sound speed profiles (seasons) were examined. Between the two models, the PE model
was found to be closer to reality than RAYMODE. Results suggest that the application
of these models can improve the understanding of sound propagation in the Hellenic

seas. The bottom modeling program, BLUG, appears to need improvement.
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I. INTRODUCTION

A. GENERAL

The Hellenic Navy (H.N.) recently established an underwater laboratory in order to
perform tests for underwater acoustical devices. A number of areas were examined in the
region of Eastern Mediterranean and some of them were found to comply with the
requisite specifications for low environmental noise and a smooth shallow sea bottom.
In the present study one of these areas was selected for examination of its acoustic
propagation characteristics. The study area is located in the Ionian Sea , specifically the
region north of 37° 00'N, a restriction to avoid the sea lanes in the southern Ionian Sea
which cross the area in an east-west direction. A partition of the lonian Sea into smaller
sectors, each with similar characteristics, was made according to Chart No 30 published
by the Hydrographic Service of the Hellenic Navy (H.S.H.N., 1988a). This study covers
only the eastern sectors close to the west coast of Hellas (Greece), namely areas Alpha,

Bravo and Golf, names that will be used in the study hereafter.

B. OBIJECTIVES

The principal objective of this study is to examine the spatial and temporal vari-
ations of the oceanic factors that affect underwater sound propagation in order that an
acoustic analysis and understanding of the sound propagation in the Ionian Sea can be
performed. In addition, an evaluation of the acoustic computer models used by the
United States Navy is performed to examine their application to this unique region of

the Ionian Sea and the Eastern Mediterranean in general.

C. AREA DESCRIPTION

The Ionian Sea is that part of the Mediterranean Sea lying to the west of Hellas.
The geography and partitioning of the Mediterranean Sea into regional basins is shown
in Figure 1. This study covers that part of the southeast Ionian Sea from 37° 00'N to
38° 30'N and 19° 30°E to 21° 00’E. The total area is 20000 km? and is bounded to the
east by the Hellenic Peninsula (Fig. 2). The area can be separated into the coastal waters
lying between the mainland and the offshore islands and the pelagic waters of the Ionian
Sea. The mainland is divided into two parts, the main Hellenic Peninsula and the smaller

Peloponnesos Peninsula. Between the two there is a sea lane of about 10 km in width

and 165 km long which connects the Ionian Sea to the Aegean archipelagos via the




Strait of Corinthos. Area Alpha is located in the shallow waters between the mainland
and offshore islands of Kefallonia and Zakynthos (Fig. 3). It has an overall area of 1880
km? and a smooth sea floor with an average depth of around 120 m. The other two areas,
Bravo and Golf, are located west of the above islands with Bravo to the north of Golf.
The area of Bravo is 4116 km? and has bottom depth which extends to 100 m over the
continental shelf and then falls sharply to 1500 m, eventually reaching depths in excess
of 2000 m. Area Golf is 15000 km? in extent and has bottom features similar to that

of Bravo but has deeper depths which extend to 3000-3300 m.
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II. OCEANOGRAPHY

A. WATER MASSES

Oceanographic conditions in the study area are effected by the circulation of the
three major water masses present in the Eastern Mediterranean Sea. These masses,
Atlantic, Levantine and Deep Water, are separated by different depths which vary as
they move from their places of formation towards other areas, being mixed by other
waters along their paths. A number of authors such as Lacombe and Tchernia (1958),
Wust (1961), Ovchinnikov (1978) and others have studied the water masses and the cir-
culation characteristics of the Mediterranean Sea. In general, the Mediterranean can
be divided into a western and an eastern basin, the latter being defined as the sea east-
wards of the Straits of Sicily. Malanotte-Rizzoli and Hecht (1988) state that the physical
mechanisms that determine the circulation patterns in the Mediterranean are still un-
certain. They, as well as El-Gindy and El-Din (1986), have reported on a number of
studies that have been done or are still under execution such as the POEM (Physical
Oceanography of the Eastern Mediterranean) cooperative program (UNESCO reports
30, 35 and 44). Part of the uncertainty is due to the complexity of the land barriers to
the circulation ‘modeling, coupled with sometimes conflicting reports which have ap-
peared since 1945.

The major water inflow comes from the Atlantic Ocean. This flow pattern results
from the fact that the Mediterranean is a concentration basin wherein evaporation ex-
ceeds precipitation and runoff. Hence, Atlantic Water (AW) flows into the
Mediterranean in order to preserve mass conservation (Bethoux, 1979 and 1980). It
flows eastward extending from the surface to 200 m "and enters the Eastern
Mediterranean by the Straits of Sicily. In the vicinity of Gibraltar, AW has a temper-
ature of 15°C and a salinity of 36.15 psu (Lacombe and Richez, 1982). At the entrance
to the eastern Mediterranean the salinity has increased to 38.6 and continues to increase
eastwards until at the coast of Israel it is 38.7. In the winter the lower evaporation rate
and vigorous mixing destroy the upper layer quickly so the identification of AW is dif-
ficult. Frassetto (1965) reports that in wintertime some evidence of AW was observed in
the Straits of Sicily so the assumption that this water penetrates as far east as the Ionian

Sea holds. Based upon geostrophic calculations (Nielsen, 1912), a cyclonic gyre is ob-

served to the west of Crete (Fig. 4) which carries the AW northwards into the Ionian




Sea. The identification of AW in summer is easier as the high insolation and evaporation
rate, coupled with limited wind action, create a buoyant warm and saline layer at the
surface which preserves the low salinity influx water found just beneath the surface.
Beneath the AW is Levantine Intermediate Water (LIW). This water is formed in
the Levantine basin (Wust, 1961; Bryden and Stommel, 1982) at depths between 200-600
m and is present in the Levantine Basin throughout the year. This water flows westward
(Wust, 1961) and upon reaching Gibraltar enters the Atlantic Ocean where it sinks to
1,000 m. It can be traced to the east coast of the American continent by its salinity
maximum (Lacombe and Tchernia, 1960). LIW also penetrates into the Ionian and
Adriatic Seas. LIW is formed mostly in the winter and can be identified in the Levantine
Basin by its salinity maximum (39.1) and a temperature of 15°C (Fig. 5). As it moves
towards Crete, the salinity decreases to 38.9 and continues to reduce due to mixing as -
it progresses westward. The salinity of LIW at the Straits of Sicily is 38.7; upon exiting

the Mediterranean at Gibraltar it a has value of 38.4.

The Deep Waters in the Eastern Mediterranean are thought to be formed in the
North Adriatic Sea (Pollack, 1951; Pickard and Emery, 1982; Roether et al., 1983), the
latter basing their hypothesis on the results of tritium tracer studies. These waters flow
to the bottom of the Ionian Sea and then into the Levantine Basin (Fig. 6). Some of
these bottom waters can also be formed in the Aegean Sea but no evidence of flow into
the Ionian via the Kythera Straits has been identified (Lacombe et al., 1958). These

waters are characterized by a temperature of 13.6°C and a salinity of 38.7.

B. CURRENTS

Observations of the currents in the Eastern Mediterranean Sea have lead to con-
flicting results. A number of measurements and models has been published (Malanotte-
Rizzoli and Hecht, 1988; El-Gindy and El-Din, 1986) but no coherent picture of the
general circulation can be drawn. This is in part because the wind stress in the Eastern
Mediterranean exhibits such strong seasonal variability (Fig. 7). The wind driven cur-
rents are expected to form a cyclonic gyre in the Ionian Basin which reverses in summer
(Moslalenko, 1974), a feature which has been confirmed by numerical experiments car-
ried out by Malanotte-Rizzoli and Bergamasso (1988). The Pilot of the Hellenic Seas
(HSHN, 1979) describes a relatively steady northward surface flow, with no seasonal

variability, along the coastal margin of the study area (Fig. 8). More current measure-




Figure 4.  General circulation of the surface waters in the Eastern Mediterranean

(from Nielsen, 1912).

ments made by the Hellenic Navy (HSHN, 1989) confirm the northward direction at the
surface and at 200 m with no significant seasonal variations (Fig. 9).

The Ionian Sea and its neighbor to the north, the Adriatic Sea, have relatively high
surface evaporation rates both in winter, due to dI‘V strong winds from Europe, and in
summer, due to high insolation. Assuming that the deep water, formed from the excess
evaporation flows southward, then mass conservation requires a surface replacement
inflow from the south (Atlantic and Levantine types). Thus a two-layer circulation pat-
tern of opposing currents is formed.

No frontal regions are located in the study area. The Maltese Oceanic Frontal Zone :
(Johannessen, Stobel and Gehin, 1971), located east of Malta in the region between 36°
00'N 17° O0’E is far to the west and does not affect the study area.

The above water masses and their circulation produce the temperature and salinity

profiles seen in Figure 10 typical of the Ionian Seca.
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Figure 5. Transverse cross section of salinity: Both seasons, winter (top) and -
summer (bottom), illustrate the presence of near surface Atlantic Water,
high salinity Levantine Intermediate Water at mid depth, and Deep
Water below (from Wust, 1961).

C. TEMPERATURE DISTRIBUTION

The temperature profiles found in the study area exhibit a strong seasonal vari-
ation. This variability is constrained to the surface waters as profiles below 300 m show
negligible seasonal variability (Podeszwa, 1971). The annual sea surface temperature
(SST) distribution in the Mediterranean is shown in Figure 11 for four representative
months. The SST during the winter (February) is about 14.5°C (58°F) while in summer
(August) it warms to 25.5°C (78°F). In winter a mixed layer exists from the surface to
about 30 m depth. The temperature slowly decreases from 15°C at the bottom of the
mixed layer to 13°C in the deep waters (Podeszwa, 1971; El-Gindy and El-Din, 1986).
Summer conditions are characterized by a very hot sea surface (23.5)°C where insolation
and the absence of mixing prohibit the formation of a mixed layer. A sharp tcmpérature
decrease then follows to a depth of 150 m ( 15° C) followed by a slower decrease. Be-

tween 200 and 600 m (LIW) the temperature is about 15°C; in the deep water it is close




OILYAYOS WILVM
JAVIOIMY ILNE A

’ 7’ \
uni kujuzng

WOOOY = — P e

W 00OE -~ ==~~~
WIBq081°'W QOO — P —

MW@% WOOS! *H1d30 NY3N
3 -

Vaiydyv

N

- BAN3¥uN)

yyiivyaly
0

Eastern Mediterrancan and off the

10

The Adriatic Sea for the
coast of the French Riviera for the Western Mediterranean (from

Pickard and Emery, 1982).

The formation areas of the Deep Waters in the Mediterrancan (denoted

by XXX):

Figure 6.




N
\\\\‘ﬂ\s\\s‘ DR it

T = o g = a}
AN S ST T iy S o g

a)

b)

Figure 7. Wind stress over the Mediterranean Sea: a). January mean, b). August
mean ({rom Malanotte - Rizzoli, and Hecht, 1988).

to isothermal at 13.5°C. The difference between summer and winter temperature profiles
becomes negligible for depths greater than 400 m (Fig. 10).

The transitions between these two seasons is observed mainly in the depth of the
mixed layer, 10 m in spring and about 25 m in the fall. Acoustic conditions during these
transition seasons are not examined in this study, instead preferring to concentrate on
the two exireme seasonal conditions.

In addition to being influenced by the above large-scale propérties of the
Mediterranean circulation, the local temperature and salinity profiles can be affected by
meso or small scale activities like eddies (Malanotte - Rizzoli and Hecht, 1988). For ex-
ample, El-Gindy and El-Din (1986) cite the possibility of deep warm eddies in the cen-
tral Ionian Sea. Also a satellite image of the Ionian Sea (Fig. 12) shows the pfesence of

warm eddies in the area under investigation.
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Figure 12.

warm eddies in the eastern Ionian Sea are shown in this plot derived

from satellite I.R. data from Sept. 1977 to from Feb. 1979 (Robinson,

1985).
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D. SUMMARY OF OCEANOGRAPHY _

A summary of the preceding hydrographic analysis is presented below describing
conditions present in the study area during the two principal seasons. Typical profiles
for the lonian Sea are shown in Figure 10.

1. Winter season

The winter season, January through March, is in general characterized by
strong wind mixing and convection which produces a well-mixed surface layer to 200
m (T = 14.0° C, S = 38.2). Beneath this layer and extending to 600 m is LIW which flows
northward along the west coast of Hellas. The Deep Water from the Adriatic fills the
depths from 600 m to the bottom (T = 13.5°C, S = 38.7). The mean temperature, salinity
and sound speed profiles of Figure 10 appear to be representative of the entire region
of the Tonian Sea. Small variations from these profiles are expected due to local influence
and year to vear fluctuations.

2. Summer season

The summer season, July, August and first days of September, are characterized
by high insolation and limited wind mixing. This produces a hot and saline lid at the
surface(T = 25°C, S = 38.8) which overlies the low-salinity Atlantic Waters below. The
AW is identified by its lower temperatures and salinity minimum (T = 14°C, S = 38.2)
at a depth of 20 m to 200 m. Little or no seasonal effects are expected below this depth
of 200 m.
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HI. DATA ANALYSIS

A. SOURCES OF DATA
I.. Hydrographic data (Temp., Sal., SSP vs Depth)

Two sources of hydrographic station data were used; from the National
Oceanographic Data Center (NODC) at Washington DC (1989) and from the
Hydrographic Service of the Hellenic Navy (HSHN) at Athens, HELLAS (1988b, 1989).
Historical sound speed profiles compiled by Podeszwa (1980) for the Ionian Sea were
also used for comparison, as they include more than 6000 records in this area. From the
NODC data file a total of 192 observations (Nansen and CTD) were extracted. The
majority of them (180 records) represent synoptic data collected in areas Bravo and Golf
in November 1980 while the rest are mostly single records taken from various sources in
the study areas between 1970 and 1983. The Hellenic Navy data included 15 CTD
stations in the coastal area, Alpha. Additionally the Hellenic Navy provided groups of
three to four synoptic records covering the entire area Alpha and representing all four
seasons. These records were used for spatial investigation of each group inherently and
for seasonal variation analysis, averaging records of the same group. The time interval
covered by the data from all these soﬁrces starts in 1970 and ends in 1983 and the ob-
servations are distributed over all the interested areas and seasons of the year (Fig. 13).

Sound speed profiles were calculated from these temperature and salinity data
using the Chen - Millero (1977) equation. In selecting a typical SSP, more attention was
given to the upper 600 m as this was the depth range exhibiting most of the seasonal
variability. Records having some data points lying outside the normal standard variation
were corrected by interpolation. If the number of bad data points was significant, then
the whole record was discarded. Plots and graphs were expanded to 350 m for the shal-
low area (Alpha) and to 3000 m for deep ones, Bravo and Golf. The range 0-600 m is
also used to increase the resolution of the upper water strata.

2. Bottom Characteristics

The bottom depth in the area of interest varies such that it can be divided into
two regions. The coastal region is a part of the continental self with depths less than 200
m. The Ionian Basin is significantly deeper having depths between 200 m and 3000 m
and in some areas exceeding 3000 m. A representation of the bottom morphology can

been seen from three transects which pass over the continental shelf into deep water
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(Fig. 14). The continental shelf is present from the mainland to the Ionian Islands; then
the bottom precipitately descends to the Ionian Basin. The selected study areas are dis-
tributed such that area Alpha lies above the continental shelf while areas Bravo and
- Golf lie over the continental Slope and the Ionian Basin. Based upon data from the
HSHN (1988b and 1989) the sea bed is observed to be mostly mud with a small per-
centage of silt (less than 4.5%). - This percentage increases shoreward from 12.8% to
29.4% depending on the bottom slope.

Data for acoustical modeling of the sea bed were taken from the data bases
associated with the bottom loss model BLUG and NAVOCEANO charts (H.O, 1972).

Two HSHN small scale charts, No 22 (HSHN, 1982) and No 65 (HSHN, 1983)
were used to extract the bathymetry along each selected transmission path for later in-
sertion into the PE transmission model (Fig. 14 and 13).

B. SEASONAL VARIABILITY
1. Winter
In the winter season (January through March) a total of 15 records were ex-
amined from observations taken within the study area. These observations were taken
over a time span of nine years. As expected, wind and convective mixing produce a well
mixed isothermal layer below the surface. This layer in shallow areas, like Alpha, extends
throughout the entire water column. In area Alpha the winter is characterized by an
isothermal profile of 14.5°C (Fig. 16). The mean values from these 15 records result in
temperature, salinity and sound speed profiles as shown in Figure 17, where a low sur-
face salinity (S = 38.0) is observed followed by a positive salinity gradient. The same
characteristics can be seen in the deep areas, Bravo and Golf, where the surface tem-
perature is 15.0°C and decreases slowly with depth (Fig. 18). At 300 m the temperature
is about 14.0°C; at 1500 m it is 13.5°C. The salinity gradient is also positive with surface
values of 38.44 in the deeper offshore areas. Salinity increases with depth until at 300
m it is about 38.75. This is true for both deep and shallow areas. AW is hence observed
to occupy the upper 300 m, LIW the deeper waters (Fig 19).
2.  Summer
In summer a total 5 of records from the HSHN data base were examined. The
principal features of the temperature profile are its hot surface layer followed by a sharp

decrease in temperature. The profiles for area Alpha (Figures 20 and 21) show the pres-
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ence of a mixed layver to 20 m. The mixed layver is better developed in the synoptic pro-

files acquired between 9 and 19 September 1973 (mean values only). Farther scaward in
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areas Bravo and Golf the existence of limited mixing is evident as the temperature at first
decreases slowly to 15 m, followed by a sharper gradient beneath. The salinity profile
in shallow waters (Alpha) shows a nearly isohaline condition with a sharp increase close
to the bottom, evidence of the presence of LIW flowing on to the shelf (Fig. 21). In the
deep water areas, the salinity exhibits a minimum at 30-40 m (AW) and then increases
to 38.75 between 300 and 500 m (LIW). Below the LIW it slowly decreases to values
below 38.7 (Deep Waters) (Fig. 22).

C. SPATIAL VARIABILITY OF DATA

To investigate evidence of spatial variations in the study areas all the available
synoptic data were used. For area Alpha these synoptic records covered all the seasons
of the vear; for areas Bravo and Golf the only available data were limited between 2 and
28 November 1980.

The compilation of synoptic records from area Alpha shows that the maximum de-
viation of each group does not exceed 0.5°C from the mean values (Figures 16 and 20)
for both seasons, winter and summer. Hence, in area Alpha, bathythermographic con-
ditions have negligible spatial variation for each of the seasons examined in this study.

For deeper areas Bravo and Golf, as noted before, the spatial investigation was done
using groups of records taken between 2 to 28 November 1980. Again the differences
between the records do not exceed 0.5°C in temperature or 10 m in MLD.

The comparison between selected groups of records taken in area Bravo on 19 No-
vember 1989 and in area Golf on 11 and 26 November 1989 verify that area Golf is
usually 0.5 to 1°C warmer than Bravo. The differences are in the mixed layer where
(Figures 23, 24 and 25) records from Golf have a MLD of 30 m and a surface temper-
ature 21.3°C on 11 November. Four days later Bravo has a MLD of 30 m and a surface
temperature 20.0°C and then Golf on 26 November has a MLD of 35 m and surface
temperature 19.4°C.

The above selected records indicate a negligible spatial variation across the study
areas. In addition the examination of single records taken in winter and summer shows
small differences between them. Records taken in these areas from the same seasons with
a five to nine year time span seem very similar and close to those compiled by Podeszwa
(1980). Hence, the assumption that the spatial variations of temperature and salinity in
these areas are negligible is valid. Accordingly the SSPs in the study area do not have
horizontal variations, at least for the time period for which an ASW prediction is re-

quired.
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| IV. ACOUSTIC ANALYSIS
A.  ACOUSTIC MODELS

In this study the examination of sound propagation was performed by using two
acoustic models available at the Naval Postgraduate School, the PE Model and the
RAYMODE model. These two models represent two different techniques to calculate
the propagation loss in a given oceanographic environment. A number of runs were
compiled using both models and relative comparison performed.

Brief qualitative descriptions of the two models are given below and the implemen-
tations of bottom interactions into each model is discussed.

1. GENERAL

The purpose of these models is to provide attenuation for sound propagation
into the sea. Specifically they are designed to calculate or estimate a number of propa-
gation factors, the major ones being geometric losses (spreading and convergence),
diffraction, absorption, scattering, leakage and boundary effects (surface and bottom).
A number of methods, mostly empirical, for estimating the effects of some of the above
factors in underwater sound propagation have appeared in numerous tactical publica-
tions in the yea'rs following the close of the second world war. Such methods were used
by surface s’hii)s and submarines to estimate, for example, detection ranges of the day
or best depth to avoid detection.

One of the next progressive steps was the implementation of ray theory. An
immediate result of Snell’s law, raytracing is a simple and fast method for determining
sound paths either graphically or with the assistance of a computational machine.

Sound propagation in the sea can be expressed by the linearized, lossless and
source free wave equation (Kinsler et al., 1984),

2
vip=L 2L @)
¢ 0Ot

Ray theory assumes that a solution to the wave equation (Kinsler et al., 1984)
" takes the form,

I'(r,2)
plr,z) = A(r,2)* "¢ ]
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where A(r,z) is the spatially dependent pressure amplitude and I' is a propa-
gation vector locally normal to the isophase pressure surface; hence VI is the local di-

rection of propagation,
VI = 5( cos ¢7 +sin ¢7).

where ¢ is the local elevation angle of the ray path.
This solution, when applied to the wave equation (4.1), will result in:

VA

_Q2gp g4 229 (2 gA L YT+ V) =0,
A G ¢ Ve (A

The above equation can be simplified by a number of approximations to provide

a form known as the Eikonal equation,

VIVl =42
where 7 is the refractive index,
; c,
- Xyz)=—"—"7T.
. 1txw:2) c(xy,z)
- The assumptions and restrictions used in the derivation are that the pressure

amplitude A is significant within a finite aperture beam and that the speed of sound
varies little over distances compared to a wavelength, so
V4 W2 2 ()
1 <o VI,

and

YL yre2-.
The applied assumptions will make this method fail in cases where the pressure
coefficient A has to decay rapidly from the center of the ray to the edges or the SSP has
. sharp changes. Such conditions are expected in caustics, shadow zones and the boundary
between the ocean and some type of sediments. In this theory no diffraction of the
. sound at the edges is permitted as the acoustic energy trapped within a beam may not

leak out of it. In contrast to normal mode theory, ray theory easily accepts different
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densities in the sediment so reflection of the incident rays can be calculated. In general,
ray theory is valid and useful when the frequency is high (short wavelength) and the SSP
changes slowly.

The continued improvements of passive detection in frequencies below 1 kHz
resulted in new theories and techniques, followed by a number of complicated acoustic
models as electronic computing power became more available. Normal mode theory
provides a solution to the wave equation using the summation of an orthogonal set of
functions, each one being a solution to the wave equation. Each of these characteristic
functions, called normal modes, has its own attenuation factor for the given boundaries.
The final pressure field can be calculated after these modes have been combined
additively. This solution is formally complete but it is difficult to calculate and interpret.

A simple approach (Kinsler et al., 1984) to normal mode theory can be per-

formed by inserting a source term in the wave equation
2 gr__1_ -
Vp =5 6(r)é(z — zp). (4.3)

The solution for a sinusoidal wave propagating into a sound channel can be written as

the summation:

plrzt) = € RA(1Z,()

where :

4’z 2
(2
dz ¢ (2)

—kHZ,=0

and
R,,(l’) = —jﬂe/thn(ZO)}{f)(kn r).

Forr > > 1 the solution will be :

pran==i) [ 2=z ozl D (@4
n
n




where the Hankel function has been replaéed by its asymptotic form, with the use of the
far field approximation. The value of K, and the depth dependence of Z (z) can be eval-
uated from the appropriate boundary conditions and the given ¢(z).

The above values must be calculated for the whole propagation space which,
due to the mathematical complexity, makes the use of a computer necessary except the
most easy cases. \

An alternative method to the above solutions is an approximation using a
parabolic approximation to the wave equation. The wave equation can be expressed also
as;

Vi + k=0,

where

() %
k=—6—9k=k077a71=—5—’

In cylindrical coordinates and with an omnidirectional source the wave
equation is

P+ ()P, + P+ Kinp =0,
Then the acoustic pressure, p, can be expressed as
p = u(r2)Hy(ky)
and use of the far field approximation yields
Uy, + Uy, + 2ik,u, + kg(n2 -1)=0.

Finally, the assumption that u,<2k,u, gives the form

u, = a(k,,r,z)u + blk,rz)u,,

which is amenable to numerical solution.
This method was introduced by Tappert and Hardin in 1973 who used in their
work a computational technique called the Split Step Fast Fourier Transform (SS-FFT).

The advantages of this method are that we do not need to solve for the entire field si-
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multaneously as in the normal mode case but given initial conditions at some range r,
(close to the source) the solutions for larger r's can be obtained by increasing r incre-
mentally, This is equivalent to neglecting back scattering as the solution for any range
r has no effect on any previous range.

The disadvantages of this technique are errors introduced, if the initialization
of the problem is not correctly selected, and if the requirement of SS-FFT for continuous -
functions of depth (z) are not met. The PE is inherently restricted to narrow spectral
angles. A number of published techniques ease the initialization problem by using
raytracing or a directional pseudosource (see, for example, a discussion from Coppens,
1982) and a number of "wide angle” PE Models have been published. (see, for example,
Lee et al.,, 1982).

2. RAYMODE

The passive RAYMODE model, U.S.Navy's standard acoustic model, uses an
integration method developed in 1968 (Medeiros, 1985). A number of modifications and
improvements have been added, such as mode summation and low frequency paths into
the sediment. The model used in this study was the Passive RAYMODE, specifically the
1987 baseline edition. This model utilizes ray and normal mode theories in an attempt
to minimize errors and computer run time. Up to four different paths of sound propa-
gation can be formed and the total pressure field is defined by summing the contrib-
utions over all paths. Boundary interactions are calculated by invoking a number of .
other models, like BLUG.

The inputs to the program are:

Sound speed profile,

Bottom depth and bottom type (BLUG or NAVOCEANO),

Wind speed,

Source depth,

Receiver depth,

Sonar D/E angle and vertical beamwidth,

Frequency,

Range span and range step.

The program will process these data to produce a piecewise SSP and then par- .
tition it into areas of different wave number (Medeiros, 1985). These wave number do-
mains represent different paths such as the surface duct or the deep sonic layer or .
sediment paths (Fig. 26).
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Based on the entered data for each path the model will calculate two parameters
: the number of cycles that exist between source and receiver, and the number of modes
existing in each wave number interval. From these parameters there are four different
ways that the algorithm will proceed. If the number of modes is less than 10, the normal
mode summation technique is used. If the propagation angle exceeds a computed limit,
’ then a bottom bounce integration is used. For paths employing neither of the above
cases the original method of RAYMODE integration is used (Raytracing). Finally, if the
frequency is more that 3 kHz, a fast integration subroutine is used (High frequency
RAYMODE).
For each path absorption is calculated as well as the relative phase of each ray.
' Bottom interactions are computed using models including the Naval Oceanographic
Office MGS algorithm (NAVOCEANO charts), the BLUG (Bottom Loss Upgrade) and
a low frequency bottom loss model developed by G.Gustave (NUSC, 1987). The surface
loss is calculated according to a Surface Reflection Coefficient Model. For the present
time no range dependency is assumed, neither for the SSP nor bottom depth.
RAYMODE at the present time uses only a flat bottom and a single SSP.
3. PE Model
. This is a relative new model based on the parabolic equation approximation.
It is designed to operate at relatively low frequencies as computer run time for higher
frequencies, more than 1000 Hz, increases significantly. The PE Model is not restricted
by depth dependency along the axis of propagation (range r) nor by horizontally
changing sound speed profiles. It is best used whenever a duct-like transmission occurs,
for example, in the Arctic, shallow channels, etc., or where non-homogenities in the
water mass exist. The entered parameters in this mode] are:
Sound speed profiles,
Bottom depth (discrete depths), _
SSP and attenuation profile in the sediment or bottom loss vs grazing angle
(BLUG output),
Source depth,
Receiver depth,
Source vertical beamwidth,
. Range step (increment).
The surface is assumed to be a pressure release boundary with reflection coeffi-
. cient -1, the bottom is assumed to be a continuation of the water mass. After the initial
boundary conditions have been specified the program will march the solution forward
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in range using a split - step fast Fourier transform algorithm (SS-FFT) until the entire
field has been calculated (Tappert and Hardin, 1973).
4. Bottom Loss Models

The influence of the sea bottom in sound propagation is modeled using two
different approaches. The earlier encompares the geo-acoustic models where the sea
bottom is assigned a number which represents the observed acoustic behavior of the
sediment. Such a representation are NAVOCEANO curves, used by the U.S.Navy for
high frequency operation (> 1000 Hz). Nine different loss curves are used to characterize
the types of existing sediment. These curves represent loss per bounce (dB/bounce) for
only reflected rays. Type 1 is the most reflective and Type 9 the most absorbing.

For low frequencies, where both reflection and refraction into the sediment have
to be calculated, the Bottom Loss Upgrade (BLUG) model is used by most of the Navy's
models. In the BLUG model a partition of the oceans is done similar to the
NAVOCEANO model, but instead of loss curves a total of nine geo-acoustic parameters
has been assigned to each area. These parameters are used by the BLUG program to
produce a compressional sound speed profile into the sediment as well as an attenuation
profile (Fig. 27). This will permit the acoustical model to incorporate the bottom loss
and refraction by using a continuous profile into the water and sediment.

The BLUG output is given in loss per bounce vs grazing angle for each fre-
quency and it is used, in this format, in the PE Model. RAYMODE uses an internal
subroutine for the same task. The attenuation into the sediment is calculated from the
formula (Medeiros, 1982) :

a(z,f) = ay(z,f) X fy-

This first power relationship between attenuation and frequency was made after
the work of Hamilton in his numerous reports. Hamilton (1971 and 1974) derived this
relétionship in an empirical way from the collected data over a wide but relative high
frequency spectrum, without any theoretical basis.

The density of the sediment is constant because any changes do not effect the
propagation significantly. Finally a theoretical thin layer at the surface (Fig.27) is used
to remove any discontinuities in the boundary between the water and the bottom.

The second and later approach is the geo-physical model where reflection, re-

fraction and attenuation into the sediment must be calculated by physical parameters for

each area. Recently a number of authors (e.g., Kibblewhite, 1989) reported a number
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of experiments where the more fundamental analysis from Stoll (1980), using Biot (1962)
theory, seems to be more adequate. Stoll (1980) cites a relation of the attenuation co-
efficient with the square of the frequency for fully saturated sediments.

The BLUG model is undergoing reconstruction whereby the attenuation will
be related to frequency between the first and second power, depending on the bottom
quality (type and depth).

B. APPLICATION OF DATA
1. Sound Speed Profiles

Two different sound profiles for both shallow and deep water columns were se-
lected to represent the summer and winter seasons. Area Alpha is represented with the
profiles representing the averaging of the winter or summer records, respectively. The
main characteristic in the winter is a smooth positive sound speed gradient resulting in
a half channel propagation (Fig. 28). Hence only reflected surface reflected (RSR) and
reflected bottom refracted (RBR) rays will propagate. Higher frequencies will attenuate
more rapidly due to enhanced scattering from surface reflections (Urick, 1983). In the
summer a mixed layver exists to a depth of 20 m resulting in a slight positive sound speed
gradient, followed by a sharp decrease (Fig. 28). A weak sound channel exists with an
axis at 150 m but is bottom limited so that this will not be a viable propagation path.

Using the formula,

fa2x ios
D2

to determine the low-frequency cut off in the mixed layer (Kinsler et al., 1984) we find
a cut off frequency of 2.2 kHz, a transition range of less than 200 m, and a skip distance
of about 3.6 km. For both deep areas, Bravo and Golf, the representative profiles for
each season were selected from among the existing records in order to examine the most
significant cases (Fig. 29). The selected SSPs are common for both areas as no noticeable
spatial differences occur and are shown in Figures 29 and 30. In the winter isothermal
conditions will create a half channel. The presence of LIW will create a small “knee”
along the SSP between 200 and 500 m as the high salinity of LIW will increase the sound
speed in a small amount. In contrast, summer heating changes the upper 200 m, as noted
before (Fig. 22), and increases the sound speed. Hence in the surface the sound speed is
about 1540 m/s and a deep sound channel is formed with a height of 2000 m and an axis

at 150 m (Fig.29). In this channel the transition range is about 8 km and the skip dis-
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tance 30 km. For paths with more than 2200 m depth CZ propagation is expected at a
skip distance of 29.5 km with a transition range of 8 km. The SSP used for areas Bravo
and Golf for winter and summer can be seen m Figures 29 and 30 (upper 600 m).
2. Bottom Paths and Parameters

Using the appropriate data bases (BLUG and NAVOCEANO), all three areas
in this study were found to be characterized by a fast bottom with a sound speed ratio
along the boundary (water to sediment sound speed) of 1.091 for the continental self
(Alpha) and 1.005 for the Eastern Ionian Basin. Area Alpha has a reflective bottom
(Type 2 for NAVOCEANO charts) for frequencies over 1 kHz. Areas Bravo and Golf
over the lIonian basin experience significant bottom reflection losses (Type 8,
NAVOCEANO charts). The loss per bounce for each incident angle and frequency, as
produced by the BLUG model, can be seen in Figure 31.

' A number of paths were selected to simulate the most likely sea sediment
morphology in the region (Figs. 2 and 14). The first path represents shallow area Alpha
and is assumed to-be a flat bottom with a depth of 120 m. The second path is a com-
bined path which starts over the continental slope and continues onto the shelf in such
way that one third is in area Bravo and the rest in Alpha. Path three is also a combined
path which starts at a depth of 3000 m and extends from area Bravo towards the shelf
with a sharp rise. It is the only path were the depth at the source position exceeds 2300
m and for which convergence zone propagation exists. Finally, path four is a sloping
bottom case which starts at a depth of 2000 m and decreases smoothly towards shore
(100 m) into area Golf.

3. Source, Receiver Data
Three depths were selected for the source according to the MLD and bottom
depth along each path. For the shallow paths (No 1 and No 2) these depths are 10 and
60 m. For tvhe remaining paths 10 and 150 m were selected. The source frequencies are
defined to be 50, 250, 500 and 1000 Hz. The receiver depths were also set to 10 and 60
m. These definitions of source and receiver depth were made in order to consider all the

available depth éonﬁgurations with respect to MLD and DSC axis. A standard Figure

of Merit (FOM) of 80 dB was selected to produce relative results between seasons.
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C. ANALYSIS OF RESULTS
1. BLUG Output
The calculated attenuation for each selected frequency and grazing angle shows
a critical angle of about 24° for the continental shelf (Fig. 31). This is in accordance with
the water sediment sound speed ratio in the boundary (1.091). Rays less than this
critical angle suffer a loss less than 2 dB per bounce while those greater than this angle
experience a loss exceeding 6 dB. Similarly for the deep area the critical angle is about
6° which is also consistent with the 1.005 speed ratio as above. Because no other sources
are available to verify these sea sediment parameters, these data were used as input to
the two models. The BLUG uses standard values for this ratio, ¢,/c,, with no seasonal
variation. In shallow areas, where the seasonal variation can penetrate the whole water
column, this ratio changes and some errors are expected as the sound speed in the
sediment will be less affected. For the most cases in this study the seasonal changes in
sound speeds in the water close to the bottom are small (Fig. 28) and errors due to the
ratio ¢,/c, are negligible. This remark is only for the PE Model as the RAYMODE model
calculates the ratio from the data given from the BLUG database directly (Medeiros,
1985).
2. Path No 1: PE Model and RAYMODE
This path, a flat shallow area, is used in order to examine both models simul-
taneously in a shallow waveguide case. (RAYMODE always uses a flat bottom). The
results from both RAYMODE and PE Model (Figures 32 to 34) in the winter show the
losses are in agreement within 3 dB for all the same combinations of receiver and source
depths. The big difference occurs in summer where the PE Model shows a sharp loss of
10 dB/km and then a number of refracted / reflected rays decreasing along the path (less
echo) (Figures 35 and 36). In contrast, RAYMODE shows a slowly increasing trans-
mission loss of about 1 dB/km (Figures 37 and 38). Also for the cases where the source
and receiver are at the same depth, the RAYMODE model predicts a.decrease in the loss
from 5 to 10 dB (stronger echo). The PE Model shows no difference for this case in the
direct path but the group of RBR rays is more discrete. By neglecting the bottom inter-
actions (fully absorbing), the PE Model calculated a loss similar to the previous runs for
ranges close to source ( <5 km), which is the direct path source-receiver (Fig. 39). A
number of selected runs is included in Appendix A.
3. Path No 2: PE Model
In this relative shallow channel with anomalous morphology the PE Model for
both seasons shows a loss 80 dB in less than 5 km for the direct path at 50 Hz. A number
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of bottom refractions occur at intervals of about 10 km. Increasing (manually) the losses
into the bottom, yields more attenuation of the bottom refracted energy and hence more
loss in general. Also, higher frequency gives lower propagation losses in the winter for
the direct path. In the summer the 1kHz frequency wave attenuates more than 105 dB
at 2 km and then caustics occur from the bottom reflections which occur at intervals of
12 km. Selected runs for path 2 are also shown in Appendix A.
4. Path No 3. PE Model

Results for path 3 are similar to those experienced for path 2. Increasing the
depth of both source and receiver increases the propagation loss. Bottom bounce rays
can be detected converging every 30 km at 50 Hz for both seasons as well as refracted
energy from the bottom. Increasing the frequency produces lower propagation losses in
the winter. In the summer all frequencies attenuate rapidly and refraction occurs every
12 km. The higher the frequency the lower the refracted energy, due to the increased
attenuation with increasing frequency (Appendix A).

5. Path No 4. PE Model and RAYMODE

The results for the PE Model are identical to path 3 for the direct path (Ap-
pendix A) as the SSP is the same and the depth below the source is the same. The first
bottom return is now at 13 km (Fig. 40 to 42), about half of the path 3 range. The same
SSP and a flat bottom at 3000 m used to run the RAYMODE model. The output (Fig.
43 and 44) shows a similar high loss for the direct path as PE but after that the loss is
almost steady at 85 dB (bottom refracted) and at 38 km the convergence zone appears

with an expected gain of 6 to 9 dB depending on the frequency used.
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Path 4, RAYMODE at 1 kHz winter.

igure 43.
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Y. CONCLUSIONS

A. OCEANOGRAPHY

The oceanographic parameters in the Ionian Sea affecting sound propagation in the
~sea were examined. The results show that the study area is characterized by a seasonal
thermocline of 300 m with small spatial and annual variations. In winter a half
channel-type SSP exists. In summer high insolation prevénts the creation of a mixed
layer so a deep sound channel is created with an axial depth of 150 m. In areas where
bottom depths permit, convergence zone propagation is possible and detection at long
ranges can be achieved.

The sea sediment is highly reflective in the coastal regions and highly absorbing in
the deeper regions. The bottom morphology and the presence of land masses prevent
long range propagation at all the frequencies examined.

B. UNDERWATER SOUND

The modeling of acoustic propagation results in the general observations for the
area studied, Between the two models examined, RAYMODE and PE, the former is
adequate in presenting the loss for areas where the bottom is smooth, flat and deep with
respect to the acoustic wavelength. It will fail in coastal areas with anomalous
bathymetry, a situation common to the study area and to the Hellenic seas in general.

The PE model is better fitted for coastal areas because it can treat a variable depth
morphology but the implementation by the Split Step Fourrier transform will create re-
strictions at sea sediment boundaries, especially in areas with sharp changes in sound
speed in the sediment.

Both the models calculate propagation loss in a vertical only plane. In coastal areas
like the Ionian Sea this will not permit interactions from nearby land masses. This can
be solved by three dimensional programs and by the implementation of better algo-
rithms. ’

The sea sediment models need improvement and a theoretical basis but the difficul-
ties in collecting data from the bottom on a global basis will postpone the appearance
of such a model in the immediate future.

In the study area propagation at frequencies between 50 and 1000 Hz is dominated
by bottom reflection and refraction. Both seasons show relatively short direct path

~ ranges.




Due to the number of parameters that can not be defined or measured with accuracy
as well as the techniques used by the models, the results of such acoustic models must
be treated qualitatively only.
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SOURGE _DEPTH 60 00 M, RECEIVER DEPTH 60.00 M, FREQUENCY
ﬁgggj DEPTH 120.00 M RANGE INCR.

1000.00 HZ
0.056 KM, ATTENURTION COEF 7.771x10°DB/M
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LL

SOURCE DEPTH 10.00 M, RECEIVER DEPTH 150.00 M, FREQUENCY 50.00 HZ i
WATER DEPTH 3000.00 M, RANGE INCR. 0.083 KM, ATTENUATION COEF 1.843%10 DB/M
HALF BEAM WIDTH 10.000 DBEG, REFERENCE SOUND SPEED  1512.420 M/SEC
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SQURCE DEPTH 10.00 M, RECEIVER DBEPTH 10.00 M, FREQUENCY 50.00 HZ
WATER DEPTH 3000.00 M, RANGE INCR. 0.093 KM, "ATTENUATION COEF  1.943x107°DB/M
HALF BEAM WIDTH 10.000 DBEG, REFERENCE SOUND SPEED  1512.420 M/SEC
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